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We confess that the first part of our title is somewhat of a misnomer. Bayesian reasoning is a 
normative approach to probabilistic belief revision and, as such, it is in need of no improvement. 
Rather, it is the typical individual whose reasoning and judgments often fall short of the Bayesian 
ideal who is the focus of improvement. What have we learnt from over a half-century of research 
and theory on this topic that could explain why people are often non-Bayesian? Can Bayesian 
reasoning be facilitated, and if so why? These are the questions that motivate this Frontiers in 
Psychology Research Topic.

Bayes’ theorem, named after English statistician, philosopher, and Presbyterian minister, Thomas 
Bayes, offers a method for updating one’s prior probability of an hypothesis H on the basis of 
new data D such that P(H|D) = P(D|H)P(H)/P(D). The first wave of psychological research, 
pioneered by Ward Edwards, revealed that people were overly conservative in updating their 
posterior probabilities (i.e., P(D|H)). A second wave, spearheaded by Daniel Kahneman and 
Amos Tversky, showed that people often ignored prior probabilities or base rates, where the 
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priors had a frequentist interpretation, and hence were not Bayesians at all. In the 1990s, a third 
wave of research spurred by Leda Cosmides and John Tooby and by Gerd Gigerenzer and Ulrich 
Hoffrage showed that people can reason more like a Bayesian if only the information provided 
takes the form of (non-relativized) natural frequencies.

Although Kahneman and Tversky had already noted the advantages of frequency representations, 
it was the third wave scholars who pushed the prescriptive agenda, arguing that there are feasi-
ble and effective methods for improving belief revision. Most scholars now agree that natural 
frequency representations do facilitate Bayesian reasoning. However, they do not agree on why 
this is so. The original third wave scholars favor an evolutionary account that posits human 
brain adaptation to natural frequency processing. But almost as soon as this view was proposed, 
other scholars challenged it, arguing that such evolutionary assumptions were not needed. The 
dominant opposing view has been that the benefit of natural frequencies is mainly due to the 
fact that such representations make the nested set relations perfectly transparent. Thus, people 
can more easily see what information they need to focus on and how to simply combine it.

This Research Topic aims to take stock of where we are at present. Are we in a proto-fourth 
wave? If so, does it offer a synthesis of recent theoretical disagreements? The second part of the 
title orients the reader to the two main subtopics: what works and why? In terms of the first 
subtopic, we seek contributions that advance understanding of how to improve people’s abilities 
to revise their beliefs and to integrate probabilistic information effectively. The second subtopic 
centers on explaining why methods that improve non-Bayesian reasoning work as well as they 
do. In addressing that issue, we welcome both critical analyses of existing theories as well as fresh 
perspectives. For both subtopics, we welcome the full range of manuscript types.

Citation: Navarrete, G., Mandel, D. R., eds. (2016). Improving Bayesian Reasoning: What Works 
and Why? Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-745-3
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This edited collection was motivated by an interest in understanding how to improve Bayesian
reasoning. In that sense, the book before you is pragmatically and prescriptively oriented. Several
of the papers address that challenge and some pick up on the important question of why certain
factors work as well as they do. However, Improving Bayesian Reasoning: What Works and Why
offers more than its editors had bargained for or its title suggests. Many papers offer methodological
and conceptual insights that should help readers understand the psychology of Bayesian reasoning
as practiced in cognitive science.

The book is comprised of 23 papers by 48 authors. The contributions are ordered by type: 10
original research articles first, followed by three reviews and 10 shorter essays. Foregoing an attempt
to summarize each contribution in sufficient detail, let us simply draw out some observations about
the collection.

ORIGINAL RESEARCH ARTICLES

This collection extends the base of original research on Bayesian reasoning in many important
ways. Several papers offer further empirical evidence of the advantage of using visualized natural
frequencies to communicate statistical information. Hoffrage et al. (2015b) show that the benefits
of natural frequency representations in Bayesian tasks generalize from single- to multiple-cue cases
and also to cases involvingmore than two hypotheses. Mandel (2015) shows that brief instruction in
Bayesian reasoning using natural-frequency trees improves the coherence of intelligence analysts’
posterior probability estimates. Binder et al. (2015) find that performance is improved when
statistical information is communicated as natural frequencies instead of probabilities, and the
natural-frequency format strengthens the facilitative effect of nested-set visualizations (i.e., tree
diagrams and contingency tables) on Bayesian reasoning.

Other contributions identify where facilitative factors have their greatest impact. For instance,
Hoffrage et al. (2015a) find that inexperienced businessmajors benefitmore fromnatural-frequency
formats than experienced business managers. Garcia-Retamero et al. (2015) address questions of
where and why by showing that grid representations of natural frequencies facilitate Bayesian
reasoning more strongly in medical patients with low numeracy, and that representational effects
on reasoning are mediated bymetacognitive judgment calibration. Hafenbrädl and Hoffrage (2015)
go even further by parameterizing Bayesian skill using quantitative and qualitative factors that
were free to vary across earlier studies. Finally, by triangulating choice and process data using
an ecological sampling approach, Domurat et al. (2015) observe that many ostensibly Bayesian
responses follow from use of an alternative statistical integration strategy.

The study of deduction had long been associated with reasoning from certain premises to certain
conclusions. Yet Evans et al. (2015) and Cruz et al. (2015) venture into relatively new territory by
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examining the quality of reasoners’ uncertain deductions using
coherence-based Bayesian metrics such as probabilistic validity.
These papers capture the fundamental insight that, even in
deduction, most arguments consist of uncertain premises from
which uncertain conclusions are drawn.

Finally, the contribution by Douven and Schupbach (2015) is
pragmatic in two unique senses. First, it causes us to reconsider
whether Bayesianism is the most appropriate normative
framework in some contexts. Second, in the tradition of the
great American pragmatist Charles Sanders Peirce, it situates
abduction within the normative fold. The authors argue that
explanationist alternatives to Bayesianism not only withstand
normative critiques, they also fare better descriptively.

REVIEW ARTICLES AND ESSAYS

The articles in this category draw out several dominant themes.
First, the debate over natural frequencies vs. nested sets is
passé. Although disagreement over the merits of the evolutionary
account within which the original natural-frequency arguments
were put forth linger, there is wide consensus that natural-
frequency formats improve Bayesian performance by clarifying
nested-set relations, which confers both representational and
computational benefits (Brase and Hill, 2015).

Second, there has been a move away from the dual-systems
account that emphasized System 1 sources of Bayesian error
(Barbey and Sloman, 2007) toward a view that regards such
errors as primarily due to representational and computational
breakdowns in a problem-solving process, which occur even
when explicit “System 2” processes are utilized (Johnson
and Tubau, 2015; Sirota et al., 2015). For example, Juslin
(2015) illustrates that Bayesian performance improves when
computational requirements are shifted from multiplicative
integration to additive integration. Likewise, Girotto and Pighin
(2015) review studies showing that children and preliterate adults
exhibit extensional reasoning that enables them to solve Bayesian
problems provided they do not require explicit mathematical
computation. The emerging view is further tempered by
considerations of task characteristics, which are likely to alter
the balance of implicit and explicit cognitive processes (Vallée-
Tourangeau et al., 2015).

Whereas, most papers in this collection focus on Bayesian
reasoners’ performance, two refocus our attention on Bayesian
communication by experts. Navarrete et al. (2014) make us

consider how parents’ decision-making about prenatal screening
might be altered if they were given the positive predictive
value (namely, the Bayesian value) of the initial screening test
(which happens to be quite low) and also if parents received
clear communications about the probabilistic risks of secondary
invasive testing. Navarrete et al. (2015) generalize the argument,
recommending that, where feasible, medical practitioners should
give clients the relevant positive predictive values adjusted for
their reference class. In short, clients should be relieved of
computational burdens as far as possible so that they can focus
on value-based decisions among available options.

Finally, several papers in this collection take the literature to
task. Mandel (2014a) and McNair (2015) note that the definition

of Bayesian reasoning in most psychological studies is mainly
about information-integration performance. Few studies even
require subjects to revise or update their beliefs! Others point to
a lack of due attention to individual differences in reasoning and
to the cognitive processes that lead to final estimates (Johnson
and Tubau, 2015; McNair, 2015; Vallée-Tourangeau et al.,
2015). Baratgin (2015) and Mandel (2014a) both take Bayesian
researchers to task over their disregard of the subjectivist (and
coherence-centered) foundations of Bayesianism.

However, attention to problems that have a temporal
component is not lacking in this collection: Tubau et al. (2015)
provide an insightful and comprehensive review of the Monty
Hall Problem and Baratgin (2015) uses the two-player version of
that problem to expose logical and terminological breakdowns in
earlier theoretical analyses. Mandel (2014b) explores the perhaps
even more complex Sleeping Beauty problem, which involves
belief revision under conditions of asynchrony, to highlight how
visual representations using quasi-logic trees can help clarify
points of philosophical disagreement in the literature.

We hope readers will find this book informative, thought
provoking, and of practical value.
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Representing statistical information in terms of natural frequencies rather than

probabilities improves performance in Bayesian inference tasks. This beneficial effect

of natural frequencies has been demonstrated in a variety of applied domains such

as medicine, law, and education. Yet all the research and applications so far have

been limited to situations where one dichotomous cue is used to infer which of two

hypotheses is true. Real-life applications, however, often involve situations where cues

(e.g., medical tests) have more than one value, where more than two hypotheses (e.g.,

diseases) are considered, or where more than one cue is available. In Study 1, we

show that natural frequencies, compared to information stated in terms of probabilities,

consistently increase the proportion of Bayesian inferences made by medical students

in four conditions—three cue values, three hypotheses, two cues, or three cues—by an

average of 37 percentage points. In Study 2, we show that teaching natural frequencies

for simple tasks with one dichotomous cue and two hypotheses leads to a transfer of

learning to complex tasks with three cue values and two cues, with a proportion of 40

and 81% correct inferences, respectively. Thus, natural frequencies facilitate Bayesian

reasoning in a much broader class of situations than previously thought.

Keywords: Bayesian inference, representation of information, natural frequencies, task complexity, instruction,

fast-and-frugal trees, visualization

Introduction

After a positive hemoccult screening test, which signals hidden blood in the stool, a patient asks
his doctor: “What does a positive result mean? Do I definitely have colon cancer? If not, how likely
is it?” When 24 experienced physicians, including heads of departments, were asked this, their
answers to the third question ranged between 1 and 99% (Hoffrage and Gigerenzer, 1998). All
these physicians had the same information: a prevalence of 0.3%, a sensitivity of 50%, and a false
positive rate of 3%. Bayes’ rule shows that the actual probability of colon cancer given a positive
result is about 5%. As this and subsequent studies have documented, most physicians do not know
how to estimate the probability of cancer given the prevalence, sensitivity, and false positive rate
of a test (Gigerenzer, 2014). This difficulty has also been observed in laypeople and attributed to
some internal mental flaw, such as a general base rate neglect, the representative heuristic, or a
general inability to reason the Bayesian way (e.g., Kahneman, 2011). Yet the experimental evidence
has made it clear that the problem is not simply in our minds, but in the way the information
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is presented. When Hoffrage and Gigerenzer (1998) gave
another group of 24 physicians the same information in natural
frequencies (see below), 16 of these could find the Bayesian
answer, namely that a patient actually has cancer in only 1
out of 20 positive screening results. When given conditional
probabilities, that is, the sensitivity and false alarm rate, only 1
out of 24 physicians could find the Bayesian answer, or anything
close to it.

The positive effect of natural frequencies on Bayesian
reasoning was first documented by Gigerenzer and Hoffrage
(1995, 1999) and has since been confirmed in both numerous
laboratory studies (e.g., Cosmides and Tooby, 1996; Brase,
2002, 2008) and applied research, including screening for Down
syndrome (Bramwell et al., 2006), the interpretation of DNA
evidence in court (Lindsey et al., 2003), and teaching children
to reason the Bayesian way (Zhu and Gigerenzer, 2006). Thus,
the earlier claim that people’s cognitive limitations make them
poor Bayesians (e.g., Kahneman and Tversky, 1972, repeated in
Kahneman, 2011, and Thaler and Sunstein, 2008) is now known
to be incorrect; it holds only when information is presented in
probabilities.When presented in natural frequencies, by contrast,
Bayesian performance increases substantially.

Yet there is a limitation to virtually all of these studies.
Whether using conditional probabilities or natural frequencies,
the experimental studies that have been conducted so far
incorporated solely the simplest version of a Bayesian task—
henceforth referred to as the basic task—which involves two
hypotheses (such as colon cancer or no colon cancer) and a
single cue (such as the hemoccult test) with two cue values (a
positive or negative result). In 1998, Massaro questioned whether
the facilitating effect of natural frequencies extends to more
complex tasks that involve two or more cues. He conjectured
that even in the case of two cues, “a frequency algorithm will
not work” (p. 178). Although he did not test this claim, if
true, it would severely limit the range of applications of natural
frequencies. In this article, we experimentally test Massaro’s
claim, as well as whether the effect of natural frequencies
generalizes to tasks involving three cues, three cue values, and
three hypotheses.

This article has two parts. In the first, we outline the
two paradigms for studying Bayesian reasoning, which use
two different methodologies and have arrived at apparently
contradicting conclusions concerning people’s ability to reason
the Bayesian way. One is a learning paradigm where probabilities
are learned by sequentially observing events; the other is the
classical textbook paradigm where people are assigned problems
with specified conditional probabilities. We show that natural
frequency representations are a kind of missing link between the
two paradigms. In the second part, we report two studies. The
first study tests whether the beneficial effect of natural frequencies
generalizes to more complex Bayesian inferences, that is, to tasks
containing more than two hypotheses, more than one cue, or
cues with more than two values. The second study tests whether a
short instruction in natural frequencies for a basic task (involving
one dichotomous cue and two hypotheses) facilitates applying
Bayesian reasoning to complex tasks. In the discussion we relate
the present work to the fast-and-frugal heuristics program and to

other interventions to boost performance in Bayesian inference
tasks.

Paradigms to Study Bayesian Inferences:
Probability Learning and Textbook Tasks

A Bayesian inference task is a task in which the probability
p(H|D) of some hypothesis H (e.g., cancer) given data D (e.g.,
a test result) has to be estimated. Two types of Bayesian inference
tasks can be distinguished (Gigerenzer, 2015; Mandel, 2015;
Sirota et al., 2015b): probability learning and textbook tasks.

Let us first consider probability learning tasks. Organisms
learn the consequences of various behavioral responses in a
probabilistic environment with multiple cues. Note that such
a task ultimately requires behavioral responses in a specific
situation. For instance, what should a bird do when it sees
a movement in the grass? This situation can be conceived as
a Bayesian inference task in which the behavioral response is
based on a comparison of the probability that the movement
of the grass (data, D) is caused by something that is dangerous
(hypothesis, H) or by something that is not dangerous (–H). In
the laboratory, a probability learning task involves the sequential
encounter of pairs of events. In the case of two hypotheses (H
and its complement –H) and two possible states of the world
(data D observed or not), there are four possible pairs: H&D,
H&–D, –H&D, –H&–D. To answer the Bayesian question “what
is p(H|D)?” one needs to compare the two possibilities D&H
and D&–H with respect to their probabilities. How likely is
“grass movement due to dangerous cause (e.g., cat)” compared
to “grass movement for some other non-dangerous reason (e.g.,
wind)”? How likely is “hemoccult test positive and patient has
colon cancer” compared to “test positive for some other reason”?
Transforming the odds of the two possibilities—one probability
compared to the other—into a ratio amounts to dividing the first
probability by the sum of both:

p(H|D) =

p(D&H)

p(D)
=

p(D&H)

p(D&H) + p(D&−H)
(1)

where p(H|D) stands for the posterior probability that the
hypothesis H is true given the observed data D. Equation (1) is
one form of Bayes’ rule.

The probabilities relevant for Bayesian inferences can be
learned via three paths: phylogenetic learning (natural selection
of inherited instincts, i.e., evolutionary preparedness; Harlow,
1958), ontogenetic learning (e.g., classical and instrumental
conditioning; Pearce, 1997), and, for some species, social
learning (Richerson and Boyd, 2008). A major conclusion of the
probability learning paradigm is that humans and animals are
approximate Bayesians (Anderson, 1990; Gallistel, 1990; Chater
et al., 2006; Chater and Oaksford, 2008).

Let us now turn to the second type of Bayesian inference
tasks, textbook tasks. In their evolutionary history, humans have
developed skills that other species have in some rudimentary
form, but which humans master at a far superior level: social
learning, instruction, and reasoning (Richerson and Boyd, 2008).
These skills enable culture, civilization, science, and textbooks.
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Moreover, they facilitate communication of probabilities, one of
the many examples of how ontogenetic learning of probabilities
can be supported by social learning (McElreath et al., 2013).
Last but not least, they allow for the development of probability
theory, which, in turn, offers a formal framework for evaluating
hypotheses in light of empirical evidence. Even though the
question of how this should be done is an ancient one, only
since the Enlightenment have hypotheses been evaluated in terms
of mathematical probability (Daston, 1988). Specifically, when
evaluating an uncertain claim (i.e., hypothesis), the posterior
probability of the claim can be estimated after new data have
been obtained. One rigorous method for doing so was established
by Thomas Bayes and, later, Pierre Simon de Laplace. The
mathematical expression for updating hypotheses in light of new
data is given in Equation (2):

p(H|D) =

p (H) p(D|H)

p (H) p (D|H) + p(−H)p (D |−H)
(2)

where p(H) and p(–H) stand for the prior probabilities that the
hypothesis (H) and its complement (–H), are true, and where
p(D|H) and p(D|–H) stand for the likelihood of observing the
data under these two different conditions. In signal detection
theory, these two likelihoods are referred to as hit rate and false-
alarm rate. In medical terms, the hit rate is the sensitivity of
a diagnostic test and the false-alarm rate is the complement of
the specificity of the test. Equation (2) formalizes how prior
probabilities and likelihoods should be combined to compute
the Bayesian posterior probability. Note that this equation is a
variant of Equation (1) in which the two conjunctions, p(D&H)
and p(D&–H), are broken into components. Strictly speaking,
Equation (1), albeit a form of Bayes’ rule, is not an equation
that captures the updating of probabilities. Unlike Equation (2),
Equation (1) does not describe the relationship between p(H) and
p(H|D), simply because it does not include the term p(H).

Social learning, probability theory, and Bayes’ rule in the
form of Equation (2) offer a new opportunity: to study Bayesian
reasoning using textbook tasks with specified probabilities that
do not need to be learned from experience. In contrast to
the probability learning paradigm with its sequential input of
observations, the textbook paradigm provides the information
as a final tally (usually in numerical form). Whereas the most
important cognitive ability required to solve a Bayesian task in
the probability learning paradigm is frequency encoding (and
memory), the most useful cognitive abilities in the textbook
task paradigm are reasoning and calculation (for a discussion
of Bayesian reasoning in textbox tasks adopting a problem-
solving approach, see Johnson and Tubau, 2015). Note that the
distinction between (Bayesian) behavior in the context of the
probability learning paradigm and (Bayesian) reasoning in the
context of the textbook paradigm is akin to Hertwig et al.’s (2004)
distinction between decisions-from-experience and decisions-
from-descriptions. But there are two kinds of descriptions within
the textbook task paradigm: The statistical information can be
presented in terms of either conditional probabilities or natural
frequencies, which, as the introductory example illustrated, has
quite opposite effects on reasoning.

Performance in Bayesian Textbook
Problem Solving Depends on the
Representation Format

It is striking to see the differences obtained by the two research
paradigms (Gigerenzer, 2015; Mandel, 2015; Sirota et al., 2015b).
Whereas the probability learning paradigm depicts humans
and animals as approximate Bayesians (at least in the simple
tasks studied), early research using the textbook paradigm
arrived at a different conclusion. This discrepancy went mostly
unnoticed because cross-references between the researchers in
both paradigms have been rare. In their introductory note to the
present special issue, Navarrete and Mandel (2015) distinguish
three waves in the history of this research using the textbook
paradigm. The first wave was marked by Edwards (1968) with
his urns-and-balls problems. In the vignettes of these problems,
prior probabilities [i.e., p(H) and p(–H)] were communicated
but no likelihoods [i.e., p(D|H) and p(D|–H)]—although the
sample information that was given instead (e.g., 4 blue balls and
1 red ball) potentially allowed for calculating the corresponding
likelihoods. Edwards (1968) found that if people have to update
their opinions, they change their view in the direction proposed
by Bayes’ rule. However, he also reported that people are
“conservative Bayesians” in the sense that they do not update
their prior beliefs as strongly as required by Bayes’ rule.

A study by Eddy (1982) illustrates the second wave of research.
The question he asked was: Do experts reason the Bayesian way?
Eddy found that physicians’ judgments did not follow Bayes’ rule
when solving the following type of task (a prototypical Bayesian
situation):

The probability of breast cancer is 1% for a woman at age 40 who

participates in routine screening. If a woman has breast cancer, the

probability is 80% that she will get a positive mammography. If a

woman does not have breast cancer, the probability is 9.6% that she

will also get a positive mammography. A woman in this age group

had a positive mammography in a routine screening. What is the

probability that she actually has breast cancer?

According to Bayes’s rule, the answer is 7.8%, which can be
obtained by inserting the given information into Equation (2).
Yet Eddy (1982) reported that 95 out of 100 physicians estimated
this probability to be between 70 and 80%. He argued that
these physicians confused the conditional probability of breast
cancer given a positive mammogram with that of a positive
mammogram given breast cancer. To explain the failure of
Bayesian reasoning, Kahneman and Tversky (1972) suggested
the “representativeness heuristic,” although it remains unclear
whether the heuristic concurs with Eddy’s explanation because
this “one-word explanation” (Gigerenzer, 1996, p. 594) has never
been defined and formalized (see Gigerenzer and Murray, 1987).
Be that as it may, Kahneman and Tversky (1972) concluded: “In
his evaluation of evidence man is apparently not a conservative
Bayesian: he is not Bayesian at all” (p. 450).

Whereas the second wave attributed failure in Bayesian
reasoning to flawed mental processes, a third wave starting in
the mid-1990s (Gigerenzer and Hoffrage, 1995, 1999; Cosmides
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and Tooby, 1996) showed experimentally that much of the
problem lies in how risk is represented. Specifically, Gigerenzer
and Hoffrage established that it is not Bayesian reasoning per se
that is difficult but rather the format of information provided to
the participants. In Eddy’s (1982) task, quantitative information
was provided in conditional probabilities. Gigerenzer and
Hoffrage (1995) showed that such a representation format makes
the computation of the Bayesian posterior probability more
complicated than with natural frequencies. Natural frequencies
result from natural sampling and have historically been the
“natural” input format for the human mind (Kleiter, 1994;
Gigerenzer and Hoffrage, 1999, pp. 425–426). Presenting the
information in Eddy’s mammography task in terms of natural
frequencies yields the following description:

10 out of every 1000 women at age 40 who participate in routine

screening have breast cancer. 8 out of every 10 women with breast

cancer will get a positive mammography. 95 out of every 990 women

without breast cancer will also get a positive mammography. Here is

a new representative sample of women at age 40 who got a positive

mammography in a routine screening. How many of these women

do you expect to actually have breast cancer?

Answering this question amounts to solving Equation (3):

p(H|D) =
f (D&H)

f (D)
=

f (D&H)

f (D&H) + f (D&−H)
(3)

where f(D&H) stands for the natural frequency of joint
occurrences of D and H, f(D&–H) stands for the natural
frequency of joint occurrences of D and –H, and f(D) for their
sum. In the mammography problem, these two joint occurrences
are 8 and 95 (out of 1000 women), respectively, and hence there
are, in sum, 103 women who get a positive mammogram. Of
103 women who get a positive mammogram, 8 actually have
breast cancer. This relative frequency of 8/103 corresponds to
a posterior probability of 7.8%, the number that we already
computed using Equation (2). Note that natural frequencies
result from drawing N objects (e.g., 1000 in the above example)
at random from a larger population (or from taking the entire
population). Any decomposition of this sample of size N contains
natural frequencies, which can be interpreted only in relation to
each other and in relation to the total sample size N. Attempts
to illustrate what natural frequencies are by simply naming “1 of
10” as an example and in isolation from any other number of a
natural frequency tree misses this important point.

When information has been presented in terms of natural
frequencies, almost half of Gigerenzer and Hoffrage’s (1995)
student participants found the Bayesian answer. Among 160
gynecologists, the proportion of Bayesian answers increased from
21 to 87% for probabilities and natural frequencies, respectively
(Gigerenzer et al., 2007). The beneficial effect of natural
frequency representations has been replicated with experienced
physicians (Hoffrage and Gigerenzer, 1998; Bramwell et al.,
2006), patients (Garcia-Retamero and Hoffrage, 2013), judges
(Hoffrage et al., 2000), and managers (Hoffrage et al., 2015),
and has been used to design tutorials on Bayesian reasoning

(Sedlmeier and Gigerenzer, 2001; Kurzenhäuser and Hoffrage,
2002).

Textbook problems with information provided in terms of
natural frequencies are in fact close to the probability learning
paradigm [see the similarity between Equations (1) and (3)].
In contrast, textbook problems with information provided in
terms of probabilities do not bear much resemblance to this
paradigm [note the difference between Equation (2), with its
three pieces of information, and Equation (1), with its two pieces
of information]. Natural frequencies are related to the probability
learning paradigm because they are the final tally that result from
what has been called “natural sampling” (Kleiter, 1994) which, in
turn, can be conceived as the process of sequentially observing
one event after the other in a natural environment. In other
words, natural sampling is the process underlying experiential
learning—the paradigm in which humans and animals tend to
perform well (Hasher and Zacks, 1979; Gallistel, 1990). Thus,
it is no surprise that the beneficial effect of natural frequency
representations could be found even for 4th and 5th graders (Zhu
and Gigerenzer, 2006; Gigerenzer, 2014; Multmeier, unpublished
manuscript; see also Till, 2013). The comparison between
Equations (2) and (3) shows why natural frequencies facilitate
Bayesian inference. It simplifies computation of the posterior
probability: The representation does part of the computation
(Gigerenzer and Hoffrage, 2007; Hill and Brase, 2012; Brase and
Hill, 2015).

In subsequent work, the power of representation formats has
been discussed in a wider context that also embraces important
issues such as trust, transparency, or institutional design, to
name a few (see Gigerenzer, 2002, 2014; Gigerenzer et al., 2007;
Gigerenzer and Gray, 2011). As a consequence of all this research,
of various activities to propagate it, and of the desire and
pressure to improve Bayesian inference in several domains, the
use of natural frequencies is recommended by major evidence-
based medical societies, including the Cochrane Collaboration
(Rosenbaum et al., 2010), the International Patient Decision Aid
Standards Collaboration (Trevena et al., 2012), the Medicine and
Healthcare Products Regulatory Agency (the United Kingdom’s
equivalent to the Food and Drug Administration; see Woloshin
and Schwartz, 2011), and the Royal College of Obstetricians and
Gynecologists (2008). Moreover, natural frequencies are used in
some of themost important school textbooks and in textbooks for
future teachers of stochastics in school in the German speaking
countries (Martignon, 2011), and they are already part of the
school syllabus in the United Kingdom (Spiegelhalter and Gage,
2014).

Yet, as mentioned in the introduction, these developments are
severely limited by the fact that up to now, the studies on which
they are based used only simple versions of Bayesian tasks with
one dichotomous cue and two hypotheses.

Types of Bayesian Inference Tasks: The
Basic Task and Complex Tasks

There is one important difference between real-life probability
learning tasks and textbook problem solving. Compared to most
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real-life situations, the textbook problems in the literature on
Bayesian reasoning are relatively simple. The vast majority of
them involve two hypotheses and one dichotomous cue. As
mentioned before, we refer to such a task as a basic task. Many
real-life situations, in contrast, are more complex. We see three
ways in which the basic task can be extended; Figure 1 depicts
the basic task (Figure 1A) and these extensions (Figures 1B–E).

One extension involves a situation with a cue having
more than two levels (Figure 1B). In fact, many variables are
polychotomous. Others may even be continuous and have been
divided, for various reasons, into several categories by using
cutoffs. For instance, mammograms obtained in a screening

A B

C

E

D

FIGURE 1 | Generalization of the basic Bayesian inference task (with

two hypotheses and one dichotomous cue; A) to more complex tasks

(B–E). The layers below the hypotheses depict the cue values (or data).

Unknown cue values are denoted as “?” (B). For a pair of two hypotheses (one

being the complement of the other), these are denoted as H and –H (A,B,D,E),

and for a triple of hypotheses, they are denoted as H1, H2, and H3 (C).

program are not simply positive or negative but depict breast
cancers that vary in size, shape, or density, the fact of which
led to the BI-RADS classification that distinguishes multiple
categories. Generally speaking, for polychotomous cues, there is
not only one hit rate, p(D|H), and one false-alarm rate, p(D|–H),
but there are, both for H and for –H, as many likelihoods
as there are categories for the data: p(D1|H), p(D2|H),...,
p(Dn|H) and p(D1| –H), p(D2| –H),..., p(Dn|–H), respectively.
Correspondingly, there are as many posterior probabilities
(with their complements) as there are data categories: p(H|D1),
p(H|D2),..., p(H|Dn). Figure 1B, illustrates a situation used in the
studies reported below, namely a cue that has either a positive, a
negative, or an unknown value.

Figure 1C depicts a situation with three hypotheses. For
instance, a fever may have many different causes, so no physician
will prescribe a drug on the basis of fever alone but will
ask further questions to assess the probabilities for multiple
candidate reasons. Accordingly, while there are two likelihoods
in the basic task—the hit rate, p(D|H), and the false-alarm rate,
p(D|–H)—there are now as many conditional probabilities for
the complex task as there are hypotheses: p(D|H1), p(D|H2),...,
p(D|Hm). The same applies for the posterior probability, where
there are no longer just two, p(H|D) and p(–H|D), but rather as
many probabilities as there are hypotheses, p(H1|D), p(H2|D),...,
p(Hm|D).

Finally, Figures 1D,E depict a situation with more than one
cue. Asking for more information after the doctor has learned
that the patient has fever amounts to inspecting more cues or
performing additional tests.

How do natural frequencies affect Bayesian performance in
these three complex tasks? Whereas Gigerenzer and Hoffrage
(1995) left open whether the beneficial effect of natural
frequencies can be generalized to more complex tasks, Massaro
(1998) questioned, as mentioned before, this possibility for
situations with more than one cue. Unlike in Figure 1D, he
did not add one layer per cue but instead arranged the
possible combinations of cue values—for a situation with two
cues—in one single layer. That is, directly under the node
depicting that “hypothesis H is true,” he placed four branches
depicting the four possible combinations of two dichotomous
cues: +C1&+C2,+C1&–C2, –C1&+C2, and –C1&–C2 (where +
and – denote positive and negative cue values for the two cues
C1and C2). Moreover, he argued that “it might not be reasonable
to assume that people can maintain exemplars of all possible
symptom configurations” (p. 178). However, he did not provide
any empirical evidence for this claim.We fill this gap by analyzing
how participants perform in complex Bayesian tasks dependent
on whether information is provided in terms of probabilities or
natural frequencies.

Study 1: Bayesian Inferences in Complex
Tasks

Method
Participants were advanced medical students (N = 64) of
the Free University of Berlin. Each of them was asked to
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work on four medical diagnostic tasks. Task 1 was a Bayesian
task corresponding to Figure 1B, in which we extended Eddy’s
mammography task by adding unclear test results. Task 2 was
a Bayesian task corresponding to Figure 1C, where a test could
detect two diseases, namely Hepatitis A and Hepatitis B. Tasks 3
and 4 were Bayesian tasks with two and three cues, corresponding
to Figure 1D and Figure 1E, respectively. In Task 3, breast cancer
had to be diagnosed based on a mammogram and an ultrasound
test. In Task 4, an unnamed disease had to be diagnosed on the
basis of three medical tests, simply named Test 1, Test 2, and Test
3. The participants could work on the four tasks at their own pace,
which took them, on average, about 1 h in total.

Each participant received the statistical information for two
of the four tasks in probabilities and the other two in natural
frequencies. As an illustration, Table 1 displays the two different
versions (probability version vs. natural frequency version) of
Task 3. The exact formulations of Tasks 1, 2, and 4 can be seen
in Appendix I (Supplementary Material). Note that for Tasks 3
and 4, not all natural frequencies on the lowest layer (i.e., for all
combinations of the two and three cues, respectively) were stated,
but only those for which all tests were positive. Besides requesting
a numerical answer to each of these four tasks, we also asked
the participants to make notes and to justify their answers so
that we could better understand their reasoning processes. Pocket
calculators were not allowed. Following Gigerenzer and Hoffrage
(1995), we classified a response as Bayesian if it was either the
exact Bayesian solution or rounded to the next full percentage
point.

Figure 2 illustrates the frequency tree for the information
provided in Task 3. Note, however, that the participants in Study
1 were neither presented with trees nor told to construct them;
rather, they had to solve the task based on the wording alone1.

1Note that the wording of the probability version of Task 3 is mute on the question

of whether or not the two tests are independent of each other. Even though each

of the two tests is dependent on the disease, they are indeed independent of each

other for any level of the variable disease, and we anticipated that our participants

(advanced medical students) knew this. An analysis of the participants’ protocols

revealed that all of them implicitly made this assumption. Participants’ intuitive

assumption of independence was also found in Task 4, where information on three

unnamed tests was provided. This finding is in accordance with the finding of

Waldmann and Martignon (1998) that people assume conditional independence

between cues as long as there is no explicit evidence suggesting dependency.

Results
Figure 3 displays the percentage of correct Bayesian inferences
for each of the four tasks. In all of the tasks, replacing probabilities
with natural frequencies helped the medical students make
better inferences. The percentage of correct Bayesian inferences
averaged across the probability versions of the four tasks was
7%; across the natural frequency versions it was 45%. Natural
frequencies were most effective in Task 1, where the difference in
terms of participants’ performance between the natural frequency
and the probability version was 59% – 1%= 58 percentage points.
In the other three tasks, the increase in participants’ performance
from the probability versions to the natural frequency versions
was about 30 percentage points. A comparison of Tasks 3 and 4
suggests that, for both the probability and the natural frequency
versions, it did not matter whether information was provided
on two or on three cues or whether this information referred to
named or unnamed tests and diseases.

Discussion
Study 1 showed that natural frequencies facilitate Bayesian
reasoning in four complex tasks, relative to probabilities. How
does the effect of natural frequencies on solving complex tasks
compare to their effect on solving a basic task? One might
expect that Bayesian performance in complex tasks decreases
in both formats and—due to bottom effects for the probability
format—that the facilitating effect of natural frequencies is less
pronounced for complex tasks. However, that does not seem to
be the case. Both in the present Study 1 and in Gigerenzer and
Hoffrage (1995, Study 1), who used the same kind of problems,
albeit for basic tasks, the average increase in performance when
given natural frequencies rather than probabilities was similar,
38 percentage points in the present study (averaged across
the 4 tasks) and 30 percentage points in their study. Thus,
the comparison between these studies suggests the surprising
conclusion that increased complexity may not decrease the effect
of natural frequencies much. Whether that also holds for levels of
complexity that go beyond those studied here is unknown.

Study 2: Transfer Learning

Sedlmeier and Gigerenzer (2001) and Kurzenhäuser and
Hoffrage (2002) have shown that the beneficial effect of

TABLE 1 | Study 1, Task 3: A generalization of the basic Bayesian task to a more complex task with two cues (corresponding to Figure 1D).

Probability version Natural frequency version

The probability of breast cancer is 1% for a woman at age 40 who participates in

routine screening. If a woman has breast cancer, the probability is 80% that she will

have a positive mammogram. If a woman does not have breast cancer, the

probability is 9.6% that she will also have a positive mammogram. If a woman has

breast cancer, the probability is 95% that she will have a positive ultrasound test. If a

woman does not have breast cancer, the probability is 4% that she will also have a

positive ultrasound test.

100 out of every 10,000 women at age 40 who participate in routine

screening have breast cancer. 80 out of every 100 women with breast

cancer will receive a positive mammogram. 950 out of every 9900 women

without breast cancer will also receive a positive mammogram. 76 out of 80

women who had a positive mammogram and have cancer also have a

positive ultrasound test. 38 out of 950 women who had a positive

mammogram, although they do not have cancer, also have a positive

ultrasound test.

What is the probability that a woman at age 40 who participates in routine screening

has breast cancer, given that she has a positive mammogram and a positive

ultrasound test?

How many of the women who receive a positive mammogram and a

positive ultrasound test do you expect to actually have breast

cancer?
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FIGURE 2 | Visual representation of the information provided in the

natural frequency version of Task 3 of Study 1. “M” and “U” denote

mammography and ultrasound Test, and “+” and “−” denote positive and

negative test results, respectively.

FIGURE 3 | Percentage of correct inferences in the four tasks used in

Study 1. The bars display standard errors.

presenting information in natural frequencies can be enhanced
by teaching people to use this representation. In one of
their studies, Sedlmeier and Gigerenzer gave two groups of
participants a computerized tutorial: One group was taught
how to represent probabilities in terms of natural frequencies,
supported by two visual aids—frequency grid and frequency tree
(representation training); the other was taught Bayes’ rule for
probabilities (rule training). After training, participants in each
group were tested on tasks in which the statistical information
was always provided in terms of probabilities. The immediate
learning success for the representation training group was an
improvement from 10 to 90% Bayesian answers, compared to an
improvement from 0% to about 65% for the rule training group.

More important, the improvement in the representation training
condition was stable over time. Even 5 weeks after training, the
performance of the participants who had learned to use natural
frequencies remained a high 90%, whereas the performance of
the group with rule training dropped to about 20%. These results
were obtained for basic Bayesian tasks.

In Study 2 we addressed the question of whether in place of
a computerized training program, a simple written instruction
on how to solve a basic task could improve participants’ ability
to solve complex tasks. Extending Study 1, which investigated
whether the beneficial effect of presenting information in terms
of natural frequencies could also be observed for complex
Bayesian tasks, Study 2 investigated whether the beneficial effect
of teaching Bayesian reasoning by training representations with a
basic task can also be observed when participants are later tested
with complex Bayesian tasks (for which they did not receive any
training).

Method
We recruited advanced medical students (N = 78) from Berlin
universities (none of them was a participant in Study 1). In the
first step, each participant received a two-page instruction sheet
on how to solve the mammography task, that is, a basic task
with two hypotheses and one dichotomous cue. There were three
different instructions, and participants were randomly assigned
to one of them [all three instructions are shown in Appendix
II (Supplementary Material)]. For Group 1, the mammography
task was presented in terms of probabilities, and participants were
shown how they could solve it by inserting the probabilities into
Bayes’ rule. For Group 2, the mammography task was presented
in terms of probabilities, but here participants were instructed
how to translate the probabilities into natural frequencies, how
to place these frequencies into a tree, and how to determine the
answer from this tree. For Group 3, the mammography task was
presented in terms of natural frequencies (but no probabilities
were provided), and these participants also received instructions
on how to solve it by means of the frequency tree.

After studying their instruction sheet, participants were given
two test tasks—the same that were used in Task 1 (one cue with
three cue values) and Task 3 (two cues with two cue values each)
in Study 1. Participants of Group 1 and 2 received probability
versions of these tasks, and participants of Group 3 received
the natural frequency version. The instruction sheet was at their
disposal while working on the complex tasks.Table 2 summarizes
the design of Study 2.

Results
Figure 4 displays the percentages of Bayesian inferences in Tasks
1 and 3 separately for the three experimental groups. In both
tasks, participants’ performance was about the same, which
suggests that the differences found in Study 1 disappear when
there is an instruction on the basic task.

For the basic task, participants in Group 1 learned how to
insert probabilities into Bayes’ rule. Then they were tested on
whether this training generalizes to applying Bayes’ rule to more
complex tasks in which information is presented in probabilities.
Compared to Groups 2 and 3, this group performed worst when
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TABLE 2 | Experimental design in Study 2: Three ways to instruct participants to solve the mammography task.

Group 1 (N = 27) Group 2 (N = 25) Group 3 (N = 26)

Basic task used for

instruction

Mammography task,

formulated in terms of

probabilities

Mammography task, formulated in terms of

probabilities

Mammography task, formulated in terms of

natural frequencies

Solution explained in

instruction

How to insert probabilities

into Bayes’ rule

(a) How to translate probabilities into natural

frequencies

How to place these natural frequencies into a

frequency tree and to extract the correct

answer

(b) How to place these natural frequencies into

a frequency tree and to extract the correct

answer

Complex tasks tested Tasks 1 and 3 of Study 1

(both tasks in probabilities)

Tasks 1 and 3 of Study 1 (both tasks in

probabilities)

Tasks 1 and 3 of Study 1 (both tasks in natural

frequencies)

For details, see Appendix II in Supplementary Marerial.

FIGURE 4 | Percentage of correct inferences for Tasks 1 and 3,

depending on how participants were instructed to solve Bayesian

inference tasks in Study 2. The bars display standard errors. Tasks 1 and 3

are the same test tasks as those that were used for Study 1. The three

instruction conditions are summarized in Table 2 and can be seen in full length

in Appendix II (Supplementary Material).

confronted with complex Bayesian tasks (18% for Task 1 and 22%
for Task 3). Nonetheless, their percentage of Bayesian inferences
was substantially higher compared to that of participants of
Study 1 for the same tasks (1% for Task 1 and 6% for Task 3;
see Figure 3). Hence, we can conclude that the instruction had
a positive effect: At least some of the participants managed to
extend Bayes’ rule to a more complex task involving an unclear
test result (which amounts to adding a corresponding term to
the denominator of Equation 2) and to a more complex task
involving the results of two different tests (which amounts to
applying Bayes’ rule twice, that is, first computing the posterior
probability after the first test result became known, and then
using this probability as a prior probability to compute the
posterior probability after the result of the second test became
known).

Participants in Group 2 had learned, for the basic task, how
to translate probabilities into natural frequencies. In spite of

also being tested on tasks with information presented in terms
of probabilities, 40% of participants in Group 2 obtained the
correct solutions (this percentage happened to be identical for
Tasks 1 and 3). These participants arrived at these solutions by
performing the following steps: First, they correctly translated
five probabilities (rather than three, as was the case for the basic
task) into natural frequencies. To construct a corresponding tree
they added nodes to the tree they had seen in the instruction.
For Task 1 they had to add two nodes on the lowest layer (as
can be seen when comparing Figure 1A and Figure 1B), and for
Task 3 they had to add an additional layer for the outcomes of
the ultrasound test (as can be seen when comparing Figure 1A

and Figure 1D). From these modified trees they finally extracted
the frequencies needed for the Bayesian solutions in the form of
“Laplacian proportions,” that is, the ratio of relevant cases divided
by the total number of cases.

The participants of Group 3 were the only ones who were
trained and tested with natural frequencies. This instruction
method led to a high performance rate of 73% (Task 1) and
81% (Task 3). In contrast to Group 2, participants of Group
3 only needed to extend frequency trees; no translation of
probabilities into frequencies was required. Recall that without
prior instruction on the basic task, performance on the same
two tasks was lower, 59 and 38%, respectively (Study 1).
When comparing the performance gain for Task 1 (from 59%
in Study 1, without instruction, to 73% in Study 2, with
instruction) with the corresponding performance gain for Task
3 (a rise from 38 to 81%), it becomes obvious that instructions
based on frequency representations affected the two types of
generalizations differentially. Analyzing participants’ protocols
confirmed this pattern: Participants found it easier to take the
tree from the basic task and to add another layer than to add
nodes within a layer. In other words, generalizing the basic task
(Figure 1A) to Task 3 (Figure 1D) seemed to be more intuitive
for the participants than generalizing it to Task 1 (Figure 1B).

Discussion
Previous studies have established the usefulness of teaching
how to represent probability information in terms of natural
frequencies (Kurzenhäuser and Hoffrage, 2002; Sedlmeier and
Gigerenzer, 2001; Ruscio, 2003; Sirota et al., 2015a). Study 2
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extends these findings by showing that a simple instruction on
how to solve a basic Bayesian task can amplify performance in
complex tasks. The highest levels were obtained when both the
trained task and the tested task were consistently formulated in
terms of natural frequencies. That is, it is largely sufficient to
instruct people in using natural frequencies in the basic task in
order to ensure a generalization to and solution of complex tasks,
as long as the information in both cases is in natural frequencies.

General Discussion

This paper has two results, one conceptual and one empirical.
Figure 1 shows how the natural frequency tree for the basic
task (Figure 1A) can be generalized to various complex Bayesian
tasks. As these trees (displayed in Figures 1B–E) demonstrate,
the possibility of communicating statistical information in terms
of natural frequencies is not restricted to the basic task with one
dichotomous cue for inferring which of two hypotheses is true.
Being able to generalize from these trees is important because in
many real-life situations such as medical diagnosis or court trials,
information is not dichotomous, several (rather than only one)
pieces of evidence are available, and/ormore than two hypotheses
are considered.

With Study 1, we have empirically shown that, despite the
trees for complex tasks having more branches than in the tree
for the basic task, the facilitating effect of natural frequencies is
essentially in the same order of magnitude as in previous studies
using the basic task. Study 2 showed that instructing people how
to use natural frequencies to solve the basic task was helpful for
solving complex Bayesian tasks. Apparently, the best method is to
instruct directly how to reason with natural frequencies and also
to test people on natural frequencies. Instruction adds to themere
effect of representation demonstrated in Study 1. In contrast
to claims made in the literature (Massaro, 1998), each of our
studies show that the power of natural frequencies generalizes to
complex tasks. In the remainder of this paper, we will discuss the
power (and limits) of natural frequencies and that of instructions.

Power (and Limits) of Natural Frequencies
in Complex Tasks

This study has shown that the natural frequency approach
to Bayesian reasoning is powerful enough to be generalized
to complex tasks and to allow for good performance despite
increasing numbers of cues and cue values. How do natural
frequencies support reasoning? Gigerenzer and Hoffrage (1995)
demonstrated in detail that natural frequencies reduce the
number of computational steps necessary for Bayesian inference
and derived seven specific results, including that relative
frequencies do not simplify the computation. Subsequent work
has used different terms for the same explanation: the subset
principle, set inclusion, or the nested-set hypothesis (for a
discussion of these terms and their relationship to natural
frequencies, seeHoffrage et al., 2002; Brase, 2007; Ayal and Beyth-
Marom, 2014). Moreover, Ayal and Beyth-Marom also quantified
the computational simplification and counted the mental steps or

elementary information processes as a measure of the cognitive
effort required to complete the task (for a similar analysis, see
Johnson and Tubau, 2015).

Extending this analysis to complex tasks is straightforward
and reveals that natural frequencies require less cognitive effort
not only for basic tasks but also for complex tasks. However,
even natural frequencies require computation and effort. Hence
it does not come as a surprise (1) that for tasks using natural
frequencies, the proportion of Bayesian inferences is less than
100% and (2) that variables related to participants’ computational
abilities can account for variance in Bayesian performance. For
instance, performance in Bayesian inference tasks—both for
probability and natural frequency representations—is correlated
with numeracy (Chapman and Liu, 2009; Johnson and Tubau,
2015), numerical skills (Tubau, 2008), and fluid cognitive ability
and thinking disposition (Sirota et al., 2014) (for a discussion of
individual differences in Bayesian reasoning, see Brase and Hill,
2015).

At the same time, natural frequency representations have
their limits. As mentioned earlier, Massaro (1998) argued that
“a frequency algorithm will not work” because “it might not be
reasonable to assume that people can maintain exemplars of all
possible symptom configurations” (p. 178). We have meanwhile
seen that in a textbook task, half (and with instruction, three
quarters) of our participants were able to process the statistical
properties of three cues in a Bayesian way when this information
was represented in terms of natural frequencies. Notwithstanding
this result, we shareMassaro’s concern that at some point humans
are no longer able to store the frequencies for all possible
conjunctions of cues in memory. In fact, in a situation with 10
dichotomous cues, the corresponding frequency tree would carry
2048 natural frequencies on the lowest layer, and with 20 cues this
number would be over 2 million. It may nonetheless be possible
to learn the statistical relationships between hypotheses and cues
as the number of cues grow larger—after all, for two hypotheses
and a dichotomous cue there are only four proportions (or
probabilities) that are relevant and need to be learned: p(D|H),
p(D|–H), p(H|D), p(H|–D). Learning the statistical relationships
for conjunctions of cues, however, is a huge challenge because the
number of relevant proportions would no longer grow linearly
with the number of cues (four per cue) but instead exponentially.

As the number of cues grows larger, the difference between
real-life settings and textbook tasks becomes increasingly
important. Whereas it is difficult, if not impossible, to memorize
and manage the relevant information in a real-life setting, which
corresponds to a probability learning paradigm, it is possible
to represent the natural frequencies required for Bayesian
inferences in a textbook task. But even natural frequency
representations in textbook tasks have their limits. These may
not yet be reached for three cues, as our empirical findings
reported above suggest, but draw nearer as the tree grows larger.
The two major limits are practical feasibility and robustness.
First, practical feasibility is hampered by the sheer amount
of information that needs to be communicated—recall that a
frequency tree for two hypotheses and 10 (20) dichotomous cues
would have 2048 (>2,000,000) natural frequencies on the lowest
layer. Second, and relatedly, for many real-life applications the
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number of observations for a particular combination of cues will
most likely be relatively small. Because of the resulting estimation
error, the Bayesian inferences may have fairly wide confidence
intervals and may thus not be very robust.

Fast-and-frugal Trees

What tools remain for the boundedly rational human mind
(and for animals) in complex situations with a vast number of
cues? We assume that the human mind is equipped with an
adaptive toolbox containing simple heuristics that allow “fast-
and-frugal” decisions, even in highly complex environments
(Gigerenzer et al., 1999, 2011; Gigerenzer and Selten, 2001;
Todd et al., 2012; Hertwig et al., 2013). These simple heuristics
are helpful when making inferences in situations under limited
time, with limited knowledge, and within our cognitive and
computational constraints. One of the characteristics of these
simple heuristics is that they reduce information intake and
processing. Complexity—and note that this is the direction in
which we extended the basic task—can be reduced tremendously
by assuming conditional independence between cues, which is
exactly what participants seem to do unless they have strong
evidence speaking against this assumption (Waldmann and
Martignon, 1998; Martignon and Krauss, 2003). To the extent
that this assumption is justified, it is no longer necessary to store
the millions of possible conjunctions of 20 dichotomous cues in
memory, but it would be sufficient to represent the predictive
power of a cue independent of the other cues.

The reduction of complexity can be achieved in many ways.
Radically pruning a natural frequency tree for many cues while
maintaining all cue information converts it into a so called

fast-and-frugal tree—which is one of the heuristics analyzed by
the Center for Adaptive Behavior and Cognition at the Max-
Planck Institute for Human Development in Berlin (Martignon
et al., 2003). Figure 5 shows an example of such a classification
tree, based on Green and Mehr (1997), for classifying patients
as at high or low risk for heart disease. In Figure 5A, the
full natural frequency tree for three cues is exhibited. Note
that this tree displays the hypotheses (high risk vs. low risk
of heart attack) no longer at the second layer, as the trees in
Figure 1 do, but at the very lowest layer. Whereas the trees in
Figure 1 are the usual natural frequency trees that communicate
data given a hypothesis, the tree in Figure 5A displays natural
frequencies after Bayesian updating, which, in turn, enables
the classification of patients based on symptoms. Note that
the trees in Figure 1 and Figure 5 carry natural frequencies
(for a direct comparison of these two forms of grouping a
given set of natural frequencies, see Hoffrage et al., 2015,
Figures 1B,C).

The tree in Figure 5A can be radically pruned. The resulting
fast-and-frugal tree, exhibited in Figure 5B, is “fast and frugal”
according to the definition given in Martignon et al. (2008):
At each node of the tree, the choice is either to stop further
information acquisition and make a diagnosis or to collect
more information. Specifically, in a first step, all 89 patients
are checked for elevated ST segment in their electrocardiogram.
If the answer is positive (ST+), they (n = 33) are classified
as high risk, without considering any further information. The
remaining 56 patients are checked for chest pain as the main
symptom. If the answer is no (CP–), they (n = 29) are
classified as low risk. The remaining 27 patients are checked
for whether any other symptom is present. If the answer is

A B

FIGURE 5 | (A) Full natural frequency tree for the Green and Mehr (1997) data on 89 patients with severe chest pain. The goal is to determine whether these patients

are at high or low risk for heart disease. ST denotes a particular pattern in the electro cardiogram, CP denotes chest pain, OS denotes “at least one other symptom,”

“+” denotes present, and “–” denotes absent. Numbers in circles denote number of patients. (B) Fast-and-frugal classification tree obtained by pruning the natural

frequency tree. The ranking of cues and the exit structure are determined by the ZigZag method (in the present case, ZigZag-val and ZigZag-sens, as explained in the

text, lead to the same trees). Questions in rectangles specify which cues are looked up at this level for each of the patients in the corresponding circles in (A).

Depending on whether this cue value is positive or negative, either a new question is asked or the tree in (B) is exited and a classification decision is made (oval). The

accuracy of these classification decisions is shown by the number of patients below these oval exit nodes: The number of patients who actually had a heart attack is

displayed in the left of the two adjacent end nodes in the lowest layer, and the number of those who did not have one is displayed in the corresponding end node on

the right. All patients to the left of the vertical bar in Figure 1B are classified as high risk, and all patients to its right are classified as low risk.
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yes (OS+), they (n = 17) are classified as high risk; the
others (OS–) are classified as low risk (n = 10). Each tree
level corresponds to one cue, and the ranking of cues can
follow simple heuristic procedures. Green and Mehr reported
that diagnosis according to this fast-and-frugal tree was more
accurate than both physicians’ clinical judgment and logistic
regression.

Two important features of the construction of a fast-and-
frugal tree are the ranking of cues and its exit structure, that is,
whether an exit is to the left or to the right (with the convention
that branches defined by positive cue values will always be
displayed at the left). One possible ranking, called the ZigZag-
val method, is achieved by using the predictive values of the cues.
The positive predictive value of a cue is the proportion of cases
with a positive outcome among all cases with a positive cue value
[i.e., p(H|D)] and the negative predictive value is the proportion of
cases with a negative outcome among all cases with a negative cue
value [i.e., p(–H| –D)]. The ZigZag-val tree has a left exit for levels
1 to k, where k is the smallest natural number so that 1/2k is less
than the ratio of the base rate of the disease divided by the base
rate of healthy patients. For the levels after the kth level, the tree
alternates between “yes” and “no” exits at each level, and a choice
is made according to the cue with the greatest positive (for “yes”)
or negative (for “no”) predictive value among the remaining cues
(Martignon et al., 2008). A second method for tree construction,
ZigZag-sens, has a left exit for levels 1 to k. For the levels after the
kth level, the tree alternates between “yes” and “no” exits at each
level, and a choice is made according to the cue with the greatest
positive sensitivity [i.e., the greatest p(D|H)] or specificity [i.e.,
the greatest p(–D| –H)] among the remaining ones. Ties in the
process are broken randomly.

Fast-and-frugal trees—those ranked according to positive
and negative predictive value or according to sensitivity and
specificity—radically reduce the complexity of full natural
frequency trees. Their performance can be impressive. In the tree
displayed in Figure 5, the lowest layer in Figure 5A displays the
number of patients who after classification actually had a heart
attack (left end nodes) and those who did not (the corresponding
end nodes to the right). The vertical bar in the lowest layer
can be seen as cutoff. The fast-and-frugal tree in Figure 5B is
arranged so that all nodes to its left (n = 50) are classified
as high risk (yielding 15 hits and 35 false alarms), and every
one of the 39 cases to right of the bar are classified as low
risk (yielding 0 misses and 39 correct rejections). In particular,
fast-and-frugal trees ranked by sensitivity and specificity yield
ROC curves with large areas underneath. Such properties are
fundamental for medical doctors to reduce costly errors, in
particular, misses (for ROC curves and fast-and-frugal trees,
see Luan et al., 2011).

Another class of trees that reduce complexity is that based
on CART (Breiman et al., 1984); these trees are simple in
execution but often require complicated computations for their
construction. To reduce complexity while maintaining the tenets
of the Bayesian attitude, the strategy is to adopt the Naïve Bayes
approach. Its simplification consists of assuming that cues are
independent conditional on presence or absence of the disease,
so that the probability of disease given cues can be estimated as

the product of the conditional probabilities of disease given each
one of the cues.

However, the tradition among practitioners has been to make
use of classification strategies based on some type of regression.
For binary classification, logistic regression is the standard model
used by practitioners. When using logistic regression one assigns
a value of 0 to the “low” state of Hk and a value of 1 to the “high”
state of Hk. The logistic regression equation is:

p (D|H1, . . . ,Hn)

1− p (D|H1, . . . ,Hn)
= eβ0+

∑
k βkHk (4)

where the parameters are typically estimated from data.
Laskey and Martignon (2014) compared the predictive

accuracy of these five classification methods using 11 data sets
taken frommedical domains. When the models were constructed
based on 90% of the data set, Naïve Bayes performed best,
achieving 80% accuracy, while Logistic Regression achieved 79%.
CART, like the ZigZag-val tree, achieved 74% accuracy, while
the ZigZag-sens tree achieved 72% accuracy (note that in Laskey
and Martignon, ZigZag-val is labeled ZigZag tree and ZigZag-
sens was computed but not reported). When the models were
constructed based on 50% of the data, CART, ZigZag-val, and
ZigZag-sens performed at the same level as when being fitted
to 90% of the data, whereas Logistic Regression and Naïve
Bayes lost one percentage point each. Even more surprising,
when the training set amounted to only 15% of the data set,
ZigZag-val outperformed logistic regression and CART. In an
uncertain world, where large numbers of correlations need to
be estimated, fast-and-frugal trees can reduce estimation error
and can have a competitive advantage over more complex
strategies, in particular for small learning samples (Luan et al.,
2011).

Predictive accuracy is not the only important criterion in
medical diagnosis. It is often essential to make a diagnosis
quickly or with limited diagnostic information. All in all, fast-
and-frugal trees make it possible to act on limited information,
and by reducing estimation error, they can perform competitively
in situations entailing high complexity and uncertainty. They
accomplish this by inverting natural frequency trees, so that the
outcome (or hypothesis) is no longer displayed at the top of the
tree (as in Figure 1) but at the lowest layer (as in Figure 5A).
Subsequently, they can be pruned by cutting off branches, that
is, by introducing an exit at every layer of the tree (as in
Figure 5B).

Cue Merging

We will now discuss another way of reducing tree complexity,
which amounts to merging multiple cues into one single cue.
It has been studied in a probability learning task by Garcia-
Retamero et al. (2007a) and Garcia-Retamero et al. (2007b).
Participants had to make pair comparisons based on three cues,
C1, C2, and C3, with a validity (i.e., proportion of correct
inferences) of 80, 60, and 60%, respectively. The cues were not
independent. Specifically, although the cues C2 and C3 had a
relatively low validity, they could be merged—by applying simple
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Boolean algebra—into one cue that had a validity of 100%. For
instance, if C2 ANDC3 was present, then the alternative to which
the cue pointed was correct in 100% of the cases (in two other
conditions, we constructed environments in which merging two
cues with the OR combination and the XOR combination created
a new cue with a validity of 100% as well). Participants were
not informed about this structure, but they were told that the
three cues represent whether some drugs have been given to
two patients. Their task was to predict which of two patients
had the higher blood pressure. In these studies, the mental
models of the participants were manipulated. In one condition,
participants were informed that the three drugs operate in three
different systems (hormonal, nervous, blood) and in the other
condition that they operated within the same system. Those
participants who had been told that the three drugs operated via
different systems assumed independence and did not detect the
hidden cue structure. By contrast, a majority of those participants
who had been informed that the drugs operated via the same
system could not safely exclude independence and did detect
the structure. In a mouselab task, they immediately clicked C2

and C3, inspected both values, and only if the merged cue was
not present did they request C1 (note that they started with
C2 and C3 even though each of these had a lower validity
than C1).

As this study demonstrates, participants assume
independence by default but can detect dependencies if
these exist. Such detection is easy with a natural frequency
representation, which obviously can be constructed even in a
probability learning task. Once participants have learned that
cues can be merged, they treat this new cue as a single one, even
though it is composed of two (similar to the term bachelor, which
requires the presence of two features, male and unmarried).
This empirical demonstration brings to mind Green and Mehr’s
(1997) fast-and-frugal tree, in which one of the nodes also
contains a merged cue—in that case, an OR conjunction of five
cues (labeled “other symptom”; Figure 5B).

The common denominator between fast-and-frugal trees
and cue merging is that both can simplify the structure
of a complex natural frequency tree. Both exploit certain
structures of information (such as conditional dependence)
and are “ecologically rational” if these structures are present.
Constructing fast-and-frugal trees amounts to inverting complex
natural frequency trees (with a hypothesis at the top layer) into
simple classification trees (with data at the top) that implement
one-reason decision making. Such trees perform well if some
cues are so informative that less predictive cues no longer add
substantial predictive value and can hence be ignored. Cue
merging amounts to combining several cues into one; these
merged cues can lead to better inferences than any of the single
cues used separately. In general, fast-and-frugal heuristics—
including fast-and-frugal trees and simple heuristics for pair
comparison, with or without merged cues—are ecologically
rational if they are adapted to the structure of information in
the environment (Martignon and Hoffrage, 1999, 2002; Todd
et al., 2012). Future research has to address the question of
what the crucial variables (e.g., number of cues) are that trigger
switching from being a Bayesian to being fast and frugal.

For a first step in this direction, see Martignon and Krauss
(2003), and for an exploration of Bayesian inferences as a
function of task characteristics, see Hafenbrädl and Hoffrage
(2015).

The Effect of Natural Frequencies Can Be
Amplified by Visual Representations

In Study 2, we used natural frequencies to instruct participants
how to reason the Bayesian way. In this context, we also
presented the frequency tree to participants (see Appendix II
in Supplementary Material). Such a tree supports any text in
explaining natural frequencies through a visualization of the
information structure relevant to solve a Bayesian inference
task. But trees are not the only tool that can serve this
function. Others are icon arrays, Euler diagrams, frequency grids,
unit squares, and roulette wheel diagrams (for an overview
see Binder et al., 2015; Mandel, 2015). Garcia-Retamero and
Hoffrage (2013) demonstrated that patients’ performance in a
basic Bayesian inference task could be improved through a
frequency grid whose effect is above and beyond that of natural
frequency representation in the written text. The most common
visualizations used in teaching statistics in schools, however, tend
to be 2×2 tables and tree diagrams, both of which explicitly
contain numbers. Note that these visual aids can make use of
natural frequencies or probabilities and improve participants’
performance when natural frequencies are used: In a study
by Steckelberg et al. (2004), the beneficial effect of natural
frequencies was about the same in both conditions. By contrast,
tree diagrams and 2×2 tables using probabilities (or relative
frequencies) do not improve participants’ performance—yet are
omnipresent in textbooks on probability theory (for an empirical
study on the effect of these visualizations beyond pure format
effects, see Binder et al., 2015).

With respect to visualization of Bayesian reasoning situations
with two hypotheses and more than two cue values, both trees
and tables can be easily extended to illustrate such situations (e.g.,
for three cue values, see the tree in Figure 1B, and imagine a 2×3
table). Likewise, a situation with more than two hypotheses and
a dichotomous cue can easily be represented by a tree (e.g., for
three hypotheses, see the tree in Figure 1C, and imagine a 3×2
table). However, situations with more than two cues appear to be
easier to represent by trees (e.g., Figure 1D) than by tables. The
ease of constructing and generalizing tree diagrams containing
natural frequencies was the reason for choosing this visual aid in
Study 2.

All in all, the available evidence shows that natural frequencies
can facilitate Bayesian reasoning in situations of risk, that is,
where probabilities are (assumed to be) known, as in textbook
problems. The novel insights of this article are that this power
extends to complex Bayesian tasks and that teaching natural
frequencies in basic tasks generalizes to complex tasks. These
insights correct the widespread claim that people are not built
to reason the Bayesian way, and, more important, they provide
an efficient tool to teach Bayesian reasoning even in complex
situations.
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An experiment was conducted to test the effectiveness of brief instruction in information

structuring (i.e., representing and integrating information) for improving the coherence

of probability judgments and binary choices among intelligence analysts. Forty-three

analysts were presented with comparable sets of Bayesian judgment problems before

and immediately after instruction. After instruction, analysts’ probability judgments were

more coherent (i.e., more additive and compliant with Bayes theorem). Instruction

also improved the coherence of binary choices regarding category membership: after

instruction, subjects were more likely to invariably choose the category to which they

assigned the higher probability of a target’s membership. The research provides a rare

example of evidence-based validation of effectiveness in instruction to improve the

statistical assessment skills of intelligence analysts. Such instruction could also be used

to improve the assessment quality of other types of experts who are required to integrate

statistical information or make probabilistic assessments.

Keywords: instructional methods, Bayesian judgment, probability judgment, information structuring, coherence

Introduction

Categorization under uncertainty is a basic fact of life. In a wide range of contexts, both personal
and professional, people strive to accurately categorize “objects,” including, at times, themselves.
Yet in many, if not most, cases, the correct category to which an object belongs is not immediately
apparent. Instead, one might have to generate hypotheses about putative category membership.
Moreover, the evidence one has at one’s disposal is usually inconclusive, serving at best to amplify
or attenuate support for the hypotheses under consideration. In other words, the evidence may not
fully eliminate uncertainty about category membership yielding a definitive answer. Indeed, it is
primarily because most everyday judgment and reasoning is made under conditions of uncertainty
that the dominant normative paradigm for assessing reasoning quality has shifted from a truth
functional logic of certain deduction to a Bayesian logic of uncertain deduction (e.g., Oaksford and
Chater, 2007; Evans, 2012; Baratgin et al., 2014).

The literature on Bayesian reasoning is rich and the focus of this paper is restricted
to two aspects of it: Bayes theorem and the complementarity constraint (Baratgin and
Noveck, 2000), which is a special case of the axiom of finite additivity of closed sub-
sets, often called the additivity principle in cognitive psychology (e.g., Tversky and Koehler,
1994; Villejoubert and Mandel, 2002). The paper does not, for instance, address aspects
of Bayesian reasoning having to do with the alternative logical and subjectivist stances
on Bayesianism, nor does it examine adherence to the dynamic coherence criterion
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known as the conditioning principle (for an overview of these
other issues, see Baratgin and Politzer, 2006). Rather, the aspects
addressed here pertain to static coherence criteria reflecting the
normative view that probability is additive (Kolmogorov, 1950).
Finally, although my focus is on the aforementioned aspects of
Bayesianism, I neither presume nor wish to suggest that Bayesian
approaches are the only viable normative frameworks for reach-
ing probabilistic inferences under conditions of uncertainty (e.g.,
Lewis, 1976; Thagard, 1989; Douven and Schupbach, 2015).
Indeed, as few others have noted (e.g., see Walliser and Zwirn,
2002; Baratgin and Politzer, 2006, 2010), Bayesian revision is nor-
mative in a restricted set of problem representations known as
focusing cases—namely, cases where the original set of possible
worlds is preserved rather than transformed over time. This is
the type of problem studied in the present research, where only
two categories exist and new information cannot invalidate either
category. However, in many other cases (e.g., see Baratgin, 2009;
Cozic, 2011) new informationmay transform the set of categories
(or hypotheses) being considered. In such updating cases, Lewis’s
(1976) imaging rule provides a normative solution for probability
redistribution.

For our purposes, let � represent an event space comprised
of elementary events, wi, that is partitioned into a non-empty,
closed family of subsets A. The focus in this paper is specifically
on subset families that exhibit binary complementarity; namely,
in which {A, B} ∈ A, A ∩ B= ∅ (i.e., A and B are mutually exclu-
sive), A ≡ A ∪ B (i.e., A and B exhaustively partition A). Indeed,
since A⇔¬B (and likewise B⇔¬A), let us use ¬A instead of B
to remind ourselves that the two subsets are binary complements.
For our purposes, let HA and H¬A represent mutually exclusive
and exhaustive hypotheses about the category membership of a
focal elementary event,w, which in subsequent examples given in
this paper is a person whose category membership is unknown.
Thus, HA and H¬A stand for the propositions that w ∈ A and
w ∈ ¬A, respectively. In the Bayesian context, the probabilities
assigned to these complementary hypotheses may be revised in
light of new evidence or data, D. These “posterior” probabili-
ties (see Mandel, 2014a, for an explanation of the scare quotes),
P(HA|D) and P(H¬A|D), are the focus of most studies of Bayesian
judgment, as they are in this paper.

Given the preceding definitions, the additivity principle for
binary complements states that P(HA|D ∪H¬A|D)= P(HA|D)+
P(H¬A|D), where P stands for probability, a non-negative real
number in the [0, 1] interval. Let T = P(HA|D) + P(H¬A|D).
The complementarity constraint states that T = 1. In this paper,
I break with the majority of papers that have followed Tver-
sky and Koehler (1994) by calling normative violations in which
T < 1 superadditive and violations in which T > 1 subadditive—
terms which appear to mean precisely the opposite of what they
are intended to convey. Instead, following Baratgin and Noveck
(2000), I refer to cases where T < 1 as subadditive and to cases
where T > 1 as superadditive. This properly places the empha-
sis on the additivity of the binary complements relative to unity
rather than the other way around, and it is likely to be intuitive to
readers outside this specific niche.

With some exceptions (e.g., Wallsten et al., 1993; Rottenstre-
ich and Tversky, 1997; Juslin et al., 2003; see Mandel, 2005, for

an explanation of differences obtained across studies), most stud-
ies have shown that people assign subadditive probabilities to
binary complements (Macchi et al., 1999; Baratgin and Noveck,
2000; Windschitl et al., 2003, Experiment 4; Sloman et al., 2004;
Mandel, 2005; Williams and Mandel, 2007; Mandel, 2008, Exper-
iments 5 and 6). Additivity violations have also been shown to
be systematic, following the non-normative tendency to judge
P(HA|D) and P(H¬A|D) on the basis of their inverse proba-
bilities, P(D|HA) and P(D|H¬A), respectively (Villejoubert and
Mandel, 2002). This tendency has been variably called the Fish-
erian algorithm (Gigerenzer and Hoffrage, 1995), the confusion
hypothesis (Macchi, 1995), the conversion error (Wolfe, 1995),
and the inverse fallacy (Koehler, 1996). Thus, if we let T′

=

P(D|HA) and P(D|H¬A), what Villejoubert and Mandel (2002)
found was that subjects’ T-values tracked the objective T′ values
such that they were subadditive when T′ < 1 and superadditive
when T′ > 1.

The second coherence constraint of interest in this paper is
Bayes theorem, which is a corollary of the rule of compound
probabilities, P(HA ∩ D) = P(D|HA)P(HA) = P(HA|D)P(D).
Bayes theorem can be expressed in various ways. The most com-
mon format discussed in the literature on Bayesian reasoning
performance is Bayes identity, which in general form may be
expressed,

P (Hi |D) =
P (Hi) P(D|Hi)

P (D)
=

P (Hi) P(D|Hi)
∑

i P (Hi) P(D|Hi)
. (1)

In the case of binary complements, using the terms defined
earlier, we can express Bayes identity as

P (HA |D) =

P (HA) P(D|HA)

P (D)

=

P (HA) P(D|HA)

P (HA) P (D |HA) + P (H¬A) P(D|H¬A)
. (2)

However, as the rule of compound probability makes clear, Bayes
theorem can also be expressed,

P (HA |D) =
P(HA ∩ D)

P (D)
=

P(HA ∩ D)

P (HA ∩ D) + P(H¬A ∩ D)
. (3)

When people are asked to judge P(HA|D) on the basis of infor-
mation sources such as P(HA)—the base rate—and P(D|HA) and
P(D|H¬A)—sometimes referred to as “diagnostic” probabilities,
only a minority cohere in their judgments with Bayes theo-
rem (e.g., Kahneman and Tversky, 1972, 1973; Lyon and Slovic,
1976; Casscells et al., 1978; Villejoubert and Mandel, 2002). For
example, consider the following problem:

The probability of breast cancer is 1% for a woman at age 40 who
participates in routine screening. If a woman has breast cancer,
the probability is 80% that she will get a positive mammography.
If a woman does not have breast cancer, the probability is 9.6%
that she will also get a positive mammography. A woman in this
age group had a positive mammography in a routine screening.
What is the probability that she actually has breast cancer?
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Using Bayes theorem, the probability that the woman has breast
cancer given her test result is nearly 8%, yet Eddy (1982) found
that 95 out of 100 physicians presented with the problem roughly
an order of magnitude higher and similar results with physi-
cian or medical counselor samples have been found in other
studies (Gigerenzer et al., 1998; Hoffrage and Gigerenzer, 1998;
Garcia-Retamero and Hoffrage, 2013).

A ubiquitous explanation for the well-documented divergence
between people’s probability judgments and those computed on
the basis of Bayes theorem is that people neglect, or at least under-
weight, base-rate information (Kahneman and Tversky, 1972,
1973; Lyon and Slovic, 1976; Bar-Hillel, 1980). However, without
undermining the claim that base-rates are often underutilized,
there is also reason to believe that the divergences reported may
be due to the inverse fallacy discussed earlier (Eddy, 1982; Hamm,
1993; Koehler, 1996). For example, Villejoubert and Mandel
(2002) kept base rates for two mutually exclusive and exhaus-
tive categories equiprobable and invariant across a set of Bayesian
reasoning problems. They found that most subjects judged prob-
abilities in violation of Bayes theorem even though the possibility
of base-rate underutilization was eliminated in their experiment.
Moreover, the direction and magnitude of the mean difference
between subjects’ judgments and the Bayesian values tracked the
value of the inverse probabilities, just as additivity violations had
tracked the sum of the inverse probabilities1. As well, information
search in Bayesian tasks focuses significantly more on the inverse
probability of a focal hypothesis (P(D|HA)) than on either the
contrapositive conditional probability (P(D|H¬A)) or the base-
rate (P(HA)), and the more subjects focused on the inverse prob-
ability, the less they focused on the base rate (Wolfe, 1995). Thus,
base-rate neglect may be due in part to the inverse fallacy. Finally,
even in cases where base-rate neglect has been invoked as an
explanation of non-conformity with Bayes theorem, such as Eddy
(1982) results for the mammography problem described ear-
lier, the inverse fallacy better accounts for the aggregate findings
(Mandel, 2014a).

Improving the Coherence of Probability
Judgments
The literature reviewed earlier shows that people often do not
conform to two important coherence constraints on probabil-
ity judgment when given statistical information as input to their
judgment process: they systematically deviate from both the
complementarity constraint and Bayes theorem. These mani-
festations of incoherence are particularly troubling when made
by professionals whose judgments may, in turn, provide input
to consequential decision-making. Much attention, as already
noted, has been devoted to normative violations of probability
judgment committed by medical professionals.

Another group of experts who make probabilistic judgments
are intelligence analysts. Intelligence analysis plays a vital role
in national and international security, serving as key sources of
information for a wide range of decision-makers including state

1This is by necessity: if T < 1, then the mean bias (i.e., the mean deviation between

the subject’s posterior probability and the values given by Bayes theorem) must be

negative, representing underestimation, by the same degree. Likewise when T > 1;

then, mean bias must represent overestimation to the same degree.

leaders, policy makers, and military commanders. Despite the
importance of intelligence analysis—and the centrality of prob-
abilistic judgment in intelligence products (Kent, 1964; Zlotnick,
1972; Friedman and Zeckhauser, 2012), there are few behavioral
studies of analytical judgment quality (Pool, 2010). Probabilis-
tic assessments underlie virtually all forecasts made by intelli-
gence agencies. Moreover, intelligence analysts, managers, and
trainers acknowledge that the predictive function of intelligence
is roughly as important as the narrative descriptive function
(Adams et al., 2012). Although one study has found that strategic
intelligence forecasts showed good discrimination and calibra-
tion (Mandel and Barnes, 2014), the extent to which analytical
judgments are coherent has not been addressed in an intelligence
analyst sample. Such research is needed because intelligence ana-
lysts must often revise their hypotheses and beliefs based on
missing and uncertain evidence.

Nevertheless, few, if any, analysts receive training in prob-
abilistic belief revision. More commonly, analysts receive brief
training lessons that highlight the “mindsets and biases” to which
all humans are prone. In such training, analysts are taught, for
instance, to “beware of overconfidence” and to “avoid confirma-
tion bias,” but they are not routinely taught how to assess their
own or others’ coherence or accuracy. Few of the structured ana-
lytic techniques that analysts may use to support their assess-
ments have been scientifically tested (Pool, 2010). Most are based
on what made sense to their developers, most of whom do not
have backgrounds in behavioral science. Moreover, members of
the intelligence community have identified the need for evidence-
based research on analytical processes that support effectiveness
as a priority (Adams et al., 2012). One aim of the present research
was to examine the extent to which intelligence analysts’ proba-
bility judgments conform to the complementarity constraint and
Bayes theorem in statistical integration tasks like themammogra-
phy problem. And a second aim was to test whether brief instruc-
tion in information structuring would have a positive effect on
the quality of intelligence analysts’ probability judgments. In that
regard, the present research represents a rare test of the effec-
tiveness of instruction that could be used to improve intelligence
analysts’ probabilistic reasoning skill.

The present research leverages recent developments in
improving Bayesian reasoning. It is well established that a greater
proportion of subjects in Bayesian reasoning studies provide
Bayesian answers or describe a Bayesian computational process
when the information provided to them is expressed in terms
of natural frequencies (Gigerenzer and Hoffrage, 1995; Cosmides
and Tooby, 1996; also see Kleiter, 1994). To express in natural
frequencies information such as that given in the mammography
problem, one would begin with a hypothetical reference class that
could be easily broken down into subsamples. For instance, one
might start with 1000 women aged 40 who participate in routine
screening. The 1% base-rate would then be represented by sub-
sets of 10 women who have breast cancer (HA) and 990 who do
not (H¬A). The former subset is further decomposed into true-
positive (HA ∩ D+, where D+ stands for the positive-test result)
and false-negative (HA ∩ D−, where D− stands for the negative-
test result that was not obtained) subsets (8 and 2 cases, respec-
tively), and the latter is likewise decomposed into true-negative
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(H¬A ∩ D−) and false-positive (H¬A ∩ D+) subsets (895 and 95
cases, respectively). When the information is represented as such,
it is easier to calculate the “short form” of Bayes theorem shown
in Equation 3. The numerator of this equation is already iden-
tified (f (HA ∩ D+) = 8) and the denominator simply involves
adding the two subsets containing D+ (i.e., 8 + 95 = 103). Even
without dividing, one might appreciate that the value 8/103 is
slightly less than 8%.

Although the finding that restructuring of statistical informa-
tion, such as that given in the mammography problem, into the
natural frequency format just described yields better correspon-
dence to Bayes theorem, the bases for the effect are the subject
of much debate. Given that the present research does not focus
on that “why” question, but rather uses the descriptive find-
ings to explore whether Bayesian reasoning may be improved
through instruction, I merely note that it is important to sep-
arate the descriptive findings from the theoretical accounts of
them that have been proposed. As well, most adaptationists (e.g.,
see Gigerenzer and Hoffrage, 2007) and dual-systems theorists
(Barbey and Sloman, 2007) do not strongly disagree that the ben-
eficial effect of natural frequency formats derive from a combi-
nation of factors, including clarifying nested set structure of the
relevant statistical data, improve the compatibility between evi-
dence and queries, and reduce the computational complexity of
task at hand (Mandel, 2007; Ayal and Beyth-Marom, 2014). More
importantly, for the present purposes, most researchers agree
that natural frequency presentations of statistical information in
Bayesian reasoning tasks tend to facilitate Bayesian reasoning and
improve Bayesian judgment.

The use of natural frequencies to convey probabilistic evi-
dence is further augmented by the use of visual representations
that reinforce the nested-set structure of diagnostic and base-rate
evidence (Cosmides and Tooby, 1996). Indeed, visual represen-
tations can facilitate Bayesian reasoning by clarifying nested-
set relations even when natural frequencies are not explicitly
encoded in the representations (Sloman et al., 2003; Sirota et al.,
2015). Such representations can also clarify the logical relations
and the structure of arguments in support of alternative norma-
tive views on belief revision tasks (Mandel, 2014b). However, in
at least some studies, visual representations that encode natural
frequency information directly through icons or numerical val-
ues have been shown to be more effective than visualizations that
clarify set structure but do not explicitly encode the frequency
data, such as Euler diagrams (Sedlmeier, 1999, chapter 6; Brase,
2008, 2014). Although not all studies have shown such an advan-
tage (e.g., Sirota et al., 2015), no study has reported the opposite
effect; namely, better performance with nested-set representa-
tions that do not include explicit frequency encoding than with
nested-set representations that do include such coding.

The use of visual representations of natural frequencies
has also been shown to be an effective instructional method
for improving compliance with Bayes theorem. Sedlmeier and
Gigerenzer (2001; see also Sedlmeier, 1999) found that a single
1–2 h session of practice-based instruction in Bayesian reasoning
facilitated performance on Bayesian judgment tasks. The per-
formance boost immediately after instruction was large regard-
less of whether the instruction used rule-based training in the

application of Bayes theorem or whether it used a natural sam-
pling representation such as a frequency grid or frequency tree.
The long-term effect of instruction, however, showed a clear
advantage for instruction that relied on a natural sampling rep-
resentation of the information provided in a given problem.
In three experiments, on average, subjects who received such
instruction performed as well at the longest-term test phase (i.e., 5
weeks in two experiments and 3 months in another experiment)
as they did in the immediate test phase. In contrast, rule-based
instruction showed substantial decrements by the last test phases
in all experiments.2 The instructional benefit of frequency-based
visual representations on Bayesian reasoning has been confirmed
in other studies as well (Kurzenhäuser and Hoffrage, 2002; Rus-
cio, 2003; McCloy et al., 2007).

The present research examined the effect of instruction in
information structuring on adherence to the complementarity
constraint and Bayes theorem in a sample of intelligence ana-
lysts who were undergoing military intelligence training. Unlike
earlier studies of instruction effects on Bayesian judgment (e.g.,
Sedlmeier and Gigerenzer, 2001; McCloy et al., 2007; Sirota et al.,
2015), the aim of this research was not to compare different
modes of instruction. Rather, the effect of a single instructional
mode using a natural sampling approach with natural-frequency-
tree diagrams was examined, given that this mode has already
been shown to yield stable long-term improvement in condi-
tional probability judgment. Unlike earlier research on instruc-
tion, however, this research used a pre-post design to assess the
effect of instruction on complementarity constraint violations
and deviations from Bayes theorem. The vast majority of stud-
ies of Bayesian reasoning have used problems with binary out-
come categories corresponding to HA and H¬A but have only
queried subjects about one of the two hypotheses,HA. Thus, they
were unable to examine the effect of Bayesian instruction on the
additivity of subjects’ judgments.

Moreover, the study was designed so that predictions regard-
ing the direction of error could be made on the basis of the
inverse fallacy, which, as noted earlier, has successfully accounted
for both additivity violations and deviations from Bayes theorem
(Villejoubert and Mandel, 2002). Specifically, assuming that the
grand mean of T across subjects, hypotheses, and test items is
additive, it was predicted that T < 1 if T′ < 1 and that T > 1 if
T′ > 1. Naturally, if there were to be an overall bias toward
a form of nonadditivity, the predictions would be relaxed, tak-
ing the form of the mean difference prediction T|(T′ < 1) <

T|(T′ > 1). That is, a general bias in additivity would negate the
predicted reflection around additivity. Given that most studies
of adherence to the complementarity constraint have reported
subadditivity, this form of nonadditivity is the likelier candidate.
Indeed,Williams andMandel (2007) found subadditivity for con-
ditional probability judgments of binary complements. Although
Villejoubert and Mandel (2002) did not report whether there was
an overall bias in T, it is evident by averaging the mean T-values
in the last column of Table 2 in that paper that the grand mean

2The one exception was in Study 1b of Sedlmeier and Gigerenzer (2001) where

subjects were incentivized through bonuses and where rule-based and natural

sampling methods yielded comparable performance.
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(where the simple means were elicited within subjects) is equal to
0.916, a value that reflects subadditivity. Given that the numerical
characteristics of the test items used in the present research were
drawn fromVillejoubert andMandel (2002), there is good reason
to expect an overall bias toward subadditivity.

Finally, an aim of the research was to examine the coherence
between subjects’ probability judgments and their binary forced
choice of the target’s category membership. Presumably, subjects
would choose the category to which they assigned a higher prob-
ability. However, studies of Bayesian judgments have not asked
subjects to make a discrete choice in addition to making their
probability judgments. Thus, it is of interest to verify whether,
in fact, subjects do invariably choose in accordance with the
higher assigned probability. And, to the extent that they do not,
it is of interest to examine whether instruction might attenuate
this form of incoherence. Since judgments are often a precursor
to decisions and actions, this is a question that is of more that
academic interest.

Materials and Methods

Subjects
Forty-three intelligence analyst trainees participated in the
research during regular course time at the Canadian Forces
School for Military Intelligence at Canadian Forces Base
Kingston in Kingston Ontario, Canada. Twelve trainees were
from a senior analysts’ course, 16 were from an intermediate,
basic intelligence officers’ course and 15 were from a junior
course. The entry requirements were an undergraduate degree
for the intermediate course and completion of Grade 10 high
school for the junior course. Trainees in the senior course had
to have successfully completed the intermediate course. Demo-
graphic information was not recorded. However, over 90% of
subjects were male. Subjects were informed that their participa-
tion was voluntary and that they would not be remunerated for
their time. No student refused to participate.

Procedure
Subjects were introduced to the study in class by being told that
intelligence analysts are routinely called upon to make assess-
ments under conditions of uncertainty, where the information
they receive may be probabilistic in nature. Subjects were further
told that analysts must often revise their beliefs about hypotheses
or events on the basis of new, but once again, uncertain infor-
mation. After this preliminary statement, subjects were informed
that they had the opportunity to participate in research aimed at
improving their judgment abilities. After consenting to partici-
pate, subjects were given a pre-instruction booklet that contained
eight probability judgment problems, described in detail below.
Participants worked on the problems individually at their desks.
The task was not strictly timed. However, subjects were told that
they would have approximately 15min to complete the task. All
subjects completed the task in the allotted time. An anonymous
subject code was generated by the subject and written on the pre-
instruction booklet before it was returned to the experimenter so
that it could be matched to the post-instruction booklet.

After returning the pre-instruction booklets, the experimenter
told subjects that they would now be given a brief tutorial on how
to accurately integrate different sources of probabilistic informa-
tion to arrive at their own probabilistic assessments of different
hypotheses that one might wish to test. The first run of this
experiment was conducted on the senior course and the tuto-
rial included a series of medical diagnosis examples. The second
and third runs in the other courses used an alternative version
of the tutorial, which was deemed by the senior instructor at the
Canadian Forces School for Military Intelligence to be more rel-
evant to the intelligence and security context, and which focused
on detecting whether a human target was an insurgent. The two
versions, however, had the same structure, length, and relevant
content, differing only in terms of the domain of examples (i.e.,
medical diagnosis vs. intelligence target detection). Both versions
of the full tutorial are presented in the Supplementary Materials.

The tutorial began with an example that presents the base-
rate of a focal hypothesis, P(HA), and diagnostic probabilities,
P(D+|HA) and P(D+|H¬A), where D+ stands for data indicating
a positive result on a diagnostic test. Subjects were asked how they
might use that information to assess the conditional probability,
P(HA|D+)—namely, the probability that the focal hypothesis was
true given the data indicating a positive test result.

After being presented with the initial assessment task, sub-
jects were asked to think about how they would go about making
the assessment and to record their assessment. Next, the exper-
imenter showed subjects how they could systematically work
through the problem. Slides 3–5 in the tutorials were designed to
show subjects how they could represent the information given to
them as a natural-sampling-tree diagram. As each slide was pre-
sented, the experimenter read the textual content and pointed to
the appropriate part of the diagram. Subjects were able to see the
slides on a large projection screen located at the front of the class-
room as well as on personal computer screens located directly
in front of them on their desk spaces. On Slides 6–7, the experi-
menter worked through the solution, showing subjects how the
information represented in the diagram could be arranged to
answer the relevant question. The tutorial advises trainees to first
identify the relevant set of cases that correspond to the condition,
D+, specified in the conditional probability, P(HA|D+). Then,
trainees are directed to identify the subset of those cases that
conforms to the hypothesis—namely, f (HA ∩ D+). The corre-
sponding diagrams made these points salient by color-coding the
relevant sets of cases. The solution shown on Slide 6 represented
those color-coded sets as an equation corresponding to the short
form of Bayes theorem (Equation 3).

After being presented with the solution, subjects were asked to
reflect on how it compared to their initial assessment (see Slide 7).
Although this comparison was for pedagogical purposes, it is
worth noting that many subjects commented that their estimates
deviated from the correct value, and some confessed to not know-
ing how to integrate the information supplied (reinforcing Juslin,
2015, claim that while estimation may be very good, integration
often falters).

After answering any questions subjects may have had, the
experimenter moved onto the second example, which used the
same cover story but asked subjects to imagine that the test result
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had been negative (D−) instead of positive. Subjects were asked to
consider how they would assess the probability that the hypoth-
esis was true given the negative test result, P(HA|D−). After
subjects gave their initial assessment, the experimenter worked
through the problem in the same way as before, after which sub-
jects compared their answers to the correct solution (see Slides
10–14).

The third example served to further illustrate that the
approach taught could be used to answer other related ques-
tions, including questions framed in complementary ways (see
Slide 15). Thus, whereas the second example asked subjects
to assess P(HA|D−), the third asked them to assess the prob-
ability of the alternative hypothesis given the same negative
test result, P(H¬A|D−). Once again, the solution was presented
using a natural-sampling-tree diagram (see Slides 16–17). How-
ever, subjects’ attention was also drawn to the fact that the
answers to the two last problems summed to 100%, and they
were informed that this was no coincidence. Figure 1 shows the
natural-sampling-tree diagram with solutions to P(HA|D−) on
the left and P(H¬A|D−) on the right for the intelligence version
of the tutorial.

On the next slide (Slide 18), the implicit lesson about the com-
plementarity constraint just conveyed was made explicit. Sub-
jects were introduced to the additivity principle and told that
violations of additivity represented a form of incoherence in
probability assessment. The tutorial then concluded with a sum-
mary of the following key points (see Slides 19–22): first, try
to visually represent the information provided, such as in the
natural-sampling-tree diagrams used in the tutorial; second, in

preparation for information integration, think about the proba-
bility being assessed as a ratio and identify the relevant subsets
that comprise the numerator and denominator, starting with the
denominator because the numerator is always a subset of the
denominator; and, finally, do the arithmetic required to produce
the estimate.

After answering any questions subjects may have had, the
experimenter administered the post-instruction booklet to sub-
jects, which had an alternative set of problems much like the
pre-training set (detailed in subsection Judgment Tasks). Once
again, subjects were given approximately 15min to complete the
set of problems and they completed the task in the allotted time.
When the booklets were returned, subjects were thanked, orally
debriefed, and the experiment concluded.

Judgment Tasks

The primary judgment task assigned to subjects before and after
instruction was adapted from that used by Villejoubert and Man-
del (2002). The pre- and post-instruction booklets are included
in the Supplementary Materials.

To summarize the task, subjects were asked to imagine that
they were contestants on a game show who would be asked
a series of skill-testing questions. They were to meet eight
“mystery people” and, for each one, they would learn, follow-
ing a query from the game-show host to the mystery per-
son, whether a particular attribute (e.g., being a smoker) was
present (D+) or absent (D−) in the individual. Half of the mys-
tery people possessed the relevant attribute and the other half
did not.

FIGURE 1 | Example from tutorial showing use of a natural sampling tree and providing solutions for assessments of alternative hypotheses defined

by mutually exclusive and exhaustive subsets.
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Subjects’ task was to probabilistically assess the mystery per-
son’s group membership. Each person either belonged to Group
A or Group B. For continuity with the prior discussion, let HA

stand for the hypothesis that the target person is a member of
Group A and let H¬A stand for the mutually exclusive, alterna-
tive hypothesis that the target person is a member of Group B.
Subjects were informed that the overall population from which
the sample of eight were said to be drawn was evenly divided and,
thus, P(HA) = P(H¬A) = 0.5. For each of the eight “encounters,”
subjects also learned the diagnostic probabilities of the attribute,
P(D+|HA) and P(D+|H¬A). Subjects were asked to estimate the
probability that the target person was a member of Group A and
then to estimate the probability that the person was a member
of Group B on a “percentage chance” scale ranging from 0 (abso-
lutely no chance at all) to 100 (absolutely certain) by writing a
numerical value in a space provided. After giving their estimates,
they were asked to make a binary choice regarding whether they
thought the relevant mystery person was a member of Group A
or Group B by circling one of the two options.

The diagnostic probabilities for the eight attributes (one per
mystery person) are summarized in Table 1. Note that the pre-
and post-instruction booklets had the same stimulus character-
istics but the problems were varied by altering problem order
and the attribute labels associated with each information con-
figuration. For example, as Column 1 in Table 1 shows, the
Bayesian probabilities for the encounter with mystery person
5 in the pre-instruction booklet are identical to those for the
encounter with mystery person two in the post-instruction book-
let. Thus, task difficulty was precisely matched between pre- and
post-instruction testing sessions.

Design
The stimulus characteristics shown in Table 1 take the form of a 2
(Feature: present, absent) × 2 (Expected Error Direction: subad-
ditive, superadditive) × 2 (Expected Error Magnitude: smaller,
larger) within-subjects factorial design. The values of the first
factor are shown in Column 2 of Table 1. The values of the sec-
ond factor are encoded in column 7, where the values 0.44 and
0.80 indicate that subadditive judgments are expected if subjects
commit the inverse fallacy and where the values 1.20 and 1.56
indicate that superadditive judgments are expected if subjects

commit the inverse fallacy. The values 0.80 and 1.20 represent
the smaller predicted errors, whereas the values 0.44 and 1.56
represent the larger predicted errors. Taking the pre-post manip-
ulation into account, the experiment utilizes a 2 (Instruction) ×
2 (Feature) × 2 (Expected Error Direction) × 2 (Expected Error
Magnitude) within-subjects factorial design.

Results

Experience, as indexed by the level of course taken (i.e., 1 =

junior, 2 = intermediate, and 3 = senior), was not significantly
correlated with bias (r = −0.07, p = 0.67) or absolute bias
(i.e., the degree of inaccuracy irrespective of whether it repre-
sents under- or over-estimation; r = −0.15, p = 0.33). Thus,
experience is not statistically controlled in subsequent analyses.

Probability Judgment
To avoid redundancy in the presentation of the results, analy-
ses are conducted on the additivity of probability judgments for
Groups A and B. The statistical analyses accompanying these
analyses are, of necessity, identical in inferential characteristics,
such as significance levels and effect sizes, to those focusing
instead on mean bias as a measure of inaccuracy, where bias is
defined as the deviation between subjects’ probability judgments
and the estimates based on Bayes theorem. For instance, where
T′

= 0.44 or 1.56, a subject who invariably uses the inverse strat-
egy would show a bias in his or her forecasts equal to |0.56|. Like-
wise, the subject would show an additivity violation, whereby T
(i.e., the sum of his or her judgments for Groups A and B) would
either exceed (when T′

= 1.56) or fall short (when T′
= 0.44) of

unity by the same degree (i.e., 0.56).
Subjects’ T-values were analyzed in a 2 (Instruction)× 2 (Fea-

ture) × 2 (Expected Error Direction) × 2 (Expected Error Mag-
nitude) within-subjects factorial analysis of variance (ANOVA)
model. There was a significant and large instruction effect show-
ing that the additivity (and, by implication, mean agreement
with Bayes theorem) of subjects’ judgments improved from pre-
instruction (M = 0.91, SE = 0.028) to post-instruction (M =

0.99, SE = 0.008) testing, F(1, 42) = 6.82, p = 0.012, η
2
p =

0.14. As the estimatedmarginal means show, prior to instruction,
subjects’ judgments, on average, were subadditive.

TABLE 1 | Summary of stimulus characteristics in judgment task.

Task no. (pre, post) D P(D+ |HA) P(D+ |H¬A) P(D|HA) P(D|H¬A) T′ P(HA |D) P(H¬A |D)

5, 2 Present 0.42 0.02 0.42 0.02 0.44 0.95 0.05

6, 1 Absent 0.58 0.98 0.42 0.02 0.44 0.95 0.05

8, 3 Absent 0.40 0.80 0.60 0.20 0.80 0.75 0.25

7, 4 Present 0.60 0.20 0.60 0.20 0.80 0.75 0.25

3, 8 Present 0.80 0.40 0.80 0.40 1.20 0.67 0.33

4, 7 Absent 0.20 0.60 0.80 0.40 1.20 0.67 0.33

1, 6 Present 0.98 0.58 0.98 0.58 1.56 0.63 0.37

2, 5 Absent 0.02 0.42 0.98 0.58 1.56 0.63 0.37

D+, target has attribute; D, the result for the target (either has or doesn’t have attribute); HA, hypothesis that target belongs to Group A; H¬A, hypothesis that target belongs to Group

B. T ′
= P(D|HA) + P(D|H¬A).
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TABLE 2 | Estimated mean T-values by instruction and expected error

direction.

Expected Instruction

Error Pre Post

Direction M LB UB M LB UB

Subadditive 0.83 0.75 0.90 0.95 0.91 0.99

Superadditive 0.99 0.91 1.07 1.02 0.99 1.05

LB and UB = 95% CI lower and upper bounds, respectively.

As predicted, the effect of instruction on additivity was mod-
erated by the expected error direction, F(1, 42) = 10.13, p =

0.003, η
2
p = 0.19. Table 2 shows the estimated marginal mean

T-values with 95% confidence intervals (CI). As Table 2 shows,
instruction had a strong, beneficial effect on tasks in which sub-
addivity was predicted, F(1, 42) = 10.27, p = 0.003, η

2
p =

0.20. In that task subset, subadditivity was virtually eliminated
post-instruction. In contrast, instruction had no effect when
superadditivity was expected (F < 1). However, given that
superadditivity was not found, the null effect of instruction in
that context is to be expected. Rather, in that context, subjects’
judgments, on average, were additive before and after instruc-
tion. No other effect in the full factorial model was significant at
p < 0.05.

The former additivity analyses showed that subjects’ judg-
ments were subadditive, which implies that, on average, they
underestimated the normative estimates. As Table 1 shows,
P(D|HA)> P(D|H¬A) and, likewise, P(HA|D)> P(H¬A|D). Thus,
one might expect that bias expressed in absolute terms would be
more pronounced for judgments of P(HA|D) than judgments of
P(H¬A|D). To test this hypothesis, the absolute deviation between
judged and normative probabilities were analyzed in a 2 (Instruc-
tion) × 2 [Judgment type: P(HA|D), P(H¬A|D)] within-subjects
ANOVA. In fact, mean absolute bias was greater for judgments of
P(HA|D) (M = 0.144, SE = 0.013) than judgments of P(H¬A|D)
(M = 0.009, SE = 0.011), F(1, 42) = 12.38, p = 0.001,
η
2
p = 0.23. As Figure 2 shows, judgment type also moderated the

effect of instruction, such that there was a greater effect for judg-
ments of P(HA|D) than judgments of P(H¬A|D), F(1, 42) = n6.67,
p = 0.013, η2

p = 0.14. In other words, instruction had a greater
effect on bias reduction (i.e., improving agreement with Bayes
theorem) where bias was greater to begin with.

The preceding analyses give additive analysts the benefit of the
doubt. However, it is possible that some of the expressed additiv-
ity captured in this experiment is spurious. Karvetski et al. (2013)
found that probability judgments of binary complements were
often additive because subjects assigned values of 0.5 to P(A) and
P(¬A). This pattern—known as the fifty-fifty blip (Fischhoff and
Bruine de Bruin, 1999)—is likely to reflect the subjects’ deep epis-
temic uncertainty regarding the task. Given that subjects asked to
judge probabilities are seldom given a “don’t know” option, they
tend to express that message by responding on the midpoint of
the probability scale. And when they are given a “don’t know”
option, fifty-fifty responses are greatly reduced (Mandel, 2005,
Experiment 1b).

FIGURE 2 | Estimated marginal mean absolute bias by judgment type

and instruction.

The pre- and post-instruction test data were scanned for fifty-
fifty responders. Three subjects were spuriously additive in the
pre-instruction test on at least five out of the eight problems.
However, no subject showed this pattern in the post-instruction
test. Thus, the prior results slightly underestimate the positive
instruction effect by including the spurious cases of additive judg-
ment in the pre-instruction test phase. Deletion of the three
subjects, however, had no substantial effect on the results. The
main effect of instruction on subjects’ T-values was virtually
unchanged, F(1, 39) = 6.89, p = 0.012, η

2
p = 0.15; and like-

wise for the instruction × direction interaction effect, F(1, 39) =
10.30, p = 0.003, η

2
p = 0.21. Figure 3 shows the distribution

of mean T-values before and after instruction with the three
fifty-fifty responders excluded. It is evident that instruction was
effective in improving the performance of the worst performers.
In fact, the range post-instruction was less than one-third of its
pre-instruction value (range= 0.26 vs. 0.88, respectively).

After removing the cases of spurious additivity, it is also of
interest to compare the mean proportion of additive probability
judgments before and after instruction. Instruction had a large
effect on the mean proportion of additive judgments, which was
greater after instruction (M = 0.56, SD = 0.42) than before
instruction (M = 0.75, SD = 0.31), t(39) = 2.86, p = 0.007,
Cohen’s d = 0.91. The proportion of subjects who were con-
sistently additive across the eight problems in a test session was
substantially greater after instruction (0.83) than before instruc-
tion (0.54)—a 54% increase in consistently additive responding
by subjects.

Binary Choice
Although the tutorials used in this experiment did not men-
tion choice, it was of interest to examine whether instruction
may also have had a beneficial effect on the coherence of binary
choices subjects made regarding the group to which the target
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FIGURE 3 | Frequency distribution of additivity values (T) by instruction.

belonged. Coherent choices are defined as those in which the
subject chooses the category as the target’s group to which he
or she assigned the higher probability. Conversely, if the sub-
ject chooses the group to which he or she assigned the lower
probability, the choice is defined as incoherent.

Figure 4 shows the distribution of correct choices in percent-
age terms by instruction. Unsurprisingly, the distributions are
highly skewed, with most subjects choosing coherently in all
eight problems. What may be somewhat surprising, however, is
that these distributions were not even more skewed. Clearly, the
pre-instruction group showed considerable room for improve-
ment, and improve with instruction they did. The proportion
who chose coherently in all eight problems vs. those who made at
least one incoherent choice was significantly greater after instruc-
tion (83%) than prior to instruction (53%), two-tailed binomial
p = 0.002.

Discussion

The present research adds to the body of literature showing
that Bayesian reasoning can be improved through relatively
brief instruction in how to structure information using natu-
ral frequency representations (Sedlmeier, 1999; Sedlmeier and
Gigerenzer, 2001; Kurzenhäuser and Hoffrage, 2002; Ruscio,
2003;McCloy et al., 2007; Sirota et al., 2015). In the present exper-
iment, brief instruction in how to represent base-rate and diag-
nostic probabilities as natural-frequency-tree diagrams and how
to then select the relevant subsets for calculation led to a large
improvement in the additivity of intelligence analysts’ posterior
probability judgments of binary complements. As noted earlier,
this effect also reflects the degree to which those probability
judgments corresponded with those given by Bayes theorem.

Consistent with the majority of previous studies that have
examined violations of the complementarity constraint (Mac-
chi et al., 1999; Baratgin and Noveck, 2000; Windschitl et al.,

FIGURE 4 | Frequency distribution of percentage of coherent choices

by instruction.

2003, Experiment 4; Sloman et al., 2004; Mandel, 2005; Williams
and Mandel, 2007; Mandel, 2008, Experiments 5 and 6), sub-
jects’ judgments were, on average, subadditive. Nevertheless, the
results also show that most subjects were consistently additive
in both pre- and post- instruction test phases, with a substantial
rise in that proportion after instruction. Indeed, over four-fifths
of subjects answered all eight problems additively after receiv-
ing instruction. What is also striking is that over half of them
did so even before receiving instruction. It is likely that these
proportions were as high as they were because the binary com-
plements were elicited in immediate succession. Prior studies
(Mandel, 2005; Karvetski et al., 2013) have found that spacing
binary complements apart with unrelated items or tasks reduces
the likelihood of additive responses. Thus, the proportions of
consistently coherent subjects obtained in this research should
be interpreted as having been elicited under near ideal condi-
tions (short of prompting subjects to make their related judg-
ments sum to unity; e.g., see Baratgin and Noveck, 2000). It
would be of value to assess the effect of instruction on addi-
tivity when the binary complements are elicited in a spaced
design.

The findings also showed that the degree of subadditivity
manifested across pre-instruction problem sets was consistent
with use of the inverse fallacy. That is, when the inverse (i.e.,
diagnostic) probabilities summed to less than unity (T′ < 1),
judgments were subadditive. In contrast, when the inverse
probabilities summed to more than unity (T′ > 1), the pre-
instruction judgments were additive—and significantly less sub-
additive. Nevertheless, the results of this experiment do not
confirm subjects’ commission of the inverse fallacy as strongly
as the findings obtained by Villejoubert and Mandel (2002)
because, unlike their findings which showed superadditivity
when T′ > 1, the present findings revealed additive judgment
under this condition. Simply put, exclusive reliance on the
inverse fallacy in the present task would not have led to overall
subadditivity.
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An encouraging result was that instruction benefitted intelli-
gence analysts’ probability judgments where it was needed most.
First, the effect of instruction was appropriately restricted to the
subset of problems in which the inverse probabilities summed
to less than unity. Under those conditions, instruction reduced
additivity violations. However, for the T′ > 1 task subset, where
subjects’ judgments were additive, instruction had no effect. This
null simple effect is an important result because it shows that
instruction did not merely make subjects’ assigned probabilities
larger across the board, as some other interventions appear to
have done (e.g., Williams and Mandel, 2007). The assigned prob-
abilities only became larger where they ought to have become
larger. In other words, the benefit of instruction was appropri-
ately targeted. Second, the effect of instruction on reducing mean
absolute bias was greatest for the set of judgments that yielded the
greatest absolute bias in the pre-instruction test (i.e., P(HA|D)).

The benefit of instruction, as noted earlier, was also targeted
in the sense that those who performed relatively poorly on the
pre-instruction test, showed clear signs of improvement, as indi-
cated by the large reduction in the range of performance post-
instruction as compared to pre-instruction. This was evident in
terms of both violation of the complementarity constraint and
coherence of binary choices. Moreover, the few analysts who pro-
vided fifty-fifty responses prior to instruction no longer did so
after instruction. These results are promising because they indi-
cate that large improvements in probability judgment, informa-
tion integration, and belief revision can be made by those who
need improvement the most. Of course, the present research
cannot speak to the long-term effect of instruction because the
post-instruction test was administered immediately after train-
ing. However, as noted earlier, a number of studies have shown
long-term beneficial effects on Bayesian judgment of instruction
that has relied on the use of natural frequency representations of
evidence (e.g., Sedlmeier and Gigerenzer, 2001). It would nev-
ertheless be useful to confirm that there is a long-term bene-
fit to judgmental coherence and also that such benefits can be
derived from experts who are tasked with making judgments
under conditions of uncertainty (such as intelligence analysts).

Likewise, given the encouraging results of this and other
research on the use of instruction to improve aspects of Bayesian
judgment, it would be of value to explore how such instruc-
tion might be further optimized by incorporating other effective
learning techniques (for overviews, see Dunlosky et al., 2013;
Kober, 2015). For instance, most studies of instruction effects
on Bayesian reasoning, including the present research, have used
a massed training and practice session. However, much exper-
imental evidence indicates that students learn more effectively
when they are given opportunities for distributed practice with
large time lags between sessions (Cepeda et al., 2006; Delaney
et al., 2010). While the majority of studies have demonstrated
the benefits of distributed practice using factual materials that
require mainly recall ability, Kapler et al. (2014) have shown
that distributed practice in a simulated undergraduate classroom

improves learning of higher-level reasoning that requires both
recall and manipulation of information, much as Bayesian
reasoning requires.

Finally, it is worth noting that the present research yielded not
only a large statistical effect but also a practical effect given that
the instructional method developed and tested in this research
has since been adopted in some intelligence courses in Canada.
Of course, it remains unclear to what extent such training will
ultimately affect the quality of intelligence analysis and whether,
in fact, Bayesianism is an appropriate model for belief revision
in that domain (for an insightful discussion, see Zlotnick, 1972).
Given that most assessments are communicated with verbal
probability phrases and few assessments are based on evidence
for which uncertainties are quantified, the application of aspects
of Bayesianism such as Bayes theorem are currently of lim-
ited value. Nevertheless, even verbal probabilities should respect
coherence principles such as additivity. It may bemore difficult to
verify whether “very likely that A will happen” and “slim chance
that A won’t happen” add up to unity, and such verification
would be less direct because it would require personally translat-
ing the phrases into numbers. However, even without translation
attempts, one could be reasonably confident that “almost certain
that it’s A” and “fifty-fifty that it’s not A” are superadditive. More-
over, judgment accuracy is substantially improved by giving sub-
jects in an opinion pool weight proportional to their adherence to
the additivity principle (Karvetski et al., 2013). Forecast accuracy
has also been improved by probability training that took the form
of directives and rules of thumb aimed at avoiding common pit-
falls, such as assigning probabilities of fifty-fifty to binary comple-
ments when forecasters are deeply unsure (Mellers et al., 2014).
The instructional method developed in this research could poten-
tially be used on its own or in combination with directive-based
probability training to improve the quality of forecasting in the
intelligence community and in other expert domains requiring
probability judgment.
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Effects of visualizing statistical
information – an empirical study on
tree diagrams and 2 2 tables×
Karin Binder*, Stefan Krauss and Georg Bruckmaier

Mathematics Education, Faculty of Mathematics, University of Regensburg, Regensburg, Germany

In their research articles, scholars often use 2 × 2 tables or tree diagrams including
natural frequencies in order to illustrate Bayesian reasoning situations to their peers.
Interestingly, the effect of these visualizations on participants’ performance has not
been tested empirically so far (apart from explicit training studies). In the present article,
we report on an empirical study (3 × 2 × 2 design) in which we systematically vary
visualization (no visualization vs. 2 × 2 table vs. tree diagram) and information format
(probabilities vs. natural frequencies) for two contexts (medical vs. economical context;
not a factor of interest). Each of N = 259 participants (students of age 16–18) had to
solve two typical Bayesian reasoning tasks (“mammography problem” and “economics
problem”). The hypothesis is that 2 × 2 tables and tree diagrams – especially when
natural frequencies are included – can foster insight into the notoriously difficult structure
of Bayesian reasoning situations. In contrast to many other visualizations (e.g., icon
arrays, Euler diagrams), 2 × 2 tables and tree diagrams have the advantage that
they can be constructed easily. The implications of our findings for teaching Bayesian
reasoning will be discussed.

Keywords: Bayesian reasoning, 2 × 2 table, natural sampling tree, natural frequencies, visual representation

Introduction

Bayes’ formula is vitally important in many areas, such as in medicine or law. Unfortunately,
both laymen and professionals have trouble understanding and combining statistical information
effectively. The resulting misjudgments can have severe consequences, for example when juries
must convict or acquit defendants based on probabilistic evidence in legal trials (Hoffrage et al.,
2000; Krauss and Bruckmaier, 2014), or when physicians have to understand and to communicate
what a positive test result really means, for example in a HIV or cancer test (Ellis et al., 2014).
Consider, for instance, the classic mammography problem (adapted from Eddy, 1982; see also
Gigerenzer and Hoffrage, 1995; Siegrist and Keller, 2011; Micallef et al., 2012; Garcia-Retamero
and Hoffrage, 2013).

Mammography Problem (Probability Format):

The probability of breast cancer is 1% for a woman who participates in routine screening. If a woman
who participates in routine screening has breast cancer, the probability is 80% that she will have a
positive test result. If a woman who participates in routine screening does not have breast cancer, the
probability is 9.6% that she will have a positive test result. What is the probability that a woman who
participates in routine screening and receives a positive test result has breast cancer?
Answer: ______ %
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According to Bayes’ theorem, the resulting posterior
probability P(B| M+) is:

P(B|M+) = P(M+ |B) · P(B)

P(M+ |B) · P(B) + P(M+ |¬B) · P(¬B)

= 80% · 1%
80% · 1% + 9.6% · 99% ≈ 7.8%

The correct result 7.8% is much lower than most people,
including physicians, would expect (Eddy, 1982). Several
studies show that medical doctors (Hoffrage and Gigerenzer,
1998; Garcia-Retamero and Hoffrage, 2013), patients (Garcia-
Retamero andHoffrage, 2013), legal professionals (Hoffrage et al.,
2000), and students (Ellis et al., 2014) have difficulties with
similar tasks. In order to help people to understand the situation,
Gigerenzer and Hoffrage (1995) replaced the probabilities in
Eddy’s task by natural frequencies.

Mammography Problem (Natural Frequency Format):

100 out of 10,000 women who participate in routine screening
have breast cancer. Out of 100 women who participate in routine
screening and have breast cancer, 80 will have a positive result. Out
of 9,900 women who participate in routine screening and have no
breast cancer, 950 will also have a positive result. Howmany of the
women who participate in routine screening and receive a positive
test result have breast cancer?
Answer: ____ out of ____

The percentage of correct responses increased from about
10–20% to about 50% in 15 different Bayesian reasoning tasks,
including the mammography problem (Gigerenzer and Hoffrage,
1995). While the facilitating effect of natural frequencies is
accepted by now, scholars differ in explaining this effect.
Gigerenzer and Hoffrage (1995), for instance, argue that the
human mind is evolutionarily adapted to the information format
of natural frequencies (“ecological rationality”) that result from
a natural sampling process (Kleiter, 1994). Other theorists,
however, claim that essentially the partitive information structure
is responsible for the facilitating effect (“nested sets hypothesis”;
e.g., Girotto and Gonzalez, 2001; Sloman et al., 2003; Barbey and
Sloman, 2007). Some scholars suggest that two different cognitive
systems (“dual process theory”; Sloman, 1996; Kahneman and
Frederick, 2005; Barbey and Sloman, 2007) may be responsible
for inferences with respect to the different information formats.
While probability format triggers intuitive thinking according
to system 1 (“associative system”; see also Sloman, 1996),
which may lead to base rate neglect, natural frequency format
triggers deliberate reasoning according to system 2 (“rule based
system”). Advocates of the dual process theory often support the
nested sets hypothesis (e. g., Barbey and Sloman, 2007). For a
discussion of the concept of natural frequencies see Gigerenzer
and Hoffrage (1999), Lewis and Keren (1999), Mellers and
McGraw (1999), Girotto and Gonzalez (2001, 2002), Hoffrage
et al. (2002), Barbey and Sloman (2007), or Sirota et al.
(2015a).

In fact, there are recommendations that natural frequencies
should become part of the training for all medical students

(Gigerenzer, 2013) and, moreover, should be part of elementary
school curricula (Gigerenzer, 2014). Although the effect of
numerical format (probabilities vs. natural frequencies) is
quite substantial, it has to be noted that there is still
potential for improvement (“only” approximately 50% correct
solutions).

Another idea to improve insight into Bayesian reasoning
situations is the additional representation of visual aids such as
Euler diagrams, icon arrays, frequency grids, unit squares, roulette
wheel diagrams, and tree diagrams (see Figure 1). According to
the nested sets hypothesis, most of these visual aids represent
the set-subset relation of the information. For an overview of
possible visualizations see Paling (2003) or Spiegelhalter et al.
(2011). Figure 1 shows some visual aids which have been tested
empirically so far.

Sloman et al. (2003), Brase (2008), Micallef et al. (2012),
and Sirota et al. (2014b) investigated to what extent the
presentation of Euler diagrams can boost performance in
Bayesian reasoning tasks. They obtained different findings
regarding the effectiveness of Euler diagrams, a result which
potentially is affiliated to the various types of participants in
their studies. Icon arrays (also called pictographs) are matrices
of small figures that represent the given information. Within
an array, some of the icons are shaped in a special form
or are colored in order to show the number of figures that
fulfill a special feature. Brase (2008, 2014) and Zikmund-
Fisher et al. (2014) recommend risk communication via icon
arrays since their studies showed a positive influence of this
visual aid (for a discussion of the concept of “iconicity”
see, e.g., Sirota et al., 2014b). Frequency grids are close to
icon arrays showing the overall number of persons in a
large grid where particular subsets of persons are marked
characteristically. Garcia-Retamero and Hoffrage (2013) found
that both doctors’ and patients’ performance increased when
frequency grids are provided (see also Garcia-Retamero et al.,
2015). Unit squares (Bea, 1995; Sturm and Eichler, 2014) also
mirror the statistical information geometrically and represent
the different sets of the task. Bea (1995) recommends the
visualization of information via a unit square since his research
reveals substantial improvement in performance. Roulette wheel
diagrams (Brase, 2014) summarize the information presented
by two circles (inner and outer circle) which represent
different subsets of the problem. However, the additional
representation of a roulette wheel diagram causes only a very
small or even no improvement in performance compared
to versions without any visual aid (Brase, 2014). Friederichs
et al. (2014) investigated tree diagrams without numerical
values (except an imaginary sample size). In their studies,
performance in probability versions with tree diagrams was
similar to the performance in natural frequency versions without
visualization.

Note that one can differentiate between two types of studies
in general: On the one hand there are training studies where
participants are explicitly instructed in how to create visual aids
on their own, and consequently, how to combine the given
numbers to arrive at the solution. The effect of this “teaching”
then is investigated by presenting additional problems without
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FIGURE 1 | Risk communication via Euler diagram, icon array, frequency grid, unit square, roulette wheel diagram, and tree diagram without
numerical information.

visualizations (e.g., Sedlmeier and Gigerenzer, 2001; Ruscio,
2003; Sirota et al., 2015b). On the other hand there are studies –
as in our study – where word problems are accompanied by
visualizations (e.g., Brase, 2008; Garcia-Retamero and Hoffrage,
2013). Note that in the latter studies, it is not taught how
to construct visualizations for fostering insight, and therefore,
there is no prior instruction as to how the given numbers

should be applied to infer the solution. The visualizations in this
case rather illustrate the information of the given problem in
parallel.

Interestingly, the beneficial effect of 2 × 2 tables and tree
diagrams presently was investigated only in the context of
training studies (e.g., Sedlmeier and Gigerenzer, 2001). This is
astonishing since scholars commonly use tree diagrams (Kleiter,
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1994; Gigerenzer and Hoffrage, 1995; Mandel, 2014; Navarrete
et al., 2014) and 2 × 2 tables (Goodie and Fantino, 1996;
Dougherty et al., 1999; Fiedler et al., 2000) containing numerical
values in their research papers to represent Bayesian reasoning
situations to their colleagues.

In the present paper we investigate how performance in
Bayesian reasoning tasks can additionally be enhanced by
providing 2 × 2 tables and tree diagrams containing numerical
values. Since 2× 2 tables and tree diagrams both can be equipped
with natural frequencies or with probabilities we decided to
test all four possible visualizations (compare Figure 2). Our
hypotheses were:

• Hypothesis 1: Problems in which information is presented
in natural frequencies are easier to solve than problems
containing probabilities. This holds true when problems
without visualization are compared (replication of previous
studies) and when problems with visualizations are compared.

• Hypothesis 2: The additional presentation of visualizations
of the numerical values (2 × 2 tables and tree diagrams)
facilitates understanding. This holds for natural frequency and
for probability versions as well.

We had no hypothesis as to which of both kinds of
visualization is more beneficial. Furthermore we had no
hypothesis on the effect of the problem context (we had chosen
two problem contexts for mutual validation of our results; see
Table 1).

Experimental Study

Design
In a paper-and-pencil questionnaire participants were presented
with two Bayesian reasoning tasks, the mammography problem
and a short version of the economics problem (Ajzen, 1977;
for problem formulations see Table 2). The design of the study
includes two factors of interest (visualization and format of
information) and one factor which was not of interest (context),
resulting in a 3 × 2 × 2 design:

• Visualization: no visualization vs. 2 × 2 table vs. tree diagram.
• Format of statistical information: probabilities vs. natural

frequencies.
• Context: mammography problem vs. economics problem (not

a factor of interest).

FIGURE 2 | Four resulting visualizations of the respective information format (mammography problem).
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TABLE 1 | Design of the 12 tested problem versions.

Context

Mammography
problem

Economics
problem

Format Probabilities • No visualization • No visualization

• 2 × 2 table • 2 × 2 table

• Tree diagram • Tree diagram

Natural frequencies • No visualization • No visualization

• 2 × 2 table • 2 × 2 table

• Tree diagram • Tree diagram

Each participant received one of the two problem contexts
with probabilities and the other problem with natural
frequencies. Thereby the order of context and information
format was varied systematically. Furthermore, if in one of the
two problems, for instance, a 2 × 2 table was added, in the
other problem either no visualization or a tree diagram was
presented. There were no time constraints for completing the
questionnaire (participants required about 20 min for both
tasks). In Table 1 the design, resulting in 12 tested versions,
is illustrated, whereas in Table 2 the corresponding problem
formulations are denoted.

The key factor under investigation in the present article
is the effect of visualization. Note that in contrast to most
visual aids tested so far (Figure 1) our visualizations explicitly
contain numerical information. It is generally possible to
equip both 2 × 2 tables and tree diagrams with natural
frequencies or with probabilities, respectively (Figure 2). The
construction rationale for the visualizations was to provide
statistical information that is also reported in the typical problem
formulations. However, to “complete” the tree diagrams some
information must be added that is not mentioned in the
problem formulation (the information “20%” and “90.4%” in
the probability tree or “20” and “8,950” in the frequency
tree, respectively). In order to mirror these numerical values
in the 2 × 2 table containing natural frequencies, one
(of two possible) marginal distribution has to be depicted
(Figure 2). Most problematic is the construction of the 2 × 2
table with probabilities. Such 2 × 2 tables usually contain
conjoint probabilities, whereas Bayesian reasoning tasks contain
conditional probabilities. The underlying relationship between
both kinds of probabilities is included in the cells of the
2 × 2 tables (probabilities). It has to be noted that the
2 × 2 table (with conjoint probabilities), the 2 × 2 table (with
natural frequencies) and the tree diagram (with probabilities)
are part of the German school curriculum, whereas the tree
diagram with natural frequencies (“natural frequency tree”)is
not.

TABLE 2 | Problem formulations.

Mammography problem Economics problem

Probability version Natural frequency version Probability version Natural frequency version

Cover story Imagine you are a reporter for a women’s magazine and you want to write
an article about breast cancer. As a part of your research, you focuses on
mammography as an indicator of breast cancer. You are especially
interested in the question of what it means, when a woman has a positive
result (which indicates breast cancer) in such a medical test. A physician
explains the situation with the following information:

Imagine you are interested in the question, if career-oriented students
are more likely to attend an economics course. Therefore the school
psychological service evaluates the correlations of personality
characteristics and choice of courses for you. The following information
is available:

Version The probability of breast cancer is
1% for a woman who participates in
routine screening. If a woman who
participates in routine screening has
breast cancer, the probability is 80%
that she will have a positive test
result. If a woman who participates
in routine screening does not have
breast cancer, the probability is
9.6% that she will have a positive
test result.

100 out of 10,000 women who
participate in routine screening have
breast cancer. Out of 100 women
who participate in routine screening
and have breast cancer, 80 will have
a positive result. Out of 9,900
women who participate in routine
screening and have no breast
cancer, 950 will also have a positive
result.

The probability that a student
attends the economics course is
32.5%. If a student attends the
economics course, the probability
that he is career oriented is 64%. If a
student does not attend the
economics course, the probability
that he is still career-oriented is
60%.

325 out of 1,000 students attend
the economics course. Out of
325 students who attend the
economics course, 208 are
career-oriented. Out of 675
students who not attend the
economics course, 405 are still
career-oriented.

Visual aid • No visualization, or
• 2 × 2 table (prob.), or
• Tree diagram (prob.)

• No visualization, or
• 2 × 2 table (nat. freq.), or
• Tree diagram (nat. freq.)

• No visualization, or
• 2 × 2 table (prob.), or
• Tree diagram (prob.)

• No visualization, or
• 2 × 2 table (nat. freq.), or
• Tree diagram (nat. freq.)

Question What is the probability that a woman
who participates in routine
screening and receives a positive
test result has breast cancer?

How many of the women who
participate in routine screening and
receive a positive test result have
breast cancer?

What is the probability that a
student attends the economics
course if he is career-oriented?

How many of the students who
are career-oriented attend the
economics course?

Answer: _______ % Answer: ____ out of ____ Answer: _______ % Answer: ____ out of ____
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FIGURE 3 | Participants performance (error bars indicate the SE).

TABLE 3 | Results of binary logistic regression; independent variables:
visualization and information format; dependent variable: correctness of
solution.

Dependent variable: correctness of solution

Mammography problem Economics problem

Model 1 Model 2 Model 1 Model 2

Independent variable EXP(B) EXP(B) EXP(B) EXP(B)

Format of information 9.40∗∗∗ 10.44∗∗∗ 22.44∗∗∗ 24.73∗∗∗

Visualization 4.99∗∗ 2.53∗

R2 0.19 0.27 0.41 0.44

EXP(B): Odds ratio (indicates how many times the odds of solving the task is higher
when the independent variable is 1, as compared to the independent variable of 0);
R2: Goodness of fit (according to Nagelkerke).
∗significant at p = 0.05; ∗∗significant at p = 0.01; ∗∗∗significant at p = 0.001.

Instrument
Each participant was presented two successive tasks which
varied in terms of (1) visualization (no visualization vs. 2 × 2
table vs. tree diagram), (2) information format (probabilities
vs. frequencies), and (3) problem context (mammography vs.
economics problem). All versions begin with a cover story
(see also Table 2); after that, one of three different kinds of
visualization (including no visualization) was given (Figure 2).

Finally, the question was provided in the same format as the
information in the text.

The correct solution for the mammography problem is 80
out of 1,030 (about 7.8%), and for the economics problem
208 out of 613 (33.9%). Note that the corresponding algorithm
to calculate the Bayesian posterior probability is identical for
2 × 2 tables concerning both information formats. However,
the algorithm for computing P(B|M+) based on a tree diagram
differs substantially with respect to both information formats.

A response has been classified as a correct “Bayesian
answer” if the exact probability or frequency solution
was provided, or the probability solution was rounded
up or down to the next full percentage point (e.g., in
the mammography problem the correct solution is 7.8%,
therefore answers between 7 and 8% were classified as
a correct solution; see also Gigerenzer and Hoffrage,
1995).

Participants
The participants were N = 259 German secondary school
students age 16–18. Students were recruited from 12 different
classes (grade 11) at two Bavarian Gymnasiums. Note that in
Germany there are different kinds of secondary school tracks. In
order to study at a university, the Gymnasium (academic track)
must be pursued. All students were familiar with 2 × 2 tables
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and tree diagrams containing probabilities and with 2 × 2 tables
containing frequencies but not with natural frequency trees.

The study was carried out in accordance with the University
Research Ethics Standards. The principals of both schools
approved conduction of the study (this is mandatory in Germany
when testing school students). When conducting the study
we did not collect personal data (our questionare did not
include questions with regard to age, gender etc.). Students were
informed that their participation was voluntary (two students
refrained from participating) and anonymity was guaranteed.
After the study participants were debriefed.

Results

Our study showed three important findings (Figure 3). First,
students’ performance was higher when information in the
problems was presented in natural frequencies (42% correct
inferences, averaged across context and visualization) instead
of probabilities (5%), which supports our hypothesis 1. This
finding holds when only problems without visualizations are
compared (26% correct inferences in natural frequency versions
vs. 2% correct inferences in probability versions, averaged
across both contexts, which replicates previous findings, e.g.,
Gigerenzer and Hoffrage, 1995; Siegrist and Keller, 2011) and
when problems with visualizations are compared (51% correct
inferences in natural frequency versions vs. 6% correct inferences
in probability versions, averaged across both contexts).

Second, the additional presentation of visualizations helps
understanding (hypothesis 2): Averaging across all versions with
visualization yields higher performance (28%) than averaging
across all versions without visualizations (14%). Note that this
difference is much stronger in the natural frequency versions
(51% vs. 26%, averaged across both contexts) than in the
probability versions (6% vs. 2%, see Figure 2). The fact that
probability visualizations only have very limited effect is irritating
since these visual aids are frequently applied in statistical text
books (see Discussion).

Furthermore, participants showed better performance
in almost every version of the economics problem (30%
correct inferences, averaged across format of information
and visualization) compared to the respective versions of the
mammography problem (16%). Possible reasons will be debated
in Section “Discussion.”

In order to analyze the impact of information format and
visualization simultaneously we ran binary logistic regressions.
Since we had no hypothesis on possible effects of problem context
we performed two logistic regressions for the mammography
problem and for the economics problem separately. The
independent variables were visualization (only distinguishing
between no visualization vs. visualization) and information
format, respectively. The dependent variable was the correctness
of the solution (1 – correct solution, 0 – incorrect solution). The
results of the statistical analyses are illustrated in Table 3. For
both contexts model 1 shows the impact of information format,
whereas model 2 shows the impact of information format and
visualization simultaneously.

In both problem contexts we found significant coefficients
regarding information format (hypothesis 1) and visualization
(vs. no visualization; hypothesis 2). Additional analyses revealed
no statistical differences between 2 × 2 table and tree diagram in
each information format. Although Figure 3 suggests a possible
interaction of format and visualization the regression does not
yield a respective significant coefficient. Note that the seeming
interaction between format and visualization may be due to the
floor effect with respect to the probability versions. However,
considering Figure 2 it becomes clear that visualizations of the
numerical values in probability versions do not help substantially.

Discussion

According to general theories of information encoding and
processing (e.g., Cognitive Load Theory, Sweller, 2003;
Cognitive Theory of Multimedia Learning, Mayer, 2005),
understanding of statistical information could be supported
by presenting additional visual aids. In our study, participants’
performance in two Bayesian reasoning tasks was higher
when additionally 2 × 2 tables and tree diagrams containing
natural frequencies were presented. However, when applying
these visual aids for Bayesian inferences, the information
format should be taken into account: both tools have only
very limited effects when probabilities are included. Since
in statistics text books and school curricula both probability
visualizations – but not frequency trees – commonly are
applied in order to foster insight, this finding is quite
remarkable.

In general, our results are in line with the “frequentist
hypothesis” (Gigerenzer and Hoffrage, 1995; Cosmides and
Tooby, 1996) as well as the “nested sets hypothesis” (Barbey and
Sloman, 2007). Regarding all problem versions, natural frequency
versions resulted in higher performance levels compared to
the respective probability versions. The low performance,
however, in the natural frequency version of the mammography
problem without visualization indicates only moderate statistical
literacy in the participants of our study. Interestingly, the
performance in the economics problem was much better than
in the mammography problem under almost every condition.
A possible reason might be the extreme base rate (1%) in the
mammography problem which basically constitutes the cognitive
illusion (in contrast, the result of the economics problem is
no longer counterintuitive). Another reason might be that the
context of the economics problem is more adapted to the living
environment of young people (a strong dependency from the
problem context was also found by Siegrist and Keller, 2011).
The more complicated terminology or taxing cognitive capacity
in the mammography problem could also account for the deviant
effects in the different contexts (e.g., Lesage et al., 2013; Sirota
et al., 2014a).

The need for tools for teaching statistics is repeatedly stressed
(Gigerenzer, 2013, 2014; Navarrete et al., 2014). There are several
teaching studies (Sedlmeier and Gigerenzer, 2001;Wassner, 2004;
Mandel, 2015; Sirota et al., 2015b) where the solution process
of a Bayesian reasoning problem is explained explicitly, e.g.,
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with the help of visualizations, and the effect of teaching is
investigated. For instance, it is even possible to advise students
to imagine an arbitrary sample when given a probability version
and then to construct a frequency table or tree diagram
accordingly (by increasing the size of the arbitrary sample whole
numbers always can be reached for each respective subset).
Furthermore Hoffrage et al. (submitted, same issue) instructed
participants to solve complex Bayesian reasoning problems (e.g.,
with more than one cue) by translating the given information in
terms of probabilities into natural frequencies and to construct
a corresponding tree diagram accordingly. Note again, that
our study is not an explicit teaching study; nevertheless our
findings have pragmatic implications for teaching Bayesian
reasoning. Our visualizations have the advantage that they can
be constructed easily by teachers or students. In contrast, the
diagrams in Figure 1 are complicated to produce, which is
especially problematic when base rates are extreme. In the unit
square, for instance, areas can become very small (in Figure 1
therefore a higher base rate of the disease was chosen). Similarly,
concerning the icon array, more symbols would be required in the
case of small or unmanageable proportions (such as 1.25 or 9.6%)
thus entailing an enormous effort. Our frequency visualizations,
which of course can be combined with other visualizations (for an

integration of a natural frequency tree and an icon array see, e.g.,
Mossburger, unpublished manuscript), thus may be a helpful aid
for fostering statistical understanding and for teaching statistics
in schools.

Note that 2 × 2 tables and tree diagrams containing natural
frequencies can not only aid in Bayesian reasoning problems, but
can also illustrate situations with two dichotomous features in
general. For instance, it is possible to justify and explain the rules
for multiplication and addition of conditional probabilities with
natural frequency trees very easily (Mossburger, unpublished
manuscript). Since 2 × 2 tables and tree diagrams containing
natural frequencies can be provided long before students have
to solve Bayesian reasoning problems, these visual aids offer the
opportunity to consider various types of problems over a long
period of a school or university curriculum.
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Sirota, M., Kostovičová, L., and Vallée-Tourangeau, F. (2015a). Now you
Bayes, now you don’t: effects of set-problem and frequency-format
mental representations on statistical reasoning. Psychon. Bull. Rev. doi:
10.3758/s13423-015-0810-y [Epub ahead of print].
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In Bayesian inference tasks, information about base rates as well as hit rate and false-
alarm rate needs to be integrated according to Bayes’ rule after the result of a diagnostic
test became known. Numerous studies have found that presenting information in a
Bayesian inference task in terms of natural frequencies leads to better performance
compared to variants with information presented in terms of probabilities or percentages.
Natural frequencies are the tallies in a natural sample in which hit rate and false-alarm
rate are not normalized with respect to base rates. The present research replicates the
beneficial effect of natural frequencies with four tasks from the domain of management,
and with management students as well as experienced executives as participants. The
percentage of Bayesian responses was almost twice as high when information was
presented in natural frequencies compared to a presentation in terms of percentages.
In contrast to most tasks previously studied, the majority of numerical responses were
lower than the Bayesian solutions. Having heard of Bayes’ rule prior to the study did
not affect Bayesian performance. An implication of our work is that textbooks explaining
Bayes’ rule should teach how to represent information in terms of natural frequencies
instead of how to plug probabilities or percentages into a formula.

Keywords: bayesian inference, updating beliefs, natural frequency, representation format, management,
executives, applied business statistics

Introduction

Twenty years ago, Gigerenzer and Hoffrage (1995) demonstrated that Bayesian inferences can be
improved without instructing participants how to solve such Bayesian tasks. By providing the
relevant information not in terms of probabilities, percentages, or relative frequencies, as it is usually
done, but in terms of natural frequencies, the percentage of correct (i.e., Bayesian) inferences tripled,
specifically, from 16 to 46%. What is a Bayesian inference task and what are natural frequencies?
Consider the following example:

The Skiwell Manufacturing Company gets material from two suppliers. Supplier A’s materials
make up for 30% of what is used, with supplier B providing the rest. Past records indicate that 15%
of supplier A’s materials are defective and 10% of B’s material are defective. Since it is impossible
to tell which supplier the material came from once they are in the inventory, the manager wants
to know: What is the probability that material comes from supplier A given that it has been
identified as defective?

If the question was “What is the probability that material, randomly drawn from the inventory, comes
from supplier A,” then the answer would be easy: 30%. Since 30 and 70% are the base rates for the
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two suppliers, A and B, respectively, one could simply use these
base rates when asked about the prior probability that material
comes from suppliers A or B. Taking supplier A as a reference,
these two probabilities will henceforth be referred to as p(H) and
p(−H), which is the standard notation for the probability that a
hypothesized event will occur (or not), or whether a hypothesis is
true (or not).

The term “prior” refers to the point in time before diagnostic
information has been given. In the example above, such data
(D) has indeed been observed—specifically, the material has been
identified as defective. This information should be used to update
the prior probability. Following this update, the best estimate that
the material comes from supplier A is the posterior probability,
p(H|D). It can be calculated using Bayes’ rule:

p(H|D) =
p(H)p(D|H)

p(H)p(D|H) + p(−H)p(D| − H)
(1)

where p(D|H) stands for the probability that material is defective
if it comes from supplier A (in the example above, this probability
is given by the relative frequency of 15%), and where p(D|−H)
stands for the probability thatmaterial is defective if it comes from
supplier B (in the example above, 10%).

Previous research has shown that people have difficulties to
infer the posterior probability from the prior probability and
the two likelihoods, p(D|H) and p(D|−H) (in terms of signal-
detection theory, these two likelihoods are referred to as hit
rate and false-alarm rate, respectively; in medical terms, the
hit rate is called sensitivity and the false-alarm rate is the
complement of the specificity). In order to give the reader a
better chance to experience some empathy with participants, we
do not reveal the Bayesian solution to the Skiwell Manufacturing
Company task at this point—but note that the task was even
harder for the participants because they, unlike the reader, did
not have Equation 1 at their disposal. Kahneman and Tversky
(1972) concluded from their research that participants do not
integrate the three pieces of information; they rather confuse the
posterior probability, p(H|D), with the likelihood of the observed
data if the prior hypothesis were true, p(D|H), and provide
the latter as an answer when asked for the former. Kahneman
and Tversky consider this confusion as an application of the
representativeness heuristic—which Gigerenzer (1996), in turn,
considers to be a re-description or a “one-word explanation”
(p. 594; see also Gigerenzer and Murray, 1987). Using the
representativeness heuristic amounts to ignoring the base rates,
which Kahneman and Tversky (1972) demonstrated with a
between-subjects design: The posterior beliefs of two groups of
participants were indistinguishable even though these two groups
received different base rates and should hence have different prior
probabilities. The authors concluded that “In his evaluation of
evidence man is apparently not a conservative Bayesian: he is
not Bayesian at all” (p. 450). This “base-rate neglect” is one of
the prime examples for a cognitive fallacy investigated in the
“heuristics and biases” program (Kahneman et al., 1982), and Bar-
Hillel (1980) stated that “the genuineness, the robustness, and the
generality of the base-rate fallacy are matters of established fact”
(p. 215).

This conclusion has been challenged by Gigerenzer and
Hoffrage (1995) with a study in which they represented the
information about base rate and the two likelihoods in terms of
natural frequencies. Using this representation format, our task
reads as follows:

The Skiwell Manufacturing Company gets material from two
suppliers. Out of 1,000 items, supplier A delivers 300 and
supplier B delivers the remaining ones. Past records indicate
that 45 of the 300 items delivered by supplier A are defective
and that 70 out of the 700 items delivered by B are defective.
Since it is impossible to tell which supplier the material came
from once they are in the inventory, the manager wants to
know: How many of the items that have been identified as
defective come from supplier A?

Natural frequencies are the frequencies that naturally result if
a sample is taken from a population (or if the entire population
is considered). In case of one hypothesis (H, with its complement
−H) and one dichotomous, diagnostic variable that represents the
data (D), natural frequencies are the four entries in the bivariate
2 × 2 table. The frequencies of the four conjunctive events can be
displayed in two trees, in each of which the total sample size (or
population) is the top node, and the four possible combinations
are on the lowest level. One of these two possible trees displays
the row margins at the intermediate level, and the other one
the column margins. For instance, in Figure 1, Panel B, the two
natural frequencies for a sample of 1,000 items are displayed at
the intermediate level: 300 come from supplier A and 700 from
supplier B, corresponding to the two base rates of 30 and 70%.
From this tree in Panel B, it is relatively easy to determine the total
number of defective items (45 + 70 = 115), and the total number
of intact items (255+ 630= 885). These two numbers are basically
the margins of the diagnostic variable, and the first is included in
the Bayesian solution to our task: Of the 115 defective items, 45
were delivered by supplier A. This is also the Bayesian response
thatwewithheld abovewhenwe presented the problem in terms of
percentages: p(H|D)= 0.39 (or, as a ratio, 45/115). From Figure 1,
Panel B, it is also easy to construct the tree displayed in Panel
C, which would also allow one to answer to other questions,
for instance, how many of the intact items were delivered by
supplier B.

The tree in Panel A displays the information as it has been
represented in the initial version of the Skiwell Manufacturing
Company task. What made it hard to derive the solution from this
representation, compared to a natural frequency representation,
was the fact that the two likelihoods have been normalized with
respect to the base rates, and for exactly this reason, Gigerenzer
and Hoffrage (1995) predicted that representations in terms of
probabilities, percentages, and relative frequencies will not differ
with respect to Bayesian performance (Prediction 4, p. 692). For a
more detailed discussion of the notion of natural frequencies and
its relationship to other representation formats, see Hoffrage et al.
(2002), Gigerenzer and Hoffrage (2007), and Johnson and Tubau
(in review).

Natural Frequencies have proven to facilitate diagnostic
inferences in laypeople (Gigerenzer and Hoffrage, 1995),
advanced medical students and advanced law students (Hoffrage
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FIGURE 1 | Numerical information of the Skiwell Manufacturing Company
task. (A) Information provided in percentages. Hit rate and false-alarm rate have
been normalized with respect to the base rates of the two suppliers. (B) Natural
frequencies with suppliers at the intermediate level. The frequencies of the four

conjunctive events implicitly contain the base rate information about the suppliers.
(C) Natural frequencies with diagnostic information at the intermediate level. From
the perspective of (B), the tree in (C) represents a Bayesian update, in which the
four distinct events are now conditioned on diagnostic information.

et al., 2000), patients (Garcia-Retamero and Hoffrage, 2013), and
physicians (Hoffrage and Gigerenzer, 1998). This result is well
established (Mandel, 2015), it has been replicated by many others
(e.g., Akl et al., 2011; Woloshin and Schwartz, 2011), and this
work has received wide attention in the medical field and beyond
(Gigerenzer, 2002, 2014; Gigerenzer et al., 2007; Gigerenzer
and Gray, 2011). For a discussion about when and why natural
frequencies are effective, see Brase (2008), Brase and Hill (2015),
Gigerenzer and Hoffrage (2007), Hill and Brase (2012), and
Johnson and Tubau (in review).

Bayesian inference problems are also vital to management
decisions. For instance, a sales manager may be interested
in whether a customer places more weight on quality than
price if her yearly income is above average, a bank may be
interested in whether it will see the annuity for a mortgage
if the customer will lose his job, a project manager may
be interested in whether the group will be able to complete
the project in time if one of the key engineers will get sick
unexpectedly, and so on. The fact that the task of updating
beliefs is ubiquitous and also relevant in the world of business
makes it even more surprising that, to the best of our knowledge,
there is no research investigating whether natural frequencies are
also beneficial for managers and management problems. This
is exactly the aim of the present paper. The participants in the
studies reported below were executives and business students
who had to work on four different tasks with business-related
content.

Materials and Methods

Participants
Participants were undergraduates at a business faculty (n = 259)
and executives (n = 181; for a total n of 440). The undergraduates
were either students enrolled in their third year of the Bachelor
of Science in Management program of a public Swiss university
who took the lecture “Judgment and Decision Making” of the first
author, or students enrolled in their first year of the Master of
Science in Management program who took the seminar “Analytic

and Intuitive Judgment” of the second author. Over 3 years,
three cohorts of bachelor students and in the fourth year, one
cohort of bachelor students and one cohort of master students
were tested, with 74, 45, 49, 62, and 29 students responding to
the questionnaire. Demographic information was only collected
for the last two cohorts: The bachelor students were on average
21.4 years old (SD = 1.2) and 51% were female, and the master
students were on average 24 years old (SD = 1.9) and 30% were
female. The entire population of the three earlier cohorts of
bachelor students was demographically similar to the bachelor
students of the last cohort.

The executives were also tested in a classroom setting, namely
in their role as students in an executive MBA program. In
fact, they enrolled in either of two different programs. One
was the Executive MBA program offered by a public Swiss
university in which they took a course “Managerial Decision
Making and Negotiation” of the first author. Four different
cohorts from four different years have been tested, with 27, 28,
22, and 43 respondents (n = 120). Average age was 38, 38,
37, and 38 years, and 87, 83, 72, and 76% were male. These
participants are henceforth referred to as junior managers. The
other program (Program for ExecutiveDevelopment, in fact a very
prestigious and competitive program) was offered by a private
Swiss business school. The executives took a course taught by the
third author who had invited the first author as a guest lecturer.
Two cohorts of the same module have been tested, with 27 and 34
participants each (n = 61). With an average age of 42 years, these
executives were older than the ones from the public university,
and so they are henceforth referred to as senior managers. In
fact, many of them were directors or vice-presidents in their
companies.

Materials, Design, and Procedure
Four tasks have been used, all adapted from Groebner et al.
(2007). The Skiwell Manufacturing task introduced above was
one of them, the three others involved error/fraud detection
(IRS Audit), success in the context of an auction (Techtronics
Equipment), and quality control (Varden Soap). For each task,
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TABLE 1 | The four tasks used in the present study with the information provided and the Bayesian solution.

Task Condition Base rate Hit rate False-alarm rate Bayesian solution

Skiwell manufacturing Percentages 30 15 10 39.13
Natural frequencies 300 of 1000 45 of 300 70 of 700 45 of 115

IRS Audit Percentages 20 30 10 42.86
Natural frequencies 200 of 1000 60 of 200 80 of 800 60 of 140

Techtronics equipment Percentages 60 70 50 67.74
Natural frequencies 60 of 100 42 of 60 20 of 40 42 of 62

Varden soap Percentages 60 5 10 42.86
Natural frequencies 600 of 1000 30 of 600 40 of 400 30 of 70

two versions were constructed, one in which the information was
presented in percentages and one in which natural frequencies
were used (see the Appendix for the exact formulations of these
other three tasks, and Table 1 for the numbers involved in all four
tasks).

Each questionnaire consisted of two different tasks, either two
percentage versions, or two natural frequency versions. Which
task was paired with which other task and their order within the
same questionnaires was counterbalanced, so that the number
of respondents per task and per version was, ideally, equally
distributed (minor deviations from an equal distribution were
due to the fact that the number of students in a classroom was
rarely divisible by the minimal number of questionnaires that
would allow for an equal distribution, resulting in 111, 110, 111,
110 for the percentage versions, and 110, 108, 111, 109 for the
frequency versions of Skiwell, IRS, Techtronics, and Varden Soap,
respectively).

Students were given 7 min to work on the tasks. They were
allowed to take notes. Some students had a pocket calculator with
them (or a smartphone with this function), and very few asked
whether they could use them. The answer was positive, but with
respect to those who did not have one at their disposal, it was
added that writing down a mathematical operation, for instance,
a ratio, would be sufficient. In other words, we made it clear that
we were not interested in whether they could enter numbers into
a pocket calculator, but whether they were able to figure out which
numbers to enter, and that writing down the correct operation
would be treated as a correct response even if they would not
convert it into an exact decimal. After 7 min the questionnaires
were collected, but it could not have been prevented that
some students continued writing during the collection
procedure.

This procedure was slightly altered for the 62 bachelor students
and the 29 master students who were tested during the last
year of data collection. After 7 min, they were prompted to
turn the questionnaire to a new page that was not included
in the questionnaire of the 181 executives and the other 168
undergraduates. On this page, they entered their demographics
and responded to several questions concerning their prior
knowledge about Bayes’ rule. To prevent participants from being
exposed to the term “Bayes’ rule” within the questionnaire
before finishing the inference problems, these questions were only
displayed via a projector once all students had finishedworking on
the inference problems.

After having turned in their questionnaires, students
received a lecture about Bayesian inferences and representation
formats—sometimes right after the questionnaires, sometimes in
another lecture. When those participants whose booklet did not
include the page with the questions regarding Bayes’ rule were
asked, during this debrief, whether they were familiar with this
kind of task and whether they had received some instructions
or training beforehand, for instance, in a lecture on statistics,
very few (about 5% of the executives and about 10% of the
management undergraduates) raised their hand.

Analysis
The analysis was mainly based on outcomes, that is, on
participants’ numerical responses. Following Gigerenzer and
Hoffrage (1995), a response has been classified as Bayesian if
the absolute difference between this response and the Bayesian
solution was lower than one percentage point. This criterion
was lenient enough to also include rounding up or down to the
next whole number. In fact, many participants in the percentage
condition were able to derive the Bayesian solution, wrote down
the formula, used the pocket calculator of their smartphone
to compute the exact value, but then wrote, for the Skiwell
Manufacturing task, 39 or 40% (instead of 39.1304%).

Traces of cognitive processes, that is, notes and remarks that
revealed how participants arrived at their answers, were also
considered. If a participant provided a numerical response that
we would have classified as Bayesian, but if the notes made it
clear that this match was only coincidental and resulted from a
non-Bayesian rationale, then we did not classify the response as
Bayesian. Conversely, if a participant in the percentage condition
wrote down a ratio that corresponded to the Bayesian solution,
but did not compute the exact number (by hand or with a
pocket calculator), we nevertheless classified it as a Bayesian
answer—and as we already mentioned above, participants were
informed about this.

Results

Do Natural Frequencies Facilitate Bayesian
Inferences in Our Four Tasks?
Yes. Figure 2 displays the percentages of Bayesian responses,
both for the four tasks separately and across all tasks. In the
percentage condition, 87 of 442 responses (19.7%) were Bayesian,
and in the natural frequency condition, these were 170 of 438
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FIGURE 2 | Percentages of Bayesian responses, depending on
whether the numerical information has been communicated in terms
of percentages or natural frequencies.

(38.8%). A logistic regression confirmed that the format in which
information was presented had a significant effect (B = 1.04,
SE= 0.20, z= 5.24, p< 0.001; after controlling for task, order, and
participant sample, and with standard errors clustered for each
participant).

Does Representation Format also Affect the
Non-Bayesian Inferences?
While the previous analysis focused on the percentages of
Bayesian responses, it is also useful to take a look at the full
distribution of numerical estimates, independent of whether
participants succeeded in deriving the Bayesian solution or
not. Figure 3 provides such a more fine-grained picture of
the distribution of numerical estimates for the four tasks.
Two estimates in the natural frequency condition for which
the numerator was larger than the denominator, and one
of 125% in the percentage condition were classified as non-
Bayesian in Figure 2, but were not graphically displayed in
Figure 3.

Overall, most estimates were too low: Across all tasks in the
percentage condition, 58.4% of the responses were lower than the
Bayesian solution, 19.7% were classified as Bayesian, 21.7% were
higher than the Bayesian solution and 0.2% were above 100%.
For the natural frequency condition, these numbers were 43.4,
38.8, 17.4, and 0.4% respectively. When information has been
presented in terms of natural frequencies, the responses were
not only more often correct (see Figure 2), but also closer to
the Bayesian solution: The average absolute difference between
responses and Bayesian solution was 19.2 in the percentage
condition, and 15.1 for natural frequencies (excluding responses
above 100%). Regression analysis revealed that this difference
was significant (B = 3.84, SE = 1.35, t = 2.84, p = 0.005; after
controlling for task, order, and participant sample, and with
standard errors clustered for each participant). Closer inspection,
however, revealed that this difference was mainly due to the
Bayesian responses. After these have been excluded, the picture
even reversed: In the percentage condition, the average absolute

difference of the remaining cases was 24.5, and in the natural
frequency condition, it was 26.3 (but this effect was not significant:
B = 2.12, SE = 1.27, t = 1.68, p = 0.095). In sum, in each of
the two experimental conditions, most responses were too low.
Participants’ responses were closer to the Bayesian solution in
the natural frequency condition, but this effect was mainly due
to the fact that there were more Bayesian responses in the first
place.

Figure 3 also shows that most numerical estimates were either
identical to one of the pieces of information that has been given
for a particular task, namely the base rate (Br), the hit rate (Hr),
or the false-alarm rate (F), or that they matched the Bayesian
response (Bay) or the probability that D and H occur together
(joint occurrence, J, which is the product of hit rate times base rate
of focal hypothesis). Results from a more detailed analysis of the
most frequently used cognitive strategies—indicated by the lines
in Figure 3—will be reported in the next section that focusses on
the effects of participant sample (Table 2).

Who Performed Better: The Undergraduates
or the Executives?
Figure 4 displays the percentages of Bayesian responses for
the different types of participants. No clear picture emerged.
While the undergraduates performed worse than the executives
in the percentage condition (14.6, 28.6, 22.6, and 26.6%, for
undergraduates, junior executives, senior executives, and
executives combined, respectively), they outperformed the
executives when the information was represented in natural
frequencies (40.5, 39.5, 30.0, and 36.2%, respectively).

The main effect of participant sample was not significant
(B = 0.219, SE = 0.26, z = 0.86, p = 0.392), but the interaction
between participant sample and representation format was
(B = 0.99, SE = 0.40, z = 2.52, p = 0.012; after controlling for
representation format, task, and order, and with standard errors
clustered for each participant). Analyzing the contrast between
undergraduates and executives (junior and senior combined)
separately, revealed a significant difference in the percentage
condition (14.6 vs. 26.6%, B = 0.796, SE = 0.310, z = 2.57,
p= 0.010), while the difference in the natural frequency condition
was negligible and not significant (40.5 vs. 36.2%, B = 0.213,
SE = 0.252, z = 1.12, p = 0.398). Finally, analyzing the contrast
between the two representation formats revealed a significant
difference between the percentage condition and the natural
frequency condition within the undergraduate sample (14.6 vs.
40.5%, B = 1.48, SE = 0.28, z = 5.32, p < 0.001), while
the superiority of natural frequencies did not reach statistical
significance within the sample of executives (junior and senior
combined; 26.6 vs. 36.2%, B = 0.47, SE = 0.28, z = 1.67,
p = 0.095).

Table 2 completes the picture by also including the non-
Bayesian strategies. While Figure 3 splits the frequencies of the
five different cognitive strategies according to representation
format and task, Table 2 splits them according to representation
format and participant sample (again, undergraduates vs.
executives; the latter with junior and senior combined). This table
also displays, for each strategy separately, the coefficients (B) and
the p-values of the five different logistic regressions, each with the
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FIGURE 3 | Distribution of numerical estimates for the four tasks. The
three straight lines indicate information that has been given in the task: Br
indicates the base rate for the focal category, Hr indicates the hit rate (that is,
diagnostic information conditioned on the focal category, p(D|H)), F indicates
the false-alarm rate (that is, diagnostic information conditioned on the
non-focal category, p(D|−H)). The two dotted lines indicate possible ways of
combining this information: Bay indicates the Bayesian solution, p(H|D), and J
stands for Joint Occurrence of D and H, p(D and H). The numbers on these
lines (and those on the y-axes) denote the frequencies of the corresponding
numerical estimates. For instance, 10 participants in the percentage condition
of the IRS task provided a numerical estimate between 20 and 20.99% (in
fact, all these 10 participants wrote exactly 20%, which was identical to the
base rate of that task), and 12 participants provided an estimate that has been

coded as a Bayesian response (three gave the exact Bayesian response,
either as the ratio 45/115, or they wrote down the exact number including the
decimal, 42.86%, most likely with the help of a pocket calculator, one
responded with 42.8%, and one with 42.9%. These five responses are
displayed in the bracket ranging from 42.0–42.99%. The remaining seven
participants responded with 43%. These seven estimates are displayed in the
adjacent bracket, namely 43.0–43.99%, but they were nevertheless coded as
Bayesian because our classification criterion allowed for rounding within one
percentage point, see above). Note that something similar could be observed
for each of the four tasks: the responses that have been classified as Bayesian
are spread across two adjacent brackets, and hence the number of Bayesian
responses is not visualized by one single bar, but rather consists of two lower
numbers visualized by two bars.

main effect of representation format and participant sample, and
the interaction between representation format and sample (after
controlling for task and order, and with standard errors clustered
for each participant). For each of the five cognitive strategies,
except for providing the false-alarm rate as response, the number
of participants who provided the corresponding numerical
estimate significantly differed between the percentage condition
and the natural frequency condition. In contrast, for none of the
strategies, except for joint occurrence, we observed a significant

effect of participant sample, and for none of the strategies, except
for Bayesian, the interaction between representation format and
participant sample reached significance.

Did the Order Matter?
No. Across all tasks, participants, and both representation
formats, a response has been classified as Bayesian in 30.5%
for tasks on the first page of the questionnaire and 28.0%
for tasks on the second page (in a logistic regression, the
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difference was not significant; B = 0.131, SE = 0.115, z = 1.14,
p = 0.254; after controlling for representation format, participant
sample and task, and with standard errors clustered for each
participant).

Did Prior Knowledge of Bayes’ Rule Make
a Difference?
For none of our executive participants, but for 91 of our 259
undergraduate participants (62 bachelor and 29 master students)
the booklet contained questions on demographics and on prior
knowledge about Bayes’ rule. A majority of 46 (74%) of the
bachelor students and 17 (59%) of the master students responded
that they have heard of Bayes’ rule before this lecture (overall,
63 of 91 = 69%). With the exception of one bachelor student,
all of those who had heard about Bayes’ rule said it was taught
to them in a course: 35 (56%) at school and 27 (44%) at
the university (62/91 = 68%). A minority of 27 (44 %) of

FIGURE 4 | Percentages of Bayesian responses, separately for the
different groups of participants.

the bachelor students and 13 (45%) of the master students
responded that they know when Bayes’ rule is applicable, and
7 (11%) of the bachelor students and 11 (38%) of the master
students (18/91 = 20%) were able to provide a short and
correct explanation (we applied a very lenient criterion and
coded answers such as “when conditional probabilities need to
be computed” as correct). When asked whether they are able
to formulate Bayes’ rule, 21 (34%) of the bachelor students
and 8 (28%) of the master students (29/91 = 32%) responded
with yes, but only 10 (16%) of the bachelor students and 1
(3%) of the master students (11/91 = 12%) wrote down the
correct formula. We should add that none of these 11 students
reproduced our Equation 1 exactly, instead they all used an
abridged version and wrote p(H|D) = p(H)p(D|H)/p(D)—which
we coded as correct, despite of the fact that we cannot
exclude the possibility that someone used a smartphone with
internet access, and despite having doubts that someone who
wrote down this abridged version was able to use it for our
Bayesian tasks and to understand that the denominator, p(D),
amounts to p(H)p(D|H) + p(−H)p(D|−H). These doubts lead
straightforward to our next question: How have these differences
between students been reflected in their ability to produce
Bayesian responses?

To the extent that teaching and instructions leave traces, one
may expect that those who had heard of Bayes’ rule performed
better than those who had not. To test this hypothesis, we
included the responses to each of the four questions about prior
knowledge of Bayes’ rule as a predictor of performance in a
separate logistic regression, controlling for format, task, order, and
participant sample, and with standard errors clustered for each
participant. None of these regressions revealed a significant effect
of prior knowledge on performance in our Bayesian tasks. To
investigate whether prior knowledge affects the ability to produce
Bayesian responses differentially, dependent on the format of
the question, we reran the logistic regressions, this time with an
additional interaction term between participants’ responses and
representation format. The result was the same: for none of the
four questions concerning prior knowledge of Bayes’ rule was
there a significant main effect or a significant interaction effect
on Bayesian performance.

TABLE 2 | Use of cognitive strategies, split by representation format and participant sample.

Logistic regression results

Percentages Natural frequencies Format Sample Format × Sample

Cognitive strategy Undergraduates Executives Undergraduates Executives Total B p B p B p

Bayesian 14.57 26.6 40.53 36.21 29.2 1.47 <0.001 0.22 0.39 1.0 0.012
Base rate 11.42 11.17 1.52 2.3 6.6 −2.21 0.001 0.47 0.55 −0.47 0.587
Hit rate 4.72 5.85 13.26 14.94 9.5 1.15 0.001 0.12 0.69 0.05 0.886
False-alarm rate 1.97 3.19 4.17 3.45 3.2 0.78 0.174 0.18 0.76 0.7 0.413
Joint occurence 12.6 15.43 4.55 11.49 10.6 −1.11 0.009 1.0 0.02 −0.77 0.158

Total observations 254 188 264 174 880

The coefficients (B) and p-values result from five different logistic regressions, one for each strategy, that were conducted to determine how representation format and participant sample
affected strategy use (after controlling for task and order, and with standard errors clustered for each participant).
Total observations refer to the total number of responses on which the percentages reported in the cells are based, that is, the numbers in the cells denote column percentages.
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General Discussion

To the best of our knowledge, the present study is the first to
test whether natural frequencies facilitate Bayesian reasoning with
management related tasks given to management undergraduates
and executives. Even though the effect was not as strong as in
previous studies, it is still larger than most effects observed in the
social sciences: About twice as many participants came up with
the Bayesian response when information was presented in terms
of natural frequencies compared to percentages.

Distribution of Bayesian and Non-Bayesian
Responses: Toward an Ecological Analysis
of Bayesian Inference Tasks
A remarkable finding of our study is that most non-Bayesian
estimates were lower than the Bayesian solution (Figure 3). This
pattern is unusual, at least when compared to information in
typical medical diagnostic tasks in which the Bayesian response is
usually low and participants’ responses are usually much higher
(e.g., Eddy, 1982). How could one account for the different
response patterns? One obvious dimension along which the tasks
vary is numbers used for each particular problem. For most
diseases, the base rate is relatively low, and for most diagnostic
tests in medicine, the hit rate (or sensitivity) is relatively high, and
the false-alarm rate is relatively low. This was different in our four
tasks (see Table 1), for which the base rates were—compared to
mostmedical tasks—higher, the hit rates were lower, and the false-
alarm rates were higher. Hence, it seems to be straightforward to
explore the extent to which the base rate, the hit rate, and the false-
alarm rate affect strategy use. When we started to do exactly this,
it soon became evident that a larger database would be extremely
useful, and so we also included the responses to the fifteen tasks
of Gigerenzer and Hoffrage (1995) in the analysis. Moreover,
we complemented the set of the three quantitative task variables
with three qualitative dimensions—norm deviation, stakes, and
main focus—and subsequently used these task characteristics
to account for the variance of participants’ responses and
strategy use. This investigation, which can be considered as
an example of an ecological analysis of Bayesian inferences,
goes way beyond the scope of the present paper, and hence
we report the results elsewhere (Hafenbrädl and Hoffrage,
in review).

Differences between Undergraduates
and Executives
We do not know why undergraduates outperformed the
executives when information was presented in terms of
natural frequencies, whereas executives outperformed the
undergraduates when information was presented in terms of
percentages. Formulating this finding as an interaction, though,
may help to find a possible explanation. While representation
format played a larger role for undergraduates, executives were
relatively immune against this manipulation (Figure 4). In fact,
within the sample of executives the effect of representation
format (differences of 9.6 percentage points in favor of natural
frequencies) did not reach significance (p = 0.095, which may,
of course and as always for non-significant differences, be an

issue of statistical power). There might be two ways to arrive at a
response: arithmetic calculation and intuitive estimation. Maybe
executives had a more intuitive approach, possibly based on their
experience with similar problems in the world of business (Klein,
2002). If such experience is used, then representation format
might indeed play less of a role. In contrast, undergraduates
lack such experience and are hence more likely to approach the
tasks with logic, reasoning, and arithmetic. The fact that natural
frequencies facilitate the computation (Gigerenzer and Hoffrage,
1995) may hence account for the fact that undergraduates
benefitted quite a lot from this representation—more than the
executives did. But we must admit that this consideration is
highly speculative and we should add that we did not find a
similar pattern when comparing medical students (Hoffrage
et al., 2000) to experienced physicians (Hoffrage and Gigerenzer,
1998).

Order Effects: Time Pressure and Training
More participants came up with the Bayesian response for tasks
on the first page compared to tasks on the second page (difference
of 2.5 percentage points). There are two main explanations
for order effects: time pressure and training. If time pressure
played a role, then we should expect that performance declines.
In fact, out of those participants who provided an estimate to
only one task, there were 28 who did so for the task on the
first page, and 12 who did so only for the task on the second
page (corresponding to a difference of 4.8 percentage points).
In contrast, if training effects played a role, then we should
expect that performance will increase. To the extent that the
observed effect (2.5% better performance on first page) can be
conceived as a result of a simple linear combination of the two
possible components, time pressure and training, the effect of
training is probably larger than the 2.5% that we observed, simply
because this difference of 2.5% might have been overshadowed
by the effect of time pressure. But we hasten to add that the
observed difference was miniscule and of minor importance
from a theoretical and practical point of view, and that our data
does not allow us to assess the two possible contributing effects
independently.

Teaching Bayesian Inferences
Another remarkable finding of the present study is that 69% of
the undergraduates whom we asked said that they had heard of
Bayes’ rule, 68% said that they had been taught about it, 40%
said they knew when it is applicable, 20% were actually able to
correctly specify this, 32% said they were able to formulate Bayes’
rule, and only 12% could actually do so (and even this number
must probably be corrected downwards, see result section). These
numbers suggest that one should not be too optimistic that
teaching Bayes’ rule leads to sustainable knowledge, retrievable
from long-term memory. As one of the physicians studied in
Hoffrage and Gigerenzer (1998) remarked to the experimenter
after having filled out the questionnaire: “We have learned a
formula at university, but I have forgotten it.” Moreover, none
of the variables concerning prior knowledge of Bayes’ rule had a
significant effect on Bayesian performance in our task. This lack
of relationship could well be due to lack of statistical power, but if
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91 participants are not enough to establish any relationship then
such an effect, if existing at all, may be too small to be of practical
importance.

Why is it that prior exposure to Bayes’ rule seems to make
almost no difference? We suspect that difficulties to remember
Bayes’ rule and to benefit from instructions may be related to how
it is taught. In fact, inspecting an informal sample of textbooks
on business statistics (Lawrence and Pasternack, 2002; Anderson
et al., 2010; Newbold et al., 2010; Taylor, 2010) revealed the
same picture as for the medical field: Bayes’ rule is taught almost
exclusively using probabilities. We agree that such textbooks
must ensure that a student will, at the end of the lessons, be
able to handle probability information, but we disagree that the
best way to get there is to teach how to insert probabilities
into Bayes’ rule. Instead, we propose that students should be
taught how to convert probabilities into natural frequencies.
Sedlmeier and Gigerenzer (2001) have shown that a computerized
implementation of such training is by farmore effective compared
to traditional rule training: the proportion of accurate answers
doubled when participants had learned to represent probabilities
as natural frequencies, as opposed to inserting them into Bayes’
rule. Kurzenhäuser and Hoffrage (2002) obtained similar results
in a classroom setting with medical students and diagnostic tasks
from human genetics. Note that in both studies, the success of
the two treatments—in one, students had been taught how to
plug in probabilities into Bayes’ rule, and in the other, they

had been taught how to convert probability information into
natural frequencies and derive the solution from there—has been
evaluated by giving participants tasks with information presented
in terms of probabilities. Taken together, the findings presented
in this paper—supported by Sedlmeier and Gigerenzer’s (2001)
and Kurzenhäuser and Hoffrage’s (2002) evaluation of tutorial
programs—suggest that textbooks should no longer teach how to
plug probabilities or percentages into a formula but rather instruct
how to represent information in terms of natural frequencies
to achieve a more sustainable mastery of Bayesian inference
tasks.

Updating beliefs is a vital task, also in the domain of
management. Representing information in terms of natural
frequencies reduces computational complexity, improves
understanding and boosts Bayesian performance. The posterior
probability that managers can also benefit from natural
frequencies, given the data of the present study, has definitely
increased compared to the prior.
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Appendix

Sentences or fragments of sentences that appear in parentheses
and start with “P:” were only used in the percentage version, and
those starting with “F:” were only used in the natural frequency
version.

IRS Audit
This year experts project that (P: 20% of all) (F: 200 out of
1000) taxpayers will file an incorrect tax return. To identify
such incorrect returns, the Internal Revenue Service (IRS) has
been implemented. Unfortunately, this service is not perfect. IRS
auditors detect an error for (P: 30% of the) (F: only 60 of those
200) tax returns that are incorrect, and it will indicate an error in
(P: 10% of the) (F: 80 of these 800) tax returns that are correct.

The IRS has just notified a taxpayer there is an error in his
return.

(P: What is the probability that the return actually has an error?
_____ %)

(F: How many of the tax payers who have been notified by the IRS
that there is an error in their return, do actually have an error?
_____ of _____)

Techtronics Equipment Corporation
The Techtronics Equipment Corporation has developed a new
electronic device that it would like to sell to the US Military for
use in fighter aircraft. The sales manager knows that the military
has placed an order (P: in 60% of) (F: in 60 of 100) similar cases.
After making an initial sales presentation, military officials will
often ask for a second presentation to other military decision
makers. Historically, (P: 70% of successful companies are asked
to make a second presentation, whereas only 50% of unsuccessful
companies are asked back a second time.) (F: in 42 of the 60

successful cases, the companies were asked to make a second
presentation, whereas for the unsuccessful cases, the companies
were asked back a second time in only 20 of the 40 cases.)

Suppose Techtronics Equipment has just been asked to make a
second presentation and so the sales manager wonders:

(P: What is the probability that the company will make the sale?
_____ %)

(F: In how many of the cases in which a company has been called
back, did this company receive an order? _____ of _____)

Varden Soap Company
The Varden Soap Company has two production facilities, one in
Ohio and one in Virginia. The company makes the same type
of soap at both facilities. (P: The Ohio plant makes 60% of the
company’s total soap output, and the Virginia plant 40%.) (F:
Imagine 1000 containers of soap. The Ohio plant produces 600
of these containers, and the Virginia plant produces 400.) All
soap from the two facilities is sent to a central warehouse, where
it is intermingled. After extensive study, the quality assurance
manager has determined that (P: 5% of the soap produced in
Ohio and 10% of the soap in Virginia is) (F: 30 of the 600 soap
containers produced in Ohio and 40 of the 400 soap containers
produced inVirginia are) unusable due to quality problems.When
the company sells a defective product, it incurs not only the cost of
replacing the item but also the loss of goodwill. The vice president
for production would like to allocate these costs fairly between the
two plants.

(P: To do so, hewants to know, for instance:What is the probability
that a soap was produced in Ohio given that it is defective?
_____ %)

(F: To do so, he wonders, for instance: How many of the container
with defective soap where produced inOhio? _____ of _____)
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Visual aids can improve comprehension of risks associated with medical treatments,
screenings, and lifestyles. Do visual aids also help decision makers accurately assess
their risk comprehension? That is, do visual aids help them become well calibrated? To
address these questions, we investigated the benefits of visual aids displaying numerical
information and measured accuracy of self-assessment of diagnostic inferences (i.e.,
metacognitive judgment calibration) controlling for individual differences in numeracy.
Participants included 108 patients who made diagnostic inferences about three medical
tests on the basis of information about the sensitivity and false-positive rate of
the tests and disease prevalence. Half of the patients received the information in
numbers without a visual aid, while the other half received numbers along with
a grid representing the numerical information. In the numerical condition, many
patients–especially those with low numeracy–misinterpreted the predictive value of the
tests and profoundly overestimated the accuracy of their inferences. Metacognitive
judgment calibration mediated the relationship between numeracy and accuracy
of diagnostic inferences. In contrast, in the visual aid condition, patients at all
levels of numeracy showed high-levels of inferential accuracy and metacognitive
judgment calibration. Results indicate that accurate metacognitive assessment may
explain the beneficial effects of visual aids and numeracy–a result that accords
with theory suggesting that metacognition is an essential part of risk literacy. We
conclude that well-designed risk communications can inform patients about health-
relevant numerical information while helping them assess the quality of their own risk
comprehension.

Keywords: visual aids, Bayesian reasoning, natural frequencies, numeracy, risk literacy, medical decision making,
diagnostic inferences

Introduction

Visual aids are graphical representations of numerical expressions of probability. They include,
among others, icon arrays, bar and line charts, and grids (Paling, 2003; Spiegelhalter et al., 2011).
Visual aids provide an effective means of risk communication when they are transparent (Garcia-
Retamero and Cokely, 2013)—that is, when their elements are well defined and they accurately and
clearly represent the relevant risk information by making part-to-whole relationships in the data
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visually available (Gillan et al., 1998; Ancker et al., 2006; Reyna
and Brainerd, 2008; Fischhoff et al., 2012; Trevena et al., 2012).

Transparent visual aids improve comprehension of risks
associated with different lifestyles, screenings, and medical
treatments, and they promote consideration of beneficial
treatments despite side-effects (Feldman-Stewart et al., 2000;
Paling, 2003; Waters et al., 2007; Zikmund-Fisher et al., 2008a;
Zikmund-Fisher, 2015). Transparent visual aids also increase
appropriate risk-avoidance behaviors, they promote healthy
behaviors (Garcia-Retamero and Cokely, 2011, 2014a), they
reduce errors and biases induced by anecdotal narratives and
framed messages (Fagerlin et al., 2005; Schirillo and Stone, 2005;
Garcia-Retamero and Galesic, 2009, 2010a; Cox et al., 2010;
Garcia-Retamero et al., 2010) and they aid comprehension of
complex concepts such as incremental risk (Zikmund-Fisher
et al., 2008b). Risk information presented visually is also judged
as easier to understand and recall than the same information
presented numerically (Feldman-Stewart et al., 2007; Goodyear-
Smith et al., 2008; Gaissmaier et al., 2012; Zikmund-Fisher et al.,
2014; Okan et al., 2015).

However, not all visual aids are equally effective for all tasks (see
Garcia-Retamero and Cokely, 2013, for a review). For instance,
bar graphs are useful for comparing data points (Lipkus and
Hollands, 1999; Lipkus, 2007; Fischhoff et al., 2012); line graphs
are helpful for depicting trends over time; magnifier risk scales
(including magnifying lenses) are useful for depicting small
numbers (Ancker et al., 2006); icon arrays can be helpful for
communicating treatment risk reduction and risk of side effects
(Feldman-Stewart et al., 2000;Garcia-Retamero andGalesic, 2009,
2010b; Ancker et al., 2011; Okan et al., 2012); logic trees can be
useful for visually depicting argument structure (Mandel, 2014);
and grids can help depict large numbers when communicating the
predictive value of medical tests (Garcia-Retamero and Hoffrage,
2013).

Grids displaying numerical information graphically have been
found to boost the accuracy of perceptions of health-related
benefits and risks beyond the effect of other transparent
information formats. To illustrate, doctors and patients often
have difficulties inferring the predictive value of a medical test
from information about the sensitivity and false-positive rate
of the test and the prevalence of the disease. In an influential
study on how doctors process information about the results
of mammography, Eddy (1982) gave 100 doctors the following
information: “The probability that a woman has breast cancer
is 1%. When a woman has breast cancer, it is not sure that she
will have a positive result on the mammography: she has an 80%
probability of having a positive result on the mammography.
When a woman does not have breast cancer, it is still possible
that she will have a positive result on the mammography:
she has a 10% probability of having a positive result on the
mammography.”

After having read this information, doctors were required
to estimate the probability that a woman with a positive
mammography actually has breast cancer. Eddy (1982) reported
that 95 of 100 doctors estimated this probability to be about
80% (see Gigerenzer, 2013; Ellis et al., 2014, for similar results in
patients). If one inserts the numbers presented above into a Bayes’

theorem, however, one gets a value of 8%, which is one order of
magnitude smaller.

Gigerenzer and Hoffrage (1995, 1999) showed that
communicating information about medical tests in natural
frequencies as compared to probabilities improves diagnostic
inferences (see also Sedlmeier and Gigerenzer, 2001;
Kurzenhäuser and Hoffrage, 2002; Mandel, 2015). Natural
frequencies are final tallies in a set of objects or events randomly
sampled from the natural environment (Hoffrage et al., 2000,
2002). For the mammography task the statistical information
provided in terms of natural frequencies reads: “100 out of every
10,000 women have breast cancer. When a woman has breast
cancer, it is not sure that she will have a positive result on the
mammography: 80 of every 100 such women will have a positive
result on the mammography. When a woman does not have
breast cancer, it is still possible that she will have a positive result
on the mammography: 990 out of every 9,900 such women will
have a positive result on the mammography.”

Even though the effect of numerical format (probabilities vs.
natural frequencies) is substantial, performance in the natural
frequency condition still leaves room for improvement. A study
conducted by Garcia-Retamero and Hoffrage (2013) showed that
grids displaying numerical information graphically improved
diagnostic inferences in both doctors and their patients beyond
the effect of natural frequencies (see also Brase, 2014, for
similar results in young adults). The authors showed that these
grids not only increased objective accuracy but also increased
perceived usefulness of information and decreased perceived
task difficulty. The aim of the current research was to extend
this literature by investigating whether visual aids also help
decision makers accurately assess their risk comprehension
(metacognitive judgment calibration). In particular, we followed
the method used by Garcia-Retamero and Hoffrage (2013) and
investigated whether grids graphically displaying information
about the predictive value ofmedical tests improve self-assessment
of diagnostic inferences in patients.

Previous research showed that people can be highly
overconfident when assessing the accuracy of their own
judgments (Griffin and Brenner, 2004). For example, Dunning
et al. (2004) conducted a systematic review of the literature
on the topic and concluded that people’s self-views hold only
a tenuous to modest relationship with their actual behavior
and performance. On average, people say that they are “above
average” in skill—a conclusion that defies statistical possibility for
symmetric distributions of individuals (however, this conclusion
is plausible if the mean and the median of a distribution are
not identical; Gigerenzer et al., 2012). People also overestimate
the likelihood that they will engage in desirable behaviors and
achieve favorable outcomes, they furnish overly optimistic
estimates of when they will complete future projects, and they
reach judgments with too much confidence.

People tend to be highly overconfident at low levels of accuracy
yet relatively well calibrated at higher levels of accuracy—a result
that suggests the presence of an “unskilled and unaware effect”
(Ehrlinger and Dunning, 2003; Ehrlinger et al., 2008). This result
is consistent with research on individuals with low numeracy (i.e.,
the ability to accurately interpret numerical information about
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risk; Ancker and Kaufman, 2007; Fagerlin et al., 2007; Reyna
et al., 2009; Galesic and Garcia-Retamero, 2010; Cokely et al.,
2012; Peters, 2012). This research shows that people with low
numeracy are especially inaccurate when evaluating the accuracy
of their own judgments, showing overconfidence (Ghazal et al.,
2014), and are not able to use risk reduction information to
adjust their estimates (Schwartz et al., 1997). Overconfidence
mediates, at least in part, the effect of numeracy on judgment
accuracy (Ghazal et al., 2014). Thus, people with low numeracy
may struggle to grasp numerical concepts that are essential for
understanding health-relevant information because they have
difficulties assessing the accuracy of their own estimates.

Our hypothesis is that visual aids can improve both accuracy
of diagnostic inferences and metacognitive judgment calibration
(i.e., how well patients assess the accuracy of these inferences)
(H1). We also hypothesize that visual aids may be especially useful
for patients with low numeracy (H2). Visual aids can increase the
likelihood that less numerate patients deliberate on the available
risk information, elaborating more on the problem at hand and
on their own understanding of the problem (Garcia-Retamero
and Cokely, 2013, 2014b). Deliberation tends to be important for
risk understanding because it promotes more thorough, complex,
and durable information representations (Cokely and Kelley,
2009)—an important component of metacognitive judgment
calibration (Thompson et al., 2011). By influencing encoding
and representation, visual aids can increase metacognitive
judgment calibration, reducing overconfidence. Improvements in
metacognitive processes can, in turn, improve the accuracy of
inferences (H3).

Materials and Methods

Participants
Participants included 108 patients recruited from four hospitals
in the cities of Jaén and Granada (Spain) during treatment
consultation. To be eligible for recruitment, patients had to have
no previous formal medical training. If they agreed to participate,
they were provided with an introductory letter describing the
purpose of the study and their questions were answered. Eighty
four percent of the patients who had been approached (n = 128)
agreed to participate in the study. Those who refused mentioned
one or more of the following reasons: respondent burden, lack
of interest in research, and/or busy schedules. Patients had an
average age of 52 years (range 19–76), and 78%were females.Most
of the patients (86%) had a high school degree or less, and only
14% had a university education before participating in the study.
Twenty-three percent of the patients had a chronic condition (e.g.,
allergies or diabetes). Patients received €20 for participating in
the study and were assigned randomly to one of two groups.
Male and female patients were evenly distributed in the groups.
The Ethics Committee of the University of Granada approved the
methodology, and all patients consented to participation through
a consent form at the beginning of the study.

Materials and Procedure
Patients completed a two-part paper-and-pencil questionnaire.
In the first part, they were presented with three tasks involving

TABLE 1 | Information about prevalence of the diseases, and sensitivity
and false-positive rate of the tests.

Diagnostic Base rate Sensitivity False- Positive
task positive predictive

rate value

Breast cancer 100 of 10,000 80 of 100 990 of 9,900 80 of 1,070

Colon cancer 30 of 10,000 15 of 30 299 of 9,970 15 of 314

Diabetes 50 of 10,000 48 of 50 4,975 of 9,950 48 of 5,023

Note that the false-positive rate is the complement of the specificity.

different diagnostic inferences: inferring breast cancer from a
positive mammogram, colon cancer from a positive hemoccult
test, and insulin-dependent diabetes from a genetic test. The order
of the three tasks was randomized, independently for each patient.
Wording and length of the tasks were comparable to the variant
of the breast cancer task that we provided in the introduction
of the current article. The information about the sensitivity and
false-positive rate of the tests and prevalence of the diseases was
taken from published studies (Hoffrage and Gigerenzer, 1998;
Garcia-Retamero andHoffrage, 2013) andwas reported in natural
frequencies (see Table 1). There were no time constraints, but the
questionnaire took approximately 15 min to complete.

Half of the patients received the information about the
sensitivity and false-positive rate of the tests and prevalence of
the diseases in numbers without a visual aid. The other half
received numbers along with a grid representing the numerical
information. Figure 1 presents the grid that patients received
in the mammography task. The visual display represented the
number of women who obtained a positive mammogram, the
number of womenwho have breast cancer, and the overall number
of women at risk. Women were depicted as squares as previous
research has found no differences in effects of arrays with faces
compared to more abstract symbols such as squares or circles
(Stone et al., 2003; Gaissmaier et al., 2012).

After having received the information about the sensitivity and
false-positive rate of the test and the base rate of the disease for
a given task, patients made a diagnostic inference. In the breast
cancer task, patients were told: “Imagine a representative sample
of women who got a positive result on the mammography. Give
your best guess: how many of these women do you expect to
have breast cancer?” Patients were asked to provide two numbers
such as X out of Y (leaving it up to them which denominator
to use). After making the three diagnostic inferences, patients
estimated accuracy of their diagnostic inferences. In particular,
they estimated the number of correct inferences that they thought
they had made on a scale ranging from 0 to 3. The second part
of the questionnaire included a measure of numerical skills using
twelve items taken from Schwartz et al. (1997) and Lipkus et al.
(2001 ; see Cokely et al., 2012, for a review).

Design and Dependent Variables
We employed a mixed design with one independent variable
manipulated experimentally between-groups: information format
(numerical only vs. numerical and visual). In addition, we
considered one independent variable that was not manipulated
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FIGURE 1 | Visual aid representing the overall number of women at risk, the number of women who have breast cancer, and the number of women
who obtained a positive mammogram.

experimentally but measured, namely numeracy.We split patients
into two groups according to themedian of their numeracy scores.
The low-numeracy group (n= 52) included patients with eight or
fewer correct answers, while the high-numeracy group (n = 56)
included those with nine ormore correct answers (see Peters et al.,
2006; Garcia-Retamero and Galesic, 2010b; and Garcia-Retamero
and Cokely, 2014a, for a similar procedure).

Patients answered questions about the three tasks involving
different diagnostic inferences. We used patients’ answers to the
questions to determine our three dependent variables. Objective

accuracy was measured as the percentage of correct inferences
in the three tasks. Following Gigerenzer and Hoffrage (1995; see
also Hoffrage et al., 2000), a response was considered accurate
if it matched the value specified in the last column of Table 1
plus/minus one percentage point. Amore liberal criterion than the
one that we used in our analyses yielded similar findings to those
reported in the results section. Estimated accuracy was measured
as the estimated percentage of correct inferences in the three
tasks. Finally, metacognitive judgment calibration was determined
for each patient by computing the difference between estimated
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accuracy and objective accuracy (see Ghazal et al., 2014, for a
similar method).

Analyses
First, we conducted analyses of variance (ANOVAs) to assess the
effect of information format and numeracy on objective accuracy,
estimated accuracy, and metacognitive judgment calibration
(H1 and H2). Second, we assessed whether metacognitive
judgment calibration explains the effect of information format
and numeracy on objective accuracy (H3). In particular, we
conducted an analysis of covariance (ANCOVA) to assess the
effect of information format and numeracy on objective accuracy
after controlling for metacognitive judgment calibration. We also
conducted mediational analyses to assess whether the effect of
information format and numeracy on objective accuracy was
mediated by metacognitive judgment calibration.

Finally, to find additional support of our hypothesis (H3) and
address an alternative explanation of our results, we investigated
whether objective accuracy explains the effect of information
format and numeracy on metacognitive judgment calibration.
In particular, we conducted an ANCOVA to assess the effect of
information format and numeracy on metacognitive judgment
calibration after controlling for objective accuracy. In addition,
we conducted mediational analyses to assess whether the effect
of information format and numeracy on metacognitive judgment
calibration was mediated by objective accuracy. As this alternative
model seems plausible, we compared the size of its indirect effect
(i.e., the amount of mediation) with that of the model with
metacognitive judgment calibration as a mediator. Numeracy
was included as a dichotomous variable in the ANOVAs and
ANCOVAs and as a continuous variable in themediation analyses.
We found consistent results in these analyses (for a similar
method, see Peters et al., 2006; Garcia-Retamero and Galesic,
2009, 2010b; and Garcia-Retamero and Cokely, 2014a).

Results

Howdid patients perform in the diagnostic inference tasks? And how
did they think they had performed in the tasks? The percentage
of patients who answered correctly three, two, one, and zero
tasks was 24, 19, 18, and 39% respectively. In contrast, 50, 25,
19, and 6% of the patients estimated that they had made three,
two, one, and zero correct diagnostic inferences, respectively.
Only 34% of the patients were accurate when assessing the
accuracy of their inferences (i.e., they were well calibrated); 38%
overestimated accuracy in one task (33%); 18% overestimated
accuracy in two tasks (67%); 6% overestimated accuracy in three
tasks (100%); and 4% underestimated accuracy. Patients who
achieved higher levels of accuracy were well calibrated, whereas
patient with low levels of accuracy were highly overconfident (see
Figure 2).

Do visual aids and numeracy affect objective accuracy? Are
visual aids especially useful for patients with low numeracy?
Patients made more accurate inferences when the information
was presented both numerically and visually (55% correct
inferences) as compared to numerically only (32%) (H1). In
addition, patients with high numeracy were more accurate (51%

FIGURE 2 | Estimated accuracy by objective accuracy. Error bars
indicate one standard error of the mean.

correct inferences) as compared to low-numerate patients (35%).
Finally, grids displaying numerical information were particularly
useful additions for patients with low numeracy (see Figure 3).
In contrast, there was only a minor increase in accuracy in
patients with high numeracy when they received the additional
visual display (H2). In line with these results, the ANOVA
with information format and numeracy as between-subjects
factors and objective accuracy across the three tasks as the
dependent variable revealed a main effect of information format,
F1,104 = 10.77, p = 0.001, η2

p = 0.09, and numeracy, F1,104 = 5.79,
p = 0.02, η2

p = 0.05. The interaction between information format
and numeracy was also significant, F1,104 = 3.82, p = 0.05,
η2

p = 0.04.
Do visual aids and numeracy affect estimated accuracy and

metacognitive judgment calibration? Are visual aids especially
useful for patients with low numeracy? Estimates of accuracy were
not influenced by information format or numeracy. On average,
patients estimated that 72% of their inferences were correct (see
Figure 3). In contrast, both information format and numeracy had
an effect on accuracy of estimates (i.e., metacognitive judgment
calibration) (H1). Grids displaying numerical information
improved metacognitive judgment calibration in patients with
low numeracy. These patients more accurately estimated the
accuracy of their own inferences when they received the visual
aid. However, the beneficial effect of the visual aid could not be
observed in patients with high numeracy (H2). These patients
were relatively well calibrated regardless of information format. In
line with these results, the ANOVA with information format and
numeracy as between-subjects factors and estimated accuracy
of diagnostic inferences across the three tasks as a dependent
variable did not reveal any significant results (F < 1). In contrast,
the ANOVA with information format and numeracy as between-
subjects factors and metacognitive judgment calibration as a
dependent variable revealed a main effect of information format,
F1,104 = 14.62, p = 0.001, η2

p = 0.12, and numeracy, F1,104 = 5.28,
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FIGURE 3 | Objective accuracy, estimated accuracy, and metacognitive judgment calibration across the three diagnostic tasks by information format
and numeracy. Error bars indicate one standard error of the mean.

p = 0.02, η2
p = 0.05, and an interaction between information

format and numeracy, F1,104 = 10.22, p = 0.002, η2
p = 0.09.

Does metacognitive judgment calibration explain the effect of
information format and numeracy on objective accuracy? Visual
aids do not improve objective accuracy in patients with low
numeracy when metacognitive judgment calibration has been
controlled for statistically (see Figure 4). In line with these results,
theANCOVAwith information format andnumeracy as between-
subjects factors, objective accuracy across the three tasks as the
dependent variable, and metacognitive judgment calibration as a
covariate only revealed a main effect of metacognitive judgment
calibration, F1,103 = 37.25, p = 0.001, η2

p = 0.27. The main effect
of information format and numeracy and the interaction between
information format and numeracy was no longer significant
(F < 1).

To ensure comparability with results in the ANOVA and
ANCOVA, in mediational analyses we first modeled objective
accuracywhen patients received information in numbers and then
when they received an additional visual display representing the
numerical information. In the numerical condition, regression
analyses showed that numeracy influenced both metacognitive
judgment calibration, β = −0.56, t53 = −4.97, p = 0.001, and
objective accuracy, β = 0.46, t53 = 3.82, p = 0.001, whereby
patients who were more numerate more accurately assessed the
accuracy of their inferences (i.e., were better calibrated) and
made more accurate inferences (see Figure 5A). In addition,
metacognitive judgment calibration was related to objective
accuracy, β = −0.52, t52 = −4.04, p = 0.001. Patients who
more accurately assessed the accuracy of their inferences also

made more accurate inferences. When metacognitive judgment
calibration was included in the regression analyses, the effect of
numeracy onobjective accuracywas significantly reduced andwas
no longer significant, β = 0.17, t52 = 1.30, p = 0.20. The results of
the Sobel test indicated that metacognitive judgment calibration
mediates the relationship between numeracy and objective
accuracy, z = 3.135, p = 0.001 [Effect = 0.30, 95% CI (0.27,0.33);
AIC (Akaike Information Criterion) = 998.80]. When patients
received the additional visual aid representing the numerical
information, numeracy did not influencemetacognitive judgment
calibration, β = 0.10, t51 = 0.70, p = 0.49, or objective accuracy,
β = 0.14, t51 = 1.01, p = 0.32 (see Figure 5B). As expected,
metacognitive judgment calibration was again related to objective
accuracy, β =−0.53, t50 = −4.48, p = 0.001.

Does objective accuracy explain the effect of information format
and numeracy on metacognitive judgment calibration? Visual aids
improve metacognitive judgment calibration in patients with
low numeracy after objective accuracy has been controlled for
statistically (see Figure 4). The ANCOVA with information
format and numeracy as between-subjects factors, metacognitive
judgment calibration across the three tasks as the dependent
variable, and objective accuracy as a covariate revealed a main
effect of objective accuracy, F1,103 = 37.25, p = 0.001, η2

p = 0.27,
and information format, F1,103 = 5.56, p = 0.020, η2

p = 0.05,
and an interaction between information format and numeracy,
F1,103 = 6.24, p = 0.014, η2

p = 0.06.
As expected, in the numerical condition, regression analyses

showed that objective accuracy was related to metacognitive
judgment calibration, β = −0.46, t52 = −4.04, p = 0.001 (see
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FIGURE 4 | Objective accuracy across the three diagnostic tasks by
information format and numeracy after controlling for the effect of
metacognitive judgment calibration. Metacognitive judgment calibration

across the three diagnostic tasks by information format and numeracy after
controlling for the effect of objective accuracy. Error bars indicate one standard
error of the mean.

Figure 5C). Patients who made more accurate inferences also
more accurately assessed the accuracy of these inferences. When
objective accuracy was included in the regression analyses, the
effect of numeracy on metacognitive judgment calibration was
reduced but it was still significant, β = −0.35, t52 = −3.12,
p = 0.003. The results of the Sobel test indicated that objective
accuracy mediates the relationship between numeracy and
metacognitive judgment calibration, z = −2.78, p = 0.003.
However, the size of the indirect effect [Effect = −0.21, 95%
CI (−0.24, −0.18)] was smaller and AIC (AIC = 1057.30) was
larger to that of the previous model. These results suggest that the
model including objective accuracy as amediator is a worsemodel
than the model including metacognitive judgment calibration as
a mediator.

In line with previous results, when patients received the
additional visual aid representing the numerical information,
objective accuracy was related to metacognitive judgment
calibration, β = −0.54, t50 = −4.48, p = 0.001 (see Figure 5D).
In sum, results in ANCOVAs and mediational analyses suggest
that metacognitive judgment calibration mediates the effect of
numeracy on objective accuracy (H3) and not the other way
around. Thus these analyses suggest that, in the numerical
condition, highly numerate patients make more accurate
inferences than patients with low numeracy because they more
accurately evaluate the accuracy of their own inferences. In
contrast, in the visual condition, patients at all levels of numeracy
showed similar high-levels of metacognitive judgment calibration
and, in turn, high-levels of inferential accuracy.

Discussion

We investigated patients’ diagnostic inferences about the
predictive value of medical tests from information about
the sensitivity and false-positive rate of the tests and the
prevalence of several diseases. Our results showed that
many patients—especially those with low numeracy—made
incorrect inferences about the predictive value of the tests and
dramatically overestimated the accuracy of these inferences. High
overestimates at low levels of accuracy become more calibrated at
higher levels of accuracy—a result that suggests the presence of an
“unskilled and unaware effect” (see also Ehrlinger and Dunning,
2003; Ehrlinger et al., 2008; Ghazal et al., 2014).

Our results are compatible with previous evidence on the role of
numeracy in understanding health-relevant risk communications
and medical decision making (Fagerlin et al., 2007; Apter et al.,
2008; Reyna et al., 2009; Peters, 2012; Garcia-Retamero and
Galesic, 2013; Johnson and Tubau, 2015). Patients with low levels
of numeracy havemore difficulties interpreting numerical risks of
side effects (Gardner et al., 2011), and they are more susceptible
to being influenced by the way the health information is framed
in problems involving probabilities (Peters et al., 2006; Peters
and Levin, 2008; Garcia-Retamero and Galesic, 2010a, 2011;
Galesic and Garcia-Retamero, 2011a)—presumably because they
are more influenced by non-numerical information (e.g., mood
states; Peters et al., 2007; Petrova et al., 2014). Compared to
patients with high numeracy, less-numerate patients also tend to
overestimate their risk of suffering from several diseases (Davids
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FIGURE 5 | Path analyses. Effect of numeracy on objective accuracy and the
mediational effect of metacognitive judgment calibration when (A) patients
received information only in numbers and when (B) they received an additional
visual display representing the numerical information. Effect of numeracy on

metacognitive judgment calibration and the mediational effect of objective
accuracy when (C) patients received information only in numbers and when (D)
they received an additional visual display representing the numerical information.
Note: Standardized coefficients are shown. *p < 0.05.

et al., 2004; Gurmankin et al., 2004), they are less able to use
risk reduction information to adjust their risk estimates (e.g.,
screening data; Schwartz et al., 1997), they tend to overestimate
benefits of uncertain treatments (Weinfurt et al., 2003; Garcia-
Retamero and Galesic, 2010b), and they have more deficits
in understanding the information necessary to follow dietary
recommendations (Rothman et al., 2006). Compared to patients
with high numeracy, less-numerate patients also tend to search
for less information about their disease (Portnoy et al., 2010),
and they often choose lower-quality health options (e.g., health
insurance plans; Hibbard et al., 2007; Hanoch et al., 2010). As
a consequence, they tend to suffer more comorbidity and take
more prescribed drugs (Garcia-Retamero et al., 2015). Less-
numerate doctors and patients also favor a paternalistic model
of medical decision making, in which doctors are dominant and
autonomous (Garcia-Retamero et al., 2014), and patients prefer
not to participate and instead delegate decision making (Galesic
and Garcia-Retamero, 2011b). This is troubling given that the
paternalistic model of medical decision making is increasingly
being questioned (Kaplan and Frosch, 2005).

Our research suggests a potential explanation of the link
between numeracy and understanding of health-relevant
quantitative information. Highly numerate patients might make
more accurate inferences as compared to patients with low

numeracy because they more accurately evaluate the accuracy
of their own inferences (i.e., they show better metacognitive
judgment calibration). Thus metacognitive judgment calibration
might drive, at least in part, the numeracy-to-performance
relationship. Previous research suggests that the link between
numeracy and superior judgment and decision making might
reflect differences in heuristic-based deliberation (e.g., deep
elaborative processing; Cokely and Kelley, 2009; Cokely et al.,
2012), affective numerical intuition (e.g., precise symbolic number
mapping; Peters et al., 2006; Peters, 2012), and meaningful
intuitive understanding (e.g., gist-based representation and
reasoning; Reyna, 2004; Reyna et al., 2009; see Cokely et al., 2014,
for a review). Our research extends this literature suggesting
that there is also a tight link between numeracy, metacognition,
and understanding of health-relevant numerical information
(see Ghazal et al., 2014, for similar results in highly educated
samples).

Our results are also compatible with a variety of studies
indicating that judgment self-assessment can operate as a domain-
general skill that correlates with—but that can also be seen
as an independent predictor of—general abilities, personality
traits, and cognitive performance (Stankov, 2000; Stankov and
Lee, 2008; Schraw, 2010). Overall our results accord with
metacognitive theory suggesting that metacognitive judgment
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calibration tends to be useful because it is instrumental in
self-regulation—i.e., the monitoring and control of cognition
(Nelson, 1990; Metcalfe and Finn, 2008). Related studies of
factors like “feeling of correctness” show that confidence-
type judgments predict differences in information search and
elaboration. In addition to predicting judgments about the
correctness of one’s answer, one’s feeling of correctness tends
to be related to “rethinking” times and the likelihood of
changing one’s initial answer during reasoning (Thompson
et al., 2011). These studies suggest that factors related to
how one uses and assesses judgment accuracy may often be
essential components determining the extent to which one
deliberates during judgment and decision making (Ghazal
et al., 2014). For these and other reasons it seems likely
that metacognition is an essential component of the ability to
understand and make good decisions about risk (i.e., risk literacy;
see www.RiskLiteracy.org).

Finally, our results can have important implications for medical
practice as they suggest suitable ways to communicate quantitative
medical data—especially to patients lacking numerical skills.
Our research shows that visual aids improve both objective
accuracy and metacognitive judgment calibration, especially
in less numerate patients, eliminating differences between
this group of patients and the more numerate group. In
addition, our research suggests that visual aids increase objective
accuracy by improving metacognitive judgment calibration. As
we mentioned above, calibration can mediate the relationship
between numeracy and superior performance. In the current
research, however, this result only holds when patients received
numerical information without a visual display. In contrast,
metacognitive judgment calibration did not mediate the effect
of numeracy on objective accuracy when patients received the
additional visual aid representing the numerical information
because numeracy was no longer as robustly related to accuracy
of inferences. In the visual condition, both patients with low
and high numeracy were often well calibrated and, in turn, often
made accurate inferences. These results suggest that visual aids
might improve risk understanding, at least in part, by improving
metacognitive judgment calibration and reducing overestimates
of accuracy.

It is also possible that the effect of visual aids on both judgment
accuracy and metacognitive judgment calibration follow from
the development of better cognitive representations, which, in
turn, facilitate reasoning and metacognitive monitoring (see
Cosmides and Tooby, 1996; Brase et al., 1998; Brase, 2009).
For instance, more cues available in memory can be used to
explore essential relationships or to recognize that one has
some missing knowledge. This conclusion is compatible with
previous research indicating that visual aids help less numerate
people identify and infer essential aspects of the risk information
(e.g., “gross-level information”; Feldman-Stewart et al., 2000;
Zikmund-Fisher et al., 2010). Visual aids also increase the ability
of less numerate people to recognize superordinate classes,
making part-to-whole relations in the data visually available
(Ancker et al., 2006; Reyna and Brainerd, 2008). Moreover, visual
aids improve risk comprehension by increasing the likelihood
that less numerate people deliberate on the available risk

information (Garcia-Retamero and Cokely, 2013, 2014b). By
influencing memory encoding and representation, visual aids can
also give rise to enduring changes in attitudes and behavioral
intentions, which in turn affect behavior and risky decision
making (Garcia-Retamero and Cokely, 2011, 2014a, 2015). Thus
visual aids can improve judgment and decision making and help
promote healthy behavior by improving understanding of health-
relevant numerical information, by improving assessments of the
accuracy of inferences about this information, and by establishing
enduring attitudes and fostering intentions to perform the
behavior, which may further promote understanding and self-
assessment.

As with any research, our study has some limitations and leaves
open several questions for future research. For instance, objective
accuracy and metacognitive judgment calibration were correlated
as the former was included in themeasurement of the latter. To the
extent that judgment calibration cannot be defined independently
of objective accuracy, these concepts are not independent. So
any results in this area need to be benchmarked accordingly.
Nevertheless, our analyses showed that information format and
numeracy have a significant effect on metacognitive judgment
calibration even after objective accuracy has been controlled for
statistically.

It is important to mention that our conclusions are based
on patients’ diagnostic inferences and estimates when they
received information about prevalence of several diseases,
and the sensitivity and false-positive rate of the tests in
natural frequencies (Hoffrage and Gigerenzer, 1998; Hoffrage
et al., 2000, 2002). Future research could investigate these
inferences and estimates when the information is reported
in other numerical formats (e.g., probabilities). In addition,
future research could also investigate whether these inferences
and estimates affect behavioral intentions and actual behavior
(e.g., whether patients indicate that they would take a medical
test depending on the way the information about the test is
communicated and if expressed interest exceeds actual uptake).
Our sample of patients was older and less educated than
the general population in Spain and other countries. Future
research could also examine whether visual aids confer similar
results in more educated participants (e.g., physicians) in
different countries. Finally, future research could investigate
whether the general findings hold across different types of
visual aids (e.g., icon arrays, bar charts, and line plots), when
visual aids are provided instead of rather than in addition to
numerical information, and when visual aids differ in iconicity
(i.e., when they are more or less abstract). In accord with
the growing body of research, we predict that simple, well-
designed visual aids will show substantial benefits in many
situations, especially when communicating with less numerate
individuals.
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In research on Bayesian inferences, the specific tasks, with their narratives and
characteristics, are typically seen as exchangeable vehicles that merely transport the
structure of the problem to research participants. In the present paper, we explore
whether, and possibly how, task characteristics that are usually ignored influence
participants’ responses in these tasks. We focus on both quantitative dimensions of the
tasks, such as their base rates, hit rates, and false-alarm rates, as well as qualitative
characteristics, such as whether the task involves a norm violation or not, whether
the stakes are high or low, and whether the focus is on the individual case or on the
numbers. Using a data set of 19 different tasks presented to 500 different participants
who provided a total of 1,773 responses, we analyze these responses in two ways:
first, on the level of the numerical estimates themselves, and second, on the level of
various response strategies, Bayesian and non-Bayesian, that might have produced
the estimates. We identified various contingencies, and most of the task characteristics
had an influence on participants’ responses. Typically, this influence has been stronger
when the numerical information in the tasks was presented in terms of probabilities or
percentages, compared to natural frequencies – and this effect cannot be fully explained
by a higher proportion of Bayesian responses when natural frequencies were used.
One characteristic that did not seem to influence participants’ response strategy was
the numerical value of the Bayesian solution itself. Our exploratory study is a first step
toward an ecological analysis of Bayesian inferences, and highlights new avenues for
future research.

Keywords: Bayesian inference, updating beliefs, ecological analysis, task characteristics, base rate,
signal-detection, representation format, natural frequencies

Introduction

A woman receives a positive HIV test—what is the probability that she is infected? An eyewitness
claims that she saw a blue cab involved in an accident—what is the probability that the cab was
actually blue? A potential customer asks for a second sales presentation—what is the probability
that he will ultimately place an order? Even though these questions come from different domains,
they all share the same underlying structure: an individual receives new diagnostic information and
wants to update her beliefs accordingly. Tasks that provide (a) information about prior probabilities
of some hypotheses, (b) information that new evidence is available, and (c) information about
the probabilities of such new evidence under various conditions, are called Bayesian inference
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problems and their solution can be calculated using Bayes’ rule.
For more than 50 years, researchers have been interested in
the psychological processes individuals deploy to solve such
problems as well as how to help individuals to solve such
problems more effectively (Mandel, 2014, 2015; Johnson and
Tubau, 2015; McNair, 2015).

Sirota et al. (2015) pointed out that Bayesian reasoning is
not restricted to textbook problems, and that there is a wide
range of situations that call for Bayesian reasoning “in the wild,”
that is, in real life contexts in which information is usually
not provided in numerical form and in which people (and
animals) nevertheless have to behave after some events occurred
or after some information became known (see also Griffiths
and Tenenbaum, 2006). This distinction is akin of Hertwig
et al.’s (2004) distinction between decisions-from-description and
decisions-from-experience. In a similar vein, Mandel (2014) called
for adopting a wider perspective and for studying Bayesian
reasoning in domains other than textbook problems. In the
present paper, we do not follow this call, and we analyze, as
most researchers on Bayesian reasoning do, people’s responses
to textbook problems. Yet, we aim at going beyond the usual
treatment of such problems. Usually, the content of a given
task is just regarded as decoration—what is important is that
the task has a certain structure and that this structure and the
information given in the task qualify it as a Bayesian inference
task for which Bayes’ rule, as a “content-blind” norm, provides
the solution (Gigerenzer, 1996). We question what often seems
to be taken for granted, namely that task content does not matter
and is exchangeable. This avenue does not lead us into the wild,
but it leads us into white territory from the viewpoint of classic
textbook problem analysis. We seek to explore the effect of task
dimensions that are usually ignored.

We are not the first to challenge the tacit assumption that
task content is decorative and can be ignored as long as it
serves its purpose, namely to convey what the structure is
and which normative principle applies. For instance, Cosmides
(1989) argued that the content and context of the task used
to study deductive reasoning matters: while a Wason selection
task with an abstract content yields very few normatively correct
responses, people’s ability to correctly apply the modus tolens
increased dramatically when the rule that needed to be checked
was formulated as a social contract—even though this was
irrelevant from a logical point of view. Another example is
Krynski and Tenenbaum’s (2007) finding that performance in a
Bayesian reasoning task depends on verbal content, specifically,
whether a reason for a false-alarm in a medical test has been
given (“the presence of a benign cyste”) or not. Note that
providing participants with an alternative cause for a positive
test is irrelevant from a normative point of view because it
does not affect the false-alarm rate. In other words, the false-
alarm rates in both versions, with and without reason for
the false-alarm, were the same. However, providing a reason
boosted the proportion of Bayesian answers from about 25% to
about 45%—which is, according to Johnson and Tubau (2015),
“some of the highest performance reported with normalized
data in the absence of visual cues.” To provide one more
example, Mellers and McGraw (1999) hypothesized that the

beneficial effect of natural frequencies (for an explanation of
this concept, see below) is minimized for tasks with a high
base rate, which amounts to saying that the usage of a Bayesian
response strategy in the probability/percentage version and in
the natural frequency version is differentially affected by the
base rate stated in the problem. Note that the claim is not that
the Bayesian solution depends on the base rate—this is trivial
and follows from Bayes’ rule. Rather the claim is empirical in
nature, namely that a participant’s chance of answering with
the Bayesian solution does depend on the base rate. Mellers
and McGraw (1999) provided supportive evidence for their
interaction hypothesis, and when we tested it with our own
data, we could confirm that the pattern of results for the cab
problem (which Mellers and McGraw used) seemed indeed to
be special, but we could not obtain supportive evidence for the
hypothesized interaction in general (Gigerenzer and Hoffrage,
1999).

Our research question is directly in line with these three
examples: are there characteristics of Bayesian textbook
problems—and if so, which—that influence participants’
responses? Note that this investigation conceives participants’
responses to Bayesian inference tasks as a function of task
characteristics and can thus be considered as an example of how
strategy usage depends on ecological dimensions (Todd et al.,
2012).

Materials and Methods

Databasis
To explore how characteristics of Bayesian inference tasks
influence responses and the usage of response strategies, we
reanalyzed data that was obtained by prior research. In particular,
we pooled the data from Hoffrage et al. (2015) and the data from
Study 1 of Gigerenzer and Hoffrage (1995). Our pooled data set
consists of 19 different tasks (4 tasks from Hoffrage et al., 2015
and 15 tasks from Gigerenzer and Hoffrage, 1995), presented to a
total of 500 different participants who provided 1,773 responses.
Table 1 gives an overview of these tasks and how they score on
various quantitative and qualitative dimensions (which will be
introduced in more detail below).

Tasks 13, 15, 17, and 18 have been taken from Hoffrage
et al. (2015; for the full descriptions, see their introduction, their
Table 1, and their Appendix). The 440 participants who worked
on these tasks were 259 undergraduate students of a business
school and 181 managers in their role as students in an Executive
MBA program. For each of the four tasks, two versions were
constructed, one in which the information was presented in
percentages and one in which natural frequencies were used.
Each of the participants responded to two different tasks, either
two percentage versions, or two natural frequency versions; in
other words, representation format (henceforth the label for his
variable) has been manipulated between-subjects.

Natural frequencies are the tallies in a natural sample in which
hit rate and false-alarm rate are not normalized with respect
to base rates (see Hoffrage et al., 2002 and Gigerenzer and
Hoffrage, 2007; for an example of how probability information
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can be translated into natural frequencies, see the caption
of Table 1). Natural Frequencies have proven to facilitate
diagnostic inferences in laypeople (Gigerenzer and Hoffrage,
1995), advanced medical students and advanced law students
(Hoffrage et al., 2000), patients (Garcia-Retamero and Hoffrage,
2013), physicians (Hoffrage and Gigerenzer, 1998), and managers
andmanagement students (Hoffrage et al., 2015). For a discussion
about when and why natural frequencies are effective, see
Gigerenzer and Hoffrage (2007), Brase (2008), Hill and Brase
(2012), Brase and Hill (2015), and Johnson and Tubau (2015).

The remaining 15 tasks were taken from Gigerenzer and
Hoffrage (1995; see Table 2, p. 293). In this study, four versions
were constructed per task, but for the present re-analysis, we
will only use two versions, namely the probability version and
the natural frequency version of what Gigerenzer and Hoffrage
(1995) called the standard menu. The information provided
in the standard menu is displayed in Table 1 (the two other
versions involving the so-called short menu, which provides the
information about the conjunctions D&H and D&–H, either in
probabilities or in natural frequencies, are not included in the
present re-analysis). Each of the 60 participants of Gigerenzer
and Hoffrage (1995) received all 15 tasks in two versions. For 30
participants, these were probabilities, standard menu and natural
frequencies, short menu, and for the other 30 participants, these
were probabilities, short menu and natural frequencies, standard
menu. The experiment took place in two sessions, most of them
one week apart from each other. For each participant, half of
the tasks in the first session were presented in one version, and
the other half were presented in the other version. During a
given session, a given participant has seen each task only once,
that is, the two versions of the same task were given in different
sessions. For the present re-analysis, which ignores all responses
in the short menu version, this implies that we used a between-
subject design: 30 participants responded to 15 tasks, each with
information presented in terms of probabilities (seven tasks in
one session and eight tasks in another session, one week apart
from each other), and 30 other participants did the same, except
that they were presented with the natural frequency versions of
the same 15 tasks.

While both studies used a natural frequency condition, the
condition with normalized information differed between the
studies: Hoffrage et al. (2015) used percentages for their four
tasks, and Gigerenzer and Hoffrage (1995) used probabilities for
their 15 tasks. According to Gigerenzer and Hoffrage’s (1995)
analysis (result 7, p. 689), this difference should not have an
effect on Bayesian performance—a theoretical result that was
confirmed by their own data and in numerous studies of other
authors since then. We will thus pool the data from these two
studies, and we will, henceforth, refer to this condition as the
probability/percentage condition.

Task Characteristics: Quantitative Dimensions
We will now introduce some candidate predictor variables
that may explain some variance, across tasks, of participants’
responses. One obvious dimension along which the tasks vary
is the numeric information: the base rate, the hit rate and
the false-alarm rate. Note that the third example given in our

introduction (Mellers and McGraw, 1999) was of this kind: the
authors argued that the chance of responding with the Bayesian
solution (which must not be confused with the Bayesian solution
itself!) is affected bywhether the base rate is high or low. There are
some observations about this set of three quantitative variables
that we can make already before looking at the participants’ data.
First, the prior probability (i.e., base rate) is linked to the posterior
probability: in our set of 19 tasks, the correlation is 0.76. The
fact that this correlation is positive and substantial is trivial as
the following analysis shows. Consider the so-called odds version
of Bayes’ rule, which can be read as a division of two equations
(more precisely: after the posterior odds ratio has been extended
by p(D)/p(D), the four numerators constitute one equation and
the four denominators the other one):

p(H|D)

p (−H|D)
︸ ︷︷ ︸

posterior odds ratio

= p(H)

p(−H)
︸ ︷︷ ︸

prior odds ratio

× p(D|H)

p(D| − H)
︸ ︷︷ ︸

likelihood ratio

(1)

Equation 1 has the following implications: (a) if the likelihood
ratio equals 1—which means that the data D is not at all
diagnostic—then the posterior odds ratio is identical to the prior
odds ratio, (b) if the likelihood ratio is larger than 1—which is
usually the case and which is also the case for 17 of our 19 tasks—
then the posterior odds ratio exceeds the prior odds ratio, and (c)
the posterior odds ratio is a linear function of the prior odds ratio,
with the likelihood ratio as a constant. Hence, one should expect
a positive correlation between prior probability and posterior
probability (although this link could be offset in a sample of tasks
by some correlation patterns between the likelihood ratios and
the corresponding prior odds in these tasks). For the sake of
completeness, we want to mention that the correlation between
base rate and the Bayesian solution (recall, 0.76) was found to be
substantially higher than any other correlations that included the
hit rate (Hr) and the false-alarm rate (F): corr (Bay∗Hr) = 0.16,
corr (Bay∗F) = 0.34, corr (Br∗Hr) = −0.15, corr (Br∗F) = 0.51
and corr (Hr∗F) = 0.14.

Task Characteristics: Qualitative Dimensions
Besides these quantitative dimensions, we categorized the 19
tasks along three qualitative dimensions. Note that the second
example in our introduction (Krynski and Tenenbaum, 2007)
was of this kind: these authors demonstrated that the chances of
responding with the Bayesian solution is affected by whether or
not a reason for the existence of false-alarms is given. We agree
that this is an interesting variable and we embrace Johnson and
Tubau’s (2015) problem solving approach to Bayesian reasoning
that can account for why providing a reason facilitates Bayesian
performance. We would have appreciated to also include this
variable in the present analysis—yet, none of the 19 tasks
provided such a reason, and accounting for variance on a
criterion variable is pointless if there is no variance on the
predictor variable. Fortunately, we were able to identify three
other variables as meaningful and interesting for our purpose at
hand.

The first variable is henceforth referred to as norm deviation. It
denotes whether the focal hypothesis constitutes a deviation from
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a norm, in the sense that H can be considered an exception or
something unusual that requires specific attention, whereas −H
can be considered the normal case. To illustrate this variable
with some examples from our set of 19 tasks, norm deviation
has been coded as 1 for breast cancer (vs. non-breast cancer),
HIV infection (vs. no infection), and incorrect tax report (vs.
correct tax report). Note that such tasks can be conceived as
signal-detection tasks: signals (or data,D) are used to detect norm
deviations (or H). In contrast, norm deviation was coded as 0 for
tasks in which it seemed to be hard, if not impossible, to say which
was the normal case; for instance, red ball (vs. blue ball), blue cap
(vs. green cap), or supplier A (vs. supplier B; for more examples,
see Table 1).

Our second qualitative variable, henceforth referred to as
stakes, denotes whether being in the state of H or −H makes a
big difference (e.g., being infected with HIV, having an accident,
or causing a prenatal damage has been coded as 1) or whether
the stakes are either relatively low or not specified in the task
description (e.g., drawing a red ball from an urn, being an active
feminist, or choosing a course in economics has been coded as 0;
Table 1).

Finally, our third qualitative variable is the main focus of the
task. The main focus can either be on the individual case or on
the numbers involved. For many tasks, the context story makes
it clear that the central question is whether some individual or
protagonist is in the state of H or −H, and the numbers given
in the task description mainly serve the purpose of determining
whether, given the observed data, this individual case should
be treated as if H (vs. −H) were true. Examples include
the questions of whether a specific woman (with a positive
mammogram) has breast cancer or not, or whether a specific
man (with fresh needle pricks) is a heroin addict or not. For such
tasks, this variable has been coded as 1. In contrast, it was coded
as 0 for tasks in which the main focus was on the relationship
between the data D and the hypothesis H, in particular, on the
posterior probability (or the corresponding relative frequency).
The individual case is rather in the background and serves as
an illustration. Examples include the Varden Soap task in which
the vice president for production is not at all interested in the
treatment of an individual soap container that was identified
as defective, but in which he adopts a long run perspective
and wonders about a fair allocation of costs between the two
production facilities Ohio (H) and Virginia (−H) (see the
appendix of Hoffrage et al., 2015).

Dependent Variables
To find out how the quantitative and qualitative task
characteristics can account for variance on participants’
responses, we analyze these responses in two ways. Specifically,
our first dependent variable is the participants’ numerical
estimate, which is continuous and comes in form of probabilities,
percentages, or ratios, ranging from 0 to 100%. Our second
dependent variable is the cognitive strategy a participant used to
combine the given numbers (e.g., whether s/he provided the hit
rate as a response). This is a categorical variable with as many
levels as there are strategies, but it can also be seen as a vector
of mutually exclusive binary (dummy) variables, each of which

coded as present (i.e., with a value of 1) if a certain strategy is
used, and which yields, aggregated across responses, proportions.

Two of these cognitive strategies that we used as a model in
our analyses below are the base rate and the hit rate. The base
rate is identical to the normative (i.e., the Bayesian) solution if the
likelihood ratio is 1, that is, if the diagnostic information is not at
all diagnostic—which is the case if the hit rate and the false-alarm
rate are identical. Providing the hit rate as a response has been
referred to as the “inverse fallacy” (Koehler, 1996; Villejoubert
and Mandel, 2002), the “Fisherian algorithm” (Gigerenzer and
Hoffrage, 1995) or the “conversion error” (Wolfe, 1995), and
it has been accounted for by the representativeness heuristic
(Kahneman and Tversky, 1972) or the “confusion hypothesis”
(Macchi, 1995). Providing the false-alarm rate as a response
happened in only 1.6% of the cases and so we decided to omit the
results for this strategy in our analyses below (in Hoffrage et al.,
2015, this occurred in 3.2% of the responses, see their Table 2; and
it did not even pass the 1% threshold in Gigerenzer and Hoffrage,
1995, see their Table 3).

The two other cognitive strategies that we used are the
Bayesian, as the normative response strategy, and the joint
occurrence, which is the probability (or percentage) of cases
in which both the data (D) are present and the hypothesis
(H) is true: p(D&H). This number can easily be calculated by
multiplying the base rate and the hit rate (p(D&H) = p(D|
H)∗p(H); or by applying the hit rate information to the base rate
of the focal hypotheses, e.g., 10 out of 1,000 women have breast
cancer and 8 out 10 woman with breast cancer test positive, hence
8 out of 1,000 have breast cancer and test positive, see Table 1).
Joint occurrence is the numerator of Bayes’ rule, and given that
p(H|D) = p(D&H)/p(D), it can be seen as a step toward the
Bayesian solution that falls short of carrying the computation to
the end (see Johnson and Tubau, 2015). While we only classified
responses as stemming from the base-rate or the hit-rate strategy
when the responses were the exact values of the base rate or the
hit rate, respectively, we used a more lenient criterion for those
strategies for which the number could not simply be read off
but had to be computed. Specifically, we classified responses as
Bayesian or as stemming from the joint occurrence strategy when
the responses were in the range of ±1% point from the value of
the Bayesian solution or joint occurrence, respectively.

Gigerenzer and Hoffrage (1995) identified a wide range of
other strategies, some of them were very exotic, have rarely
been used, and basically reveal that participants had no clue and
combined the numbers in an arbitrary and/or unreliable way.
Such attempts come close to guessing, andmany participants said
right away that they simply guessed, without having been able
to say in which way they used the numbers exactly. Whether
‘guessing’ deserves being labeled as a strategy is a matter of
taste—pragmatically, that is, from a modeling point of view, it
is useless as ‘guessing’ does not allow one to make predictions
and to calculate goodness-of-fit measures. In sum, we restricted
the report of our results to four cognitive strategies—Bayes, base
rate, hit rate, joint occurrence—each of which made a precise
point prediction. Based on the previous literature (in particular
Gigerenzer and Hoffrage, 1995, and Hoffrage et al., 2015), these
were the most frequently used strategies.
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Results

We structure the report of our results as follows: first, we
analyze how the quantitative variables defined above are related
to the qualitative dimensions of the tasks, and, second, how
the qualitative variables are related to each other. Note that
these analyses are conducted without any participant data. Third,
we will present an overview of our data that comes close
to presenting the raw data, thereby comprising all essential
variables of the present analysis. Fourth, we will report how the
quantitative and, fifth, how the qualitative task dimensions affect
the numerical estimates. These analyses ignore process data and
do not take into account whether a participant used a particular
cognitive strategy, for instance, gave the hit rate as a response.
Subsequently, we will turn to those 52.3% of the responses
that have been identified as stemming from one of the most
prominent strategies. For this subset of our data, we will analyze
how, sixth, the representation format, seventh, the quantitative,
and, eigth, the qualitative dimensions affect the usage of cognitive
strategies.

How are the Quantitative Dimensions Related
to the Qualitative Dimensions?
In many real world contexts it may be the base rates that
determine which category stands out and attracts special
attention. In fact, for our 19 tasks, the correlation between base
rate and norm deviation is −0.64 [average base rate for tasks with
norm deviation coded as 1 and 0 is 3.4% and 35.1%, respectively,
t(16) = 3.43, p = 0.004]. Similarly, the correlation between the
Bayesian solution and norm deviation is −0.56 [average Bayesian
solution for tasks with norm deviation coded as 1 and 0 is
11.9 and 44.1%, respectively, t(16) = 3.06, p = 0.008], that is,
tasks for which H constitutes a norm deviation tend to have
lower Bayesian solutions. Moreover, it can be expected that for
these tasks (for which H can be seen as a norm deviation), the
stakes are high. If we consider natural catastrophes, diseases,
crimes, fraud, or failure of technical systems, then we find that
these are not only rare events and norm deviations, but that
there are usually also high incentives to detect them early in
order to be able to intervene and to prevent the worst. In other
words, stakes are high. Hence not surprisingly, Pleskac and
Hertwig (2014) observed that for many events in the real world,
probabilities and utilities are negatively correlated: the lower the
probability of events, the higher their magnitude in utility terms,
either as a cost (e.g., earthquakes with higher severities are less
likely), or as a benefit (e.g., higher stakes lotteries are less likely
to be won). Consistent with Pleskac and Hertwig (2014), the
correlation between base rate and stakes that we observed in
our set of 19 tasks is negative [−0.26; the average base rates for
high stake tasks is 14.8% and for low stake tasks it is 30.2%;
t(15) = 1.13, p = 0.27]. In turn, the Bayesian solutions for high
stakes tasks are also lower (27.2%), than for low stakes tasks
[41.2%, t(15) = 0.86, p= 0.40]. Also our third qualitative variable
is correlated with some of the quantitative variables: even though
the base rate for problems in which the main focus is on the
individual is lower than when the main focus is on the numbers
[11.9 vs. 22.1, t(17) = 0.86, p = 0.40], this does not translate into

differences in the Bayesian solution [32.6 vs. 29.6, t(17) = −0.21,
p = 0.83]. This pattern can be explained by a combination
of both smaller false-alarm rates [10.1 vs. 17.9, t(17) = 1.0,
p = 0.33] and higher hit rates [74.7 vs. 50.0, t(17) = −1.66,
p = 0.12].

How are the Qualitative Dimensions Related to
Each Other?
All correlations in the triangle of qualitative variables are
substantial and significant. The one between norm deviation
and stakes is 0.62 (p = 0.005), that is, in tasks centering on
norm deviations and abnormal cases, stakes tend to be high.
The correlation between norm deviation and main focus is 0.45
(p = 0.05), that is, tasks about norm deviations tend to focus on
the individual case. Moreover, the correlation between stakes and
main focus is 0.55 (p = 0.01), that is, problems involving high
stakes tend to focus on the individual case.

The results reported so far did not contain any participant
responses and could hence have been reported before the first
participant has shown up. Nevertheless, these are empirical
findings that capture aspects of the statistical structure of
Bayesian tasks. We will now turn to participants’ responses.

How are Participants’ Responses Distributed
in the 19 Tasks?
Figure 1 displays the 19 tasks listed in Table 1. It thereby
uses the same order, namely the one established by the base
rates, and the identification numbers in Table 1 correspond to
those in Figure 1. This figure comes close to a presentation
of the raw data. It visualizes, for each task, all variables that
are included in the present analyses: the two sets of predictor
variables (quantitative and qualitative task dimensions), and
the two kinds of dependent variables (numerical estimates and
response strategies). The quantitative dimensions of the task
are included as lines that represent the numerical values of
the base rate (Br), of the hit rate (Hr), of the false-alarm rate
(F), and also of the Bayesian solution (Bay). The letters that
stand for the three qualitative dimensions introduced above—
norm deviation (N), stakes (S), and main focus (M)—indicate
that the corresponding variable has been coded as “1” (absence
of a letter for a given task indicates that the dimension has
been coded as “0”). On the side of the dependent variables,
the figure displays the distribution of numerical estimates,
highlighting the estimates that correspond to specific response
strategies in vertical bars, while all other responses that could
not be assigned to one of the strategies that we selected for this
analysis are visualized in a horizontal bar. The height of the
vertical bars depicts the relative frequency of response strategy
usage.

The advantage of this kind of data representation is, at
the same time, its disadvantage. The figure contains a lot of
information and is very detailed. In the subsequent sections we
will hence focus on specific effects that the predictor variables
exert on the dependent variables, that is, we split the data into
subgroups and aggregate them so that some effects become better
visible.
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FIGURE 1 | Continued

FIGURE 1 | Continued

Distribution of numerical estimates for the 19 tasks compiled in Table 1
split by representation format. The 19 tasks are displayed below each
other, and sorted by their base rate. Responses to task versions in which
numbers were presented in terms of probabilities or percentages are plotted,
in blue color, above the x-axes, and responses to natural frequency versions
are plotted, in red color, below the x-axes. The figure does not highlight all
numerical estimates, but only those for the following five strategies: Bayes
(Bay), base rate (Br), hit rate (Hr), false-alarm rate (F) and joint-occurrence
(J). The y-axes of Figure plots the frequency of use of these strategies, that
is, of giving the corresponding number as an estimate (one gridline indicates
20% points) against the number that correspond to these strategies (on the
x-axes). These five strategies together account for a total of 53.9% of the
responses; the remaining 46.1% are distributed across the six intervals that
are defined by the five numerical estimates of the five strategies. The widths of
the bars for the strategies was set to be 1% and the heights of the intervals
between the strategies (or between the strategies and the end points of the
scales) were chosen such that equal areas amount to equal percentages of
participants responding with the corresponding numerical estimate (be it the
precise number of a given strategy or any estimate that falls within a given
interval). For some tasks, the numerical estimates corresponding to some
strategies yielded a value between 0 and 1, so that our chosen resolution would
require to plot them behind each other, with overlapping bars (and with the
consequence that the total areas would no longer be constant across tasks).
For these tasks, we stacked the areas corresponding to the involved strategies
on top of each other, so that the bars gained in height and were comprised of
different strategy users. Specifically, for Task 1 (probability version, p) the bar
at 0 represents: 1 Br; Task 1 (natural frequency version, nf): 3J; for Task 4p: 4J
and 2Bay; Task 4nf: 1J, 1Br, and 4Bay; Task 5nf: 1J and 2Br; Task 11p: 1J,
6Hr, and 5Bay; Task 11nf: 1J, 3Hr, and 13Bay. Moreover, for 10 of the tasks
from Gigerenzer and Hoffrage (1999), a total of 46 responses (corresponding
to 9.6% of all responses for these tasks) could not be displayed because
they fell between two adjacent responses of different strategies that were
too close to each other to allow for graphical representation. In addition, the
figure contains the classification for the three qualitative variables introduced
in section “Materials and Methods”: Norm deviation (N), Stakes (S), and Main
focus (M). Capital letters denote that the hypothesized event constitutes a norm
deviation, that stakes were high and that the main focus was on the individual
case; absent letters denote the opposite; and letters in lower case denote that
we could not agree how to code this variable (for instance, is being pregnant
a norm deviation or not?). When computing the correlations or the regressions
that are reported in the text, such unclear cases have been coded with 0.5,
and when reporting the relative frequencies of strategy usage, the results for
this variable level have been omitted.

How do the Quantitative Dimensions Affect the
Numerical Estimates?
To see how the numbers given in the task affect the
numerical estimates of the participants, we choose a data
representation that combines (a) scatter-plots in which each
dot denotes the average numerical estimate for a given task
and information representation format, with (b) marginal effects
from regression analysis and their corresponding confidence
intervals (Figure 2).

Figure 2A shows the numerical estimates as a function of
the Bayesian solution. If every participant would have given
the Bayesian response, the slope would have been one. Both
slopes fitting the participants’ estimates are smaller than 1, but
the slope in the frequency condition is significantly steeper
than in the percentage condition. This is partly due to the fact
that the proportion of Bayesian responses was higher in the
frequency condition; however, this interaction effect also persists
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FIGURE 2 | Graphical exploration of how the quantitative variables
(displayed at the x-axes) affect the numerical estimates (displayed
at the y-axis). Each blue dot represents the average response in the
probability/percentage version of a task, each red dot the average
response in the natural frequency version, and the size of each dot
indicates the number of responses on which these averages are based
(see also the rightmost column of Table 1). The marginal effects and
their confidence intervals are based on regression analysis. In (A) showing
the Bayesian solution on the x-axis, the regression included only
representation format and the Bayesian solution as main effects, as well
as their interaction. It does not include the three quantitative variables as
control variables, as the Bayesian solution already combines them
(according to Bayes’ rule). The other three panels (B–D) display the three
quantitative variables, base rate, hit rate, and false-alarm rate on the
x-axis. Each of the marginal effects and confidence intervals was
computed with representation format and all three quantitative variables as
main effects as well as interaction effects between representation format

and each of the three quantitative variables. In all regressions, standard
errors were clustered for each participant. We included four coefficients
and corresponding p-values in each panel. If at least one of the four
p-values in a given panel was lower than 0.1, then all four coefficients
and their corresponding p-values are displayed; otherwise not a single
number is reported. The reported numbers are arranged in the shape of
a diamond, the main effect on top and the interaction with representation
format at the bottom. On the left, we included the main effect when
calculating the regression only for responses in the probability/percentage
condition, and on the right the main effect in the natural frequency
condition. It does not come as a surprise that the numbers on top (main
effect) and the numbers on the right (main effect in the natural frequency
condition) are almost identical: the interaction is coded as the interaction
with the probability/percentage condition, thus the main effect captures
the effect in the natural frequency condition. The number on the left can
thus also be calculated by adding the main effect (the numbers on top)
and the interaction (numbers on the bottom).

when looking only at the non-Bayesian responses (B = −0.21,
p < 0.001). In particular, the slope in the probability/percentage
condition decreased from B= 0.40 when all responses were taken
into account to B= 0.30 when considering only the non-Bayesian
responses, and the slope in the frequency condition decreased
from B = 0.71 to B = 0.51 (all p’s < 0.001). Moreover, we found
that participants that were presented information in terms of
natural frequencies were more likely to respond with the Bayesian
solution; and if they did not, their responses were on average
closer to the Bayesian solution [note that this decrease in average
absolute differences among the non-Bayesian responses could not
be observed for the subset of the four tasks taken from Hoffrage
et al. (2015)—to the contrary, there we even found the opposite].

Figure 2B shows that, when statistically controlling for
the other two quantitative variables, higher base rates lead to
higher numerical estimates. As we have discussed above when
introducing the odds version of Bayes’ theorem, the prior odds,
represented by the base rate, should be positively correlated to the
posterior odds. Not surprisingly, such a positive correlation could
also be observed between base rates and participants’ numerical
estimates of posterior probabilities. Again, this effect is partly
driven by participants who give the Bayesian response, however,
it persists even after all Bayesian responses have been excluded
from the regression; in fact, this exclusion reduced the coefficient
(B = 0.31) but it still remains significant (p < 0.001). At the same
time, higher base rates are also associated with higher absolute
differences between numerical estimates and Bayesian solutions

(overall B = 0.09, p = 0.016; and when only considering the non-
Bayesian responses B = 0.25, p < 0.001). In sum, while more
participants find the Bayesian solution for tasks with higher base
rates, those participants who do not find the Bayesian solution
make larger mistakes in these tasks.

Similarly to the base rate, the hit rate also has a positive effect
on the numerical estimate, as can be seen Figure 2C. As for
the other analyses (Figures 2A,B), this effect also persists after
all Bayesian responses have been excluded from the regression
analysis (B = 0.35, p < 0.001). Interestingly, in the frequency
condition the influence of the hit rate on the numerical estimate
is significantly weaker. Additional analyses reveal that only in the
probability/percentage condition, higher hit rates are associated
with higher absolute deviations from the Bayesian response
(B = 0.30, p < 0.001), and that this effect persists after excluding
all Bayesian responses from the analysis (B = 0.28, p < 0.001).

In Figure 2D, it can be observed that the false-alarm rate
is strongly negatively related to the numerical estimate in the
percentage condition, but unrelated in the frequency condition.
The partial correlation between the false-alarm rate and the
Bayesian solution (after statistically controlling for the base rate
and the hit rate) is −0.13, implying that participants in the
probability/percentage condition are overreacting to the false-
alarm rate, and participants in the natural frequency condition
are not reacting enough. Note that in none of the 19 problems,
the false-alarm rate was above 50%, and thus the marginal effects
estimates for this area are based on pure extrapolation.
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In sum, the three numbers provided in the task are related
to the Bayesian solution and Bayes’ rule quantifies how the
exact relationships are. Generally speaking, the higher the base
rate, the higher the Bayesian solution; the higher the hit rate,
the higher the Bayesian solution; and the higher the false-
alarm rate, the lower the Bayesian solution. Each of these three
relationships could be found for the numerical estimates as well.
Interestingly, they could also be found even among the non-
Bayesian responses. When establishing these relationships for
one of the three quantitative dimensions through regression
analyses, we controlled for the other two. Note that this statistical
control has its limits, because a regression can only do so through
a linear combination, while Bayes’ rule is not a simple linear
combination. In a way, Bayes’ rule is the normative correct way
how to take all three pieces of information into account, and this
is exactly what we have done in Figure 2A—which nicely shows
that numerical estimates could very well be predicted through the
three numbers provided in the task.

How are the Qualitative Variables Related to
the Numerical Estimates?
To see how the three qualitative variables characterizing a given
task affect the numerical estimates of the participants, we adapted
the data representation of our previous question as follows:
in Figure 3, the three qualitative variables are depicted on
the respective x-axis of the three panels, and the numerical
estimates are plotted on the y-axis. As in our previous figure,
we again display a dot for the mean numerical estimate of
each task in each representation format conditions, and combine
this with marginal effects and their confidence interval from
regression analysis. The marginal effects of each of the qualitative
variables are calculated in a separate regression that only includes
the respective qualitative variable, representation format and

their interaction. We used separate regressions to explore the
differences in responses between tasks, as if the qualitative
variable was the only dimension on which the tasks differed.
Thus, all the differences between the tasks with a specific quality
(e.g., norm deviation = 1) and the tasks without that quality
(e.g., norm deviation = 0) will be reflected in the marginal effect
shown in Figure 3. These marginal effects can thus be seen as an
upper bound of the effect of the qualitative variable (unless these
qualitative variables are confounded with others factors that have
an opposing effect, if this were the case, then ‘controlling’ for these
other factors will increase the observed effects).

Figure 3A shows that the numerical estimates are lower for
norm deviation tasks. This negative effect is (significantly)
larger within the frequency condition compared to the
probability/percentage condition. This pattern can party be
explained by the lower Bayesian solutions for the problems
where norm deviation is 1, and by the larger number of
Bayesian responses in the frequency condition. However, even
when excluding all Bayesian responses, both the main effect
(B= −10.88, p < 0.001) and the interaction (B= 8.99, p= 0.007)
remain significant.

Figure 3B depicts a similar, yet less pronounced pattern for
the variable stakes. Like for norm deviation, this pattern is
partly, but not only, driven by differences in the percentage of
Bayesian responses (when only considering the non-Bayesian
responses: B = −10.3, p = 0.002 for the main effect and
B = 8.3, p = 0.065 for the interaction with representation
format).

Figure 3C visualizes the effect of the variable main focus.
Participants gave significantly higher numerical estimates for
tasks in which the main focus was on the individual case,
compared to tasks where the main focus was on the numbers.
In contrast to the effects depicted in the other two panels,

FIGURE 3 | Graphical exploration of how the qualitative variables
(displayed at the x-axes) affect the numerical estimates
(displayed at the y-axis). To avoid overlap of the dots (see the
caption of Figure 2 for details what they represent), the blue dots
are displayed slightly to the left of the confidence interval for the
marginal effect, and the red dots slightly to the right. In addition, blue
(red) dots that would overlap with other blue (red) dots are moved

slightly further to the left (right). The marginal effects and their
confidence intervals for each of the qualitative variables (A–C) are
calculated in a separate regression that only includes the respective
qualitative variable, representation format and their interaction (SE were
clustered for each participant). We included the four resulting
coefficients and corresponding p-values in each panel (see caption of
Figure 2 for details).
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the effect of main focus is significantly more pronounced
in the probability/percentage condition than in the frequency
condition. This is particularly interesting, as the Bayesian
solutions seem to be unaffected by this variable (r = 0.05), and
thus a main focus on the individual seems to distract participants
from finding the Bayesian solution (and this distraction effect is
stronger in the probability/percentage condition).

How does Representation Format Affect the
Usage of Cognitive Strategies?
In the previous sections we focused, unless otherwise noted, on
all responses and took the numerical estimates as the dependent
variable. We will now restrict the analyses only to those responses
that have been categorized as Bayesian, or that were identical to
either the base rate provided in the task, the hit rate, or the joint
occurrence of D and H. Across both representation formats, any
of these four strategies was used in 52.3% of our 1,773 responses.
The most frequent strategy, across both formats, was the Bayesian
strategy (with 27.7%). The second most often used strategy was
the hit rate, but with 11.1% it was used far less often than in
other studies (e.g., Villejoubert and Mandel, 2002). The third and
fourth most often used strategies were joint occurrence (with
9.2%) and base rate (with 4.3%), respectively.

How did strategy use depend on format? Averaged across all
participants and all 19 tasks, the Bayesian strategy was used in
16.9% of cases for probability/percentage representations, and in
38.5% of cases for natural frequency representations (p < 0.001,
in a logistic regression with standard errors clustered for each
participant). For the base rates, these numbers were 6.4 and
2.3%, respectively (p < 0.001), and for joint occurrence, 12.1 and
6.2%, respectively (p < 0.001). In contrast, format did not exert a
significant effect on responding with the hit rate (10.4 vs. 11.7%,
respectively; p= 0.61) and also not on the usage of the false-alarm
rate (1.2 vs. 2%, respectively; p = 0.23; the false-alarm rate is not
displayed in the Figures and will no longer be considered in the
analyses below).

How do the Quantitative Dimensions Affect the
Usage of Cognitive Strategies?
As in the last figures, Figure 4 combines scatter-plots to represent
the different tasks in both representation format conditions, with
marginal effects and their confidence intervals from regression
analysis. In the panels depicted in the first row (Figures 4A–D),
we explore how the quantitative variables influence participants’
performance in finding the Bayesian solution. Figure 4A shows
that the percentage of participants responding with the Bayesian
solutions does not depend on what the Bayesian solution is.
In Figure 4B, there is a trend indicating that the higher the
base rate, the more participants find the Bayesian solution. The
effect of the hit rate, depicted in Figure 4C, depends on the
representation format. In the probability/percentage condition,
higher hit rates seem to lead to less Bayesian responses, whereas
in the frequency condition, the effect of the hit rate seems to be
smaller and in the opposite direction. A potential explanation
can be found in the other panels of the third column. When
the hit rate is low, participants in the probability/percentage
condition used the base rate and the joint occurrence more

often as a response strategy. In the last panel of the first row
(Figure 4D), it can be seen that the higher the false-alarm rate,
the smaller the percentage of participants who found the Bayesian
solution. In the probability/percentage condition, this can again
be partly explained by a higher reliance on the hit rate and joint
occurrence as a response strategy. In the frequency condition,
however, it is unclear which strategy those participants used who
failed to find the Bayesian solution. Note that in the 19 tasks
we investigated, the highest false-alarm rate was at 50%, which
makes the estimates in the right part of the panel based on pure
extrapolation.

How do the Qualitative Dimensions Affect the
Usage of Cognitive Strategies?
In Figure 5, we explore graphically the effect of the three
qualitative variables, norm deviation, stakes and main focus (in
the three columns) on the response strategies (in the four rows),
again using a combination of scatter-plots and marginal effects
with confidence intervals. For the marginal effects and their
confidence intervals, we calculated a separate logistic regression
for each panel because we did not want to explore the unique
contribution of the quantitative variables, but rather the upper
bound of their explanatory power, under the assumption that they
represent the only difference between the tasks (as in Figure 3).

The panels in the first row depict the effects of the qualitative
variables on the percentage of Bayesian responses. Figure 5A
shows that in the probability/percentage condition, it is harder
for participants to find the Bayesian solution for tasks with
norm deviation, while in the frequency condition the percentage
of Bayesian responses did not seem to depend on whether a
task includes a norm deviation or not. In Figure 5B, it can
be seen that whether a task has high or low stakes does not
significantly affect the percentage of Bayesian responses. For the
sake of completeness, let us mention that when the stakes are high
(compared to low), participants in the probability/percentage
condition seem to respond more often with the base rate
(Figure 5E), less often with the hit rate (Figure 5H), and more
often with the joint occurrence (Figure 5K)—while participants
in the frequency condition remain largely unaffected by the
stakes. A main focus on the individual seems to negatively
affect participants’ performance in finding the Bayesian solution,
especially in the percentage condition (Figure 5C). Instead,
slightly more participants used the base rate as a response
(Figure 5F).

Discussion

In this paper we explored the effects of three quantitative and
three qualitative dimensions characterizing Bayesian inference
tasks on participants’ responses. To accomplish this, we plotted
the responses of 500 participants to 19 different tasks in
several ways. We started broadly with the numerical estimates
participants provided as responses, and afterwards classified
some of their responses as stemming from different response
strategies. We differentiated the tasks both based on the
quantitative variables that define the statistical problem—namely,
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FIGURE 4 | Each of the panels (A–P) visualizes how the quantitative
variable that is displayed at the x-axis affects the usage of the
cognitive strategy that is displayed at the y-axis. The dots represent the
average usage in the different tasks and versions (see caption of Figure 2
for details). The marginal effects and their confidence intervals are based on

logistic regression analysis with strategy use as the dependent variable,
following the same specifications as the regression analyses used for
Figure 2 (see the caption of Figure 2 for details). We also included the four
coefficients and corresponding p-values in each panel (again, see the caption
of Figure 2 for details).

the base rate, hit rate, and false-alarm rate—and on qualitative
variables that describe the context and narrative of the task. In
this explorative analysis, we found that participants seem not to
perceive all Bayesian inference tasks as being equal, and most
of the variables we investigated seem to influence not only the
specific numeric response participants are providing, but—and

of course not independently of the numeric responses—which
strategy they use. In the remainder of this paper, we want to
highlight three main lessons we draw from this exploratory
investigation, and we outline some avenues for future research.

First, the numerical value of the Bayesian solution does
not seem to influence whether participants find it. While their
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FIGURE 5 | Each of the panels (A–L) visualizes how the qualitative
variable that is displayed at the x-axis affects the usage of the
cognitive strategy that is displayed at the y-axis. The dots represent the
average usage in the different tasks and versions (see caption of Figure 2
for details about their color and size). The marginal effects and their

confidence intervals are based on logistic regression analysis with strategy
use as the dependent variable, following the same specifications as the
regression analyses used for Figure 3 (see the caption of this figure for
details). We included four coefficients and corresponding p-values in each
panel (see also the caption of Figure 2 for details).

responses are driven by the different pieces of information
stated in the task (base rate, hit rate, and false-alarm rate),
and by other qualitative variables that can be seen as irrelevant
from a normative point of view, their response strategy seems
to be unaffected by what the Bayesian solution is. For our
set of 19 tasks, about the same proportion of individuals
provides the Bayesian solution, independent of whether it

is as low as 0.03% or as high as 92.3%. However, the
large majority of the participants’ responses (77.9%) were
from a task for which the Bayesian solution was 42.9% or
less.

Second, focusing on the numbers, instead of the individual
case, seems to increase participants’ performance. Interestingly,
this effect was more pronounced in the probability/percentage
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condition and less pronounced in the natural frequency
condition. To better understand the effect of main focus, it is
useful to consider the debate about the underlying mechanism
of the beneficial effect of natural frequencies (Gigerenzer and
Hoffrage, 2007; Brase, 2008; Hill and Brase, 2012; Brase and
Hill, 2015; Johnson and Tubau, 2015). The two prominent
explanations for the beneficial effect of natural frequencies
are that they (a) make the nested set relationship more
explicit, and that they (b) prompt participants to think in
terms of frequencies (instead of “single event probabilities”).
Brase (2008) provided evidence for the second explanation:
participants who interpreted the somewhat ambiguous word
“chances” as frequencies performed better than those participants
who interpreted “chances” as probabilities. In line with this
explanation, a main focus on the numbers might lead participants
to adopt a frequentist point of view, thereby increasing their
performance. In contrast, a main focus on the individual
case might prevent participants from adopting and, in turn,
benefiting from such a viewpoint. This account would also
explain why the effect of main focus was more pronounced
for probability representations, where Bayesian performance
tends to be low and thus leaves more room for the effect
of focusing on the numbers—while for natural frequency
representations a main focus on the numbers had less added
value as most participants were already thinking in terms
of numbers anyway (but the effect of main focus could
still be observed even within the frequency condition, see
Figure 5C).

The practical consequences of the main focus might be
particularly severe, as the tasks with a focus on the individual
case tend to be about a norm deviation and tend to have high
stakes, at least in our sample of tasks. Of course we cannot
make any causal claims here, but our results are consistent
with the following speculation: if a specific problem involves a
norm deviation and if stakes are high, those who formulate a
problem may be led to focus on the individual case, for instance,
to attract the readers’ attention, to appeal to emotions, and
to increase empathy (cf. the identified-victim effect, Small and
Loewenstein, 2003). They may even adopt such a focus with
good intentions, namely to increase the readers’ involvement and
motivation to solve the problem. And even if a task description
is relatively neutral, chances are that the reader may focus on
the individual if the hypothesis involves a norm deviation and
if stakes are high. However, and ironically, such a frame increases
the difficulty of the problem, as our results suggest, andmaymore
than offset any beneficial effect that the increased motivation
and the personal affection might have. It may sound trivial,
but this points to a potential strategy how problems could be
reframed (or how individuals could reframe them in their head)
to boost the accuracy of responses: use natural frequencies rather
than probabilities to communicate the statistical information,
and, on top of this, focus on the numbers rather than on the
individual case. However, as our analysis is only exploratory,
future research would be needed to systematically test such a
reframing strategy, and to disentangle the effect of ‘main focus’
of the task from other effects and to identify potential boundary
conditions.

Third, in the probability/percentage condition, the
quantitative and qualitative task characteristics influenced
participants’ responses to a larger extent than in the natural
frequency condition. This could possibly be explained by the
fact that the percentage of Bayesian responses was higher
in the natural frequency condition (on average there were
38.5% Bayesian responses in the natural frequency condition
and only 16.9% in the probability/percentage condition).
For someone who figured out how to structurally solve the
Bayesian inference tasks (Johnson and Tubau, 2015), there
was no need to find a solution in the particulars of the task
specific context stories or to use a non-Bayesian strategy,
for instance, by taking one of the numbers provided in the
task or by integrating them in some other way. In contrast,
someone who did not understand how the numbers should be
combined could be tempted to look for similarities between
the problem at hand, and problems they have solved before.
In other words, for someone who figured out what the
normative response strategy is, the task content and any
other characteristics were exchangeable decoration—and for
those who did not, such variables could possibly exert an
influence.

Yet, in the natural frequencies condition, many participants
also struggled with the tasks and where hence vulnerable to
task dimensions that are irrelevant from a normative point of
view. Why are Bayesian tasks still hard for some, even when
information is presented in terms of natural frequencies? One
reason could be that outside of the lab, most situations in
which individuals update their beliefs do not feature numerical
information about base rates, hit rates, and false-alarm rates.
For some participants, it might have been the first time that
they encountered such text book problems when they read the
descriptions of the tasks in the context of the experiment. Outside
of the lab, information updating might often rather consist
of evaluating some data/sampling some information, based on
which individuals form their initial beliefs, and then afterward
evaluating some more data, maybe more locally relevant or
more recent, and then revising their beliefs in light on the new
data. Of course, in their statistical structure, such situations are
different from Bayesian inference tasks, but because individuals
have much more experience with other information updating
tasks, they might try to rely on this experience to make sense of
the Bayesian inference tasks. And, outside of the environment of
Bayesian inference tasks, information updating strategies that are
contingent on task specific factors such as the trustworthiness of
the initial data or the new data (Welsh and Navarro, 2012) or the
judgment of the validity of the sample (Fiedler, 2000) might be
ecologically rational.

Overall, we can conclude from these exploratory analyses that
not only the quantitative variables (the numbers given in the
task) but also our qualitative variables (norm deviation, stakes
and main focus) could explain some variance in participants’
responses and in particular in the strategies they use. However,
even though most of the effects of our six predictor variables
on the four strategies that we inspected reached statistical
significance, we hasten to add that such a result is not too hard
to achieve with 1,773 responses and that most of the differences
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between the percentage points of strategy use, contingent on
the levels of our dichotomous predictor variables, was in the
order of five percentage points. Given that most percentages
were close to the lower end of the scale, such differences are,
relatively speaking, quite large, but with respect to the whole
scale of 100%, a difference of 5% points is still a small difference.
Moreover, it is important to consider that this analysis is based
on a post hoc analysis of only 19 tasks, and that these tasks were
not designed to allow for systematic tests of the quantitative
and qualitative dimensions. For instance, as norm deviation is
highly correlated with the base rate and the Bayesian solution
(and not orthogonally manipulated), it is not possible to causally
attribute the observed effect to either the qualitative dimension
(i.e., the norm deviation narrative) or the underlying quantitative
dimensions (i.e., the numbers).

One avenue for future research could hence be to use
constructed scenarios and manipulate some of the variables
used in the present analysis systematically, that is, orthogonally.
A prime example for this approach is Krynski and Tenenbaum’s
(2007) study that we mentioned in Section “Introduction”:
these authors manipulated one aspect of the task while
keeping everything else constant. This would naturally allow for
conclusions that have a much higher internal validity, compared
to the observations we can share and the tentative conclusions
we can formulate based on our exploratory analyses, which were
based on a comparison between tasks that differed on many
aspects simultaneously.

Another avenue would be to go in the opposite direction:
not to use systematic designs, but what Brunswik called a
representative design (see Dhami et al., 2004). Even though we
referred to the present analyses as a first step toward an ecological
analysis of Bayesian inferences, we must acknowledge that it does
not fully deserve this label. For many of the 19 tasks, the base
rates and the statistical properties of the diagnostic test have
been made up rather than measured in a real-world context.
It would hence be interesting to conduct such an analysis and
to study the dimensions that may affect strategy use in larger

pool of Bayesian inference tasks from real-world applications
and with natural inter-correlations between the variables of
interest.

For many study participants, Bayesian inference tasks are
hard, and most responses are not Bayesian. Moreover, the
qualitative task characteristics that we scrutinized in our analyses
should not play a role from a normative point of view, however,
they did influence participants’ responses and they also had an
impact on which cognitive strategy they used. How can one
account for non-normative responses and for the finding that
task characteristics that should be irrelevant from a normative
point of view did play a role? A promising approach to answer
this question may involve making an attempt to put oneself
into participants’ shoes and to ask how they approach the task.
Which mental models (Gentner and Stevens, 1983; Johnson-
Laird, 1983) do they construct? What is their problem space
(Simon and Newell, 1971; Newell and Simon, 1972)? What kinds
of belief updating tasks do they encounter in their environments
and how could their experience with these tasks possibly inform
solutions to this special class of belief updating tasks that come
in the form of textbook problem? As researchers who study how
participants change their beliefs in light of new data, we may
eventually find out that we may need to change our perspective,
research questions, and research paradigms in light of new
experimental findings. Adopting the perspective of individuals
who have to solve Bayesian tasks, and aiming at understanding
what constitutes the environment of comparable tasks from their
perspective seems to be a fruitful avenue for future research.
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Marta Nowak-Przygodzka1
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This paper has two aims. First, we investigate how often people make choices
conforming to Bayes’ rule when natural sampling is applied. Second, we show that
using Bayes’ rule is not necessary to make choices satisfying Bayes’ rule. Simpler
methods, even fallacious heuristics, might prescribe correct choices reasonably often
under specific circumstances. We considered elementary situations with binary sets of
hypotheses and data. We adopted an ecological approach and prepared two-stage
computer tasks resembling natural sampling. Probabilistic relations were inferred from
a set of pictures, followed by a choice which was made to maximize the chance of
a preferred outcome. Use of Bayes’ rule was deduced indirectly from choices. Study
1 used a stratified sample of N = 60 participants equally distributed with regard
to gender and type of education (humanities vs. pure sciences). Choices satisfying
Bayes’ rule were dominant. To investigate ways of making choices more directly, we
replicated Study 1, adding a task with a verbal report. In Study 2 (N = 76) choices
conforming to Bayes’ rule dominated again. However, the verbal reports revealed use
of a new, non-inverse rule, which always renders correct choices, but is easier than
Bayes’ rule to apply. It does not require inversion of conditions [transforming P(H) and
P(D|H) into P(H|D)] when computing chances. Study 3 examined the efficiency of three
fallacious heuristics (pre-Bayesian, representativeness, and evidence-only) in producing
choices concordant with Bayes’ rule. Computer-simulated scenarios revealed that the
heuristics produced correct choices reasonably often under specific base rates and
likelihood ratios. Summing up we conclude that natural sampling results in most choices
conforming to Bayes’ rule. However, people tend to replace Bayes’ rule with simpler
methods, and even use of fallacious heuristics may be satisfactorily efficient.

Keywords: Bayes’ rule, choices, binary hypothesis, heuristics, natural sampling, ecological rationality,
non-inverse rule
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Introduction

This paper aims to investigate whether people conform to Bayes’
rule when making choices in probabilistic situations, or whether
they tend to simplify their reasoning by using other methods.
To develop an understanding of what a Bayesian problem is,
consider the following example:

The red nose problem (Zhu and Gigerenzer, 2006, p. 289).
Pingping goes to a small village to ask for directions. In this

village, 10 out of every 100 people will lie. Of the 10 people who
lie, eight have a red nose. Of the remaining 90 people who do
not lie, nine also have a red nose. Imagine that Pingping meets a
group of people in the village with a red nose. Howmany of these
people will lie?

The red nose problem illustrates an elementary situation,
which is defined with binary sets of hypotheses (H and not-H)
and data (D and not-D). A person can lie or not and have a
red or non-red nose. There can be several hypotheses and data
sets, but discussing such situations is beyond scope of the present
article. According to Bayes’ rule, an estimate of the posterior
probability of a distinct hypothesis should be computed using the
observations provided and the prior probability of the hypothesis.
In the example, the goal is to compute the posterior probability of
being a liar given that a person has a red nose. We denote it with
P(H|D) and compute it with the formula:

P(H|D) = P
(

H and D
)

/ P(D) = (1)

P(H)P(D|H) / [ P(H)P(D|H) + P(not-H) P(D|not-H)]

To perform the calculation we need to know the base
rate P(H), which is the chance of a person being a liar,
P(H) = 10/100 = 10%. Thus, the chance of being a non-
liar, P(not-H) is 90%. This should be updated with new data,
conditional probabilities P(D|H) and P(D|not-H). Hence, there
are P(D|H) = 8/10 = 80% of people with a red nose among
liars, and P(D|not-H) = 9/90 = 10% among non-liars (people
who have a red nose when they tell the truth). This enables
computation of whether a person with a red nose will lie:

P(H|D) = 10% × 80% / [10% × 80% +
90% × 10%] = 47%

The conclusion is that those with a red nose will lie with a 47%
probability.

Bayesian estimates are counter-intuitive and people are
usually surprised by the discrepancy among a base rate (10% in
the above example), likelihood ratio (80%), and actual Bayesian
probability (47%). Similar discrepancies occur in such well-
known cases as the taxi cab problem (Tversky and Kahneman,
1982) and the mammography problem (Eddy, 1982). In the taxi
cab problem, given a witness’s evidence that a cab was blue, the
probability that the cab was actually blue is 41%. This Bayesian
result differs from – specified in the case – the base rate of
15% and the likelihood ratio of proper color identification which
equals 80%. In the mammography problem, while the base rate of
breast cancer is 1% and the likelihood ratios are 80% for a positive

test and 9.6% for a false alarm, the actual Bayesian probability is
7.8%.

Numerous studies show that people have difficulty in finding
solutions for Bayesian problems. Subjects acquainted with
new evidence are conservative and underestimate posterior
chances (Phillips and Edwards, 1966; Edwards, 1968). They
also demonstrate the base rate fallacy, neglecting P(H), and the
inverse fallacy, confusing likelihood ratios P(D|H) with Bayesian
estimates P(H|D) (Koehler, 1996; Villejoubert andMandel, 2002).
Systematic ignorance of prior probabilities and overuse of the
representativeness heuristic have led to the conclusion that
people are not Bayesians (Kahneman and Tversky, 1972, 1973;
Tversky and Kahneman, 1982).

Misapprehension of the probabilities may lead to inadequate
decisions and entail severe consequences. Gigerenzer et al.
(1998) reported the case of seven out of 22 blood donors
who committed suicide after they were shown to be HIV-
positive by the ELISA and Western Blot tests, which had
a 100% detection efficiency. It transpired that the actual
Bayesian probabilities were around 50%. The authors concluded
that there is a need to develop tools for understanding and
appropriately communicating risks in AIDS counseling centers.
Such problems occur not only in the domain of medical diagnosis
but in other domains where probabilistic evaluations depend
on both prior distributions and newly obtained information
(e.g., in management, law and intelligence analysis – see
Nance and Morris, 2005; Hoffrage et al., 2015; Mandel, 2015).
A vast amount of research was focused on pedagogical issues
surrounding Bayesian inference. Methods were elaborated to aid
the understanding of Bayes’ rule and facilitate communication
of risk appropriately. These used visual representations such
as Venn diagrams, trees, pictorial representations, or frequency
grids (Mellers and McGraw, 1999; Yamagishi, 2003; Brase,
2008; Mandel, 2014; Navarrete et al., 2014; Sirota et al.,
2014).

Bayesian reasoning issues have been of particular interest
to evolutionary psychologists, who have proposed an ecological
rationality framework for research (Gigerenzer and Hoffrage,
1995; Cosmides and Tooby, 1996; Brase et al., 1998). According
to this approach, people are not evolutionarily prepared for
performing abstract computations. In particular, the concept
of probability is an ecologically invalid notion. The calculus
of probability is a relatively recent discovery in humankind’s
history, and the human mind having evolved to maintain
information in the form of absolute numbers. Such numbers
are termed natural frequencies and the process of gathering
information on natural frequencies through real life experience
is termed natural sampling (Kleiter, 1994; Gigerenzer and
Hoffrage, 1995; Gigerenzer, 1998). Because humans have
collected information in the form of natural frequencies
throughout evolution, such representations facilitate correct
Bayesian reasoning (Cosmides and Tooby, 1996; Sedlmeier and
Gigerenzer, 2001).

For example, the natural frequencies in the red nose problem
are:

• The total number of village inhabitants, a = 100,
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• Numbers of liars, b = 10,
• Non-liars, c = 90,
• People with a red nose among liars, d = 8,
• Liars with no red nose, e = 2,
• Non-liars with a red nose, f = 9,
• Non-liars with no red nose, g = 81.

Studies by Zhu and Gigerenzer (2006) showed that even
children can give appropriate answers to Bayesian problems if
they are presented with natural frequencies. The frequencies
simplify computations because posterior probabilities can be
estimated as:

P(H|D) = d/[ d + f ]

To compute whether a person with a red nose will lie it is
sufficient to calculate:

P(H|D) = 8/(8 + 9) = 47%

The evolutionary approach has been criticized for being
difficult to falsify (Girotto and Gonzalez, 2001). While people
deal with natural formats better than with probabilities, this does
not necessarily mean that this ability has developed through
natural selection or adaptation. One cannot simply rely on
previous experience to perform successfully in a novel or complex
environment. Frequencies help visualize nested sets and relations,
and thereby facilitate solution of Bayesian problems, but this
does not necessarily result from Bayesian inference (Sloman
et al., 2003). Solving probabilistic problems requires also the
comprehension of elementary logic, set operations and relations
(Barbey and Sloman, 2007). For instance in Girotto and Gonzalez
(2001) studies subjects performed better when subset relations
were activated.

We agree that the evolutionary approach is not convincing in
its explanation of how reasoning developed, and the issue of how
the ability to collect and process natural frequencies developed in
humans is debatable. However, there is agreement that natural
frequencies are easier to process and that people learn about
statistical relationships from natural sampling in real life. Hence,
the ecological framework seems to be valid at least in that:

(1) Statistical information is gathered via natural sampling,
(2) The environment defines objectives and supplies means to

achieve them, and
(3) Human rationality is ecological.

Nevertheless, these propositions lead us to conclude that single
probability judgments do not provide sufficient information for
attaining goals in situations such as the red nose problem, where
choices are placed before people in fact. In the original story
(Zhu and Gigerenzer, 2006), Pingping’s goal is to obtain the
right directions to continue his journey, and he is expected to
assess the chance of being cheated by people with a red nose.
However, exploring the truthfulness of people with red noses
only is not enough: Pingping has to decide whether to ask for
directions someone with a red nose or refrain from this and ask
a person without a red nose, actually. ‘Having no red nose’ is also

a clue with some ecological validity. Thus, we propose a modified
question in the red nose problem:

Should Pingping ask a person with a red nose for directions,
or find a person who does not have a red nose?

What works for evaluating the truthfulness of people with red
noses will also work for evaluating the truthfulness of people
without red noses. To answer the question, Pingping should
calculate the proportion of liars among both people with red-
noses and people without red noses, applying Bayes’ rule twice:

• P(H|D) = d/(d + f ) = 8/(8 + 9) = 47%
• P(H|not-D) = e/(e+ g) = 2/(2 + 81) = 2%

Having compared these chances, Pingping should conclude
that he takes a far greater risk of being lied to when he asks
someone with a red nose and conclude that it is better to find
someone without a red nose.

Reconsidering the red nose problem in such a way shows that,
to solve such problems, estimates referring to all the options are
needed. This is in the line with probabilistic functionalism, which
proposes that people do not evaluate probabilities for their own
sake, but to achieve specific goals. People infer missing data from
probabilistic indicators to reduce incompleteness and uncertainty
in their knowledge (Brunswik, 1943; Dhami et al., 2004; Pleskac
and Hertwig, 2014).

There is common agreement that natural sampling may
facilitate correct Bayesian reasoning. People acquire knowledge
about probabilities from their own experience rather than
compiled frequency statistics (Gigerenzer, 1998). Surprisingly,
natural sampling is not reflected in most experiments, where
participants are provided with well-prepared and well-arranged
natural frequencies or probabilities (Kleiter, 1994; Girotto and
Gonzalez, 2001). We postulate that experiments should attempt
to approximate the experiential aspect of natural sampling.
However, such experiments should not give clues to participants
about processing data at the same time. An understanding of
conditions in general is a crucial step in solving a Bayesian
problem. After realizing that the inferential process should be
narrowed to a given condition (the first step in Eq. 1), one should
invert one’s thinking about conditions from D|H into H|D (the
second part of Eq. 1). Framing tasks with natural frequencies
(“Imagine that Pingping meets a group of people in the village
with red noses. How many of these people will lie? __ out of __,”
as originally in Zhu and Gigerenzer, 2006, p. 289) is suggestive
and entails scaffolding the answers. The group characterized by
data D is identified directly (“these people”) and the subsequent
question suggests narrowing thinking to this set (“__ out of __”).
A person has no need to perform the first step on their own in
tasks framed this way, and the clue about how to answer helps
people to avoid comitting the inverse fallacy. Hence, we postulate
that research techniques should reflect natural sampling, but in
a way that gives no clues to participants about how to process
probabilistic information.

In our studies, we mimic the process of natural sampling and
present participants with actual events instead of probabilities or
frequencies. We anticipate that participants should have learned
these from their own experience and that they should make
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choices based upon them. This approach reflects a paradigm
in which decisions based upon participants’ own experience are
explored, as proposed by Hertwig et al. (2004) and continued
by their followers (for a review, see Hertwig and Erev, 2009;
Rakow and Newell, 2010). As these researchers argue, people
make everyday decisions, such as backing-up a hard drive or
crossing a busy street, by relying on the recall of events that
they have previously experienced, not based upon descriptions of
outcomes or likelihoods (Hertwig et al., 2004). Everyday decisions
or choices rarely need to be articulated in exact numbers and
the outcome of one’s inference is usually expressed in his actions
or choices, not in estimates of probabilities. Therefore, it should
be easier for people to deal with Bayesian problems by choosing
between two alternatives (differing with respect to a posteriori
probabilities of success) rather than giving exact numbers. Hence
the first question regarding choices in elementary situations that
we aim to answer is:

[Q1] How often do people make choices satisfying Bayes’
rule, when probability information is gathered through natural
sampling?

In answering Q1, one can expect that [H] choices will conform
to Bayes’ rule in natural sampling settings:

[Ha] in most of the tasks (a strong criterion) or
[Hb] more frequently than at random (a weak criterion).
On the one hand, people tend to maximize their performance.

It should also be easier for people to articulate a solution
by choosing between two alternatives, rather than articulating
exact numbers. Hence, their choices should comply with
Bayesian rule (Ha). On the other hand, using the rule is
cognitively costly, so it may often be ignored or replaced
with heuristics or other methods. For instance, comparing
fractions may turn out to be just as hard as comparing
probabilities or percentages (Kleiter, 1994; Gigerenzer and
Hoffrage, 1995; Gigerenzer, 1998). Even if fractions are estimated
properly, computational complexity increases with the necessity
of performing two correct Bayesian evaluations and performing
a correct comparison of them when making choices. We
therefore also formulated a weaker expectation that the choices
would comply with Bayes’ rule more frequently than other
methods (Hb).

To answer question Q1, we created experiments that reflected
natural sampling, with the intention of showing how often people
make choices satisfying Bayes’ rule (Studies 1 and 2).

Using Bayes’ rule requires cognitive effort and only pays-
off when one can make significantly better decisions. Cognitive
limitations and the avoidance of effort make people turn to
the use of fallacious heuristics, which are popular because they
are frugal and still roughly correct (Gigerenzer et al., 1999;
Gigerenzer, 2004, 2008). As Simon (1955, 1956) hypothesized,
people select strategies that meet minimal standards and
aspirations. Ecological rationality postulates that calculations do
not have to be correct, however, they should be correct reasonably
often (Gigerenzer, 2004; Over, 2004). As Gigerenzer (2008, p. 25)
further explained, “The goal of an organism is not to follow logic,
but to pursue objectives in its environment, such as establishing
alliances, finding a mate, and protecting offspring. Logic may or
may not be of help. The rationality of the adaptive toolbox is not

logical, but ecological; it is defined by correspondence rather than
coherence.”

Summing up, the interesting issue is whether heuristics can
prescribe correct answers satisfactorily often, given some specific
circumstances. Thus, we raise the question:

[Q2] How often do fallacious heuristics yield choices that
conform to Bayes’ rule?

Zhu and Gigerenzer (2006) observed that, instead of Bayes’
rule, people use the following fallacious heuristics (following
these authors, we apply the term “cognitive strategies” or in short
“strategies” describing them and Bayes’ rule):

• the conservatism strategy: b/a,
• the evidence-only strategy: (d + f )/a,
• the representativeness strategy: d/b,
• the pre-Bayesian strategy: b/(d + f ).

By analogy, people may apply these cognitive strategies to
simplify their choices in elementary situations through the
following comparisons:

• the evidence-only strategy: comparing (d + f )/a with
(e + g)/a,

• the representativeness strategy: d/b with e/b,
• the pre-Bayesian strategy: b/(d + f ) with b/(e + g), and
• the conservatism strategy: b/a with c/a.

In the red nose problem, the Bayes’ rule, the representativeness
strategy (d/b = 8/10 > e/b = 2/10) and the pre-Bayesian strategy
[10/(8 + 9) > 10/(2 + 81)] would result in a decision not to ask
a person with a red nose. Only the evidence-only strategy would
render a different conclusion [(8 + 9)/100 < (2 + 81)/100].

To answer question Q2 we investigated how often fallacious
strategies (representativeness, pre-Bayes, and evidence-only)
prescribe the same choices as Bayes’ rule by carrying out
computer simulations of natural frequencies (Study 3).

Study 1

The goal of Study 1 was to answer Q1: how often do choices
conform to Bayes’ rule in elementary situations?

Materials and Methods
We used a computer program with a sequence of 16 simulation
tasks, which we called “adventures.” Introductory instructions
were as follows: “The study you will be taking part in is aimed
at finding out how people find precious objects. You will be
presented with 16 opportunities to acquire precious objects:
diamonds and amber. Each of the 16 adventures consists of two
stages. The initial phase should familiarize you with the area. The
second part requires you to identify where the gem is hidden.
Each adventure is independent and concerns treasures in the
form of diamonds or amber. The next screen will reveal the first
phase of adventure number one. You will be presented with seven
cards. On the face of each card you will find a diamond (a piece
of amber) or a stone (a piece of broken glass). Clicking the card
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FIGURE 1 | The computer task: the learning stage – (A) before, (B) during, and (C) after turning over the cards.

will turn it over and reveal a color: green or yellow. Your task
is to click on, i.e., turn over, all the cards to reveal colors on the
back of the diamonds and stones. In the second stage, you should
select the card with the color that has a diamond or a piece of
amber underneath. You will take part in 16 such adventures.”
Subsequently, participants were asked if they understood the
instructions. If so, they proceeded to perform the 16 tasks. Half
of the adventures contained diamonds and stones, the other half,
amber and glass, respectively. (For clarity, henceforth we only
describe the method referring to diamonds and stones.)

Each adventure consisted of two stages.
The first stage was the learning stage, which was a simulation

of natural sampling and was intended to develop intuition about
Bayesian relationships. A participant was presented with seven
cards showing valuable objects or worthless items on their faces
(Figure 1A). The participant was instructed to turn over all of the
cards in order to reveal the colors on their backs (Figures 1B,C).
The person was to remember the colors associated with diamonds
and stones, which would help them to acquire a diamond in the
next step. Yellow and green colors were used for the back of
the cards because these colors have relatively neutral emotional
connotations (Karp and Karp, 1988).

In probability terms, a participant could learn:

• Prior occurrences of diamonds [b/(b + c)] and stones
[c/(b + c)];

• Likelihood ratios for the backs of diamonds: green
[d/(d + e)], yellow [e/(d + e)];

• Likelihood ratios for the backs of stones: green [f /(f + g)],
yellow [g/(f + g)];

• Bayesian estimates of revealing a diamond for backs: green
[d/(d + f )], yellow [e/(e + g)].

In the second stage of the adventure, participants chose
between two differently colored cards (Figure 2). They received
the following instructions: “Now you have a chance to find a
diamond. There are two fields shown below, green, and yellow.
One of them contains a desired diamond. Given what you have

just learned, which color would you choose? Please select one
card.”

Choices satisfy Bayes’ rule, when they are consistent with
comparisons of the two Bayesian estimates shown above. We
considered four strategies: Bayesian, pre-Bayesian, evidence-only
and representativeness (Zhu and Gigerenzer, 2006). One binary
choice would not allow us to discern between all the four
strategies, as it has two alternatives only: two or more strategies
could result in the same choice. Hence, strategies were inferred
from pairs of adjacent adventures. To detect strategy use, we
looked at eight pairs of adjacent adventures: 1 and 2, 3 and 4, 5
and 6, etc., up to 15 and 16. The second (even-numbered) task in
a pair was determined by the first choice so as to allow distinct
identification of the strategies used. For example, let us consider
the first adventure, specified as (d, e, f, g)= (2, 1, 3, 1). This means
that we have the following cards: green-diamond (2), yellow-
diamond (1), green-stone (3), yellow-stone (1). If a person used
representative or evidence-only strategies they would select a
green card. If they took a Bayesian or pre-Bayesian approach they
would choose yellow. Suppose that a participant selected a yellow
card in the first task. The second task in the pair was then specially
matched to distinguish between use of a Bayesian or pre-Bayesian
strategy. For example, it could take the form of a task specified as
(d, e, f, g) = (1, 2, 2, 2). If the participant chose a yellow card here,
it was concluded that they used a Bayesian strategy. Similarly,
other strategies were identified through matching the second task
to the choice that was made in the first task in a pair. We used
the following patterns of frequencies (d, e, f, g): P1 = (2,1,3,1),
P2 = (1,2,1,3), P3 = (2,1,2,2), P4 = (2,1,1,3), P5 = (1,2,3,1),
and P6 = (3,1,2,1). These served to construct the eight pairs of
adventures as follows: pair I (P1 and: P3 when a yellow card was
chosen in adventure P1 or P4 when a green card was chosen in
P1), pair II (P1 and: P3 or P5), pair III (P1 and: P6 or P4), pair
IV (P1 and: P6 or P5), pair V (P2 and: P3 or P4), pair VI (P2
and: P3 or P5), pair VII (P2 and: P6 or P4), and pair VIII (P2
and: P6 or P5). The program randomized the pairs and the on
screen allocation of precious and invaluable items on different
backgrounds. The content of adventures was also randomized
and these consisted of one of the following two stimulus sets: (1)
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FIGURE 2 | The computer task: the color choice stage.

diamonds vs. stones in adventures 1–4 and 9–12, and ambers vs.
pieces of glass in adventures 5-8 and 13–16, or (2) diamonds vs.
stones in adventures 5–8 and 13–16, and ambers vs. pieces of glass
in adventures 1–4 and 9–12.

Because we were looking for consistent application of the four
strategies in eight pairs, scores for making choices conforming
to Bayes’ rule or other strategies ranged from 0 to 8, summing
to 8. We assumed that participants used a strategy consistently
and that any deviations from this strategy were accidental.
However, it was possible that people might have applied different
methods when solving different tasks (because of different task
contents, practice, cognitive load, etc.). To provoke use of
the same way of thinking in all of the tasks, we provided
no feedback during testing so that participants would not
learn from practice. Thus, we did not suggest to participants
which data they should take into consideration. All tasks were
homogeneous in terms of content, format, and difficulty. To
minimize cognitive load we limited the learning phase to clicking
on seven pictures only and required every adventure to be
solved separately. We asked participants to complete all of the

tasks at once to prevent any change in skills. We attributed all
inconsistencies in responses and strategies applied to random
noise and errors.

The Studies 1 and 2 experiments were approved by Scientific
Research Ethics Committee at the Faculty of Psychology,
University of Warsaw, and informed consent was obtained from
all subjects.

Participants and Procedure
A stratified sample of N = 60 students aged 20–35 (M = 24.58
years, SD = 3.16) volunteered for the study. Participants were
equally distributed with regard to gender and type of education
(humanities and pure sciences). Individual interviews took
place at the University of Warsaw and Warsaw University of
Technology. The study was presented as a computer game
involving gathering precious items. Completing all of the tasks
took about 15 min. Participation was anonymous and not
rewarded. At the end, participants were informed about their
scores.We then acquainted participants with the actual objectives
of the study.
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Results and Interpretation
Table 1 shows how often each strategy was applied.

Choices conforming to Bayes’ rule were more common than
they would be at random [M = 4.58, SD= 2.42, test value:μ = 2,
t(59) = 8.27, p < 0.001, d = 1.067; Scaled JZS Bayes Factor
B = 5.15 × 108, supporting μ > 2]. Therefore, the weak version
of the hypothesis (Hb) was supported. The Bayesian strategy was
dominant and was used in slightly more than half of the cases,
however, test statistics were non-significant [test value: μ = 4,
t(59) = 1.87, p = 0.067, d = 0.241, with a non-decisive Scaled
JZS B = 1.283]. Thus, the strong version of the hypothesis (Ha)
was not supported.

Participants’ choices conformed to Bayes’ rule in a majority
of cases (57%, M = 4.58 out of 8), showing that the strategy
was used more often than by chance. Furthermore, it was more
popular than all the other strategies taken together. The weak
hypothesis was supported, but the results involving the strong
hypothesis were marginally non-significant. However, the natural
sampling procedure demanded that participants computed and
compared natural frequencies. This makes natural sampling tasks
involving choices potentially more intellectually demanding than
pure natural frequency problems. One would therefore expect a
greater percentage of fallacious answers when natural sampling is
used.

While the adopted methodology resembled natural
sampling, it obscured the process of inference underlying
choices. A decision based on experience has four phases: (1)
gathering information (counting objects); (2) building a mental
representation (such as classes of objects and their proportions);
(3) processing of information using a choice mechanism
(comparison of estimates); (4) making a final selection. Only
information gathering and the final decision are external,

TABLE 1 | Strategies applied for Bayesian problems in Study 1.

Strategies Descriptive Statistics (N = 60)

Min Max M SD

Bayesian 0 8 4.58 2.42

Pre-Bayesian 0 4 0.82 1.13

Representativeness 0 7 2.15 2.07

Evidence-only 0 5 0.45 1.06

observable events (Camilleri and Newell, 2009). Therefore, as
our results might have appeared to be rather optimistic, we
decided to replicate Study 1 but asking participants how they
solved the problems in more detail.

Study 2: Replication of Study 1 with
Verbal Protocols

The goal of Study 2 was to replicate Study 1 so as to identify
strategies applied in Bayesian tasks more directly. We utilized a
process tracing method (Baron, 1994, pp. 19–24). The classical
process tracing approach specifies that participants should not
be requested to justify their decisions (Nisbett and Wilson, 1977;
Ericsson and Simon, 1980). However, participants should easily
explain their choices, since the contents of tasks included simple
notions, numbers, and computations.

Materials and Methods
Study 2 was intended to generate results comparable to those
from Study 1. The study used the same set of computer tasks as
Study 1. After completing the tasks, participants were asked to
solve an additional Bayesian exercise. This exercise reproduced
a computer task, but was conducted using paper cards. The
experimenter presented seven cards with diamonds and stones
on and then asked a participant to turn over the cards. After they
were all turned over, the cards were taken away and two cards
were presented: one yellow and one green. Before uncovering
one of them, the participant was asked about the method they
used to solve the exercise. The experimenter refrained from
providing any suggestions or clues as to how to perform the
task or make any computations. Thus, the method applied here
differed from the “write aloud” protocols used by Gigerenzer and
Hoffrage (1995). At the end of the procedure, the experimenter
classified the participant’s answer using the coding list presented
in Table 2. For example, where a participant compared the
natural frequencies of differently colored cards to their total
number the experimenter registered this as an evidence-only
strategy.

Participants and Procedure
A sample of N = 76 students aged 18–31 (M = 23.82 years,
SD = 2.17) volunteered for the study. Participants were equally
distributed into four cells (n = 19 each) with regard to gender

TABLE 2 | Coding strategies identified in verbal protocols on the paper task.

Verbal explanation Interpreted as using the strategy

Comparing relative or absolute frequencies of yellow and green diamonds: d/b vs. e/b or d vs. e Representativeness

Comparing relative or absolute frequencies of yellow and green cards: d + f vs. e + g or (d + f )/a
vs. (e + g)/a

Evidence-only

Comparing the relationship of the number of cards with diamonds to the number of cards with
defined colors: (d + e)/(d + f ) vs. (d + e)/(e + g)

Pre-Bayesian

Comparing empirical probabilities of cards with diamonds among yellow cards with empirical
probabilities of cards with diamonds among green cards: d/(d + f ) vs. e/(e + g)

Bayesian

Comparing numbers of cards with diamonds and stones: b vs. c Conservatism

Other explanations (mixed strategies, guessing, intuition, etc.) Mixed/guessing/other
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and type of education. We applied the same procedure as in
Study 1 but added the paper task. The experimenter presented the
computer-based tasks from Study 1, followed by the additional
exercise, individually to each participant.

Results
Bayesian and Other Strategies
The Bayesian strategy was applied significantly more often than
would occur randomly [test value:μ = 2, t(75) = 7.41, p < 0.001,
d = 0.850; Scaled JZS B = 6.33 × 107, supporting μ > 2 – see
Table 3]. This strategy again dominated, being utilized in more
than half of the cases. Nevertheless, the extent to which use of the
strategy exceeded half of the cases was non-significant [test value:
μ = 4, t(75) = 0.745, p > 0.10, d = 0.850, Scaled JZS B = 1.465
was not decisive]. Thus, again there was support for the weak
criterion (Hb), but the strong criterion (Ha) went unsupported.
Hence, Study 2 replicated the results of Study 1.

Verbal Protocol vs. Computer-Based Tasks
Participants’ verbal explanations revealed a new, quite frequently
used strategy (32% participants in the whole sample: 18 out of 33
who used the Bayesian strategy in computer tasks, and 8 out of 11
who used heuristics).

The new strategy is different from the strategies listed in
Table 2. This new strategy included comparing the number of
yellow (green) cards among diamonds with the yellow (green)
cards among stones. Using the notation we adopted, for yellow
this would be: d/(d + e) vs. f /(f + g), and for green: e/(d + e) vs.
g/(f + g). Using this strategy does not require inverse thinking
about conditions and computing P(H|D) when P(D|H) is given.
Intriguingly, this new strategy produces choices that are always
the same as choices based on using Bayes’ rule. Comparing
d/(d + e) with f /(f + g) is equivalent mathematically with
comparing d × (f + g) with f × (d + e), and subsequently:
(d × g + d × f ) with (e × f + d × f ); d × g with e × f ;
(d × g + d × e) with (e × f + d × e); d × (e + g) with
e × (d + f ), and finally d/(d + f ) with e/(e + g). This last
comparison represents the Bayesian strategy.

Most participants (57 out of 76, i.e., 75%) used consistently
algorithmic (Bayesian or the new strategy) or fallacious strategies
in both the computer and paper card tasks (Table 4).

Thirty-three out of 41 participants (80%), whose dominant
strategy was the Bayesian strategy in computer tasks, used the
Bayesian strategy or the non-inverse strategy in the paper tasks.
Twenty-four out of 35 (69%) used other strategies in both types of

TABLE 3 | Strategies applied for Bayesian problems in Study 2.

Strategies Descriptive statistics (N = 76)

Min Max M SD

Bayesian 0 8 4.22 2.62

Pre-Bayesian 0 4 0.96 1.08

Representativeness 0 8 2.34 2.24

Evidence-only 0 4 0.47 0.92

TABLE 4 | Dominant strategies in computer tasks vs. strategies used in
the paper task in Study 2.

Dominant strategies
in computer tasks

Verbal reports in the paper tasks Total

Bayesian or
the new strategy

Other
strategies

Bayesian strategy 33 (80%) 8 (20%) 41 (100%)

Other strategies 11 (31%) 24 (69%) 35 (100%)

Total 44 (58%) 32 (42%) 76 (100%)

tasks. Consistency in using dominant strategies in the computer-
based tasks and analogous strategies in paper excercises was
moderate [χ2(1, N = 76) = 18.64, p < 0.001, ϕ = 0.495].
Summing up, Study 2 confirmed the results of Study 1, showing
that most choices were consistent with Bayes’ rule. However, they
were the result of using of not only Bayes’ strategy, but also the
new, non-inverse strategy.

Study 3 (An Analytical Study)

The Bayesian strategy and the new non-inverse strategy identified
in Study 2 provide answers that are always correct in terms
of Bayes’ rule. However, people may compromise between the
effort and time needed to make consistently correct choices and
the practical convenience of making fast and frugal choices. In
this section, we investigate how often using fallacious strategies
(representativeness, evidence-only and pre-Bayesian strategies)
leads to the same choices as does using Bayes’ rule. We analyze
strategies with regard to (1) different frequencies expressing
decision-makers’ natural sampling experiences and (2) different
base rates, arbitrarily defined as rare [P(H) ≤ 0.25], frequent
[P(H) ≥ 0.75], and medium [0.25 < P(H) < 0.75].

Method
Let us start with an example. Consider an elementary situation
(d, e, f, g) = (4, 1, 1, 1), where d denotes number of cards with
a diamond on its face and a green back, e – diamond-yellow,
f – stone-green, and g – stone-yellow, respectively. Using the
Bayesian strategy, a person should choose a green card to reveal a
diamond, because: d/(d + f ) = 4/(4 + 1) > e/(e + g) = 1/(1 + 1).
The same answer would result from using the representativeness
strategy [d/b = 4/5 > e/b = 1/5], or the evidence-only strategy:
(d + f )/a = (4 + 1)/7 > (e + g)/a = (1 + 1)/7. The pre-Bayesian
strategy would render solutions greater than one for yellow cards,
(d + e)/(e + g) = (4 + 1)/(1 + 1) = 5/2. In such cases, when
the probability estimates exceed one, we consider the strategy
inapplicable.

We wanted to understand how often non-Bayesian strategies
return results as good as the correct, Bayesian strategy. We
generated all combinations of (d, e, f, g) for sampling volumes
d + e + f + g = a ranging from 5 to 50, for d, e, f, g > 0
(every combination of data and hypotheses was experienced
at least once). For example, Table 5 shows prescriptions for
a choice in all twenty possible elementary situations when
a = 7. Here, D1 means reversing a green card and D2 means
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TABLE 5 | Conformity of the heuristic strategies to Bayes’ strategy in choice prescription.

a d e f g Bayesian Representativeness Evidence-only Pre-Bayesian

Choice Choice Conformity Choice Conformity Choice Conformity

7 1 1 1 4 D1 Any No D2 No D1 Yes

7 1 1 2 3 D1 Any No D2 No D1 Yes

7 1 1 3 2 D2 Any No D1 No D2 Yes

7 1 1 4 1 D2 Any No D1 No D2 Yes

7 1 2 1 3 D1 D2 No D2 No n/a

7 1 2 2 2 D2 D2 Yes D2 Yes D1 No

7 1 2 3 1 D2 D2 Yes D1 No D2 Yes

7 1 3 1 2 D2 D2 Yes D2 Yes n/a

7 1 3 2 1 D2 D2 Yes D2 Yes n/a

7 1 4 1 1 D2 D2 Yes D2 Yes n/a

7 2 1 1 3 D1 D1 Yes D2 No D1 Yes

7 2 1 2 2 D1 D1 Yes D1 Yes D2 No

7 2 1 3 1 D2 D1 No D1 No n/a

7 2 2 1 2 D1 Any No D2 no n/a

7 2 2 2 1 D2 Any No D1 no n/a

7 2 3 1 1 D2 D2 Yes D2 Yes n/a

7 3 1 1 2 D1 D1 Yes D1 Yes n/a

7 3 1 2 1 D1 D1 Yes D1 Yes n/a

7 3 2 1 1 D1 D1 Yes D1 Yes n/a

7 4 1 1 1 D1 D1 Yes D1 Yes n/a

Conformity: 12/20 = 60% 10/20 = 50% 6/8 = 75%

reversing a yellow card. It turned out that if a was 7, then:
(1) the representativeness strategy conforms to Bayes’ rule
in 60% of situations; (2) evidence-only – in 50%; (3) pre-
Bayesian – in 75% (out of situations where the strategy is
applicable).

Results and Interpretation
The analysis showed that the higher the volume of sampling
a, the more stable is the percentage of elementary situations
in which using a given strategy leads to choices conforming
to Bayes rule (see Figure 3). The average number of Bayesian
solutions returned by a strategy is: (a) representativeness – 73%,
(b) evidence-only – 50%, (c) pre-Bayesian – 63%.

The representativeness strategy is effective for high base rates
and small natural sampling sizes (Figure 4). Specifically, when
a ≤ 11 and the base rate is b/a = (d + e)/(d + e + f + g) ≥ 0.75,
the representativeness strategy always produces choices
conforming to Bayes’ rule. If the base rate exceeds 0.75, the
representativeness strategy returns correct choices in no less
than 77.9% of cases. However, if the base rate is low (b/a ≤ 0.25),
even if the size is high (a > 11), choices conforming to Bayes’
rule are generated at a rate between 42.9% and 67.6%. In
contrast, at a low volume of sampling (a ≤ 11) and low base rate
(b/a ≤ 0.25) it produces optimal selections in only 20% or fewer
situations.

The evidence-only strategy returns choices conforming to
Bayes’ rule in 50% of cases at moderate base rates (Figure 5). If
the base rate (b/a) exceeds 0.75, the strategy produces correct
answers in 72.6% or more of cases. However, when the base

rate is lower than 0.25, it produces choices conforming to Bayes’
rule with a probability of 26.5% or less. We also noticed that if
a ≤ 11 and b/a ≥ 0.75 the evidence-only strategy is always right.
Conversely, for b/a ≤ 0.25 it renders correct answers in 20% or
fewer situations.

By definition, the pre-Bayesian strategy always gives opposite
answers to the evidence-only strategy (Figure 6) and, indeed,
we observed its diametrically opposite behavior for all size –
base rate combinations. A decision maker should understand that
probabilities do not exceed one, i.e., (d + e)/(d + f ) ≤ 1 and
(d + e)/(e + g) ≤ 1. This implies 2(d + e) ≤ (d + f + e + g),
2b ≤ a and b/a ≤ 0.5, and means that the strategy is not
applicable for base rates exceeding 1/2. With these assumptions,
the strategy renders choices conforming to Bayes’ rule with a
probability of 56.0% for medium base rates, and 72.6% for low
base rates.

Summing up, the representativeness and evidence-only
strategies return choices conforming to Bayes’ rule with very
high probabilities if base rates are high and the natural sampling
size is low. The pre-Bayesian strategy turned out to be far less
efficient.

Discussion

The first goal of our studies was to find out how often choices
in elementary situations satisfy Bayes’ rule, if probabilistic
information is acquired through natural sampling. Many studies
on Bayesian reasoning have expected that solitary probability
estimation should follow the rule. We extended this expectation
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FIGURE 3 | Natural sampling volume and percentage of elementary situations in which the strategies conform to Bayes’ rule in producing choices.

FIGURE 4 | Percentage of elementary situations in which the representativeness strategy produces choices consistent with Bayes’ rule at low,
medium and high base rates.

to choices, however, we did not require participants to evaluate
chances, we only asked them make choices.

Our studies confirmed that most choices satisfied Bayes’
rule. Overall, the results were consistent with studies in which
the application of natural frequency formats has improved the
proportion of Bayesian responses, varying in the range from 31

to 72% (as compared by Barbey and Sloman, 2007), or as high as
77% (in the group of adults investigated by Zhu and Gigerenzer,
2006). One could then conclude that natural sampling facilitates
Bayesian inference in elementary situations. Participants were
allowed to uncover cards at their own pace and using their own
sequences. They discovered connections between objects and
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FIGURE 5 | Percentage of elementary situations in which the evidence-only strategy produces choices consistent with Bayes’ rule at low, medium
and high base rates.

FIGURE 6 | Percentage of elementary situations in which the pre-Bayesian strategy produces choices consistent with Bayes’ rule at low and medium
base rates.

colors on their own terms. As we gave no suggestions about
how to solve the problems, participants could utilize their own
estimates or impressions. Moreover, participants operated on
cards at both stages of the task. This compatibility between
presented data and answer format could also have enhanced
performance (as concluded by Ayal and Beyth-Marom, 2014).

Because these results seemed rather optimistic with regard to
tasks’ complexity, so we decided to replicate the study adding
verbal protocols, which revealed the strategies usedmore directly.

Although Study 2 replicated the results of Study 1, it turned
out that a considerable number of correct choices resulted not
from using Bayes’ rule but from a new non-inverse strategy. This
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method always renders the same answers as the Bayesian strategy
in elementary situations and was therefore indistinguishable if
only choices were examined. The non-inverse strategy involves
computing likelihood ratios, P(D|H) and P(D|not-H), instead of
Bayesian posterior probabilities, P(H|D1) and P(H|D2). In other
words, the strategy focuses on a given datum (e.g., the green
back of a card) and determines whether it is more characteristic
for the hypothesis, H (e.g., a diamond), or for the alternative
hypothesis, not-H (a stone). Usually, sticking to likelihood
ratios or confusing them with posterior probabilities in Bayesian
problems is considered fallacious and is called “an inverse fallacy”
(Villejoubert and Mandel, 2002; Mandel, 2014). The confusion
of conditions is indeed erroneous, e.g., believing that if most
amber is found on yellow beaches then you can find amber
on a majority of yellow beaches. However, replacement of both
P(H|D1) and P(H|D2), with both P(D1|H) and P(D1|not-H), or
both P(D2|H) and P(D2|not-H) is not fallacious. Here, resulting
choices are always consistent with Bayes’ rule. The non-inverse
strategy is mathematically equivalent to the calculation of the
difference P(D|H)–P(D|not-H). This computation was observed
in studies by Gigerenzer and Hoffrage (1995), who named it
a likelihood subtraction method. These authors concluded that
users of this strategy neglect base rate information. However, this
might be true only when likelihood ratios are input data, as is the
case in typical Bayesian tasks. When natural sampling is applied,
as in our studies, people must consider base frequencies for
estimating likelihood ratios on their own. This finding supports
the proposition that learning from direct experience reduces
base-rate neglect (Koehler, 1996; Hertwig and Ortmann, 2001).

Study 3 showed that non-Bayesian, heuristic strategies
handled tasks quite well in elementary situations under certain
specific circumstances. At low base rates, the pre-Bayesian
strategy suggested choices that satisfy Bayes’ rule in most cases
at a low volume of natural sampling. The representativeness and
evidence-only strategies turned out to be successful under the
specific conditions of high base-rates of the distinct hypothesis
and low natural sampling sizes (few cards). These findings may
explain some difficulties and fallacious propensities in solving
Bayesian tasks described in the literature. What would happen,
for instance, in the taxi cab problem if, instead of asking
participants to give a probability that the taxi cab was blue, we
asked them for the probability that the taxi cab was green, given
that the witness claimed this to be the case? The findings of such
a study would not be very impressive. Fallacious strategies would
provide the same interpretation as Bayes’ rule, which would give
a 95.8% probability. A conservative strategy would return an
estimate of 85%, representativeness – 80%, evidence-only – 71%,
and pre-Bayesian – 83.5%. Any strategy would indicate that it was
most probably a green cab if a witness claimed it to be so. Thus,
it is not necessary to use Bayes’ rule to make a correct decision or
judgment based on probability magnitude.

We would like to emphasize that our findings are limited
to elementary situations only. Such a limited, local application
of strategies and heuristics is consistent with an ecological
view. Gigerenzer (1991) pointed out that it is crucial to take
into account the environment when one wants to evaluate
the approach applied. It is also in line with probabilistic

functionalism, which suggests that not using bookish methods
for their own sake, but using any methods for achieving goals in
the environment, drives human behavior (Pleskac and Hertwig,
2014). The tasks required the selection of green or yellow cards in
order to maximize the probability of receiving a diamond instead
of a stone.

A natural extension of our studies would be to investigate
larger natural sampling sizes and exercises involving more data
andmore hypotheses. In such a situation the non-inverse strategy
does not generalize and would be misleading. Also, heuristic
strategies would be likely to be far less efficient in such complex,
non-elementary situations.

We are quite pessimistic about humans’ ability to solve
such complex problems in a Bayesian way. First, people reveal
little interest in gathering complete information on probabilities
in naturalistic risky tasks (Huber et al., 1997; Tyszka and
Zaleśkiewicz, 2006). Second, if the sample size were increased,
working memory boundaries would be exceeded (Anderson,
2000). Longer sampling sequences would probably increase
computational complexity, decrease participants’ performance,
and provoke them to make more use of various heuristics. The
assumption that people use a given strategy consistently within a
set of tasks (or at least within pairs of tasks) is challenging and
difficult to maintain. This assumption was the main limitation of
our studies, but it was necessary to infer strategies from choices
indirectly. We tried to minimize the risk of participants using
various strategies by presenting only seven cards in a task with
homogeneous contents, and giving no feedback. On the one
hand, if the assumption is rejected, the problem remains as to how
to reveal thinking underlying choices directly, and – at the same
time – not to tell participants which chances should be evaluated
and how. On the other hand, the assumption is problematic
because factors such as skills, cognitive load, learning effects,
more differentiated contents, etc. would likely entail applying
different heuristics, particularly in more complex tasks.

In analyzing choices in elementary situations we adopted
a narrow definition of Bayesian inference as choices or
probability evaluations conforming to Bayes’ rule (similarly to
other psychological studies investigating Bayesian reasoning).
However, Bayesian inference might be understood as the general
process of using new information to revise evaluations of
likelihoods of events with known prior base rates (Brase and Hill,
2015). In particular, this describes Bayesian analysis of decision
problems incorporated in subjective expected utility theory
(SEUT, Savage, 1954; Giocoli, 2013; Karni, 2013). According to
this perspective, a Bayesian decision-maker’s subjective beliefs are
expressed with probabilities which are updated in line with Bayes
rule as new information is gathered. Hypothesized outcomes
(e.g., diamonds and stones in our studies) are characterized
by their utilities [e.g., U(H1), U(H2), U(H1) > U(H2)]. The
decision maker maximizes the subjective expected utility (SEU)
of choice options, combining the subjective probabilities and
utilities of outcomes. If the choices are made in elementary
situations, as in our studies, maximizing SEU reduces to
choosing the option characterized by the higher posterior chance
[SEU(D1) > SEU(D2) when P(H1|D1) × U(H1)+P(H2|D1) ×
U(H2) > P(H1|D2) × U(H1) + P(H2|D2) × U(H2)], and
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[P(H1|D1) – P(H1|D2)] × [U(H1) – U(H2)] > 0, and
subsequently [P(H1|D1) – P(H1|D2) > 0]. However, extending
the analysis of choice to more complex situations with
more than two hypothesized outcomes (e.g., diamonds,
stones, and graphite) entails incorporation of their utilities
into the analysis. Here, choice does not reduce to
comparing probabilities, and differences among utilities
influence the final choice, which is made by maximizing
SEU.

Summing up, people performed well in the Bayesian exercises
involving natural sampling in elementary situations in our
studies. However, correct Bayesian choices can result from
using non-Bayesian methods, such as the non-inverse strategy

identified in our studies. What is more, even fallacious
heuristics produce satisficing choices reasonably often under
specific circumstances. Hence, Bayesian inference turns out to
be unnecessary in making choices satisfying Bayes’ rule in
elementary situations.
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There has been a paradigm shift in the psychology of deductive reasoning. Many

researchers no longer think it is appropriate to ask people to assume premises and

decide what necessarily follows, with the results evaluated by binary extensional logic.

Most every day and scientific inference is made from more or less confidently held

beliefs and not assumptions, and the relevant normative standard is Bayesian probability

theory. We argue that the study of “uncertain deduction” should directly ask people to

assign probabilities to both premises and conclusions, and report an experiment using

this method. We assess this reasoning by two Bayesian metrics: probabilistic validity

and coherence according to probability theory. On both measures, participants perform

above chance in conditional reasoning, but they do much better when statements are

grouped as inferences, rather than evaluated in separate tasks.

Keywords: uncertain premises, conditional reasoning, new paradigm psychology of reasoning, p-validity,

coherence, explicit inference, fallacy

Introduction

Paradigm Shift in the Psychology of Reasoning
The psychology of deductive reasoning is undergoing a paradigm shift, which is the consequence of
the introduction of Bayesian approaches into the field (see Oaksford and Chater, 2007, 2010; Over,
2009; Manktelow et al., 2011; Elqayam and Over, 2012; Evans, 2012; Baratgin et al., 2013, 2014). In
the real world, there are few propositions that people can hold are certainly true, or certainly false,
and most of their beliefs come in degrees, which are technically subjective probabilities. We may
believe that a grant application has a 50-50 chance of success, or that we will probably be happier if
we take a promotion with more responsibility, or that we are unlikely to get on with the new boss
we met this morning. It is precisely such uncertain beliefs that we need to take into account when
making decisions and solving problems in everyday life. Essential to this process is the ability to
combine uncertain beliefs and draw inferences from them, and this is what the new psychology of
reasoning is concerned with studying.

The method of study that dominated the field for 40 years or so is the traditional binary deduc-
tion paradigm (Evans, 2002), inspired by extensional logic and intended to test whether people were
capable of logical reasoning without formal training. With this method, participants are given the
premises of a logical argument, instructed to assume that they are true, and asked to decide whether
a purported conclusion necessarily follows. They were expected to answer “yes” for arguments con-
sidered valid in extensional logic and “no” for those considered invalid. Thus, measured, however,
logical reasoning is observed to be generally poor and subject to various cognitive biases (for recent
reviews, see Evans, 2007; Manktelow, 2012).
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We believe that this traditional paradigm maps quite poorly
on to the requirements of real world reasoning. Two key fea-
tures of the method, which directly reflect the classical binary
logic used to assess the accuracy of reasoning, are the instruction
to assume the premises and the classification of all statements
as simply true or false. High expertise in assumption-based rea-
soning generally requires specialized training and when logical
problems of this kind are administered to naïve participants,
we find it unsurprising that error rates are high. We also
note that such reasoning loads heavily on working memory
and that those of high intelligence do better at these tasks
(Evans, 2007; Stanovich, 2011). But everyday reasoning can-
not be a specialized tricky business requiring elite profession-
als and condemning the majority to mistakes. If that were
the case, then most people would be incapable of intelligent
actions. For these reasons, a number of authors have ques-
tioned the relevance of extensional logic and the standard
deduction paradigm based upon it (e.g., Oaksford and Chater,
1998, 2007; Evans, 2002; Evans and Over, 2004; Pfeifer and
Kleiter, 2010). The new approach treats reasoning as concern-
ing degrees of belief, rather than assumed truth and falsity,
and allows that inferences can be drawn with a varying degrees
of confidence (Oaksford and Chater, 2007; Evans and Over,
2013).

What is yet to emerge, however, is a clear alternative method
for studying reasoning to the traditional deduction paradigm.
There are a number of studies which have relaxed instructions, so
that participants are given premises but not instructed to assume
that they are true, and in which they are sometimes permit-
ted to express degrees of confidence in the conclusions. These
are generally known as pragmatic reasoning instructions. Such
instructions have been applied to one of the most commonly
studied tasks, that of conditional inference. Participants are pre-
sented with a conditional and asked whether conclusions fol-
low for four simple inferences, two of which are considered, in
most normative systems, as logically valid and two invalid. See
Table 1.

When the traditional binary paradigm and abstract materials
are used (e.g., If the letter is A then the number is 5), partici-
pants only show good logical performance onMP, which is nearly
always endorsed. MT is also valid but is not endorsed as often
as MP, and AC and DA are commonly endorsed, despite being
invalid (Evans and Over, 2004). When realistic content is intro-
duced, however, this can substantially affect responding. It has
been known for some years that peoplemay resist the simple valid
inference MP when they disbelieve the conditional statement
(George, 1995; Stevenson and Over, 1995; Politzer, 2005). For
example, given the argument

TABLE 1 | The four conditional inferences commonly studied by

psychologists.

Modus ponens MP If p then q; p therefore q Valid

Denial of the antecedent DA If p then q; not-p therefore not-q Invalid

Affirmation of the consequent AC If p then q; q therefore p Invalid

Modus tollens MT If p then q; not-q therefore not-p Valid

If the UK builds more nuclear power plants the environment
will be safer. (1)
The UK will build more nuclear power plants.
Therefore, the environment will be safer.

Many participants will say that the conclusion does not follow,
despite the obvious logic. As the early studies also showed, the
exact nature of the instructions is critical. If strict traditional
reasoning instructions are employed, with participants asked to
assume the premises, they are more likely to resist belief influ-
ences and reinstate the inference. However, a recent study has
shown the ability to suppress the influence of prior belief on con-
ditional reasoning is restricted to those of higher cognitive ability,
even within a university student population (Evans et al., 2010).
This difference only occurred under traditional deductive rea-
soning instructions; with pragmatic reasoning instructions, high
ability participants were equally belief “biased.” These findings
(andmany others) suggest to us that assumption-based reasoning
is a form of effortful hypothetical thinking (Evans, 2007; Evans
and Stanovich, 2013). Belief-based reasoning by contrast is an
everyday, natural mode of thought that requires little effort.

If participants are to be allowed to express uncertainty in their
conclusions, then are we still studying deduction, or is this a form
of inductive inference? In a recent paper, we have shown that
deduction in the new paradigm is still distinct from inductive rea-
soning, but it is described better as what we call uncertain deduc-
tion (Evans and Over, 2013; see also Pfeifer and Kleiter, 2011).
That is, people make deductions in which the uncertainty of the
premises is reflected (rightly, according to probability theory) in
the uncertainty of the conclusion. Consider a famous piece of
reasoning by Sherlock Holmes (see Table 2).

Conan Doyle always used the term “deduction,” but many
readers may have wondered whether the reasoning described is
not some type of non-demonstrative inference, such as an abduc-
tive inference to the best explanation of the evidence. The conclu-
sions always seem to have a degree of uncertainty (despite being
rarely mistaken in the stories). We do not deny that some of
Holmes’ reasoning is inductive or abductive, and Conan Doyle
himself may not have had a very precise understanding of what
“deduction” means. But focus on the final sentence above: “Elim-
inate all other factors, and the one which remains must be the
truth.” The form of reasoning referred to here is the disjunctive
syllogism: the logical inference to q from the premises p or q and
not-p. Two “factors,” p and q, are referred to in p or q, and not-p
“eliminates” one of these, leaving q as what “must” follow. In the
story, p or q is Watson going toWigmore Street to send a letter or
a wire, and not-p is not going there to send a letter, with sending
a wire as the conclusion. This inference is clearly deductive, but
of course both p or q and not-p are uncertain to a degree, and the
conclusion falls short of certainty. Wigmore Street is just around
the corner fromBaker Street, andWatson could have gone out for
any number of reasons that would have placed him “opposite” the
post-office there.

In this example, Holmes’ disjunctive syllogism is classically
valid, in that its conclusion must be true given that its premises
are true, but it is not necessarily sound. A sound inference is a
valid inference the premises of which are actually true. In other
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TABLE 2 | Extract from Conan-Doyle’s, The Sign of Four (1890).

(HOLMES TO WATSON) “Observation shows me that you have been to the Wigmore Street Post-Office this morning, but deduction lets me know that when there you

dispatched a telegram.”

“Right!” said I. “Right on both points! But I confess that I don’t see how you arrived at it. It was a sudden impulse upon my part, and I have mentioned it to no one.”

“It is simplicity itself,” he remarked, chuckling at my surprise,–“so absurdly simple that an explanation is superfluous; and yet it may serve to define the limits of

observation and of deduction. Observation tells me that you have a little reddish mold adhering to your instep. Just opposite the Wigmore Street Office they have taken

up the pavement and thrown up some earth which lies in such a way that it is difficult to avoid treading in it in entering. The earth is of this peculiar reddish tint which is

found, as far as I know, nowhere else in the neighborhood. So much is observation. The rest is deduction.”

“How, then, did you deduce the telegram?”

“Why, of course I knew that you had not written a letter, since I sat opposite to you all morning. I see also in your open desk there that you have a sheet of stamps and a

thick bundle of post-cards. What could you go into the post-office for, then, but to send a wire? Eliminate all other factors, and the one which remains must be the truth.”

words, we can only be sure of the conclusion if we are sure of the
premises. The problem with the classical notion of soundness is
that, like classical validity, it is black and white. An argument is
either sound or it is not. We might feel some doubt that Holmes’
argument is sound, but we are losing something if we totally dis-
regard it. His premises are plausible, and his conclusion is more
likely than not. In an uncertain world, that is better than nothing.
The new paradigm is really an extension of the old that can deal
not just with contexts where statements can be assigned proba-
bilities of 1 (“true”) or 0 (“false”), but all values in between. We
cannot usually be certain of our premises and conclusions, and
have to ask what other degrees of confidence we should have in
them. Classical logic does not provide a means for doing this, and
we must look elsewhere. The obvious place is in Bayesian subjec-
tive probability theory, which extends classical logic in precisely
this manner.

Normative Assessment of Uncertain Deduction
The binary and extensional logic of the old deduction paradigm
has no means of evaluating inferences from uncertain premises.
However, two Bayesian standards, which we have discussed pre-
viously (Evans and Over, 2013), can be applied. The first is prob-
abilistic validity, or p-validity (Adams, 1998; see also Gilio, 2002;
Gilio and Over, 2012). Probabilistic validity is a generalization of
classical validity. The latter is truth-preserving. The conclusion
of a classically valid inference will be true given that the premises
are true: one cannot go from truth in the premises to falsity
in the conclusion. Similarly, p-valid inferences are probability-
preserving. One cannot go from high probability in the premise
of a p-valid single premise inference to low probability in the con-
clusion. For example, the inference of and-elimination, inferring
p from p and q, is p-valid because P(p and q)≤ P(p) for all coher-
ent probability assignments. People commit the conjunction fal-
lacy when they violate the p-validity of this inference (Tversky
and Kahneman, 1983).

The matter is a bit more complex for inferences with two or
more premises. There is a problem of specifying how the prob-
abilities of two or more premises are to be combined, but this
is avoided by saying that a p-valid inference cannot take us from
low uncertainty in the premises to high uncertainty in the conclu-
sion. We define the uncertainty of a proposition p as one minus
its probability, 1—P(p). Then an inference with two or more
premises is p-valid if and only if the uncertainty of its conclusion

is not greater than the sum of the uncertainties of its premises for
all coherent probability assignments. A p-valid deduction from
premises cannot increase the uncertainty in the premises; it dif-
fers from induction in precisely this respect (Evans and Over,
2013)1. In Table 1, MP and MT are p-valid inferences, and AC
and DA are p-invalid inferences.

To illustrate with conditionals, consider two sets of assign-
ments of probabilities to the premises of an instance of the p-valid
inference MP, inferring q from the premises if p then q and p:

A B

if p then q 0.8 0.2
p 0.9 0.1

Consider set A first. The sum of the uncertainties of the
premises of A is (1 − 0.8) + (1 − 0.9) = 0.3. The uncertainty
of the conclusion should not exceed that limit, which implies that
we would violate p-validity if we assigned a probability to the con-
clusion q of less than 0.7. In that case, we would be in violation
of this Bayesian norm by being more uncertain of the conclusion
of a p-valid inference than we were of the premises. The formal
definition of the p-validity interval for the conclusion probability
is shown in Table 3. As the uncertainty of the premises increases,
the minimum probability value that can be assigned to the con-
clusion drops. Turning to B, we see that the uncertainties, 0.8 and
0.9, sum to 1.7.Whenever this figure is one or more, it means that
we may assign any probability between 0 and 1 to the conclu-
sion without violating p-validity. In other words, where premises
have low degrees of belief, p-validity can never be violated. This is
clearly something that researchers need to take into account. But
there is a parallel with the classical position. When we judge that
the premises of MP are false, we cannot violate classical valid-
ity by holding that the conclusion is also false, because we are
not claiming that the conclusion is false when the premises are
true.

A further important point about p-validity to stress is that it is
defined in terms of coherent probability assignments. For condi-
tional inferences, this coherence depends on the probability of the
natural language conditional, P(if p then q). There has been much

1A related, but extensional, definition of deduction is that the conclusion cannot

convey more semantic information than the premises (Johnson-Laird, 1983).
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TABLE 3 | Permitted intervals for conclusions probabilities for the four conditional inferences on two measures.

p-validity Coherence

Inference Min Max Min Max

MP max{x+y−1,0} 1 xy 1−y+xy

DA max{x+y−1,0} 1 (1−x)(1−y) 1−x(1−y)

AC max{x+y−1,0} 1 0 min{y/x,(1−y)/(1−x)}

MT max{x+y−1,0} 1 max{(1−x−y)/(1−x),(x+y−1)/x} 1

Notes: (1) In each case x = The probability of the major premise, if p then q, and y = the probability of the relevant minor premise, i.e., P(p) for MP, P(not-p) for DA, P(q) for AC, and

P(not-q) for MT.

(2) P(if p then q) = P(q|p) is assumed for calculation of the coherence but not p-validity intervals.

(3) For both measures, a “hit” is defined as an estimated conclusion probability which is between the minimum and maximum values shown in the table.

debate in logic, philosophy, and psychology about this probability
(Edgington, 1995; Evans and Over, 2004). One possibility is P(if p
then q) is the probability of thematerial conditional of elementary
extensional logic, P(not-p or q). If this is so, then the assignments
P(if p then q) = P(not-p or q) = 0.8, P(p) = 0.9, and P(q) = 0.7
are coherent. Another possibility is that P(if p then q) is the con-
ditional probability of q given p, P(q|p), and if this is so, P(if p
then q) = P(q|p) = 0.8, P(p) = 0.9, and P(q) = 0.7 are incoher-
ent. In fact, making the latter probability judgments is equivalent
to the conjunction fallacy, since P(p and q) = P(p)(q|p) = 0.72
and yet P(q) is judged to be 0.7. There are still other possibili-
ties for conditionals based on possible-worlds semantics (Evans
and Over, 2004). Nevertheless, judging P(if p then q) = 0.8, P(p)
= 0.9, and P(q) < 0.7 is incoherent for all these possible condi-
tionals and violates p-validity, by increasing uncertainty in the
conclusion of an inference, MP, which is p-valid for both inter-
pretations of the conditional. To make our study of p-validity
as general as possible, and to presuppose as little as possible, we
do not make any special assumption about P(if p then q) in our
study of p-validity.Wewill simply ask whether people conform to
p-validity bymaking the uncertainty of the conclusion in a condi-
tional inference less than or equal to the sum of the uncertainties
of the premises, and whether they conform more to p-validity
when they are given explicit inferences. We ask these questions
about both the normatively p-valid inferences of MP and MT,
and the normatively p-invalid inferences of AC and DA. As we
have noted above, people often endorsed AC and DA as “valid”
inferences in traditional studies in the binary paradigm, and we
wished to test whether they would also do in a probabilistic
study.

There are certainly strong arguments (Edgington, 1995) that
the probability of the natural language indicative conditional is
the conditional probability, that it satisfies what has been called
the Equation, P(if p then q) = P(q|p). If the Equation holds, the
appropriate normative rules for degrees of belief about the natu-
ral language conditional are those for conditional probability in
Bayesian probability theory. There is much empirical evidence to
support the Equation as descriptive of most people’s probability
judgments (Douven and Verbrugge, 2010; e.g., Evans et al., 2003;
Oberauer and Wilhelm, 2003; Over et al., 2007; Politzer et al.,
2010; Fugard et al., 2011; Singmann et al., 2014). The majority of
participants respect the Equation, but this is by no means univer-
sal. It is also found more often in those of high cognitive ability

(Evans et al., 2007). The evidence supporting the Equation is at its
strongest for the type of realistic conditionals used in our exper-
iment below (see Supplementary Material and Over et al., 2007;
Singmann et al., 2014), but we will still not assume that P(if p
then q)= P(q|p) in our study of p-validity, for the reason already
given.

The second Bayesian standard we will use to assess deduction
from uncertain premises is coherence itself. Here our method
does presuppose the Equation, P(if p then q) = P(q|p), for other-
wise we cannot lay down precise conditions for the coherence of
inferences that contain conditionals. We could use “p-consistent”
for this generalization of binary consistency (and have done so
in Evans and Over, 2013), but p-consistency has been defined
in more than one way (Adams, 1998, p. 181), and “coherence”
is standard in judgment and decision making. Degrees of belief
and subjective probability judgments are coherent when consis-
tent with the axioms of probability theory. Degrees of beliefs in
different statements that relate to each other in some way may
or may not be coherent. As we saw above, people are incoher-
ent and make judgments equivalent to the conjunction fallacy
if they judge that P(p and q) > P(p). In commenting upon this
fallacy, Tversky and Kahneman (1983, p. 313) stated that “. . . the
normative theory of judgment under uncertainty has treated the
coherence of belief as the touchstone of human rationality.” Their
findings have stimulated a rich literature on this fallacy and its
possible explanation in terms of the representativeness heuristic
(see Tentori et al., 2013, for a recent contribution). Our question
in this paper is not whether people are coherent in their con-
junction inferences, but rather whether they are coherent in their
conditional inferences, and whether their coherence is increased
when the conditional inferences are made explicit.

In our approach, P(q|p) is not necessarily given by the ratio,
P(p and q)/P(p), but rather by the Ramsey test (Edgington, 1995;
Evans and Over, 2004). Using this “test” on if p then q, we
hypothetically suppose that p holds, while making suppositional
changes in our beliefs to preserve consistency, and then make a
judgment about q. This procedure allows us to infer a value for
P(q|p) when P(p) cannot be fixed because p refers to an action
which we are trying to make a decision about, and even when we
judge that P(p)= 0 (see also Gilio, 2002; Pfeifer and Kleiter, 2009,
2010, 2011; Gilio and Over, 2012).

To illustrate our approach, with the Equation now assumed,
suppose we want to make a probability judgment about the
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conditional, “If Dr Adler submits her paper to the Journal of
Psychology Reports, it will be accepted.” We would use the Ram-
sey test and suppose that she does make the submission, and then
using our knowledge of her ability and the standards of the jour-
nal, we would make a judgment about the probable acceptance
of her paper. Suppose the result is a degree of belief of 0.8 that it
will be accepted under that supposition, and with P(if p then q)=
P(q|p), our degree of confidence in the conditional will be 0.8.
When we take it as certain that Dr Adler will submit her paper
to the journal, we should believe 0.80 that it will be accepted, and
any other figure would be incoherent. If, however, we have some
uncertainty about whether she will submit there or to a journal we
have no knowledge of, it becomes more complicated. Suppose we
believe only 0.50 that she will submit to the Journal of Psycholog-
ical Reports and will otherwise submit to the unknown journal.
Now we cannot give a specific probability to the paper being
accepted, for we lack information about the unknown journal and
it acceptance rate.

It is important to understand that in a case like this our belief
in the statement “Dr Adler’s paper will be accepted” is still con-
strained. It has to fall within a range of probability values in
order to be coherent. Consider the two extreme cases. At one
extreme, if Dr Adler submits to the unknown journal, it is cer-
tain that the paper will be accepted. So there is a 0.50 × 0.80
plus a 0.50× 1 chance of the paper being accepted, which is 0.90.
At the other extreme, it is certain that the paper will be rejected
at the unknown journal: now the chance is just 0.50 × 0.80 =

0.40 that the paper will be accepted. To be coherent, then, the
probability we can set for the paper being accepted has to lie in
the interval [0.4, 0.9]. Anything outside of this range is incon-
sistent with probability theory. Table 3 shows the formulae for
computing this interval for both MP (the case considered) here,
and the other three conditional inferences (see Pfeifer andKleiter,
2009). Note that it is not just the valid inferences that are con-
strained by coherence. We can compute intervals for all four
cases. A study has been reported testing participants for coher-
ence with these equations (Pfeifer and Kleiter, 2010). We also
do this but with a different experimental method, as described
below.

A probabilistic theory of conditional inference has been pre-
sented by Oaksford and Chater (2007; see also Oaksford et al.,
2000), and readers may wonder how this relates to the current
analysis. These authors consider contexts in which the major
premise of a conditional inference is uncertain, but the minor
premise is certain. For example, Dr Adler might herself be certain
where she will submit her paper. With P(p) = 1, the MP interval
collapses to P(q) = P(q|p), which is what Oaksford and Chater
give as the probability of the conclusion of MP. Their equations
for other inferences also take point values for the same reason.
Note that participants who conform to Oaksford and Chater’s
equations will necessarily be in the intervals of Table 3. How-
ever, we cannot test conformity to their specific equations here,
because the minor premises in our materials will rarely be cer-
tain (see also Oaksford and Chater, 2013, for an extension of their
theory). Indeed, a key purpose of our study is to explore how peo-
ple take into account the uncertainty in both premises when they
reason with conditionals.

The Study

In this study we examine the manner in which naïve partici-
pants will assign probabilities to both premises and conclusions
of uncertain arguments. In view of the paucity of data on uncer-
tain deduction our principal aim is to discover the extent to which
such assignments conform to the two normative standards out-
lined above: probabilistic validity and coherence with probability
theory. Pfeifer and Kleiter (2010) have already reported experi-
ments on uncertain deductions, which they laid out as explicit
conditional inferences (see also Singmann et al., 2014). They pre-
sented arbitrary premises with explicit probabilities attached and
asked participants to indicate the range of probabilities within
which the conclusion could fall. These could be compared with
the normative equations shown in Table 3. They found generally
good coherence for MP, but much poorer coherence for the other
three inferences.

Our own method differs from of that Pfeifer and Kleiter in
several ways. In place of premises with probabilities assigned
by the experimenter, we used conditional statements concerning
current affairs with evoke real world beliefs (see Supplementary
Material). Probabilities were not assigned by the experimenter
but taken from the participants themselves. We did this in two
different ways. In a Belief group, participants assigned proba-
bilities to the conditionals in one task—P(if p then q)—and to
the relevant event probabilities in another—that is P(p), P(not-
p), P(q), and P(not-q). This is not a reasoning task, of course, and
thus can be used to measure what internal consistency, if any,
is present in the beliefs expressed. This method has long been
used in judgment and decision making, leading most famously to
the discovery of the conjunction fallacy (Tversky and Kahneman,
1983) discussed above.

Our secondmethod, more similar to that of Pfeifer and Kleiter
(2010), was to lay out the statements as an explicit inference as in
the following example:

GIVEN
If more people use sun screen then cases of skin cancer will be
reduced
More people will use sun screen
THEREFORE
Cases of skin cancer will be reduced

Participants also assigned probabilities to the three statements
here with the inferential structure now clearly cued. We differ
from Pfeifer and Kleiter in that our participants provide their
own premise probabilities and assign a point value, rather than an
interval, to the conclusion. This method allows people to correct
incoherence in their belief system as they can now reason explic-
itly about the way in which uncertainty in the premises should be
reflected in the conclusion. We therefore expect stronger confor-
mity to both p-validity and coherence measures in the Inference
group.

Method
Participants

Forty six undergraduate students of the University of
Saskatchewan participated, with 23 assigned to each of the
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two experimental groups; Psychology students received course
credits and others were paid for their participation.

Procedure

A set of 48 conditional statements were used concerning real
world causal relations, similar to those in previous studies of the
authors (Over et al., 2007) run on British participants, and known
to vary widely in believability. All concerned causal relations in
real world events, such as “If more people use sun screen then
cases of skin cancer will be reduced.” Where necessary, the sen-
tences were adapted to be relevant to the Canadian context. The
sentences used are shown in Supplementary Material. The tasks
were administered via computer software with the experimenter
present. Participants were instructed that they would be receiving
groups of statements which applied to Canada within the next 10
years, and that following each statement they would be asked to
indicate the degree to which they believed the statement to be
true (expressed as a percentage probability from 0 to 100%). All
ratings were provided on a sliding scale located below each of the
statements. Participants indicated their responses by clicking a
bar on the scale and dragging it to the desired belief percentage. In
the Belief group, participants assigned subjective probabilities to
a randomized list of the 48 conditionals sentences and separately
to a randomized list of the minor premises and conclusions cor-
responding to each sentence. For example, they gave probabilities
for “more people will use sun screen,” “more people will not use
sun screen,” “skin cancer rates will be reduced,” and “skin cancer
rates will not be reduced” at some point in the list.

In the Inference group, as described above, participant’s
assigned probabilities to statements grouped as inferences with
major premise, minor premise and conclusion rated in imme-
diate succession with the whole argument visible. The headings
GIVEN (before the premises) and THEREFORE (before the con-
clusion were also included). This resulted in another difference
between the two groups: those in the inference group rated the
same conditional sentence four times in different places as it
appeared with each of the inference types, whereas in the belief
group, each conditional sentence was rated only once. The order
of presentation of each argument was fully randomized so that
arguments using the same conditional statement could appear
anywhere in the sequence.

Results
As pointed out in the introduction, tests for p-validity are insen-
sitive when the premise probabilities are low. For this reason, all
analyses of p-validity reported are for a reduced set of 24 condi-
tional sentences (mean = 60.6, SD = 11.3, Belief group ratings)
with substantially higher degrees of belief in the major premise
(conditional statement) than the other 24 (mean = 44.5, SD =

13.8). Coherence measures do not suffer from the same prob-
lem, so these analyses were conducted using the full set of 48
sentences.

Hit Rates

Our first analyses concern the number of responses considered
correct by our two main indices, p-validity and coherence. In
each case we can define an interval within which the conclusion

probability should be assigned. In case of p-validity, the conclu-
sions have a maximum level of uncertainty, determined by the
values actually assigned to the premises. This has to be computed
separately for each participant and for each conditional sentence.
In the example (A) discussed above, the maximum uncertainty
of the conclusion was 0.3, meaning that the minimum probabil-
ity value for the conclusion was 0.7. We call this value minP. A
value of minP was computed from the premises for each partic-
ipant problem and compared with the value actually assigned by
the participant to the conclusion. Any value of minP or above
was scored as making a “hit,” whether the inference was norma-
tively p-valid, MP andMT, or not, AC andDA (as the participants
might consider any of these inferences “valid”). Note that where
themaximum uncertainty was 1 or more (as in example B above),
minP was set equal to zero. (See Table 3 for formal definition
of the correct interval for the conclusion probability.) A similar
approach was used for the coherence analysis, except that here
we need to compute two values for the conclusion—minP and
maxP—using the equations shown in Table 3. Again this target
interval depends on the actual probabilities assigned by each par-
ticipant to each pair of premises. In the coherence analysis, any
conclusion probability assigned in the interval [minP, max P] was
scored as a hit. (Note that for any given problem minP is com-
puted differently for p-validity than coherence and will not take
the same value.)

The frequency of hits for p-validity in the two groups are
shown in the white bars of Figures 1, 2 (reduced set of higher
belief conditionals); an analysis of the chance rates (black bars)
is presented in a subsequent section. For the purpose of the
ANOVA, we split the four inferences into two factors: Validity
(MP, MT vs. DA, AC) and Polarity (MP, AC vs. DA, MT). The
main purpose for doing this was to see more clearly whether
classically defined valid inferences differed on our measures. In
particular, we might expect greater conformity to p-validity on
valid inferences, since p-validity is only normatively required for
these. The ANOVA revealed several significant findings. As pre-
dicted, the Inference group had more hits (mean 0.87) than the
Belief group (0.82) [F(1, 44) = 4.27, MSE = 0.090, η2

p = 0.088,
p < 0.05]. Contrary to expectations, however, invalid infer-
ences (0.87) had significantly higher p-validity scores than valid
inferences (0.83) [F(1, 44) = 9.16, MSE = 0.064, η

2
p = 0.172,

p < 0.005]. There was also an interaction between the two fac-
tors [F(1, 44) = 9.66, MSE = 0.067, η2

p = 0.180, p < 0.005] such
that the (reverse) validity effect showed only in the Belief group
(compare Figures 1, 2).

We performed an ANOVA for the coherence hit rates (all con-
ditionals) with the same factors—see white bars of Figures 3,
4. There were three significant main effects: Group [F(1, 44) =

17.02, MSE = 0.567, η2
p = 0.279, p < 0.001], as predicted with

higher hit rates for the Inference group (0.62) than the Belief
group (0.51); Validity [F(1,44) = 12.88, MSE= 0.016, η2

p = 0.226,
p < 0.001]—again higher scores for invalid (0.58) than valid
(0.56) inferences, and very large effect of Polarity [F(1, 44) =

52.74, MSE = 0.363, η2
p = 0.545, p < 0.001] reflecting more hits

for affirmative (0.66) than negative (0.48) inferences. A Validity
by Group interaction [F(1, 44) = 12.88,MSE= 0.016, η2

p = 0.226,
p < 0.001] indicated that the (reverse) validity effect was detected
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FIGURE 1 | p-validity analysis for the Inference group (Higher belief

conditionals).

FIGURE 2 | P-validity analysis for the Belief group (Higher belief

conditionals).

only for the Inference group (the opposite trend to that shown
in the p-validity analysis). Finally there was an interaction for
Polarity by Group [F(1, 44) = 13.07, MSE = 0.363, η2

p = 0.229,
p < 0.001] reflecting a larger effect of Polarity in the Inference
than the Belief group.

Before discussing these findings, it is important to consider the
chance rates for assigning correct conclusion probabilities which
we do next.

Chance Rates

Uncertain deduction presents measurement problems unknown
to the standard deduction paradigm. With the old method each
conclusion is either valid or not and hence each response either
correct or not.With the newmethod, however, a correct response
or “hit” is a value lying within an interval: [minP, 1] for p-validity
and [minP, maxP] for coherence. Moreover, these ranges depend
upon not only the logical inference under consideration but
the actual probabilities assigned to the premises by a particular
participant on a particular problem.

The size of these ranges varies considerably and hence the par-
ticipant has a high chance of guessing the correct answer when
they are large. As pointed out in the introduction, where there is
low belief in the premises, minP for p-validity may be set to 0,

FIGURE 3 | Coherence analysis for the Inference group (all

conditionals).

FIGURE 4 | Coherence analysis for the Belief group (all conditionals).

so that any conclusion probability will be deemed a hit. For these
reasons, it seems essential to consider chance rates and to provide
analyses which correct for them2. We decided to use the range
of the target interval as a measure of chance level responding.
For example, with p-validity, if minP was 0.4, we took the value
1-minP = 0.6 to be the chance rate. This is because any partici-
pant generating random probabilities with a uniform distribution
between 0 and 1, would have a 0.6 chance of hitting the correct
interval. For coherence, we took the value (maxP—minP) to be
the chance rate for similar reasons. Hence, like hit rates, chance
rates have to be computed for each individual participant, condi-
tional and inference. Themean computed chance rates are shown
as black bars in Figures 1–4.

The first question is whether the observed hit rates were above
chance. To assess this, we first computed for each participant the
mean difference between hits and chance scores for each condi-
tional sentence, for each inference in both groups on both mea-
sures. We then compared these values to a mean of zero with a
one sample t test (two tailed, df = 22) in each case. Considering
first p-validity, as one might expect from Figure 1, scoring was
highly significantly above chance for MP and AC in the p-validity

2We thank Phil Johnson-Laird for alerting us to this problem.
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analysis of the Inference group. Neither DA nor MT were sig-
nificantly different from chance. For the Belief group (Figure 2)
hits were again significantly above chance for MP and AC but
significantly below chance for MT. In the coherence analysis for
the Inference group (Figure 3) scores were (significantly) above
chance for MP, DA, and AC but below chance for MT. In the
Belief group (Figure 4) all differences were significant with scores
above chance for MP and DA and below for AC and MT.

Overall, scores were above chance in the majority of cases, but
with exceptions. In particular scores for MT tended to be below
chance. The high chance rates clearly complicate the interpreta-
tion of the analyses of hits reported above. Hence, we decided to
repeat these analyses using chance corrected scores, so that the
value (hits-chance) was entered as the dependent variable. We
refer to these as performance scores.

Chance Corrected ANOVAs

Analysis of p-validity
An analysis of variance of was run on the performance scores
(hits—chance) for both groups combined on the reduced set of 24
sentences. The factors were Group (Belief vs. Inference), Polar-
ity (MP, AC vs. DA, MT), and Validity (MP, MT vs. AC, DA).
All three main effects were statistically significant, the largest
being polarity [F(1, 44) = 132.25, MSE = 1.198, η

2
p = 0.750,

p < 0.001], indicating that performance was better on affirma-
tive inferences (MP, AC; mean 0.138) than negative inferences
(DA,MT; mean—0.023) as is evident from Figures 1, 2when hits
and chance are compared. There was a significant effect of Group
[F(1, 44) = 17.95,MSE= 0.200, η2

p = 0.290, p < 0.001], showing,
as predicted, better performance in the Inference (0.090) than
Belief group (0.025). Validity [F(1, 44) = 10.58, MSE = 0.031,
η
2
p = 0.194, p < 0.002] was also significant, as performance

was poorer on valid (0.044) than invalid (0.070) inferences due
to reversal on MT. There were two significant interactions, one
of which was relatively large: Polarity by Group [F(1, 44) = 9.74,
MSE= 0.088, η2

p = 0.181, p < 0.003]. It is evident from the Fig-
ures that the Polarity effect was substantially attenuated in the
Belief group. There was also a small but significant three way
interaction between Group, Polarity and Validity [F(1, 44) = 4.24,
MSE= 0.008, η2

p = 0.088, p < 0.05].

Analysis of coherence
Coherence tests apply regardless of the believability of the con-
ditional statement, and so for this measure we report analyses of
all 48 sentences. Chance and hit rates are shown on this measure
in Figures 3, 4 for the Inference and Belief groups respectively.
For the Inference group, performance appears to be well above
chance for MP, DA, and AC but below chance for MT. Perfor-
mance appears lower generally in the Belief group but the reverse
trend for MT is still present.

The ANOVA for performance scores produced three large
effects: Group [F(1, 44) = 16.63. MSE = 0.523, η2

p = 0.437, p <

0.001] with higher scores for Inference (0.091) than Belief (0.016);
Polarity [F(1, 44) = 47.87, MSE = 0.332, η2

p = 0.521, p < 0.001
with higher scores for MP, AC (0.096)] than for DA, MT (0.011);
and Validity by Polarity [F(1, 44) = 167.95, MSE = 1.230, η

2
p

= 0.792, p < 0.001]. The main effect of Polarity and its inter-
action with Validity reflect the fact that performance reversed

on MT for both groups (see Figures 3, 4). Also significant in
this analysis were Validity [F(1, 44) = 7.59, MSE = 0.033, η2

p =

0.147, p < 0.01], Polarity by Group [F(1, 44) = 18.77, MSE =

0.130, η2
p = 0.299, p < 0.001] and Group by Validity by Polarity

[F(1, 44) = 8.82, MSE = 0.065. η2
p = 0.167, p < 0.01]. The valid-

ity effect is also due to poor performance on MT. The three way
interaction reflects the fact that the Group by Validity interaction
was more marked in the Inference group where performance on
inferences other than MT was higher.

Statement Probabilities

As indicated above, chance calculations depend upon the proba-
bilities participants assign to the premises of each argument. Hit
rates depend on the conclusion probability assigned. To aid in
interpretation of the above findings, we examined the ratings of
these statements directly. First, we looked at major premises—
the conditional statements themselves. We checked for the Infer-
ence group whether conditionals were rated differently on the
four occasions they appeared (with each inference). They did not,
mean scores being almost identical. We compared the average of
these with the single ratings of the same conditionals in the Belief
group and they were again similar: Inference 45.2 (SD 19.1),
Belief 47.3 (SD 23.4). A t test conducted across the 48 sentences
showed no significant difference (t = 0.62).

Then we considered the ratings of the events p, not-p, q and
not-q which comprise the minor premises and conclusions for
the arguments. In the Belief group these are only rated once, but
in the Inference group each is rated twice, once when acting as a
premise (e.g., p for MP) and once as a conclusion (e.g., p for AC).
Ratings as premises and conclusion were again extremely simi-
lar in all cases. There were however, substantial differences in the
ratings given to affirmative events (p and q) with a mean of 0.52
and for negative events (not-p and not-q) with a mean of 0.39.
This effect was very large as shown by an ANOVA [F(1, 44) =

82.53, MSE = 0.324, η2
p = 0.652, p < 0.0001]. There was also

marginally significant (p < 0.06) trend for antecedent events
(0.48) to be rated higher than consequent events (0.45).

It is important to note that ratings of affirmative and negative
events were incoherent, i.e., inconsistent with probability theory.
As Figure 5 illustrates, the sum of events and their negations was
less than one in all cases, whether calculated for the full sets of
48 conditionals or the reduced set of 24. This incoherence has
important implications for our findings. In the p-validity analyses
(Figures 1, 2) chance rates were significantly higher for DA and
MT which make use of negated events. This would follow from
underestimation of negative events, because as we have shown
earlier, lower belief in premises results in larger ranges for hits on
this measure. It also affects chance rates for coherence measures
(Figures 3, 4) but in the opposite direction. If assignments were
coherent, then we would compute the same chance rates for MP
and DA and the same for AC and MT. The former pair use P(p)
and 1—P(p), which should add to one, the latter P(q) and 1—P(q)
which should also add to one.

To see why underestimating negative event probabilities
reduces chance scores for the coherence measure, we take an
example. Suppose for a particular conditional a participant sets
P(q|p) = 0.7, P(p) = 0.6 and P(not-p) = 0.32. This shows the
typical bias in our experiment, as P(p) + P(not-p) = 0.92 overall.
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FIGURE 5 | Stacked bar chart showing probabilities assigned to events

and their negations. B, Belief group; I, Inference group; 48, full set of

conditionals; 24, reduced set; p, antecedent event (black bar p, white bar

not-p); q, consequent event (black bar q, white bar not-q).

When we compute the hit interval for MP, by the equations given
in Table 1, we get [0.42, 0.82] with a chance calculation of 0.40.
Had P(not-p) been assigned coherently, i.e., to 0.4, the interval
for DA would compute to be [0.12, 0.58] again with a chance rate
of 0.40. However, it is underestimated, resulting in a computed
interval of [0.476, 0.796] and a chance rate of 0.32 which is lower
than is should be.

Discussion

The objective of the present study was to investigate the accu-
racy with which people can make probability judgments about
the premises and conclusions of conditional inferences, and to
test whether this accuracy, as measured by Bayesian standards,
is increased by explicit conditional reasoning. We appealed to
the standards of p-validity and coherence. We used two meth-
ods: a Belief group who rated beliefs in the statements presented
separately, and an Inference group who saw them grouped as an
explicit inference. We found that our participants did conform to
p-validity at rates significantly higher than chance, but only for
the affirmative inferencesMP and AC. This performance was also
significantly higher for the Inference group. Results were similar
for the coherence measure. Again performance was well above
chance for MP and AC, and significantly better for the Inference
group. However, the results for the denial inference DA and MT
were more complex, as participants were above chance for the
former and below chance for the latter.

Asmust be evident to the reader, the study of uncertain deduc-
tion is a good deal more complex than use of the traditional
deduction paradigm. In the traditional method, each inference
is classified as valid or invalid and the participant either does or
does not endorse the inference. To study uncertain deduction we
must allow participants to assign probabilities to the premises
and the conclusions of deductive arguments. The difficulty then
comes in assessing whether they have done this correctly. First,
there is not one but two different measures that can be taken: p-
validity and coherence. Second, each of these allows participants
to assign a conclusion probability within an interval. This interval

must be computed for each participant on each problem sepa-
rately depending on the premise probabilities assigned. Finally,
these intervals can be large, creating the problem that participants
may hit them by chance. We have shown in this paper how to
compute these chance intervals and proposed method to correct
hits rates for guessing.

Very little previous work has been conducted on uncertain
deduction, despite apparent enthusiasm for a new paradigm psy-
chology of reasoning based on degrees of belief rather than black
and white truth judgments. The methodology introduced here
differs in significant ways from the study of Pfeifer and Kleiter
(2009, 2010) who studied only coherence (not p-validity), using
premise probabilities assigned by the experimenter and allowing
participants to assign a range of probabilities to the conclusion.
Their results differ from ours in that they found coherence to be
good only for MP, whereas we find this to be the case for MP, AC,
and DA. This could reflect the difference in response method, but
we think it more likely due to our use of realistic, causal-temporal
conditional statements which introduce real world experience of
causal relations. (We have no account of the reversal on MT,
however.) In addition to assessing the coherence of conclusion
probabilities taken as point ratings, we believe this to be the first
psychological study to measure directly whether people conform
to p-validity when both major and minor premises are taken to
be uncertain. In both cases, this means that a range of values
are acceptable as a “hit” on either measure. We consider our two
measures in turn.

Probabilistic validity, or p-validity, is a relatively weak mea-
sure for us. For generality and to minimize our assumptions, we
did not presuppose that P(if p then q)= P(q|p) in our assessment
of p-validity, but simply assessed whether participants express
no more uncertainty in the conclusion than in the premises of
our conditional inferences. This notion of validity does not con-
strain conclusion probabilities for the invalid inferences, AC and
DA, nor in effect, for valid inferences with low belief premises.
Hit rates generally exceeded chance in our study only for the
affirmative inferences MP and AC. Chance rates are disturbingly
high (black bars, Figures 1, 2) even with the analysis restricted to
the higher belief conditionals. Hence, we suggest that this mea-
sure will only be useful for problems where there is a very high
degree of belief in the premises. Nevertheless, we have some find-
ings of interest on this measure. First, as predicted, p-validity
scores are higher for the Inference than the Belief group, with
and without chance correction. The second finding of particular
interest is that participants did not conformmore to p-validity on
the inferences that are actually valid, MP and MT. Indeed there
was a small trend in the opposite direction. Much larger was an
effect of polarity such that participants performed better on the
affirmative inferences, MP and AC.

These findings can be accounted for as follows. First, the
chance rates are very high on DA and MT due to underesti-
mation of negative event probabilities, as explained earlier. This
creates a ceiling effect for these two inferences, making it dif-
ficult for participants to perform above chance. This does not
explain, however, why performance is equally high on MP and
AC and facilitated for the Inference group in both cases. Research
in the traditional paradigm often showed high endorsement of

Frontiers in Psychology | www.frontiersin.org April 2015 | Volume 6 | Article 398 104|

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Evans et al. Uncertain deduction

AC, though it is both classically invalid and p-invalid (Evans
and Over, 2004). It may be that the participants interpreted the
assertion of our causal-temporal conditionals (in Supplementary
Material) if p then q as also pragmatically implying if q then p,
making AC in effectMP in the other direction. That could explain
their apparently equal effort to generate a p-valid conclusion in
the Inference group for AC as for MP. In a study corresponding
to our Inference group, Singmann et al. (2014) assessed p-validity
only for MP and MT, and found that participants conformed to
p-validity for MP and not MT. Still, as we have explained above,
pragmatic factors can have a large effect people’s reasoning. There
could be pragmatic differences in thematerials used by Singmann
et al. and ourselves, and further research must investigate this
possibility.

It could also be suggested that our use of causal-temporal con-
ditionals, if p then q, implies not only that P(q|p) is high but that
P(q|not-p) is low, in conformity with the delta-p rule, P(q|p)—
P(q|not-p), which measures how far that p raises the probability
of q. It is true that, when p causes q, p would normally be thought
to raise the probability of q, but previous work has not found
that people interpret causal-temporal conditionals in terms of the
delta-p rule (see Over et al., 2007, and especially Singmann et al.,
2014, on this rule).

Use of the coherencemeasures allows us to ask whether people
are coherent in the beliefs they express about conditional state-
ments and their component events. This measure is stronger than
that of p-validity and is applicable to both p-valid and p-invalid
inferences. But the equations we use for coherence do assume that
P(if p then q) = P(q|p), which, as we explained above, is often
called the Equation (Edgington, 1995). Examining the data, we
have found again that coherence is better for the Inference than
the Belief group, again with and without chance correction. As
with p-validity, these analyses are affected by the underestimation
of negative event probabilities, which in this case causes chance
rates to drop somewhat for DA and MT. But it is striking that
the facilitation of coherence in the Inference group is restricted
to MP, DA, and AC, as can be seen by comparing Figures 3, 4
(see yet again Singmann et al., 2014, and recall our point about
possible pragmatic differences between their materials and ours).

Interpretation of findings on the negative inferences, DA and
MT, is clearly complicated by the underestimation of negative
event probabilities we have observed. If we focus our attention
on the affirmative inferences, MP and AC, however, it is clear
that participants perform well above chance on both measures
in the Inference group. In other words when given the oppor-
tunity to see the statements grouped as an inference, untrained
participants do seem to grasp intuitively the logical restrictions
that premise probabilities place upon conclusion probabilities.
The actual hit rates are well over 80% for p-validity and around
75% for coherence. We find these figures quite encouraging, as
supporting the conclusion that one way to improve Bayesian rea-
soning is by the use of explicit inferences. Explicit reasoning may
not always make people rational by Bayesian standards, but it can
help (see also Cruz et al., 2015).

Uncertain deduction is central to the new paradigm psychol-
ogy of reasoning. If research is to progress, we must find methods
for studying the relation between belief in premises and belief in

conclusions. It is, as we have shown, a much trickier task than
that presented by the standard deduction paradigm. There are a
number of pointers to future research studies arising from our
findings. For example, studies of p-validity should be restricted
to problems with high belief (but still uncertain) premises, in
order to provide sufficient sensitivity. We have also highlighted
a problem with explicitly negated premises. Events expressed as
negations tend to be underestimated in their probabilities, pro-
viding an immediate source of incoherence. This could be related
to the findings in “support theory” of subaddivity: that the weight
given to an implicit disjunction is less than the sum of its dis-
juncts when these are made explicit (Tversky and Koehler, 1994).
A negated event is itself an implicit disjunction; that is, not-A
consists of B v C v . . . , which are the explicit alternatives. For
example, the probability assigned to “school class sizes are not
reduced” might be less than the sum that would be assigned to
“school class sizes are increased” and “school class sizes remain
the same.” In any event, this problemmust be addressed in future
studies of the coherence of negated inferences3.

We believe that there is much to be gained from the further
study of the coherence of conditional beliefs, as in our Belief
group. We have noted above the rich literature that resulted
from the discovery of the conjunction fallacy. The representa-
tiveness heuristic that Tversky and Kahneman (1983) proposed
as an explanation of this incoherence in conjunctive beliefs might
also cause some incoherence in conditional beliefs, but other, as
yet unknown heuristics could play a role as well. We hope to
have demonstrated here, however, that the study of deductive rea-
soning using Bayesian methods should move beyond the almost
exclusive focus on the inference from p and q to q and the asso-
ciated conjunction fallacy. There is much more to discover about
Bayesian reasoning by studying other deductive inferences with
uncertain premises.

In an ideal Bayesian world, probabilities assigned to logically
related statements would be perfectly coherent with probability
theory, but in reality this is unlikely to hold, especially when the
statements are not explicitly related as inferences. Such proba-
bilities are unlikely to be assigned on an absolute basis due to
the power of pragmatics in human communication and under-
standing. We interpret statements in their context, amplifying
their meanings and making probability judgments with implicit
heuristics. It is unsurprising that people’s beliefs are not fully
coherent. It is impossible for them to ensure absolute coherence,
even in relatively simple beliefs, due computationally intractabil-
ity. However, it is of great interest to discover the causes of inco-
herence in conditional beliefs, such as the difficulty with negative
events reported here.

Grouping uncertain statements together as an inference is a
natural way to extend the traditional deduction paradigm to the
study of uncertain deduction. The fact that participants in our
Inference group consistently performed better than participants
in the Belief group might suggest that the former were interven-
ing with explicit reasoning in order the make their judgments

3The coherence intervals of Table 3 are derived using the total probability theo-

rem of probability theory. See Hadjichristidis et al. (2014) on this theorem and

their findings of superaddivity.
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more consistent. Further research will be needed, however, to
determine whether this is in fact that case. An alternative prag-
matic account is that concurrent presentation of premises and
conclusions contextualizes the statements together so that judg-
ments become more consistent without any conscious effort of
reasoning. If explicit reasoning is involved, this could be indi-
cated by examining performance under working memory load or
by correlating performance with individual measures of cognitive
ability. These are among the methods employed by dual process
researchers to identify effortful reasoning (Evans and Stanovich,
2013).

In conclusion, we hope to have developed a methodology that
can be adapted for a variety of future uses in the new psychol-
ogy of deduction. We have shown that it is feasible to study the
relation between the degree of belief that people hold in premises
and conclusion of a logical argument. We have also shown that
such judgments are not random and conform to the coherence
of probability theory at rates well above that which could be
expected by chance. People have some problems with the coher-
ence of their judgments about negative events, but are otherwise

fairly good, by Bayesian standards, at conditional reasoning.
Their performance is at an even higher level when statements are
grouped together into explicit conditional inferences.
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The Bayesian approach to the psychology of reasoning generalizes binary logic, extending
the binary concept of consistency to that of coherence, and allowing the study of deductive
reasoning from uncertain premises. Studies in judgment and decision making have found
that people’s probability judgments can fail to be coherent. We investigated people’s
coherence further for judgments about conjunctions, disjunctions and conditionals, and
asked whether their coherence would increase when they were given the explicit task
of drawing inferences. Participants gave confidence judgments about a list of separate
statements (the statements group) or the statements grouped as explicit inferences
(the inferences group). Their responses were generally coherent at above chance levels
for all the inferences investigated, regardless of the presence of an explicit inference
task. An exception was that they were incoherent in the context known to cause the
conjunction fallacy, and remained so even when they were given an explicit inference.
The participants were coherent under the assumption that they interpreted the natural
language conditional as it is represented in Bayesian accounts of conditional reasoning,
but they were incoherent under the assumption that they interpreted the natural language
conditional as the material conditional of elementary binary logic. Our results provide
further support for the descriptive adequacy of Bayesian reasoning principles in the study
of deduction under uncertainty.

Keywords: uncertain reasoning, deduction, conditionals, coherence, conjunction fallacy

INTRODUCTION
Most everyday and scientific inferences are from uncertain
premises, with the aim of forming and revising beliefs and making
decisions. For example, some hypotheses about global warming
are more highly confirmed than others, but all are uncertain
to some degree, and yet there have to be inferences from these
hypotheses to further scientific research and practical decision
making. Given the ubiquity of reasoning under uncertainty, an
important question in the psychology of reasoning is how good
people are at it, and what can improve it when it falls short of the
appropriate normative theory.

Tversky and Kahneman (1983) pointed out that “. . .the nor-
mative theory of judgment under uncertainty has treated the
coherence of belief as the touchstone of human rationality.”
Coherence is the normative foundation of the Bayesian approach
to the study of cognition (Chater and Oaksford, 2008), which
is having an immense impact on the psychology of reasoning
(Elqayam and Over, 2013). To be coherent is to conform to the
axioms of probability theory, which are justified by the Dutch
book theorem (de Finetti, 1974).

There are tasks and contexts in which there appears to be
a remarkably good correspondence between people’s probability
judgments and probability theory (Griffiths and Tenenbaum,
2006; Oaksford and Hahn, 2007; Fiser et al., 2010; Oaksford and
Chater, 2013). But there are also contexts in which people are

incoherent. Until very recently, there were only limited studies
of whether people are coherent in their judgments about the
basic logical connectives of conjunction, disjunction, and the
conditional. Of course, there have been innumerable papers on
the conjunction fallacy (Tversky and Kahneman, 1983): judging
that the probability of a conjunction, P(p and q), is greater than
the probability of one of its conjunctions, P(p). The valid logical
inference related to this fallacy is and-elimination: inferring p from
p and q. But this is just one out of many logical inferences in
which conjunction occurs. There have been relatively few studies
of the disjunction fallacy (Bar-Hillel and Neter, 1993): judging
that P(p) is greater than P(p or q). The valid inference for this
fallacy is or-introduction: inferring p or q from p. There should be
wider studies of probability judgments about conjunctions and
disjunctions, especially when these connectives are related to the
conditional, if p then q, since conditionals are at the heart of so
much reasoning in both everyday affairs and science.

The purpose of this paper is to extend the study of whether
people’s probability judgments about conjunctions, disjunctions,
and conditionals are coherent. Our approach is that of the new
paradigm in the psychology of deductive reasoning, which goes
beyond the binary distinction between categorical belief in the
truth, or falsity, of propositions to the full range of degrees of
belief, or subjective probabilities (Evans and Over, 2004, 2013;
Oaksford and Chater, 2007, 2012, 2013; Pfeifer and Kleiter, 2010,
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2011; Baratgin et al., 2013; Pfeifer, 2013; Over, in press). The
probabilistic approach has taken two important steps in the study
of deduction: (1) it represents uncertainty in the premises and
conclusions of inferences, and (2) it represents the probability
of the natural language indicative conditional, P(if p then q), as
the conditional probability of q given p, P(q|p). The relation, P(if
p then q) = P(q|p), is so fundamental for a Bayesian account of
conditional reasoning that it has simply been called the Equation
(Edgington, 1995; Oaksford and Chater, 2007). A conditional that
satisfies the Equation has been called the probability conditional
(Adams, 1998; Oaksford and Chater, 2007), but we call it here
the conditional event (following de Finetti, 1995). The conditional
probability in the Equation, P(q|p), is not defined by the ratio
P(p and q)/P(p) in our approach (see also Pfeifer, 2014). One can
easily think of cases in which people have a clear degree of belief
about P(q|p) even though they judge that P(p)= 0, or they cannot
make a judgment at all about P(p) (Adams, 1998). We rather argue
that people infer the conditional probability in a Ramsey test, that
is, a mental simulation in which they hypothetically suppose p to
be the case, make whatever changes to their beliefs are necessary
to preserve consistency, and assess the probability of q on this
basis (Stalnaker, 1968; Ramsey, 1994; Evans and Over, 2004).
Both (1) and (2) have received strong and converging empirical
support (Oaksford et al., 2000; Evans et al., 2003; Oberauer and
Wilhelm, 2003; Oberauer et al., 2007; Over et al., 2007; Douven
and Verbrugge, 2010; Politzer et al., 2010; Fugard et al., 2011b;
Baratgin et al., 2014; Cruz and Oberauer, 2014; Singmann et al.,
2014).

In an influential alternative approach, mental model theory,
the natural language indicative conditional is taken to have the
same full models as the material conditional of elementary exten-
sional logic, which is logically equivalent to not-p or q. The
material conditional is truth functional, that is, its truth or falsity
is a function of the truth or falsity of its elementary components,
the propositions p and q. It is false when its antecedent p is true
and the consequent q is false, and it is true in the other three
possible cases (that is, the cases p and q, not-p and q, and not-p
and not-q). In mental model theory, P(if p then q)= P(not-p or q)
is supposedly the correct normative probability judgment to make
(Johnson-Laird and Byrne, 1991, 2002; Byrne and Johnson-Laird,
2009, 2010). Whether P(if p then q) equals P(q|p) or P(not-p or q)
very much affects which judgments are coherent in conditional
reasoning, as we will see below.

Consider the uncertain premises and possible uncertain con-
clusions that form the basis of most of our ordinary and scientific
reasoning. The axioms of probability theory can be used to deter-
mine whether combinations of these premises and conclusions
are, or are not, coherent (for recent examples see Pfeifer and
Kleiter, 2005, 2009; Gilio and Over, 2012). For instance, there
are the valid inferences of and-elimination, referred to above,
and also and-introduction: inferring p and q from the separate
premises p and q. For probability judgments about p, q, and
p and q to be coherent, P(p and q) must lie in the interval
between P(p) + P(q) − 1 (or 0 if this sum is negative) at the
lower end, and the minimum of P(p) and P(q) at the upper end
(Pfeifer and Kleiter, 2005). For example, P(p) = P(q) = 0.6 and
P(p and q) = 0.1 is incoherent because P(p and q) is too low, and

P(p)= P(q)= 0.6 and P(p and q)= 0.7 is incoherent, and the con-
junction fallacy is committed, because now P(p and q) is too high.
Our question in this paper is whether people are generally coher-
ent in their conjunctive, disjunctive, and conditional premises and
conclusions, and whether their coherence is improved when they
are given explicit inferences. Tversky and Kahneman (1983) did
not ask their participants to infer degrees of confidence in the
conclusion p from an uncertain p and q premise in an explicit
inference, but we did ask participants in our experiments.

Studies of the coherence between premises and conclusions of
people’s reasoning has only just begun (Pfeifer and Kleiter, 2005,
2010, 2011; Pfeifer, 2013; Politzer and Baratgin, under review;
Singmann et al., 2014; Evans and Over, under review). There
is evidence, for example, that people are coherent in explicit
and-introduction inferences (Pfeifer and Kleiter, 2005; Politzer
and Baratgin, under review). There are also some studies of the
classical conditional inferences of modus ponens (MP), modus
tollens (MT), affirmation of the consequent (AC), and denial
of the antecedent (DA), and it has been found that the degree
to which people are coherent can increase when they are given
some of these conditional inferences as explicit tasks to perform
(Evans and Over, under review; see also Pfeifer and Kleiter, 2010;
Singmann et al., 2014).

We conducted two experiments focusing on conjunctions,
disjunctions, and their relationships with conditionals, and com-
paring probability judgments about the premises and conclusions
when these were given as separate statements and when they were
arranged as explicit inferences. Experiment 1 looked at inferences
between disjunctions and conditionals, and Experiment 2 at infer-
ences between conjunctions and conditionals. The inferences are
summarized in Table 1.

Inferences 1.1 and 1.2 are logically equivalent, as are inferences
1.3 and 1.4, as well as inferences 1.5 and 1.6. They differ only in
the position of the negation they contain. The two positions of
the negation instantiated in the inferences are those for which
the largest negation effects have been reported in the literature
(Oberauer et al., 2011; Espino and Byrne, 2013). We introduced
this variation in order to control for negation effects. Experiment
1 assessed two further inferences, and Experiment 2 six further
inferences, which are not listed in Table 1. These additional
inferences were used to investigate other questions, and are not
discussed here further.

Inferences 1.1 and 1.2 are logically equivalent forms of or-
introduction, and here it is clearly incoherent to judge that the
probability of the conclusion is lower than that of the premise. It is
a consequence of the axioms of probability theory that P(p)≤ P(p
or q). In the binary approach, it is inconsistent to assume the

Table 1 | The inferences used in Experiments 1 and 2.

Experiment 1 Experiment 2

1.1 p, therefore p or q 2.1 p & q, therefore if p then q
1.2 not-p, therefore not-p or q 2.2 p, q, therefore if p then q
1.3 If p then q, therefore not-p or q 2.3 p & q, therefore p
1.4 if not-p then q, therefore p or q 2.4 p & q, therefore q
1.5 p or q, therefore if not-p then q
1.6 not-p or q, therefore if p then q
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truth of the premise of or-introduction, p, but not to accept that
p or q follows. Binary studies found that people did endorse this
inference at just above chance levels, but also that there was sig-
nificant resistance to it (Rips, 1983, 1994; Braine et al., 1984). This
finding has generally been explained as a pragmatic effect: people
are unwilling to draw the inference because it would be misleading
in a conversation with another person to endorse p or q when one
can make the more informative statement p (Grice, 1989; see also
Bar-Hillel and Neter, 1993; Tversky and Koehler, 1994; Fugard
et al., 2011a). The much wider Bayesian approach can cover the
special case of binary inconsistency by letting a probability of 1
represent “true” and a probability 0 represent “false.” The binary
findings could be said to reveal implicit incoherent reasoning
because people are, in effect, making P(p) = 1, p is “true,” and
P(p or q) = 0, p or q is “false.” However, we predicted greater
coherence when people are explicitly asked for their degrees of
belief about p and p or q. People can then state their degrees of
belief directly, without needing to consider additional pragmatic
factors that arise when communicating with another speaker. This
should lead to the prevention, or at least to a strong reduction, of
pragmatic effects.

Inferences 1.3 and 1.4 are logically equivalent if-to-or infer-
ences and go from a conditional to a disjunction. Supposing if
p then q is equivalent to the material conditional, P(if p then q) =
P(not-p or q), any other judgment is incoherent. Supposing if p
then q is the conditional event, P(if p then q) = P(q|p). It follows
from the axioms of probability theory that P(q|p)≤ P(not-p or q),
and probability judgments must conform to this relation to be
coherent.

Inferences 1.5 and 1.6 are logically equivalent or-to-if infer-
ences and go from a disjunction to a conditional. If the condi-
tional in these inferences is interpreted as the material condi-
tional, then the same equivalence holds as for 1.3 and 1.4, and
judgments are only coherent when the premise and conclusion
are assigned the same probability. If the conditional is interpreted
as the conditional event, then judgments are coherent when they
conform to the relation P(q|p) ≤ P(not-p or q). Thus the relation
that must hold for the inferences to be coherent is the same
for 1.3–1.4 and for 1.5–1.6. The difference is that in the first
two the conditional is the premise, and in the second two the
conditional is the conclusion. This implies that, if one interprets
the conditional as the conditional event, the if-to-or inference is
coherent when the probability of the conclusion is equal or higher
than that of the premise, whereas the or-to-if inference is coherent
when the probability of the conclusion is equal or lower than that
of the premise. This difference in the conditions for coherence of
the two inferences is reflected in the fact that under a conditional
event interpretation, the if-to-or inference is valid, whereas the or-
to-if inference is invalid and can even be a quite a weak inference.

When we speak of validity in this context of uncertain infer-
ence, we mean probabilistic validity, or p-validity. P-validity is a
generalization of binary validity to reasoning under uncertainty.
Just as an inference is binary valid when there are no cases in
which the conclusion is false and the premise is true, a single
premise inference is p-valid when there are no coherent cases
in which the probability of the conclusion is lower than the
probability of the premise (see Adams, 1998, on p-validity for

inferences with more than one premise; Singmann et al., 2014;
Evans and Over, under review, for applications in the psychology
of reasoning). For the or-to-if inference, such cases are possible.
Consider an instance of 1.5. We might have a high degree of
confidence that our bicycle is outside our apartment in Paris
where we left it. That should, if we are coherent in the or-
introduction inference, give us a high degree of confidence that
our bicycle is outside our apartment in Paris or in Timbuktu.
But we do not have any confidence that, if our bicycle is not
outside our apartment in Paris, then it is in Timbuktu. It is
much more reasonable to infer that, if our bike is not there, it
is somewhere else in Paris after being stolen. Johnson-Laird and
Byrne (2002, p. 650) claimed that people always endorse 1.5, but
Gilio and Over (2012) have an analysis of when 1.5 and 1.6 are,
and are not, reasonable inferences to make, and Over et al. (2010)
have supporting results. Because the question of whether people’s
responses to the or-to-if inferences are coherent depends on how
the conditional is interpreted, our investigation of these inferences
does more than reveal their coherence in general. It also tells
us about the modal interpretation of the conditional. If people’s
judgments are highly incoherent for one interpretation, and yet
highly coherent for another, there is an argument in favor of the
interpretation that renders their judgments coherent.

Inferences 2.1 and 2.2 are from a conjunction to the condi-
tional. The first has the conjunction as a single premise, whereas
the second has the two conjuncts as separate premises. It is
easiest to state what is coherent for the single premise inference
to the conditional event. By probability theory, P(p and q) =
P(p)P(q|p) ≤ P(q|p). The formula for the coherence of judgments
about the premises and conclusion of the 2.2 inference is more
complex because it requires taking into account that the premises
can covary to different degrees (Kleiter, 2014). The formula for
it is reported in Experiment 2 below. Because of this additional
complexity in processing coherence for inference 2.2, we wanted
to assess whether people’s responses complied with coherence
more often for 2.1 than for 2.2.

Inferences 2.3 and 2.4 are forms of and-elimination, and we
have already stated above how coherence is determined for them.
Not conforming to coherence for this inference is to commit
the conjunction fallacy. We therefore wanted to test for this case
whether our general prediction holds: that people’s probability
judgments more often conform to coherence when they are given
the explicit task of drawing inferences.

EXPERIMENT 1
METHODS
Participants
A total of 1140 participants from English speaking countries
completed the online experiment, in exchange fore0.1. From this
initial sample we excluded cases that had the same IP address as
a previously recorded participant, cases that provided the same
response on all trials, and cases that had a reported age below 12 or
above 1001. The final sample consisted of 871 participants. Their

1A reanalysis of the data excluding the 20 participants with a reported age
between 12 and 17 led to the same pattern of significant and non-significant
results.
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mean age was 35 years (range 12–78). They reported different
levels of formal educational training, and 87% reported having
“good” or “very good” English language skills.

Material and design
Participants were shown a short scenario describing a person,
and then presented with a series of statements about the person.
The statements either appeared one at a time on the screen,
in random order for each participant in the statements group,
or the statements were presented in pairs as the premises and
conclusions of explicit inferences in the inferences group. Partic-
ipants in the statements group were asked to judge how confident
they were in each statement, by typing in a percentage between
0% (“no confidence at all”) and 100% (“complete confidence”).
Participants in the inferences group were asked to judge how
confident they were in the premise of the argument, and then
how confident they were in the conclusion, given the premise.
Participants in the inferences group used the same percentage
scale as those in the statements group to provide their answers.

Two scenarios were varied between participants: The Linda
scenario (Tversky and Kahneman, 1983), with the standard
description of Linda, and a scenario describing a person conform-
ing to a stereotype quite unlike that of Linda. Below is a sample
trial in the statements group and in the inferences group, using
the Linda scenario:

Statements group:
Now consider the following statement about Linda:
Please indicate how much confidence you would have in this

statement. Please give a percentage rating from 0% (no confidence
at all) to 100% (complete confidence).

“Linda votes for the Labour Party or the Green Party”

Inferences group:
Now consider the following argument about Linda:
Next to A please indicate how much confidence you would

have in the premise of the argument. Next to B please indicate
how much confidence you would have in the conclusion, given the
premise. Please give a percentage rating from 0% (no confidence
at all) to 100% (complete confidence).

A. “Linda votes for the Labour Party or the Green Party”
B. “Therefore, if Linda does not vote for the Labour Party, then

she votes for the Green Party”

In the inferences group, participants judged each inference
twice with different contents. The allocation of scenario contents
to inferences was counterbalanced across participants, leading
to eight different booklets, four for each scenario. In the state-
ments group, each participant rated the entire set of contents
created for the relevant scenario, leading to two booklets, one
for each scenario. In order to compensate for the difference in
sample size between groups resulting from the different number
of booklets in each group, we placed a weight on the other-
wise random procedure for assigning participants to booklets,
such that participants were twice as likely to receive any one
of the booklets of the statements group than any one of the
booklets of the inferences group. This resulted in sample sizes of
n = 305 and n = 566 for the statements and inferences group,
respectively.

Procedure
The experiment took place online using the platform Crowd-
Flower. On the first screen participants viewed the instructions
and a sample trial. The next screen showed the scenario within
which the statements, or respectively the inferences, were to be
assessed. These then followed, presented one at a time on the
screen. A further screen asked for demographical information,
and a final screen provided debriefing information. The whole
procedure took on average 4.24 min for the statements group and
5.23 min for the inferences group.

RESULTS
We measured above chance compliance with coherence using a
method introduced by Evans et al. (under review; see also Pfeifer
and Kleiter, 2009). First, we computed the difference between
the probability assigned to the conclusion and the probability
assigned to the premise. We then computed a binary variable to
encode whether this difference indicated that the response was
coherent or not. Thus, for or-introduction, 1.1–1.2, and the if-
to-or inferences, 1.3–1.4, this variable took the value 1 when the
difference was positive or 0, and took the value 0 otherwise. For
the or-to-if inferences, 1.5–1.6, the variable took the value 1 when
the difference was 0 or negative, and took the value 0 otherwise.
This computation was performed separately for each participant
and inference. We call this variable observed coherence. Next, we
computed the probability of a response being coherent by chance,
chance coherence. On the assumption that a random response can
fall equally likely on any point of the probability scale, the prob-
ability of complying to coherence by chance corresponds to the
width of the coherence interval. This is a simplifying assumption
because there is evidence that people’s probability estimates might
be biased at the boundaries of the interval, in a way that could lead
to higher chance rates for extreme cases (c.f. Stewart et al., 2006).
However, we considered a uniform distribution of chance rates a
sufficiently accurate approximation to allow an assessment of the
hypotheses at hand. On this assumption, if a person assigns for
instance a probability of 0.6 to the premise of an or-introduction
inference, then the probability she assigns to the conclusion is
coherent if it falls within the interval between 0.6 and 1. Because
the width of this interval is 0.4, the chance rate of conforming to
coherence is in this case also 0.4. Finally, we subtracted chance
coherence from observed coherence, to obtain a measure of the
extent to which responses were coherent at levels above those
expected by chance, above chance coherence.

The ratings of above chance coherence were submitted to a
mixed ANOVA with the between subjects factor of task (state-
ments, inferences) and the within subjects factor of inference (or-
introduction, if-to-or, and or-to-if ). Throughout the paper, the
Greenhouse–Geisser correction of degrees of freedom for lack
of sphericity was used when appropriate, and the Bonferroni–
Holm correction of p-values for multiple comparisons was used to
define the limit of a significant effect, while reporting the original
p-values. The results are depicted in Figure 1. The overall inter-
cept was significant, F(1,869) = 885.29, p < 0.001, η2

p = 0.505,
indicating that overall probability judgments were coherent at
above chance level. There was also a main effect of inference,
F(1.382,1201.390)= 266.28, p < 0.001, η2

p = 0.235: above chance
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FIGURE 1 | Observed versus chance coherence for the six inferences of
Experiment 1, (A) for the statements and (B) for the inferences task.
Inferences 1 and 2 are logically equivalent or-introduction inferences, with a
negation absent in 1 and present in the premise of 2. Inferences 3 and 4 are
logically equivalent if-to-or inferences. Inference 3 has a negation in the
conclusion and inference 4 in the premise. Inferences 5 and 6 are logically
equivalent or-to-if inferences. Inference 5 has a negation in the conclusion
and inference 6 in the premise. See Table 1 for the precise logical form of
the inferences. Error bars show 95% CI.

coherence differed for the three inferences. No other effects were
significant (highest F = 1.07, lowest p= 0.30). In particular, there
was no significant effect of task.

Follow-up analyses of the effect of inference showed that
although responses were coherent at above chance level for all
three inferences, the degree of above chance coherence was higher
for or-to-if than for if-to-or, F(1,869) = 270.99, p < 0.001,
η2

p = 0.238; and higher for if-to-or than for or-introduction,

F(1,869)= 16.50, p < 0.001, η2
p = 0.019. Thus, responses to both

or-to-if and if-to-or were consistently above chance. Responses to
or-introduction were also coherent more often than expected by
chance, although somewhat less often than responses to the other
two inferences. An inspection of Figure 1 suggests that the differ-
ence between the if-to-or and the or-introduction inferences was
due mainly to the lower coherence for or-to-if for inference 1.2 in
the statements task. In line with this, a comparison between the
two inferences restricted to the inference task showed no differ-
ence in above chance coherence between the two, F(1,565)= 1.85,
p= 0.17, η2

p = 0.003.
We conducted a further analysis of the or-to-if inference in

which we excluded responses that are coherent for both the
conditional event and the material conditional interpretation of
the conditional: responses that assigned the same probability to
the premise and conclusion. We treated as coherent only those
responses that are coherent for a conditional event interpretation:
responses that assigned a lower probability to the conclusion
than to the premise. On a material conditional interpretation,
the only coherent response to this inference is to assign the same
probability to both the premise and conclusion, and assuming
that people interpret the conditional as the material conditional,
the mean difference between premise and conclusion probability
would be expected to be 0. There might be some scattering of
probabilities above and below 0, but no systematic drift in any

direction. We would expect there to be no effect of coherence for
this analysis. On a conditional event interpretation, responses are
coherent when the probability of the conclusion of the or-to-if
inference is equal to or lower than that of the premise. On this
interpretation, we would expect coherence to be lower for this
analysis than for the analysis using all the data, because a subset
of coherent responses would not be considered. The absence
of an effect of coherence would also be compatible with this
interpretation, and would then render the analysis uninformative
to the question at hand. However, a remaining effect of coherence
in the expected direction would constitute specific evidence for
a conditional event interpretation and against a material condi-
tional interpretation of the conditional.

An univariate ANOVA on above chance coherence for the or-
to-if inference, using only the data for which probability judg-
ments differed for premise and conclusion in each individual case,
yielded a significant intercept, F(1,362) = 100.27, p < 0.001,
η2

p = 0.217: responses to or-to-if were coherent at levels above
chance when only considering as coherent those responses that are
coherent for the conditional event and incoherent for the material
conditional interpretation of the conditional.

Although Figure 1 shows the results separately for each posi-
tion of the negation, we did not find any consistent effects
regarding this variable. We also did not have any hypotheses about
it, but introduced it only as a control variable, to be able to obtain
a pattern of results that could be generalized across positions of
the negation.

DISCUSSION
We investigated the extent to which people’s probability judg-
ments were coherent for the premises and conclusions of infer-
ences 1.1 to 1.6, when these were separate statements, in the
statements group, and when they were formed into explicit infer-
ences, in the inference group. We found people’s responses to be
coherent at levels above chance for the three inferences forms
investigated, 1.1–1.2, 1.3–1.4, and 1.5–16, in both the statements
group and the inferences group. There was therefore clear evi-
dence that people’s probability judgments conform to Bayesian
principles, and at the same time there was no evidence that
this conformity was improved further in the context of explicit
inference.

Responses for the or-introduction inferences, 1.1–1.2, were
found to be coherent at levels above chance, and to a degree
similar to that for the if-to-or inferences 1.3–1.4., implying that
participants endorse this inference when they are asked for their
degrees of belief and not whether, as in a binary experiment, the
conclusion necessarily follows given the premise. This finding is
in accordance with our prediction that pragmatic factors have
less effect on this inference when people are asked for their
degrees of belief. Also supporting this conclusion, (Politzer and
Baratgin, under review) found, using an ordinal response format
for degrees of belief, that responses for or-introduction were
coherent to a level comparable to five other valid inferences. But
they also found coherence rates for the inference to be lower
when the premise was certain than when it was uncertain. The
limiting case of certainty, which is in effect the only one studied
in a binary approach, may give a misleading picture of how
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far people conform to Bayesian standards, and this hypothe-
sis will have to be investigated further. One option would be
through a comparison of responses with binary and with contin-
uous response format. Although a mapping of the two response
scales is not straightforward, larger differences between them
would still be informative (see Markovits and Handley, 2005;
Singmann and Klauer, 2011, for two ways of carrying out such a
comparison).

The analysis of responses to the or-to-if inferences, 1.5–1.6,
showed that participants’ responses would fail to be coherent at
levels above chance under a material conditional interpretation
of the conditional, P(if p then q) = P(not-p or q), whereas they
would be coherent at levels above chance if the natural language
conditional is interpreted as the conditional event, P(if p then
q) = P(q|p). There does not appear to be any reason why people
would be so highly incoherent for these inferences if they had
a material conditional understanding of the natural language
conditional. But if they have a conditional event understanding,
our finding is to be expected, and it provides new support for
the conditional event interpretation of the conditional. People’s
conditional reasoning can be much “improved” from a Bayesian
point of view, if their understanding of the conditional is, to begin
with, correctly identified by the psychology of reasoning.

Responses to the if-to-or inferences were likewise reliably
coherent above chance levels, showing that participants respected
the difference in the coherence conditions between these and the
or-to-if inferences.

Experiment 1 investigated inferences between conditionals
and disjunctions. Our second experiment addresses inferences
between conditionals and conjunctions, and includes the content
that is famous for causing the incoherence of the conjunction
fallacy.

EXPERIMENT 2
METHOD
Participants
Forty-eight students from the University of Orsay, France, took
part in the experiment on a voluntary basis. Their mean age
was 20 years (range 18–24). They had different majors, although
the majority studied biology or medicine. All participants were
French native speakers.

Material and design
The material and design were very similar to those of Experi-
ment 1. However, only the Linda scenario was used, and because
the original inferences contained no negations, no negation effects
were assessed. Inferences 2.1 and 2.2, and-to-if forms, used con-
tents prototypical for the scenario, in order to obtain higher
probability estimates for the premises and thus lower probabilities
of conforming to coherence just by chance. Inferences 2.3 and
2.4, and-elimination inferences, varied the prototypicality of the
content for the scenario in the same way as in Tversky and Kahne-
man’s (1983) original work on the conjunction fallacy. To take an
example from the explicit inferences group, participants read the
standard description of Linda and were then asked to state what
confidence they had in “Linda is banker” as a conclusion explicitly
inferred from “Linda is a feminist and a banker” as a premise.

Participants were divided into two groups of equal size. The
booklets for the statements group contained a continuous list of
statements. In the booklets for the inferences group, each infer-
ence appeared on a separate page. Four booklets were constructed
for each group, which differed only in the order in which the items
were presented.

Procedure
Participants were tested in the university library in small groups
of up to four participants. They worked at their own pace, and
took 10 to 15 min to complete.

RESULTS
Responses to inference 2.1 are incoherent when the probability
assigned to the conclusion is lower than that of the premise. For
inference 2.2, the computation of coherence is more complicated
because it takes into account the minimum and maximum over-
lap between the two premises. The lower and upper coherence
bounds for this inference, when the entailed conditional is inter-
preted as the conditional event, are as follows:

P(conclusion) = P(q|p) ∈

[
max

{
0,

p+ q− 1

p

}
, min

{
q

p
, 1

}]
We only computed coherence for the conditional event inter-

pretation of the conditional. However, the coherence bounds
for this interpretation are stronger than those for the material
conditional. Therefore, any response that is coherent for the
above interpretation is also coherent for the material conditional
interpretation. See Politzer (2014) for a proposal of how to obtain
the intervals of coherence for a wide range of inferences in an
intuitive way using a water tank analogy.

The results are illustrated in Figure 2. To assess whether the
additional complexity of processing coherence for 2.2 as com-
pared to 2.1 leads to higher levels of above chance coherence for
2.1, we conducted a mixed ANOVA on above chance coherence
with the between subjects factor of task (statements, inferences)

FIGURE 2 | Observed versus chance coherence for the four inferences
of Experiment 2, (A) for the statements and (B) for the inferences task.
Inferences 1 and 2 are and-to-if inferences. The first has the conjunction p
and q as single premise, the second has p and q as two separate premises.
Inferences 3 and 4 are and-elimination inferences. The first has prototypical,
and the second counter-prototypical content for the scenario. See Table 1
for the precise logical form of the inferences. Error bars show 95% CI.
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and the within subjects factor of inference (2.1, 2.2). The intercept
was significant, F(1,46)= 36.83, p < 0.001, η2

p = 0.445, indicating
that participants’ responses were coherent to a degree above that
expected by chance. No other effects were significant (largest
F = 1.03, lowest p = 0.32). In particular, there was no significant
effect of task or of inference.

To assess whether the conjunction fallacy is reduced in the
context of an inference task, a mixed ANOVA on above chance
coherence for inferences 2.3 and 2.4 was conducted, with task
as a between subjects factor and inference as a within subjects
factor. There was a main effect of inference, F(1,46) = 33.31,
p < 0.001, η2

p= 0.420: The two inferences differed in above chance
coherence. No other effects were significant (largest F = 2.12,
smallest p= 0.15). In particular, the intercept was not significant,
indicating that overall the coherence of participants’ judgments
for these inferences did not differ from chance; and there was
no effect of task. In line with the pattern in Figure 2, follow
up analyses indicated that coherence was above chance for 2.3,
which used prototypical content, F(1,46) = 10.23, p = 0.002,
η2

p = 0.182; and coherence was below chance for 2.4, which
used counter-prototypical content, F(1,46) = 18.37, p < 0.001,
η2

p = 0.285.

DISCUSSION
The finding of above chance coherence for the and-to-if infer-
ences 2.1 and 2.2 extends the evidence of Experiment 1 to
inferences relating conjunctions and conditionals. The absence
of an effect of inference implies that at least for the materi-
als used, the additional requirement in 2.2 of integrating two
premise probabilities did not reduce the coherence of people’s
responses. The absence of an effect of task suggests that above
chance coherence for this inference was also not affected by the
presence of an explicit inference task, similar to the findings from
Experiment 1. A further investigation of the extent to which the
requirement of integrating premise probabilities affects people’s
reasoning performance could vary the degree of overlap between
premises, as well as the assessment of additional indicators of task
difficulty, such as response times.

People’s responses to the and-elimination inferences 2.3 and
2.4 were coherent at levels above chance, when the materi-
als did not have the content that caused the conjunction fal-
lacy in Tversky and Kahneman (1983). This result is in line
with other findings in the probabilistic approach using different
methodologies (Pfeifer and Kleiter, 2005; Politzer and Baratgin,
under review). However, when the material did have the content
known to cause the fallacy, participants were incoherent, just
as Tversky and Kahneman would predict for our statements
group. Tversky and Kahneman did not predict whether the
fallacy would be found when p (or q) was explicitly inferred
from p and q as a premise. Stating a degree of confidence
in the conclusion of such an explicit inference could arguably
qualify as what they called a “transparent” problem, to which
people should give a coherent answer. Nevertheless, the partic-
ipants in our inference group were also incoherent by commit-
ting the conjunction fallacy, which at least reinforces Tversky
and Kahneman’s view of it as a deep fallacy that is hard to
overcome.

GENERAL DISCUSSION
With the advent of the Bayesian approach in the psychology of
reasoning, it has become possible to investigate people’s deductive
reasoning from uncertain premises, and to assess the extent to
which it is coherent. We investigated this topic in two experi-
ments using inferences between conjunctions, disjunctions, and
conditionals. We also looked at whether an explicit inference
task increases people’s coherence, and examined a number of
more specific hypotheses for the individual inferences. People’s
probability judgments were coherent at levels above chance for
almost all the inference forms investigated. The one exception was
when the materials for the and-elimination inference were of the
content known to cause the conjunction fallacy. The participants,
who read the standard description of Linda, were incoherent in
their judgments about “Linda is a feminist and a banker” and
“Linda is a banker,” even when they inferred the later statement
from the former in an explicit inference.

People were generally coherent, complying with the axioms of
probability theory, not only in the explicit inference task, but to an
equal extent when the task was to evaluate the single statements
that formed the inferences one at a time in random order. This
absence of an effect of task was not expected. On the one hand,
it does provide some support for the descriptive adequacy of the
principle of coherence, because it increases the generality of its
scope. It stands in accordance with findings on good conformity
to Bayesian principles in domains outside of reasoning, where
tasks are carried out in a more implicit way, like perception and
language comprehension (Fiser et al., 2010; Hsu et al., 2011). And
it suggests that addressing the question of what improves Bayesian
reasoning should not make us lose sight of the many contexts in
which conformity to Bayesian principles is already quite good.

On the other hand, it remains a plausible hypothesis that
explicit inference can be an effective use of cognitive resources to
improve coherence, to the benefit of reasoning and decision mak-
ing. The inference forms we considered here, for conjunctions,
disjunctions, and their relations to conditionals, may generally
be too simple for an effect to be found. Evans et al. (under
review) did find that an explicit inference task could increase
coherence in a study of MP, MT, AC, and DA. One possibility
is that these two-premise conditional inferences require a more
complex integration of premise probabilities, and people could
be helped to achieve this in explicit inference tasks.

Another possibility is that it was generally easier in the exper-
iment of Evans and et al. (under review) to detect an increase in
above chance coherence because the mean probability estimates
given to the premises in their experiment were generally higher
than in our experiments. Generally, the higher the probability of
the premises, the lower the chance rate of coherence and thus
the easier it becomes to detect above chance coherence when it
is there. This relation holds for MP, MT, AC, and DA, and all the
inferences investigated here except for the or-to-if inferences, 1.5–
1.6, in Experiment 1. For 1.5–1.6, the opposite relation holds: the
chance rate of coherence becomes lower, and the probability of
detecting above chance coherence larger, the lower the probability
assigned to the premise. Because the mean probability ratings
for the premises of the inferences in Experiment 1 was relatively
low, chance rate coherence was lower for 1.5 and 1.6 than for the
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other two inferences, 1.1–1.2 and 1.3–1.4. This explains the higher
ratings of above chance coherence for 1.5–1.6 compared to those
for if-to-or inferences, 1.3–1.4, in spite of comparable rates of
observed coherence for both inferences. This also explains why the
effect of above chance coherence was relatively small for 1.1–1.2
and 1.3–1.4 in spite of their sizeable rates of observed coherence.

Overall, the dependence of chance rate coherence on the prob-
abilities assigned to the premises is relevant for the interpretation
of the presence or absence of incremental effects of coherence,
predicted in this case by the presence of an inference task. But
it is also relevant to the interpretation of above chance coherence
taken by itself, as well as for the interpretation of differences in
above chance coherence between inferences. Future experiments
on these questions could therefore aim at more adequate control
of the premise probabilities, either by letting them be provided by
the experimenter, or by conducting a larger pre-test of materials
and selecting those with similar probabilities.

As noted above, the high coherence rates described for 1.5–1.6
or-to-if inferences, displayed in Figure 1, depend on the condi-
tional being interpreted as the conditional event. If the natural
language conditional corresponded to the material conditional,
with P(if p then q) = P(not-p or q) as implied by mental model
theory (Byrne and Johnson-Laird, 2009), then the responses to
1.5–1.6 would be incoherent at levels above chance. These results
provide strong evidence for the conditional event interpretation
of the conditional, and highlight the importance of taking into
account people’s semantic interpretation of the premises and con-
clusions for assessing how far they conform to Bayesian principles.

The results from Experiment 2 on the and-elimination infer-
ences 2.3 and 2.4 demonstrate that above chance coherence for
these forms depends on there being no conflict between the
probability of a statement and its contextual prototypicality. It
is remarkable how slight variations in these factors can lead to
incoherent judgments that resist even explicit inferences. It is a
challenge to all accounts of the conjunction fallacy to explain
why it persists through apparently “transparent” and-elimination
inferences. The very reliability of this finding highlights the rel-
evance of investigating further what is driving the conjunction
fallacy (see Jarvstad and Hahn, 2011; Oaksford, 2013; Pothos and
Busemeyer, 2013; Tentori et al., 2013, for a recent discussion).
However, it is more remarkable still that when such conflicts are
not present, people give generally coherent probability judgments
even in the absence of explicit inference tasks, at least for con-
junctions, disjunctions, and their relations to conditionals. This
provides further evidence of the descriptive adequacy of Bayesian
reasoning principles.
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FIGURE | 2 Observed vs. chance coherence for the four inferences

of Experiment2, (A) for the statements and (B) for the inferences

task. Inferences 1 and 2 are and-to-if inferences. The first has the

conjunction p and q as single premise, the second has p and q as two

separate premises. Inferences 3 and 4 are and-elimination inferences. The

first has prototypical, and the second counter-prototypical content for the

scenario. See Table 1 for the precise logical form of the inferences. Error

bars show 95% CI.
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There has been a probabilistic turn in contemporary cognitive science. Far and

away, most of the work in this vein is Bayesian, at least in name. Coinciding with

this development, philosophers have increasingly promoted Bayesianism as the best

normative account of how humans ought to reason. In this paper, we make a push

for exploring the probabilistic terrain outside of Bayesianism. Non-Bayesian, but still

probabilistic, theories provide plausible competitors both to descriptive and normative

Bayesian accounts. We argue for this general idea via recent work on explanationist

models of updating, which are fundamentally probabilistic but assign a substantial,

non-Bayesian role to explanatory considerations.

Keywords: Bayesianism, explanation, updating, inference, probability

1. Introduction

There has been a probabilistic turn in the cognitive sciences, a development most prominently
marked by the emergence of the “Bayesian paradigm” in the psychology of human learning and
reasoning (e.g., Evans and Over, 2004; Griffiths and Tenenbaum, 2006; Tenenbaum et al., 2006;
Gopnik and Tenenbaum, 2007; Oaksford and Chater, 2007, 2013; Over, 2009; Baratgin et al., 2013;
Elqayam and Evans, 2013) and recent work on the “Bayesian brain” in cognitive neuroscience (e.g.,
Doya et al., 2006; Friston and Stephan, 2007; Hohwy, 2013). The vast majority of such work is—as
in the examples cited above—described by adherents as “Bayesian.” In general, probabilistic and
Bayesian approaches are so closely associated by cognitive scientists that it rarely is observed that
these two approaches may come apart.

There are, nonetheless, various ways in which a theory might be probabilistic without being
Bayesian. Most obviously, theories can draw upon probabilities interpreted in non-Bayesian ways
(e.g., Gigerenzer and Hoffrage, 1995; Mayo, 1996; Williamson, 2010). But a theory can easily
conflict with Bayesianism, even while adopting the standard Bayesian interpretation of probabil-
ities (as measures of agent credences). In this paper, we want to highlight the potential merits of
probabilistic, non-Bayesian accounts of this latter sort.

We focus our sights on the question of how humans update their confidences when confronted
with new information1. Bayesian accounts model such updating strictly in accordance with

Bayes’s Rule. Upon learning A ∈ A and nothing else between times t1 and t2, an agent’s credences
are to be updated so as to satisfy the equality Prt2 (B) = Prt1 (B |A) for all propositions B ∈ A,
provided Prt1 (A) > 0.

1In this paper, we use “update” in the general sense of belief change. It is worth noting that some authors in the Bayesian

camp (e.g., Walliser and Zwirn, 2002; Baratgin and Politzer, 2011) use the term to designate a particular type of belief change.
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Here, A is an algebra of propositions over which the prob-
ability measures Prt1—representing the agent’s credences at time
t1—and Prt2—representing the agent’s credences at later time t2—
are defined, and Prt1 (B |A) designates the prior (at t1) conditional
probability of B given A.

The Bayesian account thus requires updates to be determined
purely by an agent’s prior conditional (subjective) probabilities.
Probabilistic accounts more generally aim to model updating
with the help of probability theory. Such accounts may accord
with Bayes’s Rule, but they need not. A non-Bayesian probabilis-
tic account may, for example, calculate updated credences as a
function of prior conditional probabilities plus some other set
of factors (probabilistically explicable or not). In the following,
we will be especially concerned with “explanationist” models of
updating that take explanatory considerations into account in
addition to prior conditional probabilities.

There are two crucially distinct ways one can interpret any
theory of updating: as providing norms that updates rationally
ought to satisfy, or as a descriptive model of how people in
fact update. At the same time that cognitive scientists focus-
ing on the descriptive interpretation have increasingly turned to
probabilistic models, more and more philosophers have come
to regard Bayesianism as providing the norms of both rational
action and rational belief (e.g., Maher, 1993; Jeffrey, 2004; Joyce,
2009). Against this seemingly growing consensus on the nature
of rationality, the present paper makes a push for exploring the
probabilistic terrain outside of Bayesianism and challenges the
thought that any deviation from Bayesianism implies a form of
irrationality.

A central contention of this paper is that some probabilis-
tic models of updating that conflict with Bayes’s Rule constitute
strong, plausible competitors to Bayes’s Rule, whether the mod-
els in question are interpreted descriptively or normatively. We
make a case for this claim by focusing on a particular family of
non-Bayesian, probabilistic models of updating, namely expla-
nationist models. We argue that explanationist models may be
predictively more accurate than Bayesianism (Section 3) without
being normatively defective in any way (Section 4). Probabilis-
tic alternatives to Bayesianism accordingly deserve more explicit
attention in cognitive science and philosophy than they have thus
far received. Before making our case, however, in the next section
we offer a general description of explanationism.

2. Explanationism

Deductive inference plays a key role in human reasoning. It
is unsurprising, therefore, that this form of inference has been
amply studied by psychologists (see, e.g., Evans, 1982; Evans
and Over, 1996). Early on, psychologists commonly regarded
deductive logic as providing standards of rational reasoning. But
psychologists eventually came to realize that not all reasoning
proceeds by deductive inference, and that the issue of rationality
can arise also for forms of reasoning that are of a non-deductive
nature. Having seen hundreds of white swans without ever hav-
ing seen a swan of a different color, we may infer that all swans
are white. While—as we now know—this inference would be to a
false conclusion, it is not obviously irrational, and certainly more

rational than if we inferred the same conclusion on the basis of
having seen a mere handful of white swans, or after already hav-
ing encountered a black swan. Indeed, many of our beliefs are
seemingly held on the basis of this type of “inductive inference,”
as it is now commonly called, and many of those beliefs would
appear to be rationally held on that basis. So, it is again no sur-
prise that there is a vast amount of work on this type of inference
to be found in the psychological literature (see, e.g., Rips, 2001;
Heit and Feeney, 2005; Heit, 2007; Heit and Rotello, 2010).

What is surprising is the almost complete neglect by psycholo-
gists of a form of inference that is neither deductive nor inductive
but that does seem to play a key role—for better or worse—
in human thinking. The form of inference we mean has been
labeled “abductive inference” (or “abduction”) by the great Amer-
ican pragmatist philosopher Charles Sanders Peirce. (See the sup-
plement on Peirce of Douven, 2011 for references). Abduction
and induction distinguish themselves from deduction by being
ampliative: unlike deductively valid inferences, cogent abductive
and inductive arguments do not guarantee the truth of a conclu-
sion on the basis of the truth of the premises. Abduction then
distinguishes itself from induction by giving pride of place to
explanatory considerations, in that it makes the believability of
a hypothesis partly a matter of how well the hypothesis explains
the available evidence.

To illustrate, consider the following famous anecdote about
the invasion of the Thames by the Dutch fleet in 1667—also
known as “the Raid on theMedway”—and Sir Isaac Newton, who
was a Fellow at Trinity College, Cambridge, at the time:

Their guns were heard as far as Cambridg, and the cause was well-

known; but the event was only cognizable to Sir Isaac’s sagacity, who

boldly pronounc’d that they had beaten us. The news soon confirm’d

it, and the curious would not be easy whilst Sir Isaac satisfy’d them

of the mode of his intelligence, which was this; by carefully attend-

ing to the sound, he found it grew louder and louder, consequently

came nearer; from whence he rightly infer’d that the Dutch were vic-

tors. [William Stukeley, Memoirs of Sir Isaac Newton’s Life, quoted in

Westfall (1980 p. 194)]

The “mode of intelligence” referred to here, which according to
Westfall’s (1980, p. 194) struck the other Fellows in Cambridge
with awe, is most plausibly thought of as involving abductive
reasoning. It is exceedingly difficult to think of a reasonable
set of premises—reasonable from Newton’s perspective at the
time—from which the conclusion that the Dutch had won fol-
lows deductively. Nor did the Dutch—or any other nation that
possessed a sizable fleet in the second half of the seventeenth
century—invade England frequently enough for Newton’s rea-
soning to be naturally construed as inductive. Rather, it seems
that what led Newton to his conclusion is that a Dutch victory
was the best explanation for his evidence: there are various poten-
tial explanations of why the sound of the canon fire grew louder
and louder that do not involve a Dutch victory. For instance, the
British fleet might have defeated the Dutch, but then that vic-
tory might have been followed by a mutiny in which the British
marines turned against their own headquarters. However, this
and other alternative potential explanations are topped, in terms
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of explanatory goodness, by the hypothesis that the Dutch fleet
had beaten the British.

Abduction has been identified as playing a central role in sci-
entific reasoning by various historians and philosophers of sci-
ence (e.g., McMullin, 1984, 1992; Lipton, 1993, 2004; Achinstein,
2001). McMullin (1992) even refers to abduction as “the infer-
ence that makes science.” This is not to say that abduction has
no place outside of science. Various authors have argued for its
prominence in everyday contexts as well, for instance, that abduc-
tive reasoning is routinely and automatically invoked when we
rely on the words of others (Harman, 1965; Adler, 1994; Fricker,
1994) and even in interpreting the words of others (e.g., Bach and
Harnish, 1979, p. 92; Hobbs, 2004). In philosophy, abduction has
been relied on in defenses of the position of scientific realism,
according to which science progressively succeeds in providing
better and better representations of reality (Boyd, 1984; Psillos,
1999), as well as in defenses of various metaphysical theses (e.g.,
Shalkowski, 2010).

A more modern name for abduction is “Inference to the
Best Explanation” (IBE), and most statements of abduction to
be found in the literature are rather straightforward unpack-
ings of that name. In Musgrave’s (1988, p. 239) formulation,
for instance, abduction is the principle according to which “[i]t
is reasonable to accept a satisfactory explanation of any fact,
which is the best available explanation of that fact, as true,”
and Psillos (2004, p. 83) tells us that “IBE authorizes the accep-
tance of a hypothesis H, on the basis that it is the best expla-
nation of the evidence.” Such formulations raise questions of
their own. What makes one explanation better than others?
When is an explanation satisfactory? And, ought we really to
accept the best explanation of the evidence even if it explains
the evidence very poorly? Moreover, one wonders what the rela-
tionship between abduction and Bayesianism might be, given
that abduction is apparently stated in terms of the categori-
cal notion of acceptance, and does not refer to probabilities or
credences.

In recent years, researchers have become interested in a ver-
sion of abduction that is probabilistic in nature and even has
Bayes’s Rule as a limiting case (Douven, 2013; Douven and Wen-
mackers, in press). Where {Hi}i6n is a set of self-consistent,
mutually exclusive, and jointly exhaustive hypotheses, this ver-
sion of abduction models human learning as an act of updating
one’s degrees of belief on new evidence in accordance with

Probabilistic abduction. Upon learning E ∈ A and nothing
else between times t1 and t2, an agent’s credences are to be
updated so as to satisfy the equality

Prt2 (Hi) =

Prt1 (Hi) Prt1 (E |Hi)+ E(Hi,E)
∑n

j= 1

(
Prt1 (Hj) Prt1 (E |Hj)+ E(Hj,E)

) ,

with E assigning a bonus to the hypothesis that explains
the evidence best, and nothing to the other hypotheses, and
supposing Prt1 (E) > 0.

It is easy to verify that probabilistic abduction concurs with
Bayes’s Rule if E is set to be the constant function 0, meaning
that no bonus points for explanatory bestness are ever attributed.

It is not much more difficult to verify that probabilistic abduction
concurs with Bayes’s Rule only if no bonus points are assigned
(Douven and Wenmackers, in press).

Naturally, as stated here, probabilistic abduction is really only
a schema as long as E has not been specified. For present pur-
poses, this matter can be left to the side. In fact, for this paper,
the rule only serves to show that there are versions of abduc-
tion that are direct contenders to Bayes’s Rule. But one can
think of many more probabilistic update rules that explicate the
broad idea that explanatory considerations have confirmation-
theoretic import—the central idea underlying abduction. Rather
than advocating any particular such rule, we now proceed to
argue that the Bayesian model of updating—whether construed
descriptively or normatively—may plausibly be improved in vari-
ous ways by taking into account explanatory considerations, leav-
ing the details of how exactly to account for such considerations
for another occasion.

3. Explanationism vs. Bayesianism:
Descriptive Adequacy

Contrary to what the growing popularity of Bayesianism among
psychologists might lead one to expect, studies regularly find
that people update in ways inconsistent with the Bayesian model;
see, for instance, Phillips and Edwards (1966), Robinson and
Hastie (1985), and Zhao et al. (2012)2. What is more, there is
evidence suggesting that explanatory considerations do have an
impact on people’s beliefs; see, for instance, Koehler (1991); Pen-
nington and Hastie (1992); Josephson and Josephson (1994);
Thagard (2000); Lombrozo (2006, 2007, 2012); Lombrozo and
Carey (2006); Douven and Verbrugge (2010); Bonawitz and
Lombrozo (2012); Legare and Lombrozo (2014), and Lombrozo
and Gwynne (2014).

The typical reaction to such findings is to look on departures
from Bayesian reasoning as a complication or problem, and sub-
sequently to hunt for explanations for why people are ostensi-
bly straying from the proper rational norms. A far less explored
option is to question whether Bayes’s Rule (and with it Bayesian-
ism) describes the appropriate normative standard for updating.
We ask the normative question in the next section. In this section,
we explore whether probabilistic models that take into account
explanatory considerations might do better at describing people’s
updating behavior than Bayes’s Rule.

The non-Bayesian, probabilistic models that we examine are
related to research reported in Douven and Schupbach (in press),
which in turn built on research reported in Schupbach (2011).
The focus of the latter paper was on probabilistic measures of
explanatory goodness or “power,” which aim to formalize the
degree to which a potential explanation H accounts for evi-
dence E. For example, according to a very simple proposal, H
explains E to a degree equal to Pr(E |H) − Pr(E). Other—prima
facie more promising—measures that have been discussed in the

2This is not to deny that there is also evidence in support of the descriptive ade-

quacy of Bayesianism. See in particular Griffiths and Tenenbaum (2006); Tenen-

baum et al. (2006); Gopnik and Tenenbaum (2007), and Oaksford and Chater

(2007).
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philosophy of science literature include Popper’s (1959) measure,

Pr(E |H)− Pr(E)

Pr(E |H)+ Pr(E)
,

Good’s (1960) measure,

ln

(
Pr(E |H)

Pr(E)

)

,

and Schupbach and Sprenger’s (2011) measure,

Pr(H |E)− Pr(H | ¬E)

Pr(H |E)+ Pr(H | ¬E)
.

It is to be noticed that, while all three measures have 0 as the
“neutral point,” they are not all on the same scale. In particu-
lar, Popper’s and Schupbach and Sprenger’s measures have range
[−1, 1] while Good’s measure has range (−∞,∞). However,
Schupbach (2011) also considers functional rescalings of Good’s
measure obtained via this schema:

Lα(x) =

{
1− e−x2/2α2 if x > 0;

−1+ e−x2/2α2 if x < 0,

which do all have range [−1, 1]. Below, we use “La” to refer to the
rescaling of Good’s measure obtained in this way with α = a.

Schupbach (2011) sought to answer the question of how well
these and some other measures of explanatory goodness cap-
ture people’s judgments of explanatory goodness. To that end, an
experiment was conducted in which 26 participants were individ-
ually interviewed. In the interviews, the participants were shown
two urns containing 40 balls each, with one urn (“urn A”) con-
taining 30 black balls and 10 white ones, and the other urn (“urn
B”) containing 15 black balls and 25 white ones. Each interview
started by informing the participant about the contents of the urn
and giving him or her a visual representation of these contents—
which remained in sight during the whole interview. The experi-
menter then tossed a fair coin and decided, based on the outcome,
whether urn A or urn B would be chosen. The participant knew
that an urn was chosen in this way, but was not informed about
which urn had been selected. Instead, the experimenter drew 10
balls from the selected urn, without replacement, and lined up the
drawn balls in front of the participant. After each draw, partici-
pants were asked: (i) to judge the explanatory goodness, in light
of the draws so far, of the hypothesis that urn A had been selected
(HA); (ii) to do the same for the hypothesis that urn B had been
selected (HB); and (iii) to assess how likely it was in the partici-
pant’s judgment that urn A had been selected, given the outcomes
at that point. The participant had to answer the questions about
explanatory goodness by making a mark on a continuous scale
with five labels at equal distances, the leftmost label reading that
the hypothesis at issue was an extremely poor explanation of the
evidence so far, the rightmost reading that the hypothesis was
an extremely good explanation, and the labels in between read-
ing that the hypothesis was a poor/neither poor nor good/good
explanation, in the obvious order.

The data obtained in this experiment allowed Schupbach to
calculate, for each participant and for each of the measures that
he considered, the explanatory power of HA and HB after each
draw the participant had witnessed, where either objective prob-
abilities or credences could be used for the calculations. The
results of these calculations were compared with the actual judg-
ments of explanatory goodness that the participant had given
after each draw. The results somewhat favored Schupbach and
Sprenger’s (2011) measure over its competitors. In general, how-
ever, Popper’s measure, various rescalings of Good’s measure, and
Schupbach and Sprenger’s measure all performed well in pre-
dicting participant judgments concerning explanatory power—
regardless of whether explanatory power was calculated on the
basis of objective probabilities or on the basis of credences.

In Douven and Schupbach (in press), the data gathered in
Schupbach’s experiment were re-analyzed for a very different pur-
pose. Whereas Schupbach used credences as well as objective
probabilities to calculate values of explanatory goodness accord-
ing to the above measures, which were then compared with
participants’ judgments of explanatory goodness, Douven and
Schupbach were instead interested in the role that such judg-
ments play in updating credences. Put differently, where Schup-
bach took judgments of explanatory goodness to be the response
variable and either credences or objective probabilities as the
input for one of the measures of explanatory goodness, the out-
put of which then served as the predictor variable, Douven and
Schupbach took credences as the response variable and objective
probabilities and judgments of explanatory goodness as possible
predictors. In doing so, they hoped to shed light on the question
of the role of explanatory considerations in updating, in particu-
lar, of whether taking into account such considerations, possibly
in conjunction with objective probabilities, leads to better predic-
tions of people’s updates—as should be the case, according to the
descriptive reading of explanationism.

To be more precise, Douven and Schupbach (in press) first
collected the credences of all participants into one variable (call
this variable “S”), the objective conditional probabilities that
those credences should have matched for the updates on the
draws to obey Bayes’s Rule into a second variable (call this “O”),
the judgments of explanatory goodness ofHA into a third variable
(“A”), and the judgments of explanatory goodness of HB into a
fourth (“B”). They then fitted a number of linear regression mod-
els, with S as response variable and with all or some of O, A, and
B as predictor variables. The most interesting comparison was
between the Bayesian model (called “MO” in the paper), which
had only O as a predictor variable, and the full, explanation-
ist model (“MOAB”), which had O, A, and B as predictor vari-
ables. In this comparison, as in the general comparison between
all models that had been fitted, the explanationist model clearly
came out on top. The difference in AIC value between MO and
MOABwas over 120 in favor of the latter. Also, MOAB had an R2

value of 0.90, whileMOhad an R2 value of 0.83. A likelihood ratio
test also favored MOAB over MO: χ2

(2)
= 124.87, p < 0.0001.

In short, the explanationist model MOAB was much more

accurate in predicting people’s updates than the Bayesian model
MO, strongly suggesting that, at least in certain contexts, agents’s
explanatory judgments play a significant role in influencing how
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they update. Note that, by accepting this conclusion, one is not
leaving the probabilistic paradigm: conditional probabilities fig-
ure as a highly significant predictor in MOAB as well. The con-
clusion is strongly non-Bayesian, however, insofar as MOAB
identifies explanatory judgments as significant predictors, too, in
conflict with what ought to hold if people were strict Bayesian
updaters.

The previous research showed that, in a context in which one
is trying to predict people’s updated credences, if next to objec-
tive probabilities one has access to people’s explanatory judg-
ments, one is well-advised also to take the latter into account.
In reality, however, we rarely know people’s explanatory judg-
ments. Does explanationism suggest anything helpful in contexts
in which only objective probabilities are available? It may well
do so. Provided we have all the probabilistic information at hand
that is required as input for the measures of explanatory power
stated above, we can use the output of those measures in combi-
nation with objective probabilities and try to predict someone’s
updates on that combined basis. Given that Schupbach (2011)
found a number of the measures of explanatory power to cap-
ture well people’s judgments of explanatory power, and given that
Douven and Schupbach (in press) found people’s judgments of
explanatory power to co-determine significantly their subjective
probabilities, there is reason to believe that objective probabilistic
information alone allows one to improve upon Bayesian models,
which ignore explanatory considerations altogether.

In Douven and Schupbach (in press), only judgments of
explanatory goodness were taken into account; no degrees of
explanatory goodness determined by any measure of explanatory
power were considered. To see whether such degrees of explana-
tory goodness (derived from the objective probabilistic informa-
tion available) help make more accurate predictions about peo-
ple’s updates, we had another look at the data from Schupbach
(2011) and fitted a series of linear models similar to MOAB,
but now with participants’s judgments of explanatory goodness
replaced with calculated degrees of explanatory goodness. Specif-
ically, we constructed linear models with S as response variable
and O, degrees of explanatory goodness of HA, and degrees of
explanatory goodness of HB as predictors. Values of the last two
predictors were determined in five distinct ways: using Popper’s
measure, using three separate rescalings of Good’s measure (L0.5,
L1, L2), and using Schupbach and Sprenger’s measure. In the
following, variable “YX” represents degrees of explanatory good-
ness for hypothesis HY (Y ∈ {A,B}) calculated using measure
X ∈ {P, G1, G2, G3, SS}, where “P” stands for Popper’s mea-
sure, “G1” for L0.5, which is the first rescaled version of Good’s
measure, and so on. Similarly, “MXYZ” names the model with
predictors X, Y, and Z.

Table 1 gives some important statistics for comparing the
models, where we have also included MO from Douven and
Schupbach (in press). Because MO is nested within each of the
other models, it could be compared with them by means of like-
lihood tests. The χ2 column in Table 1 gives the outcomes of
these tests, which were all in favor of the richer model. Given that
the χ2 values obtained in the tests were all significant, this is a
first indication that any of the explanationist models provides a
better fit with the data than the Bayesian model. Naturally, the

better fit might be due precisely to the fact that the explanationist
models include more predictors than MO. For that reason, it is
worth looking also at the AICmetric, which weighs model fit and
model complexity against each other and penalizes for additional
parameters. Burnham and Anderson (2002, p. 70) argue that a
difference in AIC value greater than 10 indicates that the model
with the higher value enjoys basically no empirical support. It is
plain to see that MO has a higher AIC value than any of the other
models, where the difference is always greater than 10 except in
the case of the last model.

Furthermore, we see that it makes a large difference which
measure is used to calculate degrees of explanatory goodness. In
particular, the model which includes next to O also AG3 and BG3
as predictors—so degrees of explanatory goodness obtained via
L2—does best: it has the lowest AIC value of all models, the dif-
ference each time being greater than 10, and it has the highest
R2 value (although in this respect all models are close to each
other). This is confirmed by applying closeness tests for non-
nested models to pairs of models consisting of MOAG3BG3 and
one of the other explanationist models. Using Vuong’s (1989)
model, MOAG3BG3 is significantly preferred over any of the
other explanationist models (in each case, p < 0.01), except for
MOAG1BG1; in a comparison of MOAG3BG3 with MOAG1BG1,
Vuong’s test has no preference for either model. On the other
hand, using Clarke’s (2007) test, we find that MOAG3BG3 is pre-
ferred over all other explanationist models (in each case, p <

0.0001). Table 2 gives the regression results for MOAG3BG3. That
O, AG3, and BG3 are all highly significant buttresses Douven
and Schupbach’s (in press) suggestion that when people receive
new evidence, they change their credences not only on the basis

TABLE 1 | Comparison of seven regression models.

k LL AIC 1AIC χ2 R2

MO 3 202.39 −398.77 48.06 0.83

MOAPBP 5 222.64 −435.27 11.55 40.50*** 0.85

MOAG1BG1 5 216.72 −423.43 23.40 28.66*** 0.85

MOAG2BG2 5 211.27 −412.53 34.29 17.76** 0.84

MOAG3BG3 5 228.41 −446.83 0.00 52.06*** 0.86

MOASSBSS 5 208.27 −406.53 40.30 11.76* 0.84

k is the number of parameters and LL the log-likelihood of each model. AIC is the Akaike

Information Criterion, an index for model selection that takes model fit (i.e., log-likelihood)

and model complexity (i.e., number of parameters) into account. 1AIC is the AIC value

minus the smallest AIC value. Models with smaller indices provide a more parsimonious

(i.e., better) description of the data. R2 is the squared correlation between the fitted and

observed values. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 2 | Regression results for the best explanationist model

MOAG3BG3.

Variable B SE B β t p

Intercept 0.33 0.02 14.90 <0.0001

O 0.40 0.04 0.56 9.72 <0.0001

AG3 0.24 0.03 0.30 7.48 <0.0001

BG3 −0.13 0.03 −0.15 −3.67 0.0002
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of objective probabilistic considerations, but also on the basis
of explanatory considerations. (At least, it supports that claim
in the light of Schupbach’s (2011) findings, which indicate a
close match between subjective judgments of explanatory good-
ness and degrees of explanatoriness as calculated by any of the
measures at issue.)

Finally, it is worthwhile comparing MOAG3BG3 (the best
model with degrees of explanatory goodness determined via
L2) with MOAB [the best model from Douven and Schup-
bach (in press) incorporating recorded judgments of explana-
tory goodness]. As previously remarked, the R2 value of MOAB
equals 0.90. Its AIC value equals −519.64. So, on both counts,
MOAB does better. MOAB is also preferred over MOAG3BG3
according to Vuong’s test (p < 0.001) as well as according to
Clarke’s test (p < 0.0001). This implies that, if judgments of
explanatory goodness are at hand, then one does best to take them
into account in predicting people’s updates. As noted, however,
very often one will not have a choice, inasmuch as judgments of
explanatory goodness are typically unavailable.

In fact, if judgments of explanatory goodness are available, one
can even consider constructing a model that includes both vari-
ables encoding those judgments and variables encoding degrees
of explanatory goodness, for instance, based on L2. Doing this
for the present case, we find that in a model with all of O,
A, B, AG3, and BG3, as predictors, BG3 is no longer significant.
However, the model with the remaining variables as predictors
does significantly better than MOAB in a likelihood ratio test:
χ2
(1)

= 9.12, p = 0.003. Also, the expanded model has a lower

AIC value: −526.76. The R2 value is the same (0.90) for both
models.

Summing up, we have found evidence that, at least in some
contexts, explanationism is descriptively superior to Bayesian-
ism: by taking explanatory considerations into account, next to
conditional probabilities, we arrive at more accurate predictions
of people’s updates than we would on the basis of the objective
conditional probabilities alone. Naturally, the kind of context we
considered is rather special, and more work is needed to see how
far the results generalize. Nonetheless, our results weigh against
the generality of the increasingly popular hypothesis that people
tend to update by means of Bayes’s Rule.

4. Explanationism vs. Bayesianism:
Normative Adequacy

Here is a natural response to the findings of the previous section:
“Surely people’s updates do indeed break with Bayes’s Rule. But
this is unsurprising. Bayes’s Rule is best interpreted as a norm of
proper or rational updating in the light of new evidence. It is an
idealization that actual agents can at best hope to approximate, to
the extent that they are reasoning as they should. Even if experi-
mental evidence calls descriptive Bayesianism into question then,
it does nothing to invalidate Bayesianism as an ideal, norma-
tive theory.” In this section, we challenge this idea, summarizing
recent work that compares Bayes’s Rule with explanationist mod-
els of updating in order to clarify their respective roles in a full
normative theory of rational updating.

Consider the so-called dynamic Dutch Book argument, which
has convinced many philosophers that Bayes’s Rule is the only
rational update rule3. This argument has concomitantly done
much to discredit explanationism as a normative account. The
argument proceeds by describing a collection of bets, some of
which are offered to a non-Bayesian updater before that person’s
update on new information and some of which are offered to him
or her after that event. The claim is that, whatever the specifics
of the update rule used by the person (other than that it devi-
ates from Bayes’s Rule), the pay-offs of the bets can be so chosen
that all of them will appear fair in the eyes of the updater at
the moment they are offered, yet jointly they ensure a negative
net pay-off (such a collection of bets is called “a dynamic Dutch
book”). This betokens irrationality on the updater’s part—it is
claimed—given that the updater could have seen the loss coming.
Conversely, it is argued that had the person updated via Bayes’s
Rule, he or she could not have deemed all bets in the dynamic
Dutch book to be fair.

There are at least three reasons for being dissatisfied with this
argument. First, Douven (1999) points out that, in the dynamic
Dutch book argument, what makes the non-Bayesian updater
vulnerable to a dynamic Dutch book is not the use of a non-
Bayesian update rule per se, but rather the combination of that
rule and certain decision-theoretic principles, notably ones for
determining the fairness of bets. As argued in the same paper,
update rules must be assessed not in isolation, but as parts of
packages of rules, which include decision-theoretic rules and pos-
sibly further update rules. Making use of a decision-theoretic
principle proposed in Maher (1992), Douven demonstrates the
existence of packages of rules that include a non-Bayesian update
rule but that nevertheless do not leave one susceptible to dynamic
Dutch books.

Second, even if non-Bayesian updating did make one vul-
nerable to dynamic Dutch books, it would not follow that such
updating is necessarily irrational. For the possibility has not been
ruled out that non-Bayesian updating has advantages that out-
weigh any risk of suffering financial losses at the hands of a
Dutch bookie. It has recently been shown, in the context of a
coin-tossing model in which it is unknown whether the coin is
biased and if so what bias it has, that by updating via probabilis-
tic abduction, one is on average faster—virtually always much
faster—in attributing a high probability (explicated as a proba-
bility above 0.09, for instance) to the true bias hypotheses than
if one updates via Bayes’s Rule (Douven, 2013). Various philoso-
phers have argued that high probability is a necessary condition
for rational assertion and action: to be warranted in asserting or
acting upon a proposition, the proposition must be highly prob-
able. What this means is that a non-Bayesian scientist may get
in a position to assert (including publish) the outcomes of his or
her research more quickly than a Bayesian scientist who is work-
ing on the same theoretical problems. Or a non-Bayesian stock
trader may be sooner warranted in making a profitable buy or
sell than the Bayesians on the floor are, simply because he or she

3The dynamic Dutch book argument was first published by Teller (1973), who

attributed it to David Lewis. Lewis’s handout containing the argument was later

published (Lewis, 1999).
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is quicker in assigning a high probability to the hypothesis that
a given firm is going to do very well (or very poorly). Hence, for
all Bayesians have shown, even if non-Bayesian updater’s expose
themselves to Dutch bookies, the financial losses they thereby risk
incurring may be more than compensated for in other ways—
inter alia, non-Bayesians’s credences may converge toward the
truth more quickly than those of their Bayesian competitors.

Third, even many Bayesians have become dissatisfied with the
dynamic Dutch book argument. Above, it was said that the argu-
ment heavily depends also on what decision-theoretic principles
are assumed. However, such principles would seem out of place
in debates about epistemic rationality, which concern what it is
rational to believe, or how to rationally change one’s beliefs or
credences, and not how it is rational to act. When we talk about
rational action (e.g., the rationality of buying a bet), the notion
of rationality at play is that of practical or prudential rationality.
Even if Bayesian updating were the rational thing to do, practi-
cally speaking, it would not follow that it is the rational thing to
do, epistemically speaking.

Motivated by this concern, Bayesians have sought to give an
altogether different type of defense of their update rule. The
alternative approach starts from the idea that update rules, like
epistemic principles in general, are to be judged in light of their
conduciveness to our epistemic goal(s), and that it is epistemi-
cally rational to adopt the update rule that is most likely to help
us achieve our epistemic goal(s). The defense adopts inaccuracy
minimization as the preeminent epistemic goal; update rules are
accordingly epistemically defensible to the extent that they allow
us to minimize the inaccuracy of our credences—where inaccu-
racy is spelled out in terms of some standard scoring rule(s). And
according to Bayesians, it is their favored update rule that does
best in this regard4.

It has recently been noted, however, that the goal of inaccu-
racy minimization, as it is used in the previous defense, is multi-
ply ambiguous (Douven, 2013). That one ought to minimize the
inaccuracy of one’s credences can be interpreted as meaning that
every update ought to minimize expected inaccuracy, but also as
meaning that every update ought to minimize actual inaccuracy,
or again differently, that every update ought to contribute to the
long-term project of coming to have a minimally inaccurate rep-
resentation of the world. And if understood in the third sense,
there is the further question of whether we should aim to have
minimally inaccurate degrees of belief in the long run, irrespec-
tively of how long the run may be, or whether we should aim
at some reasonable trade-off between speed of convergence and
precision (see Douven, 2010).

What has effectively been shown is that Bayes’s Rule mini-
mizes inaccuracy in the first sense. However, no argument has
been provided for holding that minimizing inaccuracy in that
sense trumps minimizing inaccuracy in one of the other senses.
So, in light of results showing that, given these other interpreta-
tions of our epistemic goal, certain versions of abduction outper-
form Bayes’s Rule in achieving that goal (Douven, 2013; Douven

4See Rosenkrantz (1992) for an influential early attempt along these lines; it also

contains a detailed exposition of scoring rules.

andWenmackers, in press), the inaccuracy minimization defense
fails.

The upshot is that there is currently no good reason to
hold that Bayesianism describes the unequivocally superior
normative theory of updating. Both arguments that implore us to
believe otherwise—the dynamic Dutch book argument and the
inaccuracy minimization argument—fail in this regard. Bayes’s
Rule may be the uniquely best at enabling us to achieve one
particular epistemic goal (minimizing expected inaccuracy in the
long run). But there are other epistemic goals that we might have,
which also involve the minimization of inaccuracy and which
seem equally legitimate. Relative to some of these, abduction
proves to be more conducive than Bayes’s Rule. Results reported
in Douven (2013) suggest that the precise epistemic goal(s) we
should seek to satisfy is a matter that depends on context. That
would mean that in some contexts Bayes’s Rule is the preferred
choice while in others it is abduction. But that is enough reason
to reject the idea that abduction is an aberrant update rule,
generally inferior to Bayes’s Rule.

5. Conclusion

Nothing that we have said here calls into question the value of the
probabilistic turn in recent cognitive science. We do, however,
take issue with the narrowness of the focus of work in this vein.
While we think that there is much fruit to be gleaned frommodel-
ing (actual and ideal) credences using probabilities, doing so does
not necessitate using a Bayesian account. We have strived here
to exemplify a promising way to expand fruitful research being
pursued in cognitive science and philosophy today: namely, by
exploring the probabilistic terrain outside of Bayesianism.

Doing so, we found strong support for explanationism, both as
a descriptive and normative theory. At least in certain contexts,
people do seem to base their updates partly on explanatory con-
siderations; and at least with respect to certain plausible epistemic
ends, that is what they ought to do. The present Research Topic
(in which this article has been placed) centers around the ques-
tion of how to improve Bayesian reasoning. This question could
be taken to presuppose that Bayesianism is the one apt model
of uncertain reasoning, and that all departures from Bayesianism
are in need of improvement, repair, or explaining-away. In the
above, we have challenged these presuppositions. Our findings
suggest that when people update their credences partly on the
basis of explanatory considerations and thereby flout Bayesian
standards of reasoning, that can be because doing so puts them in
a better position to achieve their epistemic goals. So, at least in
some contexts, we can improve upon Bayesianism by taking into
account the explanatory merits or demerits of the objects of our
credences. To put the message in different terms, instead of ask-
ing how to motivate people to reason more in accordance with
Bayesian standards, we should ask whether making people more
Bayesian is a good idea to begin with.

We suspect that the answer to this question will depend sensi-
tively on context and on the specific epistemic goals that are most
salient for an epistemic agent. More research is thus needed to
explore when exactly people are non-Bayesians and when exactly
they should be. Specifically, do people tend to rely on some
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version of abduction mostly in those contexts in which it is best
for them to do so, and similarly for Bayes’s Rule? Bradley (2005,
p. 362) argues that Bayes’s Rule “should not be thought of as a
universal and mechanical rule of updating, but as a technique to
be applied in the right circumstances, as a tool in what Jeffrey
terms the ‘art of judgment’.” Indeed, a key element in the art of
judgment may be the ability to judge when to rely on Bayes’s Rule
and when to rely on abduction or other rules. In addition to this,
it may comprise the art of judging explanatory goodness, which
also means: not perceiving explanations where there are none. As
with every art, one would expect some people to be better at this
than others. (As an anonymous referee rightly noted, conspiracy
theorists are inclined to see explanations everywhere, and abduc-
tive reasoning is likely to hamper rather than help such people to
achieve their epistemic goals.)

While the above is not a call to abandon Bayes’s Rule across
the board—in some contexts, it may be exactly the right rule
to follow—our present findings do go straight against Bayesian-
ism as philosophers commonly understand that position, namely,
as the position that any deviance from Bayesian updating beto-
kens irrationality. It is to be emphasized, however, that there is
no apparent incompatibility between our findings and much of
the work in psychology that commonly goes under the banner of

Bayesianism. There is nothing in the writings of Chater, Evans,
Oaksford, Over, or most of the other researchers commonly asso-
ciated with the Bayesian paradigm in psychology that obviously
commits them either to Bayes’s Rule as a universal normative
principle or to the hypothesis that, as a matter of fact, people
generally do obey the rule5. Oaksford and Chater (2013, p. 374)
are quite explicit in this regard when they end their discussion
of belief change in the context of the new Bayesian paradigm in
psychology with the remark that “it is unclear what are the ratio-
nal probabilistic constraints on dynamic inference.” We hope
to have shed some new light on this matter by showing that,
at least in some contexts, we do well to heed explanatory con-
siderations, both as epistemic agents and as researchers trying
to predict the cognitive behavior of others. More generally, we
hope to inspire further research on the descriptive and norma-
tive merits of probabilistic, but non-Bayesian accounts of human
reasoning.
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Bayesian reasoning, defined here as the updating of a posterior probability following
new information, has historically been problematic for humans. Classic psychology
experiments have tested human Bayesian reasoning through the use of word problems
and have evaluated each participant’s performance against the normatively correct
answer provided by Bayes’ theorem. The standard finding is of generally poor
performance. Over the past two decades, though, progress has been made on how
to improve Bayesian reasoning. Most notably, research has demonstrated that the
use of frequencies in a natural sampling framework—as opposed to single-event
probabilities—can improve participants’ Bayesian estimates. Furthermore, pictorial
aids and certain individual difference factors also can play significant roles in
Bayesian reasoning success. The mechanics of how to build tasks which show
these improvements is not under much debate. The explanations for why naturally
sampled frequencies and pictures help Bayesian reasoning remain hotly contested,
however, with many researchers falling into ingrained “camps” organized around
two dominant theoretical perspectives. The present paper evaluates the merits of
these theoretical perspectives, including the weight of empirical evidence, theoretical
coherence, and predictive power. By these criteria, the ecological rationality approach
is clearly better than the heuristics and biases view. Progress in the study of
Bayesian reasoning will depend on continued research that honestly, vigorously,
and consistently engages across these different theoretical accounts rather than
staying “siloed” within one particular perspective. The process of science requires
an understanding of competing points of view, with the ultimate goal being
integration.

Keywords: Bayesian reasoning, frequencies, probabilities, ecological rationality, heuristics and biases, pictorial
aids, numeracy

Introduction

Imagine, for one moment, the following scene: A !Kung woman begins her day by foraging
for berries in the Kalahari Desert. Wandering from patch to patch, she searches for substantial
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portions of subsistence. Foraging is not always fruitful; it does
not always yield food, and sometimes it does not yield enough
food to justify the calories expended during the act of foraging.
Foragers must decipher patterns from the environment in order
to be successful and efficient. For example, the !Kung woman
may have success 90% of the time she travels to the east canyon,
but only when she forages in springtime. During the summer
months, the east canyon may be barren of food. At some level
of cognition, the woman must coarsely analyze the data from her
travels in order to determine the odds of finding food in the east
canyon, given the fact that it is springtime or summer. From a
psychological perspective, we may wonder what is happening at
the cognitive, or algorithmic, level in the woman’s mind. How is
she storing the information, and how is she arriving at seemingly
appropriate solutions to this particular problem of calculating a
posterior probability of finding food given certain environmen-
tal cues? Although the surface of this paper provides guidance for
ways to improve Bayesian reasoning, it also delves into the deeper
questions of how and why the mind is designed to solve certain
problems with specific inputs.

The General Case of Bayesian
Reasoning

The technical name for what the !Kung woman is doing in
the above story is Bayesian reasoning. Although Bayesian rea-
soning sometimes has a narrow mathematical definition (i.e.,
the use of Bayes theorem, specifically), for the purposes of
psychological research the more relevant definition is the gen-
eral process of using new information (e.g., season of the
year) to calculate the revised likelihood that an event of a
known prior base rate will occur (e.g., successfully finding
food). Humans have, historically, needed to perform quick
computational estimates of such probabilities in order to nav-
igate various aspects of ancestral environments (Cosmides and
Tooby, 1996). Therefore, it seems scientifically unproductive
to insist on the narrow definition (in that an explicit Bayes
theorem is only a few centuries old) in describing human
judgments and decision making. It is important therefore to
distinguish between a narrow and rigid usage of “applying
Bayes’ theorem” in defining Bayesian reasoning, as compared
to a more general usage of Bayesian reasoning as a process
of adaptively updating prior probabilities with new informa-
tion (by whatever means) to reach a new, or posterior, prob-
ability. This more general definition of Bayesian reasoning,
which is the sensible one to take from the perspective of a
cognitive psychologist, is to evaluate behaviors as the poten-
tial product of cognitive mechanisms acting “as if ” they were
Bayesian. Specifically, this general definition of Bayesian rea-
soning can be used to classify behaviors based on the observ-
able evidence that the individual organism in question used
new evidence to update its estimate that an event would
occur. Often, this is ultimately tested through some measur-
able behavior (e.g., a decision to act in accordance with this
new evidence’s implications for the posterior probability of an
event).

Bayesian Reasoning as a Serious, Real
World Problem

Traditional research on people’s abilities to engage in Bayesian
reasoning uses the following protocol: a person is presented
with a description of a situation in which Bayesian reasoning is
relevant, the necessary numerical information for Bayesian cal-
culations, and then a request that the participant calculate the
posterior probability (expressed in terms of the relevant situa-
tion). For example, one such task (adapted from Chapman and
Liu, 2009) is as follows:

The serum test screens pregnant women for babies with Down’s
syndrome. The test is a very good one, but not perfect. Roughly
5% of babies have Down’s syndrome. If a baby has Down’s syn-
drome, there is a 80% chance that the result will be positive. If the
baby is unaffected, there is still a 20% chance that the result will
still be positive. A pregnant woman has been tested and the result
is positive. What is the chance that her baby actually has Down’s
syndrome?

Undergraduates, medical students, and even physicians do
quite poorly on this type of Bayesian reasoning task (e.g.,
Casscells et al., 1978; Gigerenzer et al., 2007), including when it
is in a medical testing context such as the above example. Such
failures of Bayesian reasoning suggest potentially tragic conse-
quences for medical decision making, as well as any other real
world topics that involve similar calculations.

Interestingly, evaluations of how and why people do poorly
in Bayesian reasoning has changed over the years. In the early
days of research on Bayesian reasoning, the dominant view by
researchers was that humans were approximating Bayes’ theo-
rem, but erred in being far too conservative in their estimates
(e.g., Edwards, 1982). That is, people did not utilize the new
information as much as they should; relying too much on the
base rate information. Later work, however, shifted to the idea
that the dominant error was in the opposite direction: that peo-
ple generally erred in relying too much on the new information
and neglecting the base rate, either partially or entirely (e.g.,
Kahneman and Tversky, 1972; Tversky and Kahneman, 1974,
1982). This later approach is one of the better known positions
within what is known as the heuristics and biases paradigm,
within which base rate neglect was considered so strong and per-
vasive that at one point it was asserted: “In his evaluation of
evidence, man is apparently not a conservative Bayesian: he is not
Bayesian at all” (Kahneman and Tversky, 1972, p. 450).

Improving Bayesian Reasoning

Nevertheless, research continued on human Bayesian reasoning
and how to improve it. Beginning in the 1990s, progress began to
occur, followed quickly by theoretical debates. There continue to
be disagreements to this day, but there now clearly are certain
procedures which do in fact improve human Bayesian reason-
ing. These include: using a natural sampling structure, using
frequencies, and using pictures. Each of these procedures also
raise theoretical issues about what cognitive processes underlying
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the improvement in human reasoning, and this paper will look
at each of these in turn. We will also look at the role of individ-
ual differences in aptitude and motivation within the context of
Bayesian reasoning before concluding with an overall assessment.

Natural Sampling and Frequencies in
Bayesian Reasoning
A seminal paper in terms of improving Bayesian reasoning
and the current issues revolving around those improvements is
Gigerenzer and Hoffrage (1995). This paper described a struc-
ture for presenting information in such a way that it greatly
helped people reach correct Bayesian conclusions. This struc-
ture is one of whole-number frequencies in a natural sampling
framework. (This original paper used the unfortunately ambigu-
ous label of “frequency format” for this structure, which has led
to some confusion; see Gigerenzer and Hoffrage, 1999, 2007;
Lewis and Keren, 1999; Mellers andMcGraw, 1999; Vranas, 2000;
Gigerenzer, 2001.) There are thus two aspect of this structure: (a)
the use of frequencies as a numerical format, and (b) the use of a
particular structure, called natural sampling, for the relationships
between the numbers. The rationale for both of these aspects
is similar: they map onto the type of information which the
human mind generally encounters in the natural environment,
both currently and over evolutionary history. For this reason,
the Gigerenzer and Hoffrage position is often described as the
ecological rationality approach.

It can be challenging to dissociate natural sampling from fre-
quencies. When considering the occurrence of objects or events
in the real world, that experience tends to strongly imply fre-
quency counts as the format in which that information would
be encoded. The actual format of natural sampling, however, is
actually the online categorization of that information into groups,
including groups which can be subsets of one another. Figure 1
shows the previously given Bayesian reasoning task information
(about a Down’s syndrome serum test) as naturally sampled fre-
quencies. In this case we imagine (or recall) 100 experiences with
this test, and five of those experiences were with a baby who
had Down’s syndrome (i.e., 5% base rate). Those five experiences
can be further categorized by when the test came out positive
(4 times; 4 out of 5 is 80%), and the 95 cases of babies without
Down’s syndrome can be similarly categorized by the test results
(19 false positive results; 19 out of 95 is 20%). This nested cate-
gorization structure creates numbers in the lower-most row for
which the base-rates (from the initial categorization groups) are
automatically taken into account already. This, in turn, makes
the calculations for Bayesian reasoning less computationally dif-
ficult. (Specifically, the probabilistic version of Bayes theorem
is p(H|D) =p(H)p(D|H)/p(H)p(D|H) + p(∼H)p(D|∼H), with
D = new data and H = the hypothesis, whereas with natural
sampling this equation can be simplified to p(H|D) = d&h/d&h
+ d&∼h, with d&h = frequency of data and the hypothesis and
d&∼h = frequency of data and the null hypothesis. Also note
that changing the natural frequency numbers to standardized for-
mats, such as percentages, destroys the nested categorizations,
and thus the computational simplification, of natural sampling.)
Thus, whereas it is pretty easy to create numerical frequencies
which are not in a natural sampling framework, it is difficult

FIGURE 1 | An illustration of a natural sampling framework: the total
population (100) is categorized into groups (5/95) and those groups
are categorized into parallel sub-groups below that.

to construct a natural sampling framework without reference to
frequencies.

The consequences of confusions about how natural sampling
and numerical frequencies are related to each other has led to a
number of claimed novel discoveries, which are observed from
the other side as “re-inventions.” One example of this is that the
principles of natural sampling have been co-opted as something
new and different. These situations require some clarification,
which hopefully can be done in a relatively concise manner.

Subsequent to the description and application of a natu-
ral sampling structure in the original Gigerenzer and Hoffrage
(1995) paper (which explicitly drew on the work by Kleiter (1994)
in developing the natural sampling idea), the basic structure of
natural sampling has been re-invented at least four times in the
literature. Each time, the new incarnation is described at a level
of abstraction which allows one to consider the structure inde-
pendent of frequencies (or any other numerical format), but the
natural sampling structure is unmistakable:

(a) Johnson-Laird et al. (1999) reintroduced the basic relevant
principle of natural sampling as their “subset principle,”
implying that ecological rationality researchers somehow
missed this property: “The real burden of the findings of
Gigerenzer and Hoffrage, (1995, p. 81) is that the mere use
of frequencies does not constitute what they call a ‘natu-
ral sample.’ Whatever its provenance, as they hint, a natural
sample is one in which the subset relations can be used to
infer the posterior probability, and so reasoners do not have
to use Bayes’ theorem.” Note also the confusion in this pas-
sage between the narrow definition of Bayesian reasoning as
using Bayes’ theorem and the more general, psychologically
relevant definition of Bayesian reasoning we clarified earlier
in this paper. Girotto andGonzalez (2001) continue from this
point in their use of the “subset principle,” which is simply an
abstraction of the natural sampling structure;

(b) Evans et al. (2000) proposed a process that involves “cue-
ing of a set inclusion mental model,” rather than a natural
sampling structure;

(c) Macchi (1995) and Macchi and Mosconi (1998) created the
label of “partitive formulation” to describe the natural sam-
pling structure; and
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(d) Sloman et al. (2003) use the term “nested-set relations” rather
than natural sampling, following Tversky and Kahneman
(1983).

As this last re-invention noted, Tversky and Kahneman (1983)
did discover that using frequencies sometimes improved perfor-
mance (e.g., in their work on the conjunction fallacy), but they
did not actually elaborate this observation into a theory; they only
speculated that frequencies somehow helped people represent
class inclusion.

Dissociating the natural sampling framework, claiming that
it is something else, and then looking at the effects of numeri-
cal frequencies by themselves (without natural sampling or with
malformed natural sampling) has allowed for all sorts of method-
ological and conceptual shenanigans. It is not interesting, either
methodologically or theoretically, that making Bayesian reason-
ing tasks harder (by adding steps, using wordings which confuse
people, switching numerical formats within the same problem)
can decrease performance (see, Brase, 2002, 2008, 2009a,b, 2014
for further elaboration). Indeed, it is generally difficult to make
strong theoretical claims based on people failing to accomplish
a task, as there are usually many different possible reasons for
failure.

In addition to multiple attempts to co-opt the concept of nat-
ural sampling there has been a notable attempt to co-opt the
numerical format of frequencies, claiming that the facilitative
effect of using frequencies is not actually about the frequencies
themselves. Girotto and Gonzalez (2001) asserted that people
actually can be good at Bayesian reasoning when given only
probabilistic information. The probabilities used in this research,
however, are of a peculiar type stated in whole number terms. For
example:

Mary is tested now [for a disease]. Out of the entire 10 chances,
Mary has ___ chances of showing the symptom [of the disease];
among these chances, ___ chances will be associated with the
disease. (p. 274)

Howmany times was Mary tested? Once or ten times? If tested
once, there is one “chance” for a result; if tested 10 times (or even
if 10 hypothetical times are envisioned), then this is an example of
frequency information. It seems odd to say that subjects are truly
reasoning about unique events and that they are not using fre-
quencies, when the probabilities are stated as de facto frequencies
(i.e., 3 out of 10). Although Girotto and Gonzalez (2001) claim
that “chances” refer to the probability of a single-event, it can
just as easily be argued that this format yields better reasoning
because it manages – in the view of the research participants—to
tap into a form of natural frequency representation. This alter-
native interpretation was immediately pointed out (Brase, 2002;
Hoffrage et al., 2002), but advocates of the heuristics and biases
approach were not swayed (Girotto and Gonzalez, 2002).

In order to adjudicate this issue, Brase (2008) gave partici-
pants Bayesian reasoning tasks based on those used by Girotto
and Gonzalez (2001). Some of these problems used the natural
sampling-like chances wording. Other versions of this problem
used either percentages (not a natural sampling format) or used

a (non-chances) frequency wording that was in a natural sam-
pling format. After solving these problems, the participants were
asked how they had thought about the information and reached
their answer to the problem. First of all, contrary to the results of
Girotto and Gonzalez (2001), it was found that frequencies in a
natural sampling structure actually led to superior performance
over “chances” in a natural sampling structure. (The effect size of
this result is actually similar to the Girotto and Gonzalez (2001)
results, which were statistically underpowered due to small sam-
ple sizes.) More notably, though, the participants who interpreted
the ambiguous “chances” as referring to frequencies performed bet-
ter than those who interpreted the same information as probabili-
ties. This result cuts through any issues about the computational
differences between natural sampling frameworks versus normal-
ized information, because the presented information is exactly
the same in these conditions and requires identical computa-
tions; only the participants’ understanding of that information is
different.

Using Pictures to Aid Bayesian Reasoning
Generally speaking, pictures help Bayesian reasoning. Like the
research on frequencies and natural sampling, however, there is
disagreement on how and why they help. The ecological rational-
ity account (Cosmides and Tooby, 1996; Brase et al., 1998) con-
siders pictorial representations as helping because they help to
tap into the frequency-tracking cognitive mechanisms of a mind
designed by the ecology experienced over evolutionary history.
That is, people have been tracking, storing, and using information
about the frequencies of objects, locations, and events for many
generations. Visual representations of objects, events, and loca-
tions should therefore be closer to that type of information with
which the mind is designed to work. An alternative heuristics
and biases account is that pictures help to make the structure of
Bayesian reasoning problems easier to understand. This account
of pictures helping because it enables people to “see the prob-
lem more clearly” is often tied to the co-opted and abstracted
idea of natural sampling; the pictures help make the subset struc-
ture, the set-inclusion model, or the nested-set relations more
apparent (e.g., Sloman et al., 2003; Yamagishi, 2003). Indeed,
there are parallels here in the comparison of these two perspec-
tives: the ecological rationality account proposes a more narrowly
specified (and evolutionary based) account, whereas the heuris-
tics and biases account favors a less specific (non-evolutionary)
account.

Subsequent research (Brase, 2009a, 2014) has taken advantage
of the fact that ambiguous numerical formats can be interpreted
as either frequencies or as probabilities. By using the “chances”
wording for the actual text and therefore holding the numeri-
cal information as a constant, while varying the type of pictorial
representation, this research has been able to compare differ-
ent types of pictorial aids against a neutral task backdrop. Brase
(2009a) found that, compared to control conditions of no pic-
ture at all, Venn circles (which should facilitate the perception
of subset relationship) did not help nearly as much as pictures
of icon arrays (which should facilitate frequency interpretations
of the information). Furthermore, a picture with intermediate
properties – a Venn circle with dots embedded within it – led
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to intermediate performance between solid Venn circles and
icon arrays. Subsequent research by Sirota et al. (2014b) took
an interesting intermediate theoretical position, claiming that the
heuristics and biases account predicted no facilitation of Bayesian
reasoning from using pictures (contra Sloman et al., 2003 and
Yamagishi, 2003). Their null findings of several different types of
pictures failing to improve Bayesian reasoning are used to chal-
lenge the ecological rationality account, which they agree does
predict an improvement with the use of pictures. A nearly con-
current publication replicated and extended the specific effects
of Brase (2009a), however, casting doubt on the significance of
the Sirota et al. (2014b) null findings. Brase (2014) found that
roulette wheel diagrams (like those used in Yamagishi, 2003) led
to performance similar to that of Venn diagrams, and that both
realistic and abstract icon shapes significantly improved perfor-
mance. Interpretation of the ambiguous numerical information
as frequencies also improved Bayesian reasoning performance
in all these conditions (replicating the findings of Brase, 2008),
separate from the effects of the different picture types.

Individual Differences in Bayesian
Reasoning

There have been various claims that certain individual differences
may moderate the often-observed frequency effect in Bayesian
reasoning. Peters et al. (2006) demonstrated that numerical liter-
acy (or numeracy)—an applicable understanding of probability,
risk, and basic mathematics—moderated many classic judgment
and decision making results, showing proof of concept that
not all judgment and decision making tasks may be viewed
the same by every individual. Specifically, Peters et al. (2006)
showed that low numerates may benefit the most from num-
ber formats designed to aid comprehension of the information.
The explanation proposed for these results can be summarized
as a “fluency hypothesis”: that more numerically fluent people
(higher in numerical literacy) are influenced less by the use of
different numerical formats because they are quite capable of
mentally converting formats themselves. In doing so, these highly
numerate people utilize the numerical format best suited for
the present task. Less numerically fluent people, on the other
hand, are prone to work only with the numerical information
as presented to them. This leaves them more at the mercy of
whatever helpful or harmful format is given to them. Although
Peters et al. (2006) did not assess Bayesian reasoning specifically,
Chapman and Liu (2009) later brought the issue of numerical
literacy to the topic of frequency effects in Bayesian reasoning
tasks.

The story takes an interesting turn at this point, because
although Peters et al. (2006) showed low numerates benefited
most from a number format change to frequencies, Chapman
and Liu (2009) showed instead that high numerates differentially
benefited from natural frequency formatted Bayesian reason-
ing problems. Specifically they found that this frequency effect
was only observed in highly numerate individuals, resulting in
a statistically significant numeracy x number format interaction.
Chapman and Liu (2009) pointed out that some other research is

consistent with these results. In particular, Bramwell et al. (2006)
provided different groups of participants with Bayesian reason-
ing problems framed as a test for a birth defect. The participants
were either obstetricians, pregnant women and their spouses, or
midwives. The effect of presentation format was assessed with a
between-subjects manipulation, with some participants receiving
naturally sampled frequencies and others receiving a single event
probability format. Although the frequency effect was observed
in their study, a closer examination showed that this effect was
limited to obstetricians, whereas the midwives, pregnant women,
and their spouses all showed equally poor Bayesian reasoning
performance regardless of number format.

To the extent that obstetricians have somewhat higher numer-
ical literacy, which is a plausible assumption, the Bramwell et al.
(2006) results would be consistent with those of Chapman and
Liu (2009). Both of these results, however, are inconsistent with
the findings and the fluency hypothesis of Peters et al. (2006).
Chapman and Liu (2009) proposed something akin to a “thresh-
old” hypothesis regarding the interaction effect they found. This
threshold hypothesis proposes that a certain level of numeri-
cal literacy is required for difficult problems (such as Bayesian
reasoning tasks) before helpful formats (e.g., naturally sampled
frequencies) are able to provide an observable benefit.

To assess this threshold hypothesis and the fluency hypoth-
esis proposed by Peters et al. (2006), Hill and Brase (2012)
systematically tested a variety of problem types with vary-
ing levels of difficulty and in different number formats, while
also assessing numerical literacy with the standard measure
used in this research (i.e., the General Numeracy Scale; Lipkus
et al., 2001). These findings generally showed an absence of
any interaction across several different problem types. Of most
importance to the current paper, the Bayesian reasoning prob-
lems originally used by Chapman and Liu (2009) also failed
to replicate the numeracy × number format interaction, caus-
ing some specific concern over the “threshold hypothesis” of
Bayesian reasoning, and to a lesser extent the “fluency hypoth-
esis” of judgment and decision making tasks in general. The
one constant across these studies was a consistent main effect
for numeracy and a consistent main effect for number format,
with higher numerates performing better on Bayesian reason-
ing tasks, and participants given the natural frequencies format
also performing better than those given single event probability
versions.

Support for the findings of Hill and Brase (2012) were
shown by Garcia-Retamero and Hoffrage (2013) who studied
the Bayesian reasoning ability of doctors and patients in medical
decision tasks. After fully crossing conditions by number format
(natural frequencies and single event probabilities) and display
(number only or pictorial representation), participants’ numer-
acy scores were also assessed. Garcia-Retamero and Hoffrage
(2013) found the traditional frequency effect, just as in Hill and
Brase (2012), and also an improvement in Bayesian reasoning
performance by including a pictorial representation. Numeracy
did not interact with the frequency effect, again consistent
with the Hill and Brase (2012) findings and with the ecologi-
cal rationality explanation of the frequency effect. Johnson and
Tubau (2013) also partially replicated the lack of a numeracy ×
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number format interaction, and found consistent improvement
in Bayesian reasoning as a result of using natural frequencies,
with the only exception being in very difficult problems, oper-
ationally defined by longer word length of the problem text.
Johnson and Tubau (2013) proposed that both Chapman and
Liu (2009) and Hill and Brase (2012) may be partially correct.
When given long (“difficult”) problems, the numeracy × num-
ber format interaction was present, with low numerates showing
a floor effect, and high numerates showing the benefit of natural
frequencies, a finding consistent with the “threshold hypothesis”
of Chapman and Liu (2009). However, with less difficult prob-
lems the numeracy × number format interaction disappeared, a
finding in line with Hill and Brase (2012).

The above set of results led Johnson and Tubau (2013) to
suggest a potential problem with evolutionary accounts pro-
posed by various researchers (e.g., Cosmides and Tooby, 1996;
Brase et al., 1998), in that there was not a frequency facilitation
effect for the very difficult problems. The present authors, how-
ever, do not see this as a problem for an evolutionary account.
We reach this conclusion because differences in problem context
(e.g., problem difficulty, word count) that are assessed in terms
of the written problem properties are only tenuously connected
to evolved cognitive abilities. Cognitive mechanisms evolved to
solve specific problems in specific environments. The perspec-
tive of ecological rationality, which is generally consistent with
evolutionary psychology, is also built upon a similar premise
(i.e., the fit between the structure of the environment and the
design of the mind; Gigerenzer et al., 1999; Gigerenzer and
Gaissmaier, 2011). By analogy, this situation can be compared
to someone proposing that humans have an evolved ability to
develop complex language. This proposal is not endangered by
the observation that people (even highly literate people) find a
college physics textbook difficult to read. Reading is a cultural
invention which taps into our evolved language ability, and thus
our ability to handle a particularly difficult written text is only
tenuously connected to the evolved cognitive ability for human
language.

More recent work on individual difference moderators of the
frequency effect in Bayesian reasoning has only made the afore-
mentioned research more perplexing. For instance, McNair and
Feeney (2015) demonstrated a “threshold” type effect despite
slightly different problem format manipulations. Specifically,
McNair and Feeney (2015) assessed the differences between the
standard format (single event probabilities) and a causal format
(still single event probabilities, but with additional text describing
a possible cause for false positive test results); previous research
by Krynski and Tenenbaum (2007) demonstrated evidence that
causal structures in problems could lead to improved Bayesian
reasoning performance. In separate studies, McNair and Feeney
(2015) found evidence for numerical literacy serving as a mod-
erator of problem structure’s benefits on Bayesian accuracy, with
the effect of problem structure only present in highly numerate
individuals. Similar to the discussion of the threshold hypothe-
sis of Chapman and Liu (2009), this observation of an apparent
moderating relationship between privileged representational for-
mats, and individual difference measures (e.g., numeracy, cogni-
tive reflection) might be seen as damaging to evolutionary and

ecological accounts. However, the same explanation as offered for
the Chapman and Liu (2009) results can hold for the McNair and
Feeney (2015) results: that performance near floor effect levels
can resemble an interaction. In fact, performance in the McNair
and Feeney (2015) studies was somewhat low (range: 3 to 32% in
lowest to highest performing conditions).

Other recent research (Lesage et al., 2013; Sirota et al., 2014a)
has addressed a commonly held assumption critics make about
the “ecological rationality account”: if naturally sampled fre-
quencies are a privileged representational format for an evolved
statistical reasoning module, then the module must be “closed,”
and automatic. Thus, any general cognitive traits (e.g., cognitive
reflection), or any method of decreasing general cognitive capac-
ity (e.g., cognitive load), should not significantly interfere with
Bayesian performance, or the frequency effect. In general terms,
this idea is the assumption of modular encapsulation (Fodor,
1983), which is still promoted by Fodor but actually not accepted
by any prominent evolutionary psychology views (e.g., compare
Fodor, 2000 and Barrett, 2005).

Although both groups of authors readily acknowledge the
research conducted, and the reviews published, concerning the
massive modularity hypothesis, there does seem to be some mis-
understanding. For example, Barrett and Kurzban (2006, see
specifically pp. 636–637), which is cited by some of the work
mentioned above, discuss at length the misunderstandings about
automaticity of evolved modules, and the method of using cog-
nitive load induced deficits as evidence against evolved modules.
Without getting too detailed, their arguments can be summarized
by the following analogy: personal computers have a variety of
specialized programs (modules). Few would argue that a word
processor works as efficiently at storing and computing numer-
ical data, as compared to a spreadsheet program. Thus, these
programs are separate, and specialized. However, if I down-
load 1,000 music files to my computer, the overall performance
of those separate programs will suffer, at least with respect to
processing time. Also, if I drain the battery power in my lap-
top, the programs will fail to operate at all. This observation
does not lead directly to the conclusion that the programs are
not specialized. It simply points to the conclusion that the pro-
grams require some overlapping general resources. The same
conclusion should be made with respect to cognitive modules.
The examples in this analogy are extreme instances of general
situations which can impair the functioning of functionally spe-
cific modules, but the point holds. The question becomes not
one of modular abilities being impervious to general resource
constraints, but rather one of understanding how particular sit-
uational contexts influence the functioning of specific cognitive
abilities.

In a different study of individual differences, Kellen et al.
(2013) found the standard benefits of pictorial representations
(Venn diagrams, in this case) in answering complex statisti-
cal tasks such as Bayesian reasoning. Furthermore, this gen-
eral pattern interacted with measured spatial ability, which was
independently assessed. In low-complexity problems, low spa-
tial ability participants actually were hurt by pictorial represen-
tations, whereas high spatial ability participants demonstrated
no difference between pictorial and text displays. However, in
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high-complexity problems, high spatial ability participants were
aided in their understanding by the presence of pictorial repre-
sentations, whereas low spatial ability participants saw no benefit.
This last result is somewhat consistent with a threshold hypoth-
esis, but there are many issues within these studies in need of
deeper assessment. Further research is needed to clarify how
different spatial ability levels are related to the use of different
types of visual displays and if there is any relationship between
spatial ability, numeracy, and the effects of naturally sampled
frequencies.

Finally, there are differences in performance that are related
to the incentive structures under which people are asked to do
Bayesian reasoning tasks. Research participants who do Bayesian
reasoning tasks as part of a college course (either through a
research “subject pool” or as in-class volunteers) tend to perform
less well than participants who are paid money for their participa-
tion (Brase et al., 2006). This same research also documented that
participants frommore selective universities generally performed
better than those from less selective universities, most likely due
to a combination of different overall ability levels and differ-
ent intrinsic motivation levels to do academic-type tasks. Brase
(2009b) extended this research to show that people whose pay-
ments were tied to performance (i.e., correct responses received
more money) did even better than people who were given a flat
payment for their participation. This is an important factor in, for
example, understanding the very high level of Bayesian reasoning
performance found by Cosmides and Tooby (1996; paid partici-
pants from Stanford University) versus the lower performance on
the same task in Sloman et al. (2003; in-class participants from
Brown University). In all cases, however, it should be noted that
the relative levels of performance when varying the use of natural
sampling, frequencies, and pictorial aids were consistent across
studies. Absolute performance levels vary, but these methods for
improving Bayesian reasoning remain effective.

Conclusion

Overall, the literature on Bayesian reasoning is clear and straight-
forward in terms of what works for improving performance:
natural sampling, frequencies, icon-based pictures, and more
general development of the prerequisite skills for these tasks
(i.e., numerical literacy, visual ability, and motivation to reach
the correct answer). The more contentious topic is that of why
these factors work to improve Bayesian reasoning. The bal-
ance of evidence favors the ecological and evolutionary ratio-
nality explanations for why these factors are key to improving
Bayesian reasoning. This verdict is supported by multiple con-
siderations which flow from the preceding review. First, the
ecological rationality account is consistent with a broad array
of scientific knowledge from animal foraging, evolutionary biol-
ogy, developmental psychology, and other areas of psycholog-
ical inquiry. Second, the ecological rationality approach is the
view which has consistently tended to discover and refine the
existence of these factors based on a priori theoretical consid-
erations, whereas alternative accounts have tended to emerge
as post hoc explanations. (To be specific, the facilitation effect

of natural frequencies documented by Gigerenzer and Hoffrage
(1995), the facilitative effect of pictorial representation docu-
mented by Cosmides and Tooby (1996), the effect of using whole
objects versus aspects of objects documented by Brase et al.
(1998), and the differential effects of specific types of pictorial
aids in Bayesian reasoning documented by Brase (2009a, 2014)
all were established based on ecological rationality considera-
tions which were then followed by alternative accounts.) Third,
the actual nature of the evidence itself supports the ecological
rationality approach more than other accounts. For instance,
in head-to-head evaluations of rival hypotheses, using uncon-
testable methodologies, the results have supported the ecological
rationality explanations (e.g., Brase, 2009a). Furthermore, a quite
recent meta-analysis (McDowell and Jacobs, 2014) has conclu-
sively established the validity of the effect of naturally sampled
frequencies in facilitating Bayesian reasoning, as described from
an ecological rationality perspective.

Distressingly, some proponents of a heuristics and biases view
of Bayesian reasoning have not engagedwith the bulk of the above
literature which critically evaluates this view relative to the eco-
logical rationality view. As just one illustration, Ayal and Beyth-
Marom (2014) cite the seminal work by Gigerenzer and Hoffrage
(1995), yet ignore nearly all of the other research done from
an ecological rationality approach in the subsequent nearly 20
years. Robert Frost (1919/1999) noted that people often say “good
fences make good neighbors,” but that this is not necessarily a true
statement:

Before I built a wall I’d ask to know
What I was walling in or walling out,
And to whom I was like to give offence.
Something there is that doesn’t love a wall,

In science, perhaps even more than in other domains of life,
fences are not good. Willingness to engage openly, honestly, and
consistently with the ideas one does not agree with should be
a hallmark of scientific inquiry. Failing to do so is scientifically
irresponsible.

In conclusion, the vast majority of studies in human Bayesian
reasoning align well with evolutionary and ecological rationality
account of how the mind may be designed. These accounts are
theoretically parsimonious and established in a rich set of liter-
ature from a wide range of interrelated disciplines. Alternative
explanations, however, tend to appeal to stripped down parts of
this account, often losing clear predictive power in the process,
which neglect the ecological and evolutionary circumstances of
the human mind they purport to explain. That does not mean
that the heuristic and biases account no longer has any validity.
The intellectually invigorating component of this debate is that
we do not fully understand all that is to learn about how peo-
ple engage in (or fail to engage in) Bayesian reasoning. There is
still much to learn about the possible environmental constraints
on Bayesian reasoning (e.g., problem difficulty, number of cues),
and how those constraints may be interwoven with individual
differences (e.g., numerical literacy, spatial ability), and even dif-
ferent measures of specific individual differences (e.g., subjective
vs. objective numeracy). We look forward to disassembling walls
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and integrating various perspectives, with the hope of more fully
understanding how to improve Bayesian reasoning, and how
those methods of improvement illuminate the nature of human
cognition.
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Humans have long been characterized as poor probabilistic reasoners when presented

with explicit numerical information. Bayesian word problems provide a well-known

example of this, where even highly educated and cognitively skilled individuals fail to

adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate

Bayesian inferences relative to normalized formats (e.g., probabilities, percentages),

both by clarifying logical set-subset relations and by simplifying numerical calculations.

Nevertheless, between-study performance on “transparent” Bayesian problems varies

widely, and generally remains rather unimpressive. We suggest there has been an

over-focus on this representational facilitator (i.e., transparent problem structures) at

the expense of the specific logical and numerical processing requirements and the

corresponding individual abilities and skills necessary for providing Bayesian-like output

given specific verbal and numerical input. We further suggest that understanding this

task-individual pair could benefit from considerations from the literature on mathematical

cognition, which emphasizes text comprehension and problem solving, along with

contributions of online executive working memory, metacognitive regulation, and relevant

stored knowledge and skills. We conclude by offering avenues for future research aimed

at identifying the stages in problem solving at which correct vs. incorrect reasoners

depart, and how individual differences might influence this time point.

Keywords: Bayesian reasoning, mathematical problem solving, text comprehension, set-subset reasoning,

numeracy, individual differences

Introduction

Over the past decades, there has been a growing appreciation for the probabilistic operations
of human cognition. The union of highly sophisticated modeling techniques and theoretical
perspectives, sometimes referred to as the “Bayesian Revolution,” is posed to bridge many
traditional problems of human inductive learning and reasoning (Wolpert and Ghahramani,
2005; Chater and Oaksford, 2008; Tenenbaum et al., 2011). Despite this promising avenue,
probabilistic models have acknowledged limits. One of themost prominent of these is the persistent
difficulties that even highly educated adults have reasoning in a Bayesian-like manner with explicit
statistical information (Kahneman and Tversky, 1972; Gigerenzer and Hoffrage, 1995; Barbey and
Sloman, 2007), including individuals with advanced education (Casscells et al., 1978; Cosmides
and Tooby, 1996), higher cognitive capacity (Lesage et al., 2013; Sirota et al., 2014a), and higher
numeracy skills (e.g., Chapman and Liu, 2009; Hill and Brase, 2012; Johnson and Tubau, 2013;
Ayal and Beyth-Marom, 2014; McNair and Feeney, 2015). Rather than contradicting Bayesian
models of reasoning, however, less than optimal inferences over explicit verbal and numerical
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information result in large part from the relatively recent cultural
developments of these symbolic systems, far too little time for
evolution to have automated this explicit reasoning capacity.

In the present review, we focus on Bayesian word problems,
or the textbook-problem paradigm (Bar-Hillel, 1983), where
a binary hypothesis and observation (e.g., the presence of
a disease, the results of a test) are verbally categorized and
numerically quantified within a hypothetical scenario. We use
the term “Bayesian word problems” to refer to tasks in which
these explicitly summarized statistics are provided as potential
input for a Bayesian inference in order to derive a posterior
probability (these correspond to “statistical inference” tasks in
Mandel, 2014a). Specifically, the base rate information (e.g.,
the probability of having a disease) has to be integrated with
the likelihood of a certain observation (e.g., the validity of a
diagnostic test, reflected in a hit rate, and false-positive rate)
to arrive at precisely quantified Bayesian response (e.g., the
probability of having the disease conditioned on a positive test).
Hence, these problems reflect situations of focusing (rather than
updating per se), where an initial state of knowledge is refined,
or re-focused, in an otherwise stable universe of possibilities
(Dubois and Prade, 1992, 1997; Baratgin and Politzer, 2006,
2010). Given this static coherence criterion of these word
problems, the normative view of additive probability theory holds
(Kolmogorov, 1950), and so Bayes’ rule is the most appropriate
normative standard for assessing performance (see Baratgin,
2002; Baratgin and Politzer, 2006, 2010)1.

Some have argued that Bayesian word problems may in fact
have little to do with “Bayesian reasoning” in the sense that
they do not necessarily require updating a previous belief (see
Koehler, 1996; Evans et al., 2000; Girotto and Gonzalez, 2001,
2007; Mandel, 2014a; Girotto and Pighin, 2015). This sentiment
reflects a gradual shift from using these tasks to understand how
well (or poorly) humans update the probability of a hypothesis in
light of new evidence, or how experienced physicians diagnose
disease given a specific indicator (Casscells et al., 1978; Eddy,
1982), to the task features and individual differences associated
with reasoning outcomes, which are often found to depart from
the Bayesian ideal (Barbey and Sloman, 2007; Navarrete and
Santamaría, 2011; Mandel, 2014a). We take this descriptive-
normative gap to be our general question: Why do people tend
to deviate, often systematically, from the normative standard
prescribed by Bayes’ rule?

Fortunately not all is lost, and a variety of factors are
increasingly understood which can be manipulated to facilitate
Bayesian responses from floor to near ceiling performance. In
what follows, we first aim to clarify some frequently confused
terms, isolate key factors influencing performance, and point
out some limitations of typically contrasted theoretical views.
We then highlight some mutually informative parallels between
research and theory on Bayesian inference tasks, and the

1In this review we do not address the distinction between logical and subjective

Bayesianism, nor do we refer to situations involving a dynamic cohesion criterion

or the conditioning principle (see Baratgin and Politzer, 2006) in which other

normative standards may apply (for discussion on the normative issue see

Gigerenzer, 1991; Koehler, 1996; Vranas, 2000; Baratgin and Politzer, 2006, 2010;

Douven and Schupbach, 2015).

literature on mathematical problem solving and education.
Finally, we discuss how these separate, but complimentary, views
on reasoning and mathematical cognition can provide some
general processing considerations and new methodologies
relevant for understanding why human performance
falls short of Bayesian ideals, and how this gap might
be reduced.

Natural Frequencies: from Base-rate
Neglect to Nested-sets Respect

In the present section we explore the Bayesian reasoning task,
using a variant of the classic medical diagnosis problem (Casscells
et al., 1978; Eddy, 1982) as a general point of reference.
We center on the natural frequency effect—a facilitator of
both representation and computation—and the debate which
has surrounded it for nearly two decades. We highlight the
general consensus on the benefits of making nested-set structures
transparent, before turning to other processing requirements
needed for transforming presented words and numbers into a
posterior Bayesian response in the following section.

Poor Reasoning and Base-rate Neglect

“In his evaluation of evidence, man is apparently not a

conservative Bayesian: he is not Bayesian at all.”

Kahneman and Tversky (1972 p. 450)

Although Bayesian norms have been around since the 18th
century (Bayes, 1764), it was not until 200 years later
that psychological research adopted these standard as the
benchmark against which to measure human reasoning ability.
As exemplified in the quote above, early results were not too
promising. In the heyday of the heuristics-and-biases paradigm,
one ofmedicine’s most coveted journals, theNew England Journal
of Medicine, published a study where a group of medically trained
physicians were given the following problem (Casscells et al.,
1978):

If a test to detect a disease whose prevalence is 1/1,000 [BR]

has a false positive rate of 5% [FPR], what is the chance that a

person found to have a positive result actually has the disease,

assuming that you know nothing about the person’s symptoms or

signs?___%2.

This medical diagnosis problem asks for the probability (chance)
that a person actually has the disease (the hypothesis) given
a positive test result (the data), a task of which physicians
should be reasonable adept. The results, however, were not very
encouraging, with only 18% of the physicians answering with
the Bayesian response of 2%. Forty-five percent of them, on
the other hand, answered “95%,” which appeared to completely
ignore the base rate presented in the problem—the fact that
only 1 in 1000 people actually have the disease. Similar results

2Information in [brackets] was not present in original text, but is included in

examples in this review to ease cross-problem comparisons. [BR] = base rate,

[FPR]= false-positive rate. Implicit in this example is the hit rate [HR]= 1.
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were reported a few years later by Eddy (1982). Evidence was
accordingly interpreted to show that humans tend to neglect
crucial information (such as base rates), while instead focusing
on the similarity of target data to prototypical members of a
parent category (for reviews see Kahneman et al., 1982; Koehler,
1996). This was part of a larger explanatory framework which
emphasized limited cognitive processing capacity, where mental
shortcuts, or heuristics, are employed to alleviate the burden of
cognitively demanding tasks, including those that may be more
optimally answered with formal calculations (e.g., Kahneman,
2003). However, “base-rate neglect” as a general explanation
has been critiqued on theoretical and methodological grounds
(Koehler, 1996), which is further supported by the observation
that typical errors in Bayesian word problems tend to be a
function of the question format, with base-rate-only responses
often reported (e.g., Gigerenzer and Hoffrage, 1995; Mellers
and McGraw, 1999; Evans et al., 2000; Girotto and Gonzalez,
2001).

The Natural Frequency Effect: Evolution and
Computation
At a time when pessimism dominated the landscape of the
cognitive psychology of reasoning, Gigerenzer and Hoffrage
(1995) and Cosmides and Tooby (1996) offered hope for the
human as statistician, along with a strong theoretical agenda (see
also Brase et al., 1998). Consider this frequency alternative to
the Casscells et al. (1978) medical diagnosis problem presented
above:

1 out of every 1000 [BR] Americans has disease X. A test has been

developed to detect when a person has disease X. Every time the

test is given to a person who has the disease, the test comes out

positive [HR=1]. But sometimes the test also comes out positive

when it is given to a personwho is completely healthy. Specifically,

out of every 1000 people who are perfectly healthy, 50 of them test

positive [FPR] for the disease.

Imagine that we have assembled a random sample of 1000

Americans. They were selected by a lottery. Those who conducted

the lottery had no information about the health status of any

of these people. Given the information above, on average, how

many people who test positive for the disease will actually have

the disease? __ out of __.

Performance on this problem was found to elicit a correct
response rate of 72% by Cosmides and Tooby (1996, study 2),
remarkably higher than the 18% reported by Casscells et al. with
the formally analogous information shown above. In a similar
vein, Gigerenzer and Hoffrage (1995, 1999) reported success
rates near 50% across a variety of problems presenting natural
frequencies, compared to 16% with their probability versions.
Examples of similar problems presenting natural frequencies and
normalized data are shown in Figure 1.

The initial explanations offered for these effects can be
divided in two strands: Evolution and computation. According
to Cosmides and Tooby, evolution endowed the human mind
with a specialized, automatically-operating frequency module
for making inferences over countable sets of objects and
events, but which is ineffective for computing single-event
probabilities. By tapping into this module naïve reasoners can
solve frequency problems, while they fail on probability problems
because this module cannot be utilized. Relatedly, Gigerenzer
andHoffrage suggested that reasoning performance depended on
the mesh between the presented problem data (the structure of
the task environment) and phylogenetically endowed cognitive
algorithms for naturally sampled information (Kleiter, 1994;
Figure 2B), which leads to a similar suggestion that explicit
numerical reasoning would utilize the same cognitive processes
used for reasoning based on information experienced over time,
provided the external input matched the internal algorithm.
Unlike Cosmides and Tooby (1996) and Gigerenzer andHoffrage
(1995) did not specifically argue that the mind is unable to deal
with probabilities of single events, and in fact their computational
account predicted quite the opposite (see their study 2 and
“prediction 4”).

The more pertinent claim of Gigerenzer and Hoffrage (1995),
however, was their computational analysis, which focused on
the difference between the information provided in the problem
and its proximity to the Bayesian solution. With normalized
information (e.g., percentages; see Table 1), the following

FIGURE 1 | Examples of the medical diagnosis problem, presented with normalized numerical information (left) and with natural frequencies (right). If

not otherwise indicated, other tables, figures, and examples in the text refer to the numerical information in this figure.
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FIGURE 2 | Representations of the Bayesian tasks presented in Figure 1 as (A) integrated nested sets, and (B) frequency tree, where (H) the

hypothesis = infected (inf); and (D), the data = positive test (pos).

computation is necessary to arrive at a Bayesian response, where
H is the hypothesis (having the disease) and D is the data (testing
positive):

p(H|D) =
p (H&D)

p(D)
=

p(H)p(D|H)

p(H)p(D|H)+ p(¬H)p(D|¬H)

=

(0.1)(0.6)

(0.1)(0.6)+ (0.9)(0.2)
= “25%”

With natural frequencies, on the other hand, all numerical
information is absolutely quantified to a single reference class
(namely, the superordinate set of the problem; “100 people”
in Figure 1; see also Figure 2B), where categories are naturally
classified into the joint occurrences found in a bivariate 2 ×

2 table [e.g., (H&D), (¬H&D)]. In this case, the conditional
distribution does not depend on the between-group (infected, not
infected) base rates, but only on the within-group frequencies (hit
rate, false-positive rate). Accordingly, base rates can be ignored,
numbers are on the same scale and can be directly compared
and (additively) integrated, and the required computations are
reduced to a simpler form of Bayes rule:

p(H|D) =
p (H&D)

p(D)
=

p(H&D)

p(H&D)+ p(¬H&D)

=

6

6+ 18
= “6 out of 24”

Thinking in Sets: Comprehension and
Manipulation of Nested-set Structures
While the computational simplification afforded by natural
frequencies was clear, critiques of the evolutionary view came
quickly. Over the ensuing decade, a number of studies appeared
which argued that the “frequency advantage” was better described
as a “structural advantage” (Macchi, 1995; Macchi and Mosconi,
1998; Johnson-Laird et al., 1999; Lewis and Keren, 1999; Mellers
and McGraw, 1999; Evans et al., 2000; Girotto and Gonzalez,
2001, 2002; Sloman et al., 2003; Yamagishi, 2003; Fox and
Levav, 2004). More specifically, these studies suggested that
the benefit of natural frequencies was not in the numerical
format per se (frequencies vs. percentages), nor the number

of events being reasoned about (sets of individuals vs. single-
event probabilities), but rather in the clarification of the
abstract nested-set relationships inherent in the problem data,
which helps reasoners to form appropriate models of relevant
information. The nested-set structure of these problems is
illustrated in Figure 2, where it can be seen that the relations
between categories—people infected (H) and not infected (¬H)
testing positive (D) for a disease—can be represented spatially as
a hierarchical series of nested sets.

Clearly, the quantitative relationships amongst subsets are
more transparently afforded with natural frequencies compared
to normalized percentages. This general view emphasizing
representational facilitation has come to be known as the nested-
sets hypothesis, originally proposed by Tversky and Kahneman
(1983), and which has since been variously expressed by a
number of authors. For example, Mellers and McGraw (1999)
concluded that natural frequencies are “advantageous because
they help people visualize nested sets, or subsets relative to larger
sets” (p. 419). Girotto and Gonzalez (2001) attributed successful
reasoning to problem presentations which “activate intuitive
principles based on subset relations” (p. 247). For Evans (2008),
“what facilitates Bayesian reasoning is a problem structure
which cues explicit mental models of nested-set relations”
(p. 267). And as stated by Barbey and Sloman (2007, p. 252):
“the mind embodies a domain general capacity to perform
elementary set operations and that these operations can be
induced by cues to the set structure of the problem.” Although
these suggestions are not without limitations (discussed below),
proponents of the nested-sets hypothesis helped identify a key
strategy that reasoners (naïve to Bayes rule) can use to arrive
at a Bayesian response: Thinking in sets. That is, in the absence
of formal knowledge of how to optimally combine conditional
probabilities, reasoners can still solve these tasks by considering
the problem as overlapping sets of data, namely, as a focal subset
of infected people out of the reference set of people who test
positive: (H&D)/(D).

Contemporary discussions explaining Bayesian facilitations
continue to be framed in terms of a nested-sets (or domain
general) contra an ecological rationality (or frequency/format-
specific) debate (e.g., Navarrete and Santamaría, 2011; Hill and
Brase, 2012; Lesage et al., 2013; Brase, 2014; Sirota et al., 2014a,b,
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2015a,b; Brase and Hill, 2015). We assume that theorists on both
sides of the divide are more interested in finding out how to
improve Bayesian reasoning and why these facilitations work,
rather than simply promoting a preferred position. We also
believe that, in general, these perspectives may in some regards
be more complimentary than adversarial. Accordingly, we think
that it is important to acknowledge what these views have in
common, where the relevant differences between these views lie,
and whether either view can fully account for empirical data.

To begin, it should by now be well understood that natural
frequencies do not simply refer to the use of frequency formats,
but essentially refer to problem structure as well (Gigerenzer
and Hoffrage, 1999, 2007; Hoffrage et al., 2002; for concurrence
see Barbey and Sloman, 2007, response R3). Both the natural
frequency and nested-sets views agree that frequencies that do
not conform to a natural sampling, or partitive, structure are
not much better than percentage formats (Evans et al., 2000;
Girotto and Gonzalez, 2001; Sloman et al., 2003). Where these
two views primarily diverge is in how comfortable they are
making precise predictions based on evolutionary claims. For the
moment we suggest putting the evolutionary claims aside, and
instead focusing on two points of commonality. First, natural
frequencies (or problems presenting a “partitive” or “nested-
set” structure, or conforming to the “subset principle”; see Brase
and Hill, 2015) are widely agreed to be the most general and
robust facilitator of Bayesian-like performance. Second, natural
frequencies facilitate both representation and computation.

We suggest that in order to advance the discussion, we
need to move away from the standard “natural frequency
vs. nested-sets” debate and instead consider the processing
requirements, and corresponding difficulties, given a particular
problem presentation (see also McNair, 2015; Vallée-Tourangeau
et al., 2015b). In the following section we note key performance
variables and often confused issues, and review available evidence
looking separately at problems presenting and requesting
normalized vs. natural frequency information.

The Bayesian Problem: from Words and
Numbers to Meaningful Structures

Table 1 presents some commonly used terms that are often used
in different ways and which frequently lead to confusion. Below
we briefly highlight the most frequently confused factors (see also
Barton et al., 2007).

First, numerical format and the number of events are fully
orthogonal dimensions. Normalized formats (e.g., percentages,
decimals) can express single-event probabilities (e.g., “10%
chance of infection”) or proportions of a set (e.g., “10% of
people are infected”), and whole numbers can be used to express
frequencies (e.g., 10 of 100 people) or single events (10 of 100
chances). This applies both to the information presented in the
text and requested in the question.

Second, the “sampling structure” (also referred to as
“information structure” or “menu”) refers to the specific
categorical-numerical information used to express the hit rate
and false-positive rate, and is also orthogonal to the above two
distinctions (numerical format, number of events). Typically, this

refers to the presentation of the conjunctive/joint events [(H&D)
and (¬H&D)] vs. the conditional/normalized data [(D|H) and
(D|¬H), along with the base rates (H) and (¬H)]. Any of
these categories can be quantified with either frequencies or
normalized formats.

Finally, throughout this review we use the term “natural
frequencies” to refer to problems which (1) present whole
numbers (2) in a natural sampling (or partitive) structure
(specifically, one which directly presents H&D and ¬H&D), and
(3) request responses as an integer pair. We acknowledge that on
some accounts natural frequencies may refer only to the initial
problem data independent of the question format. However, as
we review, the primary benefits of natural frequencies hold only
when the question also requests a pair of integers (Ayal and
Beyth-Marom, 2014), and therefore for ease of exposition we use
natural frequencies only when all three conditions are present
(unless otherwise stated). In contrast, we refer to “normalized”
problems as those which do not meet these three criteria (see
Table 1).

Why do natural frequencies facilitate Bayesian-like responses?
In order to answer this question, we have to understand what was
so hard in the first place. That is, a facilitation must always be
made relative to some initial point, and it is therefore important
first to understand why normalized versions are so difficult. We
will then be in a better position to understand the facilitating
effects of natural frequencies, and more generally why even
clearly presented problems can still be so difficult for many
reasoners. In the remainder of this section we therefore review
factors that have been shown to facilitate, or impair, Bayesian-
like reasoning with problems presenting normalized information
or natural frequencies separately.

Reasoning with Normalized Formats
Reasoning with normalized formats is notoriously difficult.
However, observing that more “transparent” problems facilitate
performance does not necessarily imply that normalized versions
are hard simply because the presented data is more difficult to
represent. As reviewed below, the difficulty of these problems
cannot be reduced to a single (representational or computational)
factor. Although some improvements have been observed with
visual diagrams and verbal manipulations to the text and
question, as well as for individuals with higher cognitive and
numerical ability, all of these are limited in their effectiveness.

Visual Representations
Some evidence suggests that visual aids may boost performance
with normalized data, which presumably help reasoners to
appreciate nested-set relations (for recent reviews see Garcia-
Retamero and Cokely, 2013; Garcia-Retamero and Hoffrage,
2013). For example, Sedlmeier and Gigerenzer (2001) showed
that training individuals to use frequency trees could have
substantial and lasting effects on complex Bayesian reasoning
scenarios. Mandel (2015) more recently showed that similar
instructions on information structuring improve the accuracy
and coherence of probability judgments of intelligence analysts.
Recent work by Garcia-Retamero and Hoffrage (2013) also
showed substantial benefits of visual aids with probability
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TABLE 1 | Key dimensions along which a Bayesian word problem may vary.

Dimension Description and variables

Numerical format The format of the presented numerical information: Whole number integer pairs (e.g., 10 of 100) vs. Normalized (e.g., 10%, 0.1). Formats can

be mixed within a single problem.

Question format The format of the requested response, typically: Integer pair (e.g., “__ out of __”) vs. Normalized (e.g., “__%”).

Number of events Single-event (e.g., probability, chance) vs. Set of events (e.g., individuals, chances). Can apply to both the presented data (“information type”)

or to the information requested (“task domain”). Often confused with numerical format, but these are orthogonal issues.

Sampling structure The particular categorical-numerical information used to express the hit rate and false-positive rate, typically: Natural (H&D, ¬H&D; also

partitive, transparent, conjunctive, joint) vs. Normalized (D|H and D|¬H; also non-partitive, relative frequencies, conditional).

Natural frequencies A problem format which presents whole numbers in a natural sampling structure (e.g., H&D, ¬H&D), and requests responses as an integer pair.

Normalized problems A problem which presents normalized numerical formats (percentages, decimals), a normalized sampling structure (i.e., with conditional or

non-conjunctive information), and/or which requests information in a normalized format (a ratio as a single value, not integer pair).

Context Scenario of the problem. For example, medical (infection, test); cab (accident, color).

Irrelevant info Descriptive information that is not relevant for solving the task. Numbers that are not needed for computing the normative response.

Mental steps The number of steps required to compute the response, given the specific numbers presented in the problem. For example, in Figure 1, the

number “24” (total positive tests, D) is needed but not presented, and must be calculated from (6+ 18) = 1 numerical step.

Compatibility Correspondence between the presented and requested data, including numerical and question formats, also sample sizes.

information. Yamagishi (2003) found that both a roulette-wheel
diagram and a frequency tree led to large improvements with
information presented as simple fractions (e.g., 1/4, 1/3, 1/2)
in the gemstone problem. Sloman et al. (2003) also showed
that a Euler circle diagram marginally facilitated performance
on a probability version of the medical diagnosis problem.
However, in a counterintuitive Bayesian task, the Monty Hall
dilemma, Tubau (2008) found no facilitation of a diagrammatic
representation of the problem. Overall, while visual diagrams
may help with normalized data under some conditions, this
facilitation is typically very modest, although instruction or
training in information re-representationmay be an effective way
to improve reasoning in some populations.

Verbal Formulation and Irrelevant Information
There is evidence that reasoning with normalized data can
be improved by manipulating the verbal structure of the
problem, independent of the numbers provided (Macchi, 1995;
Sloman et al., 2003; Krynski and Tenenbaum, 2007; Hattori
and Nishida, 2009; Johnson and Tubau, 2013; Sirota et al.,
2014a). For example, Macchi (1995) showed how questions
which were slightly reformulated to focus on individuating (vs.
base-rate) information increased (or reduced) the number of
base-rate neglect responses. Sloman et al. (2003, exp. 1) found
differences between three numerically identical versions of the
medical diagnosis problem, but which varied in the particular
wording (or “transparency of nested-set relations”) used to
transmit the problem data (see also Sirota et al., 2014a, exp.
2). They additionally reported that irrelevant numbers impaired
performance, but only with normalized versions (exp. 4B).
Johnson and Tubau (2013) also found that simplifying the verbal
complexity improved Bayesian outcomes with probabilities, but
this was restricted to higher numerate reasoners3.

3Numeracy is generally defined as the ability to work with basic numerical

concepts, including the comprehension and manipulation of simple statistical and

Krynski and Tenenbaum (2007) also showed that
manipulating verbal content, independent of the numbers, can
boost performance. They suggested that reasoners supplement
the statistical data presented in the problem with prior world
knowledge (of causal relations), and therefore Bayesian reasoning
could be enhanced by presenting false-positive rates in terms of
alternative causes. Simply providing a cause for the false-positive
rate (e.g., “the presence of a benign cyst” in the medical diagnosis
context) boosted performance from approximately 25 to 45%,
some of the highest performance reported with normalized
data in the absence of visual cues. It should be noted, however,
that McNair and Feeney (2015; see also 2014) were unable to
fully replicate this effect, though they did find evidence that
higher numerate reasoners significantly benefitted from a clearer
causal structure with normalized information. The participants
in Krynski and Tenenbaum’s study consisted of undergraduate
and graduate students at MIT, who are presumably a more
mathematically sophisticated group, which may help to account
for the consistent main effect of causal structure in their studies
(cf. Brase et al., 2006). This suggests that providing “alternative
causes” helped draw attention to the often neglected false-
positive data (Evans et al., 2000), which could then be taken
advantage of by individuals possessing the requisite numerical
skills.

Computation
Normalized versions typically require multiple steps using
fraction arithmetic. Despite claims in the reasoning literature that
the fraction arithmetic (multiplying and dividing percentages)

probabilistic information (for reviews see Reyna and Brainerd, 2008; Lipkus and

Peters, 2009; Reyna et al., 2009; Peters, 2012). One of the most common measures

used in reasoning and decision making studies is the 11-item Lipkus et al. (2001)

numeracy scale, which assesses the ability to compare the relative magnitude of

ratios, to convert between statistical formats, and to perform simple calculations

using frequency ratios and percentages. Other measures of numeracy can be found

in, for example, Cokely et al. (2012) and Peters et al. (2007).
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required in these tasks in relatively easy (e.g., Johnson-Laird et al.,
1999; Sloman et al., 2003), there is indeed substantial evidence
that many people lack the requisite conceptual and/or procedural
knowledge to correctly carry out these computations (Paulos,
1988; Schoenfeld, 1992; Mayer, 1998; Ni and Zhou, 2005; Reyna
and Brainerd, 2007, 2008; Siegler et al., 2011, 2013). Indirect
evidence for the difficulty performing multiplicative integrations
on normalized problem data is also suggested in Juslin et al.
(2011), where it was proposed that reasoners default to less
demanding linear additive integrations in the absence of requisite
knowledge, cognitive resources, or motivation (see also Juslin,
2015).

An informative result was provided in Ayal and Beyth-Marom
(2014). Participants were provided probability information in
a percentage format, but the problems were manipulated so
that p(H|D) could be computed via a single whole-number
subtraction (1 − p(¬H|D) = 100 − 92% = 8%). Responses were
requested either as a percentage (“compatible”) or as frequencies
(“incompatible”). In the compatible condition, nearly 80% of
higher numerate and around 60% of lower numerate reasoners
correctly computed p(H|D); in the incompatible condition,
around 70% or of higher numerate and around 34% of lower
numerate individuals responded correctly. On the one hand,
this expectedly demonstrates that higher numerate individuals
are more able to translate between numerical formats. More
importantly, however, the high proportion of correct responses,
even by reasoners with lower numeracy, demonstrates that
the participants in these studies are not inherently unable to
understand set relations presented as standardized probabilities.
It also shows that the typical computational demands (steps
and/or type) with normalized formats may in fact impede
Bayesian-like responding (cf. Juslin et al., 2011). It should also be
noted, however, that this condition does not require reasoners to
understand embedded sets of information (i.e., to simultaneously
consider and integrate base rates and diagnostic information);
rather, they are simply required to represent the complement
of a whole. This implies that the representational difficulty on
standard Bayesian problems is not specific to the structure of
the data itself, but rather to the relation between the presented
and requested information (see also Section Common Processing
Demands: Quantitative Backward Reasoning).

Number of Events
Existing research suggests that presenting or requesting single-
event probabilities vs. a proportion of a sample (or relative
frequencies) with percentages may have little impact on Bayesian
responding with normalized data, all else held constant. For
example, Gigerenzer and Hoffrage (1995, study 2) found no
differences when presenting the data as either relative frequencies
with percentages (as in Figure 1) vs. single-event probabilities
when the question requested a probability. Likewise, Evans et al.
(2000, study 2) found no differences with questions requesting
a single-event probability vs. a proportion of a sample from
data presented as relative frequencies with percentages. While
this may be taken as evidence that Bayesian reasoning with
percentage information is independent of the number of events
referred to, this does not necessarily imply that single-event

probabilities are as easily understood as relative frequencies
expressed as percentages (e.g., Brase, 2008, 2014; Sirota et al.,
2015a; see discussion of “Chances” below in Section Reasoning
with Natural Frequencies). Recent re-analyses of data from
Gigerenzer and Hoffrage (1995) show that problems focusing on
individuals (compared to samples, or “numbers”) indeed lead to
fewer Bayesian responses (Hafenbrädl and Hoffrage, 2015).

Individual Differences
The general finding from individual differences research is that
higher cognitive ability, disposition toward analytical thinking,
and numeracy level can lead to improved reasoning under
some conditions, but to a limited extent (Table 2). Sirota et al.
(2014a) found that general intelligence (Raven et al., 1977),
as well as preference for rational thinking (REI; Pacini and
Epstein, 1999), uniquely predicted performance with single-
event probabilities. Results of McNair and Feeney (2015) also
suggested a significant association between Raven’s matrices and
performance on normalized Bayesian versions, but an absence
of association between the latter and REI. Of note, two studies
have reported a lack of association between normalized Bayesian
problems and the cognitive reflection test (CRT; Frederick,
2005), a measure of the tendency to suppress initial intuitions
and engage in more demanding analytical processing (Lesage
et al., 2013; Sirota et al., 2014a). Together, these results suggest
that providing the posterior Bayesian ratio with normalized
information will necessarily depend on high levels of cognitive
ability and numeracy. Without these basic requisites, reflective
thinking or disposition toward analytical thinking are likely
to be of little help (De Neys and Bonnefon, 2013). It is also
important to note that even the performance of “higher” ability
individuals typically remains quite low. Nevertheless, few studies
have directly investigated these factors and results have been
mixed, therefore more research is needed to clarify when (and
in what combination) individual differences measures are likely
to be relevant (proposals of the relative dependencies of these
factors can be found in Stanovich, 2009; Klaczynski, 2014; see also
Thompson, 2009).

Reasoning with Natural Frequencies
Providing information as natural frequencies (or naturally
partitioned sets of chances) is widely hailed as the most effective
and robust facilitator of Bayesian-like reasoning. Nevertheless,
between-study performance varies widely, and success even with
natural frequencies generally remains rather unimpressive (see
Newell and Hayes, 2007; Girotto and Pighin, 2015; McNair,
2015). Why do so many individuals still fail to solve these
problems even when the structures of these tasks are made
“transparent?”

Computation
In their standard form, natural frequencies typically require only
a single addition of two whole numbers to construct the needed
reference set (D), and the selection of the joint occurrence (H&D)
directly provided in the text, to answer the Bayesian question
“(H&D) out of (D).” Clearly, the whole-number arithmetical
demands of the task are manageable by the undergraduate
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TABLE 2 | Summary of significant individual differences effects reported in Bayesian word problems presenting normalized information or natural

frequencies.

Numeracy/education IQ-raven CRT I Thinking disposition

NORMALIZED VERSIONS*

Chapman and Liu, 2009 No

Siegrist and Keller, 2011 Yes/No a

Hill and Brase, 2012 No

Garcia-Retamero and Hoffrage, 2013 Yes

Johnson and Tubau, 2013 Yes/No a

Lesage et al., 2013 No

Sirota et al., 2014a Yes No Yes/No b

Ayal and Beyth-Marom, 2014 Yes c

McNair and Feeney, 2015 Yes/No d Yes No e

NATURAL FREQUENCIES

Brase et al., 2006 Yes

Chapman and Liu, 2009 Yes

Sirota and Juanchich, 2011 Yes Yes

Siegrist and Keller, 2011 Yes/No f

Hill and Brase, 2012 Yes

Garcia-Retamero and Hoffrage, 2013 Yes

Johnson and Tubau, 2013 Yes/No g

Lesage et al., 2013 Yes

Sirota et al., 2014a Yes Yes Yes/No b

Note that variation exists between the specific context and numbers used across studies, as well as specific measures and criteria used to determine low vs. high performers (see text

for additional details, and original articles for full problems and explanations).

*It is important to note that YES with normalized versions does not imply “good” reasoning, with most higher ability participants typically below 30% correct response.
I CRT, Cognitive Reflection Test (Frederick, 2005).
a YES with simple versions; NO with complex versions (floor effect).
b YES with REI (rational-experiential inventory; rational thinking); NO with CAOMTS (actively open-minded thinking).
c Information was normalized, but problems manipulated to require only simple single-step arithmetic.
d Higher numerate benefited more from causal manipulation used in Krynski and Tenenbaum (2007).
e NO with REI.
f YES in study 1; NO in study 2 (though clear trend).
g YES with complex text; NO with short, simple text.

students tested in most studies, as well as by children (Zhu and
Gigerenzer, 2006). At the same time, there is also evidence that
many people either lack the cognitive clarity or are unwilling
to invest the needed cognitive effort into even the simplest
whole number arithmetic (addition, subtraction). For example,
confirming their “mental steps hypothesis,” Ayal and Beyth-
Marom (2014) showed that performance drops sharply when
more than a single numerical operation is required, even if
these operations are little more than a series of simple additions.
Related findings were observed in the “defective nested sets”
study reported in Girotto and Gonzalez (2001, study 5) which
presented a partitive structure [but with (¬H&¬D) instead of
(¬H&D)], but which required an additional subtraction to solve.
Together, these findings demonstrate that natural frequency
facilitations are not simply about the clarity of the presented
data, but are also about how easily the specifically presented
components allow reasoners to generate the Bayesian solution
(see also Barbey and Sloman, 2007).

Verbal Formulation and Irrelevant Information
As with normalized versions, manipulating the verbal context of
a problem to align with existing world knowledge can improve

performance. For example, Siegrist and Keller (2011, study 4;
see also Sirota et al., 2014a, study 2; Chapman and Liu, 2009)
showed that a less educated group from the general population
was more than twice (13 vs. 26%) as likely to solve a “social”
problem (people lie, have red nose) vs. a “medical” problem
(have cancer, test positive). They suggested this group may
focus on specific task information in a real-world context, and
might have assumed they did not know enough about cancer
or medical tests to solve the problem. There is also evidence
that performance, especially by lower numerate reasoners, is
impaired by the presence of unnecessarily descriptive words in
the text (Johnson and Tubau, 2013). Other verbal manipulations,
such as clarifying the meaning of “false positive,” have also been
suggested to improve performance (Cosmides and Tooby, 1996;
Sloman et al., 2003; see also Fox and Levav, 2004). Sloman et al.
(2003) found that irrelevant numbers in the problem did not
impair performance with transparent frequency problems, and
suggested that a frequency format “makes it easier for people to
distinguish relevant from irrelevant ratios” (p. 304). However, a
very frequently reported error with natural frequencies is that
reasoners use the superordinate value of the problem or the new
reference class presented in the question as the denominator
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in their response (e.g., “100” in Figure 1; see Gigerenzer and
Hoffrage, 1995;Macchi andMosconi, 1998;Mellers andMcGraw,
1999; Evans et al., 2000; Girotto and Gonzalez, 2001; Brase
et al., 2006; Zhu and Gigerenzer, 2006), suggesting that irrelevant
numbers may indeed bias responses on simple natural frequency
problems.

Visual Representations
Sloman et al. (2003) also found that Euler circles did not
further enhance performance with their frequency problem, and
suggested that visuals only facilitate if nested-set relations are not
already clear (see also Cosmides and Tooby, 1996). In contrast,
Yamagishi (2003) found improvements on a natural frequency
gemstone problem with a roulette-wheel diagram. Brase (2009)
did not find a benefit of a Venn diagram with chance versions
in a natural frequency structure, however an icon display did
provide an additional benefit beyond the frequency format (see
also Brase, 2014). Complementary results by Garcia-Retamero
and Hoffrage (2013) also showed benefits of visual aids above
and beyond the use of natural frequencies. Garcia-Retamero
et al. (2015) further showed that visual aids are particularly
beneficial to lower numerate reasoners, and may also improve
their metacognitive judgment calibration. Contrasting with the
above, Sirota et al. (2014b) failed to find a benefit with several
types of visuals. In brief, while some facilitation with visual aids
has been reported with natural frequencies, current evidence is
conflicting and suggests that other factors are likely interacting
with the effectiveness of these aids.

Chances
Although initial reports implied that naturally sampled chances
were as easily represented as naturally sampled frequencies
(Girotto and Gonzalez, 2001), more recent studies show that this
might not be the case (Brase, 2008, 2014; Sirota et al., 2015a). This
would be in line with more general literature on the difficulties
that people have learning and understanding probabilities (e.g.,
Garfield and Ahlgren, 1988; Gigerenzer et al., 2005; Morsanyi
et al., 2009; Morsanyi and Szücs, 2015). It would also imply
that the lack of difference between probability and proportion
formulations with normalized data (see “Number of Events”
above in Section Reasoning with Normalized Formats) is not
because these formats are equally well (or poorly) understood,
but rather that the difference is being masked by another more
fundamental difficulty with normalized information (carrying
out fraction arithmetic; understanding or identifying the
requested relations). Interestingly, participants who interpret
naturally sampled “chances” as frequencies outperform those
individuals who interpret them as single-event probabilities
(Brase, 2008, 2014). Also of interest, more recent evidence
suggests the relevant “interpretation” may be at the problem level
(in terms of set relations) rather than at the format level (in terms
of frequencies) (Sirota et al., 2015a).

Individual Differences
It has been argued that the wide variability reported with natural
frequency problems can be attributed to individual differences
in ability or motivation (Brase et al., 2006; Barbey and Sloman,

2007). In line with this suggestion (and summarized in Table 2),
better performance with natural frequencies has been observed
by individuals higher in cognitive reflection (Sirota and Juanchich,
2011; Lesage et al., 2013; Sirota et al., 2014a; measured with
the CRT); fluid intelligence (Sirota et al., 2014a; measured with
Raven’s matrices); preference for rational thinking (Sirota et al.,
2014a; measured with the REI), education level (Brase et al.,
2006; Siegrist and Keller, 2011; though see Hoffrage et al., 2015),
and numeracy (Chapman and Liu, 2009; Sirota and Juanchich,
2011; Hill and Brase, 2012; Garcia-Retamero and Hoffrage, 2013;
Johnson and Tubau, 2013; Garcia-Retamero et al., 2015; McNair
and Feeney, 2015). These higher ability individuals often perform
quite well, although the success of even these more capable
individuals varies widely across studies.

While some of the between-study variation with natural
frequencies can be captured by these individual differences
factors, the strong relations observed with “higher ability”
reasoners also raises some questions. Why are general
intelligence, cognitive reflection, and numeracy so consistently
relevant on such an arithmetically simple task, especially one
in which the “structural transparency” of the task is such a
well-toted facilitator? Indeed, due to the base-rate preservation,
there is no need for a fully fleshed out representation of the
entire problem structure, and attention need only be allocated
to two pieces of information, (H&D) and (¬H&D). Together,
performance on these “simple” problems implies that, beyond
simple text processing and whole-number arithmetic, there may
be a particular logical difficulty inherent in these problems that
is often overlooked.

Common Processing Demands: Quantitative
Backward Reasoning
Early studies of Bayesian inference with the medical diagnosis
task were specifically directed at understanding how individuals
(e.g., physicians) diagnosis disease given a prior distribution
and an imperfect predictor (a test result) (Casscells et al.,
1978; Eddy, 1982). More recently, logical and set operations
have been identified as a useful strategy for performing these
Bayesian inferences (e.g., Sloman et al., 2003), however, we
believe that the particular nature of the required set operations
has been underemphasized in recent studies. More specifically,
we suggest that a particularly difficult stage of Bayesian problem
solving is performing a backward (diagnostic) inference (van
den Broek, 1990; Oberauer and Wilhelm, 2000; Lagnado et al.,
2005; Fernbach et al., 2011; Sloman and Lagnado, 2015)—in the
medical diagnosis problem, working backward from a positive
test result (effect) to the likelihood of being infected (cause), when
information is provided in the forward cause→ effect direction.
For example, querying the model in Figure 2B in the direction
opposite fromwhich it was formed (i.e., infected→ test positive),
implies a change in the specific role (focal subset or reference
class) of previously associated categories (or a change of focus;
Dubois and Prade, 1997; Baratgin and Politzer, 2010), or a change
in the direction of the causal link (test positive→ infected).

This process can be facilitated with questions which guide
reasoners through the search and selection process, for example,
with integer pair question formats which prompt the reasoner
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for two separate numbers rather than a single percentage, and
perhaps even more so if the reference class is prompted prior
to the focal subset (Girotto and Gonzalez, 2001). It is interesting
to note that with natural frequencies this symmetrical confusion
is reduced for the first term of the integer pair (“6 out of
24”): “Among infected, 6 test positive” to “Among positive, 6 are
infected,” though the more challenging asymmetrical inference
still remains for the reference class. This is consistent with the
suggestion that one of the biggest challenges may be getting
reasoners focused on the correct reference set of positive testers
(Evans et al., 2000; Girotto and Gonzalez, 2001). While this
particular logical difficulty (backward reasoning or quantification
of backward relations) has not been directly demonstrated in
Bayesian word problems, similar explanations have been used
to successfully account for performance in other reasoning
tasks (Evans, 1993; Barrouillet et al., 2000; Oberauer and
Wilhelm, 2000; Oberauer et al., 2005; Oberauer, 2006;Waldmann
et al., 2006; Sloman and Lagnado, 2015), suggesting it may
also be a key stumbling block in Bayesian reasoning. This
explanation might also help to explain why reasoning can be
improved with manipulations which encourage the experience
of a scenario from multiple perspectives, such as “interactivity”
in other Bayesian tasks (Vallée-Tourangeau et al., 2015a) and the
“perspective effect” in the Monty Hall dilemma (for review see
Tubau et al., 2015), which would help to facilitate the backward
inference. This suggestion is also in line with results of the
“short menu” natural frequencies reported in Gigerenzer and
Hoffrage (1995), which directly presented both (H&D) and (D)
in the problem, thereby eliminating all arithmetic, but which led
to a negligible benefit compared with “standard menu” natural
frequencies which require (H&D)+ (¬H&D) to compute (D).

Summary
Taken as a whole, evidence reviewed above is consistent with
the claim that normative responding is generally improved by
facilitating comprehension of both presented and requested
information (e.g., presenting what is needed, removing what
is irrelevant, using questions which guide the reasoner) and,
relatedly, minimizing the number of explicit cognitive (logical
and numerical) operations required to move from problem to
solution. Likewise, increasing the cognitive capacity, relevant
skills, or effort of the reasoner, will generally lead to more
Bayesian responses. Individuals who are more drawn toward
quantitative, analytical thinking are more likely to solve these
problems. This summary is consistent with a general nested-sets
hypothesis, which states that any manipulation which facilitates
the representation of relevant set information will generally
enhance performance (Barbey and Sloman, 2007). At the same
time, simply representing the relevant qualitative relations
amongst nested sets will not get you a Bayesian response. These
relations must also be accurately quantified, along with the
correctly identified backward (posterior) inference.

More generally, understanding why these facilitations work
as they do requires consideration of the processes in which
reasoners are engaged. Ultimately, a reasoner needs to provide
the requested ratio in the requested form, but arriving at
this point requires the successful completion of a series of

intermediate subtasks. We believe that a better understanding of
successful, or failed, Bayesian problem solving can be obtained
by considering: (1) How a nested-set “structure” comes to be
represented by a reasoner (whether transparently presented
in the problem or not); (2) What additional computational
requirements are required once the structure of the problem is
made “transparent” (or transparently represented by a reasoner);
and (3) Who is more likely to be driven toward and successfully
operate over this quantified, abstract level of reasoning. In the
next section we outline one suggestion of how to conceptualize
these processing requirements.

Bayesian Problem Solving, from
Comprehension to Solution

Solving a Bayesian word problem is a process, from the
presented words and numbers, through the representations and
computations invoked to transform presented information into
requested ratios. As we outline below, we suggest that this
process can be productively understood, at least in part, from
the perspective of mathematical problem solving (for reviews
see Kintsch and Greeno, 1985; Schoenfeld, 1985; LeBlanc and
Weber-Russell, 1996; Mayer, 2003). On this view, the task is
conceived as two interrelated processes: Text comprehension and
problem solving. More specifically, successful reasoning depends
essentially on comprehending the presented and requested
information, and more importantly the relation between the
two (i.e., the space between what is provided and requested).
This comprehension then drives any logical or numerical
computations necessary in order to reduce this space, ending
with a final numerical response. A basic framework for
understanding this process is outlined in Figure 3.

Two basic assumptions of this framework are (1) while the
input may be the same, the (levels of) representations that
reasoners operate over differ, and (2) specific individual skills or
capacities and specific problem formulations can trade spaces.
That is, the probability of successfully solving the problem will
depend on the complexity of the provided information, as well
as the number and complexity of the steps required to close
this gap. Crucially, this process, and its relative difficulty, also
depends on the abilities, tendencies, and skills of the problem
solver (Schoenfeld, 1985, 1992; Cornoldi, 1997; Mayer, 1998,
2003; Swanson and Sachse-Lee, 2001; Passolungh and Pazzaglia,
2004). Succinctly, what is difficult for one person may not be
difficult for another. In the remainder of this section, we more
fully explicate this task-individual interaction as it unfolds during
the reasoning process, from comprehension and computation to
solution.

Comprehension of Presented and Requested
Information
Solving a written Bayesian inference problem begins with text
comprehension. Working memory serves as a buffer where
recently read propositions and information activated in long-
term memory are integrated into the internal model under
construction (e.g., Just and Carpenter, 1992; Carpenter et al.,
1995; Ericsson and Kintsch, 1995; Daneman and Merikle, 1996;
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FIGURE 3 | Framework for understanding Bayesian word problem

solving. The task (left) is conceived as the presented data and the requested

question. A text comprehension process gives rise to an initial internal model

of the data (including inferences not directly in the text; see Table 3). The

comprehension of the question “(H|D)” initiates a goal-oriented search

(though internal representation and problem text) for the requested relations,

along with logical and numerical computations aimed at deriving information

not directly available in the text. The processing of the task also activates

metacognitive dispositions as well as potentially relevant stored knowledge

and skills, both of which can influence both what information is processed

and how that information is processed. A continuously updated working

memory also provides reciprocal feedback to metacognition and calls for

additional stored knowledge if needed. The final response given will depend

on a complex interaction of the task formulation, metacognition, available

knowledge and skills, and the efficiency of an executive working memory. For

example, metacognition can influence the effort invested into the task, while

stored knowledge can influence the relative effort required for a given

individual.

Cain et al., 2001, 2004; Tronsky and Royer, 2003). Many
inferences are automatically generated as a reader processes the
symbolic words and numbers in the text (Table 3), resulting in
an internal representation of the problem which may contain
specific propositions included in the text itself, along with
possible semantic, episodic, spatial, causal, categorical, and
quantitative inferences, any of which can serve as the basis for
upstream reasoning (e.g., Nesher and Teubal, 1975; van Dijk and
Kintsch, 1983; Kintsch and Greeno, 1985; Murray et al., 1993;
Graesser et al., 1994; LeBlanc and Weber-Russell, 1996; Vinner,
1997; Reyna et al., 2003; Reyna and Brainerd, 2008; Thompson,
2013). These levels of representations are activated to varying
degrees, and may be either implicit or explicit (or not present
at all) within a reasoner’s model of the problem (cf. Johnson-
Laird, 1983). As we return to below, given the multiple levels of
information that can be represented, one challenge is getting a
limited attention focused on the most relevant information for
problem solving.

It is with the reading of the question that the relevance
of any initially represented problem information becomes
apparent. The formulation of the question therefore plays
a crucial role in Bayesian problem solving (Schwartz et al.,
1991; Macchi, 1995; Girotto and Gonzalez, 2001). In general,
the question provides two specific prompts: (a) verbal cues

corresponding to the required categorical relations, or ratio,
to be provided, and (b) the format in which the quantified
response should be provided. For example, a typical natural
frequency question prompts the reasoner to find two whole
numbers “__ out of __” corresponding to “among infected, how
many positive”; while a standard probability question demands a
single percentage “__%” corresponding to “infected if positive”).
This question comprehension triggers a goal-oriented search
(through memory representations and the problem text) for the
specific relations requested, along with more directed inferences
and arithmetical computations targeted at deriving information
not directly provided in the text (see Section Logical and
Numerical Computations).

Regardless of the problem format, we expect that with
relatively little effort most literate reasoners comprehend the
basic situation (some people take a test for a disease), form simple
categorical-numerical associations (inf[10%]; inf-pos[60%]), and
make some simple forward inferences (Table 3). Ultimately,
however, providing a precise Bayesian response requires accurate
representation and quantification of appropriate set-subset
relations (i.e., H&D, D), irrespective of the problem content.
Comprehension of the categorical subset structure can be
facilitated by presenting natural frequencies, highlighting causal
structure, removing irrelevant information, providing visual
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TABLE 3 | Examples of inferences and levels of encoding generated while reading a Bayesian word problem.

Hypothetical knowledge and inferences

Normalized Natural frequencies

Prior knowledge or beliefs →

Infections cause positive tests.

Medical tests are usually accurate.

A positive test should indicate infection.

…

Forward categorical →

Some people are infected.

Some of the infected test positive.

Some of the infected do not test positive.

Some of the not infected also test positive.

…

Backward categorical →

Some of the positives are infected.

Some of the positives are not infected.

A positive test does not necessarily mean infected.

…

Non-integrated categorical-numerical association →

Infected [10%]

Infected-Positive [60%]

Not infected [90%]

Not infected-Positive [20%]

…

Total [100]

Infected [10]

Infected-Positive [6]

Not infected [90]

Not infected-Positive [18]

…

Forward quantitative →

60% of 10% = 6% are both inf and pos

20% of 90% = 18% are not-inf and pos

6% + 18% = 24% of people are pos

…

6 people are both inf and pos

18 people are both not-inf and pos

6+ 18 = 24 people are pos

…

Backward quantitative →

Of 24% pos, 6% are infected

Of 24% pos, 18% are not infected

If pos, chances of inf are 25% (6/24%)

…

Of 24 positive, 6 are infected

Of 24 positive, 18 are not infected

If pos, chances of inf are 6 of 24

…

Inferences may be spontaneously generated during text comprehension, or prompted as a result of the question, and may be either implicit or explicit (or not present at all) within a

reasoner’s model of the problem. A variety of biased responses are possible based on erroneous or irrelevant prior knowledge or beliefs, non-integrated representations, or attention to

inappropriate levels of information. Inf, infected; Pos, positive test.

diagrams, asking questions which direct attention toward
relevant information, etc. Accurate comprehension of the
quantified values (strength) of these relations is facilitated
when numerical information is presented with a natural
sampling structure. In the case of relative frequencies (or
non-partitive probability information), on the other hand,
correct qualitative representation of the subset structure may
coincide with incorrect or incomplete quantification of these
relations. For example, in Figure 1 it is feasible that reasoners
understand the 60% hit rate to be a subset of the 10% infected,
but the precise comprehension of this value requires more
demanding, rule-based transformations (although some higher
numerate reasoners may rather automatically perform “simple”
computations such as 60 of 10%= 6%).

Individuals with more cognitive capacity will tend to more
deeply processes the text (defined by the number of accurate and
successfully integrated inferences; for reviews see van Dijk and
Kintsch, 1983; Graesser et al., 1994), and likewise end up with a
more thorough representation of the available information (both
its content and structure) and the task goal as comprehended
from the question. Accordingly, higher cognitive capacity or
higher cognitive reflection will facilitate comprehension of

a Bayesian task, at least to some extent (see Table 2). We
also suggest that the processing of the task gives rise to a
metacognitive assessment reflecting motivation and confidence
that the problem can be solved (“can I do this?,” “do I want to
do this?”), which will help to guide subsequent problem solving
behavior (e.g., Schoenfeld, 1992; Cornoldi, 1997; Mayer, 1998;
Thompson, 2009; also Garcia-Retamero et al., 2015).

At the same time, information from long-term memory
is being integrated into working memory—including prior
knowledge of causal relationships (Krynski and Tenenbaum,
2007), situational familiarity (Siegrist and Keller, 2011), or other
primed categories (Kahneman et al., 1982)—which leads to
different levels at which a problem can be represented (Table 3),
only some of which are relevant for solving the problem.
Therefore, getting focused on the relevant set relations and
their numerical values, while inhibiting ultimately irrelevant
contextual details and prior beliefs (e.g., about the validity of
medical tests), is crucial. The ability to do so should accordingly
depend in part on executive functions and working memory
(see Barrett et al., 2004; Evans and Stanovich, 2013). It is
further known that engaging a Bayesian problem also triggers
stored knowledge associated with problem solving strategies
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and mathematical concepts and procedures, which act to bias
attention to different levels of information within the task, for
example, by leading the problem solver to analyze the text in a
way which may differ from how they read stories or other news
(e.g., Newell and Simon, 1972; Nesher and Teubal, 1975; Kintsch
and Greeno, 1985; Anderson, 1993; Ericsson and Kintsch, 1995;
Geary, 2006). In this vein, higher cognitive reflection and
numeracy may also serve to bias attention toward relevant
numerical information and away from irrelevant descriptive
information, or more generally to relevant abstract formal
relations amongst problem data rather than literal problem
features (Spilich et al., 1979; Chi et al., 1981; Hegarty et al., 1995;
Vinner, 1997; Peters et al., 2007; Dieckmann et al., 2009; Johnson
and Tubau, 2013). This can help account for the consistent
relationship between numeracy and Bayesian reasoning with
natural frequencies, including interactions with non-numerical
factors (Table 2).

Logical and Numerical Computations
Information which is needed but not directly provided must be
derived. The transformations needed to produce this information
can be numerical or logical. In standard Bayesian inference tasks,
numerical computations typically include whole number and/or
fraction arithmetic.Whole number arithmetic is a skill that tested
populations (university undergraduates; medical professionals)
can be assumed to possess. At the same time, it has been
shown that, even with natural frequencies, performance drops
quickly when more than a single whole number addition or
subtraction is required (e.g., Girotto and Gonzalez, 2001; Ayal
and Beyth-Marom, 2014). Curiously, if normalized data allows
the posterior relation (H|D) to be derived with a single whole
number subtraction, performance is actually quite high, even
for less numerate reasoners (Ayal and Beyth-Marom, 2014).
However, it is not clear if this latter finding is due to the reduced
computational demands, or from the easier representation of
how to derive the standard posterior relation (e.g., by eliminating
the need to perform the backward inference). While it is
often assumed that fraction arithmetic (e.g., multiplying two
percentages) is a skill possessed by tested populations, this may
not be the case (Paulos, 1988; Butterworth, 2007; Reyna and
Brainerd, 2007, 2008), as some evidence suggests (e.g., Juslin
et al., 2011; Ayal and Beyth-Marom, 2014). In brief, current
evidence indicates that a single whole number addition adds
minimal burden to the task; more than a single operation
regardless of type greatly reduces performance; and it is not clear
to what extent typically tested reasoners possess the procedural
skills for carrying out single multiplicative integrations.

Required computations can also be logical. As previously
identified, one crucial step for solving the posterior Bayesian
question which may be particularly difficult is the backward
inference (test positive→ infection), from the initially forward
relations (infection→ test positive and no-infection→ test
positive), or otherwise identifying the newly required reference
class and focal subset (more likely prompted by the two-term
integer pair question). The specific difficulties deriving and
quantifying a diagnostic inference from predictive relations is
well-known from causal reasoning tasks (e.g., van den Broek,

1990; Lagnado et al., 2005; Fernbach et al., 2011; Sloman and
Lagnado, 2015). The asymmetry between the quantification of
the relations presented and those requested requires reasoners
to inhibit the precise quantifiers attached to the original
relations and update the precise quantifier corresponding to the
newly required relations (e.g., corresponding to the strength
of the test positive→ infection relation). As mentioned, natural
frequencies may alleviate part of this asymmetrical confusion
(for the first term of the ratio, (H&D); i.e., “positive among
infected”= “infected among positive”), but the more challenging
identification of the reference class still remains. The ability to
identify and quantify this new relation should accordingly be
moderated by executive functions and skill in mathematical and
logical reasoning.

Arriving at a Final Response
As outlined above, the final response provided by a reasoner
reflects the confluence of a comprehension and problem solving
process engaged by an individual with a particular set of
skills and dispositions (Figure 3). The accuracy of this response
will therefore depend on the level of problem comprehension
and, relatedly, on the individual skills available to inspect and
appropriately transform a dynamically updated internal model.
A small set of rather systematic errors often account for a large
proportion of erroneous responses, the most widely reported
in either format being the direct selection of the hit rate,
or the “inverse fallacy” (see Kahneman and Tversky, 1972;
Koehler, 1996; Villejoubert and Mandel, 2002; Mandel, 2014a).
Nevertheless, it is still not clear whether this results from
errors understanding logical categorical relations (e.g., Wolfe,
1995; Villejoubert and Mandel, 2002) vs. superficial problem
solving strategies (e.g., matching; see Evans, 1998; Stupple et al.,
2013). That is, a variety of sources of failures—from erroneous
comprehension of the particular relations requested to difficulties
inhibiting irrelevant, previously primed information—could
account for common errors, and it is not necessarily the case that
the underlying cause is the same for all reasoners. The proposed
framework might help to improve understanding of the causes of
observed failures.

One of the main thrusts of the nested-sets hypothesis is that
if the formulation of the problem triggers awareness of the
set structural relations amongst the presented categories, then
general cognitive resources can employ elementary set operations
to mimic a Bayesian response. Musing on this possibility, Sloman
et al. (2003, p. 307) suggested:

“A question that might be more pertinent is whether our

manipulations changed the task that participants assigned

themselves. In particular, manipulations that facilitate

performance may operate by replacing a non-extensional

task interpretation, like evidence strength, with an extensional

one (Hertwig and Gigerenzer, 1999). Note that such a construal

of the effects we have shown just reframes the questions that our

studies address: under what conditions are people’s judgments

extensional. . . ”

In this sense, natural frequencies (or other nested-sets
facilitations) might shift reasoners into a more analytical
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mode of thinking due to the stronger match between presented
information and the available reasoning tools of the participants,
a mode we have suggested might be more automatically adopted
by individuals with higher mathematical or cognitive skills.
Considered from a problem solving perspective, one factor
separating successful from unsuccessful reasoners may be
the way they formulate and answer three crucial, interrelated
questions: “What information do I have available?” (means),
“What information do I need to provide?” (ends), and “What steps
do I need to take to close this gap?” (solution plan). The relative
difficulty answering these questions will of course depend on the
complexity of the provided information along with the number
and complexity of the required steps, and also on the individual
capacities and skills of the reasoner.

More specifically, the present review suggests at least
three crucial sources of difficulty for arriving at a correct
Bayesian response: (1) accurately quantifying the relevant
forward categorical relations of the problem, (2) accurately
performing the needed backward inference, including
identifying and quantifying the relevant reference class,
and (3) formulating and executing and multi-step plan required
for transforming presented data into the requested ratio. Each
of these requirements are facilitated with natural frequencies,
and become increasingly difficult with normalized data. As
previously commented, performance in the latter case remains
low even for participants higher in cognitive capacity or higher
in numeracy, suggesting that success on these problems depends
on specific skills not adequately acquired, or not spontaneously
employed, by most of the participants in reviewed studies.

Hence, looked at from another direction, if the objective is
to narrow the gap between human performance and Bayesian
prescriptions when reasoning from explicit statistics, part of
the remedy is to get participants to think more mathematically
(see also Zukier and Pepitone, 1984; Schwartz et al., 1991).
People are not born able to deal with abstract symbolic words
and numbers. Both reading and math ability develop over time
with education and practice. Even with extensive education,
many individuals still fail to attain the relevant conceptual and
procedural knowledge for dealing with ratios (Paulos, 1988;
Brase, 2002; Ni and Zhou, 2005; Butterworth, 2007; Reyna and
Brainerd, 2007, 2008; Siegler et al., 2011, 2013), a difficulty which
is exacerbated when these number concepts are embedded in
textual scenarios (e.g., Kirsch et al., 2002). Ultimately, therefore,
deficits in explicit statistical reasoning may need to be addressed
at the level of mathematics education. This remedy is not
as immediate as simply reformulating a problem with natural
frequencies, but in the long-term this may be a necessary way to
obtain the levels of performance with which we can be satisfied.

Future Directions

The way to proceed toward a better understanding of
probabilistic reasoning potentials and pitfalls depends on the
specific question of interest. A variety of questions and paradigms
have been addressed in this special issue on Bayesian reasoning
(“Improving Bayesian Reasoning: What Works and Why?”),
ranging from alternative probabilistic standards (Douven and

Schupbach, 2015) to important real world issues (Navarrete et al.,
2014). While many of these have focused on Bayesian word
problems, other paradigms have also been discussed including
“uncertain deduction” (Cruz et al., 2015; Evans et al., 2015),
the Monty Hall Dilemma (Tubau et al., 2015), and the Sleeping
Beauty problem (Mandel, 2014b) (for brief overviews seeMandel,
2014a; Girotto and Pighin, 2015; Juslin, 2015; McNair, 2015;
Vallée-Tourangeau et al., 2015b). With respect to Bayesian word
problems, many authors have expressed similar views regarding
the problem-solving nature of these tasks (e.g., McNair, 2015;
Sirota et al., 2015c; Vallée-Tourangeau et al., 2015b), which echo
many themes presented in this review. In what follows, we offer
suggestions on ways to progress in this later, problem-solving
paradigm, but which may also be applicable to other paradigms
as well.

Moving forward, we believe there is a need to shift perspective
from the facilitators of Bayesian reasoning to more process-
oriented measures aimed at uncovering the strategies evoked
by successful and unsuccessful reasoners, and the stages in the
problem solving process at which these differences emerge (for
one proposal see De Neys and Bonnefon, 2013). To this general
end, we suggest that tools from the mathematical problem
solving approach might be productively applied to research on
Bayesian reasoning. For example, the “moving window” (Just
et al., 1982; see also De Neys and Glumicic, 2008) and online
recognition paradigms (Thevenot et al., 2004; Thevenot and
Oakhill, 2006) can be used to assess comprehension at different
stages of problem solving, as well as when calculations are
made throughout the reasoning process. These methods, which
control or limit access to specific pieces of information, can be
applied to help determine the relative difficulty of representing
vs. quantifying relevant structural relations, both forward and
backward.

Other process methods such as eye-tracking and recall tests
are also frequently used to measure how attention is allocated
during the problem solving process, which can be used to gauge
the weight a reasoner assigns to different pieces of information in
the text (Mayer, 1982; Hegarty et al., 1992, 1995; Verschaffel et al.,
1992; for overviews see Mayer et al., 1992; LeBlanc and Weber-
Russell, 1996; also De Neys, 2012). The use of protocol and
error analyses have also proven effective in studies of mathematic
problem solving and other areas of decision making and
reasoning (e.g., Kuipers and Kassirer, 1984; Chi, 1997; Arocha
et al., 2005; De Neys and Glumicic, 2008; Kingsdorf and Krawec,
2014), but apart from some notable exceptions (e.g., Gigerenzer
and Hoffrage, 1995; Zhu and Gigerenzer, 2006) have thus far
played only a limited role in Bayesian reasoning research. These
methods can offer substantial insight into the level of information
and cognitive processes that successful vs. unsuccessful reasoners
engage (see also McNair, 2015). These tools can also be adapted
to address questions about how participants are interpreting the
tasks given to them, and the extent to which they are attempting
to produce precisely computed responses vs. numerical estimates
based on future uncertainties.

Finally, we suggest that these approaches be adopted alongside
a strong commitment to individual differences (e.g., Stanovich
et al., 2011; Del Missier et al., 2012; De Neys and Bonnefon,
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2013; Klaczynski, 2014). More specifically, processing measures
should look not only to establish where in the reasoning process
correct and incorrect solvers depart, but also as a function of
specific individual differences in ability, disposition, and requisite
skills. Methods frommathematical problem solving could help to
confirm or clarify existing proposals for the relevance and relative
influence of these individual differences (De Neys and Bonnefon,
2013; Klaczynski, 2014).

Conclusion

Successive waves of Bayesian reasoning research have gradually
revealed that non-Bayesian responses in statistical and
probabilistic word problems arise not out of biased heuristics
guiding belief revision, but rather out of failed analytical
processing operating over specific task structures. Even the
simplest Bayesian word problems are not solved automatically,
but rather involve deliberate analytical processing of the verbal
and numerical structure of the task, and the subsequent logical
and numerical transformations of presented data into requested
relations. The formulation of the task can influence the specific
types and number of inferences required to solve the problem.
Hence, reducing the distance between problem and solution
(mental steps) and, independently, making clear what is relevant
for problem solving will generally facilitate performance. At
the same time, individual differences will moderate the effect
of these computational demands, as the effort required is
relative to the availability of cognitive resources and relevant
stored knowledge. That is, reducing processing demands and/or
increasing processing resources are two complimentary means
to the same end—a Bayesian response.

We have argued that a better understanding of this task-
individual pair can be gained by shifting attention to the
processing requirements needed to compute the Bayesian
response, and the processing strategies which may be adopted by
different reasoners. The proposed account, borrowed from the
mathematical problem solving literature, suggests that this begins
with text comprehension, an inferential and integrative process
which draws on cognitive capacity and previous knowledge
and skills. This gives rise to an initial problem representation,
along with metacognitive assessments, which serves as the

basis for the subsequent question comprehension and problem-
solving behavior. We have also identified two crucial factors
in this process which are likely to cause particular difficulty
for many reasoners: (1) accurately quantifying the relevant
structural relations amongst hierarchically embedded subset
categories, and (2) quantifying the backward inferencemandated
by the asymmetrical direction of presented (infection→test
positive) and requested (test positive→infection) information.
Accordingly, interventions targeting these factors are likely to
have the greatest success (i.e., natural frequencies, familiar causal
relationships, guided questions), and task-relevant individual
skills and abilities (numeracy, logical capacity, disposition toward
analytical thinking) are likely to interact with the effectiveness of
these interventions.

Given the multiple representations that Bayesian problems
afford—spatially as nested sets, numerically as proportions,

formally in Bayes theorem—they offer a natural link to theories
of reasoning with proportional information. Accordingly, we
have suggested that understanding why individuals succeed
or fail on these problems can be partially anchored in the
field of mathematical cognition, which has long emphasized
the difficulties in learning and using ratio information, along
with the importance of metacognition and executive working
memory for successfully integrating different set-subset relations
and for dealing with numerical information in varying contexts
and formats. We believe that this complimentary perspective,
and the tools it employs, can help guide a more process-
oriented approach aimed at more precisely understanding where
reasoning with explicit categorical and numerical information
goes astray, and how the individual reasoner can be redirected
to align with Bayesian norms.
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Resolving the “Bayesian Paradox”—Bayesians Who Failed to

Solve Bayesian Problems

A well-supported conclusion a reader would draw from the vast amount of research on Bayesian
inference could be distilled into one sentence: “People are profoundly Bayesians, but they fail to
solve Bayesian word problems.” Indeed, two strands of research tell different stories about our
ability tomake Bayesian inferences—our ability to infer posterior probability from prior probability
and new evidence according to Bayes’s theorem. People see, move, coordinate, remember, learn,
reason and argue consistently with complex probabilistic Bayesian computations, but they fail to
solve, computationally much simpler, Bayesian word problems.

On the one hand, a first strand of research shows that people are profoundly Bayesians.
Strong evidence indicates that the brain represents probability distributions and certain neural
circuits perform Bayesian computations (Pouget et al., 2013). Bayesian computation models
account for a wide range of observations on sensory perception, motoric behavior and
sensorimotor coordination (see Chater et al., 2010; Pouget et al., 2013). Bayesian computations
approximate observed patterns in inductive reasoning, memory, language production, and
language comprehension (Chater et al., 2010). Even 12-month-old preverbal infants present
behavior consistent with the behavior of a Bayesian ideal observer: infants integrate multiple
sources of information to form rational expectations about situations they have never encountered
before (Téglás et al., 2011). In everyday life, people form cognitive judgments predicting the
occurrence of everyday events consistent with a Bayesian ideal observer (Griffiths and Tenenbaum,
2006).

On the other hand, however, a second strand of research shows that people fail to make the
simplest possible Bayesian inference once they are presented with Bayesian word problems. Indeed,
people tend to largely ignore or neglect base-rate information in probability judgment tasks such as
social judgment or textbook problem tasks (Kahneman and Tversky, 1973; Bar-Hillel, 1980) or they
tend to fail to be Bayesians in a completely opposite way—by overweighting base-rate information
(Teigen and Keren, 2007). In fact, people require costly and intense training with most statistical
formats to achieve good performance with probabilistic inferences that deteriorates with time very
quickly (Sedlmeier and Gigerenzer, 2001).

So people are Bayesians who fail to solve simple Bayesian word problems. As with
most paradoxes, a solution to this “Bayesian paradox” lies in taking closer look at
conceptualizations: at what constitutes a Bayesian inference in these two strands of research.
Such analysis uncovers important design differences, Bayesian classification criteria and
statistical approaches (Vallée-Tourangeau et al., 2015). However, the crucial difference that we
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highlight here lies in the cognitive processes involved in
performing the task. What is described as a “Bayesian inference”
in the two strands conflates very different processes. Implicit
processes—implicit calculations with probabilities mostly
acquired from experience—are involved in the Bayesian
computations approximating the performance of various
cognitive functions and in the estimation of experienced real-
life outcomes. Explicit processes—explicit calculations with
probabilities typically extracted from a textual description—are
involved in solving Bayesian textbook problems or social
judgment problems. The different information source,
experience or description, for example, has been shown to
lead to dramatically different choices and decisions (e.g., Hertwig
et al., 2004). With this distinction, of course, we do not intend
to imply that all the cognitive processes involved in estimating
probabilities are necessarily implicit and engage only with the
probabilities from experience or vice versa. Rather we wish to
point out that the different experimental paradigms outlined
here require typically different cognitive processes operating
over different types of information.

This postulated distinction between cognitive processes
involved in these different types of Bayesian inference tasks
can be mapped onto a distinction between biologically primary
(pan-cultural, evolutionary purposeful) cognitive abilities and
biologically secondary (culturally specific) cognitive abilities
(Geary, 1995). It could also be linked to the debate on how people
form probability judgments, either through automatic frequency
encoding of sequentially presented information (e.g., Hasher and
Zacks, 1984) or through heuristic inferences from aggregated
information (e.g., representativeness heuristic, Kahneman and
Tversky, 1974).

Which type of evidence should we call upon to help us decide
whether people are Bayesians or not? Both implicit and explicit
processes are relevant for assessing this ability. Having Bayesian
eyes, hands and minds is arguably important for survival. Yet,
our environment has changed dramatically in the Twentieth
century—it became crowded with explicit aggregated statistical
information. Learning from described aggregated information
condenses the learning process compared with learning from
experience. Imagine, for example, an experienced UK physician
relocating to Nigeria. Her experience would provide her with
an adequate knowledge of the disease base rates, sensitivity
and specificity of medical tests within the UK population;
however her experience may not be applicable or may even be
deleterious in Nigeria given that those pieces of information may
differ. The doctor would greatly benefit from reading explicit
aggregated statistical information on base rates of diseases,
sensitivity and specificity of medical tests in the local population
to avoid making errors and the long learning process based on
personal experience. Most importantly, she should be able to
integrate this information into her diagnostic judgments when
facing a given set of symptoms in a patient in Nigeria. More
generally, in their probability-laden environment, all people (not
just physicians) may come across a lot of problems similar
to Bayesian textbook problems, of which cancer or prenatal
screening are just examples (e.g., Navarrete et al., 2014). It is
clear, therefore, that we should focus on improving the explicit

processes that underpin Bayesian reasoning as a problem-solving
ability.

Bayesian Problem-solving

Although the processes involved in solving Bayesian textbook
problems resemble the processes involved in solving other
mathematical problems, research on Bayesian reasoning has
evolved in parallel to the research on problem solving. Reframing
processes involved in Bayesian textbook reasoning in terms
of the processes examined in the problem-solving literature
can benefit Bayesian reasoning research efforts. The problem-
solving literature not only extends the sound methodological
toolkit to explore underpinning mental processes (e.g., thinking
aloud protocols), but it also offers alternative concepts enacting
novel insights, different explanations and more elaborate models
generating deeper understanding of Bayesian problem-solving.
We outline three examples of such theoretical benefits in the
context of facilitating Bayesian problem-solving.

First, applying problem-solving concepts to Bayesian
reasoning offers a novel and productive perspective. For
example, we could think of Bayesian textbook problems in a
problem-solving framework as a combination of insight and
analytical problems. Typically, the problem-solving literature
distinguishes two classes of problems: analytical and insight
problems (Gilhooly and Murphy, 2005). With analytical
problems, people can work out an incremental solution and
rarely experience an Aha! moment in the process. Consider,
for instance, this multi-digit addition problem: “Sum up
the following numbers: 13, 27, 12, 32, 25, 11”; participants
announcing an answer rarely do so with Eureka glee (although
they might experience relief). With insight problems, people
have to overcome an initial impasse to reach a completely new
way of thinking about the problem; they need to transform
the initial problem representation into a new representation
which will lead them to the goal state. Consider, for instance,
the following problem: “Place 17 animals in 4 enclosures in
such a manner that there will be an odd number of animals in
each enclosure” (adapted from Metcalfe and Wiebe, 1987). You
probably try 17/4 and it did not work: The problem masquerades
as an arithmetic puzzle. However, in contrast to an analytic
problem, the initial problem presentation cannot be transformed
step-by-step to a solution (in this case the solution involves
overlapping sets). This distinction suggests that decomposing the
question of “What facilitates Bayesian reasoning?” into “What
facilitates the insight?” and “What facilitates the computation?”
will pave the way for better understanding what factors facilitate
the problem-structure understanding and what factors facilitate
the computational operations in Bayesian problem-solving (see
also Johnson and Tubau, 2015).

Second, rephrasing Bayesian reasoning as a form of problem-
solving offers different explanations of the processes implicated,
for example, those involved in representational training (e.g.,
Sedlmeier and Gigerenzer, 2001; Mandel, 2015; Sirota et al.,
2015a). In representational training, participants learn to
transform the statistical format representation of a problem—
they learn to translate single-event probabilities into natural
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frequencies. For example, the statements “a 1% probability that a
woman has breast cancer” and “if a woman has cancer then there
is an 80% probability that she will get a positive mammogram”
are translated as “10 out of every 1000 women have breast cancer”
and “8 out of the 10 who have breast cancer will get a positive
mammogram.” The problem-solving approach posits that the
underlying mechanism of such representational training consists
of the acquisition of an appropriate problem representation—a
nested-sets representation of the Bayesian problem, regardless
of frequencies or probabilistic information contained in such
problem—during the learning phase, which is then transferred
to similar problems in the testing phase (for evidence see Sirota
et al., 2015a). This goes beyond the default explanation that
participants translated single-event probabilities into natural
frequencies (Sedlmeier and Gigerenzer, 2001) and it accounts
for the training success in terms of the specific mental processes
involved in problem representation learning and its transfer (for
the importance of a good representation in different problems
of a belief revision not depending on natural frequencies, see
Mandel, 2014).

Third, recruiting problem-solving models offers a better
understanding of well-known effects in Bayesian reasoning than
we currently have, for example, the format effect. Statistical
formats such as natural frequencies represent probably the most
cost-effective (and the most discussed) tool to facilitate Bayesian
problem-solving, given that visual aids offer mixed evidence
of their effectiveness (e.g., Cosmides and Tooby, 1996; Sirota
et al., 2014b). Natural frequencies enhance Bayesian problem-
solving when compared with formats involving normalization
such as probability formats (e.g., Gigerenzer and Hoffrage,
1995; Cosmides and Tooby, 1996; Barbey and Sloman, 2007).
Natural frequencies, introduced by Kleiter (1994), integrate
the base-rate information in their structure making the base-
rate information per se redundant. For example, the statement
“8 women out of the 10 who have breast cancer will get a
positive mammogram” includes the base-rate information of
the 10 (out of 1000) women with cancer from our previous
example.

According to the general framework of mathematical verbal
problem solving (Kintsch and Greeno, 1985; Kintsch, 1988),
which integrates formal mathematical and linguistic knowledge,
two processes should be differentiated here: the processes
involved in representing the problem and those involved in
producing a solution (for specific approaches to probability
representation, see Johnson-Laird et al., 1999; Mandel, 2008).
In the problem representation phase, a mental representation
is constructed from the text that triggers available knowledge
schemas stored in long-term memory. Familiar cues in the
text activate a correct mental representation of the problem
more easily than unfamiliar or misleading ones; this enables
an easier integration with existing knowledge. In the problem
solution phase, rules or strategies corresponding to the problem

representation are implemented. We suggest that the facilitative
effect of natural frequencies in Bayesian inference problems is
due to a similar process. A wording of the task with frequencies
(e.g., explicit set reference language such as “10 out of the
remaining 90”)—not the numerical format by itself—may trigger

a representation of the problem as nested sets, while a wording of
the task with probabilities which conceal the nested set structure
due to normalizing, does not. Such an explanation casts natural
frequencies as a familiar format rather than a privileged one.
Some authors view natural frequencies as a privileged format
because they are processed by a specialized frequency-coding
mechanism shaped by evolutionary forces (Gigerenzer and
Hoffrage, 1995). If true (and some specific conditions are fulfilled,
Barrett et al., 2006) then processing of a privileged format should
not be cognitively demanding at all or at least less cognitively
demanding than processing of a computationally equivalent
and equally familiar format (e.g., Cosmides and Tooby, 1996).
It means, for instance, that measures of cognitive capacity
should not be predictive of performance in Bayesian reasoning.
However, several recent studies have provided evidence rebutting
the claim of easier processing of natural frequencies (Sirota and
Juanchich, 2011; Lesage et al., 2013; Sirota et al., 2014a).

Conclusion

Our environment is laden with statistical information and
demands from people that they successfully solve problems
that are exactly the same as, or similar to, classical Bayesian
textbook problems. Although some brain function appears to
implement Bayesian computations, people’s abilities to solve
Bayesian word problems could still be substantially improved.
We should therefore strive to understand and improve people’s
performance with this kind of problems. We suggest thinking
about the involved processes as processes akin to those engaged
during problem-solving (see also Johnson and Tubau, 2015;
Sirota et al., 2015b). Such a re-classification would not only
resolve contradictions in research on Bayesian inference,
it would also facilitate the application of conceptual and
methodological tools from problem-solving research. It would
allow us to ask what enacts the insight about the problem
structure, what facilitates the relevant computations and how
exactly people implement these processes. It would allow us to
conceptually re-frame observed effects such as representational
training effects. It would also allow us to shed more light on
the underlying processes by utilizing elaborate process-oriented
models developed in this area.
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One of the oldest hypotheses in cognitive
psychology is that controlled informa-
tion integration1 is a serial, capacity-
constrained process that is delimited by
our working memory resources, and this
seems to be the most uncontroversial
aspect also of present-day dual-systems
theories (Evans, 2008). The process is typ-
ically conceived of as a sequential adjust-
ment of an estimate of a criterion (e.g.,
a probability), in view of successive con-
sideration of inputs to the judgment (i.e.,
cues or evidence). The “cognitive default”
seems to be to consider each attended cue
in isolation, taking its impact on the crite-
rion into account by adjusting a previous
estimate into a new estimate, until a stop-
ping rule applies (e.g., Juslin et al., 2008).

Considering each input in isolation,
without modifying the adjustments con-
tingently on other inputs to the judgment,
invites additive integration. The limits on
working memory moreover contribute to
an illusion of linearity. If people, when
pondering the relationship between vari-
ables X and Y, are constrained by working
memory to consider only two X–Y pairs,
the function induced can take no other
form than a line. As illustrated by many
scientific models, with computational aids
people can capture also non-additive and
non-linear relations. But without support,
this is rather taxing on working mem-
ory and additive integration, typically as a

1 Controlled processes refer to cognitive processes that
are slow, conscious, intentional, and constrained by
attention, in contrast to automatic processes that are
rapid, not constrained by attention, and can be trig-
gered also directly by stimulus properties (Schneider
and Shiffrin, 1977; see also Evans, 2008). The claims
about cognitive constraints discussed in this article
refer to controlled processes and automatic processes
may often better approximate Bayesian information
integration (see, e.g., Tenenbaum et al., 2011).

weighted average, seems to be the default
process (Juslin et al., 2009), and, even
more so, considering that additive integra-
tion is famously “robust” (Dawes, 1979),
allowing little marginal benefit from also
considering the putative configural effects
of cues. These cognitive constraints there-
fore define a point toward which our judg-
ments naturally gravitate.

This simplistic and probably not
overly controversial model of controlled
integration immediately has important
consequences for our abilities to make
judgments, some of which are well-known,
some of which may still need to be further
digested. At a general level, the most fun-
damental constraint on people’s ability to
comprehend and control their environ-
ment is this tendency to view it in terms of
an “additive caricature,” as if they “looked
at the world through a straw,” appreci-
ating each factor in isolation, but with
limited ability to capture the interactions
and dynamics of the entire system. In
more prosaic terms, a wealth of evidence
suggests that multiple-cue judgments are
typically well described by simple linear
additive models (Brehmer, 1994; Karelaia
and Hogarth, 2008), even if the task
departs from linearity and additivity.

There are important exceptions where
people transcend this imprisonment in a
linear additive mental universe also with-
out external computational aids, in par-
ticular, an ability to use a prior input to
“contextualize” the meaning of an imme-
diately following input. For example, for a
lottery, like a 0.10 chance of winning $100
and $0 otherwise, people have little dif-
ficulty with contextualizing the outcome
in view of the preceding probability; that
is, to discount the “appeal” of the positive
outcome of receiving $100 by the fact that

the probability of ever seeing it is low.
Likewise, people often have little difficulty
with understanding normalized probabil-
ity ratios and appreciate that, say, “30
chances in 100” and “300 chances in 1000”
describe comparable states of uncertainty,
something that again requires that one
input is contextualized by another2. These
exceptions are important, but seem to be
connected to specific judgment domains.

CONTROLLED INTEGRATION AND
PROBABILITY THEORY
This contrasts with the requirements for
multiplication implied by many rules
of probability theory. We have therefore
argued that additive combination may
be an important—and often neglected—
constraint on people’s ability to reason
with probability. Nilsson et al. (2009) pro-
posed that even a classic bias, like the con-
junction fallacy (Kahneman and Frederick,
2002), may not primarily be explained by
specific heuristics per se, like “represen-
tativeness,” as typically claimed (although
people sometimes use representativeness
to make these judgments), but by a ten-
dency to combine constituent probabilities
by additive combination (see also Nilsson
et al., 2013, 2014; Jenny et al., 2014). For
example, people may appreciate that a
description of “Linda” is likely if she is
a feminist and unlikely if she is a bank
teller (which might be mediated by “rep-
resentativeness”), but knowing no feminist
bank tellers they combine these assess-
ments as best they can, which typically
comes out as a weighted average (Nilsson
et al., 2009). The rate of conjunction errors

2 This ability is not perfect as illustrated by the
phenomenon of denominator neglect (Reyna and
Brainerd, 2008).
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indeed seems equally high regardless of
whether the representativeness heuristic is
applicable or not (Gavanski and Roskos-
Ewoldsen, 1991; Nilsson, 2008).

Juslin et al. (2011) similarly argued that
base-rate neglect may be explained not
by use of specific heuristics per se, but
by additive combination of base-rates, hit-
rates, and false alarm rates, where the
weighting of the components is context-
dependent (and more often neglect false-
alarm rates than base-rates)3. Importantly,
the reliance on additive integration is by
no means arbitrary: to the extent that peo-
ple base their judgments on noisy input
(e.g., small samples), linear additive inte-
gration often yields as accurate judgments
as reliance on probability theory, possi-
bly explaining why the mind has evolved
with little appreciation for the integration
implied by probability theory (Juslin et al.,
2009).

A strong example of problems with
probability integration comes from stud-
ies of experienced bettors that have played
on soccer games at least a couple of times
each month for a period of 10 years
or more (Nilsson and Andersson, 2010;
Andersson and Nilsson, in press). They
were extremely accurate in their transla-
tion of odds into probabilities, including
that they aptly captured the profit mar-
gin introduced in the odds by the gam-
bling companies. Yet, when they assessed
the odds of an unlikely event A (i.e., an
outcome of a soccer game), the odds for
the conjunction of A and a likely event
B, and the odds of the conjunction of
A, B, and a third likely event C, their
probability assessments and their willing-
ness to pay for the bet, increased as likely
events were added to the conjunction
(the conjunction fallacy). This is pre-
dicted by a weighted average of the
components, but violates probability the-
ory. Exquisite assessment, but blatantly
“irrational” integration, also in experi-
enced and very motivated probability
reasoners.

3 A linear additive model captures many properties of
the data, such that people do appreciate the qualitative
effect of the base-rate, flexibly change their weighting
as a function of contextual cues, and that the judg-
ments are typically less extreme as compared to Bayes’
theorem, but until we have a theory of how contextual
cues affect the weight of the base-rate, we have lim-
ited ability to predict a priori how the base-rate will
be used in a specific situation.

BAYESIAN INFERENCE
Bayes’ theorem in its odds format is,

p (H|E) /p (−H|E)

= p (H) /p (−H) · p (E|H) /p (E| − H) (1)

where the left-hand side is the poste-
rior odds for hypothesis H given evidence
E, the first right-hand component is the
prior odds for hypothesis H, and the sec-
ond right-hand side is the likelihood ratio
for the evidence E, given that H is true
or false (i.e., −H). Equation (1) can be
used to adjust your subjective probability
that hypothesis H is true, in the light of
evidence E.

Although apparently simple, the adjust-
ment of the probability required in view of
the evidence depends not only on the evi-
dence attended at the moment, but on the
prior probability (e.g., when the likelihood
ratio is 2, you should adjust the prior proba-
bility of H upwards by 0.17 if the prior ratio
is 1, but upwards by 0.04 if the prior ratio is
10)4. People do appreciate that the posterior
probability is a positive function both of the
prior and the evidence, but the impact of
the prior is typically less than expected from
Bayes’ theorem (Koehler, 1996). If people,
as argued above, are spontaneously inclined
to adjust the probability of H (criterion)
in the light of the new evidence E (the
currently attended cue) independently of
the previous input (captured in the prior
probability), they will be affected by both
priors and evidence, but not as much as
with Equation (1), because they combine
them additively 5. This account explains
why people find this a difficult task, but
also suggests simplifying conditions and a
“cure” for base-rate neglect.

A first example of a simplify-
ing condition is natural frequencies
(Gigerenzer and Hoffrage, 1995). If
the base-rate problem immediately
conveys the number of people with, say,

4 With prior odds 1 and likelihood ratio 2, the pos-
terior odds is 2 (Equation 1); an adjustment from a
prior probability of 0.5 to a posterior probability of
0.67. With prior odds 10, the corresponding adjust-
ment will be from 0.91 to 0.95.
5 More specifically, when the base-rate is extreme, as
in the “mammography problem” (e.g., Gigerenzer
and Hoffrage, 1995) people will “underuse” the base-
rate, but in problems with ambiguous base-rate, like
in the urn problems studied by Edwards (1982),
they will “overuse” the base-rate and thus appear
“conservative.”

a positive mammography test and the
number of such people with breast can-
cer, people can “contextualize” the second
number in terms of the first and directly
appreciate that among positive tests, the
proportion of breast cancer is low. In
belief revision tasks, where the belief is
repeatedly updated in the face of evi-
dence, it has long been known that people
successively average the “old” and “new”
data (e.g., Shanteau, 1972; Lopes, 1985;
Hogarth and Einhorn, 1992; McKenzie,
1994). An exception is when prior and evi-
dence are presented in contextual and tem-
poral contiguity, where people have some
ability to “contextualize” their, presum-
ably also here linear, weighting of the evi-
dence in view of the prior, better emulating
Bayesian integration (Shanteau, 1975).

The “cure” to base-rate neglect sug-
gested by this view is, of course, to replace
multiplicative integration with additive
integration. An immediate implication is
that people should have very little problem
with certain kinds of “Bayesian updating;”
for example, with updating their prior
belief about the mean in a population after
observing a new sample from the popula-
tion. “Bayesian updating” here amounts to
a (sample-size) weighted average between
the “prior mean” and the “sample mean,”
a task that people should be able to learn
quite easily.

An example directly related to Bayes’
theorem is provided in Juslin et al.
(2011). In Experiment 1, each participant
responded to 30 medical diagnosis tasks, in
one of three formats: (i) standard probabil-
ity, The base-rate, hit-rate, and false alarm
rate were stated as probabilities6; (ii) odds,
The same problem expressed in prior odds
and likelihood ratios (Equation 1); (iii)
Log odds, The same problems expressed as
log odds, implying that one simply adds
the log prior odds to the log likelihood
odds to arrive at the log posterior odds.
These are three ways to represent the same
problems, but the first two formats require
multiplication, the last one additive

6 Here is an example of a medical diagnosis task: The
probability that a person randomly selected from the
population of all Swedes has the disease is 2%. The
probability of receiving a positive test result given
that one has the disease is 96%. The probability of
receiving a positive test result if one does not have
the disease is 8%. What is the probability that a ran-
domly selected person with a positive test result has
the disease? Correct answer: 20%.
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FIGURE 1 | Median performance in Experiment 1 in terms of Mean Absolute Error (MAE) between the judgment and Bayes’ theorem. (A) Metric
instruction; (B) computational instruction. Adapted from Juslin et al. (2011) with permission.

integration. Fifteen participants received
Metric instruction, explaining and exem-
plifying the range and sign of the metric
used, but with no guidance on how the
integration should be made. The other
15, in addition, received Computational
instructions on how to solve the problems,
explaining how the components should
be integrated according to Bayes’ theorem
with numerical examples.

The performance is summarized in
Figure 1. Already with a Metric instruc-
tion, the log-odds format produced judg-
ments closer to Bayes’ theorem than the
standard probability format. With com-
putational instruction, the standard prob-
ability format produced poor perfor-
mance and participants were still better
described by an additive than a multiplica-
tive (Bayesian) model. With log odds and
computational instruction, performance
was in perfect agreement with Bayes’ the-
orem. People can thus flawlessly perform
Bayesian calculation when the integra-
tion is additive, but when the format
requires multiplication they are inept also
after explicit instruction, still approximat-
ing Bayes’ theorem as best they can by a
linear additive combination.

CONCLUSIONS
A caveat is that although these results
demonstrate limits on computational abil-
ity, admittedly they do not address the
important issue of computational insight:
the understanding of what needs to be

computed in the first place. Research
has emphasized conditions that foster
computational insight by highlighting
subset relations that are important in
Bayesian reasoning problems (e.g., Barbey
and Sloman, 2007), perhaps at the neglect
of the “old-school” information process-
ing constraints on people’s computational
abilities discussed here. The “cure” sug-
gested here is drastic in the sense that it
requires people to think of uncertainty in
an unfamiliar log odds format, and the
extent to which they can learn to do this
is an open question. The dilemma might
well be that the probability format is more
easily translated into action, because prob-
abilities can be used directly to fraction-
wise “contextualize” (discount) decision
outcomes, but for reasoning about uncer-
tainty people are better off with formats
that allow additive integration.
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Consider the following task
[Task A]
A prenatal test determines whether an unborn child has a chromosomal anomaly. A priori,

namely, before undergoing the test, a pregnant woman has a 4% chance of having a child with
the anomaly. If a woman has a child with the anomaly, there is a 75% chance that she has a positive
test result. If she does not have a child with the anomaly, there is still a 12.5% chance that she has
a positive test result. Emma, a pregnant woman, undergoes a prenatal test. The result is positive.
What is the probability that she has a child with the anomaly?

To answer correctly, one has to integrate the prior probability that a woman has a child with the
anomaly (i.e., the prevalence rate: 4%) with information about the test’s statistical properties. On
the basis of this information and the evidence that Emma tested positive, one can produce a correct
posterior evaluation by computing the ratio:

Probability (Anomaly|Positive Test Result)= Probability (“Positive Test Result and Anomaly”)/
Probability (“Positive Test Result”).

To obtain the numerator, one has to combine the prevalence rate and the test’s sensitivity rate
(i.e., 4% × 75% = 3%). To obtain the denominator, one has to combine the complement of the
prevalence rate and the false positive rate (i.e., 96%× 12.5%= 12%), and then add it to the initially
obtained value (i.e., 3%+ 12%= 15%). Very few respondents, including health-care professionals,
produce the correct probability ratio (i.e., 3%/15% = 20%). Failures to solve tasks of this sort
lead to pessimistic conclusions about naive probabilistic reasoning (e.g., Casscells et al., 1978).
Subsequent studies, however, licensed more optimistic conclusions, showing that some versions
of these tasks led to better performances. About half of the respondents succeed when reasoning
with natural frequencies (e.g., “Three out of the 4 women who had a child with the anomaly had a
positive test result”) or numbers of chances (e.g., “In 3 out of the 4 chances of having a child with
the anomaly the test result is positive”; see, respectively, Hoffrage and Gigerenzer, 1998; Girotto
and Gonzalez, 2001). On the basis of these results, the current, common account is that posterior
probability reasoning improves in versions that allow respondents to both rely on an appropriate
representation of subsets of countable elements (e.g., observations, tokens), and to easily associate
posterior evidence with one of these subsets (Barbey and Sloman, 2007).

A generally unnoticed aspect of the results mentioned above is that they concern educated
respondents, like undergraduates and physicians, and that only about half of these respondents
benefit from the simplified versions of the tasks. Even more unnoticed is the fact that respondents
sampled from the general public do not benefit at all from these versions. Indeed, in samples of
pregnant women, many of whomhad a high school level of education or less, almost all respondents
failed to compute the correct probability ratio, even if they had to reason about natural frequencies
(Bramwell et al., 2006) or numbers of cases (Pighin et al., 2015). In other words, they failed
tasks that, in principle, should have activated the appropriate set representation. Their failure is
striking because, unlike the participants of previous studies who had to reason about hypothetical
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scenarios, these women reasoned about realistic prenatal test
results, and were personally interested in understanding them
correctly.

In sum, contrary to the common account, naive respondents
do not perform well on tasks devised to improve their
understanding of posterior probability. These tasks mimic
everyday problems, like calculating the post-test probability of
diseases. However, they are unlikely to be the best tools to
investigate whether naive respondents possess a basic intuition of
posterior probability, and whether they are able to update their
evaluations in the light of new evidence (Girotto and Gonzalez,
2007). Indeed, these tasks do not require respondents to revise
any initial judgment (Girotto and Gonzalez, 2008; Mandel, 2014).
Rather, they simply ask for only one judgment on the basis of
various pieces of evidence (e.g., the prevalence rate, the result
of the test and its statistical properties). Moreover, these verbal
tasks convey numerical information by means of symbols and
require an explicit numerical evaluation. Therefore, they can
be employed only with literate respondents who have acquired
a numerical symbolic system. Producing an explicit numerical
estimation in numbers or words, however, is not the only way
in which individuals may assess chance. Consider the following
task:

[Task B]
Respondents are presented with a box containing five red

chips (four round and one square) and three green chips (all
square). The experimenter says, “I will take one chip out of the
box without looking inside. Do you think that I will get a red or a
green chip?”

Unlike Task A, and other verbal tasks used in adult Western
literature, Task B does not convey probabilities by means of
numerical symbols, and does not require respondents to produce
an explicit numerical evaluation. Rather, it presents a set of
tokens, and asks for a qualitative judgment or choice between
two outcomes that may occur by taking one token out of
the set at random (i.e., drawing a red vs. a green chip). To
produce a suitable answer, respondents can reason extensionally,
by considering and comparing the ways in which the outcomes
may occur (Johnson-Laird et al., 1999). Accordingly, respondents
will predict the occurrence of the outcome that may be produced
in more ways (i.e., drawing a red chip). Numerate respondents
could make a precise enumeration of the chances favoring each
outcome (e.g., “There are 5 chances of drawing a red chip vs.
3 chances of drawing a green chip”). On this basis, they could
even produce an explicit and correct absolute evaluation (e.g.,
“There are 5 chances out of 8 of drawing a red chip”). Of
course, non-numerate respondents could not do so. However, the
ability to make approximate comparisons of quantities emerges
before (e.g., Barth et al., 2005) and without schooling (e.g.,
Pica et al., 2004). Therefore, even individuals who lack any
formal numerical knowledge should produce suitable predictions
in simple tasks like Task B. Indeed, both Western 5-year-olds
(e.g., Davies, 1965; Girotto and Gonzalez, 2008) and preliterate
Mayan adults (Fontanari et al., 2014) answer “red,” that is, they
choose the more likely outcome, and they do so even when they
have to consider large sets of tokens. In sum, non-numerate
individuals are able to compare the chances of two competing

outcomes, without being able to express them numerically, and
without necessarily making an explicit and precise counting of
the number of chances favoring each of them.

Notably, these individuals also revise their evaluations on the
basis of a new piece of evidence:

[Task B’]
Upon the completion of Task B, the experimenter say, “I

have taken one chip out of the box. I have it in my hand and I
feel that it is square. Do you think that I got a red or a green
chip?

To choose the more likely outcome (“green”), respondents
should focus on the subset of possibilities compatible with the
evidence (the four squares). Five-year-olds do so, updating their
initial judgments and choices suitably (Girotto and Gonzalez,
2008/Studies 1 and 2). They succeed even in tasks that imply
more complex combinations of prior and posterior information
(Bonawitz et al., 2013), or reasoning about a single, non-
repeatable event produced by an intentional agent (Girotto and
Gonzalez, 2008/Study 3). Fontanari et al. (2014) have extended
these results by presenting preliterate Mayan adults with the
same sort of tasks. Despite their lack of any sort of formal
education, these respondents performed like Western controls,
revising their initial choices in the light of new evidence. Finally,
measures of looking times suggest that even preverbal infants
form rational expectations about uncertain events by integrating
different sources of information in a coherent way (Teglas et al.,
2011). Together, these findings corroborate the view that, along
with the application of non-extensional heuristics (Tversky and
Kahneman, 1974), naive reasoning about probabilities often relies
on extensional procedures: respondents infer the probability of
an event from the various ways in which it could occur (Johnson-
Laird et al., 1999).

Two notes are in order about the tasks that have documented
the existence of an early understanding of prior and posterior
probability (e.g., Task B and B’). First, these tasks are not natural
frequency tasks. Indeed, they do not convey natural frequency
information and do not ask for a frequency prediction. The
following one is an example of a proper natural frequency task:

[Task C]
The experimenter says, “This box contains some chips. You do

not know their colors. You observe me drawing a chip at random
from the box, and replacing it in the box 8 times. My sample
shows 5 red and 3 green chips. I’ll draw a chip at random 8 more
times. Do you think that the new sample will show more red or
more green chips?”

Task C is apparently similar to Task B. In both cases, one
can answer by considering sets of countable elements (i.e., prior
possibilities and actual frequencies, respectively), and by making
a similar comparison (i.e., 5 red chips vs. 3 green chips, and 5
draws of a red chip vs. 3 draws of a green chip, respectively).
The two answers, however, cannot be assimilated. In Task B, one
reasons about a set of prior possibilities before making any actual
experience. In Task C, one reasons about a set of observations
gathered through a “natural sampling,” which is “the process
of encountering instances in a population sequentially. The
outcome of natural sampling is natural frequencies” (Gigerenzer
and Hoffrage, 1999, p. 425).
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Second, tasks that do not ask for an explicit numerical
evaluation, including those that imply reasoning about few
possibilities, do not guarantee correct performance neither in
children nor in adults (Nickerson, 1996; Johnson-Laird et al.,
1999). Consider, for example, Task B. Young children succeed
in it, basing their answer on prior possibilities (e.g., “You will
get a red chip because there are more red than green chips”).
However, if one transforms Task B into a frequency-like task, they
fail. In other words, if one makes a series of random draws from
the same box, and asks young children to make a prediction for
each of them, they tend to use erroneous strategies like “Predict
the color that was not predicted in the previous trial” (Brainerd,
1981; Teglas et al., 2007/Studies 3 and 4). It should be noted that
even literate adults make erroneous predictions in situations in
which they have to extract frequencies from actual observations
rather than to process numerical symbols. For example, they fail
versions of Task A in which they are presented with a series
of medical records, each representing a patient, his/her health
condition and the presence/absence of a given symptom (e.g.,
Gluck and Bower, 1988). Along with the finding that young
children can reason correctly about events before experiencing
their actual frequency, the finding that literate adults err in
experience-based reasoning tasks is difficult to explain following

the hypothesis that the human mind is “developmentally and
evolutionary prepared to handle natural frequencies” (Gigerenzer
and Hoffrage, 1999, p. 430).

In conclusion, even literate adults have difficulties in
producing correct posterior evaluations. They appear to be
unable to combine prior information and new evidence in
a normative way in tasks whose solution depends on the
combination of numerical values, including tasks that have been
devised to improve posterior probability reasoning. However,
recent studies have shown that even young children and
preliterate adults can succeed in tasks whose solution depend on
a simple comparison of possibilities. In sum, naive individuals
possess correct intuitions of prior and posterior probabilities, and
such intuitions emerge early in the course of development and
regardless of culture and education.
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Price (in Bayes, 1958) introduced Bayes’s theorem as a precise and accurate method for measuring
the strength of an inductive argument. He contrasted Bayesian reasoning with common sense,
which, he argued, is imbued with vagueness and often erroneous. Nearly two centuries later, Price’s
claim was put to the test by psychologists who examined how people revise their opinions in light
of new evidence (e.g., Phillips and Edwards, 1966; Kahneman and Tversky, 1973). For the past
four decades, scholars have debated whether common sense can or cannot approximate Bayesian
reasoning.

Contrary to Price’s claim, earlier studies using a bookbags-and-poker-chips paradigm found that
people did follow Bayesian prescriptions to revise judgments although their numerical answers
were conservative: the psychological impact of new evidence on one’s belief was less pronounced
than warranted (Edwards, 1968). A paradigm shift ensued with the advent of the heuristic-and-
biases programme of research (Kahneman et al., 1982). Scholars started to use vignette studies
modeled after the so-called “textbook paradigm” or the “social-judgment paradigm” (Bar-Hillel,
1983). This also led to an about-turn in the portrayal of people’s ability to revise their judgments
accurately. Vignette studies did not showcase mere conservatism, they elicited biased judgments
which were often in blatant contradiction with Bayesian prescriptions. This bleak picture of people’s
ability to form Bayesian judgments was oncemore overturned in themid-nineties when researchers
demonstrated that natural frequency formats could lead to a fourfold improvement in performance
rates (Gigerenzer and Hoffrage, 1995; Cosmides and Tooby, 1996). This finding once more shifted
the point of scholarly contention as scholars started to debate whether the improvement observed
arises from the use of natural frequencies in and by itself or from the more effective “nested
representation” that this information format elicits (Sirota et al., 2015).

Throughout this (admittedly) short history of the psychological study of Bayesian reasoning,
Bayesian performance has most commonly been defined, explicitly or implicitly, as the ability
to generate the “accurate” value for the posterior probability p(H|D), or the probability that a
hypothesisH is true, given a new piece of evidenceD, based on the values of p(H), p(not-H), p(D|H)
and p(D|not-H) where p(H) denotes the a priori probability thatH is true and p(not-H), the a priori
probability that its alternative, not-H is true (which may or may not be equated with the base rates;
Mandel, 2014); p(D|H) denotes the probability of observing D when we know H to be true; and,
finally, p(D|not-H) denotes the probability of observing D when the alternative hypothesis, not-H
is true.

This approach to performance assessment—comparing a normative numerical value to a
subjective probability estimate—informs what is computed (a Bayesian answer, based on a correct
number or a correct algorithm) and enables researchers to assess Bayesian performance. Efforts
to improve Bayesian performance have focused on modifying environmental characteristics such
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as the probabilistic information format (e.g., Gigerenzer and
Hoffrage, 1995). But performance arises from the coupling of the
task environment and the cognitive processes applied to the task
at hand. Fostering better Bayesian performance can also involve
a better understanding of Bayesian reasoning, that is, how the
subjective estimate is actually computed (e.g., see Sirota et al.,
2014).

Adopting a reasoning-based focus also sheds light on
differences between the three classic paradigms mentioned above
that would otherwise remain concealed. While any of these
paradigms may be used interchangeably to assess Bayesian
performance, whether they all involve the same type of Bayesian
reasoning is debatable. This is not a trivial distinction: if different
paradigms invoke different reasoning processes, what works
for improving Bayesian performance will be contingent on the
particular research paradigm adopted to study performance. In
the remainder of this essay, we show that a focus on performance
(where participants’ probability judgments are compared to
Bayesian normative values or algorithms) obscures the fact
there are more than one way to engage in Bayesian reasoning.
Our analysis suggests three criteria against which the quality
of Bayesian inferences may be assessed: an accuracy criterion
(did participants compute the normative value? Did they apply
the correct algorithm?), an adequacy criterion (did participants
appropriately revise their initial judgment?), and a restructuring
criterion (did participants successfully restructure their initial
representation of the problem to achieve the goal state?).

The typical bookbags task involves two urns with symmetrical
assortment of marbles—e.g., a “black urn” with 600 black and 400
white marbles, and a “white urn” with 400 white and 600 black
marbles (Peterson et al., 1965). An experimenter selects one urn
at random and hides it in an opaque box from which he then
draws several samples of marbles. After observing each sample,
participants are asked to revise the probability that the sample
originates from one urn by moving a slider along a bar displaying
100 marks. The length of the bar’s left section represents the
probability that the marbles had been drawn from the black
urn. Participants’ output judgments can be compared with the
Bayesian norm. This involves computing p(D|H) and p(D| not-
H), the probabilities of observing the sampleD if it were obtained
from the black urn and the white urn, respectively. Even when
participants are informed about the exact ratio of marbles in each
urn, it is implausible to assume that they engage in such explicit
numerical computations to revise their judgment. Instead, belief
revision is more likely to arise from intuitive thinking processes
involving an assessment of the perceptual similarity between the
sample and the urn (e.g., see Read and Grushka-Cockayne, 2011).
In such a context, interventions on feedback and learning from
experience are more likely to improve Bayesian reasoning than
manipulations of information format, for example.

Social-judgment studies of Bayesian reasoning (e.g.,
Kahneman and Tversky, 1973) include social scenarios
and subjective probabilities implied by thumbnail verbal
descriptions instead of countable numerical information.
Typically, social-judgment tasks involve the assessment of the
posterior probability that an individual belongs to a target
category (e.g., engineer), based on both a short verbal description

of the individual’s social attributes (e.g., “spends most of his free
time on his many hobbies which include home carpentry, sailing
and mathematical puzzles” Kahneman and Tversky, 1973, p.
241) and the numerical base rate of the target category and an
alternative category (e.g., 30 engineers and 70 lawyers). So while
social-judgment tasks provide precise information about the
base rates, the numerical values of the likelihood probabilities
p(D|H) and p(D| not-H) of the descriptions are neither presented
to, nor elicited from the participants. By comparing subjective
posterior probability judgments made in this instance with
judgments made for reversed base-rate distributions (e.g., 70
engineers and 30 lawyers), it is possible to evaluate the extent
to which judgments are aligned with Bayesian prescriptions
just as with the bookbags paradigm. Once again, however,
these judgments are unlikely to arise from explicit numerical
computations akin to those required to compute the Bayesian
benchmark criterion since this would require that participants
spontaneously generate a numerical value for p(D|H) and p(D|
not-H). In fact, the actual origin of the estimate produced by
participants in Social-judgment tasks is unclear. The attribute-
substitution account (Kahneman and Frederick, 2002) theorizes
that participants use a heuristic attribute (e.g., the extent to
which the individual described is similar to a typical engineer)
as a substitute for the target attribute (e.g., the probability that
the individual is an engineer, given his description) in their
assessment. This account, however, does not explain how people
may compute the similarity index between the verbal description
of an individual instance and a typical instance. Dougherty
et al.’s (1999) MINERVA Decision-Making (MDM) model
proposes that judgments are based on less than perfect memory
retrieval of observations frequencies. The predictive value of the
MDM model is established by comparing averaged simulated
outputs with Bayesian computations and demonstrating that the
simulations derived from the model are consistent with actual
judgments observed in Social-judgment studies. This model is
underpinned by two assumptions: first, that social judgments
have a frequentist origin, and second that all individuals rely on
the same memory-based process to compute their judgment.
Both assumptions have yet to be tested empirically. In sum,
more research is needed before the cognitive processes that
yield such judgment methods in Bayesian reasoning can be
firmly established. In this respect, representational theories of
subjective probability such as Mandel’s (2008) representational
and assessment processes account may prove fruitful.

The last, and perhaps most prevalent, paradigm is the
so-called textbook one. In this paradigm, participants are
presented with explicit numerical values for all the components
required for computing the posterior probability p(H|D),
namely p(H), p(D|H) and p(D| not-H) as in, for example, the
mammography problem (Gigerenzer and Hoffrage, 1995). Once
again, performance may be assessed in the same way it is assessed
in bookbags tasks or in social judgment tasks: by comparing
participants’ judgment to the Bayesian criterion. The reasoning
processes, which lead to the final judgment, however, are unlikely
to be based on assessments of perceptual similarities (as in
bookbags tasks) or memory retrieval of observed frequencies
(as in social judgment tasks). Instead, textbook tasks require
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participants to reach a goal state (the posterior probability value)
based on an initial state presenting the values of the base rate, hit
rate and false alarm probabilities. In other words, textbook tasks
require participants to apply operators to move from an initial
state (the problem presentation) to a series of different states
until the final goal state is reached. These tasks do not require
an intuitive judgment of a probability value, they require analysis
and problem-solving skills. As such, problem-solving theory can
shed new light on the processes that underpin Bayesian reasoning
in textbook problems.

Problem-solving theorists often distinguish between routine
and non-routine problems (e.g., see Mayer, 1995). Routine
problems involve the application of a known procedure to be
solved. For example, 2 + 2 is a routine problem for anyone who
has been taught a procedure for adding single digits. Applying
the known procedure involves reproductive thinking; once the
procedure is known, problem solvers can apply it again to solve
similar problems. By contrast, when problem-solvers face non-
routine problems, they do not possess a pre-existing solution
procedure; they must engage in productive thinking and generate
a novel solution to reach the goal state. Textbook problems
presented to naive participants, that is participants who have
not learnt to apply the Bayesian procedure to compute p(H|D),
are difficult non-routine problems. Problem solvers may have
some operators which they can apply (like adding values or
multiplying them) but they have nomeans to gauge their progress
or assess the validity of their final answer. This suggests that
a possible way forward to better understand how participants
may succeed in textbook tasks would be to consider those
tasks as insight problems. From a set theoretic perspective,
the prior probability p(H) corresponds to the proportion of
the sample space S that is occupied by H. The occurrence
of the outcome d reduces the sample space to the event D
because the elements outside D are no longer possible outcomes.
Consequently, the probability of H given D is the probability
of H given the reduced sample space D. This analysis suggests
that Bayesian performance in textbook problems demands that
reasoners restructure their initial representation from the sample
space S defined by the union of subsets H and not-H that both

include d elements to the subset D that includes h and not-h
elements.

To sum up, in this essay, we argued for a distinction
between Bayesian performance and Bayesian reasoning.Whereas
Bayesian performance can be assessed through a variety of
paradigms, a focus on performance obscures the fact there are
more than one way to engage in Bayesian reasoning: people
may reason appropriately but perform poorly, thus committing
what is known as an “error of application” (Kahneman and
Tversky, 1982). Conversely, they may adopt an inappropriate
line of reasoning (thus committing an “error of comprehension,”
Kahneman and Tversky, 1982) but nevertheless produce an
accurate judgment. Our analysis suggests three criteria against
which the quality of Bayesian inferences may be assessed: an
accuracy criterion, an adequacy criterion, and a restructuring
criterion. Whereas the accuracy criterion is applicable in all
three paradigms, the adequacy criterion is better suited to
bookbags tasks because they require participants to revise an

initial judgment or the social-judgment tasks because they
ask participants to provide a subjective estimate that weighs
numerical-explicit and subjective-implicit information. Likewise,
the restructuring criterion is better suited to textbook tasks as
these tasks require participants to navigate through a problem
space. Each criterion also points to different strategies for
improving the quality of Bayesian inferences. The accuracy
criterion favors analytical accounts where reasoning is defined as
the step-by-step transformation of explicit numerical quantities
and facilitation results from easing the cognitive cost of carrying
out these computations. The adequacy criterion favors associative
accounts where reasoning is defined as belief updating and
facilitation results from the better calibration of the subjective
weights attributed to different inputs. Finally, the restructuring
criterion favors representational accounts where reasoning is
defined as navigating through a problem space and facilitation
results from the clarification of the representational structure of
the problem. In other words, better understanding how people
arrive at their answers in the different paradigms may prove a
fruitful way forward to uncover the keys to further improve the
quality of naive Bayesian inferences.
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At some point during pregnancy women
are typically encouraged to undergo a
screening test in order to estimate the
likelihood of fetal chromosomal aberra-
tions. While timelines vary, the major-
ity of pregnant women are screened
within their first trimester (De Graaf
et al., 2002). In the event of a positive
test result, an invasive diagnostic assess-
ment is usually recommended, namely
amniocentesis or chorionic villus sam-
pling (CVS). The combined test, widely
considered to be the most feasible and
effective screening procedure, involves an
integrated assessment of: maternal age,
fetal Nuchal Translucency (NT), maternal
serum pregnancy-associated plasma pro-
tein A (PAPP-A), and free β human chori-
onic gonadotropin (β-hCG). This assay
is most reliable when performed nearest
to the 11th week of gestation (Malone
et al., 2005), at which its detection rate
and false positive rate for trisomy 21, in
optimal conditions, are approximately 95
and 5%, respectively (Nicolaides, 2004).
A variety of competing screening tech-
niques are available in the first trimester,
and though we focus on the combined test
in our example below, the point raised in
this article applies to each of them.

A first-trimester screening assay car-
rying a relatively low false-positive rate
might seem a reasonable option for
women already considered to be at low
risk—the vast majority of the preg-
nant population. Following such prenatal
screening for trisomy 21, most women
who test positive for high risk proceed with

invasive diagnostic testing. This decision
to proceed with invasive testing is typically
based on the presence of any evidence of
increased risk brought to light by the pre-
cursory screening test (Nicolaides, 2004).
It is important to note, however, that the
proportion of those who advance to inva-
sive diagnostic testing is virtually identical
to the false-positive rate of initial screening
(Nicolaides, 2004).

Applying trisomy 21 as an example (see
Figure 1 for a graphical representation of
the numbers), the pregnant women who
receive a false positive score in their first-
trimester screening (∼5%) would subse-
quently undergo a supplementary invasive
diagnostic procedure, such as amniocen-
tesis or CVS. This implies that out of
every 100,000 pregnant women initially
screened, roughly 5100 test positive, out of
which ∼5000 cases are actually false pos-
itives. The follow-up diagnostic tests are
associated with serious procedure-related
health risks, including a ∼1% increased
chance of miscarriage (see Mujezinovic
and Alfirevic, 2007 for a systematic review;
also, a recent nation-wide 11-year longi-
tudinal study in Denmark established an
increased chance of miscarriage of 1.4%
and 1.9% linked to amniocentesis and CVS
respectively, with CVS growing in its pre-
dominance worldwide; Tabor et al., 2009).
Thus, at least 50 of the above ∼5000 false-
positive cases that involve normal fetuses
ultimately result in diagnostic procedure-
induced miscarriage. Of course with either
a higher false-positive rate or a lower dis-
ease prevalence, those numbers worsen.

Discerning the trustworthiness of a
given positive result in a screening test
warrants calculating (typically from the
information provided in the respective
consent form) the test’s positive predictive
value (PPV; in this case the proportion of
Down syndrome cases relative to the total
amount of positive results). This requires
knowledge of the base incidence rate of the
congenital defect of interest, and the sen-
sitivity and false-positive rate of the test.
Computation and proper interpretation
of this index, however, is often obscured
by the complexity of Bayesian reasoning
involved. This, among other factors, may
underlie the well-known inadequacy of
current procedures intended to achieve
informed consent (Green et al., 2004). For
30-year-old pregnant women, the preva-
lence of Down syndrome is roughly 1 out
of every 800 fetuses (Nicolaides, 2004; this
statistic varies with maternal age and time-
point during pregnancy). In a sample of
100,000 pregnant women of the general
population, therefore, around 125 of them
would be expected to carry a fetus with
the condition. Given the relatively high
sensitivity of the screening assay (95% in
optimal conditions), a majority of those
fetuses are eventually correctly diagnosed
with Down Syndrome (∼119 out of 125).
But when we merge this information with
the said ∼5000 false positives, we see that
119 positive results in the combined test
faithfully reveal trisomy 21, out of a total
5113 (119 + 4994) positive results. Hence,
the PPV of the combine test in a screen-
ing context nears 2% (119/5113). In other
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FIGURE 1 | Chart depicting the relationship between incidence of Down Syndrome (Trisomy 21), false positives in prenatal screening, and

miscarriages caused by the recommended follow-up diagnostic assessment (Amniocentesis/CVS) in a sample of 100,000 pregnant women.

words, there is a 2% chance of actually
carrying a fetus with trisomy 21 after test-
ing positive in a screening combined test.
This information—essential to an edu-
cated decision on the matter—is usually
overlooked by practitioners, and generally
absent from medical consent forms.

In recent decades, our ineptitude for
making sense of Bayesian information has
been the subject of extensive study (for a
review see Barbey and Sloman, 2007). It
is widely recognized that humans struggle
in dealing with Bayesian problems pre-
sented in terms of normalized probabilities
(i.e., relative probabilities or percentages)
or in cases of vague information struc-
ture (Barbey and Sloman, 2007). A sub-
stantial portion of the research on this
topic has been done within the scope
of medicine and epidemiology, wherein
Bayesian inference pervades disease detec-
tion and characterization. It is well known
that even medical practitioners struggle
to interpret such information (Gigerenzer
et al., 2007; but see Pighin et al., 2014
for a more optimistic outlook). The issue
saliently manifests in the prevailing appeal
of massive screening programs to the

general public, policy-makers, and physi-
cians alike. This appeal—mainly due to the
perceived advantages of early diagnosis—
fails to be balanced by sufficient considera-
tion of the high propensity for false alarms
and over-diagnosis. The theoretic difficul-
ties that most primary care physicians,
for instance, seem to encounter with this
type of information (e.g., cancer screening
statistics) disposes them to a dispropor-
tionate veneration for the potential bene-
fits of disease screening, as they drastically
underrate the seriousness of relevant risks.

Gigerenzer et al. have advised on the
pernicious use of massive screenings with
respect to prostate cancer, HIV infection,
etc. (Gigerenzer et al., 2007). False pos-
itives can be highly problematic in their
ensuing psychosocial turmoil, and with
respect to iatrogenic complications and
economic costs associated with unneces-
sary clinical intervention. Moreover the
problems, as we have seen above, don’t
stop at this. Medical knowledge ought to
be conveyed lucidly, in a manner that facil-
itates informed decision-making, specifi-
cally accounting for the common cognitive
challenges and inter-individual variation

observed in probability literacy (Johnson
and Tubau, 2013; Lesage et al., 2013; Låg
et al., 2014; Sirota et al., 2014a). With
respect to clinical screening data, sufficient
understanding of the numbers not only
entails being in a position to competently
evaluate pertinent risks; it further entails
being enabled to recognize the possibility
that even tests carrying low false-positive
rates may simply be inadequate for detect-
ing low-prevalence diseases, particularly in
massive-screening settings.

There is growing convergence in cog-
nitive psychology regarding the chief fac-
tors that mediate computation of Bayesian
reasoning problems. Furthermore some
practical improvements in the communi-
cation of statistical information have been
proposed (while focus on evolutionary
underpinnings of these issues appears to
have taken a back seat in the literature
(Barbey and Sloman, 2007; Navarrete and
Santamaría, 2011). With respect to under-
standing Bayesian problems, apart from
intrinsic differences across individuals, in
cognitive resources (Lesage et al., 2013; Låg
et al., 2014; Sirota et al., 2014a) or numer-
acy skill (Hill and Brase, 2012; Johnson
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and Tubau, 2013; Låg et al., 2014), several
other factors that pertain to informational
presentation per se have been deemed rel-
evant to reasoning performance. These
include (but are not limited to): prob-
lem structure (Barbey and Sloman, 2007;
Lesage et al., 2013; Sirota et al., 2014a), the
availability of a causal framework (Krynski
and Tenenbaum, 2007), representational
format (Hoffrage et al., 2002), and ref-
erence class (Fiedler et al., 2000; Lesage
et al., 2013). Over and above intellectual
aptitude, the very manner in which a prob-
lem’s terms are conveyed to the subject
is arguably imperative to the normative
Bayesian response.

The above theoretical advancements
have translated into numerous helpful
strategies for representing and commu-
nicating Bayesian information. Regarding
medical risk problems, if a subject is
provided with the relevant information
comprising the standard menu (i.e., hit
rate, false positive rate and prevalence;
Gigerenzer and Hoffrage, 1995), the most
effective way known to facilitate reasoning
is to ensure that the problem’s set structure
is entirely clarified to the subject (Barbey
and Sloman, 2007). Natural frequen-
cies (Gigerenzer and Hoffrage, 1995), or
more generally, absolute reference classes
(Fiedler, 2000; Lesage et al., 2013) are
widely considered instrumental to this
end. Another important factor, admittedly
difficult to disentangle conceptually from
the previous one, is computational com-
plexity (Gigerenzer and Hoffrage, 1995;
Barbey and Sloman, 2007). Reducing a
subject’s need to carry out computations
(even those of simple arithmetic opera-
tions) can substantially enhance reasoning
performance. Moreover the use of iconic
and interactive representations has been
shown to improve performance accuracy
(Brase, 2009; Tsai et al., 2011; Micallef
et al., 2012; Sirota et al., 2014b). Finally,
an increasingly important area of research
in this regard pertains to the development
of training-programs designed to improve
patients’ and physicians’ comprehension
and computation of Bayesian problems
(Sedlmeier and Gigerenzer, 2001; Sirota
et al., 2014c).

There is a persistent need for advancing
research concerning efficacious commu-
nication of Bayesian information, such
that it can be comprehended by as many

individuals as possible—most urgently,
those who intervene in health care decision
making, such as clinicians and policy-
makers. Wide-scale disease screenings
hold both advantages and drawbacks
(Gigerenzer et al., 2007), and a clear
cognizance of their performance char-
acteristics and the numbers underlying
them is crucial to the state of pub-
lic health and safety. At the moment,
however, sufficient understanding of
them is strikingly scarce, and with each
passing year an unacceptable number
of prospective parents are pressed to
carry out a critical decision of poten-
tially daunting consequences, without
adequate knowledge of the important
risks. And, of course, the quintessential
challenges inherent to Bayesian rea-
soning are appreciable well beyond the
domain of prenatal screening, posing
egregious threats to the security and
well-being of both the individual and the
public.
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Most of the research on Bayesian reasoning aims to answer theoretical questions about

the extent to which people are able to update their beliefs according to Bayes’ Theorem,

about the evolutionary nature of Bayesian inference, or about the role of cognitive

abilities in Bayesian inference. Few studies aim to answer practical, mainly health-related

questions, such as, “What does it mean to have a positive test in a context of cancer

screening?” or “What is the best way to communicate amedical test result so a patient will

understand it?”. This type of research aims to translate empirical findings into effective

ways of providing risk information. In addition, the applied research often adopts the

paradigms and methods of the theoretically-motivated research. But sometimes it works

the other way around, and the theoretical research borrows the importance of the

practical question in the medical context. The study of Bayesian reasoning is relevant

to risk communication in that, to be as useful as possible, applied research should

employ specifically tailored methods and contexts specific to the recipients of the risk

information. In this paper, we concentrate on the communication of the result of medical

tests and outline the epidemiological and test parameters that affect the predictive power

of a test—whether it is correct or not. Building on this, we draw up recommendations

for better practice to convey the results of medical tests that could inform health policy

makers (What are the drawbacks of mass screenings?), be used by health practitioners

and, in turn, help patients to make better and more informed decisions.

Keywords: Bayesian reasoning, positive predictive value, risk communication, Bayesian textbook tasks, medical

tests

Introduction

Research in Bayesian reasoning started with the pioneering work of Casscells (1978) and
Eddy (1982) and has consisted mostly in asking participants about the trustworthiness
of positive results in screening tests, i.e., the positive predictive value (PPV) of
medical tests. The PPV of a test expresses the proportion of people affected by a
medical condition relative to the total number of positive test results. Textbook
Bayesian problems (as well as medical tests’ brochures, informed consent forms, etc.)
commonly present information about the prevalence of a condition (i.e., proportion
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of population with the condition), the sensitivity of a test
(i.e., probability that a test detects the presence of the medical
condition) and its false-positive rate (i.e., probability that the
test detects a medical condition that is not present), and ask
participants to assess the positive predictive value of the test
(PPV). The following example (Gigerenzer and Hoffrage, 1995)
is a widely used Bayesian reasoning problem:

The probability of breast cancer is 1% for women aged forty who

participate in routine screening. If a woman has breast cancer, the

probability is 80% that she will get a positive mammogram. If a

woman does not have breast cancer, the probability is 9.6% that she

will also get a positive mammogram. A woman in this age group

has a positive mammogram in a routine screening. What is the

probability that she actually has breast cancer?

To answer the question of PPV correctly—the probability
of having the medical condition given a positive test result,
formalized as p(H|D)—participants need to understand the
structure of the problem and extract the key probabilistic
pieces of information outlined above: the prevalence of the
condition [p(H) = 1%], and the test characteristics—sensitivity
(p(D|H)= 80%) and false-positive rate (p(D|∼H)=9.6%).

In this example, to adequately answer the question (PPV), a
participant (or a patient) would need to combine all the above
information in a specific way, following the Bayes’ formula as
displayed in Equation (1).

p (H|D) =
p (H) p (D|H)

p (H) p (D|H) + p (∼H) p (D| ∼ H)
(1)

Bayesian problems vary in complexity depending on the format
of presentation of the probabilistic information (e.g., natural
frequencies vs. single-event probability) and based on the
structure and content of the narrative (Barbey and Sloman, 2007;
Krynski and Tenenbaum, 2007; Lesage et al., 2013; McNair and
Feeney, 2014). There are ways to simplify the computational
demands: using absolute reference class (e.g., frequencies or
chances with a natural sampling) and specifying the number
of positive tests p(D). In this case, with only two pieces of
information, p(D&H)—the chances of having a positive result
and the disease at the same time—and p(D)–the chances of a
positive test—we can proceed using a simplified version of the
Bayes’ theorem outlined in Equation (1). Equation (2) could be
seen as a simple case of Laplacian probability (Laplace, 1810):
ratio of “favored events” to total possible events (i.e., ratio of the
number of correct classifications to the total positive results in
the test).

p (H|D) =
p (D & H)

p (D)
(2)

Researchers have found that the ability of people to solve
Bayesian problems depends greatly on the way the information
is conveyed, ranging from ∼5% in the first case (1), to up
to ∼50% in the latter (2) (see Gigerenzer and Hoffrage, 1995
for a very detailed explanation encompassing the difference
between Equations 1 and 2). Manipulating features of the

textbook Bayesian problems such as visual representations
(Brase, 2009; Sirota et al., 2014b), clarification of the causal
structure (Krynski and Tenenbaum, 2007; McNair and Feeney,
2014), and information structure (Barbey and Sloman, 2007)
can also improve reasoning performance in some circumstances.
Individual differences also account for some performance
variance over and above the actual content of the task, such as,
for example, cognitive reflection ability and numeracy (Sirota and
Juanchich, 2011; Johnson and Tubau, 2013, 2015; Lesage et al.,
2013; Sirota et al., 2014a).

Furthermore, the way we currently study Bayesian reasoning
may not be the best. It has been argued that research focused
on how people update their beliefs or probabilities, to improve
our knowledge about how the mind works, assesses ability more
akin to statistical inference than to Bayesian reasoning (Mandel,
2014). But, more specifically, if we are interested in the best
way to convey medical information to patients, we need to
adopt a more flexible approach than the mechanical application
of textbook problems. Indeed, most of the research outlined
above used textbook problems to study the theoretical basis of
Bayesian reasoning (Baratgin and Politzer, 2006), often using the
presence of this type of information in medical contexts as a
testimony of the importance of the research. The focus has been
on ways to improve people’s understanding via the use of pictorial
aids, causal structure, computational simplification, clarification
of the structure of the problem and boundary conditions
(e.g., individual differences in cognitive processing), sometimes
forgetting the real needs of the applied side of our research.

The importance of finding better ways to communicate
medical risks has become a common motivating factor for
a fair share of the Bayesian reasoning literature, given the
real world impact of this field and the fact that only a few
people can actually understand this kind of information as it is
commonly presented (see Sedlmeier and Gigerenzer, 2001; Juslin
et al., 2011; Pighin et al., 2015a). Even health-care professionals
often have difficulties understanding probabilistic information1

(Ghosh et al., 2004; Gigerenzer et al., 2007). Bayesian reasoning
research has shown that people’s understanding of probabilistic
problems depends on the complexity of the structure of the
problem, the computation required and their own cognitive skills
and thinking styles. However, those principles rarely transcend
the basic research walls. In clinical practice, what we know
about Bayesian reasoning is not generally applied to improve
the way of communicating risk. As a consequence, people have
to understand their health practitioners’ explanations, “informed
consent” or medical tests brochures, where the information given
is poorly structured, incomplete and simply often beyond their
capabilities. The example below2 shows a prenatal test brochure
for Down Syndrome. As far as we have seen, this is fairly
representative of the prenatal tests’ brochures available online.
The explanation provided in the brochure is a mix of frequencies
and relative probabilities from which it is very difficult to derive
the positive predictive value of the test.

1For example, Gigerenzer et al. (2007) show that the number of physicians able to

solve a multiple choice breast cancer screening problem was 21%, slightly below

chance.
2From http://www.prenatest.ca/en/Harmony-Prenatal-Test-Brochure.pdf.
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It is estimated that trisomy 21 is present in 1 out of every 800 births

in Canada.

It is estimated that trisomy 18 is present in approximately 1 out

of every 6,000 births.

It is estimated that trisomy 13 is present in approximately 1 out

of every 16,000 newborns.

The Harmony Test has been shown to have detection rates of up

to 99 % and false positive rates as low as 0.1 % for trisomy 21, 18,

and 13 (...)

In this example, if a couple expecting a baby wanted to
understand what a positive result in the test meant, they would
have to deal with a very complex calculation. The information
given can be matched to Equation (1)—assuming you know that,
p(∼H) = 1-p(H). For the trisomy 21 case it would translate into
Equation (3):

p
(
Trisomy 21 | + test

)
=

(A)
1 out of 800 × 99%

(
1 out of 800×99%

)
+

(
799 out of 800×0.1%

) =

(B)
0.123

0.123+ 0.0998
= 0.55 (3)

If the parents completed Equation (3)3 they would realize the
probability of having a child affected with a trisomy 21, 18, or
13 given a positive test result, is, respectively, 55%, 14% and 6%
(see Navarrete et al., 2014 for a more detailed account), likely to
be below their expectations, given a generally shared high regard
for medical tests (Gigerenzer et al., 2009).

In a medical context, it is important that people understand
the risks, the pros and cons of undertaking a test and how to
interpret the result afterwards. The role of the medical personnel
is vital and, although the ethical dimension and other issues
involved are beyond the scope of this article, we want to recognize
their complexity. In any case, we could probably agree that it
is important that patients are given the possibility of reaching a
sufficient level of understanding to give a truly informed consent.
Why then are we forcing participants and patients to deal with a
non-trivial set of information, and then to perform a calculation
generally too difficult for them? In most cases this translates
into patients or doctors being unable to provide an informed
consent and to blindly trusting medical tests or falling prey to
bogus medical tests, and in uninformed politicians implementing
policies promoting mass screenings for low prevalence diseases,
where the positive predictive value is also low (e.g., as for the
Trisomy 13 for which a positive test identifies correctly the
Syndrome in only 6 cases out of 100). This can result in negative
consequences, costing life and money (Gigerenzer et al., 2007).

But why are mass screenings less useful than targeted
screenings? To be able to understand the result of a medical test,

3To be able to give a reference point, we asked 66 people to solve the above two

Equations 3(A) and 3(B) through the web platform Amazon’s Mechanical Turk,

and the average accuracy correct response was 21 and 53%, respectively. That is,

even when we give people the data of the brochure within the required formula,

less than 25% are able to correctly solve it.

one needs to take into account two different and inter-related
sets of information. The first set of information relies on the
test’s characteristics: its sensitivity and false positive rate. The
second set of information has to do with the disease itself, more
specifically its prevalence. The usefulness and trustworthiness
of a test critically depends on the prevalence of the medical
condition it is seeking to detect, and this depends on the reference
group used (Baldessarini et al., 1983).

Prevalence,– and its relationship with false positives– is
pivotal and very often misunderstood when interpreting the
meaning of a positive result in a test. As prevalence decreases—as
is the case in mass screenings—even near perfect tests produce a
large number of false positives, and hence, a low PPV. Several
authors have warned about the dangers of mass screenings
and their negative consequences, such as the high cost of false
positives in psychological and monetary terms (Christiansen
et al., 2000; Gigerenzer et al., 2007; Navarrete et al., 2014).

It is important to keep in mind that prevalence is not a
characteristic of a test but of the population to whom the test
is given. For example, the prevalence of certain chromosomal
aberrations in fetuses is related to maternal age and gestation
time (Nicolaides, 2004). The exact same test would “work” a lot
better—i.e., have a higher PPV—in older pregnant women than
in younger ones. Specifically, the rates of prevalence range from
1 out of 1000 for 20 year old mothers up to 1 in 38 for 42 year old
mothers (Nicolaides, 2004, p. 18). That means that the combined
test reliability, used commonly as a screening procedure, goes
from a 2% PPV when used in young mothers to 34% PPV when
used in a relatively high risk group. Still a far cry from a reliable
test, but a change with dramatic consequences given the default
recommended assessment in the case of a positive result, and its
associated risks (Navarrete et al., 2014).

To combine all available information, one should follow
Equation (2): ratio of the number of correct classifications to
the total positive results in the test. The number of correct
classifications will always be close to 1 as the prevalence is usually
presented in a standard way—1 out of X (but see Pighin et al.,
2015b for some related issues)—and the sensitivity is usually close
enough to 100%. On the other hand, the denominator magnitude
will depend on the number of false positives and theX term of the
prevalence (1 out of X). Imagine we have a test with a 0.1% rate of
false positives that aims to detect a relatively common condition
affecting 1 in 100 individuals (see Equation 4). The number of
false positives would be calculated multiplying the 99 healthy
individuals by 0.1%, that is, 99× 0.001=∼ 0.099. Using Equation
(2), this would translate into a PPV of 0.91, or a 91% chance of
having the medical condition given a positive test result.

p (H|D) =
p (D&H)

p (D)
=

1

1+ 0.099
= 0.91 (4)

Unfortunately, tests are not always so reliable, nor are the
tested medical conditions so common. According to the EU
regulations4, most patients suffer from diseases affecting 1 in
100,000. Test reliability and prevalence can dramatically reduce

4From http://ec.europa.eu/health/rare_diseases/policy/index_en.htm: “In EU

countries, any disease affecting fewer than five people in 10,000 is considered rare.
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the ability of a test to identify a medical condition. For example, a
test with the same rate of false positives (0.1%) that aims to detect
a disease with a lower incidence, such as of 1 in 10,000 would
result in a much lower PPV: 0.09, or 9%, as seen in Equation (5).

p (H|D) =
p (D&H)

p (D)
=

1

1+ 9.99
= 0.09 (5)

The previous two examples show how the PPV of a test can
change from 91 to 9% simply because of a lower incidence of
a medical condition (from 1 in 100 to 1 in 10,000). In a mass
screening campaign, the incidence of amedical condition is lower
than in a targeted screening campaign, lowering dramatically the
reliability of the test results.

Of course, as often happens, if a medical test is not as reliable
as the one used in the two examples above (100% sensitivity,
and 0.1% false positive rate), a low positive predictive value
appears even with common medical conditions. For example, see
in Equation (6) the computation of the positive predictive value
of a test aiming to detect a condition with a prevalence of 1 in
100, and a false positive rate as low as 1%. When the rate of false
positives increases by 0.9%, the positive predictive value of the
test decreases by 40%, dropping from 90 to 50%. In this context,
a person receiving a positive test has only a 50% chance of actually
having the condition.

p (H|D) =
p (D&H)

p (D)
=

1

1+ 0.99
= 0.5 (6)

That number may seem small, but it translates into approximately 246,000 people

throughout the EU’s 28 member countries. Most patients suffer from even rarer

diseases affecting one person in 100,000 or more. It is estimated that today in

the EU, 5-8,000 distinct rare diseases affect 6–8% of the population—between 27

and 36 million people.” The PPV for a test with 100% sensitivity and a 0.1% false

positive rate trying to detect a 1 in 2000 condition is 50%.

With all these examples, we are not implying that screening tests
should not be trusted. We intend to outline the factors needed to
be considered when using and interpreting medical test results.
As we have seen, low prevalence rates, and their interaction

with false positive rates, are generally guilty of decreasing
the positive predictive value of a test: Figure 1 provides an
illustration of this. The variability of positive predictive values
of medical tests, according to the characteristics of the test and
the prevalence of the condition, makes it hard for patients to
decide whether to take the test and to assess their chances of
having a condition when they test positive, particularly when
the information given to them is generally too complicated to
understand.

Given the need of facilitating the patient’s assessment and
decision making powers, different solutions can be offered.
Further medical research to improve the present tests and
decrease their false positive rates is obviously a very important
and necessary path. Testing only people in higher risk groups
and avoiding mass screenings as much as possible or, at least,
making their limitations clear, is a critical necessity given the
reality of the medical tests available and their trustworthiness for
diagnosing rare conditions. Of course, increasing public health
literacy should be traversal to these and any other alternatives
available (Gigerenzer, 2015).

Nonetheless, one important aspect not covered in the above
options is that we need to find better ways to communicate
medical risks, starting with using the information obtained
through empirical research in medical practice. For those of
us interested in improving the way we convey medical risks,
focusing research on what real patients need is vital. In the real
world, when receiving medical test results or reading informed
consents, people are confronted with probabilistic information
generally too complex to be understood, let alone calculated.
We need to avoid altogether the classical triad (specificity, false

FIGURE 1 | Positive predictive value for three tests with a 100% sensitivity according to the rate of false positive (A) 0.1%, (B) 1%, and (C) 2%, and to

the prevalence of the condition.
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positive rate and prevalence) if we want to improve people’s
chances of understanding test results and informed consents, and
of playing a more active role in shared decision making. It is
also important to acknowledge that there exist teams focusing
on helping health practitioners better communicate risk and
patients better understand risks (e.g., Reyna et al., 2009; Garcia-
Retamero et al., 2010; Gigerenzer, 2014). However, theoretical
research seems to still have the lion’s share in Bayesian reasoning
and we would suggest further harnessing these teams’ work to
derive simple and effective guidelines to communicate medical
test results.

Our proposal, then, is to present information about the PPV,
and specifically, how trustworthy a positive or a negative result
in each particular test really is for the individual: that is, the
PPV for the test relative to the risk group the person belongs
to. Using epidemiological factors (such as age in the prenatal
screening example above, a list of common behaviors for each
risk group, family history, etc.) we could help people assign
themselves to a specific risk group. An example would be to
present something akin to one of the sections of Figures 1A–C,
making clear which epidemiological factors, risk behaviors, etc.
are associated with each of the prevalence or risk groups. In
prenatal screening, this would depend, amongst other factors,
on the age of the mother to be. In a mass screening context,
this approach could translate to most people (low risk people)
avoiding getting tested for rare conditions, as the PPV for them
would be extremely low. Prevalence is a characteristic of the
disease or of the group tested and its risk factors, and not of
the test, and we must stop ignoring this fact. This would help
people distinguish between good and bad tests and make for
more informed decisions.

To sum up, the goal of this article is to call on the scientific
community studying Bayesian reasoning to join efforts and focus
further on finding better ways to present medical information.
Such research could inform policy makers’ decisions (specifically
helping them understand why mass screenings are less useful
than targeted screenings) and be used by health staff to enable
patients to make better informed decisions related to their
health. One possibility is to find good ways to assign people
to risk groups and to present information about tests relative
to these risk groups, but other options surely exist. Of course,
it is important to empirically confirm that people really do
better with this new way of presenting the information (e.g.,
they do understand the pros and cons of the combination
of tests suggested in prenatal screening), and to assess the
medical consequences of such trials. This call for further applied
research is not unique and joins other initiatives to avoid risk
miscommunication (e.g., fact-box for breast cancer screening
pamphlets as suggested by Gigerenzer, 2014). Most people would
agree: misinformation needs to stop.We have the chance to work
toward this goal together.
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Most psychological research on Bayesian
reasoning since the 1970s has used a
type of problem that tests a certain kind
of statistical reasoning performance. The
subject is given statistical facts within a
hypothetical scenario. Those facts include
a base-rate statistic and one or two diag-
nostic probabilities. The subject is meant
to use that information to arrive at a “pos-
terior” probability estimate. For instance,
in one well-known problem (Eddy, 1982)
the subject encounters the following:

The probability of breast cancer is 1%
for a woman at age forty who partici-
pates in routine screening. If a woman
has breast cancer, the probability is 80%
that she will get a positive mammogra-
phy. If a woman does not have breast
cancer, the probability is 9.6% that she
will also get a positive mammography. A
woman in this age group had a positive
mammography in a routine screening.
What is the probability that she actually
has breast cancer? __ %.

The information in such problems can
be mapped onto common expressions
that use H as the focal hypothesis, ¬H
as the mutually-exclusive hypothe-
sis, and D as datum: P(H), the prior
(often equated with the base-rate)
probability of the hypothesis; P(D|H),
the true-positive rate; and P(D|¬H), the
false-positive rate. In the mammogra-
phy problem, P(H) = 0.01, P(D|H) =
0.80, and P(D|¬H) = 0.096. Furthermore,
P(¬H) = 1 – P(H) = 0.99. The estimate
queried is P(H|D).

Bayes’ theorem states:

P(H|D) = P(H)P(D|H)

P(H)P(D|H) + P(¬H)P(D|¬H)
.

Thus, it yields a posterior probability of
0.078 in the mammography problem. Yet
even the majority of physicians who were
queried by Eddy (1982) gave estimates
roughly one order of magnitude higher
(i.e., 0.70–0.80).

Well-established findings such as these
have supported the view that expert and
naïve subjects alike are non-Bayesian
(Kahneman and Tversky, 1972). A com-
mon explanation is that people neglect
base-rate information, which is not
tracked by the intuitive heuristics they
use to reach an estimate (Kahneman and
Tversky, 1972, 1973). For instance, if base
rates were neglected in the mammography
problem,

P (H|D) = 0.80

0.80 + 0.096
≈ 0.89.

This estimate is closer to the modal esti-
mate but is still off by about ten percentage
points. Another explanation is that peo-
ple commit the inverse fallacy, confusing
P(H|D), which they are asked to estimate,
with P(D|H), which is provided (Koehler,
1996). In the mammography problem,
this explanation fits the data well because
P(D|H) = 0.80. The inverse fallacy can
also explain patterns of deviation from
Bayes’ theorem in tasks that hold con-
stant base rates for alternative hypotheses
(Villejoubert and Mandel, 2002).

It is also known that steps can be
taken to increase agreement with Bayes’
theorem. Since Bayes’ theorem can be
simplified as

P (H|D) = f (D ∩ H)

f (D)
,

task reformulations that directly pro-
vide these values or make them eas-
ily computable increase the proportion
of Bayesian responses (e.g., Gigerenzer
and Hoffrage, 1995; Hoffrage et al.,
2002; Ayal and Beyth-Marom, 2014). Such
formulations of evidence reduce compu-
tational steps and may also effectively
trigger awareness of the correct solution,
much as eliciting logically-related prob-
ability estimates (e.g., of binary comple-
ments) in close proximity rather than far
apart improves adherence to the addi-
tivity property (Mandel, 2005; Karvetski
et al., 2013). Natural frequency represen-
tations, which reveal nested-set relations
among a reference class or representative
sample (Gigerenzer and Hoffrage, 1995;
Cosmides and Tooby, 1996), lend them-
selves easily to such simplification and
have been shown to improve Bayesian rea-
soning. For instance, Bayesian responses
to the mammography problem more
than doubled when it was presented in
natural-frequency format (Gigerenzer and
Hoffrage, 1995). Although the theoretical
bases of such improvements are debated
(e.g., Barbey and Sloman, 2007, and con-
tinuing commentaries), most agree that
substantial improvement in conformity
to Bayes’ theorem is achievable in this
manner.

Bayesian reasoning also benefits from
the use of visual representations of perti-
nent statistical information, such as Euler
circles (Sloman et al., 2003) and frequency
grids or trees (Sedlmeier and Gigerenzer,
2001), which further clarify nested-set
relations. For instance, Figure 1 shows
how the natural-frequency version of the
mammography problem could be rep-
resented with a frequency tree to help
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FIGURE 1 | Frequency tree and solution for the mammography problem.

individuals visualize the nested-set rela-
tions and how such information ought
to be used to compute the posterior
probability.

OBSERVATIONS
A remarkable feature of the standard
approach to studying Bayesian reasoning
is its inability to reveal how people revise
their beliefs or subjective probabilities in
light of newly acquired evidence. That is,
in tasks such as the mammography prob-
lem, information acquisition is not staged
across time (real or hypothetical), and
researchers typically do not collect multi-
ple “prior” and “posterior” (i.e., revised)
probability assessments.

It is instead conveniently assumed that
the base rate represents the subject’s prior
belief, P(H), which the subject updates in
light of “new” evidence, D. It is somewhat
ironic that advocates of base-rate neglect
have not noted (let alone warned) that, if
people ignore base rates, it may be unwise
to assume they represent the subject’s prior
probability. Would that not imply that the
subject ignores his or her own prior prob-
ability?

Priors need not equal base rates, as
many have noted (e.g., de Finetti, 1964;
Niiniluoto, 1981; Levi, 1983; Cosmides
and Tooby, 1996). The prior, P(H), is in
fact a conditional probability correspond-
ing to one’s personal probability of H,

given all that they know prior to learning D
(Edwards et al., 1963; de Finetti, 1972). In
all real-life cases where no single, relevant
base rate is ever explicitly provided, people
may experience considerable uncertainty
and difficulty in deciding precisely which
base rate is the most relevant one to con-
sider. For instance, imagine that the test
result in the mammography problem is
for a specific, real woman and not just an
abstract one lacking in other characteris-
tics. If her prior for H is contingent on
the presence or absence of some of those
characteristics, one could see how the base
rate provided in the problem might be
more or less relevant to the woman’s par-
ticular case. If she has several character-
istics known to elevate a woman’s risk of
breast cancer, then simply using the base
rate for 40-year-old women as her prior
would bias her revised assessment by lead-
ing her to underestimate the risk she faces.
Conversely, she may have a configuration
of characteristics that make her less likely
than the average 40-year-old woman to
develop breast cancer, in which case using
the base rate as her prior would cause her
to overestimate objective risk.

Clearly, the ideal base rate in such per-
sonal cases would be a sample of people
who are just like the patient, yet since
each of us is unique no such sample
exists. In the absence of a single, ideal base
rate, one must decide among a range of

imperfect ones—a task involving decision
under uncertainty. It might be sensible for
the woman getting the screening to anchor
on a relevant, available base rate, such as
for women in her cohort, and then adjust
it in light of other diagnostic characteris-
tics that she knows she possesses. Yet, if
people are overly optimistic (Taylor and
Brown, 1988; Weinstein, 1989), we might
anticipate systematic biases in adjustment,
with underweighting of predisposing fac-
tors and overweighting of mitigating fac-
tors. This point about the possible role
of motivated cognition also brings a key
tenet of subjective Bayesianism to the
fore—namely, that different individuals
with access to the same information could
have different degrees of belief in a given
hypothesis, and they may be equally good
Bayesians as long as they are equally
respectful of static and dynamic coher-
ence requirements (Baratgin and Politzer,
2006).

Given that standard Bayesian reason-
ing tasks involve no assessment of a prior
probability, they should be seen for what
they are: conditional probability judgment
tasks that require the combination of sta-
tistical information. When that informa-
tion is fleshed out, it reveals the fours cells
of a 2 × 2 contingency table, where a =
f (H ∩ D), b = f (H ∩ ¬D), c = f (¬H ∩
D), and d = f (¬H ∩ ¬D). Going from left
to right, the four boxes in the lowest level
of the frequency tree in Figure 1 corre-
spond to cells a–d, which have received
much attention in the causal induction lit-
erature (Mandel and Lehman, 1998). We
can restate Bayes’ theorem as the following
cell-frequency equalities, corresponding to
short and long expressions given earlier,
respectively:

P (H|D) = a

a + c

=
(a + b) / (a + b + c + d) ×

a/(a + b)

(a + b) / (a + b + c + d) ×
a/(a + b) + (c + d) / (a + b + c + d)

×c/ (c + d)

.

From this perspective, it is perhaps unsur-
prising why a greater proportion of sub-
jects conform to Bayes theorem when they
are given the frequencies a–d than when
they are instead given the values equal
to (a + b)/(a + b + c + d), a/(a + b), and
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c/(c + d). That is, frequencies a–c sup-
port the easy computation of a/(a + c).
However, those improvements in perfor-
mance, which pertain to static coherence
constraints (Baratgin and Politzer, 2006),
do not speak to other important facets
of Bayesian reasoning, such adherence to
dynamic coherence constraints, which are
fundamental to Bayesian belief revision
(Seidenfeld, 1979).

I do not intend for my observations
to imply that the well-established find-
ings I summarized earlier are incorrect.
However, I believe greater care should be
taken in labeling the type of performance
measured in such experiments. “Statistical
inference” would seem to be more appro-
priate than “Bayesian reasoning” given the
limitations I have noted.

Future research on Bayesian reasoning
would benefit from a richer conceptualiza-
tion of what it is to “be Bayesian” and from
better discussion of whether being non-
Bayesian is necessarily irrational (Lewis,
1976; Walliser and Zwirn, 2002; Baratgin
and Politzer, 2006). Future work would
also benefit by breaking free of the typical
methodological approach exemplified by
the mammography problem. One avenue
would be to collect prior and poste-
rior assessments from subjects in exper-
iments where information acquisition is
staged (e.g., Girotto and Gonzalez, 2008),
or where temporal staging is at least an
important characteristic of the described
problem, such as in the Monty Hall prob-
lem (Krauss and Wang, 2003) and Sleeping
Beauty problem (Elga, 2000; Lewis, 2001).
Another promising line involves assessing
people’s prior distributions for different
types of real events (e.g., Griffiths and
Tennenbaum, 2006).

The staging of information with
repeated assessments was in fact a com-
mon methodological approach in Bayesian
research prior to the 1970s, culminating
in the classic work on conservatism by
Ward Edwards and others (for a review,
see Slovic and Lichtenstein, 1971). Such
approaches could be revisited in new
forms and contrasted with other methods
of information staging, such as the trial-
by-trial information acquisition designs
used in causal induction (e.g., Kao and
Wasserman, 1993; Mandel and Vartanian,
2009) or category learning (e.g., Gluck and
Bower, 1988; Shanks, 1990) studies.

For example, Williams and Mandel
(2007) presented subjects with 28
problems prompting them for a con-
ditional probability judgment. In each
problem, subjects first saw 20 patient
results presented serially. The subject
saw whether the patient carried a virus
hypothesized to cause a particular illness
and whether the patient had the illness or
not. Sample characteristics were varied so
that P(H|D) ranged from 0 to 1 over seven
probability levels across the problems.
Subjects exhibited a form of conservatism
(cf. Edwards, 1968), overestimating low
probabilities and underestimating high
probabilities. The task illustrates the value
of breaking free of the standard problem
set. First, the trial-by-trial design better
represents the information acquisition
environment that ecological rationality
theorists (e.g., Gigerenzer and Hoffrage,
1995; Cosmides and Tooby, 1996), have
described as natural. That is, information
acquisition in that task is more natural
than in natural-frequency versions of
standard problems because no statistical
information is presented to the subject in
written form. Rather, subjects learn about
each case serially, more like they would
have in the Paleolithic Era. Second, the
design gets researchers away from studying
average responses to a single problem with
a unique data configuration. The authors
would not have been able to detect conser-
vatism if they had not explored problems
for which the mathematical probabilities
subjects were asked to judge covered the
full probability range. Third, the induction
paradigm, which presents information on
cells a–d to subjects, easily lends itself to
studying subjective cell importance, which
can help take the cognitive processes sub-
jects use to arrive at their judgments out
of the proverbial black box. For instance,
Williams and Mandel (2007) found that,
when asked to assign subjective impor-
tance ratings to each of the fours cells,
subjects assigned weight to irrelevant
information, such as focusing on ¬D cases
when asked to judge P(H|D), causing an
underweighting of relevant information.

The issues I have raised, non-exhaustive
as they are, draw attention to some
important problems with the conventional
approach to studying Bayesian reason-
ing in psychology that has been domi-
nant since the 1970s. Rather than fostering

pessimism, I hope my comments illus-
trate that there are good opportunities for
future work to advance our understand-
ing of how people revise or update their
beliefs.
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Judgements in the real-world often inher-
ently involve uncertainty, from the mun-
dane: “do those clouds signal rain?” to the
potentially life-changing: “Does this per-
son have cancer?” Normatively estimating
the likelihood of outcomes in such situ-
ations involves considering how compet-
ing sources of probabilistic evidence (“how
likely are clouds with/without rain?”)
should be weighed against prior probabil-
ities (“how likely is it to rain/not rain?”),
known as Bayesian reasoning. This com-
plex form of reasoning, however, typi-
cally eludes many people, and can have
dramatic implications including overdiag-
nosis (e.g., Casscells et al., 1978), and
wrongful conviction (e.g., the famous
Sally Clark case in the UK. See Nobles
and Schiff, 2007). Whilst the question
of how best to assist people to make
such judgments remains in critical need
of research (e.g., Navarrete et al., 2014),
this paper considers how extant research
on Bayesian facilitation has been some-
what constrained by both theoretical, and
methodological status-quos. As Mandel
(2014) notes, in more general terms we
still know relatively little about “what it
is to ‘be Bayesian’,” which has clear impli-
cations for our understanding of “what
works and why” in Bayesian intervention.
This paper contemplates several sugges-
tions as to how research may improve
its pursuit of this goal, including the
deconstructing of Bayesian reasoning into
component tasks, and the leveraging of
more process-oriented measures to further
integrate burgeoning findings concerning
individual cognitive differences.

Although research has discovered
several interventions that can facilitate

more accurate Bayesian judgments, dis-
cussion has centered on a distinct division
as to the psychological basis of these
facilitation effects. Facilitation is often
explained as being due to either (a)
humans having evolved a cognitive pri-
macy specifically for naturally sampled
data (e.g., Gigerenzer and Hoffrage, 1995;
Brase, 2009), or alternatively (b) an acti-
vation of more general analytical cognitive
processes through explicating nested sub-
set relations (e.g., Sloman et al., 2003;
Yamagishi, 2003). Whilst the former, evo-
lutionary hypothesis advocates facilitation
through expressing data as natural fre-
quencies, the latter, nested-sets hypothesis
argues that reasoning can be improved
irrespective of numerical format by gener-
ally clarifying set relations in the structure
of the available evidence, such as through
the use of visual diagrams. The debate
between both positions, to a large extent,
continues to define the literature on
Bayesian reasoning (more recently Brase,
2008; Hill and Brase, 2012; Lesage et al.,
2013; Sirota et al., 2014). But, whilst there
continues to be disagreement on how best
to facilitate Bayesian reasoning, one might
look to the research and note the distinct
variability in reported improvements pro-
duced by both frequency- and set-based
interventions.

To illustrate, uncertain data expressed
as naturally-sampled frequencies can
increase Bayesian accuracy as high as either
76% (Cosmides and Tooby, 1996), 54%
(Evans et al., 2000), or 31% (Sloman et al.,
2003) where equivalent measures have
been used. Similarly, equivalent visual
diagrams that elucidate nested set rela-
tions, irrespective of numerical format,

can improve accuracy rates as high as
80% (Yamagishi, 2003), 48% (Sloman
et al., 2003), or 35% (Brase, 2009). Such
variability exposes a particular limita-
tion common to both perspectives in
that neither theory offers satisfactory
explanations as to why many people are
seemingly not facilitated by their respec-
tive interventions. This perhaps stems
more generally from the fact that both
perspectives provide little specification of
the actual mental journey people undergo
when attempting to reason in Bayesian
terms. By more clearly characterizing what
distinguishes those who are and those
who are not facilitated we might over-
come some of these theoretical limitations
and, ultimately, further extend our under-
standing of how best to improve Bayesian
reasoning beyond the theoretical divide
that currently exists.

Approaching this issue involves a slight
shift in perspective from “what works and
why?” in Bayesian facilitation to “what
works for whom, and why?” (see Hill
and Brase, 2012; McNair and Feeney,
in press, for examples), and more recent
research has begun to illuminate a diverse
range of psychological capacities associ-
ated with Bayesian facilitation. Abilities
such as numeracy (e.g., Johnson and
Tubau, 2013; McNair and Feeney, in press;
though see also Hill and Brase, 2012); cog-
nitive reflection (Lesage et al., 2013); and
fluid intelligence (e.g., Sirota et al., 2014)
have variously being associated with good
Bayesian reasoning, which may go some
way in explaining why previous research
has noted such variability in facilitation
findings (see Brase et al., 2006, for related
concerns). Yet, identifying that component
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abilities and traits are associated with facil-
itation effects answers only part of the
above question. Moreover, recent discus-
sion of individual differences in Bayesian
facilitation has remained grounded in the
evolutionary and nested-sets debate as it
stands, and as such there exists limited
extrapolation of these findings beyond the
abstract activation of either a frequency-
processing engine in the brain, or set-
based analytical processing [though see
discussions of Sirota et al. (2014) and
Johnson and Tubau (2013) for some fur-
ther speculation]. Of further interest is
exactly how these individual differences in
facilitation are manifest in terms of differ-
ential thought processes that separate good
Bayesian reasoning from bad.

Other recent research, for instance, is
beginning to unearth exactly how different
cognitive abilities inform different forms
of reasoning (e.g., Del Missier et al., 2013).
Elsewhere, De Neys and Bonnefon (2013)
consider that cognitive individual differ-
ences may occur either early or late in the
reasoning process. Their contention is that
early individual divergences in the reason-
ing process may represent a more funda-
mental lack of formal knowledge, whilst
later divergences may represent failures in
appropriately applying knowledge. Given
this hypothesis, individual differences in
facilitation effects could be leveraged to
signal the particular step in the Bayesian
process on which a particular interven-
tion exerts most benefit. For this type of
approach to yield maximum insight, how-
ever, requires more than a slight shift in
theoretical perspective; it will also require
a reappraisal of some typical methodolog-
ical practices used in the study of Bayesian
reasoning.

Mandel (2014) succinctly notes sev-
eral issues that have typified the archety-
pal methods used to study Bayesian
reasoning, notably that of using word
problems such as Eddy’s (1982) mammog-
raphy problem. Whilst the use of word
problems can provide a convenient lit-
mus test of one’s capacity for Bayesian
thought, they are often studied in ways
that afford limited insight into reason-
ers’ thinking. Two longstanding issues
in particular can be identified that, if
addressed, would complement attempts
to understand how reasoners conduct
the process of Bayesian reasoning, and

how component abilities map onto this
process.

Firstly, word problems predominantly
focus on the endpoint of the judgment
process, that is: whether someone pro-
duces the correct numerical estimate or
not. We might conceive of the process
of Bayesian judgment as akin to navigat-
ing a maze: there is usually one correct
path to the exit, but several dead ends
that one may arrive at before identifying
the correct path. The process of Bayesian
reasoning, for most people, may involve
a similar process of cognitive tribulation
before one reaches the point of arith-
metic computation. Yet, by focusing on the
endpoint we learn little about the jour-
ney. In doing so, research eschews poten-
tial opportunities to gain richer awareness
into how interventions may change peo-
ples’ mental journey through the Bayesian
maze, awareness that would further clar-
ify the manner in which these interven-
tions are effective. Future research, then,
should look to study how reasoners reach
their final Bayesian judgments, rather than
simply what that final judgment is. One
suggestion would be to make greater use of
think-aloud protocols to identify the steps
at which non-Bayesian deviations occur,
and what such deviations entail. Whilst
think-aloud paradigms are not without
issue—verbalizing thoughts when reason-
ing can be cognitively challenging (Wilson,
1994); and the mere act of thinking aloud
can reactively alter the reasoning pro-
cess (e.g., Ericsson and Simon, 1998)—the
process has previously yielded useful infer-
ences into the types of thoughts underly-
ing errors in Bayesian reasoning (De Neys
and Glumicic, 2008). Potential procedu-
ral issues are also not without remedy.
Although asking reasoners to think-aloud
whilst solving more complex Bayesian
word problems may prove overly-taxing
for the average person, an alternative
approach might see the Bayesian task bro-
ken down into component steps such as,
for instance, information selection; infor-
mation integration; and finally calculation
(see Krynski and Tenenbaum, 2007, for a
similar conceptualization). Reducing the
overall task into component subtasks pre-
sented sequentially may reduce the over-
all burden of a think-aloud paradigm in
this context, and more importantly max-
imize insight into the exact points in

the Bayesian maze at which people devi-
ate from the normative path, permitting
more fine-grained interpretations. Varying
the think-aloud procedure between sub-
jects should also control for any concern
regarding whether a think-aloud approach
might actually alter how people would
otherwise think about and reason through
the task.

A second longstanding issue concerns
how research often denotes participant
estimates as “correct” (i.e., Bayesian) or
“incorrect” (i.e., all other responses).
Focusing on the accuracy of judgments
alone may conceivably mean an indetermi-
nate number of respondents are perhaps
harshly categorized as poor Bayesian rea-
soners on account of failing to compute
a strictly normatively accurate estimate.
McNair and Feeney (2013), for instance,
observed negligible levels of Bayesian
responding on a mammography problem
when only exactly arithmetically correct
responses were accepted, yet consistently
observed that a quarter of all responses
fell within 5% of the correct estimate.
Furthermore, the specific errors people
produce offer potentially rich insights as
to how the final judgment was conceived
(e.g., Gigerenzer and Hoffrage, 1995); an
overly conservative judgment connotes a
very different thought process to a wildly
inflated estimate. Future research may
look to leverage Zhu and Gigerenzer’s
(2006) “write-aloud” procedure, as an
example, which not only identifies a
range of discrete errors—each charac-
terized by different reasoning—but also
precludes those who produce marginally
incorrect estimates as being classified as
de facto poor reasoners. Furthermore,
rather than dichotomizing responses—
which may give a diminished sense of
an intervention’s effectiveness—reporting
graded improvements in accuracy (e.g.,
number of judgments within 5, 10, or 15%
of the arithmetic estimate etc.) may also
provide an altogether more rigorous eval-
uation of an intervention’s capacity for
facilitation.

Research on Bayesian facilitation con-
tinues to be productive, as evidenced by
the recent upturn in research on indi-
vidual differences in facilitation effects.
Facilitating Bayesian reasoning, ultimately,
requires an understanding of the “cog-
nitive tools” people need in order to
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make such judgments (Ayal and Beyth-
Marom, 2014), and how these are applied
when engaging in the mental process
of Bayesian reasoning. What do people
do when navigating the Bayesian maze?
At what “step” in the process do devi-
ations from the normative path occur,
and are such errors predicted by partic-
ular cognitive limitations? The develop-
ing picture regarding cognitive capacities
and Bayesian reasoning represents an ideal
opportunity to more-closely address such
questions, but in doing so research must
do more to resist certain tendencies that
have become somewhat ingrained into the
study of Bayesian reasoning. Overcoming
these status-quos stands to further ele-
vate our understanding of “what works
and why” in Bayesian facilitation through
providing greater specifications of the cog-
nitive minutiae involved in producing
Bayesian judgments than is currently pro-
vided by existing theoretical accounts.

Future research should perhaps look to
investigate how specific cognitive capaci-
ties relate to each component “step” in the
Bayesian reasoning process, taking care to
also specify the types of errors produced at
each stage, and doing more to distinguish
good reasoning and bad arithmetic. The
use of more process-oriented methods,
such as those considered earlier, can afford
a much greater level of fidelity in achieving
these goals, and will offer greater insight
into what it means to “be Bayesian”—
how reasoning progresses; and how, when,
and why it sometimes falters. It follows
that such research will allow for more tar-
geted refinements in our understanding of
what types of intervention strategies may
apply best in facilitating better judgments
in domains such as health, law, policy, and
finance.
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The Monty-Hall Problem (MHP) has been used to argue against a subjectivist view of

Bayesianism in two ways. First, psychologists have used it to illustrate that people do

not revise their degrees of belief in line with experimenters’ application of Bayes’ rule.

Second, philosophers view MHP and its two-player extension (MHP2) as evidence that

probabilities cannot be applied to single cases. Both arguments neglect the Bayesian

standpoint, which requires thatMHP2 (studied here) be described in different terms than

usually applied and that the initial set of possibilities be stable (i.e., a focusing situation).

This article corrects these errors and reasserts the Bayesian standpoint; namely, that the

subjective probability of an event is always conditional on a belief reviser’s specific current

state of knowledge.

Keywords: Bayesian standpoint, Monty-Hall problem with two players, probability revision, collider principle,

single case probability

1. Introduction

In the Monty Hall Problem (MHP), you know that the car you want is behind one of three closed
doors and a goat behind the other two doors. You choose a door and Monty (the host who knows
where the car is) opens another door with a goat behind (as you know he can neither open your
door nor a door with the car behind). After the host’s action, would you rather stick to your original
choice or switch to the remaining door?

MHP is a much-studied experimental paradigm investigating the inability of (naive and expert)
people to revise their degrees of belief in a Bayesian manner (for a recent review see Tubau et al.,
2015). Specific reformulations of format (natural frequencies, nested sets, visual representation,
etc.) improving Bayesian performance have triggered some psychological debates on the underlying
cognitive processes at play (for a recent analysis see Brase and Hill, 2015). Baratgin (2009)
argues that these different formats facilitating Bayesian performance actually enhance the correct
representation of the situation of revision in a stable universe, called the situation of focusing
(Dubois and Prade, 1992, 1997) for which only Bayes’ rule applies. The standard formulation of
MHP prompts participants to form different representations of the situation of revision. However,
when participants perceive the situation of focusing (for instance in a disambiguated version of
MHP as in Baratgin and Politzer, 2010), they produce the Bayesian answer. Hence, participants
cannot be considered as incoherent but only prone to an error induced by experimenters’
presentation (Baratgin, 2009; Baratgin and Politzer, 2010).

MHP is also used as an argument against the notion of single-case probabilities. Moser and
Mulder (1994) argued that there existed two opposite rational solutions: “sticking” for a MHP
proposed as a one-shot problem and “switching” for aMHP cast in a frequentist context (i.e., when
imagining a sufficiently large number of games). Horgan (1995) opposed this view making explicit
the correct solution for the one shotMHP and showing that switching is the only correct solution to
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both formulations. Baumann (2005, 2008) produced a new
argument based on a generalization of MHP: the Monty
Hall Problem with two players (MHP2, see Table 1). In his
view, although the two players share the same initial state
of knowledge, they eventually form two different probability
distributions. This point of view is opposed by Levy (2007) and
by Sprenger (2010) who rightly argue that the two players do
not necessarily share the same state of knowledge throughout the
game in particular when their original choices differ. However,
these authors do not explain the rationale of Baumann’s mistake
and do not explicitly define the causal structure ofMHP2

1.
This paper will address these questions. First, the solution

to MHP2 proposed as a one shot and its causal structure will
be detailed. Then, explanations for the failure of researchers
investigatingMHP2 will be advanced and related to the “bias” that
conducts psychologists to wrongly conclude that participants’
responses to MHP are of a non-Bayesian nature, that is, the
neglect of the Bayesian standpoint (de Finetti, 1974).

2. Solving the Monty Hall Problem with Two
Players

Let’s consider the following variables that define the properties
of the possible doors (D1,D2,D3) inMHP2: The three variables C
(The host’s original choice of the door in which to place the car),
Y (Your original choice of door) and B (Player B’s original choice
of door). C, Y , and B can take any of the three values Di (with
i ∈ {1, 2, 3}), respectively noted from now on ci, yi, and bi. The
variable H (the host’s choice when opening a door) is composed
of the two complementary sub variables ‘G’ (the host’s revealing a
goat) and ‘C’ (the host’s revealing a car). The sub variables ‘G’ and
‘C’ can take the three values Di (with i ∈ {1, 2, 3}), respectively
noted from now on ‘gi’ and ‘ci’

2.
Following Walliser and Zwirn (2011), your beliefs before

learning message ‘g3’ assuming your initial choice is D1 (Stage
2) can be represented as a hierarchical dynamic probabilistic
structure (see Figure 1). The layer 0 depicts the four possible
strategies of the host, i.e., showing a goat behind D2 or D3 (‘g2’
or ‘g3’) or showing a car when the two players have originally
chosen two different doors with goats behind (‘c2’ or ‘c3’). Layer 1
corresponds to the three possible original choices of player B (b1,
b2 or b3). Layer 2 represents the original car placement choice of
the host (c1, c2, or c3). Layer 3 is your original choice (y1). The
probability distributions of the variables at the different layers
are defined by the statement of MHP2 with implicit and explicit
hypotheses about the host’s action and the players’ preferences.

At Stage 4 you learn that the host will open a door with a goat
behind. You know that (i) this door is either door D2 or D3 and
(ii) the car is either behind your door D1 or player B’s originally

1The term “causal” is missing in Baumann (2005). We find Horgan’s terminology

of “causal structure” in Levy (2007) with the vague definition of: “the set

of conditions that ultimately explains why sticking and switching have the

probabilities that they do” (Levy, 2007, p. 146). Finally, Sprenger (2010, p. 337)

admits that “the place of causality in the ‘causal structure’ of a Monty Hall game

remains obscure.”
2We use here quotes for all sub-variables related to the host’s actions during the

game.

chosen door. Hence you focus on the subset where ‘g2’ or ‘g3’ is
true (the continuous lines in Figure 1). You are better off sticking
to your initial choice D1.

P(c1|y1‘G’) = 3/7 > 2/7 = P(c2|y1‘G’) = P(c3|y1‘G’) (1)

Second at Stage 5 the host opens door D3 and reveals a goat
behind. You focus on the subset where ‘g3’ is true (the bold
lines in Figure 1). This information combined with your original
choice of door provides information about the door behindwhich
Monty placed the car. You are better off switching to door D2.

P(c1|y1‘g3’) = 3/7 < 4/7 = P(c2|y1‘g3’) (2)

Finally at Stage 6 you learn what was player B’s original choice.
On the one hand, it can coincide with yours (b1). Both players
are then exactly in the same situation with the same common
knowledge. MHP2 amounts to MHP. Hence, you know that C is
twice as likely to have the value c2 as to have the value c1. The best
strategy is to switch from your original choice to the other closed
door D2.

P(c1|y1b1‘g3’) = 1/3 < 2/3 = P(c2|y1b1‘g3’) (3)

On the other hand you may learn that player B’s original choice
is different from yours (b2). In this case there is no best strategy
and you are indifferent to sticking or switching.

P(c1|y1b2‘g3’) = 1/2 = P(c2|y1b2‘g3’) (4)

3. The Collider Principle

Glymour (2001) was the first to identify the causal structure
in MHP as a situation where two independent variables that
mutually influence another variable are dependent conditional
on the value of the variable they both affect. In MHP2, the three
independent variables Y , B, and C symmetrically influencing
(colliding with) another variable H (common effect) actually
appear dependent conditionally on the values of the variable H.
Hence observing the value of H provides some information on
the possible values of Y , B or C. In the same way, knowing the
values of any couple of variables (C, H), (B, H), and (Y , H)
provides some information about the values of couples (Y , B), (Y ,
C), and (B, C), respectively. Finally observing the values of triples
(Y , C,H), (B, C,H), (Y , B,H), respectively determines the values
of variables B, Y , and C. SolvingMHP2 as a one shot game relies
on the latter triple (Y , B,H). It is easy when two variables are fixed
to derive some qualitative predictions (Wellman and Henrion,
1993). For instance, MHP2’s solution supports a phenomenon
of reversal decision resulting from this collider principle. On
learning H = ‘g3’ given your original choice (Y = y1) the
likelihoods that B and C equal b2 and c2, respectively, are higher
than the likelihoods that B and C equal b1 and c1, respectively.
However, if in addition you learn that B equals b1 then the
outcome c2 seems the more likely. However, if you learn that B
equals b2 then the probabilities for the car being behind eitherD1

or D2 are even.
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TABLE 1 | The six sequential stages of MHP2.

Stages Descriptions

Stage 1 The TV host shows to two players (players A and B) three identical doors (let them be D1, D2, and D3) all equally likely, one hiding a car and the other two

hiding goats. It is assumed that the host has no preference for a specific door when he initially places the car behind it and that both players prefer to win the

car than a goat.a It is also assumed that the two players have a common initial state of knowledge and that no player has any preference for a particular door.

The players fully grasp the six stages of MHP2 and accept the implicit and explicit rules implied by its statement.

Stage 2 Each player picks a door and neither player is informed of the other player’s choice. Let’s assume for the sake of convenience that you are player A and you

initially select door D1.

Stage 3 The host, who knows where the car is, tells you: “In the case where player B has chosen the same door as you (here D1), I will show you one door (out of the

two other doors) behind which there is a goat.” It is assumed that both players know that the host has no preference between the two remaining doors (D2
and D3) to show a goat should the car be behind D1. Then the host continues: “In the case where player B has picked another door, I will always open the

third door -chosen by neither player- even if the car is behind it.” In this latter case when the host reveals a car, both players (you and player B) win and have

no decision to make; the game stops.

Stage 4 The host says “I will open a door to reveal a goat” and then asks both players still ignorant of the other player’s original choice: “To win the car should you

stick to your original choice or switch to another door (as far as you are concerned door D2 or door D3).”

Stage 5 The host opens a door (for example D3), reveals a goat and then asks both players again: “To win the car, should you stick to your original choice or switch to

the other closed door (door D2 in your case)?”

Stage 6 Each player reveals her or his original choice and must then decide knowing the other player’s choice whether to stick to her/his door (D1 in your case) or to

switch door (D2 in your case)b.

a In the case where both players succeed in their door choice with the car, they each get a car. Hence, as noted by Sprenger (2010), there is no real competition between both players.
bThis version of MHP2 is derived from Baumann’s version (Baumann, 2005). The transitional Stage 4 is not presented by Baumann but it interestingly draws a comparison with MHP

where this information is not informative. We also added the Stage 6 to find again MHP in the situation where the two players have originally chosen the same door.

FIGURE 1 | The general tri-probabilistic structure of MHP2 before

learning message ‘g3’ assuming your initial choice is D1 (Y = y1). The

continuous lines correspond to the subset left after compiling information at

Stage 4 and the bold lines to the subset left after compiling the information at

Stage 5. Conversely the dashed lines represent the initial structure dropped

out at Stage 4.

Recent studies have provided some evidence that “naive”
adults and also children make correct qualitative predictions in
collider principle situations when pairs of causal conditionals
are explicitly presented (Ali et al., 2010, 2011). Precisely in
MHP, participants perform better when the relation between
the player’s original choice and the host’s strategy is explicit in
conditional form (Macchi and Girotto, 1994, cited in Johnson-
Laird et al., 1999). In the same way, when participants can
construct a representation analogous to Figure 1 for MHP
using a graph or by means of physical handling, participants’
performance improves significantly (Yamagishi, 2003; Baratgin

and Politzer, 2010). Thus, it seems that when participants can
infer the causal structure ofMHP by physical or explanatory cues,
they are able to solve MHP (Burns and Wieth, 2004; Chater and
Oaksford, 2006).

4. The Neglect of the Bayesian Standpoint

De Finetti’s subjective Bayesian standpoint proposes that
individuals form two levels of knowledge (de Finetti, 1980;
Baratgin and Politzer, in press):
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• An elementary level of knowledge of an event E that is always
conditioned on an individual’s specific state of knowledge {H0}

at this time. Furthermore, any event is actually a tri-event
(the third value representing ignorance between true event and
false event).

• A meta-level of knowledge concerning the degrees of belief
of an individual. Here ignorance is specified, and refined,
into degrees of belief. From an inferential point of view,
your subjective probability of this event E at time t0 is
always conditional on your current state of knowledge {H0}

[and should be written P(E|H0)]. It is coherent if (i) it
follows the axiom of additive probabilities3 and (ii) when
acquiring a new knowledge H, your probability also depends
on this new knowledge {H0H} [and should be written
P(E|H0H)].

A person dismissing the Bayesian standpoint considers the
probability of a single event as questionable as compared to a
“frequentist” conception of probability. She takes the frequentist
conception to be the “correct” comparative representation,
and confines Bayesianism to just a set of Bayesian techniques
(de Finetti, 1974). In the psychological literature this “bias”
leads to two significant mistakes: (i) to the neglect of pragmatic
constraints on the methodology (to understand H0 and H); (ii)
to the conclusion that people’s behavior is “non-Bayesian,” even
when the behavior does not violate Bayesian coherence (Baratgin,
2002; Mandel, 2014a). In the analysis of MHP2, this bias is
characterized by inadequate terminology and interpretation of
the revision situation.

4.1. The Use of an “Ambiguous Terminology”
For a subjective Bayesian, an event E always refers to a certain
outcome in a single well-defined case (a unit in which the
definition is unambiguous and complete) and cannot be used
in a generic sense (such as a collection of “identical events”).
There is no repetition of the same event but a succession of
many distinct events, which can be different illustrations of the
same phenomenon. In Moser and Mulder (1994), Baumann
(2005), Levy (2007), and Baumann (2008), MHP2 is presented
in an ambiguously termed way (de Finetti, 1977/1981, p. 357).
The variables are considered as trials of the same phenomenon
without completely specifying them and their possible values.
Every specific door corresponds to a generic door D that is
characterized by two properties: having a car (C) or a goat (G)
behind it. Every player’s original door choice is analyzed by its
correspondence with C and G. The host’s door opening ‘H’ is
characterized by the two sub-classes ‘G’ and ‘C’. The players’
final decisions to win the car are commingled and considered
to pertain to the same classes of events “to stick,” “to switch” or
“nothing.”

Following this frequentist “jargon” (de Finetti, 1979a,b),MHP2
is analyzed as an observation of a repetitive problem where
the different variables are interchangeable in function of the
host’s car placement. Instead of considering each player with
specific states of knowledge relative to each stage of MHP2

3See for example on this special research topic (Cruz et al., 2015; Evans et al., 2015;

Mandel, 2015) and also (Politzer and Baratgin, in press).

both players are assumed to have a common knowledge at each
stage of the game. Their probabilities that there is a car behind
one of the two remaining doors (after the door with a goat
behind was opened) is 3/7 for the door originally chosen and
4/7 for the other door. Thus, imagining they made a different
original choice, each door can be associated with two different
probabilities (3/7 and 4/7) illustrating Bauman’s paradox. Now,
if we consider the specific knowledge of each player, the paradox
disappears. In Stages 4 and 5, player B’s probabilities on c1 and c2
are identical to your probabilities (relations 1–3) when his/her
specific initial state knowledge is identical to yours (his/her
original choice is b1). Conversely when his/her original choice is
b2, his/her state of knowledge is different from yours and his/her
probabilities correspond to different probabilities (relations
5 and 6):

P(c1|b2‘G’) = P(c3|b2‘G’) = 2/7 < 3/7 = P(c2|b2‘G’) (5)

P(c1|b2‘g3’) = 4/7 > 3/7 = P(c2|b2‘g3’) (6)

However, player B’s decisions are identical: sticking at
Stage 4 and switching at Stage 5. At Stage 6, both players
have an identical state of knowledge and probabilities
(relation 4).

4.2. Neglect of the Situation of Focusing
MHP2 illustrates that the situation of revision implied by the
Bayesian standpoint is a process of focusing on a subset of the
initial state of knowledge {H0} (de Finetti, 1957; Dubois and
Prade, 1992, 1997). It is assumed that one object is selected
from the universe and that a message releases information
about it. A reference class different from the initial one is
consequently considered by focusing attention on a given subset
of the original set that complies with the information about the
selected object. This is not a temporal revision process because
the information ‘g3’ just focuses on the selection of a particular
posterior probability that was virtually available (among others)
(see the bold lines of Figure 1). Yet participants in MHP seem
to adopt (for pragmatic reasons) another representation of the
revision situation, known as updating (Katsuno and Mendelzon,
1992; Walliser and Zwirn, 2002) in which, they infer from the
message ‘g3’ the information as “door D3 have been removed,”
and conceive a new probability distribution consistent with this
new problem (Baratgin and Politzer, 2007, 2010; Baratgin, 2009).
In this representation there is obviously no collider effect because,
in this new problem with two doors, the variables Y and H always
remain independent after the information is provided by the
host. Participants form a new distribution of probability P′ for
this new game4. Two typical analyses are consistent with this
interpretation:

The stick or switch response: if you originally chose door D1

and the host opens door D3 with a goat behind, the worlds c1
and c2 are evenly close (in fact proportionally to their prior
probabilities) to the invalidated world c3. The weight of c3

4P′ along the following process: (i) The worlds ‘c3’ and ‘g2’ are canceled and a

simpler probabilistic structure composed of the two worlds (c1, c2) is obtained,

(ii) The new distribution P′ stems from a redistribution of the weights (the

probabilities) of the removed worlds on the two remaining worlds.
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is redistributed proportionally on c1 and c2. This is MHP’s
solution in the updating context proposed by Dubois and Prade
(1992).

P′(c1|y1) = P(c1|y1)+ 1/2P(c3|y1) = 1/2

= P(c2|y1)+ 1/2P(c3|y1) = P′(c2|y1) (7)

It corresponds to the “equiprobability” solution given
by nearly all participants to MHP but also by some
experts in their analysis of MHP in a single isolated
situation (Moser and Mulder, 1994) and of MHP2 (Levy,
2007).

The switch response: The worlds c3 and c2 (the two doors
not originally chosen by the player) are considered closer. The
probability of the invalidated world c3 is transferred to c2 alone.
This isMHP’s solution in the updating context proposed by Cross
(2000).

P′(c1|y1) = P(c1|y1) = 1/3 and

P′(c2|y1) = P(c2|y1)+ P(c3|y1) = 2/3 (8)

This response is given by only few participants to MHP (see for
review Baratgin, 2009). It corresponds to Moser and Mulder’s
explanation for MHP’s solution in a suitable long run of
relevantly similar situations. To explain the “causal structure”
of MHP, Levy (2007) proposed also a process in line with
this updating interpretation. However, it is difficult here to
support the “switch” response to MHP2 with the symmetric

role of the two players (Levy, 2007). Thus, the “stick or switch

response” should be privileged to solve MHP2 in an updating
representation.

5. Conclusion

This paper describes the supposedly paradoxical solutions
attributed toMHP2 from the perspective of a thorough Bayesian
standpoint perspective. It outlines the methodological care that
one should take to comprehend the problem in relation to the
single case terminology and the focusing context of revision.
Not taking into account these features prevents one from fully
grasping the probabilistic temporal dynamics of the problem and
consequently the corresponding causal collider structure.

Psychologists who study subjective Bayesian reasoning should
carefully formulate the statement without ambiguity and respect
the Bayesian standpoint. This is also true especially for complex
problems (such as the Sleeping Beauty problem Baratgin and
Walliser, 2010; Mandel, 2014b) in which different solutions
can be envisaged depending on the interpretations made by
participants.
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improving Bayesian reasoning
Elisabet Tubau1,2*, David Aguilar-Lleyda1,2 and Eric D. Johnson1,2

1 Departament de Psicologia Bàsica, Facultat de Psicologia, Universitat de Barcelona, Barcelona, Spain, 2 Research Institute
for Brain, Cognition and Behavior, University of Barcelona, Barcelona, Spain

The Monty Hall Dilemma (MHD) is a two-step decision problem involving counterintuitive
conditional probabilities. The first choice is made among three equally probable options,
whereas the second choice takes place after the elimination of one of the non-selected
options which does not hide the prize. Differing from most Bayesian problems, statistical
information in the MHD has to be inferred, either by learning outcome probabilities or
by reasoning from the presented sequence of events. This often leads to suboptimal
decisions and erroneous probability judgments. Specifically, decision makers commonly
develop a wrong intuition that final probabilities are equally distributed, together with
a preference for their first choice. Several studies have shown that repeated practice
enhances sensitivity to the different reward probabilities, but does not facilitate correct
Bayesian reasoning. However, modest improvements in probability judgments have
been observed after guided explanations. To explain these dissociations, the present
review focuses on two types of causes producing the observed biases: Emotional-
based choice biases and cognitive limitations in understanding probabilistic information.
Among the latter, we identify a crucial cause for the universal difficulty in overcoming the
equiprobability illusion: Incomplete representation of prior and conditional probabilities.
We conclude that repeated practice and/or high incentives can be effective for
overcoming choice biases, but promoting an adequate partitioning of possibilities seems
to be necessary for overcoming cognitive illusions and improving Bayesian reasoning.

Keywords: Bayesian reasoning, Monty Hall Dilemma, choice biases, cognitive illusions, reflection

Introduction

Bayesian reasoning has primarily been investigated in the context of imaginary scenarios, in which
participants are required to derive a posterior probability (or a posterior ratio of natural fre-
quencies) from explicit statistical information. An exception can be found in research with the
Monty Hall Dilemma (MHD), where Bayesian reasoning has been studied with both imaginary
scenarios and repeated practice. Differing from typical Bayesian problems, priors and conditional
probabilities in the MHD have to be inferred, either by learning reward probabilities or by reason-
ing from the presented sequence of events. By reviewing the main difficulties and interventions
for improving either choice or probabilistic judgments in the MHD, two different causes of fail-
ures are introduced: (1) emotional-based choice biases (switch aversion and/or the endowment
effect), and (2) cognitive limitations in understanding and representing probabilities. We argue
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FIGURE 1 | Schematic representation of the MHD with the host (top)
and player (bottom). (1) A player is presented three doors, each with an
equal chance (1/3) of containing a prize and he chooses one of them. (2)
Following the initial selection, the player now has one door with a 1/3
chance of having the prize. The host now has two doors with a total 2/3
chance of having the prize (1/3 + 1/3). (3) The host opens one of his two
doors which does not contain the prize. The player is offered the choice to

stick with his original selection or to switch to the unopened door held by
the host. (4a) Correct Reasoning: Given that the opening of a non-rewarding
door is obligatory, there still remains a 2/3 chance that the prize is on the
“side” of the host, and a 1/3 chance that the prize is behind the player’s
originally chosen door. (4b) Incorrect Reasoning: A typical cognitive error is
based on the illusion of equiprobability between the two remaining doors
(see further explanation in the text).

that while the first cause produces illusions of control, regret, or
distortions in the memory of past choice-outcome events, the
second one promotes illusions of equiprobability and/or distor-
tions in understanding the conditions of the game. The present
review shows that both causes can independently and simulta-
neously bias choice and probabilistic judgments. Furthermore,
whereas choice biases can be overcome by extended practice
or by high incentives, overcoming the erroneous default intu-
ition requires explicit instruction about the correct partitioning
of probabilities. Implications for improving Bayesian reasoning
are also discussed.

Understanding the MHD: From
Intuition to Bayesian Reasoning

The MHD is a good example of a counterintuitive decision-
making problem, considered to be “the most expressive example
of cognitive illusions or mental tunnels in which even the finest
and best-trained minds get trapped” (Piattelli-Palmarini, 1994;
p. 161; cited by Krauss and Wang, 2003). In a first choice, a
participant selects one of three possible options (i.e., doors),
after being informed that only one hides a prize, and that the
chances for each door are equal. Next, the host (or computer,
in computer-based versions), who knows which door hides the
prize, opens one non-rewarded door of the two remaining non-
selected doors. The participant is then given a second, binary
choice, which determines the final outcome of the game: They
may either (a) stay with their initial selection [stick], or (b) swap
their original selection for the other still closed door [switch].
The naïve reader would likely believe that each of the remain-
ing two options has an equal probability of containing the prize,

as often observed in the literature (i.e., Shimojo and Ichikawa,
1989; Franco-Watkins et al., 2003; Tubau and Alonso, 2003; De
Neys and Verschueren, 2006; see also Figure 1). This common
illusion has been attributed to a misapplication of the equiprob-
ability principle (Falk, 1992; Johnson-Laird et al., 1999; Falk and
Lann, 2008) due to the wrong intuition that, after the elimina-
tion of an option, all the chances have to be updated (Baratgin
and Politzer, 2010). Specifically, the observation of two remaining
options promotes the illusion that each of the final two options
has a 50% chance of containing the prize. However, the elimina-
tion of an option (known by the host not to contain the prize)
does not change the prior probability concerning the first choice.
As shown in Figure 1 and Table 1, the participant still has a 1/3
chance of having initially selected the prize and, therefore, in two
out of three cases a decision to switch options will ultimately lead
to a prize (a more formal explanation of probabilities in the MHD
is introduced below).

Nevertheless, the final choice is generally neither fully coher-
ent with the actual distribution of chances, nor with the mis-
application of the equiprobability principle. A large majority of
participants prefer to stick with the original choice (Granberg
and Brown, 1995; Krauss and Wang, 2003), a tendency that has
been related to an illusion of control (Lichtenstein and Slovic,
1971; Langer, 1975; Granberg and Dorr, 1998), or to a strat-
egy to prevent future regret, which is more strongly perceived
when losing after switching (Gilovich et al., 1995; Granberg and
Brown, 1995; Petrocelli and Harris, 2011). Hence, the MHD
motivates two different biases that work against the optimal solu-
tion: The equiprobability illusion and emotional-based choice
biases. Both types of bias are difficult to overcome because
the MHD presents an additional difficulty for most people:
The need to distinguish a winning probability that has to be
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TABLE 1 | Possibilities in the MHD: the probability of each door to be opened is conditioned on both the first choice and on the location of the prize.

Prize
location

First
choice

Probability to
open door

Remaining door
(after open)

Best
choice

Door 1 Door 1
Door 2
Door 3

P(each door) = 0.5
P(Door 3) = 1
P(Door 2) = 1

Door 2 or Door 3
Door 1
Door 1

Stick
Switch
Switch

Door 2 Door 1
Door 2
Door 3

P(Door 3) = 1
P(each door) = 0.5
P(Door 1) = 1

Door 2
Door 1 or Door 3
Door 2

Switch
Stick
Switch

Door 3 Door 1
Door 2
Door 3

P(Door 2) = 1
P(Door 1) = 1
P(each door) = 0.5

Door 3
Door 3
Door 1 or Door 2

Switch
Switch
Stick

Notice that in 1 of 3 times the prize is behind the selected door and in 2 of 3 times the prize is behind the remaining door. Therefore, P(prize| stick) = 1/3 and P(prize|
switch = 2/3 (in bold, location of the ace after opening one door).

updated (the one concerning the remaining door) from a win-
ning probability that remains the same (the one concerning the
first choice). Regarding this point, we claim that difficulties in
overcoming illusions in the MHD are a consequence of a more
primary cause: A biased representation of the prior probabilities.
In Section “An Overlooked Failure: Incomplete Representation
of Prior Probabilities” we review evidence supporting this
claim.

From a Bayesian perspective, understanding the optimal solu-
tion in the MHD requires realizing that the elimination event
is conditioned on both the first choice and on the location of
the prize (Glymour, 2001; Burns and Wieth, 2004). Consider
a scenario where the participant initially selects door 1. The
conditional probability (likelihood) of eliminating, for exam-
ple, door 3 after choosing door 1, depends on the hypothesis
being considered (see also Falk and Lann, 2008). Specifically,
given that the probability of revealing door 3 among the remain-
ing two doors does not depend on the content of selected
door 1 [P(D3| H1) = P(D3) = 1/2], the posterior probability
of such door containing the prize, conditioned to the elimina-
tion of door 3, is the same as its prior probability of contain-
ing the prize [P(H1| D3) = P(H1) = 1/3]. In contrast, given
that the probability of revealing door 3, conditioned to the
prize being hidden in the remaining door 2, is doubled [P(D3|
H2) = 2P(D3) = 1], the posterior probability of door 2 hiding the
prize, conditioned to the opening of door 3, also doubles [P(H2|
D3) = 2P(H2) = 2/3].

In other words, the conditions of the elimination have two
main implications: (a) the winning probability for the selected
door cannot change since it is conditioned to an uncondi-
tional event (it is certain that one of the non-selected doors is
always null), and (b) the winning probability for the remain-
ing door doubles, as the opening of a non-selected door is
conditioned on the current location of the prize (see Table 1).
In sum, understanding the MHD requires being able to dis-
tinguish conditional and unconditional events, or conditions
in which probabilities have to be updated from conditions
in which probabilities remain the same. In the following sec-
tions we review the difficulties found both in learning to
choose optimally and in correct (explicit) Bayesian reason-
ing in the MHD in order to suggest causes and possible
remediation.

Learning to Choose Optimally in the
MHD

It is a well-grounded finding that both humans and non-human
animals learn to optimize choices by adapting expectancies to the
probability of forthcoming outcomes (Kahneman and Tversky,
1979). In repeated two-choice tasks, an increment in the prob-
ability of an optimal choice tends to follow the matching law
(Herrnstein, 2000). Specifically, a matching between choice and
reward probabilities is commonly observed, which is considered
to be a consequence of a default adaptive strategy (West and
Stanovich, 2003; Koehler and James, 2010). Nevertheless, sequen-
tial decision making tasks which include dependencies between
choices can produce higher learning variability, and can lead to
choices which deviate substantially from programmed reward
probabilities (Herbranson and Wang, 2014).

Optimal choice in these more complex scenarios can be seen
as arising from a Bayesian inference; that is, the probability of
the outcome can be computed by combining its prior proba-
bility and the likelihood of the new observation. Alternatively,
by repeating the decisional task, optimal choice preference can
also develop through learning of either the most often rewarded
final choice (i.e., switch in the MHD), or of the specific sequence
of choices associated with the highest reward probability (e.g.,
“choose the leftmost option in the three-choice scenario, then
switch in the two-choice decision”). The latter seems to explain
pigeons’ tendency to choose more optimally than humans in anal-
ogous MHD tasks (Herbranson and Schroeder, 2010; but see
Mazur and Kahlbaugh, 2012 for similar results between species).
In the case of humans, is repeated practice really useful for
learning to choose optimally in the MHD? Furthermore, is this
learning useful for improving correct Bayesian reasoning?

Since the earlier observations of Granberg and Brown (1995),
several studies have shown an increase in switching rate after
several repetitions of the MHD (Friedman, 1998; Granberg and
Dorr, 1998; Franco-Watkins et al., 2003; Palacios-Huerta, 2003;
Herbranson and Schroeder, 2010; Petrocelli and Harris, 2011;
Mazur and Kahlbaugh, 2012; Klein et al., 2013; Saenen et al.,
2014). However, in the absence of highly rewarding outcomes
(Palacios-Huerta, 2003), a large majority of participants persist in
the sub-optimal sticking strategy, switching in none or in only a
few trials. As developed below, this impediment can be related to
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a switching aversion and/or to an endowment effect (Kahneman
et al., 1991). These emotional influences work against the dis-
covery of the optimal choice by biasing the estimation of the
winning probability of the first choice; that is, by inducing an
illusion of control (Gilovich et al., 1995; Granberg and Brown,
1995), by biasing the memory of previous choice-outcome events
(Petrocelli and Harris, 2011), and/or by preventing the accumu-
lation of enough switching-winning experiences, as shown by a
large number of participants in numerous studies.

Switch Aversion and the Endowment Effect
Similar to findings in other choice contexts (Landman, 1988),
studies focusing on the MHD show that people report stronger
regret when losing a prize by switching than by sticking (Gilovich
et al., 1995; Granberg and Brown, 1995). Interestingly, Petrocelli
and Harris (2011) observed that participants overestimated the
trials in which they switched and lost, supporting the subjec-
tive experience that switching and losing is more aversive than
sticking and losing. An increment of counterfactual thoughts asso-
ciated with regret after switching and losing seemed to explain
this distortion in memory (Petrocelli and Harris, 2011).

Not only do people find switching and losing highly aver-
sive, they also appear to perceive switching and winning as less
rewarding than sticking and winning (Franco-Watkins et al.,
2003). In one of Franco-Watkins et al.’s (2003) experiments, par-
ticipants played several rounds of the MHD after observing the
choices and outcomes of a virtual participant in an analogous
version of the game. Results showed that the switching rate of
the participants was still below 50% even after observing that,
in a rigged condition, switching produced 90% of winning trials,
whereas the sticking rate was 100% after observing a player stick-
ing and winning 90% of the trials (Franco-Watkins et al., 2003).
Accordingly, the win-stay, lose-switch strategy shown in other
probability learning tasks (e.g., Nowak and Sigmund, 1993) seems
to be modulated by the previous choice (sticking or switching) in
the MHD.

The switch aversion, or its complementary endowment
effect—the tendency to attribute higher value to own options,
even when compared to a slight more rewarding alternative
(Kahneman et al., 1991)—has also been observed in variations of
the MHD which include a larger number of doors (Stibel et al.,
2009). That is, the endowment effect has been observed even in
conditions where the difference between the final winning prob-
abilities is much higher than in the standard three doors scenario
(opening 8 of 9 remaining doors: Franco-Watkins et al., 2003;
or opening 98 of 99 remaining doors: Stibel et al., 2009). In the
mentioned experiment of Franco-Watkins et al. (2003), partic-
ipants still preferred sticking with the initial choice even after
observing the fictitious participant staying and losing in 90% of
the trials (Franco-Watkins et al., 2003; 10C/3D condition). Stibel
et al. (2009; Experiments 1 and 4) also found that between 30 and
50% of participants preferred the first choice after opening 98 of
99 remaining doors in one-shot game.

A marked tendency to stick with the first choice has also been
observed in a condition in which the second choice was made
between the first selection and both of the other two options, that
is, without the elimination event and, hence, without the need

to update probabilities (Morone and Fiore, 2008). As expected,
the percentage of participants switching was significantly higher
(across 10 trials, the overall switch rate was.58; 8 of 20 of partici-
pants had a switch rate higher than.7) compared to the standard
MHD (the overall switch rate was.41; only 1 of 20 participants
had a switch rate higher than.7). However, the percentage of par-
ticipants with a switch rate below 0.5 was still not far away from
the standard MHD (40 and 50% in “for dummies” and stan-
dard versions, respectively; Morone and Fiore, 2008), suggesting
that switch aversion or the endowment effect work as attractors
toward the non-optimal choice of sticking even in the MHD “for
dummies.”

Overcoming Choice Biases
Granberg and Dorr (1998), Tubau and Alonso (2003), and Stibel
et al. (2009) attempted to reduce the endowment effect by elim-
inating the participants’ first choice. This was accomplished by
assigning participants one option among the initial three so that
participants only had to choose between sticking and switch-
ing. Although the preference for switching was higher than in
standard MHD conditions, about 50% of the participants still
preferred the first, assigned choice (Tubau and Alonso, 2003).
Furthermore, informal reports of the participants showed no
improvement in correct Bayesian reasoning, including those par-
ticipants who switched in most of the trials (Tubau and Alonso,
2003; see also Stibel et al., 2009). Typical comments of par-
ticipants who finally became aware of the switching advantage
believed that the computer programwas biased in favor of switch-
ing but they expected the same winning probability for both
choices (switching and sticking). It could be argued that such
conditions hampered the motivation of the participants and,
accordingly, their attention to the relevant contingencies was
diminished. As observed in other tasks, being able to choose
seems to be crucial to engage motivation (Leotti et al., 2010). But
in the case of the MHD we have seen that the attraction to the
first choice often prevents exploring the consequences of switch-
ing, making the discovery of the causes producing the switching
advantage even more difficult.

On the other hand, it is well known that the perception of two
remaining options in the final choice induces the misapplication
of the equiprobability principle (Johnson-Laird et al., 1999; Falk
and Lann, 2008). Hence, discovering the optimal choice in the
MHD can be enhanced by changing the visual appearance of the
final choice scenario or by manipulating the number of initial
choices. For example, Howard et al. (2007) found higher switch-
ing rates in a condition in which all the boxes (closed and open)
were visible compared to a condition in which the null options
were removed. Increasing the area of the closed boxes also had
a significant effect, although smaller than the number-of-boxes
manipulation. Hence, the number of visible options seemed to
be a relevant factor for promoting switching choices. Evidence
of reasoning improvement was not reported but, based on other
studies, it seems unlikely that the number-of-boxes manipula-
tion had a significant effect on correct reasoning. In a one-shot
scenario, Stibel et al. (2009) showed that, among the partici-
pants choosing to switch, probability judgments matched the
equiprobability intuition, even in the condition in which 98 of the
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remaining 99 options were removed! (see also Franco-Watkins
et al., 2003).

In addition to the interventions introduced above, increasing
incentives (Friedman, 1998; Palacios-Huerta, 2003), or enhancing
collaborative playing (Palacios-Huerta, 2003) also seem to be
effective for overcoming choice biases in the MHD, at least
for some participants. It is worth noting that the most effec-
tive intervention appears to be the manipulation of incentives
(Palacios-Huerta, 2003), supporting the emotional source of the
choice biases observed in the MHD. Unfortunately, none of these
latter studies reported probabilistic judgments of the participants.
However, based on the results of Stibel et al. (2009), who also
used money as a reward, an increment in the amount of gain
does not seem to be effective for improving Bayesian reason-
ing. In the next section we review in more detail the relationship
between choice and reasoning improvement in the MHD, as well
as possible explanations for the observed dissociation.

Dissociating Choice from Reasoning
None of the MHD studies assessing the accuracy of probabilistic
judgments after several repetitions have observed improvement
of correct explicit Bayesian reasoning (Franco-Watkins et al.,
2003; Klein et al., 2013; Saenen et al., 2014). In the best case, par-
ticipants who, following practice, report that switching is more
advantageous, tend to switch more often (Tubau and Alonso,
2003), but they are typically unable to explain the reason for that
advantage (see also Klein et al., 2013).

It could be argued that the null effect of practice for enhancing
understanding the probabilistic structure of the MHD is due to
the small amount of practice (commonly less than 50 repetitions).
Nevertheless, a larger number of trials appear insufficient for
maximizing optimal choice (Herbranson and Schroeder, 2010;
Klein et al., 2013; Saenen et al., 2014) or for enhancing correct
Bayesian reasoning (Klein et al., 2013; Saenen et al., 2014). For
example, after about 250 repetitions of the MHD, only one partic-
ipant out of 17 seemed to correctly explain the optimal strategy:
“First, I clicked on a random box. After one of the boxes disap-
peared, I clicked on the third box” (Klein et al., 2013), but even
this was without clear evidence of having understood the cause of
the switching advantage. Saenen et al. (2014) analyzed the accu-
racy of probability judgments in different moments during 100
repetitions of the MHD and found no evidence of improvement
at any stage of practice. It is worth noting that Saenen et al. (2014)
gave continuous feedback and, in one of the groups, feedback
explicitly related winning and losing to each choice (sticking and
switching). Although explicit feedback increased frequency of
switching, it was not helpful for improving explicit probabilistic
judgments.

Accordingly, studies centered on the effect of practice with
the MHD suggest that knowledge acquired by learning the differ-
ent winning probabilities does not lead to better comprehension
of the MHD. More specifically, practice seems to facilitate the
overcoming of initial choice biases, but does not facilitate an
understanding of why initial choice tendencies are not optimal.
Supporting this claim, significant increments in optimal choice
in the MHD have been observed even without explicitly noticing
its advantage, although the general tendency to choose optimally

(switch) is much weaker than when noticing the switching advan-
tage (Tubau and Alonso, 2003; Klein et al., 2013). In addition
to the initial strong bias to avoid switching, these results suggest
the involvement of associative mechanisms similar to the ones
reported in studies with other non-human animals (Herbranson
and Schroeder, 2010; Mazur and Kahlbaugh, 2012; Klein et al.,
2013). Associative mechanisms can explain the observed implicit
learning of the switching advantage. Nevertheless, without aware-
ness of the rules and effortful control to apply them, they
seem to be insufficient to overcome initial choice biases (see
Stocco and Fum, 2008, for similar conclusion in other choice
tasks).

In line with the associative account introduced to explain
the observed dissociation between reasoning and choice, Stibel
et al. (2009) concluded that evidential strength, on which choices
are based, is sensitive to the evidence provided by alternative
hypotheses, but explicit probability judgments are typically less
sensitive to slight or apparent changes in support strength (see
also Tversky and Koehler, 1994). Accordingly, variables affecting
the increment of optimal choice, as for example the increment
in the number of non-chosen options, produce an increment in
evidence strength for the alternative hypothesis (switch in the
MHD) without affecting the corresponding probabilistic judg-
ment (Stibel et al., 2009). Similarly, the effect of repeated practice
with the MHD enhances the realization that the proportion of
winnings by switching is higher than winnings by sticking, which
affects the evidence strength of the final choices. Nevertheless,
all these interventions remain insufficient for overcoming the
equiprobability illusion, which continues to bias explicit proba-
bilistic judgments.

Enhancing Probabilistic Reasoning in
the MHD

Based on the reviewed evidence, repeated practice and/or higher
incentives have a moderate effect on increasing the probabil-
ity to choose optimally, but it is not useful for enhancing the
understanding of the causes of the switching advantage, namely,
the prior, conditional, and posterior probabilities involved in
the MHD. This section reviews the utility of interventions more
directly aimed at improving explicit Bayesian reasoning.

Explaining Possibilities: Mental Models and
the Perspective Effect
The information presented in the text of the problem affects the
building of the mental models on which judgments and decisions
are based (Legrenzi et al., 1993; Johnson-Laird et al., 1999). In
the case of the MHD, different manipulations have been shown
to affect reasoning and/or choice. As previously introduced, if
instead of the standard dilemma, participants are offered a choice
between the selected door and both of the remaining two doors
(“for dummies” version inMorone and Fiore, 2008), the tendency
to switch increases. It is well documented that decision makers
create mental models based on the number of options being pre-
sented (Johnson-Laird et al., 1999). If one of the three options is
removed, only two models are taken into account: One in which
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the prize is behind the selected door, and one in which the prize
is behind the remaining door (see also Johnson-Laird et al., 1999;
Franco-Watkins et al., 2003). Nevertheless, presenting a more
transparent MHD does not imply developing a more complete
representation, as many individuals have trouble understanding
the prior probabilities (Tubau and Alonso, 2003; Tubau, 2008; see
below).

The interventions which have been demonstrated to be the
most effective for improving correct reasoning in the MHD
explicitly request the reasoner to imagine the different possibili-
ties from the different perspectives of both the contestant and the
host (Krauss and Wang, 2003; Tubau and Alonso, 2003; Tubau,
2008). For example, using a diagram, Krauss and Wang (2003)
presented three closed doors, one representing the selection of a
hypothetical contestant. To enhance the representation of the dif-
ferent possibilities from each perspective, participants were asked
to imagine being the host of the game who is opening a null door
between the two non-selected doors. The percentage of correct
justifications of the switching advantage, from the contestant’s
point of view, increased from 3% in the standard MHD to 39%
in this new presentation (50% correctly noticed the advantage of
switching; Krauss and Wang, 2003). Given that participants did
not perform the initial choice, it could be argued that the benefit
of the intervention was in part a consequence of eliminating the
difficulty in overcoming initial choice biases (see Switch Aversion
and the Endowment Effect). However, the effectiveness of the
perspective manipulation was also observed in an experienced
adversary game context, regardless of the role of the participant
(Tubau and Alonso, 2003).

More directly, Tubau and Alonso (2003) asked participants
to represent the different possibilities from both perspectives.
In their third experiment, participants were presented an imag-
inary card game between two adversaries: The decision maker
selecting a card among three (one ace and two other cards),
and the informant keeping the other two. Analogous to the
host of the MHD, the informant always showed a non-ace card
after the decision-maker’s selection. In one experimental con-
dition, participants had to state the possibilities of each player
having the ace, and then estimate each player’s likelihood of win-
ning, as well as provide a justification for the perceived best
strategy (switching, sticking, or no preference). This condition
was compared to the same adversary version, but without the
requirement of representing the possibilities, as well as to the
standard MHD. Percentage of correct justifications for the switch
response were 0% in the standard MHD, 25% in the adver-
sary version without explicit representation, and 60% in the
adversary version with explicit representation of possibilities. In
sum, encouraging a shift between perspectives seems to be an
effective intervention to enhance the building of more complete
mental models of the different possible locations of the prize,
as well as improved awareness of which options can be elim-
inated and why. Support for this proposal can also be found
in Tor and Bazerman (2003) who, based on protocol analyses
in different competitive games, concluded that the main dif-
ficulty in competitive contexts is to consider the decisions of
others and the rules of the game (the constraints of the host
in the MHD).

Enhancing Correct Probabilistic Judgments:
The Role of Natural Frequencies
Another widely discussed facilitator of Bayesian reasoning per-
formance is to present and request problem information as
natural frequencies (Gigerenzer and Hoffrage, 1995; Girotto and
Gonzalez, 2001; Johnson and Tubau, 2013). Although disagree-
ment persists regarding the specific mechanisms involved in
processing natural frequencies (e.g., Gigerenzer, 1994; Barbey
and Sloman, 2007), presenting and requesting information in a
similar frequency format is also known to facilitate reasoning in
the MHD.

For example, Krauss and Wang (2003; Experiment 3) com-
pared the utility of an intervention based on a simplified rep-
resentation of only three arrangements (similar to first three
possibilities in Table 1) with a more complete representation of
six arrangements (mental model representation from Johnson-
Laird et al., 1999; similar to the diagram shown in Figure 2,
but including the complete representation of each possibility
instead of the frequency information). Results showed that the
three-arrangements version promoted more correct responses.
The benefit of the simplified representation was interpreted as
a consequence of its higher resemblance to a natural frequency
format (Krauss and Wang, 2003). However, it is not clear which
words and numbers were included in the question requiring
the probability judgment. As shown in other Bayesian prob-
lems, the match between the text of the problem and the text
of the question has a significant effect on the responses (Girotto
and Gonzalez, 2001; Ayal and Beyth-Marom, 2014). If the ques-
tion was the same as in Kraus and Wang’s Experiment 2, then
there would be a better match between the question (___ out of
3) and the simplified representation (three arrangements) than
between the question and the complete version (six models). So,
it could be the case that the more complete representation was

FIGURE 2 | Card shown by the informant (analogous to the host in the
MHD) in six hypothetical repetitions of the game. Notice that among the
three times that the informant shows the 7 (or the 8) he hides the ACE twice
(adapted from Tubau, 2008).
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less effective due to the additional steps needed to transform
presented information into the form requested in the question.

Related to the previous hypothesis, in Tubau (2008;
Experiments 1A,B) two explanations of an analogous MHD
card game were compared: In the concrete frequency version,
the explanation referred to a specific simulation of six games,
analogous to the mental models representation (i.e., in the two
cases in which John has the ace and the 7, he will show the 7; in
the two cases in which John has the ace and the 8, he will show
the 8; and in the two cases in which John has the 7 and the 8, he
will show the 7 once and the 8 once; see Figure 2). In the relative
frequency version, less precise verbal quantifiers were used (i.e.,
if John has the ace and the 7, he will always show the 7; if John
has the ace and the 8, he will always show the 8, and if he has
the 7 and the 8 he will show the 7 half of the times and the 8 half
of the times). Each version was presented with and without a
diagram similar to the one presented in Figure 2. Results showed
a significant effect of statistical format (concrete frequencies
enhanced performance compared to abstract quantifiers), but no
effect was found for the visual diagram. Hence, results supported
the Krauss and Wang (2003) and Tubau and Alonso (2003)
conclusion regarding the need to build models (possibilities)
from both perspectives in a way which facilitates the computation
of the respective winning frequencies. As shown in these studies,
the highest benefit is observed when participants are externally
guided during both the presentation of the problem and via the
formulation of the question. Furthermore, and similarly to other
Bayesian reasoning problems, the closer the match between
the numerical format included in the explanation and the
required numerical expression, the higher the benefit (Girotto
and Gonzalez, 2001; Ayal and Beyth-Marom, 2014).

Explaining Causal Relations: Competition
Scenarios
According to the studies reviewed so far, probabilistic reasoning
in the MHD can be improved through interventions that facil-
itate building a more complete representation of the different
possibilities, or by prompting the required numerical expres-
sion in the format of the requested probabilistic judgment (i.e.,
___ out of 3). Nevertheless, the extent to which any corre-
sponding improvement indicates a complete understanding of
both prior probabilities and the consequences of the elimina-
tion’s conditions, (as opposed to simply being a consequence of
a match between representations), remains unclear. As devel-
oped in Section “Understanding the MHD: From Intuition to
Bayesian Reasoning,” understanding the MHD implies under-
standing that, after the elimination of an option conditioned to
the location of the prize, the winning probability of the first
choice remains invariant, whereas the winning probability of the
remaining option increases twofold.

Related to the comprehension of the elimination’s constraints,
a different and interesting approach to improve reasoning in
the MHD was developed by Burns and Wieth (2004). Similarly
to Glymour (2001), Burns and Wieth (2004) attributed the
main cause of failed understanding of the MHD to a failure in
understanding the causal structure which produces the switch-
ing advantage (see also Krynski and Tenenbaum, 2007, in other

Bayesian scenarios). From this perspective, the fact that two inde-
pendent causes (initial choice and location of the prize) collide on
a common effect (the opening of one of the non-selected doors;
see Table 1) might explain why the MHD is so hard. Based on this
assumption, Burns andWieth (2004) hypothesized that a context
more clearly presenting the causes that determine the elimi-
nation of an option would enhance reasoning. Supporting this
hypothesis, Burns and Wieth (2004) found better performance
in analogous MHD competition scenarios (i.e., a competition
among three boxers in which only one was the best). However,
even in the best conditions of the competition context, only about
50% of the participants selected the optimal (switch) choice and
less than 20% of participants were able to express the correct pos-
terior winning probabilities. These results suggest that making
more salient the causal conditions that determine the elimina-
tion event, or a better knowledge of the rules of the game (Tor
and Bazerman, 2003), are also insufficient for a large number of
participants to understand the MHD. It is worth noting that clear
causal structures seem to primarily benefit higher numerate rea-
soners in other Bayesian problems (McNair and Feeney, 2014).
In the case of the MHD, in addition to the just reviewed diffi-
culties, we suggest that this limitation is also due to a failure in
representing the prior probabilities.

An Overlooked Failure: Incomplete
Representation of Prior Probabilities

How people represent the prior probabilities in the MHD has
been rarely investigated. In most studies it is assumed that
people have an accurate representation of the different proba-
bilities before the elimination event that is, before inducing the
equiprobability illusion. However, with the exception of the prior
winning probability for the first choice, prior probabilities in
the MHD are not necessarily obvious. Representing the winning
probability of the initial choice is easy given the transparent cor-
respondence between the initial information, three doors, and
one prize, and the correct ratio 1 of 3 chances to win. However,
representing the winning probability of the set including the two
remaining doors might present a conflict between these two non-
selected doors and the three initial doors. In fact, it has been
observed that only about 50% of undergraduates understand that
the chance of the non-selected options (held by the host or infor-
mant in the card game) hiding the ace is 2 of 3, with a common
response instead being 1 of 2 (Tubau and Alonso, 2003; Tubau,
2008). Still more difficult is understanding (or expressing) that,
among the non-selected options, at least one is null. Only 25%
of participants were able to correctly answer the question: “What
is the probability that, among the non-selected cards, at least one
is not the ace?” (Tubau, 2008). Hence, although most participants
are able to represent, in a diagram, the different possible locations
of the prize (Tubau and Alonso, 2003), many have difficulties
expressing the corresponding probabilities (Tubau and Alonso,
2003; Tubau, 2008).

Weak representation of uncertain information causes vulner-
ability to biases and/or to conservative behavior (van der Pligt,
1998). Similarly, we argue that one of the consequences of the
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incomplete comprehension of prior probabilities in the MHD is
the vulnerability to the equiprobability illusion. This, together
with the choice biases discussed above, promotes the final deci-
sion to stick. In particular, susceptibility to the illusion is caused
by a weak representation of the facts that: (a) the non-selected
doors will hide the prize 2 out of 3 times, (b) among the non-
selected doors it is certain that at least one is null, and (c) this
null option will always be eliminated. Furthermore, without an
adequate representation of the prior probabilities, the perspective
manipulation commented above has no effect (e.g., in the adver-
sary version without the explicit representation manipulation in
Tubau and Alonso, 2003). Accordingly, being able to understand
the elimination’s conditions (the constraints imposed on the host
or on the computer), which is crucial for correct Bayesian rea-
soning in the MHD (Krauss and Wang, 2003; Burns and Wieth,
2004), cannot be useful without an accurate representation of
the prior probabilities. It is worth noting that the most effective
intervention in Krauss and Wang (2003) was the one prompt-
ing reasoners to imagine themselves opening one of the doors
according to the elimination’s conditions (perspective effect),
together with the requirement to express the answer as a ratio
of frequencies: The number of times, out of 3, in which the prize
would be behind the contestant’s door. That is, the one promoting
the representation of the initial possible locations of the prize.

In sum, a large number of the undergraduates that partici-
pate in the MHD experiments do not have adequate knowledge
to understand and/or represent prior and conditional probabili-
ties in the MHD (Tubau and Alonso, 2003; Tubau, 2008; see also
Brase et al., 2006, for similar claim in the context of other prob-
abilistic reasoning tasks). Therefore, when interpreting the data
in the literature, it is important to take into account these limita-
tions. A more complete comprehension of the psychology of the
MHD would require the consideration of specific knowledge or
skills as mediators of performance.

Understanding Reasoning Failures in
the MHD: A Theoretical Analyses

Although not without critics (for a recent review see Evans and
Stanovich, 2013), most current thinking theories share a dual-
systems or dual-processing approach. In essence, dual think-
ing theories consider that effortless, intuitive thinking processes
occasionally lead to erroneous or suboptimal responses, unless
more effortful, analytical reasoning processes intervene to over-
ride an initially biased tendency (Evans, 2010; Kahneman, 2011;
Stanovich, 2011). Some of the factors that determine the success
of effortful reasoning include: Adequate cognitive resources, spe-
cific knowledge related to the task, confidence in the intuitive
response, and thinking dispositions (engagement or laziness of
the reflectivemind). Specifically, Stanovich (2009) suggested that
the reasoning system can be understood as including two dif-
ferent “minds”: the algorithmic, which controls the running of
specific reasoning procedures, and the reflective, which decides
which reasoning algorithm to apply and/or whether or not to
invest more effort into the task. Therefore, according to this
proposal, overriding an erroneous response produced by the

autonomous mind (Stanovich, 2009) might fail due to lack of
resources and/or knowledge to run specific procedures (a fail-
ure of the algorithmic mind) and/or due to weak disposition to
implement a needed procedure or to review an initial response (a
failure of the reflective mind).

Applying this distinction to the MHD, would the frequent
but wrong application of the equiprobability principle be a fail-
ure of the algorithmic mind? Or would it be consequence of a
lazy reflective mind? As commented in Section “An Overlooked
Failure: Incomplete Representation of Prior Probabilities,” a large
number of participants do not have adequate knowledge to
correctly represent the prior and conditional probabilities in
the MHD (e.g., the probability of the set of non-chosen doors
containing the ace; the probability of one of the non-chosen
doors being empty; Tubau and Alonso, 2003; Tubau, 2008). For
these participants, explicit explanations of the different possibil-
ities during the game had a weak effect on correct reasoning,
compared to that observed with higher numerate participants
(Tubau, 2008). In addition to a lack of specific knowledge, rea-
soning in the MHD has been also impaired when the reasoning
resources (working memory) were compromised by a secondary
task (De Neys and Verschueren, 2006), supporting the relevance
of the algorithmic mind for correct reasoning. Nevertheless, it
is a common finding that the MHD remains obscure even for
high numerate individuals (Girotto and Gonzalez, 2005) or for
participants with high working memory span (De Neys and
Verschueren, 2006).

Regarding the role of the reflective mind in the MHD, there
is no direct evidence of a relation between reflective thinking
ability and performance in the MHD. Based on the general
finding of strong difficulties in overcoming the equiprobabil-
ity bias, even for individuals with more education (Girotto and
Gonzalez, 2005) or higher working memory span (De Neys
and Verschueren, 2006), we anticipate that the relation between
reflective thinking capacity and correct reasoning in the MHD
would be small or non-existent. It is possible that this relation
might emerge if additional relevant information were provided
(e.g., explicit representation of the different possibilities), as
observed for participants higher in numeracy (Tubau, 2008). But,
without this facilitation, weakness of the reflective mind on its
own is unlikely to be the main cause of reasoning failures in the
MHD.

If people high in cognitive reflection fail to review the erro-
neous default intuition it may be due to either an absence of the
relevant triggering conditions for reflection, or to the absence of
adequate knowledge to replace the erroneous default intuition
with the correct model of the task (due, for example, to a biased
representation of prior probabilities; see Section “An Overlooked
Failure: Incomplete Representation of Prior Probabilities”). One
of the relevant triggering conditions for reflection is the detec-
tion of conflicting beliefs, which tends to reduce confidence in the
correctness of the response (Thompson, 2009; De Neys, 2014).
In the case of the MHD, experience with the game can produce
two different types of conflict: (1) Conflict between correct repre-
sentation of prior probabilities and the elimination’s conditions
and the subsequent equiprobability intuition, and (2) Conflict
between the default equiprobable intuition and the experienced
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switching advantage. None of the reviewed studies have reported
confidence measures or other measures of conflict detection.
Nevertheless, based on previous findings showing incomplete
prior representation and/or the formation of the wrong belief
that, after the elimination of an option, a probability update is
needed (Baratgin and Politzer, 2010), we anticipate that no con-
flict (1) would be detected, however, this would be an interesting
question to follow up in future studies.

Related to previous conflict (2), there is evidence that noticing
it does not improve the chances to override the default intu-
ition (Tubau and Alonso, 2003; Klein et al., 2013; Saenen et al.,
2014). For example, in Tubau and Alonso (2003), participants
who noticed the conflict between the equiprobability intuition
and the switching advantage seemed to solve this contradic-
tion by creating a new explanation (in terms on an anomaly
in the computer program). That is, the equiprobability intu-
ition seemed to be accompanied by such a strong feeling of
rightness (e.g., Thompson, 2009) that the observation of a dis-
crepancy would have been associated with exception (anomalous
program) rather than to a conflict to be solved. Furthermore, if
some form of conflict were detected, the biased representation
of the underlying probabilistic structure for most participants
(see An Overlooked Failure: Incomplete Representation of Prior
Probabilities), together with the direct perception of two final, ini-
tially equal, doors would have likely prevented finding the correct
solution. In this sense, reasoning failures in the MHD could be
attributed to automatic processes which build a particularly vivid
default mental model of the task, and correspondingly strong
justification of its correctness, rather than to a weakness of the
reflective mind per se.

Implications for Enhancing Bayesian
Reasoning

As commented above, participants noticing the switching advan-
tage in the repeated MHD solved the contradiction with the
default intuition by building an alternative explanation able to
preserve it. This suggests that the reflective mind might indeed
notice certain conflicting information (conflict 2 in previous sec-
tion), but the relevant information needed to correct the error
in the default intuition (i.e., correct representation of prior prob-
abilities and the elimination’s conditions) is either not available
or ignored. Accordingly, the efficacy of interventions aimed at
improving Bayesian reasoning in the MHD would depend on
the available reasoner skills and/or external hints which enhance
the building of a more complete representation of the task.
According to the present review, the interventions that have
been shown to be the most effective are the ones promot-
ing a different partition of the probability space (Krauss and
Wang, 2003; Tubau and Alonso, 2003; Tubau, 2008). Instead of
modeling the winning probability of each of the three options
separately [P(each option) = 1/3], understanding the MHD
requires modeling the winning probability of each set of pos-
sibilities corresponding to each actor [i.e., P(contestant) = 1/3;
P(host) = 2/3]. Notice that with this representation, and with the
additional knowledge that the host for sure has at least one null

TABLE 2 | Main beliefs and biases affecting reasoning and choice in the
MHD both before and after the elimination of an option.

Incorrect reasoning and choice

Before the elimination of an option

Correct application of the equiprobability principle: Three equal
options (frequently, together with incorrect or incomplete
representation of the possibilities related to the set including the other
two options)

After the elimination of a null option

Reasoning based on cognitive biases (incorrect comprehension of
priors and/or the elimination’s conditions; incorrect application of the
equiprobability principle): Chances are equal for switch and stick
(1/2 each)

Choice based on emotional biases (switch aversion; endowment
effect; illusion of control): Select stick (consider switching in case of
bizarre or unexplainable observation of switch advantage)

Correct reasoning and choice

Before the elimination of an option

Correct partition of the probability space: Two unequal sets of
possibilities
Chances for the selected option: 1/3
Chances for the other two options: 2/3 (and a null option for sure)

After the obligatory elimination of a null option

Correct comprehension of the elimination’s conditions
Chances for the selected option: 1/3
Chances for the other option: 2/3 (the null option was predicted)

Reasoning: Chances are higher for switch (2/3) than for
stick (1/3)
Choice: Switch is a better option than stick

option that must be shown, no other computation is needed (see
Table 2).

In sum, as observed in other Bayesian problems, the correct
partition of the problem space of probabilities or corre-
sponding set–subset structure is crucial for correct reasoning
(Johnson-Laird et al., 1999; Barbey and Sloman, 2007). As also
shown in other Bayesian problems, the use of natural frequen-
cies can facilitate the comprehension of the MHD (Krauss and
Wang, 2003; Tubau and Alonso, 2003; Tubau, 2008). This seems
particularly relevant in case of lower numerate reasoners, who
would require a simulation of the partitioned probabilities by
simulating several repetitions of the game (Tubau, 2008). But,
in general, reviewed findings in the MHD suggest that the accu-
racy of explicit Bayesian reasoning depends on the accuracy of
the underlying partitions of the probability space included in the
mental model of the task.

Conclusion

The strong counterintuitivity of the MHD has intrigued people
for decades. What is it about the MHD that makes it so hard
for people to know that switching is the best course of action
to win the prize? And on top of that, what is it that generates
such strong disbelief even if it is realized that switching is bet-
ter? Assuming the random assignation of the prize, it is clear
that, in the initial stage of the game, most people would correctly
assign to each alternative the same probability of hiding the
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prize. It is after the first choice is already made and the second
choice to stick or switch is offered that the dilemma develops.
The trouble starts with the initially built representation of the
task upon which this second decision is based. On the one hand,
emotional biases such as anticipation of regret and the endow-
ment effect make people opt for sticking. On the other hand, it
has also been suggested that the incomplete representation of the
different possible courses of action is normally mediated by igno-
rance about the constraints involved in the elimination of one
option. Nevertheless, as argued in this review, the initial partition
between three equally likely options instead of two unequal sets of
possibilities (contestant’s and host’s possibilities) seems also to be
an important determinant, frequently ignored, for the difficulty
in overcoming the equiprobability illusion in the final two-choice
scenario.

The relevance of ensuring a correct initial partition of the
probability space, combined with understanding that there is a
null option within the non-selected partition, is supported by
the observation that the best interventions shown to improve
Bayesian reasoning in the MHD are the ones promoting the rep-
resentation of the possibilities of each actor (contestant and host).

Furthermore, the dissociation observed between the interven-
tions enhancing optimal choice (repeated practice or increased
incentives) and the ones enhancing correct reasoning (explicit
partitioning of possibilities) is coherent with current dual process
theories of thinking (e.g., Sloman, 1996; Evans, 2010; Kahneman,
2011; Stanovich, 2011) and with dual process models of reward
learning (Dayan and Daw, 2008). Whereas changes in preference
would be controlled by the autonomous mind (i.e., by means
of model-free reward learning mechanisms), explicit reason-
ing would depend on available cognitive resources and explicit
knowledge of the task (similarly to the requirements of model-
based reward mechanisms). Accordingly, the present review
highlights promising new avenues to help understand behav-
ior and reasoning gaps, and to anticipate the efficacy of new
interventions to improve Bayesian reasoning.
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The coherence of probability judgments
is influenced in predictable ways by peo-
ple’s internal representations of problems,
which may be altered by the manner in
which propositions are stated or “framed”
(Mandel, 2008). Likewise, several studies
find that probabilistic reasoning and judg-
ment can be improved by externally repre-
senting statistical information visually (for
a review, see Garcia-Retamero and Cokely,
2013). Visual representation is thought
to facilitate performance by externalizing
the set-subset relations among observa-
tional data. Although some studies have
examined whether visual representations
can improve Bayesian reasoning, they have
tended to focus on the use of natural
sampling trees (Sedlmeier and Gigerenzer,
2001), Euler circles (Sloman et al., 2003),
or other means of representing set-subset
relations.

However, visualization can aid reason-
ing and judgment even when problems
do not involve natural or normalized fre-
quency representations. Take the “Ann
problem” adapted by Over (2007b):

Jack is looking at Ann but Ann is looking
at George. Jack is a cheater but George
is not. Is a cheater looking at a non-
cheater?
(A) Yes (B) No (C) Cannot tell

In a variant of the problem, Toplak and
Stanovich (2002) found that most people
say they cannot tell, although the correct
answer is yes. Wrong answers are common
because most people do not consider the
implications of the fact that Ann is either
a cheater or she is not. As Over (2007b)

notes, the logic of the excluded middle—
namely, that all propositions of the form
“x or not-x” are logically true—is often
neglected.

Instead people seem to be guided by
their sense of uncertainty about both of the
dyadic relations in the problem, remain-
ing unaware that their uncertainty should
not preclude a more definite conclusion.
As Over (2007a,b) suggests, logic trees,
which represent possibilities on branches,
can provide a useful visualization tool
for overcoming such psychological bar-
riers. If one were to draw out the two
possibilities in the Ann problem—one in
which cheater Jack looks at non-cheater
Ann and the other in which cheater Ann
looks at non-cheater George—the correct
answer is evident. If you draw a logic tree
showing the two possibilities (Ann as a
cheater or as a non-cheater) and the “look-
ing relations” that are entailed in each, it
becomes evident that no matter what Ann
is, a cheater will always look at a non-
cheater. Who the cheater is and who the
non-cheater is will differ depending on
whether Ann is a cheater or not, but those
details are irrelevant to the question. The
logic tree also shows that it is impossi-
ble for a non-cheater to look at a cheater.
However, in that case, one must attend to
what is omitted from the set of possible
worlds.

THE SLEEPING BEAUTY PROBLEM
In the remainder of this paper, I explore
the value of logic trees in representing
alternative arguments by experts about
normative belief updating. I focus on
the Sleeping Beauty problem introduced

by Elga (2000) and discussed shortly
thereafter by Lewis (2001). My aim is
twofold: First, I want to show how these
authors’ arguments may be represented
and how the representations may be com-
pared. Second, I want to propose a resolu-
tion of the disagreement over the problem
that I believe is novel.

This is Lewis’s description of the
problem:

Researchers at Experimental Philosophy
Laboratory have decided to carry out
the following experiment. First they will
tell Sleeping Beauty [SB] all that I am
about to tell you in this paragraph, and
they will see to it that she fully believes
all she is told. Then on Sunday evening
they will put her to sleep. On Monday
they will awaken her briefly. At first they
will not tell her what day it is, but later
they will tell her that it is Monday. Then
they will subject her to memory era-
sure. Perhaps they will again awaken
her briefly on Tuesday. Whether they do
will depend on the toss of a fair coin:
if heads they will awaken her only on
Monday, if tails they will awaken her
on Tuesday as well. On Wednesday the
experiment will be over and she will be
allowed to wake up. The three possible
brief awakenings during the experiment
will be indistinguishable: she will have
the same total evidence at her Monday
awakening whatever the result of the
coin toss may be, and if she is awak-
ened on Tuesday the memory erasure on
Monday will make sure that her total
evidence at the Tuesday awakening is
exactly the same as at the Monday awak-
ening. However, she will be able, and she
will be taught how, to distinguish her
brief awakenings during the experiment

www.frontiersin.org October 2014 | Volume 5 | Article 1232 | 204

http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01232/full
http://community.frontiersin.org/people/u/111290
mailto:drmandel66@gmail.com
http://www.frontiersin.org
http://www.frontiersin.org/Cognition/archive


Mandel Visual representation of rational belief revision

from her Wednesday awakening after the
experiment is over, and indeed from all
other actual awakenings there have ever
been, or ever will be.

Furthermore, assume that SB is a paragon
of rationality and let us also assume for
the sake of concreteness that the coin is
tossed on Sunday night after SB is put to
sleep. What subjective probability should
she assign to heads (H) upon her awaken-
ing on Monday, and then again after she is
told that it is Monday?

Elga and Lewis agree that SB will be in
one of three states:

H1: Heads and it is Monday
T1: Tails and it is Monday
T2: Tails and it is Tuesday.

Elga starts out by imagining that SB knows
that the coin lands on tails. Since T1 and
T2 would be indistinguishable to SB, he
argues that she should assign each the
same probability: P(T1) = P(T2) = 1/2.
Next, Elga imagines that SB knows it is
Monday, arguing that SB should assign
equal probability to H1 and T1 given the
fact that the coin is fair. Thus, P(H1)
= P(T1) = P(T2). Since these probabili-
ties must sum to 1, each must equal 1/3.
Therefore, Elga proposes that, on waking
in an asynchronous state, SB should assign
a 1/3 probability to heads, and that she
should revise this probability to 1/2 after
learning it is Monday.

Lewis disagrees. He starts out with the
principle that the subjective probability of
a future chance event should be equal to
the known chances (Mellor, 1971; Lewis,
1980). Since the coin is fair, the known
chances indicate P(H) = P(T) = 1/2.
Lewis argues that on awakening SB has not
learned anything new that would warrant
belief revision. She has no new knowledge
of her location. Like Elga, Lewis accepts
that SB should regard P(T1) = P(T2).
Given P(T) = P(T1 ∨ T2) = 1/2, and the
disjunctive possibilities are equiprobable,
P(T1) = P(T2) = 1/4.

Elga and Lewis agree that, upon
learning it is Monday, SB should increase
her subjective probability of heads by 1/6
after conditionalizing on the remain-
ing possibilities. For Elga, P(H|H1 ∨
T1) = (1/3)/(2/3) = 1/2. For Lewis,
P(H | H1 ∨ T1) = (1/2)/(3/4) = 2/3.

Interestingly, Lewis does not apply his
imaging rule for belief updating (Lewis,
1976) here, even though it arguably applies
(Cozic, 2011; see also Baratgin, 2009).

The SB problem continues to
prompt philosophical debate (e.g., Dorr,
2002; Horgan, 2004; Weintraub, 2004;
Rosenthal, 2009; Baratgin and Walliser,
2010). In my own thinking about it, I
have found it useful to externally visualize
the alternative arguments using enhanced
logic trees that also encode operations
(e.g., normalization) or relation types
(e.g., necessity). Figure 1 shows possible
logic trees for Elga’s “thirder” and Lewis’s
“halfer” positions. It reveals that the locus
of disagreement is in the apportioning of
probability to T1 and T2.

In Elga’s analysis, these two centered
possibilities each have a subjective proba-
bility of 1/2 since the coin toss outcome
T, all agree, equals 1/2 and the Monday
and Tuesday awakenings necessarily fol-
low. Since H1 also equals 1/2, the prob-
abilities must be normalized to constrain
their sum to 1. This leads to each centered
possibility having a probability of 1/3.

In Lewis’s analysis, the same two cen-
tered possibilities, T1 and T2, each have a
subjective probability of 1/4 because Lewis
applies a principle of indifference to them.
Given that the three centered possibilities
are additive, normalization is not required
and H1 remains 1/2.

The visualizations reveal something
about the relative strength of the two posi-
tions, which I believe favors 1/3 as an
answer to the first question. I won’t say
they favor Elga’s arguments over Lewis’s.
That would be reading in too much and
let me come back to that. It seems evi-
dent that the strength of the Elgan tree
over the Lewisian tree is that the for-
mer encodes necessity relations on the
centered branches that follow from the
possible world in which T transpired on
Sunday night, whereas the latter encodes
SB’s uncertainties. We have already seen
what relying on our uncertainties rather
than on what must follow can do in the
Ann problem. I suspect the lesson may
be repeated here but for better reasons.
Lewis keeps P(H1) fixed at 1/2 because
he believes that, given no change in rel-
evant information, there should not be a
change in subjective probability. Since all
agree that P(H) = 1/2, and since nothing

about location is learned upon SB’s awak-
ening, there is a principled reason for not
changing the probabilities. As Lewis notes,
he realizes the appeal of Elga’s argument,
but it is precisely because he finds his own
more principled that he sticks to it. There
is something to be said about following
logic even if it does not lead to intuitive
conclusions, and that appears to be what
Lewis has done.

While Lewis is correctly principled,
both he and Elga mistake what SB’s subjec-
tive probability on Sunday ought to refer
to. Both attribute a subjective probability
of 1/2 to SB on Sunday night before she
is put to sleep. But what exactly does this
probability refer to? Elga and Lewis focus
on P(H), and I believe that is the prob-
lem. One should consider what probability
SB would assign on Sunday to H know-
ing what she knows about the waking rules
of the experiment, and imagining she has
just awoken in an asynchronous state in
the experiment. Let us call this P∗(H1),
where the asterisk denotes the counter-
factual status of the hypothesis. P∗(H1) is
the probability of the Stalnaker-type con-
ditional (Stalnaker, 1968) specified in the
query, “What is the probability that if you,
SB, were to have an asynchronous awak-
ening, then the coin would have come
up heads?” We might expand this query,
which utilizes a wide-scope probability
operator (Over et al., 2013), as follows:
“What is the probability that if you, SB,
were to have an asynchronous awaken-
ing, which in fact you and I know you
are not having at the moment, and if
you knew all that you know now about
the rules of the experiment, then the
coin would have come up heads?” In this
case, the probability she should assign
to P∗(H1) equals 1/3, precisely because
P(H) = P(T) = 1/2, P(Monday awaken-
ing) = 1, and P(Tuesday awakening) =
1/2. Because an asynchronous awakening,
A, must either be a Monday awakening or
a Tuesday awakening, P(A = Monday) =
2/3. P∗(H1) = P(A = Monday)P(H) =
(2/3)(1/2) = 1/3.

That, on Monday, P(H1) should
also equal 1/3 reflects adherence to the
dynamic coherence criterion or Bayesian
conditioning principle, which states that
a probability assessed conditionally on
a suppositional event x should not differ
from the probability assessed conditionally
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on the actual event x (Baratgin and
Politzer, 2006). In the Sleeping Beauty
problem, A may be supposed, contrary
to fact, on Sunday night and A will be
actualized on Monday, and possibly on
Tuesday too.

The mislabeling of the event that SB
is to consider on Sunday night leads Elga
to accept belief revision in the absence of
new relevant information. He arrives at
a correct answer but forfeits a principle
he should have defended. Lewis defends
that principle, but ends up with an incor-
rect estimate because of the initial labeling
error. Elgan thirders are therefore right
about 1/3 and Lewisian halfers are right to
stick to their principles.

Both the Ann and Sleeping Beauty
problems illustrate the value of visual
representations in reasoning through
problems that require people to state their
degree of belief in a given proposition. In
neither case is the problem’s solution clar-
ified by externalizing a natural frequency
representation of the problem. Frequency
trees and other nested-set-revealing

visualizations may facilitate Bayesian
reasoning, but so can other forms of
visualization, such as (enhanced) logic
trees.

The Sleeping Beauty problem also high-
lights the limits of visualization since noth-
ing in the visualizations offered clarifies
the labeling error that I believe lies at the
heart of the disagreement; namely, that
the proposition being assessed changes
from Time 1 (Sunday night) to Time 2
(Monday’s asynchronous awakening). Put
differently, the visualizations shown in
Figure 1 do not represent queries, and it
is at the level of query formulation where
I believe the controversy first arose. Note
too that while the trees in Figure 1 respec-
tively represent Elga’s and Lewis’s stances
on the Sleeping Beauty problem, they do
not inherently resolve which stance is more
appropriate. At best, they might help other
reasoners reach a conclusion by showing
in representational terms where disagree-
ment seems to lie.

If my account is correct, it raises the
question why P∗(H1) could be mistaken

for P(H) by such sharp minds. That it
would—namely, that Sunday’s apples
would be compared with Monday’s
oranges—is both surprising and a con-
tinuing source of my own skepticism in
its correctness. Yet, it seems uncontrover-
sial that (a) Elga, Lewis and indeed most
commentators on the problem focus their
attention on P(H) when considering SB’s
Sunday assessment and (b) that this is not
well paired with the assessments made
upon awakening. To be explicit, the reason
it is not well paired is that on Monday,
SB must take into account the rules of the
experiment, which she perfectly remem-
bers, yet on Sunday she must disregard
that knowledge, which is equally at her
disposal, in giving her simple credence for
heads. Given she is a paragon of rational-
ity, I cannot help but think that she would
object to such inconsistency.
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NORM, normalize; PROD, product.
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discussions about the Sleeping Beauty
problem and belief revision.
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