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The cerebral cortex plays central roles in many higher-order functions such as cognition, language, 
consciousness, and the control of voluntary behavior. These processes are performed by the 
densely interconnected networks of excitatory pyramidal neurons and inhibitory interneurons, 
and the balanced development of these two types of neuron is quite important. During cortical 
development, pyramidal neurons and interneurons show quite different migratory behaviors: 
radial migration and tangential migration, respectively. Pyramidal neurons are generated in the 
ventricular zone of the dorsal telencephalon, and migrate radially along radial glial fibers toward 
the pial surface, forming a six-layered cortical structure in an “ inside-out” manner. On the other 
hand, cortical interneurons are generated in the medial and caudal ganglionic eminence in the 
ventral telencephalon, and follow long tangential migratory paths into the cortex. Defects in 
these migration processes result in abnormalities in the cortical layer structure and neuronal 
networks, which may cause various neurological and psychiatric conditions such as epilepsy 
and schizophrenia. Accordingly, besides basic scientific interest, elucidation of the mechanism 
of neuronal migration is essential for understanding the pathogenesis of these diseases. This 
Research Topic includes a series of articles ranging from the basic mechanism of neocortical 
development to the malformation and evolution of the neocortex. We do hope that the present 
ebook will further stimulate the interest in the fascinating investigations of neuronal migration 
and corticogenesis.

Citation: Ohtaka-Maruyama, C., Nakajima K., Pierani, A., Maeda, N., eds. (2016). Mechanisms 
of Neuronal Migration During Corticogenesis. Lausanne: Frontiers Media. 
doi: 10.3389/978-2-88919-886-3

Newborn pyramidal neurons electroporated with GFP-expression plasmid(green) are migrating toward 
the pial surface of the cerebral cortex. The section was stained with DAPI (blue) for nuclei and the 
antibody against microtubule-associated protein 2 (MAP2) (red) to visualize subplate and cortical plate 
neurons. Photo by Noe Kaneko (Tokyo Metropolitan Institute of Medical Science).

http://journal.frontiersin.org/journal/neuroscience
http://journal.frontiersin.org/researchtopic/2965/mechanisms-of-neuronal-migration-during-corticogenesis


4 July 2016 | Mechanisms of Neuronal Migration During CorticogenesisFrontiers in Neuroscience

Table of Contents

06 Editorial: Mechanisms of Neuronal Migration during Corticogenesis
Chiaki Ohtaka-Maruyama, Kazunori Nakajima, Alessandra Pierani  
and Nobuaki Maeda

08 Switching modes in corticogenesis: mechanisms of neuronal subtype 
transitions and integration in the cerebral cortex
Kenichi Toma and Carina Hanashima

26 Diverse subtypes of astrocytes and their development during corticogenesis
Hidenori Tabata

33 Neuronal polarization in the developing cerebral cortex
Akira Sakakibara and Yumiko Hatanaka

43 Function and regulation of Rnd proteins in cortical projection neuron migration
Roberta Azzarelli, François Guillemot and Emilie Pacary

56 Neuronal migration and protein kinases
Toshio Ohshima

63 Molecular Pathways Underlying Projection Neuron Production and Migration 
during Cerebral Cortical Development
Chiaki Ohtaka-Maruyama and Haruo Okado

87 Corrigendum: Molecular Pathways Underlying Projection Neuron Production 
and Migration during Cerebral Cortical Development
Chiaki Ohtaka-Maruyama and Haruo Okado

88 Secretory function in subplate neurons during cortical development
Shinichi Kondo, Hannah Al-Hasani, Anna Hoerder-Suabedissen, Wei Zhi Wang  
and Zoltán Molnár

96 Non-cell autonomous and non-catalytic activities of ATX in the developing 
brain
Raanan Greenman, Anna Gorelik, Tamar Sapir, Jan Baumgart, Vanessa Zamor, 
Michal Segal-Salto, Smadar Levin-Zaidman, Vassilis Aidinis, Junken Aoki,  
Robert Nitsch, Johannes Vogt and Orly Reiner

113 Proteoglycans and neuronal migration in the cerebral cortex during 
development and disease
Nobuaki Maeda

128 Neuronal and microglial regulators of cortical wiring: usual and novel 
guideposts
Paola Squarzoni, Morgane S. Thion and Sonia Garel

144 Cellular dynamics of neuronal migration in the hippocampus
Kanehiro Hayashi, Ken-ichiro Kubo, Ayako Kitazawa and Kazunori Nakajima

http://journal.frontiersin.org/journal/neuroscience
http://journal.frontiersin.org/researchtopic/2965/mechanisms-of-neuronal-migration-during-corticogenesis


5 July 2016 | Mechanisms of Neuronal Migration During CorticogenesisFrontiers in Neuroscience

155 Genotype-phenotype correlation in neuronal migration disorders and cortical 
dysplasias
Mitsuhiro Kato

163 Neuronal migration abnormalities and its possible implications for 
schizophrenia
Kazue Muraki and Kenji Tanigaki

173 Genetic manipulation of reptilian embryos: toward an understanding of cortical 
development and evolution
Tadashi Nomura, Wataru Yamashita, Hitoshi Gotoh and Katsuhiko Ono

http://journal.frontiersin.org/journal/neuroscience
http://journal.frontiersin.org/researchtopic/2965/mechanisms-of-neuronal-migration-during-corticogenesis


EDITORIAL
published: 03 May 2016

doi: 10.3389/fnins.2016.00172

Frontiers in Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 172 |

Edited by:

Luca Bonfanti,

University of Turin and Neuroscience

Institute Cavalieri Ottolenghi, Italy

Reviewed by:

Alfonso Represa,

Institut de Neurobiologie de la

Méditerranée, France

*Correspondence:

Chiaki Ohtaka-Maruyama

maruyama-ck@igakuken.or.jp

Specialty section:

This article was submitted to

Neurogenesis,

a section of the journal

Frontiers in Neuroscience

Received: 15 March 2016

Accepted: 04 April 2016

Published: 03 May 2016

Citation:

Ohtaka-Maruyama C, Nakajima K,

Pierani A and Maeda N (2016)

Editorial: Mechanisms of Neuronal

Migration during Corticogenesis.

Front. Neurosci. 10:172.

doi: 10.3389/fnins.2016.00172

Editorial: Mechanisms of Neuronal
Migration during Corticogenesis

Chiaki Ohtaka-Maruyama 1*, Kazunori Nakajima 2, Alessandra Pierani 3 and

Nobuaki Maeda 1

1Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical

Science, Tokyo, Japan, 2Department of Anatomy, Keio University School of Medicine, Tokyo, Japan, 3Centre National de la

Recherche Scientifique UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France

Keywords: corticogenesis, neuronal migration, neurogenesis, radial glial cells, neuronal polarization, cortical

evolution, subplate, neurodevelopmental diseases

The Editorial on the Research Topic

Mechanisms of Neuronal Migration during Corticogenesis

The mammalian neocortex shows an extremely well-organized structure that underlies higher
brain functions such as cognition, language, and memory. The neocortex consists of a six-layered
structure, in which excitatory and inhibitory neurons form complex neural circuits in concert
with glial cells. As a result of recent technological innovations in live imaging and in utero
electroporation, the processes involved in neocortical development, especially the mechanism
of neuronal migration, have been successively revealed. Furthermore, it has been recognized
recently that defects in neuronal migration lead to brain malformations and diverse psychiatric and
neurological disorders including schizophrenia, epilepsy, and autism. Accordingly, it is important
to elucidate the molecular mechanism of neuronal migration in the neocortex, in order to
understand not only the basic principles of brain development but also the pathological processes of
these disorders. In this special issue, we attempt to cover topics ranging from the basic mechanisms
of neocortical development to themalformation and evolution of the neocortex, with a special focus
on neuronal migration.

Radial glial cells (RGCs) are primary progenitors capable of generating various types of
neurons and glial cells, which include Cajal-Retzius cells, subplate neurons, pyramidal neurons,
interneurons, oligodendrocytes, and astrocytes. Thus, it is important to know how these diverse
types of cells are generated from RGCs and integrated into complex neocortical circuits. Toma
and Hanashima reviewed the mechanisms that regulate the changes in RGC competency and
neuronal subtype transitions, focusing on the regulatory networks of various transcription factors
including Foxg1. At the earlier stage of neocortical development, RGCs predominantly produce a
large number of neurons, but later they change into glia-restricted progenitors. After the discovery
of the importance of astrocytes in synaptic plasticity and blood flow, the mechanisms of glial
development have attracted increasing interest for many neuroscientists. Tabata reviewed the
mechanism controlling the production of diverse types of astrocytes and their migration behavior,
demonstrating the multiple origins of glial cells in the neocortex.

Neocortical circuits consist of highly interconnected excitatory glutamatergic and inhibitory
GABAergic neurons, which are generated from distinct pools of RGCs. The excitatory neurons
are generated from RGCs localized in the ventricular zone of the dorsal telencephalon and migrate
radially toward the pial surface in an inside-out manner (radial migration). On the other hand,
inhibitory neurons mainly originate from the ventral telencephalon and migrate tangentially
into the neocortex (tangential migration). In spite of such different developmental origins, both

6
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excitatory and inhibitory neurons go through the multipolar
stage with several minor processes in the neocortex before axon
extension. Then, they undergo dramatic morphological changes
to initiate axon formation, namely, neuronal polarization.
Sakakibara and Hatanaka reviewed the sequential events in
polarization processes of both excitatory and inhibitory neurons,
and they discussed the underlying molecular mechanisms.

At the multipolar stage, the excitatory neurons transiently use
a multipolar migration mode, namely migration with no fixed
direction, in the subventricular and intermediate zones. Then,
they adopt a bipolar shape during neuronal polarization and
migrate quickly toward the pial surface along RGC processes,
which is called locomotion mode. Many kinds of molecules
are involved in these dynamic changes in the morphology and
behavior of neurons. Small GTP binding proteins belonging
to the Rho family play critical roles in cytoskeletal regulation
during such dynamic processes. Azzarelli et al. reviewed the
roles of Rnd proteins, “atypical” Rho family members, in
neuronal migration and discussed its upstream and downstream
pathways. The functions of many cytoplasmic proteins including
cytoskeletal components are regulated by phosphorylation and
dephosphorylation processes. Ohshima focused on protein
kinases, including CDK5 and JNKs, and reviewed their regulatory
roles in cytoskeletal organization during multipolar-bipolar
transition and radial migration. Ohtaka-Maruyama and Okado
comprehensively summarized the molecular pathways involved
in these developmental processes, emphasizing the importance
of subplate neurons in the development and evolution of the
six-layered neocortical structure.

It is apparent that neuronal migration and wiring are
regulated by various secreted factors such as growth factors,
chemokines, and extracellular matrix molecules, although their
mechanisms are poorly understood. Kondo et al. demonstrated
that subplate neurons transiently express high levels of secretary
proteins such as connective tissue growth factor, neuroserpin,
and insulin-like growth factor binding protein 5, which may be
involved in cortical circuit formation. Greenman et al. reported
a novel finding that autotaxin (ENPP2), a secretary enzyme
bearing lysophospholipase D activity, regulates the localization
and adhesion of neural progenitor cells independent of its
catalytic activity. Maeda reviewed the roles of proteoglycans in
neuronal polarization andmigration and discussed the possibility
that extracellular matrix regulates the distribution and activity of
multiple secreted factors in the developing neocortex. In addition
to the long-range gradient of secreted factors, axon pathfinding
is also regulated by short-range guidance cues and direct cell-cell
contacts mediated by guidepost cells. Squarzoni et al. reviewed
the roles of already known guideposts such as Cajal-Retzius

cells for entorhinal-hippocampal axons and corridor cells for
thalamocortical axons, and further proposed a new class of
guidepost cells, microglia, in the cortex.

Hippocampal formation has a close relationship with the
neocortex both functionally and structurally, but it shows
a distinct arrangement of pyramidal neurons from that of
the neocortex. Hayashi et al. reviewed the differences in the
migratory behaviors of neocortical and hippocampal neurons,
which lead to the formation of distinct layered structures
in these two cortical regions. Defects in the migration of
excitatory and inhibitory neurons can lead to the various
neurological and psychiatric disorders. Kato reviewed recent
development in the understanding of the genetic bases of
neuronal migration disorders in terms of genotype-phenotype
correlations, focusing mainly on lissencepahaly. Muraki and
Tanigaki discussed the possible relationship between neuronal
migration defects and behavioral abnormalities relevant to
schizophrenia based on studies using genetically defined animal
models. The evolutionary approaches should greatly deepen
our understanding of the mechanisms underlying neocortical
development. Nomura et al. established the method of in
ovo electroporation and ex ovo culture of reptilian embryos.
Comparative studies using this method will provide significant
insights into the origin of the mammalian neocortex.

It is hoped that the special issue entitled “Mechanisms
of Neuronal Migration during Corticogenesis” will serve as a
valuable resource for many neuroscientists to promote their
research perspectives. Finally, as topic editors, we would like
to express our sincere appreciation to all the authors for their
outstanding contributions and to all the reviewers for their
insightful comments on the papers. We also thank the editorial
office and the production staff for their unceasing efforts and
dedication.
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Switching modes in corticogenesis:
mechanisms of neuronal subtype
transitions and integration in the
cerebral cortex
Kenichi Toma 1 and Carina Hanashima 1, 2*

1 Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, Japan, 2Department of Biology,

Graduate School of Science, Kobe University, Kobe, Japan

Information processing in the cerebral cortex requires the activation of diverse neurons

across layers and columns, which are established through the coordinated production

of distinct neuronal subtypes and their placement along the three-dimensional axis. Over

recent years, our knowledge of the regulatory mechanisms of the specification and

integration of neuronal subtypes in the cerebral cortex has progressed rapidly. In this

review, we address how the unique cytoarchitecture of the neocortex is established

from a limited number of progenitors featuring neuronal identity transitions during

development. We further illuminate the molecular mechanisms of the subtype-specific

integration of these neurons into the cerebral cortex along the radial and tangential

axis, and we discuss these key features to exemplify how neocortical circuit formation

accomplishes economical connectivity while maintaining plasticity and evolvability to

adapt to environmental changes.

Keywords: neocortex, cell fate specification, neurogenesis, Cajal-Retzius cell, subplate, layer

Introduction

Information processing in the neocortex relies on a highly ordered cytoarchitecture and its
neuronal assembly to serve higher cognitive functions, such as perceptions, voluntary movements,
and language. Neocortical neurons are organized into six major layers along the radial axis,
which are further modified tangentially across areal and columnar subdivisions. These laminar
and tangential organizations are key aspects of the cerebral cortex and are conserved among
mammalian species, and they are thought to underlie the increase in neuronal numbers and
expansion of the neocortex during evolution (Rakic, 2009). While the distinguishing feature of
cellular organization of the cerebral cortex was acknowledged over a century ago (Meynert, 1868;
Brodmann, 1909), the molecular mechanisms underlying the development and assembly of each
neuronal component of the neocortex have rapidly begun to unravel over the past decade.

A major challenge in neocortical development is to efficiently recruit diverse cell types into its
circuitry through the cost-effective production and wiring of individual neuronal elements. As
dendrites and axons occupy the dominant fraction of the neocortical volume (Braitenberg and
Schuz, 1998), minimizing neuronal process length in cortical network while maximizing their
coverage is a key strategy in recruiting diverse neuron types in a restricted cortical capacity. In
theory, this aim could be achieved through the reduction of molecular and wiring components

8
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while optimizing their networks; however, in a broader
context, such effective topology and energy-saving construction
is ideally adaptable to environmental and evolutionary
changes.

For this purpose, the construction of the neocortical
circuit becomes a highly dynamic process, which involves two
fundamental steps that regulate the temporal and spatial behavior
of cells during the progenitor and postmitotic stages. First,
diverse neocortical neurons are generated from a restricted pool
of progenitor cells within the ventricular and subventricular
zones (VZ and SVZ), which differ in their connectivity, dendritic
morphology, and molecular character. Second, the movement
of cells from their place of birth to their final destination is an
essential step to recruit these diverse neurons into the circuit and
accommodate massive numbers of neurons within a restricted
head volume.

In early development, the cerebral cortex starts from a simple
neuroepithelial sheet at the anterior neural tube. This sheet gives
rise to two major cell types of the neocortex, neurons and glia.
The former are further classified into glutamatergic projection
neurons and GABA (γ-aminobutyric acid)-ergic interneurons,
which participate directly in the cortical circuit through the
excitation and inhibition of distal and proximal target neurons,
respectively. The glia, in turn, which include astrocytes and
oligodendrocytes, play pleiotropic roles in shaping the cortical
circuit by modulating its activity (Muller and Best, 1989; Chung
et al., 2013). At a glance, the neocortical cytoarchitecture can
be defined by its glutamatergic neuron components (Brodmann,
1909). In this review, we focus exclusively on the glutamatergic
subtypes of the neocortex and reveal the organizing principles of
the neocortical circuit through understanding themechanisms by
which neuronal subtype identity and integration are instructed in
the cerebral cortex.

Key Elements of the Neocortical Scaffold

Radial Glial Cells and Transition from Symmetric
to Asymmetric Cell Divisions
Genetic fate-mapping and loss-of-function studies have shown
that neocortical excitatory neurons arise from neuroepithelial
cells of the dorsal telencephalon, which confer glutamatergic
over GABAergic transmitter identity through the sequential
induction of Pax6, Neurog1/2, and NeuroD expressions (Fode
et al., 2000; Gorski et al., 2002; Schuurmans et al., 2004; Kroll
and O’Leary, 2005; Louvi et al., 2007). These cells then give
rise to radial glial cells (RGCs), which possess characteristic
apical and basal processes that make contact with the ventricular
and pial surface, respectively. RGCs are the principal progenitor
cells of the cerebral cortex (Malatesta et al., 2000; Miyata et al.,
2001; Noctor et al., 2001) and also serve as scaffolds for the
orientedmigration of later-born neurons through their elongated
processes. The progenitors contribute to cortical expansion
in gyrencephalic mammals through the diversification of its
subtypes (Hansen et al., 2010). RGCs undergo cell divisions at the
ventricular surface that typically produce a pair of progenitors
or a progenitor and a neuron. The former process is called

symmetric cell division and expands the number of neural stem
cells, whereas the latter is called asymmetric cell division and
contributes to neurogenesis while maintaining the progenitor
pool, owing to its output of both progenitor cells and neurons
(and later glia). These progenitors are more fate-restricted in the
sense that they have a limited capacity to undergo self-renewal.

The transition from neuroepithelial cells to RGCs is instructed
through multiple signaling molecules. Fgf10, which is expressed
in the apical surface of the VZ, exhibits a rostral-high to caudal-
low gradient within the telencephalon, and genetic deletion
of Fgf10 results in delayed onset of RG markers, brain lipid
binding protein (BLBP) and glutamate transporter (GLAST) in
the rostral cortex. This delay results in the tangential expansion
of prefrontal areas in the Fgf10 mutants (Kang et al., 2009;
Sahara and O’Leary, 2009), implying that the differential timing
of neuroepithelial cell to RGC conversion may also contribute
to the regulation of neuronal numbers in an area-dependent
manner. Similarly, retinoic acid (RA) expressed in the meninges
(Siegenthaler et al., 2009) instructs the conversion of division
modes. Mutants that lack Foxc1 fail to establish the meninges,
which through contact with the end-feet of neuroepithelial cells
propagate RA signaling, which is necessary for the transition
from symmetric to asymmetric divisions. Lack of RA signaling
derived from the meninges results in a significant decrease in
neuronal output and thus prolonged neuroepithelial cell stage
and symmetric cell divisions (Siegenthaler et al., 2009). Recently,
a single-cell clonal analysis in mouse neocortex using retroviral
vectors has demonstrated that, while the timing of transitions
from symmetric to asymmetric cell divisions varies from clone
to clone, within each clone, once the progenitors enter the
asymmetric division phase, their progenies produce a remarkably
fixed number of neurons (Gao et al., 2014). These observations
revealed that following the conversion to asymmetric cell division
mode, progenitor cells may undergo a stereotypic program in
their proliferation and neurogenic output.

Cajal-Retzius Cells and Subplate Cells in Cortical
Scaffolding
When RGCs switch to asymmetric cell division, progenitor
cells begin to produce the first cohort of neurons, which serve
as essential scaffolds for the construction of the neocortical
cytoarchitecture. These neurons consist of Cajal-Retzius (CR)
cells and subplate (SP) neurons and form a transient structure
called the preplate (PPL) above the VZ. CR cells were first
recognized through their expression of secretory glycoprotein,
Reelin (Reln) (D’Arcangelo et al., 1995; Ogawa et al., 1995), and
the functional study of CR cells has largely focused on their
regulation of radial migration in subsequent-born projection
neurons through diffusive cues. However, recent reports
have also revealed their roles in instructing radial migration
via cell contact-mediated signaling (Gil-Sanz et al., 2013).
Heterophilic cell adhesions mediated by nectin1-expressing
CR cells stabilize the leading processes of nectin3-expressing
migrating projection neurons to anchor to the MZ, facilitating
their somal translocations toward the cortical surface. CR cells
extend long horizontal axons within the MZ and also act as
surface docking sites of synaptic contacts with branches of apical
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dendrites (Marin-Padilla, 1998; Meyer et al., 1999; Soriano and
Del Rio, 2005). Recent reports have revealed the roles of CR
cells in areal patterning and neurogenesis (Griveau et al., 2010;
Teissier et al., 2012), indicating that CR cells have multimodal
roles in instructing the early steps of cortical assembly.

In turn, the roles of SP cells in neocortical scaffolds were
first revealed through ablation studies, in which SP cells in cats
were eliminated using kainate. These experiments demonstrated
that lateral geniculate neuron (LGN) axons fail to innervate
their normal targets, which are layer 4 thalamorecipient neurons
in the visual cortex (Ghosh et al., 1990). An interesting
experiment to shift the tangential alignment of SP and overlaying
primary somatosensory area (S1) layer 4 neurons through the
electroporation of Fgf8 in the E11.5 mouse neocortex has
revealed that thalamocortical axons can still recognize and
innervate layer 4 cells via contact with SP neurons, albeit in
a positionally shifted manner (Shimogori and Grove, 2005).
Together with the observation that thalamic axons relay through
superficially mispositioned SP cells in the reelermutants (Molnar
et al., 1998), these results indicate the primary roles of SP cells
in guiding thalamic axons to enter the cortical plate (CP) and
respond to cues provided by layer 4 neurons. SP cells also
act as a gateway for neurons to enter the overlaying CP and
accommodate massive numbers of neurons during and after
their migration, thereby serving as a physical border between
the CP and the intermediate zone (IZ). Perturbations in the
expression of multiple genes in postmitotic cells result in halted
migration and accumulation of neurons in the IZ (Miyoshi and
Fishell, 2012; Ohtaka-Maruyama et al., 2013). SP cells are also
required to assemble the functional neocortical circuit, where the
ablation of SP cells disrupts the formation of ocular dominance
columns (Ghosh and Shatz, 1992; Kanold et al., 2003). Although
the molecular functions of SP cells have yet to be identified,
extensive transcriptome analysis has revealed multiple cell
surface components and secretory molecules that are expressed
in both mouse and human SP cells, including CTGF, Cdh18,
Efna5 (Mackarehtschian et al., 1999; Oeschger et al., 2012;
Hoerder-Suabedissen and Molnar, 2013; Miller et al., 2014).

These tangentially coordinated CR cells and SP cells, with
vertically oriented RGC fibers, form a perpendicular meshwork
that enables the efficient weaving (integration) of newly generated
layers of 6 to 2/3 neurons above their recently diverged siblings.
In this view, the longitudinal radial glia serve as the warp
and horizontally piled layer neurons serve as the weft to
enable compacted neuronal accumulation and stratified CP. This
process facilitates the efficient compression of massive number of
neurons within a hard-boned skull-constrained space. RGCs, CR
cells, and SP cells are also characteristic cell types of mammalian
vertebrates, indicating that the appearance of these scaffolds
instructed a neocortex-type laminated brain structure specifically
in mammals. The numbers of CR cells and SP cells also expand
during the course of mammalian evolution, suggesting that
these neurons may have contributed to robust intercortical
connectivity in primates (Smart et al., 2002; Molnar et al., 2006;
Cabrera-Socorro et al., 2007). While many of these scaffolding
cells are eliminated during the early postnatal period (el Rio et al.,
1995; Price et al., 1997; Soda et al., 2003), a proportion of CR

cells and SP cells survive in the postnatal neocortex, suggesting
that these neurons also play roles in modulating the mature
neocortical circuit (Kostovic and Rakic, 1980; Chowdhury et al.,
2010; Judas et al., 2010).

Molecular Mechanisms of Neuronal
Identity Transitions

Following the dispositions of the preplate cells and conversion
from symmetric to asymmetric cell division, RGCs begin to
produce layer projection neurons through sequential rounds of
cell cycles (Takahashi et al., 1999). Neurons are successively
generated and migrate past the pre-existing neurons to occupy
the more superficial layers, resulting in an inside-out lamination
of the neocortex (Angevine and Sidman, 1961). Therefore,
neuronal birthdate is highly correlated with final laminar fate,
in which neurons that occupy the same radial positions are
typically generated within the same temporal window and
share common projection targets. Deep-layer (DL) neurons,
which include layers 5 and 6, consist mainly of corticofugal
projection neurons and project to subcortical targets. These
neurons express transcription factors Fezf2, Ctip2, Tbr1, or
Sox5 (Hevner et al., 2001; Arlotta et al., 2005; Kwan et al.,
2008; Lai et al., 2008; Han et al., 2011; McKenna et al., 2011),
according to their projection subtypes, including the spinal cord,
tectum, and thalamus (Hirata et al., 2004; Inoue et al., 2004;
Chen et al., 2005a,b, 2008; Molyneaux et al., 2005; Molnar and
Cheung, 2006; Yoneshima et al., 2006). In turn, upper-layer (UL)
neurons, which include layer 2/3 projection neurons and layer
4 thalamorecipient neurons process higher-order information
through intracortical connections. Layer 2/3 neurons typically
express the transcription factors Cux1/2, Brn1/2, Satb2 (McEvilly
et al., 2002; Sugitani et al., 2002; Nieto et al., 2004; Alcamo
et al., 2008; Britanova et al., 2008; Franco et al., 2012)
and project their axons to the ipsilateral and contralateral
cortex, thereby establishing bilateral cortical connections and
information integration. Layer 4 neurons, in turn, are recipient
cells for thalamocortical inputs and act as a gateway for
processing information from peripheral sensory organs. Layer
4 neurons typically exhibit unique cellular arrangements in the
primary sensory areas, maintaining topographic organization
mediated through sensory transfer. Here, we focus exclusively
on understanding the mechanisms that regulate the specification
and transitions between the major layer subtypes of the
neocortex.

Cell Competence and Lineage Restrictions
The earliest assessment of temporal neurogenesis in the cerebral
cortex was achieved through birthdating studies using tritiated
thymidine injection in mice and monkeys. These experiments
revealed that neocortical layer neurons are produced in a fixed
temporal order (Angevine and Sidman, 1961; Rakic, 1974),
implying that once progenitors switch to asymmetric cell division
mode, they undergo progressive changes in competence to
generate distinct layer subtypes (Figure 1A) (Takahashi et al.,
1999). This strictly ordered production has raised several
hypotheses concerning the mechanisms by which distinct
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layer subtypes arise from a small number of progenitor cells.
McConnell and colleagues were the first to experimentally test the
temporal differentiation capacity of cortical progenitors, using
a series of isochronic and heterochronic cell transplantation in
ferret cortices. The major findings from these studies were that,
while early-born DL progenitors can adopt later (UL) cell fates
upon transplantation to an older host environment, the converse
manipulation could not induce later-born UL progenitors to
adopt an earlier (DL) fate (McConnell, 1988; McConnell and
Kaznowski, 1991; Frantz and McConnell, 1996). While subtype-
specific markers were unavailable at the time, these studies
were the first to demonstrate that the differentiation potency of
progenitor cells is progressively restricted throughout the course
of corticogenesis.

Aside from these transplantation experiments, examining
the segregation mechanisms between laminar-specific subtypes
involved complementary approaches to test their lineage
relationships. Hence, extensive clonal analyses in mouse and
rat cortex were performed to assess when and how the layer
subtypes diverge during development. These studies revealed
that at least a portion of progenitor cells, if not the majority,
contribute to generating clones that encompass neurons of both
deep and upper cortical layers (Luskin et al., 1988; Price and
Thurlow, 1988; Walsh and Cepko, 1988, 1992; Reid et al., 1995;
Yu et al., 2009; Gao et al., 2014). Furthermore, cell culture
models testing the differentiation capacity of cortical progenitor
cells in vitro also provided the basis for intrinsic and extrinsic
mechanisms involved in these subtype transitions. In vitro,
cortical cells also followed the general trend observed in vivo:
DL neurons were commonly generated after fewer cell divisions
than UL neurons in isolated cortical progenitors, and progenitors
from later-stage embryos were more restricted in their ability
to generate earlier-born neuronal subtypes (Shen et al., 2006).
Furthermore, both mouse and human embryonic stem cell
(ESC)- and induced pluripotent stem cell (iPSC)-derived cortical
progenitors recapitulated the sequential generation of principal
layer subtypes: preplate, DL, and UL neurons (Eiraku et al., 2008;
Gaspard et al., 2008; Shi et al., 2012). These studies implied that
the defined temporal order of projection neuron subtypes in
the neocortex is controlled by temporal cues provided within
the cortical cells themselves. Here, we discuss the identity of
such cues that regulate the transitions between the major layer
subtypes.

CR Cells to Deep-layer Neurons
Both in vivo and in vitro, the appearance of preplate neurons
precedes the appearance of all other layer subtypes (Hevner et al.,
2003; Eiraku et al., 2008; Gaspard et al., 2008; Shi et al., 2012).
Here, preplate neurons are mainly CR cells based on the pan-
CR cell marker Reln; thus far, no common marker for SP cells
has been identified to test their differentiation capacity in vitro.
Because of their earliest differentiation, a simple explanation
concerning the ontogeny of CR cells may be that CR cell
progenitors represent the default state of all cortical progenitors,
thereby requiring minimum cues for their induction. However,
several reports are discordant with this view: fate-mapping
studies demonstrated that CR cells arise from discrete spatial

domains, including the cortical hem, ventral pallium, thalamic
eminence and septum, and these spatially distinct CR subtypes
exhibit different molecular expressions (Bielle et al., 2005;
Yoshida et al., 2006; Teissier et al., 2010; Zimmer et al., 2010).
These observations implied that CR cells themselves already
consist of different subtypes upon their differentiation. This
discrepancy was later resolved through independent studies
that assessed the temporal and spatial competence of CR cells,
revealing that the distinct CR origins were commonly repressed
by transcription factors Foxg1 (Kumamoto et al., 2013) and Lhx2
(Roy et al., 2014). Through a series of gene knockout studies,
the removal of either of Foxg1 and Lhx2 at developmental onset
resulted in the expansion of CR origins of cortical hem-, ventral
pallium- and thalamic eminence-derived character (Hanashima
et al., 2007; Mangale et al., 2008; Kumamoto et al., 2013; Roy
et al., 2014). Interestingly, these transcription factors appear to
act largely independently of each other, where their temporal
knockout studies revealed an earlier competence window of
neocortical progenitors to revert to CR regional identities upon
the loss of Lhx2 (E10.5–E11.5) compared to the loss of Foxg1
(E13) (Hanashima et al., 2007; Mangale et al., 2008; Chou et al.,
2009; Kumamoto et al., 2013; Roy et al., 2014). These results were
consistent with the distinct consensus binding sequences of these
two transcription factors (Hatini et al., 1994; Wilson et al., 2008).

The termination of early CR cell production is instructed
through combinatorial repression by Foxg1 and Lhx2; however,
the mechanisms by which progenitor cells switch from CR
cell to DL neuron production required further mechanistic
insights. Although the primary targets of Lhx2 involved in this
event remain to be identified, the transcriptional regulatory
network underlying this early subtype transition was revealed
through an experiment in which Foxg1 expression onset was
synchronously manipulated in cortical progenitors in vivo. When
Foxg1 was induced at a progressively later stage during the
corticogenesis period, progenitors converted to producing DL
neurons (Kumamoto et al., 2013), enabling the examination of
the temporal gene expression dynamics within the progenitors
involved in this transition. These genome-wide studies revealed
that the switch from CR cells to DL neurons involves the
rapid repression of multiple transcription factors, followed
by the delayed induction of upregulated transcription factors
(Kumamoto et al., 2013). These results also demonstrated that
the progenitor cells of CR cell and DL neuron fates share a
common competence window, in which Foxg1 is both necessary
and sufficient to confer the DL neuron fate over the CR
cell fate. Taken together, the earliest transition of CR-to-DL
neurons requires two sequential steps, which are mediated
through the suppression of CR cell identity and the switch to
projection neuron fate through the Foxg1 downstream cascade
followed by cross-regulatory determination within layer neurons
through subtype-specific determinants. Foxg1 itself is induced
by FGF8 expressed in the anterior neural ridge (Shimamura
and Rubenstein, 1997) and subsequently expands caudally, thus
the onset of Foxg1 expression represses multiple transcription
factors in an opposing rostral-to-caudal gradient, resulting in
a spatiotemporal switch from CR cell to DL neuron identity
(Kumamoto et al., 2013). This process also implies that the
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expansion timing of Foxg1 determines the total number of CR
cells produced in the cortex, which provides a mechanism to
generate sufficient numbers of CR cells to cover the entire surface
area prior to the onset of DL neurogenesis and to instruct the
migration of later-born projection neurons.

Deep-layer to Upper-layer Neurons
In contrast to the transition from CR cells to DL neurons,
which is mediated by Foxg1 and its downstream gene network,
the switch from DL to UL neurons appears to utilize multiple
regulatory cascades. In the aforementioned Foxg1 conditional
mutant mice, the induction of Foxg1 at progressively later stages
during development (E14.5–E16.5) showed that UL progenitors
are unable to bypass DL competence for their production even at
the latest period of corticogenesis (Toma et al., 2014) (Figure 1B).
The emergence of UL neurons was also assessed through lineage
studies, in which Foxg1 and Cre constructs were introduced into
Foxg1−/−; Rosa26-stop-YFPmice, thereby labeling all progeny of
Foxg1-introduced progenitors. These studies revealed that both
DL and UL neurons were labeled with YFP, which determined
that UL neurons emerge from cells with a Foxg1-lineage after
the onset of Foxg1 expression (Toma et al., 2014). Birth-
dating studies further confirmed that UL generation followed
DL neurogenesis in these cells, demonstrating that the cascade
downstream of Foxg1 triggers the sequence of DL and UL
neuron production. These results also indicated that neocortical
progenitors were biased toward DL over UL neuron fate upon
Foxg1 induction.

The molecular logic underlying this DL neuron fate bias of
progenitors was again uncovered through Foxg1 downstream
transcriptome analysis. Of the layer transcription factors, Tbr1,
which is expressed in the majority of early-born neurons
(Hevner et al., 2001) and establish the corticothalamic projection
neuron identity within the layer-subtype transcriptional network
(Han et al., 2011; McKenna et al., 2011; Srinivasan et al.,
2012), exhibited a significant downregulated response to Foxg1
induction. A reporter assay revealed that this repression was
mediated through a 4-kb Tbr1 promoter region consisting of
multiple conserved Foxg1 binding sequences. The introduction
of Foxg1 into E14.5 Foxg1−/− cortices demonstrated that this
downregulation of Tbr1 preceded the onset of Ctip2 and Fezf2
protein induction (Toma et al., 2014). Collectively, these data
show that Tbr1 repression by Foxg1 confers the sequence
of DL and UL competence by establishing the bias to DL
(Fezf2ON/Satb2OFF/Ctip2HI) identity (blue cells indicated in
Figure 1F).

The subsequent transition from DL to UL neurogenesis
requires the repression of DL determinants to terminate
DL competence, which involves both negative feedback and
epigenetic regulations. In this regard, in experiments with the
ablation of post-mitotic DL neurons in vivo, the relative DL
neuron:UL neuron ratio was maintained despite the ablation
of a significant number of DL neurons. The injection of EdU
to monitor the neurons that were born from progenitors in
post-ablated cortices revealed that the ablation of DL neurons
prolonged the production period of DL neurons themselves, and
UL neurons born at E14.5 also decreased alongside increased DL

production (Figure 1C). Collectively, these results demonstrate
that the onset of UL neuron generation is controlled by the
termination of DL competence, which is propagated through
post-mitotic DL neurons (Toma et al., 2014). Interestingly, this
signal appears to act qualitatively rather than quantitatively
in vivo, where only a few postmitotic DL neurons are required
to induce UL neurogenesis (Toma et al., 2014), in contrast
to the requirements in vitro (Shen et al., 2006; Eiraku et al.,
2008; Gaspard et al., 2008; Kadoshima et al., 2013). These
observations raise the possibility that this feedback signaling
may be propagated by short-range signaling through cell–cell
interactions.

While these studies showed that both DL and UL lineages
are generated downstream of the Foxg1 cascade, whether the
generation timing differences between the DL and UL neurons
are achieved through temporal changes in competence within
common progenitors (Guo et al., 2013; Gao et al., 2014; Eckler
et al., 2015) or through extended mitosis specifically in early UL-
committed cells (Franco et al., 2012; Gil-Sanz et al., 2015) is
unclear. Because the termination of DL competence is required
for both cases, negative feedback from postmitotic neurons
appears to be the primary source of this cue, whereas in the
latter model, additional mechanisms are required to extend
mitosis in UL-committed cells. Although the decrease in UL
neurons generated with extended DL neurogenesis upon ablation
of DL neurons suggests the presence of common progenitors
that can contribute to both DL and UL neurons, it is possible
that the prolonged DL production in DL-ablated cortices may
result in extended proliferative cues for UL cells. This regulation
has been suggested in Sip1-expressing postmitotic neurons that
maintain low expression levels of multiple secretory protein
genes, including Ntf3 (Seuntjens et al., 2009; Parthasarathy et al.,
2014). The accumulation of these proteins may be required to
induce the differentiation of UL progenitors (Seuntjens et al.,
2009) (Figure 1D). In this case, since Ntf3 knockout alone or
Ntf3; Sip1 double knockout mice do not exhibit changes in
the Ctip2+ neuron:Satb2+ neuron ratio compared with wild-
type or Sip1 knockouts, respectively (Parthasarathy et al., 2014),
Sip1 may act through the repression of additional molecule(s)
in this event (factor X indicated in Figure 1F). The extended
DL neurogenesis achieved through the ablation of DL neurons
may itself sustain low levels of these signaling molecules,
thereby maintaining the UL-committed cells as progenitor cells
for a prolonged period of time. As UL projection neurons
mediate higher-order information processing, and their numbers
expand in gyrencephalic mammals (Aboitiz and Montiel, 2003;
Schoenemann et al., 2005), these feedback mechanisms also
provide a new perspective as to how cell type transitions adapt
to increases in cortical size, gestational period, cell cycle, and
division modes (Fietz and Huttner, 2011; Lui et al., 2011) to
balance the production of UL with DL neurons in different
mammalian species (Striedter, 2005; Abdel-Mannan et al., 2008).

Studies have indicated that the transition from DL to
UL neurogenesis is also controlled by epigenetic mechanisms.
Ring1B, a component of the polycomb-repressing complex,
represses Fezf2 expression in the late corticogenesis phase to
shift the progenitor competence from DL to UL neurons. In
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FIGURE 1 | Mouse mutants that exhibit shifts in temporal subtype

transitions. (A–E) Boxes indicate temporal progression of neurogenesis in

wildtype and conditional knockout mice and in DL-ablated mutant mice.

Bottom scheme in each box indicates production of respective subtypes

based on representative birthdating experiments depicted from each mutant

analysis. (B) Foxg1 E14.5 induction: analysis from E9.5 to 14.5 Foxg1 OFF in

Foxg1tetOFoxg1 mice (Kumamoto et al., 2013; Toma et al., 2014), (C)

DL-ablated mice: mice in which newly-born DL neurons were ablated

through consecutive tamoxifen administration at E11.5, E12.5, E13.5 in

Neurog2CreER/+; Rosa-stop-DTA mice (Toma et al., 2014). These mutants

have not been assessed for glial production. (D) Sip1 cKO: analysis from

Nestin-Cre; Sip1flox/flox or NEX-Cre; Sip1flox/flox conditional knockout mice

(Seuntjens et al., 2009), (E) Ring1B cKO mice: analysis from NestinCreERT2;

Ring1Bflox/flox mice administered tamoxifen at E13.0 (Morimoto-Suzki et al.,

2014) and E13.5 (Hirabayashi et al., 2009). CR, Cajal-Retzius; DL,

deep-layer; UL, upper-layer; RGC, radial glial cell; cKO, conditional knockout.

(F) Molecular mechanisms of neuronal subtype transitions during

corticogenesis. Cortical progenitor cells at earliest stage express multiple

transcription factors including Tbr1 and differentiate to CR cells. Induction of

Foxg1 by FGF8 represses Tbr1 in the layer transcriptional network, switching

the progenitor fate to DL production. The transition from DL to UL neurons is

regulated by signals propagated from postmitotic DL neurons, terminating

DL production through negative feedback. However, DL neurons also

express Sip1, which represses DL to UL transition through presumptive

downstream molecule(s) X, in which the progressive accumulation of these

molecule(s) may facilitate DL to UL and subsequent UL to gliogenesis

transitions. The H3K27me3 level and Ring1B binding at the Fezf2 promoter

also increases over time, facilitating the DL-UL transition.

knockouts that disrupt the expression of Ring1B, Ctip2+ DL
neurons are increased and Cux1+ UL neurons are decreased
(Morimoto-Suzki et al., 2014) (Figure 1E). During this process,
the H3K27me3 epigenetic mark is increased on the promoter
region of Fezf2, and Ring1B binds to this marked region to
suppress Fezf2 gene expression (Figure 1F). In turn, in mutants
in which ESET histone methyltransferase was ablated, the
population of UL neurons expands at the expense of DL neurons
(Tan et al., 2012). This accelerated UL production, however,
prematurely decelerates at E16.5, which is the peak of normal
UL neurogenesis. As a result, the production of UL neuron
numbers is not significantly affected. Because neuronal survival

and proliferation is also affected in ESET cKO mice, ESET
may regulate the transition from DL to UL neurons indirectly
through these events (Tan et al., 2012). In the future, studies that
examine gene locus-specific and time-dependent mechanisms
that regulate chromatin modification will likely provide further
insights into the epigenetic mechanisms that govern temporal
neuronal identity transitions.

Upper-layer Neurons to Gliogenesis
The switch from UL neurons to gliogenesis represents the latest
transition in corticogenesis; as this step involves the termination
of neurogenesis, the timing of its transition determines the overall
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number of neurons produced in the neocortex. Here, we mainly
refer to the transition from UL neurons to astrocytes, which are
generated earlier than their glial counterparts, oligodendrocytes
(Bayer and Altman, 1991; Jacobson, 1991). Dissociated cells from
embryonic rodent brains revealed highly reproducible timing of
the appearance of neurons and glia in vitro, and the generation of
glia required fewer rounds of cell division in older cortex-derived
progenitors than in progenitors from younger cortex (Abney
et al., 1981; Qian et al., 2000), demonstrating that this neuron-glia
sequence was also preserved outside the cortical environment.
The timing of the appearance of gliogenic clones and the relative
proportions of neurons and glia that arise from a single cortical
progenitor were also assessed through in vivo clonal analysis
using retroviral vectors (Reid et al., 1995;Mione et al., 1997; Costa
et al., 2009; Gao et al., 2014) and transgenic mice (Magavi et al.,
2012). These studies indicated that both neuron-restricted and
bipotent (that produce neurons and glia) progenitor cells appear
early in the developing cortex (E10–E13 in mice) (Costa et al.,
2009; Gao et al., 2014). Of all these labeled clones, approximately
16% were bipotent (Gao et al., 2014), implying that 1 out of
6 asymmetrically dividing clones proceed to gliogenesis after
neurogenesis. In turn, glia-restricted progenitors were observed
mainly in later stages of corticogenesis (Costa et al., 2009).

The sequential appearance of neurons and glia in isolated
cortical cells has suggested several possible mechanisms
underlying the transition from neurogenesis to gliogenesis.
In particular, the behavior of these cells outside the cortical
environment has demonstrated that temporal cues provided in
culture were sufficient to drive these transitions. In this regard,
key molecular pathways that direct progenitors toward neurons
or astrocyte fate have been identified. Basic helix-loop-helix
(bHLH) genes play redundant roles in repressing astrocyte
identity during early- to mid-stage corticogenesis, where
compound knockout of Neurog2 and Mash1 shows precocious
astrocyte production at the expense of neurons (Nieto et al.,
2001), and exogenous Neurog1 can increase the number of
neurons and repress astrocyte differentiation (Sun et al., 2001). In
turn, the differentiation of astrocytes is mainly activated through
the Janus kinase-signal transducer and activator of transcription
3 (JAK-STAT3) pathway (Bonni et al., 1997). However, both
JAK-STAT signaling components and activation ligands are
present even during the neurogenesis phase (Molne et al., 2000),
implying that the temporal switch from repression to activation
of this pathway is crucial for the UL neuron to glia transition.

In this regard, polycomb group (PcG) protein-mediated
epigenetic mechanisms play key roles in this transition. PcG
proteins, which repress theNeurog1 promoter in a developmental
stage-dependent manner, suppress the Neurog1 locus to restrict
the neuronal competence of progenitors and promote the
transition from neurogenesis to gliogenesis (Hirabayashi et al.,
2009). The inactivation of PcG by knocking out Ring1B
and Ezh2 genes extends the neurogenesis period and delays
the transition to astrocyte genesis (Hirabayashi et al., 2009).
Interestingly, this shift in neuron-to-glia transition appears
to depend on the time window of Ezh2 removal: whereas
conditional knockout of Ezh2 at E12.5 results in a prolonged
neurogenesis and delayed gliogenesis (Hirabayashi et al., 2009),

the removal of Ezh2 before the onset of neurogenesis results in
the accelerated neurogenesis and also early onset of gliogenesis
(Pereira et al., 2010). Thus, Ezh2 may independently regulate
the switch from symmetric to asymmetric cell divisions in
RGCs, which later alters the timing of neuron-to-glia switch in
cortical progenitors. STAT signaling increases during the later
corticogenesis phase through a positive autoregulatory feedback
mechanism, thereby facilitating astrocyte production during
the perinatal stages. The repression of astrocyte-specific genes
during the neurogenesis period is also mediated through DNA
methylation, in which DNA methyltransferase gene DNMT1
knockout results in the upregulation of JAK–STAT signaling
and early transition to astrocyte differentiation. Interestingly, the
progenitor potential to switch from neurogenesis to gliogenesis
is also regulated through a progressive global condensation of
chromatin. The overexpression of the high-mobility group A
proteins HMGA1 and HMGA2 in the E15.5 mouse neocortex
maintains progenitors that express Tbr2, a marker for immature
neuronal precursors, at a significantly late stage of corticogenesis
(Kishi et al., 2012).

The latest transition from neurogenesis to gliogenesis also
requires feedback mechanisms that instruct progenitors to
switch competence from neurogenic to gliogenic progenitors.
It has been reported that Fgf9, which is upregulated in
postmitotic neurons during the later phase of the corticogenesis
period, enhances the switch to gliogenic competence. In this
regard, Sip1, which suppresses the expression of Fgf9 during
the neurogenic period, is gradually downregulated during
the progression of corticogenesis, which derepresses Fgf9
expression and facilitates the gliogenic competence transition
(Seuntjens et al., 2009). Cardiotrophin-1 (CT-1), a member
of the interleukin-6 family of neurotrophic cytokines, is also
expressed in post-mitotic neurons and instructs the cortical
progenitors to generate astrocytes through the gp130-JAK-
STAT pathway. The introduction of this neurotrophic cytokine
induces premature gliogenesis, whereas perturbations in the
gp130-JAK-STAT pathway delay the onset of gliogenesis
(Barnabé-Heider et al., 2005). Collectively, the transition
from neurogenesis to gliogenesis utilizes compound regulatory
cascades to progressively restrict the neurogenic potential of
progenitor cells during the late stage of corticogenesis.

Subtype-specific Integration and
Neocortical Assembly

Following the generation of diverse cell types, the precise
integration of these cells is essential to the formation of the
neocortical circuit. Themigration of diverse neurons to a location
away from their place of origin enables efficient wiring between
distinct classes of neurons and promotes connection between
the subtypes along the radial and tangential axis. Following
the exit from the cell cycle, many neocortical neurons migrate
along a stereotypic route from their place of origin to their final
allocation; however, growing evidence has shown that distinct
subtypes dynamically change patterns of migration en route by
switching their responsiveness to temporal and spatial guidance
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cues. Here, we highlight such features that involve subtype-
specific modes of neuronal integration during the assembly of the
neocortex.

Migration Modes of Preplate Neurons
The patterns of neuronal migration of early-born preplate
neurons have begun to be rapidly uncovered over the past
years, illuminating their various integration routes upon entering
the neocortical primordium. These disparate features likely
reflect their molecular diversity acquired through their distinct
spatial origins (Meyer et al., 1999, 2002; Griveau et al., 2010;
Pedraza et al., 2014). As preplate neurons are the earliest
neurons to migrate into the neocortex, they have the flexibility
to move without much physical restriction in the absence of
abundant radial glia or axonal fibers. While the spread of
these neurons is clearly distinct from radial migration of later-
born projection neurons, it is also somewhat different from
a directional tangential migration, in which neurons exhibit a
coordinated migration along the defined route, as observed in
GABAergic interneurons from the ganglionic eminence to the
cerebral cortex. The experimental evidence on the migration
patterns of CR cells came first from fate-mapping studies of
these neurons by the exo utero electroporation of lacZ-expressing
plasmids in distinct regions of the pallium, where cells labeled
in the dorsomedial pallium with lacZ migrate over the cortical
surface through tangential dispersion (Takiguchi-Hayashi et al.,
2004). These features were further confirmed by the genetic fate-
mapping of distinct CR subtypes cells using Wnt3a and Dbx1
knock-in mice (Bielle et al., 2005; Yoshida et al., 2006). These
studies revealed that in addition to CR cells of the cortical
hem (medial pallium) origin, the ventral pallium-derived CR
cells also migrate along the surface of the developing cortex
(Bielle et al., 2005). This behavior suggests that the “tangential
spreading” property may be a fundamental feature of most CR
cells generated from distinct sources.

Although CR cells arise from a relatively small district
at the pallial border (Figures 2A,C,D), the unique surface
spreading feature that enables CR cells to cover the entire
cortical surface implies that the dispersion of these neurons
may be achieved through either self-repulsive behavior and/or
attractive cues provided along the route of their migration.
Indeed, studies indicate that CR cells utilize both repellent and
attractive cues to facilitate their dispersion along the tangential
axis (Figures 2B,E). Here, both whole-mount cortical culture
and mathematical modeling indicate that contact-mediated
repulsion is necessary to optimize the cortical coverage of CR
cells (Villar-Cerviño et al., 2013). In this study, CR cells of
homotypic or heterotypic origins (i.e., cortical hem and ventral
pallium or septum) (Figures 2C,D) exhibit similar repulsive
responses, indicating that the CR cells of distinct sources
can recognize each other to form spatial territories, mediated
through the expression of multiple ephrin signaling molecules
(Villar-Cerviño et al., 2013) (Figure 2B). This mechanism is
consistent with the observation that CR cell coverage from
distinct origins is highly compensatory, where ablation of either
cortical hem-derived CR cells (Yoshida et al., 2006), septum-
derived CR cells (Griveau et al., 2010), or combinatorial CR cell

ablation of multiple sources (Tissir et al., 2009) results in the
redistribution of alternative subtypes along the tangential axis. In
these experiments, even upon the ablation of 84% of CR cells,
Reln expression was still detectable at the cortical surface (Tissir
et al., 2009), underpinning the highly compensatory features
of Reln-expressing cells upon developmental perturbation. By
contrast, the loss of septum-derived CR cells results in a
shift in areal positioning during the postnatal stages (Griveau
et al., 2010), suggesting that regional subtypes and their
territorial disputes may be an important feature of neocortical
tangential organization. In addition to these self-repulsive “tiling”
properties, reports have indicated that CR cells also utilize
attractive guidance cues. In particular, the chemokine CXCL12,
expressed in the meninges, exerts its action through both of its
receptors CXCR7 and CXCR4 to facilitate the surface migration
of CR cells that express these receptors (Borrell and Marin, 2006;
Trousse et al., 2014) (Figure 2E). The spatiotemporal expression
of these receptors is slightly different: CXCR7 is expressed in
most CR cells by E11.5 and later downregulated, whereas CXCR4
is predominantly expressed in cortical hem-derived CR cells at
E11.5 and onward (Schönemeier et al., 2008; Tiveron et al., 2010),
and knockout of either of these genes results in the ectopic
distribution of a fraction of Reln-positive CR cells to deeper
positions in the CP. Interestingly, CXCL12/CXCR4 signaling
appears to be further modulated through Sema3E/PlexinD1
signaling, where the loss of PlexinD1 facilitates the migration
of cortical hem-derived CR cells to more dorsomedial regions
(Bribian et al., 2014) (Figure 2E).

In contrast to CR cells, the migration and integration
properties of SP cells are worthy of further exploration.While the
ontogeny of SP neurons has not been fully clarified, fate-mapping
studies imply that these neurons contain at least two distinct
lineages (Gao et al., 2014; Pedraza et al., 2014). Retroviral lineage
tracing revealed a proportion of SP cells co-labeled with DL and
UL neurons in the neocortex, indicating the common lineage
between these subtypes and the cortical VZ origin of SP cells
(Gao et al., 2014) (Figure 2E). However, SP cells have also been
observed at the pallial boundary; specifically, a subpopulation
of SP cells arises from the rostromedial pallium (Pedraza et al.,
2014) and migrates dorsally to invade the cortex (Figure 2C).
The diversity in their molecular repertoire and ontogeny (Miller
et al., 2014) implies that SP cells may also possess subtype-specific
integration and function during cortical assembly, and merits
further study.

Radial Integration of Neocortical Subtypes
The lamination of the cerebral cortex is largely attributed to
the unique radial migrating feature of projection neurons in the
mammalian brain system, in which identical migration modes
have not been observed thus far in other amniote cortices
(Nomura et al., 2008, 2013b; Lui et al., 2011; Jarvis et al.,
2013; Montiel and Molnar, 2013). This feature contributes to
the distinctive cytoarchitecture of the neocortex and neural
processing in mammalian vertebrates, despite the conserved
components of neuronal subtypes based on gene expression and
connectivity patterns (Suzuki et al., 2012; Jarvis et al., 2013;
Nomura et al., 2013a).

Frontiers in Neuroscience | www.frontiersin.org August 2015 | Volume 9 | Article 274 | 15

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Toma and Hanashima Neuronal subtype transition and integration in the neocortex

FIGURE 2 | Birth and integration of early-born preplate neurons.

(A,B) Whole view of the mouse neocortex. (C,D) Indicate coronal

sections of (A) at rostral (C) and caudal (D) levels, (E) indicates

tangential sections of (A). Colored regions indicate respective

domains of CR cell origins (pallial septum, cortical hem, choroid

plexus, ventral pallium/thalamic eminence) and SP cell origins (pallial

septum and cortical VZ). Lines and their colors indicate the

migration routes of CR cells (solid lines) and SP cells (dashed

lines) arising from respective regions. Yellow regions indicate

meninges, which are the primary source of CXCL12 ligands. CXCR7

and PlexinD1 are expressed in most CR cells, whereas CXCR4 is

predominantly expressed in cortical hem-derived CR cells. In

addition, CR cells express multiple ephrin ligands and receptors,

which act as contact-dependent repulsive cues within both

homotypic and heterotypic CR cell subtypes. Sema3E is expressed

in a caudomedial-high to rostrolateral-low gradient in the cortical

VZ, which controls the pace of migration of CR cells that express

PlexinD1.

In general, the patterns of birth and migration of cortical
projection neurons are considered to conform the following
rules: each layer of neurons arises from the VZ and SVZ
progenitors and moves radially toward the pial surface via multi-
step guided migration processes. Broadly, this process involves a
series of migration and positioning events, including multipolar-
to-bipolar transition (Tabata and Nakajima, 2003; Noctor et al.,
2004; Tabata et al., 2009), radial glia-guided locomotion (Rakic,
1972; O’Rourke et al., 1992; Nadarajah et al., 2001), detachment
from radial glia (Pinto-Lord, 1982; Gongidi et al., 2004; Elias
et al., 2007), and terminal somal translocation (Nadarajah et al.,
2001; Sekine et al., 2011). The repetition of these events by
sequential cohorts of neurons enables newly born neurons to
migrate past their predecessors and take a more superficial
position within the CP, establishing an “inside-out” neuronal
distribution pattern (Angevine and Sidman, 1961; Rakic, 1974).
The earliest evidence that layer projection neurons may utilize
a subtype-specific migration mode came from a time-lapse
imaging study of mouse cortical slices obtained from different
developmental stages (E13–16) and labeled with Oregon Green
to visualize individual neurons (Nadarajah et al., 2001). These
experiments revealed that early-born subtypes predominantly
undergo somal translocation to move toward the pia, which is
later replaced with radial glia-guided locomotion events. The
switch in these events is correlated with the overall increase in

distance from the ventricular zone to the pial surface, where
early-generated DL neurons require a shorter distance to migrate
using extended basal processes. Consistent with this view, DL and
UL progenitors appear to use distinct molecular machineries to
enter the CP, in which UL but not DL neurons are susceptible to
the loss of cyclin-dependent kinase 5 (Cdk5) activity (Hatanaka
et al., 2004) (Figure 3). Furthermore, while Reln is required
for both DL and UL neuron migration, its signal propagation
appears to be mediated through distinct receptors between these
subtypes; apolipoprotein receptor 2 (ApoER2) knockout mice
exhibit a defect in Cux2-positive UL neurons but not ER81-
positive DL neurons (Hack et al., 2007). Consistent with this
observation, a recent expression study has demonstrated that
ApoER2 protein is predominantly upregulated in postmitotic
cells during the UL neurogenesis period (Hirota et al., 2015)
(Figure 3).

Studies have also suggested that the timing of the CP
entry of cortical projection neurons may also be instructed
through subtype-specific mechanisms. Expression and loss-of-
function studies have indicated that the UL neurons of the
neocortex include at least two subpopulations, Satb2+ and
Unc5d+ neurons; whereas Satb2+ neurons migrate toward the
CP immediately after their cell cycle exit, Unc5D-positive cells
undergo a longer waiting period (3–4 days) within the SVZ
(Tarabykin et al., 2001; Britanova et al., 2008) (Figure 3). The
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FIGURE 3 | Molecules that control subtype-dependent cortical

neuron integration. The migration and distribution along the radial

and tangential axis are regulated by multiple ligand/receptor molecules

expressed in neocortical subtypes. In deep layers, Ctip2-positive

subcerebral projection neurons form periodic organizations in layer 5,

observed in both the mouse and human neocortex. In humans, the

expression segregation of NOS1 in these columns is regulated by

FMRP. Upper-layer neurons require Cdk5 and ApoER2 for their

migration. Within the upper-layers, Satb2-, and Unc5d-positive neurons

represent distinct subpopulations. The latter exhibits delayed integration

into the CP through repulsive interactions, with high FLRT2 expression

at E15.5 that decreases perinatally. In turn, FLRT3 regulates the

tangential dispersion of E15.5-born UL neurons through adhesive

interactions. In turn, the radial distribution of Satb2-positive UL neurons

is regulated by Robo1. Apart from these molecules, the tangential

integration of neocortical neurons is regulated through multiple

ephrin-As, which facilitate lateral dispersion of both DL and UL

neurons. Ephrin-B1 reverse signaling, in turn, is required to limit the

tangential dispersion of ontogenic columns derived from E13.5-born

progenitor cells. MZ, marginal zone; SP, subplate.

knockout mutant of both Unc5D and its interacting fibronectin
and leucine-rich transmembrane protein-2 (FLRT2) exhibits
the acceleration of these neurons to migrate toward the CP
(Yamagishi et al., 2011), implying that the timing of integration of
UL neurons is determined through subtype-dependentmolecular
cues.

Currently, increasing numbers of molecules have been
identified that control the early phase of radial migration
(Caviness and Rakic, 1978; Gupta et al., 2002; Nadarajah
and Parnavelas, 2002; Tsai and Gleeson, 2005; Cooper, 2008;
Huang, 2009; Honda et al., 2011); however, little is known
about how the terminal positioning of neuronal subtypes is
established after they arrive at the surface of the CP. The
conditional ablation of genes encoding the alpha subunits of
heteromeric G proteins G12 and G13 has shown that neurons
cause overmigration at the cortical surface despite the intact
organization of CR cells, RGCs, and basal lamina (Moers et al.,
2008). In these mutants, the positioning defect appear only
in a restricted number of neurons, suggesting that alternative
mechanisms may also contribute to this event. In this context,
Robo1, a member of the family of Roundabout receptors,
regulates the radial dispersion of UL neurons in the neocortex
(Figure 3). In a series of knockout and knockdown studies,
the suppression of Robo1 was shown to result in E15-born
neurons predominantly localizing to the uppermost part of layers
2/3, in contrast to control cells that were distributed radially
in these layers. The sequential electroporation of fluorescent
reporter constructs revealed that Robo1-suppressed cells fail

to establish the characteristic inside-out neuronal distribution
and accumulate beneath the marginal zone, also resulting in
a thinner CP, as observed in Robo1 knockouts. Temporal
analysis also reveals that E14.5-born cells, unlike E15.5 or E16.5
neurons, do not exhibit changes in their positioning upon Robo1
suppression. As the majority of E14-born neurons adopt a layer
4 fate (Takahashi et al., 1999) and normally do not express
detectable levels of Robo1 (Gonda et al., 2013), these results
imply that Robo signaling acts in a subtype-restricted manner,
where layer 4 neurons are refractory to loss of Robo1 expression.
Collectively, these studies suggest that the mechanisms by which
projection neurons migrate and integrate to their radial positions
are regulated through subtype-specific codes that refine the
formation of neocortical layers.

Tangential Dispersion of Neocortical Neurons
Following extensive histological studies of Golgi impregnated
brains, the periodic neuronal arrangements within the cerebral
cortex have motivated scientists to decipher the spatial and
functional codes that drive the circuit of the neocortex. However,
in contrast to the discernible laminar organization of neocortical
neurons (Brodmann, 1909), the existence of definable anatomical
cellular organization across tangential dimensions has remained
less clear. Following Lorente de No’s hypothesis of translaminar
cellular modules, Mountcastle (1957) proposed that vertical
columns of neurons in the cerebral cortex are fundamental
processing units of the neocortex, a theory inherited by Hubel
and Wiesel, leading the concept of cortical modules and

Frontiers in Neuroscience | www.frontiersin.org August 2015 | Volume 9 | Article 274 | 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Toma and Hanashima Neuronal subtype transition and integration in the neocortex

receptive fields. Although electrical recordings have revealed
functional clustering and neuronal interactions along the cortical
tangential dimensions, whether such modules could be defined
by their anatomical and molecular character has remained
elusive. However, it is increasingly becoming clear that multiple
molecules may contribute to the efficient tangential mixing of
neocortical projection neurons.

The functional analysis of Ephrin signaling has demonstrated
that Eph receptor A (EphA) and ephrin A (Efna) signaling
are essential for the assembly of cortical columns through the
lateral dispersion of clonally related neurons (Torii et al., 2009)
(Figure 3). Furthermore, a recent study revealed that ephrin-B1
also regulates the tangential motility of projection neurons, where
gain-of-function of ephrin-B1 results in abnormal neuronal
clustering. Conversely, ephrin-B1 knockouts display a wider
lateral dispersion, resulting in the enlargement of ontogenic
columns (Dimidschstein et al., 2013) (Figure 3). Similarly, FLRT-
mediated signaling has also been shown to regulate the early
tangential spread of projection neurons, in which abnormal
neuronal clustering of E15.5-born neurons was observed in the
tangential but not the radial axis in FLRT3 conditional knockout
mice. Together, these observations established the molecular
basis that facilitates the tangential arrangement of neocortical
projection neurons in general (Figure 3).

In this context, several reports have also indicated subtype-
specific mechanisms for tangential neuronal dispersions. DL
projection neurons, particularly the subcerebral projection
subtypes within layer 5, that express markers including CTIP2
and FEZF2 and nitric oxide synthase 1 (NOS1) are segregated
in periodic arrangements across the tangential dimensions
(Maruoka et al., 2011; Kwan et al., 2012) (Figure 3). In both the
developing mouse and human cortex, these neurons also exhibit
high expression correlation with the neuronal activity marker
c-Fos (Maruoka et al., 2011; Kwan et al., 2012). In mice, these
microcolumns appear to comprise multiple clones, in agreement
with clonal studies indicating more radially dispersed neurons of
sister neurons arising from a single progenitor origin (Yu et al.,
2009). Interestingly, in humans, this periodic segregation of layer
5 gene expression appears to be instructed in an area-specific
manner, through the translational regulation of NOS1 by RNA-
binding protein FMRP. Whereas, NOS1 mRNA is ubiquitously
expressed, NOS1 protein is transiently co-expressed with FMRP
during the early synaptogenesis period in layer 5 neurons of
the prospective Broca’s area and orofacial motor cortex (Kwan
et al., 2012). The translation of NOS1 is activated by FMRP
via interactions with binding motifs that are absent in mouse
Nos1 mRNA, implying that while periodic arrangements are
common features of mouse and human subcerebral projection
neurons, subsets of their gene expressions may be regulated in a
species- and area-dependent manner. These alterations to gene
expression regulation in the developing neocortical circuit may
also contribute to cognitive dysfunctions in X fragile syndrome
caused by mutations in FMRP coding gene FMR1 (Ashley et al.,
1993).

Studies have demonstrated that Reln, in addition to their roles
in instructing radial neuronal migration, also plays important
roles in the tangential migration of layer projection neuron

subtypes (Britanova et al., 2006). Migration assay using wildtype
mouse brain slices revealed that Satb2+ projection neurons,
derived from local neocortical progenitors, migrate tangentially
within the upper IZ over long distances; however in reeler mice
this migration was impaired, resulting in the reduced number of
Satb2+ cells in the subiculum (Britanova et al., 2006). Because the
tangential migration of interneurons is not affected in reelermice
(Hevner et al., 2004), Reln appears to be specifically required for
the tangential migration of Satb2+ projection neuron subtypes.
Furthermore, a recent study demonstrated that the disruption
of Reln or its receptor Dab1 expression, or overexpression of
Ephrin-A signaling components, all disrupted the preferential
electrical coupling between the radially aligned sister excitatory
neurons, which are normally observed during development (Yu
et al., 2009, 2012; He et al., 2015). Thus, the extent of tangential
dispersion of newborn neurons within and across the cortical
subtypes, may be a critical determinant for instructing the
neuronal connectivity during the initial phase of cortical circuit
assembly.

Areal Patterning of Neocortical Neurons
In addition to the segregation of the laminar subtypes,
which is achieved through cross-repressive interactions between
multiple transcription factors, it is becoming increasingly
evident that transcription factors also play pivotal roles in
establishing the regional identity of the neocortex, referred to
as cortical arealization. Seminal work examining the function of
transcription factors Emx2, Pax6, and Sp8, have revealed that
the graded expression of these genes within cortical progenitors
and their genetic interactions is required for establishing the
topographic organization of neocortical areas (Bishop et al., 2000;
Muzio et al., 2002; Hamasaki et al., 2004; Sahara et al., 2007;
Zembrzycki et al., 2007, 2013). Notably, the regional characters
acquired in cortical progenitors are susceptible to subsequent
gene expression changes in post-mitotic neurons. Conditional
knockout of COUP-TFI, an orphan nuclear receptor expressed in
a caudal-high to rostral-low gradient in the developing forebrain
(Qiu et al., 1994), results in the expansion of the frontal cortex
at the expense of a compressed occipital cortex (Armentano
et al., 2007). Interestingly, this caudal-to-rostral shift in cortical
identity is also observed in mouse mutants in which COUP-
TFI was specifically removed in post-mitotic neurons (Alfano
et al., 2014). Conversely, the expression of COUP-TFI in post-
mitotic neurons appears necessary and sufficient to restore the
area-specific expression patterns of genes including Cadherin-
8, Bhlhb5, and Id2 (Alfano et al., 2014). Similarly, Bhlhb5, a
bHLH gene expressed in a caudomedial-high to rostrolateral-low
gradient in the post-mitotic neurons, is required to establish the
regional expression of COUP-TFI, RORb, Id2, and Cadherin-8
(Joshi et al., 2008). Therefore, COUP-TFI and Bhlhb5 are not
only responsible for establishing areal patterning of neocortical
neurons, but are also reciprocally required for their regional
and laminar-specific gene expressions (Joshi et al., 2008; Alfano
et al., 2014). Although the downstream mechanisms by which
these transcription factors confer the area-specific neuronal
distribution remain to be explored, these results suggest that
cortical layer subtypes utilize region-specific cues to integrate
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into distinct cortical areas, which may contribute to different
laminar thicknesses among neocortical areas.

Perspectives

Neurological Disorders Associated with Cortical
Assembly Defects
The increased number of genes identified in their functions
for the generation and integration of neocortical subtypes,
has provided molecular link between neurological disorders
with corresponding gene mutations and mechanisms underlying
pathogenesis. Apart from the aforementioned fragile X syndrome
causative gene FMR1, perturbations of genes that play key
roles in the differentiation of neocortical layer subtypes
have been associated with a wide spectrum of neurological
phenotypes. Screening for de novo mutations in patients with
intellectual disability have identified Foxg1 and Tbr1, two of the
transcriptional regulatory network components for layer subtype
specification (see SectionDeep-layer to Upper-layer Neurons and
Figure 1F) as altered in their gene sequences (Hamdan et al.,
2014). Loss-of-function variants (point mutations, deletions,
and de novo translocations) and gene duplications of FOXG1
have been associated with phenotypes including developmental
epilepsy, agenesis of the corpus callosum, microcephaly, and
speech impairment (Shoichet et al., 2005; Bisgaard et al., 2006;
Papa et al., 2008; Yeung et al., 2009; Bahi-Buisson et al., 2010;
Mencarelli et al., 2010; Brunetti-Pierri et al., 2011). In turn, its
repression target TBR1 has also been identified as one of the
genes with recurrent de novo mutations in autism spectrum
disorders (ASD) (O’Roak et al., 2012). Coexpression network
analysis to identify the time period and regional convergence
of high-confidence ASD genes, revealed TBR1 as the most
connected ASD gene within the key convergence point in human
midfetal layers 5/6 projection neurons (Willsey et al., 2013).
The functional implications of the identified de novo mutations,
were assessed by introducing the corresponding TBR1 gene
mutations into HEK293 and SHSY5Y cell lines (Deriziotis et al.,
2014). These experiments resulted in the disruption of subcellular
localization of TBR1 and interaction with CASK, a membrane-
associated guanylate kinase also involved in ASD (Moog et al.,
2011). Similarly SATB2, an evolutionary conserved chromatin
remodeling gene that is activated in UL neurogenesis and
required for callosal projection subtype determination (Section
Deep-layer to Upper-layer Neurons and Figure 1F), is a key
gene for the 2q33.1 microdeletion syndrome (Rosenfeld et al.,
2009), and SATB2 haploinsufficiency has been associated with
significant speech delay and cognitive defects (FitzPatrick et al.,
2003; Leoyklang et al., 2007; Usui et al., 2013; Döcker et al., 2014).

Taken together, subtle mutations in the corresponding genes
can result in profound neurodevelopmental disorders in humans;
however, studies in mouse neocortex have also revealed a high
compensatory feature of neurogenesis upon robust ablation of its
subpopulations. Up to 84% of CR cell ablation does not demolish
Reln expression in the neocortex (Tissir et al., 2009), and ablation
of a significant number of DL neurons still preserves the DL:UL
neuron ratio at later stages of corticogenesis (Toma et al., 2014).
These features imply that while the differentiation of laminar

subtypes relies on the precise regulation of spatiotemporal
expression and expression levels of the key genes, the procedure
of neocortical neurogenesis and assembly is robust. Such an
adaptable system would enable cells to respond to extrinsic cues
provided within and outside the neocortex, which may underlie
the significant cortical expansion during evolution.

Future Directions
Neocortical assembly is a highly intricate process that requires
multiple layers of regulation in cell behavior at the progenitor
and postmitotic cell stages. The emerging picture of neocortical
assembly is that while the identities of neuronal subtypes are
largely determined at birth, the mechanisms by which these
neurons are navigated to their final positions involve cell type-
and context-dependent combinatorial codes that enable their
precise integration into the neocortical circuit. While the original
finding indicated that neural stem cells undergo progressive
restrictions in cell competence to sequentially produce the
principal layer types (Frantz and McConnell, 1996; Desai
and McConnell, 2000), the molecular logic underlying these
subtype transitions has only begun to unravel over the past
years. Importantly, these studies also provided new insights
into how the timing and quantity of the production of each
neuron subtype are controlled. While the appearance of RGCs
and the elaboration of early preplate cells were likely the
driving force of neocortical cytoarchitecture that enabled its
tangential expansion during evolution (Pollard et al., 2006;
Abellan and Medina, 2009), our current understanding of
the mechanisms of neocortical assembly relies heavily on the
regulatory molecules and their functions identified through
mouse studies. However, in an evolutionary context, the timing of
production and integration of each of the neuronal subtypesmust
be coordinated on a species-specific developmental time scale.
This process is a particular challenge for gyrencephalic mammals
with an enlarged cortex, which have increased gestational
period, cell cycle or division modes. Growing evidence now
demonstrates that the transitions between sequential layer
subtypes utilize a regulatory system that integrates both intrinsic
and extrinsic mechanisms. This system not only provides
qualitative cues for the migration and integration of neurons
at the correct timing but quantitatively calibrates the numbers
of each subtype based on the presence of their counterparts.
Such hierarchical transcriptional and intercellular network
organization promotes the cost-effective production and wiring
of neurons during development and evolution. Continuous
efforts to decipher the molecular mechanisms of subtype-specific
neuronal differentiation and their integration, would facilitate
our understanding of the logic that balance between economical
brain assembly and vulnerability to pathological conditions.
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Astrocytes are one of the most abundant cell types in the mammalian central nervous

system, and are known to have a wide variety of physiological functions, including

maintenance of neurons, formation of the blood brain barrier, and regulation of synapse

functions. Although the migration and positioning of neurons has been extensively

studied over the last several decades and many aspects have been uncovered, the

process underlying glial development was largely unknown until recently due to the

existence of multiple subtypes of glia and the sustained proliferative ability of these cells

through adulthood. To overcome these difficulties, new gene transfer techniques and

genetically modified mice were developed, and have been gradually revealing when and

how astrocytes develop during corticogenesis. In this paper, I review the diversity of

astrocytes and summarize our knowledge about their production and migration.

Keywords: astrocyte, oligodendrocyte, cerebral cortex, subventricular zone, gliogenesis, cell specification

Introduction

Astrocytes are among the most abundant types of glia, and the ratio of astrocytes to neurons has
been shown increase with primate evolution (Bass et al., 1971). Recent studies have indicated that
astrocytes not only provide support to neurons, but also actively regulate the physiological func-
tions of the brains, and that astrocyte dysfunction can lead to developmental and/or psychiatric
disorders (Molofsky et al., 2012; Burda and Sofroniew, 2014; Sloan and Barres, 2014). Despite their
existence in abundance and their physiological importance, the processes underlying the develop-
ment of astrocytes are largely unknown. This is partly due to the occurrence of diverse subtypes of
astrocytes. The morphologies and functions of these cells differ among sites of the brain and among
species. In addition, the cells have multiple origins and their proliferation persists into adult life,
making analysis of the fates of these cells more complex. However, the recent introduction of novel
techniques, includingmice expressing region-specific Cre recombinase and in utero electroporation
of transposon vectors have helped in revealing, at least in part, the process of normal development
of astrocytes in the brain. In this brief review article, I focus on the development of astrocytes in
the cerebral cortex. I first summarize the subtypes of astrocytes and their functions in rodents and
primates. I then describe the migration of these subtypes from the cortical ventricular zone (VZ),
and from other sites. I also describe in brief the process of development of oligodendrocytes, and
compare it to that of astrocytes.
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Heterogeneity of Astrocytes

The existence of two basic subtypes of astrocytes in rodents, the
protoplasmic and fibrous astrocytes, has been established beyond
doubt (Miller and Raff, 1984). Protoplasmic astrocytes posses
highly branched bushy processes and are widely distributed in
the gray matter. They extend endfeet to blood vessels and enwrap
them to form the glial limiting membrane, which is the outer-
most wall of the blood brain barrier (BBB). They are also closely
associated with synapses with its processes and play diverse roles,
such as clearance of glutamate (Rothstein et al., 1996; Oliet et al.,
2001), modulation of synaptic functions (Henneberger et al.,
2010; Uwechue et al., 2012), and regulation of local blood flow in
response to synaptic activities (Simard et al., 2003; Takano et al.,
2005). Protoplasmic astrocytes have also been reported to par-
ticipate in the formation and elimination of synapses (Pfrieger,
2010; Kucukdereli et al., 2011). Interestingly, the processes of
two adjacent protoplasmic astrocytes are mutually exclusive, and
occupy non-overlapping domains (Bushong et al., 2002; Ogata
and Kosaka, 2002; Halassa et al., 2007). The domain of a single
astrocyte covers about 100,000 synapses in mice (Bushong et al.,
2002), and these synapses can be simultaneously regulated by one
astrocyte as a synaptic island (Halassa et al., 2007).

FIGURE 1 | Heterogeneity of astrocytes and the multiplicity of their

origin. The three pictures represent the production and final positioning

of the astrocytes and oligodendrocytes in the developmental stages. The

stages in the mice are given above each picture (E, embryonic day; P,

postnatal day). Arrows with solid lines indicate the cell lineages

confirmed by lineage tracing experiments. Arrows with broken lines

show the hypothetic cell lineages by histological investigations, but not

confirmed by precise lineage tracing. Neurons and OPCs are not

shown. GM, gray matter; WM, white matter; M, meninges or pia matter;

PPL, primordial plexiform layer; VZ, ventricular zone; SVZ, (embryonic or

postnatal) subventricular zone; IZ, intermediate zone; CP, cortical plate;

BV, blood vessel.

On the other hand, fibrous astrocytes possess straight and long
processes and are mainly located in the white matter. In this
cell type, the expressesion level of glial fibrillary acidic protein
(GFAP), an intermediate filament protein, is higher than that in
the protoplasmic astrocyte, in which the GFAP protein is some-
times found only in the endfeet on the blood vessels (Oberheim
et al., 2009). The functions of fibrous astrocytes are not clear. At
least, these cells associate with the blood vessels via their pro-
cesses just like the protoplasmic astrocytes (Marín-Padilla, 1995).
In addition to these basic cell types, there are specialized astro-
cytes in Layer 1 of the murine cerebral cortex that show a bushy
morphology similar to that of protoplasmic astrocytes in the
gray matter, but strongly express GFAP like fibrous astrocytes.
Their processes cover the outer surface of the brain parenchyma
just under the pia matter and form the glial limiting membrane,
which continues into the other part of the glial limiting mem-
brane formed by the endfeet of the protoplasmic astrocytes, as
described above (Figure 1). GFAP-positive fibroblast-like cells
have been reported to exist on the pial surface, (García-Marques
and López-Mascaraque, 2013; Martín-López et al., 2013). These
cells also cover the outer surface of the brain with their cell bod-
ies to participate in the formation of the glial limiting membrane.
Although the subtypes of astrocytes described above, namely
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fibrous, protoplasmic and Layer-1 astrocytes, are widely found
in mammalian brains, there are at least two specific subtypes
for human or other primates (Colombo and Reisin, 2004; Ober-
heim et al., 2009; Sosunov et al., 2014). In Layer 1 of the primate
cerebral cortex, there are densely packed GFAP+/CD44+ astro-
cytes called interlaminar astrocytes (Colombo and Reisin, 2004).
These cells extend straight and poorly branched processes that
are about a millimeter long into the cortical gray matter, fre-
quently terminating on the blood vessels in Layers 2–4 (Sosunov
et al., 2014). This subtype appears after birth, and in the fetal
stages the glial constituents in the Layer 1 are similar to that
of rodents, and thus, transformation of Layer-1 astrocytes with
short processes to interlaminar astrocytes has been suggested
(Marín-Padilla, 1995; Colombo et al., 1997). The second sub-
type that is primate-specific is the varicose projection astrocytes,
which are also GFAP+/CD44+ and are situated mainly in Layers
5 and 6. This cell type extends many straight 100-µm long pro-
cesses and one to five up to 1-mm long processes with many vari-
cosities (Oberheim et al., 2009; Sosunov et al., 2014), which may
terminate in the neuropil or on the vasculature. In human, proto-
plasmic and fibrous astrocytes also exhibit unique structure. They
have been reported to be 2∼2.5-fold larger in diameter in the
human cortex than in the mouse (Oberheim et al., 2009). Human
protoplasmic astrocytes also form exclusive domains like the cells
in rodents, and a single domain covers about 2,000,000 synapses.
In the deeper layers of the human cortex, protoplasmic astrocytes
and varicose projection astrocytes coexist, and their processes are
intermingled, suggesting that they are distinct subtypes of cells
with differing functions.

Glial Production in the Cortical VZ

Astrocytes in the cerebral cortex are produced from the corti-
cal ventricular zone (VZ) or from the ventral forebrain. In the
cortical VZ of mammalian embryonic/fetal brains, there are cells
called radial glia (RG), which extend long ascending processes
called radial fibers to the pial surface and act as a scaffold for
neurons migrating from the VZ toward the pial surface. RG were
labeled as “glia” because they show several features of astrocytes,
such as glycogen granules (Schmechel and Rakic, 1979; Gressens
et al., 1992) and express GFAP, especially in the human fetus
(Levitt et al., 1981; Cameron and Rakic, 1991). However, they
are actually not differentiated glia, but neural stem cells, which
generate neurons during the early to late cortical development,
and later, glia (Fujita, 1963; Miyata et al., 2001; Noctor et al.,
2001). There is a longstanding debate on whether RG in the cor-
tical VZ are homogeneous and whether their potential changes
from neuronal production to glial production during the course
of development, or whether the RG population includes neuron-
restricted progenitors and glia-restricted progenitors even from
the early stage of cortical development and the glial progeni-
tors are in a dormant state until the late stages. Although sev-
eral lines of evidence support the latter (Levitt et al., 1981;
McCarthy et al., 2001), recent lineage tracing experiments using
mixed retroviruses (Costa et al., 2009) and the Mosaic Analy-
sis with Double Markers (MADM) technique (Gao et al., 2014)
have shown no significant numbers of glia-restricted progenitors

in the early stages. Recently, a new glial lineage tracing system
using transposon plasmid vectors, which integrates into the host
genome in the presence of transposase (Kawakami and Noda,
2004; Sato et al., 2007), has been developed. It has been demon-
strated that introduction of the transposon vector together with
the transposase expression vector by in utero electroporation
(Fukuchi-Shimogori, 2001; Saito and Nakatsuji, 2001; Tabata and
Nakajima, 2001) successfully labeled glial cells (Yoshida et al.,
2010). Using this technique, Siddiqi et al. demonstrated that
the RG were first exclusively GLAST+/Nestin+ and produced
neurons preferentially, and then GLAST+/Nestin− progenitors
emerged within the RG population in the later stages, that pref-
erentially produced astrocytes (Siddiqi et al., 2014), demonstrat-
ing a potential shift from neuronal to glial production from RG.
Moreover, Noctor et al. directly observed that the neural stem
cells first produced neurons by asymmetric cell divisions and
then the same cells differentiated into astrocytes in long-term
live imaging on slice culture (Noctor et al., 2004). Based on the
aforementioned evidence, the former hypothesis is now widely
accepted.

After specification of the glial lineage, the glial progenitors
migrate into cortical gray matter and white matter and differen-
tiate into protoplasmic and fibrous astrocytes, respectively. The
most accepted model of such migration of glial progenitors is the
direct transformation of RG (Figure 1, arrow-3, 6, 7), in which
the radial fibers are retracted to elevate the cell soma from the VZ.
This cell movement is similar to that identified in the neuronal
migration process called “somal translocation” (Nadarajah et al.,
2001), and the cells under such transformation are called trans-
forming RG (tRG). The morphology of tRG has been observed
repeatedly by Golgi staining, immunostaining for GFAP, and car-
bocyanine dye (DiI) staining (Schmechel and Rakic, 1979; Voigt,
1989; Gressens et al., 1992; deAzevedo et al., 2003). The differ-
entiation of tRG cells into astrocytes has been directly shown by
live imaging on slice culture (Noctor et al., 2004). On the other
hand, astrocytes are also thought to arise from proliferative glial
progenitors in the subventricular zone (SVZ; Figure 1, arrow-2,
4, 5). It would be of interest to know which progenitors produce
which subtypes of astrocytes. Gressens et al. administrated [3H]-
thymidine to E17 mice, after completion of neurogenesis, and
observed that the GFAP- or RC2-positive [3H]-thymidine labeled
cells (proliferative glial progenitors) were first found in the SVZ
or IZ and gradually shifted toward the pial surface and positioned
themselves in the upper cortical plate, but not in the white mat-
ter. Moreover, they administrated methylazoxymethanol acetate
(MAM), which eliminates proliferative cells, to E17 and E18mice,
and observed the greatly reduced number of protoplasmic astro-
cytes in the upper cortical plate, with no significant effect on the
generation of the fibrous astrocytes in the white matter (Gressens
et al., 1992), suggesting that the proliferative glial progenitors in
the SVZ only differentiate into protoplasmic astrocytes (Figure 1,
arrow-5). On the other hand, Cai et al. demonstrated that post-
natal genetic deletion of Olig2, a transcription factor known to be
essential for glial differentiation (Ono et al., 2008), resulted in a
severe deficit in the formation of fibrous astrocytes, but no sig-
nificant difference in the number of protoplasmic astrocytes in
the upper cortical plate (Cai et al., 2007), indicating that these
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two classical subtypes are generated in different ways. Recently,
the multi-color lineage tracing system for astrocytes, called the
“Star Track” method, has been developed by modifying the trans-
poson vector system (García-Marques and López-Mascaraque,
2013; Martín-López et al., 2013). Consistent with the results of
the traditional retrovirus lineage tracing experiments (Price and
Thurlow, 1988; Levison et al., 1993), Star Track also demon-
strated that most of the clones were either exclusively proto-
plasmic or exclusively fibrous astrocytes, suggesting that these
two types of astrocytes are generated from independent progen-
itors, although it remains unknown as to which progenitors they
might be.

The process of generation of Layer-1 astrocytes was also found
to be unique. By intensive observations using Golgi staining,
Marin-Padilla proposed that the Layer-1 astrocytes are produced
in two waves (Marín-Padilla, 1995). In the very early stage of cor-
tical development, the primordial plexiform layer (PPL), which is
also called preplate, is formed just outside the VZ. In this stage,
a subset of VZ-derived cells move onto the basal lamina under-
ling the pia matter, and differentiated into first Layer-1 astrocytes
and form the subpial glial limiting membrane (Figure 1, arrow-
1). As development proceeds the population of Layer-1 astro-
cytes adopts newly generated astrocytes probably derived from
the SVZ (Figure 1, arrow 4). It is not clear whether these two dif-
ferent origins of the Layer-1 astrocytes correspond to two types
of Layer-1 astrocytes, namely fibroblast-like and protoplasmic-
like astrocytes. Nevertheless, the Star Track analyses revealed
that the clones of these subtypes of Layer-1 astrocytes are highly
exclusive of each other (García-Marques and López-Mascaraque,
2013; Martín-López et al., 2013). It has been reported that a sub-
set of protoplasmic astrocytes arises from the Layer-1 astrocytes
or multipotent progenitors in the layer 1 of the cerebral cortex
(Marín-Padilla, 1995; Costa et al., 2007).

As the brain increases in size during the first 20 postnatal days
inmice, the number of glia increases dramatically (Bandeira et al.,
2009). However, direct transformation of RGmay produce a lim-
ited number of astrocytes, and the production of astrocytes from
the proliferative glial progenitors in the SVZ almost ends by P14
(Levison et al., 1993), suggesting the additional cell-amplifying
system. By using two-photon microscopy, Ge et al. observed
the frequent cell divisions of the protoplasmic astrocytes in P5
hGFAP-GFP mice with an open skull, but an intact pial sur-
face (Ge et al., 2012) (Figure 1, arrow-8). The dividing cells were
not migrating glial progenitors, but differentiated protoplasmic
astrocytes settled in the cortical graymatter. These dividing astro-
cytes extended highly branched processes, contacting the blood
vessels with their endfeet, and coupled with surrounding mature
astrocytes with gap junctions. This local production was esti-
mated as the major source of protoplasmic astrocytes in the adult
brain.

Multiple Origins of Glia

Glia of the cerebral cortex are also produced from the postnatal
SVZ, a specialized reservoir of glial and neuronal progenitors.
The postnatal SVZ is represented by the wedge-shaped struc-
ture between the pallium and subpallium, and is composed

of Zebrin II (aldolase C)-positive cortical VZ-derived cells,
mainly located in the periphery, and Dlx2-positive ventral
telencephalon-derived cells populating the center (Marshall and
Goldman, 2002). Lineage tracing after direct injection of a retro-
virus into the postnatal SVZ revealed that while the neurons
migrated anteriorly to the olfactory bulb and differentiated into
granular and periglomerular interneurons (Alvarez-Buylla and
Garcia-Verdugo, 2002), the glial progenitors migrated dorsally
and differentiated into both astrocytes and oligodenderocytes in
the gray and white matter (Levison and Goldman, 1993; Parnave-
las, 1999; Marshall and Goldman, 2002) (Figure 1, arrow-9). The
proportions of astrocytes and oligodendrocytes produced from
this structure show temporal changes. The glial progenitors of
the P2 SVZ in the neonatal rat gave rise to astrocytes mostly in
the cortical gray matter, while the P14 SVZ cells mainly differen-
tiated into oligodendrocytes in the white matter (Levison et al.,
1993). Within the MGE-derived cell population, Olig2 acts as a
determinant of the glial fate. Overexpression of wild-type Olig2
using retrovirus increased the production of both astrocytes and
oligodendrocytes, while overexpression of the dominant-negative
form of Olig2 increased the production of neurons (Marshall
et al., 2005).

As another possible source of astrocytes, oligodendrocyte pro-
genitors (OPCs) cannot be ignored. OPCs express several specific
markers, such as NG2 and platelet-derived growth factor recep-
tor α (PDGFRA), and are distributed widely in the late embry-
onic and postnatal brains. OPCs collected from the rat optic
nerve using A2B5mononclonal antibody, which binds to an early
OPC-specific ganglioside (Eisenbarth et al., 1979; Schnitzer and
Schachner, 1982; Raff et al., 1983a), were shown to differentiate
into GFAP+ astrocytes in culture in the presence of serum fac-
tors (Raff et al., 1983b). The resulting astrocytes from the OPCs
in culture are called type 2 astrocytes, while those from the cor-
tical VZ are called type 1 astrocytes, because they exhibit dif-
ferent morphologies. The ability of cultured OPCs to produce
astrocytes in vivo was shown by transplantation. When human
A2B5+, PSA-NCAM− cells taken from 17- to 23-week forebrains
were expanded in culture with fetal bovine serum and grafted
into newborn mice at P0 or P1, they gave rise to astrocytes as
well as NG2 cells and oligodendrocytes (Windrem et al., 2004,
2008, 2014; Han et al., 2013). These observations indicate the
potential of OPCs to produce astrocytes. However, differentiation
of OPCs into astrocytes during the course of normal develop-
ment of brains seems minor, if any. When OPCs were cultured in
serum-free medium and grafted into P5 rats, OPCs differentiated
only into oligodendrocytes but not astrocytes (de los Monteros
et al., 1993). Moreover, lineage tracing experiments using trans-
genic mice that express Cre recombinase in the OPCs (NG2-Cre
and PDGFRA-CreERT2) revealed that OPCs produce oligoden-
drocytes in the gray and white matter, but not astrocytes in the
neocortex, although some astrocytes were produced in the ventral
forebrain (Zhu et al., 2007, 2012; Rivers et al., 2008).

As described above, astrocytes in the cerebral cortex havemul-
tiple origins, and are functionally and morphologically diverse.
This raised the question of whether the progenitors at different
sites of the brain produce functionally identical populations of
astrocytes and compensate cell numbers, or produce different
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subtypes of astrocytes. The results of an experiment using the
Cre-loxP lineage tracing system showed that oligodendrocytes in
the cerebral cortex are also produced from different sites depend-
ing on the developmental stages (Kessaris et al., 2006). The first
wave of production begins around E12.5 fromNkx2.1-expressing
precursors in the MGE and anterior entopeduncular area (AEP).
The second wave begins around E15 from Gsh2-expressing LGE
and the caudal ganglionic eminence (CGE), and finally, local pro-
duction begins in the Emx1-expressing cortical VZ around birth.
When any one of these production sites is eliminated by express-
ing diphtheria toxin A fragment (DTA) under the control of the
same Cre driver mouse lines, the OPCs from the other sites cover
the deficient area (Kessaris et al., 2006). Furthermore, the oligo-
dendrocyte lineage cells derived from the Nkx2.1-progenitors
decreased during postnatal life, and were replaced with newly
generated Gsh2- and Emx1-derived cells. Hence, oligodendro-
cytes derived from three different progenitor domains are func-
tionally replaceable by each other, and compete to populate the
limiting space in the cerebral cortex. This situation is referred
to as “oligodendrocyte wars” (Richardson et al., 2006). However,
this is not the case for astrocytes, especially in the spinal cord.
Astrocytes in the spinal cord are produced from different pro-
genitor domains arrayed in a dorsal to ventral pattern in the
VZ. When one of the progenitor domains is eliminated by spe-
cific expression of DTA, neighboring astrocytes or their progeni-
tors do not enter the deficient area to cover the functions (Tsai
et al., 2012). In the cerebral hemispheres, however, substantial
amounts of glial progenitors migrate from the MGE and differ-
entiate into astrocytes as mentioned above. In fact, the astrocytes
derived from Dlx2-expressing progenitors in the postnatal SVZ
were reported to extend their endfeet onto blood vessels (Mar-
shall and Goldman, 2002), indicating that they are functionally
equivalent to the cortical VZ-derived astrocytes. Moreover, in
the transplantation experiments of A2B5+/PSA-NCAM− human
glia progenitors, astrocytes in the host mouse brains were grad-
ually replaced by human astrocytes derived from the donor cells
(Han et al., 2013; Windrem et al., 2014), suggesting cell-cell com-
petition among the astrocytes for their exclusive domains in the
limited space of the cerebral hemispheres. This situation should
be called “astrocyte wars.” Interestingly, the implanted human
glial progenitors developed in a cell-autonomous manner in the

host mouse brains, and generated protoplasmic astrocytes of
larger diameter than the host cells and also varicose projection
astrocytes having several long unbranched processes with many
varicosities. Surprisingly, the resulting humanized chimeric mice
represented higher LTP and higher learning ability than the con-
trol mice (Han et al., 2013), suggesting that the higher intellec-
tual activity of humans is, at least a part, due to the human-type
astrocytes.

Perspectives

In this article, I have described the heterogeneity of astrocytes
among different sites of the cerebral cortex and among different
animal species. I have also described the several distinct origins
of astrocytes. As at present, the relationships between the origins

and subtypes of astrocytes are not yet fully clarified. For example,
the development and specification of protoplasmic and fibrous
astrocytes are still not clear, even though they are the most basic
subtypes of astrocytes. Recent studies have revealed many aspects
of the physiological importance of astrocytes, such as the regula-
tion of synapse functions and blood flow, which has drawn a lot
of attention to the process of glial development, maturation and
plasticity. Moreover, novel methods of lineage tracing and gene
transfer for glial progenitors have been developed using trans-
poson or Cre-loxP systems, and these modern techniques are
now greatly accelerating the accumulation of knowledge in this
field. Interestingly, many glia-specific genes have been identified
as genes related to developmental and/or psychiatric disorders.
To understand the mechanisms underlying the development of
these diseases and to develop new clinical treatments, further
knowledge of glial development is important.
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Cortical neurons consist of excitatory projection neurons and inhibitory GABAergic

interneurons, whose connections construct highly organized neuronal circuits that control

higher order information processing. Recent progress in live imaging has allowed us to

examine how these neurons differentiate during development in vivo or in in vivo-like

conditions. These analyses have revealed how the initial steps of polarization, in which

neurons establish an axon, occur. Interestingly, both excitatory and inhibitory cortical

neurons establish neuronal polarity de novo by undergoing a multipolar stage reminiscent

of the manner in which polarity formation occurs in hippocampal neurons in dissociated

culture. In this review, we focus on polarity formation in cortical neurons and describe

their typical morphology and dynamic behavior during the polarization period. We also

discuss cellular and molecular mechanisms underlying polarization, with reference to

polarity formation in dissociated hippocampal neurons in vitro.

Keywords: neuron, polarization, axon, cerebral cortex, imaging, excitatory cortical neuron, inhibitory cortical

neuron

Introduction

Neurons are highly polarized cells that typically exhibit a single axon and several dendrites. Den-
drites receive incoming signals at the synapse and convey them to the soma. These signals trigger
action potentials at the level of soma, which propagate along the axon and are transmitted to target
cells at a presynaptic site. A critical question in neurobiology is how neurons acquire axon-dendrite
polarity, a property required for directional information flow in the nervous system.

Axon-dendrite polarization has been historically examined using cultured, dissociated hip-
pocampal neurons (Dotti et al., 1988). These neurons initially appear symmetric, extending and
retracting several immature neurites of similar length. Elongation of a single process, the one that
will become the axon, breaks this symmetry. Thus, based on this model, neuronal polarity forma-
tion has been believed to result from a stochastic symmetry-breaking event. However, more recent
morphological and imaging studies in vivo or in situ (in in vivo-like conditions that maintain an
intact three-dimensional structure surrounding immature neurons) suggest that several types of
neurons establish neuronal polarity by inheriting apicobasal polarity from neuroepithelial progeni-
tors or maintaining front-rear polarity in migrating cells (Barnes and Polleux, 2009; Hatanaka et al.,
2012). Therefore, it remained uncertain whether these activities occurred in vivo and, if so, whether
they were regulated by similar events as that appear in cultured hippocampal neurons.

The cerebral cortex is evolutionary the youngest and the most complex region of the brain. It is
composed primarily of excitatory neurons, which are glutamatergic, and by a smaller proportion of
inhibitory neurons, which are GABA (γ-aminobutyric acid)-ergic. During development, excitatory

33
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neurons originate from the dorsal telencephalon (Molyneaux
et al., 2007), while inhibitory neurons originate from the ven-
tral telencephalon (Gelman and Marin, 2010). Both subtypes are
then integrated into the cerebral cortex and extend axons and
dendrites to establish functional cortical circuitry. Interestingly,
recent imaging studies have revealed how these dynamic devel-
opmental processes occur in vivo or in situ. Those studies suggest
that most cortical neurons likely establish an axon via an initial
symmetry-breaking event, a process similar to that observed in
cultured hippocampal neurons.

In this review, we first give an overview of current knowledge
about the developmental process of axon and dendrite forma-
tion of excitatory and inhibitory neurons in the cerebral cor-
tex. Then we focus on the dynamic behavior underlying axon
formation of these neurons, with reference to dissociated hip-
pocampal neurons. Although there is evidence that some neurons
may inherit some aspects of polarity emerged at a stage prior
to axon formation, the model based on hippocampal cells still
predominates in this field and could explain behavior of cortical
neurons. We thus further summarize both intracellular signals
and cytoskeletal dynamics underlying polarity formation in dis-
sociated hippocampal neurons and in cortical neurons in vivo or
in situ.

Axon-Dendrite Polarization of Excitatory
and Inhibitory Cortical Neurons

The cerebral cortex is composed of the neocortex and allocortex.
The neocortex, which is a six-layered structure unique to mam-
mals, is phylogenetically the youngest brain region and comprises
most of the cortex. In contrast, the allocortex is phylogeneneti-
cally older and characterized by fewer layers than the neocortex.
The development of polarity by neocortical cells is the major
focus of this review.

In rodents, cortical neurons are comprised of 70–80% excita-
tory and 20–30% inhibitory neurons. Excitatory projecting neu-
rons convey cortical output to subcortical structures and to other
cortical areas. In general, neurons exhibiting corticofugal projec-
tions, which extend axons away from the cortex, reside in deep
layers; by contrast, neurons that project intracortically extend
axons to areas in the ipsilateral and/or contralateral cortex, reside
in upper layers and to a lesser extent in deep layers (Greig et al.,
2013). Depending on layer location and projection, excitatory
neuron morphology varies. However, many excitatory neurons
resemble so-called “pyramidal cells”: their soma is shaped like
a pyramid with a base facing the apical aspect of the cortex,
and these cells extend a single axon and two separate apical and
basal dendrites (Jones, 1984). Their axons extend toward the
white matter (WM) where they typically turn and continue to
project tangentially, while their apical dendrites extend toward
the pial surface. Inhibitory neurons, on the other hand, aremostly
local-circuit neurons that contribute to intracortical information
processing by modulating excitability and thus shaping cortical
output. Inhibitory neurons also extend a single axon andmultiple
dendrites, but their morphologies are highly diverse: they include
basket cells, chandelier cells, Martinotti cells, double bouquet

cells, neurogliaform cells, and at least 10 others (Kubota, 2014).
Until now, however, only a few reports have described how axons
or dendrites emerge from these neurons (e.g., Kawaguchi, 1993).

Axon Formation Is the Initial Step of
Cortical Neuronal Polarization

Excitatory and inhibitory cortical neurons originate in distinct
brain regions: the former emerge from the pallium and the latter
primarily from the subpallium (Molyneaux et al., 2007; Gelman
and Marin, 2010). Recent advances in cell labeling techniques,
including use of genetically-modified mice and in utero electro-
porationmethods, allow us to label these neurons accurately. Fur-
thermore, advanced imaging techniques have revealed dynamic
processes underlying their development.

Development of Excitatory Cortical Neurons
Excitatory cortical neurons originate predominantly from radial
glial progenitors in the cortical ventricular zone (VZ) (Figure 1).
Asymmetric division of these cells generates both self-renewing
progenitors and young neurons or intermediate progenitors, and
those intermediate progenitors then further divide to increase
neuronal number (Miyata et al., 2001, 2004; Noctor et al., 2001,
2004; Pontious et al., 2008). Newly-generated neurons migrate
through the subventricular zone (SVZ) and intermediate zone
(IZ) to reach the cortical plate (CP). There, later-generated
neurons migrate past neurons generated earlier and eventu-
ally occupy more superficial positions, resulting in an inside-
first/outside-last neurogenetic gradient (Angevine and Sidman,
1961). Following completion of this migration, these activities
give rise to a sixed-layered cortical structure (Bayer and Altman,
1991).

Morphologically, bipolar progenitor cells are extraordinarily
slender and extend a long apical process toward the pial surface
and a short basal process toward the ventricle. During asymmet-
ric cell division, the daughter cell destined to become a neuron
assumes a multipolar shape from which emanates multiple short,
thin processes in the SVZ/IZ (Tabata and Nakajima, 2003; Noctor
et al., 2004). After repeated extension and retraction of processes
over several hours, one process suddenly extends tangentially
within the IZ (Hatanaka and Yamauchi, 2013; Namba et al., 2014;
Sakakibara et al., 2014). That process continues to elongate and
eventually becomes an axon, as indicated by its length, morphol-
ogy, and accumulation axonal markers such as Kif5c560 in the
tip (Hatanaka and Yamauchi, 2013; see also Section Intracellular
Mechanisms). Immature axonal processes also contain bidirec-
tional microtubule fibers (Sakakibara et al., 2014), and in this
aspect exhibit the kind of mixed microtubule polarity typically
seen in the trailing process of migrating cerebellar granule cells,
which also becomes an axon (Rakic et al., 1996). The remaining
short processes gradually transform into thick leading processes
directed toward the pia (Hatanaka and Yamauchi, 2013; Sakak-
ibara et al., 2014). By the time cell bodies reach the CP, they
appear bipolar, extending a trailing process “behind” (opposite
the direction of migration) and a leading process “in front” of the
nucleus. Cells then migrate with glia-guided locomotion mode
(Rakic, 1972; Nadarajah and Parnavelas, 2002) characterized by
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FIGURE 1 | Sequential events of polarity formation as seen in

hippocampal neurons in vitro and excitatory and inhibitory cortical

neurons in vivo. Axon outgrowth processes are similar in vivo and in

vitro, as axons emerge from non-polarized cells. (A) Schematic drawing

showing neuronal polarity formation in dissociated hippocampal neurons

in culture. (1) Immature neurons actively form filopodia and lamellipodia

and then (2) extend multiple minor processes that randomly extend and

retract their tips. (3) After several hours in culture, a minor process begins

to grow rapidly and transform into an axon (symmetry break). (4) That

axon further extends, and remaining processes differentiate into dendrites.

(5) Finally, these differentiated processes mature. (B) Schematic drawing

showing acquisition of neuronal polarity by excitatory cortical neurons. (I)

Young neurons differentiated from ventricular zone (VZ) cells or through

intermediate progenitors transform into multipolar cells, whose short

processes repeatedly extend and retract in the subventricular zone

(SVZ)/intermediate zone (IZ) over several hours. (II) A new process, which

will become the axon (symmetry break), suddenly elongates tangentially.

(III) The remaining processes, which will become dendrites, transform into

a pia-directed leading process. (IV) Neurons gradually change shape,

become bipolar, and migrate radially toward the pia, with the elongating

axon as the trailing process. After reaching their final destination, axonal

and dendritic processes mature. Most excitatory neurons differentiate into

pyramidal cells (dendrites, green; axons, red). (C) Schematic drawing

showing neuronal polarity formation by inhibitory neurons. These neurons

are generated in the subpallium and migrate to the cortex. There they

reach the marginal zone and execute multidirectional tangential migration,

exhibiting a bipolar shape with a leading and trailing process. As

development proceeds, they localize in the cortical plate, alternately

extend and retract short processes, and exhibit low motility of somata.

An axon then emerges (symmetry break) extending primarily toward the

ventricle. Inhibitory neuron morphology is highly diverse: these subtypes

include basket cells (the major inhibitory cortical neuron; dendrites, pink),

Martinotti cells (the second major type; dendrites, yellow), double bouquet

cells (the third major type; dendrites, blue) and others (Kubota, 2014).

Whether dynamic process of axon formation depicted here correspond to

all inhibitory neurons or subtypes of inhibitory neurons remains unknown.
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repeated short extensions and contractions of the leading pro-
cess accompanied by saltatory cell movement. Once the leading
process reaches the marginal zone (MZ), cells switch to somal
translocation as their final mode of movement (Nadarajah and
Parnavelas, 2002). The leading process then differentiates into a
dendritic arbor-like structure (Hatanaka and Murakami, 2002),
which probably develops into an apical dendrite. Since radial
migration is accompanied by sustained trailing process elonga-
tion in the IZ (the future WM), this dynamic behavior eventu-
ally results in the typical pyramidal cell morphology in which an
axon extends from the bottom of the soma toward the WM and
an apical dendrite orients toward the pia. Thus, for excitatory
cortical neurons, migration is closely related to establishment of
prospective neuronal polarity.

Development of Inhibitory Cortical Neurons
Tangential migration of neurons that transgress the cortico-
striatal boundary and enter the neocortex was first reported by de
Carlos et al. (1996). Collectively, several subsequent studies using
transplantation, genetic fate mapping, and cell labeling analysis
in vivo and in vitro established that tangentially migrating neu-
rons include inhibitory cortical neurons. Moreover, most, if not
all, inhibitory cortical neurons in mouse are reportedly gener-
ated embryonically from regions in the subpallium, including the
medial and caudal ganglionic eminences and the preoptic area
(Gelman and Marin, 2010), although some investigators have
called into question whether cells emerge from the preoptic area
(Ceci et al., 2012). Inhibitory neurons from these regions are fur-
ther subdivided into distinct morphological subtypes exhibiting
specific axonal arbors and dendritic patterns. Each subtype dis-
plays a unique combination of neurochemical markers and firing
properties (Gelman and Marin, 2010; Bartolini et al., 2013; Kub-
ota, 2014). Although each inhibitory neuron subtype originates
in a distinct region, their overall migration behavior appears sim-
ilar: in general, immature neurons migrate tangentially over long
distances toward the cortex (Nadarajah and Parnavelas, 2002;
Tanaka et al., 2003; Lopez-Bendito et al., 2004). They enter the
CP from the SVZ, pass through it, and reach the MZ (Tanaka
et al., 2009), where they further execute multidirectional tan-
gential migration and become dispersed throughout the cortex
(Tanaka et al., 2006, 2009; Inada et al., 2011; Yanagida et al., 2012).
In mouse, these neurons settle into their final positions in the CP
postnatally (Hevner et al., 2004; Tanaka et al., 2009).

During tangential migration, inhibitory neurons exhibit a
bipolar shape with either an unbranched or branched leading
process and a short trailing process. Currently, knowledge of
dynamic developmental processes of these neurons is limited.
However, Yamasaki et al. (2010) used electroporation with gfp or
DsRed plasmid to label cells in the medial ganglionic eminence
at E12.5 to assess morphological changes in mouse inhibitory
neurons. Perinatally, as those labeled neurons moved from the
MZ to CP, they appeared to transform into a multipolar, “sea
urchin”-like shape, exhibiting multiple, thin processes (Yamasaki
et al., 2010); no further information relevant to cellular dynamics
during this transition is yet available. These processes repeat-
edly extended and retracted for several hours until one process
became unusually long; most of these long processes extended

toward theWM, while a minority extended toward the pia. Based
on elongation, length and growth dynamics, it is likely that all
of these processes represent prospective axons. Currently, it is
not known what kind of inhibitory neuron these cells differen-
tiate into; however, the medial ganglionic eminence can pro-
duce a variety of inhibitory neurons including Martinotti cells,
which extend an axon oriented perpendicular to the pial surface
(Gelman and Marin, 2010; Kubota, 2014). The remaining pro-
cesses of multipolar cells likely become dendrites; however,
details of their maturation remain to be elucidated.

It remains uncertain whether these behaviors of inhibitory
neurons originating in the medial ganglionic eminence at E12.5
occur in all inhibitory cortical neurons. Nonetheless, these
analyses indicate that a subset of inhibitory neurons initiates
their polarization from a multipolar cell stage. Future anal-
ysis using tools such as genetically-modified mice expressing
subtype-specific markers or Cre/CreER drivers (Taniguchi et al.,
2011) should determine whether polarity can be established via
alternate mechanisms.

Cortical Neurons in situ and Hippocampal
Neurons in Dissociation Culture Show
Similar Polarity Formation

The morphological dynamics of neurons undergoing polariza-
tion in vitro has been well-studied using time-lapse imaging of
hippocampal neurons in dissociated culture (Dotti et al., 1988).
After plating, hippocampal neurons typically develop axons and
dendrites in five stages (Figure 1): (1) initially round cells form
filopodia and lamellipodia; (2) cells extend and retract multiple
minor processes; (3) one process transforms into an axon; (4)
that axon extends and remaining processes differentiate into den-
drites; and (5) differentiated processes mature. The first three
stages in particular are key to establishment of polarity.

Evidence indicates that the initial minor processes of cells
grown in culture have equal potential to differentiate into an
axon: for example, if one experimentally cuts off a process
that has grown longer than the others (presumably the future
axon), a new potential axon emerges de novo (Dotti and Banker,
1987). Thus, polarity can be definitively established after an axon
becomes apparently stable. However, some neurons in vivo are
polarized at the time of generation and likely retain some aspects
apico-basal polarity of progenitors in the neuroepithelum, or
they have front-rear polarity of migrating immature neurons
(Hatanaka et al., 2012). Therefore, these neurons in vivo do not
need to redefine polarity but rather can inherit aspects of polar-
ity. Indeed, retinal ganglion cells (Zolessi et al., 2006; Randlett
et al., 2011) and bipolar cells (Morgan et al., 2006) appear to
inherit apicobasal polarity of their progenitors. In retinal gan-
glion cells, not only the appearance but also the polarized dis-
tribution of intracellular components, such as the centrosome
and Golgi apparatus, exhibit inheritance of polarity during axon
formation (Zolessi et al., 2006; Randlett et al., 2011). Migrating
neurons use polarized cellular components to form a leading and
a trailing process required for directed movement (Evsyukova
et al., 2013). Currently, there are no imaging studies in vivo or in
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situ that directly demonstrate the dynamics of these components
during axon formation of migrating neurons. Nonetheless, pon-
tine nucleus neurons form an axon from their leading process
(Kawauchi et al., 2006; Watanabe and Murakami, 2009; Shino-
hara et al., 2013), and trailing processes of cerebellar granule
neurons transform into axons (Komuro et al., 2001), indicating
that these neurons inherit some elements of front/rear (lead-
ing/trailing process) polarity. These mechanisms differ from
polarity formation seen in dissociated hippocampal neurons, in
which an axon emerges de novo from non-polarized cells.

In contrast, as described above, in both excitatory and
inhibitory cortical neurons in vivo or at least in situ, polarity for-
mation primarily occurs inmultipolar cells in amanner similar to
that seen in dissociated hippocampal neurons. In the next section,
we focus on early polarity events that occur duringmultipolar cell
stages prior to axon formation.

Dynamic Processes of Polarity Formation in
Excitatory Cortical Neurons
Radial glial cells, the main progenitor population of excitatory
cortical neurons, are neuroepithelial cells that exhibit apicobasal
polarity. However, young neurons and intermediate progenitors
appear to lose that polarity by retracting apical and basal pro-
cesses during asymmetric cell division and assuming a multi-
polar shape (Tabata and Nakajima, 2003; Noctor et al., 2004;
Hatanaka and Yamauchi, 2013). Furthermore, intermediate pro-
genitors retract all visible processes and round up prior to divi-
sion (Miyata et al., 2004; Noctor et al., 2004, 2008), suggesting
that they do not inherit the apicobasal polarity exhibited by their
progenitors. In addition, multipolar cells do not exhibit stable
front-rear polarity, which is seen in actively migrating cells, but
instead show highly dynamic behavior, alternately extending and
retracting multiple short processes usually <50µm in length.
These cells also show unsteady somal movement (Tabata and
Nakajima, 2003; Sakakibara et al., 2014), and some apparently
form transient thick processes used to changemigration direction
(Sakakibara et al., 2014). Random distribution of the centrosome
inmultipolar cells reported in an imaging study (Sakakibara et al.,
2014) and in fixed preparations (Shoukimas and Hinds, 1978)
also support the idea that polarity is undetermined at these neu-
ronal stages. After a prolonged period of this activity, a new thin
process suddenly emerges and elongates tangentially. Occasion-
ally, a cell retracts that process, even after it reaches >50µm,
and extends another (Hatanaka and Yamauchi, 2013), an activity
also observed in hippocampal neurons prior to polarity estab-
lishment (Dotti et al., 1988). Once a process exceeds 100µm, it
will likely become an axon and continue to elongate (Hatanaka
and Yamauchi, 2013; Namba et al., 2014; Sakakibara et al., 2014).
Thus, axon formation of excitatory neurons mostly occurs dur-
ing the multipolar period while exhibiting unstable or fluctuating
polarity.

Recently, several papers have reported that signaling and
cytoskeletal proteins function in the multipolar-bipolar tran-
sition of excitatory neurons in the IZ (reviewed in Cooper,
2014). To further understand mechanisms governing axon for-
mation in these neurons, it will be important to determine
if loss-of-function of those factors merely locks neurons into

a multipolar state or also prevents them from forming an
axon.

Dynamic Processes of Polarity Formation in
Inhibitory Cortical Neurons
During multidirectional tangential migration in the MZ,
inhibitory cortical neurons extend a leading process in the direc-
tion of their movement (Tanaka et al., 2009; Inada et al., 2011;
Yanagida et al., 2012). After long periods of migration in the
MZ (estimated >1d; Tanaka et al., 2009), these neurons descend
to the CP (Tanaka et al., 2009). Concomitantly, many trans-
form into multipolar cells that extend numerous short processes,
most <50µm in length, although some are longer (Yamasaki
et al., 2010). Because cells in the multipolar stage do not translo-
cate (that is, their soma does not change position significantly),
they appear to terminate their migration and lose front-rear
polarity. Their short processes repeatedly extend and retract and
show no preferential direction of extension. After a prolonged
period of this activity, one process abruptly elongates (initial axon
formation). As observed in dissociated hippocampal neurons in
culture and in excitatory neurons in situ, other processes occa-
sionally extend up to 150–200µm but fail to extend further, and
eventually only one exceeds 200µm in length and differentiates
into an axon (Yamasaki et al., 2010). Thus, at multipolar stages
inhibitory neurons likely do not have fixed polarity, and axon for-
mation occurs in these cells de novo. Further study examining
dynamic movement of cellular components in multipolar cells
during axon formation should validate this view.

Modes of Polarity Establishment
There are minor differences between behavior of cortical neurons
in situ and hippocampal neurons in vitro. Although in both cases
neurons initially appear multipolar, the mode of “random growth
and retraction” of processes differs slightly. First, minor pro-
cesses of hippocampal neurons in vitro show alternate increases
and decreases in length, while those of cortical neurons in situ
often show alternate appearance and disappearance of processes.
Therefore, potential sites of axon initiation seem to be set at
the very beginning of the polarization process in vitro. Second,
the location of a hippocampal neuron cell body in vitro appears
fixed during the multipolar stage, while that of excitatory or
inhibitory cortical neurons in situ does not. These activities may
be due tomicroenvironmental differences, such as adhesive prop-
erties: hippocampal neurons interact with a positively-charged
planar substrate, while cortical neurons do not. Some of the
activities one sees in hippocampal neurons in in vitro might be
artifacts.

Centrosome Positioning during Polarity
Formation
In vitro and in vivo studies suggest an instructive role for cen-
trosome positioning in axon specification (Lefcort and Bentley,
1989; Zmuda and Rivas, 1998; de Anda et al., 2005, 2010; Ander-
sen and Halloran, 2012). However, recent time-lapse observa-
tions of centrosomes in polarizing excitatory cortical neurons in
situ reveal that different mechanisms may govern axon forma-
tion in these cells (Sakakibara et al., 2014; reviewed in Sakak-
ibara et al., 2013). The centrosome tends to move toward the
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most actively growing process (the so-called “dominant pro-
cess”) and that the initiating axon does not always behave as the
dominant process. Neurons undergoing multipolar migration in
the IZ form an axon by extending a dominant process toward
which the centrosome orients. Thus, the centrosome positions
at the base of initiating axon (Sakakibara et al., 2014). Simi-
larly, in polarizing hippocampal neurons in vitro, one minor
process becomes an axon and then behaves as the dominant
process. In both cases, the centrosome attracted to the growing
axon. On the other hand, neurons in the CP at later migration
stages exhibit a leading process oriented toward the brain sur-
face, which then behave as the dominant process and attract
the centrosome. When an axon forms at the rear of these cells
in situ, the centrosome does not translocate toward the initiat-
ing axon but rather remains oriented toward the leading process
(Sakakibara et al., 2014). Although the lattermode of axon forma-
tion may not be primarily observed in vivo, these observations
suggest that centrosome positioning is passively controlled by a
balance of protrusive activities among processes and does not
play an instructive role in excitatory cortical neurons in vivo. In
migrating inhibitory cortical neurons, the primary cilium, whose
basal body is formed from a centriole, reportedly regulates Sonic
hedgehog-mediated reorientation of the leading process (Bau-
doin et al., 2012). However, the function of the primary cilium in
extracellular cue-oriented axonogenesis in these neurons remains
unclear. Clarification of the contribution of centrosome/primary
cilium to neuronal polarization in vivo may further prompt
our understanding of microtubule function underlying axonal
morphogenesis.

Cellular Mechanisms Underlying Neuronal
Polarization

Axon specification in cortical neurons is driven by intracellu-
lar and extracellular mechanisms (Figure 2). Intracellular sig-
naling molecules relevant to polarization have been identified
primarily in in vitro studies of hippocampal neurons, although
in vivo studies validating these findings have also been reported.
Extracellular mechanisms regulating cortical neuron polariza-
tion have been studied by in vivo analyses of knockout pheno-
types or gene manipulation in embryonic mouse brain, although
most of these studies have been confined to excitatory cortical
neurons.

Intracellular Mechanisms
Cytoskeletal changes dependent on protein phosphorylation are
required for axon specification; thus, axon formation can be
assessed using markers recognizing differential phosphorylation
states of cytoskeletal proteins (Sternberger and Sternberger, 1983;
Mandell and Banker, 1996). Stable microtubules within axons
confer distinct characteristics based on their organization (Witte
et al., 2008; Conde and Cáceres, 2009), and signaling molecules
like LKB1 and SAD-A/B kinases trigger axonogenesis by chang-
ing the phosphorylation state of microtubule-associated pro-
teins (MAPs), such as Tau and DCX (Kishi et al., 2005; Barnes
et al., 2007; Shelly et al., 2007). In excitatory cortical neurons,
PKA reportedly activates LKB1, leading to phosphorylation of

SAD kinases. Consequent downstream signaling of SAD kinases
phosphorylates Tau at S262, an event thought to initiate axon
formation (Kishi et al., 2005).

The aPKC/Par complex plays a central role in axon specifi-
cation: for example, aPKC inhibition suppresses axon formation
in hippocampal neurons (Zhang et al., 2007). aPKC/Par com-
plex function is differentially regulated by Par3 phosphorylation
via multiple kinase pathways (Funahashi et al., 2013; Yang et al.,
2014). TGF-ß signaling reportedly increases Par6 phosphoryla-
tion, which is required for axon formation by excitatory cortical
neurons (Yi et al., 2010). MARKs/Par-1, which acts downstream
of the aPKC/Par complex, controls microtubule-binding affinity
of DCX (Sapir et al., 2008). The DLK-JNK pathway also regu-
lates DCX phosphorylation and that of other MAPs as well as
SCG10/stathmin-2 (Gdalyahu et al., 2004; Eto et al., 2010; Hirai
et al., 2011; Westerlund et al., 2011). DOCK7 activation of the
small GTPase Rac controls MT stability in axons by inactivation
of stathmin/Op18 (Watabe-Uchida et al., 2006). Thus, concerted
regulation of microtubule function by multiple kinases and their
effectors likely underlies axon formation.

Several small GTPases function differentially in neuronal
polarization (Arimura and Kaibuchi, 2007; Gonzalez-Billault
et al., 2012). Local activation of the Rap1-Cdc42 pathway has
been observed at the tip of an initiating axon in hippocampal
neurons in vitro (Schwamborn and Püschel, 2004). Cdc42 report-
edly remodels the actin cytoskeleton via cofilin phosphorylation
(Garvalov et al., 2007). Rac/Cdc42 also controls retrogrademove-
ment of F-actin via phosphorylation of downstream effectors
such as PAK1 and Shootin1 (Toriyama et al., 2013). Interest-
ingly, Shootin1 is implicated in potential crosstalk between the
L1-cell adhesion molecule, F-actin, and microtubules in regulat-
ing growth cone dynamics during neuronal polarization (Shi-
mada et al., 2008; Sapir et al., 2013), suggesting that coordi-
nated regulation of actin and microtubules is critical for axon
formation.

Axon formation also requires directed transport of mem-
brane vesicles and other cargos along polarized microtubules
(reviewed in Conde and Cáceres, 2009; Hirokawa et al., 2010;
Stiess and Bradke, 2011; Sakakibara et al., 2013). Polarized trans-
port by plus-end-directed motors, such as kinesin-1 (KIF5) and
kinesin-2 (KIF3), plays a central role in establishing a single axon
(Nakata andHirokawa, 2003; Jacobson et al., 2006). Identification
of several cargo molecules suggests that directed accumulation
of signaling and scaffold proteins, such as CRMP-2, PAR-3, and
JIP1, is important for axon specification (Nishimura et al., 2004;
Kimura et al., 2005; Dajas-Bailador et al., 2008). Localized acety-
lation of microtubules may regulate cargo/microtubule affinity
during axon specification (Reed et al., 2006). PIP3 transport by
GAKIN/KIF13B functions in axon formation, suggesting a role
for accumulated PIP3 in positive feedback regulation of Rac and
Cdc42 small GTPases (Horiguchi et al., 2006). Shootin1 also is
known as a cargo of Kif20b (Sapir et al., 2013).

Recent studies show that regulators of microtubule dynamics
are required for neuronal polarization. Control of microtubule
minus-end dynamics by CAMSAP2 is essential for polarization
of cortical neurons in vivo (Yau et al., 2014). Altered plus-end
dynamics induced by depletion of microtubule regulators, such
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FIGURE 2 | Regulation of cortical neuron polarization. Axon formation in vivo is influenced by extracellular cues. Intracellular effectors regulating cytoskeletal

dynamics and membrane vesicle transport function in the initiation, stabilization, and subsequent elongation of a single axon.

as, SLAIN1/2, chTOG/XMAP215, and CLASP2, reportedly
underlie polarization defects (Beffert et al., 2012; van der Vaart
et al., 2012). These observations suggest that properly controlled
microtubule growth, which also underlies microtubule-
dependent directional transport, is essential to shape
axons.

Extracellular Mechanisms
Interestingly, when the growth cone of an immature process of
a hippocampal neuron encounters a preferred substrate in vitro,
its growth rapidly increases, while that of other immature pro-
cesses does not (Esch et al., 1999; Shelly et al., 2007). Observations
such as this indicate that external cues also govern polarity forma-
tion. Contact with laminin in the basal lamina also triggers retinal
ganglion cell axon formation (Zolessi et al., 2006; Randlett et al.,
2011). In the case of excitatory cortical neurons, integrity of the
surrounding microenvironment may greatly impact axonal spec-
ification. Indeed, recent work reveals that these neurons establish
directed tangential axon outgrowth due to instructive cues pre-
sented on pre-existing efferents: close contact with the cell adhe-
sionmolecule TAG-1 on these efferents in the lower IZ stimulates
axon formation by multipolar cells, an event mediated in part by
downstream Lyn-kinase (Namba et al., 2014). In addition, several
extracellular factors, such as the homotypic cell adhesion pro-
tein N-cadherin (Gärtner et al., 2012), diffusible protein TGF-ß
(Yi et al., 2010) and neurotrophins (Nakamuta et al., 2011),
reportedly function as polarization signals for excitatory cortical
neurons in vivo. Some investigators propose that a single axon is
specified via positive feedback signals that stabilize process exten-
sion (Arimura and Kaibuchi, 2007; Inagaki et al., 2011), suggest-
ing that external cues, either contact-mediated or locally diffused,
have a stabilizing effect on polarity. In the case of inhibitory neu-
rons, the surrounding environment indeed appears to influence

polarity formation: inhibitory neurons do not assume a multipo-
lar shape in dissociated culture. Instead, one of the two processes
emerging from these neurons elongates and eventually becomes
an axon (Hayashi et al., 2003). Possible cell-cell interactions, such
as tiling interactions between neighboring inhibitory neurons,
might partially contribute to shape cells in vivo. Because excita-
tory cortical neurons under the same conditions appear multipo-
lar (Hayashi et al., 2003), intrinsic mechanisms governing axon
formation in these two types of neurons may differ despite their
similar behavior in vivo.

Concluding Remarks

Here, we have reviewed recent evidence suggesting that corti-
cal neurons, both excitatory and inhibitory, establish polarity
de novo. These neurons initiate axons after assuming a multi-
polar stage, in which no fixed polarity is exhibited. Although
these neurons appear similar during axon formation, it is impor-
tant, especially in the case of inhibitory neurons, to examine the
dynamics of cellular components to validate this view. Also, it
will be interesting to examine whether these neuronal subtypes
share signaling pathways governing polarity. It should be noted
that inhibitory cortical neurons are in fact diverse and consist of
multiple morphological subtypes with different spatial and tem-
poral origins. Thus, future investigations are needed to deter-
mine whether these subtypes share a common mechanism of
axon initiation. In addition, it is important to define dynamic
processes governing dendrite formation by both excitatory and
inhibitory cortical neurons. These analyses will likely require
a combination of genetic labeling of specific excitatory and
inhibitory neuronal subtypes with live imaging both in situ and
in vivo.
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Finally, analysis of dissociated hippocampal neurons has set
the foundation for our current understanding of polarization
processes and their molecular basis. Although some of this
knowledge is applicable to cortical neurons in situ, care should be
taken in generalizing these mechanisms to other neuronal types.
Proper understanding of polarity formation in the cerebral cortex
requires identification of the key processes that underlie external
cue-mediated polarization in vivo.
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The mammalian cerebral cortex contains a high variety of neuronal subtypes that
acquire precise spatial locations and form long or short-range connections to establish
functional neuronal circuits. During embryonic development, cortical projection neurons
are generated in the areas lining the lateral ventricles and they subsequently undergo
radial migration to reach the position of their final maturation within the cortical plate.
The control of the neuroblast migratory behavior and the coordination of the migration
process with other neurogenic events such as cell cycle exit, differentiation and final
maturation are crucial to normal brain development. Among the key regulators of cortical
neuron migration, the small GTP binding proteins of the Rho family and the atypical Rnd
members play important roles in integrating intracellular signaling pathways into changes
in cytoskeletal dynamics and motility behavior. Here we review the role of Rnd proteins
during cortical neuronal migration and we discuss both the upstream mechanisms that
regulate Rnd protein activity and the downstream molecular pathways that mediate Rnd
effects on cell cytoskeleton.

Keywords: Rho GTPases, Rnd, cortical development, neuronal migration, Plexin

INTRODUCTION
During the development of the central nervous system, neural
progenitors undergo a sequence of distinct cellular events to give
rise to the vast array of neurons that populate the entire brain. In
the cerebral cortex, excitatory projection neurons, which consti-
tute the majority of cortical neurons, are generated from neural
stem/progenitor cells located in the areas lining the lateral ven-
tricles, the ventricular (VZ) and subventricular zones (SVZ) of
the dorsal telencephalon (Franco and Muller, 2013; Marin and
Muller, 2014). Soon after birth, young neuroblasts leave the pro-
liferative areas and migrate to the cortical plate (CP), where they
distribute into six horizontal layers and they establish local and
long-range connections (Rakic, 1988; Nadarajah and Parnavelas,
2002; Martynoga et al., 2012; Greig et al., 2013). It is now increas-
ingly evident that a highly motile cellular behavior is crucial
for different aspects of cortical neurogenesis, including, but not
restricted to radial migration of post-mitotic neurons. Indeed,
progenitor cells in the VZ also exhibit motile characteristics, such
as the migration of their nuclei in coordination with cell cycle
progression.

The sequential steps of neurogenesis and migration are pro-
moted by the extensive and dynamic remodeling of the cell
cytoskeleton. It is indeed the rapid re-organization of the actin
filaments and microtubule network that ultimately regulates the
motility behavior of nuclei in cycling progenitors and of migrat-
ing neurons (Lambrechts et al., 2004; Heng et al., 2010; Taverna
and Huttner, 2010). The importance of the control of cytoskeletal
remodeling for cortical neurogenesis is highlighted by the fact

that most of the genes mutated in human patients with cortical
malformations produce cytoskeletal proteins or their regulators
(Guerrini and Parrini, 2010; Friocourt et al., 2011).

Members of the Rho family of small GTPases are key regula-
tors of cell cytoskeleton in various cell types (Ridley, 2001). Rho
proteins act as molecular switches capable of fast cycles of activa-
tion and inactivation, which represent an ideal system to regulate
the dynamic changes of the cytoskeleton during migration. Also,
the spatial and temporal control over Rho GTPase activity within
the cell enables differential regulation of cytoskeletal components
in distinct subcellular compartments, driving for example protru-
sion formation at the front of a migrating cell and cell retraction
at the rear. The Rho family includes not only the classical mem-
bers, which cycle between an active GTP-bound state and an
inactive GDP-bound state, but it also contains “atypical” mem-
bers like the Rnd subfamily, which possess low or no intrinsic
GTPase activity and are therefore considered to be constitutively
active (Nobes et al., 1998; Chardin, 2006; Riou et al., 2010). Since
Rnd proteins do not undergo the classical GTPase cycle, gene
expression, protein post-transcriptional modifications and sub-
cellular localization are predominant mechanisms that control
Rnd activity. Interestingly, Rnd proteins evolved relatively recently
and they are present only in vertebrates, indicating that they
might be involved in more specialized neuronal functions than
the other Rho GTPases (Chardin, 2006; Boureux et al., 2007).
The role of Rnd proteins in cortical development has become
subject of intensive research only recently. Here we review the
functions and regulation of Rnd small GTPases during progenitor
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nuclear migration and during radial migration of cortical
neurons.

NEURONAL MIGRATION IN THE CEREBRAL CORTEX
INTERKINETIC NUCLEAR MIGRATION OF NEURAL PROGENITORS
After closure of the neural tube, the epithelium lining the ven-
tricles becomes a specialized neuroepithelium that consists of
a single sheet of progenitors called neuroepithelial cells. At the
onset of neurogenesis (∼E10 in mouse), these cells self-renew
to expand the progenitor pool and then convert into cells with
glia-like features, the radial glial cells. A typical feature of these
two populations of progenitors is the apico-basal movement of
their nuclei in coordination with cell cycle progression, a phe-
nomenon known as interkinetic nuclear migration (INM) (Sauer
and Walker, 1959) (Figure 1A). In neuroepithelial cells, INM
spans the entire apico–basal axis of the cell whereas in radial glia
cells, this behavior is confined to the portion of the cell in the VZ.
During G1 phase of the cell cycle, the nuclei of neural progenitor
cells migrate from the apical to the basal side, where DNA replica-
tion occurs, whereas during G2 phase of the cell cycle, the nucleus
moves toward the ventricular surface and undergoes mitosis at
the most apical side. Since neural progenitors are not synchro-
nized in their cell cycle and as a consequence of INM, the nuclei
are found scattered in different apico-basal positions and the sin-
gle layered neuroepithelium and the VZ appear pseudo-stratified.
Interestingly, several lines of evidence indicate that INM is not
required for cell cycle progression, whereas alteration of cell-cycle
parameters may interfere with INM (Taverna and Huttner, 2010).

Although the contribution of INM to cortical neurogenesis has
not yet been fully understood, it is possible that INM may allow
packing more progenitor cells within a limited surface in order
to maximize the mitoses of progenitor cells. Alternatively, INM
may regulate progenitor fate by controlling the exposure of pro-
genitor nuclei to proliferative vs. neurogenic signals (Taverna and
Huttner, 2010; Spear and Erickson, 2012).

The translocation of the nucleus during INM requires dynamic
changes of the cell cytoskeleton, with both actin and microtubule

(MT) networks involved in this process (Taverna and Huttner,
2010). The relative contribution of MT- and actin-dependent
mechanisms depends on the model organism and on the brain
region investigated (Lee and Norden, 2013). In the developing
rodent cortex, the basal-to-apical nuclear migration involves MT-
based motors, whereas the apical-to-basal migration seems to
depend on both actomyosin and MT-based motors (Schenk et al.,
2009; Tsai et al., 2010). In addition, recent work proposes that
the regulation of apical-to-basal nuclear migration during G1 is
not an active, cell-autonomous process, but it involves a passive
component (Kosodo et al., 2011). Kosodo and colleagues sug-
gested that the basal nuclear movement during G1 is indirectly
driven by the opposite movement of G2-phase nuclei migrating
apically (Kosodo et al., 2011). Thus, the mechanisms underlying
basal-to apical and apical-to-basal INM seem to exhibit profound
differences.

RADIAL MIGRATION OF PROJECTION NEURONS
The majority of cortical neurons are excitatory glutamatergic
cells that extend long projections toward cerebral and subcere-
bral targets. The first cohort of cortical neurons that migrate out
from the VZ determine the formation of the preplate, a primitive
structure that becomes soon divided into the superficial marginal
zone and the deeper subplate by a subsequent wave of migrating
neurons (Luskin et al., 1988). At the stage of preplate forma-
tion and early born neuron production, between E12 and E14
in the mouse, the main mode of migration is somal transloca-
tion (Miyata et al., 2001; Nadarajah et al., 2001) (Figure 1B).
The cells that undergo somal translocation are born from radial
glia cells at early developmental stages and they possess both
apical attachment and basal radial process at the time of birth.
After detachment form the ventricular surface, the continuous
advancement of the nucleus and the concomitant retraction of
the basal process determine a fast migratory behavior. Early-born
neurons eventually occupy deep cortical layers since later-born
neurons migrate and pass earlier born cells in order to settle
progressively in upper cortical layers in an “inside-out” fashion.

FIGURE 1 | Modes of migration in the cortex. (A) Interkinetic nuclear
migration. The nuclei of neuroepithelial cells or radial glia cells occupy
different positions along the apical-basal axis depending on the phase of
the cell cycle (see text for details). (B) Somal translocation of early-born
cortical neurons. Newborn neurons lose their apical attachment and reach
the PP by translocation of the soma and progressive shortening of the
basal process. (C) Glia-guided radial migration of cortical neurons. Four

phases of radial migration can be distinguished. Newborn neurons leave
the proliferative areas (I) and reach the SVZ/IZ, where they acquire a
multipolar morphology (II). After pausing in the SVZ/IZ, cells migrate
toward the CP, using locomotion (III). At the end of their migration,
cortical neurons switch to soma translocation (IV). MZ, marginal zone; CP,
cortical plate; PP, preplate; IZ, intermediate zone; SVZ, subventricular
zone; VZ, ventricular zone.
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At later developmental stages, after E14, when the cortical wall
progressively increases in its thickness, neurons predominantly
use a mode of radial migration called glia-guided migration
(Rakic, 1972; Noctor et al., 2001) (Figure 1C). In contrast to
somal translocation that is independent from radial glia fibers,
glia-guided migration strictly relies on the radial glia scaffold.
Young neurons that use this mode of migration lose contact with
both the ventricle and the basal lamina and “embraced” the radial
fiber during their migration. Newborn neurons usually migrate
along the fiber of their mother radial glia, although they can
jump from one fiber to another during migration, a process that
regulates intermixing of neuronal clones within the cortex.

This entire process of radial migration can be subdivided
into distinct phases (Figure 1C) (Nadarajah and Parnavelas, 2002;
Noctor et al., 2004), in which neurons undergo rapid changes in
cell polarity, morphology and speed of migration, as they progress
from the VZ to the CP. The first step is characterized by the
detachment of cells from the apical/ventricular surface in order
to leave the proliferative zones and reach the SVZ and the inter-
mediate zone (IZ) (Figure 1C-I). Then, post-mitotic neurons
pause for a variable amount of time in the SVZ/IZ (maximum
time recorded of 24 h), where they acquire a multipolar shape
(Figure 1C-II). In this phase, neurons actively extend and retract
dynamic processes, but they do not move significantly (Tabata
and Nakajima, 2003). After sojourning in the IZ, neurons enter
the CP. However, some neurons take a path toward the VZ, before
reversing their direction of migration toward the CP (Noctor
et al., 2004). The purpose of this migratory behavior is poorly
understood. Once in the CP, neurons become bipolar, extending
a leading process toward the pial surface and a trailing process
in the direction of the IZ (Figure 1C-III), and migrate toward the
upper layer of the CP. During this phase, nascent neurons use glia-
guided migration (also called glia-guided locomotion), which is
characterized by repetitive migratory cycles of extension of the
leading process, translocation of the nucleus, and retraction of the
trailing process. However, since the trailing process of migrating
cortical neurons will become the future axon, it has been pro-
posed that neurons do not retract the trailing process at the end
of each migratory cycle, but rather extend their axon as they move
(Noctor et al., 2004; Tabata et al., 2009; Hatanaka and Yamauchi,
2013). Finally, when projection neurons reach their destination,
they undergo a last nuclear translocation without leading pro-
cess extension, indicating that locomoting cells switch to somal
translocation at the end of their migration (Nadarajah et al., 2001)
(Figure 1C-IV).

CLASSICAL AND ATYPICAL Rho GTPases
Rho (Ras homologous) GTPases belong to the large superfamily
of small GTP binding proteins, whose founding member is Ras
(Jaffe and Hall, 2005; Heasman and Ridley, 2008). Ras superfam-
ily contains more than 150 members, which are grouped into 5
categories according to their major functions: Ras, Rho, Rab, Arf,
and Ran (Table 1). Mammalian Rho GTPases comprise a family
of 20 molecules that regulate actin and microtubule compo-
nents of the cytoskeleton (Figure 2A). By controlling cytoskeletal
dynamics, Rho GTPases affect many cellular processes, includ-
ing cell polarity, cell shape and migration (Hall and Nobes, 2000;

Table 1 | Members of the Ras superfamily and their major functions.

Family Members Function

Ras Ha-Ras, K-Ras, N-Ras, R-Ras, M-Ras, RalA,
RalB, Rap1A, Rap1B, Rap2A, TC21, Rit, Rin,
Rad, Kir/Gem, Rheb, KB-Ras1, KB-Ras2

Control of cell
proliferation

Rho RhoA, RhoB, RhoC, RhoD, Rif (RhoF), Rnd1
(Rho6), Rnd2 (Rho7, RhoN), Rnd3 (Rho8,
RhoE), TTF (RhoH), Rac1, Rac2, Rac3, RhoG,
Cdc42, TC10 (RhoQ), TCL (RhoJ), Wrch1
(RhoV), Chp/Wrch2 (RhoU), RhoBTB1,
RhoBTB2

Control of cell
cytoskeleton

Rab Rab proteins from Rab1 to Rab33 Control of
vesicle
trafficking

Arf Arf1, Arf2, Arf3, Arf4, Arf5, Arf6, Sar1a, Sar1b,
Arl1, Arl2, Arl3, Arl4, Arl5, Arl6, Arl7, Ard1

Control of
vesicle formation

Ran Ran Control of
nuclear transport

Ridley, 2001). The most extensively studied members of the
Rho family are RhoA (Ras homologous member A), Rac1 (ras
related C3 botulinum toxin substrate 1) and Cdc42 (cell divi-
sion cycle 42). Rac1 and Cdc42 promote the formation of cellular
protrusions, such as lamellipodia or filopodia, respectively. RhoA
instead is involved in acto-myosin contraction and stress fiber for-
mation (Ridley, 2001). The overexpression of constitutively active
or dominant negative forms of Rho proteins in the embryonic
cortex, together with more recent analysis of conditional knock-
out mice have revealed a crucial role for Rac1 and Cdc42 during
INM (Cappello et al., 2006; Minobe et al., 2009) and for RhoA,
Rac1, and Cdc42 during radial migration in the cortex (Kawauchi
et al., 2003; Konno et al., 2005; Cappello et al., 2012). (For recent
reviews see (Govek et al., 2011; Shah and Puschel, 2014).

Most Rho GTPases act as molecular switches by cycling
between an inactive GDP-bound state and an active GTP-bound
form (Figure 2B). When bound to GTP, Rho GTPases exhibit the
correct structural conformation to interact with effectors and ini-
tiate downstream signaling (Raftopoulou and Hall, 2004). The
GDP/GTP cycle is promoted by the activity of two classes of
molecules, guanine nucleotide exchanging factors (GEFs) and
GTPase activating proteins (GAPs). GEFs facilitate the exchange
of GDP with GTP, resulting in protein activation. GAPs instead
stimulate the intrinsic enzymatic activity of the GTPases, which
promotes hydrolysis of GTP into GDP. GAP activity therefore
ends the cycle and returns the GTPases in their inactive state
(Bos et al., 2007). In addition, Rho GTPases can bind to proteins
known as guanine-nucleotide dissociation inhibitors (GDIs).
RhoGDIs sequester RhoGTPase in their inactive state and pro-
tect them from degradation (Dermardirossian and Bokoch, 2005;
Boulter et al., 2010).

The GDP/GTP cycle and the regulation by GDI are common
properties among Rho GTPases. However, the “atypical” Rho
GTPases rarely follow this rule (Aspenstrom et al., 2007). Among
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FIGURE 2 | Rho GTPases. (A) Phylogenetic tree based on alignment of
the aminoacid sequences of the 20 Rho GTPases. Rnd proteins form a
distinct branch, which is closely related to Rho members. (B) Classical
Rho GTPases cycle between an inactive GDP-bound state and an active

GTP-bound state. In their active conformation they transduce the signal
to intracellular effectors. Two classes of molecules promote the
regulatory cycle: GEFs stimulate the exchange of GDP with GTP, whereas
GAPs stimulates the GTP hydrolysis.

them, the Rnd subfamily represents a distinct branch of the Rho
family of small GTPases and consists of three different members:
Rnd1/Rho6, Rnd2/Rho7, and Rnd3/Rho8/RhoE (Chardin, 2006;
Riou et al., 2010) (Figure 2A). Interestingly, the Rnd subfamily
is present only in vertebrates and not in other organisms such
as worms or flies, suggesting that it might play important roles
in biological processes that are specific to vertebrate organisms
(Philips et al., 2003; Boureux et al., 2007). Rnd proteins have a
core GTP-binding domain structurally similar to the other Rho
proteins. However, they possess different biochemical properties
due to amino acid substitutions at residues that are crucial for
GTPase activity. In fact, in contrast to classical GTPases, Rnd pro-
teins do not show any intrinsic or stimulated GTPase activity. In
addition to their inability to hydrolize GTP into GDP, Rnd pro-
teins exhibit a 100-times higher affinity for GTP than for GDP.
Altogether, these properties suggest that Rnd are constitutively
bound to GTP, therefore constitutively active (Foster et al., 1996;
Nobes et al., 1998). Nobes et al. (1998) were the first to identify the
three Rnd isoforms and shed light onto their function. By over-
expressing Rnd1 and Rnd3 in cultured fibroblasts, the authors
observed cell retraction from the substrate and cell rounding,
hence their collective name round (Rnd). This phenotype is the
result of Rnd1 and Rnd3 inhibitory functions on RhoA-mediated
stress fiber formation and adhesion contact assembly. In contrast
to Rnd1 and Rnd3, the expression of Rnd2 in fibroblasts does not
modulate cytoskeletal reorganization, suggesting that Rnd2 acts
via different and partially unknown mechanisms in these cells
(Nobes et al., 1998). Recent evidences demonstrate that Rnd3 also
plays a role in the control of cell proliferation via mechanisms that
are independent from cytoskeletal remodeling (Villalonga et al.,
2004; Poch et al., 2007; Pacary et al., 2013), indicating that Rnd
proteins might have more pleiotropic functions that previously
expected. Among the three members of the Rnd subfamily, only
Rnd2 and Rnd3 show strong expression in the developing cere-
bral cortex. Rnd2 is found in the preplate cells at early stages of

cortical development and it is expressed in the SVZ/IZ at later
stages (Heng et al., 2008). In contrast to Rnd2, Rnd3 expression is
widespread throughout the entire thickness of the cortical wall at
early stages and it is later restricted to the VZ/SVZ, as well as to the
CP (Pacary et al., 2011). The distribution of Rnd2 and Rnd3 tran-
scripts in partially exclusive cortical domains suggests that they
might play individual and non-redundant functions in distinct
phases of cortical development and neuronal migration.

Rnd FUNCTIONS IN CORTICAL NEURON MIGRATION
Rnd3 ROLE IN INTERKINETIC NUCLEAR MIGRATION
The role of Rnd3 in INM has been recently studied in vivo, by in
utero electroporation of the embryonic cortex with shRNA that
specifically silences Rnd3 expression (Pacary et al., 2013). The
process of INM can be visualized and quantified after injection of
2-bromo-deoxyuridine (BrdU), which marks cells in S phase, fol-
lowed by analysis of the position of the BrdU positive nuclei over
time (Schenk et al., 2009). The nature of INM implies that cells
that are in S phase at the time of BrdU injection are positioned in
the most basal region of the VZ. BrdU labeled cells can be then
followed when they subsequently undergo basal-to-apical nuclear
migration to reach the apical surface, just before entering mitosis.
Analysis performed 30 min after BrdU injection revealed that, in
Rnd3-silenced cortices, a reduced fraction of BrdU+ nuclei reach
the apical side in comparison to control treated cortices, indicat-
ing delayed nuclear migration when Rnd3 expression is decreased
in progenitor cells (Pacary et al., 2013). Three hours after injec-
tion, control BrdU labeled cells have undergone cell division at
the ventricular surface and the nucleus of the radial glia daugh-
ter cell begins to move again toward the basal side. In contrast,
the delayed nuclei in Rnd3 knock down cortices have just reached
the apical side and start to divide, leading to an accumulation
of cells at the ventricular surface. In addition, Rnd3-silenced VZ
progenitors exhibit less elongated nuclei compared to control cells
(Pacary et al., 2013), which is characteristic of INM impairment
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(Sauer, 1935; Ge et al., 2010) Altogether these data show that
Rnd3 is required during INM at least for the basal to apical move-
ment. Importantly, the duration of the different phases of the cell
cycle is unaffected by Rnd3 silencing, indicating that the regula-
tion of INM by Rnd3 is direct and not secondary to modification
of cell-cycle progression in neural progenitors.

Rnd FUNCTIONS IN RADIAL MIGRATION OF PROJECTION NEURONS
The role of Rnd proteins in cortical neuron migration has been
thoroughly investigated only in the last few years (Nakamura
et al., 2006; Heng et al., 2008; Pacary et al., 2011; Azzarelli et al.,
2014). As mentioned before, Rnd2 and Rnd3 are expressed in
different cortical domains during embryonic development sug-
gesting that they might control different phases of the migratory
process. Accordingly, the in vivo knock down of Rnd2 and Rnd3
in the embryonic cortex produces migratory defects that are
characterized by distinct morphological abnormalities.

As neurons progress from the VZ/SVZ to the CP, they tran-
siently acquire a multipolar morphology in the IZ. In vivo knock
down of Rnd2, but not of Rnd3 expression, increases the fraction
of neurons with a multipolar shape. This phenotype eventually
leads to the accumulation of cells in the IZ of Rnd2-knocked
down cortices and a concomitant reduction of neurons reaching
the CP, in comparison to control cortices (Figures 3A,B) (Heng
et al., 2008). Rnd2 thus regulates multipolar to bipolar transition
in the IZ.

Rnd3-silenced neurons instead exhibit abnormal morphology
during neuronal migration in the CP, i.e., during glia-guided
locomotion. During this phase, migrating neurons in control con-
dition exhibit a bipolar morphology with a leading process toward
the CP and a trailing process in the direction of the IZ. In contrast,
Rnd3-knocked down neurons display a grossly enlarged leading

process and several thin processes protrude from the cell body
(Figure 3C). Locomotion in the CP largely relies on the coordi-
nated movement of nucleus and centrosome in the direction of
migration. Neurons undergo cycles of extension of the leading
process and forward movement of the nucleus toward the cen-
trosome, which is located in a cytoplasmic dilation that forms in
the proximal region of the leading process. When Rnd3 expres-
sion is reduced by shRNA electroporation, the distance between
the nucleus and the centrosome in bipolar neurons is increased.
A possible role for Rnd3 in the regulation of nucleus-centrosome
coupling during locomotion has been further supported by ex
vivo time-lapse imaging, which clearly shows that the motility
behavior of Rnd3-depleted neurons is not coordinated (Pacary
et al., 2013).

Consistent with the aberrant migration in the CP, Rnd3-
silenced neurons also exhibit a branched leading process, which
have been previously associated with loss of adhesion between the
leading process and the radial glia fibers (Gupta et al., 2003; Elias
et al., 2007). Whether Rnd3-silenced neurons are detached from
the radial glia scaffold and whether loss of adhesion is a primary
effect or secondary to defective locomotion would be interesting
issues to address in the future.

REGULATION OF Rnd PROTEINS
Rnd proteins are always present in the cell in their active
conformation, capable to bind effectors. Since their activity is
not affected by the GDP/GTP exchange or by interaction with
RhoGDIs, other mechanisms must account for the regulation
of their activity (Riou et al., 2010). Transcriptional regulation,
subcellular localization and post-translational modifications have
been shown to play crucial roles in the control of Rnd protein
expression and function.

FIGURE 3 | Effect of Rnd2 and Rnd3 loss of function on cortical neuron

migration. (A) Schematic representation of cortical radial migration in control
condition. Newborn projection neurons undergo sequential steps of radial
migration, which are characterized by distinct morphologies. At mid-end
corticogenesis most of the neurons have reached the CP. Only few cells are
still migrating and they exhibit multipolar morphology in the IZ and bipolar
shape in the CP. (B) shRNA-mediated loss of function of Rnd2 expression in

the embryonic cortex produces an accumulation in the IZ of multipolar cells,
which exhibit more and longer neuronal processes. (C) Rnd3 knock down in
the embryonic cortex interferes with the locomotion phase of migration in
the CP. Rnd3-silenced neurons exhibit abnormal morphologies characterized
by excessively enlarged and branched leading processes and by thin
processes protruding from the cell body. MZ, marginal zone; CP, cortical
plate; IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone.
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During the development of the cerebral cortex, Rnd2 and Rnd3
are under the transcriptional control of proneural factors that up-
regulate their expression to control specific phases of neuronal
migration. The proneural factors Neurogenin2 (Neurog2) and
Ascl1 directly bind to E-box DNA sequences within enhancers
located 3′ to the Rnd2 and Rnd3 gene, respectively (Heng et al.,
2008; Pacary et al., 2011). Moreover, Rnd2 expression in the devel-
oping brain is transcriptionally regulated by other factors, such as
RP58, Scratch2, and COUP-TFI, which act as repressors (Alfano
et al., 2011; Heng et al., 2013; Ohtaka-Maruyama et al., 2013;
Paul et al., 2014). In particular, RP58 and Scratch2 regulate the
3′ enhancer previously identified as Neurog2 target, suggesting
that the two repressors might compete with the proneural bHLH
activator on Rnd2 enhancer to fine-tune the levels of Rnd2 in the
cortex (Heng et al., 2013). Several other studies in different cell
types have identified various stimuli that regulate Rnd2 and Rnd3
expression (Table 2).

Rnd proteins also undergo post-translational modifications
that influence their subcellular localization and stability. Most
Rho GTPases are modified at their C-terminus by addition of lipid
moieties that promote their interaction with membranes (Seabra,
1998). Whereas most Rho-family proteins are geranylgeranylated,

Rnd proteins are farnesylated, which consists in the addition of
a 15-carbon farnesyl group on their C-terminal CAAX motif
(where C represents cysteine, A is an aliphatic amino acid and X is
any amino acid). This motif is important not only for membrane
localization but also for Rnd activity. Indeed, mutation in the
CAAX motif of Rnd3 (Rnd3C241S) abolish its plasma membrane
association and impairs its ability to rescue the migratory activ-
ity of Rnd3-silenced neurons, thus demonstrating that membrane
association is required for Rnd3 activity in migrating neurons
(Pacary et al., 2011). In addition to this motif, sequence ele-
ments positioned immediately upstream of the CAAX domain
are important for membrane insertion (Roberts et al., 2008).
Rnd2 and Rnd3 have similar CAAX motif, but distinct upstream
sequences that are responsible for the different subcellular local-
ization of Rnd2 and Rnd3. In fact, Rnd3 is preferentially associ-
ated to the plasma membrane, whereas Rnd2 is cytoplasmic or
associated to endomembranes (Roberts et al., 2008). It has been
recently shown that the replacement of the C-terminal domain
of Rnd2, containing the CAAX motif and the upstream sequence,
with that of Rnd3 is sufficient to recruit Rnd2 at the plasma mem-
brane (Pacary et al., 2011). More importantly, although Rnd2 and
Rnd3 cannot substitute for one another during cortical neuron

Table 2 | Mechanisms regulating Rnd expression.

Rnd Stimuli or TFs that control expression Cell type Function References

Rnd2 Neurog2 Cortical neurons Migration 1

Rnd2 RP58* Cortical neurons Migration 2

Rnd2 COUPTFI* Cortical neurons Migration and differentiation 3

Rnd2 Scratch2* Cortical neurons Migration 4

Rnd3 Ascl1 Cortical neurons Migration 5

Rnd3 PDGF Fibroblast Formation of stress fibers 6

Rnd3 HGF MDCK Motility 7, 8

Rnd3 Raf-MEK-BRF MDCK
Melanoma cells

Transformation
Invasiveness

9
10, 11

Rnd3 p53—chemoterapeutic agent or irradiation Cancer cell line, keratinocytes Pro-survival 12, 13

Rnd3 mTOR Subependymal giant cell
astrocytoma

Potential contribution to
tumorigenesis

14

Rnd3 NF-kB Prostate cancer Potential contribution to
tumorigenesis

15

Rnd2/3 MDMA and cocaine Neurons in different brain regions Potential contribution to dendritic
branching and neurite outgrowth

16

Rnd3 mir200c mir200b* Breast cancer cell Invasive behavior 17, 18

Rnd1-2-3 Estradiol Smooth muscle
cells—myometrium

Decreased contraction 19

Rnd3 Estradiol* Prostatic stromal cells Unknown 20

Rnd3 MIC-1/GDF15 Prostate cancer cells Decreased adhesion 21

Rnd3 CREB Hippocampal neurons BDNF-mediated synaptogenesis 22

Rnd3 HIF1a Gastric cancer cells Epithelial to mesenchymal
transition and invasion

23

Rnd3 FOXD3* Melanoma cells Migration and invasion 24

1 (Heng et al., 2008), 2 (Heng et al., 2013; Ohtaka-Maruyama et al., 2013), 3 (Alfano et al., 2011), 4 (Paul et al., 2014), 5 (Pacary et al., 2011), 6 (Riento et al., 2003),

7 (Guasch et al., 1998), 8 (Tanimura et al., 2002), 9 (Hansen et al., 2000), 10 (Klein et al., 2008), 11 (Klein and Aplin, 2009), 12 (Ongusaha et al., 2006), 13 (Boswell

et al., 2007), 14 (Tyburczy et al., 2010), 15 (Nadiminty et al., 2010), 16 (Marie-Claire et al., 2007), 17 (Hurteau et al., 2006), 18 (Xia et al., 2010), 19 (Shimomura et al.,

2009), 20 (Bektic et al., 2004), 21 (Liu et al., 2003), 22 (Lesiak et al., 2013), 23 (Zhou et al., 2011), 24 (Katiyar and Aplin, 2011). *Denotes factors that decrease Rnd

expression.
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migration, the chimeric form of Rnd2 that exhibits a plasma
membrane localization similar to Rnd3 can compensate for the
loss of Rnd3 (Pacary et al., 2011). Hence, when targeted to the
correct subcellular region, Rnd2 can replace Rnd3 function in
migrating neurons. Recent evidence also supports a role for the
N-terminal region of Rnds in the control of subcellular local-
ization. There is indeed a specific sequence at the N-terminal of
Rnd1 and Rnd3, but not of Rnd2, that promotes their targeting
to specialized membrane regions, the lipid rafts (Oinuma et al.,
2012).

Another important post-translational modification that reg-
ulates Rnd protein activity is phosphorylation. Seven phospho-
rylation sites have been identified in Rnd3 (5 at the C-terminal
end and 2 at the N-terminal end) and they have been shown to
influence Rnd3 localization at the plasma membrane. Rnd3 can
be phosphorylated by ROCKI or PKCα on multiple sites (Riento
et al., 2005; Komander et al., 2008; Madigan et al., 2009) and upon
phosphorylation, Rnd3 affinity for plasma membrane is reduced
and the fraction of cytosolic Rnd3 increases. Interestingly, a
non-phosphorylatable mutant form of Rnd3 (Rnd3All A) that is
preferentially associated to the plasma membrane is more effi-
cient than wild-type Rnd3 in rescuing the cortical migration
defects induced by Rnd3 silencing (Madigan et al., 2009; Pacary
et al., 2011). This result further demonstrates that the membrane
association of Rnd3 regulates its activity in migrating neurons
and determines the efficiency with which neurons migrate in the
embryonic cortex.

Classical Rho proteins are generally solubilized from the
plasma membrane and sequestered inactive in the cytosol, by
interaction with RhoGDIs that mask the un-soluble hydropho-
bic group. Since Rnd proteins do not interact with RhoGDIs, an
alternative mechanism has recently been proposed to explain how
phosphorylated Rnd proteins become internalized and solubi-
lized in the cytosol (Riou et al., 2013). Anne Ridley and colleagues
have demonstrated that upon phosphorylation, the C-terminal
region of the three Rnd interacts with the regulatory molecules
14-3-3. This interaction masks the lipid moiety of the Rnd pro-
tein and permit translocation from the plasma membrane to the
cytosol. Whether the localization of Rnd2 and Rnd3 and thus
their activity is controlled by this mechanism in cortical neurons
is not known.

Lastly the levels of Rnd proteins in a cell can be controlled by
their effectors through protein stabilization. It has been shown
that the binding of Rnd3 to its effectors stabilizes Rnd3 proteins,
suggesting that a positive feedback from effectors may contribute
to extend the half-life of Rnd (Goh and Manser, 2012). This
mechanism of regulation remains to be studied in migrating
cortical neurons.

Altogether, the variety of factors that controls Rnd protein
expression and localization reveal that Rnd activity is regulated by
complex mechanisms, which substitute for the lack of the classical
GDP/GTP molecular switch and GDI internalization.

MOLECULAR MECHANISMS MEDIATING Rnd ACTIVITY IN
MIGRATING NEURONS
REGULATION OF RhoA SIGNALING AND CYTOSKELETON REMODELING
Experiments performed in non-neuronal cell types revealed
that a mechanism commonly used by Rnd proteins to control

cytoskeletal dynamics is the inhibition of RhoA signaling (Nobes
et al., 1998; Wennerberg et al., 2003; Riou et al., 2010). Similarly,
FRET analysis demonstrated that RhoA activity is increased in
migrating neurons after Rnd2 or Rnd3 knockdown (Pacary et al.,
2011). More importantly, in this study, coelectroporation of Rnd3
shRNA together with a RhoA shRNA fully rescue the radial migra-
tion of Rnd3-silenced neurons, thus demonstrating that Rnd3
regulate radial migration in the cortex mostly by inhibiting RhoA
activity. The same kind of experiment performed with Rnd2
shRNA indicates that this RhoGTPase, in contrast to Rnd3, acts
only partially through suppression of RhoA activity in migrating
neurons.

In fibroblasts and epithelial cells, Rnd-mediated inhibition
of RhoA activity induces cell rounding via disassembly of
stress fibers, which are composed of bundles of actin filaments.
Although neurons do not possess stress fibers, Rnd proteins have
been shown to also control the dynamics of filamentous actin
(F-actin) in migrating neurons (Pacary et al., 2011). In cultured
primary cortical neurons, both Rnd2 and Rnd3 knock down pro-
duce an accumulation of F-actin in neuronal processes as well
as in the cell body in the case of Rnd2. A common pathway
that controls F-actin polymerization downstream of RhoA sig-
naling is the ROCK (Rho Kinase)- LIMK (Lim Kinase)—cofilin
pathway (Maekawa et al., 1999; Sumi et al., 1999; Peris et al.,
2012). The activation of RhoA ultimately phosphorylates and
inactivates cofilin, which is an actin-disassembling factor, thus
resulting in local increase of F-actin. The co-electroporation in
the embryonic cortex of a non-phosphorylatable form of cofilin
(cofilinS3A), which constitutively depolymerizes actin, together
with Rnd3 shRNA completely rescues the migration defects
induced by Rnd3 silencing. This suggests that when Rnd3 is
silenced, the RhoA-cofilin-mediated excessive polymerization of
actin molecules hampers the motility behavior of migrating neu-
rons. Interestingly, co-electroporation of the cofilin mutant with
Rnd3 shRNA also rescues the defects that Rnd3 silencing produces
during INM in VZ progenitor cells (Pacary et al., 2013), suggest-
ing that similar basic molecular mechanisms may control nuclear
translocation during INM and glia-guided locomotion.

In contrast, the migratory defects induced by Rnd2 knock-
down are not rescued by the mutated form of cofilin, indicating
that Rnd2 promotes migration independently of its effect on the
actin cytoskeleton. It is possible that accumulation of F-actin and
aberrant cytoskeletal organization upon Rnd2 knock down might
be secondary to other events that impede migration. Rnd2 has
been shown to be expressed in endosomes and to interact with
molecules involved in the formation and trafficking of endocytic
vesicles (Fujita et al., 2002; Tanaka et al., 2002; Wakita et al.,
2011), raising the possibility that Rnd2 pro-migratory activity
may involve the regulation of endocytosis. Further studies will be
required to test this hypothesis.

Consistent with their different activities, Rnd2 and Rnd3 can-
not replace one another, even if they both inhibit RhoA signaling.
This apparent paradox can be explained by the fact that Rnd2
and Rnd3 interfere with RhoA activity in different subcellular
compartments (Pacary et al., 2011). Indeed, Rnd3 preferentially
localizes at the plasma membrane and inactivates RhoA in this
compartment, whereas Rnd2 is expressed only in endosomes and
cytosol, confining RhoA regulation to these internal structures
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(Pacary et al., 2011). In accordance with these data, Rnd2 can
replace Rnd3 function in migrating neurons if it is targeted to
the plasma membrane by replacement of its C-terminal region
with the one of Rnd3, as already mentioned. Importantly, the
reduction of RhoA activity in endosomes has been shown to be
essential for clathrin mediated endocytosis (Lamaze et al., 1996;
Qualmann and Mellor, 2003; Ridley, 2006), further reinforcing
the hypothesis that Rnd2 might control cortical neuron migration
by regulating the trafficking of receptors or adhesion molecules
which are essential for this process. However, it is worth noting
that Rnd2 inhibition of RhoA signaling cannot fully explain Rnd2
pro-migratory activity and therefore Rnd2 might act in the cortex
also via a different and RhoA-independent mechanism (Pacary
et al., 2011).

MECHANISMS OF RhoA REGULATION BY Rnd PROTEINS
The molecular bases for Rnd-mediated RhoA inhibition are not
yet completely understood, but many evidences suggest the exis-
tence of various mechanisms (Figure 4). Rnd3, for example,
has been shown to antagonize RhoA signaling via three dif-
ferent pathways: (1) by promoting the activity of RhoA GAPs,
which promote the hydrolysis of the GTP into GDP, such as
p190RhoGAP (Wennerberg et al., 2003) (Figure 4A, Table 3), (2)
by blocking the activity of RhoA effectors, such as the Rho kinase
ROCKI (Riento et al., 2003) (Figure 4B, Table 3); (3) by inhibit-
ing Rho GEFs, which exchange GDP with GTP on RhoA, such as
Syx (Goh and Manser, 2010) (Figure 4C, Table 3).

The first mechanism, which involves the stimulation of
p190RhoGAP by Rnd3, seems to be an important pathway
of RhoA inhibition downstream of Rnd proteins, since Rnd1
and Rnd2 have also been shown to interact with p190RhoGAP
(Wennerberg et al., 2003; Pacary et al., 2011). However, a mutant
form of Rnd2 (Rnd2T39V), which cannot bind to p190RhoGAP,
is as active as wild type Rnd2 in rescuing the neuronal migration
defects induced by Rnd2 silencing in the cortex. Therefore, even
if Rnd2 can interact with p190RhoGAP, this interaction does not
mediate Rnd2 function in this context. It is possible that Rnd2
works via interaction with a different RhoGAP. One candidate is
MgcRacGAP, which has been found associated to Rnd2 in male
germ cells (Naud et al., 2003) and which is expressed in the devel-
oping cerebral cortex at the time of radial migration (Arar et al.,
1999) (Table 3). MgcRacGAP (or RacGAP1) primary targets are

Rac1 and Cdc42, but upon phosphorylation, MgcRacGAP turns
its activity toward RhoA (Toure et al., 2008). Rather than pro-
moting mere inhibition of RhoA activity, MgcRacGAP has been
shown to control a RhoA GTPase flux at the site of furrow forma-
tion during cytokinesis (Miller and Bement, 2009). In the future,
it would be interesting to understand whether MgcRacGAP medi-
ates Rnd2 function in the endosomal compartments and to study
whether also Rnd3 uses this different RhoGAP during early steps
of corticogenesis, when Rnd3 is known to control INM, cleavage
plane orientation, VZ integrity and SVZ progenitor proliferation
(Pacary et al., 2013).

In contrast to Rnd2, Rnd3 requires the interaction with
p190RhoGAP for its pro-migratory activity in the cortex.
Indeed, an Rnd3 mutant form (Rnd3T55V) that cannot bind to
p190RhoGAP in rescue experiments failed to replace Rnd3 func-
tion in migrating neurons (Pacary et al., 2011). However, it has
been recently shown that this Rnd3 mutant carries a mutation
in the effector binding domain (Wennerberg et al., 2003), which
not only prevents Rnd3 from binding to p190RhoGAP but also
disrupts the ability of Rnd3 to bind to other candidate effec-
tors, including a member of the Plexin family of axon guidance
receptors, PlexinB2 (Azzarelli et al., 2014) (Table 3). Therefore,
it is possible that Rnd3 activity in the cortex may also require
the interaction with effectors other than p190RhoGAP. The bind-
ing of Rnd3 to the RhoA effector ROCKI is however not affected
by the T55V mutation in the effector domain. Instead, ROCKI
binds Rnd3 in a different position and ROCKI-Rnd3 interac-
tion can be selectively disrupted by mutation of two sites present
in the C-terminal region of Rnd3 protein (Rnd3T173A+V192A)
(Wennerberg et al., 2003). Selective disruption of Rnd3-ROCKI
interaction does not interfere with Rnd3 function in migrating
neurons, which indicates that blocking ROCKI does not account
for Rnd3 inhibition of RhoA activity in this context. Finally,
whether Rnd2 or Rnd3 also modulate RhoA activity in migrating
neurons via Syx or other RhoGEFs remains unexplored.

A ROLE FOR PLEXINS
Over the past few years, Rnd proteins have been shown to consti-
tute important functional components of the plexin-semaphorin
signaling pathways (Chardin, 2006; Puschel, 2007). Plexins
belong to a large family of transmembrane receptors, which
are activated by their physiological ligands, the semaphorins. In

FIGURE 4 | Modes of RhoA activity regulation by Rnd3. (A) Rnd3
interacts with p190RhoGAP and promotes its activity of RhoA
inactivation. (B) Rnd3 indirectly inhibits RhoA signaling, by blocking
the RhoA downstream effector ROCKI. (C) Rnd3 inhibits a RhoA

activator like Syx. (D) PlexinB2 interaction with Rnd3 disrupts
Rnd3-p190RhoGAP binding, which lifts RhoA inhibition. In addition
PlexinB2 directly activates RhoA via recruitment of RhoGEFs (not
shown).

Frontiers in Neuroscience | Neurogenesis February 2015 | Volume 9 | Article 19 | 50

http://www.frontiersin.org/Neurogenesis
http://www.frontiersin.org/Neurogenesis
http://www.frontiersin.org/Neurogenesis/archive


Azzarelli et al. Rnd in cortical neuron migration

Table 3 | Rnd interacting partners and their functions.

Rnd partner Rnd Function References

p190RhoGAP Rnd1
Rnd2
Rnd3

Down-regulation of RhoA in stress fiber collapse and during
cortical neuron migration

1, 2, 3, 4

ROCKI Rnd3 Inhibition of ROCKI signaling in stress fiber disassembly;
control of Rnd localization and stability through
phosphorylation

5, 6

Syx Rnd3 Down-regulation of RhoA in Zebrafish gastrulation 7
MgcRacGAP Rnd2 Regulation of RhoGTPase flux during cytokinesis; control of

male germ cell development
8, 9

PlexinB2 Rnd3 Regulation of neuronal migration by fine-tuning RhoA
signaling

4

PlexinB1 Rnd1 Activation of RhoA and down-regulation of R-Ras in growth
cone collapse

10, 11

PlexinD1 Rnd2 Down-regulation of R-Ras in axon outgrowth inhibition 12
PlexinA1 Rnd1 Activation of Rac1 and down-regulation of R-Ras in axonal

repulsion
13, 14, 15

Rapostilin Rnd2 Regulation of endocystosis and membrane invagination in
neurite branching and spine formation

16, 17

Vps4A Rnd2 Regulation of endosomal trafficking 18
FLRT3 Rnd1 Control of cadherin-mediated adhesion during Xenopus

gastrulation
19, 20

Pragmin Rnd2 Activation of RhoA in neurite outgrowth inhibition 21
SCG10 Rnd1 Control of microtubule stability in axon formation 22
Socius Rnd1 Loss of stress fibers 23
FSR2a/b Rnd1 Control of neurite extension downstream of FGF signaling 24
Grb7 Rnd1 Possible role in migration/invasion 25
STI1 Rnd1 Control of cytoskeletal collapse 26

1 (Foster et al., 1996), 2 (Wennerberg et al., 2003), 3 (Pacary et al., 2011), 4 (Azzarelli et al., 2014) 5 (Riento et al., 2003), 6 (Riento et al., 2005), 7 (Goh and Manser,

2010), 8 (Naud et al., 2003), 9 (Miller and Bement, 2009), 10 (Oinuma et al., 2003), 11 (Oinuma et al., 2004), 12 (Uesugi et al., 2009), 13 (Rohm et al., 2000), 14

(Toyofuku et al., 2005), 15 (Zanata et al., 2002), 16 (Fujita et al., 2002), 17 (Wakita et al., 2011), 18 (Tanaka et al., 2002), 19 (Karaulanov et al., 2009), 20 (Ogata et al.,

2007), 21(Tanaka et al., 2006), 22 (Li et al., 2009), 23 (Katoh et al., 2002), 24 (Harada et al., 2005), 25 (Vayssiere et al., 2000), 26 (De Souza et al., 2014).

vertebrates, there are 9 plexin members, which can be divided into
four classes, termed plexinA (A1–A4), B (B1–B3), C1 and D1 and
7 classes of secreted and membrane-bound semaphorins (Jackson
and Eickholt, 2009). Although plexin-semaphorin signaling has
been historically associated with regulation of axonal navigation,
novel roles during brain developmental and neuronal migration
have started to be characterized (Luo et al., 1993; Comeau et al.,
1998; Kruger et al., 2005; Pasterkamp, 2012).

Plexins contain a binding site for Rho GTPases in the middle
of their intracellular domain through which they recruit several
Rho GTPases, including Rnd proteins. Several evidences indicate
that preferential interactions occur between certain members of
the Plexin and the Rnd families (Table 3). For example, PlexinB1
binds to Rnd1 and Rnd2, but not to Rnd3, which instead selec-
tively interacts with PlexinB2 (Oinuma et al., 2003; Azzarelli et al.,
2014); also, PlexinD1 has been found associated only with Rnd2,
but not with Rnd1 or Rnd3 (Uesugi et al., 2009) and PlexinA1
interacts with Rnd1, but not with Rnd2 (Zanata et al., 2002). The
functional relevance of the exclusive Plexin-Rnd interactions is
not clear, but it is likely that the recruitment of specific Rnds may
be important to differentially modulate plexin signaling.

Rnd1 binding to PlexinB1 has been shown to open the con-
formation of the receptor and to allow the transmission of the

downstream signaling. This synergistic interaction is essential to
drive cell contraction in COS cells and to induce growth cone col-
lapse during axon guidance (Chardin, 2006). In migrating cortical
neurons, the interaction between Rnd3 and PlexinB2 is crucial
to fine-tune the levels of active RhoA. PlexinB2 recruitment of
Rnd3 to its intracellular domain disrupts the interaction between
Rnd3 and p190RhoGAP in a competitive manner. In this way,
PlexinB2 blocks Rnd3-mediated RhoA inhibition and it has been
proposed that this step is required for full RhoA activation in spe-
cific cellular compartments (Azzarelli et al., 2014) (Figure 4D).
Therefore, through competitive Rnd3 binding, p190RhoGAP and
PlexinB2 fine-tune the level of RhoA activity appropriate for
cortical neuron migration.

Rnd2 has also been found associated with Plexin members
like PlexinB1 and PlexinD1. However, in contrast to Rnd3, which
co-localizes with PlexinB2 at the plasma membrane in primary
cortical neurons, Rnd2 is not found at the plasma membrane
(Pacary et al., 2011), therefore making it unlikely that Rnd2
plays a part in plexin downstream signaling that is activated
in this subcellular compartment. Instead, Rnd2 is expressed in
early endosomes (Pacary et al., 2011), where it interacts with
Fbp17/Rapostlin and Vps4, two molecules involved in the for-
mation and the trafficking of endocytic vesicles (Table 3) (Fujita
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et al., 2002; Tanaka et al., 2006). Therefore, Rnd2 potential inter-
action with plexins may be an important strategy to control the
surface expression of these receptors through the stimulation of
their endocytic recycling.

Altogether, these studies suggest that Rnd2 and Rnd3 pro-
mote cortical neuron migration by distinct mechanisms that
may involve selective interactions with different members of the
plexin family of transmembrane receptors in different subcellular
compartments.

CONCLUDING REMARKS
In the last decade, the introduction and constant refinement
of new technologies, such as in utero electroporation of the
murine embryonic cerebral cortex, have greatly advanced our
understanding of the molecular pathways operating in migrat-
ing neurons (Loturco et al., 2009). Through the control of
cytoskeleton remodeling, Rho and Rnd proteins have been
shown to play crucial roles during neuronal migration in the
developing cortex. However, whereas the cellular and molecu-
lar functions of Rnd proteins have been thoroughly described
in cortical projection neuron development, very little is known
about their role in tangentially migrating cortical interneu-
rons. This would be a fertile territory for future research.
Nonetheless, the critical function of Rnd proteins in the con-
trol of neuronal migration has been further highlighted by a
recent study showing the requirement of Rnd3 for the tangen-
tial migration of newborn olfactory neurons from the SVZ to
the olfactory bulb in the post-natal brain (Ballester-Lurbe et al.,
2014).

Rnd2 and Rnd3 expression in the cortex is under the tran-
scriptional control of the proneural factors Neurog2 and Ascl1,
respectively. These factors are well known master regulators of
neuronal differentiation and activate a transcriptional program of
neurogenesis in neural progenitors (Bertrand et al., 2002). Since
Rnd proteins also control other aspects of cortical development,
such as progenitor proliferation and neurite extension, it is pos-
sible that different transcriptional factors exclusively regulate the
expression of different Rnd members to couple specific neuronal
migration phases with other neurogenic events.

At the molecular level, Rnd2 and Rnd3 control distinct steps
of radial migration, by interfering with RhoA activity in differ-
ent subcellular compartments. The bHLH transcriptional factors
Ascl1 and Neurog2 induce the expression of Rnd proteins as a
strategy to repress RhoA during radial migration (Hand et al.,
2005; Pacary et al., 2011). A recent model proposes that the
bHLH-Rnd pathways are responsible to maintain a low level of
background RhoA activity, which is essential to promote neu-
ronal migration, but at the same time RhoA activation may still be
required for example downstream of plexin receptors to stimulate
actin-based contractility in defined compartments of migrating
neurons (Govek et al., 2011; Azzarelli et al., 2014). Indeed, RhoA
downstream effectors, such as myosinIIB and mDia1/3, have been
found enriched in the proximal region of the leading process and
at the cell rear, just before nucleokinesis (Tsai et al., 2007; Solecki
et al., 2009; Shinohara et al., 2012). Therefore, Rnd proteins finely
orchestrate RhoA levels in migrating neurons, by directing its
inactivation to specific subcellular compartments and by being

also involved in the signaling that promotes its activation, as in
the case of Rnd3.

These studies performed in neuronal cells will contribute to
a better understanding of the regulatory function of Rnd pro-
teins in the migration of other cell types. Indeed, Rnd proteins,
especially Rnd3, have been shown to also control the migration
of non-neuronal cell types, such as epithelial cells (Guasch et al.,
1998) or cancer cells (Riou et al., 2010). Rnd3 seems to regulate
cancer cell invasion mainly through its effects on RhoA/ROCK
activity. However, the specific contribution of Rnd3 to cancer cell
invasion is controversial, since it has been shown to both pro-
mote and inhibit invasion (Gadea et al., 2007; Klein and Aplin,
2009), suggesting that Rnd3 may act via more than one molecu-
lar mechanism (Riou et al., 2010). Further investigation of Rnd
functions in cancer cell migration will thus be crucial to a better
understanding of the metastatic and invasive behavior of cancer
cells.

In conclusion, it is becoming evident that Rnd proteins play
important roles in cell migration during mammalian cortical
development and in particular, considering their relatively recent
evolution, it is possible that they might be involved in mech-
anisms of brain developmental and neuronal plasticity that are
exclusive to vertebrate organisms.
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The formation of the six-layered structure of the mammalian cortex via the inside-out
pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues
such as Reelin induce intracellular signaling cascades through the protein phosphorylation.
Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and
adhesion properties. Protein phosphorylation regulates these processes. Moreover, the
balance between phosphorylation and dephosphorylation is modified by extracellular cues.
Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are
critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as
Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps.
In this review, I shall give an overview the roles of protein kinases in neuronal migration.

Keywords: protein phosphorylation, kinase, phosphatase, migration, cerebral cortex

CYTOSKELETON DYNAMICS DURING NEURONAL
MIGRATION
During brain development, the extensive migratory movements
of neurons from their birth place to final location are essential
for neural circuit formation and proper brain function. The six-
layered structure of the mammalian cerebral cortex is formed by
coordinated neuronal migration via inside-out patterning. While
early-born neurons are located in the deep layer, late-born neu-
rons pass through the existing cortical layers to reach the super-
ficial layer to form the six-layered structure. Three coordinated
migration modes are observed in radially migrating neurons
in the developing cerebral cortex: multipolar migration, glial-
guided locomotion, and somal translocation (Nadarajah et al.,
2001; Tabata and Nakajima, 2003; Noctor et al., 2004). During
these processes, neurons change their morphology and adhe-
sive properties. During the development of the cerebral cortex,
radial migrating neurons change their morphology from mul-
tipolar to bipolar in the intermediate zone (IZ) (Tabata and
Nakajima, 2003). This requires the function of cytoskeletal regu-
lators and is inhibited by many gene mutations and experimental
manipulations. These facts imply the importance of the regula-
tion of cytoskeletal dynamics during this morphological transi-
tion. Following this, bipolar cells migrate by locomotion along
the radially oriented processes of radial glia (Nadarajah et al.,
2001; Noctor et al., 2004). During the mode of locomotion in
migrating neurons, the nucleus is surrounded by microtubule-
enriched arrays, fork-like in the front and cage-like behind (Tsai
and Gleeson, 2005). Asynchronous movements of the centrosome
(C) and the nucleus (N) are observed in locomotion (Tsai and
Gleeson, 2005). The centrosome moves first into a cytoplasmic
dilation/swelling in the leading process and then the nucleus fol-
lows (nucleokinesis) due to a pulling force from microtubules
and dynein motors located at the centrosome. Cytoplasmic dila-
tion/swelling is a structure specific to migrating neurons, at the

proximal region of the leading process during the locomotion
mode of migration (Nishimura et al., 2014). This coordinated
relationship is called nucleus-centrosomal (N-C) coupling (Tsai
and Gleeson, 2005). Retraction of trailing process occurs due
to actomyosin-dependent motor functions (Bellion et al., 2005).
This microtubule-actin remodeling is regulated dynamically dur-
ing the locomotion mode of radial neuronal migration (Schaar
and McConnell, 2005). Finally, migrating neurons along radial
glial fibers change their migration mode to terminal translocation
(Nadarajah et al., 2001), which is similar to somal translocation.

LESSONS FROM THE HUMAN DISORDER LISSENCEPHALY
Failure of neuronal migration causes severe developmental abnor-
malities in the layering of the cerebral cortex and results in
the human disorder lissencephaly, which means “smooth brain.”
Microtubule- and actin-associated proteins regulate the dynamics
of microtubule and actin cytoskeletons during neuronal migra-
tion; therefore, deletions and mutations of crucial genes involved
in cytoskeletal processes lead to human lissencephaly (Dobyns,
1987) and mouse mutants with a neuronal migration phenotype.

Mutations in doublecortin (DCX) are the most common
genetic cause of X-linked lissencephaly (des Portes et al., 1998;
Gleeson et al., 1998). Male mice with a Dcx gene mutation exhibit
mild histological defects only in hippocampus (Corbo et al.,
2002) due to redundant compensation from doublecortin-like
kinase (DCLK). This notion is supported by phenotypic analysis
of Dcx/Dclk double-knockout (DKO) mice, which display severe
abnormalities in cortical lamination due to neuronal migration
defects (Deuel et al., 2006; Koizumi et al., 2006b).

DCX is a microtubule-associated protein (MAP) that has
two microtubule-binding domains (Gleeson et al., 1999; Horesh
et al., 1999; Taylor et al., 2000). DCX stabilizes microtubules
and enhances microtubule polymerization (Francis et al., 1999;
Gleeson et al., 1999; Horesh et al., 1999; Taylor et al., 2000; Moores
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et al., 2006). Dcx-deficient neurons exhibit delayed centrosomal
and nuclear movements and weakened N-C coupling, indicat-
ing the involvement of DCX in these processes (Corbo et al.,
2002; Koizumi et al., 2006a). DCX function is modulated by its
phosphorylation by several kinases in site specific manner, includ-
ing Microtubule affinity-regulating kinase 2 (MARK2), Protein
kinase A (PKA), Cyclin-dependent kinase 5 (Cdk5), and c-Jun N-
terminal kinases (JNKs) (Figure 1). MARK2 and PKA phospho-
rylate DCX at Ser47 and reduce its microtubule-binding activity
(Tanaka et al., 2004a; Toriyama et al., 2012). Phosphorylation of
DCX at Ser47 is also required for its proper localization to the
leading process of migrating neurons (Schaar et al., 2004). Cdk5
phosphorylates DCX at Sr297 and enhances its microtubule-
binding activity (Tanaka et al., 2004b). JNK phosphorylates DCX
at Thr321, Thr331, and Ser334, which correspond to Thr326,
Thr336, and Ser339 in mouse Dcx (Gdalyahu et al., 2004). We
reported that Ser332 is also a JNK phosphorylation site of mouse
Dcx (Jin et al., 2010). Phosphorylation at these sites is required
for DCX localization in leading process. The importance of the
balance between phosphorylation/unphosphorylation is empha-
sized by the requirement of a dephophorylated state of DCX at
neurite tips during neuronal migration (Schaar et al., 2004).

The regulation of DCX function by phosphorylation at specific
sites implicates the importance of kinase function in neuronal
migration. Phosphorylation is a post-translated modification of
proteins. Phosphorylation sites are categorized into two types,
Tyr residues and Ser/Thr residues, which are phosphorylated by
tyrosine kinases and serine/threonine kinases, respectively. The
activation of Src-family tyrosine kinases by Reelin and their roles
in neuronal migration will be discussed in other chapters. Thus,
I will discuss the major Ser/Thr kinases that regulate neuronal
migration.

Cdk5
Cdk5 is serine/threonine kinase and its high activity is detected
in post-mitotic neurons. Cdk5 forms heterodimer with its acti-
vating subunits, p35 or p39. The involvement of Cdk5 in neu-
ronal migration was revealed by the analyses of Cdk5KO mice
(Ohshima et al., 1996; Gilmore et al., 1998). Cdk5KO mice lack
the laminar structure of the cerebral cortex (Ohshima et al.,
1996). Birth-date labeling of the embryonic brain showed pro-
found migration defects in cortical neurons (Gilmore et al., 1998).
p35KO mice have milder abnormalities in neuronal migration
(Chae et al., 1997). The identical phenotype of double-knockout

FIGURE 1 | Schematic structure of DCX and phosphorylation sites by

each protein kinase. Doublecortin (DCX) has two tubulin-binding domains,
47–135 and 174–259, and patient mutations cluster in these domains (Sapir
et al., 2000; Taylor et al., 2000). DCX has S/T-P rich domain and Cdk5 and
JNK phosphorylate specific sites in this domain.

p35/p39 mice and Cdk5KO mice indicates the redundant func-
tion of p35 and p39 (Ko et al., 2001). Conditional Cdk5KO
mice showed an inverted cortical layer structure in layers II–VI
(Ohshima et al., 2007). Cdk5 regulates multiple steps of radial
migration of cortical neurons during the locomotion mode of
migration (Figure 2). These include the transition from multi-
polar to bipolar morphology in the IZ (Ohshima et al., 2007),
formation of leading processes (Kawauchi et al., 2006), and for-
mation of a cytoplasmic dilation/swelling, which is a structure
specific to migrating neurons, at the proximal region of the
leading process (Nishimura et al., 2014).

Inhibition of Cdk5 activity leads to the over-stabilization
of microtubules, resulting in the dysregulation of microtubule
dynamics in migrating neurons (Kawauchi et al., 2005). Cdk5
phosphorylates a number of microtubule-associated proteins:
DCX (Tanaka et al., 2004b), Ndel1 (Lis1-binding protein, also
called Nudel) (Niethammer et al., 2000; Sasaki et al., 2000),
FAK (Xie et al., 2003), and CRMP2 (Uchida et al., 2005). Ndel1
was originally identified as a novel Lis1-interacting protein and
was found to be enriched at centrosomes (Niethammer et al.,
2000; Sasaki et al., 2000). Ndel1 is phosphorylated by Cdk5
(Niethammer et al., 2000; Sasaki et al., 2000). Phosphorylated-
Ndel1 (p-Ndel1) binds to cytoplasmic dynein heavy chain
(CDHC) and katanin; its binding is required for the localiza-
tion of katanin in the centrosome (Toyo-Oka et al., 2005). 14-
3-3epsilon (YWHAE) binds to p-Ndel1 and protects p-Ndel1
from phosphatase attack (Toyo-Oka et al., 2003). Lis1 and 14-
3-3epsilon (YWHAE) are important for neuronal migration
and their deletions have been found in lissencephaly patients
(Hirotsune et al., 1998; Toyo-Oka et al., 2003). These protein
localizations in the centrosome, with the Lis1-Ndel1-dynein com-
plex, regulate nucleokinesis by promoting N-C coupling during
the locomotion mode of neuronal migration (Shu et al., 2004;
Tsai and Gleeson, 2005). FAK phosphorylation by Cdk5 is also
required for nucleokinesis (Xie et al., 2003; Xie and Tsai, 2004).

FIGURE 2 | Functions of Cdk5 in neuronal migration. Cdk5 is required
for the radial migration of later-generated neurons in the cerebral cortex.
Cdk5 is necessary for multipolar-to-bipolar transition (Step 1) and
locomotion through the regulation of nucleokinesis of migrating neurons
(Step 2). For these steps, Cdk5 regulates the dynamics of
microtubules-cytoskeleton, actin-cytoskeleton and cell-adhesion through
the phosphorylation of its substrate proteins.
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CRMP2 was originally identified as an intracellular mediator of
Sema3A signaling (Goshima et al., 1995). We have identified
CRMP2 as a Cdk5 substrate by using Cdk5KO mouse brains
(Uchida et al., 2005). Interestingly, Cdk5 phosphorylates CRMP2
at Ser522 and its phosphorylation is required for further phos-
phorylation of CRMP2 by GSK3β at Ser518, Thr514, and Thr509
(Uchida et al., 2005; Yoshimura et al., 2005). CRMP2 binds to
the tubulin heterodimer (Fukata et al., 2002) and their bind-
ing is regulated by Cdk5/Gsk3β phosphorylation (Uchida et al.,
2005; Yoshimura et al., 2005; Yamashita and Goshima, 2012).
Involvement of CRMP2 and its phosphorylation in neuronal
migration will be tested in CRMP2 mutant mice (Yamashita et al.,
2012).

Recently, Nishimura et al. demonstrated that p27kip1 that is
phosphorylated and stabilized by Cdk5 is required for the forma-
tion of a cytoplasmic dilation/swelling (Nishimura et al., 2014).
Stabilization of p27kip1 by Cdk5 is also involved in the regulation
of the actin cytoskeleton during neuronal migration (Kawauchi
et al., 2006). Cdk5 phosphorylates the actin-binding proteins,
Drebrin and Neurabin-I, and may regulate neuronal migration
(Causeret et al., 2007; Tanabe et al., 2014).

Rap1 signaling is involved in neuronal migration and is reg-
ulated by Cdk5 (Utreras et al., 2013). Rap1 activation pro-
motes the cell-surface localization of N-cadherin (Jossin and
Cooper, 2011). The N-cadherin-mediated adhesion complex is
required for multipolar-bipolar transition (Jossin and Cooper,
2011) and radial fiber-dependent neuronal migration (Kawauchi
et al., 2010). A previous study has shown that pharmacologi-
cal inhibition of Cdk5 activity enhances N-cadherin-mediated
cell-cell adhesion (Kwon et al., 2000). Rap1 activation depends
upon Rap1-GEFs, including Rap1GEF1 (also known as C3G) and
Rap1GEF2. RapGEF1 activation of Rap1 controls somal/terminal
translocation triggered by Reelin (Franco et al., 2011; Jossin and
Cooper, 2011; Sekine et al., 2012) via the stabilization of lead-
ing processes toward the marginal zone (Franco et al., 2011;
Sekine et al., 2012). Interestingly, RapGEF2 KO mice showed
a neuronal migration defect phenotype in the subcortical area,
which indicated the involvement of RapGEF2 in multipolar-
bipolar transition (Bilasy et al., 2009). Recently, Ye et al. have
shown that Cdk5 phosphorylates RapGEF2 at Ser1124 and
its phosphorylation is required for Rap1 activation (Ye et al.,
2014). Previous studies have shown that RapGEF1-dependent
Rap1 activation is dispensable in multipolar-bipolar transition
(Sekine et al., 2012); therefore, Cdk5 mediated Rap1 activa-
tion via RapGEF2 phosphorylation is important for this tran-
sition. As proposed by Ye et al. (2014), the two pathways of
Reelin and Cdk5 are not simply parallel, but rather act on
successive phases of neuronal migration via Rap1 activation.
Cdk5-mediated RapGEF2 phosphorylation controls multipolar-
bipolar transition and Reelin-mediated RapGEF1 activation pro-
motes terminal translocation (Figure 3). This idea fits well with
our previous observations in mutant mice that lack Cdk5/p35
and Reelin/Dab1 (Ohshima et al., 2001, 2002; Ohshima and
Mikoshiba, 2002).

Cdk5 is also required for the radial migration of hippocam-
pal neurons (Ohshima et al., 1996, 2007) and Purkinje cells in the
developing cerebellum (Ohshima et al., 1999; Kumazawa et al.,

FIGURE 3 | Sequential Rap1 activation by Cdk5 and Reelin signaling.

Cdk5 and Reelin signaling activate Rap1 through the activation of different
Rap1GEFs in the control of the radial migration of cortical neurons in the
cerebral cortex in a sequential manner.

2013). Inward migration of granule cells and migration in the
rostral migratory stream is also Cdk5-dependent (Ohshima et al.,
1999; Hirota et al., 2012; Kumazawa et al., 2013; Umeshima
and Kengaku, 2013). Compared with the analysis of the molec-
ular mechanisms of neuronal migration in radial migration in
the cerebral cortex, the mechanisms of neuronal migration in
hippocampal and cerebellar neurons remain to be elucidated.

GSK3β
Two members of the GSK-3 family in mammals, GSK3α and
GSK3β, show 98% amino acid sequence identity within their
kinase domains and overall share 85% identity (Doble and
Woodgett, 2003). Both isoforms are highly expressed in the
developing brain. GSK3-signaling is a strong regulator of neu-
ronal progenitor proliferation in the developing cerebral cortex
(Chenn and Walsh, 2002; Kim et al., 2009). To study the role
of GSK3 in neuronal migration, Morgan-Smith et al. produced
Gsk3a−/−Gsk3bloxP/loxP; Neurod6-Cre (Gsk3:Neurod6) mice and
analyzed neuronal positioning after birth. The Nuerod6-Cre mice
induce recombination in post-mitotic cortical excitatory neurons
after E11 (Goebbels et al., 2006). Gsk3-deleted neurons expressing
the upper layer marker exhibited migration failure in the cerebral
cortex. Radial migration in the hippocampus was also affected
(Morgan-Smith et al., 2014). Hypophosphorylation of CRMP2
at Thr514 (Yoshimura et al., 2005) and Dcx at Ser327 (Bilimoria
et al., 2010) was observed in the cortex of Gsk3:Neurod6 mice
(Morgan-Smith et al., 2014).

JNK
JNKs are members of MAPK signaling pathway. There are three
related genes in mammals: Jnk1, Jnk2, and Jnk3. All three Jnk
genes are expressed in the developing mouse brain. JNKs act as
the final effector kinases within a classical cascade consisting of
MAPKKKs (MAP3Ks), MAPKKs (MAP2Ks), and MAPKs. Like
other MAPKs, JNKs are activated by MAP2K-mediated phospho-
rylation. MKK4 and MKK7 are the MAP2Ks that phosphorylate
JNKs.

www.frontiersin.org January 2015 | Volume 8 | Article 458 | 58

http://www.frontiersin.org
http://www.frontiersin.org/Neurogenesis/archive


Ohshima Neuronal migration and protein kinases

Genetic deletion studies of Jnk1 and the MAP3K and MAP2Ks
for Jnk1, Dlk1, Mkk4, and Mkk7, in mice suggest their involve-
ments in the migration of cortical projection neurons (Hirai et al.,
2006; Wang et al., 2007; Westerlund et al., 2011; Yamasaki et al.,
2011). Deletion of the upstream activators of JNKs, Dlk1 (Hirai
et al., 2006), Mkk4 (Wang et al., 2007), and Mkk7 (Yamasaki et al.,
2011) inhibits radial migration. On the other hand, deletion of
Jnk1 results in accelerating radial migration (Westerlund et al.,
2011). These results could be explained by Jnk2 and/or Jnk3 play-
ing opposing roles to Jnk1 in radial migration. Double deletion
of Jnk1 and Jnk2 causes embryonic lethality (Kwon et al., 2000);
therefore, further study using the conditional deletion of genes
will be necessary to resolve this issue. Pharmacological inhibi-
tion of JNK activity using SP600125 inhibits the radial migration
of cortical neurons (Kawauchi et al., 2003; Hirai et al., 2006).
However, a recent study has shown that SP600125 inhibits 74
kinases (out of 353 tested) at 10 μM, including MEK1, MEK2,
MKK3, MKK4, and MKK6 (KINOMEscan LINCS data base).
Thus, the results obtained using SP600125 are difficult to inter-
pret because of its low specificity for JNK.

JNKs phosphorylate the microtubule regulatory proteins,
DCX, MAP2, MAP1b, and SCG10 (Chang et al., 2003; Kawauchi
et al., 2003; Gdalyahu et al., 2004; Tararuk et al., 2006; Jin et al.,
2010; Björkblom et al., 2012). We have shown that phosphoryla-
tion of DCX at Ser332 by JNK disrupts its microtubule binding
(Jin et al., 2010). SCG10 is a tubulin interacting protein, which is
phosphorylated by JNK SCG10 at Ser62 and Ser73 (Tararuk et al.,
2006). Phosphorylation of SCG10 at Ser73 is reduced in Jnk1−/−
brains (Tararuk et al., 2006). Knockdown of SCG10 increases the
rate of radial migration (Westerlund et al., 2011), suggesting a role
for SCG10 in neuronal migration. The involvement of JNK in the
regulation of the tangential migration of inhibitory neurons from
ganglionic eminence is also reported (Myers et al., 2014).

MARK2
MARK2/Par-1 was originally identified as a regulator of cell polar-
ity in C. elegans (Par-1). In parallel it was also identified as a
protein kinase that regulates microtubule stability, microtubule
affinity-regulating kinase 2 (MARK2) (Drewes et al., 1997).
In vivo overexpression of MARK2/Par-1 results in a loss of neu-
ronal polarity (Sapir et al., 2008). A reduction in MARK2/Par-1
causes neuronal migration arrest with more stable microtubules
(Sapir et al., 2008). MARK2/Par-1 phosphorylates tau, MAP2,
MAP4, and DCX (Biernat et al., 1993; Drewes et al., 1997; Schaar
et al., 2004). Phosphorylation of these microtubule-associated
proteins (MAPs) causes the removal of MAPs and DCX from
microtubules.

shRNA-MEDIATED OFF-TARGET TOXICITY CAUSES
NEURONAL MIGRATION DEFECTS
Acute inactivation of gene function by shRNA, together with in
utero electroporation, is a widely used method to study neu-
ronal migration. In some cases, such as DCX, neuronal migration
phenotypes caused by shRNA knockdown or knockout by gene
deletion show a discrepancy (Corbo et al., 2002; Bai et al., 2003).
Recently, Baek et al. have shown that shRNAs cause neuronal
migration defects via an off-target effect (Baek et al., 2014).

They have demonstrated that shRNA alters endogenous miRNA
pathways and leads to reduced let7 miRNA expression. This dis-
ruption of let7 causes neuronal migration defects. They have
designed scrambled shRNAs of Dcx and found half cause neu-
ronal migration defects. These results offer a warning for the
interpretation of neuronal migration studies using shRNAs. They
have also shown that switching from shRNA to a shmiRNA con-
struct can avoid these toxic effects. Therefore, studies of neuronal
migration using the shRNA method need to be re-evaluated by
knockdown studies using shmiRNA or genetic deletion.

FUTURE PROSPECTS OF RESEARCH
The activation of protein kinases are regulated by intrinsic and
extrinsic factors. For example, Cdk5 activity is regulated by the
amount of its activating subunits, p35 and p39. p35, and p39 are
expressed in post-mitotic neurons; therefore, they are regulated
by the degree of neuronal maturation. Cdk5 activity is also regu-
lated by several extracellular factors (Sasaki et al., 2002; Cheung
et al., 2007; Fu and Ip, 2007; Fu et al., 2007). Gsk3β activity
is regulated by Wnt signaling and JNK activity is regulated by
extracellular stimuli. Therefore, coordinated neuronal migration
is regulated by multiple signaling pathways external to migrating
neurons through the balanced activation of protein kinases as dis-
cussed above. One direction for future studies will be to examine
the molecular mechanisms that regulate protein kinase activity
by extracellular factors. For example, Sema3A is shown to regu-
late radial migration (Chen et al., 2008); however, its regulation
of intracellular protein kinase activity remains to be elucidated.
For this purpose, the development of a method to monitor kinase
activity in vivo will be valuable for the future research. Studies
on the identification of the downstream effectors (substrates) of
protein kinases are important to understand the mechanisms by
which each protein kinase is involved in neuronal migration. In
this regard, comparative phosphoproteomics using brain samples
from kinase-null mutant mice will be useful (Uchida et al., 2005;
Contreras-Vallejos et al., 2014).
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Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG)

progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate

toward the pial surface using two different migration modes. One is multipolar (MP)

migration with random directional movement, and the other is locomotion, which is a

unidirectional movement guided by the RG fiber. After reaching their final destination, the

neurons finalize their migration by terminal translocation, which is followed by maturation

via dendrite extension to initiate synaptogenesis and thereby complete neural circuit

formation. This switching of migration modes during cortical development is unique in

mammals, which suggests that the RG-guided locomotion mode may contribute to

the evolution of the mammalian neocortical 6-layer structure. Many factors have been

reported to be involved in the regulation of this radial neuronal migration process. In

general, the radial migration can be largely divided into four steps; (1) maintenance

and departure from the VZ of neural progenitor cells, (2) MP migration and transition

to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite

maturation. Among these, many different gene mutations or knockdown effects have

resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical

step, particularly in radial migration. Moreover, this transition occurs at the subplate layer.

In this review, we summarize recent advances in our understanding of the molecular

mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects

of neuronal migration in corticogenesis.

Keywords: cerebral cortex, neuronal differentiation, radial migration, subplate, cortical evolution

INTRODUCTION

The mammalian neocortex is a highly organized structure underlying higher brain functions
such as cognition, learning, and memory. It consists of a six-layer structure with an inside-
out pattern, which is formed by radial migration of neuroblasts that continuously bypass the
preceding differentiated and migrated neurons. Because neurons are born in the deeper part of the
developing brain and migrate toward the pial surface, proper regulation is crucial, and impairment
of this process results in various disorders such as brain malformation or psychiatric diseases.
Our understanding of how this mammalian-specific complex structure is organized has advanced
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FIGURE 1 | Schematic representation of the neuronal differentiation and migration process. The radial migration of glutamatergic neurons in the developing

neocortex can be divided into four steps. (1) Neurons born from RG cells, first exhibit a MP shape and move toward the SP via MP migration where they (2) convert to

BP cells. (3) After entering the CP, newborn neurons migrate toward the pial surface in locomotion mode. (4) Finally, neurons complete their radial migration by

execution of terminal translocation and the initiation of maturation. aIP, apical intermediate progenitor; AP, apical progenitor; aRG, apical radial glial progenitors; bIP,

basal intermediate progenitor; BP, basal progenitor; bRG, basal radial glial progenitors; CP, cortical plate; CR, Cajal-Retzius cell; EN, early born neuron; INM,

interkinetic nuclear migration; IZ, intermediate zone; MAZ, multipolar cell accumulation zone; MZ, marginal zone; PCZ, primitive cortical zone; REP, rapidly exiting

population; SEP, slowly exiting population; SP, subplate neuron; SVZ, subventricular zone; VZ, ventricular zone.

substantially in the last 20 years. In this review, we summarize the
molecular pathways underlying how newly developed neurons
travel from their birth to the terminus by dividing the process
into four parts, as shown in Figure 1. Finally, we discuss
evolutionary aspects of the neuronal migration mode.

Abbreviations: aIP, apical intermediate progenitor; AMPK, AMP-activated kinase;

AP, apical progenitors; APP, amyloid-b precursor protein; aRG, apical radial

glia; ASD, autism spectrum disorder; bIP,basal intermediate progenitor; BM,

basement membrane; BMP, bone morphogenetic protein; BP, basal progenitors

or bipolar; bRG, basal radial glia; CDK, cyclin dependent kinase; CNS, central

nervous system; CP, cortical plate; CR, Cajal Retzius; CSF-1, colony stimulating

factor-1; E, embryonic day; ECD, extracellular domain; FGF, fibroblast growth

factor, FGFR, fibroblast growth factor receptor; GAP, GTPase-activating protein;

GEF, guanine nucleotide exchange factor; GPCR, G-protein coupled receptor;

IL, interleikin; INM, interkinetic nuclear migration; IP, intermediate progenitor;

IUE, in utero electroporation; IZ, intermediate zone; JNK, c-Jun N-terminal

kinase; MADM, mosaic analysis with double markers; MAZ, multipolar cell

accumulation zone; miRNA, microRNA; MST, mitotic somal translocation;

MTOC, microtubule organizing center; MP, multipolar; MT, microtubule; mTOR,

mammalian target of rapamycin; N-cad, N-cadherin; NPC, neural progenitor

cell; OSVZ, outer subventricular zone; PBM, pial basement membrane; PcG,

polycomb group; PCM, pericentriolar material; PH, periventricular heterotopia;

PMSE, polyhydramnios, megalencephaly, and symptom epilepsy syndrome; PSB,

pallial-subpallial boundary; RA, retinoic acid; RAR, retinoic acid receptor; REP;

rapidly exiting population; RG,radial glia; RGC, radial glial cell; SEP, slowly exiting

population; shRNA, short hairpin RNA; SP, subplate; SVZ, subventricular zone;

TACC, transforming acidic coiled coil proteins; TSC, tuberous sclerosis complex;

VZ, ventricular zone; WT, wild-type.

PROLIFERATION AND DIFFERENTIATION
OF NEURAL PROGENITOR CELLS

Neural progenitor cells (NPCs) of the glutamatergic neurons of
the mammalian neocortex proliferate via symmetrical division
of neuroepithelial cells in the early developmental stage. During
development, neuroepithelial cells become radial glia (RG)
cells by expressing marker proteins that are characteristic
of astrocytes, including glial fibrillary acidic protein (GFAP),
astrocyte-specific glutamate transporter (GLAST), the brain lipid
binding protein (BLBP), and tenascin C (TNC) around the
onset of neurogenesis. RG cells have a long basal process that
extends to the pial surface, and they start producing neurons by
asymmetrical division while maintaining symmetrical division
(Malatesta et al., 2000; Miyata et al., 2001; Noctor et al.,
2001; Tamamaki et al., 2001). NPCs are classified into two
subtypes based on the location of mitosis: apical progenitors (AP)
and basal progenitors (BP) (Figure 1). APs are located in the
ventricular zone (VZ) and include neuroepithelial cells, apical
radial glia (aRG), and apical intermediate progenitors (aIPs)
(Gal et al., 2006; Kawaguchi et al., 2008; Figure 2). aIPs are
also called short neural precursors (SNP) which express Pax6
and divide apically (Tyler and Haydar, 2013). Basal progenitors
(BPs) include basal radial glia (bRG) and basal intermediate
progenitors (bIPs) which are Tbr2-positive and located mainly
in the subventricular zone (SVZ). bRG are Pax6-positive RG
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FIGURE 2 | Molecules involved in progenitor maintenance and neuronal differentiation. Cells and molecules that regulate RG cell maintenance and IP or

neuron production, fate specification, and delamination are described in Section Proliferation and Differentiation of Neural Progenitor Cells. aIP, apical intermediate

progenitor; aRG, apical radial glial progenitors; bIP, basal intermediate progenitors; bRG, basal radial glial progenitors; DL, deep layer neurons; E-cad, E-cadherin;

INM, interkinetic nuclear migration; IP, intermediate progenitor; RGC, radial glial cell; SNP, short neural precursor; SVZ, subventricular zone; UL, upper layer neurons.
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cells preferentially located in the basal part of the SVZ called
the outer SVZ (OSVZ: Smart et al., 2002) and are prominently
found in gyrencephalic mammals (Fietz et al., 2010; Hansen et al.,
2010; Reillo et al., 2011). Although bRG (also called oRG: outer
radial glial cells or OSVZ progenitors) were also found in the
developing mouse cortex as a minor population compared with
those in humans and ferrets (Shitamukai et al., 2011; Wang et al.,
2011b), it is thought that the diverse behaviors of bRG contribute
to variations in the cortical structure betweenmammalian species
(Gertz et al., 2014). Compared with neuroepithelial cells that
divide only symmetrically in the proliferative state, aRG produce
two progenitors by symmetrical division, or one progenitor and
one neuron or intermediate progenitor (IP) by asymmetrical
division in the neurogenic stage. bIPs are Tbr2-positive and
neuron-committed progenitors that divide in the majority of
cases once, or in a minority of cells twice, to produce neurons
suggesting its role in the amplification of the progenitor pool
(Haubensak et al., 2004; Noctor et al., 2004; Kowalczyk et al.,
2009). bRG, another population of transient-amplifying cells,
are more prominent in the gyrencephalic cortex compared with
that in rodents, suggesting that IPs and bRG may contribute
to amplifying neuron numbers, the expansion of cortical area,
and gyrification during evolution (Lui et al., 2011). In addition,
novel progenitor cells, called subapical progenitors (SAP) were
described recently (Pilz et al., 2013).

Thus, a variety of progenitors proliferate and differentiate
into neurons during the cortical developmental stage, suggesting
that an accurate balance between the proliferation state and
differentiation into neurons is critical for determination of
the final number of cortical neurons (Caviness et al., 1995).
In this regard, experiments showed that a disturbance of the
balance between self-renewal and differentiation of mouse NPCs
promotes cortical expansion (Chenn and Walsh, 2002). In this
study, transgenic mice expressing a stabilized β-catenin in NPCs
develop enlarged brains with increased cerebral cortical surface
area and folds resembling sulci and gyri of higher mammals
(Chenn and Walsh, 2002), suggesting that the precise regulation
of the proliferative state of either NPC maintenance or NPC
differentiation maybe a critical factor for regulating cerebral
cortical size during evolution. How this regulation is orchestrated
has been a topic of interest, and many researchers have been
investigating it from various standpoints. We will summarize
the mechanisms of maintenance and differentiation of the NPCs
from the intracellular and extracellular standpoints (Figure 2).

Regulation of Intracellular Signaling of
Neural Progenitor Cells
Regarding intracellular signaling of NPCs (Figure 2), studies
have revealed that Notch signaling fluctuation plays a critical
role in the maintenance of the progenitor state (Kageyama et al.,
2008; Shimojo et al., 2008). Their findings originated from the
discovery that the expression of the bHLH factor Hes1 oscillates
with a duration of about 2-3 h in many cell types (Hirata
et al., 2002). In NPCs, Hes1 oscillation drives the oscillatory
expression of Neurogenin 2 (Ngn2), Ascl1, and Dll1, a key ligand
for activating Notch signaling (Shimojo et al., 2008; Imayoshi
et al., 2013). The oscillatory expression between Ngn2 or Ascl1

and Dll1 in the complementary phase leads to mutual activation
of Notch signaling within neighboring progenitors, and enables
the progenitors to maintain the proliferative state of NPCs.
Once this oscillation is diminished by sustained expression of
proneural factors, progenitor cells differentiate into different
neuronal and glial subtypes based on proneural factor that
shows sustained expression levels (Imayoshi et al., 2013). How
oscillatory expression levels of Hes1, Ascl1, Ngn2, and Dll1
influence the fate of progenitor cells in relation to developmental
time is still unknown. Although epigenetic modification of the
NPC genome could be considered as a candidate, identification
of the downstream genes of these oscillation will reveal the
molecular mechanisms of cell fate specification in future studies.

Notch signaling fluctuation in NPCs is also supported by the
gene expression profiles of a large number of single progenitor
cells at the mid-embryonic stage (Kawaguchi et al., 2008). They
classified progenitors in three subclasses according to their gene
expression profiles and found that APs exhibit highly variable
expression patterns of Notch signaling related genes. Attenuation
of Notch signaling in APs immediately led to differentiation
of APs into nascent IPs. Interestingly, a recent report revealed
that IPs provide feedback to the RG progenitors by serving
as a source of Dll1 via dynamic and transient processes that
directly interact with RG (Nelson et al., 2013). This feedback
regulation may be involved in maintaining the RG progenitor
pool by activating Notch signaling in RG cells (Figure 2). As for
the regulators for Notch signaling, Robo1, and Robo2 receptors
that are known axon guidance regulators, have been reported
to modulate the transition between RG cells and IPs through
activation of the Notch effector Hes1 (Borrell et al., 2012). This
study suggested that some regulators have multiple functions in
cortical development including neurogenesis and neural circuit
formation.

Sox2, a member of the high-mobility group box transcription
factors, is highly expressed in RG cells and is essential for
maintaining their self-renewal state (Hutton and Pevny, 2011).
Recently, the molecular mechanism has been revealed by which
Sox2 negatively regulates genes promoting NPC proliferation
including Cyclin D1 using single cell RNA-seq experiment of in
utero electroporation (IUE) cortex. Upon differentiation to IP
cells, upregulated Ngn2 repressed Sox2 followed by cyclin D1
de-repression, and promote IP proliferation (Hagey and Muhr,
2014).

Other factors that are involved in progenitor pool
maintenance include Axin (Fang et al., 2013), Disrupted in
Schizophrenia 1(DISC1) (Mao et al., 2009), and Rac1 (Leone
et al., 2010). Axin is a scaffold protein for many signaling
proteins, including GSK-3. An increase in the expression level of
Axin in progenitor cells leads to the transient amplification of
IPs without affecting the RG pool. In this state, Axin localized
in the cytoplasm with GSK-3 as a binding partner contributes to
the self-renewal and IP amplification of aRG. As the neurogenic
stage proceeds, Axin is phosphorylated by cyclin dependent
kinase 5 (CDK5) and translocated into the nucleus with β-
catenin as a binding partner, which is followed by a shift to
neuronal differentiation. This function of Axin is independent
of the canonical Wnt signaling pathway. These results suggested
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a novel role of Axin in IP expansion during evolution (Fang
et al., 2013). Regarding GSK-3, it has been reported that the
deletion of GSK-3 signaling by genetic elimination of all isoforms
resulted in massive hyperproliferation of neural progenitors and
markedly suppressed generation of both IPs and postmitotic
neurons (Kim et al., 2009). DISC1, originally identified as a
Schizophrenia- related gene (Blackwood et al., 2001) plays an
important role in many aspects of neural development. For
progenitor maintenance, DISC1 regulates RG cell proliferation
via inhibition of GSK-3 by directly binding and modulating the
canonical Wnt pathway together with its binding protein Dixdc1
(Mao et al., 2009; Singh et al., 2010). Taken together, this evidence
indicates that GSK-3 signaling is essential for maintenance of the
neural progenitor pool during cortical development. Meanwhile,
as for Wnt-signaling, it has also been reported that N-myc is
a downstream target that promotes IP production (Kuwahara
et al., 2010).

Rac1, a small G-protein that is a member of the Rho-GTPase
family, has been implicated in regulating the proliferation and
differentiation of stem cells of various tissues (Benitah et al.,
2005; Chrostek et al., 2006). A forebrain-specific loss of Rac1
leads to reduction in proliferation in a SVZ-progenitor (bIP)-
specific fashion, a concomitant increase in cell cycle exit and
premature differentiation (Leone et al., 2010), which suggests that
Rac1 activity is crucial for maintenance of the progenitor state of
bIPs.

Fate Specification of Neural Progenitor
Cells
The neuron production stage includes another important step
of neuronal subtype specification for which many transcription
factors are involved. FoxG1 is a transcriptional repressor that is
strongly expressed in progenitors and functions as a repressor
of Cajal Retzius (CR) cell competency (Hanashima et al., 2004)
as well as a regulator of NPC self-renewal, IP expansion, and
the timing of neurogenesis (Shen et al., 2006; Siegenthaler et al.,
2008; Fasano et al., 2009). It has been reported that Foxg1 is
necessary and sufficient for inducing deep-layer neurogenesis
and that it switches the transcriptional program to acquire upper
layer neuron identity through direct repression of transcription
expression of T-box brain 1 (Tbr1) transcription factor, an early
born postmitotic neuronal marker (Kumamoto et al., 2013; Toma
et al., 2014). This suggests that expression of a single transcription
factor may enable neural progenitors to alter their intrinsic
character.

The transcription factors Fezf2 and Cux2 are neuronal
subtype markers expressed in deep and superficial layer neurons,
respectively, and they are critical for fate specification (Nieto
et al., 2004; Chen et al., 2005). They are also expressed in
NPCs in VZ, which has led to a debate about the existence
of fate-restricted progenitors in Cux2- or Fezf2-Cre driver
mouse lines (Franco et al., 2012; Guo et al., 2013). Although
a recent report using the mosaic analysis with double marker
(MADM) system (Zong et al., 2005; Hippenmeyer et al., 2010)
demonstrated unitary production of deep and superficial layer
neurons by individual NPCs (Gao et al., 2014), this dispute
remains unresolved.

Other transcription factors involved in neurogenesis
regulation include Pou3fs (Brn1, Brn2) and Gli3. Brn1/2 is a
crucial regulator of the production of upper-layer neurons, and
its expression in VZ progenitors is essential for the transition
from early to mid-neurogenesis (Sugitani et al., 2002; Dominguez
et al., 2013). Gli3 is a transcription factor in the Hedgehog (Hh)
pathway, the loss of which in RG cells results in decreased
production of IPs and prolongs the production of deeper cortical
neurons, suggesting that Gli3 is required for both the generation
and maintenance of IPs and fate specification of IP-originating
superficial neurons (Wang et al., 2011a).

Besides transcription factors, it has been shown that
chromatin regulators are also critical for the fate specification
of NPCs (a review, see Tyssowski et al., 2014). Ring1B is a
component of the polycomb group (PcG) complex 1(PCR1)
proteins and functions as a repressor of transcription via
trimethylation of residue Lys27 of histone H3 (H3K27me3).
Reports from the Gotoh research group have shown that
Ring1B is essential not only for shifting the neurogenic
state to an astrogenic fate (Hirabayashi et al., 2009) but
also for terminating the production of deep-layer neurons
through direct repression of Fezf2 promoter activity (Morimoto-
Suzki et al., 2014). They have also shown that depletion of
Ezh2, which is a component of the polycomb group (PcG)
complex 2(PCR2), exhibited the same phenotype of prolonged
neurogenic phase of NPCs and delayed onset of the astrogenic
phase, as depletion of Ring1B at the same stage (E12.5)
(Hirabayashi et al., 2009). However, depletion of Ezh2 before
the onset of neurogenesis results in the opposite effects, that is,
accelerate differentiation and early onset of astrocyte production
(Pereira et al., 2010). These results suggest that Ezh2 may
independently regulate the major developmental transitions in
cortical progenitor cells: expanding neuroepithelial cell by self-
renewing, producing neurons of different laminar fates, and
switching from neurogenesis to gliogenesis. Ikaros, another
modulator of the chromatin-remodeling complex, is expressed
in NPCs at highest levels during the early stage of neurogenesis,
and its expression decreases as development proceeds. Sustained
expression of Ikaros results in prolonged production of deep-
layer neurons, supporting its role in fate determination of
deep-layer neurons via chromatin regulation (Alsiö et al.,
2013).

Progenitor Maintenance and Microtubule
(MT) Organization
Microtubules (MTs) are an important component of
cytoskeletons and are vital for the organization of the centrosome
and mitotic spindle, which are also crucial for the maintenance
of NPCs. EFHC1 is a protein containing a single EF-hand motif,
a Ca2+ binding domain, which directly interacts with α-tubulin.
Mutation in the gene encoding this protein causes juvenile
myoclonic epilepsy (Suzuki et al., 2004). Functional analysis
of EFHC1 using rat developing neocortex revealed that it is
essential for cell cycle exit of NPCs via the assembly and function
of mitotic spindle. Impairment of this gene affects mitotic spindle
formation and M-phase progression by microtubule bundling
defects and increased apoptosis (de Nijs et al., 2009).
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Cdk5rap2 is localized at the centrosome of neural progenitors,
and loss of this protein causes a failure in the maintenance of the
neural progenitor pool by increased cell cycle exit followed by
premature neuronal differentiation (Buchman et al., 2010). The
microtubule-binding protein Hook3 is recruited to pericentriolar
satellites through an interaction with Pericentriolar Material 1
(PCM1). Disruption of the Hook3-PCM1 interaction impairs
maintenance of the neural progenitor pool (Ge et al., 2010).
This suggests that regulators of centrosome dynamics are
also important for progenitor maintenance. In addition, the
regulation of mitotic spindle orientation is also important
for symmetric division and thereby, progenitor maintenance
(Yingling et al., 2008). It has been reported that the mitotic
spindle of RG cells orients almost parallel to the ventricular
surface in both proliferative and neurogenic stages. Only a
fraction of RG cells that adopt divisions with oblique and vertical
spindle orientations preferentially generate bIPs and bRG during
the neurogenic stage (Konno et al., 2008; Shitamukai et al., 2011).
A disturbance of mitotic spindle orientation by knocking out
LGN (G protein regulator) gene or manipulation of the mouse
Inscuteable(mInsc) gene expression level leads to a disruption
of the balance between proliferation and differentiation of
NPCs (Konno et al., 2008; Postiglione et al., 2011). Lis1, its
binding partner Ndel1, and dynein form a complex that is also
required for maintaining spindle orientation perpendicular to
the ventricular surface and NPC proliferation (Yingling et al.,
2008). Recently, it has been reported that the protein phosphatase
PP4c regulates spindle orientation in early cortical progenitor
cells by dephosphorylating Ndel1, thereby enabling complex
formation with Lis1 to form a functional spindle orientation
complex (Xie et al., 2013). These lines of evidence demonstrate
that regulation of mitotic spindle orientation is one of the
key molecular mechanisms for progenitor maintenance and the
transition between symmetric and asymmetric cell division.

The Behavior of Neural Progenitor Cells in
the Ventricular Zone
Now we turn our attention to the motion of NPCs. It has
been long known that nuclei of progenitor cells exhibit cell-
cycle dependent oscillatory movement known as interkinetic
nuclear migration (INM), also called elevator movement (Sauer
and Walker, 1959; Fujita, 1962, 1963). Although the molecular
mechanisms and the biological meaning of this movement
are not well understood, recent studies provide insights into
the molecular mechanisms of INM. The functional roles of
both microtubule and actomyosin motor proteins in INM
were identified first (Tsai et al., 2005, 2010; Norden et al.,
2009; Schenk et al., 2009). Next, the involvement of other
proteins in INM regulation was reported. Centrosomal protein
of 120 kD (Cep120) is a centrosomal protein expressed in
NPCs and knockdown of Cep120 results in impairment of
INM through interactions with transforming acidic coiled-
coil proteins (TACCs) (Xie et al., 2007). Hook3, mentioned
above, is involved in regulation of INM, suggesting that INM
is an important behavior of NPCs for proper neurogenesis
of the mammalian neocortex, and it has been reported in
other neurogenic systems (Murciano et al., 2002; Del Bene

et al., 2008). Tpx2, a microtubule-associated protein, has been
identified as an essential protein for apical nuclear migration
during G2 phase (Kosodo et al., 2011). Dock7, a member of the
DOCK180 superfamily of a distinct class of Rac/Cdc42 GTPase
guanine nucleotide exchange factors (GEFs), regulates INM by
interacting with TACC3 (Yang et al., 2012b). Meanwhile, it has
been shown that dynein recruitment to the nuclear pore is
required for apical nuclear migration through “RanBP2-BicD2”
and “Nup133-CENP-F” pathways (Hu et al., 2013).

Moreover, a recent study revealed the biological role of
INM. Using TAG-1 knockdown, which leads to loss of the
basal processes of RG cells and in toto imaging, it was shown
that proper INM is critical for preventing overcrowding of
progenitor cells and for facilitating the smooth departure of the
differentiated cells from the VZ (Okamoto et al., 2013).

Extrinsic Regulators of Neurogenesis
Besides the cell-autonomous regulatory mechanisms described
above, extrinsic factors are also involved in the regulation of
NPC maintenance. Several growth factor signaling pathways
including for fibroblast growth factor (FGF), sonic hedgehog
(shh), Wnt, bone morphogenetic proteins (BMPs), colony
stimulating factor-1 (CSF-1), and interleukin (IL) 34 are involved
in the regulation of progenitor self-renewal and differentiation.
Targeted disruption of the docking protein FRS2α, a major
mediator of FGF signaling, leads to severe impairment of cerebral
cortical development with thinner cerebral cortices than wild-
type (WT) cells, reduced proliferation and differentiation of
Tbr2- positive bIPs (Yamamoto et al., 2005). Genetic disruption
of all three FGF receptors (FgfRs) leads to attenuation of
Notch signaling and precocious production of bIPs followed
by premature termination of neurogenesis (Rash et al., 2011).
Recently, it has been reported that this function in progenitor
maintenance of FGF occurs in cooperation with EphA4, a
member of the receptor tyrosine kinase superfamily (Chen
et al., 2015). Shh, known as a regulator of early central
nervous system (CNS) development, also regulates progenitor
proliferation through upregulation of Gli1, which is a zinc
finger transcriptional factor and a mediator of Shh signaling
(Dahmane et al., 2001). Targeted disruption of shh in the mouse
dorsal pallium leads to small cerebral cortices at embryonic
day (E)18.5, which was caused by impairment of cell cycle exit
and reduced proliferation of NPCs (Komada et al., 2008). This
regulatory function of shh in neurogenesis is cooperative with
Notch signaling (Dave et al., 2011). As mentioned in Section
Regulation of Intracellular Signaling of NPCs, Wnt also regulates
IP production. Ectopic Wnt3a expression in the developing
cortex causes cortical dysplasia and neuronal heterotopias (Munji
et al., 2011). The authors found that Wnt3a promotes expansion
of RG and differentiation of IPs. These results suggested that
the Wnt-β–catenin pathway regulates both RG self-renewal and
IP differentiation (Munji et al., 2011). Bmp7 null embryos
exhibited microcephaly by reduced cortical plate thickness. It
has been revealed that Bmp7 is required for the proliferation
potential of NPCs (Segklia et al., 2012). The CSF-1 receptor
(CSF-1R), known in CNS microglial development, has been
revealed as another regulator in progenitor maintenance. Csfr-/-
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mice displayed increased proliferation, apoptosis of NPCs, and
reduced differentiation of specific excitatory neuronal subtypes
(Nandi et al., 2012). This result suggested that CSF-1 and IL-34,
ligands of CSF-1R, suppress self-renewal potential of RG cells and
production of IPs to maintain the balance between proliferation
and differentiation.

Cells and meninges also function as signaling centers
regulating NPC proliferation. The distribution of a subtype of
CR cells (Dbx1-derived CR cells) influences the proliferation
and differentiation of progenitor cells in the VZ (Griveau
et al., 2010). Thus, CR cells provide certain information to
NPCs for their proliferative state via secretion of signaling
molecules. Loss of meninges in the forebrain by Foxc1 mutation
results in the reduction of retinoic acid (RA) secretion and
impairment of switching from symmetric to asymmetric division,
thus leading to a decrease in neuron and IP production
(Siegenthaler et al., 2009). Additionally, tangentially migrating
transient glutamatergic neurons that are generated by Dbx1
positive progenitors at the pallial/subpallial boundary (PSB) at
E12.5 contribute to maintain the neocortical progenitor pool
(Teissier et al., 2010, 2012). These studies highlight the major
involvement of such extrinsic regulators in NPC maintenance
and differentiation.

ATP signaling and calcium waves are also involved in
the regulation of NPCs. Spontaneous calcium waves that are
dependent on connexin hemichannels and P2Y1 ATP receptors
propagate through RG cells in the VZ and regulate neuron
production (Weissman et al., 2004) and are essential for
migration of IPs to the SVZ (Liu et al., 2008). Another class
of novel participants among the regulators of progenitor cell
maintenance is microglia, resident macrophages in the brain
(Cunningham et al., 2013). Activated microglia colonize the
proliferative zones of the developing rat and primate forebrains,
and the manipulation of microglia cell numbers significantly
affects the number of NPCs. Microglial surveying and its crucial
role in eliminating injured neurons in adult brains has been
known; excessive microglial activation was observed in autism
spectrum disorder (ASD) (Nimmerjahn et al., 2005; Tetreault
et al., 2012; Suzuki et al., 2013). However, Cunningham et al.
showed that microglia also play an important role in normal
cortical development during embryogenesis by eliminating NPCs
at the end of cortical neurogenesis and, therefore, they may
contribute to terminate neurogenesis (Cunningham et al., 2013).

MULTIPOLAR CELL TO BIPOLAR CELL
TRANSITION

Newly born late-born neurons finally depart the VZ and
start the journey to their final destinations. During radial
migration, cell shape and migration mode change markedly.
After differentiation, newborn neurons exhibit a multipolar (MP)
shape with multiple neurites and migrate in a MP migration
mode in random directions (Tabata and Nakajima, 2003). For
MP cell migration, it has been reported that two distinct
populations in terms of their migrating behaviors exist (Tabata
et al., 2009). One is the slowly exiting population (SEP), in which

postmitotic MP migrating cells stay in the lower part of the
SVZ called the MP cell accumulation zone (MAZ). The other
is the “rapidly exiting population (REP),” which migrate rapidly
into the SVZ/intermediate zone (IZ) and undergoes further cell
division, then converts to MP cells. REP includes bIPs, Olig2-
positive glial progenitors, and probably bRG. Whereas, the SEP
stays in the MAZ but enters the cortical plate (CP) faster than
the REP and contributes to the production of superficial neurons
as well as the REP (Tabata et al., 2009; Figure 1). This study
indicated that the migration behavior of the direct progeny
of asymmetric division and IPs are different although both of
them exhibit MP shapes. For delamination of differentiated cells
from the apical surface of the VZ, Scratch 1, and 2, members
of the snail super-family of transcription factors, are involved
in this regulation through the suppression of E-cadherin (Itoh
et al., 2013). After delamination, MP cells convert to bipolar
(BP) cells for locomotion. Neuronal polarization of newborn
neurons (neuroblasts) in vivo occurs during this step, starting
with extension of a thin axon, and one selected neurite became
a thick leading process. Time-lapse imaging of cultured slices of
electroporated brains showed that axon extension occurs prior
to the formation of the leading processes for majority of MP
cells (Hatanaka and Yamauchi, 2013). Additionally, this axon
specification is dependent on TAG-1-mediated contact between
immature neurites and axons of early born neurons (Namba
et al., 2014). Neuronal polarization in dissociated primary
cultured neurons is defined as axon specification from multiple
neuritis. In contrast, leading process formation to convert a BP
cell is a critical polarization step in vivo (Takano et al., 2015).
Many gene knockouts or knockdowns of cortical development
exhibit phenotypes of either delay or failure of the MP-BP
transition, suggesting that this regulatory mechanism is crucial
for the radial migration process. Many genes have been reported
to be involved in this regulation. These can be classified roughly
into five categories (Figure 3): (1) transcriptional regulators,
(2) small GTP-binding proteins, (3) proteins related to MT
dynamics, (4) receptors and other membrane proteins, and
(5) kinases. Nevertheless, the downstream effectors are mostly
involved in cytoskeletal regulation. We will summarize recent
findings for each category (Figure 3).

Transcriptional Regulators Involved in the
Multipolar-bipolar Transition
Neurogenin 2 (Ngn2), a proneural transcription factor
responsible for glutamatergic neuronal differentiation from
NPCs, has been found to also play an important role in the MP-
BP transition via direct transcriptional activation of the small
GTP-binding protein Rnd2, an atypical Rho-GTPase protein that
inhibits RhoA activity and regulates actin cytoskeleton (Heng
et al., 2008). Transcriptional repressor RP58 (also known as
zfp238, znf238, and zbtb18) is not only another downstream
target gene of Ngn2 (Xiang et al., 2012) but also an upstream
regulator repressing Ngn2 transcription by negative feedback
regulation (Ohtaka-Maruyama et al., 2013). Meanwhile, Rnd2
transcription is directly repressed by RP58 (Heng et al., 2015)
and CoupTF-I, a nuclear orphan receptor (Alfano et al., 2011),
suggesting that the expression level of Rnd2 is critical for the
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FIGURE 3 | Molecular pathways involved in MP-BP transition. Factors involved in the MP-BP transition can be categorized in the following five groups based on

their molecular function: (1) transcriptional regulators, (2) small-G proteins, (3) microtubule (MT)-dynamics, (4) transmembrane proteins, and (5) protein kinases. Black

arrows (→) represents positive regulation of either “activated,” “stabilized,” or “phosphorylated” target factors; ⊣ indicates either “repression of transcription” or

“inhibition of activity” of target factors. Dashed lines indicate putative relationships inferred from the experimental data. Factors in gray characters are effectors of their

partner molecules but they do not belong to each category. BP, bipolar; MP, multipolar; MT, microtubule.

MP-BP transition (Table 1, Figure 3). We have been studying the
functional roles of RP58 and have found that this transcriptional
repressor plays critical roles in neuronal migration as well as
neuronal differentiation (Okado et al., 2009; Ohtaka-Maruyama
et al., 2012, 2013).We summarize the transcriptional regulators
involved in the MP-BP transition in Table 1.

RP58 is a Multifunctional Regulator of
Cortical Development
Recently, we found that the transcriptional repressor RP58,
belonging to the POK/ZBTB proteins, which contain C-terminal
zinc fingers and N-terminal BTB/POZ domains, has multiple
roles in cortical development. RP58-gene- deficient mice die
at birth and exhibit severe phenotypes associated with the
proliferative state of NPCs and radial migration (Okado et al.,
2009; Hirai et al., 2012; Ohtaka-Maruyama et al., 2013). A
detailed analysis revealed that RP58 regulates cell cycle exit
and neuronal migration by repressing its downstream targets.
The RP58 gene was isolated originally from a screening for
translin-associatedmolecules from a human spleen cDNA library
(Aoki et al., 1998). It binds Dnmt3a and may be involved
in transcriptional repression via chromatin remodeling (Fuks
et al., 2001). Analyses of the spatial and temporal expression

patterns during mouse brain development revealed that RP58
is weakly expressed in NPCs in the germinal zones of both
the pallium and subpallium in the early developmental stage
(Ohtaka-Maruyama et al., 2007). As development proceeds, RP58
is expressed strongly, via- Ngn2 activation in glutamatergic -
neurons in the dorsal pallium. The peak expression of RP58
is at E15-16, when neurogenesis occurs most actively in the
cortex by prominent promoter activity (Ohtaka-Maruyama et al.,
2007, 2012).We demonstrated that RP58 enhances cell-cycle exit,
resulting in neurogenesis via the transcriptional repression of
Id1- 4 genes (Hirai et al., 2012). In RP58 deficient mice, cell cycle
exit is impaired and the Pax 6- and PCNA-positive progenitor
population is increased (Okado et al., 2009). Regarding the
determination of laminar identity of differentiated neurons in
RP58-deficient mouse cortex, neurons expressing the markers
for layers II-V and SP neurons decreased remarkably, suggesting
that RP58 plays a critical role in the maturation of cortical
neurons (Okado et al., 2009). We also showed that RP58
controls MP-BP transition by regulating the Ngn2-Rnd2 pathway
independent of its activity in the regulation of cell cycle exit
(Ohtaka-Maruyama et al., 2013). Moreover, it has been revealed
that RP58 represses Rnd2 transcription directly (Heng et al.,
2015). These results suggested that RP58 enables transient
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TABLE 1 | A summary of transcriptional regulators involved in the MP-BP transition.

Transcriptional Gene manipulation Examined Migration Related gene, References

regulator method developmental stage defect protein

Neurogenin2 Ngn2(–/–) (LOF) E14.5→4DIV Impairment of CP entering RhoA Hand et al., 2005

(Ngn2) Ngn2Flox/Flox+ Cre plasmid (LOF)

Ex vivo electroporation Slice culture

Rnd2 Heng et al., 2008

RP58 RP58(−/−)(LOF)

RP58Flox/Flox + Cre plasmid(LOF)

IUE

E14.5→E17.5, E19.5 Impairment of CP entering

Accumulation of MP cells

Ngn2

Rnd2

Ohtaka-Maruyama

et al., 2013

Heng et al., 2015

Coup-TFI Coup-TFI(–/–) (LOF) E14.5→4DIV, E18.5, P8 Impairment of CP entering Rnd2 Alfano et al., 2011

Coup-TFIFlox/Flox + Cre plasmid (LOF) Abnormal MP cell morphology

IUE, Ex vivo electroporation

Slice culture

Defective axonal elongation of

CPNs

FoxG1 CAG-FoxG1-IRES-EGFP(GOF) E13.5→E16.5, E19.5 Delay of the radial migration

(GOF)

Altering the lamina fate (GOF)

Unc5D Miyoshi and Fishell,

2012

Ngn2 CreER, FoxG1-C:Flpe/-,

R26R-CAG-FRTstop-EGFP

reporter + Tmx (LOF)

Tmx E11.5→E14.5

Tmx E13.5→E16.5

Tmx E15.5→E18.5

Impairment of CP entering (LOF)

NeuroD1-mCherry IRES

CreER (Late LOF) IUE

E12.5 Tmx→E16.5

→E19.5

Late LOF does not affect

postmigratory populations

Laf4/Aff3 sh-RNA (LOF) E14.5→6DIV Impairment of CP entering Mdga2 Moore et al., 2014

Laf4-HA-IRES-GFP (GOF)

IUE, Slice culture

PHF6 sh-RNA (LOF) E14.5→E17.5, 19.5, P6 Delay of the radial migration PAF1 Zhang et al., 2013a

IUE Accumulation of MP cells NGC/CSPG5

White matter heterotopia

Prdm8 CAG-Prdm8 plasmid (GOF) E12.5→P5 Impairment of CP entering (GOF) Unc5D Inoue et al., 2014

sh-RNA (LOF) E14.5→E17, E17.5 Accumulation of MP cells (GOF)

IUE Premature BP transition (LOF)

Altering the laminar fate ( LOF)

Erm, Er81

(Pea3-Ets family)

DN-plasmid (LOF)

IUE

E13.5→E16.5 Impairment of CP entering FGF18, FFGFR Hasegawa et al., 2004

miR-9, 132

(Target: FoxP2)

FoxP2-3′UTR E13.5→E18.5, P15 Delay of the radial migration FoxP2 Clovis et al., 2012

FoxP2- 1 -3′UTR (GOF) White matter heterotopia

FoxP2-3′UTR-MT1+2+3 (GOF)

IUE

miR-379-410 cluster NeuroD1-miRNA plasmid (LOF) E13.5→E17.5 Impairment of CP entering (LOF) N-cadherin Rago et al., 2014

(Target: N-cadherin) NeuroD1-anti-miR LNAs plasmid

(GOF)

IUE

Enhancement of the radial

migration (GOF)

miR-22,124

(Target: CoREST)

Dicer Flox/Flox + NeuroD:Cre-GFP

plasmid

E14.5→3DIV, E17.5

→E18.5, P2

Delay of the radial migration

(GOF)

CoREST

Dcx

Volvert et al., 2014

miR expression plasmid (LOF) E14.5→E16.5→1DIV Accumulation of MP cells (GOF)

antagomiR (GOF) IUE, Slice culture → time-lapse

Retinoic acid receptor

(RAR)

RARE.hsp68LacZ + DN-plasmid E12.5→E15.5, P5 Impairment of CP entering β-catenin Choi et al., 2014

(LOF) E13.5→E16.5, P5 Altering the laminar fate

E14.5→E17.5, P5 Late-born neurons are affected

E15.5→E18.5, P5

BP, bipolar; CP, cortical plate; DIV, day in vitro; E, embryonic day; GOF, gain of function; IUE, in utero electroporation; LOF, loss of function; MP, multipolar; Tmx, Tamoxifen.
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expression of Ngn2 and restricts the Ngn2-Rnd2 signaling
pathway both directly and indirectly. This regulation is essential
for fine-tuning the Ngn2-Rnd2 signaling pathway to achieve
proper radial migration. Furthermore, RP58 is involved in
the regulation of neurite outgrowth (Ohtaka-Maruyama et al.,
2013). Thus, RP58 is a multifunctional repressor for cortical
development. Further functional analyses of RP58 will provide
new insights into the molecular mechanisms of cortical
development.

Other Transcriptional Regulators Involved
in the Multipolar-bipolar Transition
FoxG1, a fate determinant factor as mentioned earlier, also
plays an important role in radial migration (Miyoshi and
Fishell, 2012; Table 1, Figure 3). Its transient downregulation
in the IZ is critical for the MP-BP transition, suggesting that
dose-dependent regulation of downstream targets is important
for subsequent morphological and migration mode changes.
Laf4/Aff3, a member of the AFF (AF4/FMR2) family, is known
as a putative transcription factor and silencing of this gene is
associated with neurodevelopmental disorders and intellectual
disability (ID) (Steichen-Gersdorf et al., 2008; Metsu et al.,
2014). However, its function in normal brain development
is unclear. A recent study reported that Laf4 is strongly
expressed in the developing cortex and is required for the
MP-BP transition via the transcriptional activation of Mdga2,
a gene coding for a cell adhesion molecule (Moore et al.,
2014; Table 1, Figure 3). Another intellectual disability-related
gene, the X-linked intellectual disability protein PHF6 has also
been reported to be associated with the PAF1 transcription
elongation complex and to regulate MP-BP transition (Zhang
et al., 2013a). The study showed that Neuroglycan C/Chondroitin
sulfate proteoglycan 5(NGC/CSPG5), which is a potential
schizophrenia-susceptibility gene, is a critical downstream target
of PHF6 in this regulation (Table 1, Figure 3)

Prdm8 is a member of the proto-oncogene transcription
family and has intrinsic histone methyltransferase activity
(Hayashi et al., 2005; Eom et al., 2009). Prdm8 forms a repressor
complex with Bhlhb5 and regulates neuronal circuit assembly
through Cadherin-11 repression (Ross et al., 2012). Recently, it
has been reported that Prdm8 regulates the MP-BP transition
by maintaining the MP state and inducing morphological
changes, and it controls genes including those encoding guidance
molecules (Inoue et al., 2014; Table 1, Figure 3). Transcription
factors Erm, Er81, and Pea3 belong to the Pea3 subfamily
members of Ets (Pea3-Ets) and have also been reported to be
involved in the regulation of the MP-BP transition (Table 1,
Figure 3). It has been shown that the expression of these
transcription factors is induced by FGF18-FGFR3 signaling in
the developing cortex (Hasegawa et al., 2004). Knockdown of
Erm, Er81, and Pea3 disrupt the entrance of migrating neurons
into the CP, suggesting that Pea3-Ets transcription factors act
as key mediators that interpret FGF signaling to confer proper
migratory behavior on young MP neurons (Hasegawa et al.,
2004). The molecular marker ER81 is expressed in a subset of
pyramidal cells of layer V and also in NPCs at the mid- to-
late stages of cortical development. Besides its association with

the FGF signaling pathway, Pax6 has also been identified as an
upstream activator of ER81, binding directly to the ER81 gene
promoter (Tuoc and Stoykova, 2008).

In addition to transcription factors, it has recently been
reported that microRNAs (miRNAs; miR) expressed in the
developing cerebral wall are also involved in the regulation
of radial migration (Clovis et al., 2012; Rago et al., 2014;
Volvert et al., 2014; Table 1, Figure 3). miR369-3p, miR496,
and miR543, all bind to the 3′-untranslated region of the
N-cadherin (N-cad) transcript and regulate neurogenesis and
neuronal migration by fine-tuning of N-cad levels (Rago et al.,
2014). miR-9 and miR-132 target the 3′-untranslated region of
the Foxp2 transcript and regulate radial migration by controlling
the Foxp2 expression levels (Clovis et al., 2012). Meanwhile, the
transcriptional repressor CoREST is also a miRNA target. miR-
22 and miR-124 regulate proper expressional levels of CoREST,
thereby regulating doublecortin transcription and promoting the
MP-BP transition (Volvert et al., 2014). These lines of study
suggest that minute transcriptional regulation of target genes
including transcriptional factors and other proteins related to
cortical development is critical for proper neuronal migration.
Although RA signaling has long been known as an important
regulator for neuronal development (Sockanathan et al., 2003;
Fu et al., 2010), and activated RA receptor (RAR) is present
in the developing dorsal and medial pallium (Luo et al., 2004),
little is known about the function of RA in corticogenesis. RAR
is a nuclear receptor that can act as a transcription factor. A
recent study showed that inhibition of RAR function delays late-
born neuron migration and leads to failure in maintaining their
fate via β-catenin signaling (Choi et al., 2014). This suggests
that RA signaling is critical for neuronal positioning as well as
maintenance of their neuronal fate.

Small GTP Binding Proteins in the
Multipolar-bipolar Transition
Small GTP binding proteins (small GTPases, small G proteins),
also known as the Ras superfamily, comprise more than 150
small G proteins that can be divided into five subfamilies: Ras,
Rho, Rab, Arf, and Ran (Raimondi et al., 2010). They function
as molecular switches in many cellular processes including
cell proliferation, cytoskeletal organization, and cell migration.
Although the Ras protein was originally recognized as an
oncogene, it was recently revealed that small G proteins are
indispensable for normal cellular functions including neuronal
migration in the developing cerebral cortex (Kawauchi, 2011;
Shah and Puschel, 2014). Among these, proteins belonging to
the Rho, Ras, and Arf families or their regulator proteins have
been reported to be involved in theMP-BP transition required for
dynamic morphological changes (Figure 3). Rac1, regulator of
maintenance of progenitor state is also involved in the regulation
of the MP-BP transition. Functional repression of Rac1, its
activators STEF/Tiam1, or its downstream molecule, c-Jun N-
terminal kinase (JNK) resulted in defective MP-BP transitions
of newborn cortical neurons (Kawauchi et al., 2003). This study
revealed that Rac1 is essential for the MP-BP transition via
regulating microtubule dynamics by activating JNK, followed
by phosphorylation of MAP1B. P-Rex1, another activator of

Frontiers in Neuroscience | www.frontiersin.org December 2015 | Volume 9 | Article 447 | 72

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Ohtaka-Maruyama and Okado Molecular Pathways of Corticogenesis

Rac (Rac-GEF), shows more restricted expression in neurons
located at the lower part of the IZ of the mid-embryonic cortex,
and participates in the regulation of radial neuronal migration
via extracellular cues such as neurotrophins (Yoshizawa et al.,
2005). Moreover, the Rac1-interacting scaffold protein POSH
is required for the proper localization of activated Rac1 in the
basal part of leading processes and regulates neuronal migration
especially from the IZ into the CP (Yang et al., 2012a). These
reports suggested that regulation of Rac1 is essential for proper
MP-BP transition (Figure 3). α2-chimaerin is a Rac GTPase-
activating protein (GAP) and was reported to be essential for
neurite extension and axon pathfinding in the locomotor circuit
and ocular system (Beg et al., 2007; Iwasato et al., 2007; Miyake
et al., 2008). It has also been demonstrated that α2-chimaerin is
essential for the MP-BP transition during radial migration (Ip
et al., 2012). However, the function of this Rac-GAP protein is not
dependent on its GAP activity, but rather via modulation of the
activity of the microtubule-associated protein CRMP-2 (Ip et al.,
2012; Figure 3). This result suggests that Rac regulator proteins
have multiple functions mediated through different effectors.
Rnd proteins are also important and unique Rho family members
that lack intrinsic GTPase activity and are constitutively active.
They regulate the actin cytoskeleton through inhibition of Rho-
A signaling. As mentioned above with respect to Rnd2 function,
fine-tuning of the Rnd2 level via transcriptional regulation is
critical for the MP-BP transition of cortical migrating neurons
(Heng et al., 2008, 2015; Alfano et al., 2011; Ohtaka-Maruyama
et al., 2013; Figure 3). In contrast to Rnd2, Rnd3 regulates the
early and late steps of radial migration, as described in Section
Locomotion below. Some Ras family related proteins have been
reported to be involved in MP-BP regulation, including Rap1
(Jossin and Cooper, 2011), RapGEF2 (Ye et al., 2014), and
Dab2ip (Lee et al., 2012). Functional inhibition of Rap1 by IUE
of Rap1GAP resulted in impairment of the MP-BP transition.
Further analysis revealed that reelin-mediated activation of Rap1
in MP cells near the middle of the IZ increased the levels
of cell- surface-localized N-cad, possibly by regulating vesicle
trafficking of N-cad to ensure a proper morphological change
to BP cells (Jossin and Cooper, 2011; Figure 3). The same
signaling pathway, reelin-Rap1-N-cad, has also been reported to
be essential for somal translocation of early born neurons and
proper lamination of late-born neurons (Franco et al., 2011). The
Rap1 activator RapGEF2 is expressed in the migrating neurons
located in the upper IZ and CP. Short hairpin RNA (shRNA)-
mediated knockdown of RacGEF2 prevents theMP-BP transition
as well as N-cad recruitment to the cell membrane. RapGEF2 is
activated by CDK5-dependent phosphorylation, suggesting that
the CDK5-Rap1-N-cad signaling pathway is critical for exit from
theMP phase (Ye et al., 2014). Furthermore, the Ras-GAP protein
Dab2ip, which was initially identified as a tumor suppressor, is
essential for the MP-BP transition in vivo and neurite outgrowth
in vitro (Lee et al., 2012).

Periventricular heterotopia (PH) is a human cortical
malformation disease associated with mutations in the ArfGEF2
gene and the actin-binding protein Filamin A (FlnA) (Fox
et al., 1998; Sheen et al., 2004). It has been shown that FlnA
and its binding partner Filamin A-interacting protein (FILIP)

are essential for the MP-BP transition by regulating the actin
cytoskeleton (Nagano et al., 2002, 2004; Figure 3). Arf1 is a
member of the Arf family and is involved in the regulation of
vesicle trafficking, and ArfGEF2 gene products (Big2 proteins)
are GEFs for Arf1. ArfGEF2 null mice develop PH and exhibit
neuronal migration defects of the developing cortex (Zhang
et al., 2012). Recently, it was revealed that Big2 and FlnA interact
directly and regulate neuronal migration and cell adhesion
through modulation of Arf1 activity and localization of Big2
to the cell membrane from the Golgi (Zhang et al., 2013b).
Arf6 is another Arf family member regulating the MP-BP
transition. TBC1 domain family member 24 (TBC1D24) is an
Arf6-interacting protein, and mutations in the TBC1D24 gene
are associated with cortical malformation, intellectual disability,
and epilepsy (Corbett et al., 2010; Falace et al., 2010). Recent
finding revealed that TBC1D24 is essential for the MP-BP
transition and dendritic arborization through Arf-GAP activity,
which prevents Arf6 activation (Falace et al., 2014; Figure 3).

As described above, small G-proteins involved in the
regulations of membrane trafficking, cytoskeletal organization
and cell adhesion play critical roles in dynamic morphological
changes during the MP-BP transition during radial migration
of neuroblasts. It is undeniable that many causative genes of
neurodevelopmental diseases belong to small G-protein family.

Regulation of Microtubule (MT) Dynamics
in the Multipolar-bipolar Transition
Lissencephaly-1 (LIS1) is the first identified gene responsible
for type I lissencephaly (Reiner et al., 1993). Since then, many
lines of evidence have revealed that LIS1 regulates neuronal
migration in a dose-dependent manner (Youn et al., 2009;
for a review, see Reiner and Sapir, 2013). LIS1 is an MT or
microtubule organizing center (MTOC)-associated protein that
forms a protein complex with NDE1/NDEL1 and cytoplasmic
dynein (Feng et al., 2000; Sasaki et al., 2000). LIS1 is essential
for INM, axon extension, and the MP-BP transition by
functioning with NDE1/NDEL1 (Tsai et al., 2005; Youn et al.,
2009). For the nuclear migration of radially migrating cells,
coordinated coupling between translocation of the centrosome
and subsequent nuclear movement via dynamicMT organization
is essential, and disruption of this coordination leads to failure
to enter the CP. In this context, using the MADM system, the
distinct and cell-autonomous functions of LIS1 and NDEL1 in
neuronal migration have been revealed. LIS1 regulates this step
in a dose-dependent manner, whereas NDEL1 is indispensable
for entering the CP (Hippenmeyer et al., 2010). It has been
reported that NDEL1 also forms a protein complex with DISC1
and Dixdc1 to regulate radial migration; Cdk5 phosphorylation
of Dixdc1 is essential for this regulation (Singh et al., 2010;
Figure 3).

The centrosome is composed of two orthogonally arranged
centrioles surrounded by proteinaceous materials called
pericentriolar materials called PCM, which contain many
proteins required for MTOC activity, including γ-tubulin,
PCM-1, pericentrin and ninein (Dammermann and Merdes,
2002; for a review, see Bornens and Gonczy, 2014). Centrosome
positioning has been shown to be important for neuronal
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polarity establishment (de Anda et al., 2010). A recent time-
lapse imaging study of centrosome positioning during the
MP-BP transition revealed that centrosomes exhibit the motion
feature that targets the basal part of the dominant growing
process in MP-migrating neurons (Sakakibara et al., 2014).
Another study revealed that the centrosomal protein SDCCAG8
regulates the MP-BP transition through interaction with PCM1
and centrosomal recruitment of PCM (Insolera et al., 2014;
Figure 3). Knockdown of SDCCAG8 impairs coordinated
coupling of movements of the centrosome and nucleus (Insolera
et al., 2014). Mutations of SDCCAG8 are known to be associated
with the human diseases such as nephronophthisis (Otto
et al., 2010) and Bardet-Biedl syndrome (BBS) (Schaefer
et al., 2011) a rare autosomal recessive ciliopathy with various
symptoms, including renal and retinal abnormalities (Forsythe
and Beales, 2013). Patients with mutations in SDCCAG8
often exhibit neurodevelopmental disorders, including mental
retardation, cognitive impairment, and seizures, suggesting
a roles for SDCCAG8 in brain development (Otto et al.,
2010). Taking this into account, neuronal migration defects
occurring by knockdown of this centrosomal protein in the
developing mouse cortex could contribute to be explained by the
neurodevelopmental symptoms of Bardet-Biedle syndrome.

Receptors and Other Membrane Proteins
Involved in the MP-BP Transition
Membrane proteins located on the cell surface are important
for translating extracellular signals into intracellular signal
transduction. Neuroblasts should receive signals from the
extracellular space to change their morphology and to acquire
their neuronal properties. Actually, a proportion of the reported
genes regulating the MP-BP transition are localized in the
cell membrane and play critical roles in this regulation
including receptors, gap junction protein, and transmembrane
glycoprotein.

Unc5D is known as a receptor for the guidance molecule
Netrin, and is expressed in MP cells in the SVZ during cortical
development (Sasaki et al., 2008). Svet1 RNA (Tarabykin et al.,
2001), which is a known SVZ marker, has been shown to
be derived from an intronic region of the Unc5d gene locus
(Sasaki et al., 2008). Yamagishi et al. (2011) reported that
fibronectin and leucine-rich transmembrane protein-2 (FLRT2)
are novel repulsive guidance molecules for Unc5D receptors
in radial neuronal migration. They further found that the
extracellular domains (ECDs) of FLRT2 proteins are shed by
proteolytic cleavage and soluble FLRT2 ECDs regulate MP cells
in entering the CP. A recent analysis of the crystal structure
of the FLRT2-Unc5D-complex confirmed the ligand-receptor-
binding site and three-dimensional structure (Seiradake et al.,
2014; Figure 3). As mentioned previously, downregulation of the
transcriptional repressor FoxG1 at the beginning of the MP cell
phase contributes to induction of Unc5D expression (Miyoshi
and Fishell, 2012). Whereas, for reduction of Unc5D expression,
PRDM8 has been suggested to contribute to this regulation of the
MP-BP transition (Inoue et al., 2014).

Connexin 43(Cx43) is a gap junction protein that assembles
a hemichannel of large- diameter channels in gap junctions. It

has been reported that Cx43 is necessary for neuronal migration,
especially the MP-BP transition independent of its channel-
forming activity (Fushiki et al., 2003; Elias et al., 2007; Figure 3).
Cx43 plays an important role in the adhesion of migrating
neurons to RG fibers to stabilize their leading processes (Elias
et al., 2007). A recent study revealed that Cx43 controls the MP
phase via p27kip1 upregulation; this Cx43-p27kip1 signaling is
mainly dependent on the adhesive function of Cx43, although
there is an auxiliary role of the Cx43 C-terminus (Cina et al.,
2009; Liu et al., 2012), which can interact with variety of proteins
related to the cytoskeleton (Herve et al., 2012). These lines of
evidence suggest that the membrane proteins of migrating MP
neurons play crucial roles in translating the extrinsic signal into
intracellular information required for cytoskeletal reorganization
of leading process formation and stabilization.

Amyloid-β precursor protein (APP) is a type I transmembrane
glycoprotein, and its proteolysis product Aβ accumulates in
neurons in Alzheimer’s disease. However, the cellular function
of APP in normal neuronal development remains unknown.
Young-Pearse et al. (2007) found that knockdown of APP
using IUE resulted in impairment of entering the CP during
radial migration of the developing cortex. In this study, the
authors also revealed that full-length APP is required for this
function, which is regulated by the downstream adaptor protein
Disabled-1 (Dab1). Recently, a secreted glycoprotein pancortin
was identified as an extracellular binding partner of APP (Rice
et al., 2012; Figure 3). Pancortin is expressed at high levels in the
developing and mature mouse cortex, and the pancortin gene
encodes four isoforms. Rice et al. (2012) further revealed that
although all four isoforms of pancortin biochemically interact
with APP, each isoform regulates the MP-BP transition in a
different manner together with APP.

Recently, it was reported that serotonin 6 receptor (5-HT6R),
a G protein-coupled receptor (GPCR), is critical for the MP-
BP transition and locomotion (Jacobshagen et al., 2014). This
function was also found to depend on CDK5 by binding to the
intracellular region of 5-HT6R, but was independent of serotonin
activation. This suggests that 5-HT6R is an upstream membrane
regulator for CDK5 function in neuronal migration (Jacobshagen
et al., 2014; Figure 3).

Protein Kinases Involved in the
Multipolar-bipolar Transition
Protein kinases are a key class of regulatory proteins for many
cellular functions. Protein phosphorylation is broadly known as a
molecular switch for downstream pathways. It has been reported
that protein kinases play a critical roles in the MP-BP transition.

CDK5 is a serine/threonine kinase that plays crucial roles
in brain development. CDK5 knockdown in migrating neurons
leads to impairment of leading process formation and the
MP-BP transition (Kawauchi et al., 2006; Ohshima et al.,
2007), suggesting its critical roles in regulating MT or actin
cytoskeletal organization. Accumulating evidence has uncovered
the molecular pathways and identified its downstream substrates,
including the CDK inhibitor p27kip1 (Kawauchi et al., 2006), the
kinase Mst3 (Tang et al., 2014), the scaffold protein axin (Fang
et al., 2013), the actin-binding protein drebrin (Tanabe et al.,
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2014), andMT-associated proteins, including DCX (Tanaka et al.,
2004), FAK (Xie et al., 2003), NDEL1 (Niethammer et al., 2000;
Sasaki et al., 2000), and CRMP2 (Uchida et al., 2005). CDK5
functions as a master kinase for neural development (Figure 3).
For details of CDK5 pathways in neuronal migration, please see
Ohshima’s (2014) review in this Research Topic issue.

LKB1, originally identified as an ortholog of the Par4
serine/threonine kinase of Caenorhabditis. elegans, has been
reported to be involved in axon specification in vivo (Asada et al.,
2007; Barnes et al., 2007; Shelly et al., 2007). A pseudokinase
Ste20-related kinase adaptor α (STRADα. can stabilize LKB1
(Veleva-Rotse et al., 2014), and LKB1 is activated by protein
kinase A-dependent local phosphorylation on S431 in the
trailing processes of newborn migrating neurons, followed
by activation of the downstream kinases SAD-A and SAD-B,
both of which are known to be essential for axon formation
by phosphorylating Tau-1 (Kishi et al., 2005; Barnes et al.,
2007). STRADα has been identified as the gene responsible
for the autosomal recessive neurodevelopmental disorder
polyhydramnios, megalencephaly, and symptom epilepsy
syndrome (PMSE), which is characterized by macrocephaly,
craniofacial dismorphism, hypotonica, cognitive disability,
and intrac epilepsy (Puffenberger et al., 2007). STRADα binds
LKB1 together with the scaffold protein MO25 and facilitates
nuclear export of LKB1 to the cytoplasm (Boudeau et al., 2003;
Zeqiraj et al., 2009). It has been reported that human PMSE
cortex exhibited abnormal nuclear localization of LKB1 (Orlova
et al., 2010). The STRAD/ LKB1 complex inhibits mammalian
target of rapamycin (mTOR) signaling via AMP-activated kinase
(AMPK) and tuberous sclerosis complex 1 and 2 (TSC1, TSC2)
(Inoki et al., 2003; Corradetti et al., 2004; Lizcano et al., 2004).
Knockdown of STRADα in mouse NPCs in vitro resulted in
aberrant mTORC1 activation and abnormal nuclear localization
of LKB1. Moreover, Knockdown of STRADα in vivo also leads to
aberrant mTORC1 activation and impairment of radial neuronal
migration (Orlova et al., 2010). Acute inactivation of the STE
family serine/threonine kinase Stk25, which is another binding
partner of STRADα, causes impairment of the MP-BP transition.
These results suggests that STRADα-Stk25-LKB1- mTORC1
signaling, may regulate radial neuronal migration in addition
to its role in polarity formation (Matsuki et al., 2010, 2013)
and also suggests that hyperactivation of mTORC1 signaling
by STRADα gene mutation affect the cortical development at
an early stage in human PMSE (Figure 3). Through sh-RNA-
mediated knockdown of LKB1 by IUE, it has been revealed that
LKB1 actually regulates the transition of MP to BP in addition
to its role in axon formation (Asada et al., 2007). The authors
further revealed that this migration defect is correlated with
a defect in centrosomal movement, and that LKB1 mediated
inactivation of GSK3β by Ser9 phosphorylation at the leading
process tip to stabilize the MT plus-end-binding protein APC for
proper forward movement of centrosomes (Asada et al., 2007;
Asada and Sanada, 2010). By contrast, other studies did not
observe any migration defect by silencing LKB1 (Barnes et al.,
2007; Shelly et al., 2007). Although this discrepancy remains
to be resolved, all of these experiments of LKB1 knockdown
or knockout were performed at different time periods and in

different conditions. Moreover, overexpression of LKB1 exhibits
a migration defect (Shelly et al., 2007), suggesting the possibility
that the requirement of LKB1 for neuronal migration may
critically depend on its protein level.

MAP/microtubule affinity- regulating kinase 2 (MARK2/Par-
1) is another polarity kinase involved in the regulation of
centrosome dynamics (Sapir et al., 2008a,b). MARK2 regulates
MT dynamics by phosphorylating the MAPs tau, MAP2/4, and
Dcx (Drewes et al., 1997; Schaar et al., 2004). Sapir et al.
(2008a), have revealed that reduction of MARK2 in migrating
neurons impairs centrosomal movement by centrosome-nucleus
decoupling, which results in a defect in themorphological change
from MP to BP (Sapir et al., 2008a). They also showed that tight
regulation of MARK2 activity, followed by phosphorylation of
Dcx and destabilization of MTs is essential for proper neuronal
migration (Sapir et al., 2008b; Figure 3).

Mammalian Ste2-like kinase 3 (Mst3) is known to regulate
axogenesis of dissociated cultured neurons (Irwin et al., 2006;
Lorber et al., 2009). A recent study revealed that the novel signal
pathway of CDK5-Mst3-RhoA is involved in regulating the MP-
BP transition (Tang et al., 2014). Knockdown of Mst3 expression
by delivery of shRNA constructs using IUE results in a migration
defect of MP cells to convert into BP cells and enter the CP. This
function of Mst3 is dependent on S79 phosphorylation by CDK5
as an upstream regulator, and modulation of RhoA activity for
regulating the actin cytoskeleton as a downstream effector (Tang
et al., 2014; Figure 3).

LOCOMOTION

After converting to a BP shape, neurons execute RG-guided
locomotion toward the pial surface (Figure 4). This migrating
movement is completely different fromMPmigration, suggesting
that a distinct set of genes are upregulated or downregulated, and
reorganization of signaling pathways may occur using the same
protein members in locomoting cells.

In the locomotion step, coupled movement of the centrosome
and nucleus by cytoskeletal coordination is essential for nuclear
translocation, and endocytosis and neuronal adhesion are
involved in the forward movement of the cell body (Kawauchi
et al., 2010). The centrosomes (also called MTOCs) are
located in the proximal part of the leading processes, and
MTs project from the MTOC anteriorly toward the leading
process tip and posteriorly toward the nucleus. MTs that
surround the nucleus form a fork-like structure that may
contribute to pulling the nucleus forward (Xie et al., 2003).
The dynein/LIS1/NDEL1 complex plays an essential role in this
regulation (Tsai et al., 2007), as described above. Myosin II is
another motor protein that produces force for nuclear movement
(Figure 4A; Schaar and McConnell, 2005). Activated myosin II
localized at the rear of the cell generates a pushing force on the
nucleus, which is normally coordinated with a centrosome-MT-
dynein-mediated pulling force of the nucleus, suggesting that
cytoskeletal coordination is essential for proper nucleokinesis
during locomotion (Schaar and McConnell, 2005).

With respect to the molecular mechanisms for locomotion,
Kawauchi et al. (2010) revealed that Rab-dependent membrane
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FIGURE 4 | Molecules and structures involved in the locomotion and termination of radial migration. Cajal-Retzius (CR) cells, radial glial (RG) fibers, and

subplate (SP) neurons are transient cell structures that mostly disappear after birth. As described in Sections Locomotion and Termination of Radial Migration, various

factors are involved in this regulation. PCZ, primitive cortical zone (Sekine et al., 2011) A; an enlarged neuron during locomotion. The microtubule organizing center

(MTOC) extends the MT toward the tip of the leading process and toward the trailing process that forms a cage-like structure surrounding the nucleus. Myosin II has

been shown to localize to the peri-nuclear region (bottom portion), and contributes to moving the nucleus up to the MTOC during locomotion. BP, bipolar; CP, cortical

plate; CR, Cajal-Retzius; MP, multipolar; MT, microtubule; MTOC, microtubule organizing center; RG, radial glia; SP, subplate.

trafficking pathway is essential for locomotion as well as terminal
translocation. Using the IUE technique, they further clarified the
in vivo roles of endocytotic pathways in neuronal migration. In
particular, they revealed that the Rab5-dependent endocytosis
and Rab11-dependent recycling pathways are essential for the
locomotion step, and that N-cad may be one of the major
target molecules of this pathway. Whereas, Rab7 knockdown
affected terminal translocation, suggesting that Rab7-dependent
lysosomal degradation pathways including N-cad as one of these
substrates, contribute to the final phase of radial migration.

Using ex vivo chemical inhibitor screening and time-lapse
imaging of cultured slices of the electroporated embryonic
cortex, Nishimura et al. (2010) found that roscovitine and PP2,
inhibitors of CDK5 and Src-family kinases, respectively, reduce
locomotion speed, suggesting the involvement of the activities
of these kinases in the locomotion mode. During locomotion,
migrating neurons continue to repeat the morphological change;
following extension of the leading process, dilation is formed at
the forward part of the nucleus, thereby moving the centrosome
into the dilation, which is followed by nuclear elongation
and translocation. Recently, Nishimura et al. (2014) reported
that CDK5 and its downstream substrates Dcx and p27kip1

regulate these cytoplasmic dilation and nuclear translocation
steps. Moreover, dynamin and Rab-5-dependent regulation of
endocytosis regulated by CDK5 is involved in this pathway
(Nishimura et al., 2014).

Rnd3, another member of the Rnd protein family, has been
reported to be involved in the regulation of neuronal migration

via a mechanism distinct from that of Rnd2 (Pacary et al.,
2011). In contrast to Rnd2, in which transcription is directly
by Ngn2, Rnd3 is a direct target of Ascl1. Although both Rnd2
and Rnd3 inhibit Rho-A activity, compared with Rnd2, which
is localized in the soma and regulates the MP-BP transition,
Rnd3 is associated with the plasma membrane, where it inhibits
and regulates locomotion by repressing F-actin polymerization.
It was reported recently that the semaphorin receptor, plexin
B2 interacts with Rnd3 and antagonizes the binding of Rnd3 to
the Rho-A suppressor p190 RhoGAP, whereas, plexinB2 activates
RhoA through recruiting Rho-GEFs (Azzarelli et al., 2014). This
suggests that antagonizing regulation by an extrinsic semaphorin
signal and an intrinsic Ascl1 signal is critical for maintaining
appropriate RhoA activity required for locomotion. In contrast
to these studies, another study using Emx::Cre/RhoA fl/fl (cKO)
mice showed that RhoA activity is dispensable for migrating
neurons, but is required for proper formation of the RG scaffold
(Cappello et al., 2012). This discrepancy could be explained by
compensative activities for Rho-A in the knockout neurons, but
the mechanism is still up for debate.

In summary, some proteins such as CDK5, Lis1, Ndel, and
N-cad play important functions in both steps of the MP-BP
transition and locomotion. Others, like Rnd proteins (Rnd2
and Rnd3), as mentioned above, have distinct roles in each
step although they belong to the same protein family. This
suggests that a distinct set of genes participate in regulation of
locomotion to fulfill the switching of migration mode during
cortical evolution, as we discuss later.
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TERMINATION OF RADIAL MIGRATION

Finally, when migrating neurons arrive at their final destinations,
they terminate migration and shift to terminal translocation
and maturation by extending their axons and dendrites. This
termination step should be executed by at least three distinct
behaviors of locomoting neurons: locomotion termination,
detachment from the RG fiber, and anchoring to the MZ for
terminal translocation (Figure 4).

Impairment of the stopping signal results in neuronal over-
migration into the meninges, leading to neocortical dysplasia
resembling cobblestone (type II) lissencephaly with a defect
in basement membrane (BM) integrity. This includes over-
migration of the early born neuronal population as well as late-
born locomoting neurons. Many factors have been reported to
be involved in this over-migration defect, including the LIM
homeobox gene Lmx1a (Costa et al., 2001), the zinc finger
transcription factor Zic (Inoue et al., 2008), the forkhead box
transcription factor Foxc1 (Hecht et al., 2010), dystroglycan
protein (Myshrall et al., 2012), and the GPCR GPR56 (Singer
et al., 2013). The brains of mice with mutations in any of
these exhibit defects in the interaction between pial basement
membrane (PBM) and RG processes and PBM integrity. These
defects bring about over-migration of neuroblasts into the
meningeal space, followed by disorganization of the laminar
structure. Among these factors, the molecular mechanism of
the defects is most well studied with respect to GPR56. The
gene encoding this orphan GPCR was originally identified
to be responsible for the human recessively inherited genetic
disorder bilateral frontoparietal polymicroglia (BFPP), which
is a cobblestone-like brain malformation (Piao et al., 2004;
Bahi-Buisson et al., 2010). Luo et al. (2011), identified collagen
III as the ligand for GPR56, and the ligand binding triggers
RhoA activation via coupling to Gα12/13. Mutations in the
ligand-binding domain of GPR56 have been found in BFPP
patients, suggesting the importance of Collagen III (ColIII)-
GPR56 signaling for PBM integrity to prevent neuronal over-
migration of preplate neurons. The same research group found
that α3β1 integrin functions together with GPR56 to produce a
proper stopping signal (Jeong et al., 2013; Figure 4).

SPARC-like 1 (SC1), a member of the SPARC family of ECM
proteins, is involved in detaching locomoting neurons from the
RG fibers, and is expressed at the top and bottom of the RG cell
surface. SC1 was identified via antigen screening for radial glial
immunoreactive monoclonal antibodies. SC1 possesses an anti-
adhesive activity thatmay contribute to detaching the locomoting
neurons from the RG fibers at their final step of locomotion. The
absence of SC1 results in defective termination of locomotion and
the final positioning of neurons, suggesting that anti-adhesive
signaling at the termination phase is essential (Gongidi et al.,
2004; Figure 4).

Reelin plays an essential role in terminal translocation. Reelin
is an extracellular protein secreted from CR cells in the MZ, and
extensive analyses have revealed the molecular mechanisms of
reelin signaling in neuronal migration (for a review, please see
Sekine et al., 2014). Nakajima’s group has found a novel thin
layer at the outermost region of the mouse cortical plate that is

histologically distinct and characterized by densely packed and
NeuN-negative immature neurons called the primitive cortical
zone (PCZ) (Sekine et al., 2011). This group also revealed that
locomoting neurons must enter the PCZ in order to switch
their migration mode to terminal translocation. This step is
dependent on the reelin-Dab1 signaling pathway and is critical
for completion of inside-out lamination at the final stage of radial
migration (Kubo et al., 2010; Sekine et al., 2011).

Muller’s group has revealed that the reelin-Dab1-Rap1-
cadherin signaling pathway is essential for terminal translocation
as well as for inside-out lamination (Franco et al., 2011).
They also found that adhesion molecules Nectin1 and 3 are
indispensable for terminal translocation via Rap1-mediated
stabilization of cell surface Cdh2 (Gil-Sanz et al., 2013).

Furthermore, Cooper and colleagues revealed that the
regulation of Dab1 degradation by the ubiquitin-proteasome
system is critical for producing the stopping signal of migrating
neurons (Arnaud et al., 2003). They further uncovered the
molecular mechanism for this regulation, in which the E3
ubiquitin ligase complex, including Cullin 5, Rbx2, and their
adaptor protein SOCS7, are critical for inhibiting over-migration
(Simo et al., 2010; Simo and Cooper, 2013; Figure 4).

CORTICAL EVOLUTION AND RADIAL
MIGRATION

So far, we have examined each step in radial migration of
the developing cortex from the viewpoint of the molecular
pathways involved. Now we focus on neuronal migration from
an evolutionary perspective.

The six-layered laminar structure of the neocortex is unique
to mammals (Nieuwenhuys, 1994). Pyramidal neurons are born
sequentially in the VZ and migrate toward the pial surface. In
this process, late-born neurons pass early born neurons and
form a neuronal layer on top of the older layer in an inside-out
manner. In contrast, non-mammalian, amniote brains, such as
those of reptiles and birds, do not have this inside-out type layer
structure (Northcutt and Kaas, 1995;Molnar et al., 2006; Nomura
et al., 2009, 2013). The reptilian cortex is organized in a three-
layered structure, but not in an inside-out manner, and the avian
cortex contains a nucleus structure instead of a laminar structure.
This evolutionary transition raises the question of what is the
advantage of the mammalian-specific laminae of the neocortex?
A simple analogy that can be used to answer this question is that
of a bookshelf. The volume of information and accessibility of
the content is markedly different between a highly organized six-
shelf bookcase and disorganized stacks of books on the floor in
the same space. One can easily find a book of interest on the
organized bookshelf much faster than from the stacks of books.
For corticogenesis, axon pathfinding of organized neurons in
the six-layer structure may easier to reach the targets and more
neuronal connections could be formed compared with neurons
in a nuclear structure. Among the ancestral amniotes, primitive
mammals acquired the layered structure of the cerebral cortex
during evolution. Moreover, primate brains evolved remarkable
expansion of the neocortex area based on this structure (Molnar
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et al., 2006; Lui et al., 2011). During development of the
mammalian neocortex, there are at least three transient cell
structures that mainly appear in the developing stage to assist
with completion of radial neuronal migration: CR cells, RG fibers,
and SP neurons (Voigt, 1989; Kostovic and Rakic, 1990; Misson
et al., 1991; Arias et al., 2002; Kirischuk et al., 2014; Figure 4).
These cell structures contribute to execution of mammalian-
type neuronal migration (Xie et al., 2002; Nomura et al., 2008);
newborn neurons convert from MP cells to BP cells and migrate
toward the pial surface in locomotionmode, followed by terminal
translocation and maturation. Furthermore, OSVZ progenitor
cells (bRG), a third population of neural progenitors, have
been identified in the mammalian developing cortex (Fietz
et al., 2010; Hansen et al., 2010; Shitamukai et al., 2011; Wang
et al., 2011b). This progenitor population is observed more
frequently in the primate cortex and is thought to contribute to

cortical expansion and gyrification in the process of neocortical
evolution. The bRG cells undergo mitotic somal translocation
(MST), and the cell soma rapidly ascends along the basal fiber

before cytokinesis (Hansen et al., 2010; Wang et al., 2011b).
Although the specific migration mode of somal translocation in

the non-mammalian developing cortex has not yet been reported,
the somal translocation-type migrationmode, including terminal
translocation and MST, might have been acquired during the
neocortical evolution of mammals as well as the locomotion
mode. It is intriguing to examine the migration types of the
non-mammalian amniote embryonic cortex using time-lapse
imaging. Taken together, the switching of migration modes
during radial migration of newborn pyramidal neurons may have
been essential for evolution of the mammalian-type neocortex.

The Subplate Layer and Switching of
Migration Mode
Recently, we revealed that migrating neurons that lack RP58 can
migrate to the subplate (SP) layer, but are stacked just below
the SP (Figure 5; Ohtaka-Maruyama et al., 2013). However, we
noticed that knockdown or knockout of the expression of many
other genes inmigrating neurons resulted in a remarkably similar

phenotype, including CDK5, the chondroitin sulfate modifying
enzymeGalNAc4S-6ST, the Rac inhibitor α2-chimaerin, the Rap1
activator RapGEF2, and others (Ohshima et al., 2007; Ishii and
Maeda, 2008; Ip et al., 2012; Ye et al., 2014). This suggests that
the SP layer acts as a specific barrier for migrating neurons to
cross over. As described in SectionMultipolar Cell to Bipolar Cell
Transition, it has been reported that various molecular pathways
are involved in regulation of the MP-BP transition. When
we carefully observed the cortical sections prepared from the
electroporated cortex, we could detect that the SP layer resides in
a boundary of the MP-BP transition. MP cells or the transit type
to BP cells with multiple neurites were observed below the SP,
whereas migrating cells that crossed over the SP possessed thick
leading processes and migrate in locomotion mode. Accordingly,
a cue to start the signaling pathway of the MP-BP transition
may be received by the MP migrating cells when they reach the
SP layer. It is conceivable that impairment of this cue or any
of the downstream signals would lead to stacking of the MP
cells just below the SP layer owing to failure in the transition
to BP cells. We hypothesized that this signaling pathway at
the SP played a critical role in the evolution of migration
mode from the avian-type MP migration to mammalian-type
locomotion and terminal translocation (Figure 6). The SP layer
of the embryonic cortex is rich in ECM, including fibronectin,
proteoglycan (CSPG; phosphacan, versican, neurocan, aggrecan),
and collagen (collagen11a1) (Sheppard et al., 1991; Maeda et al.,
1995; Meyer-Puttlitz et al., 1996; Popp et al., 2003; Hoerder-
Suabedissen et al., 2013). Therefore, many signaling molecules
could be held in the SP layer during corticogenesis. By elucidating
the functional roles of the SP layer in radial neuronal migration,
it is anticipated that we can start to resolve the question of
how the mammalian neocortex evolved to the present six-layered
inside-out structure.

PERSPECTIVE

Our review of recent progress in understanding the molecular
pathways involved in radial neuronal migration of glutamatergic

FIGURE 5 | Acute deletion of RP58 results in MP-BP transition. Green fluorescent protein (GFP)-positive cells labeled by IUE at E14 were analyzed at E17. The

figure shows Cre-mediated RP58 knockout cells are stacked just under the SP that can be recognized distinctly by MAP2 immunostaining. (The data is Figure 3D

from Ohtaka-Maruyama et al., 2013) E, embryonic day; IUE, in utero electroporation; SP, subplate.
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FIGURE 6 | Cortical evolution and neuronal migration. The switching of migration modes, from MP migration (pan-amniote type) to locomotion (mammalian-type)

might occur at the SP layer during cortical evolution. BP, bipolar; CP, cortical plate; CR, Cajal-Retzius; ECM, extracellular matrix; MP, multipolar; SP, subplate.

neurons during corticogenesis revealed that proper regulation
of the various signaling pathways operating inside or outside
of newborn neurons (neuroblasts) is critical for each step
of neuronal migration. In general, accurate control of
developmental timing for gene expression, translational control,
and modification of protein activity is required for embryonic
morphogenesis. To understand the regulatory mechanisms, it is
important to determine how extrinsic signaling cues translate
into intracellular signals. Newborn cortical neurons execute a
dynamic morphological change fromMP cells to BP cells. During
this step, axons are first determined, followed by formation of
thick leading processes, before making the transition to
locomotion mode. Although the many factors involved in
regulation of polarity formation in vitro were identified for axon
determination, more signaling pathways are required for leading
process formation, suggesting the importance of in vivo signaling
from the extracellular environment.

So far, explorations of gene function have been most
commonly performed using knockdown or overexpression
experiments, by delivering the DNA constructs with the IUE
technique or via genetic modification of the gene locus to
establish conventional and conditional knockout mice. However,
to achieve more comprehensive understanding of these complex
processes beyond determination of individual gene function, we
could apply these conventional techniques in combination with

more advanced techniques. For example, the MADM system or
CLoNe (Garcia-Moreno et al., 2014) allows for clonal analysis,
and double electroporation with two different colors in different
stages is useful for analyzing the interaction between two cell
populations. Moreover, time-lapse imaging of cultured slices
of the cortex using calcium indicator-encoding plasmids or a
channel rhodopsin system could reveal in vivo neuronal activities
and the effects of activity manipulation. To investigate protein-
protein interactions, or protease activity on the ECM, the use
of fluorescent probes such as the proximity ligation assay and
protease imaging could be effective techniques.

In conclusion, by using these imaging techniques in
combination with conventional genetic manipulation, we could
advance our understanding of the molecular mechanisms
underlying neuronal migration and brain development in vivo.
Finally, we would like to emphasize that it is critical to
consider an evolutionary perspective in order to understand
brain development as a whole system.
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Secretory function in subplate
neurons during cortical development

Shinichi Kondo †, Hannah Al-Hasani, Anna Hoerder-Suabedissen, Wei Zhi Wang and

Zoltán Molnár *

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK

Subplate cells are among the first generated neurons in the mammalian cerebral

cortex and have been implicated in the establishment of cortical wiring. In rodents

some subplate neurons persist into adulthood. Here we would like to highlight several

converging findings which suggest a novel secretory function of subplate neurons during

cortical development. Throughout the postnatal period in rodents, subplate neurons have

highly developed rough endoplasmic reticulum (ER) and are under an ER stress condition.

By comparing gene expression between subplate and layer 6, we found that several

genes encoding secreted proteins are highly expressed in subplate neurons. One of

these secreted proteins, neuroserpin, encoded by the serpini1 gene, is localized to the

ER in subplate cells. We propose that subplate might influence cortical circuit formation

through a transient secretory function.

Keywords: subplate neurons, rough endoplasmic reticulum, ultrastructural analysis, ER stress condition, cerebral

cortex, neuroserpin, serpini1

Introduction

All eukaryotic cells contain a discernible amount of rough endoplasmic reticulum (ER) because it
is needed for the synthesis of plasma membrane proteins and proteins of the extracellular matrix
(Depierre and Dallner, 1975). Rough ER is particularly abundant in cells that are specialized to
produce secreted proteins. For example, plasma cells produce antibodies, which circulate in the
bloodstream, and pancreatic acinar cells synthesize digestive enzymes, which are transported to the
intestine. In both types of cells, a large part of the cytosol is filled with rough ER. When cells syn-
thesize secretory proteins in amounts that exceed the capacity of the folding apparatus, unfolded
proteins accumulate in the rough ER. To alleviate such an overstretched functional state, eukaryotic
cells activate a series of self-defense mechanisms referred to collectively as the ER stress response
(also called the unfolded protein response) (Schroder and Kaufman, 2005). ER stress response is
especially observed physiologically for dedicated secretory cells, such as plasma cells, pancreatic aci-
nar cells, and pancreatic beta cells, where high levels of secreted protein synthesis require a highly
evolved mechanism to properly fold, process and secrete them (Wu and Kaufman, 2006; Kondo
et al., 2011).

In neurons, when stained with basic aniline dyes (toluidine blue, thionine, or cresyl violet),
rough ER appears under the light microscope as a basophilic granular area called Nissl substance.
The amount of Nissl substance varies according to neuronal type and functional state. It is par-
ticularly abundant in large nerve cells, especially motor neurons (Einarson, 1935). Under different

Abbreviations: ER, endoplasmic reticulum; BiP, immunoglobulin heavy chain-binding protein; GRP78, 78 kDa glucose-

regulated protein; CTGF, connective tissue growth factor; neuroserpin, neuron-specific serine protease inhibitor; Nptx1,

Neuronal pentraxin 1; IGFBP-5, Insulin-like growth factor binding protein-5.
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physiological conditions, and in certain pathological states, Nissl
substance changes it’s appearance. However, the mechanism
underlying this change remains unclear. Interestingly, it has
been reported that malfunction of the ER stress response can
result in neurodegenerative disorders (Paschen and Mengesdorf,
2005), but it remains unclear whether ER stress response occurs
physiologically in neurons in vivo.

Subplate neurons are among the first generated neurons in
the mammalian cerebral cortex and are important in establishing
correct intra- and extra-cortical connectivity. Transient neurons
of the subplate are considered to be instrumental in the develop-
ment of the cortex and in the establisment of corticothalamic and
thalamocortical connections (Kostovic and Rakic, 1990; Allen-
doerfer and Shatz, 1994; Kanold and Luhmann, 2010; Hoerder-
Suabedissen and Molnár, 2015). While, in most mammalian
species including primates, the majority of subplate neurons
are lost in the development of the cortex (Kostovic and Rakic,
1980), a large proportion of the subplate persists into adulthood
in rodents (Woo et al., 1991). Although there has been a huge
progress in understanding the role of subplate neurons in estab-
lishing cortical circuits, additional functions of subplate neurons
have not been clarified.

In this report, we would like to propose a novel secretory func-
tion for subplate neurons. We performed morphological analysis
with special reference to the rough ER. To examine the func-
tional state, we used Nissl stain and immunohistochemistry for
ER stress proteins [Binding immunoglobulin protein (BiP) also
known as 78 kDa glucose-regulated protein (GRP-78) or heat
shock 70 kDa protein 5 (HSPA5)], and electronmicroscopic anal-
ysis. We also analyzed published subplate gene expression pro-
files (Hoerder-Suabedissen et al., 2009, 2013; Oeschger et al.,
2011) for genes encoding secreted proteins and validated the
expression of candidate genes by immunohistochemistry.

Materials and Methods

Animals and Tissue Preparation
All animal experiments were approved by a local ethical review
committee and conducted in accordance with personal and
project licenses under the UK Animals (Scientific Procedures)
Act (1986). For light microscopy analysis, three P8 and three
adult C57BL/6 mice were anesthetized using pentobarbitone
(Euthatal 150mg/kg intraperitoneally; Merial Animal Health
Ltd, Harlow, UK) and perfused through the heart with 4%
paraformaldehyde (PFA; TAAB, Reading, UK) in phosphate-
buffered saline (PBS, 0.1 M; pH 7.4). The brains were removed,
dissected and fixed in the same fixative for 24 h at 4◦C. For
electron microscopy analysis, three Wistar rats at P8 were anes-
thetized using pentobarbitone and perfused through the heart
with 4% PFA with 1% glutaraldehyde in 0.1M-phosphate buffer
(PB; pH7.4). The brains were removed, dissected, and fixed in the
same fixative for 2 days at 4◦C.

Histological Processing
Fixed mouse brains were embedded in paraffin. Serial coronal
sections were cut at a thickness of 8µm and divided into
two series. One set was used for Nissl staining, and another
was prepared for immunohistochemistry. For Nissl staining,

sections were stained with 0.1% cresyl violet solution. For
immunohistochemistry, the section were incubated in 2%
normal goat serum (NGS) diluted in Tris-buffered saline (TBS;
50mM Tris buffer, 0.09% NaCl, pH 7.4) for blocking, and
then incubated for 2 h at room temperature (RT) with mouse
anti-KDEL antibody (1:500, Abcam) as anti-BiP (Okiyoneda
et al., 2004) and rabbit anti-neuroserpin antibody (1:200,
Abcam) in 1% NGS diluted in TBS. Following several washes,
anti-mouse-AlexaFluor488 antibody (1:500, Molecular Probes)
and anti-rabbit-AlexaFluor546 antibody (1:500, Molecular
Probes) diluted in 1% NGS in TBS were applied for 2 h at
RT. The sections were imaged using an epifluorescent micro-
scope (DMR; Leica Microsystems). We selected P8 for our
analysis based on the data obtained from our microarray-
based gene expression analysis (Hoerder-Suabedissen et al., 2013;
https://dpag.cloudant.com/subplate-atlas/_design/subplate-atlas/
index.htmlindex.html).

Electron Microscopy Processing
Fixed rat brains were rinsed in 0.1M-PB (pH7.4) and post-fixed
with osmium tetraoxide. Once the tissue was osmicated it was
then rinsed with 0.1M PB followed by dehydration through
graded alcohols and placed in propylene oxide. The tissue was
prepared for sectioning by placeing it in propylene oxide:Epon
Araldite 1:1 overnight, followed by Epon Araldite for a further
night, before being embedded in fresh Araldite and placed at
60◦C for 48 h to harden fully. Semi-thin (1µm) sections were
stained with 1% toluidine blue in order to select suitable areas
for transmission electron microscopy. Sections were mounted on
copper grids, stained with uranyl acetate (5% UA in 50% alco-
hol) and Reynolds lead citrate, and examined in a JEOL EM15007
electron microscope.

Subplate Dissection and RNA Isolation
For detailed description of the microarray experiments identi-
fying subplate enriched genes please see Hoerder-Suabedissen
et al. (2009). Briefly, P8mouse brains were sectioned into 150µm
parasagittal sections and thin strips of anterior subplate and adja-
cent layer 6 and posterior subplate and layer 6 were dissected
out under visual guidance using transillumination on a dissect-
ing microscope. 8 fragments of each tissue type for each brain
were included and pooled the fragments of 4 littermates per repli-
cate. A total of 4 biological replicates were collected for each
location. Total RNA was isolated using the RNeasy Micro kit
(Qiagen, Crawley, UK) following themanufacturer’s instructions.
The quality and RNA integrity were assessed on a BioAnalyzer;
all samples had a RNA Integrity Number 8 (Agilent Laborato-
ries, Stockport, UK). Labeled cRNA for hybridization was gener-
ated with the Affymetrix “2 Cycle Target Labeling and Control”
kit (Affymetrix, High Wycombe, UK) and MEGAscript T7 poly-
merase (Ambion) according to the manufacturer’s instructions.
Labeled anti-sense cRNA was fragmented and the distribution of
fragment lengths was measured using a BioAnalyzer (Agilent).
Labeled and fragmented cRNA was hybridized to the Affymetrix
430 2.0 whole mouse genome microarray (Affymetrix). A total of
16 chips were used, all from the same batch. Chips were processed
on an Affymetrix GeneChip Fluidics Station 450 and Scanner
3000.
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Microarray Analysis
For detailed description of the normalization, clustering,
statistical analysis on the microarray data please see Hoerder-
Suabedissen et al. (2009). Briefly: arrays were Robust Multi-Array
(RMA) normalized, and differentially expressed genes were iden-
tified using a paired t-test with a cut off p-value< 0.05 (no multi-
ple testing correction) and a>1.5 fold-change difference between
any 2 comparisons. Longer lists of differentially expressed genes
(>1.5-fold difference, p < 0.05) were generated from RMA
taking GC content into account (GCRMA) normalized data.

Computational Gene Ontology Analysis
To classify cellular distribution of the proteins, gene ontology
(GO) analysis was performed using GO_Full ontology (http://
www.geneontology.org). The list of P8 subplate enriched genes
was examined specifically for secretory genes. A list of genes with
products localized in the extracellular space was generated and
the examples were selected because they had the highest (first 4
on the list) expression levels in absolute mRNA volume (Table 1
and https://molnar.dpag.ox.ac.uk/subplate/).

Results

Subplate Neurons in P8 Mouse Brain have
Extensive Nissl substance
To characterize the morphology and the functional state of sub-
plate neurons in postnatal and adult rodents, we analyzed Nissl
stained coronal sections of P8 mouse brains (Figures 1A,B) and
adult mouse brains (Figures 1E,F). At P8, extensive Nissl sub-
stance was detected in the large pyramidal cells of layer 5. Plenti-
ful Nissl substance was also observed in layer 2/3 and subplate
neurons (Figure 1A), suggesting that these neurons produce a
large amount of proteins at P8. The morphological features of
subplate neurons (Figure 1B) are surprisingly similar to those
of plasma cells, which also have a large, ovoid cell body with

TABLE 1 | This table lists some of the genes expressed at a high level in

subplate neurons which also localize to the extracellular space.

Gene Cellular Probe Anterior Posterior

name localization set fold change fold change

Connective tissue

growth factor (CTGF)

extracellular

space

1416953_at 11.2 14.9

Neuron-specific

serine protease

inhibitor (neuroserpin)

extracellular

space

1448443_at 2.4 1.7

Neuronal pentraxin

1(Nptx1)

extracellular

space

1434877_at 2.2 2.7

Insulin-like growth

factor binding protein

5 (IGFBP-5)

extracellular

space

1452114_s_at 2.5 2.1

Affymetrix probe set IDs are given in the probe set column. Fold-changes reflect the dif-

ference in gene expression levels between subplate and layer 6a at P8 in anterior (S1) and

posterior (V1) regions, and are calculated as mean fold-changes across all four replicates.

Data from Hoerder-Suabedissen et al. (2009) and (2013). Additional data can be found at

https://molnar.dpag.ox.ac.uk/subplate/.

non-central distribution of nucleus and basophilic cytoplasm due
to their richness in rough ER (Bloom and Fawcett, 1968).

In the adult mouse brain, abundant Nissl substance was
detected in pyramidal cells of layer 2/3 and layer 5 (Figure 1E),
while the cell bodies of subplate neurons appear small and weakly
stained (Figure 1F).

Endoplasmic Reticulum Stress Occurs in Mouse
Subplate Neurons at P8
To investigate whether the amount of Nissl substance correlates
with ER stress, we next examined the expression level of the ER
stress marker protein BiP (also called GRP78) (Okiyoneda et al.,
2004; Kondo et al., 2005, 2012; Schroder and Kaufman, 2005; Wu
and Kaufman, 2006). The induction of the ER chaperone pro-
tein BiP, which is required for the proper folding and assembly
of secretory proteins, is a major ER stress response. BiP is up-
regulated under stress conditions, such as glucose deprivation,
hypoxia, or the presence of toxic agents (Lee, 2001). Immuno-
histochemical analysis using the anti-KDEL antibody, which rec-
ognizes BiP (Okiyoneda et al., 2004), showed strong expression
of the BiP protein in pyramidal cells of layer 2/3 and layer 5 and
subplate neurons in the P8 mouse brain (Figures 1C,D). In adult
brains, although pyramidal cells in layer 2/3 and 5 continue to
express massive amounts of BiP protein, we could not detect BiP
expression in subplate/layer 6b neurons (Figures 1G,H). These
results suggest that ER stress occurs in subplate neurons at early
postnatal, but not or much less in adult ages.

Subplate Neurons have Highly Developed Rough
ER during Development
To confirm directly whether subplate neurons in postnatal
rodents have well developed rough ER, we carried out ultra-
structural analysis of P8 rat brains using electron microscopy
(Figure 2). Electron micrographs of subplate neurons showed an
abundance of rough ER (Figures 2A,B) compared to either neu-
rons in the striatum (Figure 2C) or pyramidal cells in layer 5
during postnatal period (Miller and Peters, 1981) or in adult (Par-
navelas and Lieberman, 1979). The chromatin in the nucleus of
subplate neurons is not strongly aggregated at P8, suggesting that
high levels of mRNAs are being produced. The presence of a well-
developed rough ER in subplate neurons during the postnatal
period suggests an active protein production function for these
cells.

Subplate Neurons in P8 Mouse Brain Express
Secreted Proteins
The plasma cell has a well-developed rough ER to be able to
synthetise and secret massive amounts of antibodies. Because of
their very similar subcellular morphology (Bloom and Fawcett,
1968), we postulate that subplate neurons also a secretory func-
tion. To elucidate this possibility we analyzed the gene expres-
sion profile for P8 mouse subplate generated from a microarray
comparison on subplate and layer 6a tissue samples (Hoerder-
Suabedissen et al., 2009, 2013). Comparing gene expression in
the subplate with the adjacent layer 6a in somatosensory and
visual cortices, we identified 601 probe sets (corresponding to
383 genes and hypothetical genes) that were expressed at a
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FIGURE 1 | Subplate neurons have large cytoplasm with large

amounts of Nissl substance and are under ER stress condition at P8.

Nissl staining in coronal section of P8 (A,B) and adult (E,F) mouse brain.

Note, subplate neurons (and some layer 5 and 2–3 neurons) have

voluminous cytoplasm with large amounts of Nissl substance (arrow and

inset, B) at P8. Subplate neurons in adult mouse have relatively small

cytoplasm (arrow and inset, F). Immunohistochemistry for anti-KDEL

antibody, which recognizes BiP/GRP78 (Okiyoneda et al., 2004), in coronal

section of P8 mouse (C,D). Layer 5, layer 2–3, some layer 6, and subplate

neurons express strong BiP immunoreactivity. Immunohistochemistry for

anti-KDEL in coronal section of adult mouse (G,H). Scale bars: 200µm

(A,C,E,G), 50µm (B,D,F,H), 10µm (inset in B and F).

higher (at least 1.5-fold) level in the subplate compared with
layer 6 in both comparisons (Hoerder-Suabedissen et al., 2009).
Gene ontology (GO) analysis for cellular localization was per-
formed on this list. Table 1 shows some selected examples of
genes that encode extracellular proteins and have the highest
four expression levels in absolute mRNA volume. Gene expres-
sion of these four genes at P7 was confirmed in the GENSAT
Database (Supplementary Figure 1). Of these genes, we focussed
on the neuron-specific serine protease inhibitor (neuroserpin),
which was initially identified as an axonally secreted protein from
neuronal cultures of chicken dorsal root ganglia and belongs to a

serine protease inhibitor (serpin) gene family (Osterwalder et al.,
1996). To analyze the expression pattern of neuroserpin protein
in postnatal and adult mouse brain, we performed immuno-
histochemical analysis (Figure 3). In the P8 mouse brain, neu-
roserpin was detected in layer 5 pyramidal cells and subplate
neurons (Figure 3A) and co-localized with the ER stress marker
BiP (Figures 3B–F). The co-localization of neuroserpin and BiP
in these neurons suggests that the production and secretion of
neuroserpin contributes to the ER stress condition during the
postnatal period. In adult, on the other hand, we could not
detect neuroserpin expression in subplate neurons. A selected

Frontiers in Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 100 | 91

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kondo et al. Secretory function in subplate neurons

FIGURE 2 | Subplate neurons have a well-developed rough

endoplasmic reticulum. Transmission electron microscopic image of a

subplate neuron of P8 rat brains (A,B). Note, the large amounts of

rough ER (rER) in the subplate neurons. The chromatin in the nucleus

(N) is not strongly condensed. For comparison, see the transmission

electron microscopic image of a neuron in striatum of P8 rat brains

(C), in which cells display much less rER. Scale bars: 2µm (A), 1µm

(B,C).

population of pyramidal cells in layer 5 expresses large levels
of neuroserpin also in the adult. This is further supported by
our layer-specific transcriptomic analysis in the adult (Belgard
et al., 2011; Hoerder-Suabedissen et al., 2013). Similarly, BiP was
absent from the subplate but present in layer 5 pyramidal cells in
adult brains (Figures 3G–I). These results strongly suggest that
subplate neurons have a protein secretion function during the
postnatal period, but not or much reduced in adulthood.

Discussion

In this study, we present several lines of evidence that rodent
subplate neurons have a protein secretion function in the early
postnatal period: firstly, subplate neurons in P8 mouse brain
have very rich Nissl substance with ovoid cell shape and a non-
central distribution of the nucleus, similar to other cells of known
secretion function. Secondly, signs of ER stress are present in
subplate neurons at P8, similar to other dedicated secretory
cells. Thirdly, our ultrastructural examination of P8 rat subplate

neurons revealed highly developed rough ER, which filled a large
part of the cytosol. Fourthly, some genes, whose products are
known to be secreted into the extracellular space, are expressed at
high levels in subplate neurons of the P8 mouse brain (Table 1)
but not necessarily in adult brains. Finally, neuroserpin, one such
secreted protein, is likely to be located in ER of subplate neurons
at P8 in the mouse brain (Figure 3).

We have shown that rodent subplate neurons (during the early
postnatal period) and plasma cells have three common features;
non-central distribution of the nucleus, highly developed rough
ER filling a large part of the cytosol, and signs of ER stress condi-
tion. The characteristic morphological features of plasma cells at
the light and electron microscopic levels have been described in
details in the literature (Bloom and Fawcett, 1968). These three
common features prompt us to suggest that subplate neurons
have a protein secretory function.

During the early postnatal period, subplate neurons are the
only cortical cell type with these three properties. In contrast,
layer 5, some layer 6 and 2–3 pyramidal cells fit just one
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FIGURE 3 | Subplate neurons in P8 mouse brain strongly express

neuroserpin. Immunohistochemistry for anti-neuroserpin (A) and anti-KDEL

(B) and their correlation (C) in coronal section of P8 mouse. Note,

co-localization of neuroserpin and BiP in subplate neurons (arrows, C; cell in

D–F). Immunohistochemistry for anti-neuroserpin (D) and anti-KDEL (H) in

coronal section of adult mouse. Neither neuroserpin nor BiP is strongly

expressed in the adult subplate. Scale bars: 100µm (A–C, G–I), 10µm

(D–F).

condition—exhibiting ER stress hallmarks (Figures 1C,D,G,H).
The rough ER of layer 5 pyramidal cells is restricted to the cytosol
and the nuclei are located centrally within the cytosol (Parnavelas
et al., 1978; Miller and Peters, 1981) in contrast with subplate
(present study). Furthermore, the proportion of cytosol occu-
pied by rough ER is much higher in subplate than in orther
cortical neurons (data not presented). These results suggest that
although several cell types may have secretory properties, sub-
plate neurons may be more specialized to protein secretion than
other cells. Interestingly, subplate neurons in adult stage have
relatively small cytoplasm and are no longer under ER stress con-
ditions (Figures 1F,H). This suggests that the secretory function
of subplate neurons is transient.

Some genes, whose products are known to localize in the
extracellular space, are very strongly expressed in subplate

neurons in the P8 mouse brain (Table 1). Connective tissue
growth factor (CTGF) belongs to a family of secreted, extracellu-
lar matrix-associated proteins that are involved in the regulation
of cellular functions such as adhesion, migration, mitogenesis,
differentiation and survival (Brigstock, 1999) as well as matura-
tion of oligodendrocytes and progression of myelination (Stritt
et al., 2009). We have previously reported that CTGF expres-
sion is detectable in the subplate region at E18 and increases
in the number of cells and the intensity of labeling at P3 and
P8 (Hoerder-Suabedissen et al., 2009, 2013). Neuroserpin is an
inhibitor of tissue plasminogen activator (tPA) that is expressed
in developing and adult nervous systems (Hastings et al., 1997;
Krueger et al., 1997). Mutations in neuroserpin result in its
misfolding and accumulation in the ER (Miranda et al., 2004).
In this study, immunohistochemical analysis demonstrated that
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subplate neurons in P8 mouse brain express neuroserpin, which
may be released by secretion. Neuronal pentraxin 1 (Nptx1),
predicted to be a secreted protein, is selectively expressed in
the nervous system and has been suggested to be involved in
synaptic functions (Schlimgen et al., 1995; Dodds et al., 1997).
Insulin-like growth factor binding protein 5 (IGFBP-5), which
is an extracellular modulator of Insulin-like growth factor (IGF)
signaling, has been highlighted as a focal regulatory factor dur-
ing the development of several key cell lineages, e.g., myoblasts
and neural cells (Clemmons, 1997; Cheng et al., 1999; Pera
et al., 2001). GENSAT Database shows that the genes encoding
these secreted proteins are expressed in the subplate region at
P7 mouse brain (Supplementary Figure 1; Hoerder-Suabedissen
et al., 2013). This period coincides with the major changes in
somatodendritic morphology and death of subplate cell pop-
ulations (Hoerder-Suabedissen and Molnár, 2012, 2013, 2015).
To elucidate the function of subplate neurons during postna-
tal period, it may be useful to investigate the functions of these
secreted proteins during normal development and in pathologi-
cal conditions, including after perinatal hypoxic ischaemic brain
damage (Okusa et al., 2014).

Conclusion

Our work shows that during the postnatal period subplate neu-
rons in rodents have highly developed rough ER, transiently
express neuroserpin, a secreted protein and show signs of ER

stress. Taken together, these results suggest a transient protein
secretory function of rodent subplate neurons during the post-
natal period.
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The intricate formation of the cerebral cortex requires a well-coordinated series of
events, which are regulated at the level of cell-autonomous and non-cell autonomous
mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development
are well-studied, the non-cell autonomous mechanisms remain poorly understood. A
non-biased screen allowed us to identify Autotaxin (ATX) as a non-cell autonomous
regulator of neural stem cells. ATX (also known as ENPP2) is best known to catalyze
lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the
localization and adhesion of neuronal progenitors in a cell autonomous and non-cell
autonomous manner, and strikingly, this activity is independent from its catalytic activity
in producing LPA.

Keywords: cortical development, radial glia, autotaxin, LPA, neuronal stem cell, in utero electroporation

INTRODUCTION
How excitatory neurons reach their proper position in the devel-
oping brain has been the focus of intense research, since perturba-
tions in this process have been shown to result in a wide spectrum
of brain diseases, ranging from severe brain malformations, to
diseases such as cognitive impairment and autism. Most of the
molecular mechanisms known to control radial neuronal migra-
tion are cell autonomous and include for example proteins, which
are involved in regulation of the cytoskeleton and cytoskeleton-
associated motor proteins (reviews Ayala et al., 2007; Rakic et al.,
2007; Jaglin and Chelly, 2009; Valiente and Marin, 2010; Reiner,
2013). Key examples of such proteins are LIS1 and DCX, where
mutations of the corresponding genes in humans result in a brain
malformation known as lissencephaly (Reiner et al., 1993; Des
Portes et al., 1998; Gleeson et al., 1998, reviews Jaglin and Chelly,
2009; Valiente and Marin, 2010; Reiner, 2013; Reiner and Sapir,
2013). LIS1 is involved in regulation of microtubules and the
microtubule associated molecular motor, cytoplasmic dynein, as
well as regulation of the actin cytoskeleton through the activity
of small GTPases (Faulkner et al., 2000; Niethammer et al., 2000;
Sasaki et al., 2000; Smith et al., 2000; Kholmanskikh et al., 2003;
Yamada et al., 2013) (review Reiner and Sapir, 2013). DCX is a
microtubule and actin-associated protein, which interacts with
cytoplasmic dynein and a member of the kinesin superfamily

of proteins (Gleeson et al., 1999; Caspi et al., 2000; Kim et al.,
2003; Tsukada et al., 2003, 2006; Gdalyahu et al., 2004; Schaar
et al., 2004; Tanaka et al., 2004b; Bielas et al., 2007; Bechstedt
and Brouhard, 2012; Liu et al., 2012). Despite these so-called cell
autonomous functions, experimental evidence suggests that LIS1
(Hippenmeyer et al., 2010) and DCX (Bai et al., 2003) may also
affect neighboring cells in a non-cell autonomous fashion.

To better understand the non-cell autonomous aspects of
radial neuronal migration, we developed an in vivo assay in which
migration defective cells, following treatment with either Dcx or
Dclk shRNA, were isolated and subjected to microarray analysis.
We identified mRNA encoding for secreted and transmembrane
proteins, which were differentially expressed in the area where
the impaired neurons clustered in the brain. While both shRNA
treatments exhibited non-cell autonomous inhibition of neuronal
migration, the morphology of the stalled cells differed between
treatments. Comparison of the gene expression profile in both
treatments revealed several differentially expressed genes, among
which we detected autotaxin (ATX, also known as ENPP2, PD-Iα
or lysoPLD).

Autotaxin is a secreted enzyme of 99 kDa, thus may fit to
act in a non-cell autonomous way. It was originally identi-
fied as an autocrine factor, which stimulates tumor cell motility
(Stracke et al., 1992). ATX becomes active and is secreted to
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the extracellular space following glycosylation and proteolytic
cleavage of its N-terminal signal peptide (Jansen et al., 2005,
2007). ATX is a member of the ENPPs (ectonucleotide pyrophos-
phatase/phosphodiesterases) family. Each of the ENPPs contains
a conserved catalytic domain, which hydrolyzes phosphodiester
bonds of different nucleotides and phospholipids (Stefan et al.,
2005). ATX is unique, as it is the sole member of the ENPPs
that utilizes this catalytic domain for lysophospholipase D (lyso-
PLD) activity. ATX catalyzes lysophosphatidic acid (LPA) pro-
duction from lysophosphatidylcholine (LPC) (Tokumura et al.,
2002; Umezu-Goto et al., 2002). ATX is considered as the major
producer of LPA, and deletion of one allele reduces LPA concen-
tration in the plasma by half (Tanaka et al., 2006; Van Meeteren
et al., 2006). Thus, it is thought that ATX acts predominantly
through LPA production. LPA is a potent molecule, which acts
through binding to its cognate receptors (LPAR1-5) thus instigat-
ing several downstream signaling pathways. Nevertheless, single
LPAR knockout mice develop normally. LPA influences multiple
events during cortical development including polarity establish-
ment in hippocampal neurons (Yamane et al., 2010). In addition,
LPA regulates proliferation, survival and differentiation in sundry
cell populations. Heuristically, physiological concentrations of
LPA (0.1 ∼ 1 μM) promote proliferation of several neuronal pro-
genitors and stem cells and enhance cortical growth (Kingsbury
et al., 2003; Fukushima, 2004; Svetlov et al., 2004; Cui and Qiao,
2006; Estivill-Torrus et al., 2008; Hurst et al., 2008), while higher
concentrations of LPA evoke necrosis and apoptosis (Holtsberg
et al., 1998; Steiner et al., 2000). LPA has been shown to be
a survival factor of neuroblasts (Kingsbury et al., 2003) and
post-mitotic neurons (Fujiwara et al., 2003; Zheng et al., 2005;
Estivill-Torrus et al., 2008). LPA has been shown to stimulate both
neuronal differentiation, possibly through LPAR1 (Cui and Qiao,
2006; Fukushima et al., 2007; Spohr et al., 2008), and glial dif-
ferentiation (Cui and Qiao, 2007), yet other studies suggest that
LPA inhibits neuronal differentiation (Dottori et al., 2008). In
mice, ATX knockout is lethal and embryos die around E9–E10
(Tanaka et al., 2006; Van Meeteren et al., 2006; Fotopoulou et al.,
2010). These mice display vascular defects in embryo and yolk sac,
allantois malformation, neural tube defects, asymmetric head-
folds, increased cell death, decreased proliferation and neurite
outgrowth deficits. Neurite outgrowth was rescued by addition
of LPA (Fotopoulou et al., 2010). Heterozygous-knockout mice,
exhibiting half of the lysoPLD activity and LPA levels, showed
attenuated nerve injury-induced neuropathic pain (Inoue et al.,
2008). High ATX expression, on the other hand, is associated
to and found in many pathophysiological conditions, including
several cancer types (Okudaira et al., 2010), neuropathic pain
(Inoue et al., 2004, 2008; Ueda, 2008), Alzheimer-type demen-
tia (Umemura et al., 2006), multiple sclerosis (Hammack et al.,
2004) and following brain lesion (Savaskan et al., 2007). During
embryonic development, ATX expression is first detected at the
floor plate of the neural tube, and later in the choroid plexus, cere-
brospinal fluid and the ventricular area of the embryonic brain
(Abramova et al., 2005; Ohuchi et al., 2007; Savaskan et al., 2007;
Zappaterra et al., 2007). Following birth, ATX is detected in lep-
tomeningeal cells, oligodendrocytes and astrocytes, but not in
neurons. ATX induces neurite retraction of differentiated PC12

via LPA production (Sato et al., 2005). In oligodendrocytes ATX
is upregulated during maturation and is temporally correlated
with the process of myelination. ATX facilitates morphological
changes of oligodendrocytes, decreases their adhesion to the ECM
and promotes complex process network (Fox et al., 2004; Dennis
et al., 2008, 2011). Little is known about the role of ATX dur-
ing cortical development. Our studies show cell-autonomous and
non-cell autonomous roles of ATX in regulation of cell position
and adhesion in progenitors of the developing cortex. Markedly,
these activities did not require ATX catalytic activity.

MATERIALS AND METHODS
ANIMALS
ICR were purchased from Harlan laboratories. Mice in which
the first two exons of ATX gene are flanked by two loxP
sites were obtained from Vassilis Aidinis (Fotopoulou et al.,
2010) and were bred with mice which express the recombi-
nase Cre under the control of the EMX1 promoter (Jackson).
Genotyping for the Atxflox and Atx− alleles was described pre-
viously (Fotopoulou et al., 2010). Briefly, four primers were
used: A1, B1, C1, and B2. A1: 5′-CGCATTTGACAGGAATTCTT;
B1: 5′-ATTTGTCACGTCCTGCACGA; C1: 5′-ATCAAAATACT
GGGGCTGCC; B2: 5′-TACACAACACAGCCGTCTCA. Primer
combination A1 and C1 was used to detect wild type (WT)
alleles. Primer combination A1 and B1 was used to detect the
floxed (neo) allele. Primer combination A1 and B2 was used
to detect the deleted allele. The primers used for detecting the
EMX1-Cre transgene were 5′-AACATGCTTCATCGTCGG and
5′-TTCGGATCATCAGCTACCACC. Embryonic day 0 (E0) was
defined as the day of confirmation of the vaginal plug. Mice were
raised in the Weizmann Institute of Science transgenic facility. All
animal procedures were approved by IACUC.

IMMUNOHISTOCHEMISTRY
Antibodies used were as follows: mouse anti-5-iodo-2′-
deoxyuridine(IdU)/5-bromo-2′-deoxyuridine(BrdU) (1:50;
BD Biosciences), rat anti-BrdU (1:100; Becton Dickinson),
rabbit anti-phosphorylated histone H3 (pH3) (1:100; Upstate
Biotechnology), goat anti-GFP (1:400; Abcam), chicken anti-
GFP (1:500; Abcam), rat anti-ATX [1:40; kindly provided
by J. Aoki (Tanaka et al., 2004a)], chicken anti-Tbr2 (1:400;
Millipore), chicken anti-Tbr1 (1:400; Millipore), mouse anti-
Tuj1 (1:300; Covance), goat anti-Par-3 (1:50; Santa Cruz
Biotechnology), rabbit anti-β-Catenin(1:300; Sigma), rat anti-
ZO-1(1:70; Developmental Studies Hybridoma Bank), mouse
anti-Numb (1:300; Developmental Studies Hybridoma Bank),
goat anti-Par-6 (1:100; Santa Cruz Biotechnology), rabbit
anti-Pax6 (1:300; Covance), pFAK 925 (1:100; Cell Signaling).

Floating sections or cryosections were permeabilized using
0.1% Triton X-100 and blocked in blocking solution (PBS, 0.1%
Triton X-100, 10% HS; or PBS, 0.1% Triton X-100, 2% HS for
ATX staining) for 60 min. Antibodies were incubated in block-
ing solution over night at 4◦C. After washing, appropriate sec-
ondary antibodies (Jackson ImmunoResearch) were diluted in
blocking solution, and incubated for 2–3 h at room tempera-
ture. Slices were mounted onto glass slides using Aqua Polymount
(Polysciences).
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Cover slips containing fixed cells were permeabilized using
0.1% Triton X-100 and blocked three times in PBS supplemented
with 0.1% BSA (Sigma). Coverslips were incubated with antibod-
ies, stained with DAPI and mounted onto glass slides using Aqua
Polymount (Polysciences). To visualize ATX, sections were first
incubated with 10 mM citrate buffer for 30 min in 80◦C, then
cooled at RT for 30 min. After washing, sections were immunos-
tained as described above.

ANALYSIS OF NEURONAL MORPHOLOGY
The z-stack images from the slices of the in utero electropo-
rated (E14.5–E18.5) brains with either Dcx or Dclk shRNA were
acquired with confocal microscope (LSM480, Zeiss, x40). Each
fluorescent cell in the resulted images was classified as either
bipolar, cells with 3–4 processes or multipolar. Slices from four
different brains for each condition were used for the analysis.
In total 188 and 212 cells from Dcx and Dclk shRNA condition
respectively were analyzed.

SAMPLE PREPARATION AND MICROARRAY ANALYSIS
In utero electroporation was performed on E14.5 mouse brains
with Dcx or Dclk shRNA together with GFP in 3:1 ratio. On
E17.5 the mice were sacrificed and the embryos collected in L-15
(Biological Industries) supplemented with gentamycin, glucose
(0.6%) and saturated with oxygen in RNase-free environment.
The fluorescent area of the cortex was cut out with a razor
under the fluorescent binocular and homogenized in TRI Reagent
(Sigma, Israel). After addition of 0.2 ml of chloroform per 1 ml
of TRI Reagent used, the samples were mixed and centrifuged
at 13000 rpm for 15 min at 4◦C. The upper aqueous phase was
precipitated with 0.5 ml Isopropanol. The precipitated RNA was
washed with 70% Ethanol, dissolved in water, and cleaned with
RNeasy Mini Kit (Qiagen). The Mouse Gene 1.0 ST Array was
used for Affymetrix analysis. The experiments were repeated
twice, and each repeat was composed of a RNA pool derived
from 4 to 6 electroporated brains. The correlation between the
repeats was very high (R2 = 0.9955 and 0.9925 for Dcx and Dclk
shRNA conditions, respectively). Only genes that showed at least
1.9 fold-difference of expression were selected for further analysis.

PLASMIDS AND RNAi CONSTRUCTS
ATX shRNA1 and shRNA2 are pLKO.1 lentiviral shRNA con-
structs purchased from Open BioSystems (TRCN0000080829 and
TRCN0000080830, respectively). The experiments shown in the
figures are corresponding to shRNA2, but most experiments were
conducted using both shRNA sequences in parallel and no differ-
ences were noted. Control shRNA was previously described (Sapir
et al., 2012).

The full-length human ATX (hATX) was provided from Prof.
Junken Aoki (Hashimoto et al., 2012). The full-length rat ATX
(rATX) was provided from Prof. Mathieu Bollen (Jansen et al.,
2005), and subcloned into pCAGGS vector using the NheI
and NotI restriction sites. Site-directed mutagenesis of the cat-
alytic domain (T210A) in hATX and rATX were performed
using the primers 5′-TCCCTACATGAGGCCGGTGTACCCAA
CTAAAgCCTTTCC and 5′-GCCTCTGGTGAAGAGCTCAG for
hATX, and 5′-CTGTGTACCCCACAAAAgCCTTCCCTAATC and

5′-GATTAGGGAAGGcTTTTGTGGGGTACACAG for rATX. The
PCR product of the mutant hATX was subcloned into full-length
hATX using the EcoRI and EcoNI restriction sites. The mutant
hATX contained additional mutations T241S, V279S, T294S,
H298N; all of which are conserved in mouse and rat. The mutant
rATX contained an additional mutation at the linker region
(L581F). Plasmids were co-electroporated with a fluorescent pro-
tein. Co-electroporation of pCAGGS-GFP, pCAGGS-mCherry
was performed for the in utero and ex utero electroporation exper-
iments. Co-electroporation of pCAGGS-GFP, EF-LPL-lynGFP,
Tα-LPL-GAP43-Strawberry, Tα-Cre (provided from Prof. Akira
Sakakibara) and PGK-Cre was performed for the lattice cul-
ture and flow cytometry experiments. FUCCI cell cycle reporters
(Sakaue-Sawano et al., 2008) were subcloned into pCAGGS.

IN UTERO ELECTROPORATION
Plasmids were transfected by in utero electroporation using pre-
viously described methods (Sapir et al., 2008). Briefly, E14 or E13
pregnant female ICR mice were anesthetized by intraperitoneal
injection of 10% ketamine/20 mg/ml xylazine (1/10 mixture,
0.01 μl/g of body weight, i.p.), alternatively isoflurane anesthesia
was utilized. The uterine horns were exposed, and plasmids (0.5–
1 μl) mixed with Fast Green (2 μg/μl; Sigma) were microinjected
by mouth pipette through the uterus into the lateral ventri-
cles of embryos by pulled glass capillaries (Sutter Instruments).
Electroporation was accomplished by delivering five electrical
pulses (50 ms duration) at intervals of 950 ms with a square-pulse
electroporator (Nepa Gene), using a platinum-plated tweezer
electrodes (Protech International).

For knockdown or overexpression, a GFP expression vector
with either shRNA, ATX, or mutant ATX expression vector (3:1
ratio) were used. For rescue experiments, equal amounts of ATX
shRNA2 and either hATX or mutant hATX were used. Cell cycle
analysis was performed by in utero electroporation with FUCCI
reporters.

For the analysis of cell location, morphology and
type, embryos were intracardially perfused using 4%
paraformaldehyde–phosphate buffered saline (PFA-PBS). Brains
were post-fixed overnight and sectioned (60 μm; vibrotome,
Leica).

EX UTERO ELECTROPORATION
E14 embryos were removed from pregnant dams. DNA mix-
tures (equal concentrations as used for the in utero electro-
poration) were injected to the ventricles and electroporation
was conducted by delivering five electrical pulses (50 ms dura-
tion) at intervals of 950 ms with a square-pulse electroporator
(Nepa Gene), using 5-mm-diameter platinum-plated tweezer
electrodes (Protech International). Brains were removed in cold
L-15 (Biological Industries) supplemented with gentamycin, glu-
cose (0.6%) and saturated with oxygen. Freshly isolated whole
brains were cut into 250 μm coronal slices and then transferred
onto inserts (MilliCell-CM; 0.4 μm; Millipore) floating on 1 ml
of either serum-free medium (Neurobasal medium supplemented
with B27, N2, GlutaMax, glucose, and gentamicin) or condition-
medium (described below in cell-culture and condition media).
Brain slices were cultured at 37◦C and 5% CO2 for 2 days. Half
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of the media was replaced with fresh media after 24 h. Slices
were fixated with 4% PFA-PBS overnight, incubated at 4◦C in
PBS/30% sucrose, frozen on dry ice with OCT compound and
cryosectioned (10 μm; Leica CM3050S).

CELL-CULTURE AND CONDITIONED MEDIA
Conditioned media for ex utero experiments were prepared using
HEK293 cell line overexpressing either GFP and ATX or mutant
ATX. Cells were grown at 37◦C and 5% CO2 in MEM (Dulbecco’s
modified Eagle’s medium supplemented with 5% fetal calf serum,
5% horse serum, B27, Glucose, GlutaMax and Gentamicin).
Media was collected 2 days following calcium-phosphate trans-
fection (Graham and Van Der Eb, 1973) of 2 μg DNA. Collected
media was diluted 1:3 in fresh MEM and kept in 4◦C for 2–5 days.

Microscopy
Images were taken either with wide-field microscopy with the
DeltaVision system package (Applied Precision, Issaquah, WA,
USA), Pannoramic MIDI scanner (3DHisthech) or by confocal
microscopy (LSM510, Zeiss, LSM 780).

Analysis
Cell counts were analyzed using the spots module of Imaris soft-
ware (Bitplane, Zurich, Switzerland). Intensity and circularity
were measured using the ImageJ software (NIH).

Statistical analysis was conducted using Prism 5 for Macintosh
(GraphPad Software, Inc.).

RESULTS
SCREENING FOR NON-CELL AUTONOMOUS FACTORS INVOLVED IN
RADIAL MIGRATION
Knockdown of Dcx and Dclk was reported to impair radial neu-
ronal migration (Bai et al., 2003; Koizumi et al., 2006; Ramos
et al., 2006). In line, we could show that Dcx or Dclk knockdown
impaired cell migration (Figures 1A–F). Although reduction of
DCX induced cells to arrest with multipolar morphology (Bai
et al., 2003) (Figures 1B,E,G), cells treated with Dclk shRNA
exhibited bipolar morphology (Figures 1C,F,G). To investigate
cell autonomous and non-cell autonomous effects of a partic-
ular intervention we modified a previously described approach
(Bai et al., 2003). The experimental design included labeling and
monitoring two distinct populations in the developing embry-
onic brain by consecutive electroporation. The first population
was treated with shRNA (at day E13) and labeled with GFP. We
have confirmed that no plasmid that is injected in the early time-
point lingered in the ventricle (data not shown). The position of
the first population reflected cell autonomous effects. The second
cell population was electroporated with a red fluorescent protein
expression construct only a day later (E14) and reflected non-cell
autonomous effects emanating from the first (green) popula-
tion. Dcx shRNA treatment inhibited neuronal migration in a cell
autonomous way (Bai et al., 2003) (control shRNA treated green
cells in Figures 1H,J in comparison with Dcx shRNA treated
Figures 1K,M quantified in Figures 1H′,K′ respectively) as well
as in a non-cell autonomous fashion (Bai et al., 2003) (dsRed
labeled cells in Figures 1I,J in comparison with Figures 1L,M
quantified in Figures 1I′,L′ respectively). Likewise, Dclk shRNA
treatment affected neuronal migration in a cell autonomous

and non-cell autonomous fashion (Figures 1N–P). Therefore, we
conclude that both Dcx and Dclk shRNA treatments affect the
position of the transfected cells themselves in a cell autonomous
and in addition, the transfected cells affect neighboring cells,
born a day later, in a non-cell autonomous way. The distribu-
tion of the Golgi within the cell was used as a marker for its
polarization. Control cells showed compact Golgi either at E17
(where more cells can be detected at the SVZ/IZ border) or
E18 (Figures 2A–F respectively). However, cells treated with Dcx
shRNA but also their neighboring cells displayed dispersed Golgi
(Figures 2G–I, higher magnification Figures 2J–L, quantified in
Figure 2Y), yet the Golgi appeared compact in cells treated with
Dclk shRNA and their neighbors (Figures 2M–O, higher mag-
nification Figures 2P–R, quantified in Figure 2Y). In addition,
to better visualize cell autonomous effects on the Golgi, brains
were co-electroporated with the corresponding shRNA, GFP and
a Golgi marker. In case of Dcx shRNA the Golgi was dispersed
(Figures 2S–U) and in case of Dclk shRNA the Golgi was com-
pact (Figures 2V–X). Therefore, it was possible to visualize that
Dcx shRNA treated cells exhibit abnormal polarity, as revealed
by dispersed Golgi staining, and also the untreated neighboring
cells exhibited abnormal polarity. Since both shRNA treatments
affected cell migration in a non-cell autonomous fashion, while
the stalled cells exhibited different states of cell polarization, we
set out to identify differentially expressed genes in the cells resid-
ing in the stalling area. Areas enriched with stalled fluorescent
cells were dissected out at day E17 from brains, which had been
electroporated in utero at day E14. The extracted mRNA was
converted to cDNA and subjected to Affymetrix chip analysis
(scheme in Figure 2Z). This approach identified a few distinct
genes that differed in their expression levels between the Dcx and
Dclk shRNA-treated cells (Table 1).

Results identified 14 novel genes, most of which encode
secreted or extracellular proteins, suggesting an involvement of
non-cell autonomous mechanisms. Of particular interest, Enpp2,
Ectonucleotide Pyrophosphatase/Phosphodiesterase 2, PD-Iα or
lysoPLD, also known as Autotaxin (Atx) had a twofold expres-
sion in the bipolar Dclk shRNA treated neurons. This result was
reconfirmed using real-time qPCR (Figure 2AA) and Western
blot analysis (data not shown). We therefore focused on the
cell autonomous and non-cell autonomous roles of Atx in the
developing brain.

ATX IS EXPRESSED IN THE DEVELOPING BRAIN
Previous studies indicate that Atx mRNA is expressed in the
choroid plexus and the ventricular zone (VZ) during cor-
tical embryonic development (Ohuchi et al., 2007; Savaskan
et al., 2007) (Figure 3A, from http://www.genepaint.org/).
Immunostaining of mouse E14 brain sections using a previ-
ously characterized monoclonal antibody (Tanaka et al., 2004a),
revealed strong expression in the VZ, but also in the cortical
plate (CP) (Figure 3B). ATX protein is expressed throughout
cortical development, as demonstrated by Western blot analysis
(Figure 3C). The subcellular localization of ATX was analyzed
using E15 dissociated cortical neurons. ATX was expressed by all
neurons. Notably, most of the protein was localized perinuclear in
vesicular structures (Figures 3D–F,D′–F′), and colocalized with
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FIGURE 1 | Cell autonomous and non-cell autonomous effects of Dcx

and Dclk on neuronal migration. (A–C) Dcx and Dclk impair radial
neuronal migration. Brains electroporated in utero on E14 with control (A),
Dcx (B) or Dclk (C) shRNA constructs together with GFP, were analyzed
on E18. Scale bar, 100 μm. (D–F) The morphology of cells arrested in the
IZ at (E) with reduced DCX (E) or DCLK (F). No cells in the IZ were
observed in control shRNA. Scale bar, 20 μm. (G) Quantification of cells
arrested in the IZ exhibiting bipolar, multipolar and highly branched
multipolar morphologies from sections from four different brains of each
treatment (Dcx and Dclk shRNA). Student t-test ∗p < 0.05; ∗∗∗p < 0.001.
(H–P) Non-cell autonomous effect on migration of Dcx and Dclk shRNA.
Brains were in utero electroporated with control shRNA (H–J), Dcx

shRNA (K–M) or Dclk shRNA (N–P) together with GFP on E13, followed
by electroporation with dsRed on E14. The analysis was performed on
E18. GFP-positive cells (H,K,N), dsRed-positive cells (I,L,O) and merged
images (J,M,P) are shown. Only single positive cells were counted and
used for quantifications and statistical analysis. In each section the total
number of cells were considered 100% and the relative % of green and
red cells were calculated in relation to the same population. In the
histograms the % of GFP positive dsRed negative or % of GFP negative
dsRed positive cells positioned in the different bins are indicated. The
statistical analysis is based on number of cell bodies that were counted
in five arbitrary bins spanning the width of the cortex. The analysis was
done using the Imaris©software (H’,I’,K’,L’,N’,O’). Scale bar, 100 μm.
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FIGURE 2 | (A–X) The organization of the Golgi apparatus in Dcx and Dclk
shRNA transfected neurons stalled in the IZ. (A–R) Golgi organization is
shown by Golgi specific immunostaining. Control (A–F), Dcx (G–L) or Dclk
(M–R) shRNA were electroporated brains (E14–E18) were immunostained
with CTR433 Golgi antibodies. Since there are practically no cells in the
area of interest (IZ) in the control experiment, an additional control was
used, in which the control shRNA was electroporated from E14 to E17,
when some control cells still reside in the IZ (A–C). GFP (A,D,G,J,M,P)

serves as a marker for electroporated cells. (S–X) Verification of Golgi
organization shown by coelectroporation with a plasmid expressing a Golgi
marker. Dcx (S–U) or Dclk (V–X) shRNA were coelectroporated with a
Golgi marker plasmid, 82 amino acids of β1,4-Galactosyltransferase fused

to mCherry. GFP (S,V) serves as a marker for electroporated cells. (Y)

Quantifications of Golgi clusters per cell was performed on control (E17),
Dcx or Dclk shRNA treated cells (an average of 20 cells was used for
quantifications and statistical analysis) ∗p < 0.05, ∗∗∗p < 0.001. (Z)

Experimental design of the Affymetrix GeneChip experiment. Embryos
were electroporated in utero on E14; on E17 the areas where stalled
electroporated cells were dissected. RNA or protein was extracted from 5
embryos per experiment. (AA) Real-Time PCR validation of Affymetrix
Gene Chip experiment. The Atx mRNA levels in the Dcx shRNA treated
brain were reduced by 40% in comparison to Dclk shRNA or in
comparison to control shRNA in concordance with Affymetrix results.
Scale bars: panels 20 μm.

the Golgi apparatus, immunostained with CTR433 antibodies
(Figures 3E,E′). Part of the protein was noticed in the growing
neurites.

ATX AFFECTS CELL ADHESION IN THE VENTRICULAR ZONE
To examine the effect of ATX reduction in the developing brain,
we in utero electroporated brains with either Atx shRNA or con-
trol shRNA at E13 and examined them at E14 (Figures 4A–F).
Real-time PCR indicated that the shRNA reduced Atx mRNA
levels to 30.8 ± 5.2% (n = 3 ±S.D.) in comparison with con-
trol. Cells with reduced ATX levels demonstrated distorted mor-
phology, most of the cells were round, and in some cases the
endfeet were not tethered to the apical aspect of the ventricu-
lar zone (Figures 4E,F). These results were recapitulated when
brains were in utero electroporated at E14 and analyzed at E15

(Figures 4G–V). To gain additional information regarding the
observed phenotype, the brain sections were immunostained
with the apical markers Numb, ZO-1 and Par6. As expected,
these proteins were apical in control brain sections, however,
they displayed abnormal positioning in shRNA treated sec-
tions. Immunostaining of treated brain sections with β-catenin
and Par3 antibodies did not reveal any changes in the local-
ization of these proteins in the ATX knockdown brains (data
not shown). Cellular morphology and the proper positioning
of Numb, ZO-1 and Par6 were largely restored following the
addition of human ATX expression construct, which is resis-
tant to the shRNA (Figures 4M,Q,U). Surprisingly, introduction
of the catalytically inactive human ATX expression construct
was able to restore these observed phenotypes (Figures 4N,R,V).
The measured circularity index statistically differed from control
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Table 1 | The analyzed results of the Affymetrix experiment.

Gene name Fold difference

(A) UNKNOWN GENES: HIGHER TRANSCRIPTION LEVEL IN Dclk shRNA TREATED EMBRYOS

ENSMUSG00000074558 4.42 Predicted gene encoding protein with 5 TM domains, a member of ENSFM00360000113264 gene family

ENSMUSG00000074562 9.51 Predicted gene encoding protein with 5 TM domains, a member of ENSFM00360000113264 gene family

ENSMUSG00000074566 9.15 Predicted gene encoding protein with 5 TM domains, a member of ENSFM00360000113264 gene family

ENSMUSG00000075014 4.31 Predicted gene encoding protein with 5 TM domains, a member of ENSFM00360000113264 gene family

ENSMUSG00000058736 3.29 Putative gene encoding secreted peptide

(B) GENES WITH HIGHER TRANSCRIPTION LEVEL IN Dclk shRNA TREATED EMBRYOS

Ctsc 2.02 Cathepsin C

Enpp2 1.95 Ectonucleotide pyrophosphatase/phosphodiesterase 2

Ifitm3 2.70 Interferon induced transmembrane protein 3

Serping1 2.10 Serine (or cysteine) peptidase inhibitor, clade G, member 1

Ttr 7.02 Transthyretin

(C) GENES WITH HIGHER TRANSCRIPTION LEVEL IN Dcx shRNA TREATED EMBRYOS

Gcg 2.04 Glucagon

Penk 2.05 Preproenkephalin

Tcfap2d 2.30 Transcription factor AP-2, delta

Zfp125 2.47 ZT2 gene encoding zinc finger protein 125

The genes with different transcription level between Dcx and Dclk shRNA electroporated brain regions are divided into 3 categories: unknown genes (A), known

genes with higher transcription level in Dclk shRNA condition (B), and known genes with higher transcription level in Dcx shRNA condition (C). Averages for fold

differences of 2 biological repeats are shown.

FIGURE 3 | Expression and localization of ATX in the developing mouse

cortex. (A) In situ hybridization of Atx in the developing mouse cortex at E14
(from http://www.genepaint.org/). (B) Coronal cryosections of the mouse
embryonic cortex at E14 immunostained for ATX. (C) ATX levels in cortical
lysates at different developmental stages. α -tubulin was used as a loading

control. (D–F’) Cultured cortical neurons isolated from E14 mouse cortices
were grown 3 DIV, immunostained for ATX (green) (D–F, D’–F’) and the Golgi
marker CTR433 (red) (E,E’), and counterstained with DAPI. Scale bars: (A,B)

100 μm, (D’–E) 10 μm. CP, cortical plate; Cx, cortex; V, ventricle; VZ,
ventricular zone.
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FIGURE 4 | ATX knockdown affects the radial progenitors adhesion

and VZ polarity. (A–E) coronal sections from E14 electroporated
brains. E13 embryos co-electorporated with control shRNA, dsRed and
NLS-GFP (A–C) or with Atx shRNA (D–F). Lower magnification is
shown in (A,D). White rectangle in panels (A,D) indicate area
magnified in (B) and (E) respectively. White arrowheads point at
endfeet that are not tethered to the apical surface of the VZ
following ATX shRNA introduction. (C–H) ATX knockdown impairs
polarity at the VZ and affects organization and morphology of cells.
(G–V) E15 brains that had been electroporated at E14 are depicted.
Whereas in the control brains (G) most of the cells (white, GFP)
exited the VZ, upon ATX knockdown (H) cells were generally reside
within the VZ. ATX knockdown distrups the structure of the VZ. ATX
knocked-down cells exhibited a long and crooked radial process, and

are much rounded than control cells. These knockdown effects were
rescued with the co-electroporation of the Atx shRNA and human
ATX cDNA (hATX), which is resistant to the Atx shRNA (I). Partial
rescuing effect was seen with the co-electroporation of a mutated
non-catalytic human ATX (hATXm, J). Immunolabeling of the apical
polarity markers Numb (K–N), ZO-1 (O–R) and Par6 (S–V),
demonstrated a loss of polarized localization of these protein in the
ATX knockdown brains. The localization was restored upon introduction
of hATX as well as non-catalytic ATX. (W) Changes in cellular
roundness were measured and analyzed using the circularity index.
Data are presented as mean±SEM; n = 3 brains for each condition.
∗p < 0.05 (Kruskal-Wallis test followed by Dunn’s Multiple Comparison
Test). Scale bars: (A,D) (insert) 200 μm, (A,D) 50 μm, (C,F) 15 μm (G)

25 μm, X(upper panel) 50 μm, X(lower panel), 25 μm.

only with the sole addition of Atx shRNA (Figure 4W), while
the addition of ATX or mutant ATX resulted in an elongated
morphology and the recurrence to control circularity levels.
To confirm the results obtained by knockdown experiments
we used a genetic model. We therefore examined the cellu-
lar localization of several proteins in floxed Atx mice deleted

with Emx1-drived Cre. Adherens junctions were immunostained
using phosphorylated FAK antibodies (Figures 5A–B′). Images
were acquired from thick sections show that adherence junc-
tions form from the ventral side of the ventricular zone in
control brains, while in ATX depleted brains adherens junc-
tions were somewhat distorted, recapitulating our findings in
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FIGURE 5 | ATX knockout have subtle effects on adherence junctions in

the apical VZ. (A–B’) Disruption in pFAK 925 immunostaining is observed in
ATX knockout mouse. (B,B’) when compared to floxed allele carrier,
non-deleted littermate at P0 (A,A’). (C–H’) Staining with adherence junction

markers, βCatenin (C–D’) ZO1 (E–F’) and with the apical polarity marker Par3
(G–H’) in brains of E14 wt (C,C’,E, E’,G,G’) and mutant littermates (D,D’,F,F’,H,

H’). All three antigens accumulated at the cell–cell contact sites in both wt
and mutant brains sections. Size markers: (A) 50 μm, (A’) 25 μm (C) 3 μm.

the acute knock down experiments. Additional immunostain-
ings with β-catenin (Figures 5C–D′), ZO1 (Figures 5E–F′) and
Par3 (Figures 5G–H′) did not reveal very striking differences. To
further explore the adhesion junctions following in utero electro-
poration, we conducted electron microscopy analysis on sections
from treated brains (Figures 6A–C). The presence of adherens
junctions is obvious in the control shRNA and Atx shRNA sec-
tions (Figures 6A,B, marked with red arrowheads). Quantitative
analysis revealed a slight reduction in the density of the adhrens
junctions in the Atx shRNA treated sections (Figure 6C). A
possible effect on cellular adhesion may involve proteins such

as N-cadherin and E-cadherin that are normally accumulated at
the ventricular surface. N-cadherin is known to regulate neuronal
migration as well as ventricular structures (Kawauchi et al., 2010;
Jossin and Cooper, 2011). Therefore, we examined the possibil-
ity that Atx knockout neurons exhibit neuronal migration deficits
(Figures 6D–I). In utero electroporation of a GFP expression plas-
mid at E14 and analysis at E18 of wildtype embryos (Emx1-Cre
negative) (Figure 6D), heterozygote for the floxed allele (Emx1-
Cre positive Atx1 fl/+), and homozygote for the floxed allele
(Emx1-Cre positive Atx1 fl/fl), exhibited no obvious differences
(quantified in Figure 6G). The position of CTIP2 positive cells,
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FIGURE 6 | (A–C) ATX Knockdown has minor effect on adherence junctions
density in the apical aspect of the ventricular zone. (A,B) Representative
electron micrographs of ventricular zones of Control shRNA (A) or ATX
shRNA (B) treated brains. The sections were obtained from E14 brains,
electroporated a day earlier. The areas imaged were identified as
electroporated by a GFP signal (not shown), prior to preparation for imaging.
Adherence junctions are the dense areas decorating the border between
adjacent cells, red arrowheads (C) Adherence Junctions density as measured
from (7 to 15) electron micrographs recorded from two brains per treatment,

∗p < 0.05. (D–I) ATX Knock out embryos do not display a neuronal migration
phenotype. (D–F) littermates of indicated genotypes were electroporated in
utero at E14 with GFP expressing plasmid and analyzed 4 days later. The
location of the GFP+ cells did not differ in WT (D) heterozygous (E) or ATX
knockout embryos (F,G) The distribution of GFP+ cells along 10 arbitrary bins
spanning the width of the cortex in mutant (Red) and WT (green) embryos
are presented. The shown results are averaged from 3 to 4 brains. (H,I)

Deeper layers neurons (Ctip2+, layer V) are normally layered in WT (G) and
Knockout (I) E18 embryos. Size markers (F) 100 μm, (H) 1 μm.

which label layer 5, did not differ between the heterozygotes and
the mutant mice (Figures 6H–I). Overall, our results suggest that
ATX affects cell adhesion in the ventricular zone and this activity
is in part not dependent upon its enzymatic activity.

ATX AFFECTS CELL POSITIONING IN THE VENTRICULAR ZONE IN A
CELL AUTONOMOUS AND NON-CELL AUTONOMOUS WAY
During the analysis of brain sections of Atx shRNA treated brains,
we noted that the position of the knocked down cells differed
from the control (Figure 4). This observation was strengthened
using both ex utero and in utero electroporations (Figure 7). We
questioned whether the positioning of the cells can be rescued in a
non-cell autonomous way. To answer this question ex vivo, mouse
brain were electroporated ex utero, the brain were sectioned, and

conditioned media collected from HEK293 cells transfected with
either wild type ATX expression construct, or a catalytically inac-
tive mutant, was added to the sectioned brains. The position of
Atx shRNA treated cells differed from the control in a significant
manner (Figures 7B,B′) vs. (Figures 7A,A′), (2/10 bins p < 0.01,
1/10 bins p < 0.05; n ≥ 3 brains for each condition. ANOVA
analysis followed by Dunnett’s multiple comparison test). Cell
positioning was significantly restored using either wild-type ATX
(Figure 7C) or mutant ATX (Figure 7D). The mutant protein was
somewhat less effective than the wild-type, but the two treatments
did not differ in a statistically significant manner. Both proteins
were expressed at similar levels (Figure 7E), and the protein was
not degraded during the 24 h incubation with the brain slice
(Figure 7E′). Next, we questioned whether expression of ATX in
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FIGURE 7 | ATX non-cell autonomous, non-catalytic activity. (A–D’) E14
mouse embryos were subjected to ex utero electroporation with a GFP
expression plasmid together with either a control shRNA or Atx shRNA.
Coronal sections of brains were kept for 2 DIV with condition media. (B)

Ectopic positioning of cells within the VZ/sVZ can be rescued by addition of

external ATX (C,D). (C–D’) External addition of ATX (C,C’) or mutated ATX
(ATXm, D,D’) restores normal distribution of knocked-down cells (B,B’). (E)

ATX constructs were expressed in HEK 293 cells, and media were collected.
Albeit ATX is expressed endogenously and secreted (control transfection),

(Continued)
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FIGURE 7 | Continued

transfection of rat ATX or a mutated non-catalytic rat ATX (ATXm) lead to
distinctly higher levels of ATX in the media. (E’) Western blot of media
containing secreted ATX showing that ATX is stable when incubated with
brain slices for 24 h. (F–N) (F) Experimental design: consecutive
electroporation done at E13 and E14. dsRed expressing plasmid was
electroporated with or without cDNA encoding human ATX (hATX) or
calytically inactive ATX (hATXm) at E13. One day later, GFP alone or GFP and
shRNA targeting ATX were injected to the same embryos. (G–N’) 24 h after
the second injection the brains were collected for analysis. Representative
sections from control brains (G,K) ATX shRNA treated brains (H,L) and brains
pretreated with hATX (I,M) or mutated hATX (J,N) were stained with Tbr2

(K–N) and DAPI. (K’–N’) Signal recorded along the width of the cortex
showing the dispersion of cells along the radial aspect of the cortex in
arbitrary bin. Smaller numbered bins are apical. (n = 3). (P–S) LPP
overexpression do not affect progenitors postionining during S phase.
LPP1/LPP1a/LPP3 expressing or control vectors where coelectroporated with
GFP plasmid in utero at E14 and analyzed 24 h later. BrdU labeling was done
1 h prior to the analysis. (Q–R) The position of BrdU positive cells in the
electroporated (EP side, Q) BrdU positive cells on the electroporated side as
well as in the non electroporated hemisphere (contralateral, R) are shown. (S)

The relative percentage of BrdU positive, GFP positive cells in the
electroporated and contralateral cortical hemispheres is plotted. Size markers:
(A) 100 μm. Statistical analysis, ∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.001.

earlier born cells can rescue the position of later born cells in
which ATX levels were reduced. We have again preformed a con-
secutive electroporation in which ATX cDNA (as well as mutated
ATX or dsRed alone) was introduced to the ventricular zone 1 day
prior to the injection of the shRNA. We have presumably allowed
the cells to express and secrete the protein prior to the reduction
of the mRNA levels in the next wave of proliferating neurob-
lasts (a scheme is shown in Figure 7F, representative images in
Figures 5G–M). We later quantified the location of both popula-
tions and found that both ATX expression constructs had similar
rescue effects regardless of their catalytic activity (Figures 7M′,N′
in comparison with Figure 7L′). The position of the cells in the
ATX shRNA treated brains differed in a statistically significant
manner from control in 6 out of 10 arbitrary bins along the width
of the cortex (One-Way ANOVA, Dunn’s multiple comparison
test, p < 0.05). The non-cell autonomous rescue experiments did
not differ from the control in 9 out of 10 bins, suggesting that the
rescue was almost complete. Collectively, these data suggest that
ATX regulates cell positioning in the ventricular zone in a non-cell
autonomous manner.

Since re-expression of enzymatic deficient ATX was able to res-
cue cell positioning in VZ, we validated this finding by analyzing
the effect of decreased LPA (the synthesis product of enzymatic
ATX activity) on VZ neurogenesis. Local LPA concentrations
are on the one side controlled via the synthetizing enzyme ATX
and on the other side via dephosphorylating enzymes like the
LPPs. We therefore electroporated LPP1/LPP1a/LPP3 expressing
or control vectors in the VZ of the lateral ventricle wall at E14
and analyzed the pups after 24 h (Figures 7P–S). Neurogenesis
was assessed using BrdU 1 h prior to dissection. Quantitative
assessment of BrdU -positive cells on the electroporated side as
well as in the non electroporated hemisphere revealed no sig-
nificant difference after electroporation of the control or the
LPP1/LPP1a/LPP3 expressing vectors, respectively, correspond-
ing to the catalytic-independent functions of ATX. In addition,
there was no obvious difference in the position of transfected cells
and/or BrdU labeled cells in the transfected or non-transfected
side of the brain.

In the ventricular zone, the position of the cell nucleus is
tightly linked with cell cycle progression. Furthermore, disruption
of the VZ polarity may result in cell cycle defects and inter-
ference with neuronal differentiation. Based on our finding of
abnormal VZ polarity following knockdown of ATX, we rea-
soned that ATX might influence cell cycle and proliferation of

neuronal progenitors. The effect of Atx knockdown on neuronal
proliferation in the developing cortex of the mouse, was exam-
ined using modified fluorescence ubiquitination cell cycle indica-
tors (FUCCI) (Sakaue-Sawano et al., 2008) (Figures 8A–D). The
short-lived fluorescent proteins allow visualizing G1 (red), G1 to
S transition (yellow, simultaneous expression of the red and the
green fluorescent proteins) and S,G2,M (green) (Figures 8E,F).
FUCCI cell cycle reporter plasmids were introduced into E13
developing brains together with either control or Atx shRNA.
Analysis at E14 revealed that Atx1 knockdown did not change
the percentage of cells in the different stages of the cell cycle in
a significant manner (green cells 29 ± 3.1 vs. 34 ± 4.1, red cells
63.1 ± 3.3 vs. 56.7 ± 4.0, and yellow cells 7.8 ± 1.6 vs. 9.2 ±
1.8, in control and Atx shRNA treatments respectively, N = 8,
Student t-test). Nevertheless, the position of the different colored
cells differed significantly, as can be observed in the representa-
tive images (Figures 8A,C). Quantification detected a statistical
significant difference in the basal position of cells in G1 (red
cells) (p < 0.001, N = 8, One-Way ANOVA). Polarity at the VZ,
which is known to regulate differentiation, was disorganized fol-
lowing ATX depletion. In addition, Atx shRNA treated cells were
localized within the VZ and displayed a long radial process, a fea-
ture of radial glial progenitors. Therefore, we hypothesized that
ATX knockdown influences the decision of radial glial to switch
from a self-renewing proliferative mode to a differentiation mode.
We analyzed the above described using ex utero experiments
and immunostaining with the postmitotic neuronal marker β-
III tubulin (Tuj1). In comparison with control treated cells
(Figure 8G), ATX knocked-down cells were more abundant in the
VZ and were rarely noted in the IZ (Figure 8H). The percentage of
post mitotic Tuj1+GFP+ cells was significantly lower in the Atx
shRNA treated cells in comparison with control shRNA treated
cells (Figures 8G′–J′ quantified in Figure 8K) (p < 0.05; n ≥ 3
brains for each condition. ANOVA followed by Tukey’s HSD test).
External addition of either catalytic ATX (Figures 8F,H) or non-
catalytic ATX (Figures 8I,J) restored both the localization of the
cells as well as the relative percentage of Tuj1+ transfected cells.
Compared to the addition of either catalytic or non-catalytic ATX,
the percentage of Tuj1+ transfected cells was significantly lower
in the ATX knocked-down cells (Figures 8H,K) (p < 0.05; n ≥ 3
brains for each condition. ANOVA followed by Tukey’s HSD test).
Collectively, these experiments demonstrated that ATX affects
cell positioning and neuronal differentiation in the ventricular
zone.
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FIGURE 8 | ATX knock down interferes with progenitors differentiation.

(A–D) Fucci markers (mCherry-hCtd1, mVenus-hGeminin) were
electroprated at E13 with control (A,B) or ATX shRNA (C,D). Brains were
analyzed 24 h later. The location of red cells (G1) Green cells (S,G2,M)
and yellow cells (G1->S) was recorded in three arbitrary bins along the
width of the cortex. (E) Cell cycle correlates with FUCCI markers
expression. (F) Interkinetic nuclear movement in the ventricular zone (VZ),
and cell exiting to the subventricular zone (sVZ) would accumulate the

FUCCI markers and alternate colors in correlation with cell cycle. (G–K)

E14 mouse embryos were subjected to ex utero electroporation following
organotypic slice culture in condition media, as described earlier.
Differentiated post-mitotic neurons with Tuj1 (purple) shows higher
colocalization of treated cells (GFP, white) and Tuj1 incontrol cells (G,G’)

compared with ATX knocked-down cells (H,H’). External addition of both
rat catalytic and non-catalytic ATX (rATX, rATXm) restored colocalization of
Tuj1 and treated cells (I–K’). (K) Statistical analysis, ∗p < 0.05.

DISCUSSION
Our unbiased screen for molecules, which participate in non-
cell autonomous regulation of neuronal migration revealed Atx
as a molecule, which is differentially expressed and allowed
us to uncover unexpected roles of this molecule in the devel-
oping brain. Our results depict a role for ATX in regulation
of cell adhesion and cell positioning in neuronal progenitors
located in the ventricular zone of the cerebral cortex. We have

shown that these activities are (1). cell-autonomous, since the
knockdown of Atx affects the target cells, but also (2). non-
cell autonomous, since knocked down cells could be rescued by
addition of external ATX, or by ATX produced by neighbor-
ing cells. Remarkably, we observed that the enzymatic activity
of ATX was not required to rescue the observed phenotypes.
These findings were unexpected since studies in knockout mice
revealed that ATX is the major LPA-producing enzyme in vivo

www.frontiersin.org March 2015 | Volume 9 | Article 53 | 108

http://www.frontiersin.org
http://www.frontiersin.org/Neurogenesis/archive


Greenman et al. ATX in the developing brain

(Van Meeteren et al., 2006). LPA has been found to affect neu-
ral stem cell viability, differentiation and proliferation (Kingsbury
et al., 2003; Dottori et al., 2008; Frisca et al., 2013). Nevertheless,
previous studies have implicated possible non-catalytic func-
tions for ATX. ATX has been found to induce lung epithelial
cell migration in vitro through both catalytic-dependent and
-independent pathways (Zhao et al., 2011). In addition, ATX pro-
motes changes in cellular adhesion to the extracellular matrix,
thereby inducing morphological remodeling in differentiating
cultured oligodendrocytes and in CHO-K1 cells which express
the P2Y(12) receptor (Fox et al., 2004; Dennis et al., 2008, 2011).
Even though our findings emphasize that the role of ATX in
neuronal progenitors is predominantly catalytic-independent, a
catalytic role of ATX should not be excluded. LPA has essen-
tial roles in cortical development, therefore reduced LPA pro-
duction, due to ATX depletion in neuronal progenitors, might
be compensated by other genes involved in LPA homeostasis.
Several LPA-regulating genes are expressed in the developing cor-
tex, including phosphatases that degrade LPA such as LPP1 and
LPP3 (Giraldi-Guimaraes et al., 2004; Escalante-Alcalde et al.,
2007, 2009). Notably, we have shown that increased expression
of LPP1, 1a or LPP3 did not affect the proliferation or posi-
tion of neuroblasts in the ventricular zone. In addition, there
are enzymes that produce LPA from different precursors (such
as secreted PLA2, Yoshihara et al., 1992; Forlenza et al., 2002;
Kurusu et al., 2008). Knockdown of ATX might alter the activ-
ity of these genes, thus maintaining normal LPA concentrations.
Alternatively, LPA could be supplied from a non-cortical source.
In the ex vivo experiment, LPA was provided from the cell cul-
ture medium. In vivo, ATX is highly expressed in the choroid
plexus and secreted to the cerebral spinal fluid (CSF) (Sato
et al., 2005; Zappaterra et al., 2007). Knockdown of neuronal
progenitor-driven ATX could impair both catalytic-dependent
and -independent functions. Nevertheless, it should be noted that
in our experimental system, CSF-driven ATX did not compensate
for the catalytic-independent activities, and therefore effects were
observed. However, we cannot exclude the possibility that the LPA
derived from the CSF diffuses into the cortex and is sufficient to
compensate for the lack of catalytic activity of progenitor-driven
ATX.

We uncovered a role for ATX in the regulation of neuronal
progenitors. Depletion of ATX disrupted VZ adhesion and polar-
ity establishment. This was documented by the non-polarized
expression of several apically-localized proteins and impaired
rounded morphology of cells. In addition, we observed prolif-
eration defects and alteration of the cell cycle. Precisely how
ATX participates in neuronal progenitor regulation remains to
be clarified. We propose that the principal role of ATX is in
regulating cellular polarity and attachment to the apical mem-
brane. Changes in proliferation and neurogenesis may stem from
altered VZ polarity. Normal adhesion to the apical membrane
results in proper cell cycle of progenitors, and the prolifera-
tive or neurogenic divisions ensue. Following reduction in ATX
levels, adhesion to the apical membrane is diminished. Several
lines of evidence established a link between polarity at the VZ,
cell cycle progression and cell fate decisions. Adherens junc-
tions act as a self-supporting stem cell niche that maintains

cells in a proliferative state (Song et al., 2002; Lien et al., 2006;
Stocker and Chenn, 2009; Zhang et al., 2010). Disrupting the
maintenance of adherens junctions impairs the Wnt pathway,
shortens cell cycle and induces early neuronal differentiation.
Both the apically localized Numb and β-catenin are negatively
correlated with neuronal differentiation; that is, their consti-
tutive expression results in decreased differentiation, and their
reduction leads to decreased cell proliferation (Reiner et al.,
2012). Likewise, the PAR complex is positively associated with
maintaining a proliferative fate (Cappello et al., 2006; Costa
et al., 2008; Bultje et al., 2009). Interkinetic nuclear move-
ment is regulated by the VZ polarity, tightly associated with
cell cycle control, and could couple polarity and cell fate deci-
sions (Reiner et al., 2012). We propose that the role of ATX in
neuronal progenitors relies on this coordination between polar-
ity at the VZ and cell cycle progress. How is ATX involved
in establishment of cellular polarization? Generation of polar-
ity usually requires a signal, which is mediated by a gradient.
However, we added external ATX to Atx shRNA transfected
brains, where the external ATX was distributed equally in the
medium. Therefore, ATX might function as a permissive regu-
lator of polarity. Alternatively, ATX might bind to proteins that
have polarized distribution and thereby regulate polarity in an
instructive manner. Recent studies uncovered that ATX localizes
to specific areas in the cell, through binding to either purinergic
receptors (Dennis et al., 2011; Zhao et al., 2011) or cell surface
integrins (Fulkerson et al., 2011; Hausmann et al., 2011). The
interaction with integrins is mediated through the N-terminal
somatomedin B-like domain of ATX, while interaction with the
P2Y(12) ADP receptor is mediated through the C-terminal part
of ATX. These interactions would allow ATX to function in a
polarized fashion. In conclusion, this study presents ATX as a
crucial regulator of neuronal progenitors. We suggest that ATX
regulates polarity, mainly through a catalytic-independent mech-
anism, and thus influences cell adhesion, positioning and dif-
ferentiation. ATX was scarcely studied in cortical development,
and we hope that future studies will shed light on the under-
lying mechanisms through which ATX regulates development
of the cortex.
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Proteoglycans and neuronal
migration in the cerebral cortex
during development and disease
Nobuaki Maeda*

Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical

Science, Setagaya, Japan

Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major

constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans

bind with many proteins including growth factors, chemokines, axon guidance

molecules, and cell adhesion molecules through both the glycosaminoglycan and

the core protein portions. The functions of proteoglycans are flexibly regulated

due to the structural variability of glycosaminoglycans, which are generated by

multiple glycosaminoglycan synthesis and modifying enzymes. Neuronal cell surface

proteoglycans such as PTPζ , neuroglycan C and syndecan-3 function as direct receptors

for heparin-binding growth factors that induce neuronal migration. The lectican family,

secreted chondroitin sulfate proteoglycans, forms large aggregates with hyaluronic

acid and tenascins, in which many signaling molecules and enzymes including matrix

proteases are preserved. In the developing cerebrum, secreted chondroitin sulfate

proteoglycans such as neurocan, versican and phosphacan are richly expressed in

the areas that are strategically important for neuronal migration such as the striatum,

marginal zone, subplate and subventricular zone in the neocortex. These proteoglycans

may anchor various attractive and/or repulsive cues, regulating the migration routes of

inhibitory neurons. Recent studies demonstrated that the genes encoding proteoglycan

core proteins and glycosaminoglycan synthesis and modifying enzymes are associated

with various psychiatric and intellectual disorders, which may be related to the defects

of neuronal migration.

Keywords: chondroitin sulfate, extracellular matrix, heparan sulfate, neuronal migration, proteoglycan

Abbreviations: BDNF, brain-derived neurotrophic factor; C4-ST, chondroitin 4-O-sulfotransferase; C6-ST, chondroitin 6-

O-sulfotransferase; CHPF, chondroitin polymerization factor; CHSY, chondroitin synthase; CSGalNAcT, chondroitin sul-

fate N-acetylgalactosaminyltransferase; E, embryonic day; Gal, galactose; GalNAc, N-acetylgalactosamine; GalNAc 4S-6ST,

N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase; GlcA, glucuronic acid; GDNF, glial cell line-derived neurotrophic fac-

tor; GlcN, glucosamine; GlcNAc, N-acetylglucosamine: GPI, glycosylphosphatidylinositol; ECM, extracellular matrix; HAS,

hyaluronan synthase; Hh, hedgehog; HS, heparan sulfate; H2ST, heparan sulfate 2-O-sulfotransferase; H3ST, heparan sulfate

3-O-sulfotransferase; H6ST, heparan sulfate 6-O-sulfotransferase; HS C5-EP, heparan sulfate C5-epimerase; IdoA, iduronic

acid; LAR, leukocyte common antigen-related phosphatase; NDST, N-deacetylase/N-sulfotransferase; NGF, nerve growth

factor; NT, neurotrophin; ptc, patched; PHF, plant homeodomain finger; PHD, plant homeodomain; Sema, semaphorin; UST,

uronyl 2-O-sulfotransferase; Xyl, xylose.
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Introduction

The extracellular matrix (ECM) is a complex network of
molecules composed of proteoglycans, hyaluronic acid,
fibrous proteins, and various glycoproteins, which fills up the
extracellular space within all tissues and organs (Mouw et al.,
2014). The ECM also retains water and ions, and constitutes
the direct environment surrounding cells, in which multiple
types of molecules are cross-linked to each other through
protein-protein and protein-carbohydrate interactions, forming
the three-dimensional meshworks (Figure 1). The ECM serves
not only as a physical scaffold for tissue construction, but also
as a dynamic field of signaling that regulates the behavior of
cells. In the meshwork of ECM, various signal molecules such as
growth factors and chemokines are stored, and the concentration
gradients of morphogens such as BMPs and Wnts are also
formed. The ECM also serves as an adhesive substrate for the
cells, regulating their motility and shape. The structures of ECM
are not fixed and static, but are dynamically reorganized by the
biosynthesis of its components and their degradation by various
proteases and glycanases. Thus, the dynamics of the ECM is
quite important in the regulation of cell growth, differentiation,
migration, adhesion and tissue morphogenesis.

Unlike other organs, the brain does not normally con-
tain fibrillar collagens except for the basal lamina surround-
ing the blood vessels and surface of the brain. Instead, major
components of brain ECM are proteoglycans. Until recently,
many neuroscientists had believed that the brain contains almost

FIGURE 1 | Schematic structure of extracellular matrix (ECM) in

the brain. The ECM of the brain is mainly composed of chondroitin

sulfate (CS) and heparan sulfate (HS) proteoglycans, hyaluronic acid

(HA), and glycoproteins such as tenascins. Lectican family CS

proteoglycans form large aggregates with HA and tenascins, which

store various proteins such as chemokines, growth factors and axon

guidance molecules. The ECM proteoglycans may bind with a CS/HS

receptor on the cell surface such as RPTPσ . Cell surface

proteoglycans may function as receptors or co-receptors for growth

factors.

no ECM, in spite of the early biochemical and histochemical
pioneering work by Margolis et al. (1975, 1976) and Nakanishi
(1983), showing the presence of a large amount of glycosamino-
glycans and proteoglycans in the developing brain. In the early
1990s, the brain-specific chondroitin sulfate proteoglycans were
biochemically characterized (Rauch et al., 1991; Maeda et al.,
1992; Oohira et al., 1994), and then their cDNAs were cloned
(Rauch et al., 1992; Maeda et al., 1994; Maurel et al., 1994;
Watanabe et al., 1995). Then, many investigations revealed the
importance of proteoglycans and ECM in the development and
disorders of the brain (Franco and Muller, 2011; Maeda et al.,
2011; Berretta, 2012; Soleman et al., 2013). However, even now, it
seems that the significance of ECM molecules is underestimated
in the field of neuroscience, except for reelin. It is desirable that
more and more neuroscientists pay attention to the brain ECM
molecules.

In this review, I will introduce the structure, binding partners
and assembly of proteoglycans and glycosaminoglycans, and dis-
cuss their roles in the neuronal migration in the cerebral cortex
and their emerging significance in human intellectual disability
and psychiatric disorders.

Assembly of Extracellular Matrix
Components

In the developing cerebral cortex, very high levels of ECM
molecules are expressed, the major components of which are
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chondroitin sulfate proteoglycans. Neurocan, versican, aggrecan,
and brevican are lectican family chondroitin sulfate proteogly-
cans expressed in the brain. Lecticans are secreted proteogly-
cans that bind with hyaluronic acid through the N-terminal
G1 domain that contains an immunoglobulin-like loop and
two link modules (Figure 2). These proteoglycans also have a
C-type lectin domain at the C-terminal, and chondroitin sul-
fate chains are covalently attached to the region between the
N- and C-terminal domains. The C-type lectin domain of lecti-
cans binds with tenascin family proteins by protein-protein inter-
action independent of the carbohydrate moiety (Aspberg et al.,
1997). Tenascin family proteins are oligomeric glycoproteins
with EGF-like repeats and fibronectin-III domains. The brain
contains hexameric tenascin-C and trimeric tenascin-R, which
promote the assembly of lecticans by protein-protein interac-
tion. On the other hand, hyaluronic acid is a very long polysac-
charide consisting of repeating disaccharides of glucuronic acid
(GlcA) and N-acetylglucosamine (GlcNAc), which are polymer-
ized at the plasma membrane by hyaluronan synthases (HASs).
Hyaluronic acids are anchored in the plasma membrane through
HASs, or bound to hyaluronan receptors on the cell surface, such
as CD44 and RHAMM (Figure 1). The tenascin-lectican com-
plexes bind to the hyaluronic acids through the G1 domains of
lecticans, which is stabilized by link proteins (Haplns), forming
huge aggregates surrounding cells (Figure 1). It is considered that
these huge aggregates serve as a basic framework to construct the
ECM in the brain.

Besides secreted chondroitin sulfate proteoglycans, there are
also cell surface proteoglycans. PTPζ /RPTPβ and neuroglycan
C are major cell surface chondroitin sulfate proteoglycans with
a membrane-spanning region. PTPζ is a receptor-type pro-
tein tyrosine phosphatase that is synthesized as a chondroitin
sulfate proteoglycan (Krueger and Saito, 1992; Maeda et al.,
1994). PTPζ has an N-terminal carbonic anhydrase-like domain,
a fibronectin-III domain, a membrane-spanning region and
two C-terminal tyrosine phosphatase domains. The extracellu-
lar domain of this receptor generated by alternative splicing
is secreted as a major soluble chondroitin sulfate proteogly-
can in the developing brain, phosphacan (Maurel et al., 1994).
Phosphacan binds with multiple proteins including pleiotrophin,
midkine, tenascins, contactin, and NCAM (Peles et al., 1998).
Neuroglycan C is a transmembrane chondroitin sulfate proteo-
glycan with an EGF module at the juxtamembrane region of
the extracellular domain (Watanabe et al., 1995). Chondroitin
sulfate-modification of neuroglycan C is developmentally and
regionally regulated, and the expression of the non-proteoglycan
form increases with development (Aono et al., 2004).

Another major group of proteoglycans in the developing ner-
vous system is heparan sulfate proteoglycans: syndecans and
glypicans (Figure 2). The syndecan family is composed of four
members, syndecan-1 to -4, each of which has an extracellu-
lar domain, a transmembrane region and a conserved short
C-terminal cytoplasmic domain (Lambaerts et al., 2009). The
N-terminal portion of the extracellular domain of syndecans is

FIGURE 2 | Schematic structures of proteoglycans. Phosphacan and

lectican family chondroitin sulfate (CS) proteoglycans are major

constituents of brain extracellular matrix. PTPζ is a CS

proteoglycan-type protein tyrosine phosphatase, which is a splice variant

of phosphacan. Neuroglycan C is a transmembrane CS proteoglycan

that is classified as Neuregulin-6. Glypicans are a family of

glycosyl-phosphatidylinositol (GPI)-anchored heparan sulfate (HS)

proteoglycans. Syndecans are a family of transmembrane HS

proteoglycans, some members of which may also be modified by CS

chains. Testicans are a family of secreted CS/HS proteoglycans.
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modified with heparan sulfate chains. The extracellular domains
of syndecan-1 and -4 may be additionally decorated with chon-
droitin sulfate chains near the transmembrane region (Deepa
et al., 2004). It has been considered that most of the extracel-
lular ligand molecules interact with syndecans through binding
with heparan sulfate portions. The transmembrane domains of
syndecans play important roles in their ligand-induced multi-
merization and the subsequent signaling (Choi et al., 2005). The
intracellular domains of syndecans are divided into two con-
served regions (C1 and C2) and a variable region (V), which
interact with various kinases and intracellular cytoplasmic com-
ponents such as src family kinases, CASK, and syntenin (Lam-
baerts et al., 2009).

Glypicans are glycosyl-phosphatidylinositol (GPI)-anchored
heparan sulfate proteoglycans, composed of six family mem-
bers (glypican-1 to -6) carrying 2–5 heparan sulfate chains
(Filmus et al., 2008; Filmus and Capurro, 2014). Glypican-5
was reported also to be modified with chondroitin sulfate in
rhabdomyosarcoma cells (Li et al., 2011). The core proteins of
glypicans consist of an α-helical domain containing 14 evolution-
arily conserved Cys residues, a heparan sulfate-attachment region
near the C-terminus, and the C-terminal GPI-anchor attachment
signal sequence. Biochemical and genetic studies demonstrated
that glypicans bind and regulate Hedgehogs, Wnt, bone mor-
phogenetic proteins and fibroblast growth factors (FGFs) (Fil-
mus and Capurro, 2014). In particular, genetic studies using
Drosophila demonstrated that glypicans (Dally and Dally-like)
play critical roles in the gradient formation of morphogens

during wing development (Wu et al., 2010; Raftery and Umulis,
2012). Although it has long been believed that the core proteins
of glypicans adopt a globular shape, a recent X-ray crystallo-
graphic study indicated that the structure of glypican-1 is actually
cylindrical (Svensson et al., 2012).

Testicans are extracellular chondroitin/heparan sulfate
proteoglycans, which have been poorly characterized to
date. They are composed of three family members (testican-
1 to -3), characterized by an N-terminal testican-specific
domain, a follistatin-like domain, an extracellular calcium-
binding domain, a thyroglobulin-like domain, and a domain
with glycosaminoglycan-attachment sites (Schnepp et al.,
2005).

Structure and Biosynthesis of Chondroitin
Sulfate and Heparan Sulfate

Chondroitin sulfate and heparan sulfate are unbranched sul-
fated polysaccharides covalently attached to the serine residues
in proteoglycan core proteins via common linkage tetrasac-
charides, GlcAβ1-3galactose(Gal)β1-3Galβ1-4xylose(Xyl)β1-O-
Ser (Figure 3). Chondroitin sulfate is composed of repeating
disaccharide units ofN-acetylgalactosamine (GalNAc) and GlcA,
(GlcAβ1-3GalNAcβ1-4)n, whereas heparan sulfate is composed
of repeating disaccharide units of GlcNAc and GlcA, (GlcAβ1-
4GlcNAcα1-4)n. Biosynthesis of these polysaccharides is initiated
by the addition of Xyl residues to the specific serine residues in

FIGURE 3 | Biosynthesis of glycosaminoglycans. (A) Chondroitin

sulfate (CS) and heparan sulfate (HS) chains are covalently attached to

the proteoglycan core proteins through a common linkage

tetrasaccharide. It is considered that the biosynthesis of a chondroitin

chain starts with the addition of an N-acetylgalactosamine (GalNAc)

residue to the linkage tetrasaccharide by CS

N-acetylgalactosaminyltransferases (CSGalNAcT1, 2). After that,

glucuronic acid (GlcA) and GalNAc residues are co-polymerized by

chondroitin sulfate synthases (CHSY-1, -2, -3) and chondroitin

polymerization factor (CHPF). When an N-acetylglucosamine (GlcNAc)

residue is added to the linkage tetrasaccharide instead of GalNAc by

EXTL 2 or 3, a heparan chain is polymerized by EXT family members.

(B) After polymerization, they are modified by sulfation and epimerization

reactions by many glycosaminoglycan modifying enzymes.
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core proteins by xylosyl transferases (XYLT1, 2) (Nadanaka and
Kitagawa, 2008; Mikami and Kitagawa, 2013; Mizumoto et al.,
2013a). This is followed by the addition of two Gal residues
and a GlcA residue by galactosyltransferase-I (B4GALT7),
galactosyltransferase-II (B3GALT6) and glucuronyltransferase-
I (B3GAT3), respectively. After that, repeating disaccharide
units of chondroitin or heparan sulfate are polymerized
in the Golgi apparatus. Chondroitin sulfates are polymer-
ized by chondroitin sulfate synthases (CHSY-1 to -3), chon-
droitin polymerization factor (CHPF) and chondroitin sulfate
N-acetylgalactosaminyltransferases (CSGalNAcT-1, -2), whereas
heparan sulfates are polymerized by EXT family members (EXT1,
EXT2, EXTL1, EXTL2, EXTL3). Since these glycosaminoglycans
use a common linkage tetrasaccharide, the chain initiation step
determines whether a chondroitin or a heparan chain elongates.
If the first GalNAc residue is added to the linkage tetrasaccharide
possibly by CSGalNAcT-1 or -2, a chondroitin chain is elongated
by the CHSY/CHPF complex. If a GlcNAc residue is alterna-
tively added to the linkage tetrasaccharide possibly by EXTL 2
or 3, a heparan chain is polymerized by the EXT1/EXT2 com-
plex. Although the genes encoding these biosynthetic enzymes
have been identified, almost nothing is known about the mech-
anism for the selection of glycosaminoglycan types at the chain
initiation step.

After the polymerization of repeating disaccharides, they are
heavily modified by the C5 epimerization of GlcA residues
and sulfation reactions (Nadanaka and Kitagawa, 2008; Mikami
and Kitagawa, 2013; Mizumoto et al., 2013a) (Figure 3). The
majority of the GalNAc residues in chondroitin sulfate are
4-O-sulfated by chondroitin 4-O-sulfotransferases (C4ST-1 to -
3) or 6-O-sulfated by 6-O-sulfotransferases (C6ST-1 and -2).
Although many of the disaccharide units in chondroitin sul-
fate are mono-sulfated A units [GlcAβ1-3GalNAc(4-SO4)] or C
units [GlcAβ1-3GalNAc(6-SO4)], they may be further sulfated by
GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc 4S-6ST) or chon-
droitin uronyl 2-O-sulfotransferase (UST), generating di-sulfated
disaccharides, E units [GlcAβ1-3GalNAc(4, 6-bis-SO4)] or D
units [GlcA(2-SO4)β1-3GalNAc(6-SO4)], respectively. Further-
more, some of the GlcA residues are C5-epimerized to iduronic
acid (IdoA) by dermatan sulfate epimerases 1 and 2 (encoded
by DSE and DSEL, respectively). The resulting IdoAα1-3GalNAc
units are sulfated by dermatan 4-O-sulfotransferase (D4ST), gen-
erating an iA unit [IdoAα1-3GalNAc(4-SO4)], which may be
further sulfated by UST, generating an iB unit [IdoA(2-SO4)α1-
3GalNAc(4-SO4)]. Chondroitin sulfate with a high content of
IdoA is often called dermatan sulfate.

The modification of heparan sulfate begins with the
N-sulfation reaction by N-deacetylase/N-sulfotransferase
(NDST-1 to -4), which removes acetyl groups from some of
the GlcNAc residues in the heparan sulfate chain and replaces
them with sulfate groups (Figure 3). Then, some of the GlcA
residues are C5 epimerized to IdoA by heparan sulfate glu-
curonyl C5-epimerase (HS C5-EP), followed by O-sulfation
reactions. The O-sulfation includes 2-O-sulfation of GlcA/IdoA
residues by heparan sulfate 2-O-sulfotransferase (H2ST), 3-
O-sulfation of glucosamine (GlcN) units by heparan sulfate
3-O-sulfotransferases (H3ST-1, -2, -3A, -3B, -4, -5, and -6),

and 6-O-sulfation of GlcN units by heparan sulfate 6-O-
sulfotransferases (H6ST-1 to -3). Because N-sulfation of GlcN
units by NDSTs generates substrates for the subsequent modifi-
cation enzymes, highly N-sulfated regions in heparan sulfate are
also highly modified by C5-EP and various O-sulfotransferases.
Thus, heparan sulfate chains display domain structures: highly
modified NS-domains, poorly modified NA-domains charac-
terized by stretches of N-acetylated disaccharide units, and the
interspacing NA/NS-domains composed of both N-acetylated
and N-sulfated disaccharide units.

Binding Partners of Glycosaminoglycans

Recent studies using microarrays and surface plasmon resonance
revealed that chondroitin sulfate and heparan sulfate chains
bind with many proteins that play important roles in brain
development, especially neuronal migration (Deepa et al., 2002;
Kawashima et al., 2002; Maeda et al., 2006; Shipp and Hsieh-
Wilson, 2007; Conrad et al., 2010; Rogers et al., 2011; Mizumoto
et al., 2013b). Both heparan sulfate and chondroitin sulfate chains
bind with various axon guidancemolecules in a sulfation pattern-
dependent manner (Shipp and Hsieh-Wilson, 2007). While Slit2
shows a preference for heparan sulfate sequences that contain
6-O-sulfation and N-sulfation, netrin 1 requires sulfation at the
2-O-, 6-O-, andN-positions. Semaphorin5B (Sema5B), ephrinA1
and ephrinA5 prefer 2-O- andN-sulfation. On the other hand, all
of these axon guidance molecules bind strongly with E unit-rich
highly sulfated chondroitin sulfate E from squid cartilage (CS-E)
(Shipp and Hsieh-Wilson, 2007). Sema5B also binds moderately
with D unit-rich shark cartilage chondroitin sulfate D (CS-D),
and weakly with A unit-rich whale cartilage chondroitin sulfate A
(CS-A), pig skin dermatan sulfate (CS-B) and C unit-rich shark
cartilage chondroitin sulfate C (CS-C). EphrinA1 binds moder-
ately with CS-C, and weakly with CS-B and CS-D. Slit2, netrin1
and ephrinA5 bind only weakly with CS-A, -C, -D, and -B. In
addition, it has been reported that Sema3A binds strongly with
CS-E (Dick et al., 2013). EphrinA3 also binds with heparan sul-
fate and chondroitin sulfate, although the structural requirement
is unknown (Irie et al., 2008; Conrad et al., 2010).

Neurotrophin family growth factors [nerve growth fac-
tor (NGF), brain-derived neurotrophic factor (BDNF),
neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4)] bind
strongly with CS-E (Rogers et al., 2011). BDNF, NT-3, and NT-4,
but not NGF bind moderately with CS-A, whereas CS-C shows
almost no binding to these proteins. PC12 cells express E unit-
rich chondroitin sulfate, and its removal upon chondroitinase
ABC treatment significantly attenuated TrkA activation by NGF
or NT-4, suggesting that endogenous chondroitin sulfate plays
important roles in neurotrophin signaling (Rogers et al., 2011).
Glial cell line-derived neurotrophic factor (GDNF) associates
with heparan sulfate in a 2-O-sulfation-dependent manner,
promoting the binding of this protein to its receptor component
GFRα1 (Rickard et al., 2003).

Chemokines are a family of small proteins that induce chemo-
taxis of various cells including cortical interneurons (Marin,
2013). Glycosaminoglycans interact with chemokines such as
CCL2 (MCP-1), CCL5 (RANTES), and CXCL12 (SDF-1) in a

Frontiers in Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 98 | 117

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Maeda Proteoglycans in brain

chain length- and sulfation pattern-dependent manner (Kuschert
et al., 1999; Hirose et al., 2001). Among the chemokines, CXCL12
plays important roles in the tangential migration of cortical
interneurons (see below). CXCL12 binds strongly with CS-E and
the highly sulfated S domains in heparan sulfate, and also inter-
acts weakly with CS-A, -B, -C, and -D (Murphy et al., 2004;
Mizumoto et al., 2013b). In addition, it was revealed that versi-
can interacts with CXCL12 through chondroitin sulfate chains
(Hirose et al., 2001). It has been considered that these interac-
tions in the ECM and cell surface contribute to the formation of
immobilized or haptotactic gradients of chemokines (Kuschert
et al., 1999).

Pleiotrophin and midkine are a family of multifunctional
heparin-binding growth factors that bind with both heparan sul-
fate and chondroitin sulfate (Perez-Pinera et al., 2007; Mura-
matsu, 2014). These growth factors bind strongly with highly
sulfated heparan sulfate and CS-E, moderately to CS-B and CS-
D, and very weakly to CS-A (Maeda et al., 2003; Zou et al., 2003;
Mizumoto et al., 2013b).

The structures of glycosaminoglycans are determined at
least partly by the combinatorial expression of their modifying
enzymes. During development of the brain, the sulfotrans-
ferases involved in the chondroitin/heparan sulfate synthesis
show dynamic spatiotemporal expression patterns (Yabe et al.,
2005; Mitsunaga et al., 2006; Ishii and Maeda, 2008b). This
suggests that the expression of specific functional domains
in these glycosaminoglycan chains is strictly regulated in
the developing brain. Conway et al. (2011) showed that the
expressions of HS2ST and HS6ST-1 are distinctively regu-
lated at the optic chiasm, and the mutant mice lacking these
genes exhibit different axon guidance defects. Interestingly,
HS2ST−/− and HS6ST-1−/− phenotypes closely match those
of Slit1−/− and Slit2−/−, respectively, suggesting that slit fam-
ily proteins are regulated by specific sulfation of heparan
sulfate.

Ligand Binding to Proteoglycans

As described above, glycosaminoglycans bind with various pro-
tein ligands in a structure-dependent manner. However, the lig-
and binding to proteoglycans is extremely complex becausemany
proteoglycans carry multiple glycosaminoglycan chains that may
function cooperatively. Furthermore, cooperation between the
core protein and attached glycosaminoglycan chains may also
occur. Accordingly, proteoglycans usually exhibit much higher
affinity and/or avidity for the ligand proteins than free gly-
cosaminoglycans (Herndon et al., 1999). Thus, degradation of
proteoglycan core proteins by extracellular proteases may termi-
nate such cooperativity and release the ligand molecules, leading
to the activation or inactivation of the signaling in a context-
dependent manner. Cooperation is observed not only between
glycosaminoglycans of the same type but also between hep-
aran sulfate and chondroitin sulfate chains. Syndecan-1 and
syndecan-4 carry both heparan sulfate and chondroitin sulfate
chains, which cooperatively regulate the binding dynamics of
pleiotrophin, midkine and FGF-2 to these proteoglycans (Deepa
et al., 2004).

PTPζ /phosphacan binds to pleiotrophin and midkine, in
which both chondroitin sulfate and core protein portions con-
tribute to the interaction (Maeda et al., 1996, 1999, 2003). While
intact phosphacan preparation shows low (Kd = 3 nM) and high
affinity binding (Kd = 0.25 nM) for pleiotrophin, this proteogly-
can exhibits only single very low affinity binding after chondroiti-
nase ABC-treatment (Kd = 13 nM) (Maeda et al., 1996). This
suggests that the binding affinity of phosphacan for pleiotrophin
is regulated by the structural variation of chondroitin sulfate. In
fact, the structure of chondroitin sulfate on phosphacan changes
during rat brain development, and a slight increase in the content
of oversulfated D unit drastically strengthens the binding of this
proteoglycan to pleiotrophin (Maeda et al., 2003).

Another prominent example of the cooperation between the
core protein and glycosaminoglycan chain in the signaling has
been reported by the group of Filmus (Li et al., 2011; Fil-
mus and Capurro, 2014). They revealed that glypican-3 and
glypican-5 oppositely regulate the Hedgehog (Hh) signaling in
rhabdomyosarcoma cell proliferation. Glypican-3 binds to Hh
through its core protein, reducing the amount of Hh available
to its receptor Patched 1 (Ptc1), with the consequent decrease in
signaling. On the other hand, glypican-5 interacts with both Hh
and Ptc1 through heparan sulfate and chondroitin sulfate chains,
facilitating Hh-Ptc1 binding with the consequent increased sig-
naling. The heparan sulfate chains of glypican-5 show a higher
degree of sulfation than those of glypican-3, which may explain
why the glycosaminoglycan chains of glypican-5 but not those of
glypican-3 interact with Hh/Ptc1.

Sema5A is an axon guidance molecule that can exert both
inhibitory and permissive effects on growing axons. Kantor et al.
(2004) revealed that Sema5A interacts with the glycosamino-
glycan portion of both chondroitin sulfate and heparan sul-
fate proteoglycans. The axonal heparan sulfate proteoglycans are
required for the Sema5A-mediated attraction of growing axons
of the fasciculus retroflexus. On the other hand, the extracellular
chondroitin sulfate proteoglycans precisely localize Sema5A in a
specific area, where Sema5A acts as a repulsive guidance cue for
these growing axons. Thus, the bifunctional roles of Sema5A are
regulated by chondroitin sulfate and heparan sulfate proteogly-
cans, demonstrating the cooperation among these two types of
proteoglycans during the process of axon pathfinding.

Recently, Coles et al. (2011) reported that receptor protein
tyrosine phosphatase σ (RPTPσ ) is a receptor for both chon-
droitin sulfate and heparan sulfate proteoglycans. Heparan sul-
fate proteoglycans induce oligomerization of RPTPσ on the
growth cone, leading to inactivation of the tyrosine phosphatase
activity and growth promotion. On the other hand, extracellu-
lar chondroitin sulfate proteoglycans inhibit oligomerization of
this receptor with consequent suppression of axon growth. It is
considered that multiple RPTPσ molecules bind to the islands
of high/intermediate sulfation on heparan sulfate chains (NS to
NA/NS domains), which stabilize the receptor oligomers. Con-
versely, the receptor binding sites are considered to be sparsely
distributed on chondroitin sulfate chains, and therefore recep-
tor oligomerization cannot occur. If so, the signaling of RPTPσ

should be highly dependent on the glycosaminoglycan structures.
Proteoglycans bearing low sulfated heparan sulfate chains may
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inhibit receptor oligomerization, and conversely proteoglycans
bearing highly sulfated chondroitin sulfate may induce recep-
tor oligomerization. It is also reported that another receptor
tyrosine phosphatase, leukocyte common antigen-related phos-
phatase (LAR) is a functional receptor for chondroitin sulfate
proteoglycan (Fisher et al., 2011).

Although the structure of glycosaminoglycans is basically
determined by the biosynthetic processes, the sulfation pattern
of heparan sulfate may be modified extracellularly by the endo-
sulfatases, Sulf1 and Sulf2 (Nagamine et al., 2012). These sulfa-
tases catalyze the desulfation of the 6-O-sulfate group from GlcN
residues in the trisulfated disaccharides in heparan sulfate. Thus,
highly sulfated NS domains in heparan sulfate are preferentially
desulfated by these enzymes, leading to the change in the bind-
ing affinity of various ligands to heparan sulfate proteoglycans.
This results in the activation or suppression of specific signaling
molecules such as Wnt, GDNF, and FGF during various develop-
mental processes (Ai et al., 2003, 2007; Wang et al., 2004). Thus,
functions of proteoglycans are intricately regulated at multiple
levels.

Roles of Proteoglycans in Neuronal
Migration

In the developing neocortex, postmitotic pyramidal neurons gen-
erated in the ventricular zone show a multipolar shape, and
migrate in random directions in the subventricular and interme-
diate zones (Figure 4). After that, they transform into the bipolar
shape and attach to the radial glial fibers, upon which they rapidly

migrate toward the marginal zone. This multipolar-to-bipolar
transition occurs when the neurons reach the subplate, suggest-
ing that this layer contains critical factor(s) regulating neuronal
behavior (Ohtaka-Maruyama et al., 2013). The radial migra-
tion of pyramidal neurons stops at the interface between the
cortical plate and the marginal zone, forming the “inside-out”
arrangement of neurons. On the other hand, inhibitory neurons
tangentially migrate in the neocortex through the marginal zone,
subplate, and lower intermediate/subventricular zones. These
migration patterns of both excitatory and inhibitory neurons sug-
gest that specific cortical layers play critical roles in the regula-
tion of neuronal migration. Nakanishi (1983) demonstrated that
glycosaminoglycans stained by colloidal iron distributed princi-
pally in the marginal zone and subplate in the developing mouse
cerebral cortex. In the cortices of reeler mutants, where radial
migration of pyramidal neurons is severely disturbed, most gly-
cosaminoglycans are localized in the outer layer of the cortex.
From such an expression pattern, it was suggested that gly-
cosaminoglycans are involved in the neuronal migration and/or
laminar pattern formation of the neocortex. Then, the brain-
specific chondroitin sulfate proteoglycans were identified, and it
was revealed that neurocan and phosphacan are richly expressed
in the marginal zone and subplate (Oohira et al., 1994; Maeda
et al., 1995; Meyer-Puttlitz et al., 1996) (Figure 5). Versican was
also localized in these layers (Popp et al., 2003), raising the pos-
sibility that chondroitin sulfate proteoglycans regulate neuronal
migration in the cortex.

As described above, PTPζ /phosphacan binds to pleiotrophin
with high affinity (Maeda et al., 1996, 1999). Pleiotrophin induces
oligomerization of PTPζ , which leads to the inactivation of its

FIGURE 4 | Migration routes of excitatory and inhibitory neurons in

the cerebrum. (A) The excitatory neurons are generated in the

ventricular zone of the neocortex (Ctx) and migrate radially toward the

brain surface (red arrow). The cortical inhibitory neurons are generated

mainly in the medial ganglionic eminence (MGE), and migrate tangentially

toward the neocortex (blue arrows). The migrating interneurons avoid

the striatum (Str) that expresses chondroitin sulfate proteoglycans

(CSPG) and semaphorin 3A (Sema 3A). (B) In the neocortex, the

excitatory neurons (red cells) born in the ventricular zone (VZ) show

multipolar morphology and migrate in random directions (Mp) in the

subventricular (SVZ) and intermediate (IZ) zones. When the multipolar

neurons reach the subplate (SP), they transform into a bipolar shape

and migrate radially (Rm) in the cortical plate (CP) toward the marginal

zone (MZ). On the other hand, the tangential migration (Tm) of

interneurons (blue cells) occurs in a layer-specific manner, in which

interneurons prefer MZ, SP, lower IZ, and SVZ.
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FIGURE 5 | Immunohistochemical localization of neurocan and

phosphacan. The frontal sections of embryonic day 16 rat brains were

immunohistochemically stained with anti-neurocan (A) and anti-phosphacan

(B) monoclonal antibodies. They are selectively expressed in the marginal zone

(arrowheads) and subplate (arrows) in the neocortex, and the striatum (Str).

The medial (MGE) and lateral (LGE) ganglionic eminences are negative.

tyrosine phosphatase activity, initiating downstream signaling
(Meng et al., 2000; Fukada et al., 2006). Pleiotrophin is deposited
along radial glial fibers, and PTPζ is expressed on the migrat-
ing pyramidal neurons, raising the possibility that pleiotrophin
on radial glial fibers regulates the radial migration of excitatory
neurons (Maeda and Noda, 1998). In fact, in vitro cell migration
assay demonstrated that pleiotrophin-PTPζ signaling induces
migration of cortical neurons (Maeda and Noda, 1998). Subse-
quently, this signaling system has been demonstrated to promote
the migration of various types of normal and tumor cell in a
chondroitin sulfate-dependent manner (Polykratis et al., 2005;
Feng et al., 2010; Koutsioumpa et al., 2013). Phosphacan and
free chondroitin sulfate suppress the pleiotrophin-induced neu-
ronal migration by competitive inhibition of the binding between
pleiotrophin and cell surface PTPζ (Maeda and Noda, 1998;
Maeda et al., 1999). Soluble chondroitin sulfate proteoglycans
such as phosphacan, neurocan and versican expressed in the sub-
plate and marginal zone may regulate the migratory behavior of
neurons by inhibiting pleiotrophin- PTPζ signaling.

Recently, it was found that neuroglycan-C is involved in
the radial migration of pyramidal neurons from a study of the
plant homeodomain (PHD) finger 6 (PHF6) gene (Zhang et al.,
2013). PHF6 is an X-linked gene encoding the protein that has
four nuclear localization signals and two PHD-type zinc finger
domains, which functions as a transcription repressor. Mutations
of PHF6 cause Börjeson-Forssman-Lehmann syndrome, charac-
terized by intellectual disability associated with seizures, short
stature, hypogonadism, hypometabolism, marked gynecomastia,
truncal obesity, tapered fingers, narrow palpebral fissure, and
large ears (Liu et al., 2014). Using in utero electroporation, Zhang
et al. (2013) demonstrated that knockdown of PHF6 severely
impaired the radial migration of cortical neurons. They also iden-
tified neuroglycan-C as a downstream target of PHF6. Knock-
down of neuroglycan-C phenocopied the neuronal migration
phenotype of PHF6 knockdown, suggesting that PHF6 controls
the expression level of neuroglycan-C in the cortical neurons,
thus regulating the radial neuronal migration. Neuroglycan C

binds with pleiotrophin and midkine, in which its chondroitin
sulfate portion increases the affinity of the core protein for
these growth factors (Ichihara-Tanaka et al., 2006; Nakanishi
et al., 2010). There is a possibility that pleiotrophin/midkine-
neuroglycan C signaling is involved in the radial migration in the
cerebral cortex.

Pleiotrophin also binds with syndecan-3 in a heparan sulfate-
dependent manner (Raulo et al., 1994; Kinnunen et al., 1996).
Like PTPζ , syndecan-3 is required for pleiotrophin-induced neu-
ronalmigration, suggesting that PTPζ and syndecan-3 are redun-
dant pleiotrophin receptors on cortical neurons (Hienola et al.,
2006). Syndecan-3 knockout mice showed delayed radial neu-
ronal migration in the cortex, and this delay was partially caught
up at ∼10 days after birth (Hienola et al., 2006). The binding of
pleiotrophin to syndecan-3 triggers the phosphorylation of src,
which then activates cortactin and modulates the assembly of the
actin cytoskeleton. Syndecan-3 knockout mice also show migra-
tion defects of interneurons (Bespalov et al., 2011). At embry-
onic day 15, calbindin-positive precursors of interneurons were
accumulated in the ganglionic eminence of syndecan-3 knock-
out mice, and the density of GABA-immunoreactive cells was
lower in the dorsomedial cortex of adult knockout mice than
in that of control mice. It has been suggested that GDNF binds
to the heparan sulfate portion of syndecan-3 on interneurons,
promoting their migration. On the other hand, syndecan-1 is
expressed by the neural progenitor cells in the cerebral cortex
(Wang et al., 2012). Knockdown of syndecan-1 using in utero
electroporation resulted in the reduction of neural progenitor
cells and the promotion of neuronal differentiation in the cor-
tex (Wang et al., 2012). In these cortices, there were fewer cells
in the ventricular/subventricular zone, and more neurons moved
into the intermediate zone and cortical plate compared with the
cortices electroporated with control plasmid. These findings sug-
gest that syndecan-1 and syndecan-3 are differentially expressed
and play distinct roles in the developing cortex.

Roles of Glycosaminoglycans in Neuronal
Polarization

During development of the mouse cerebrum, the disaccharide
composition of chondroitin sulfate changes dynamically (Ishii
and Maeda, 2008a). At embryonic day 16 (E16), the major com-
ponents are A and C units, and then the content of A unit
increases and that of C unit decreases until maturation. A small
but significant amount of E unit is detected at E16 to 18, and
the content decreases thereafter. D unit is a minor compo-
nent, but is constantly detected during embryonic and postna-
tal development. Since D and E units contribute significantly to
the binding of various ligand molecules as described above, we
investigated the roles of these oversulfated structures in neuronal
migration (Ishii and Maeda, 2008a). Using in utero electropora-
tion, we introduced shRNA constructs for GalNAc 4S-6ST and
UST into neural progenitor cells in the ventricular zone of the
E14 cortex. At E18, the embryos were dissected out, and the
migration of the cortical neurons was examined. Knockdown of
both sulfotransferases severely disrupted the radial migration of
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cortical neurons. The neurons knocked down for these enzymes
were accumulated in the subventricular zone and in the inter-
mediate zone, and showed multipolar morphology. This sug-
gested that oversulfated chondroitin sulfate is required for the
multipolar-to-bipolar transition of pyramidal neurons.

Neuronal polarization of dissociated hippocampal pyramidal
cells is a well-established in vitro model of multipolar-to-bipolar
transition of newborn neurons (Dotti et al., 1988). Dissociated
hippocampal pyramidal neurons extend several morphologically
indistinguishable minor processes several hours after plating.
Then, one of these minor processes extends rapidly and becomes
an axon, and the other processes differentiate into dendrites.
In contrast, the hippocampal neurons cultured in the pres-
ence of chondroitinase ABC extended multiple axon-like pro-
cesses that were highly unstable and repeatedly extended and
retracted (Nishimura et al., 2010). The morphology and behav-
ior of the chondroitinase ABC-treated neurons were similar to
those of multipolar neurons in the developing cortex. Further-
more, knockdown of GalNAc 4S-6ST and UST also disturbed
the neuronal polarization of cultured hippocampal neurons, sug-
gesting the importance of oversulfated chondroitin sulfate in
this process. In the cultured hippocampal neurons, the oversul-
fated chondroitin sulfate was accumulated in the focal contacts
in the cell bodies and axons. Chondroitinase ABC-treatment sup-
pressed the tyrosine phosphorylation of FAK at the focal contacts,
suggesting that the proteoglycans bearing oversulfated chon-
droitin sulfate strengthen the adhesion of axons and cell bodies
to the substrate, leading to the stabilization of neuronal mor-
phology. In contrast to the chondroitinase ABC-treatment, the
axons extended steadily and showed almost no retraction when
hippocampal neurons were treated with heparitinases that specif-
ically degrade heparan sulfate. This suggests that heparan sulfate
proteoglycans destabilize the neuronal morphology, inducing
retraction of axons. In fact, it has been reported that heparan sul-
fate proteoglycans on growth cones are essential for the repulsive
activities of Slit2 and ephrin-A3 (Hu, 2001; Irie et al., 2008). Thus,
chondroitin sulfate and heparan sulfate proteoglycans expressed
on hippocampal neurons play opposing roles during neuronal
polarization.

Roles of Glycosaminoglycans in Tangential
Neuronal Migration

Cortical interneurons are born in themedial ganglionic eminence
(MGE), caudal ganglionic eminence and preoptic area in the ven-
tral telencephalon, and migrate tangentially toward the cortex
(Evsyukova et al., 2013; Marin, 2013) (Figure 4). The newborn
interneurons exiting the ganglionic eminence avoid entering the
striatum, and migrate into the neocortex through the marginal
zone, subplate, or lower intermediate/subventricular zones, sug-
gesting that complex interplay of repulsive and attractive cues
regulates the migration route of these neurons. Neuregulin-1,
NT-4, and GDNF were shown to be chemoattractive factors
for cortical interneurons, whereas Slit 1, Sema 3A, ephrin a3,
and ephrin a5 act as chemorepulsive factors (Zhu et al., 1999;
Polleux et al., 2002; Flames et al., 2004; Rudolph et al., 2010;

Bespalov et al., 2011; Marin, 2013; Steinecke et al., 2014). As
described above, biochemical studies revealed that these fac-
tors bind with chondroitin and/or heparan sulfate in a sulfa-
tion pattern-dependent manner. Thus, there is a possibility that
chondroitin/heparan sulfate proteoglycans regulate the spatial
distribution and/or activity of these factors. In fact, a recent
report demonstrated that chondroitin sulfate plays an impor-
tant role in the tangential migration of interneurons (Zim-
mer et al., 2010). Chondroitin sulfate proteoglycans are highly
expressed in the striatal mantle zone, which is avoided by
tangentially migrating interneurons (Figure 5). In vitro Boy-
den chamber cell migration and stripe assays demonstrated
that chondroitin sulfate proteoglycans exert repulsive effects on
cortical interneurons. These repulsive effects were suppressed
by chondroitinase ABC-treatment, suggesting that chondroitin
sulfate directly acts as a repellent for these neurons. Further-
more, in the chondroitinase ABC-treated brain slices, corti-
cal interneurons actively invaded the striatum, although they
avoided this region in the control slices. Sema3A is retained
in the striatum by binding to the chondroitin sulfate chains,
and repels migrating interneurons that express Sema3A receptor,
neuropilin 1. Thus, it was shown that chondroitin sulfate proteo-
glycans exert not only direct, but also indirect repulsive effects
on interneurons by anchoring repulsive factors in the striatum
(Figure 4).

After the interneurons enter the neocortex, they avoid
the cortical plate, where chondroitin sulfate proteoglycans are
poorly expressed (Figure 4). Instead, they migrate through the
chondroitin sulfate proteoglycan-rich marginal zone and sub-
plate. They also prefer the subventricular zone and the lower
intermediate zone, where the content of chondroitin sulfate pro-
teoglycans is relatively low. Thus, it seems that chondroitin sul-
fate proteoglycans do not act as a repellent for interneurons in
the neocortex. Tangential migration of interneurons in the neo-
cortex is induced by the chemokine CXCL12 (SDF1), which is
concentrated in the marginal zone, subplate, and lower interme-
diate/subventricular zones (Li et al., 2008; Lopez-Bendito et al.,
2008). It has been reported that CXCL12 binds with both chon-
droitin sulfate and heparan sulfate (Mbemba et al., 2000). The
marginal zone and subplate are highly enriched with phospha-
can, neurocan and versican (Oohira et al., 1994; Maeda et al.,
1995; Meyer-Puttlitz et al., 1996) (Figure 5), and thus CXCL12
may be anchored to the chondroitin sulfate chains of these pro-
teoglycans. On the other hand, syndecan-1 is highly expressed
in the ventricular/subventricular zone and in the lower interme-
diate zone (Wang et al., 2012), and may concentrate CXCL12
in these layers through heparan and/or chondroitin sulfate moi-
eties. Thus, it seems that proteoglycans can be either attractive
or repulsive substrates depending on the proteins bound to their
glycosaminoglycan chains.

As described above, syndecan-3 functions as a GDNF recep-
tor expressed on migrating interneuron (Bespalov et al., 2011). In
this case, only the matrix-bound form of GDNF acts as a ligand
of syndecan-3, and the soluble form is not active. It may be that
GDNF bound to the chondroitin/heparan sulfate proteoglycans
in the extracellular matrix activates the syndecan-3 signaling in
the interneurons.
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TABLE 1 | Human disorders caused by mutations of proteoglycan-related genes.

Genes (coded

proteins)

Clinical features References

XylT1

(Xylosyltransferase 1)

Autosomal recessive short stature syndrome; distinct facial features, alteration of fat distribution,

intellectual disability

Schreml et al., 2014

B3GALT6

(Galactosyltransferase II)

Pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder; skin fragility, delayed wound

healing, joint hyperlaxity, and contractures, muscle hypotonia, spondyloepimetaphyseal dysplasia,

intellectual disability

Malfait et al., 2013.

CHSY1

(Chondroitin synthase 1)

Temtamy preaxial brachydactyly syndrome; bilateral preaxial brachydactyly and hyperphalangism of

digits, facial dysmorphism, dental anomalies, sensorineural hearing loss, intellectual disability

Li et al., 2010.

NDST1

(NDST1)

Intellectual disability, muscular hypotonia, epilepsy, postnatal growth deficiency Reuter et al., 2014.

SPOCK1

(Testican-1)

Intellectual disability, partial agenesis of corpus callosum, prenatal-onset microcephaly, artrial septal

defects

Dhamija et al., 2014.

GPC3

(Glypican 3)

Simpson-Golabi-Behmel syndrome type I; pre/postnatal overgrowth, distinctive craniofacial

features, macrocephaly, organomegaly. Intellectual disability and epilepsy in some cases

Tenorio et al., 2014.

Proteoglycans, Psychiatric Disorders, and
Intellectual Disabilities

Since proteoglycans are major components of the connective
tissue, mutations in the proteoglycan-related genes cause var-
ious skeletal and connective tissue disorders (Huegel et al.,
2013; Mizumoto et al., 2013a). Recently, the involvement of
these genes in intellectual and psychiatric disorders has also
begun to be revealed (Tables 1, 2). A hypofunctional mutation
of XYLT1 encoding xylosyltransferase 1 causes an autoso-
mal recessive short stature syndrome associated with intellec-
tual disability (Schreml et al., 2014). Mutations of B3GALT6
encoding galactosyltransferase II cause a pleiotropic Ehlers-
Danlos-syndrome-like connective tissue disorder, which is also
associated with intellectual disability (Malfait et al., 2013). As

described above, these two enzymes are involved in the biosyn-
thesis of the linkage tetrasaccharides that are used commonly for

the chain initiation of chondroitin and heparan sulfates, imply-
ing that these glycosaminoglycans are essential for the devel-

opment of higher intellectual function of the brain. In fact, an
earlier study suggested that EXT1, encoding a heparan sulfate
co-polymerase, is associated with autism (Li et al., 2002). Loss-of-
function mutations in CHSY1 encoding chondroitin synthase 1

cause Temtamy preaxial brachydactyly syndrome, which is char-
acterized by delayed motor and mental development as well as
bilateral, symmetric preaxial brachydactyly and hyperphalangism

of digits, facial dysmorphism, and dental anomalies (Li et al.,
2010). Furthermore, it was found that missense mutations of
NDST1 cause intellectual disability, muscular hypotonia, and

epilepsy, suggesting that normal modification of heparan sulfate
is essential for the development of functional neuronal circuits
(Reuter et al., 2014).

In addition to glycosaminoglycan biosynthetic enzymes,
genes encoding proteoglycan core proteins are also asso-
ciated with intellectual disability. Missense mutation in
SPOCK1 encoding testican-1 causes intellectual disability
with dyspraxia, dysarthria, partial agenesis of corpus callo-
sum, and prenatal-onset microcephaly (Dhamija et al., 2014).

TABLE 2 | Proteoglycan-related genes proposed to be associated with

mental disorders.

Genes (coded

proteins)

Mental disorders References

DSEL

(DS epimerase 2)

Bipolar disorder, depressive

disorder

Goossens et al., 2003;

Shi et al., 2011

UST

(UST)

Job-related exhaustion Sulkava et al., 2013

NDST3

(NDST3)

Schizophrenia, bipolar disorder Lencz et al., 2013

EXT1

(EXT1)

Autism Li et al., 2002

NCAN

(Neurocan)

Schizophrenia, bipolar disorder Muhleisen et al., 2012;

Schultz et al., 2014

PTPRZ1

(Phosphacan/PTPζ )

Schizophrenia Buxbaum et al., 2008;

Takahashi et al., 2011

CSPG5

(Neuroglycan C)

Schizophrenia So et al., 2010

Simpson-Golabi-Behmel syndrome is an overgrowth/multiple
congenital anomalies syndrome caused by mutations in glypican
3. This disease shows high clinical variability, and in some cases,
intellectual disability is present (Tenorio et al., 2014). It will be
important to examine whether these intellectual disabilities are
caused by abnormal neuronal migration in the cortex.

It has recently been revealed that early developmental defects
of neural network formation including abnormal neuronal
migration and myelination can cause various psychiatric dis-
eases such as schizophrenia (Stolp et al., 2012). Muhleisen et al.
(2012) identified variation in the neurocan gene (rs1064395) as
a common risk factor for bipolar disorder and schizophrenia. In
schizophrenia patients, neurocan risk status was found to be asso-
ciated with higher folding in the right lateral occipital cortex and
left dorsolateral prefrontal cortex (Schultz et al., 2014). Neuro-
can may play important roles in the neuronal migration and/or
formation of axonal fibers in the cerebral cortex, and the deficits
in these processes may influence the folding of the occipital and
prefrontal lobes, leading to an increased risk of schizophrenia.
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It is well known that several members of the Neuregulin/ErbB
signaling system are susceptibility genes of schizophrenia, bipo-
lar disorders and depression (Mei and Nave, 2014). Neureg-
ulins constitute a family of EGF-like signaling molecules that
stimulate ErbB receptor family tyrosine kinases, the signal-
ing of which regulates neuronal migration, myelination, neu-
rotransmission and synaptic plasticity (Mei and Nave, 2014).
Recent studies suggested that proteoglycans regulate Neureg-
ulin/ErbB signaling, and thus are related to psychiatric disorders.
Buxbaum et al. (2008) reported that PTPRZ1, which encodes
both PTPζ and phosphacan, is associated with schizophrenia in
a Caucasian population, although no association was found in
the Japanese population (Ito et al., 2008). They demonstrated
that PTPζ binds with ErbB4 through the scaffolding protein,
MAGI, and inhibits the Neuregulin-1/ErbB4 signaling. Further-
more, Takahashi et al. (2011) found that the expression of PTPζ

is increased in the brains of schizophrenia patients, and also
demonstrated that transgenic mice overexpressing PTPζ showed
reduced Neuregulin-1 signaling, and abnormal glutamatergic,
GABAergic and dopaminergic activity as well as delayed oligo-
dendrocyte development. In particular, it is remarkable that the
number of parvalbumin-positive interneurons is decreased in the
cortex of this transgenic mouse. Flames et al. (2004) demon-
strated that loss of Neuregulin-1/ErbB4 signaling causes an alter-
ation in the tangential migration of cortical interneurons and
reduction in the number of GABAergic interneurons in the post-
natal cortex. Therefore, PTPζ /phosphacan may negatively reg-
ulate Neuregulin-1/ErbB4 signaling, and inhibit the tangential
migration of cortical interneurons.

Neuroglycan C was identified as a potential susceptibility gene
for schizophrenia in a Southern Chinese population (So et al.,
2010). As described above, neuroglycan C is involved in the
radial neuronal migration in the neocortex (Zhang et al., 2013),
and thus defects in this process may be involved in the etiology
of schizophrenia. In addition, neuroglycan C has an EGF-like
domain, acts as a direct ligand for ErbB3, and thus is classified
as Neuregulin-6 (Kinugasa et al., 2004). It has been reported that
ErbB3 is associated with schizophrenia in a Caucasian popula-
tion (Li et al., 2009), and thus there is a possibility that neu-
roglycan C-ErbB3 signaling is involved in the pathophysiology
of schizophrenia. ErbB3 plays important roles in oligodendro-
cyte differentiation and myelination (Mei and Nave, 2014), and
neuroglycan C may regulate these processes. In this context, it
is interesting to note that midkine-neuroglycan C signaling pro-
motes process elongation of the oligodendrocyte precursor-like
cell line, CG-4 (Ichihara-Tanaka et al., 2006).

In addition to proteoglycan core proteins, glycosaminoglycan-
modifying enzymes have also been associated with psychiatric
disorders. A genome-wide association study revealed thatNDST3
is associated with schizophrenia and bipolar disorder, suggesting
that the sulfation pattern of heparan sulfate plays an important
role in the pathophysiology of these disorders (Lencz et al., 2013).

Neuregulin-1 binds with heparan sulfate in a sulfation pattern-
dependent manner, in which the N-sulfate group is the most
important (Pankonin et al., 2005). Thus, the N-sulfated region
in heparan sulfate may be important for normal Neuregulin-
1/ErbB4 signaling.

The genomic region containingDSEL encoding dermatan sul-
fate epimerase 2 has been found to be associated with bipolar
disorder (Goossens et al., 2003) and depressive disorder (Shi
et al., 2011). In addition, it was reported that UST is associated
with job-related exhaustion and response to antidepressant (Uher
et al., 2010; Sulkava et al., 2013). Thus, chondroitin sulfate proteo-
glycans bearing oversulfated dermatan/chondroitin sulfate may
play important roles in the etiology of mood disorders.

Perspective

As described above, brain proteoglycans regulate themigration of
both excitatory and inhibitory neurons by binding with various
proteins. Besides neuronal migration, proteoglycans play impor-
tant roles in the proliferation and differentiation of neural pro-
genitor cells, axon pathfinding, myelination, axon regeneration,
and maturation and plasticity of synapses (Maeda et al., 2011;
Soleman et al., 2013; Silver and Silver, 2014; Theocharidis et al.,
2014), the defects of which may be related to the pathogenesis
of various brain disorders. More mechanistic studies are nec-
essary to elucidate the relationship between proteoglycans and
these diseases. In this context, it should be noted that many extra-
cellular matrix proteins that interact with proteoglycans are over-
looked in the field of developmental neuroscience. These include
extracellular matrix proteases and their inhibitors such as MMP,
ADAMTS, ADAM, and Timp family members. Proteoglycans
turn over very rapidly in the developing brain, and their degrada-
tion would lead to drastic change in the distribution and activity
of growth factors, chemokines, axon-guidance molecules, and so
on. Thus, it is likely that degradation of proteoglycans would
profoundly influence the behavior of neurons. Future study is
necessary to shed light on this issue.

Finally, I would like to emphasize that the functions of pro-
teoglycans are regulated in a context-dependent manner. It is
often said that chondroitin sulfate proteoglycans are repulsive
molecules. However, this over-simplified view has been chal-
lenged by the finding that chondroitin sulfate proteoglycans such
as PTPζ and neuroglycan C promote the radial migration of
cortical neurons. Furthermore, chondroitin sulfate proteogly-
cans may function as either a repulsive or an attractive sub-
strate depending on the factors attached to the chondroitin sul-
fate chains. In addition, it should be noted that even though
the proteoglycan core protein is the same, the structures of the
attached glycosaminoglycan chains may be highly variable lead-
ing to the diversification of proteoglycan functions. I expect
that careful experimental design and interpretation of the results
would uncover the important functions of brain proteoglycans.
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Neocortex functioning relies on the formation of complex networks that begin to be

assembled during embryogenesis by highly stereotyped processes of cell migration

and axonal navigation. The guidance of cells and axons is driven by extracellular cues,

released along by final targets or intermediate targets located along specific pathways.

In particular, guidepost cells, originally described in the grasshopper, are considered

discrete, specialized cell populations located at crucial decision points along axonal

trajectories that regulate tract formation. These cells are usually early-born, transient and

act at short-range or via cell-cell contact. The vast majority of guidepost cells initially

identified were glial cells, which play a role in the formation of important axonal tracts

in the forebrain, such as the corpus callosum, anterior, and post-optic commissures as

well as optic chiasm. In the last decades, tangential migrating neurons have also been

found to participate in the guidance of principal axonal tracts in the forebrain. This is the

case for several examples such as guideposts for the lateral olfactory tract (LOT), corridor

cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that

have been involved in the formation of the entorhino-hippocampal connections. More

recently, microglia, the resident macrophages of the brain, were specifically observed

at the crossroads of important neuronal migratory routes and axonal tract pathways

during forebrain development. We furthermore found that microglia participate to the

shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain

development and wiring. Here we will review the last findings on already known guidepost

cell populations and will discuss the role of microglia as a potentially new class of atypical

guidepost cells.

Keywords: guidance molecules, glial cells, Cajal-Retzius cells, microglia, axon guidance

Introduction

Functioning of the mammalian cerebral cortex relies on complex networks of axonal connections
between neurons located in specific positions. The initial building of these exquisite circuits occurs
during embryonic development and early post-natal days. During this “critical” period, neurons
are first generated from spatially restricted proliferative niches and after or while reaching their
final destination throughout active migration, extend oriented axons to form synaptic connections
with their targets. Cellular migration is hence essential in the first part of brain wiring, because
it allocates cells to specific positions and their subsequent settlement and differentiation, leading
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to the emergence of a functional system. In particular, cells
can undertake radial or tangential migratory trajectories. During
these processes, neurons can migrate locally or far away from
their production sites as well as extend local axons or form
long-range connections.

Because neurons are generated over a long-time period in
the mammalian brain, neuronal migration and axonal navigation
occur concomitantly during the constant process of brain
development. How are these processes coordinated spatially
and temporally to ensure the proper wiring of neural circuits?
Over the last decades, this intriguing question has begun to
receive answers in a developmental context in which cellular
migration and axonal navigation take prominent places, namely
the development of the embryonic mammalian forebrain (Borrell
andMarin, 2006; Griveau et al., 2010; Villar-Cervino et al., 2013).
In distinct regions of the embryonic mammalian forebrain,
such as the dorsal cerebral cortex and the ventrally located
subpallium, extensive events of radial and tangential migration
reallocate neuronal populations and orient axonal navigation.
For example, early-born neurons such as Cajal-Retzius cells
spread out from different regions of origin to cover all the surface
of the cortical primordium; inhibitory interneurons originate
from the basal ganglia from which they tangentially migrate to
populate the telencephalon; corticothalamic and thalamocortical
axons traverse intermediate targets to reach their respective final
targets. These events are fundamental to assemble cortical circuits
and build the intricate circuitry essential for its functioning. Since
defects in migratory processes during embryogenesis have been
correlated with the onset of several neurologic and psychiatric
diseases, it is crucial to decipher how they are regulated.
Besides cells redistribution and morphogenesis, past and more
recent studies showed that, throughout neuronal migration, an
additional prominent event occurs during forebrain development
that is the positioning of molecular cues, which instructs the
trajectories of other migrating cells and growing axons. The cells
that show these driving properties have different origins, but they
share some common characteristics, for which they have been
defined as guidepost cells. The purpose of this review is first
to provide a definition of the usual concept of guidepost cells,
giving an overview of already well-known examples. Moreover,
we propose to extend the classical concept of guidepost cells,
by speculating on recent findings concerning novel roles of
microglia, the macrophages of the brain, in embryonic forebrain
wiring.

Toward a “Modern” Definition of Guidepost
Cells

The concept of guidepost cells emerged from the studies on the
developing limb bud of the grasshopper embryo (Borrell and
Marin, 2006; Griveau et al., 2010; Kwon et al., 2011; Villar-
Cervino et al., 2013). Bate and others described how pioneer
projecting axons rely on some intermediate targets positioned
along the future axonal path to follow a highly stereotyped
pathway (Kwon et al., 2011). These intermediate targets consist
of immature neuronal cells that show high affinity for the

pioneer growth cones, and that are able, upon direct contact,
to stabilize their filopodia and reorient the axonal growth cones
on the pathway (Kwon et al., 2011). These important findings
laid the foundation of the term “guidepost cells,” as located
discontinuously along the future axonal trajectory providing
short-range cues thereby precisely controlling axonal navigation.

Since these seminal studies, several other cases of
guidepost cells have been reported in different organisms
and developmental systems (Borrell and Marin, 2006; Griveau
et al., 2010; Kwon et al., 2011; Villar-Cervino et al., 2013).
To date, the vast majority of the identified guidepost cells in
vertebrates belongs to the class of glial cells, such as the radial
glia of the optic chiasma (Misson et al., 1988; Guillery et al.,
1995; Marcus et al., 1995; Marcus and Mason, 1995; Wang
et al., 1995), glial bridges of anterior and postoptic commissures
(Silver et al., 1982; Pires-Neto et al., 1998; Barresi et al., 2005;
Lent et al., 2005), floor plate cells (Tessier-Lavigne et al., 1988;
Bovolenta and Dodd, 1990, 1991; Placzek et al., 1990; Campbell
and Peterson, 1993; Kennedy et al., 1994; Serafini et al., 1994,
1996), boundary cap cells (Golding and Cohen, 1997; Fraher
et al., 2007), glial cells of the corpus callosum (Silver et al., 1982,
1993; Silver and Ogawa, 1983; Shu and Richards, 2001; Shu
et al., 2003a,b). More recently, some populations of tangential
migrating neurons have also been discovered to play a guidepost
role, with a consequent need to expand the conceptual definition
(Sato et al., 1998; Lopez-Bendito et al., 2006; Niquille et al., 2009;
Bielle et al., 2011; Hirata et al., 2012). Guidepost cells have been
then defined as usually early born, discrete cell populations,
with specialized functions that control and regulate axonal
navigation, by being located at crucial decision points along the
axonal trajectories. These cells can eventually extend an axon
along the upcoming path of the tract and, in contrast to other
long range-intermediate targets, guideposts act at short range or
directly by cell-cell contact. They constitute decisive landmarks
for guiding the axons along the correct pathways, which is a
fundamental requirement for accurate circuitry assembly. The
demonstration of their importance has been highlighted in
different systems, by specific cell ablation experiments (Bentley
and Caudy, 1983; Sretavan et al., 1995; Del Rio et al., 1997; Sato
et al., 1998) and by the use of genetic mutants (Bovolenta and
Dodd, 1990; Lopez-Bendito et al., 2006; Bielle et al., 2011), which
resulted in aberrant pioneer axonal trajectories (Bielle et al.,
2011), eventually with ectopic collateral branches formation
(Bentley and Caudy, 1983; Bovolenta and Dodd, 1990) and in
failure in axonal progression and in specific axonal innervation
(Sretavan et al., 1995; Del Rio et al., 1997; Sato et al., 1998;
Lopez-Bendito et al., 2006), respectively. The mechanism by
which guidepost cells exert their function in guiding pioneer
axonal tracts is throughout the secretion of guidance cues, which
can act as attractive or repulsive signals. Both glial cells and
tangential migrating guidepost cells have been found to express
various families of guidance molecules or adhesion molecules,
such as Slits (Erskine et al., 2000; Plump et al., 2002; Shu et al.,
2003c), Robos (Bielle et al., 2011), Wnts (Keeble and Cooper,
2006), Neuregulin (Lopez-Bendito et al., 2006), Draxin (Islam
et al., 2009), Ephrins (Williams et al., 2003; Mendes et al., 2006)
or extracellular matrix proteins (Kuhn et al., 1995; Mandai et al.,
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2014). The correct positioning of the same migrating guidepost
cells at the intermediate targets along the path is itself instructed
by guidance cues (Kawasaki et al., 2006; Nomura et al., 2006;
Ito et al., 2008; Bielle et al., 2011). Since these cells act mainly
at short range or by cell-cell contact, their proper localisation is
fundamental for the subsequent axonal tract development. This
has been clearly shown in various guidance molecule mutant
models in which altered positioning of guidepost cells led to
consequent specific axonal pathfinding defects (Kawasaki et al.,
2006; Bielle et al., 2011).

Tangential Migrating Guidepost Cells in the
Pathfinding of the Lateral Olfactory Tract

The Lateral Olfactory Tract (LOT) is the main efferent axonal
bundle that conveys the olfactory information from the bulb
to several higher olfactory centers in the brain, including the
anterior olfactory nucleus, the olfactory tubercle, the piriform
and entorhinal cortices and the amygdala (Borrell and Marin,
2006; Griveau et al., 2010; Villar-Cervino et al., 2013) (Figure 1).
Indeed, sensory olfactory neurons, residing in the nasal cavities
project onto tufted and mitral cells of the olfactory bulb,
which in turn extend their axons into the LOT to reach
cortical and associated regions. LOT pioneer axons initiate their
outgrowth around embryonic day (E) 11.5, followed by the
other mitral cells that collectively form the main axonal bundle
around E13. Starting from E14.5, LOT axons extend superficial
collaterals toward the olfactory cortices and into the other target
regions.

Long-range guiding activities are involved in shaping the
pathfinding of the LOT. Diffusible repulsive guidance proteins,
such as Slit1 and Slit2 derived from the septum, regulate the
lateral pathfinding of the mitral cell axons, throughout their
receptors, Robo1 and Robo2 (Pini, 1993; Nguyen Ba-Charvet
et al., 1999; Nguyen-Ba-Charvet et al., 2002; Fouquet et al.,
2007). Some proteins of the Semaphorin class are involved in
the growth of olfactory bulb axons (Sema3B) and repulsion of
LOT axons (Sema3F) (De Castro et al., 1999; De Castro, 2009).
Besides these diffusible long-range signals, it was shown that
a peculiar population of cells supplies short-range permissive
guidance activity in the formation of the LOT (Sugisaki et al.,
1996). These “lot” cells have been identified by the expression of
the lot1 antibody (Sato et al., 1998), recently shown to recognize
the beta isoform of the metabotropic glutamate receptor subtype-
1 (mGluR1) (Hirata et al., 2012). Lot cells are the first reported
example of migrating neuronal guidepost cells involved in axonal
pathfinding and are amongst the first generated neurons in the
brain, around E9.5 and E11.5. They have been proposed to have a
pallial origin and migrate toward the pallial subpallial boundary
(PSB) (Tomioka et al., 2000). Once arrived in the PSB, they
change their orientation and extend a long process toward the
amygdala region (Kawasaki et al., 2006; Hirata et al., 2012). They
correspond to previously identified cells horizontally disposed
in the developing PSB (Derer et al., 1977) and their positioning
occurs way before the arrival of LOT axons (Sato et al., 1998),
for which they constitute a growing substrate. Around E12.5,

FIGURE 1 | Guidepost cells in lateral olfactory tract (LOT)

development. (A–C) The panels represent schematic lateral views of mouse

embryonic cerebral vesicles. (A) Lot cells are amongst the first generated

neurons in the brain. At E12 they are located along the pallial subpallial

boundary (PSPB, dashes) before the arrival of LOT axons. Netrin1 attracts Lot

cells toward the PSPB and Sema3F limits their migration. (B) At E12.5, LOT

axons originating from the olfactory bulbs extend superficially in close contact

with lot cells. (C) In the mature brain, the LOT contains axons projecting from

the olfactory bulb to the anterior olfactory nucleus (AON), the olfactory tubercle

(Tu), the piriform cortex (Pir), the entorhinal cortex (EC), and the amygdala

(Am). Am, amygdala; AON, anterior olfactory nucleus; EC, entorhinal cortex;

LOT, lateral olfactory tract; OB, olfactory bulb; Pir, piriform cortex; PSPB, pallial

subpallial boundary; Tu, olfactory tubercle.

the superficial growing of LOT axons displaces lot cells in the
internal border of the path, where they are found subsequently in
association with growing collateral axons (Hirata and Fujisawa,
1999). Although initially lot cells where considered as a distinct
and unique cell population (Sato et al., 1998), these cells have
been recently identified as a subset of Cajal-Retzius (CR) cells,
a population of early born cortical neurons, since they share
the expression of common molecular markers such as p 73 and
Reelin (Dixit et al., 2014).

The role of CR-lot cells as guidepost for the developing LOT
tract has been shown throughout toxic ablation experiments by
the local use of a neuronal toxin, 6-hydoxydopamine, which
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provokes CR-lot cell death with consequent stall of mitral cell
axons in strict proximity (Sato et al., 1998). This role is further
highlighted by the analysis of mutant mice that affect this cell
population such as Lhx2 (Saha et al., 2007) or Neurog1 and
Neurog2 double mutants (Dixit et al., 2014). It has been proposed
that lot cells form transient connections with LOT axons, as their
final targets in the piriform cortex, amygdala and other higher
olfactory centers are not yet mature (Sato et al., 1998; Hirata et al.,
2012).

The importance of the proper positioning of CR-lot cells
is thus highlighted by their guidepost function to orient LOT
axons along their pathway. Still, how these cells act on axons
and whether they are required for the progression, channeling
or guidance of all axons remains largely to be characterized. By
contrast, several guidance cues have been shown to play a role
in the positioning of CR-lot cells in the ventral PSB. Netrin1 has
been shown to act as an attractant cue for migrating CR-lot cells
and participates, in part, to their ventral positioning (Kawasaki
et al., 2006). However, in knockout mutant animals for Netrin1
or its receptor DCC, only the location of the most ventral CR-
lot cells resulted affected, associated with specific pathfinding
defects on the ventral most LOT axons (Kawasaki et al., 2006).
In double Slit1; Slit2 mutants the LOT axonal tract is severely
disrupted, with only few axons present in their correct positions.
In this context, the proper positioning of CR-lot cells appears
to be not drastically affected, thereby revealing that both long-
range and local signals cooperate in LOT axonal pathfinding
(Fouquet et al., 2007). Another important regulator of the ventral
tangential migration of CR-lot cells is the molecule Sema3F that,
by the interaction with its specific receptor neuropilin-2 (Nrp-2),
confines CR-lot cells on the telencephalic surface (Ito et al., 2008).
Sema3F, expressed in the subpallium and cortical plate, acts as
a repellent signal, which prevents CR-lot cells to penetrate into
deep brain regions, where some are ectopically found in case of
Sema3F or Nrp-2 invalidation (Ito et al., 2008). So far, there are
not yet reported defects of LOT projections in Nrp-2 mutants
(Chen et al., 2000), raising the possibility that these guidepost
cells may act locally. Furthermore, since many of these guidance
cues can directly act on the axons, additional eventual effects
of these genetic invalidations on the pathfinding of LOT axons
deserve further analyses.

Cajal-Retzius Cells: Guideposts in the
Formation of Entorhino-Hippocampal
Projections

Besides their emerging role in LOT axonal guidance, Cajal-
Retzius cells, together with GABAergic interneurons, have
been involved in the development of entorhino-hippocampal
projections (Borrell and Marin, 2006; Griveau et al., 2010; Villar-
Cervino et al., 2013). The major afferent excitatory projections
in the hippocampus derive from pyramidal neurons in layers II
and III of the entorhinal cortex. In particular, layer II pyramidal
neurons form axonal connections with the dendrites of the
granule cells of the outer molecular layer (OML) of the dentate
gyrus (DG), whereas layer III neurons connect mainly with

pyramidal cells in the stratum lacunosum-moleculare (SLM)
in the cornu ammonis 1 and 3 (CA1 and CA3) (Borrell and
Marin, 2006; Griveau et al., 2010; Villar-Cervino et al., 2013).
Notably, during brain formation, the entorhinal axons already
reach their final positions in the hippocampal regions, before
the definitive development of their targets. Indeed, in mouse
brain, entorhinal axons arrive in the hippocampus around E15,
then they form arborisations in the SLM around E17 and
are detected into the OML starting from the first postnatal
day (Super and Soriano, 1994; Super et al., 1998; Deng and
Elberger, 2001; Deng et al., 2006) (Figure 2). Therefore, even if
hippocampal pyramidal neurons and granule cells are generated
between E14 and E16, it is only around the second postnatal
day that their apical dendrites start to be seen in the SLM,
arising as final targets for entorhinal axons (Caviness, 1973;
Soriano et al., 1986, 1989; Bayer and Altman, 1987; Super et al.,
1998). This process of precise axonal addressing is regulated
by Cajal-Retzius cells, which, as in LOT formation, have been
reported to regulate axonal outgrowth. Cajal-Retzius (CR) cells
are early born neurons, which are produced at E9-11 by focal
pallial sources, including cortical hem, septum, PSB, and thalamic
eminence (Grove et al., 1998; Meyer et al., 1999, 2002; Meyer
and Wahle, 1999; Hevner et al., 2003; Takiguchi-Hayashi et al.,
2004; Bielle et al., 2005; Cabrera-Socorro et al., 2007; Tissir et al.,
2009; Ceci et al., 2010; Meyer, 2010; Gu et al., 2011; Martinez-
Cerdeno and Noctor, 2014). CR cells migrate tangentially from
their sources in the marginal zone of the cerebral cortex and
rapidly cover the entire sheet. Their marginal localization and
migration is regulated by CXCL12 produced by the meninges,
which acts through CXCR4 and CXCR7 receptors (Borello and
Pierani, 2010; Trousse et al., 2014). The marginal maintenance
of CR cells also requires radial glia integrity, as revealed by

FIGURE 2 | Cajal-Retzius cells are guideposts for

enthorhino-hippocampal axons. (A,B) The panels represent schematic

coronal sections of mouse hippocampi at E15.5 and P0. (A) At E15.5,

Cajal–Retzius cells (red) are distributed in SLM and OML and GABAergic

neurons (gray) are distributed in stratum oriens (SO), stratum radiatum (SR),

and inner molecular layer (IML). (B) The major afferent excitatory projections in

the hippocampus derive from pyramidal neurons in layers II and III of the

entorhinal cortex. Between E16.5 and P0, entorhinal axons (green) invade

specifically the SLM and OML in close association with Cajal–Retzius cells

even if their future final target, the apical dendrites neurons of the pyramidal

layer (SP, blue) develop later. hf, hippocampal fissure; IML, inner molecular

layer; OML, outer molecular layer; SLM, stratum lacunosum-moleculare; SO,

stratum oriens; SP, stratum pyramidale; SR, stratum radiatum.
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analysis of β1 integrin conditional knockout (Kwon et al., 2011).
In parallel, interactions between CR cells or with surrounding
structures have been shown to control their random dispersion
and distribution by Eph/ephrin-dependent contact repulsion or
PlexinD1 signaling (Villar-Cervino et al., 2013; Bribian et al.,
2014). Such migratory behaviors enable CR cells of different
sources to preferentially cover cortical regions (Griveau et al.,
2010; Gu et al., 2011). Functionally, CR cells have been shown to
regulate cortical layering, neuronal and radial glia morphology,
and cortical regionalisation, via the production of the secreted
glycoprotein Reelin or additional membrane-bound or secreted
factors (Borello and Pierani, 2010; Griveau et al., 2010; Gil-
Sanz et al., 2013; Trousse et al., 2014). In the hippocampus,
as the structure folds during development, CR cells localize in
the future SLM and OML (Takiguchi-Hayashi et al., 2004; Bielle
et al., 2005; Yoshida et al., 2006). Using electron microscopy, it
has been shown that during embryogenesis pioneer entorhinal
axons form transient synaptic contacts with Cajal-Retzius cells
in SLM and OML, the future regions that will host pyramidal
and granule cells apical dendrites (Super et al., 1998). Moreover,
in organotypic culture experiments, this interaction has been
shown to be fundamental for the growth of entorhinal axons
in the hippocampus (Frotscher and Heimrich, 1993; Li et al.,
1993; Frotscher et al., 1995; Del Rio et al., 1997). Indeed,
eliminating CR cells from cultured slices with the local toxin
6-hydoxydopamine avoided entorhinal axonal growing in the
hippocampus (Del Rio et al., 1997). These experiments therefore
constituted a strong evidence of the role as placeholders for CR
cells in the formation of entorhino-hippocampal connections
(Forster et al., 1998). About the molecular cues that could be
involved in entorhinal axon guidance by CR cells, the most
obvious candidate could be the glycoprotein Reelin, of which CR
cells constitute the main source (D’arcangelo et al., 1995, 1997;
Hirotsune et al., 1995; Ogawa et al., 1995; Tissir and Goffinet,
2003). It has been previously shown that Reelin controls cortical
layering, organization and the orientation of radially migrating
neurons (Borello and Pierani, 2010; Frotscher, 2010; Griveau
et al., 2010; Martinez-Cerdeno and Noctor, 2014). Nevertheless,
antibody-mediated blocking of Reelin in ex vivo co-cultures
of hippocampal slices and entorhinal tissue, does not lead to
dramatic defects in entorhinal axonal pathfinding. However,
fewer entorhinal fibers reach the hippocampal layers, developing
shorter axonal branches. These findings have been confirmed
in vivo in reeler mice, a natural Reelin mutant, which presents
severe defects in cortical lamination. Similarly to co-cultures
experiments, the absence of Reelin had no dramatic effects
about entorhinal axonal ingrowth or targeting, but entorhino-
hippocampal axonal terminations appear thinner than in control
animals. Moreover, these defects are transient, since then in
reeler adult mice a normal branching density is observable
(Frotscher and Heimrich, 1993; Li et al., 1993; Frotscher et al.,
1995; Del Rio et al., 1997; Borrell et al., 1999; Deller et al.,
1999). Altogether, these results confirm the important role of
CR as guidepost cells in entorhino-hippocampal innervation and
reveal reelin as an important factor for branching, collateral
formation and synaptogenesis of entorhinal axons. However,
they leave still an open question about additional molecular

cues involved in the pathfinding of entorhinal axons in the
hippocampus.

En Route to the Cortex: Guidepost Cells
Open a Path for Thalamocortical
Connections

Mammalian neocortex forms connections with the rest of
the brain via the internal capsule, which includes bundles
of corticofugal efferent axons and reciprocal afferent
thalamocortical projections, which convey sensory and
motor information to the neocortex. In the context of axonal
pathfinding, the development of the internal capsule has been
extensively studied (Molnar et al., 2012; Garel and Lopez-
Bendito, 2014). Indeed, this system has a major physiological
relevance, but also allows a variety of experimental approaches,
due to its important size and extension in the developing brain.

During the years, many findings had contributed to
elucidate the routes and the molecular mechanisms that shape
thalamocortical and corticofugal connection paths. In mouse
development, these important axonal systems start to form
during early/mid gestation. Thalamocortical axons (TCAs)
originate from neurons located in the thalamus, grouped
in distinct nuclei, showing a topographic organization that
corresponds to the spatial innervation of different cortical areas
(Molnar et al., 2012; Garel and Lopez-Bendito, 2014). From
E12 to E15, TCAs extend ventrally, crossing the prethalamus,
and traverse the diencephalic/telencephalic boundary, entering
the subpallium at the level of the internal capsule. At E14,
early TCAs reach the PSB, where they encounter the reciprocal
pioneer corticothalamic axons (CTAs). Subsequently, from E14.5
to E18.5, TCAs form transient connections with subplate cells
residing in their respective target cortical areas. After this waiting
period, TCAs send collaterals into the cortical plate and finally
establish thalamocortical connections (Figure 3). Meanwhile,
corticofugal axons grow along the same path of TCAs and split in
CTAs and in corticosubcerebral axons that proceed toward other
subcortical regions. This reciprocal wiring has been shown to
be tightly controlled, in part by guidepost cells, transient axonal
populations and several structures that have been shown to act as
milestones along the path.

Chronologically, pioneer cortical subplate neurons have been
firstly proposed as guidepost cells in regulating the entering
and progression of TCAs into the cortical plate (Garel and
Lopez-Bendito, 2014; Hoerder-Suabedissen and Molnar, 2015).
These observations have been strongly supported by several
experimental evidences. To date, in the visual cortex, subplate
neurons ablation avoids the entering of the corresponding
thalamic geniculocortical axons (Ghosh et al., 1990; Ghosh and
Shatz, 1993). In mutant mice, such as reeler, p35−/− and cdk5−/−

that present subplate cells in the marginal zone, due to severe
defects in preplate splitting, TCAs form abnormal projections to
connect with the ectopic subplate in the marginal zone. Since
the discovery of subplate cells, other groups of cells have been
found to exert a role of guidepost for TCAs. In mouse, early
born cells, named perireticular cells, have been identified in the
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FIGURE 3 | Corridor neurons shape the internal pathfinding of

thalamocortical axons. (A–C) Schematic representation of hemicoronal

sections of mouse embryonic telencephalons. (D,E) Schematic

representation of median sagittal views of mouse embryonic telencephalons.

(A,D) At E12, tangentially migrating LGE-cells (red), repelled by Slit2, form in

the MGE a permissive corridor for thalamocortical axons. Thalamocortical

axons (green), repelled by hypothalamic Slit2, turn to enter the MGE. (B,E) At

E14, pioneer thalamocortical axons grow through the permissive corridor

(red cells) and the Str, where they encounter the reciprocal pioneer

corticothalamic axons (purple). Guidance cues including Slits, Netrin1,

Nrg1-IG, Ng1-CRD present along the pathway, orient the axons. (C)

Thalamocortical axons (green) extend from the dorsal thalamus (Th) toward

the neocortex (Ncx), crossing the diencephalic-telencephalic boundary (DTB,

black dashes), and enter the subpallium (SuP) at the level of the internal

capsule. At E14, thalamocortical axons reach the pallial subpallial boundary

(PSPB, black dashes), where they encounter the reciprocal pioneer

corticothalamic axons (purple). Thalamocortical axon guidance is regulated

by different cellular and molecular actors: prethalamus (blue) and SuP cells

sending an axon to the Th; the repellent Slit2 in the hypothalamus, the

attractant Netrin1 in the SuP, Nrg1-Ig in the neocortex. DTB,

diencephalic-telencephalic boundary; GP, globus pallidus; LGE, lateral

ganglionic eminence; MGE, medial ganglionic eminence; Ncx, neocortex;

PSPB, pallial subpallial boundary; Str, striatum; SuP, subpallium; Th, dorsal

thalamus.

future path of the internal capsule, which at E12.5 send a cellular
process to the thalamus. The hypothesized role of these cells is to
provide a cellular scaffold for the future TCAs and CTAs, which is
consistent with several experimental evidences (Mitrofanis, 1992,
1994; Mitrofanis and Baker, 1993; Mitrofanis and Guillery, 1993;
Adams and Baker, 1995; Metin and Godement, 1996; Molnar
et al., 1998b; Braisted et al., 1999; Molnar and Cordery, 1999). In
effect, different defects in TCA pathfinding have been reported
in mutant mice presenting absence, reduction or displacement of
perireticular cells (Tuttle et al., 1999; Bishop et al., 2000, 2003;
Lopez-Bendito et al., 2002; Lakhina et al., 2007). Unfortunately,
the current absence of specific molecular markers and the wide
distribution of these cells experimentally limit the investigation
about their origin and function.

More recently, another population of guidepost cells has been
observed in the subpallium, which comprises the lateral and
medial ganglionic eminences (LGE and MGE). These cells are
GABAergic LGE derived-neurons that tangentially migrate in
the MGE, forming a permissive corridor, in an otherwise not

permissive territory, for the growth of TCAs along an internal
path toward the cortex (Lopez-Bendito et al., 2006). Because of
their function, they have been named “corridor” cells; they are
located in the MGE, in which they migrate from E11.5 to E14,
but express LGE molecular markers, such as Islet1, Ebf1 and
Meis2. By gain-of-function experiments in cultured organotypic
embryonic brain slices and by the use of full or conditional
mutant mice of ErbB4 and Neuregulin1 respectively, it has been
revealed that corridor cells, via the expression of Neuregulin1,
provide a permissive corridor for TCAs, which express the
corresponding ErbB4 receptor (Lopez-Bendito et al., 2006). How
are corridor cells positioned? A ventral repulsive activity from the
subpallium, mediated by Slit2 and Robo1 and Robo2 respective
receptors, has been shown to limit, in vitro, ex vivo, and in vivo,
the ventral tangential migration of corridor cells, playing a role in
the formation of corridor shape. Indeed, Slit2 inactivation leads
to abnormal ventral migration of corridor cells, with aberrant
corridor shaping and consequent defects on TCAs pathfinding
(Bielle et al., 2011). These findings constitute a starting point
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for further investigations on the origin, specification and fate of
corridor cells.

In addition to guidepost cells, several important structures
and molecules present in the subpallium or prethalamus have
been shown to play critical roles in the guidance of both TCAs
and reciprocal CTAs (Metin and Godement, 1996; Braisted et al.,
1999; Garel et al., 1999; Sussel et al., 1999; Marin et al., 2002;
Marin and Rubenstein, 2002; Yun et al., 2003). For instance,
knockout mutation analyses, have highlighted the importance of
classical guidance cues and their receptors, such as Slit1, Slit2,
Robo1, Robo2, Netrin1, and Sema6A, for the local regulation of
TCAs guidance (Braisted et al., 2000, 2009; Leighton et al., 2001;
Bagri et al., 2002; Bonnin et al., 2007; Lopez-Bendito et al., 2007;
Powell et al., 2008; Little et al., 2009). Other important regulators
are the members of the protocadherin family, which have been
shown to be important for both TCAs and CTAs progression
into the subpallium (Wang et al., 2002, 2006; Tissir et al., 2005;
Uemura et al., 2007; Zhou et al., 2008, 2009; Qu et al., 2014). For
instance, inactivation of OL-protocadherin was shown to impair
the subpallial crossing of TCA associated with defects in striatal
axonal outgrowth (Uemura et al., 2007). In addition, mutant
mice with constitutive or specific inactivation of Celsr3 in the
prethalamus and subpallium present similar impairments, which
consist in the stall of TCAs in the ventral subpallium, across
the diencephalic/telencephalic boundary, and in CTAs arrest in
the proximal part of the LGE, suggesting a possible cooperation
of these two factors in the process (Tissir et al., 2005; Zhou
et al., 2008, 2009; Qu et al., 2014). Strikingly, these phenotypes
are almost phenocopied by deletion of Frizzled3, which is
associated with Celsr signaling pathway (Wang et al., 2002,
2006). Last, but not least, the expression of the transmembrane
protein Linx is required on subplate cells, subpallium and
prethalamaus guideposts, for the progression of TCAs and CTAs
revealing a role for this molecule in axon/axon interactions and
potentially guideposts/axons interactions (Mandai et al., 2014).
More generally, it will be essential to precise which of the
aforementioned guidance cues regulates the positioning and/or
function of guidepost cells located along the internal capsule
path.

In addition to delineating an internal trajectory for TCAs,
guidepost neurons have been shown to play additional roles
in thalamo-cortical wiring. First, there is now solid evidence
that TCAs and CTAs interact to form reciprocal connections, as
proposed by the handshake hypothesis (Blakemore and Molnar,
1990; Molnar and Blakemore, 1991, 1995; Chen et al., 2012;
Molnar et al., 2012; Deck et al., 2013; Garel and Lopez-Bendito,
2014). As such, guideposts that shape TCAs path have an indirect
impact on the guidance of reciprocal CTAs. Second, while TCAs
originating from principal thalamic nuclei all grow internally
in the corridor, they adopt distinct rostrocaudal positions in
the capsule, depending on their nucleus of origin and their
cortical target (Molnar et al., 1998a, 2012; Garel and Lopez-
Bendito, 2014). This topographic ordering has been shown to
depend on local subpallial positional information (Dufour et al.,
2003; Bonnin et al., 2007; Wright et al., 2007; Powell et al.,
2008; Bielle et al., 2011; Demyanenko et al., 2011a,b; Lokmane
et al., 2013). Indeed, guidance factors such as Slit1 and Netrin1

(and their combinatorial activity), Sema3A, ephrinAs, as well
as L1, CHL1 participate to the topographic ordering of TCAs
deriving from different thalamic nuclei, with a dramatic impact
on their final cortical addressing (Bonnin et al., 2007; Wright
et al., 2007; Powell et al., 2008; Bielle et al., 2011; Demyanenko
et al., 2011a,b; Lokmane et al., 2013). Remarkably, positional
information has been shown to be present already in the corridor,
as TCAs enter the subpallium (Bielle et al., 2011). Accordingly,
the aforementioned guidance factors are present in the corridor,
especially Slit1, supporting the idea that they act as TCAs
grow internally (Bielle et al., 2011). Importantly, altering the
ordering of TCAs in the subpallium by genetic manipulation
has been shown to impair the fine topography of TCAs in the
somatosensory cortex (Lokmane et al., 2013; Lokmane and Garel,
2014). These experiments reveal that in addition to cortical
signals, intermediate ordering of axons, in part by corridor cells,
is important for fine-grained topography of TCAs. Together,
such recent studies highlight additional roles of corridor internal
guideposts in reciprocal and topographical wiring.

Microglia Cells: Novel Unusual Guidepost
Cells?

Microglia are the resident macrophages of the brain, which
control brain homeostasis in physiologic conditions and
constitute the first line of defense in case of diseases and
against pathological threats. Initially described by Del Rio-
Hortega (1932), the physiological functions and the origin of
these cells have been remained controversial for a long time.
Until recently, most studies focused on the roles of microglia
in brain damage and diseases and in their participation to
neuro-inflammatory processes via the release of neurotrophic
and pro-inflammatory factors as well as the ability to perform
phagocytosis. Over last decade, several landmark studies have
revealed that, using conserved cellular mechanisms, microglia
contribute to normal brain functions. Indeed, microglia have
been shown to modulate synaptic transmission, to regulate
synaptic formation and elimination, and to shape postnatal and
embryonic brain circuits as reviewed in Paolicelli and Gross
(2011), Schafer et al. (2013), Bilimoria and Stevens (2014),
Katsumoto et al. (2014), Paolicelli et al. (2014), Salter and Beggs
(2014) and Casano and Peri (2015). Below, we will focus on
specific features of microglia during early brain wiring that bear
similarities with those of guideposts cells, such as their capacity
to act at short range, their early origin and focal positioning
as well as the production of several molecular factors by which
they can interact with and condition their surrounding neural
environment.

Microglia Survey and Interact with Their Local
Environment
In the last decade, technological advancements such as two-
photon laser scanning microscopy, allowed the observation of
microglia behavior in vivo, in normal conditions. Ramified
microglia, initially thought to be in a resting state in
opposition to the activated, amoeboid morphology observed
following brain injury, were found to be extremely active in
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surveying their environment. Indeed, very frequent extensions
and retractions of microglia ramifications were observed in
contact with neighboring neuronal cells, astrocytes and blood
vessels; furthermore their extensions were increased by changes
in both neuronal activity, blood vessel lesions and ATP
variation levels in vivo (Davalos et al., 2005; Nimmerjahn
et al., 2005). Processes of “resting microglia” were found to
interact with synapses in somatosensory and visual neocortex,
forming direct appositions with different synaptic elements. In
particular, morphological changes of microglia processes, with
the appearance of phagocytic structures and modifications of
synaptic apposition frequencies were shown to be modulated by
variation in visual experience (Wake et al., 2009; Tremblay et al.,
2010). Following similar lines, microglia were found to modulate
neuronal activity (Li et al., 2012; Pascual et al., 2012). For
instance, in zebrafish larvae optic tectum, microglia were shown
to contact highly activated neurons for longer time, correlating
with a subsequent decreased neuronal activity (Li et al., 2012).
Conversely, microglia activation in vitro by LPS stimulation was
reported to indirectly increase the frequency of spontaneous
synaptic AMPAergic post-synaptic currents in hippocampal
neurons (Pascual et al., 2012). Such findings have fundamentally
changed our conception of microglia by revealing that these cells
exert the capacity to act at short-range on their surrounding
neural environment. Since then, besides their immune-defensives
functions, these cells have started to be considered as active
modulators during healthy brain development and maturation as
well as actors of pathologic brain wiring and functioning.

Early Origin of Microglia
Originally thought to arise form peripheral bone marrow
derived-macrophages that invade the brain after birth, microglia
have been show, throughout series of fate-mapping experiments,
to originate from yolk sac myeloid progenitors and to be
dependent on Pu.1, Irf8 (Kierdorf et al., 2013) and colony-
stimulating factor 1 receptor (CSF1R) (Ginhoux et al., 2010,
2013; Erblich et al., 2011; Schulz et al., 2012; Gomez Perdiguero
et al., 2013; Kierdorf et al., 2013; Hoeffel et al., 2015). In
mice, yolk sac derived-microglia precursors migrate into the
neural folds during embryogenesis and, by in situ proliferation,
generate microglia that populate the adult brain. Under normal
conditions, microglia comprise resident cells since the infiltration
of peripheral monocytes or macrophages into the CNS is limited
by the blood-brain barrier (Mildner et al., 2007; Ginhoux et al.,
2010; Schulz et al., 2012; Gomez Perdiguero et al., 2013).
Thus, microglia enter the brain from early prenatal stages and
form an autonomous, self-sustained population. Remarkably,
colonization of embryonic brain tissues by microglia appears
to be a highly conserved process across vertebrate species
(Perry et al., 1985; Ashwell, 1991; Cuadros and Navascues,
2001; Herbomel et al., 2001; Verney et al., 2010; Schlegelmilch
et al., 2011; Swinnen et al., 2013), suggesting that embryological
“seeding” of the microglial population may be also conserved.

How is the number or density of microglia regulated?
Different embryonic or postnatal methods have been reported
for the ablation of microglia in vivo or in cultured brain
slices (Duffield et al., 2005; Heppner et al., 2005; Varvel et al.,

2012; Ueno et al., 2013; Elmore et al., 2014; Squarzoni et al.,
2014). Among those methods, pharmacologic depletion models
acting on CSF1R signaling, revealed that after birth, a complete
microglia repopulation occurs in a 1-week time window (Elmore
et al., 2014; Squarzoni et al., 2014). These results show that there
is a homeostatic control over the microglial population and raise
the questions of the underlying mechanisms. While the origin
of these repopulating cells is still debated, it has been shown for
the adult repopulation that a local brain pool of nestin-positive
cells differentiates into microglia thereby restoring their usual
number (Elmore et al., 2014). Collectively, these essential findings
match some forward-looking theories formulated by del Rio
Hortega, which postulated that microglia enter the brain during
embryogenesis (Del Rio-Hortega, 1932); at the same time, they
highlight how the constant presence of microglia within the brain
is tightly regulated.

Microglia in Defining the Number of Neurons:
Neurogenesis and Survival
Microglia have been recently shown to take part to several
important events which contribute to shaping of neural circuits,
including neurogenesis, neuronal survival, synaptic remodeling
and maturation. The role in neurogenesis and survival has been
examined in both the adult niche and the developing brain. For
instance, in adult murine hippocampus, unchallenged microglia
regulate by phagocytosis the number of immature neurons
maintained in the subventricular zone, one of the few sites of
postnatal neurogenesis (Sierra et al., 2010, 2013). In macaque
and rat neocortex, alteration of microglia activity by maternal
immune activation through LPS, Doxycycline treatment or
microglia elimination by Liposomal clodronate exposition,
significantly affects the number of neuronal precursors in
the embryonic and postnatal brain (Cunningham et al.,
2013).

In parallel, microglia have been also reported to regulate
neuronal number by active induction of apoptosis, or oppositely
to contribute to neuronal survival, in different regions of the
brain. For instance, early postnatal apoptosis in the cerebellar
Purkinje cell (PC) population was shown to be induced by
superoxide ions generated from microglial respiratory bursts
(Marin-Teva et al., 2004). These results provided support to
previous studies showing that the depletion of microglia in
brain culture slices in vitro resulted in increased PC survival
(Van Rooijen et al., 1997). Likewise, in perinatal mouse
hippocampus, microglia was found to enhance hippocampal
neuronal apoptosis by the CD11b/DAP12 integrin signaling-
dependent production of reactive oxygen species (Wakselman
et al., 2008). Conversely, microglia have been shown to actively
sustain postnatal cell survival of layer V cortical neurons
in mouse by the production of the trophic factor IGF1
(Ueno et al., 2013). Indeed, postnatal microglia inactivation
by minocycline, microglia temporal elimination in CD11b-DTR
transgenic models, as well as the use of IGF1R inhibitors
and igf1 siRNA, resulted in increased cell death of layer
V cortical neurons (Ueno et al., 2013). Altogether, these
findings show that microglia regulate the number of neurons
produced and maintained in the brain, through a balanced
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activity on progenitors, immature neurons and maturing
neurons.

Microglia Shape the Postnatal Brain: Synapse
Formation and Synapse Pruning
Besides their roles on neurogenesis and neuronal cell
homeostasis, microglia have been found to contribute to
synaptogenesis, synaptic remodeling and brain maturation.
Similarly to IGF1 for layer V cortical neurons, the production of
the neurotrophin BDNF bymicroglia has been shown to promote
synapse formation via signaling to its cognate receptor TrkB.
Remarkably, specific microglia or microglia-BDNF depletion,
using CX3CR1CreER mice, both lead to deficits in multiple
learning tasks and learning-induced synaptic remodeling
(Parkhurst et al., 2013). These major findings highlight the ability
of microglial cells to impact on the building and homeostasis of
neural circuits throughout the very local active production of
secreted factors.

In addition, microglia were shown to play an active role in
postnatal synaptic pruning, contributing to the shaping and
maturation of the brain, by their close spatial and temporal
contact with synapses (Paolicelli et al., 2011; Schafer et al.,
2012, 2013; Kettenmann et al., 2013). In particular, this
has been directly observed in the retinogeniculate system,
where surrounding microglia participate to the activity-
dependent synaptic remodeling, eliminating the weaker
presynaptic connections through a C3/CR3 complement-
dependent mechanism (Schafer et al., 2012, 2013). Similarly,
in the hippocampus microglia were found to contribute to
synaptic refinement. Specifically, the CX3CR1/fractalkine
signaling pathway plays a central role in microglia/synapses
communication, since Cx3cr1−/− mice show temporal reduction
of hippocampal microglia number, leading to a deficit in
synaptic pruning. Consistently, with early defects in synaptic
communication, these mice were shown to exhibit reduced
functional brain connectivity, together with social interaction
and behavioral deficits (Paolicelli et al., 2011; Zhan et al.,
2014). In the somatosensory neocortex, reduced density of
microglia cells of Cx3cr1−/− mice due to a delay in recruitment
of these cells, has been shown to impact on the maturation
of thalamocortical synapses (Hoshiko et al., 2012). Thus, the
density of these cells, their proper functioning, as well as their
capacity to specifically perform local phagocytosis or production
of secreted factors, constitutes an important factor for sculpting
postnatal brain circuits.

Microglia in the Embryonic and Perinatal Brain:
the Importance of Spatial and Temporal
Positioning
What about a role ofmicroglia during embryogenesis? In contrast
to their later homogeneous distribution in the adult brain,
embryonic, and perinatal microglia show an uneven distribution
in different species (Ashwell, 1991; Verney et al., 2010; Arnoux
et al., 2013; Cunningham et al., 2013; Swinnen et al., 2013;
Squarzoni et al., 2014). In particular, in the mouse, round or
more ramified microglia have been observed in different focal
hotspots, which are not particularly related to apoptosis, whereas

some zones, such as the cortical plate is largely devoid of
microglial cells (Ashwell, 1991; Verney et al., 2010; Cunningham
et al., 2013; Swinnen et al., 2013; Squarzoni et al., 2014).
More in depth analyses revealed that microglia accumulations
correspond to important decision landmarks in axonal paths
or cellular migratory routes. In particular, discrete groups of
microglia associate with the corpus callosum, the external
capsule or establish a contact with incoming dopaminergic
axons in the ventral telencephalon. Specific associations with
progenitor zones have also been observed in mice and other
mammals, potentially regulated by chemokine production by
these progenitors (Cunningham et al., 2013; Arno et al.,
2014).

Pharmacologic or genetic ablations of microglia have been
used to probe the roles of these cells during embryonic brain
wiring (Figure 4). Together with maternal immune activation
(MIA) and genetic microglial impairment (Cx3cr1−/−), these
studies showed that microglia regulate the outgrowth of
dopaminergic axons, thereby revealing the importance of the
precise spatial-temporal microglia localisation (Squarzoni et al.,
2014). In addition, microglia contribute to the development of
the Corpus Callosum (CC), the largest commissural structure
between the cerebral hemispheres (Pont-Lezica et al., 2014).
Indeed, genetic functional impairment of microglia (Dap12−/−)
or developmental functional alteration by MIA, down-regulate
the expression of genes related to neuritogenesis in microglia,
with a consequent impairment on the CC fasciculation in these
mouse models. A similar CC fasciculation phenotype has been
equally observed in the genetic model of microglia ablation,
Pu·1−/− (Pont-Lezica et al., 2014). Together these studies suggest
that the spatial and temporal positioning of embryonic microglia
modulates the development of specific and important axonal
tracts. The underlying cellular and molecular mechanisms still
remain to be deciphered.

In addition, microglia, which show a timely invasion of
the cortical plate (CP) (Cunningham et al., 2013; Swinnen
et al., 2013; Squarzoni et al., 2014) were found to regulate the
assembly of cortical circuits. Cortical circuits are formed by
an intricate network of a majority of excitatory neurons and
a minority of functionally important inhibitory interneurons
(Marin and Rubenstein, 2003; Sur and Rubenstein, 2005;
Batista-Brito and Fishell, 2009; Cossart, 2011; Fishell and
Rudy, 2011; Rico and Marin, 2011; Rubenstein, 2011; Marin
and Muller, 2014). Indeed, various classes of interneurons
shape the network output and interneuron dysfunction as
well as defects in the excitation/inhibition balance have been
associated with several neurodevelopmental disorders such
as Autism Spectrum Disorders (ASD) or Schizophrenia. As
aforementioned, microglia regulate the number of neuronal
precursors in the subventricular zones of the neocortex
(Cunningham et al., 2013) and are firstly excluded from the
CP, which they invade after E16.5, remaining initially confined
to the deeper layers (Swinnen et al., 2013; Squarzoni et al.,
2014). Absence, immune activation or genetic impairment of
microglia were found to impact on the laminar distribution of a
specific population of interneurons that express the transcription
factor Lhx6. Indeed, in absence of microglia (pharmacological
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FIGURE 4 | Microglia in the outgrowth of dopaminergic axons and

the positioning of cortical interneurons. (A–C) Schematic

representations of coronal hemisections of E14.5 mouse embryonic brain.

(D–F) Schematic representations of E18.5 coronal sections through the

somatosensory neocortex of mouse embryonic brain. (A) At E14.5,

microglia (red) establish a contact with dopaminergic axons (green)

entering in the ventral telencephalon. (B) Pharmacologic or genetic

cellular ablation (Pu1−/−), as well as functional impairment (Cx3cr1−/−)

of microglia promote dopaminergic axonal outgrowth in the striatum. (C)

Conversely, microglia functional alteration by maternal immune activation

(MIA) leads to reduced dopaminergic axonal outgrowth. (D) At E18.5,

microglia localize in the deeper layers of the cortical plate, with

lhx6-expressing interneurons (gray dots) being concentrated in layer V.

(E,F) In absence of microglia (pharmacological depletion or Pu1−/−)

pharmacological immune activation (MIA) or genetic functional alteration of

microglia (Dap12−/−; Cx3cr1−/−), lhx6-expressing interneurons

prematurely entered the cortical plate, followed by an altered laminar

distribution. DA, dopaminergic axons; INs, interneurons; IZ, intermediate

zone; LGE, lateral ganglionic eminence; MGE, medial ganglionic

eminence; Ncx, neocortex; UL, upper layers.

depletion; Pu·1−/−), or in case of pharmacological (MIA)
or genetic functional alteration (Dap12−/−; Cx3cr1−/−), a
premature entry of lhx6-expressing interneurons in the CP
was observed, followed by an altered laminar distribution,
with long lasting postnatal effects on a subset of lhx6-
expressing interneurons, the fast-spiking parvalbumin-positive
interneurons (Squarzoni et al., 2014). These specific interneurons
have been shown to play a major role in cortical networks as
well as to be impaired in ASD and Schizophrenia (Penagarikano
et al., 2011; Marin, 2012; Meechan et al., 2012). While these
results reveal a surprising role of microglia in cortical circuits
assembly, as well as a potential involvement in the etiology
of neuropsychiatric diseases, they raise the question of the
underlying mechanisms. Besides the requirement of Dap12
and Cx3cr1 signaling, the processes involved deserve further
investigation.

These results reveal that microglia modulate brain wiring
at various developmental steps, starting from embryonic,
post-natal and adult stages. Moreover, they underlie the
importance of spatial and temporal positioning of these cells
to accomplish their roles as modulators of dopaminergic
axonal outgrowth, CC development and neocortical interneuron
laminar distribution, which are major events in forebrain
wiring.

Conclusions and Perspectives

While the concept of guidepost cell has substantially changed
since its first description, including a potential motility as well as
a diverse cellular identity (neuronal or glial), there are still some
conserved properties: they are usually early born, immature,
located at a crucial point along a pathway and able to act at
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short-range or by direct cell-cell contact on its target. Along these
lines, recent studies have revealed that microglia cells may be to
some extent, envisaged as novel guideposts during embryonic
forebrain wiring. By their transient specific localization during
embryogenesis they may act on restricted neuronal subgroups
and modulate forebrain wiring. If a comprehensive knowledge
of all microglia functions is still fragmentary, the tremendous
potential of these cells in shaping and remodeling circuits, during
normal and pathological conditions, opens a novel framework for
our understanding of brain wiring.
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Cellular dynamics of neuronal
migration in the hippocampus
Kanehiro Hayashi, Ken-ichiro Kubo, Ayako Kitazawa and Kazunori Nakajima*

Department of Anatomy, Keio University School of Medicine, Tokyo, Japan

A fine structure of the hippocampus is required for proper functions, and disruption of

this formation by neuronal migration defects during development may play a role in some

psychiatric illnesses. During hippocampal development in rodents, pyramidal neurons in

the Ammon’s horn are mostly generated in the ventricular zone (VZ), spent as multipolar

cells just above the VZ, and then migrate radially toward the pial surface, ultimately

settling into the hippocampal plate. Although this process is similar to that of neocortical

projection neurons, these are not identical. In addition to numerous histological studies,

the development of novel techniques gives a clear picture of the cellular dynamics of

hippocampal neurons, as well as neocortical neurons. In this article, we provide an

overview of the cellular mechanisms of rodent hippocampal neuronal migration including

those of dentate granule cells, especially focusing on the differences of migration modes

between hippocampal neurons and neocortical neurons. The unique migration mode of

hippocampal pyramidal neurons might enable clonally related cells in the Ammon’s horn

to distribute in a horizontal fashion.

Keywords: hippocampus, migration, climbing mode, Ammon’s horn, dentate gyrus, layer pattern

Introduction

The hippocampal formation is a unique structure comprising the Ammon’s horn (the hippocampus
proper), dentate gyrus, entorhinal cortex, parasubiculum, presubiculum, and subicular complex. In
the rodent brain, this architecture is located on and around the convexly curved medial lobule of
the lateral cortex and is dorsally continuous with the neocortex. The hippocampus is a part of the
limbic circuit and is functionally associated with spatial learning, as well as short- and long-term
memory. In addition, functional magnetic resonance imaging (fMRI) analyses of some neuropsy-
chiatric disorders have indicated its involvement in various types of mental activities; for exam-
ple, decreased hippocampal volume was reported in patients with depression or post-traumatic
stress disorder (PTSD) (Campbell et al., 2004; Woon et al., 2010). Anatomical abnormalities in
the hippocampus are also observed in pathological conditions of some neuropsychiatric disorders,
such as epilepsy, lissencephaly, and schizophrenia (Baulac et al., 1998; Harrison, 2004; Donmez
et al., 2009). Some of these symptoms are thought to be associated with the migration deficit of
hippocampal neurons during development (Barkovich et al., 1991; Dobyns et al., 1996; Montene-
gro et al., 2006). Neuronal migration in the neocortex is well-studied, and the cellular dynamics
and molecular mechanisms involved in neuronal migration are also well-understood. Because the
hippocampus and neocortex are included in the cerebral cortex, their neuronal migration was
thought to be similar. However, differences in neuronal migratory behavior between these regions
exist. Studies on cellular behavior of hippocampal neurons are broadly classified into two cate-
gories in terms of their methods, classical cellular labeling and molecular biological approaches.
Classical techniques, such as Golgi staining and [3H] thymidine autoradiography labeling, were
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used to discover neuronal origins, cellular arrangements, neu-
ronal migration paths, and neuronal morphologies in the hip-
pocampus (Bayer, 1980; Nowakowski and Rakic, 1981; Rakic
and Nowakowski, 1981; Altman and Bayer, 1990a,b,c). Further-
more, the development of molecular biological approaches, such
as in utero electroporation, in utero virus transfer, and genera-
tion of transgenic mice, has shed light on the cellular dynamics of
migrating neurons, successive behavior of neurons, neuronal lin-
eages, and molecular mechanisms of hippocampal development
(Nakahira and Yuasa, 2005; Li et al., 2009; Kitazawa et al., 2014;
Seki et al., 2014; Xu et al., 2014).

In this review, we describe cellular dynamics and molec-
ular mechanisms of migration of pyramidal neurons in the
Ammon’s horn and granule cells in the dentate gyrus during
hippocampal development. There are three distinct hippocampal
neuroepitheliums—the Ammonic neuroepithelium, the primary
dentate neuroepithelium, and the fimbrial glioepithelium (Alt-
man and Bayer, 1990a). Pyramidal neurons in the Ammon’s horn
are mainly generated from the Ammonic neuroepithelium and
undergo radial migration to reach their final destination (Alt-
man and Bayer, 1990b; Nakahira and Yuasa, 2005; Kitazawa et al.,
2014), whereas cells comprising the dentate gyrus are originally
produced from the primary dentate neuroepithelium (dentate
notch), move in a migratory stream, and then migrate radially to
form the dentate granule cell layer (Altman and Bayer, 1990a,c;
Nakahira and Yuasa, 2005; Li et al., 2009; Seki, 2011; Li and Plea-
sure, 2014; Seki et al., 2014). We also compare neuronal migra-
tion between the neocortex and the hippocampus proper during
development.

Migration of Neocortical Pyramidal
Neurons

Before describing migration of hippocampal neurons, we briefly
outline migration of pyramidal neurons during rodent neocor-
tical development (Figure 1A) to compare the migration mode
between hippocampal pyramidal neurons and neocortical neu-
rons (for a detailed illustration of neocortical neuronal migration,
see reviews by Tabata et al., 2012; Evsyukova et al., 2013; Tan and
Shi, 2013; Sekine et al., 2014). Pyramidal neurons generated in the
neocortical ventricular zone (VZ) undergo morphological trans-
formation before migrating up beneath the marginal zone (MZ),
as summarized below.

Neocortical pyramidal neurons are generated from radial glial
cells in the VZ (Miyata et al., 2001; Noctor et al., 2001) or from
basal progenitors or basal radial glia in or around the subven-
tricular zone (SVZ) (Noctor et al., 2004; Shitamukai et al., 2011;
Wang et al., 2011). Neurons produced in the VZ remain there for
at least 10 h with an apical process reaching the ventricular sur-
face. The cells then move to just above the VZ (multipolar cell
accumulation zone, MAZ), where they assume multipolar mor-
phology and stay for about 1 day (Tabata and Nakajima, 2003;
Tabata et al., 2009). Multipolar neurons in the MAZ repeatedly
extend and retract multiple thin processes, and slowly wander
and move toward the cortical plate (CP) (Tabata and Nakajima,
2003; Tabata et al., 2009). This unique behavior of multipolar
neurons is called “multipolarmigration.” Themultipolar neurons
then transform into bipolar cells with a leading process extending

FIGURE 1 | Schematic diagrams of migration and layer arrangement

on the neocortex and hippocampal CA1 during cortical development.

(A) Neocortical neurons born between E10 and E12 radially migrate using the

somal translocation mode. In contrast, late-born neurons transform their

migration mode sequentially to multipolar migration, locomotion mode, and

terminal translocation mode during their radial migration. These neurons

form neocortical layers in a birthdate-dependent inside-out manner.

(B) Hippocampal CA1 neurons born at late developmental stages change the

migration mode to multipolar migration and then to the climbing mode. The

migration mode used by early-born CA1 neurons remains unknown (somal

translocation mode is a candidate). The layer arrangement in the Ammon’s

horn is thought to occur roughly in a birth-date dependent inside-out manner

(another claim was also reported; see text for details). PP, preplate; VZ,

ventricular zone; MZ, marginal zone; CP, cortical plate; IZ, intermediated zone;

MAZ, multipolar cell accumulation zone; WM, white matter; HP, hippocampal

plate; SLM, stratum lacunosum-moleculare; SR, stratum radiatum; SP, stratum

pyramidale; SO, stratum oriens.

from a spindle-shaped cell body. These bipolar neurons migrate
radially through the intermediated zone (IZ) and the CP along
with a radial glial fiber. This migration mode is called “locomo-
tion” (Rakic, 1972; Nadarajah et al., 2001). When the leading
process of migratory neurons reaches the MZ, the neurons are
thought to anchor the tip of the leading process in the MZ and
leave from the radial glial fiber. Then, the neuronal cell body
is pulled up while shortening the leading process and the cells
stop just beneath the MZ (Nadarajah et al., 2001; Sekine et al.,
2011). This final migration mode is termed “terminal translo-
cation.” Neurons born in the mouse VZ at E14, for example,
take about 4–5 days to complete their migration (Ajioka and
Nakajima, 2005). Because newly generated pyramidal neurons
pass through earlier-born neurons before reaching beneath the
MZ, pyramidal neurons are arranged in a birth-date-dependent
inside-out manner, in which earlier-born neurons are positioned
in the deep layers and later-born neurons are located in the more
superficial layers in the CP (Angevine and Sidman, 1961).

Migration of Hippocampal CA1 Pyramidal
Neurons

The Ammon’s horn is compartmentalized into the CA1, CA2,
and CA3 along with the transverse axis, and horizontally divided
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into several ordered layers—stratum oriens, stratum pyrami-
dale (SP or the pyramidal cell layer), stratum radiatum (SR),
and stratum lacunosum-moleculare (in only the CA3 region, the
stratum lucidum exists between the SP and the SR). Pyramidal
neurons in the hippocampal CA1 region are generated in the
Ammonic neuroepithelium mainly from E16 to E20 with the
peak around E18–19 in rats (Bayer, 1980; Altman and Bayer,
1990a,b), and from E12 to E18 with the peak between E14 and
E16 in mice (Angevine, 1965; Caviness and Sidman, 1973; Smart,
1982; Kitazawa et al., 2014). Because the generation of pyramidal
neurons and neuronal behaviors during development are differ-
ent between the hippocampal CA1 and the CA3, we describe
migratory behaviors of CA1 pyramidal neurons first and then
those of CA3 neurons later (details of CA2 pyramidal neuronal
migration are not well-known). Pyramidal neurons in the hip-
pocampal CA1 region are mostly generated in the VZ, while a
small population is produced from basal progenitors in the SVZ
(Kitazawa et al., 2014). The newly born neurons leave the VZ and
stay just above the VZ. These post-mitotic cells transform into
multipolar cells with multiple thin processes and slowly move
toward the IZ with repeated extension and retraction of these
processes (Nakahira and Yuasa, 2005; Kitazawa et al., 2014). Exis-
tence of these multipolar neurons in the Ammon’s horn has also
been identified in the rabbit (Stensaas, 1967a,b) and the mon-
key (Nowakowski and Rakic, 1979). The time length of assuming
multipolar morphology above the VZ (or in the hippocampal
MAZ) differs depending on birthdates; neurons born at E12 or
E13 stay as multipolar cells within 1 day, whereas those gener-
ated at E15 or E16 densely accumulate in the MAZ as multi-
polar cells for 3–4 days (Kitazawa et al., 2014). When late-born
CA1 pyramidal neurons (generated from E14 to E16) move into
the IZ, they transform into a bipolar spindle-shaped morphol-
ogy, with one major leading process and multiple thin processes
extending toward various directions (Nakahira and Yuasa, 2005;
Kitazawa et al., 2014). These spindle-shaped neurons migrate
through the IZ toward the hippocampal plate (HP, future stra-
tum pyramidale), but sometimes transform their morphology
back to a multipolar morphology. Upon observation of fixed tis-
sue sections, the neurons seem to migrate along with radial glial
fibers in the IZ, even when the fibers bend and curve (Nakahira
and Yuasa, 2005). Recent time-lapse imaging has revealed that
neurons in the IZ move obliquely at first and gradually migrate
radially (Kitazawa et al., 2014), which coincides with the track
of radial fibers. Nowakowski and Rakic also identified the appo-
sition of neurons with radial glial fibers in the IZ of the monkey
hippocampus in electronmicroscopic analyses (Nowakowski and
Rakic, 1979). Just before neurons enter the HP, they extend one or
two major branched leading process(es) with multiple thin pro-
cesses (Nowakowski and Rakic, 1979; Kitazawa et al., 2014) and
touch multiple radial glial fibers at the tip or the middle of the
branched processes (Kitazawa et al., 2014). When they migrate
through the HP, they dynamically extend and retract branched
leading processes as if they were searching for the radial glial
fibers. On the other hand, the cell soma of the migrating neuron
moves up to the first branching point of the leading process. Sub-
sequently, one of the branches grows and becomes a new leading
process, followed by the movement of the cell soma again to the

first branching point of the new leading process. In the HP of
the CA1, migratory neurons repeat this process, thereby chang-
ing their migration scaffold (radial glial fiber) one after another
until they reach the top of the HP. Consequently, hippocampal
pyramidal neurons move in a zigzag manner, in contrast to the
almost straight path of neocortical migrating neurons. Because
this hippocampal migration mode is different from the well-
known modes of migration, it was termed a “climbing mode”
(Kitazawa et al., 2014) (Figure 1B).

The Difference between Migration of
Hippocampal CA1 Pyramidal Neurons and
that of Neocortical Neurons

There are a couple of similarities in the mode of neuronal migra-
tion between the hippocampal CA1 and the neocortex. One is the
place of neuronal production, which is located in the VZ and SVZ
in both structures. Neurons are generated near the ventricle and
principally migrate toward the pial surface. The second similarity
is the transformation into multipolar morphology when neurons
migrate out of the VZ. The neurons reside in the MAZ for some
time, and then transform into a bipolar morphology. However,
there are also several major differences between the regions, such
as migration mode, length of time required for completion of
migration, and alignment pattern of the pyramidal neurons.

During development, neocortical neurons migrate in locomo-
tion and terminal translocation modes through the CP (Nadara-
jah et al., 2001; Sekine et al., 2011; Evsyukova et al., 2013),
while pyramidal neurons in the hippocampal CA1 region adopt
a climbing migration mode, at least during the late stages of hip-
pocampal development. Neocortical neurons in the locomotion
mode migrate almost straight along individual radial glial fibers
in the CP. In the outermost region of the CP [primitive cortical
zone, PCZ (Sekine et al., 2011)], they take the terminal translo-
cation mode before stopping beneath the MZ. In contrast, hip-
pocampal neurons in the climbing migration mode migrate in
a zigzag manner using several scaffold radial glial fibers in the
HP (Kitazawa et al., 2014). The migratory speed for each migra-
tion mode is also different. The average migrating speeds of hip-
pocampal CA1 neurons in the climbing mode and neocortical
neurons in the locomotion mode are 7.1 and 20.5µm/h, respec-
tively (Kitazawa et al., 2014). The speed of neocortical neurons in
the terminal translocation mode is much faster, up to 50µm/1–
2 h (Sekine et al., 2011). Neocortical migrating neurons in a loco-
motionmode basically use a single radial glial fiber as the scaffold,
whereas hippocampal neurons proceed using multiple radial glial
fibers. The difference in these processes may bring about the dif-
ference in migration speed. Because cell density in the HP in
late developmental stages is much greater than in the CP, with
exception of the PCZ, it may be difficult for hippocampal CA1
neurons to migrate straight, unlike locomoting neurons in the
neocortical CP. Because the Ammon’s horn is widely extended
during development (Altman and Bayer, 1990b), it is thought
that pyramidal neurons born near the ventricle may need tomove
obliquely using the climbing mode of migration to fill up layers
without gaps.
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The second difference is the time spent migrating. Hippocam-
pal CA1 pyramidal neurons generated at E15 or E16 spend
7–9 days to reach their final destinations (Tomita et al., 2011;
Kitazawa et al., 2014), whereas it takes only 4–5 days for the neo-
cortical late-born neurons to migrate beneath the MZ, although
the migratory distance is much longer in the neocortex. This
difference is observed not only in mice, but also in rats (Alt-
man and Bayer, 1990b) and monkeys (Nowakowski and Rakic,
1981). Two factors apparently cause this difference. One is the
difference in neuronal migration speed as mentioned above. The
other is the time period when neurons remain in the MAZ as
multipolar cells, termed “sojourning” cells by Altman and Bayer
(1990b). Neocortical neurons spend about 1 day in the MAZ
(Tabata et al., 2009). In contrast, the hippocampal CA1 neu-
rons generated in late embryonic days spend almost 3 days in
the MAZ, while this period varies depending on their birth-
dates (Nakahira and Yuasa, 2005; Kitazawa et al., 2014). Why
do hippocampal neurons generated during late stages stay in the
MAZ so long? There are at least two possibilities. One is the
existence of alveolar channels, which are cell-free transient extra-
cellular matrices dispersed in the IZ, just above the MAZ (Alt-
man and Bayer, 1990b). Altman and Bayer displayed that this
matrix becomes filled with axonal fibers of an unknown origin,
and suggested that multipolar cells in the CA1 region might wait
for the appearance of this matrix because of the connection to
these axons (Altman and Bayer, 1990b). In addition, Deguchi
et al. exhibited that neurons born with the same birthdate in
the CA1, CA3, and dentate gyrus had similar gene expression
patterns and preferentially connected with each other (Deguchi
et al., 2011). Multipolar cells in the CA1 region may leave from
the MAZ after CA3 neurons extend their axons and connect
with them. In contrast, we showed that axon bundles appeared
just above the MAZ at E15 and E16. These axon bundles origi-
nated from earlier-born neurons in the hippocampal CA1 region,
and when they were transfected with GFP at E13.5, for exam-
ple, the labeled axon bundles were located just above the mul-
tipolar cells at E18.5 (Kitazawa et al., 2014). The appearance of
these axonal bundles coincided with the accumulation of mul-
tipolar cells in the hippocampal MAZ. CA1 neurons born on
earlier days spend a much shorter time in a multipolar mor-
phology and reach the pial surface in a short time, whereas axon
bundles are not observed above multipolar cells in these earlier
days (Kitazawa et al., 2014). Axonal bundles from earlier-born
neurons may interfere with the migration of late-born pyrami-
dal neurons. Future studies are needed to better understand the
behavior of multipolar cells.

Finally, the pattern of neuronal alignment in the hippocam-
pus may be different from the neocortex. Labeling experiments
using [3H] thymidine indicate that hippocampal laminar forma-
tion occurs in a birthdate-dependent inside-out pattern in which
earlier-born neurons comprise the deep SP region and later-born
neurons join the superficial region, which is similar to the neo-
cortical layer formation (Bayer, 1980; Rakic and Nowakowski,
1981; Altman and Bayer, 1990b). Recently, Xu et al. reported
that hippocampal clonally related neurons in the CA1 region
are distributed in a horizontal manner, not in a vertical col-
umn as neocortical neurons, shown using retroviral labeling and

transgenic mice to label clonally related cells (Xu et al., 2014).
The authors claimed that hippocampal layer formation did not
occur in a birthdate-dependent inside-out pattern, contrary to
previous reports. In addition to differences in their analytical
method, this disparity might be explained as follows. Because
neurons born on a certain day are distributed rather widely in
the SP with a birthdate-dependent peak position, neurons with
different birthdates are mixed with each other, obscuring the
inside-out pattern. In addition to the birthdate-dependent posi-
tioning in the vertical/radial axis, however, it is also reason-
able that the clonally related neurons are horizontally aligned.
Because the SP (or HP) in the Ammon’s horn region is hor-
izontally expanded during development and is not as thick as
the CP in the neocortex, this suggests the difficulty of clonally
related neurons in the hippocampus proper to be aligned in a
vertical manner like neocortical clonal neurons. Even if neurons
in the HP of the Ammon’s horn tend to align in an inside-
out pattern, they would also move to cover spaces in the layer
yielded by the structural expansion, resulting in lateral/horizontal
expansion of clonally related neurons. The climbing mode of
migration is thought to be suitable to fill up gaps in the layer,
because neurons in this mode can move to various directions,
enabling clonal sister neurons to distribute broadly within the
layer. Bending of radial glial fibers near the HP/SP would also
be partly related to horizontal distribution of sister neurons (Xu
et al., 2014), but similar bending of radial glial fibers beneath
the CP/subplate is also observed in the neocortex, especially
in the lateral part (Tabata and Nakajima, 2001), indicating that
the bending morphology of radial fibers cannot fully explain
the horizontal distribution of sister neurons in the hippocam-
pus. Schematic models of neuronal behaviors in the neocortex
and the Ammon’s horn during development are illustrated in
Figure 1.

Migration of Hippocampal CA3 Pyramidal
Neurons

The SP in the CA3 region has a unique U-shaped curve that
reaches the dentate hilus. In rats, the HP appears from E18 and
expands curvilinearly until E21, at which time the layer begins to
medially expand and forms a U-shaped structure by E22 (Alt-
man and Bayer, 1990b). The CA3 pyramidal neurons have a
neurogenic gradient such that pyramidal neurons near the CA1
region are generated earlier than those near the dentate gyrus
(Bayer, 1980). The neurogenesis gradient from ventral to dor-
sal is also observed in the CA3 region. The neurogenesis of CA3
pyramidal neurons takes place in the VZ between E16 and E20,
with a peak between E17 and E18 in rats, which is earlier than
the generation of hippocampal CA1 neurons that peak around
E18 and E19 in rats (Bayer, 1980; Altman and Bayer, 1990a,b).
The generated neurons move to just above the VZ and trans-
form into a multipolar morphology, similar to CA1 pyramidal
neurons (Nakahira and Yuasa, 2005). However, CA3 neurons
remain longer in the MAZ than CA1 neurons. In mice, neu-
rons generated in the CA3 region at E14 exhibit multipolar mor-
phology even at E18, while CA1 pyramidal neurons born at the
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same time have already migrated into the HP (Nakahira and
Yuasa, 2005). This phenomenon is also observed in rats using
administration of [3H] thymidine (Altman and Bayer, 1990b).
Reports have shown that the sojourning period for CA3 pyrami-
dal neurons assuming a multipolar morphology is 1 day longer
than for CA1 neurons (Altman and Bayer, 1990b; Nakahira and
Yuasa, 2005). Altman and Bayer hypothesized that multipolar
cells in the CA3 region might wait for a connection with gran-
ule cells of the dentate gyrus, resulting in a longer sojourning
time (Altman and Bayer, 1990b). Again, the report by Deguchi
et al. showed that neurons generated at the same time in differ-
ent sub-regions connect preferentially with each other (Deguchi
et al., 2011), which may also explain a longer sojourn to wait for
a connection with dentate gyrus cells. The CA3 pyramidal neu-
rons accumulate in the MAZ for 4 days then migrate upward.
The migration modes of CA3 pyramidal neurons are thought
to be similar to CA1 pyramidal neurons, though only a limited
number of studies have been reported on the behavior of hip-
pocampal CA3 pyramidal neurons (Nakahira and Yuasa, 2005).
Interestingly, Nakahira and Yuasa also found that neurons gen-
erated at E16 in the mouse CA3VZ migrate tangentially toward
the subpial area, and that some neurons then detach from the
stream and migrate radially, with a unipolar shape, along with
radial glial fibers directed to the HP of the CA3 region (Nakahira
and Yuasa, 2005). This neuronal behavior is different from CA3
neurons generated at E14. Although the CA3 neurons born at
E16 account for only a small portion (Bayer, 1980), multiple
migration modes may exist for CA3 neurons depending on their
birthdates.

The major difference between the CA1 and the CA3 dur-
ing hippocampal development is the layer shape. The HP in the
CA1 is mildly curved and in parallel with its ventricular surface,
whereas the CA3 HP has a U-shape with one end invading the
dentate hilus. This end is apart from the VZ. Considering that
neurons at this end of the HP are also generated from the VZ in
the CA3, the long journey for the migrating cells is thought to
be one of the causes of delayed HP formation in the CA3, which
occurs 1 day later than HP formation in the CA1 (Altman and
Bayer, 1990b).

Although the CA1 and the CA3 are continuous architectures
via the CA2, pyramidal cells in each region express specific mark-
ers; for example, SCIP, a POU domain transcriptional factor, in
CA1 pyramidal neurons (Frantz et al., 1994; Tole et al., 1997),
and KA1, a glutamate receptor subunit, in CA3 neurons (Wisden
and Seeburg, 1993; Tole et al., 1997). Interestingly, these mark-
ers are already expressed in each cell group at E15.5 in mice,
when the cells are still localized in the IZ (Tole et al., 1997).
Explant culture experiments performed by Tole et al. revealed
that this marker is expressed in a cell-autonomous manner (Tole
and Grove, 2001). Therefore, the destination of cells comprising
the HP in the CA3 is thought to already be determined at, or soon
after, the multipolar cell stage. For future CA3 pyramidal cells,
especially those in the HP end of the dentate hilus, the climb-
ing migration mode may be adequate for migration and detours
to reach their final positions. Eventually, CA3 pyramidal neu-
rons might migrate more horizontally through the HP than CA1
pyramidal neurons.

Migration of Cells Comprising the Dentate
Gyrus

Since Altman found postnatal neurogenesis in the subgranular
zone (SGZ) of the dentate gyrus (Altman, 1963), it is well-
established that the dentate gyrus is one of the two regions where
adult neurogenesis occurs. Compared with studies on adult neu-
rogenesis, the development of the dentate gyrus and migratory
dynamics of granule cells have been less extensively studied. The
generation and migration of dentate cells during development
are complex and quite different from pyramidal neurons in the
Ammon’s horn (Figure 2). Dentate cells are generated in the pri-
mary dentate neuroepithelium located around the dentate notch,
which is ventral to the Ammonic VZ and dorsal to the fimbria at
E16 and E17 of rats (Altman and Bayer, 1990c) and at E13.5 and
E14 in mice (Li et al., 2009; Seki et al., 2014). By E15.5 in mice
(E18 in rats), some cells that are generated in the primary den-
tate VZ (Altman and Bayer, 1990c; Seki et al., 2014) migrate out
to the subpial region through the suprafimbrial region, which is

FIGURE 2 | Schema of migration of dentate cells during hippocampal

development. Newborn granule cells from the dentate notch migrate to the

secondary dentate matrix (SDM) (indicated by a brown arrow). The cells then

migrate to the subpial surface to form the outer part of the dentate granule cell

layer (light blue arrow 1), followed by the dentate hilus (light blue arrow 2),

which is called the tertiary dentate matrix (TDM) at this stage, to later form the

inner part of the layer. Cells in the TDM exhibit proliferative activities into

adulthood, although the proliferative region becomes restricted to the

subgranular zone. In contrast, pyramidal neurons in the hippocampal CA1 and

neocortex are generated in the Ammonic ventricular zone and the neocortical

ventricular zone, respectively, and migrate in a radial direction (indicated by

magenta and black arrows, respectively).
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designated as “dentate migration.” During this migration, these
cells still exhibit proliferative activity and form the secondary
dentate matrix (SDM in Figure 2) on the migratory route (Alt-
man and Bayer, 1990c; Pleasure et al., 2000). On the migrating
stream, the cells extend many processes to various directions
(Nakahira and Yuasa, 2005), and the migration route of gran-
ule cells and progenitors are separated into two routes. One is
the “first dentate migration” in which early-born cells migrate to
the crest of the dentate gyrus through the subpial route (route 1
in Figure 2) (Altman and Bayer, 1990c). The dentate cells in the
subpial region also exhibit highly proliferative activity (Li et al.,
2009). Themorphologies of cells in the subpial region are diverse;
for example, bipolar morphology and multipolar cell morphol-
ogy (Nakahira and Yuasa, 2005). This diversity is probably owing
to the variety of cellular maturation. The cells reaching the sub-
pial region radially migrate toward the supra-granular blade of
the dentate gyrus apposed to the radial glial fibers (Nakahira and
Yuasa, 2005). At this stage, these cells form a unipolar or bipo-
lar shape with one or two branches (Nakahira and Yuasa, 2005).
The dentate granule cells in the subpial region first form the outer
shell of the supra-granular blade of the dentate gyrus, and then
gradually shift to form the outer shell of the infra-granular blade
of the dentate gyrus. Around E17.5 and 18.5 in mice, a proto-
type of the dentate gyrus can be observed (Seki et al., 2014).
In late embryonic and early postnatal days, the “second den-
tate migration” appears in which the cells migrate toward and
reach the future dentate hilus (route 2 in Figure 2). Because these
cells still exhibit proliferative activity even in the hilus, the zone
where these cells exist is called the tertiary dentate matrix (TDM
in Figure 2). Dentate neurons generated from the TDM form
the inner part of the dentate gyrus. As a result, dentate granule
cells in the dentate granule cell layer adopt a birthdate-dependent
outside-in pattern, in which earlier-born neurons locate to the
outer part of this layer and later-born neurons position to the
inner region (Rakic and Nowakowski, 1981; Altman and Bayer,
1990c). Although neurogenesis in the TDM continues into adult-
hood, this zone becomes gradually restricted to the boundary
between the dentate granule cell layer and the hilus, called the
SGZ (Altman and Bayer, 1990c). Bayer suggests that granule cells
in the dentate gyrus are generated from E15 to adulthood in rats,
and about 80–85% of total granule cells are generated after birth
(Bayer, 1980).

Seki et al. traced the granule cells using a glial fibrillary acidic
protein (GFAP)-GFP transgenic mouse line (Seki et al., 2014).
GFAP was not thought to be a marker for “embryonic” progen-
itors of dentate granule cells, although GFAP is a well-known
marker for “adult” progenitors. Seki et al. found that migrating
progenitors of dentate granule cells, unlike those of neocortical
pyramidal neurons, express GFAP from the beginning of dentate
development, and these cells could be traced using a GFAP-GFP
transgenic mouse line. Immunohistochemical analyses using this
transgenic mouse line showed maturation of granule cells during
migration. For example, neurogenin-positive proneural cells are
mainly localized in the VZ, whereas Tbr2-positive early neural
progenitors are principally located in the migratory stream and
the developing dentate gyrus. NeuroD-positive immature neu-
rons are mostly located in the migratory stream, the developing

dentate gyrus, and the hilus, whereas prox1-positive granule cells
are positioned in the developing dentate gyrus and the hilus.
Sox2-positive progenitor cells are distributed all over the dentate
gyrus at E18 in mice. Accordingly, while these granule cells grad-
ually mature during migration, cells in each region are heteroge-
neous as to their degree of maturation. How this heterogeneous
group could migrate along the same route is not yet known.

Molecular Mechanism of Neuronal
Migration in the Hippocampus

A number of mutant mouse lines or the introduction of shRNA-
expression vectors for various genes into neurons in utero have
been used to show abnormal layer formation andmis-positioning
of neurons in the Ammon’s horn and the dentate gyrus during
hippocampal development. Some of the examples are summa-
rized below.

Reelin (and Related Molecules, ApoER2, VLDLR,
and Dab1)
Reelin is a giant glycoprotein secreted from Cajal–Retzius cells in
the MZ during development (D’Arcangelo et al., 1995; Hirotsune
et al., 1995; Ogawa et al., 1995). Reelin is known to be essential for
neuronal positioning in the brain and spinal cord (Yip et al., 2000,
2011; Honda et al., 2011; Sekine et al., 2014). For example, in the
neocortex, the reelin-deficient autosomal recessive mouse, reeler,
displays disrupted layer formation, including overall approxi-
mate inversion of the birthdate-dependent layering (Caviness,
1973). Anatomical analyses, such as [3H] thymidine injection and
in situ hybridization, disclosed that hippocampal layer formation
is also inverted in the reelermouse (Caviness, 1973; Stanfield and
Cowan, 1979a,b; Stanfield et al., 1979; Niu et al., 2004; Boyle et al.,
2011). Injection of CR-50, a function-blocking antibody against
Reelin protein, into the ventricle of mouse embryos also resulted
in a similar layer pattern to that of reelermice in the hippocampal
Ammon’s horn (Nakajima et al., 1997). Additionally, reeler mice
exhibit a divided SP in the CA1, ameandered SP in the CA3, a less
densely packed dentate gyrus, and a reduced number of granule
cells (Caviness, 1973; Stanfield and Cowan, 1979a,b; Boyle et al.,
2011).

Reelin binds to Apolipoprotein E receptor 2 (ApoER2) and
very low-density lipoprotein receptor (VLDLR) (D’Arcangelo
et al., 1999; Hiesberger et al., 1999; Trommsdorff et al., 1999),
subsequently induces phosphorylation of Disabled-1 (Dab1) by
Fyn or Src kinases, and then transduces the signal to several
downstream pathways to regulate neuronal migration and cellu-
lar positioning (Honda et al., 2011; Sekine et al., 2014). Double
KO mice of apoer2 and vldlr show similar phenotypes to those
of reeler mice. Additionally, KO mice of apoer2 show slightly
more severe SP splitting than the vldlr KO mice, while the phe-
notypes of these single KO mice are milder than those of double
KO mice (Trommsdorff et al., 1999; Drakew et al., 2002; Weiss
et al., 2003). The dab1 KO mice also exhibit the same hippocam-
pal abnormality as the reeler mice (Howell et al., 1997; Weiss
et al., 2003).

Analysis of the migratory stream of dentate cells using nestin-
GFP transgenic mice mated with reeler mice suggests that Reelin
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is not necessary for the migration of dentate precursors (Nestin-
GFP positive cells) from the dentate notch to the subpial zone, but
is indispensable for later migration of these cells from the sub-
pial zone to the granule cell layer (Li et al., 2009). Prox1-positive
granule cells in these mice are arranged abnormally in the den-
tate area, suggesting the involvement of Reelin in the final radial
migration of dentate granule cells. Forster et al. reported that
Reelin and Dab1 affect radial glial cell differentiation and branch-
ing in the hippocampus and the loss of these genes causes abnor-
mal radial fiber formation, resulting in failed neuronal migration
in the hippocampus (Förster et al., 2002). Zhao et al. rescued
reeler malformation in the orientation of radial glial fibers and
dentate cell migration in vitro during dentate gyrus development
when they adjacently co-cultured reeler dentate gyrus with rat
wild-type dentate gyrus (Zhao et al., 2004, 2006). These results
collectively imply that Reelin controls neuronal migration in
the hippocampus in cell-autonomous and non-cell-autonomous
manners.

Cyclin-dependent Kinase 5 (Cdk5)/p35
Cdk5 is a serine/threonine kinase and is activated by binding
with its regulatory co-factor p35 or p39. Cdk5 activity is rich
in brains during development, and p35 or p39 expressions are
restricted to the brain. Cdk5 regulates various aspects of neu-
ronal functions such as cell migration, cytoskeletal remodeling,
and adult neurogenesis via phosphorylation of various types of
molecules (Su and Tsai, 2011). The cdk5 KO mice are lethal by
birth and display disrupted laminar formation in the neocortex
and hippocampus (Ohshima et al., 1996). The p35 KO mice also
exhibit mis-positioning of neuronal cells in the Ammon’s horn
(partly distinct SP is observed in the CA3, but not in the CA1)
and the dentate gyrus, though the phenotypes are moderate com-
pared with cdk5 KO mice (Wenzel et al., 2001; Ohshima et al.,
2005). Cdk5 regulates multipolar-to-bipolar transition of migra-
tory neurons in the neocortex via RapGEF2 phosphorylation
(Ohshima et al., 2007; Ye et al., 2014). Because hippocampal pyra-
midal neurons also perform this transition, a similar mechanism
may also play a role during Ammon’s horn development.

Doublecortin (Dcx)
DCX is a microtubule-associated protein involved in neu-
ronal migration and a causative gene for X-linked lissencephaly
(des Portes et al., 1998; Gleeson et al., 1998). Patients with
lissencephaly with DCX mutations exhibit defects in neocortical
and hippocampal lamination (Barkovich et al., 1991). Hemizy-
gous male dcx mutant mice are lethal by early postnatal days
and display disrupted hippocampal formation, that is, abnormal
neuronal positioning/migration in the Ammon’s horn and partial
dividing of the SP in the CA3, while neocortical laminar forma-
tion and the dentate gyrus are quite normal (Corbo et al., 2002).
The dcx heterozygous female mice display milder malformation
in the hippocampus and deficits in learning and memory (Corbo
et al., 2002). KO mice of dclk1 or dclk2, doublecortin-like kinase
1 or 2, respectively, are anatomically normal in the hippocam-
pus (Deuel et al., 2006; Tanaka et al., 2006; Kerjan et al., 2009),
but the double KO mice of dcx and dclk1 show severe abnormal-
ities in hippocampal laminar formation in the Ammon’s horn

and the dentate gyrus (Deuel et al., 2006; Tanaka et al., 2006).
In contrast, double KO mice of dcx and dclk2 exhibit disrupted
laminar formation in CA1 and CA3 region and a less-packed
dentate granule layer (Kerjan et al., 2009). Considering themajor-
ity of mutant mice mentioned in this review also show abnor-
malities in the neocortex, the hippocampus and neocortex are
likely to share molecular pathways during development. Mutant
mice that exhibit malformations specifically in the hippocampal
region, such as dcx KO mice, may become a key tool to bet-
ter understand the molecular mechanisms underlying the unique
process of hippocampal development, such as the climbing mode
of migration. Analyses of dcx KO mice and double KO mice of
dcx and dclk1 or dclk2 may also provide insight into differences
between hippocampal CA1 and CA3 regions.

Pafah1b1 (formerly Lis1)
PAFAH1B1 is another causative gene for lissencephaly (Reiner
et al., 1993; Hattori et al., 1994; Lo Nigro et al., 1997). Pafah1b1
regulates microtubule-based transport by binding with Dynein
motor proteins and Ndel1 (formerly Nudel) (Sasaki et al., 2000).
Heterozygous Pafah1b1 KO mice exhibit malformations of the
hippocampal cytoarchitecture, which results from delayed neu-
ronal migration and abnormal cellular positioning (Hirotsune
et al., 1998; Fleck et al., 2000). Consequently, hippocampal lay-
ers in the Ammon’s horn become discontinuous and multiple in
this mouse, whereas granule cells in the dentate gyrus are less
concentrated and loosely packed (Fleck et al., 2000). Another
lissencephaly-associated protein, tubulin alpha 1A (Tuba1a), is
also involved in hippocampal layer formation (Keays et al.,
2007). The tuba1a S140G mutant mice induced by injection of
N-ethyl-N-nitrosourea (ENU) exhibit deficits in neuronal migra-
tion, resulting in a double layer of the hippocampal CA1 and CA3
regions, as well as abnormal laminar formation in the neocortex
(Keays et al., 2007).

Cxcl12 (SDF-1)/Cxcr4
SDF-1 is another secreted protein that regulates cellular migra-
tion (Bleul et al., 1996; Ma et al., 1998; Klein et al., 2001).
In the dentate gyrus, SDF-1 is expressed in the meninges and
Cajal–Retzius cells, whereas its receptor Cxcr4 is expressed in
migratory granule cells in the second dentate matrix and the
migratory stream (Bagri et al., 2002). Disruption of the normal
SDF-1 gradient by the ectopic SDF-1 expression to the hippocam-
pal field using electroporation into slice culture causes a deficit
in granule cell migration, suggesting SDF-1 is a chemoattrac-
tant factor for dentate migration (Bagri et al., 2002). The cxcr4
KO mice exhibit a disrupted dentate gyrus, caused by migra-
tion defects of granule cells along the subpial stream and subse-
quent radial migration (Bagri et al., 2002; Lu et al., 2002; Li et al.,
2009).

Nuclear Factor Ib (Nfib)
Nfib is a member of nuclear factors I (Nfia, b, c, and d) and func-
tions as a transcriptional factor. The nfib KOmice display abnor-
mal hippocampal formation, including the CA3, dentate gyrus,
and fimbria, which may be due to aberrant maturation of radial
glial fibers in the Ammon’s horn (Steele-Perkins et al., 2005; Barry
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et al., 2008). Although the deficient mouse exhibits normal cell
proliferation, the dentate cells accumulate in the subpial region
during dentate migration. Barry et al. suggest that this abnormal
positioning of dentate cells is attributed to failed radial migration
(Barry et al., 2008).

Disrupted-in-Schizophrenia-1 (Disc1)
DISC1 is a risk gene for major psychiatric disorders, including
schizophrenia. We have previously reported that Disc1 knock-
down by in utero electroporation causes abnormal migration of
hippocampal CA1 neurons; knockdown cells fail to enter the
pyramidal layer (Tomita et al., 2011). Disc1 is also related to
migration and positioning/integration of dentate granule cells
during development and adulthood (Duan et al., 2007; Kim et al.,
2009; Meyer and Morris, 2009). KO mice of girdin, a Disc1 inter-
acting molecule, show dispersion of granule cells in the dentate
gyrus, mis-positioning of pyramidal neurons in the CA1 and
the CA3, and split layer in the CA2 (Enomoto et al., 2009).
Knockdown of girdin in dentate granule cells results in over-
migration, as observed for the Disc1 knockdown cells. Because
other genes implicated in neuropsychiatric diseases, such asCNT-
NAP2 (Peñagarikano et al., 2011) and FMRP (La Fata et al., 2014),
are reported to be involved in neuronal migration during neo-
cortical development, it will be interesting to determine whether
these genes also affect hippocampal neuronal migration.

Hippocampal neuronal migration is controlled by extracellu-
lar factors, such as Reelin, SDF-1, and radial glial fibers, as well
as intracellular molecules as mentioned above. Both the reeler
mouse and the nfib KOmouse exhibit abnormal radial glial fibers
and disrupted dentate gyrus formation. However, both KO mice
exhibit normal dentate cell migration and cells accumulate in the
subpial region; the final migration toward the dentate layer is
conducted along radial fibers, whereas dentate migration to the
subpial region may be independent of these molecules.

Pafah1b1, Dcx, and Tuba1A regulate microtubule dynamics.
Dab1 is reported to bind to Lis1 downstream of Reelin signaling
(Assadi et al., 2003). Dcx is phosphorylated by Cdk5 at Ser297,
resulting in reduced microtubule polymerization and binding
affinity to microtubules (Tanaka et al., 2004). Cdk5 also regu-
lates the Pafah1b1-Ndel1-Dynein complex via Ndel1 phosphory-
lation (Niethammer et al., 2000; Sasaki et al., 2000). Furthermore,
Cdk5 and Reelin signaling synergistically contribute to neuronal
positioning (Ohshima et al., 2001, 2007; Beffert et al., 2004).
Therefore, microtubule dynamics is critical for migration of the
hippocampal cells, similar to neocortical neurons.

A number of mutant mice exhibiting abnormal hippocam-
pal formation also display splitting of the SP in the Ammon’s
horn, although the extent of splitting is not uniform. This may
suggest the existence of multiple migration modes for hippocam-
pal pyramidal neurons. In the rodent hippocampus, deep and
superficial sublayers are visibly distinguished by cellular density
and morphology in the ventral two-thirds of CA1 (Slomianka
et al., 2011). Slomianka et al. also reviewed the distinction of his-
tological, molecular, and connective features between deep and
superficial sublayers in the hippocampal Ammon’s horn (Slomi-
anka et al., 2011). For example, superficial pyramidal cells express

Satb2 during development, Nov and Nr3c2 in the hippocampal
CA1 in adulthood, and Kcnq5 in the CA3 (Thompson et al., 2008;
Dong et al., 2009). In contrast, deep pyramidal neurons express
Sox5 during development, Ndst4 and Astn2 in the CA1 in adult-
hood, and St18 in the CA3 (Thompson et al., 2008; Dong et al.,
2009). Furthermore, Mizuseki et al. showed physiological differ-
ences between deep and superficial sublayers in the hippocam-
pal CA1 region of rats, such as theta phase preference during
REM sleep and gamma phase preference during behavioral task
(Mizuseki et al., 2011). In the hippocampal CA1, the climbing
mode of migration is observed for late-born neurons (Kitazawa
et al., 2014). In contrast, Morest reported that hippocampal cells
extended their leading process through the HP and kept it until
they reach the pial surface during the early developmental stages
of opossum (Morest, 1970). Rodent hippocampal cells may also
use this somal-translocation-like mode, especially during early
stages of development. If this is the case, early-born neurons
and late-born neurons might use different modes of migration
and ultimately settle in their respective positions in the SP. The
distinct populations between superficial and deep layers may be
reflected by specific gene expressions and functions.

Conclusion

This review discusses the migration of pyramidal neurons in the
Ammon’s horn and granule cells in the dentate gyrus during
hippocampal development. The structure of the hippocampus is
dynamically expanded and becomes complicated during devel-
opment. Because the climbing mode of migration is a flexible
migration mode, it may be necessary for hippocampal neurons
to accommodate to this hippocampal formation. The migra-
tion of dentate cells is well-organized, while cellular maturation
is diverse along the migratory stream. Integration of molecu-
lar biological studies with histological studies has led to novel
discoveries focused on cellular and molecular mechanisms of
hippocampal development. Further studies on behaviors of hip-
pocampal neurons are expected in the future to fully understand
hippocampal development and functions.
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Genotype-phenotype correlation in
neuronal migration disorders and
cortical dysplasias
Mitsuhiro Kato*†

Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan

Neuronal migration disorders are human (or animal) diseases that result from a
disruption in the normal movement of neurons from their original birth site to their
final destination during early development. As a consequence, the neurons remain
somewhere along their migratory route, their location depending on the pathological
mechanism and its severity. The neurons form characteristic abnormalities, which
are morphologically classified into several types, such as lissencephaly, heterotopia,
and cobblestone dysplasia. Polymicrogyria is classified as a group of malformations
that appear secondary to post-migration development; however, recent findings of
the underlying molecular mechanisms reveal overlapping processes in the neuronal
migration and post-migration development stages. Mutations of many genes are involved
in neuronal migration disorders, such as LIS1 and DCX in classical lissencephaly
spectrum, TUBA1A in microlissencephaly with agenesis of the corpus callosum, and
RELN and VLDLR in lissencephaly with cerebellar hypoplasia. ARX is of particular
interest from basic and clinical perspectives because it is critically involved in tangential
migration of GABAergic interneurons in the forebrain and its mutations cause a variety
of phenotypes ranging from hydranencephaly or lissencephaly to early-onset epileptic
encephalopathies, including Ohtahara syndrome and infantile spasms or intellectual
disability with no brain malformations. The recent advances in gene and genome analysis
technologies will enable the genetic basis of neuronal migration disorders to be unraveled,
which, in turn, will facilitate genotype-phenotype correlations to be determined.

Keywords: lissencephaly, heterotopia, polymicrogyria, tubulinopathy, interneuronopathy, LIS1, DCX, ARX

Introduction

The characteristic six-layered neocortex in the human brain is formed by two types of neuron,
projection neurons and interneurons, which migrate from their birth places, such as the ventricular
zone and ganglionic eminence, respectively. Neuronal migration disorders are human (or animal)
diseases that result from the disruption of normal movement of neurons from their original
birth site to their final destination during early development. As a consequence, the neurons
remain somewhere along their migratory route, their location depending on the pathological
mechanism and its severity. Many genes have been found to be responsible for neuronal
migration disorders, such as LIS1 and DCX in classical lissencephaly spectrum, TUBA1A in
lissencephaly with cerebellar hypoplasia, ARX in X-linked lissencephaly with abnormal genitalia
(XLAG), FLNA and ARGEF2 in periventricular heterotopia, FCMD and glycosylation-related
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genes, such as POMT1, POMT2, POMGNT1, POMGNT2,
FKRP, LARGE, TMEM5, POMK, ISPD, GMPPB, B3GNT1,
and B3GALNT2 in cobblestone dysplasias, GPR56, SRPX2,
and some tubulin-related genes, e.g., TUBA8, TUBB2B,
and TUBB3, in polymicrogyria (Kato and Dobyns, 2003;
Vuillaumier-Barrot et al., 2012; Buysse et al., 2013; Stevens
et al., 2013; Fry et al., 2014). Recently, we found that mutations
in COL4A1, which encodes type IV collagen alpha 1 subunit,
cause schizencephaly accompanied by polymicrogyria in
the adjacent cortex of the transmantle cleft as well as focal
cortical dysplasia (Yoneda et al., 2013). Historically, brain
malformations including neuronal migration disorders
have been classified based on a postmortem examination.
The advancement and spread of neuroimaging techniques,
particularly magnetic resonance imaging (MRI), make it easier
to find out many types of brain malformations, but make it
more complicated to classify them. Moreover, the unveiling
of responsible genes for brain malformations has changed
the classification scheme and causes most neuroscientists
and even physicians trouble to follow it. Here, I review the
clinical manifestation of neuronal migration disorders, focusing
mainly on lissencephaly, in terms of genotype-phenotype
correlations.

Lissencephaly Spectrum: Classical
Lissencephaly to Subcortical Band
Heterotopia

Lissencephaly is classified as a spectrum of disorders caused
by widespread abnormal transmantle migration, ranging from
classical lissencephaly (agyria or pachygyria) to subcortical band
heterotopia or double-cortex syndrome (Barkovich et al., 2012).
Classical lissencephaly is characterized by a smooth (lissos in
Greek) brain surface with a decreased number of sulci and wide
gyri. Mutations in LIS1, located on chromosome 17p13.3, orDCX
on Xq23 are the main cause for classical lissencephaly (Table 1)
(Kato and Dobyns, 2003). Mutations in DCX are causative for
classical lissencephaly in male individuals and subcortical band
heterotopia in female individuals. A combination of a severity
grading scale [the most severe form, Grade 1 (total agyria) to
the mildest form, Grade 6 (subcortical band heterotopia) via
the intermediate forms comprised of a combination of agyria,
pachygyria, and subcortical band heterotopia] and an anterior or
posterior gradient scale is useful to predict the causative gene for
lissencephaly spectrum (Kato and Dobyns, 2003). For instance,
mutations of LIS1, ARX, or TUBA1A result in a posterior
more severe than anterior gradient, while mutations of DCX or
RELN lead to an anterior more severe than posterior gradient.
LIS1 participates in cytoplasmic dynein-mediated nucleokinesis,
somal translocation, and cell motility (Smith et al., 2000) as
well as mitosis or neurogenesis and chromosomal segregation
(Faulkner et al., 2000). DCX is a microtubule-associated protein
and is involved in microtubule polymerization and stabilization
(Gleeson et al., 1999).Missensemutations inDCX responsible for
lissencephaly spectrum are mainly located in two tandem repeats
(N-terminal or C-terminal doublecortin domains), which bind to

microtubules or free tubulin and other components (Friocourt
et al., 2005), respectively.

MRI of the brain is useful to discriminate agyria, pachygyria,
and subcortical band heterotopia. Agyria is generally
characterized by the disappearance of deep sulci in more
than one lobe and the thickness of the cortex is 10–20mm
(Figure 1). The gyri in pachygyria are wider than in the normal
cortex and the thickness of the cortex is 4–9mm (Figure 2).
Brain MRI of subcortical band heterotopia shows bilateral
continuous symmetric bands of gray matter underlying an
almost normal cortical mantle with relatively shallow sulci
(Figure 3). More than 90% of patients with subcortical band
heterotopia are female and the cause is usually heterozygous
DCX mutation. Subcortical band heterotopia in male patients
is caused by somatic mosaic DCX mutations or LIS1 mutations
(Gleeson et al., 2000; Kato et al., 2001; D’agostino et al., 2002;
Poolos et al., 2002). Coexistence of agyria and pachygyria or
pachygyria and subcortical band heterotopia can be seen in
the same patient, suggesting common mechanisms for these
phenotypes. Microscopically, agyria and pachygyria present a
four-layered cortex with an outer molecular layer, superficial
layer, cell sparse layer, and deep cellular layer. In the marginal
zone between pachygyria and subcortical band heterotopia, the
outer molecular layer corresponds to layer I of the normal six-
layered cortex, the superficial layer corresponds to layers II–VI,
the cell sparse layer corresponds to subcortical white matter, and
the deep cellular layer corresponds to band heterotopia with
a mass of unlayered ectopic neurons (Figure 4). The primary
pathology of lissencephaly due to theDCX mutations shows only
minor differences compared with that caused by LIS1mutations,
for example, inferior olivary ectopia is present in LIS1 mutation
brains but is absent in DCX mutation brain (Berg et al., 1998);
however, Viot et al. report a different cortical architecture for
DCX lissencephaly (Viot et al., 2004).

The severity of the clinical manifestations of lissencephaly
spectrum is correlated with the degree of brain malformation.
Patients with agyria show severe muscle hypotonia from infancy
(known as floppy infant) and achieve neither head control nor are
they able to say meaningful words. A specific form of epileptic
seizure, epileptic spasms, occurs in 80% of patients with agyria
or pachygyria, although electroencephalography (EEG) may not
present with typical hypsarrhythmia, which is characteristically
seen in infantile spasms or West syndrome (Guerrini, 2005).
However, the main clinical features of subcortical band
heterotopia are intellectual disability and epileptic seizures,
both of which are milder than those of agyria or pachygyria.
Intellectual disability ranges from normal to severe retardation
and correlates with the thickness of the band and the degree of
pachygyria (Barkovich et al., 1994; Bahi-Buisson et al., 2013).
Genetic counseling is particularly important for parents that have
a boy with classical lissencephaly or a girl with subcortical band
heterotopia because the mother may be a heterozygous carrier of
the DCX mutation.

Miller-Dieker syndrome is a contiguous gene syndrome
caused by a microdeletion in 17p13.3, a region that contains
LIS1 and YWHAE (which encodes 14-3-3 protein epsilon).
Phenotypes of Miller-Dieker syndrome are more severe than
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FIGURE 1 | Complete agyria in a DCX mutation patient (Grade 1 on the
severity scale). T2-weighted axial MRI image. Wide shallow sylvian fissures
create a figure-of-eight appearance. The thickness of the cortex is over
10mm. A high-intensity (white) line (arrow heads) beneath the cerebral surface
is consistent with a cell sparse layer of the four-layered cortex.

FIGURE 2 | Anterior pachygyria and posterior agyria in a LIS1 mutation
patient (Grade 3 on the severity scale). T2-weighted axial MRI image. Note
the difference in the width of gyri, the depth of sulci and the thickness of the
cortex (bars) between anterior and posterior regions.

that of classical lissencephaly because of an isolated LIS1
mutation. They are characterized by complete agyria and
facial abnormalities including prominent forehead, bitemporal
hollowing, short nose with upturned nares, prominent upper lip
with downturned vermilion border and small jaw, and sometimes
other congenital defects involving the heart, kidneys, intestine,
or fingers (Kato and Dobyns, 2003). Neurological findings of
Miller–Dieker syndrome are similar to those of patients with
agyria, such as severe developmental delay with weak muscle
tone and profound intellectual disability, intractable seizures,

FIGURE 3 | Subcortical band heterotopia or double cortex syndrome in
a DCX mutation patient (Grade 5 on the severity scale). T2-weighted
axial MRI image. Subcortical heterotopic gray matter in the posterior region
fuses into the pachygyric cortex in the anterior region (arrowheads).

FIGURE 4 | Schematic diagram of cortical layers in the lissencephaly
spectrum compared to the normal brain. Deep cellular layer of the
pachygyric or agyric cortex fuses with laminar or band heterotopia in the
subcortical white matter, but not with normal six-layered cortex.

dysphagia, and poor prognosis with recurrent infection of the
respiratory system.

Tubulin-Related Disorders, Tubulinopathies

Microtubules provide the main structural framework for the
shafts of axons and dendrites, and with actin serve as tracks
for intracellular trafficking and to provide the driving force
underlying neurite extension and intracellular movement of
organelles during mitosis (Flynn et al., 2013). Recently, genes
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involved in microtubule function have been identified to be
causative for various human diseases, such as lissencephaly
(Keays et al., 2007; Poirier et al., 2007), polymicrogyria (Abdollahi
et al., 2009; Jaglin et al., 2009; Jansen et al., 2011), simplified
gyral patter in which the cortical thickness is normal (Cushion
et al., 2014), complex brain malformations (Poirier et al., 2010,
2013; Breuss et al., 2012), abnormal eye movement (Tischfield
et al., 2010), torsion dystonia (Hersheson et al., 2013), and
hypomyelinating leukodystrophy (Simons et al., 2013). All the
above are classified as tubulinopathies (Cushion et al., 2013;
Bahi-Buisson et al., 2014). Microtubules are assembled from
soluble tubulin heterodimers consisting of alpha- and beta-
tubulin. Multiple isoforms of both tubulins are encoded by
different genes. Mutations of TUBA1A, which encodes alpha
tubulin, cause lissencephaly spectrum, particularly diffuse agyria
or perisylvian pachygyria, with microcephaly, agenesis of the
corpus callosum, and cerebellar hypoplasia (Figure 5) (Bahi-
Buisson et al., 2008). TUBA1A mutations account for only 1%
of isolated classical lissencephaly; however, they account for
approximately 30% of patients with lissencephaly associated with
cerebellar hypoplasia (Kumar et al., 2010). Dysgenesis of the
anterior limb of the internal capsule and disorganization of
the hippocampus are other neuroimaging features for TUBA1A
mutation (Poirier et al., 2007). Mutations of TUBA1A cause
polymicrogyria as well. Interestingly, mutations of TUBB2B
cause polymicrogyria with or without congenital fibrosis of
the external ocular muscles as well as bilateral perisylvian
pachygyria(Cederquist et al., 2012; Romaniello et al., 2014).
Polymicrogyria is classified as a group of malformations that
appear secondary to post-migration development; however,
recent findings of the underlying molecular mechanisms reveal
overlapping process in neuronal migration and post-migration
development stages.

Mutations of TUBA8 cause polymicrogyria with optic
nerve hypoplasia and display autosomal recessive inheritance

(Abdollahi et al., 2009). Mutations of TUBB2A, which encodes
beta-tubulin, cause infantile-onset epilepsy with simplified gyral
patterning (Cederquist et al., 2012; Cushion et al., 2014;
Romaniello et al., 2014). Mutations of TUBB3 cause two
distinct forms. One is congenital fibrosis of the external
ocular muscles or oculomotor nerve hypoplasia and later-onset
peripheral axon degeneration with dysgenesis of the corpus
callosum, anterior commissure, and internal capsule, but with no
cortical dysplasia suggesting migrational defects (Tischfield et al.,
2010). Another is cortical dysgenesis including polymicrogyria,
pontocerebellar hypoplasia, and abnormal basal ganglia, but
with no ocular motility defects (Poirier et al., 2010). The
main mechanisms underlying the phenotypes caused byTUBB3
mutations are impaired axon guidance owing to disrupted
microtubule dynamics and kinesin interaction (Tischfield et al.,
2010). Tubulinopathies caused by the mutations of the genes
encoding alpha- or beta-tubulin demonstrate more extensive
phenotypes compared to other gene mutations, such as LIS1,
DCX, or RELN. Mutations of TUBA1A, which encodes alpha-
tubulin 1A, is the most frequently found in patients with brain
malformations, while more genes encoding beta-tubulin, such as
TUBB2A, TUBB2B, TUBB3, TUBB4A, and TUBB, are identified
in a wide spectrum of disorders besides brain malformations.
Pathological mechanisms and discrepancy between alpha- and
beta-tubulinopathies should be elucidated.

ARX-Related Disorders,
Interneuronopathies

The embryonic cerebral cortex at the stage of neuronal
migration contains neuronal cells with two modes of migration;
radial migration from the ventricular zone toward the pia
and tangential migration from ganglionic eminence along
a tangential trajectory into the developing cortex. Radially

FIGURE 5 | Complete agyria in a TUBA1A mutation patient (Grade 1 on the severity scale). T2-weighted axial MRI image (left) and midsagittal image (right).
The boundary of the caudate nucleus and lentiform nucleus is obscure. Complete agenesis of the corpus callosum and pontocerebellar hypoplasia are also seen.
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migrating neurons in the cortex are mainly excitatory projection
neurons expressing glutamate as a neurotransmitter. Tangentially
migrating neurons are inhibitory interneurons expressing
the neurotransmitter GABA. XLAG is caused by mutation
of ARX, which is expressed in the embryonic ganglionic
eminence, neocortex, and hippocampus and plays important
roles in neuronal proliferation, interneuronal migration, and
differentiation in the embryonic forebrain, as well as a secondary
role in differentiation of the testes (Kitamura et al., 2002).
Patients with XLAG present occipital-predominant classical
lissencephaly, particularly anterior pachygyria and posterior
agyria, or a simplified gyral pattern, agenesis of the corpus
callosum, and abnormal basal ganglia (Kato et al., 2004). In
the most severe form of XLAG, patients show hydranencephaly
with a large occipital cavity. Female carriers of ARX mutations
causing XLAG have a risk of agenesis of the corpus callosum
with no cortical defects. Abnormalities of external genitalia range
from hypoplastic penis or undescended testes to complete female
appearance, while the karyotype is 46,XY. Neuropathological
studies show a complete loss or a decreased number of
cortical interneurons in human XLAG and in Arx-null mice
(Bonneau et al., 2002; Kitamura et al., 2002) and a three-layered
cortex in human XLAG (Forman et al., 2005). Patients with
XLAG show intractable seizures soon after birth, suggesting
a great disparity between excitatory projection neurons and
inhibitory interneurons. ARX mutations in patients with XLAG
are null mutations or non-conservative missense mutations at
critical amino acids in the homeodomain, while other missense
mutations or expansion mutations in the polyalanine tract result
in X-linked intellectual disability with or without dystonia,
West syndrome, Ohtahara syndrome, or early infantile epileptic
encephalopathy with suppression burst on EEG but with no
brain malformation (Bienvenu et al., 2002; Stromme et al., 2002;
Guerrini et al., 2007; Kato et al., 2007, 2010). Interestingly, longer
polyalanine expansion is correlated with more severe and earlier
onset phenotypes. A wide spectrum of ARX-related disorders
forms a group of interneuronopathies based on the role of ARX
during neurogenesis, as seen in patients and in the Arx-null
mouse model (Kato and Dobyns, 2005; Marsh et al., 2009).

Classical Lissencephalies Associated with
Other Forms of Brain Malformation

Classical lissencephaly caused by LIS1 or DCX mutations usually
exist in isolated forms and only show cortical dysplasia on
brain MRI. Rare variant forms of lissencephaly are associated
with congenital microcephaly, cerebellar hypoplasia, or agenesis
of the corpus callosum. Each form demonstrates characteristic
radiological findings and some of the causative genes have been
identified.

A lissencephaly group with cerebellar hypoplasia can be
classified into several types according to brain imaging,

additional clinical features, and causative genes (Ross et al., 2001).
Among them, frontal predominant mild lissencephaly (diffuse
pachygyria) with severe hippocampal and cerebellar hypoplasia
or Reelin-type lissencephaly is caused bymutation of eitherRELN
or VLDLR and shows autosomal recessive inheritance (Hong
et al., 2000; Boycott et al., 2005). Dysequilibrium syndrome is an
allelic disorder of the VLDLR locus (Moheb et al., 2008). Reelin-
type lissencephaly has an inverted or no clear pattern of cortical
lamination attributable to abnormal migration of the neurons in
an outside-in birth order (Cooper, 2008; Dekimoto et al., 2010).

Lissencephaly can be associated with congenital microcephaly,
though the head circumference of lissencephaly caused by the
LIS1 or DCX mutations is usually within the normal range.
Lissencephaly with a head circumference of less than −3 SD
at birth is classified as microlissencephaly (Barkovich et al.,
2005) ormicrocephaly with lissencephaly (Barkovich et al., 2012).
Although many genes identified to be responsible for primary
microcephaly, such as MCPH1, ASPM, CENPJ, CDK5RAP2, and
PNKP, are involved with the cell-cycle phase of mitosis affecting
neurogenesis (Barbelanne and Tsang, 2014), the causative
genes for microlissencephaly remain unknown in many cases.
Mutations of WDR62, which encodes a protein localized to
centrosomes throughout mitosis and nucleoli during interphase,
cause microcephaly with pachygyria or polymicrogyria (Bilguvar
et al., 2010). Mutations of NDE1, which encodes a protein that
binds dynein and functions in centrosome duplication, as well
as the TUBA1Amutations mentioned above, cause microcephaly
with a simplified gyral pattern, agenesis of the corpus callosum,
and cerebellar hypoplasia (Alkuraya et al., 2011; Bakircioglu et al.,
2011).

Conclusion

Neuronal migration disorders are classified based on causative
genes as well as on brain MRI and neuropathological findings.
There are strong relationships between clinical manifestations
and mutation of a particular gene, in accordance with the
expression and functions of that gene. Recent advances in
gene and genome analysis technology will enable the genetic
basis of neuronal migration disorders to be readily determined,
facilitating the elucidation of genotype-phenotype correlations.
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Neuronal migration abnormalities
and its possible implications for
schizophrenia
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Schizophrenia is a complex mental disorder that displays behavioral deficits such as

decreased sensory gating, reduced social interaction and working memory deficits.

The neurodevelopmental model is one of the widely accepted hypotheses of the

etiology of schizophrenia. Subtle developmental abnormalities of the brain which stated

long before the onset of clinical symptoms are thought to lead to the emergence

of illness. Schizophrenia has strong genetic components but its underlying molecular

pathogenesis is still poorly understood. Genetic linkage and association studies have

identified several genes involved in neuronal migrations as candidate susceptibility

genes for schizophrenia, although their effect size is small. Recent progress in copy

number variation studies also has identified much higher risk loci such as 22q11.

Based on these genetic findings, we are now able to utilize genetically-defined animal

models. Here we summarize the results of neurodevelopmental and behavioral analysis

of genetically-defined animal models. Furthermore, animal model experiments have

demonstrated that embryonic and perinatal neurodevelopmental insults in neurogenesis

and neuronal migrations cause neuronal functional and behavioral deficits in affected

adult animals, which are similar to those of schizophrenic patients. However, these

findings do not establish causative relationship. Genetically-defined animal models are

a critical approach to explore the relationship between neuronal migration abnormalities

and behavioral abnormalities relevant to schizophrenia.

Keywords: schizophrenia, GABAergic interneuron, mouse models, Neuregulin1, DISC1, 22q11 deletion syndrome,

Dgcr8, Cxcr4

Introduction

Schizophrenia is a chronic psychiatric disorder with a strong genetic component. Twin studies
indicated that the heritability for schizophrenia is estimated to be 0.81 (Sullivan et al., 2012).
Most of genetic linkage studies failed to identify highly-shared risk alleles due to the complexity
of genetic architecture of schizophrenia except for DISC1 (Millar et al., 2000). Many combinations
of different gene variants cause genetic risk of schizophrenia. Genome-wide association studies
have identified many schizophrenia susceptibility candidate genes. Most of such common vari-
ants confer only slight increase in risk for schizophrenia (odds ratio < 1.2) (Ripke et al., 2013),
and often failed to be replicated. Some of them, Neuregulin1, ErbB4, and Reelin are involved in the
regulation of neuronal migration. On the other hand, rare and de novo chromosomal microdeletion
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or microduplication [copy number variations (CNVs)] have
been implicated in schizophrenia (Levinson et al., 2011; Rees
et al., 2014). Such CNVs are from thousands to millions
nucleotides and contain many genes and their odds ratios are
high (2∼20) compared with common variants. 22q11.2 deletion
syndrome (22q11DS) is the most frequent known genetic cause
of schizophrenia (Pulver et al., 1994). However, it remains to
be elucidated how combinations of these genetic variants play
pathogenic roles of schizophrenia.

Schizophrenia is believed to result from embryonic
developmental abnormalities not from neuronal degenerations
(Weinberger, 1987; O’Connell et al., 1997). Cytoarchitectural
abnormalities were reported in the entorhinal cortex (Jakob and
Beckmann, 1986; Arnold et al., 1991, 1997; Falkai et al., 2000) and
the subcortical white matters in schizophrenia (Akbarian et al.,
1993a,b, 1996). Decreased neuronal density in the superficial
white matter and increased density in the deep white matter
suggest neuronal migration defects in schizophrenia. However,
other studies failed to replicate these findings (Akil and Lewis,
1997; Krimer et al., 1997; Bernstein et al., 1998; Beasley et al.,
2002, 2009), suggesting these abnormalities might be too subtle
to be detected without special methods. Prior human brain
imaging studies also have indicated reduced cerebral volume,
ventricular enlargement, and reduced hippocampal volume in
schizophrenia (Shenton et al., 2001).

The development of the human cerebral cortex is simi-
lar to that in the mouse (Rakic, 2009; Hansen et al., 2013;
Ma et al., 2013), which enabled investigation of the func-
tions of schizophrenia susceptibility candidate genes in neu-
ronal developments. The mammalian cerebral cortex consists
mainly of excitatory glutametergic and inhibitory GABAergic
neurons. Glutamatergic neurons are generated from neural pro-
genitors in the dorsal forebrain (Glover et al., 2009; Rakic,
2009), whereas most of inhibitory neurons are thought to derive
from the ventral pallium: medial, lateral and caudate ganglionic
eminence (MGE, LGE, and CGE) (Hansen et al., 2013; Ma
et al., 2013). Two types of migration are observed in the cor-
tex. One is radial migration of glutamatergic neurons from the
underlying ventricular zone along the radial glial fiber, while
the other is tangential migration from the ventral forebrain of
GABAergic interneurons (Corbin et al., 2001; Marin and Ruben-
stein, 2003). However, the differences between the human and
mouse cortices are also reported. In the mouse, about 70%
of cortical interneurons generate from the MGE and ∼30%
are from the CGE (Miyoshi et al., 2010). In contrast, more
than half of interneurons derive from the CGE in the human
(Hansen et al., 2013). The human cortex showed a much higher
diversity in the interneuron types compared with that of the
rodents (Feldman and Peters, 1978). In spite of the limitations
caused by these differences, animal models are still valuable to
elucidate the roles of neuronal migration deficits in the pathogen-
esis of schizophrenia. Many genetically-modified animal mod-
els with construct validity and cell-specific gene modification
technique are available. The great advantage of rodent model
to study schizophrenia is that we can establish a causal rela-
tionship between genetic abnormalities, neuronal developments,
and behavioral abnormalities. Here we review a group of studies

using rodent models which give insights into the pathogenesis of
schizophrenia.

Developmental Neuronal Disruption Model
of Schizophrenia

Perinatal insult of neuronal development can cause anatomical
and behavioral deficits similar to human schizophrenic patients.
One of the examples is a gestational day 17 (GD17) methyla-
zoxymethanol acetate (MAM) administration rat model (Grace
and Moore, 1998; Flagstad et al., 2004; Gourevitch et al., 2004;
Paredes et al., 2006). MAM is a mitotic toxin and MAM admin-
istration specifically disrupts proliferating region. GD17 MAM
treatment results in specific subtle reductions in the volume of
prefrontal cortex (PFC) and hippocampus (HP), heterotopias in
the HP resulting from neuronal migration deficits (Le Pen et al.,
2006; Moore et al., 2006), which are characteristics of schizophre-
nia (Kovelman and Scheibel, 1984; Shenton et al., 2001; Heckers,
2004; Honea et al., 2005). GD17 MAM-treated rats also display
decreased density of parvalbumin (PV)-positive interneurons in
medial PFC and HP (Lodge et al., 2009). Interestingly, post-
mortem studies of human schizophrenia have shown decreased
expression of PV and the 67 KDa isoform of glutamic acid decar-
boxylase (GAD67), which is an enzyme responsible for GABA
synthesis, in PFC of schizophrenia subjects (Akbarian et al., 1995;
Volk et al., 2000; Hashimoto et al., 2003; Fung et al., 2010).
However, no difference is observed in the density of PV-positive
interneurons in schizophrenia (Hashimoto et al., 2003). PV-
positive interneurons are known to be indispensable for synchro-
nized firing of excitatory pyramidal neurons in gamma frequen-
cies (30–80Hz), which plays essential roles for cognitive func-
tions (Howard et al., 2003). Altered gamma oscillation activity
and cognitive deficits have been reported in schizophrenia (Cho
et al., 2006; Minzenberg et al., 2010). Consequently, PV-positive
interneuron deficits are thought to be the cause of impairments of
gamma oscillation and cognition in individuals with schizophre-
nia (Lewis et al., 2012). MAM-treated rats also show behavioral
deficits in prepulse inhibition (PPI), which reflects an inability to
filter out irrelevant sensory information, and working memory
task (Flagstad et al., 2005; Le Pen et al., 2006; Moore et al., 2006),
which are typical symptoms of schizophrenia in humans (Braff
and Geyer, 1990; Liddle andMorris, 1991; Goldman-Rakic, 1994;
Swerdlow et al., 1994; Nuechterlein et al., 2004). Furthermore,
electrophysiological studies have shown that enhanced activity of
ventral HP leads to dopaminergic neuronal activation in MAM-
treated rats (Lodge and Grace, 2007). Again, these altered hip-
pocampal activities are also observed in human schizophrenic
patients (Medoff et al., 2001; Schobel et al., 2009). These abnor-
malities can be normalized by administration of α5GABA A
receptor positive allosteric modulator, SH-053-2′F-R-CH3 (Gill
et al., 2011), suggesting the involvement of GABA in embryonic
MAM treatment-induced deficits. The MAM model provides a
direct evidence that subtle embryonic disruptions of neuronal
development result in behavioral alterations disorders, although
the etiology is absolutely different from that of schizophrenia in
humans.
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Neuregulin-ERBB Signaling

Neuregulins are a large family of epidermal growth factor
(EGF)-like proteins and play divergent roles both in neuronal
development and in the neuronal activity homeostasis in the
mature central nervous system. Several genetic linkage studies
have shown Neuregulin1 (NRG1) as a strong candidate gene
for schizophrenia (Badner and Gershon, 2002; Stefansson et al.,
2002; Lewis et al., 2003). Some GWASs also support the hypoth-
esis (Li et al., 2006; Munafo et al., 2006; Shi et al., 2009; Agim
et al., 2013), although it has not been confirmed by a recent
mega-analysis in which international consortia combined the
resources to maximize the sample size and identified more than
100 candidate genes for schizophrenia with high levels of sta-
tistical significance (Schizophrenia Working Group of the Psy-
chiztric Genomics Consortium, 2014). Most of schizophrenia-
associated single nucleotide polymorphisms (SNPs) in NRG1 are
localized in the 5′ and 3′ region of the gene. Some of them are
associated with the expression level of NRG1 (Law et al., 2006;
Weickert et al., 2012). A receptor of NRG1, ERBB4 is also asso-
ciated with schizophrenia (Benzel et al., 2007; Law et al., 2007;
Shi et al., 2009; Agim et al., 2013). It has been reported that
a rare chromosome micro-deletion in a schizophrenic patient
disrupts this gene, resulting in a truncated protein similar to
dominant-negative ERBB4 (Walsh et al., 2008).

Nrg1 generates six types and at least 30 isoforms owing
to multiple promoters and alternative splicing (Mei and Nave,
2014). Most pro-Nrg1 isoforms are transmembrane proteins and
N-terminal domains containing EGF-like domain are released
out of the cell after undergoing proteolytic processing except
for TypeIII Nrg1 (cysteine-rich-domain containing Nrg1 (CRD-
Nrg1)). This released mature Nrg1 activates ErbB receptor
tyrosine kinase such as ErbB2/ErbB3 heterodimer and ErbB4
homodimers. Nrg1 regulates migration of excitatory gluta-
matergic neurons and γ-aminobutyric acid (GABA)-producing
interneurons in the embryonic cortex. Nrg1 promotes the main-
tenance of radial glial cells in the cortex and induces elongation
of radial fiber, which are essential for the radial migration of cor-
tical excitatory neurons and cerebellar granule cells (Anton et al.,
1997; Rio et al., 1997). NRG1 is also critical for interneuronal tan-
gential migration (Flames et al., 2004; Li et al., 2012). ErbB4 is
expressed in interneuronal progenitors migrating from the MGE
to the cortex (Yau et al., 2003; Flames et al., 2004). Type III Nrg1 is
expressed in lateral ganglionic eminence, and Type I and II Nrg1
(immunoglobulin (Ig)-domain containing Nrg1 (Ig-Nrg1)) are
expressed in the embryonic cortex (Flames et al., 2004). Diffusible
Type I and II Nrg1 in the cortex are thought to attract ErbB4-
expressing interneurons along a permissive corridor of Type III
Nrg1 (Flames et al., 2004), although this model is challenged. In
another model, Nrg1, and Nrg3 have been proposed to be repel-
lants for migrating interneurons (Li et al., 2012). Loss of ErbB4
cuases embryonic lethality due to failed development of myocar-
dial trabeculae, which made it difficult to characterize the func-
tions of ErbB4 signaling in interneuronal migration (Gassmann
et al., 1995; Kramer et al., 1996). However, heart-rescued ErbB4
knockout mice with cardiac-specific ErbB4 transgene displayed
decreased number of GABAergic interneurons in the postnatal

cortex (Flames et al., 2004; Fisahn et al., 2009; Li et al., 2012),
which clearly showed the essential roles of Nrg1/ErbB4 signaling
in interneuronal migration.

Cell-specific gene modification techniques are now starting
to elucidate a link between Nrg1/ErbB4 signaling and patho-
physiology of schizophrenia. The gain and loss of function
of Nrg1/ErbB4 signaling were examined because postmortem
studies of schizophrenia reported both increased and decreased
NRG1/ERBB4 signaling in schizophrenic patients (Silberberg
et al., 2006; Law et al., 2007; Weickert et al., 2012; Joshi et al.,
2014). Transgenic mice overexpressing Type I Nrg1 showed
deficits in PPI and contextual fear conditioning, and hyperloco-
motion (Deakin et al., 2009, 2012; Yin et al., 2013; Luo et al.,
2014). If the overexpression of Nrg1 was switched off in adult
mice, its effects were reversible (Yin et al., 2013; Luo et al., 2014).
The influence of Nrg1 overexpression on neuronal development
remains to be elucidated. Nrg1 or ErbB4 heterozygous mice
and conditional knockout mice also displayed various behav-
ioral abnormalities: locomotor hyperactivity in open field (OF),
impairment in Prepulse inhibition (PPI), and fear conditioning
(Stefansson et al., 2002; Golub et al., 2004; Boucher et al., 2007;
O’Tuathaigh et al., 2007, 2010; Chen et al., 2008, 2010; Duffy
et al., 2008; Ehrlichman et al., 2009; Shamir et al., 2012; Del Pino
et al., 2013; Pei et al., 2014)(Table 1). Nrg1 heterozygous mice
and heart-rescued ErbB4 knockout (KO) mice showed decreased
number of cortical PV interneurons (Fisahn et al., 2009; Ned-
dens and Buonanno, 2010; Shamir et al., 2012; Pei et al., 2014)
(Table 1). However, PV interneuron-specific deletion of ErbB4
did not affect the number of cortical interneurons, which might
be due to the slow turnover of ErbB4 (Fazzari et al., 2010; Shamir
et al., 2012) (Table 1). A comparative behavioral analysis of ErbB4
KO and PV interneuron-specific ErbB4 KO mice demonstrated
that PV interneuron-specific deletion is sufficient for hyperactiv-
ity and deficits in PPI. The only difference is that ErbB4 KOmice
but not PV interneuron-specific ErbB4 KO mice exhibit reduced
anxiety-like behaviors and deficits in cued and contextual fear
conditioning (Shamir et al., 2012), which might be caused by
developmental disorders in ErbB4-deficient interneurons.

Disrupted-in Schizophrenia 1

The disrupted-in schizophrenia 1 (DISC1) gene was discovered at
the breakpoint of inherited balanced chromosomal translocation
in a Scottish family suffering from major depression, schizophre-
nia, and bipolar disorder (St Clair et al., 1990; Millar et al., 2000).
Following linkage analysis and association studies demonstrated
that DISC1 is significantly associated with schizophrenia, bipolar
disorder and major depression (Ekelund et al., 2001, 2004; Mac-
gregor et al., 2004; Hamshere et al., 2005; Hashimoto et al., 2006;
Liu et al., 2006; Thomson et al., 2014), although it has not been
confirmed by a recent mega-analysis of GWASs (Schizophre-
nia Working Group of the Psychiztric Genomics Consortium,
2014).

DISC1 is a scaffolding protein interacting with multiple pro-
teins: nuclear distribution gene E homolog-like 1 (NDEL1),
lissencephaly-1 (LIS1), phosphodiesterase 4B (PDE4B), glycogen
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TABLE 1 | Summary of mutant Nrg1/ErbB4 mouse models.

Gene Locomotion PPI Learning and Gross Interneuron References

memory anatomy

Nrg1+/−

(TM)

↑ → ND ND ND Boucher et al., 2007

↑ ↓ ND ND ND Stefansson et al., 2002

↑ ND Y maze Small ventricle ND O’Tuathaigh et al., 2007, 2010

Nrg1+/−

(TM)

→ → contextual FC ↓ ND PV/Gad67 in HC ↓ Pei et al., 2014

cued FC ↓ (western blotting)

Nrg1+/−

(TypeIII)

→ ↓ T-Maze↓ Enlarged lateral ventricle ND Chen et al., 2008

Nrg1+/−
↑ → ND ND ND Duffy et al., 2008

(EGF) → → Contextual FC ↓ ND ND Ehrlichman et al., 2009

ErbB4+/−
↑ → ND ND ND Stefansson et al., 2002

ErbB4f/−

(Nestin-Cre)

↓ ND Morri Water Maze

↑ (hetero)

ND ND Golub et al., 2004

ErbB4−/−

(heart-rescued)

↑ ↓ Contextual FC ↓

Cued FC ↓

ND Number of PV neurons ↓ Shamir et al., 2012

ErbB4f/f

(PV-Cre)

↑ ↓ Contextual FC →

Cued FC →

ND Number of PV neurons→ Shamir et al., 2012

ErbB4f/f

(PV-Cre)

ND ND Contextual FC ↓ ND ND Chen et al., 2010

ErbB4f/f

(Lhx6-Cre)

↑ ↓ Y-maze ↓ ND Number of PV neurons→ Del Pino et al., 2013

OF, open field, PPI:prepulse inhibition; FC, fear conditioning; TM, transmembrane region; PV, parvalbumin; HC, hippocampus; ND, not determined.

synthase kinase 3β (GSK3β) and DIX domain-containing 1
(DIXDC1) (Ozeki et al., 2003; Millar et al., 2005; Taya et al.,
2007; Mao et al., 2009). DISC1/DIXDC1 functions as a switch
between neuronal proliferation and migration. DISC1/DIXDC1
binds to GSK3β and inhibits its activity leading to prolifera-
tion of neural progenitors through the inhibition of β-catenin
degradation (Mao et al., 2009). CDK5 phosphorylation of DISC1
at S710 and DIXDC1 facilitates neuronal migration by disso-
ciating DISC1 from GSK3β and promoting its binding with
NDEL1 (Singh et al., 2010; Ishizuka et al., 2011). DISC1 vari-
ants associating with human brain structures and psychiatric
phenotypes have been reported to impair this switching mech-
anism (Singh et al., 2011). Furthermore, knockdown of DISC1
also impairs interneuronal tangential migrations (Steinecke et al.,
2012, 2014).

Two hypotheses are proposed on the pathophysiology of
the disruption of the DISC1 gene: that the Scottish mutation
decreases DISC1 expression and leads to haploinsufficiency; or
that the Scottish mutation results in production of carboxy-
terminal-truncated DISC1 (amino acids 1-598). This C-terminal
truncated DISC1 functions as a dominant negative protein, and
impairs microtubule dynamics by blocking interaction between
DISC1 and dynein complex (Kamiya et al., 2005). Dynein com-
plex contains LIS1 and NDEL1, and regulates coupling of the
nucleus and centrosome, which is indispensable for radial migra-
tion of cortical excitatory neurons (Sasaki et al., 2000). Knock-
down of DISC1 inhibits cortical neuronal cell migration (Kamiya
et al., 2005; Kubo et al., 2010).

Acute knockdown of DISC1 using RNAi leads to drastic
neuronal migration deficits. However, DISC1 KO mice
(Disc112-3/12-3) astonishingly showed almost normal cytoarchi-
tectures of the cerebral cortex and the HP (Kuroda et al., 2011),
whereas the number of PV-positive interneurons reduced in
female Disc112-3/12-3 mice (Nakai et al., 2014). The phenotypes
in the proliferation of neuronal progenitors have not been
examined in DISC1 KO mice, which will provide important
insight into the pathogenesis of DISC1 deficiency. Further-
more, Disc112-3/12-3 mice did not show schizophrenia-like
phenotype but exhibited lower anxiety and higher impulsivity
(Kuroda et al., 2011) (Table 2). Only female Disc112-3/12-3 mice
exhibited enhanced responsiveness to methamphetamine and
deficits in PPI (Kuroda et al., 2011). These milder phenotypes
of Disc112-3/12-3 mice might be explained by a compensation
mechanism after chronic loss of DISC1. N-nitroso-N-ethylurea
(ENU) mutagenesis was utilized to generate missense mutations
of Disc1. L100P mutant (Disc1L100P/L100P) mice showed reduced
brain volume, reduced number of cortical neurons, altered
distribution of cortical neurons, interneuonal migration deficits,
and schizophrenia-like behavioral abnormalities, although the
behavioral phenotypes were not confirmed by another group
due to the difference in the genetic background (Clapcote et al.,
2007; Lee et al., 2011, 2013; Shoji et al., 2012). 129S6/SvEv
25-bp deletion variant results in the production of a truncated
isoform of DISC1 (amino acids 1-542) (Koike et al., 2006).
C57BL/6J mice carrying the Disc1 gene from the 129S6/SvEv
strain (Disc1125 bp/125 bpmice) exhibited enlarged ventricle and
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working memory deficits (Koike et al., 2006; Juan et al., 2014).
Neuron-specific overexpression of the truncated DISC1 also
resulted in drastic phenotypes: enlarged lateral ventricle, reduced
number of PV-positive interneurons and schizophrenia-like
behavioral abnormalities (Hikida et al., 2007; Pletnikov et al.,
2008; Shen et al., 2008; Ayhan et al., 2011) (Table 2). Further-
more, a technique of inducible transgene expression enabled
a specific expression of truncated DISC1 during only prenatal
period, only postnatal period or both periods (Ayhan et al.,
2011). Prenatal expression only led to decreased brain volume
and decreased number of PV-positive interneurons. Enlarged
lateral ventricle seems to be affected by postnatal expression
of truncated DISC1. In contrast, enhanced responsiveness to
psychostimulant required prenatal and postnatal continuous
expression (Ayhan et al., 2011), which suggests that both
neurodevelopmental abnormality and neuronal functional
impairment caused by truncated DISC1 might be essential for
pathogenesis of schizophrenia.

22q11 Deletion Syndrome

22q11.2 deletion syndrome (22q11DS) is the most frequent
known genetic cause of schizophrenia (Pulver et al., 1994).
22q11DS accounts for about 1% of schizophrenia cases (Karayior-
gou et al., 1995; Manolio et al., 2009). Prior brain imaging stud-
ies of human 22q11 DS have indicated reduced cerebral volume,
ventricular enlargement and reduced hippocampal volume (Eliez
et al., 2000, 2001; Chow et al., 2002; Simon et al., 2005). All of
these brain anomalies have also been reported in schizophrenia
(Shenton et al., 2001). All of the genes except for one gene in
human 22q11.2 locus exist on mouse chromosome 16 (Puech
et al., 1997). This has facilitated the generation of mouse models
of 22q11 DS, which carry a hemizygous deletion of 22q11-related
region of mouse chromosome16 (Lindsay et al., 1999; Paylor and
Lindsay, 2006; Stark et al., 2008). These animal models show
schizophrenia-related behavioral abnormalities such as working
memory deficits, sensory information-processing deficits, and
enhanced responsiveness to psychostimulants (Paylor et al., 2001;
Stark et al., 2008; Earls et al., 2011; Kimoto et al., 2012), which

are recognized as major deficits of schizophrenia (Elvevag and
Goldberg, 2000; Green et al., 2000; Swerdlow et al., 2001). Ani-
mal models of 22q11DS showed reduced density of layer II–
IV projection neurons in a medial PFC (Meechan et al., 2009),
reduced volume of a perinatal HP dentate gyrus (Toritsuka et al.,
2013), delayed migration of hippocampal dentate neuronal pro-
genitors and cortical interneurons, and altered distribution of
PV-positive interneurons (Meechan et al., 2009, 2012; Toritsuka
et al., 2013), although it remains to be elucidated these deficits
in neurogenesis lead to excitatory/inhibitory imbalance or not.
Perinatal hippocampal DG and interneuronal migration abnor-
malities are caused by Cxcl12/Cxcr4 signaling deficits (Toritsuka
et al., 2013). Cxcl12/Cxcr4 signaling might play pivotal roles
in the pathogenesis of schizophrenia. Previous studies also sug-
gest a possible involvement of Cxcl12/Cxcr4 signaling in the
neurodevelopmental disorders of GD17 MAM-treated animal
model of schizophrenia (Paredes et al., 2006). The expression of
CXCL12 is decreased in olfactory neurons from sporadic cases
with schizophrenia compared with normal controls (Toritsuka
et al., 2013).

Among of genes deleted in 22q11DS, Dgcr8 is a promis-
ing candidate gene for schizophrenia-related phenotypes. Dgcr8
forms the microprocessor complex of microRNA (miRNA) with
Drosha, which is essential for miRNA production. Overex-
pression of Dgcr8 rescued interneuronal migration deficits of
22q11DS model mice, and the migration of hippocampal DG
and interneuronal progenitors were also affected inDgcr8+/−

mice (Toritsuka et al., 2013). These observations demonstrated
the important roles of Dgcr8 in the pathogenesis of 22q11DS.
miRNA–mediated regulation network fine tunes the balance
of signaling and confers robustness to the system (Herranz
and Cohen, 2010). miRNA-mediated regulation can buffer
increases or reductions in gene dosage (Staton et al., 2011).
Haplodeletion of Dgcr8 causes 20–70% reduction of a specific
subsets of mature miRNAs both in Dgcr8 heterozygous and
22q11DS model mice (Stark et al., 2008). Dgcr8 heterozygousity
might uncover the effects of 22q11 microdeletion through the
disruption of miRNA-mediated buffering effects. In mice, het-
erozygous deletion of Dgcr8 alone showed working memory

TABLE 2 | Summary of mutant Disc1 mouse models.

Gene Locomotion PPI Learning and Gross Interneuron References

memory anatomy

CaMK-

DN-DISC1 tg

↑ ↓ Y-maze → Enlarged lateral ventricle Number of PV neurons

↓

Hikida et al., 2007

BAC

DN-DISC1 tg

→ ND ND Enlarged lateral ventricle Number of PV neurons

↓

Shen et al., 2008

Inducible-CaMK

DN-DISC1 tg

↑ → ND Enlarged lateral ventricle Number of PV neurons

↓

Pletnikov et al., 2008; Ayhan

et al., 2011

Disc1 12−3/12−3
→ ↓

(Female)

Y-maze → Normal Number of PV neurons

↓ (female)

Kuroda et al., 2011; Nakai

et al., 2014

Disc1L100P/L100P
↑ ↓ T-maze ↓ Brain volume↓ Deficits in the

distribution of PV

neurons

Clapcote et al., 2007; Lee

et al., 2011, 2013; Shoji

et al., 2012

Disc1 125bp/125bp

(C57Bl6)

→ → T-maze ↓ Enlarged lateral ventricle ND Koike et al., 2006; Juan

et al., 2014
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deficits, sensory information-processing deficits and some of
neurodevelopmental abnormalities such as reduced cortical neu-
ronal densities (Stark et al., 2008; Fenelon et al., 2011). The
behavioral abnormalities and neurodevelopmental disorders of
Dgcr8+/− mice are similar but some of them are milder than
those of 22q11DS model mice,(Stark et al., 2008; Meechan et al.,
2009; Fenelon et al., 2011), which might suggest that addi-
tional haplodeletion of other genes in 22q11-related regions
might be required for the complete reconstitution of pheno-
types of 22q11DS model mice. It remains to be elucidated
whether behavioral abnormalities of 22q11DS model mice are
directly caused by neuronal migration deficit and Cxcr4 signaling
defects.

Concluding Remarks

Elucidating the relationship between neurodevelopmental abnor-
malities and the pathogenesis of schizophrenia would be excep-
tionally difficult. In order to dissect the complex causal relations,
more sophisticated genetic manipulation would be required.
Combination of various techniques such as conditional knock-
out, inducible transgene expression and virus-mediated gene
delivery will enable cell type-specific and developmental stage-
specific knockout or rescue experiments. In the future com-
prehensive profile of neurodevelopmental deficits-behavioral
abnormalities will provide significant insights intomental disease
pathogenesis of all these neurodevelopmental genes.
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The mammalian neocortex is a remarkable structure that is characterized by tangential
surface expansion and six-layered lamination. However, how the mammalian neocortex
emerged during evolution remains elusive. Because all modern reptiles have a homolog
of the neocortex at the dorsal pallium, developmental analyses of the reptilian cortex are
valuable to explore the origin of the neocortex. However, reptilian cortical development and
the underlying molecular mechanisms remain unclear, mainly due to technical difficulties
with sample collection and embryonic manipulation. Here, we introduce a method
of embryonic manipulations for the Madagascar ground gecko and Chinese softshell
turtle. We established in ovo electroporation and an ex ovo culture system to address
neural stem cell dynamics, neuronal differentiation and migration. Applications of these
techniques illuminate the developmental mechanisms underlying reptilian corticogenesis,
which provides significant insight into the evolutionary steps of different types of cortex
and the origin of the mammalian neocortex.

Keywords: amniotes, reptiles, cortex, in ovo electroporation, ex vivo culture, evolution

INTRODUCTION
The mammalian cerebral cortex is a remarkable brain structure
that is responsible for intricate social behaviors and intelligence.
The cerebral cortex is characterized by tangential expansion of
its surface area, which is particularly enhanced in the primate
and human neocortex, and a six-layered laminar structure com-
posed of multiple types of excitatory and inhibitory neurons
(Nieuwenhuys, 1994; Kriegstein et al., 2006; Defelipe, 2011; Lui
et al., 2011). The basic frameworks of these unique characteristics
are accomplished by the dramatic increase in the number of neu-
ral stem/progenitor cells and massive irruption of distinct types of
neurons, followed by the coordinated migration of differentiated
neurons during embryogenesis. Recent advances of developmen-
tal neurobiology have illuminated the molecular mechanisms that
govern these complicated cellular events during corticogenesis
(Campbell, 2005; Flames and Marin, 2005; Dehay and Kennedy,
2007; Molyneaux et al., 2007; Kumamoto and Hanashima, 2014).

On the contrary, the origin and evolutionary process of the
mammalian cortex remain elusive. Phylogenic and paleontolog-
ical evidence indicated that the forerunners of the mammalian
lineage diverged from the common ancestors of amniotes at
approximately 300 million years ago (Carroll, 1988; Ruta et al.,
2003, 2013). Other lineages of amniotes have also diverged
into several unique animal groups that include the descent
of extant reptiles (Ruta et al., 2003). In recent years, numer-
ous fossil records have been identified from Paleozoic and
Mesozoic sediments, which provided significant information on
the process of amniote diversification. Three-dimensional tomo-
graphic analyses of fossil endocasts suggested that the size of the

mammalian cerebral cortex has increased rapidly in accordance
with the dependence of olfactory and somatosensory informa-
tion (Quiroga, 1979; Rowe et al., 2011); however, histological
architectures of the ancestral cerebral cortex remains unknown,
preventing us from tracing how the cerebral cortex has specifically
evolved in the mammalian lineage.

Ontologically, the cerebral cortex is derived from the dorsal
pallium (DP), which develops in the dorsal part of the telen-
cephalon in all vertebrate species (Northcutt, 1981; Puelles et al.,
2000; Cheung et al., 2007; Aboitiz, 2011). Despite of developmen-
tal homology to the cerebral cortex, the DP in non-mammalian
amniotes forms in distinct manners: a three-layer lamination
is constructed in the reptilian DP, whereas nuclear slabs are
formed in the avian DP (Medina and Reiner, 2000; Heyers
et al., 2003; Jarvis et al., 2005; Striedter, 2005). Phylogenetically,
aves are included in reptiles (Nomura et al., 2013b; Xu et al.,
2014), but here we will use the term reptiles to specifically mean
“non-avian reptiles” that include lizards, geckoes, turtles and
crocodiles. Because reptiles occupy a unique evolutionary posi-
tion within amniotes, developmental analyses of the reptilian
cortex illuminate commonalities and divergence of developmen-
tal programs, thus providing significant insights into the origin
of the mammalian cerebral cortex. Previous studies identified
unique features of reptilian corticogenesis, such as an outside-
in pattern of neuronal migration (Goffinet et al., 1986, 1999;
Tissir et al., 2003; Aboitiz and Zamorano, 2013), a difference
of layer-specific cell types produced in the reptilian dorsal pal-
lium (Reiner, 1991, 1993), a difference regarding the existence
of intermediate progenitors (Charvet et al., 2009; Medina and
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Abellan, 2009), and lower rates of neurogenesis compared to
mouse and other mammalian species (Nomura et al., 2013a).
However, modern experimental techniques have not been applied
to the analyses of reptilian corticogenesis, largely because of
several technical difficulties in collection and manipulation of
embryos. First, most reptilian species exhibit seasonal reproduc-
tion; thus, a large number of embryos at the desired stages are not
constantly available. For example, common lizards/geckoes such
as Lacerta trilineata, Anolis carolinensis, or Eublepharis macularius
are frequently used as a model animal in comparative develop-
mental biology (Goffinet et al., 1986; McLean and Vickaryous,
2011; Eckalbar et al., 2012; Sanger et al., 2012). The females of
these species produce a limited number of eggs after bleeding.
Second, unlike chicken, most reptilian species lay soft-shell eggs,
which hampers in ovo manipulation of embryos. Although a few
pioneering works have reported in ovo gene delivery or ex ovo cul-
ture with snake, lizard and turtle embryos (Nagashima et al., 2007;
Matsubara et al., 2014; Tschopp et al., 2014), detailed protocols on
embryonic manipulation for reptiles have not been provided.

Here, we describe a method of embryonic manipulation tech-
niques for two reptilian species: the Madagascar ground gecko
(Paroedura pictus) and the Chinese softshell turtle (Pelodiscus
sinensis). Surgical techniques on developing reptilian embryos
enable us to utilize various experimental approaches. We estab-
lished the introduction of exogenous genes into the reptilian
cortex by in ovo electroporation. Furthermore, we developed an ex
ovo culture system for gecko and turtle embryos, which remark-
ably increased accessibility to the embryos and improved the
efficiency of gene introduction. Successful manipulation tech-
niques of non-mammalian embryos are valuable for studies of the
evolutionary developmental biology of the cerebral cortex.

ANIMALS AND DETAILED PROTOCOLS OF NEW TECHNIQUE
MADAGASCAR GROUND GECKO
The Madagascar ground gecko (P. pictus) is a ground crawling
gecko that commonly lives on Madagascar Island. Gecko, lizard,
snakes and Tuatara (Sphenodon) are included in the group of lep-
idosaurs (Figure 1A). The adult size of P. pictus is approximately
15–20 cm, and the gecko is easy to handle and breed in captivity
(Figure 1B). After mating of a pair of male and female geckoes, a
female produces 1 or 2 clutches every 10–20 days and continues to
lay eggs for several months (Nomura et al., 2013a,b). Embryonic
staging of the gecko has been established by Noro et al., who
determined that the gecko embryogenesis proceeds much slower
than chicken embryogenesis (Figure 1D) (Noro et al., 2009; Wise
et al., 2009). The gecko does not exhibit temperature-dependent
sex determination. The embryo hatches approximately 60 days
after oviposition and begins to catch small insects within a few
days after the first molting. To feed the geckoes, various sizes of
crickets were purchased from a local breeder (Tsukiyono farm,
Gunma, Japan) and dusted with mineral supplements (calcium
and vitamin D) to prevent rickets. To collect embryos, 4 pairs
of wild-type geckoes (total 8 animals) were first obtained from
a local store (Kansai Reptile Pro, Osaka, Japan) and maintained
in our laboratory (28◦C, 12 h of light and dark cycles, 50–60%
humidity). More than 100 eggs were obtained from 4 females bred
for 6 months.

FIGURE 1 | Unique characteristics of Madagascar ground gecko and

Chinese softshell turtle. (A) Phylogenic position of the gecko and turtle
among amniotes. Lepidosaurs include sphenodon, snake, lizard and gecko,
whereas archosaurs include turtle, crocodile and bird. (B,C) Young
individuals of Madagascar ground gecko (Paroedura pictus) (B) and Chinese
softshell turtle (Pelodiscus sinensis) (C). (D) Developmental rates of
Paroedura pictus and Gallus gallus (chick). Equivalent developmental stages
are based on limb bud and cranial morphology (Wise et al., 2009).
Representative developmental events include 1: hindlimb bud develops, 2:
hindlimb bud becomes larger than forelimb bud, 4: autopodium develops
discrete paddle shape, 5: zeugopodium and stylopodium become distinct,
6: digits develop, 9: phalanges develop, 10: claws develop, 11: scale
formation and pigmentation, and 12: hatching. Detailed staging criteria are
described in Wise et al. (2009).

CHINESE SOFTSHELL TURTLE
Turtle embryos have been used for anatomical and developmen-
tal studies since the nineteenth century (Tokita and Kuratani,
2001). The Chinese softshell turtle (P. sinensis) is a freshwater-
living turtle that is widely distributed in eastern and southeastern
Asia (Figure 1C). The adult size of the turtle reaches over 30 cm
in carapace length, and sexual maturity takes approximately 5–6
years. Because the turtle exhibits seasonal reproduction, we could
obtained fertilized eggs from a local breeder (Daiwa-Yoshoku,
Saga, Japan) in the summer from the beginning of June to the end
of August. Sex determination is not dependent on temperature.
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The developmental stages of the turtle have been established by
a previous report (Tokita and Kuratani, 2001). Embryogenesis
takes approximately 60 days, and newborn turtles begin foraging
after consuming the remaining abdominal yolk. All experimen-
tal procedures for reptilian captivity and embryonic manipula-
tion were approved by the experimental animal committee of
Kyoto Prefectural University of Medicine (M23-272), and were
performed in accordance with the relevant guidelines of the
committee.

MANIPULATION AND ELECTROPORATION OF REPTILIAN EMBRYOS
Embryonic manipulation and electroporation are based on
the procedures for gene transduction into developing avian
embryos with slight modification (Figure 2) (Nomura et al.,
2008; Nakamura, 2009). However, because the reptilian eggs are
much smaller than chicken eggs, in ovo manipulation of reptilian
embryos requires specific experimental techniques and training
of surgical skills under the dissecting microscope (Figure 2A).

FIGURE 2 | In ovo electroporation of gecko embryos. (A) Experimental
equipment. (B) Needle-type electrodes (CUY200S). (C) Two P. pictus eggs
incubated in a small tapper with vermiculite. (D) Sterilization of the egg
with 70% ethanol and a cotton stick. (E) HBSS was dropped through the
hole of the shell. (F) The window was opened with fine forceps. (G) An
illustration showing the position of the electrodes on the embryo. (H) High
magnification of an electroporated embryo. Green-colored DNA solution
was injected in the left lateral ventricle. (I) The window was sealed with a
cover glass. (J) Incubation of operated embryos in the container.

In ovo electroporation of gecko embryos
After oviposition, the laid eggs should be isolated from the mother
animal to avoid accidental crushing of the eggs. In our laboratory,
the eggs are immediately transferred to a plastic container filled
with dried vermiculite (Figure 2C). To maintain embryonic respi-
ration, small holes are made through the lid. The egg are approx-
imately 10 mm in diameter and 12–13 mm in length (Figure 2C)
(Noro et al., 2009). Fertilized eggs are incubated at 28◦C in 50–
60% humidity until manipulation. In ovo electroporation can be
performed during 10–15 d.p.o. (days of post-oviposition); after
these stages, the eyes and jaws increase rapidly in size, which make
it difficult to access and electroporate to brains.

To begin in ovo electroporation, the egg is placed on a depres-
sion slide (Matsunami, Osaka, Japan) with moistened papers
(Figure 2D, Prowipe, Elleair, Japan). The egg is sterilized with
70% ethanol and the surface of the shell was wiped with a cotton
swab (Figure 2D, AspureAP-7, ASONE, Japan). Pieces of vermi-
culites attached to the eggs are removed at this step. The position
of the embryo within the egg is confirmed by illuminating the egg
with a fiber optic light (SL FI-150T, Sugihara Lab Inc., Japan). To
open the shell, scratch the surface of the shell with fine forceps
(VIGOR TW-705#5, B. Jadbow Inc, Switzerland) under a dis-
secting microscope (SZ61, OLYMPUS, Japan). Because the shell
of gecko eggs is extremely fragile, care should be taken to open
the shell with a forceps to avoid crushing the egg. After mak-
ing a small hole in the shell, 50–100 µL of saline (HBSS: Hanks’
buffered saline with the addition of 1% penicillin and strepto-
mycin and 0.1% gentamycin) is added through the hole, and
the further open by carefully removing the shell (Figure 2E).
The vitelline and amniotic membranes were cut with micro-
surgical scissors (Figure 2F, RS-5620, ROBOZ, Germany). Next,
50–100 µL of HBSS is further added to the egg to maintain the
space for embryonic manipulation.

To prepare the DNA solution for electroporation, puri-
fied plasmid DNA vectors are dissolved in sterilized phos-
phate buffered saline (PBS) with a non-toxic dye (0.01% fast
green). Typically, we prepare 2.5–5 µg/µL of plasmid solu-
tion for the electroporation. Holding the head of the embryo
with a fine forceps, the DNA solution is injected into the left
or right side of the lateral ventricle with a fine glass capil-
lary (MODEL G-1, NARISHIGE, Japan) that is connected to
a mouth-pipette (Suction tube, Drummond, USA) or mini-
injector (BJ100, BEX, Japan). Subsequently, needle-type elec-
trodes (CUY200S, NEPAGENE, Japan) is inserted into the extra-
embryonic space. Because DNA is negatively charged, a positive
electrode was positioned at the target region (c.f., dorsal cor-
tex), and a negative electrode was placed at the opposite side
of the head (lower jaw; Figure 2G). The distance between the
electrodes and embryos needs to be maintained (approximately
0.5–1 mm) to minimize the risk of tissue damage and hemor-
rhage by the direct application of electricity. Square waves of
electric pulses (32 V, 50 ms, 950 ms interval, 2 or 4 pulses) are
passed with an electric stimulator (SEN-3401, Nihon Kohden,
Japan) or pulse generator (CUY21EDIT II, BEX, Japan). We
compared survival rates of embryos at 48 h after electropora-
tion and found that applying 4 pulses remarkably decreased
the viability of gecko embryos (Table 1). To prevent microbe
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contamination, 50–100 µL of HBSS with antibiotics was applied
into the extra-embryonic space. After the electroporation, the
shell window was sealed with a micro cover glass (Figure 2I,
18 mm, #1, MATSUNAMI, Japan) attached with the tissue glue
(1xHistoacryl L, B.Braun, Germany). The operated eggs were kept
in a sterilized moist chamber (a plastic container with respiratory
holes within the lid) and incubated at 30◦C for 24 h to 1 month
(Figure 2J).

In ovo electroporation of turtle embryos
In ovo manipulation of turtle embryos is similar to the method
for gecko embryos with slight modifications. Because the early
stages of the turtle embryos are tightly attached to the inside of
the shell, frequent rotation of the egg will disrupt normal devel-
opment of the turtle embryos. Thus, care should be taken to
maintain the orientation of the egg after oviposition (Figure 3A).
Fertilized turtle eggs are incubated in a highly moistened con-
tainer at 28◦C. We usually performed in ovo electroporation at
stage 10–15 (10–15 days after fertilization).

Table 1 | Efficiency of the in ovo electroporation of the gecko

embryos.

Stage Number of Number of Number of *Electroporation

(d.p.o.) embryos pulses survived embryos efficiency

(2 days) (%)

12 2 2 0 N.D.

13 10 2 9 100

13 2 4 0 N.D.

14 18 (2)** 2 (2)** 11 (2)** 100

14 2 4 0 N.D.

16 4 2 2 100

*Electroporation efficiency was determined by dividing the number of GFP-

positive embryos by the number of collected embryos.
**Pilot experiments for the comparison of survival rates.

FIGURE 3 | In ovoelectroporation of turtle embryos. (A) Turtle eggs in
the delivery packet. Before transferring the eggs, the top of the shell was
marked to maintain an upside-down orientation. (B) Tools for surgical
manipulation. 1: A depression slide, 2: micro scissors, 3: forceps, 4: mini
drill (pinvise), 5: hand-made egg stand, and 6: a metal file. (C) A small scar
was made on the shell with a metal file. (D) A pin vise was used to drill the
surface of the egg. (E) HBSS was dropped through the small window. (F)

The window was sealed with a cover glass after electroporation.

The position of an embryo within the egg can be monitored by
illuminating the egg with a fiber light. To open the turtle eggs, a
small hole is made in the shell by drilling the top of the shell with
a micro drill (0.5–0.8 mm in diameter, using a pin vise, TAMIYA,
Japan) under the dissecting microscope (Figures 3B–D). After
opening a small hole on the shell, 50–100 µl of HBSS with antibi-
otics was added through the hole, and the window was further
widened by carefully removing the shell (Figure 3E). The chorion
and amniotic membranes were cut with microsurgical scissors.
After injecting a DNA solution (2.5–5 µl of DNA and 0.1% fast
green in PBS) into the lateral ventricle, electroporation is per-
formed with a needle-type electrode (CUY200S), and square
pulses (32 V, 50 ms, 950 ms interval, 2 pulses) are applied to the
target region of the embryos using an electric stimulator or pulse
generator. After electroporation, the shell window was sealed with
tissue glue and a micro cover glass as in the case of the gecko
eggs (Figure 3F). The operated embryos are maintained in a
moistened chamber and incubated at 30◦C (Table 2).

Ex ovo culture of reptilian embryos
Exposing the embryos from the shell to the medium dramatically
facilitates accessibility to the embryos and increases the efficiency
of electroporation (Buchtova et al., 2008; Tschopp et al., 2014).
To allow embryonic development in the medium after electro-
poration, we established an ex ovo culture system for the middle
stages of reptilian embryos (Figure 4 and Table 3). To begin ex
ovo culture, fertilized gecko and turtle eggs are transferred to
a glass evaporating dish filled with HBSS, and the shell was
cracked within the medium with forceps to carefully expose the
embryo from the extra-embryonic membrane (Figure 4A). The
part of shell on the side of the yolk was kept to preserve the yolk
sac (Figure 4B). Injection and electroporation can be performed
within the evaporating glass (Figure 4B). After electroporation,
the embryo was carefully transferred to a sterilized glass-made
bottle (Ikemoto Rika, Tokyo, Japan) filled with 2 mL of HBSS with
antibiotics (1% penicillin and streptomycin, 0.1% gentamycin)
and cultured using the whole embryo culture system (Ikemoto
Rika, Tokyo, Japan) in which oxygen is constantly supplied
(95% oxygen, 5% carbon dioxide, 50 mL/min) to the embryos
(Figures 4C–E). The culture temperature was maintained at 30◦C
to match ideal temperature for reptilian embryogenesis. Because
the embryos are damaged by bottle rotation, the culture bot-
tles were maintained in a static position during culture. The

Table 2 | Efficiency of the in ovo electroporation of turtle embryos.

Stage Number Number Number Number *Electroporation

(TK) of of of survived of survived efficiency

embryos pulses embryos (2 day) (%)

(1 day)

13 19 2 14 9 100

15 6 3 3 3 33.3

16 5 2 3 3 0

*Electroporation efficiency was determined by dividing the number of GFP-

positive embryos by the number of collected embryos.
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FIGURE 4 | Ex ovo culture system for reptilian embryos. (A) Turtle
embryos were opened in HBSS. (B) A turtle embryo in which a DNA
solution (green color) was injected into the lateral ventricle. (C–E)

Incubation of gecko (C) and turtle (D,E) embryos in the whole embryo
culture system. Electroporated embryos were cultured in glass vials filled
with HBSS. Embryo containing vials were inserted into the rotator to supply
oxygen continuously. To avoid crushing the embryos, the rotating wheel
was not used during the culture.

Table 3 | Efficiency of the ex ovo culture of gecko and turtle embryos.

Stage Number of Number of Number of *Electroporation

embryos survived survived efficiency (%)

embryos embryos

(24 h) (48 h)

Gecko d.p.o.8/9 3 3 2 100

Gecko d.p.o.15 1 1 1 100

Turtle TK16 6 6 2 100

*Electroporation efficiency was determined by dividing the number of GFP-

positive embryos by the number of collected embryos.

culture medium (HBSS) was replaced 24 h after starting the cul-
ture. The embryos can be maintained for approximately 2 days in
this culture system because embryonic circulation was gradually
decreases after 3 days of culture.

EXPRESSION VECTORS
Expression vectors designed for mammalian cells can be used
for genetic manipulation in reptilian embryos. In general, the
CAG promoter (cytomegalovirus enhancer with chicken ß-actin
promoter) provides higher expression of transgenes in amni-
otic brains, particularly in the neural stem/progenitor cells (Niwa
et al., 1991). We used several expression vectors, including pCAX-
AFP (a variant form of GFP, Takahashi and Osumi, 2002)
and pCAGGS-RFP (Nomura et al., 2008), which express fluo-
rescent reporter proteins under the control of the CAG pro-
moter. Expression vectors with Cre/loxP technology are useful
for the restricted expression of transgenes in spatiotemporally
controlled manners. The electroporation of Cre-recombinase

expression vectors at a lower concentration (1 ng/µL) decreases
the recombination frequency, which allows clonal labeling of neu-
ral stem/progenitor cells (Kato et al., 2010; Gotoh et al., 2012;
Nomura et al., 2013a).

IMMUNOHISTOCHEMSTRY
To perform immunohistochemical analysis, embryos are fixed
with standard fixative (4% paraformaldehyde in PBS) for
overnight at 4◦C and immersed in 20% sucrose for cryoprotec-
tion. The samples were embedded in OCT compound (Tissue-
tek, SAKURA, Japan), and 14 µm of cryosections are made with
a cryostat (LEICA CM1850, Germany). Several commercial anti-
bodies are potentially applicable for immunohistochemistry in
gecko and turtle embryos (Table 4) (Moreno et al., 2010, 2012),
although not all the antibodies provide a single band with naïve
brain extracts (Figure 6 and our unpublished data).

REPRESENTATIVE RESULTS
The expression of exogenous genes can be monitored soon after
electroporation. We collected gecko and turtle embryos at several
time points after the electroporation, and examined the expres-
sion of fluorescent reporters under a fluorescent microscope.
At 2–4 days after electroporation, intense GFP expression was
detected in the dorsal part of the gecko and turtle telencephalon
(Figures 5A–C). Even at 1 month after electroporation, reporter
fluorescence was still maintained in the brain (Figures 5G–I).

At 2 days after electroporation, GFP expression was exclu-
sively detected in mitotic neural stem/progenitor cells that were
localized at the ventricular zone of the developing gecko cor-
tex. These neural stem/progenitor cells have a radial fiber similar
to the mammalian radial glial cells, but the fibers extend in a
curved manner at the neuronal layer as in the case of avian cor-
tical radial fibers (Nomura et al., 2008, 2014). At 4 days after
electroporation, GFP-positive cells migrated from the ventricu-
lar zone and positioned at the marginal zone (Figures 5C,E,F).
GFP-positive migrating neurons in the developing gecko cortex
exhibited multipolar morphology, similar to intermediate pro-
genitor cells (IPCs) in the subventricular zone (SVZ) of the
mammalian neocortex (Miyata et al., 2004; Noctor et al., 2004;
Englund et al., 2005). However, unlike mammalian IPCs, we
could not detect mitotic activity in the GFP-labeled multipolar
cells in the gecko cortex (Figure 5C). This result is consistent
with our observation that Tbr2-positive cells in the develop-
ing gecko cortex are post-mitotic neurons (Figure 6) (Nomura
et al., 2013a). At 1 month after electroporation, GFP-expressing
cells were still detected in the medial and dorsal cortex of gecko
embryos (Figure 5G). Notably, these GFP-positive cells exhib-
ited reptilian-type pyramidal neurons and extended axonal fibers
toward the contra-lateral side of the cortex, which constitutes the
pallial commissure in reptiles (Figures 5H,I).

Recent studies have shown that the transition from the multi-
polar to bipolar shape in the migrating neurons is critical for the
development of mammalian neocortex (Noctor et al., 2004; Hand
et al., 2005; Heng et al., 2008; Ohtaka-Maruyama et al., 2013;
Kawauchi, 2014; La Fata et al., 2014). In contrast to the mam-
malian neocortex, migrating neurons in the developing gecko and
turtle cortex still maintained multipolar morphology at 7 days
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Table 4 | The list of antibodies for immunohistochemistry of reptilian brains.

Antigen Provider Catalog no. Dilution Technical note

Sox2 Abcam ab97959 1:500

Ctip2 Abcam ab18465 1:500

Satb2 Abcam ab51502 1:500

Foxp2 Abcam ab16046 1:500

Tbr2 Abcam ab23345 1:500 TSA amplification

Tbr1 Millipore AB2261 1:500

ßIII-tubulin Millipore MAB1637 1:200

Phospho- histon H3 Millipore 06-570 1:500

Phospho- histon H3 Millipore 05-806 1:500

NeuN Millipore MAB377 1:500

DCX Santa Cruz Biotech. sc-8066 1:500

Pax6 MBL PD022 1:500

Pax6* DSHB PAX6 1:500 Antigen retrieval with 2N HCl, 37◦C, 15 min and TSA amplification

Rbpj-k Cosmo Bio SIM-2ZRBP2 1:500 Antigen retrieval with 2N HCl, 37◦C, 15 min and TSA amplification

*Specificity was examined with western blot in previous reports (Moreno et al., 2010, 2012).

FIGURE 5 | GFP expression in the developing gecko and turtle cortex. (A)

Developing gecko embryo after electroporation. The image was captured using
an iPhone4S camera through a magnifier. (B) Gecko embryos at 4 days after
electroporation. GFP was expressed at the dorsal part of the telencephalon
(arrows). (C) GFP expression in the cortical neural stem/progenitor cells.
Mitotic GFP-positive cells were labeled with an anti-phospho histoneH3 (PH3)
antibody (red arrows). A GFP-positive cell at the outside of the ventricular zone

was not mitotic (white arrow). (D) The distribution of GFP-positive cells in the
gecko cortex at 7 days after electroporation. Arrows indicate migrating
neurons (E,F) GFP expression in the developing turtle cortex at 4 days after
electroporation. Arrows indicate migrating neurons. (G–I) GFP expression in
the gecko cortex at 1 month after electroporation. VZ, ventricular zone; NL,
neuronal layer; OB, olfactory bulb; DC, dorsal cortex; DVR, dorsal ventricular
ridge. Scale bars: 25 µm (C,F), 50 µm (E).
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FIGURE 6 | The expression of Tbr2 in the developing gecko cortex. (A)

Western blot with anti-mouse Tbr2 antibody. The left panel shows lysate
from HEK293 cells transfected with the expression vector for mouse Tbr2.
The control lane was whole cell lysate without transfection. A major band
was detected at the predicted molecular weight (72 kD) for mouse Tbr2. A
slightly lager band was possibly due to post-translational modification. The
right panel shows western blot of embryonic turtle (st17), gecko (d.p.o.18),
chick (E7), and mouse (E14) brain lysate. Together with the bands of

predicted molecular weight (72 kD), additional larger bands were detected
in all examined species. (B–D) Immunohistochemistry of the developing
gecko cortex (d.p.o. 18) with anti-Tbr2 antibody. Tbr2-positive cells were
detected at the basal side of the ventricular zone (white arrows). (C)

Tbr2-positive cells did not overlap with BrdU-incorporated cells. (D) All
BrdU-incorporated cells were Sox2-positive. Detailed
immunohistochemistry and BrdU incorporation protocols were described
previously (Nomura et al., 2013a).

after electroporation (Figures 5D, 7A–L). To quantify the orien-
tation of leading process in migrating neurons, the angle of the
longest process in each neuron relative to the ventricular surface
was quantified in mouse, gecko, turtle and chicken cortex/dorsal
pallium. Comparison of leading process orientation demon-
strated that all migrating neurons in the mammalian cortical plate
are vertically aligned: thus, all neuronal processes are directed
to the pial surface. In contrast, migrating neurons in the reptil-
ian and avian marginal zone are not tightly aligned and extend
leading process in various directions (Figures 7M–P). Thus, the
strict alignment of bipolar migrating neurons in the cortical plate
is a unique characteristic in the developing mammalian cortex.
However, we also confirmed that the expression of mammalian
cortical plate markers, such as Tbr1, CTIP2, and SATB2, is also
detected in the developing gecko cortex (Figures 7Q–T) (Nomura
et al., 2013a), suggesting that some of the molecular character-
istics of the cortical plate neurons are conserved between the
mammalian and reptilian cortex.

DISCUSSION
Comparative analyses of extant amniote brains are powerful
approaches to understand the evolutionary processes of the mam-
malian neocortex and homologous structures in non-mammalian
lineages (Molnar et al., 2006; Aboitiz, 2011; Medina et al., 2013).
Previous histological studies revealed that the stellate morphol-
ogy of migrating neurons in the developing reptilian cortex
resemble migrating neurons in the early stages of mammalian
neocortex (Goffinet, 1983). Based on the ontogenic analyses,
Marin-Padilla hypothesized that mammalian neocortex has dual
origins: the superficial and deepest neurons (layer I and IV) retain
ancestral phenotypes that are reminiscent of the amphibian or
reptilian cortex, whereas the later-born cortical plate neurons
(layer II-V) are recently acquired during mammalian evolution
(Marin-Padilla, 1971, 1978). Our in vivo cell tracing analyses indi-
cated that (1) multipolar neurons in the reptilian cortex do not
exhibit mitotic activity and (2) multipolar-to-bipolar transition

of migratory modes is not detected during the reptilian cortico-
genesis. These data support the idea that both amplification of
IPCs (Martinez-Cerdeno et al., 2006; Cheung et al., 2007; Charvet
et al., 2009; Puzzolo and Mallamaci, 2010) and unipolar cortical
plate neurons with a “locomotive mode” are derived developmen-
tal processes in the mammalian neocortex (Aboitiz et al., 2001),
through which the expansion of neuron numbers and multiple
laminar structures evolved. However, the morphological similari-
ties of migrating neurons are not always associated with common
cellular dynamics and gene expression patterns. Thus, the rep-
tilian neurons are not simply equivalent to the early stages of
mammalian cortical neurons or ancestral neuronal subtypes.

In addition to cell tracing of migrating neurons, we applied
several developmental techniques to analyze reptilian corticoge-
nesis, such as (1) lineage tracing of neural stem/progenitor cells,
(2) quantification of reporter activities for signaling molecules,
and (3) gain- and loss-of-function analyses of specific genes in
the developing reptilian cortex (Nomura et al., 2013a). These
experimental approaches unveiled further unique characteristics
of reptilian neural stem/progenitor cells. For example, the rates
of proliferation and differentiation of reptilian cortical progen-
itors are very slow and contribute to the production of a lower
number of cortical neurons. Some of these characteristics depend
on Notch signaling, and experimental manipulation of a Notch
downstream effector dramatically increased neuronal produc-
tion in geckoes. We hypothesized that after the diversification of
mammalian and non-mammalian amniote lineages, some criti-
cal changes in neural stem cell regulation might have occurred in
the ancestral mammals and thus provided the expansion of corti-
cal areas and massive generation of excitatory neurons (Nomura
et al., 2013a,b, 2014).

Recently, whole genome sequences of Chinese softshell tur-
tle and sew turtle have been performed, which have confirmed
that turtles must be positioned phylogenetically in archosaur
groups in amniotes (Wang et al., 2013). The data also demon-
strated that conserved and derived genetic programs in turtle
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FIGURE 7 | Characteristics of migrating neurons in the developing

amniote pallia. (A–D) Electroporation of GFP-expression vector into the
developing mouse (A), gecko (B), turtle (C), and chick (D) pallia. (E–L)

Distribution and morphology of GFP-positive migrating neurons in the mouse
neocortex (E,I) and the gecko (F,J), turtle (G,K) and chick (H,L) pallia. (M–P)

Contour graphs of the longest process orientation of mouse (M; the data were
taken from the cortical plate), gecko (N), turtle (O), and chick (P). The angles of
the processes were calculated against the ventricular plane. Each contour line
represents the number of cells. (Q–T) The expression of CTIP2 in RFP-positive
pallial neurons in the developing gecko cortex (white arrows in R–T).

embryogenesis contributed to the evolution of the turtle-specific
body plan (Wang et al., 2013). Although genome analyses of
Madagascar ground gecko have not been accomplished, draft
genomes of green anole lizard (Anolis carolinensis), a related
species to the gecko, have been published (Alfoldi et al., 2011).
Genomic information of the Anolis lizard revealed unique char-
acteristics in its genomic composition, such as homogenization

of the GC content and higher number of mobile elements than
other amniotes (Alfoldi et al., 2011). Additional studies of the
comparative genomics of reptiles will clarify how genetic and epi-
genetic changes contributed to brain evolution in distinct lineages
of amniotes. Genomic sequences of the Chinese softshell turtle
and Anolis lizard are available at the website of the Ensemble
Genome Browser (http://asia.ensembl.org/index.html).
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Currently, we have only successfully performed in ovo electro-
poration during a narrow window of time (d.p.o. 10–16 for gecko
embryos and stages 10–15 for turtle embryos). Because reptilian
eyes and jaws rapidly increase in size during embryogenesis, posi-
tioning the electrodes to target dorsal cortex is technically difficult
at later embryonic stages. Application of an ex ovo culture system
for gecko and turtle embryos is also limited for 3–4 days, most
likely due to the lack of some essential nutrients and/or suffi-
cient oxygen supply. Further improvements of gene delivery tools
and/or culture conditions are required to manipulate embryos at
any developmental stage.

Electroporation with a transposon-mediated genomic integra-
tion system provides permanent lineage tracing in mammalian
and non-mammalian vertebrates (Garcia-Moreno et al., 2014;
Loulier et al., 2014). Furthermore, recent advances in genome
editing tools, such as TALEN (transcription activator-like effec-
tor nuclease) and CRISPR/Cas (clustered regulatory interspaced
short palindromic repeats/CRISPR-associated proteins), extend
the possibility of genetic manipulation in a variety of organisms
(Aida et al., 2014; Kaneko et al., 2014; Pal et al., 2014). The in vivo
delivery of CRISPR/Cas vectors induces direct somatic recombi-
nation in target tissues, which enables the site-specific mutation
of endogenous genes (Xue et al., 2014; Yin et al., 2014). The appli-
cation of these new research strategies to the study of comparative
brain development provides a new avenue for the understanding
of the origin and evolution of amniote brains, particularly the
mammalian cerebral cortex.
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