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Input Beam Matching and Beam
Dynamics Design Optimizations of the
IsoDAR RFQ Using Statistical and
Machine Learning Techniques
Daniel Koser1*, Loyd Waites1, Daniel Winklehner1, Matthias Frey2,3, Andreas Adelmann3 and
Janet Conrad1

1Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, United States, 2Mathematical Institute,
University of St Andrews, St Andrews, UK, 3Laboratory for Simulation and Modelling, Paul Scherrer Institut, Villigen, Switzerland

We present a novel machine learning-based approach to generate fast-executing virtual
radiofrequency quadrupole (RFQ) particle accelerators using surrogate modelling. These
could potentially be used as on-line feedback tools during beam commissioning and
operation, and to optimize the RFQ beam dynamics design prior to construction. Since
surrogate models execute orders of magnitude faster than corresponding physics beam
dynamics simulations using standard tools like PARMTEQM and RFQGen, the
computational complexity of the multi-objective optimization problem reduces
significantly. Ultimately, this presents a computationally inexpensive and time efficient
method to perform sensitivity studies and an optimization of the crucial RFQ beam output
parameters like transmission and emittances. Two different methods of surrogate model
creation (polynomial chaos expansion and neural networks) are discussed and the
achieved model accuracy is evaluated for different study cases with gradually
increasing complexity, ranging from a simple FODO cell example to the full RFQ
optimization. We find that variations of the beam input Twiss parameters can be
reproduced well. The prediction of the beam with respect to hardware changes, e.g.,
the electrode modulation, are challenging on the other hand. We discuss possible reasons
for that and elucidate nevertheless existing benefits of the applied method to RFQ beam
dynamics design.

Keywords: radio frequency quadrupole, beam dynamics design, beam matching, virtual accelerator, isodar,
surrogate modelling, neural network, polynomial chaos expansion

1 INTRODUCTION

Machine Learning (ML), using statistical methods and Neural Networks (NNs), is quickly becoming
a staple of modern computational physics. Their highly successful application in computer vision [1],
[2] and the establishment of many software packages that are widely available and standardized (e.g.,
TensorFlow [3] and Keras [4]) has led to attempts to use ML in almost all fields of science. Particle
accelerator physics is no exception, although ML is not as well-established here as in other fields. A
few examples of ML in accelerator physics are given in the following. Arguably, the best-established
use of ML is image analysis using convolutional neural networks (CNNs). CNNs can be used in beam
diagnostics for the analysis of the output of emittance scanners, optical fibers, residual gas monitors,
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and reconstruction of beam pulse structure [5]. The SwissFEL was
tuned using Bayesian optimization [6, 7]. Bayesian optimization,
using Gaussian Process models was also used for the Linac
Coherent Light Source (LCLS) [8].Another very promising
technique, that is also the subject of this paper, is surrogate
modelling. We describe the method in detail later. In short, a fast-
executing model of a complex system can be produced by training
a NN or using Polynomial Chaos Expansion (PCE) on a set of
high-fidelity simulations. This fast-executing Surrogate Model
(SM) can then be used in an optimization scheme or for on-line
feedback during run-time. Some examples of successful use of
surrogate models in particle accelerator optimization are given in
[9], [10–12], which have demonstrated speedups of one to several
orders of magnitude compared to conventional techniques.

To our knowledge, ML has not yet been applied to the design
of radiofrequency quadrupole (RFQ) linear accelerators. Here we
report our recent results using surrogate modelling to create
virtual RFQ models that can be used in several ways:

• Uncertainty Quantification (UQ) [13] of the RFQ with respect
to input beam variations or RFQ settings during run-time.

• Prediction of output beam parameters from a given set of
input beam parameters. The SM becomes a virtual
accelerator, ideal as tuning and commissioning aid.

• Design and optimization of the RFQ hardware. Based on the
success as a virtual accelerator, we also tested the SM
technique as a hardware optimization tool.

The findings in this paper are fully transferable to other RFQs.

1.1 Particle Physics Motivation for This
Work
The motivation for this work lies in the IsoDAR project [13];
[14,15], a proposed search for exotic neutrinos. These are
hypothesized cousins to the three known standard model
neutrinos and could explain anomalies seen in the neutrino
oscillation experiments of the past 3 decades [16].

To reach discovery-level sensitivity (> 5σ) in 5 years of
running, IsoDAR requires a 10 mA cw proton beam at
60 MeV on a neutrino production target. This accelerator
(described in Refs. [17], [15,18]) accelerates H2

+ ions instead
of protons and uses a novel RFQ direct injection method [19],
[15], in which the beam is aggressively pre-bunched in an RFQ
that is embedded axially in the cyclotron yoke and brought very
close to the cyclotron median plane. Because of the high beam
current, necessarily small diameter (as little yoke iron as possible
must be removed), and the difficult matching of the RFQ output
to the cyclotron acceptance, we have initiated this study to
accurately predict the sensitivity of the RFQ, the output beam
parameters, and to optimize the RFQ design beyond the current
baseline. In Table 1, we list the most important parameters of the
IsoDAR RFQ, some of which will be used as design variables
(DVARs) and objectives (OBJs) in the reported study.

1.2 The Structure of This Paper
We have structured this manuscript into Methodology, Results,
and Discussion. In each section, we describe our work separately
for the two applications of the SM: 1. As Tuning and
Commissioning Tool; 2. As Design and Optimization Tool.
These are the natural applications due to the immense
speedup of SMs compared to high-fidelity Particle-In-Cell
(PIC) simulations. We also present results for a very simple
system—the FODO cell—as a benchmark and to elucidate the
basic principles and challenges. In the Results, we show that the
SM performs excellently as a tuning tool, but issues arise when we
vary the hardware parameters of the RFQ. In the Discussion we
elaborate possible aspects relevant for the surrogate model to
under-perform when the beam dynamics is affected by hardware
(design parameter) changes, e.g., space charge, number of design
variables or neural network topology.

1.2.1 The Surrogate Model as Tuning and
Commissioning Tool
The first application we present is using the SM as an on-line
feedback tool during the commissioning and running of the RFQ
direct injection prototype. We envision the SM to provide
valuable assistance for the operator to allow quick or
automated adjustment of the RFQ and beamline settings with
respect to the input beam properties. To this end, in the final
application, we will train the SM using simulated input values like
the signal of beam position monitors (BPMs), the beam current
(from an AC Current Transformer [20]), and beam size (from a
wire probe) before the RFQ and predict the signals from similar
devices after the RFQ. To test the idea in this manuscript, we use
the Twiss parameters [21] of the beam as input.

1.2.2 The SurrogateModel as Design and Optimization
Tool
Finding an optimized beam dynamics design often requires a very
large number of simulation iterations. This makes the design
procedure of RFQs time consuming, especially when completely
new solutions to meet the required beam output quality need to
be explored. This is sometimes even the case for comparatively
fast executing beam dynamics codes like PARMTEQM [22] or

TABLE 1 | Basic parameters of the IsoDAR-RFQ, corresponding to the previously
developed baseline beam dynamics design and the preliminary RF/
mechanical design.

Design parameter Value

RF frequency (MHz) 32.8
Design ion H2

+

Design beam current (mA) 6.5
Duty cycle Cw
Input/output energy (keV) 15 / ~70
Inter-vane voltage (kV) 20.1
Beam transmission (%) 97.3
Trans. input emittance (πmmmrad) 0.30
Trans. output emittance (πmmmrad) 0.34
Long. output emittance (π keV deg) 40.2
Tank diameter (cm) 28
electrode length (cm) 136.5
RF power (kW) ~3.6
Shunt impedance (kΩm) 154
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RFQGen [23], but is definitely a problem when very time
consuming PIC simulations are used as the basis for
optimization. Similar to demonstrated successes with
cyclotrons and electron accelerators [11,24], we are
investigating the use of SMs to perform multiobjective
optimization for the RFQ modulation cell parameters, in order
to yield minimum beam output emittances (transverse and
longitudinal) and maximum transmission.

2 METHODOLOGY

2.1 Surrogate Modelling
Surrogate models are cheap alternatives to reduce the computational
complexity of multiobjective optimizations as already shown in the
context of particle accelerators in [25]. We chose neural networks
and polynomial chaos expansions to replace the high-fidelity RFQ
model codes. These methods are explained in the following
subsections. More detailed introductions can be found in the
listed references and the references contained therein.

2.1.1 Polynomial Chaos Expansion
The principle of the polynomial chaos expansion (PCE) relies on
the orthogonality of the multivariate polynomials Ψi. The high-
fidelity model m(x) with input vector x ∈ Rd and d ≥ 1 is
approximated by

m x( ) ≈ m̂ x( ) � ∑
P

i�1
ciΨi ξ( ) � ∑

P

i�1
ci ∏

d

j�1
ψj ξj( ) (1)

where

P � p + d( )!
p!d!

(2)

is the total number of monomials determined by the expansion
truncation order p and the dimensionality of the system d. The vector
ξ = (ξ1, . . . , ξd) represents the input vector that is mapped onto the
support of the univariate polynomials ψj. The type of the univariate
polynomials of the jth dimension depends on the distribution of the
corresponding input dimension. For example, uniformly distributed
dimensions are approximated by Legendre polynomials and
normally distributed dimensions by Hermite polynomials.

There aremultiplemethods to obtain the expansion coefficients ci
with different requirements on the number of training points N.
Commonly used methods are orthogonal projection, regression and
Bayesian. In the case of the projection method, the number of
training points grows exponentially with the dimension, i.e.,

N � p + 1( )d. (3)
Regression and Bayesian approaches have no strict requirements,
but according to [26] an optimal number of samples is given by

N � d − 1( )P. (4)
A benefit of PCE based surrogate models is the evaluation of

Sobol’ indices [26], a measure of global sensitivity of the output
on the input. The first-order Sobol’ index, also known as main
sensitivity, quantifies the effect of a single input dimension. The
total effect of an input dimension, that also includes all
correlations with other dimensions, is denoted as total sensitivity.

We also refer the interested reader to the following literature
[26] (and the references therein). Many PCE literature references
can also be found in the bibliography of [27].

2.1.2 Artificial Neural Networks
The term “Artificial Neural Network” (ANN) refers to a broad class
of methods within Machine Learning (ML) that share the common
property of consisting of many interconnected processing units that
are used to transform data. The first of such a hierarchy of layers,
consists of an affine linear function T: Rn → Rm, defined as T(x)≔
Wx + b, where W � (aij) ∈ Rm×n, x ∈ Rn, b ∈ Rm, and n,m ∈ N.
W and b are commonly referred to as the weights and biases of the
ANN. The second is an activation function σ: R → R, which is
typically nonlinear. Many variants of σ exist, in this work we use the
rectified linear unit σ(x) = max (0, x).

The activation function is applied in an element-wise manner,
hence a vector activation function σ: Rn→ Rn can be defined. Now
we are able to define a continuous function f(x) by a composition
of linear transforms Ti and activation functions σ, i.e.,

f x( ) � Tk◦σ◦Tk−1◦ · · · σ◦T1◦σ◦T0 x( ), (5)
with Ti(x) =Wix + bi.Wi are initially undetermined matrices and
bi initially undetermined vectors and σ(·) is the element-wise
activation function. The values of Wi and bi are randomly
initialized and adjusted during “training” using an
optimization algorithm to maximize some performance metric.

Such an ANN is called a (k + 1)-layer ANN, which has k
hidden layers. Denoting all the undetermined coefficients (e.g.,
Wi and bi) in Eq. 5 as θ ∈ Θ, where θ is a high dimensional vector
and Θ is the span of θ, the ANN representation of a continuous
function can now be viewed as

f � f x; θ( ). (6)
Let F � {f(·, θ)|θ ∈ Θ} denote the set of all expressible functions
by the ANN parameterized by θ ∈ Θ, then F provides an efficient
way to represent unknown continuous functions.

Approximation properties of neural network can be found in
[28], [29], where the authors studied approximation properties

FIGURE 1 | Transverse electric quadrupole field around the beam axis of
an RFQ (A) with focusing/defocusing plane (green/red) and electrode cell
modulation (B), resulting in a longitudinal field component.
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for the function classes given by a feed-forward neural network
with a single hidden layer. In later works, authors studied the
error estimates for such neural networks in terms of hyper-
parameters such as number of neurons, layers of the network,
and activation functions, a review can be found in [30] and [31].

2.2 DataGeneration for SurrogateModelling
The beam dynamics properties of an RFQ with a number of n
modulation cells are fully described by the parameter sets B = (B1,

‥, Bn), m = (m1, ‥, mn) and ϕs = (ϕs,1, ‥, ϕs,n), quantifying the
basic functions of an RFQ as explained in the sequel:

• The transversely defocusing effect of the space charge force
has a 1/γ2-dependency (γ being the Lorentz factor) and
hence at low beam velocities efficient and velocity-
independent transverse focusing is required. As shown in
Figure 1, the alternating electric quadrupole field between

FIGURE 2 | Parametrization functions for the RFQ cell properties specified by design variables (DVARs): The transversal focusing parameter B(z) is kept constant
behind the Radial Matching Section (RMS), with DVAR1 determining the absolute value. Regarding the synchronous phase ϕ(z) and the electrode modulation m(z), the
RFQ is subdivided into three sections (slow linear shaping, exponential shaping and exponential bunching), the lengths of which are defined by DVARs 2 and 3. The total
slope and the smoothness of the occurrence of the shaping/bunching effect are characterized by DVARs 4–13. Qualitatively, this overall design approach
corresponds to a previously developed beam dynamics design using the PARMTEQM RFQ design tools and additionally applying manual changes to the design
functions.

FIGURE 3 | General machine learning optimization scheme for RFQ beam dynamics.

TABLE 2 | Hyperparameter boundaries for neural network hyperparameter scan
and the best determined value for each case.

Scan boundaries Best value

Depth 2 to 40 6
Width 3 to 160 54
Learning rate 0.1 to 0.0001 0.0013
Batch size 8, 16, 32, 128 or 256 256
Activation function Relu, Tanh or Sigmoid Relu
L2 Regularization Penalty 0.001 to 0.05 0.018
Gaussian noise 0.001 to 0.1 0.008
Loss function Mean square error —

Epochs Up to 10000 —

FIGURE 4 | Schematic depiction of a FODO cell, showing a transverse
projection of the beam envelope undergoing focusing (F), drift (O), defocusing
(D) and drift (O).
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the RFQ electrodes leads to a focusing force along one of the
transverse axes while defocusing occurs in the perpendicular
direction, effectively constituting an alternating gradient
focusing channel. The transverse focusing strength in an
RFQ cell n is commonly characterized by the parameter
Bn [32].

• By adding a sinusoidal modulation to the electrode shape, a
longitudinal field component is generated which can be
used to adiabatically bunch the DC input beam. This is a
highly delicate procedure due to the high sensitivity of
space-charge dominated beams to perturbations of the
beam particle density. The consecutive modulation cells
form a π-mode accelerator structure with a cell length of ℓc =
βcλRF/2. The extent of electrode modulation (corresponding
to the magnitude of the longitudinal field component) of a
cell n is parameterized by the modulation factor mn.

• The synchronous phase ϕs,n, which is set by the cell lengths,
determines the ratio of longitudinal bunching to
acceleration and hence the overall phase space stability.
By increasing ϕs,n along the RFQ, beam acceleration is
gradually introduced.

Ultimately, the beam output properties depend on the RFQ
hardware specifications as well as on the given input beam
parameters, which for a DC input beam are specified by the
transverse emittances, the Twiss parameters and the beam
current.

2.2.1 Simulated Data for a Fixed Radiofrequency
Quadrupole Design
To investigate the capability of surrogate models to reproduce the
RFQ beam output properties as a function of only the adjustable
beam input parameters (in our case the Twiss parameters α and
β), we used a fixed preliminary optimized RFQ design, through

which we simulated the beam using the PARMTEQM code. A
sample data set was obtained from the output of a number of
PARMTEQM simulations with randomized values for the input
Twiss parameters (corresponding to the design variables of the
underlying optimization problem) within a predefined range of α
= [1, 4] and β = [7, 25] (cm/mrad). The transverse and
longitudinal output emittances as well as the transmission
(constituting the optimization objectives) were evaluated
directly at the end of the RFQ electrodes.

2.2.2 Simulations of Full Radiofrequency Quadrupole
Design
To study the applicability of surrogate models for optimizing the
RFQ design itself, we introduced a parameterization of the
functions for transverse focusing B(z), synchronous phase ϕ(z)
and electrode modulation m(z) according to Figure 2. This
reduces the size of the RFQ design parameter space,
corresponding to the number of design variables, from 3n + 1
(Bn, ϕs,n, mn for each cell n, + 1 because the number of cells is a
design variable itself) to a total number of 14.

The parameterization functions were chosen so that the crucial
properties of the underlying baseline design remain variable for
optimization; e.g. the constant value of B(z) behind the Radial
Matching Section (RMS) (corresponding to DVAR1), the lenghts
of the linear and exponential shaping and bunching sections
(DVAR2 and DVAR3) as well as the rate and smoothness of
shaping and bunching (DVARs 5–13). The length of the RFQ is
determined by DVAR14, being the cutoff energy after which
PARMTEQM ends the electrode (always with a full RFQ cell).

We generated a sample data set from beam dynamics
simulations using PARMTEQM for a number of random RFQ

TABLE 3 | Input beam design variables to the fixed FODO cell lattice generated
using OPAL, and the range of their parameter space.

Parameter Value

Corx −0.5 to 0.5
Cory −0.5 to 0.5
Beam current (mA) 2 to 10
RMS t (MeV deg) 0.0001 to 0.0005
RMS x (m) 0.001 to 0.005
RMS y (m) 0.001 to 0.005

TABLE 4 | Design variables and range of their parameter space for the FODO
lattice system with varying beam and cell parameters.

Parameter Value

Beam Current (mA) −0.5 to 10
K1 (m−2) 4.2 to 4.8
K2 (m−2) 5.2 to 5.7
RMS t (MeV deg) 0.0001 to 0.0005
RMS x (m) 0.001 to 0.005
RMS y (m) 0.001 to 0.005

FIGURE 5 | Predictions by the neural network surrogate model as
function of the actual data values for variation of only the beam input Twiss
parameters to a fixed RFQ (MAEs being well below 1%). The red dots
correspond to the test dataset whereas the blue dots are training data.
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design variations (randomized DVAR values within a predefined
range) with a fixed input beam (input Twiss parameters held
constant).

2.3 Machine Learning Training and Use of
Radiofrequency Quadrupole Surrogate
Models
As being best practice for the training of ML models, we
randomly split sample datasets into 70% training and 30% test
data. A total of 1,000 samples was used for the input beam tuning
studies, whereas for the full RFQ optimization with an increased
number of design variables, up to 200,000 samples were used. The
training data is then used to train either a PCE or NN based
surrogate model. After training of the SM, the model predictions
are evaluated on both the test and training data by comparison to
the original simulation output values. The normalized Mean
Absolute Error (MAE) is calculated and reported. To prevent

overfitting, the PCE is run repeatedly with increased order to
minimize the MAE until the difference between the test and
training dataset are more than 5%. In our case, this was at 4th
order. A general workflow scheme for surrogate model creation
from simulation data is depicted in Figure 3.

To design and train neural networks we used the TensorFlow
[33] machine learning framework and the hyperparameter
optimization tools provided by Keras [34]. These support
automated tuning of the neural network hyperparameters, the
used boundary values of which are given in Table 2. We
underwent a new hyperparameter scan for each case, and
automatically selected the best hyperparameter configuration
with minimized MAE for the training set. The choice of a
Relu (Rectified Linear Unit) activation function was found to
be the best option for the considered use cases. Eventually, the
obtained surrogate model can be saved and used for beam
dynamics sensitivity studies and optimization.

Based on the surrogate model, an optimization of the design
variables with respect to the objectives using a generic optimizer
algorithm can be performed, the result of which (SM output for
the best found set of DVARs) can then be validated by the result
of the corresponding PARMTEQM beam dynamics simulation
output.

3 RESULTS

3.1 Basic FODO Cell Example
The effects of a quadrupole magnet on an ion beam causes
focusing on one transverse spatial axis, while leading to
defocusing in the perpendicular direction. However, using

TABLE 5 | Optimum set of Twiss parameters found by Bayesian optimizer based
on the surrogate model output and corresponding predicted beam output
parameters with comparison to PARMTEQM results.

Beam parameter SM output PARMTEQM output

Input α 2.55 2.55
Input β 16.60 cm/rad 16.60 cm/rad
Transmission (%) 95.5 95.3
ϵs (MeV Deg) 0.031 0.031
ϵx (mm mrad) 0.021 0.021
ϵy (mm mrad) 0.024 0.024

FIGURE 6 | Surrogate model predictions as function of the actual data values for full RFQ design variation by 14 DVARs and fixed beam input Twiss parameters.
Again, the red dots correspond to the test dataset and the blue dots are training data.
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alternating quadrupoles in series can lead to a net focusing effect
for the beam. In accelerator physics, one of the most basic
examples of this is called a FODO cell, thus named for
focusing (F), drift (0), defocusing (D), and again drift (0). This
is schematically depicted in Figure 4.

In order to demonstrate the feasibility of using machine
learning techniques to replicate accelerators, we started by
reproducing the beam dynamics of this focusing/defocusing
FODO lattice. This is the simplest and most basic example
that still features similar transverse beam behavior as in RFQs
but with greatly reduced overall complexity, and was therefore
decided to be a good case to prove the proposed modelling
concept.We computed the FODO cell simulations in OPAL
[33], using beam input parameters as summarized in Table 3.
As shown in Table 6, the generated surrogate model of the FODO
cell is capable of mapping the beam input parameters accurately
to the values of the output emittances (both transversely and
longitudinally) with MAEs of less than 1%, regarding the test
data set.

3.2 FODO Lattice With Varying Cell
Parameters
In addition to manipulating the beam input properties and
simulating the beam through a fixed FODO cell, we also
investigated the case of a variable hardware setup by using the
focusing strengths K1 and K2 of the FODO cell quadrupole
magnets as design variables. A summary of all design variables of
the investigated system is given in Table 4.

This scenario resulted in significantly larger errors compared
to the fixed cell example where variation was restricted to the
input beam properties. A more detailed discussion of this issue is
given later in the discussion section of this paper. The yielded
MAE values can again be found in Table 6.

3.3 Creating a Beam Dynamics Tuning Tool
for an Radiofrequency Quadrupole
Next, we created a surrogate model with the aim to reproduce the
beam dynamics behavior through the RFQ, given a fixed RFQ and
variable LEBT input parameters. As summarized in Table 6, a
very high model accuracy could be achieved (using either PCE or
NN) with values of the normalized MAEs typically being below

1%, regarding transmission and emittances. Corresponding
accuracy plots are shown in Figure 5.

Because executing the surrogate models takes only about 7 ·
10–4 s, given the used computer hardware and software
specification, this method can be used to rapidly model the
RFQ output for different inputs from the LEBT, allowing to
compare simulations and commissioning data in real time. We
have thus been able to create a real time, accurate tool for use
during the commissioning phase of our RFQ.

Furthermore, we were able to use the same surrogate model to
optimize the input beam Twiss parameters (α and β) given a fixed
RFQ setup.

Due to the high-fidelity of the achieved surrogate model, the
intended optimization of the input beam Twiss parameters for
RFQ injection could be performed using a Bayesian optimizer
[35], with the SM as the test function and maximum output
transmission and minimum output emittances as optimization
objectives.

To cross check the optimization results based on the SM, the
found optimum set of Twiss parameters was used to validate the
predicted SM output by PARMTEQM simulations. The optimum
Twiss parameters found for a preliminary revised design of the
IsoDAR RFQ are given in Table 5 together with the predicted
beam output parameters by the SM and the corresponding
PARMTEQM output. Deviations between the simulation and
the SM prediction, i.e., optimization result, are less than 0.2% for
both transmission and emittance values.

3.4 Optimization of the Entire
Radiofrequency Quadrupole Beam
Dynamics Design on the Basis of Surrogate
Models
Ultimately, we used the 14-DVAR RFQ model sample data set to
train PCE and NN based models. Corresponding accuracy plots
can be seen in Figure 6 and achieved MAEs are again
summarized in Table 6.Similar to the previous case, the
obtained surrogate models execute much faster than their
simulation counterparts. Whereas the calculation of a SM
prediction takes around 10−3 s, a corresponding physics beam
dynamics simulation with PARMTEQM of a short IsoDAR type
RFQ with an electrode length of around 1.3 m consumes up to
around 40 s. With a sufficiently large design space, this

TABLE 6 | Comparison between mean average errors (MAEs) for surrogate models based on polynomial chaos expansion (PCE) and neural networks (NN) for different
optimization cases and objectives.

MAE’s (%) Input beam
optimaization
(2 DVARs)

Full RFQ
optimaization (14

DVARs)

FODO cell

Variation of beam
input only

Variation of
quadrupole focusing

PCE NN PCE NN PCE NN NN

Transmission 0.17 0.15 3.5 2.4 No variation
εlongitudinal 0.72 0.57 10.5 8.2 0.76 5.8 13.6
εx 1.85 0.55 13.2 12.8 0.19 1.8 5.1
εy 0.74 0.71 13.3 12.5 0.95 6.3 10.5
Output energy No variation 1.8 1.9 No variation
RFQ length 1.2 2.0 —
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significantly reduces the time to find an optimized RFQ beam
dynamics design.

With MAEs of the predicted output emittances of up to 10%
(the MAEs for the transmission however being noticeably
smaller) we found the surrogate models currently do not
provide decent enough accuracy in any of the considered cases
to perform a full RFQ design optimization. However, these
computationally inexpensive surrogate models can be used to
perform a rough pre-optimization with respect to the beam
output objectives, providing a starting point for fine tuning
optimizations using beam dynamics simulation tools. Using
these methods combined reduces the total computational need
of RFQ optimization and allows to quickly explore different
possible qualitative solution approaches.

4 DISCUSSION

The created surrogate models quickly proved to be a reliable
rapid-use tool for observing the effects of input beam variations
on the output beam properties of a given RFQ. This has been a
useful tool in optimizing the LEBT design, and could be as much
as useful during commissioning and tuning of the LEBT/RFQ
system. Ultimately, we found that highly accurate (< 1% mean
average error, MAE) RFQ surrogate models can be obtained for
the optimization of only the input beam Twiss parameters (2

DVARs).This also matches our experience from previous studies
on the simplistic test case of modelling the beam dynamics in a
FODO lattice under variation of only the beam input parameters.
For this highly simplified case, an optimization based on the
surrogate model could also be performed with small deviations of
the results to the beam dynamics simulation.In general, the use of
neural networks (NN) seems to lead to more accurate surrogate
models compared to polynomial chaos expansion (PCE).

On the other hand, however, the application of the developed
techniques to the full RFQ beam dynamics design optimization
proved problematic due to increased errors in predicted emittance
whenever the space of design variables was expanded to include
physical changes to the RFQ. This problem also already occurred in
the case of the FODO cell. As shown in Figure 6 and summarized in
Table 6, models that include structural changes of the accelerator
hardware system, such as variation of the FODO cell focusing
strengths and the full RFQ optimization, suffer from errors in the
emittances prediction > 10%.In none of the problematic cases did
the error values improve significantly by switching off space charge
(beam dynamics simulation with zero-current). When comparing
the FODO cell example with the full RFQ optimization, it seems that
the higher errors result not from a larger number of design variables,
but are only introduced in case that the design variables affect the
structure of the accelerator itself.While the yielded errors are too high
to do a full hardware optimization of the RFQ system, surrogate
modelling still proved useful to eliminate large areas of the design

FIGURE 7 | Sensitivity plot for the full RFQ optimization with 14 design variables (DVARs).
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parameter space. With a reduced design space, the accelerator can
then be fine tuned using more accurate, computationally expensive
models in the region of interest. Similar behaviour of the SM’s are
reported in [35]. For example, Figure 13 and Figure 14 (in [35]) show
a comparable difference in accuracy.Future work will include the
investigation of our systems with regards to hidden variables and the
use of other neural network topologies that are not fully connected. It
seems possible that the errors may be further reduced by altering the
structure of the neural network, while maintaining the high
computational speed.

As depicted in Figure 7, the surrogate model lends itself to
perform sensitivity analyses investigating the impact of DVAR
variation on the optimization objectives.

Eventually, this allows for an evaluation of the cell properties
parameterization model and to reduce the number of DVARs by
omitting design variables with little effect on the crucial
optimization objectives.

In case of our specific RFQ, the sensitivity chart (Figure 7) reaveals
that variation of DVARs 9, 10 and 13 (all relating to the function ϕ(z)
of the synchronous phase) have the most significant influence on the
transverse emittances, while the longitudinal emittance seems to be
most sensitive to DVAR5 (value of the modulation factorm(z) at the
end of the exponential shaping section). Potential DVAR variations
that might be omitted for the optimization procedure apparently
relate to DVAR1 (value of the transverse focusing parameter B(z) =
const.) and DVARs 2 and 4 (properties of m(z) in the slow linear
shaping section) as well as DVARs 3 and 6 (properties ofm(z) in the
exponential shaping section).

5 CONCLUSION

In this paper, we applied a recently developed surrogate
modelling technique to the optimization of the beam output
quality of RFQ linear accelerators for the first time. We tested our
method on a simple FODO cell (having similar transverse
focusing properties) first and on the IsoDAR RFQ thereafter.
To create the surrogate models, we used polynomial chaos
expansion and deep neural networks. We compared the results
and found that we could very accurately predict the beam
behaviour from varying input beam parameters as it goes
through a fixed accelerator structure, which initially was our
main goal. The trained model is intended to be used as an online

feedback tool in the commissioning and tuning of the IsoDAR
injector. Furthermore, we found that, when we train the surrogate
model on sets of hardware parameters (i.e., many different design
configurations of the investigated machine), we incur much
higher training and validation errors. We are in the process of
investigating the cause of this effect, and we can already say that,
in a comparison between beams with and without space charge,
we do not see a difference. Despite the large training errors (up to
10%), the surrogate models trained on hardware design variables
can be used to perform preliminary optimization of the design,
reducing the model space, followed by a second iteration using
high-fidelity physics simulations. Furthermore, Sobol’s indices
can be used to elucidate the influence of single design variables on
the objectives, allowing restricting design variations to the most
crucial parameters.
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Mixed Diagnostics for Longitudinal
Properties of Electron Bunches in a
Free-Electron Laser
J. Zhu*, N. M. Lockmann, M. K. Czwalinna and H. Schlarb

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Longitudinal properties of electron bunches are critical for the performance of a wide range
of scientific facilities. In a free-electron laser, for example, the existing diagnostics only
provide very limited longitudinal information of the electron bunch during online tuning and
optimization. We leverage the power of artificial intelligence to build a neural network model
using experimental data, in order to bring the destructive longitudinal phase space (LPS)
diagnostics online virtually and improve the existing current profile online diagnostics which
uses a coherent transition radiation (CTR) spectrometer. The model can also serve as a
digital twin of the real machine on which algorithms can be tested efficiently and effectively.
We demonstrate at the FLASH facility that the encoder-decoder model with more than one
decoder can make highly accurate predictions of megapixel LPS images and coherent
transition radiation spectra concurrently for electron bunches in a bunch train with broad
ranges of LPS shapes and peak currents, which are obtained by scanning all the major
control knobs for LPS manipulation. Furthermore, we propose a way to significantly
improve the CTR spectrometer online measurement by combining the predicted and
measured spectra. Our work showcases how to combine virtual and real diagnostics in
order to provide heterogeneous and reliable mixed diagnostics for scientific facilities.

Keywords: free-electron laser (FEL), longitudinal phase space, machine learning, encoder-decoder, mixed
diagnostics

1 INTRODUCTION

Tuning and optimization of the longitudinal phase space (LPS) of electron bunches are of vital
importance for the performance of various scientific facilities such as free-electron lasers (FELs) [1],
ultrafast electron diffractions (UEDs) [2], laser-plasma accelerators (LPAs) [3], plasma wakefield
accelerators (PWFAs) [4], THz-driven accelerators [5] and so on. The prerequisite of quickly and
accurately manipulating the LPS of an electron bunch is being able to measure and monitor it rapidly
and reliably. The LPS of an electron bunch is usually measured directly in the time domain by
combining a transverse deflecting structure (TDS) and a dipole spectrometer magnet in a dispersive
section [6, 7]. An LPS image provides rich and important information such as the shape, the current
profile and the slice energy spread of the electron bunch. However, this diagnostic method interferes
with delivering photons to user experiments and thus cannot be employed online during machine
tuning and optimization. The current profile of an electron bunch can also be reconstructed by
measuring the coherent transition radiation (CTR) [8, 9] or the coherent diffraction radiation (CDR)
[10] spectrum generated by an electron bunch. Although CTR generation is invasive to an electron
bunch, it works as an online diagnostics at facilities such as FLASH, in which a single bunch from a
bunch train can be selected for this purpose without interfering with user experiments [8]. On the
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other hand, physics-based beam dynamic simulation plays an
important role in understanding the LPS of an electron bunch.
However, high-resolution physics-based simulation is extremely
time-consuming [11] and often does not agree with the
measurement very well.

In recent years, machine learning has demonstrated to be able
to learn relationships inside a complex system and produce
accurate and fast predictions [12, 13]. Using artificial neural
networks as a tool for electron bunch longitudinal property
prediction has garnered more and more attention in recent
years [14–18]. At the LCLS, early work has demonstrated
prediction of LPS images and current profiles at the linac exit
using two separated multi-layer perceptrons (MLPs) [14] and a
single input parameter. Later, a spectral virtual diagnostics was
proposed to improve the prediction accuracy and robustness by
using the CDR spectrum of the electron bunch as input [17].
Simulated CDR spectra were used in this study. Indicated by tests
with simulated LPS images for the LCLS-II, a neural network is
also expected to predict the microbunching structure in the LPS
on a shot-to-shot basis using the spectrum as input with a fixed
machine set point [17]. The latest work at the European XFEL
injector demonstrated that a deep encoder-decoder neural
network can achieve extremely high accuracy in predicting
megapixel LPS images using up to three RF phases as input.
The current profile, energy spectrum and slice energy spread
extracted from the predicted LPS image all show very good
agreement with the measurement [18]. In addition, an
innovative method was demonstrated to efficiently build large
models with multiple distinctive working points [18].

In this paper, we experimentally demonstrate training an
encoder-decoder neural network model with more than one
decoder to predict the LPS image and the CTR spectrum of
the electron bunches in a single bunch train concurrently at the
end of the FLASH linac. Building a model using the data-driven
approach heavily relies on the availability of the data. However,
the main focus of a user facility is to deliver electron or photon
beams to user experiments and thus cannot allocate a large
amount of time exclusively for routine data collection. We
demonstrate that only a reasonable amount of data is required
to train a performant model around a user working point, with all
major control knobs for LPS manipulation included. More
importantly, we propose a method which can significantly
improve the existing online current profile measurement using
a CTR spectrometer by combining predicted and measured CTR

spectra. Analogous to mixed reality, we call diagnostics which
provide a blend of predicted and measured signals mixed
diagnostics. This approach offers the possibility to provide
heterogeneous and reliable LPS information in real-time for
electron bunches with a broad range of parameters.

The applications of the above encoder-decoder model are
summarized in Figure 1. The model can serve as not only
virtual and mixed diagnostics for online machine tuning and
optimization, but also a digital twin of the actual machine on
which machine tuning and optimization algorithms [19–24] can
be tested efficiently and effectively before applying them in the
real world. These virtual experiments can even be performed in
advance to find an optimal or near-optimal setup for the real
machine. One of the major advantages of testing with neural
network models is that it is orders of magnitude faster than real
experiments or physics based simulations because the inference
time is typically on the order of milliseconds. Compared with
neural network models trained with simulated data [25–27],
models trained with experimental data provide better testing
environments by generating predictions which are almost
identical to the real-world signals.

2 EXPERIMENTAL SETUP

FLASH is a soft x-ray free-electron laser (FEL) user facility which
is capable of delivering MHz pulse trains to two user experiments,
FLASH1 and FLASH2, in parallel with individually selected
photon beam characteristics [28, 29]. The layout of the
FLASH1 beamline is shown in Figure 2. The longitudinal
properties of two electron bunches in a bunch train can be
measured concurrently by streaking one of the electron
bunches using the S-band TDS [30, 31] and picking up
another one for the CRISP spectrometer using a fast kicker
magnet [8]. It should be emphasized that the two diagnostics
cannot measure the same bunch in a bunch train simultaneously.
In this study, the electron bunch picked up by the CRISP
spectrometer travels immediately after the one streaked by the
TDS. A systematic comparison between these two diagnostics was
conducted recently, which shows excellent agreement on the
current profile down to the 10 fs level [9]. However, due to
the non-optimized optics required by the parallel user experiment
at the FLASH2 and a cap on the TDS power, the rms time
resolution of the measurement using the TDS is larger than 70 fs

FIGURE 1 | Applications of an encoder-decoder neural network model with more than one decoder for heterogeneous predictions of electron bunch longitudinal
properties.
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in our experiments. Moreover, the CRISP spectrometer has two
sets of remotely interchangeable grating sets, which cover
different frequency ranges. The low-frequency grating set
covers the range from 0.7 to 6.6 THz, and the high-frequency
grating set covers the range from 6.9 to 58.8 THz. In order to have
an accurate reconstruction of the current profile, the full spectra
range from 0.7 to 58.8 THz is required. For a meticulous
characterization of the current profiles at a few set points, this
can be achieved by recording data using the two grating sets
consecutively [9]. However, this is not practical for a large
number of machine set points. A detailed discussion about
how to address this issue when building a neural network
model is presented in Section 4.2.

Up to 6 control knobs, including the phases and amplitudes of
ACC1, ACC39, and ACC23, are scanned during data collection
around a user working point because of the following
considerations. During machine operation, the RF phases and
amplitudes of ACC1, ACC39, and ACC23 are commonly used to
adjust the LPS of the electron bunch in order to optimize the FEL
performance. The LPS is very sensitive to the phase and
amplitude changes of these three RF stations because they
affect the LPS of an electron bunch upstream the bunch
compressors. ACC45 and ACC67 are operated on-crest
downstream the 2nd bunch compressor and thus the LPS is
very insensitive to the phase changes of these two RF stations. The
amplitudes of ACC45 and ACC67 can be used to slightly tweak
the beam energy which have nevertheless negligible impact on the
LPS shape.

The scanned parameters are sampled uniformly within
predefined ranges, which are mainly restricted by the OTR
screen size for the TDS. For each combination, the new values
are written into the control system via the Python interface of
DOOCS [32] and the data readout has a delay of 0.5 s. Since it
takes time to collect data which belong to the same bunch train
but are sent out from different sources, the actual data collection
speed is about 1 Hz.

3 METHODS

3.1 Data Wrangling
The data quality is essential to the performance of a neural
network model. First of all, the data quality in this study is
controlled during data taking. A single data point is recorded
for each randomly selected machine set point. It prevents data

with the same machine set point from appearing in both the
train and test data, which leads to overfitting, as much as
possible. Secondly, the data are further normalized and
cleaned. The original size of the 12-bit camera image is
1360 × 1024 pixels. After background subtraction, the pixels
are normalized by 4095. All the pixel values below 0.01 are set
to 0 in order to remove negative pixel values and suppress
background noise. Although the model is expected to learn and
predict the position of the LPS on the screen [18], the
horizontal position of the beam (along the streaking
direction) depends on a lot of machine parameters,
including the phase and amplitude of the TDS. We noticed
that the beam sometimes moved significantly horizontally
even when the machine set point remained unchanged. As a
result, it is not possible to train a performant model even when
only a single control knob (e.g., the phase of ACC23) is
scanned. Since the horizontal position of the beam only
provides the timing information, which can actually be
measured using the bunch arrival monitors [33] installed at
different locations of the machine, all the LPS images are
cropped to 768 × 1024 and centered horizontally. Moreover,
an image will be removed from the dataset if the electron
bunch is completely or partially off the screen, or if the electron
bunch is very close to the left or right edge.

3.2 Modeling
The detailed structure of the encoder-decoder neural network is
shown in Figure 3. A MLP is used to build latent features from
the input parameters. Two different decoders then translate the
latent features to the LPS image and CTR spectrum (the raw
signal measured by the CRISP spectrometer), respectively. Latent
features are designed to be a compressed representation of the
LPS, just as it can be interpreted by decoders for different
longitudinal property diagnostics. It could also facilitate
building a larger model efficiently by sharing decoders among
multiple encoders which represent different machine working
points [18]. The neural network model is implemented and
trained using the machine learning framework TensorFlow
[34] version 2.4.3. For training, we adopt the weight
initialization in [35] and the Adam optimizer [36]. 80% of the
data are used for training with a minibatch size of 32, and the rest
are used for testing.

The loss function Ltotal for training is given by

Ltotal � LLPS + wLspectrum, (1)

FIGURE 2 | Schematic of the FLASH1 beamline. Components are not to scale. ACC1, ACC23, ACC45 and ACC67 are 1.3 GHz cryomodules which boost the
electron energy. ACC39 is a 3.9 GHz cryomodule which linearizes the LPS before the first bunch compression stage. The CTR radiation is generated by deflecting one
electron bunch onto an off-axis screen using a fast magnetic kicker and measured by the coherent radiation intensity spectrometer (CRISP).
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where LLPS and Lspectrum are the loss functions for the LPS image
decoder and the spectrum decoder, respectively, and w is the
weight which balances the influences of the two decoders. The
model is trained with a learning rate of 3 × 10−4 for 400 epochs,
and then a learning rate of 1 × 10−4 for another 400 epochs.
During the first 400 epochs, both LLPS and Lspectrum are the mean
squared error (MSE) and w is set to 1. During the second 400
epochs, LLPS is changed to the multiscale structural similarity

index measure (SSIM) [37] with hyperparameters defined in [18]
and w is set to 100 empirically in order to make the losses of the
two decoders at the same order of magnitude at the end of the
training. There are two advantages for using different loss
functions for the LPS image decoder in different training
phases. First, the multiscale SSIM loss is much more
computationally expensive than the MSE loss. In our
implementation, the training time for a single batch reduces

FIGURE 3 | Diagram of the encoder-decoder neural network. The leftmost blue box represents the input layer. It is followed by three fully-connected layers
(encoder) in purple with each layer activated by the Leaky ReLU (Rectified Linear Unit) function. The latent space is depicted in grey. The latent space leads to two
decoder branches. One consists of several fully-connected layers with each layer activated by the Leaky ReLU function. The other consists of ten transposed
convolutional layers in yellow. Each transposed convolutional layer is followed by a batch normalization layer and activated by the leaky ReLU function except the
last one, which is activated by the sigmoid function depicted in green. The kernel sizes of the first and second transposed convolutional layers are 3 × 4 and 3 × 3,
respectively, and the kernel sizes of the other eight transposed convolutional layers are all 5 × 5. The total number of trainable parameters is 2,096,681 with 6 input
parameters.

FIGURE 4 | (A) Example of a prediction from a model trained using only the multiscale SSIM loss for the LPS image decoder. The pixel values near the lower-left
corner of the predicted image are trapped in values around 1. This phenomenon occurs in all the LPS images. (B) SSIM and MSE losses calculated between two unary
images as a function of the pixel value difference. The pixel value of the first image is 0 while the pixel value of the second image ranges from 0 to 1.
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by about 30% when the MSE loss is used. Therefore, the
multiscale SSIM loss is only used to fine-tune the model in
order to learn high-frequency features in the LPS images [18].
Second, it is found that sometimes the model does not learn
correctly near a corner or an edge for all the images when only the
multiscale SSIM loss is employed, as shown in Figure 4A. This
can be explained by the gradients of both the loss functions, as
shown in Figure 4B. The pixel values near the lower-left corner of
the predicted LPS image shown in Figure 4A result in an

extremely small gradient of the SSIM loss on the plateau,
which prevents them from converging towards 0. However,
how those pixels are trapped on the plateau is not clear.

The performance of our model is reported separately for
the LPS image decoder and the spectrum decoder using the
single-scale SSIM and MSE as metrics, respectively, over the
test dataset. The single-scale SSIM value ranges between 0
and 1 with a value of 1 indicating two images are exactly
the same.

FIGURE 5 | Five typical results from the test data of a dataset of WP1. The compression strength increases monotonically from left to right. (A) Measured LPS
images. δ denotes the fractional energy deviation. (B) Predicted LPS images. (C) Comparisons between the measured and predicted spectra from the low-frequency
grating set of the CRISP spectrometer. (D) Comparisons of the current profiles calculated from the measured and predicted LPS images as well as reconstructed from
the measured and predicted spectra.
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4 RESULTS

We recordmultiple datasets during two different beam times with
different machine setups (working points). The beam energy is
~1124 MeV for the first working point (WP1) and ~1027 MeV
for the second one (WP2). The bunch charge is ~400 pC for both
the working points. As mentioned previously, the beam
parameters are not optimized for the LPS measurement due to
the parallel FLASH2 user experiment. Consequently, it is found
that the LPSs depend on the streaking direction of the TDS in a
non-trivial way for WP2 due to transverse-longitudinal
correlations [6, 9], which makes it difficult to compare the
current profiles measured by the TDS and the CRISP
spectrometer. Nonetheless, this does not affect the conclusion
of this study because the goal is to achieve an excellent agreement
between the prediction and the measurement. Actually, the
agreement between the current profiles measured by the TDS
and the CRISP spectrometer can be verified using the dataset
of WP1.

4.1 Prediction
Five typical prediction results from a dataset ofWP1 are shown in
Figure 5. The electron bunches have significantly different peak
currents. The histograms of the scanned parameters are shown in
Figure 6. The performance of the LPS image decoder is 0.9877 ±
0.00227 and the performance of the spectrum decoder is 7.9, ×,
10−5 ± 4.6 × 10−4. As shown in Figures 5A,B, the predicted LPS
images all agree with the measured ones excellently. There are
also excellent agreements between the measured and predicted
spectra, as shown in Figure 5C.

The current profiles calculated from the measured and
predicted LPS images as well as reconstructed from the
measured and predicted spectra using the combination of
analytical (Kramers-Kronig) and iterative phase retrieval
methods [9] are shown in Figure 5D. The spectra in the
left-most case (weakly compressed) contain only noise.
Therefore, no current profiles can be reconstructed from
them. In the right-most case, due to considerable energy
loss induced by the CSR effect, there are unknown portion
of electrons off the screen. Therefore, the peak current
calculated from the LPS image is much smaller than that
reconstructed from the spectrum. For the other three cases,
the current profiles calculated from the LPS images and
reconstructed from the spectra agree reasonably well. Due
to the lack of phase information in such spectral
measurements [9], minor deviations in measured and
predicted spectrum can lead to noticeable differences of the

reconstructed current profiles. Nonetheless, key features (e.g.,
peak current) are barely affected by this.

It is noticed that there are conspicuous density modulations in
the measured LPSs while the predicted LPSs are rather smooth.
The density modulation is indeed induced by the microbunching
instability which is seeded by the shot noise of an electron bunch
[11, 38–40]: an initial small density modulation inside the
electron bunch can result in sufficient energy modulation due
to the longitudinal space charge force, which in turn causes larger
density modulation in a magnetic chicane bunch compressor.
Because of the poor longitudinal resolution of the TDS
measurement, only very weak density modulation can be
observed in the current profile calculated from the measured
LPS of the longest bunch in Figure 5. The reconstructed current
profiles from the spectra also do not show any evidence of the
density modulation due to the lack of high-frequency
components in the spectrum. Because such density modulation
is not deterministic, it cannot be predicted by the neural network
model using only RF phases and amplitudes as input. However, it
is worth mentioning that the non-deterministic density
modulation does not degrade the performance of the model. It
appears that the model tends to predict the averaged LPS in which
the density modulation is smoothed out.

In order to demonstrate the scalability of the model, six
parameters are scanned for a dataset of WP2. The histograms
of the scanned parameters are shown in Figure 7. In total, more
than 9,000 data points are taken. However, only about 5200 data
points survive the data wrangling. Nonetheless, the performance
of the LPS image decoder is 0.9801 ± 0.00978 and the
performance of the spectrum decoder is 3.9, ×, 10−4 ± 3.2 ×
10−3. An example prediction is shown in Figure 8.

4.2 Mixed Diagnostics
As mentioned previously, it is essential to combine the spectra
from both grating sets of the CRISP spectrometer in order to
achieve an accurate reconstruction of the current profile. At
European XFEL, the high beam energy and short bunch length
make it possible to extrapolate the result measured by the high-
frequency grating set to the low-frequency regime [41].
However, this is not feasible for the typical electron
bunches at FLASH, especially when the electron bunches
have a broad range of bunch lengths. Although another
decoder could be trained to predict the spectrum measured
by the high-frequency grating set, there are two concerns with
this approach. Firstly, the spectra from the high-frequency
grating set generally contain microbunching information,
which fluctuates from bunch to bunch and train to train.

FIGURE 6 | Histograms of the scanned parameters for the dataset shown in Figure 5. The total number of data points is about 3000.
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Secondly, this will double the data collection time, which could
be unaffordable for user facilities with very limited beam time
for non-user experiments.

In order to improve the reconstructed current profile for
real-time measurement, a mixed diagnostics method is
proposed. The predicted spectrum for the low-frequency
grating set can be combined with the measured spectrum
from the high-frequency grating set so as to achieve the
full-range spectrum in real time. To this end, we recorded
two datasets using the high-frequency and low-frequency
grating sets, respectively. Each dataset contains about 3000
data points. Only three control knobs (the phases of ACC1,
ACC39 and ACC23) are scanned within the same ranges. A
neural network model is trained using the dataset recorded

with the low-frequency grating set. The performance of the
LPS image decoder is 0.9854 ± 0.00394 and the performance of
the spectrum decoder is 1.8 × 10−4 ± 1.3 × 10−3. The trained
model is also tested against all the LPS images in the dataset
recorded with the high-frequency grating set and the
performance of the LPS image decoder is as high as
0.9814 ± 0.00525. It indicates that the machine drift during
data recording is negligible. Three typical prediction results
with significantly different peak currents are shown in
Figure 9. They all show that it is essential to have the high-
frequency components to reveal the exact shape and structures
of the current profile although the low-frequency components
are good enough to estimate the bunch length and the peak
current.

FIGURE 7 |Histograms of the scanned parameters for a dataset of WP2. The total number of data points is about 5200. The input data are not uniformly distributed
because of two reasons. First, the data are combined from two datasets taken successively. The parameter ranges of the second dataset are smaller than the first one.
Second, more than 40% of the data are dropped, as discussed in Section 3.1.

FIGURE 8 | An example result for the scan shown in Figure 7. (A) Measured LPS image. (B) Predicted LPS image. (C) Comparison of the current profiles
calculated from the measured and predicted LPS images. Because the LPS depends on the streaking direction of the TDS in a non-trivial way due to transverse-
longitudinal correlations, the current profile here is simply the projection of the LPS image in the vertical direction. (D)Comparison of the measured and predicted spectra
from the low-frequency grating set of the CRISP spectrometer. (E) Comparison of the current profiles reconstructed from the measured and predicted spectra.
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5 CONCLUSION

In summary, we have experimentally demonstrated highly
accurate megapixel LPS images and CTR spectra predictions
for electron bunches in a bunch train concurrently at the end
of the FLASH linac. Up to six major control knobs for LPS

manipulation are scanned in order to collect data for electron
bunches with broad ranges of LPS shapes and peak currents. The
model is capable of providing heterogeneous LPS information
and ensures reliable online diagnostics because a single type of
diagnostic cannot cover electron bunches with a broad range of
parameters. LPS images measured in the time domain are
essential for electron bunches longer than a few hundreds of fs
while CTR spectra provide more accurate current profiles for
strongly compressed electron bunches.

A mixed diagnostics method is proposed to significantly
improve the online current profile measurement using the
CRISP spectrometer. The predicted CTR spectrum for the
low-frequency grating set can be combined with the spectrum
measured by the high-frequency grating set, which enables
reconstruction of the current profile with a much higher
accuracy in real time. Although the current profile
reconstructed from the spectrum measured by the low-
frequency grating set is good enough to estimate the bunch
lengths and peak currents for typical electron bunches at
FLASH, the spectrum measured by the high-frequency grating
set is indispensable to reveal the exact shape and structures of the
current profile.
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The Beam-Based Feedback System (BBFS) was primarily responsible for

correcting the beam energy, orbit and tune in the CERN Large Hadron

Collider (LHC). A major code renovation of the BBFS was planned and

carried out during the LHC Long Shutdown 2 (LS2). This work consists of an

explorative study to solve a beam-based control problem, the tune feedback

(QFB), utilising state-of-the-art Reinforcement Learning (RL). A simulation

environment was created to mimic the operation of the QFB. A series of RL

agents were trained, and the best-performing agents were then subjected to a

set of well-designed tests. The original feedback controller used in the QFBwas

reimplemented to compare the performance of the classical approach to the

performance of selected RL agents in the test scenarios. Results from the

simulated environment show that the RL agent performance can exceed the

controller-based paradigm.

KEYWORDS

LHC, beam-based controller, tune feedback, reinforcement learning, cern

1 Introduction

The LHC is the largest synchrotron built to date and its sheer scale meant that it was

the first particle accelerator of its type to require automatic beam-based feedback systems

to control key beam parameters [1]. The Beam-Based Feedback System (BBFS)

implemented these feedback systems and was developed prior to the LHC start-up in

2008. Throughout the years, operator experience has dictated which functionality to keep,

add and remove from the BBFS [2].

The BBFS comprised several subsystems, each responsible for controlling a specific

beam parameter or machine parameter. One of the most critical parameters to control is

the tune (Q). Q is defined as the number of transverse oscillations a particle performs in

one revolution around the LHC. Ideally the value of the tune is an irrational number so

that the location of the transverse oscillations do not occur in the same longitudinal

locations in the LHC. The Tune Feedback (QFB) system was the BBFS subsystem

responsible for controlling the tune.
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TheQFB requires a constantly updated estimate of the value of

the tunes in the horizontal and vertical planes of both beams in the

LHC. The estimation of the tune was performed by the Base-Band

Tune (BBQ) system [3]. Each plane in every beam was handled

independently through a set of tuning quadrupoles of type MQT,

to adjust the magnetic beam envelope. The QFB operated on the

assumption that the effect of a changing quadrupolar magnetic

field on the tune of the beam can be modelled by linear beam

optics. These optics came in the form of a 2D matrix and were

obtained by beam optics design programs such as Methodical

Accelerator Design (MAD-X) developed by CERN [4].

The QFB on one beam relies on a Tune Response Matrix

(QRM), which is a 16 × 2 matrix modelling the change in the

vertical and horizontal tunes due to a change in the deflections of

16 (de)focusing tuning quadrupoles of type MQT. Therefore, a

vector containing the delta quadrupole deflections, ΔδQ
�→

is

multiplied by the QRM:

ΔδQ
�→ · QRM � Δ �Q

where Δ �Q is the modelled change in tune due to ΔδQ
�→

being

applied to the quadrupoles. Singular Value Decomposition

(SVD) is used to calculate the pseudo-inverse of the QRM

(QPI). A Proportional-Integral (PI) controller then uses QPI to

calculate the corrections, ΔδQ
�→

, for an optimal response:

Δ �Q · QPI( )u � ΔδQ
�→

From the first operation of the QFB, it was observed that

erroneous tune estimates from the BBQ system were causing

unstable behaviour. To avoid an indeterministic response, a

stability metric is used within the QFB to switch off the feedback

controller in the presence of excess instability in the tune estimates.

This work is an explorative study on the application of

Reinforcement Learning (RL) in the QFB. Since this work was

carried out during LHC LS2, a simulation environment called

QFBEnv was developed to mimic the operation of the QFB in the

LHC. Several tests were designed to probe the robustness of the

trained agents and the PI controller to external noise and non-

stochastic environments. The results from these tests were used

to evaluate the performance of the best trained RL agents.

This paper is organised as follows: Section 2 provides a

mathematical formalism of RL and an overview of the RL

algorithms used in this work. Section 3 describes the design of

the RL environment, which mimics the QFB in operation in the

LHC. Section 4 describes the training of each algorithm. Finally,

Section 5 describes the evaluation of best-trained agents and

compares their performance with the standard PI control used in

the QFB.

2 Reinforcement Learning

Figure 1 shows a top-level view of the essential components

and their interactions within an RL framework. The various

signals between the agent and environment are labelled in

notation used in RL nomenclature. st and at refer to the state

of the environment and the action chosen at time t. rt refers to the

reward being given to the agent for the action taken at time t − 1,

hence rt+1 is defined as the reward given to the agent for choosing

action at when in state st.

The RL problem can bemodelled by a finiteMarkov Decision

Process (MDP) which is defined by a (st, at, rt, st+1) tuple. A set of

tuples of size H constitute an episode, where the initial state is

drawn from the initial state distribution, s0 ~ p0. The reward is a

scalar representing the goodness of the last action performed on

the environment. The ultimate goal of any RL algorithm is to

maximise the expected discounted cumulative future reward, or

return (G), obtained by the agent:

Gt ≜ Ea~πθ ,s~p st+1 |st ,at( ) ∑
H−t

i�t
γir si, ai( )

where πθ is known as the policy, which maps the states to the

actions and is parameterised by vector θ. p (st+1|st, at) is the

transition distribution of the environment. γ is called the

discount factor (γ ≤ 1, e.g., 0.99) and its role is to control the

importance of future rewards in the calculation of the value for a

particular state. RL nomenclature defines the value function as a

measure of the total expected future rewards the agent can expect

when starting in some state, s [5].

Figure 2 shows a non-exhaustive taxonomy of the various RL

algorithms found in the literature. RL can be split into two main

classes: Model-Free (MF) and Model-Based (MB) algorithms. As

the name implies, MF RL is the study of algorithms that do not

require a model to be learned and solely depend on the

relationship among the actions, states and rewards obtained

on every interaction. On the other hand, MB RL is the study

of algorithms that either has access to the full dynamics model,

e.g., AlphaGo [6], or require that a model of the environment is

FIGURE 1
Top-level view of the interaction between the Agent and the
Environment.
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learned alongside the agent, e.g., Model-Ensemble Trust-Region

Policy Optimization (ME-TRPO) [7].

The first RL algorithm considered in this work is Normalized

Advantage Functions (NAF), which was introduced in [8] and is

based on Deep Q Networks (DQN) and Duelling DQN (DDQN)

to solve continuous tasks, e.g., robotic arm control. These types of

algorithms update a policy that did not necessarily create the

trajectory; hence they are called off-policy methods.

Unlike DQN, NAF contains a network with three output

streams: 1) Value function estimate, V̂(s); 2) Advantage estimate

Â(s, a); 3) Policy μ(s), where:

Q s, a; θ( ) ≜ V s; θ( ) + A s, a; θ( ) (1)

By taking the argmax over the actions in the Advantage, the

agent learns the optimal Q-value. NAF differs from standard

Q-learning methods since A is explicitly parameterised as a

quadratic function of non-linear features of the state:

A s, a; θ( ) � −1
2

a − μ s; θ( )( )uP s; θ( ) a − μ s; θ( )( )
P s, θ( ) ≜ L s; θ( )L s; θ( )u

(2)

where L is a lower-triangular matrix with an exponentiated

diagonal, constructed from the second output stream of the

network. By Eq. 2, p is a state-dependent, positive-definite

square matrix. The third output stream of the network is μ(s;

θ), which is the action that maximises the Q-function in Eq. 1

when the following loss is minimised:

L � 1
N

∑
i

yi − Q si, ai; θ( )( )2

with:

yi � ri + γV′ si+1; θ′( )

V′(·; θ′) denotes the target network which is a separate

network, updated slower than the main network, V (·; θ) by

using Polyak averaging on their parameters:

θ′ ← τθ + 1 − τ( )θ′

where τ is set to a small number, e.g., 0.005. Hirlaender et al.

introduced NAF2 in [9], which adds clipped smoothing noise to

the actions, a technique also used in the Twin-Delayed Deep

Deterministic Policy Gradient (TD3) algorithm to stabilise the

policy training [10].

The second algorithm is Proximal Policy Optimization

(PPO) introduced in [11], which is primarily based on the

Policy Gradient (PG) method. PG methods use trajectory

rollouts created by taking actions from the most recent policy

trained by the agent on the environment; hence they are called

on-policy methods. The most common form of the PG objective

is written as:

J PG θ( ) � Êt,at~πθ st( ),st+1~ p ·|st ,at( ) logπθ at|st( )Ât[ ]

The expectation symbol Ê denotes the empirical average over

a batch of rollouts denoted by t, actions at sampled from πθ(·),
which is a stochastic policy. Ât is an estimate of the Advantage,

which is a measure of how good at is compared to the average

action possible at time t. Differentiating J PG with respect to the

network parameters, θ, obtains the PG estimate, ĝ:

ĝ � Êt ▽θ logπθ at|st( )Ât[ ]

The gradient estimate is used in gradient ascent to maximise

the objective J PG. It was also shown in [11] that performing

multiple optimisation steps using the same trajectory leads to

destructively large policy updates that no longer converge to an

optimal policy. Trust Region Policy Optimization (TRPO)

introduced a solution by constraining the maximisation of

J PG by:

Êt DKL πθold · |st( ), πθ · |st( )[ ][ ] ≤ σ (3)

where σ ∈ R, e.g., 0.01, θold is the policy parameters before the

policy update and θ after the update. One drawback of TRPO is

FIGURE 2
A non-exhaustive taxonomy of RL algorithms.
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its implementation complexity. PPO uses a similar approach to

TRPO, however, instead of constraining the policy to satisfy Eq.

3, PPO introduces a clipped policy objective with a penalty

proportional to the KL-divergence between the old and new

policy:

rt ≜
πθ

πθold

(4)

J CLIP θ( ) �
Êt min rt θ( )Ât, clip rt θ( ), 1 − ϵ, 1 + ϵ( )Ât( )[ ] (5)

J CLIP is easier to implement and executes faster than TRPO.

Experiments done in [11] also show that PPO and TRPO obtain a

similar performance over many types of environments1.

The most noticeable difference between off-policy and on-

policy methods mentioned so far is the two types of policies used;

deterministic and stochastic, respectively. NAF2 has a

deterministic policy, which means that the agent will always

choose the same action for one state. For each state, the stochastic

policy of PPO provides an action distribution that can be

sampled for the next action2.

More RL algorithms were attempted, and their training and

evaluation can be found in the Supplementary Material. The Soft

Actor-Critic (SAC) algorithm combines the use of stochastic

policies and the off-policy method by introducing the concept of

entropy maximisation to RL [12]. Anchored-Ensemble DYNA-

style (AE-DYNA) is an MBRL algorithm that internally relies on

a SAC agent to optimise a policy in an uncertainty-aware world

model [9].

3 Environment

The QFB uses two QRM per beam and each QRM is set up by

default to contain six outputs: the horizontal and vertical tune,

the horizontal and vertical chromaticity, and the real and

imaginary components of the coupling coefficient. To separate

the QFB from the coupling and chromaticity control, the QRM is

truncated to have only two outputs; the tunes. The tune control

sequence occurs at 12.5 Hz and a predefined sequence of steps is

performed where: 1) the tune error, Δ �Q, is obtained by

subtracting the current tune estimate and the reference tune;

2) the tune error is clipped to ≈ 56Hz1; 3) a velocity form

Proportional-Integral (PI) controller is applied by using ΔQt
�→

and ΔQt−1
���→

, where t denotes the time step; 4) the PI output is

multiplied by the pseudo-inverse matrix of QRM (Tune Pseudo-

Inverse (QPI) computed by Singular Value Decomposition) to

obtain a set of residual quadrupole currents; 5) the currents are

multiplied by -1; 6) the currents are globally scaled by a factor k ≤
1 to accommodate the slew rate of the quadrupoles; 7) finally the

corrections are sent to the quadrupole power converters viaUDP

packets.

An OpenAI Gym environment [13] was set up to mimic the

response of the LHC to a varying quadrupolar magnetic field.

This environment will hereon be referred to as QFBEnv. QFBEnv

has two continuous states as output and uses 16 bounded

continuous actions as input. The states and actions were

normalised to the range [ − 1, 1]. The normalised state-space

represented a range of [−25 Hz, 25 Hz] of tune error.

QFBEnv implicitly implemented current slew rate limiting

since the actions were clipped to the range [-1,1]. A saturated

action in QFBEnv is the maximum change in a quadrupolar field

strength that the magnets can supply in the next time step. The

normalised action space represented the fraction of the total

allowable current rate in the magnets. Every step was also

assumed to occur every 80 ms, which corresponds to the QFB

controller frequency of 12.5 Hz. Therefore a normalised action of

one on a magnet with a maximum current rate of 0.5 A s−1 is

equivalent to a current change of 0.5 × 0.08 = 40 mA.

In addition, the PI controller used by the QFB was also re-

implemented as a particular method within QFBEnv. This was done

to provide a reference for the performance of a trained agent. The

proportional, Kp, and integral, Ki, gains of the PI controller were set

to low values by default as a conservative measure during

initialisation of the QFB. To ensure a fair comparison, the PI

controller was tuned using the Ziegler-Nichols method [14]: 1)

Ki was set to zero; 2) Kp was increased until state oscillations were

observed; 3) the latest value of Kp was halved; 4) Ki was increased

until state oscillations were observed; 5) Ki was halved. The final

gains for the PI controller implemented in QFBEnv were Kp = 1,000

and Ki = 2000.

The PI controller was implemented with the global slew rate

limiting. As an example, consider a quadrupole magnet, M, with

a slew rate of 0.5 A s−1. If a current change at 1 A s−1 is requested

for the next time step, all of the outputs of the PI controller are

scaled by a factor k = 0.5 to accommodateM. The global factor k

can be decreased if another magnet requires k < 0.5 to

accommodate its respective slew rate. QFBEnv does not

enforce the global scaling scheme by default, therefore any

action within the [ − 1, 1] bounds are applied to the

environment within the next time step.

QFBEnv implemented two important functionalities: 1) the

reset function and; 2) the step function. The reset function is the

entry point to a new episode, whereby a new initial state,

(ΔQHor.,0, ΔQVer.,0), is generated and returned to the agent.

The step function is responsible for accepting an action,

following the transition dynamics of the environment and

then returning a tuple containing: 1) the next state; 2) the

reward and; 3) a Boolean flag to indicate episode termination.

The reward was chosen to be the negative average quadratic of

the state, as shown in Eq. 6.

1 As implemented in the QFB; 0.01 × Fs
2 where the sampling frequency,

Fs, of the BBQ system is equal to the LHC revolution frequency,
11 245.55 Hz.

2 Initialised randomly and set constant throughout one episode.
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rt+1 � −1
n
∑
n

i

s i( )
t+1( )2 (6)

Since the goal of any RL agent is to maximise the reward, a

perfectly trained agent would thus have a policy which reduces

the tune error to zero. It is also important to note that the

gradient of quadratic reward increases, the farther the state is

from the optimal point. This reflects the importance of

controlling a larger tune error with respect to a smaller error

in the QFB, e.g., if ΔQH≫ΔQV >Goal, the agent would put more

importance on the correction of ΔQH. From trial and error, this

shape of reward was observed to produce more stable training.

An episode is defined as starting from the first state

initialisation until a terminal state is reached. A baseline

optimal episode length was obtained by running

1,000 episodes using the PI controller. The measured average

optimal episode length was ≈ 28 ± 6 steps. The maximum

allowable episode length in QFBEnv was chosen to be

70 steps long, approximately double the maximum optimal

episode length observed. Successful early termination in

QFBEnv is defined as the latest five rewards being above a

threshold. The threshold value of QFBEnv was chosen as a

maximum tune error in both planes of 1 Hz. This is

equivalent to 1
25 � 0.04 in normalised state space and the

threshold reward can be obtained from Eq. 6:

rthresh � −1
2

0.042 + 0.042( ) � −0.0016

Thus, a terminal state could be reached either by a successful

early termination or after 70 steps were made without success.

The successful early termination represents a real operational

scenario, since the QFB is typically switched off manually when

the measured tunes are close to their respective reference values.

It also allows for more examples of the state below the threshold

to be experienced by the RL agents, which leads to better learning

close to the threshold boundary.

4 Training

Table 1 tabulates information about the types of RL

algorithms which were trained on QFBEnv. The two

algorithms which obtained the best performing policies were

NAF2 and PPO. The training process of SAC, TD3 and AE-

DYNA can be found in the Supplementary Material.

During the training of the Model-Free (MF) agents, two

callback functions were used: Callback A was called every

1,000 training steps to save the network parameters of the

most recent agents to disk and; Callback B was called every

100 training steps to evaluate and log the performance of the

most recent agent. The performance of the most recent agent was

evaluated on a separate instance of QFBEnv in Callback B.

Twenty episodes were played in sequence using the most

recent agent to choose the actions. The training metrics were

the average episode length, average undiscounted episode return

and the average success rate. These values were logged with

Tensorboard [15] and are used in the remaining part of this

section to describe the training process of each algorithm.

SAC and TD3 required the most hyperparameter tuning to

obtain a satisfactory result. NAF2 and PPO were less susceptible

to hyperparameter tuning. AE-DYNA was more complex to set

up correctly and also required some network adjustments in

order for it to learn a successful policy on QFBEnv. The evolution

of the agent throughout the training process was analysed off-line

and the various policies trained by the different RL algorithms

were re-loaded and compared.

All the agents used the same network architecture for their

policies. The final architecture was chosen through a grid-search

as an artificial Neural Network (NN) with two hidden layers

having 50 nodes each and using the Rectified Linear Unit (ReLU)

activation function. This network architecture was also used for

the value function networks of the off-policy agents.

In on-line training on the QFB, the worst case episode length

is 70 steps and every step is taken at a rate of 12.5 Hz. Therefore

the maximum time of one episode on the QFB is:

70 steps
12.5Hz

� 5.6 s. (7)

At episode termination, the actuators controlled by the action

of the agent would, at worst, need to be re-adjusted to their initial

settings at the start of the episode, e.g. set to reference current.

The worst-case scenario occurs when an action is saturated

TABLE 1 The RL algorithms attempted in this work along with their
type of policies andwhether they train a worldmodel: Model-Free
(MF) or Model-Based (MB).

Algorithm On-policy Off-policy MF MB

NAF2 ✓ ✓
PPO ✓ ✓
SAC ✓ ✓
TD3 ✓ ✓
AE-DYNA ✓ ✓ ✓

TABLE 2 Hyperparameters used for NAF2.

Name Value

learning rate 0.001

γ 0.9999

batch size 100

buffer size 5,000

qσ 0.02

qclip 0.05

τ 0.001
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throughout the episodes. The worst-case re-adjustment time for

one episode is thus equal to Eq. 7, 5.6s. Each RL algorithm trained

in this work is attempted five times with different random seeds.

An estimate of the real on-line training time on the LHC is also

provided, which considers the worst case re-adjustment time for

all the actuators. To achieve this, all training time estimates

obtained from off-line environments were doubled to obtain the

worst-case training time in an on-line environment.

Table 2 tabulates the hyperparameters that obtained the best

NAF2 agent in this work. The discount factor, γ and the time

constant for the Polyak averaging of the main and target

networks, τ were set to the values listed in [9]. qσ set up the

standard deviation of the action smoothing noise applied at each

step in QFBEnv when acquiring data. qclip clipped the action

smoothing noise to a range [ − qclip, qclip]. qσ and qclip were chosen

by trial and error. In addition to the smoothing noise, a decaying

action noise was also applied during training. The following noise

function was used:

ai ≔ ai + N 0, 1( )×max 1 − epidx
40

, 0( )

where ai denotes the i
th action, N (0, 1) is a standard Gaussian,

and epidx is current episode number. Therefore, the action noise

decays linearly to zero after 40 episodes. Note that the choice to

decay the action noise relative to the number of episodes was

arbitrary. The action noise can be made to decay relative to the

number of steps taken so far during training.

Figure 3 shows the training performance statistics of the

NAF2 agents. Figure 3A shows that the episode length decreases

below 20 after 20000 steps. Figure 3C shows that the success rate

goes to 100% after 20000 steps as well. From Figure 3B it can be

seen that the average undiscounted return of the NAF2 agents

was higher at the end of training. This shows a monotonic

improvement in performance, regardless of the Min-Max

bounds of NAF2 shown in Figures 3A,C. Partially solved

episodes explain the large Min-Max boundaries. The policy

manages to increase the reward in these episodes until a local

minimum is reached without satisfying the successful early

termination criterion. However, slight improvements in the

policy push the states closer to the threshold, subsequently

increasing the return.

Successful policies using NAF2 were relatively sample-

efficient to train when compared to other algorithms

attempted. The monotonic improvement shown in Figure 3B

implies that a successful agent can be expected relatively early in

terms of training steps taken on the environment. Some agents

FIGURE 3
Performance statistics of NAF2 and PPO agents during training. The hyperparameters used are tabulated in Table 2 and Table 3, respectively. (A)
Median episode length; (B)Median undiscounted episode return and; (C)Median success rate, of five agents initialised with different random seeds,
per algorithm.
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during the training performed well, with an average episode

length of 20 steps after approximately 20,000 steps. In real LHC

operation on the QFB, the worst-case training time of

20,000 steps is calculated by:

20, 000 steps
12.5Hz

× 2≈ 53min

The hyperparameters shown in Table 3 are the salient

parameters of the Proximal Policy Optimization (PPO)

algorithm as implemented in Stable Baselines. Note that ϵ is

the clipping parameter from Eq. 5. PPO proved to be the easiest

algorithm to apply to QFBEnv in terms of hyperparameter tuning

and usage. Figure 3A shows that PPO converges below an episode

length of 20 after around 20000 training steps. A solution that

drops the episode length to below ten steps is found after

approximately 40000 steps. This remains stable until

catastrophic forgetting of the policy occurs after 80000 steps.

Figure 3C also shows that some agents expected a 100% success

rate between 20000 and 80000 steps. Figure 3B illustrates that the

episode return for PPO is not guaranteed to be monotonically

improving. The best median performance of PPO was reached at

approximately 86000 steps and obtained an undiscounted

episode return of -4. All the metrics in Figure 3 shows that

the PPO performance starts to degrade beyond this training step.

The catastrophic forgetting of the policy, however, did not

occur quickly. At around 90000 steps, the expected episode

length had increased to 20 steps again. A callback function

can easily halt training if the policy starts forgetting and

freezing the network parameters to obtain the best performing

agent. This predictability is essential if the agent training occurs

in the real LHC operation. Similarly to NAF2, approximately

20000 steps are required to learn a good policy which is

equivalent to a worst-case on-line training time of 53 min.

5 Evaluation

This section evaluates the behaviour of the best policies

obtained by each RL algorithm in corner cases of QFBEnv.

These evaluations were performed by loading the network

parameters of the agent with the best performance and

recording its interactions with QFBEnv over multiple

episodes. To ensure a fair comparison, a reference trajectory

was created for each episode by using the actions from the PI

controller and the same initial state. The PI controller was also

subjected to the same tests, e.g., Gaussian noise was added to the

action calculated by the PI controller in Figure 4B.

5.1 Effect of Gaussian noise

QFBEnv implements a deterministic model and actions

passed through the step function are deterministic by default.

However, by adding Gaussian noise to the action chosen by

the policy, stochasticity can be introduced externally to

QFBEnv. By subjecting each agent to a stochastic

environment, the general robustness of each agent can be

empirically verified. During this test, the initial state per

episode was ensured to be sufficiently randomised to show

more coverage of the state-action space.

The evolution of the episode trajectories are shown in sets of

three evaluation episodes, e.g., Figure 4A. The state plots

correspond to the evolution of ΔQH and ΔQV in time of the

RL agents (top blue plots) and PI controller (top cyan plots),

respectively. Green and red markers denote the start and end of

each episode, respectively. A boundary (dashed green ellipse) is

also drawn to indicate the success threshold state. The action

plots correspond to the evolution of the 16 actions in time of the

RL agents (bottom red plots) and PI controller (bottom magenta

plots), respectively, until a terminal state is reached. Each set is

obtained by applying Gaussian action noise with a zero mean and

a standard deviation equal to 10%, 25%, and 50% of half the

action range ([0,1]), respectively.

Figure 4A shows three episodes obtained with a deterministic

NAF2 policy where it converges to an optimal state in

approximately ten steps, while the PI controller takes

approximately 25 steps until successful termination. However,

it can be seen that the action chosen by the NAF2 policy at each

terminal state is a non-zero vector. Ideally, the magnitudes of the

actions are inversely proportional to the reward in Eq. 6, e.g., the

PI actions of Figure 4A. This implies that NAF2 converged to a

sub-optimal policy. Figures 4B–D show that the NAF2 policy

satisfies the early termination criterion in each episode. The

longest episode can be observed in Figure 4D to be approximately

20 steps long. Moreover, Episode #1 of Figure 4D shows that the

PI controller failed to satisfy the successful early termination

criterion. This indicates that the best agent trained by

NAF2 performs better than the PI controller in a stochastic

QFBEnv.

Figure 5A shows three episodes obtained by applying the

actions sampled from the PPO stochastic policy,

deterministically to QFBEnv, i.e., no noise applied. Similarly

to NAF2, PPO converges to the optimal state. Furthermore,

the actions of PPO start to converge back to zero at the end of the

episode, which implies that PPO learned an optimal policy.

Figures 5B–D show that the agent satisfies the early

termination criterion in each scenario. PPO also shows a

TABLE 3 Hyperparameters used for PPO.

Name Value

learning rate 0.00025

γ 0.99

ϵ 0.2
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wider range of episode lengths as the action noise is increased; the

episode lengths in Figure 5D vary more than for NAF2 in

Figure 4D. Therefore, this test indicates that the policy

obtained by NAF2 is slightly more robust to action noise

than PPO.

The action noise was also varied with a finer interval to aid

with the analysis of the best agents under its effect and more

statistics were taken on the performance of the agents and the PI

controller e.g., Figure 6A. For each action noise value on the

x-axis, 1,000 episodes were executed and used to obtain the

statistics shown in the respective figures. These plots illustrate

more information on the distribution of key measurements

linked with the performance of the agents (in blue) and the

PI controller (in red). In particular, the distributions of the

following measurements are presented: 1) Episode length (one

scalar per episode); 2) Distance of the terminal state from the

optimal state of [ΔQH = 0, ΔQV = 0], calculated by Eq. 8 and is

referred to as Distance To Optimal (DTO) (one scalar per

episode);

DTO �
�����������
ΔQ2

H + ΔQ2
V

√
(8)

and c) Concatenated values of the last actions applied in the

episode before termination, be it successful or otherwise (array of

size 16 per episode).

Table 4 tabulates the episode length statistics collected from

1,000 episodes, for the values of Gaussian action noise considered

in the episode evaluation plots. As illustrated in Figure 6, the

mean and the standard deviation of the episode lengths obtained

by the NAF2 agent in Figure 6A and by the PPO agent in

Figure 6B, outperformed those of the PI controller. Furthermore,

the upper bound of the PI controller episode lengths reaches

70 steps at approximately 25% action noise; this indicates that the

PI controller starts to fail to successfully terminate episodes at

this point. This corresponds with the results shown in Figure 7

where at approximately 25% action noise, the upper bound of the

DTO of the PI controller moves past the Goal threshold set

within the QFBEnv (green dashed line). Both the NAF2 agent in

Figure 7A and the PPO agent in Figure 7B maintain an upper

bound DTO below the threshold until approximately 45% action

noise.

Figure 8 illustrates the statistics of the last action chosen in

each episode. Figure 8A exposes the weakness of the

FIGURE 4
Episodes from the best NAF2 agent and the PI controller with the same initial states and with a varying additive Gaussian action noise with zero
mean and standard deviation as a percentage of the half action space [0, 1]. (A) 0%, (B) 10%, (C) 25%, and (D) 50% Gaussian action noise.
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NAF2 agent, where it can be observed that the values of the

last actions are unpredictable even without action noise, i.e., at

0% action noise, the PI controller actions are below

±0.05 while the NAF2 action value distribution populates

most of the action range. These results signify that

NAF2 has trained a policy which outperforms the PI

controller in a noisy environment, albeit the policy is sub-

optimal.

FIGURE 5
Episodes from the best PPO agent and the PI controller with the same initial states and with a varying additive Gaussian action noise with zero
mean and standard deviation as a percentage of the half action space [0, 1]. (A) 0%, (B) 10%, (C) 25%, and (D) 50% Gaussian action noise.

FIGURE 6
Effect of action noise on the episode length due to varying action noise on (A) the best NAF2 agent, (B) the best PPO agent and the PI controller.
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Figure 8B illustrates that the PPO policy chooses last actions

which behave similarly to the PI controller in the presence of

Gaussian action noise. At 0% action noise, the distribution of the

PPO last action values are slightly larger than those of the PI

controller. However, as the action noise is increased the

distribution widths of both PPO and the PI controller

increase at the same rate. This consolidates what was observed

in Figure 5, where the last action values are dispersed with respect

to the amplitude of the action noise applied. This concludes that

PPO successfully trained a policy on QFBEnv which is also the

closest to the optimal policy. LATEX.

5.2 Effect of actuator failure

In this test, the performance of the best policies trained in this

work was analysed in the presence of magnet failures. For each

episode shown in this section, an action was chosen at random at

a predetermined step in the episode. For the remaining steps until

a terminal state, the action chosen was set to -1 to simulate a cool-

down of the magnet after a circuit failure. The corresponding

action obtained by the PI controller was set to the same value.

While this test is not a perfect representation of magnet failures

in the LHC, it is a worst-case scenario that tests the performance

of the policies and PI controller in unseen and unideal

conditions.

For each policy, two scenarios with three episodes each are

shown. In the first scenario, one actuator fails on step 1; in the

TABLE 4 The statistics (mean ± std.) for the episode length obtained by
the best RL agents trained in Section 4 and PI controller with
respect to the amplitude of Gaussian action noise.

Action noise 0% 10% 25% 50%

NAF2 9.06 ± 1.35 9.16 ± 1.41 9.82 ± 1.91 17.89 ± 9.24

PPO 8.80 ± 1.28 8.89 ± 1.32 9.77 ± 2.11 20.69 ± 12.60

PI controller 20.05 ± 3.78 20.41 ± 3.99 24.81 ± 7.47 53.32 ± 18.37

FIGURE 7
Effect of action noise on the distance to the optimal point at the end of the episode due to varying action noise on (A) the best NAF2 agent, (A)
the best PPO agent and the PI controller.

FIGURE 8
Effect of action noise on the last action used in the episode due to varying action noise on (A) the best NAF2 agent, (B) the best PPO agent and
the PI controller.
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second scenario, three actuators fail on steps 1, 2, and 3,

respectively. All the plots shown in this test also show an

episode trajectory obtained by repeating the episode with the

same initial conditions and all actions functioning. The episode

trajectories affected by the actuator failures use × as a marker,

while the episodes using all actions use▲ as a marker. It was also

found that a maximum episode length of 70 obtained large state

deviations for certain scenarios. To aid the analysis of the results,

the maximum episode length was set to 20.

The evaluation episodes from the best NAF2 agent with one

actuator failure are shown in Figure 9A. It can be observed that

the PI controller already diverges from the threshold boundary

and fails on all episodes. NAF2 succeeds in terminating 1
3 of the

episodes in under 20 steps. At three actuator failures in Figure 9B,

the terminal state achieved by NAF2 is within four times the

value of the threshold, while the PI controller terminal state shifts

farther from the optimal point.3

Similarly to NAF2, PPO performs better than the PI

controller in all scenarios of actuator failures in Figure 9C

and Figure 9D. The effect of an increasing number of actuator

failures on the best PPO policy is also evident in the action

plots of the PPO actuator failure tests. These figures, along

with bottom plots of Figure 5A, show that when all actions are

used, the actions decay the closest to zero at the end of the

episode. They also show that the actions still decay during

actuator failures. However, the actions remain separated by a

range proportional to the number of actuators that failed

during the episode. This observation suggests that the PPO

policy has successfully generalised the optimal policy trained

on one environment to another environment with slightly

different model dynamics.

5.3 Effect of incorrect tune estimation

This test subjects the best agents to the effects of 50 Hz

noise harmonics on the BBQ system. A similar procedure to

the previous test is followed, where the best agent trained by

each respective RL algorithm is loaded and is used to produce

evaluation episodes. The only difference in this test is that

after each step in the environment, the state is intercepted

and a perturbation is added, which simulates the effect of

FIGURE 9
Episodes from the best RL agents and the PI controller under the effect of different number of actuator failures.(A)NAF2 agent with one actuator
failure, (B) NAF2 with three actuator failures, (C) PPO agent with one actuator failure, (D) PPO agent with three actuator failures.

3 U is a uniform distribution.
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FIGURE 10
Effect of inaccurate tune estimation on the best NAF2 agent.

FIGURE 11
Effect of inaccurate tune estimation on the best PPO agent.
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50 Hz noise harmonic-induced perturbations within the

state.

These perturbations were obtained by the following steps:

1) The state, ΔQ, was added to a random frequency, fr
2; 2) The

realistic second-order system spectrum simulation procedure

in [16] was performed for a spectrum with a resonance

frequency, ftrue
res � fr + ΔQ and damping factor

ζ ~ 10U(−2.5,−1.8) 3; 3) The BQ algorithm is used to obtain

perturbed tune estimates [16]. All the plots shown in this

section also show black dashed lines which mark the locations

of the horizontal and vertical 50 Hz harmonics in normalised

state space.

Figure 10 and Figure 11 show three episodes obtained by the

best NAF2 and PPO policies, respectively, when the state is

perturbed by 50 Hz noise harmonics. It can be observed that the

states of the policies (dark blue) appear to be concentrated

around an intersection of a horizontal and vertical 50 Hz

noise harmonics, which is closest to the optimal point of the

state space. On the other hand, the PI controller states sometimes

extend up to three 50 Hz harmonics from the optimal point. This

observation suggests that even without the tune estimation

renovation discussed in [16, 17], it is possible to train

NAF2 and PPO agents to maintain the tune error as close as

possible to the optimal point.

5.4 Summary

When taking into consideration the algorithms shown in

the Supplementary Material, NAF2 and PPO trained the best

two policies. However, AE-DYNA-SAC was the most sample

efficient and also obtained a policy that is stable in low action

noise. The policies trained by TD3 and SAC were sometimes

successful. However, their performance was significantly

worse than NAF2 and PPO. On the other hand, the best

SAC-TFL agent trained an adequate policy that works well

on QFBEnv.

6 Conclusion and future work

This work explored the potential use of RL on one of the

LHC beam-based feedback controller sub-systems, the QFB. An

RL environment called QFBEnv was designed to mimic the QFB

in real operation in the LHC. The original implementation of

the QFB PI controller was re-implemented to serve as a

reference agent to the trained RL agents.

A total of five RL algorithms were selected from literature

and trained on QFBEnv. A series of evaluation tests were

performed to assess the performance of the best two agents

against the standard controller paradigm. These tests were

designed to capture the performance of the agents during

corner cases. PPO and NAF2 obtained a high performance in

each test. Slightly better generalisation was also observed

during the actuator failure tests. The training and

evaluation of the other RL algorithms attempted in this

work are in the Supplementary Material. It was not easy to

tune the hyperparameters of TD3 even in the most

straightforward deterministic cases, while depending on the

implementation, the SAC algorithm could learn a good policy.

Finally, AE-DYNA-SAC was the most sample efficient agent

attempted, and the performance of the best policy trained was

comparable to that of the PI controller.

Our studies showed that RL agents could generalise the

environment dynamics and outperform the standard control

paradigm in specific situations which commonly occur during

accelerator operation.

Future work will concentrate on more sample efficient RL

algorithms, e.g., Model-Based Policy Optimization (MBPO)

[18] since the real operation is restricted by the beam time. By

addressing robustness and sample efficiency when training on

simulations, it will be possible to design an RL agent that can

be feasibly trained on the QFB during the LHC Run 3. As was

shown in this work, this would allow for more reliable tune

control even in situations where the standard controller is not

applicable.
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SPIRAL2 Cryomodule Models: A
Gateway to Process Control and
Machine Learning
Adrien Vassal1,2, Adnan Ghribi2,3*, François Millet1, François Bonne1, Patrick Bonnay1 and
Pierre-Emmanuel Bernaudin1,2

1Commissariat à l’Energie Atomique et aux énergies appropriées (CEA), Paris, France, 2Grand Accélélérateur National d’Ions
Lourds (GANIL), Caen, France, 3Centre National de la Recherche Scientifique (CNRS), Paris, France

From simple physical systems to full production lines, numerical models could be used to
minimize downtime and to optimize performances. In this article, the system of interest is the
SPIRAL2 heavy ion accelerator cryogenic system. This article illustrates three different
applications based on a SPIRAL2 cryostat model: optimal controller synthesis, virtual sensor
synthesis, and anomaly detection. The two first applications have been deployed on the
system. Experimental results are used to illustrate the benefits of such applications. The third
application is a case study based on data generated from a thermodynamic twin model.

Keywords: machine learning, cryogenics, modeling, accelerators, thermodynamics, control

1 INTRODUCTION

SPIRAL21 is a heavy ion accelerator located in Caen, France. Its main part is a linear superconducting
accelerator (LINAC) [1] composed of 26 bulk niobium radio-frequency (RF) resonators that
accelerate charged particles by the mean of electromagnetic fields [2]. To be operated, those
resonators need to be maintained in their superconducting state. As the niobium
superconducting transition temperature at atmospheric pressure reaches 9.2 K, a cryogenic
system is required. The resonators, also called SRF2 cavities, are coupled to the RF system, as
well as vacuum and cryogenic components. The assembly of these subsystems forms a cryomodule.

The cooling power is provided by a cryoplant with a maximal capacity of 1300W at 4.2 K. A cold
box coupled with a 5000 L Dewar provides the necessary liquid helium to all the cryomodules
through a cryodistribution. Inside the cryomodules, the liquid helium evaporates to extract heat from
the resonator, and cold gaseous helium is returned to the cold box. More details on the cryogenic
system can be found in [3,4]. As a perturbation in the cooling systemmight lead to a shutdown of the
accelerator, it is mandatory to develop a highly reliable operation and control system. To achieve this,
modeling tools are developed to improve the control robustness, predict valuable information, and
detect faults or anomalies.

The present article mainly focuses on the cryomodules and not on the overall cryogenic system.
The first section is dedicated to the modeling of the cryomodules. In the second section, an optimized
control law is proposed. The third section details the synthesis of a virtual sensor used to predict
unmeasured parameters. The last section is dedicated to fault detection using machine learning
techniques.
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2 MODELING OF THE CRYOMODULES

2.1 Description
There are two types of cryomodules, namely, type-A and type-B.
The main difference between them lies in the fact that type-A
contains one resonating cavity, whereas type-B contains two of
them. For more details concerning the cryomodules design and
performance, please refer to [5,6].

In terms of thermodynamics, both types of cryomodules
undergo different heat loads. First is the static heat load
induced by the heat transfer between the cold and their
surrounding parts. Second is the dynamic heat load due to the
RF resistive losses in the resonating cavity. Heat load amplitudes
are different for the two types of cryomodules. For the 4.4°K bath,
those characteristics as well as the volumes are given in Table 1.

The cryogenic system is in charge of keeping the superconducting
RF cavities under their superconducting critical temperature at all
times. This requirement is achieved by keeping the cavities submerged
in a liquid helium bath. As the cavities are fed with RF power, a liquid
helium bath ensures the resistive heat loads extraction at the cavity’s
surface walls. As a consequence, the temperatures of the cavities are
kept uniform and stable at 4.4°K far beyond their superconducting
critical temperature of 9.2°K. Would the cavity be partially exposed out
of the liquid helium bath, it would undergo a quench3. Three main
elements, shown in Figure 1, insure this constraint: a phase separator

filled with liquid helium at 4.4°K and 1,200mbar, a thermal shield that
surrounds the phase separator and is kept at 60°K, and finally a valves
box containing all the valves used to control cryogenics operation. As
the phase separator is themost critical element of the cryogenic system,
we will only focus on that element and its associated valves. The
Figure 1 presents a simplified scheme with the subsystems of interest.

The phase separator is fed with liquid helium through the
input valve, which is used to regulate the level of liquid. Due to
thermal heat load, liquid helium evaporates and is returned to the
cold box. In that process, gas goes through the output valve,
which is used to regulate the pressure within the phase separator.

Both the valves and the phase separator have been modeled.
The equations governing the operation of the valve are the ones
given in the standard ISA [7], whereas the phase separator
dynamics are described through energy and mass balance. The
equations have been implemented in the Simcryogenics library
[8] of MATLAB®, which is a modeling tool used to simulate and
optimize cryogenic systems. Helium properties are extracted
from tabulated data using the HEPAK® package. As those
equations have been extensively described in [9–11], they will
not be discussed in this article. Rather, the comparison between
experimental and simulation results will be emphasized.

2.2 Model vs. Data
The simulation results for both cryomodule types have been
compared to experimental data. For each of the cryomodules, an
operating scenario has been performed starting from stable
operating conditions4. This scenario is a series of steps applied
to the input and output valve opening command. The same values
have been applied to the model and to the real process in an open-
loop manner. The comparison obtained for cryomodule 1 (the
first one on the line considering the beam direction) is shown in
Figure 2. The comparison shows a good agreement between
experimental and simulated data for both level and pressure
dynamics. It is worth mentioning that the uncertainty of the
modeled liquid helium level increases with time as the level is an
integrator system. Furthermore, the high uncertainty on the
pressure at time t = 1,500 s is mostly due to the valve position
uncertainty: an error of ±1% on valve position could lead to a
pressure uncertainty up to 10mbar. Finally, the pressure peak
occurring at t = 1,200 s is due to a pressure oscillation in the
cryodistribution (i.e. the inlet boundary of the model).

Similar results have been observed on all other cryomodules.
The following criteria have been calculated for each comparison:

Cr � 100 · ∫tfinal

tinit
Vmes t( ) − Vsim t( )( )2dt
Vinit

moy · ttotal
, (1)

where Cr is the criteria representing the integral of the error
between measured and simulated data. tinit, tfinal , and ttotal are,
respectively, the initial time, the final time and the overall
duration of the scenario, whereas Vmes(t) and Vsim(t) are,

TABLE 1 | Main thermal differences between type-A and type-B cryomodules.

Characteristic Type-A Type-B

Helium bath volume [L] 20.5 91.5
Static heat load [W] 3.5 ± 1.4 12.5 ± 1.8
RF heat load [W] 5.8 ± 2.2 12.1 ± 2.6

FIGURE 1 | Representation of a type-A cryomodule. On the left is a
simplified scheme. On the right is a 3D cut view. LT and PT are, respectively,
level transmitter and pressure transmitter.

3Loss of the superconducting state.

4Operating conditions mean the internal thermal conditions (heat load), the
external hydraulic and pneumatic conditions (set by the cryoplant), and the
operation set-points (typically liquid helium bath pressure and level).
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respectively, the measured and simulated values. Finally, Vinit
moy

designates the mean value at the beginning of the scenario.
Normalizing by the overall duration and the mean value
makes it possible to compare multiple scenarios with different
durations and operating conditions. The criteria values obtained
for the scenario shown in Figure 2 and applied to all cryomodules
are plotted in Figure 3. The latter plot gives an important insight
into the usability of such a model in a generic way for all
cryomodules across the LINAC. In fact, obtained Cr values
give a deviation sufficiently small to be considered for
applications such as control and fault detection. The next
sections will investigate this feasibility.

3 OPTIMAL CONTROLLER SYNTHESIS

3.1 Problem Overview
Cryogenic system control loops are critical items that can affect
the overall accelerator. Two requirements are to be met in order

to allow the nominal operation of the RF cavity. The first is to
ensure that the temperature of the cavity remains below its critical
value. Otherwise, the cavity could quench5. To do so, the cavity is
submerged in a liquid helium bath, and the level of liquid helium
is regulated through a PID (Proportional–Integrator Derivative)
controller acting on the input valve (see Figure 1). The goal is to
maintain a level at 90% ± 5% which is high enough to maintain
the overall cavity fully submerged with a comfortable operating
margin. The second is to ensure that the shape of the cavity does
not change as the performances of the resonator are intrinsically
linked to the cavity shape. This could be seen in the expression of
its unloaded quality factor:

Qf0 � G

Rs
, (2)

FIGURE 2 |Model vs. measurement for the first type-A cryomodule. Measurement and associated uncertainty are, respectively, represented by black line and gray
background. Simulation value and uncertainty are, respectively, represented by green lines and magenta dash-dotted lines.

5Fast transitions between superconducting state and normal conducting state that
can lead, in the worst case, to irreversible mechanical damages.
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where Qf0 is the unloaded quality factor, Rs is the surface
resistance, and G is the geometric factor that depends on the
surface and the volume of the cavity. As the cavity is
submerged in liquid a helium bath, any pressure variation
(ΔP) in the separator will induce a mechanical force on the
cavity walls that slightly deforms the cavity. This results in a
variation of the geometric factor that can lead to a drop in the
cavity quality factor, hence significantly reducing the nominal
cavity accelerating gradient.

Considering the bandwidth of the cavity and its associated
RF system, a pressure variation limit of ΔP = ±5 mbar has
been set up for the SPIRAL2 cryomodules. It is worth
mentioning that the nominal pressure of the helium bath
is 1,200 mbar, which means that a ΔP of ±5 mbar represents a
tolerance of ±0.41%. Both the level and the pressure are
regulated through PID controllers. Although the PID
performance is enough to achieve the level requirement, it
is not the case for the pressure requirement. Even using a
state-of-the-art [12] PID (Proportional, Integral Derivative)
tuning tool, we were not able to maintain the pressure
variation within a range of ±5 mbar for long periods of
time (i.e., more than a few hours) without having
significant overshoots. This is probably due to the fact that
the two regulation loops are coupled: an action on the input
valve influences the level and the pressure. A similar
statement is also true for the output valve: an action on
the output valve has an impact on both on the pressure
and the level. As PID controllers are more suitable in the
case of linear SISO6 system, another control algorithm is
necessary to achieve the project requirement.

3.2 Synthesis of a LQ Regulator
Few parameters have to be considered while choosing the most
suitable solution for the cryomodules control loops. First, the
cryomodule cryogenic system is a multiple inputs multiple
outputs (MIMO) system with two valves as inputs and the level
and pressure as outputs. As there is internal coupling between all
inputs and outputs, a controller that can handle this coupling is
mandatory. Second, as the accelerator will be used for many years,
it must be a solution proven on multiple systems with full
documentation. Third, the controller has to be implemented in
a dedicated PLC (Programmable Logical Controller) with a limited
amount of calculation capacity. Considering those parameters, an
LQ (Linear Quadratic) controller seems to be a good candidate.
The block diagram of such controller applied to our system is given
in Figure 4. The mathematical development of this controller has
already been described in [9,11]. In this section, we will only recall
the main equations of the discrete LQ controller and focus on
experimental results.

The principle of a LQ controller is to synthesize a state
feedback gain such that the command input is given by:

u k( ) � −K · x k( ), (3)
where K is the state feedback gain and x the state of the system. K
is calculated so that it minimizes the following quadratic cost:

J � ∑
∞

i�k
x i( )T · Q · x i( ) + u i( )T · R · u i( ), (4)

where J is the cost, and Q and R are respectively state and input
weights. As for gain and integral time for a PI controller, the goal
is to tune the matricesQ and R to fulfill the process specifications.
Details about the way to tune those gains are given in [9].

The calculation of the state feedback gain K requires the state-
space model of the system which could be directly generated with
the previously described model and a linearization algorithm
such that the one described in [13]. To allow a comparison
between the existing PID and the proposed regulation law, the LQ
controller has been implemented on the existing PLC of each
cryomodule. Even if they have a limited calculation capacity (a
workmemory of 192 Ko), it is more than enough for the proposed
LQ controller which only requires around 30 multiplications/
additions per sampling time. This is due to the fact that only the
control law described in Eq. 3 and its associated Luenberger
observer [14] have been implemented. The calculation of the state
feedback gain K that minimizes the cost Eq. 4 could be carried out
offline using dedicated optimizers.

FIGURE 3 | Evaluation of the criteriaCr on each cryomodule. The type-A
and type-B cryomodule are, respectively, plotted in blue and red. The blue
highlighted element corresponds to the cryomodule investigated in Figure 2.

FIGURE 4 | Block diagram of the synthesized LQ regulator. SP
designates the setpoint.

6Single Input Single Output.
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3.3 Experimental Results
Classical tests like set point variation and output disturbance test
(using electrical heaters as disturbance sources) have been
performed on both PID and LQ controllers. The results of
those tests show that the LQ regulator is slightly better in
terms of robustness and speed than the PI controller.
Nevertheless, our main interest is to see which controller is
able to respect the level and pressure requirements during a
long period of operation. To check this, the following experiment
has been realized for two nights7. During the first night (12 h), all
cryomodules are regulated by PID controllers. During the second
night, they are regulated by LQ controllers. For both cases, the
level requirement has been respected, but not the pressure
requirement. To illustrate this, the number of times the
pressure overshoots the threshold of ±5mbar has been used as
a metric to compare the two controllers. The result of the
comparison is given in Figure 5. The LQ controller shows no
pressure overshoot at all, whereas the PID controller shows
multiple ones. However, the LQ controller could not perfectly
dump pressure oscillations. To illustrate this, a counter of
overshoot with a tightened pressure threshold of ±3mbar (in
comparison with the specification of ±5mbar) has also been
plotted in Figure 5. Nevertheless, the results obtained with the LQ
regulator are satisfying considering process requirements. As the
algorithm has been deployed in the PLCs for the purpose of the
test, it is already available for the current operation. This new
control strategy is an important improvement that could reduce
the accelerator downtime as one pressure overshoot may arise
safety chains that shuts down the accelerator beam. One
drawback of such method is the knowledge of the thermal set
point of operation. This setpoint depends on static load, RF losses,
and other effects such as beam loading. A deviation from the
setpoint due to isolation vacuum leaks or field emitters in the
cavity might make the LQ control worse than a simple PID8. In
this matter, having state observers able to monitor the thermal
behavior of a cryomodule is vital. Such an observer could drive

the change of the thermal operation set point and LQ inputs to
automatically adapt to the real state of the system. The synthesis
of precision state observers using supervised learning will be the
subject of future studies. The next section is the first study of a
thermal load observer based on a twin model synthesis as a
starting point for future planned studies.

4 VIRTUAL SENSOR

4.1 Problem Overview
As the RF signal injected in the resonator is sinusoidal, it
generates energy dissipation in the cavity walls called AC
losses [15]. Those losses are considered an indicator of the
cavity state: an abrupt raise of those losses can indicate that a
part of the cavity is no more in a superconducting state. This
could be the premise of a global quench of the cavity. On another
timescale, a slow increase of the dissipated AC losses can indicate
a pollution of the cavity with non-superconducting elements. In
the case of SPIRAL2, there is no continuous measurement of
these AC losses. Measurements can only be performed when the
cavity is not in operation as the measurement method is intrusive
[16]. There is no operating solution in the case of SPIRAL2 that
would allow us to perform such measurements online and
without disturbing the process.

To solve this problem, we proposed a method to estimate these
losses based on the phase separator model and an extended
Kalman filter (EKF) [17].

4.2 Synthesis of an Extended Kalman Filter
From the phase separator point of view, the AC losses represent
an external thermal heat load. The more AC losses, the more heat
has to be extracted through the evaporation of liquid helium.
Equations that link the AC losses to the thermal heat load are
given in [18]. Knowing this, measuring the AC losses is equivalent
to measuring the heat load extracted by the liquid helium bath.
Nevertheless, as for the AC losses, there is no continuous
measurement of the heat load dissipated in each cavity in the
SPIRAL2 cryogenic system. Discontinuous measurement can be
made bymeasuring the evaporating rate of the liquid helium [19],
but once again it is an intrusive method that could not be realized
during operation. This is where the cryomodule model becomes
very useful: using the model and process measurements such as
phase separator level and pressure as well as valve opening, it is
possible to predict the current heat loads. Therefore, the idea is to
synthesize an observer (also called a virtual sensor in that case) of
the heat load.

An extended Kalman filter seems to be the best choice as it is
designed to work with nonlinear processes and has been
successfully used in many applications [20,21]. The process
diagram of such an observer applied to our process is
described in Figure 6 where it is decomposed into elementary
steps represented as a number in green circles:

• 1: calculate phase separator internal energy (e) and density
(ρ) through property interpolation using bath pressure and
liquid level.

FIGURE 5 | LQ vs. PID pressure overshoot number for one night.

7Night is chosen to avoid daily operations that could induce comparison bias.
8See [10] for thermal set points for both type A and type B cryomodules.
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• 2: define model boundary pressures (pin and pout) using the
closest available pressure transmitters. This is equivalent to
calculating a pressure drop between the closest sensors and
the model boundaries based on the current mass flows and
temperatures.

• 3: calculate input ( _min) and output ( _mout) mass flows
through valves considering valve pressure drop, valves
opening, and valves input quality (χin).

• 4: define phase separator input (φin) and output (φout)
energy flux.

• 5: apply the extended Kalman filter algorithm using model
parameters (i.e., valves coefficients, bath volume, and bath
static heat loads) to estimate the heat loads dissipated in the
phase separator.

In a nutshell, we use the difference between estimated values
based on the model (i.e., eest and ρest) and values (e and ρ) directly
calculated from measurement (tabulated data in HEPACK), to
correct the estimated heat load based on themodel equations. The
complete algorithm is being deployed in cryomodule PLCs. The
following results were obtained using an external computer
connected to the data acquisition system of the process. In
that way, it was possible to directly get sensor process values
but with a delay of few seconds.

4.3 Experimental Results
To evaluate the estimation capacity of the extended Kalman filter,
a reference was needed. A controllable resistive heater thermally
linked to the liquid helium phase separator was used for this
purpose. Actual power dissipated in the helium bath9 showed
good agreement with the electrical power of the heater (within

1Watt). Stepped variations of the heater power were used to test
the synthesized virtual sensor. The results of Figure 7 showed an
exceptionally good prediction of the heater power. The actual
dynamics precision was better than 2Watts for heat loads lower
than 20Watts. The absolute average estimation error was equal to
0.7Wwhich represents about 3% of the maximal tested heat load.
This means that the estimation precision could reach 1W if the

FIGURE 6 | Block diagram of the virtual sensor and its associated model schematic view. f designates different functions depending on the associated bloc
number. LT and PT are, respectively, level and pressure transmitters. Numbers within green circles are explained in the text.

FIGURE 7 | Estimated heat loads (green) and uncertainty (magenta) vs.
electrical heater setpoint (black).

9Measured by liquid helium level decay while the inlet valve is closed.
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estimation is averaged on a sufficiently long timescale. Above
20Watts, the method used to measure the actual heat load
dissipation of the heater introduces a bias higher than 2Watts
which limits the interpretability of the results. However, the
presented virtual sensor10 shows its capability to predict heat
load in real-time with a precision of few Watts. This is enough to
detect anomalies during operation.

5 ANOMALY DETECTION

5.1 Problem Overview
“Anomaly detection” is used to designate algorithms capable of
identifying events or items differing from the majority of the
events/items. For the case of plant monitoring these algorithms
could be used to address the problem of continuous fault
detection on process actuators or transmitters. These kinds of
algorithms are particularly suitable for large processes which
contain thousands of actuators and transmitters because it is
almost impossible for a single operator to continuously check the
functioning of each element within the process. For example, in
the SPIRAL2 cryogenic system, there are more than 70 control
valves and 300 transmitters.

In such a case, we demonstrate the possibility to use the
cryomodule model to perform actuator malfunction detection.
To be more specific, we try to predict if the output value of one
cryomodule (see Figure 1) is undergoing a deadband11 problem.
We use machine learning (ML) algorithms to predict the
malfunction.

This section is decomposed into two parts. First, the
generation of the dataset used to train ML algorithms is
explained. Then, the ML algorithms themselves are described
as well as their performances.

5.2 Dataset Creation
Nowadays, the main concern when working with ML algorithms
is the generation of a clean dataset rather than the algorithm itself.
Why so? Because it exists many libraries that already contain
codes for all the commonly used ML algorithms. In Python, some
of the most popular libraries are TensorFlow [22], PyTorch [23],
and Skitlearn [24].

In the present work, the MATLAB statistics and ML toolbox
[25] are used. All the data used for the anomaly detection problem
are simulated data. Nevertheless, white noise has been added to
each input and output of the model. The amplitude of this noise
has been defined such that the simulated data look like the real
measurements. Furthermore, slow fluctuations have been added
to the input and output boundaries pressures in order to mimic
the real operating conditions. To a naked eye, it is almost
impossible to differentiate simulated data from measured data.

Before generating a dataset for valve anomaly detection, it is
required to model the deadband problem on the output valve. In

our case, the deadband has been set to random values between 1%
and 4% to generate different test cases. The following signals have
been recorded:

• phase separator pressure
• phase separator liquid level
• input and output valves command

Only the valve command (and not the real position) is
considered. It mimics the case where valves are not equipped
with a position indicator. In total, 500 time series of 60 s have
been simulated. The dataset has been perfectly balanced: in
half of the cases, the valve was subject to deadband, and in the
other half it was not. For the two ML algorithms described in
the next sub-sections, we used a standard cross-validation
method. So, the overall dataset has been decomposed into a
training set (60% of the data), a validation set (20% of the
data), and a testing set (20% of the data). Thus we are able to
perform hyper-parameters12 tuning for each tested ML
algorithm.

5.3 Solution 1: Classification Learner
The first solution is to use a classification learner to determine
if a valve is faulty or not. This kind of algorithms require
features as input and not time series. So, features were
extracted from each time series of the dataset. As we do
not know which features would be most suitable to identify a
deadband problem, we calculate all the most common ones
(i.e., variance, peak to peak, skewness, and kurtosis, etc.). In
our case, we define 36 features which are few enough not to be
concerned with limitations due to computer performances.
But if it was the case, it would still be possible to use the same
brute force approach and apply a principal component
analysis [26,27] to reduce the number of features.
Consequently, for all the time series of the dataset, each of
the 4 measured signals has been transformed into a list of 9
features that could be used as input for a classification
learner13.

Once again, as there is no methodology to choose the best
classification algorithm, we trained multiple ones and selected the
one with the highest accuracy. Thanks to parallel computing it
takes less than a few minutes to train multiple algorithms
including decision trees, support vector machine (SVM),
logistic regression, and nearest neighbors.

It appears that SVM with Gaussian kernel [28,29] gets the best
performance among the other algorithms. SVM with Gaussian
kernel is particularly suitable for our problem as we have a small
number of features (less than 1,000) and not too much data to get
concerned with the computation time issue.

The final results obtained with the SVM are given in Table 2.
They are compared to the results obtained with another method:
a deep neural network presented in the next section.

10The overall synthesis of this virtual sensor has been patented [18].
11A deadband is a range of input control that does not result in any output on the
valve position.

12A hyper-parameter is a parameter whose value is set before the learning process
begins. By contrast, the values of other parameters are derived via training.
13Weighted average of the precision and recall.
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5.4 Solution 2: Deep Network
The second idea while developing the valve anomaly detection
consists of a Long Short Term Memory (LSTM) network [30].
The main advantage of this deep learning algorithm is the fact
that time series signals could be directly used as network inputs. It
means that there is no need to calculate features in that case.
Nevertheless, it generally requires more data to train this kind of
network than for an SVM.

The architecture of the LSTM network is given in Figure 8. As
one can see, the network is decomposed into five layers:

• The sequence input layer used to sequence data to the
network.

• The LSTM layer that learns long-term dependencies
between time steps in sequence data.

• The fully connected layer that applies weight and bias to the
LSTM output in order to predict the right label.

• The softmax layer that applies a SoftMax function to
calculate the probability associated to each case (in our
case normal operation of the deadband problem).

• The classification output layer that provides the final
prediction depending on the probability calculated in the
previous layer.

In total, it took 200 training epochs with a constant learning
rate of 0.001 to train the network. This took less than 1 min of
computation time.

5.5 Prediction Results
In this section, we compare the performances of the synthesized
SVM and the LSTM algorithm. The comparison is based upon
usual ML metrics: accuracy, precision, recall, and F1 score. More

details about those metrics are available in [31]. Comparison is
performed on a test set of 100 time series used only for this purpose
(and not for training). Results are given in Table 2.

As one can see, both SVM and LSTM algorithms show good
results in terms of error predictions. Nevertheless, the SVM
results are slightly better. As the implementation complexity of
those two algorithms is quite similar, the best option would be to
deploy an SVM algorithm on the system to get an online anomaly
detector. It is worth mentioning that anomaly detection has been
tested on the cryomodules only to remain consistent with the rest
of the article. Nevertheless, it would be more interesting to
generate an anomaly detector for process-critical elements
such as rotating machines of the cryogenic system: the
turbines and the compressors.

6 CONCLUSION

Advanced operation and diagnostics tools are slowly becoming
a vital part of the operation of large infrastructures such as
particle accelerators. While sub-systems such as cryogenics are
not usually studied and documented in that perspective, they
can be critical in maintaining a high beam availability. Working
on a twin model of the cryomodules opens a gate that allows a
control and operation method that otherwise would be difficult.
It also introduces the possibility to use machine learning
techniques for synthesizing monitoring proxies and smart
fault detection observers. The premises of such observers
have been studied and is in the process of being
implemented in the SPIRAL2 control system. Developed
modeling allows us to generate training data sets for machine
learning algorithms. Future work will include the extension of
the thermodynamic models to its radio-frequency counter-part
and the application of SVM-based algorithms on actual
machine data.
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more compact neural networks
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Raw data generation for several existing and planned large physics experiments

now exceeds TB/s rates, generating untenable data sets in very little time. Those

data often demonstrate high dimensionality while containing limited

information. Meanwhile, Machine Learning algorithms are now becoming an

essential part of data processing and data analysis. Those algorithms can be

used offline for post processing and post data analysis, or they can be used

online for real time processing providing ultra low latency experiment

monitoring. Both use cases would benefit from data throughput reduction

while preserving relevant information: one by reducing the offline storage

requirements by several orders of magnitude and the other by allowing ultra

fast online inferencing with low complexity Machine Learning models.

Moreover, reducing the data source throughput also reduces material cost,

power and data management requirements. In this work we demonstrate

optimized nonuniform scalar quantization for data source reduction. This

data reduction allows lower dimensional representations while preserving

the relevant information of the data, thus enabling high accuracy Tiny

Machine Learning classifier models for online fast inferences. We

demonstrate this approach with an initial proof of concept targeting the

CookieBox, an array of electron spectrometers used for angular streaking,

that was developed for LCLS-II as an online beam diagnostic tool. We used

the Lloyd-Max algorithm with the CookieBox dataset to design an optimized

nonuniform scalar quantizer. Optimized quantization lets us reduce input data

volume by 69% with no significant impact on inference accuracy. When we

tolerate a 2% loss on inference accuracy, we achieved 81% of input data

reduction. Finally, the change from a 7-bit to a 3-bit input data quantization

reduces our neural network size by 38%.
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1 Introduction

Detectors for large physics and light source experiments now

produce data much faster than acquisition systems can collect,

triage and store it [1, 2]. The current approach of saving all raw

data requires a large amount of cabling, power and downstream

storage, beyond what the architecture or budget can allow [1].

Thus, several current and planned experiments would benefit

from data reduction at the source. Furthermore, the initial data

preparation steps before analysis tend to be very similar over time

- deletion of invalid events, baseline corrections and initial

information extraction, such as calculating timestamps or

energy. Moving these steps at the edge–near the

detector–would reduce data at the source and thus lightening

the load of the high speed communication system and high-speed

storage. Even so, several of this initial analysis requires complex

mathematical operations which require many sequential steps,

an iterative approach, and significant computational resources.

This limits the capacity for true real-time data reduction [3, 4].

One strategy exploits ultra low latency Edge Machine

Learning (edgeML); the deployment of inference models near

the detector capable of real-time analysis, veto and compression

of incoming data. Machine Learning (ML) models like neural

networks (NN) can be trained to emulate arbitrary mathematical

operations while using simpler addition and multiplication

operations that can be greatly accelerated using appropriate

hardware [5]. This strategy of moving much of the data

preparation steps at the source enables to reduce both data

velocity and data volume, resulting in resource savings in

term of data transfer, processing and storage.

The LCLS-II built at SLAC National Accelerator Laboratory

is capable of generating coherent x-ray shots at a 1 MHz rate [1,

6]. The experimental hutches host several dozen different

instruments to capture the maximum information about each

event. However, the system must be run at a lower rate to collect

the data from all these instruments and send it to disk [1]. To

achieve continuous full rate experiments, a first proof of concept

targeting the Cookiebox detector demonstrated that deploying

ML inference models on FPGA can reduce data velocity in real-

time [7].

The Cookiebox is a diagnostic detector which non-

destructively samples each x-ray shot to reconstruct the single

shot time–energy profile via the method of attosecond angular

streaking [3]. The reconstructions are to be used to select which

x-ray shots fit particular experimental objectives, rejecting invalid

shots, aggregating simple reference shots, or reserving

complicated shots for deeper covariance-based analysis. Such

a streaming shot evaluation system significantly reduces the raw

data rate from other instruments before it is written to persistent

storage. However, to achieve this, each x-ray shot must be

analyzed with very low latency, within about 100 µs, to avoid

overly large raw data ring buffers. Such low-latency capability of

edgeML has been demonstrated [7] and further work is ongoing

to provide a fully working system. The Cookiebox detector

produces a large volume of data, on the order of 100’s of GB/

s, which itself becomes a challenge when designing low

complexity ML algorithms suited for limited capacity edgeML

accelerators. For that reason, the compression and analysis must

be distributed all along the data path, including prior to the ML

algorithms. In this work, we suggest to optimally quantize the

Cookiebox data before feeding it to our NN inference model. This

compression strategy reduces throughput while preserving

relevant information which enabled for leaner and more

accurate NNs.

The Materials and Methods section begins with an overview

of the CookieBox diagnostic detector, followed by a description

of the quantization algorithm and the NN developed for the

CookieBox. We then present the results for both the optimal

quantizer model and for theMLmodel. Finally, we conclude with

a discussion of how the quantization impacts the data and theML

model.

2 Materials and methods

2.1 Cookiebox

The diagnostic detector that we take as our demonstration

use case is an attosecond angular streaking instrument composed

of an array of 16 electron time-of-flight (ToF) spectrometers,

illustrated in Figure 1 [8]. The spectrometers are placed on a

plane perpendicular to the x-ray propagation. A micrometer

wavelength infra-red laser with a circular polarization modulates

the central electrical field with a period of 10–30 fs [3]. A low

pressure gas is present in the center chamber. When the atoms or

molecules are hit by x-rays, their electrons are ejected and

collected by the electron spectrometers. This instrument can

measure the polarization and the time-energy spectrum of each

individual x-ray shot produced by LCLS-II (diagnostic mode), or

be used to measure numerous features associated with a given

target atom or molecule (experimental mode).

Each spectrometer signal is fed to a 12 bit, 6.4 GS/s analog-to-

digital converter. Thus, the total instrument generates data at a

rate of 1.229 Tb/s. The first data reduction step consists of

identifying the time at which electrons hit the spectrometer

using a peak finding algorithm. The digitized signal is thus

converted into timestamps corresponding to each electron

“hit”. For each x-ray shot, each spectrometer collects

approximately 100 hits, which are converted into 16 bit

timestamps, which results in a data rate of 26 Gb/s. In

experimental mode, this data is collected, however in

diagnostic mode, the data must be analyzed within 100 µs to

select the correct processing for each shot while avoiding large

rapid memory buffers.

We choose this detector since it has recently been shown

compatible with both the signal rates and the energy resolution
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required for the x-ray pulse reconstruction algorithms. The

facility wide interest at LCLS-II has further motivated that

such an instrument provide continuous streaming diagnoses

of x-ray pulses, both time-energy distribution as well as

polarization, at the full MHz repetition rate of the facility. As

such, this instrument is now capable of working with the full data

rate as soon as the LCLS-II ramps up to the highest quasi-

continuous rate to provide offline diagnostic. The present work

aims to move the diagnostic capability on the edge and in real-

time.

2.2 Dataset (CookieSimSlim)

To create the initial training datasets, we use a simple

simulation [9] to generate data via Monte-Carlo simulation of

attosecond angular streaking. The simulation begins with a

Poissonian choice of so-called self-amplified spontaneous

emission (SASE) sub-spikes, forming the x-ray shot, each with

an energy consistent with the few % SASE bandwidth of the FEL

process and a relative temporal delay that is chosen as an even

random choice across the 2π period of the angular optical cycle.

The period of the optical cycle is chosen experimentally by

the choice of dressing optical laser field and is typically in the

regime of few femtoseconds total period for addressing SASE

structures as targeted here [3]. The data generator also allows for

sub-spike polarization variation such that our model is fully

compatible with the recent developments in time-dependent

polarization shaping in SASE FELs [10].

The resulting dataset from the CookieSimSlim generator is an

HDF5 formatted tree of events, or “x-ray shots”, each with a list of

electron hit energies (Xhits) for each detector angle. This list of hit

energies itself is a sampling from a smooth probability distribution

Ypdf that is the sum of the Gaussian energy distributions for each of

the sub-spikes (offset via κ sin(ϕ) where κ is the streaking kick

strength and ϕ ∈ [0, 2π) is the random phase associated with the

sub-spike relative arrival timing. The shot-dependent parameters

such as kick strength, phase, dark-count rate, SASE width and so

on are all produced as attributes of the particular shot in the

HDF5 file. For convenience the output file also includes an “image”

representation of the energy hit histogram Ximg.

The hit energies in Xhits are represented as 32 bit floats from the

generator. This bit depth is considered a “conventional”

representation since in the experiment, the data will be represented

as an energy conversion of an integer arrival time that is typically only

of 16 bit resolution. Allowing 32 bit floating precision for the energy

mapping result is therefore considered a convenient precision for sake

of the arithmetic in producing that calibrated energy for each hit.

2.3 Quantization

All of the information on the x-ray shot is contained in the

timing of the electron hits; that is the 16 bit timestamps obtained

FIGURE 1
Diagram of the data flow of the CookieBox. The ToF spectrometers signals are processed by analog electronics before being digitized. Each
2 digitizers feed into an FPGA that will be hosting the neural network discussed in this article. The central FPGA, circled with a red dotted line, collects
the extracted features from all 8 peripheral FPGA and forwards the inference results to the rest of the DAQ system.
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after the pulse finding step. With CookieSimSlim, this data is

provided in a 32 bit float format. We encode this large set of data

to a small set of optimized values modelled on the probability

distribution function (PDF) of the source detector with a

nonuniform scalar quantizer [11, 12].

The mean-square error (MSE) is used to judge of the quality

of the quantization. The MSE is obtained with Eq. 1:

MSE Y,Q Y( )( ) � 1
N

∑
N−1

i�0
yi − Q yi( )( )2 (1)

where Y is the original discrete dataset and Q(Y) is the quantized

dataset.

The first order entropy of the datasets is used to mesure the

amount of information it contains. The first order entropy is

obtained with Eq. 2:

H Y( ) � − ∑
N−1

i�0
P yi( )log2P yi( ) (2)

where Y a discrete variable, that represent our dataset or

quantized dataset, with possible outcomes y0. . .yN−1 which

occur with probability P(y0). . .P(yN−1) [13]. The base two of

the logarithm function is to gives the entropy in bits.

2.4 The neural networks

The data quantization allows for a much reduced input size for

the convolutional neural network (CNN) which contributes to its

size reduction. The CNN type of architecture is used to reduce the

impact of the input data dimensionality on the model

dimensionality itself. We also design our model to be the

smallest as possible. For that, we use strategies inspired from the

SqueezeNet CNN architecture [14]. However, since our CNN only

has three convolution layers, our strategies boil down to using as few

and as small as possible filters. We only use 3 × 3 filters which is the

smallest kernel size to capture the notion of relative dependencies in

all direction within a 2D space.We gradually double the numbers of

filters between each convolution layer from the beginning to the end

of the network like in the VGG model [15]. We use 10 filters in the

first convolution layer allowing for below or close to 10,000 network

parameters while potentiating the accuracy. The two last layers of the

CNN are fully connected layer with 5 neurons each. For all layers,

except the last one, the activation function is the rectified linear unit

(ReLU) activation function. For the last layer, the Softmax activation

function is used for classification.

A specific CNN is dedicated for each corresponding bit depth

because of the model input size changes according to the number

of bit used for the quantization. Except the input size, all the other

configurations are the same for all CNNs. Figure 4 shows

examples of the CNN input heatmap images in regards of the

number of quantization levels. In this example, each input

heatmap images (Figures 4A–C) requires a specific CNN.

3 Results

3.1 Quantization effect on dataset

Uniform quantization allows for a quick and simple design.

However, optimized nonuniform quantization minimizes the MSE,

but also requires to train the quantizer beforehand. For comparison,

the quantization is done using a uniform quantizer and a PDF-

optimized nonuniform quantizer. In both cases, we quantized to

obtain 5 strategic and realistic bit depths from 3 to 7 bits. This yields

M quantization levels with M = 2n and n the bit depth.

The quantization levels for the uniform quantizer are

uniformly placed within the distribution. For training the

PDF-optimized nonuniform quantizer, we used the Lloyd-

Max (LM) algorithm [11, 12]. The LM algorithm uses an

iterative k-means clustering approach to determine which

quantization level locations minimize the MSE. The initial

estimate for the quantization levels are uniformly placed

within the distribution. The tolerance for change in MSE after

which the LM algorithm converged is set to 1e − 5. For both

quantizer designs, the actual quantization is done bymapping the

input value to its nearest quantization levels. Figure 2A shows the

original data distribution while Figures 2B,C respectively show

the distribution with uniform quantization and optimized

nonuniform quantization.

FIGURE 2
5-bit uniform quantization (B) and 5-bit optimized
nonuniform quantization (C) effect on the original data distribution
(A). The Lloyd-Max algorithm gives more granularity to the ranges
where the data are more occurring within the distribution
which maximizes the entropy and minimizes the mean-square
error when quantizing.
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Figure 3A shows how nonuniform quantization

minimized the MSE compared to a uniform quantization.

In addition, Figure 3B shows how nonuniform quantization

also maximized the entropy. The data are quantized using the

uniform and nonuniform quantizer and then converted as an

heatmap with the bin intervals being the quantization levels.

This result is an input heatmap image of size 16 ×M and it is

the input of the CNN. Each pulse within an x-ray shot will

create a vertical sinusoidal wave where the relative phase

between waves reflects the time interval between the pulses.

Figure 4 shows how quantizing with 5 bits over 3 bits makes

the pulse count less ambiguous, but also how quantizing with

7 bits does not drastically simplify the pulse counting task (for

a human eye).

3.2 Classification accuracy and model size

We trained the CNNs to classify the pulse count in every

x-ray shot event (i.e. heatmap image). A unique and dedicated

CNN is trained for each bit depth and corresponding quantized

heatmap image size. This is because the quantized heatmap

image size determine the input size of the CNN which then

impact the overall CNN dimensionality. However, all the model

parameters (kernel size, number of filters. . .) and initial weights

are kept steady for all CNNs.

The desired pulse count per x-ray shot may change between

LCLS-II experiments. For that reason, we trained the CNNs on a

local GPU (RTX3090) to classify 0, 1, 2, 3 and “many” pulses for

every shots. The “many” class correspond to all events with

FIGURE 3
Mean-square error (A) and entropy (B) as a function of the quantization. We interpret low mean-square error with high entropy as a better
information representation within data.

FIGURE 4
3, 5 and 7 bits quantized data heatmaps for a 2 pulses event [respectively (A–C)]. For a human eye, the 5 bits quantized data heatmaps (B)makes
the two pulses distinction less ambiguous over 3 bits quantized data heatmaps (A). However, the 7 bits quantized data heatmaps does not improve
the distinction for a human eye.

Frontiers in Physics frontiersin.org05

Gouin-Ferland et al. 10.3389/fphy.2022.957128

51

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.957128


4 pulses or more, which have little value in most experiments and

are generally rejected. The training setup is described in Table 1.

The training set includes 400,000 events and the test set

100,000 events. All the data are generated using the

CookieSimSlim generator. Figure 5 shows the relation between

the CNN weighted prediction accuracy as well as the CNN size

when applying the method in simulation with the test set. We see

that this optimized quantization scheme allows for data

reduction on 5 bits while allowing for more accurate and

leaner inference models then when using 7 bits. Figure 6

shows the confusion matrix of the 5-bit dedicated CNN in

predicting the number of pulses.

4 Discussion

4.1 Quantization

Our goal for using optimized nonuniform quantization over

uniform quantization was to maximize the information

representation of the Cookiebox source on a lower bit

budget. This is what Figure 3 suggest. We saw that while a

nonuniform quantization minimized the MSE compare to a

uniform quantization, it also maximized the entropy which

represent the amount of information carried out by the data.

Nonetheless, we also saw that the gap in performance tends to

shrink for a larger bit depth. This is because the optimized

quantization levels converge towards a uniform distribution as

more levels are created within the same limited interval. We

noticed that this nonuniform quantization is sensitive to

changes in the data distribution; if the source statistic

changes overtime a mismatch effect could occur and change

the quantizer performance. We recommend training the

nonuniform quantizer on a dataset that includes those

variations or to include a calibration step to train the

quantizer before the data acquisition to ensure the quantizer

representativity. Note that the same mismatch effect would

occur to a standalone NN (i.e. without the prior optimized

nonuniform quantization).

Nevertheless, quantization allows to pass from a 16-bit

scalar data representation to a 7, 5 and even 3-bit

representation. This yields a data reduction of 56%, 69 %

and 81%. Even if quantization is a lossy coding, let’s recall

that optimized nonuniform quantization allows for data

reduction while maximizing the information retention. This

method avoids the computational load of lossless coding, which

reduces the acquisition system latency and overall resources

usage.

TABLE 1 CNN training Configurations.

Loss Function Sparse Categorical Crossentropy

Optimizer Adam

Learning Rate 0.001

Batch Size 2042

Validation Split 0.2

FIGURE 5
CNNweighted accuracy and size. Grey bars read on the right
axis and the blue and yellow bars on the left axis. The model shows
higher accuracy with 5-bit depth over 7-bit depth while requiring
fewer model parameters.

FIGURE 6
Confusion matrix showing the performance of the 5-bit
dedicated CNN in predicting the number of pulses (0, 1, 2, 3 or
“Many”) in a single x-ray shot with data optimally quantized using
5 bits. A perfect CNN would have 100% (yellow) in every box
on the diagonal and 0% (dark blue) everywhere else.
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4.2 Convolutional neural network
inference model

The goal of limiting the Cookiebox data dimensionality

was also to reduce the input dimensionality for our inference

model. Fully connected NNs are really sensitive to their input

size and tend to become very large if not contained. We used

a simple CNN architecture to minimize this effect, but

Figure 5 still shows the benefits of a small input size in

term of model dimensionality. For instance, with a

straightforward 16-bit representation and the same

architecture, this CNN would require approximately

2.6 million parameters. By contrast, our 7, 5 and 3-bit

representations shrunk the CNN size to 15,595,

10,795 and 9595 parameters respectively, a reduction of

two orders of magnitude compared to the 16 bit input

model. Within these smaller models, the change from a 7-

bit to a 5-bit input data quantization reduces the CNN size by

31%, with no significant impact on inference accuracy. When

we tolerate a 2% loss, the change from a 7-bit to a 3-bit input

data quantization reduces the CNN size by 38%. Note that

the CNN size reduction is only due to the input

dimensionality reduction and that no optimization (weight

pruning, weight quantization. . .) is done on the model itself.

We saw small improvements in accuracy between

uniform and nonuniform quantization in Figure 5, but as

for the MSE and entropy, the difference tend to plateau

beyond 6 bits. Our simulation data exhibit bimodality

within the distribution for all 16 channels dimensions and

we expect a better gain of nonuniform over uniform

quantization for more complex multimodal distributions.

If the dimensions exhibit different distributions, we

recommend to train and quantized in respect to each

dimensions. With that said, our model still demonstrates

better performances then the first iteration of NN that

tackled the Cookiebox problem while being almost two

orders of magnitude smaller [7].

The drop in accuracy from 6 to 7 bits correlates with a

significant input size growth. Because the number of filters and

kernel size are constant for all bit depth, it limits the learning

potential of the CNN when having larger and more complex

input. A solution to that is to use a bigger CNN. However, we

would also need a bigger dataset to maintain the model

generalization ability. Because our goal was to designed a

small NN and to reduce data generation, we do not consider

going bigger and deeper a viable, sustainable and elegant solution

for edgeML.

Finally, we used scalar quantization as a proof of concept, but

the next step is to use vector quantization with the Linde-Buzo-

Gray algorithm to compress even more multidimensional data

while conserving relevant information [16]. This could be even

more promising for data source reduction and for smaller

edgeML models.

5 Conclusion

Large physics experiments now produce more and more data

at an ever-increasing throughput. Simultaneously, ML is

becoming more popular among the community for its ability

to model complex systems and the growing ML hardware

accessibility. In addition to that, edgeML is a promising tool

for large science experiment online data reduction. However,

edgeML applications face challenges in terms of power efficiency

and for hardware implementation. Moreover, some applications

like the Cookiebox diagnostic detector require ultra low-latency

inference.

In this work, we combined optimized data quantization with

the generalization capacities of NN to reduce data source

throughput while preserving relevant information and thus

reducing material cost, power and data management

requirements. This approach also enables smaller NN for fast

real-time–on the edge–inferencing. The real-time diagnostic

function would be a huge boon for upcoming LCLS-II

experiments.

Beyond energy efficiency for data management system, it is

worth mentioning that the cheapest data is the data which is

never generated. The Jevons paradox showed us that in many

technological area, increasing a process efficiency only tend to

rise its absolute usage. That is already something addressed by the

communication technology community [17]. The scientific

community now have a real opportunity to save in

development, infrastructure and energy cost by using

previously developed models directly at the source to generate

as much useful information and less data.

With the development larger and faster detectors planned

over the next decades in several disciplines such a medical

imaging, particle physics and quantum computing, the data

velocity problem will not go away. There is no universal

approach; each application presents a different set of

challenges. Yet, edgeML is a powerful tool that can take

advantage of the inherent structure of many data types which

makes it a perfect candidate for real-time data reduction in many

fields.
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Electromagnetic field
computation of multilayer
vacuum chambers with
physics-informed neural
networks

Kazuhiro Fujita*

Department of Information Systems, Saitama Institute of Technology, Saitama, Japan

The electromagnetic interaction of a charged particle beam with multilayer

vacuum chambers is of particular interest in accelerator physics. This paper

presents a deep learning-based approach for calculating electromagnetic fields

generated by the beam in infinitely long multilayer vacuum chambers with

arbitrary cross section. The presented approach is based on physics-informed

neural networks and the surface impedance boundary condition of a multilayer

structure derived from the transmission line theory. Deep neural networks

(DNNs) are utilized to approximate the solution of partial differential equations

(PDEs) describing the physics of electromagnetic fields self-generated by a

charged particle beam traveling in a particle accelerator. A residual network is

constructed from the output of DNNs, the PDEs and boundary conditions are

embedded into the loss function and differential operators are calculated using

the automatic differentiation. As a result, the presented approach is regarded to

be mesh-free. The approach is applied to circular and elliptical vacuum

chambers with a three-layer structure. It is verified in comparison with the

recently proposed boundary element method. The effects of chamber

geometries and multilayer structure on the beam coupling impedance are

demonstrated.

KEYWORDS

deep learning, machine learning, neural network, electromagnetic field, resistive-wall
wakefield, charged particle

1 Introduction

Charged particles moving in an accelerator are exposed to electromagnetic fields of

components specified by the accelerator design. These external fields are used to store and

accelerate beams of charged particles. However, the charged particles themselves are

sources of electromagnetic fields [1]. Due to the movement of the particles, they behave

like a current in an accelerator vacuum chamber. The field accompanied by the beam

(called as self-field) is scattered on the wall surface of its chamber due to finite

conductivity of the wall material and/or cross section variation. As a result of this
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electromagnetic interaction, unwanted electromagnetic fields are

excited. Such fields, referred as to wakefields due to the fact that

they are left behind the traveling particle, act back on the beam

itself and the following beams, and subsequently influence the

energy and motion of the charged particles [2, 3]. As the beam

intensity increases, the wakefields become significantly strong,

and also will perturb the prescribed external fields. The wakefield

effects can limit the performance of an accelerator in terms of

beam quality and beam current. Therefore, accurate knowledge

of wakefields is required in the design of vacuum chamber

components in an accelerator.

The integrated effects of the wakefields on the beam can be

estimated by the beam coupling impedance in the frequency

domain [4, 5]. To calculate the impedances of various accelerator

vacuum chambers, both analytical and numerical approaches

have been developed complementarily. Analytical (or semi-

analytical) approaches [6–14] are important for understanding

the characteristic of wakefields although their applicabilities are

usually limited to simple geometries. A practical way of

calculating impedances of realistic vacuum chambers with

complex geometries and materials is to use purely numerical

methods such as the finite integration technique (FIT) [15] and

finite element method (FEM) [16]. To obtain a numerical

solution, the FIT and FEM require the discretization of

domains for a vacuum chamber of interest. The standard FIT

with structured grids suffers from the staircasing error of curved

boundaries. The FEM with unstructured grids allows accurate

modeling of boundary surfaces but may need the generation of

dense meshes due to a large variation of the fields in the vicinity

of the source domain. When calculating the impedance due to

finite conductivity of the chamber wall, generally called resistive

wall impedance, one needs to address the skin effect in the

chamber wall properly. The resistive wall impedance of

multilayer vacuum chamber is of particular interest for

modern high energy accelerators and x-ray free electron laser

projects. Many efforts have been made to analytically investigate

the wakefields and impedance in multilayer vacuum chambers,

see e.g., [17–23]. However, it is still challenging to calculate the

impedance of multilayer vacuum chambers with arbitrary cross

section.

This paper presents a new approach for calculating the beam

coupling impedance of infinitely long multilayer vacuum chambers

with arbitrary cross section. Unlike traditional numerical methods,

our approach is based on deep learning in the form of neural

networks (NN), termed as the physics-informed neural networks

(PINN) [24, 25]. A deep neural network is utilized as a solution

surrogate to approximate the solution of governing equations of

wakefields generated in a multilayer vacuum chamber. The

differential operators in the residual network of the governing

equations are evaluated with automatic differentiation. Therefore,

no numerical mesh exists inside the domain surrounded by the

chamber wall surface and also on its surface. For these reasons, the

presented approach can be regarded to be mesh-free. To avoid

calculating fields penetrated in the wall and model a multilayer

structure, the transmission line (TL) theory [18] and the surface

impedance concept [26] are used in the present study.

It should be pointed out that PINN was first introduced into

beam coupling impedance modeling in Ref. [27], where the space

charge impedance of a relativistic beam with transversally Gaussian

charge density in an infinitely long vacuum chamber with walls of

infinite conductivity is simulated for various cross sections. Very

recently, PINN was extended to the case when a vacuum chamber

has finite wall conductivity in Ref. [28], where the surface impedance

concept was combined with PINN. A single-layer circular vacuum

chamber with a finite wall thickness and a small conductivity was

analyzed in [28], where it is assumed that the magnetic field on the

resistive wall is the same as that on the perfectly electric conductor

(PEC) wall; the effect of finite wall conductivity on themagnetic field

is enough small. This is referred to as the perturbative treatment of

the magnetic field. It has been also used to simplify a problem in the

analytical impedance studies; see e.g., [5, 11]. However, the

perturbation is valid only for a limited frequency range. A

nonperturbative treatment of the magnetic field is required to

compute the coupling impedance at high frequencies.

To the best of the author’s knowledge, the modeling of

multilayer vacuum chambers with more than two layers in

particle accelerators has never been studied in the framework

of PINN, although its possibility has been mentioned in Ref. [28].

Nonperturbative cases are also not yet discussed in this context.

The purpose of this paper is therefore to extend the previous

study [28] to the nonperturbative modeling of coupling

impedances and wakefields in multilayer vacuum chambers.

This study will be the first application of PINN to this

subject. The key idea of the presented approach is to use

PINN [24, 25] and the surface impedance boundary condition

(SIBC) of a multilayer structure derived from TL theory [18] in

the nonperturbative model. To model vacuum chamber

geometries other than the circular one, the Swish activation

function is chosen for the NN architecture. The goal of this

paper is to clarify that the presented approach can be applied to

the nonperturbative impedance modeling of multilayer vacuum

chambers. The discussion of this paper is limited to this point.

This paper is organized as follows. In Section 2, we state the

problem solved. In Section 3, we present a mesh-free numerical

method based on PINN for calculating electromagnetic

wakefields in frequency domain. In Section 4, we show

numerical results of circular and elliptical multilayer vacuum

chambers with PINN. This paper is concluded in Section 5.

2 Problem statement

2.1 Partial differential equations

We consider a relativistic charged particle beam with a

transversally Gaussian charge density distribution (total charge
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Q) moving in an infinitely long vacuum chamber with an

arbitrary but constant cross section and walls of finite

conductivity, as shown in Figure 1. Throughout this paper, we

assume that the particle beam has a rigid charge distribution ρ

and a constant velocity v, and the beam current density J = ρv,

where v = vez = βcez, β = v/c, c is the speed of light in vacuum, and

ez is the unit vector along the z-direction. The influence of the

field on the beammotion is neglected in the field calculation. This

rigid beam picture is not self-consistent, but it is an excellent

approximation for relativistic beams [2–4]. Our interest is to

solve electromagnetic boundary value problems for a given

charge distribution in the context of PINN.

In general, the electric andmagnetic fields (E,H) in the presence

of the particle beam in vacuum obey the Maxwell equations [1, 5]:

∇× E � −μ0
zH
zt

, (1)

∇× H � J + ε0
zE
zt
, (2)

∇ · E � ρ

ε0
, (3)

∇ ·H � 0. (4)
where ε0 and μ0 denote the permittivity and the permeability of

vacuum, respectively. In the frequency domain, the Maxwell Eqs.

1–4 can be transformed into

∇× E � −jωμ0H, (5)
∇× H � J + jωε0E, (6)
∇ · E � ρ

ε0
, (7)

∇ ·H � 0. (8)

Here we assume the time dependence ejωt with an angular

frequency ω = 2πf. When one consider only a particular

harmonic component, the charge and current densities are

written as

ρ x, y, z, t( ) � ρ⊥ x, y( )ej ωt−kz( ), (9)
J x, y, z, t( ) � Jz x, y( )ej ωt−kz( )ez, (10)

respectively, where k = ω/v is the wave number, Jz = ρ⊥βc, ρ⊥ is

the transverse charge density distribution function. The electric

and magnetic fields are also written as:

E x, y, z, t( ) � E x, y( )ej ωt−kz( ), (11)
H x, y, z, t( ) � H x, y( )ej ωt−kz( ), (12)

respectively. From the frequency domain Maxwell Eqs. 5–8, we

can obtain the following inhomogeneous wave equations of the

electric field E = (Ex, Ey, Ez) and magnetic field H = (Hx, Hy,

Hz) [1]:

∇2E + ω2ε0μ0E � ∇ρ

ε0
+ jωμ0J, (13)

∇2H + ω2ε0μ0H � −∇× J. (14)

Substituting Eqs. 9–12 into Eqs. 13, 14 leads to

z2Ex

zx2
+ z2Ex

zy2
− k2

γ2
Ex � 1

ε0

zρ⊥
zx

( ), (15)

z2Ey

zx2
+ z2Ey

zy2
− k2

γ2
Ey � 1

ε0

zρ⊥
zy

( ), (16)

z2Ez

zx2
+ z2Ez

zy2
− k2

γ2
Ez � − jk

ε0γ2
ρ⊥, (17)

z2Hx

zx2
+ z2Hx

zy2
− k2

γ2
Hx � −zJz

zy
, (18)

z2Hy

zx2
+ z2Hy

zy2
− k2

γ2
Hy � zJz

zx
, (19)

z2Hz

zx2
+ z2Hz

zy2
− k2

γ2
Hz � 0, (20)

where γ � (1 − β2)−1/2 is the Lorentz factor. As described later,

we are interested in Eq. 17 to calculate the coupling impedance.

2.2 Boundary conditions

To model the walls of a vacuum chamber, one needs to

enforce the boundary condition. In the case of PEC walls, we use

the PEC boundary condition (BC) as follows [1, 5]:

n × E � 0. (21)

For a smooth wall of finite conductivity, we replace the PEC-BC

by the Leontovich boundary condition or SIBC [5, 26]:

n × E � Zs ω( )n × n × H, (22)
where n is the outward unit vector normal to the wall surface and

Zs(ω) is called as the surface impedance, which is complex.

When Zs = 0, Eq. 22 can be reduced to the PEC-BC Eq. 21. Note

that Eq. 22 is enforced only on the innermost wall of the chamber.

FIGURE 1
A relativistic charged particle beam with transversally
Gaussian charge density moving at constant velocity on the axis of
an infinitely long multilayer vacuum chamber with elliptical cross
section.
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In the field solution, all the domain outside the innermost wall is

assumed to be filled by PEC. This can be also regarded as the

assumption of infinitely thick PEC wall. Therefore, the field is

zero outside the innermost chamber wall. This surface

impedance concept can be widely used for the impedance

modeling in particle accelerators. See e.g. [29].

For later reference, we summarize Zs in some special cases. As

a well-known example, the normal skin effect in a chamber wall

with infinite thickness can be modeled with [5, 18, 26].

Zs ω( ) �
��������
jωμ0

σc + jωε0

√
. (23)

where σc is the static (dc) conductivity. For a multilayer structure,

the transmission line theory [18] can be used to obtain its surface

impedance in Eq. 22. The same approach as Ref. [18] is adapted

in this work. As a result, for a three-layer structure with dc

conductivities σi and thicknesses di (i = 1, 2, 3, respectively), Zs on

the inner wall is given by

Zs � Z1 · Zi2 + Z1 tanh γ1d1( )
Z1 + Zi2 tanh γ1d1( )

, (24)

Zi2 � Z2 · Zi3 + Z2 tanh γ2d2( )
Z2 + Zi3 tanh γ2d2( )

, (25)

Zi3 � Z3 · Z0 + Z3 tanh γ3d3( )
Z3 + Z0 tanh γ3d3( )

, (26)

where Z0 is the free space impedance and Zi and γi are the

intrinsic impedance and the propagation constant of ith layer

material, respectively, given by

Zi �
��������
jωμ0

σ i + jωε0

√
, (27)

γi �
�������������
jωμ0 σ i + jωε0( )

√
. (28)

Note that the vacuum regions are assumed to be inside the

innermost wall surface and also outside the outermost wall

surface.

Figure 2 shows surface impedances obtained with Eq. 23 for

stainless steel (SS), copper (Cu), and nonevaporable getter (NEG)

and a surface impedance calculated with Eq. 24 for a three-layer

structure with the same conductivities. The materials used from

external to inner layer are SS, Cu and NEG with the

corresponding dc conductivities σ3 = 0.14 × 107 S/m, σ2 =

5.88 × 107 S/m, σ1 = 0.55 × 105 S/m. Layer thicknesses are

d3 = 1 mm for SS, d2 = 1 μm for Cu and d1 = 1 μm for NEG,

respectively. As well known, for good conductors, Eq. 23 can be

simplified as

Zs ω( ) � 1 + j( )

����
Z0ω

2σcc

√

. (29)

Therefore, the curve of the real part of the surface impedance

agree with that of the imaginary one for Cu, SS and NEG,

respectively. By contrast, for the three-layer structure, the

frequency dependency of the real part is quite different from

that of the imaginary one.

2.3 Kirchhoff’s boundary integral
representation of electromagnetic field

The electromagnetic field in an infinitely long vacuum

chamber can be also expressed in Kirchhoff’s boundary

integral representation as [30].

FIGURE 2
Surface impedances for the smooth wall of SS, Cu, NEG (A) and for the inner wall of the three-layer structure (B).
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E � Eb − ∇⊥ϕ − jωA − 1
ε0
∇⊥ × F, (30)

H � Hb − ∇⊥ϕm − jωF + 1
μ0
∇⊥ × A (31)

with the vector and scalar potentials

A r( ) � μ0∫
C
G r, r′( )K r′( )dr′, (32)

F r( ) � ε0∫
C
G r, r′( )M r′( )dr′, (33)

ϕ r( ) � 1
ε0
∫

C
G r, r′( )σ r′( )dr′, (34)

ϕm r( ) � 1
μ0
∫

C
G r, r′( )η r′( )dr′, (35)

and the boundary conditions

n × E � −M, (36)
n × H � K, (37)
n · E � σ/ε0, (38)
n ·H � η/μ0, (39)

and Green’s function [1].

G r, r′( ) � 1
2π

K0 krR( ), R � r − r′
∣∣∣∣

∣∣∣∣, kr � k/γ, (40)

where (Eb, Hb) are the beam self-fields, ∇2
⊥ � z2

zx2 + z2

zy2 is the two-

dimensional (2D) Laplacian operator, r = (x, y) is the observation

point in the bounded vacuum region, r′ is the point on the

boundary surface, n is the inner unit vector normal to the inner

wall surface C, K0 is the modified Bessel function of the second

kind of order zero, (K, σ) are the electric surface current and

charge densities and (M, η) are the magnetic surface current and

charge densities.

The above integral representation clearly shows that the total

electromagnetic fields (E, H) can be expressed as a

superposition of the beam self-fields and the boundary

integrals over the surface charges and currents on the

chamber walls. See Ref. [30] for more detailed discussions

on Eqs. 30, 31.

Here we should mention the perturbative treatment of

magnetic field; the magnetic field on resistive walls is assumed

to be the same as that on PEC walls. In this case,M = 0 and η = 0.

Therefore, to compute the magnetic field in the perturbative

model, one uses

H � Hb + 1
μ0
∇⊥ × A (41)

together with Eq. 37. In the previous study [28], the boundary

data for PINN was generated with Eq. 22 and Eq. 41

Unlike Ref. [28], in this paper, boundary data for PINN are

generated with the nonperturbative model based on Eqs. 30, 31

including Eq. 22 with Eq. 23 or 24.

3 Physics-informed neural network
method

3.1 Data and equation scaling

For calculating the electromagnetic field in particle accelerators

and the beam coupling impedance, we will deal with different

magnitudes of input and output. For example, the field

magnitude may vary largely within a vacuum chamber under

consideration or in a frequency range of interest. The real part of

the field can be also different from the imaginary one due to the

frequency dependence of a surface impedance. In such cases, we

have to deal with a dataset carefully. Using a raw dataset can lead to

slow convergence of a gradient-based optimizer. To avoid this, we

need to scale the input, output and PDE in an appropriate way. It

should be mentioned that this basic idea was first described in Ref.

[27]. Although the final scaled form of the PDE Eq. 17 was given in

Ref. [28], its derivation was omitted. In the following, we present a

detailed formulation for the data and equation scaling.

Let us consider modeling a vacuum chamber geometry in

Cartesian coordinates. The x-axis and y-axis are scaled with typical

chamber dimensions (sx, sy) such as radius, height and width as

�x � x

sx
, �y � y

sy
. (42)

We then scale the sampling points (input) with Eq. 42 and

transform the PDE Eq. 17 into

1
s2x

z2Ez

z�x2 + 1
s2y

z2Ez

z�y2 − k2

γ2
Ez � − jk

ε0γ2
ρ⊥. (43)

Next, by scaling the field Ez (output) as

�Ez � Ez

E0
, (44)

FIGURE 3
Physics-informed neural network.
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we obtain

1
s2x

z2 �Ez

z�x2 + 1
s2y

z2 �Ez

z�y2 − k2

γ2
�Ez � − jk

ε0γ2E0
ρ⊥, (45)

where ρ⊥ is given by

ρ⊥ � Q

2πσxσy
e
− x−xc( )2

2σ2x
− y−yc( )2

2σ2y , (46)

where (σx, σy) is the Gaussian rms size in the x- and y-direction and

(xc, yc) is the center position in the transverse plane. Finally, by

setting sx= sy= s0, introducing a new parameterB and choosingE0 as

E0 � qns0
2 k

Bε0γ2
, qn � Q

2πσxσy
, (47)

we can derive a scaled PDE as follows:

z2 �Ez

z�x2 + z2 �Ez

z�y2 −
�k
2

γ2
�Ez � −jB�ρ, (48)

�ρ � exp − �xs0 − xc( )2
2σ2

x

− �ys0 − yc( )2

2σ2
y

⎡⎣ ⎤⎦, (49)

where �k � ks0 and �ρ � ρ⊥/qn denotes the scaled charge density

distribution. Throughout this paper, B = 1 is empirically chosen.

Note that γ and �ρ are included even in the scaled PDE Eq. 48,

which has the same form as the original PDE Eq. 17.

As the scaled boundary condition for �Ez, we adapt

�Ez � El/E0, (50)

where El is the longitudinal electric field on the wall surface

obtained with the recently proposed boundary element method

(BEM) [30]. Note that, as already mentioned in Section 2.3, the

nonperturbative model is used to obtain El in Eq. 50.

We highlight the effect of the above data and equation scaling

by comparing Eq. 48 with Eq. 17. The right-hand side (RHS) of

Eq. 17 will be relatively large due to the existence of ε0 ≈ 8.854 ×

10–12 [F/m]. In addition, the RHS depends on the wavenumber k

or the frequency f. These are unpreferable for using a gradient-

based optimizer. By contrast, in the presented formulation Eqs.

42–50, the RHS of (48) is characterized by B�ρ and it remains

unchanged over a frequency range of interest. This feature is

preferable for calculating the beam coupling impedance in the

frequency domain and for maintaining the accuracy of trained

NNs over a frequency range. In fact, this scaling has been

successfully applied to all benchmark examples in this study.

The presented scaling scheme is performed as pre-processing and

post-processing.

Note that the physics of the electromagnetic field self-

generated by the beam in a vacuum chamber can be described

by Eqs 48, 50.

3.2 Deep learning

Let us consider solving the derived PDE via a new class of deep

learning, termed as PINN [24, 25]. A deep neural netowrk (DNN) is

used to approximate the solution of Eq. 48. This is often called as a

solution surrogate. In addition, to train this DNN,we take the output

of a DNN, define a network associated to the residual of Eqs 48, 50

and calculate the residual value (called a loss function). Note that

differential operators in this residual network are calculated using

the automatic differentiation. Therefore, unlike traditional

numerical methods, our approach does not need to define (and

generate) meshes inside the chamber. Physically, the space charge

field has only a purely imaginary part, the resistive wall wake field

has both real and imaginary parts. Therefore, the DNN also has two

outputs (Êr, Êi) corresponding to the real (r) and imaginary 1) parts

of �Ez. A schematic picture of constructed PINN including the DNN

and the residual network is illustrated in Figure 3. The inputs of the

DNN are sampling points (�xp, �yp) in the scaled xy plane. We

assume that the beam traverses inside the chamber and the field is

zero outside the chamber. The approach described here works well

especially for smooth transverse charge density as in (49).

Our algorithm is summarized in the following list.

1) Set up a computational domain, the boundary condition,

physical constants, beam parameters, source domain, and the

scaling parameters.

FIGURE 4
Generation of sampling points in a domain surrounded by the
innermost wall of a circular vacuum chamber.
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2) Generate randomly sampled points (or regular or irregular

grid points) within the computational domain surrounded by

the innermost wall. No sampling point is generated outside

the domain.

3) Construct a DNN with two outputs Êr(�x, �y; θ), Êi(�x, �y; θ) as
a solution surrogate of the scaled PDE
�Ez(�x, �y) � �Er(�x, �y) + j�Ei(�x, �y), where θ is a vector

containing all weights w and bias b in the neural network

to be trained, σ denotes an activation function.

4) Define the loss function L including Eqs 48, 50

5) Train the constructed DNN to find the best parameters θ by

minimizing L via the L-BFGS algorithm [31] as a gradient-

based optimizer, until L is smaller than a threshold ϵ.
6) Calculate the original field (unscaled) from Êz(x, y; θ) �

E0Êr(x/s0, y/s0; θ) + jE0Êi(x/s0, y/s0; θ) using the

trained DNN.

In this method, the loss function L is defined by

L � wd
rL

d
r + wb

rL
b
r + wd

i L
d
i + wb

i L
b
i , (51)

FIGURE 5
Coupling impedances of a round Gaussian beam with σr = 0.5 mmmoving on the axis of a circular vacuum chamber with infinite thickness for
three different wall materials: copper (Cu), stainless steel (SS), nonevaporable getter (NEG). The copper and NEG chambers have radius of 5 mm and
the SS chamber has radius of 6 mm. Real part (A) and imaginary part (B).

FIGURE 6
Comparison of the perturbative and nonperturbative models in the coupling impedances of a round Gaussian beam with σr = 0.5 mm moving
on the axis of a circular vacuum chamber with infinite thickness for NEG. The NEG chamber has radius of 5 mm. Real part (A) and imaginary part (B).
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Ld
r �

1
Nd

∑
Nd

p�1
fr xp, yp; θ( )
∣∣∣∣∣

∣∣∣∣∣
2
, Ld

i �
1
Nd

∑
Nd

p�1
fi xp, yp; θ( )
∣∣∣∣∣

∣∣∣∣∣
2
,

(52)

Lb
r �

1
Nb

∑
Nb

p�1
gr xp, yp; θ( )
∣∣∣∣∣

∣∣∣∣∣
2
, Lb

i �
1
Nb

∑
Nb

p�1
gi xp, yp; θ( )
∣∣∣∣∣

∣∣∣∣∣
2
,

(53)

fr � z2Êr

z�x2 + z2Êr

z�y2 −
�k
2

γ2
Êr, fi � z2Êi

z�x2 + z2Êi

z�y2 −
�k
2

γ2
Êi + B�ρ, (54)

gr � Êr − Re El/E0( ), gi � Êi − Im El/E0( ), (55)

where p denotes the sampling point, Nd and Nb are the numbers

of sampling points in the computational domain and on the

boundary surface, respectively.wd
r ,w

d
i ,w

b
r andw

b
i are the weights

of the loss function. Ldr/i is the loss function related to the scaled

PDE, and its minimization (Ldr/i → 0) enforces Eq. 48 at a set of
finite sampling points in the computational domain. Lbr/i is the

loss function related to the SIBC, and its minimization (Lbr/i → 0)
enforces Eq. 50 at a set of finite sampling points on the boundary

surface.

Throughout this study, a fully connected feedforward neural

network was adapted, and four hidden layers and 30 neurons per

layer were used. In deep learning, tanh, sigmoid, Rectified Linear

Unit (ReLU) and Swish functions are commonly used as

nonlinear activation functions. See e.g., Refs. [32, 33]. Smooth

activation functions are required in PINN. Since ReLU is not

differentiable at the origin, we do not choose it here. For this

study, the Swish function [32] is used, because it tends to work

well for various chamber geometries, compared to the tanh and

sigmoid functions. This activation function was not used in the

previous studies [27, 28]. B = 1 and (wd
r , w

d
i , w

b
r , w

b
i )=(10,1,10,1)

were chosen.

3.3 Impedance computation

After training the neural network, one can predict the field

Êz(x, y; θ) for any position (x, y) in a vacuum chamber. In order

to estimate integrated effect of the field on the beam in the

frequency domain, the concept of coupling impedance is

commonly used in accelerator physics. Here the coupling

impedance is defined as [4].

Z‖ x, y( ) � −Êz x, y; θ( )
I

, (56)

where I =Qβc is the total beam current. The coupling impedance

(per unit length) at any position inside the source domain of (46)

is obtained from (56). Although one can define the impedance

averaged over the source domain, its evalution is out of the

present paper. This paper focuses on the local impedance defined

in (56).

4 Results and discussion

To show the feasibility of the presented approach, we apply it

to the impedance analysis of multilayer vacuum chambers with

circular and elliptical cross section. Here, we assume the vertical

dimension (height) h = 2b = 10 mm as in [20] and γ = 10,000,

which is corresponding to the ultrarelativistic case. The PINN-

predicted results are verified in comparison with simulation

results of the recently developed BEM.

First, the coupling impedance of a circular vacuum chamber

of infinite thickness is simulated for different wall materials (Nd,

Nb)=(1,578, 200) was used for a circular chamber. The domain

and boundary sampling points were generated as in Figure 4,

where the coordinates are scaled with s0 = 5 mm.

FIGURE 7
Coupling impedances of a round Gaussian beam with σr = 0.5 mm moving on the axis of the circular vacuum chamber with the three-layer
structure of copper (Cu), stainless steel (SS), nonevaporable getter (NEG). Real part (A) and imaginary part (B).
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Figure 5 shows the coupling impedances of a round

Gaussian beam with σx = σy = σr = 0.5 mm on the axis of

the circular chamber for copper (Cu), stainless steel (SS) and

nonevaporable getter (NEG). As expected, both the real and

imaginary parts of the coupling impedance decrease at each

frequency point as σc increases. For example, the impedance of

FIGURE 8
PINN-simulated field distribution Ez over a domain surrounded by the innermost wall of a three-layer elliptical vacuum chamber (A) sampling
points (B) real part (C) imaginary part.

FIGURE 9
Coupling impedance of a roundGaussian beamwith σr=0.5 mm for an elliptical vacuum chamberwith the three-layer structure of copper (Cu),
stainless steel (SS), nonevaporable getter (NEG) (A) nonperturbative model (B) perturbative model.
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the copper vacuum chamber is smaller than those of the other

two. For each σc, at low frequencies, the frequency dependence

of the real part is very similar to that of the imaginary part.

This feature originates from the frequency dependence of Eq.

23 and also the fact that the magnetic field on the resistive wall

is very similar to that on the PEC wall in a limited frequency

range. However, at high frequencies, the real part is different

from the imaginary one. This is not surprising. From the

impedance theory [5], it is known that the above low

frequency characteristic is valid for (|Zs|ωb)/(2cZ0)≪ 1. In

this example, it reads f ≪7.2 THz for Cu and b = 5mm,

f ≪1.8 THz for SS and b = 6mm, f ≪0.71 THz for NEG and

b = 5mm, respectively. This feature is confirmed in Figure 5.

Note that the geometry parameter b and the dc conductivity σc
are also included in this condition. We also find good

agreement between PINN and BEM results in both the real

and imaginary parts. This means that the wideband behavior

of coupling impedance due to both the geometric effect and

the skin effect characterized by Eq. 23 is reproduced in the

PINN simulations.

Figure 6 demonstrates a direct comparison of perturbative

and nonperturbative models in the coupling impedance for the

circular vacuum chamber with the NEG wall as shown in

Figure 5. As expected, the perturbative impedance agrees with

the nonperturbative one for f ≪0.71 THz while the perturbative

impedance is different from the nonperturbative one at higher

frequencies. This result means that the magnetic field on the

resistive wall is not same as that on the PEC walls at higher

frequencies. In other words, the effect of finite conductivity on

the magnetic field cannot be negligible as the frequency increases.

This demonstrates that the nonperturbative effect is reproduced

in the PINN framework.

Next, the coupling impedance of a three-layer circular

vacuum chamber is simulated for different inner coating

thicknesses. The same domain and boundary sampling points

as in Figure 4 and (Nd, Nb)=(1,578, 200) were used here.

Figure 7 shows the coupling impedances of a round Gaussian

beam with σr = 0.5 mm on the axis of a circular chamber of inner

radius 5 mm and outer radius 6 mm with the three-layer

structure of SS, Cu and NEG. For each of different NEG

FIGURE 10
Comparison of electric field in a three-layer elliptical vacuum chamber calculated with PINN and BEM (A) Re (Ez) along x-axis at y = 0 (B) Im (Ez)
along x-axis at y = 0, and (C) Re (Ez) along y-axis at x = 0 and (D) Im (Ez) along y-axis at x = 0.
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thicknesses of 0.01, 0.1, 1 and 10μm, the frequency dependence of

the real part of the coupling impedance is quite different from

that of the imaginary part. For all NEG layer thicknesses, we find

good agreement between PINN and BEM results in both the real

and imaginary parts. Note that a characteristic high frequency

peak in the real part is observed for the inner layer thickness of

1 μm. This peak was originally found in the impedance theory of

the circular multilayer tube [20]. Our result shows the

applicability of PINN to the impedance modeling of a circular

vacuum chamber with three-layer structure.

Finally, the coupling impedance of an elliptical multilayer

vacuum chamber is simulated. The chamber is assumed to have

themajor axis a = 9 mm and theminor axis b = 5 mm at the inner

surface. This application is not shown in our previous study [28].

For this elliptical chamber, the domain and boundary sampling

points shown in Figure 8 are generated with (Nd, Nb)

=(2,845, 360).

Figure 9 demonstrates a direct comparison of

nonperturbative and perturbative models in the coupling

impedance of a Gaussian round beam with σr = 0.5 mm for

the elliptical vacuum chamber with the same three-layer

structure as shown in Figure 2. As expected, the perturbative

results (right) are quite different from the nonperturbative ones

(right); no resonant peak is observed in the perturbative result.

This comparison clearly show even for the three-layer elliptical

vacuum chamber the nonperturbative effect is reproduced in the

PINN framework.

In the left side of Figure 9, the frequency dependence of the

real part of the coupling impedance is different from that of the

imaginary part. The highest peak in the real part is at f ≈
0.74 THz. In the bottom of Figure 8, we display the PINN-

predicted field distribution Ez over a domain surrounded by the

innermost wall at its peak frequency. Unlike the case of a circular

chamber in Ref. [28], the field distribution shown here is non-

uniform over the elliptical cross section. This feature is also

confirmed from the field curves along x- and y-axes in Figure 10.

The effect of elliptical cross section on the field is demonstrated

in these results.

We find good agreement between PINN and BEM results for

both the real and imaginary parts of the impedance in Figure 9

and also for the electric field distributions along the x- and y-axes

in Figure 10. These results clearly show the applicability of PINN

to multilayer vacuum chambers other than the circular one.

5 Conclusion

This paper has presented a deep learning-based approach for

calculating the wakefields of a relativistic charged particle beam

with transversally Gaussian charge density distribution in an

infinitely long multilayer vacuum chamber with arbitrary cross

section. This approach is based on PINN and SIBC of a

multilayer structure derived from TL theory. It has been

successfully applied to circular and elliptical vacuum chambers

with the three-layer structure of SS, Cu and NEG in the

nonperturbative model. The PINN results have been cross-

checked with the recently developed BEM ones. The effects of

chamber geometries and three-layer structure on the coupling

impedance have been demonstrated in the framework of PINN.

In this study, a transversally Gaussian charge density

distribution is assumed. Therefore, the presented method

cannot model a uniform charge density with hard edges, point

and ring charges as often used in accelerator physics. A solution

to this limitation will be presented in near future. On the other

hand, the method has been formulated for two-dimensional

problems in the frequency domain. As future works, its

extensions to three-dimensional problems and the time

domain are under consideration.
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Enabling real-time adaptation of
machine learningmodels at x-ray
Free Electron Laser facilities with
high-speed training optimized
computational hardware

Petro Junior Milan1, Hongqian Rong1, Craig Michaud1,
Naoufal Layad2, Zhengchun Liu3 and Ryan Coffee2,4*
1SambaNova Systems, Inc, Palo Alto, CA, United States, 2LCLS, SLAC National Accelerator Laboratory,
Menlo Park, CA, United States, 3DSL, Argonne National Laboratory, Lemont, IL, United States, 4PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, United States

The emergence of novel computational hardware is enabling a new paradigm

for rapid machine learning model training. For the Department of Energy’s

major research facilities, this developing technology will enable a highly

adaptive approach to experimental sciences. In this manuscript we present

the per-epoch and end-to-end training times for an example of a streaming

diagnostic that is planned for the upcoming high-repetition rate x-ray Free

Electron Laser, the Linac Coherent Light Source-II. We explore the parameter

space of batch size and data parallel training across multiple Graphics

Processing Units and Reconfigurable Dataflow Units. We show the

landscape of training times with a goal of full model retraining in under

15 min. Although a full from scratch retraining of a model may not be

required in all cases, we nevertheless present an example of the application

of emerging computational hardware for adapting machine learning models to

changing environments in real-time, during streaming data acquisition, at the

rates expected for the data fire hoses of accelerator-based user facilities.

KEYWORDS

AI acceleration, x-ray free electron laser, machine learning, training, AI hardware, gpu,
sambanova

1 Introduction

In this manuscript we motivate using machine learning (ML) acceleration engines

that enable continuous data acquisition streams to accommodate rapid intermittent self-

calibration in order to accommodate both sensor and source variation. Extendable to a

wide variety of scientific use cases, there is an explosive trajectory for autonomous and

semi-autonomous control systems across the spectrum of accelerator applications [1–3].

Many of these use cases require either real-time model update in a reinforcement learning

approach in support of active control systems or they require predictive planning for
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optimised experimental parameter exploration, e.g. “next shot”

planning for DIII-D tokamak.

We concentrate on a particular detector currently under

development for the Department of Energy’s premiere ultra-

high data-rate x-ray Free Electron Laser (xFEL), the Linac

Coherent Light Source II (LCLS-II) [4], an angle resolving

array of charged particle Time-of-Flight (ToF) spectrometers

[5]. For this demonstration we simulate 128 sensor channels of

an angular array. Although the current physical system as

described in Ref. [5] is comprised of only 20 total sensor

angles, our motivation for the oversampling lies in the

potential for generalization across multiple domains that share

a common tomographic-like image reconstruction/classification

pattern.

There is an impending need to develop advanced

computational hardware accelerators to process, analyze, and

act upon—in real-time—the ultra-high rate data that will stream

from the detectors at next generation particle accelerator facilities

[6,7]. We foresee a coming broad adoption of transformer

models [8–10], originally engineered for language

interpretation, that will accommodate situations where

unlabeled data is abundant but task-specific labeled data is

rare. An inspiring example comes from the extension of GPT-

2 to the very different task of music interpretation [11]. This

exemplifies the pattern of using a deep encoding network as a

structure preserving “featurizer.” The resulting latent

representation can then feed many downstream models that

manage experiment-specific tasks with significantly smaller

labeled data sets.

The featurizing, or embedding, model poses a unique

challenge for real experimental systems. Although we

concentrate here on simulation based results, our motivation

is the ultimate physical detector system of electron spectrometers

[5]. In such spectrometers, there is a series of electron focusing

and retarding electrostatic lenses. Physically, these are copper

rings and meshes, each having different high voltage static

electric potentials that energetic electrons must pass through

on their way to the detection sensor. This forms an electrostatic

potential hill for the electrons to climb, shedding the majority of

their kinetic energy, such that the drift time in a flat field region

more favorably scales with energy. This hill is a compound

electrostatic lens with a comparable length to the post-hill

drift length with up to 0.25 eV resolution on a 500 eV

electron (~2000 resolving power). As such, a simple

deterministic equation is quite challenging and would

nevertheless exclude the physical particulars of a given

detector channel such as high voltage supply variations. The

typical for the environmental conditions inside the experimental

end-station as well as the changing accelerator operating

conditions and user experimental plan changes on the

20–30 min to hourly time-scale. Furthermore, raw data will

stream unaltered through the acquisition stream at 0.1% of

the full 1 MHz frame rate, at 1 kHz. At this rate, a freshly

updated 900k sample-size training set will accumulate every

15 min, thus allowing a fresh update of the embedding model

to accommodate the environment, end-station, and accelerator

variation. For the sake of such convergence of variation

timescales, we target a 15 min model retraining cadence in

this manuscript.

In this study, we compare the model training time for a noise

eliminating encoder-decoder network, CookieNetAE [12]. We

demonstrate the power of parallel training in batches for moving

quickly through a large, 900k images, training set. We evaluate a

new AI optimized hardware accelerator, the SambaNova

Reconfigurable Dataflow UnitTM (RDU), and compare it to a

benchmark DGX node available at the Argonne Leadership

Computing Facility (ALCF) with 8 A100 Graphics Processing

Units (GPUs). We additionally compare to a more commonly

available training engine of up to 8 V100 GPUs also hosted in a

single node. We investigate the performance of RDUs versus

GPUs for scientific ML training applications and discuss our

results in the context of high data rate accelerator-based scientific

facilities where diagnostics and detectors provide continuous

streams of data to keep 1M sample size training sets

continuously refreshed.

The remainder of the paper is organized as follows. In

Subsection 2.1, we present an overview of the RDU AI

accelerator involved in this study and give a description of the

distributed training on RDUs in Subsection 2.2. We do not review

the GPU accelerator owing to community familiarity with GPUs

for ML tasks. In Subsection 2.3, we discuss briefly the data

generation process and we give the structure of the

CookieNetAE model [12] in Subsection 2.4. We briefly describe

the experimental setup in Subsection 2.5. Obtained accuracy and

performance results are provided in Subsections 3.1 and 3.2 for

single and multi-accelerator cases, respectively, with comparisons

with the two generations of GPU. Finally, concluding remarks and

thoughts on future work are given in Section 4.

2 Materials and methods

Foreseeing a future of transformer models for distilling

information from streaming scientific sensors, we have

targeted an encoder-decoder network as a demonstrating case

for training acceleration. To relieve concerns about discovery

information being lost, we have chosen the downstream task of

reconstructing Y′, the noise free probability distribution function

(PDF) used to produce the under-sampled and grainy X, the

input. This reconstruction can only perform well if all of the

physically relevant information is contained in the latent

representation, otherwise the variation in stochastic sampling

of the PDF would dominate the mean-squared-error (MSE) loss

between Y and the predicted Y′.
The structure of the encoding side of our CookieNetAE

network [12] closely matches that of the embedding side of
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transformer models, and therefore we take this as a first stage in

ML-enabled data featurization for streaming acquisition at so-

called data fire hose facilities like the next generation of the Linac

Coherent Light Source (LCLS-II) [4,6] and the Upgraded

Advanced Photon Source (APS-U) [13]. Although

downstream models will be experiment specific, changing on

the daily or weekly time scale, the upstream embedding (encoder)

layers will be closely tied to the shared detectors. Nevertheless,

they will need to accommodate a minutes scale “breathing” of

experimental and accelerator conditions. Embedding model

retraining must therefore be accelerated to handle such

frequent—likely continuous—retraining, thus motivating our

exploration of uniquely engineered training accelerators like

the SambaNova RDU in comparison to the familiar family of

GPU accelerators, Nvidia V100 and A100.

2.1 Sambanova reconfigurable dataflow
architecture

We investigated the SambaNova solution for its flexible,

dataflow-oriented execution model that enables pipeline

operations and programmable data access patterns as will be

required of our high velocity data pipelines from streaming

scientific detectors. For multi-user facilities, reconfigurability is

essential; thus our interest in an architecture that can be

programmed specifically for any model application but

nevertheless results in an application-specific optimized

accelerator. The core of the SambaNova Reconfigurable

Dataflow ArchitectureTM (RDA) [14,15] is a dataflow-optimized

processor, the Reconfigurable Dataflow UnitTM (RDU). It has a

tiled architecture that is made up of a network of programmable

compute (PCUs), memory (PMUs) and communication units.

There are 640 PCUs and 640 PMUs connected to one another and

the external world via the communication units. The PCUs yield a

peak performance of over 300 TFLOPs per RDU. The PMUs

provide over 300 MB of on-chip memory and 150 TB/s of on-chip

bandwidth. These units are programmed with the structure of the

dataflow graph that instantiates the ML application, allowing the

RDU to use its own parallelism to natively leverage the parallel

patterns that are inherent to dataflow graphs.

SambaFlowTM is the framework used to leverage RDUs. As a

complete software stack, it takes computational graphs as input

from common ML frameworks such as PyTorch [16] and

automatically extracts, optimizes, and maps the dataflow

graph onto one or more RDUs. SambaFlow achieves

performance without the need for low-level kernel tuning.

2.2 Distributed training

The RDA is a scalable solution that not only leverages highly-

parallel on-chip computation but also enables parallel computation

across multiple RDUs. The SambaFlow framework automatically

handles the parallelization used here for data parallel training with

the DataScale® platform, a rack-level, datacenter accelerated

computing platform. The platform consists of one or more

DataScale SN10-8 nodes with integrated networking and

management infrastructure in a standards-compliant data center

rack—the DataScale SN10-8R [15]. We used up to 4 SN10-8 nodes

for the results presented here, each consisting of a host module and

8 RDUs. The RDUs on a node are interconnected via the RDU-

ConnectTM fabric while the multiple SN10-8 nodes communicate

via Remote direct memory access over Converged Ethernet (RoCE).

Beyond the more traditional model parallelism—large models

spread across multiple devices—we use the node interconnects to

enable data parallelism across all RDUs in the system.

Data parallelism spreads the training workload across

multiple accelerator devices, each with its own copy of the

full model to be trained. Each device uses the same model with

different training samples. For every iteration, each device

runs the forward and backward passes to compute gradients

on a batch of its respective data. The gradients from all the

devices are then aggregated to compute the averaged gradients

which are in turn transmitted back to each device to

update the local model weights and proceed with the next

iteration.

2.3 Data generation

We concentrate on x-ray pulse time-energy reconstruction

for two reasons. First, it is one of the more compute-intensive

examples of attosecond angular streaking [17], and it is

associated with a detector suite that is fully capable of the

highest data acquisition rates in the early stages of the LCLS-

II [5]. In angular streaking, x-ray induced photoelectron spectra

are modulated by the dressing laser field. This modulation can be

crudely simulated in the energy domain simply by adding a

sinusoidal excess energy to photo-electrons depending on the

angle of emission and phase of the dressing laser field. This

simplified simulation [18] begins with an electron emission

probability distribution,

Ypdf � ∑
N

i�0
pi ]i, θ, ϕi( ). (1)

The sum over pi in Eq. 1 runs for each of N sub-spikes where

pi itself is a function of the photon energy (]i), the emission angle

(θ), and a random phase (ϕi) that represents the sub-spike arrival

time relative to the optical carrier field of the dressing laser. From

this we draw random samples from Ypdf, plus a uniform dark-

count likelihood, for every measurement angle θ and sub-spike

energy ]i. These draws form a list of energies Xhits for each

measurement angle (row in Figure 1A) which are in turn used to

update the image Ximg. Therefore, the goal of CookieNetAE is an

optimal inverse mapping from Ximg (Figure 1A) to Ypdf
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(Figure 1C). In so doing, we have confidence that the latent

representation of CookieNetAE (Figure 1D) holds all

information that could be used as an input feature vector for

any relevant classification or regression task. We note that noise

is included insofar as we have dark counts at such a level in

physical measurements, but the more insidious difference

between actual measurements of Ximg and that simulated here

is that the conversion to energy domain, here a pre-supposition

from upstream featurizing algorithm, loses calibration, then the

rows of Ximg would not align, suffering arbitrary relative shifts.

Such an artifiact, interestingly, would be effectively trained out by

just the sort of adaptation of CookieNetAE by applying the

corrective shift to recover smooth sinusoidal curves of Ypdf;

re-training would therefore accommodate the expected effects

of power supply drift and resister failure in the electronics of the

individual spectrometers.

Algorithmic xFEL pulse reconstruction requires inverting the

angle-resolved photo-electron spectra as per Refs. [17,19] and is

much the same as tomographic image reconstruction. A principle

challenge here is the high frame rate of the x-ray source. In

preparation, we create a simulated dataset of one million example

images. The full simulated dataset spans nearly 80 GB and yet

represents only one second of acquisition of the LCLS-II. These

examples are used with 90% for training and 10% are held out for

validation and testing of the CookieNetAE model.

2.4 Encoder-decoder model

CookieNetAE [12] is a convolutional encoder-decoder

network designed to infer the angle-energy probability density

function of photoionized noble gas electrons. Since we are free in

simulation to explore any number of angular samples, we increase

the number of evenly distributed angles to 128 around the plane

perpendicular to x-ray pulse propagation. In Figure 1Awe show an

unwrapped (Cartesian) example such that each row in the image

corresponds to an energy histogram with 128 energy bins of 1 eV

width; panel B shows the polar representation of the electrons

emitted. We also show the to-be-recovered Ypdf in panel C with a

schematic of the encoder-decoder in panel D (see Ref. [12]). From

the input at left in Figure 1D to the output probability distribution

at right, we indicate schematically the halving of spatial dimensions

and doubling of channels as the filter-depth of layer denoted; this is

detailed in Table 1. The encoder contains three convolution layers

with the corresponding max pooling layers followed by a single

convolution layer to get the latent space representation of the input

image. The decoder contains four transposed convolution layers

followed by a single convolution layer to get the output. Themodel

is trained by using a standard MSE loss with the following

hyperparameters: a maximum number of epochs of 51, a

learning rate of 3 × 10–4 for the Adam optimizer, and the

ReLU activation function at relevant layers.

FIGURE 1
(A). Cartesian “image” representation of the in energy-angle space (our input X). (B). Polar representation of an example streaking shot. (C).
Cartesian “image” representation of the energy-angle emission probability distribution (our output Y). (D). Schematic of the CookieNetAE as
described in Table 1.
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The model architecture was chosen for reconstruction fidelity

and to serve as a somewhat generic model form representing auto-

encoders like a “U-net” but without skip-connects. Avoiding the

skip-connections holds closer to a scheme that is consistent with

compression at sensor and decompression at acquisition when the

model is used in inference at the recording node and was held fixed

since the scope of the manuscript is taken to be a survey of data-

parallel training across the different training accelerators rather

thanmodel architectures. Of course differentmodel forms are likely

to instantiate with better or worse performance for different

acceleration hardware architectures, and we do indeed plan to

investigate this in future research acrossmultiple scientific domains.

2.5 Experimental setup

We compare accelerators by measuring the training time for

the SambaNova DataScale SN10-8R in comparison with an

Nvidia DGX node of A100 GPUs and another Nvidia node of

V100 GPUs. For both the A100 and V100 GPU tests, the

CookieNetAE model is run with the PyTorch API v1.9 in data

parallel training with Horovod [20]. For the DataScale SN10-8R,

the SambaFlow software stack v1.11.2 compiles the model from

the same PyTorch reference. For all hardware, we measure the

average training time per epoch.

We perform these measurements by examining the dependence

of model training time on variation of batch sizes for single

accelerator as well as data-parallel training across multiple

accelerators. Because the batch size is an important

hyperparameter in deep neural networks, we investigate the

hardware performance for a wide variety of local and global

batch sizes in order to exercise the available design space defined

by the number of accelerators and batch size. The local batch size

(LBS) is the batch size per device, while the global batch size (GBS) is

the batch size across all devices. This design space clearly impacts

hardware utilization and convergence characteristics of the learning

algorithm [21]. Results from Ref. [22] show that training with batch

sizes of 32 samples or smaller can help improve training stability and

model generalization. On the other hand, larger batch sizes expose

more computational workload per weight update and therefore

often result in better hardware utilization. For these reasons, we span

a broad range of relevant batch/parallelization parameters. In

particular, given the relative novelty of the SambaNova hardware,

a more extensive survey of its performance landscape is conducted

compared to the GPU landscape.

3 Results

3.1 Single-processor runs

The CookieNetAE model is validated against a held out set of

samples not used by the model for parameter updating. A low

MSE value of 2.763 × 10–4 is observed for this validation dataset

for the case with the reference batch size of 128, indicating that

the model performs in the desired manner and without

overfitting. Example predictions shown in Figure 2 indicate

excellent agreement with the ground truth data.

The variation of the training time per epoch versus the batch size

is shown in Figure 3A for a single RDU as filled black circles, a single

A100 as open black circles, and a single V100 as open black squares

(color denotes the number of accelerators used). Numerical values are

listed in Tables 3 and 4. For the single RDU case, results are included

for batch sizes as few as 8 and as large as 1024, while for the single

GPU cases only batch sizes 64–1024 are tested. The training time per

epoch is defined as the time taken to run over all the batches in a

given epoch. Both the A100 and RDU are roughly twice as fast as

V100 in terms of training time, and the RDU is comparable or faster

than A100 for all but one batch size, i.e., batch size of 64. The RDU

shows a speedup of up to 1.82 times over V100, and up to 1.09 times

over A100. Additional results for the RDUwith very small batch sizes

(i.e., 8, 16 and 32) are also included in Figure 3A andTable 3.Wenote

Ref. [23] demonstrated that FPGAhas a performance advantage over

GPU on small batch size ResNet-50 inference workloads. Given that

RDU and FPGA are both instances of reconfigurable architectures, it

remains as an interesting future work to compare very small batch

size CookieNetAE training performance between RDU and GPU.

3.2 Multi-processor runs

For fixed LBS of 128, Figure 4 shows the variation of the end-

to-end training time versus the number of RDUs. This time

includes data loading, model initialization, training and

validation for 51 epochs along with printing selected output

variables to file. As one can see, the end-to-end training time is

reduced as the number of RDUs is increased. For example, it is

TABLE 1 Network structure of the CookieNetAE [12].

Layer Output shape Activation

Input (1,128,128) –

1st Conv2d (16,128,128) ReLU

1st MaxPool2d (16,64,64) –

2nd Conv2d (32,64,64) ReLU

2nd MaxPool2d (32,32,32) –

3rd Conv2d (64,32,32) ReLU

3rd MaxPool2d (64,16,16) –

4th Conv2d (128,16,16) ReLU

1st ConvTranspose2d (128,32,32) ReLU

2nd ConvTranspose2d (64,64,64) ReLU

3rd ConvTranspose2d (32,128,128) ReLU

4th ConvTranspose2d (16,128,128) ReLU

5th Conv2d (1,128,128) ReLU
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162 min for the case with one RDU while only 8.3 min for the

case with 32 RDUs. This corresponds to a speedup factor of more

than 19 times. The parallel efficiency, defined as the ratio of the

speedup factor to the number of RDUs, is around 78% of linear

scaling for the case of one SN10-8 node with 8 RDUs and only

decreases gradually as the number of nodes is increased, reaching

61% for the case of 32 RDUs (4 nodes). From this weak scaling

analysis, we observe that two or more SN10-8 nodes (16 or more

RDUs) are capable of achieving end-to-end training times in

under 15 min. The MSEs for validation data are shown in

Table 2, indicating that the accuracy is not significantly

affected with the increase in the number of RDUs, and

consequently the GBS; the error remains below 5 × 10–4.

The variation of the training time per epoch versus the GBS

for multiple RDUs, A100s and V100s is shown in Tables 3 and 4

and visualized in Figure 3. For GPUs, results are shown using up

to 8 devices with GBSs up to 1024, while for RDUs results are

shown using up to 32 devices with GBSs up to 4096. Both RDUs

and A100s outperform V100s in terms of training time for all

tested conditions. For the comparison between RDUs and A100s,

a mixed picture is observed, where the result depends on the

batch size and number of devices. For given GBS and number of

devices, when the resulting LBS is small, RDUs outperform

A100s, for example, GBS of 64 with 2, 4 and 8 devices, which

correspond to LBS of 32, 16 and 8, respectively. For GBS of 128,

results are closely comparable between the two architectures,

with RDUs slightly faster by a factor of 1.13 for the case with

8 devices. For GBS of 1024, A100s appear to be slightly faster than

RDUs by a factor of up to 1.17 for the cases with 2, 4 and

8 devices. Additional performance data for RDUs with 16, 24 and

32 devices are included in Table 3, which correspond to cases

with end-to-end training times below 15 min (cf. Figure 4).

The thick blue line in Figure 3A indicates the power law of

x−0.89 scaling for constant LBS of 128 for RDUs, quite close to

inverse scaling, even when the training workload is distributed

across multiple SN10-8 nodes. The general trends in Figures

3B–D indicate that RDUs tend to give a performance

advantage for smaller LBSs, for example at LBS = 8 (GBS =

FIGURE 2
Comparison of model input (A–C), ground truth (D–F) and model prediction (G–I) for three example hold-out test samples from the single-
RDU run with a batch size of 128. The MSE values are 6.255×10–4, 3.036×10–4, and 9.162×10–4, respectively.
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64, num. devs = 8) the RDU has a 1.26x and 1.34x advantage

over the A100 and V100, respectively. Overall, we find that the

CookieNetAE model can be efficiently trained at scale on

multiple RDUs with relative performance versus

A100 between a 1.26 advantage to a 0.85 disadvantage for

GBS of 64 and 1024, respectively. The RDUs therefore

comparable to the A100 with a slight disadvantage for GBS

above 128 and a performance advantage for GBS at or below

128. These results are promising, point to the benefits for

alternative architectures in regions of hyperparameter space,

and motivate further research using other scientific ML

models.

4 Discussion

The rapid adoption of ML for scientific data processing is

triggering an explosion in researchers’ appetites for data [24]. An

FIGURE 3
(A). Per epoch training time versus the global batch size (GBS). The number of accelerators used for data-parallel training is represented by
symbol color as indicated in panel A: 1 = black, 2 = red . . . 32 = cyan. Note that we have added a slight “jitter” shift around the x-axis value for ease of
data point visibility—all GBSs and number of devices are indeed integer powers of 2. The thick blue line indicates that, for a constant LBS of 128,
increasing the number of RDUs scales the training time as x−0.89. That the V100 (open squares) line upwith A100 (open circles) with a color offset
of one (a doubling) indicates that for this workload the A100 generally performs twice as fast as the equivalent V100 condition. (B–D). Training time
versus number of accelerators for GBSs of 64, 256, and 1024 as indicated with symbol color remaining consistent with panel A convention.

FIGURE 4
Variation of the end-to-end training time with the number of
RDUs. This end-to-end time begins with the loading of data from
system memory, includes 51 epochs of training into convergence
(no early stopping), and return of trained model back to
systemmemory. Results are shown using a fixed LBS of 128 and up
to 32 RDUs.

Frontiers in Physics frontiersin.org07

Milan et al. 10.3389/fphy.2022.958120

73

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.958120


often overlooked challenge for such appetites, mining that

voluminous data becomes its own challenge for which

researchers quickly lose a taste. There has been a growing

effort at accelerator-based user facilities to distill sensor data

into physics-informed representations automatically in real-time

[7]. When physics information is available as a stream of results,

one can consider adaptive experimental campaigns that can

rapidly explore parameters for faster scientific discovery. In

the context of tokamak plasma fusion, this experimental

redirection would occur between shots, e.g. one would

incorporate the previous shot into an adaptive “shot plan” for

the upcoming shots. This shot interval at the DIII-D reactor is

10 min which sets the timescale for our conservative expectation

of 10–15 min training time in order to incorporate the last shot

results into the adaptive sensor interpretation model for between-

shot adaptation. A similar paradigm is an active pursuit for

upcoming United States facilities as the LCLS-II [25] and APS-

U [13] and existing foreign facilities like the EuroXFEL, each of

which faces data acquisition rates that are pushing the limits of

what can be transferred continuously over a network. Addressing

this challenge, researchers are exploring reduced representations

that retain as much of the relevant information contained in the

original raw data while mapping to a more information-dense

representation for storage and downstream use. This is a particular

challenge for scientific cases whereby representation bias could

poison data production pipelines. This negative aspect reduces

trust of supervised ML approaches both for the fear that it will

implicitly exclude novel discovery results or propagate errors

undetected.

The attractiveness of recent developments in transformers

[8–10] lies in their tendency to be forgiving in situations where

task-specific labeled data is rare but unlabeled data, upon which

deep embedding models can be trained, is abundant. Scientific

use cases, though they rarely involve natural language processing,

can in many situations treat multi-sensor data streams as if they

were multi-channel audio streams as in analogy with MuseNET

of Ref. [11]. The flexibility of transformer architectures to encode

general structures into the feature embedding will allow

researchers to leverage volumes of unlabeled results at our

user facilities, leaving them with significantly less parameters

to train with the highly valuable, but scarce, labeled datasets.

This manuscript was driven by our interest in retraining such

embedding models frequently in order to accommodate sensor,

light-source, and experimental variation. Our embedding models

will continuously evolve with a running experiment, at the

human and thermal timescale of minutes to hours, while the

downstream task specific layers will be constant throughout an

experimental campaign—days to weeks. In this case, the task-

specific layers are significantly more static than the deep

embedding layers. This is very much opposite to transformer

use in language tasks. By analogy, imagine the spellings of the

words in your vocabulary vary appreciably every 15 min during

an extended conversation. This is exactly the case for the deep

embedding model in scientific use cases, as the experimental

environment varies, so too does the encoded representation of

the incoming data stream. Our aspirations to keep on top of these

variations, accommodating the experimental variations, is why

we have chosen the encoder-decoder CookieNetAE example [12]

for our benchmark.

Our measured results demonstrate rapid retraining of the

network that is sufficiently deep to capture all relevant

information needed for a broad range of domain specific

tasks. We show that the expected 15-min scale of

experimental evolution can be accommodated with the use of

as few as 16 RDUs (two SN10-8 nodes) in data parallel training.

Our work finds that the RDU architecture provides for an

attractive system, one that is unique from GPUs, that

accelerates ML workloads for scientific applications. The

general trends seem to point that the RDU represents an

TABLE 2 MSE values on validation data for multi-RDU runs.

Number of RDUs GBS MSE valid

1 128 2.763e-4

8 1024 3.672e-4

16 2047 4.186e-4

24 3072 4.594e-4

32 4096 4.992e-4

TABLE 3 Strong scaling, training time in seconds for one epoch with different GBSs using RDUs. Cases not carried out are indicated with dashes.

RDUs GBS =
8

16 32 64 128 256 512 1024 2048 3072 4096

1 471.1 312.5 222.0 195.2 173.7 158.8 156.2 147.1 – – –

2 – – – 127.2 106.2 94.9 87.4 89.7 – – –

4 – – – 99.3 73.0 60.2 53.3 49.6 – – –

8 – – – 92.9 56.0 40.3 31.6 28.1 – – –

16 – – – – – – – – 14.4 – –

24 – – – – – – – – – 10.3 –

32 – – – – – – – – – – 8.2

Frontiers in Physics frontiersin.org08

Milan et al. 10.3389/fphy.2022.958120

74

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.958120


advantage to the A100 GPU for training data that is broadly

distributed among devices and shallow in each batch while the

A100 favors deeper and less broadly distributed training data.

We add to the potential advantage to a shallow and broadly

distributed training data, e.g. smaller LBSs and more number of

devices [22]. In particular, for ensembles of models, a gradual

increase in the variance of outputs could indicate the onset of

concept drift. In such a case, having the ability to quickly add new

individuals to a larger ensemble of smaller training batches,

potentially enlisting additional RDUs for the growing

ensemble, would allow for rapid adaptation to this drift. Since

accelerator systems like free-electron lasers are typically in a state

of fluctuation—much less calm than their synchrotron

brethren—they are just such a case for wide, shallow, and

dynamic training data sets.

Given the impending TB/s scale of data ingest at the LCLS-

II [6], it is imperative that we leverage the trickle of raw—pre-

scaled—data for adapting running inference models. Because

this new machine [4] and others of its ilk [13] are quickly

ramping the data velocity, we expect that an increasing number

of users will explore ways to move as much of the pre-

processing into the various operations that can be

accelerated by dataflow architectures. These accelerators and

the downstream user beamlines are dynamic environments

where experimental configurations change on the 15 min

timescale. The rapid retraining of the associated models

could opportunistically leverage intermittent pauses in

acquisition, typically every 20–30 min, but only for model

retraining that consumes a small fraction of that cadence,

e.g. one to few minutes. This cadence is set by the human

driven environment at the xFEL where human interpretation of

interactive data visualization consumes of order 15 min of

collaborator discussion before deciding how best to drive the

next steps in experimental campaign. In the fusion case, as

noted above, the 10 min of between-shot time likewise sets a

natural few shots and then discuss cadence to experimental

campaigns. To date, this cadence represents a loose constraint

as the results of such diagnostic interpretation models are not

yet incorporated into accelerator feedback control systems

dynamically, but such plans to feed dynamic model output

into machine controls are actively being pursued by this and

other groups at FELs and tokamaks. This study serves as a

timely impetus for benchmarking short training time with

emerging new computational hardware.

In conclusion, the advent of new architectures and the

continual improvement in data parallel training will be a win

for advancing our accelerator-based scientific user facilities. It

will enable the kind of dynamic autonomous control that is

required of these large accelerator facilities as is already being

incorporated into fields as far reaching as neutron diffraction [1]

and magnetic confinement fusion [2]. As the scientific data

velocity accelerates in the coming years, and as control

systems move to include low-latency high throughput

inference, we will find an ever increasing need to match ML

acceleration architectures to the scientific facilities that best take

advantage of them.
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Predicting beam transmission
using 2-dimensional phase space
projections of hadron
accelerators

Anthony Tran1, Yue Hao1*, Brahim Mustapha2 and
Jose L. Martinez Marin2

1Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, United States, 2Argonne
National Laboratory, Argonne, IL, United States

We present a method to compress the 2D transverse phase space projections

from a hadron accelerator and use that information to predict the beam

transmission. This method assumes that obtaining at least three projections

of the 4D transverse phase space is possible and that an accurate simulation

model is available for the beamline. Using a simulated model, we show that—a

computer can train a convolutional autoencoder to reduce phase-space

information which can later be used to predict the beam transmission.

Finally, we argue that although using projections from a realistic nonlinear

distribution produces less accurate results, the method still generalizes well.

KEYWORDS

virtual accelerator, convolutional autoencoder, neural network, autoencoder, beam
transmission, hadron accelerator, phase space projections, nonlinear field

1 Introduction

A challenging problem in obtaining high beam power in hadron linacs, such as

ATLAS, SNS, and FRIB, is understanding and minimizing uncontrolled beam loss—a

significant unexpected loss of the beam within the beamline. [1]. In the low energy

beam transport lines (LEBT), the machine must carefully control the beam to

minimize downstream beam loss. The beam describes a collection of particles in

six-dimensional space; three positions and three momentum coordinates. For the DC

beam in the LEBT, the longitudinal coordinates are not involved in the dynamics but

appear as parameters. Therefore, each charged particle is described by its location in

the four-dimensional (4D) transverse phase space (x, x′, y, y′), where primed

coordinates are derivatives with respect to the longitudinal direction.

In the LEBT, multiple beam measurement devices such as Alison Scanners [2],

Pepper-Pot emittance meters [3], wire scanners [4], and viewers, are used to capture

one-dimensional (1D) or two-dimensional (2D) profile measurements. These are

projections of the four-dimensional (4D) transverse phase space. Inferring the 4D

distribution from this projected 1D and 2D information is referred to as 4D

tomography. Mathematical and physical methods, such as the maximum entropy
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principle [5, 6], have been successfully demonstrated to realize

the 4D tomography in accelerators. However, there are still

challenges in combining 1D or 2D information from different

locations. The optics deviation, when the machine deviates

from the model, for example, will affect the accuracy of the 4D

tomography.

In this paper, we tested a data-driven approach to predict the

beam loss using 4D phase space distribution information encoded in

a low-dimensional vector from 2D projection measurements. The

data was generated from virtual diagnostic instruments simulated

using the beam dynamics code TRACK. The simulation is of a test

lattice adopted from the LEBT of the ATLAS accelerator, which

consists of six quadrupoles and five virtual diagnostic instruments.

The simulation results were used to develop a convolutional

autoencoder to encode the data into a meaningful lower-

dimensional representation, which the model will then use to

relate the phase-space information to the beam loss.

2 Methods

2.1 ATLAS lattice

The presented study used data generated from the simulation

of ATLAS’s LEBT. The lattice consists mainly of a multi-

harmonic buncher, nine quadrupole magnets—six of which

are being used to tune the lattice—and five virtual diagnostic

instruments. The virtual diagnostic instruments capture the 4D

phase space of the beam, providing information on the 2D

projections and beam transmission for use later. This amount

of data is currently hard to achieve in an actual accelerator, but it

is used to study the method’s feasibility, giving the initial model a

higher chance to succeed.

Figure 1 shows the location of the virtual diagnostic

instruments. The measurements were recorded at five

locations: beginning, end, and after quadrupoles 2, 4, and 6.

2.2 Generating data using TRACK

TRACK is a ray-tracing or particle-tracking code that can:

1) represent external fields accurately within the aperture.

2) calculate the particle coordinate at any point in the space.

3) determine to calculate beam loss in both the ideal case and in

the presence of complex field errors and device

misalignments [7].

Since machine time is costly, the TRACK simulation was

used to gather data. It was generated on Michigan State

University’s high-performance computing cluster for a

week, producing over a million data points. As will be

covered in a later section, a significant amount of data will

be required for training autoencoders to high fidelity. The

model varied the parameters for these simulations according

to Table 1. The model chose these parameters within a small

range to interpolate well. Once the model collected the data, it

was filtered so that the initial beam distributions were

contained within the beam aperture, resulting in a final

data set of around 430,000 simulation points.

2D phase-space projections from the 4D phase space were

created by having all the particles deposited onto an n × n grid

using pairs of the coordinates axes, (x, x′, y, y′). This method

resulted in 6 independent projections.

2.2.1 Non-linear field
Another data set was created to test the model’s

generalizability, which will be explained later. This was done

with a perturbation to the initial distribution. The distribution

was created at the beginning of the simulation by using a

nonlinear magnetic field, such as a sextupole. All other

generative settings were kept the same. This simulates the

realistic case of ECR beams which experience a sextupole field

inside the source.

FIGURE 1
Cartoon of accelerator and beam measurements. The image shows where the model collected each beam measurement.
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2.3 Autoencoder

An autoencoder is a nonlinear data reduction algorithm used in

machine learning. It is composed of two parts, an encoder and a

decoder. The encoder takes a significant input and reduces it into a

lower dimension, known as a latent dimension, while the decoder

attempts to reconstruct the latent dimension back into the original

input. The error, which is the difference between the original and

reconstructed data, quantifies how well the latent dimension

explains the initial input. The advantage of compressing the data

into a meaningful representation [8] makes it more efficient to train

a neural network model on the reduced data.

In the model, a convolutional autoencoder was implemented

in PyTorch [9] to reduce the dimension of the 2D projections of

the phase space. A convolutional autoencoder uses a

convolutional neural network as the encoder and decoder. A

convolutional neural network is a type of neural network used to

analyze visual information [10, 11]. This network has the

TABLE 1 Inputs: Parameter range used to generate a dataset of the initial beam distributions and quadrupole settings. Architecture: Description of
some blocks used in the architecture. Each projection was given a separate encoder and decoder block where the latent dimension differ for the
$(x, x9)$ and $(y, y9)$ projections.

Dataset

Inputs

Voltages on Quadrupoles 1, 3, 5 uniform random number from [0,8] V

Voltages on Quadrupoles 2, 4, 6 uniform random number from [-8,0] V

Initial Distribution random distribution from 9 built-in distributions

ϵx,y 0.12 + Normal (μ = 0, σ = 0.012) cm*mrad

αx,y Normal (μ = 0, σ = 1) unitless

βx,y 100 + Normal (μ = 0, σ = 10) cm/rad

Outputs

Number of particles left 0-10,000 particles. Taken at 4 different points

Position of all particles Taken at 5 different points

Architecture

Encoder

Conv 1 channel-out: 1, channel-in: 64, kernel: 3, stride: 3

Conv 2 channel-out: 64, channel-in: 128, kernel: 3, stride: 3

Linear in: 6,272, out: (x, x′), (y, y′) → 32, (x, y) (x, y′) (y, x′) (x′, y′) → 16

Decoder

Linear in: (x, x′), (y, y′) → 32, (x, y) (x, y′) (y, x′) (x′, y′) → 16, out: 6,272

ConvTranspose 1 channel-in: 128, channel-out: 128, kernel: 3, stride: 2

ConvTranspose 2 channel-in: 128, channel-out: 64, kernel: 3, stride: 2

ConvTranspose 3 channel-in: 64, channel-out: 1, kernel: 3, stride: 1

Latent Dimension

Linear in: 134, out: 134

NN 1–4

Linear in & out: (x, x′), (y, y′) → 32, (x, y) (x, y′) (y, x′) (x′, y′) → 16

LossP

Linear 1 in: 134, out: 134 * 4

Linear 2 in: 134 * 4, out: 134 * 4

Linear 3 in: 134 * 4, out: 1
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advantage over principal component analysis [12], another data

reduction algorithm, in that it includes spatial information and

can account for nonlinear effects by using nonlinear activation

functions in the network. Activation functions take the summed

weighted inputs of a layer inputs of a layer and map it onto a set

range. It was found that the ReLU activation function and the

ELU activation function were the best activation functions to use

[13] in this case, it helps the model to train fast and be less likely

to fail during training.

Each of the six 2D projections was given its own autoencoder.

The decoder reproduces all the original projections reasonably,

verifying that the model effectively encoded the projections into a

latent dimension. The latent dimensions sizes used for this paper

were 32 for the (x, x′), and (y, y′) projection, and 16 for the rest.

Given that the code made the original images to be 33 × 33, the

model significantly reduced the inputs.

2.4 Modeling

A neural network was used to create a surrogate model of the

ATLAS front-end, as shown in Figure 2. Amore detailed description

of each block is described in Table 1, and the full detail can be seen in

the code1. The architecture is composed of an encoder-decoder

block to reduce each of the six phase-space projections into lower

latent dimensions and then concatenate them together. The quad

settings were also joined onto this vector and processed through fully

connected layers. Each fully connected layer attempts to model the

phase space changes by transforming the latent variables into a

different set of latent variables describing the new 4D phase space.

This new vector would be the input into the next fully connected

layer to model the following transformation, a decoder block to

reconstruct the distribution as 2D phase-space projections at that

location, and another fully connected layer to predict the beam

transmission represented by the number of particles left.

The encoder-decoder block uses a convolutional autoencoder, as

described in the previous section. The decoder was built similarly to

the encoder, the only difference being that some adjustments were

made to match the original dimensions. A decoder was not trained

for every location but was combined for each projection. This

method saves limited GPU memory and produces a more

generalized decoder.

The model used a two-layer, fully connected network to

calculate the number of particles left. Again, the model did not

train the network at every location, but it was combined to make a

generalized particle loss predictor for the same reasons stated above.

2.5 Training

Overall, the model encodes each initial phase-space projection

into separate latent dimensions, then attempts to recreate the phase-

space forecast and predict the beam transmissions at the other

FIGURE 2
Cartoon of architecture. During training, the model takes all the 2D projections and loss value as input into the training. Only the initial 2D
projections were given during testing, and the model predicts the loss values and 2D projections in addition.

1 The code is available upon request.
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4 locations, and then compares them to the ground truth from the

dataset. Using both results in a training loop, the model will update

itself using gradient descent [10] to recreate the image in the next

iteration better. Gradient descent is performed using

backpropagation on PyTorch computational map. The basic idea

is that parameters in the network will be adjusted using the gradient

information in the direction that will result in the final output closer

to the actual values. The size of the step taken is related to the

learning rate.

The model used a loss function to quantify the difference

between the predicted and ground truth results. Commonly,

mean square error loss is used because it punishes large

deviations; however, this results in an overflow—an error that

occurs when a computer produces a number more significant

than it can represent, in the gradient calculation during training.

This could have be resolved by normalizing the inputs and outputs,

but a non-normalized dataset was used since that gave a better

convergence. The model used absolute loss (L1 Loss) in these cases.

This could also have been resolved by using a double or a long float,

but this would use up valuable memory on the GPU.

To also aid in training, frozen layers were implemented to

decrease training time and prevent gradient overflow. Frozen layers

are layers where the gradient information was disconnected, thus

preventing changes to that layer during training. This method was

implemented in the following three-step training procedure:

1. LossP blocks were frozen and trained with a learning rate of

0.01. Everything else was trained for 20 epochs.

2. LossP blocks were unfrozen, and everything else was frozen; thus,

only LossP was trained for 10 epochs. The learning rate was

also 0.01

3. Everything was unfrozen and trained for 5 epochs at a lower

learning rate of 0.001.

A problem that arises from using simulation is overfitting,

which is a state where the model memorizes the training data

FIGURE 3
(A) Histogram of original data set using six projections (B) and same model but using three projections. (C) Histogram of original data set using
six projections, (D) and same model but using three projections.

Frontiers in Physics frontiersin.org05

Tran et al. 10.3389/fphy.2022.955555

81

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.955555


rather than generalizing it. Because simulation generally differs

from the actual machine due to installation and operation errors,

if the model is not generalized or adjusted enough, it will perform

poorly on the actual device.

The model used the last step of the training procedure to

better merge the LossP block with the whole model. This also

helps to prevent overfitting. A lower learning rate than the

previous two steps discourages radical changes that may

destroy the learned model in the first two steps.

2.6 Results

The model was tested on a newly generated dataset using the

original parameters and a nonlinear dataset generated using a

sextupole. Only the initial distributions were given, but the model

would still predict the 2D projections and beam transmission at

the other locations downstream. Then, to test the model’s

generalization, a nonlinear field in the form of a sextupole

[14] was added to the beginning of the simulation to generate

a distinct subset of inputs.

An error of less than 1% for results within two standard

deviations from the mean would be sufficiently good for

predicting the loss on ATLAS since it is a low-power

machine. For the rest of the paper, the percentage refers to a

two standard deviation bound. The error is defined as the

absolute difference between the ground truth and the

predicted values divided by the total number of particles. The

obtained values were plotted as a correlation graph in Figure 3A.

If there were no errors, there would be a straight line. Given that

we have 104 particles, the error for the original data set using six

projections would be 3%.

This was then tested on the nonlinear sextupole distribution

with fair results, an error of 5.5% as shown in Figure 3C. The

model was able to generalize reasonably well; however, it is still

far from the ideal case. In this case, a machine learning model

mainly interpolates the results, so the accuracy of a model

depends on how much training data it is given. The more

data points a model has, the better the interpolation.

Due to the nature of hadron accelerators, many quadrupole

configurations would produce a high particle loss because only a

few configurations would allowmost particles to pass. Thus, most

of the dataset would be skewed towards high loss, resulting in

higher accuracy since there is more data in those cases. The

dataset was split into bins, and as expected, the bin of particle loss

between 9,000–10,000 has an error around 2.5%, and for the bin

of particle loss between 0–1,000, the error was as high as 5%.

2.6.1 Testing on a smaller data set
The same model was tested again, but with the (x, y′) (x′, y′),

and (y, x′) projections removed. In Figure 3B, the error predictions

from the original data set show an improvement in the accuracy for

“Loss: 0”, while it has around the same error for the other losses. This

difference in error is likely due to overfitting as the predictions from

the nonlinear data set show a loss of accuracy overall, as seen in

Figure 3D; however, the model was shown to work with half the

image data used, making this model more practical.

3 Discussion

A proof-of-principle machine learning-based model has been

reported to test anML-based 4D tomography using its 2D projections

and the capability to predict beam transmission. The result shows that

if given only three projections of the 4D phase space, the model can

reduce the projections into a smaller latent dimension that contains

the core information, which the model can then use to predict the

beam transmission downstream. If the model used fewer projections,

the model would not have enough information to describe the entire

4D phase space. The latent dimension was verified to have contained

the core information through a decoder that correctly reconstructed

the encoded images. Thismethod generalizes reasonablywell to initial

beam distributions with nonlinear perturbations, showing robustness

and the potential for modeling the real machine.

Before bringing this to a real machine, it should be noted that

this is a simplified model of an actual accelerator, with

considerable differences to consider. This model assumes that

a single parameter can model the accelerator elements; therefore,

more complicated effects, such as misalignment of the magnets

and the longitudinal overlapping of transverse magnets, are not

considered. The model also assumes no space charge, neglects the

profile’s beam-to-beam fluctuation, and overlooks the

longitudinal components of the beam distribution.

It requires at least three projections to make the prediction, but

this is not always available. In addition, it assumes perfect accuracy

in the measurements. The prediction accuracy will also depend on

the accuracy of the projections and beam loss monitors, but one

method to reduce measurement error at various locations can be to

use multiple measurements with different optics. The current model

cannot predict fractional beam loss over the entire length of the

accelerator at the level of 1e-06 to 1e-08 per meter, which would be

desirable for future works, but methods such as adaptive tuning and

physics-informed learning may prove helpful to make the model

more robust and accurate and eventually reach that goal.

The beam loss value is represented by the percentage of the

total beam intensity. Accuracy of a few percent beam loss has

been demonstrated with this simplified model; however,

characterizing the beam loss with a certain percentage of the

total power results in a very different threshold for accelerators

with another goal of beam power. Therefore, the absolute power

loss should be used in later applications for real accelerators.

The traditional approach to evaluating beam loss would be to use

simulations or beam loss monitors. The simulation requires an

accurate lattice model with boundary data information where
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beam halo information is usually absent. Other methods, such as

beam loss monitors, are physical devices used to measure beam loss,

whereas some standard devices are ion chambers and

photomultipliers. In choosing the suitable machine, there are

various considerations such as sensitivity, cost, size, dynamic range,

and radiation hardness [15].

The model could be trained using data from a real machine,

but collecting a large amount of data is expensive and time-

consuming. Thus, models will have to be introduced on realistic

simulation models and then transferred to the actual machine.

Methods known as “transfer learning” allow knowledge learned

from the source dataset to be transferred to a target dataset [10].

This could be done, for example, by freezing the model, adding

another layer to the encoder and decoder, and training that layer

on the distribution from the machine to adapt the model to the

machine. Then, the rest of the model can be unfrozen and trained

with a much lower learning rate to fine-tune the model. Further

studies will allow models to be trained first with simulations and

then transferred to machines.

Machine learning has various advantages and disadvantages.

Machine learning has an advantage since it can make a data-

driven model with no lattice information at the expense of a large

data set. Two disadvantages are that the model will need high-

fidelity data to reach high accuracy and that the model will

constantly need to be calibrated to the current machine. Future

research will study ways to combine machine learning with

physics to make a more sample-efficient and robust model.

One way this could be done is by encoding constraints in the

loss function during model training or by incorporating domain

knowledge by including the transfer matrices in the calculation.

The positive results of this work give hope that incorporating this

knowledge may increase sample efficiency and further reduce the

beam transmission error.
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EdgeAI: Machine learning via
direct attached accelerator for
streaming data processing at
high shot rate x-ray free-electron
lasers
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We present a case for low batch-size inference with the potential for adaptive

training of a lean encoder model. We do so in the context of a paradigmatic

example of machine learning as applied in data acquisition at high data velocity

scientific user facilities such as the Linac Coherent Light Source-II x-ray Free-

Electron Laser. We discuss how a low-latency inference model operating at the

data acquisition edge can capitalize on the naturally stochastic nature of such

sources. We simulate the method of attosecond angular streaking to produce

representative results whereby simulated input data reproduce high-resolution

ground truth probability distributions. By minimizing the mean-squared error

between the decoded output of the latent representation and the ground truth

distributions, we ensure that the encoding layers and resulting latent

representation maintains full fidelity for any downstream task, be it

classification or regression. We present throughput results for data-parallel

inference of various batch sizes, somewith throughput exceeding 100 k images

per second. We also show in situ training below 10 s per epoch for the full

encoder–decoder model as would be relevant for streaming and adaptive real-

time data production at our nation’s scientific light sources.

KEYWORDS

machine learning, edge computing, AI hardware, low latency, x-ray, free-electron
laser, GPU, Graphcore

1 Introduction

Among the leading major scientific facilities in the US Department of Energy’s

portfolio is the Linac Coherent Light Source (LCLS). As the world’s first hard x-ray free-

electron laser (xFEL), its ultra-short x-ray pulses, shorter than typical periods for most

molecular vibrations, allow its international research users to peer into the inner workings

of some of nature’s key chemical reactions [1]. The very high peak brightness of these

x-ray pulses also allow for imaging of the interior structure of material in extreme
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conditions of heat and density to elucidate the inner working of

planets [2] and are helping expose the workings of fusion energy

[3]. The breadth of scientific discovery opened by such a facility

impacts fields from novel material designs to biological function,

even helping drug design for SARS-CoV-2 [4].

There is an upgrade imminent for this xFEL, the so-called

LCLS-II [5], which will further accelerate the rapidly broadening

range of scientific-use cases. The overwhelming data-ingest rates

[6] will also be coupled with automated schemes for experimental

execution. Such automation will accommodate intermittent

updates that track the variations that are inherent to dynamic

experimental conditions. We use the example of ultra-high

throughput continuous data acquisition, analysis, and decision

streams to motivate inference acceleration directly at the data

acquisition node via direct attached co-processors. We

demonstrate the high throughput inference and training for

one of the early-streaming high data velocity detectors at the

LCLS-II such as the array of electron spectrometers described in

Ref. 7.

The xFEL pulses arise from the self-amplification of

spontaneous emission (SASE) [8], and so the time and

spectral structure of SASE pulses are typically quite

complicated, comprising many so-called SASE sub-spikes in

the phase space of time–energy joint distributions.

Characterizing complicated x-ray pulses, as are commonly

produced by xFELs, drives our pursuit of stream-processing

angular arrays of electron time-of-flight (eToF) spectrometers.

The method of attosecond angular streaking was first applied to

the xFEL in Ref. 9. It is based on the measuring angle-resolved

photoelectron spectra for noble gas atoms that are so-called

“dressed” by a circularly polarized long-wavelength optical

field. The circular polarization of the dressing laser field gives

a directional push to the x-ray photo-ionized electrons at the

instance of release from the atom. This directional push sweeps

out the full 2π revolution in one optical cycle period, 33 1/3 fs, in

the case of 10 μmwavelength. We discuss the process in depth in

Refs. 9 and 10 and outline our more simplified simulation.

We are inspired by recent successes in computational ghost-

imaging that highlight the value in using complex varied

structures as illumination sources [11, 12]. The method

achieves better results than the conventional spatial resolution

by treating the measured results statistically for signal co-

variance with shot-to-shot illumination variations, thus

leveraging the natural fluctuations of xFEL time–energy and

even polarization [13] distributions to preferentially enhance

the sensitivity to nonlinear x-ray interactions [14, 15]; inference-

based pulse reconstructions approaching 1 million frames per

second would unlock the natural advantages of our new scientific

data fire hoses, the LCLS-II and the APS-U.

Given the dynamic nature of experiments at both xFEL and

synchrotron sources, we foresee a need for model adaptation and

ultra-high throughput inference. Model adaptation or full re-

FIGURE 1
(A) Schematic of attosecond angular streaking reproduced from Ref. 9, one of the many use cases for angular array spectrometers for LCLS-II
single-shot diagnostics. Sample image of angular streaking of SASE pulses in polar (B) and Cartesian (C) representations. Panel (D) shows the
emission probability that is our desired output of the inference model.
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training can be expected to occur with the cycle of so-called

“runs” at these facilities. Owing to their exquisite stability,

synchrotrons can be expected to pass hour-long experimental

runs where environmental conditions change negligibly and the

x-ray source parameters change immeasurably other than the

potentially periodic “re-filling” of the ring which is easily

accommodated with an intensity normalization. The xFEL is a

beast of a very different color. Each shot, coming at up to

1 million per second, grows from a stochastic process and in

a dynamic environment of variability in steering magnet

currents, undulator settings, injector laser mode variation, and

thermal motion of the experimental halls. Furthermore,

variations in the experimental plan for the short 5 × 12 h

campaigns typically redirect the scientific detectors parameters

FIGURE 2
Schematic of the encoder–decoder architecture.[18].
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at the 15–20 min scale. For this reason, we target very rapid re-

training of our example model in the 10-min scale rather than the

hours scale.

On the inference side, at the xFEL, we aim to treat each of the

unique x-ray pulses individually. Since the imminent pulse rate of

the LCLS-II will quickly ramp up to 100,000 shots per second

over the course of its first year or so, we pursue inference

acceleration on a scale that can keep abreast of such an

inference rate. It should be noted that the facility is run

continuously, not in burst mode, and so small batch sizes for

inference, more typically batch size = 1, are expected to be the

norm during operation.

In this manuscript, we focus on low batch-size streaming

inference with processing rates commensurate with the expected

LCLS-II repetition rates.We also discuss data-parallel training on

a Graphcore POD16 and an NVidia DGX node, pointing to some

of the considerations that impact computing hardware

considerations when tackling high-rate training and inference.

We conclude with a discussion of high-speed accelerated

diagnostics for low-latency real-time adaptive control for a

running xFEL experiment.

2 Materials and methods

The physics behind the x-ray pulse reconstruction is based on

an external electric field with circular polarization as described in

Ref. 9. Reproduced in Figure 1A, photo-electrons are emitted

from a target gas with an energy that gets boosted toward the

instantaneous direction of the optical laser vector potential �A(t),
with itself rotating in the detector reference frame with an

angular frequency ω = 2πc/λ. We call this laser field the

“dressing” field. We typically choose an infrared wavelength

of 10 μm such that the time is encoded into an angle with a

calibration of about 0.19 radians/femtoseconds, e.g., the full

period of our clock hand turns one revolution in 33 fs which

is about three times the duration of a typically desired SASE

pulse. The resulting “images” (see Figures 1B–D) of these boosted

electrons encode SASE spikes as offset circles in polar coordinates

(B) or sinusoidal features in the un-wrapped Cartesian

representation as they are more familiar as sinograms (C) in

medical radiography imaging. We simulate images in this

manuscript based on the smooth emission distribution (D) in

order to have full knowledge of the SASE sub-spikes to be

recovered. We use this to demonstrate the principle of high

throughput inference and short training cycles in preparation for

experimental data when it becomes available in the very near

future of LCLS-II.

We simulate results for an 8-fold over-sampled angular

dimension as compared to the planned instrument described

in Ref. 7 to help draw a broader generalization of our approach

across time-series analyses such as in magnetic fusion

applications [16]. The external “dressing” field pushes photo-

ionized electrons as described previously. Our focus on simulated

sinograms [17] of representative few-spike SASE pulses provides

a known ground truth for training the inference model. We

perform a random sampling of the electron emission probability

distribution, Y (], θ), where ] is the photon energy and θ is the

emission angle. The sampling is not strictly micro-canonical

Monte-Carlo in that we do not require a statistical agreement

with the process of SASE growth from the vacuum field

fluctuation as in proper SASE pulse simulations. Rather, we

prefer an even statistical distribution, not Bolzmann

distribution, of the modes in the field such that the training

examples for our machine-learned algorithm are not biased to see

only that which is statistically more likely. Electron counts are

sampled from this distribution to yield the simulated

measurement X (], θ). Thus, we are attempting to train the

TABLE 1 Network structure of CookieNetAE.[18]. All convolution layers use ReLU activation.

Layer lYPe Kernel Channels Image shape

1 Input — 1 128 × 128

2 Convolution 3 × 3 16 128 × 128

3 Max Pooling 2 × 2 16 64 × 64

4 Convolution 3 × 3 32 64 × 64

5 Max Pool 2 × 2 32 32 × 32

6 Convolution 3 × 3 64 32 × 32

7 Max Pooling 2 × 2 64 16 × 16

8 Convolution 3 × 3 128 16 × 16

9 Convolution Transpose 2 × 2 128 32 × 32

10 Convolution Transpose 2 × 2 64 64 × 64

11 Convolution Transpose 2 × 2 32 128 × 128

12 Convolution Transpose 2 × 2 16 128 × 128

13 Convolution 1 × 1 × 16 1 128 × 128
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model, CookieNetAE [18], to input X (], θ) and reproduce the

original Y (], θ) free of the grainy Poisson statistics of the

sampling. Our encoder–decoder network—CookieNetAE

[18]—demonstrates our ability to transform the high data rate

into a latent representation at the rate of the streaming data

pipeline. The loss is computed as the mean-squared error (MSE)

between the input image and the original smooth Y (], θ)
probability distribution. Physically relevant parameters are

thus fully constrained by this Y, its recovery from X indicates

that the latent representation, at the interface between the

encoder and decoder sides, contains sufficient information for

any downstream task, be it regression or classification. In effect,

one could freeze the encoder-side weights and use the latent

representation as a feature vector input for any conceivable

downstream inference task. For the purposes of this

manuscript, we presuppose that sensor-specific calibrations

(time-to-energy) will be implemented in the signal acquisition

electronics since the time-to-energy calibration is free to be

adjusted independently for each angle of detection in the

detector system [7]. To validate the live calibrations, a fraction

of the events will be routed as raw data that bypass the upstream

pre-processing chain. Since this expected 0.1%, or 1 kHz, rate of

raw data could feed adaptive re-training, we, therefore, also use

our model to benchmark the acceleration of in situ training.

2.1 Simulation

Specifically, we use forward simulations to build from a

ground truth Y to the example X, from which we train the

inference model to generate a predicted Y′ that minimizes the

MSE (Y, Y′). The probability density function at a given

detection angle is a sum of Gaussian distributions, each

associated with a single SASE sub-spike j. This emission

energy is modified by the so-called dressing laser field

according to a sinusoidal variation discussed previously.

The angular registration, e.g., the phase ϕj, is determined by

the relative delay between jth sub-spike and the carrier field of

the dressing optical laser. The mechanism behind this

attosecond resolution in x-ray photoelectron angular

streaking is detailed in Ref. 9 and 10; and for our purposes,

we crudely, but sufficiently, simplify by writing the probability

density function for electron emission as:

P E, θ( ) � ∑
n

j�1
ajN ]j, σj, θ,ϕj( ), (1)

N ]j, σj, ϕj, θ( ) � ]j + Aj cos θ + ϕj( ) + C, (2)

where n is the number of SASE sub-spikes in a given shot,

Aj is the maximum streaking amplitude, E is the energy of

detection (horizontal in Figure 1C), and θ is the angle of

detection (vertical in Figure 1C). The number of sub-spikes is

chosen via a Poisson distribution with a peak at four sub-

spikes but many shots include higher numbers of SASE spikes.

We build the ground truth probability density function

and use it as the output Y′ for training the inference

model. As input, we randomly sample that distribution P

(E, θ) as shown in Figure 1D, and use the results to fill

in a 2-dimensional histogram X image as shown in

Figures 1B, C.

FIGURE 3
(A–D) Input images and (E–H) inference output images as described in Section 1. Examples of 1-4 SASE sub-spikes are shown, respectively,
although the training set includes higher numbers of sub-spikes.
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2.2 Model and data

For the inference task, we have built a convolutional neural

network (CNN) based encoder–decoder model for predicting the

smooth probability density function Y′. We have chosen to work

with a representative CNN model architecture since the topic at

hand is not optimization of the model design, but rather the

epochs per second in training and inferences per second in

FIGURE 4
(A). Inference results versus number of accelerators used in the data-parallel operation using 1–16 IPUs and 1–8 A100 GPUs. (B). Results versus
global batch size for the case of eight accelerators, and the symbol definitions are identical with panel (A). The fitting results are given in Table 2.

TABLE 2 Coefficients for the following general formula described in Eqs. 3 and 7. The curves follow along the constant mini batch (mb) such that the
global batch size = mb × η. Note that only four or less evaluation points for the A100 case require we fit only coefficients a and b.

Case Device Precision Mini batch a b c

infer [infer/sec] IPU f16 1 13.9 0.988 −0.0575

f16 16 15.4 0.845 −0.0889

f32 1 13.2 0.933 −0.0254

f32 16 14.3 0.974 −0.0739

infer [infer/sec] A100 f32 1 10.1 0.775 –

2 10.7 0.896 –

4 11.1 0.941 –

8 11.5 0.884 –

16 11.4 0.913 –

train [sec/epoch] IPU f32 16 5.40 −0.969 0.0734

16 6.53 −0.984 0.0433

train [sec/epoch] A100 f32 16 8.74 −0.917 –

32 7.94 −0.914 –

64 7.57 −0.916 –

128 7.44 −0.956 –
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application. Our encoder–decoder model has 343,937 trainable

parameters. We use the rectified linear unit (ReLU) activation in

all layers; mean-squared error (MSE) as a loss function; and the

Adam optimizer with α = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10–7.

We use a convolution 2D-transpose method with a stride of (2,2)

for up-sampling in the decode layers. The model takes a (128,

128, 1) small integer image as input and gives (128, 128, 1) float

image of the originating 2D probability function as output. We

note the asymmetry in our encoder–decoder as can be seen in

Figure 2. This asymmetry is partly used for future developments

of an image segmentation model that is beyond the scope of the

present manuscript. The details of the model architecture are

given in Table 1.

The model exercised here only serves to provide a sample

architecture. Since the aim of this work is to demonstrate the

performance of the hardware across a range of potential

hyper-parameters, we have not explicitly performed so-

called “hyper-parameter tuning” in order to find rapid

convergence; the training duration and inference

throughput as functions of batch size and number of

accelerators are our aim, not the accuracy of the model. We

do show an example of the performance for the hold-out set in

Figure 3, simply to show that the model is not pathological. We

run a full 50 epochs of training regardless of the fact that

convergence is achieved as early as epoch 10 for some of the

match-size configurations.

The dataset was generated using the open source simulation

tool [17]. One million samples were generated for training,

validation, and inference using a 90/5/5 split. The training

dataset had 900,000 pairs of 128 × 128 images, a grainy

(Poisson starved) input image, and a smooth target image.

The inference dataset consisted of 50,000 unique 128 ×

128 images and was repeated 10 times in the case of the

Graphcore Intelligence Processing Units (IPUs) to provide a

sufficient workload. Training and inference results for the IPU

case were collected on a direct attached Graphcore POD16—four

interconnected M2000s, each with 4 IPUs.

For the A100 graphics processing units (GPUs), only single

precision, 32-bit floating points (FP32) were tested, while on the

IPU, Accumulating Matrix Product (AMP) and Slim

Convolution (SLIC) instructions were used for high-

performance multiply–accumulate sequences for both 32-bit

(FP32) and 16-bit (FP16) precision formats [19]. The two

different mixed-precision arithmetic schemes for the IPU case

are as follows:

• FP32.32: AMP operation with FP32 input multiplicands as

well as FP32 partial sums of products

TABLE 3 Inferences per second for various conditions measured.

Device η Mini batch Global batch γ [kInfer/sec] γ [kInfer/sec]

Devices Size Size (f16) (f32)

IPU 1 1 1 15.4 9.25

2 2 28.8 16.8

4 4 51.6 32.1

8 8 84.0 53.8

16 16 125 92.3

IPU 1 16 16 43.1 20.8

2 32 73.2 37.9

4 64 110 66.6

8 128 143 97.8

16 256 169 136

A100 1 1 1 – 0.996

2 2 – 1.92

4 4 – 3.51

8 8 – 4.87

A100 1 16 16 – 2.64

2 32 – 5.13

4 64 – 9.75

8 128 – 17.6
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• FP16.16: AMP operation with FP16 input multiplicands

and FP16 partial sums of products.

In the case of the IPU, the command line utility PopRun was

used to create multiple instances and launch them as distributed

data-parallel applications on the Graphcore POD16 compute

system, either on a single server or multiple servers within the

same POD [20].

In our setup, a single host server with SDK 2.5 was used with

the number of instances being set equal to the number of model

replicas for the inference case. For training, the number of

instances was set to half the number of model replicas.

Horovod was used to distribute the inference and training

across 1-8 A100 GPUs in a single Nvidia-DGX node in

Argonne’s ThetaGPU cluster. Samples of the input images

and output predictions are shown in Figure 3.

3 Results

3.1 Inference

Our primary focus in this manuscript is the demonstration of

inference throughput that approaches compatibility with the

TABLE 4 IPU train time considered in seconds per epoch based on the average results for 50 epochs of 900 k training images per epoch.

Device Precision η Mini batch Global batch Sec/epoch Min/50 epochs

IPU f16 1 16 16 42.13 35.10

2 32 22.56 18.80

4 64 13.51 11.25

8 128 8.86 7.38

16 256 6.47 5.39

IPU f32 1 16 16 92.56 77.13

2 32 48.01 40.00

4 64 26.93 22.44

8 128 15.52 12.93

16 256 9.80 8.16

A100 f32 1 64 64 186.5 155.41

128 128 173.3 144.41

256 256 173.0 144.16

512 512 165.7 138.08

1,024 1,024 160.2 133.50

A100 f32 2 32 64 131.0 109.16

64 128 103.5 86.25

128 256 91.3 76.08

256 512 84.5 70.41

512 1,024 81.1 67.58

A100 f32 4 16 64 119.9 99.91

32 128 68.4 57.00

64 256 53.5 44.58

128 512 45.5 37.91

256 1,024 43.0 35.83

A100 f32 8 8 64 117.2 97.66

16 128 63.5 52.91

32 256 36.9 30.75

64 512 28.0 23.33

128 1,024 24.0 20.00

Frontiers in Physics frontiersin.org08

Kraus et al. 10.3389/fphy.2022.957509

92

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.957509


eventual 1 million shots per second rate of the LCLS-II xFEL. We

used CookieNetAE [18] trained on the simulation as described

previously to process a stream of images across a range of

available instances of GPU and IPU inference accelerators.

Our results are presented graphically in Figure 4A as the

inference rate γ versus number of accelerators η used in the

data-parallel mode. Figure 4B gives an example of the inference

throughput versus the global batch size for the case of one DGX

node of eight GPUs and two interconnected POD4 nodes with

four IPUs each. We note that the GPU case is not leveraging

TensorRT for inference so as to maintain negligible code changes

for compiling models to IPU and GPU.

Table 2 presents fitted coefficients based on the pseudo-

inverse method (Eqs 3–5) for Taylor expansion fitting the log-of-

rate y = log2 γ versus the log-of-number x = log2 η. In this

logarithmic representation, 2a is the single accelerator, η = 1 is the

rate, and the coefficient b represents the scaling power law with

an increasing number of accelerators, e.g., the “slope” in the

Taylor expansion of the data around η = 1, x = 0 in log-space;Θ is

the vector of polynomial expansion coefficients (Eq. 7).

log2 γ � y � a + bx + cx2( ), (3)
y � Θ ·X, (4)

y ·X−1 � Θ · XX−1[ ] � Θ, (5)

where

y �
y0

y1

..

.

yn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X �

1 1 / 1
x0 x1 / xn

x2
0 x2

1 / x2
n

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (6)

Θ � a b c[ ]. (7)

We can see from Figure 4A that the fits deviate from

linear as more than two or four IPUs are used. This

deviation is seen both from coefficient b)1 and from the

quadratic term c)0. We attribute this to bandwidth

limitation in the IPU interconnect fabric as indicated by

the extrapolated trend—to be always taken with a grain of

salt—that would extend the lines toward a common

saturation at about 200 k inferences per second. Of

course, this particular saturation limit is highly

dependent on the incoming raw data geometry, even for

very similar models. Since we are targeting a rate 5 times

higher than that achieved here, we are actively pursuing a

reduced representation that alleviates this data ingestion

limitation while still preserving the image integrity and

information. Our GPU results were all run with a single

DGX machine using the eight A100 GPUs in the same data-

parallel inference mode. Inference results for all tested

configurations are presented in Table 3.

3.2 Training

Although not the principle goal for this study, the ability

to train models directly at the source for both IPUs and GPUs

motivated our investigation of the time to train these devices

in the data-parallel mode as well. From Table 4, we find a

training time for 50 epochs that accelerate from nearly an

hour with 1 IPU at batch size 16 (FP16) to only 6 min with

16 IPUs. We see in Figure 5 that the general trend of inverse

scaling (1/η) dominates until about eight accelerators for a

constant mini-batch size, e.g., the global batch size scales

linearly with the number of accelerators. One can see from

the result for constant global batch size (symbol color) for

A100 GPUs that splitting global batches across increasing

accelerators quickly suffers diminishing returns for global

batch sizes below about 128 (green, open circles). This

coincides with the rule of thumb suggesting 64 or

128 local batch sizes given the DGX configuration of eight

accelerators. With up to 16 IPUs, hosted as four

interconnected M2000 nodes, each with four IPUs, we

find a very nearly ideal expected inverse scaling 1/η as we

hold constant the mini batch size of 16 and use PopRun to

spread the workload across multiple IPUs and multiple

M2000 nodes.

Table 2 shows our log-space Taylor coefficients for training.

The coefficient bU − 1 is quite close to an ideal inverse power

law, and there is only a very small quadratic term cU0. Even

given the communications bandwidth limitation, for 16 IPUs

at FP16 precision, we find from Table 4 that we can achieve

full-model training with 50 epochs of 900 k images in under

6 min.

FIGURE 5
Training time per epoch (900 k images in set) versus number
of accelerators for various global batch sizes. We indicate FP16/
FP32 for the IPU case and note that all A100 results are based on
the FP32 tests. The trend curves follow the coefficients given
in Table 2.
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4 Discussion

The potential impact of scientific machine learning [21] for

incorporating data analysis as a streaming processing pipeline

from source to data center [22] cannot be overstated for next

generation accelerator-based user facilities such as the LCLS-II

[23] and the APS-U [24]. The growing adoption of transformer

models [25-26] even outside the domain of natural language

processing [27-29] is sure to extend to the scientific data

interpretation domain. We, therefore, expect that embedding

models will work their way upstream, eventually into the sensor

electronics themselves. For this reason, we have chosen an

encoder–decoder network, in particular, one that has no skip

connections, as our example inference workflow for the

upcoming single-shot 1 million frames per second LCLS-II

attosecond streaking x-ray diagnostic.

We demonstrate the ability to produce a latent feature vector

that fully captures the information contained in the simulated

experimental results (Figures 3A–D) while effectively removing

any impact of noise. We do so by recovering the original smooth

probability distribution (Figures 3E, F) used to create the

simulated experimental results. Our encoder–decoder model,

CookieNetAE [18], is therefore a stand-in for the upstream

encoding and embedding layers for transformer architectures.

Larger models pose challenges for streaming data processing,

particularly so for real-time control decisions. Although

CookieNetAE was used as a surrogate for transformer models,

the high fidelity in image reconstruction of Figure 3 demonstrates

that the number of composite sinusoids is fully encoded in the

latent-space feature vector. As such, one of the potential use cases

of the encoding layers of CookieNetAE could be the rapid

prediction of a particular shot’s SASE complexity from, e.g.,

Figure 3: (A) triggers simple-binned single-spike reference

accumulator, (B) triggers 2D histogram accumulation based

on double-pulse relative delay and energy separation, and (C)

and (D) trigger the full-feature vector to be stored along with

downstream detector results for offline statistical treatments.

Since the LCLS-II will quickly ramp the shot rate from few

tens of kF/sec to a million frames/sec, these data-routing

decisions must keep abreast of the rate; they must inform and

direct the path of the streaming analysis for each shot as it is

acquired [30]. Our A100 inference results are consistent with the

early expectation of 10 kF/s and the Graphcore POD16 can carry

us sufficiently beyond the 100 kF/s rate needed for the rapid

increase in the repetition rate expected. We must however

continue to develop leaner models, bandwidth efficient data

ingestion, and faster inference environments to enable the full

million frames per second rate expected in the coming few years.

In pursuing accelerated inference at the sensor edge, we also

demonstrated that models can be re-trained in situ with the very

same hardware for both GPU and IPU. Although not a requirement

for our particular case, it does however raise a significant

opportunity given the fact that 0.1% raw data could be leveraged

locally for model re-training. Combined with software-defined

memory provisioning [31], incoming anomaly events could be

held locally in system memory for inclusion in updated training

sets and used in rapid re-training of the embedding model. This

small fraction of raw data nevertheless accounts for up to 1 GB/s of

the continuous data stream. The prospect of dynamically

provisioned TB-scale local memory directly at the acquisition

node that supports accelerated local training as the experimental

conditions vary throughout an experimental shift would truly enable

a continuously adaptive autonomous experimental ecosystem.
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In the Large Hadron Collider, the beam losses are continuously measured for

machine protection. By design, most of the particle losses occur in the

collimation system, where the particles with high oscilla-tion amplitudes or

large momentum error are scraped from the beams. The particle loss level is

typically optimizedmanually by changing control parameters, amongwhich are

currents in the focusing and defocusing magnets. It is generally challenging to

model and predict losses based only on the control parameters, due to the

presence of various (non-linear) effects in the system, such as electron clouds,

resonance effects, etc., and multiple sources of uncertainty. At the same time

understanding the influence of control parameters on the losses is extremely

important in order to improve the operation and performance, and future

design of accelerators. Prior work [1] showed that modeling the losses as an

instantaneous function of the control parameters does not generalize well to

data from a different year, which is an indication that the leveraged statistical

associations are not capturing the actual mechanismswhich should be invariant

from 1 year to the next. Given that this is most likely due to lagged effects, we

propose to model the losses as a function of not only instantaneous but also

previously observed control parameters as well as previous loss values. Using a

standard reparameterization, we reformulate the model as a Kalman Filter (KF)

which allows for a flexible and efficient estimation procedure. We consider two

main variants: one with a scalar loss output, and a second one with a 4D output

with loss, horizontal and vertical emittances, and aggregated heatload as

components. The two models once learned can be run for a number of

steps in the future, and the second model can forecast the evolution of

quantities that are relevant to predicting the loss itself. Our results show that

the proposed models trained on the beam loss data from 2017 are able to

predict the losses on a time horizon of several minutes for the data of 2018 as

well and successfully identify both local and global trends in the losses.
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1 Introduction

Excessively high beam losses in the Large Hadron Collider

(LHC) [2, 3] can cause a quench in the superconducting magnets

which will trigger a beam dump and a long recovery period to

restore the nominal temperature. As a result, valuable time and

hence integrated luminosity is lost for the physics experiments

while the LHC needs to be refilled with a new beam. On the other

hand, better control of losses guarantees more efficient

operations, higher luminosity, and thus greater discovery

potential. During the LHC run, the machine operators may

change several parameters of the system, such as currents in

the quadrupole, sextupole, and octupole magnets, in order to

maximize the beam intensity and thus minimize the particle loss.

Machine learning and statistical methods have been extensively

used to analyze the data from accelerators and to improve

operations [4–9]. It is possible to construct predictive models

of the losses from the control parameters using standard ML

techniques [1] based on LHC beam loss data within the same

year, but the generalization of such approaches to the data of the

next year was found to be challenging. A better understanding of

the instantaneous and longer-term effects of control parameters

on beam losses can help decrease the losses and improve the

operations and performance output of the LHC. Furthermore, it

can possibly lead to mitigation techniques for the particle losses

for other existing machines as well as provide valuable input

already during the design phase of potential future colliders, such

as the Future Circular Collider (FCC) [10, 11]. At present, there is

no accurate physics model for particle beam losses as a function

of machine settings and control parameters. A statistical or

machine learning model that would cover the possible

scenarios of control parameters evolution could eventually be

employed to find the optimal control policy. Using an optimized

plan for the control parameters could significantly improve the

performance of the accelerators. In what follows we make a step

in this direction: the goal of this work is to improve the

understanding of the effect of input parameters on losses and

to propose an interpretable model which would be general and

robust enough to generalize to beam loss data acquired in

different years.

We assume that the two LHC beams evolve similarly under

the change of control parameters disregarding possible beam

coupling effects, and we concentrate on modeling the beam

1 losses. The majority of the losses occur in the collimation

systems located in the beam cleaning areas at the Insertion

Region (IR) 3 and IR7 of the accelerator, where the losses are

recorded by beam loss monitors (BLM) [12]. The collimators at

IR7 remove particles with large transverse oscillation amplitudes,

whereas those at IR3 are responsible for removing the particles

with a momentum error beyond a chosen threshold. Among the

two collimator systems, the most active cleaning happens in IR7,

therefore we concentrate on modeling of losses of beam

1 recorded by the BLM at IR7 and further refer to it as “the loss.”

Several additional important characteristics can be measured

during the machine run, which cannot be directly controlled, but

that contain information about hidden non-linear processes

affecting the beam. Among such quantities are heatloads, that

are a proxy to electron cloud effects [13], as well as horizontal and

vertical emittances. The emittances describe the spread of the

particles in phase space and are related to the mean physical

dimension of the beam in the machine [14]. The emittance

measurements are carried out in time along the beam and

specific post-processing is used to estimate the average

emittance of the whole beam. During the operation of the

LHC, electron cloud can appear due to the acceleration of

electrons in the beam pipe by the proton bunches, causing an

avalanche process which leads to the heating of the beam pipe

and magnets, to increased emittance and potentially to beam

instabilities [15].

Tune variables are related to the frequency of betatronic

oscillations in the machine. Tunes are corrected through a

dedicated feedback system and mainly depend on the strength

of the quadrupole magnets, although they can be also affected by

the quadrupole component in the main dipoles, by the sextupole

component from the main dipoles and sextupole corrector

magnets [16].

As most of the non-linear effects in the beam physics are

indirectly related to the change of input parameters it appears

natural to rely on the information contained in the past

observations. We therefore consider Vector AutoRegressive

Moving Average models with eXogenous input variables

(VARMAX) and compare them with models that relate the

input variables directly to the losses. We train a common

model on the data from multiple time series from one given

year corresponding each to a different LHC fills with diverse

filling schemes1.

Available data: To construct and evaluate the predictive

model of losses the observations of the losses along with other

quantities measured during the LHC fills of the years 2017 and

2018 are available [17]. Observations are recorded with a

frequency of 1 Hz. The fills start with the injection of the

beam according to a selected filling scheme. We have selected

the filling schemes which are occurring most frequently among

all the encountered schemes in the data as we expected that the

properties of the injected beam could vary depending on the type

of injection. Altogether, for the selected schemes, the data of

105 fills are available in 2017, and 144 fills are recorded for 2018.

We focus on the data for beam 1 during the “PRERAMP” beam

mode of the machine fill. The “PRERAMP” beam mode occurs

after the full beam has been injected and before starting the

1 “Fill” refers to the time period starting from injection of new beam into
the LHC until the beam gets dumped. The filling scheme, on the other
hand, defines which of the radio-frequency buckets are filled with
particles and which ones are left empty.
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energy ramp process. During “PRERAMP,” measures are taken to

prepare for the energy ramp, such as retracting the injection

collimators, adjusting the feedback reference and loading other

machine settings. During the “PRERAMP” mode machine is in

stable conditions, and thus it should be supposedly the easiest beam

mode to model losses. Nevertheless, on practice, it occurred to be

challenging [1]. For each fill during the years 2017 and 2018 the time

series of “PRERAMP” mode vary in length (see Figure 1).

Throughout the paper, we assume that a logarithmic

transformation is applied to the losses normalized by

intensity. Further, we omit “log” and “normalized by

intensity” while mentioning losses. The logarithmic transform

is generally applied to reduce the skewness of the distribution (see

the loss in original scale in Figure 2A and the log-transformed

loss in Figure 2B). For the losses, the log-transformation is

partially motivated by the fact that losses normalized by

intensity are produced from the particle count data. For the

convenience of further analysis, we assume that the log losses are

Gaussian. Alternatively, one could follow the Generalized Linear

Model approach, assuming the Poisson distribution of the count

data, e.g. as in [18].

Several quantities are recorded during the experiment,

among which we will use the following variables as the input/

controlled parameters for the loss models.

FIGURE 1
Histogram of PRERAMP time series lengths for the years 2017 and 2018.

FIGURE 2
(A) original losses (normalized by intensity), (B) log-losses (normalized by intensity), for the years 2017 and 2018. The log-transform helps to
reduce the skewness. Note that several modes on the pictures are due to changes of the losses level because of changes in control parameters, see
e.g. Figure 3.
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• Qx and Qy — vertical and horizontal tunes,

• C — current in octupole magnets.

Non-controlled observed variables are

• L— logarithm of loss divided by intensity at BLM 6L7 for

the beam 1,

• Ex, Ey — horizontal and vertical emittance,

• ec—sum of the heatload measurements over the 8 sectors of

the LHC,

• τ—time since the beam injection.

Remark: Note that the tunes are actually controlled by

quadrupole magnet currents, the field decays due to persistent

currents and a feedback system that keeps the tune values

measured with a Base-Band Tune (BBQ) measurement system

at a constant value [19]. Although the control that we have over

the tunes is an indirect one, we nonetheless treat the tunes

(measured online in our dataset) as one of the control

variables of the system. For the octupoles, we use the currents

FIGURE 3
An example of PRERAMP mode time series for the fill 6,243 in 2017. The time series of vertical and horizontal tunes and octupole currents are
shown in blue, observations of the loss, vertical and horizontal emittance and the sum of heatload measurements are shown in green.

FIGURE 4
Histograms of the observations in 2017 and 2018. (A) Logarithm of loss normalized by intensity, (B) horizontal emittance, (C) vertical emittance,
(D) heatload induced by electron cloud. Almost all the variables demonstrate different ranges of values for both years, e.g. see the sum of the
heatloads.

Frontiers in Physics frontiersin.org04

Krymova et al. 10.3389/fphy.2022.960963

99

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.960963


because there is no measurement of the tune spread associated

with these elements. Also, time since the beam injection, though

not controlled, is used as an input parameter.

For an example of evolution of the loss and other variables

during the “PRERAMP”mode within one fill in the year 2017, see

Figure 3. Typically, one significant modification of current and

tunes occurs during “PRERAMP.”

The data for the years 2017 and 2018 differ in the ranges of

input parameters used and in the level of losses: in Figure 4, non-

controlled variables have different distributions, e.g. losses

(Figure 4A) in 2017 were overall higher than in 2018; input

variables, shown in Figure 5, had different ranges, e.g. see

octupole current in Figure 5A, as well as increments of input

variables in Figure 6, e.g. octupole current was only decreasing in

2018, both increasing and decreasing in 2017. Some of the control

parameters, such as octupole current, change quite rarely, e.g. in

the data of 2017, it changes from one level to another in

“PRERAMP” time series only in half of the fills. This already

FIGURE 5
Histograms of the observations in 2017 and 2018. (A) Octupole current, (B) horizontal tune, (C) vertical tune. Almost all the variables
demonstrate different ranges of values for both years, e.g. see the octupole current C.

FIGURE 6
Histogram of increments of (A) octupole current, (B)horizontal tune and (C) vertical tune in 2017 and 2018. The fill 7,236 is a big outlier to the left
in the histogram of octupole current in 2018.
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suggests that applying the model trained on the data from 2017 to

the data of 2018 require to extrapolate which is known to be quite

challenging. We therefore privilege the use of simple (and thus

robust) modeling techniques.

Starting from the injection of the beam, multiple effects occur

in the system, which cannot be fully described analytically, and

have been so far observed in separate experiments, e.g. changes in

the distribution of particle tunes in time due either to drift or to

changes of the control parameters and for example associated

with crossing resonance lines. Given the limited information

about such events and about long-term dependence between

control variables and losses, we consider a simple, but robust

linear approach to model the dependence of losses on its prior

history and on controlled and possibly uncontrolled variables.

An example of such model in the 1D case which models losses as

a function of tunes and octupole current would be of the form

Lt � α1Lt−1 + α2Lt−2 + . . .
+ β1Qx,t−1 + β2Qx,t−2 + . . .
+ γ1Qy,t−1 + γ2Qy,t−2 + . . .
+ ζ1Ct−1 + ζ2Ct−2 + . . .
+ noise.

(1)

with a general form of correlated noise process this is an instance

of an autoregressive model with moving average and exogeneous

variables, a so-called ARMAX model [20].

In a model of the form above, given that losses are closely

related to emittances and will be affected by electron cloud, and

in spite of the fact that these variables cannot be controlled, we

chose to include them among the exogenous variables.

Finally, we will consider a multivariate time series model for

the losses together with the emittances and electron cloud induced

heatloads to try and predict their evolution jointly from controlled

variables. This is motivated by the fact that we wish to obtain a

model that captures the effect of the control variables so that if we

rely on the values of emittances and electron cloud at some time t−l

it should itself be predicted from the control variables at prior time

points. This kind of multivariate extension is known as a vector

ARMAX–or VARMAX–model.

To estimate the parameters of this type of model, we will

exploit the relationship between VARMAX models and the

Kalman Filter (KF).

The paper is organized as follows. In Section 2, after

introducing more precisely the form of the different models

we discuss VARMAX models and their relation to so-called state

space models and in particular to the Kalman filter. Different

parameterizations will lead us to consider a general KF with time-

varying parameters, including a KF model with parameters

depending on the input variables. We will consider different

ways of regularizing the coefficients, and discuss a general

Expectation-Maximization (EM) procedure for the estimation

of parameters. Section 3 is devoted to the results of numerical

experiments and to comparisons of the models.

2 Models

In this paper we consider several variants of the model

described in Eq. 1.

KF1: First, we verify whether it is possible to construct a

predictive model of the current losses as a function of the recent

histories of the losses and of the control variables, as in KF1.

More precisely, we consider a 1D linear model of losses.

Lt � α1Lt−1 + α2Lt−2 + . . . + αpLt−p
+ β0Qx,t + β1δQx,t + β2δQx,t−1 +/ + βLδQx,t−L+1
+ γ0Qy,t + γ1δQy,t + . . .+ γLδQy,t−L+1 (KF1)
+ ζ0Ct + ζ1δCt +/ + ζLδCt−L+1 + noise,

where δ stands for taking the first order differences, i.e.

δQx,t � Qx,t −Qx,t−1, and p and L are the depths of the

histories of observations of the outputs and inputs

correspondingly, which we include in the model.

KF1*: Since we are given additional observations of emittances

and electron cloud (heatload sum), we could include them into the

input variables to see whether their presence help to model the

losses better, thus we will also consider a model.

FIGURE 7
Fill 7,236 from 2018, “PRERAMP” mode, unexpected behavior: no change in losses (A) after large decrease in octupole current (B).
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Lt � α1Lt−1 + α2Lt−2 + . . . + αpLt−p
+ β0Qx,t + β1δQx,t + β2δQx,t−1 +/ + βLδQx,t−L+1
+ γ0Qy,t + γ1δQy,t + . . . + γLδQy,t−L+1

+ ζ0Ct + ζ1δCt +/ + ζLδCt−L+1 (KF1*)
+ η0Ex,t + η1δEx,t + η2δEx,t−1 +/ + ηLδEx,t−L+1

+ θ0Ey,t + θ1δEy,t + . . . + θLδEy,t−L+1

+ κ0ec,t + κ1δec,t +/ + κLδec,t−L+1 + noise .

KF4: Next, we could add the additional variables into the

output together with the losses.

Lt

Ex,t

Ey,t

ec,t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� A◦

1

Lt−1
Ex,t−1
Ey,t−1
ec,t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+/ + A◦

p

Lt−p
Ex,t−p
Ey,t−p
ec,t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(KF4)

+ B◦
0

Qx,t

Qy,t

Cy,t

τt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + B◦

1

δQx,t

δQy,t

δCy,t

⎛⎜⎜⎝ ⎞⎟⎟⎠

+ . . . + B◦
L

δQx,t−L+1
δQy,t−L+1
δCy,t−L+1

⎛⎜⎜⎝ ⎞⎟⎟⎠ + noise.

KF4-quad: is an extension of KF4, where the matrices A◦
i and

B◦
i depend on control parameters. In order to fit the model

parameters under additional structural assumptions we first

consider equivalent formulation of the class of models, which

makes it possible to efficiently estimate the parameters. The

model is discussed in more detail in Section 2.2.2.

2.1 VARMAX and state space modeling

Formally, the models introduced above are all particular

instances of a Vector AutoRegressive Moving Average model

with eXogenous variables (VARMAX). VARMAXmodels can be

written as follows:

yt � ∑
p

i�1
A◦

i yt−i + B◦
0ut +∑

L

i�0
B◦
i+1δut−i⎡⎣ ⎤⎦

+∑
m

i�0
C◦

i ξt−i, t � 1, . . . , T. (2)

the first Vector AutoRegression part represents the belief that the

past observations could be predictive of future losses. The second

sum, “X”-part in VARMAX, assumes linear dependence on

control variables ut and their retrospective changes. The last

term is a stationary Moving Average process which is a sum of

independent random (standard Gaussian) variables (shocks) ξt in

the past.

A response vector (variable) yt ∈ Rn in VARMAX

corresponds to:

• a scalar Lt in the case (KF1) and (KF1*) and n = 1,

• a vector [Lt, Ex,t, Ey,t, ec,t]⊤ with the loss, horizontal and

vertical emittances and electron cloud (n = 4) for the case of

(KF4) and KF4-quad.

We will further assume that yt is a vector with a 1D case as a

sub-case. The control variable ut contains different sets of

variables depending on the considered model:

• ut ∈ Rq � [Qx,t,Qy,t, Cy,t, τt]⊤ a vector with horizontal

and vertical tunes, currents in octupole magnets, and

time passed since the end of injection observed at time t.

• Vectors δut−l contain l-lagged differences of ut−l, i.e. δut−l �
[δQx,t−l, δQy,t−l, δCy,t−l]⊤.

For estimation we further denote stacked matrices in

exogenous term as B◦ � [B◦
0 , B

◦
1 , . . . , B

◦
L] and stacked vector of

all exogenous components as ]L,t � [u⊤t , δu⊤t , . . . u⊤t−L]⊤. In these

notations (2) reads as

yt � ∑
p

i�1
A◦

i yt−i +∑
p

i�1
B◦
i ]L,t−i +∑

m

i�0
C◦

i ξt−i, t � 1, . . . , T. (3)

motivated by VARMAX, we will further consider more general

state space models, where the dimension of hidden state could be

different from dimension of observations.

2.2 State space models

State space models represent the state of a dynamical system

by a latent variable, which varies in time and is different from the

input and output variables. The most well known model in this

family is the Kalman Filter model. State space models are relevant

to model time series with rich structure, and there is in particular

a well known connection between (V)ARMAX models and

Kalman filters that we will exploit in this work.

Consider the 1D autoregressive moving average ARMA (3,2)

model (with lag parameters p = 3, m = 2):

yt � a◦1yt−1 + a◦2yt−2 + a◦3yt−3
+ c◦0 ξt + c◦1 ξt−1 + c◦2 ξt−2, t � 1, . . . , T, (4)

where ξt are independent standard Gaussian random variables.

The ARMA model can be viewed as a special case of the state

space model [21] with hidden vector xt � (x1,t x2,t x3,t)⊤:

yt � 1 0 0( )
x1,t

x2,t

x3,t

⎛⎜⎝ ⎞⎟⎠,

x1,t

x2,t

x3,t

⎛⎜⎝ ⎞⎟⎠ �
a1 1 0
a2 0 1
a3 0 0

⎛⎜⎝ ⎞⎟⎠
x1,t−1
x2,t−1
x3,t−1

⎛⎜⎝ ⎞⎟⎠ +
c0
c1
c2

⎛⎜⎝ ⎞⎟⎠ξt.

(5)

the first measurement equation describes the relation between

observations and hidden state xt of the system, and the second

transition equation describes hidden evolution of the state xt. The
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equivalence between (4) and (5) with ai � a◦i and ci � c◦i can be

easily seen, if one substitutes x2,t−1 and then x3,t−2 in the first

equation of transition equations using the rest of equations.

Thus, in such a representation the hidden state components

equal lagged output. The state space representation (5) is not

unique, e.g. consider

yt � 1 0 0( )
x1,t

x2,t

x3,t

⎛⎜⎝ ⎞⎟⎠ + c0ξt−1

x1,t

x2,t

x3,t

⎛⎜⎝ ⎞⎟⎠ �
a1 1 0
a2 0 1
a3 0 0

⎛⎜⎝ ⎞⎟⎠
x1,t−1
x2,t−1
x3,t−1

⎛⎜⎝ ⎞⎟⎠ +
c1
c2
c3

⎛⎜⎝ ⎞⎟⎠ξt.

(6)

in this state space representation equivalence to (4) is slightly less

straightforward. One can check that ai � a◦i , c◦0 � c0,

c◦1 � c1 − a1c0, c◦2 � c2 − a2c0, c3−a3c0 = 0.

One can see that, for ARMA and corresponding state space

representations, each component of the hidden state vector is

related to the lagged output, i.e. the first component represents

the relation to lagged-1 output, and so forth.

In the same way it is possible to write the VARMAX model

(3) in an similar to state space form:

yt � Dxt + C◦
0 ξt,

xt � ~Axt−1 + ~B]L,t−i + ~Cξt−1,
(7)

where xt ∈ Rh with h = max(p, m), ξt ∈ N (0, In).
The matrices in Eq. 7 can be defined as follows

D � Ih
0n−h×h

( ), if n> h, otherwiseD � In 0n×h−n( ),

where Ih is a squared identity matrix with h columns and rows,

0m×n is a matrix with zeros of the noted size;

~A �

A◦
1 In 0 . . . 0

A◦
2 0 In . . . 0

..

. ..
. ..

.
1 ..

.

A◦
h−1 0 0 . . . In

A◦
h 0 0 . . . 0
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)

The state-space representation allows for the use of the efficient

inference procedures of the Kalman Filter in the case of Gaussian

noise for the known parameters. When the transition and

observation matrices, as well as the noise matrices, are not known,

one can use the classical Expectation-Maximization algorithm for

their estimation. We discuss briefly their application to the inference

and estimation of the parameters in our models.

2.2.1 State space model for KF1, KF1* and KF4
We will be interested in the estimation of the a state space

model for the (KF1), (KF1*) and (KF4) models, which will be

done in the classical form of the Kalman Filter model:

yt � Dxt + εt, εt ~ N 0, R( ),
xt � Axt−1 + B]L,t + ηt, ηt ~ N 0, V( ), (9)

where ]t contains control parameters and their lagged difference

up till lag L as in Eq. 2. We assume xt ∈ Rh, where h is a

multiple of n.

We use the standard form of the Kalman filter here, instead of

Eq. 8 which has a single noise term, as these representations are

generally equivalent (see [22, 23]). See the remark in the

Supplementary Material about the conversion between two

state space forms (9) and (8).

2.2.2 State space model KF4-quad with control
dependent transitions

In the models we considered so far, and which are motivated

initially by a VARMAX model, the exogeneous variables induce

linear shifts in state space via the term B]t,L. However, another

fairly natural way that the control variable (or control

parameters) can enter the model is via the autoregressive

coefficients of the VARMAX model or via the transition

matrices of the state-space model itself. This motivated us to

consider a model which combines both effects: we keep a model

of the previous general form, but make the matrices A and B now

linearly dependent on ut. We however limit ourselves to an

instantaneous effect.

We thus consider a Kalman filter model of the form:

yt � Dxt + εt, εt ~ N 0, R( ),
xt � A ut( ) xt−1 + B ut( ) ]t + ηt, ηt ~ N 0, V( ). (10)

with matrices A (ut) and B (ut) now being linear functions of the

control variables

A ut( ) � A0 +∑
q

j�1
Ajutj and B ut( ) � B0 +∑

q

j�1
Bjutj. (11)

This model is now non-linear, and in particular it includes

cross-terms of the form utut−j,i and utxt−j,i.

This formulation has q+1 times more parameters for the

state transitions, and regularization becomes necessary to

prevent overfitting. Several regularizations would be possible,

but given that our model is parameterized by several matrices,

we propose to use a matrix regularizer that encourages these

matrices to be low-rank (or equal to 0 which is rank 0). More

precisely, we propose to use trace norm regularization [24,

25]. The trace norm of a matrix (aka nuclear norm), is a

matrix norm which is defined as the ℓ1-norm of the singular

values of the matrix. The trace norm ‖A‖* of a matrix A can be

equivalently defined by
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‖A‖* � tr A⊤A( )1/2( ),

where tr denotes the trace of a matrix. Note that the more

classical Tikhonov regularization is here tr(A⊤A), which is

equal to the squared ℓ2 norm of the singular values of A and

that the ℓ0 pseudo-norm of the singular values of a matrixA is the

rank of the matrix A. So the trace norm is to rank as the ℓ1 norm

to ℓ0. The trace norm is a convex regularizer but induces sparsity

in the spectrum of the matrix, in a similar way as the ℓ1 norm

induces sparsity which means that it becomes low-rank.

In the end, we wish for A(u) and B(u) to be low rank but

regularizing directly these matrices with the trace norm leads to

an optimization problem which is not so easy to optimize. So,

instead, we apply the regularization to all the individual matrices

Aj and Bj. We denote

Ω Aj, Bj( )
j�0..q( ) � γ0‖A0‖* + δ0‖B0‖* + γ∑

q

j�1
‖Aj‖* + δ∑

q

j�1
‖Bj‖*.

(12)
The details on parameter estimation with the Expectation

Maximization algorithm for KF1, KF1*, KF4 and KF4-quad can

be found in the Supplementary Material.

3 Evaluation

3.1 Datasets

The parameters of the model were estimated using

“PRERAMP” observations from 1 year and then tested on the

data of another year. The data from 2017 contains 105 time series

corresponding each to an LHC fill; in 2018, 144 fills are available.

The duration of the “PRERAMP” phase varies in 2017 from 65 to

490 s, whereas in 2018 it varies from 67 to 1046 s, with a typical

duration which is slightly larger in 2017, see Figure 1.

First, we take the data from 2017 as the training dataset and

the data of 2018 as the testing dataset. After the selection of the

hyperparameters (cf Section 3.1.1), the model parameters are

computed from the full training dataset. Then, we validate the

trained model on the data from 2018. Next, we repeat the

validation for 2018 data as a training set and 2017 as testing

to check whether we can also predict the loss of 2017 from 2018.

Remark: We excluded fill 7236 from the dataset of 2018 for

the second validation. The main reason for exclusion is that

during that fill, an abnormally high jump in octupole current

occurred (Figure 7B), which unexpectedly did not lead to a

noticeable change in the loss (Figure 7A). There was no other

evidence of such events in the datasets and our analysis showed

that other variables present in the dataset do not explain such a

behavior of the loss. Extending the models for the case of fill

7,236 would require additional understanding of the reasons for

such loss behavior or more data on similar events. This can be

also seen from Figure 6A, where the upper histogram is for the

increments of control parameters in 2017 and the lower one is for

increments in 2018. The change of the octupole current during

fill 7,236 is close to the value −20 A and is distinctly very far from

FIGURE 8
R2-score as a function of the forecast horizon. (A)On the training dataset, here from 2017 (B) on the test data from 2018. Themean value of R2 is
shown for each horizon in the darker color. The mean value was computed from 1,000 bootstrapped estimates of R2, which are shown in the light
color.

TABLE 1 Hyperparameters estimates from 10-fold cross validation for the
models (KF1), (KF1*), (KF4).

L, 2017 h, 2017 L, 2018 h, 2018

KF1 90 1 55 1

KF1* 85 1 80 1

KF4 80 16 80 16
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the main range of values. Additionally, we can note that apart

from the fill 7,236, the changes in octupole current in 2018 are

mostly negative, whereas, for the year 2017, the octupole current

was both increasing and decreasing. Thus one can anticipate that

in terms of octupole input, forecasting the losses of 2018 from the

model built from the data from 2017 might be an easier task than

when swapping the datasets, since it involves extrapolation to the

larger range of impulse values in the input.

Data Transformations: For the losses normalized by

intensity, we apply a log transformation. Next, the input

variables of the training dataset are scaled to be in the interval

(−1, 1). The output variables of the training dataset are centered

and normalized. For validation, both input and output are

centered and scaled with the parameters obtained for the

training dataset.

3.1.1 Hyperparameters estimation
For the KFmodels, we have two hyperparameters to estimate:

the number of lags L in ]t in Eq. 9 and the dimension of the

hidden space h. To find their estimates we use a 10-fold cross-

validation procedure on the training dataset to minimize the

mean absolute error (MAE) of the prediction over the parameters

in the grid. The MAE for the prediction ŷt of the ground truth

(1D) values yt is defined as MAE � 1
T∑t|yt − ŷt|. We estimate the

quality of the predictions of the models built from 9/10 of the fill

time series on the rest of the data. Namely, on each 9/10 of fills,

we make an EM estimation of the KF parameters. We set T0 = 10.

Next on the rest of 1/10 of fills, for each fill, we use the KF

equations and smoother applied to the first T0-th observation of

the time series to get an initial estimate of the hidden process.

Starting from T0+1-th observation, we run the KF model state

FIGURE 9
KF4 trained on the data of 2017, prediction on the fills 6176, 6050, 6192, and 6371 of 2018 and corresponding input control parameters. Pink
points correspond to T0 observations which the model uses to get initial KF smoother results. Further model propagates without seeing the loss and
other output values, with control parameters given as the input. Two standard deviation confidence bands are shown in light blue.
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evolution dynamic forward in time to propagate the prediction,

giving the control observations as input. This way, the model

“sees” only the first T0 data points of the output from the fill and

the input variable at each new prediction time point. We stack all

the predictions for each of the 10 folds to compare them with the

corresponding true values, i.e. in each fold we compute MAE:
1

∑j
Tj
∑j∑

Tj

t�T0+1|ŷ(j)
t − y(j)

t | where Tj is the length of fill j, and j

runs over the fills in the fold. Finally, the hyperparameters are

selected via minimization of the mean MAE across folds. The

hyperparameters selection was carried out on the same intervals

of prediction, that is, we fixed the largest history Lmax, and the

first data point to predict in the fill of the other year was Lmax for

all the models. We fixed Lmax = 90 to have sufficiently long

forecasting horizons and to have enough data to train the models.

The results can be found in Table 1. The hyperparameter

selection procedure favored deep histories of the input

parameters and their changes, thus the changes in control

parameters might have a relatively long-term effect on the loss

evolution. For KF4-quad, h and L were set to be the same as the

ones found for KF4, and optimization of regularization

hyperparameters was carried out in the same way by

optimizing the MAE on the grid. See Supplementary Figure

S1 in the Supplementary Material for illustration of 10-fold

cross-validated MAE behaviour for different versions of Eq. 9

for a range of parameters h and L based on the data of 2017 or

2018 and Supplementary Figure S2 for selection of γ and δ in Eq.

12 for KF4-quad.

Remark: We compute MAE over different forecast horizons,

as opposed to instantaneous one-step ahead forecasting for

hyperparameter selection. This is motivated by the fact that

minimization of one-step-ahead prediction error tends to

select models which better follow local trends. For example, a

simple forecast which is just repeating the previous loss

observation would often have quite a low one-step ahead

forecasting error, whereas for long-term forecasting this is not

the case.

3.2 Evaluation of predictive ability for
different time horizons

We compare the variants of the Kalman Filters: (KF1),

(KF1*), (KF4), and KF4-quad. As evaluation metric of losses

prediction for different time horizons we compute R2-score,

which is defined as

R2 � 1 − ∑t yt − ŷt( )2

∑t yt − �yt( )2
,

where ŷt is the predicted value of yt and �yt � 1
T∑tyt for the

models trained on one of the datasets either of 2017 or 2018.

First, we fit hyperparameters and parameters of the models on

the training dataset. For each of the training and testing datasets,

for each fill, we fix the horizon H. Next, for each time point t of

the fill where t ∈ {T0+1, . . . , T −H}, where T is the duration of

the fill, , we use KF equations and smoother to obtain an estimate

of the hidden state at t, from the preceding T0 observations.

Starting from t, we propagate the model to predict the evolution

till t + H. Thus we get a collection of predictions at horizon H

based on the data of different fills. From all the predictions at

horizon H we compute a bootstrap estimate of the mean R2 [26]

obtained from 103 subsamples of 103 predictions and

corresponding observations.

We limited the predictions to the time horizon of 200 s for

the dataset of 2017 and to the horizon of 300 s for the dataset

FIGURE 10
R2-score as a function of the forecast horizon. (A) On the training dataset, here from 2018 (B) on the test data in 2017.The mean value of R2 is
shown for each horizon in the darker color. The mean value was computed from 1,000 bootstrapped estimates of R2, which are shown in the light
color.
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FIGURE 11
KF4 trained on the data of 2018, prediction on the fills 6726, 6674, 6677, and 6681 of 2018 and corresponding input control parameters. Pink
points correspond to T0 observations which the model uses to get initial KF smoother results. Further model propagates without seeing the loss and
other output values, with control parameters given as the input. Two standard deviation confidence bands are shown in light blue.

FIGURE 12
Estimated autoregression matrices in KF4.
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2018, so that 1) for each horizon, the prediction of at least

10 different fills should contribute to computation of R2 and 2) a

number of aggregated prediction was not less than 103.

Training on 2017: Figure 8 shows how the R2 varies for

different horizons H for the models trained on the data from

2017, where 8A outlines the quality of forecasts on the training

dataset, and 8B shows the quality of forecasts on the testing

dataset of 2018. For the models (KF1), (KF1*) with 1D outputs,

the results show that they were capable of predicting losses of the

other year only on short horizons. Inclusion of additional non-

FIGURE 13
Estimated moving average part in KF4.

FIGURE 14
Impulse response plots for (KF4) model, impulses in the input parameters: in horizontal and vertical tunes and in the octupole current. The
changes in losses and (2σ-)confidence intervals produced by (KF4) are shown in blue colors. The changes in the rest of the output components
(horizontal and vertical emittances and electron cloud induced heatloads) and corresponding (2σ-)confidence intervals are shown in gray.
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controlling observations, such as emittances and electron cloud

in (KF1*) helps to slightly improve the predictive ability in the 1D

output case on the testing dataset with a certain drop in quality

on the training dataset. Models with additional output

components KF4 and KF4-quad demonstrate significantly

improved performance compared to 1D output models. For

quite long horizons of the forecast, for both KF4 and KF4-

quad R2 remains high. It is worth noting that the

hyperparameters were learned from the dataset of 2017,

whereas in 2018 several fills had much longer in time

“PRERAMP” intervals than in 2017 (see Figure 1).

Nevertheless, the propagated KF4 model kept on predicting

well on longer horizons. This suggests that overall the model

to some extent captures the global trend and its dependence on

the input. The bump in R2 for the higher horizons in Figure 8B

probably could be explained by, first of all, too few fills

participating in the estimate, and secondly, most of the

changes of input parameters occur on the time horizons

smaller than 200 s. The model KF4-quad demonstrates slightly

better performance than KF4 on longer horizons. From

Figure 8A the additional regularization helped to reduce the

overfitting on the training dataset and improve the R2 on the

testing dataset.

Predictions for selected fills 6,672, 6,674, 6,677, and 6,681 of

the testing dataset of the year 2018 are shown in Figure 9 for the

model (KF4). The values of input parameters in the training

dataset lie in the interval (−1, 1). In Figure 9 one can see that the

values of some of the input parameters for the testing dataset of

2018 which were standardized to the scale of the training dataset

fall outside of interval (−1, 1). For the fills 6,672, 6,674, and

6,681 the scaled octupole current decreases from almost 2.5 to 1.

It is visible that for these fills the model captured the dependence

of the loss on the current correctly, even outside of the range of

the values given during training.

Training on 2018: For the models estimated from the data of

2018, the results are shown in Figure 10. Remind, that the control

parameters and their increments in the data of 2 years have

different ranges. The results show that the case of modeling of the

loss in 2017 based on the data of the year 2018 is more

challenging for the proposed approach. Nevertheless KF4 and

KF4-quad show significantly better predictive performance than

(KF1), (KF1*). Selection of hyperparameters by optimizing MAE

in cross-validation for KF4-quad did not lead to improvements

compared to KF4. Predictions for the fills 6,176, 6,050, 6,192, and

6,371 of the year 2017 are shown in Figure 11 for KF4 model that

was trained on the data of 2018.

3.2.1 Fitted models
KF4: Hyperparameter selection procedure from the data of

2017 led to the KF4 with the dimension of hidden process equal

16, which corresponds to the lag order 4 in the autoregressive

part and MA parts of the VARMAX model. The selected input

parameters increments history length was 80.

After checking that observability condition and condition

on the initial value distribution (see remark in Section 2.2.1) for

the estimated KF4 were satisfied, we could transform KF4 in the

form of (9) to (8) to obtain the coefficients of equivalent

VARMAX model formulation (3). Matrices with

autoregressive coefficients are shown in Figure 12. One can

see that for the losses L, all output variables, including

emittances and electron cloud induced heatloads, participate

in AR terms. The opposite is not true, in the trained model, all

the rest of output values have small coefficients corresponding

to the lagged loss variables. Moving average coefficients in

Figure 13 show that the first lag shocks have the most

impact on the losses. The loss component of the output

shares the shock of “0” lag with the other output variables.

Further, instead of presenting coefficients for input variables

and 80-lagged increments of input variables, we consider the

impulse response function of the model.

Impulse response functions: To analyze how the model

(KF4) responds to shocks in one of the input variables, it is

convenient to compute an Impulse Response Function (IRF)

[20, 27]. Figure 14 demonstrates IRF for (KF4) trained on the

data of 2017: the plot shows the change in output

parameters after we modify the input parameters within

the ranges in the training dataset. All the values of control

and output values were set to median values based on the data

from 2017, such that after standardizing them, their values

equal zero. The impulse for each of the variables was taken

as .5 of the range of the observations in 2017 at 50 s in

Figure 14: for the horizontal tune Qx the impulse was

.005 from the level .272, for the vertical tune Qy the

impulse was .004 from .294, for octupole current the

increase was 3.26A from 39.11A. After the value of the

control variable increases, the model (KF4) continues to

propagate until the outputs stabilize at a certain level. For

emittances and electron cloud, IRFs demonstrate that the

increase in the octupole current and tunes brings a more

steady growth or decrease in values.

4 Conclusion

In this work, we proposed a VARMAX model to predict the

evolution of the beam losses in the “PRERAMP” mode of the

LHC on horizons up to 5 min based on control and context

variables. Given the relationship with state-space models, the

model is estimated under an equivalent Kalman Filter form. We

considered a VARMAX models on the 1D loss time series and a

VARMAX model with a vectorial output composed of the loss,

the horizontal and vertical emittances and the aggregated

heatload due to the electrom cloud as components, which

induce the learning of a hidden state representation that helps

predicting the evolution of the losses on a longer horizon. In

addition, we proposed an extension of the linear KF for the
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transition matrix and exogeneous coefficients dependent on the

input variables.

The hyperparameter selection procedure on lags needed in

the exogeneous and in the autoregressive terms revealed that

the control variables have lagged effects on the losses with lags

of up to 80 s while a shorter history of 4 s is needed for the

autoregressive term, to obtain good predictions on a

horizon of 5 min. The loss model with additional output

components fitted on the data from 2017 performed well in

predicting the loss measured at IR7 in 2018 for a horizon of up

to 5 min.

The inclusion of additional output variables in the model,

such as heatload and emittance, helped significantly to improve

the long-term prediction of the loss. Finally, in terms of

interpretability of the model, the proposed impulse response

analysis of the estimated model can help investigate different

scenarios of the changes in the control parameters to understand

their effect on the loss.

A possible extension of this work could be to model jointly

both beam losses, which might account for beam

coupling. Further, the development of a tool that could

guide the operators in the control room could be

anticipated, which would propose optimal changes in the

available parameters space for a given set of initial setting

(i.e. emittances, intensities, etc.) while commissioning and re-

optimizing the collider at every physics fill. Besides that,

the new data obtained from the operation should be

useful to re-train and revise the model. Our model based

on machine data is a valuable addition to numerical models

of particle losses, that can boost and improve the

understanding of particle losses and help in the design of

future colliders.
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