
Edited by  

Duo Chen, Ke Liu, Jiayang Guo, Luzheng Bi 

and Jing Xiang

Published in  

Frontiers in Neuroinformatics 

Frontiers in Neurorobotics

Brain-computer interface 
and its applications

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/research-topics/29617/brain-computer-interface-and-its-applications
https://www.frontiersin.org/research-topics/29617/brain-computer-interface-and-its-applications
https://www.frontiersin.org/journals/neurorobotics


March 2023

Frontiers in Neuroinformatics 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-83251-628-7 
DOI 10.3389/978-2-83251-628-7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


March 2023

Frontiers in Neuroinformatics 2 frontiersin.org

Brain-computer interface and its 
applications

Topic editors

Duo Chen — Nanjing University of Chinese Medicine, China

Ke Liu — Chongqing University of Posts and Telecommunications, China

Jiayang Guo — Xiamen University, China

Luzheng Bi — Beijing Institute of Technology, China

Jing Xiang — Cincinnati Children’s Hospital Medical Center, United States

Citation

Chen, D., Liu, K., Guo, J., Bi, L., Xiang, J., eds. (2023). Brain-computer interface and 

its applications. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-83251-628-7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-83251-628-7


March 2023

Frontiers in Neuroinformatics 3 frontiersin.org

05 Editorial: Brain-computer interface and its applications
Duo Chen, Ke Liu, Jiayang Guo, Luzheng Bi and Jing Xiang

07 Multi-Modal Integration of EEG-fNIRS for Characterization of 
Brain Activity Evoked by Preferred Music
Lina Qiu, Yongshi Zhong, Qiuyou Xie, Zhipeng He, Xiaoyun Wang, 
Yingyue Chen, Chang’an A. Zhan and Jiahui Pan

21 Using Non-linear Dynamics of EEG Signals to Classify Primary 
Hand Movement Intent Under Opposite Hand Movement
Jiarong Wang, Luzheng Bi and Weijie Fei

31 SparNet: A Convolutional Neural Network for EEG 
Space-Frequency Feature Learning and Depression 
Discrimination
Xin Deng, Xufeng Fan, Xiangwei Lv and Kaiwei Sun

46 EEG Identity Authentication in Multi-Domain Features: A 
Multi-Scale 3D-CNN Approach
Rongkai Zhang, Ying Zeng, Li Tong, Jun Shu, Runnan Lu, Zhongrui Li, 
Kai Yang and Bin Yan

62 Classification of Electrophysiological Signatures With 
Explainable Artificial Intelligence: The Case of Alarm 
Detection in Flight Simulator
Eva Massé, Olivier Bartheye and Ludovic Fabre

71 SPD-CNN: A plain CNN-based model using the symmetric 
positive definite matrices for cross-subject EEG classification 
with meta-transfer-learning
Lezhi Chen, Zhuliang Yu and Jian Yang

83 An EEG study of human trust in autonomous vehicles based 
on graphic theoretical analysis
Tao Xu, Andrei Dragomir, Xucheng Liu, Haojun Yin, Feng Wan, 
Anastasios Bezerianos and Hongtao Wang

94 Classification of partial seizures based on functional 
connectivity: A MEG study with support vector machine
Yingwei Wang, Zhongjie Li, Yujin Zhang, Yingming Long, Xinyan Xie 
and Ting Wu

108 Decoding EEG rhythms offline and online during motor 
imagery for standing and sitting based on a brain-computer 
interface
Nayid Triana-Guzman, Alvaro D. Orjuela-Cañon, Andres L. Jutinico, 
Omar Mendoza-Montoya and Javier M. Antelis

125 An EEG-based asynchronous MI-BCI system to reduce false 
positives with a small number of channels for 
neurorehabilitation: A pilot study
Minsu Song, Hojun Jeong, Jongbum Kim, Sung-Ho Jang and 
Jonghyun Kim

Table of
contents

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


March 2023

Frontiers in Neuroinformatics 4 frontiersin.org

146 Novel hybrid visual stimuli incorporating periodic motions 
into conventional flickering or pattern-reversal visual stimuli 
for steady-state visual evoked potential-based 
brain-computer interfaces
Jinuk Kwon, Jihun Hwang, Hyerin Nam and Chang-Hwan Im

159 A novel brain-computer interface based on audio-assisted 
visual evoked EEG and spatial-temporal attention CNN
Guijun Chen, Xueying Zhang, Jing Zhang, Fenglian Li and 
Shufei Duan

172 Brain-Computer Interface using neural network and 
temporal-spectral features
Gan Wang and Moran Cerf

191 A review: Music-emotion recognition and analysis based on 
EEG signals
Xu Cui, Yongrong Wu, Jipeng Wu, Zhiyu You, Jianbing Xiahou and 
Menglin Ouyang

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


TYPE Editorial

PUBLISHED 09 February 2023

DOI 10.3389/fnbot.2023.1140508

OPEN ACCESS

EDITED AND REVIEWED BY

Alois C. Knoll,

Technical University of Munich, Germany

*CORRESPONDENCE

Duo Chen

380013@njucm.edu.cn

RECEIVED 09 January 2023

ACCEPTED 19 January 2023

PUBLISHED 09 February 2023

CITATION

Chen D, Liu K, Guo J, Bi L and Xiang J (2023)

Editorial: Brain-computer interface and its

applications. Front. Neurorobot. 17:1140508.

doi: 10.3389/fnbot.2023.1140508

COPYRIGHT

© 2023 Chen, Liu, Guo, Bi and Xiang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Editorial: Brain-computer interface
and its applications

Duo Chen1*, Ke Liu2, Jiayang Guo3, Luzheng Bi4 and Jing Xiang5

1School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine,

Nanjing, China, 2School of Computer Science and Technology, Chongqing University of Posts and

Telecommunications, Chongqing, China, 3National Institute for Data Science in Health and Medicine, Xiamen

University, Xiamen, China, 4Institute of Mechatronic Systems, Beijing Institute of Technology, Beijing, China,
5Magnetoencephalography (MEG) Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,

United States

KEYWORDS

brain-computer interface (BCI), deep learning, machine learning, artificial intelligence,

Electroencephalogram (EEG)

Editorial on the Research Topic

Brain-computer interface and its applications

Currently, brain-computer interface (BCI) is the research focus and hotspot in the field

of neuroscience. Related technologies are widely used in various scenarios such as clinical

use, rehabilitation, engineering, and daily life. The BCI uses different brain signals, recording

methods, and signal-processing algorithms to build a link between the brain and external

software/hardware platforms. With the development of hardware (e.g., BCI chip, wearable

device) and algorithms (e.g., machine learning, deep learning), BCI is becoming more practical

and stable.

We publish this Research Topic to collect the latest research worldwide in BCI. Researchers

from all over the world actively participate and contributed a lot of manuscripts. After carefully

and professionally reviewing all submissions, 14 high-quality manuscripts are accepted.

In this topic, several of the contributions focus on the use of deep learning in EEG

decoding for BCI, among which convolutional neural network (CNN) is the most widely used.

Zhang et al. propose a Multi-Scale 3D-CNN Approach for EEG-based Identity Authentication.

The experimental results show that the classification performance of the proposed framework

is excellent, and the multi-scale convolution method is effective to extract high-quality

identity characteristics across feature domains. Qiu et al. use Electroencephalogram (EEG) and

Functional Near Infra-red Spectroscopy (fNIRS) to track the brain activities evoked by neutral

and preferred music. The authors conclude that music can promote brain activities, especially in

the prefrontal lobe with preferred music. Deng et al. propose SparNet, a CNN composed of five

parallel convolutional filters and the Squeeze-and-Excitation Networks (SENet), to learn EEG

space-frequency domain characteristics and distinguish between depressive and normal control.

The computational results indicate that SparNet achieves a sensitivity of 95.07%, and a specificity

of 93.66%. Wang and Cerf combine common spatial pattern (CSP) features and radial basis

function neural network (RBFNN) to classify motor imagery EEGs. The algorithm provided

high variability within- and across-subjects in EEG-based action decoding. The computational

accuracies are higher or close to 90% on two datasets, i.e., BCI competition IV-2a, and -2b. Chen

L. et al. transform the EEG signals into symmetric positive definite (SPD) matrices and captures

the features of SPD matrices by using CNN. Meta-transfer-learning (MTL) is used to avoid the

time-consuming calibration. Chen G. et al. explore the feasibility of an audio-assisted visual BCI

speller and a deep learning-based single-trial event-related potentials (ERP) decoding strategy.

A spatial-temporal attention-based CNN (STA-CNN) is proposed to recognize the single-trial

ERP components. The average classification accuracy of STA-CNN is 77.7% in the EEG dataset

recorded from 10 subjects.
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Other studies use traditional machine learning and statistical

methods for BCI applications in certain modes. Xu et al. use a

simulated driving platform with an EEG data collection system

for the evaluation of human trust in autonomous vehicles. The

graphic theoretical analysis illustrates how human trust varies in

EEG under semi-autonomous or fully autonomous driving modes.

Wang J. et al. use non-linear dynamics of EEG Signals to Classify

primary hand movement intent under opposite hand movement.

Their experimental results show significant differences in movement-

related cortical potentials between hand movement directions under

an opposite hand movement. The results may lay a foundation for

the future development of EEG-based human augmentation systems

for both the handicapped and the healthy. Massé et al. investigate

EEG-based alarm detection in the flight simulator. Cognitive fatigue

and cognitive load are manipulated to trigger inattentional deafness,

and brain activity is recorded via EEG. The results show that alarm

omission and alarm detection can be classified based on time-

frequency analysis of EEG. Triana-Guzman et al. combine filter bank

CSP (FBCSP) and regularized linear discriminant analysis (RLDA)

for decoding EEG rhythms offline and online during motor imagery

for standing and sitting. The mean accuracy is higher than 80% in

offline analysis, and higher than 90% in online experiments. Song

et al. propose a rehabilitative motor imagery BCI system that focuses

on rejecting false positive (FP) detection in stroke rehabilitation. A

two-phase classifier is used to reject the FP. The algorithm achieved

71.76% selectivity and 13.70% FP rate by using only four EEG

channels in the patient group with stroke. Kwon et al. propose a

new hybrid visual stimuli for steady-state visual evoked potential

(SSVEP)-based BCI, which incorporate various periodicmotions into

conventional flickering stimuli (FS) or pattern reversal stimuli (PRS).

Results demonstrate that FS with sine-wave periodic motion and PRS

with square-wave periodic motion could effectively improve the BCI

performances compared to conventional FS and PRS.

Finally, two studies provide clinical and human factor

applications of magnetoencephalography (MEG) and EEG.

Wang Y. et al. classify the MEG data of patients with complex partial

seizures (CPS) or simple partial seizures (SPS), using support vector

machine. The algorithm obtained a classification accuracy higher

than 80%. Cui et al. review the music-emotion recognition and

analysis based on EEG signals.

Overall, we hope that this topic can provide some references and

novel ideas for researchers in BCI. It should be emphasized that for

such a rapidly developing research field, the work that has been done

so far is only a drop in the ocean. Themanuscripts we collect this time

can only be a small leaf in the Amazon rainforest. For BCI, there is

still a big gap between the current research and the actual use. Things

that need to be solved go far beyond.
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Multi-Modal Integration of
EEG-fNIRS for Characterization of
Brain Activity Evoked by Preferred
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Lina Qiu 1†, Yongshi Zhong 1†, Qiuyou Xie 2†, Zhipeng He 1, Xiaoyun Wang 3, Yingyue Chen 3,
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Music can effectively improve people’s emotions, and has now become an effective

auxiliary treatment method in modern medicine. With the rapid development of

neuroimaging, the relationship between music and brain function has attracted

much attention. In this study, we proposed an integrated framework of multi-modal

electroencephalogram (EEG) and functional near infrared spectroscopy (fNIRS) from data

collection to data analysis to explore the effects of music (especially personal preferred

music) on brain activity. During the experiment, each subject was listening to two different

kinds of music, namely personal preferred music and neutral music. In analyzing the

synchronization signals of EEG and fNIRS, we found that music promotes the activity

of the brain (especially the prefrontal lobe), and the activation induced by preferred

music is stronger than that of neutral music. For the multi-modal features of EEG and

fNIRS, we proposed an improved Normalized-ReliefF method to fuse and optimize them

and found that it can effectively improve the accuracy of distinguishing between the

brain activity evoked by preferred music and neutral music (up to 98.38%). Our work

provides an objective reference based on neuroimaging for the research and application

of personalized music therapy.

Keywords: multi-modality, electroencephalogram (EEG), functional near-infrared spectroscopy (fNIRS), brain

activity, preferred music

INTRODUCTION

Music is the reproduction of the sound of nature that combines science and art. It can not only be
used as a form of entertainment to improve people’s quality of life (Murrock andHiggins, 2010; Niet
et al., 2010; Witte et al., 2020; Chen et al., 2021), but also as a treatment to cure some neurological
diseases, such as Alzheimer’s disease (Reschke-Hernández et al., 2020), stoke (Sarkamo et al.,
2008), disorders of consciousness (DOC) (Carrière et al., 2020), Parkinson’s disease (Alfredo, 2015),
depression (Chen et al., 2021) and autism (James et al., 2015). For example, Reschke-Hernández
et al. (2020) used familiar music as a stimulus to emphasize the effect of familiar music in inducing
the emotions of patients with Alzheimer’s disease. Sarkamo et al. (2008) showed that for stroke
patients, listening music enhances cognitive recovery and mood after middle cerebral artery stroke.
In their review, Rollnik and Eckart (2014) also concluded that listening to music has the effect of
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awakening and improving mood in patients with impaired
consciousness, and can even be used as a means of
communicating with patients.

With the rapid development of neuroimaging technology,
more and more studies have focused on exploring the
relationship between music and its effects on the brain.
Previous studies have shown that music affects people not
only psychological, but also has a positive impact on cognitive
development of the brain, including memory, learning and
attention (Franco Jarava, 2018). Bennet and Bennet (2008)
found that listening to music helps keep brain neurons active
and vigorous and synapses intact. Gui et al. (2019) described
the use of fMRI to analyze the brain activity of depressed
patients and healthy people under positive and negative music
stimulation, and found that their regions of interest (ROI)
characteristics are quite different. According to the functional
near-infrared spectroscopy (fNIRS) indicator of the prefrontal
cortex activation, Zheng et al. (2020) showed that soothing
music cause low motivational intensity emotion and uplifting
music cause high motivational intensity. In particular, music
therapy with personality characteristics helps to make people
feel relaxed and improve the mood, behavior and prognosis
of patients (Zheng et al., 2020). Jagiello et al. (2019) used
electroencephalogram (EEG) to measure the brain responses to
familiar vs. unfamiliarmusic and found that fragments of familiar
and unfamiliar music can be quickly distinguished in the brain.

Different states of the brain understand music in different
ways and stimulate specific areas of the brain. Different genres
of music have been shown to have different effects on brain
function, such as significant differences in the activation of the
prefrontal lobe were studied with classical and techno music
(Bigliassi et al., 2015). Previous studies have shown that music
with personal meaning may be more easily perceivable than
background music or “relaxing” music, and it is more beneficial
to people (Gerdner, 2000; Geethanjali et al., 2018; Jagiello et al.,
2019). The findings of Greenberg et al. (2015) showed that
individual differences in musical preferences may be related
to brain activity and structure. Koelsch (2015) mentioned that
because music can evoke people’s memory, listening to familiar
music can make the brain area which is responsible for memory
function responds accordingly and induces people’s emotions.
Geethanjali et al. (2018) found specific activation and increased
functional connectivity after listening to Indianmusic and Indian
music can increased the positive affective scores. However, there
are relatively few studies on the effect of personal preferred music
on brain activity. What is the characteristic pattern of the brain
activity induced by personal preferred music and whether it can
promote our brain activity better than other audio stimulus are
still unclear.

The current exploration of the relationship between music
and brain activity mainly uses single-modality neuroimaging
technology, such as fMRI, Positron Emission Computed
Tomography (PET) and Magnetoencephalography (MEG)
(Blood et al., 1999; Jared et al., 2018; Gui et al., 2019; Carrière
et al., 2020). However, previous studies have proved that
combining multi-modal imaging technology can effectively use
the complementary information of different technologies to

overcome the basic limitations of individual modalities, and
provide more comprehensive and richer brain information
than single-modality imaging technology (Cicalese et al.,
2020). Among the commonly used non-invasive neuroimaging
technologies, EEG and fNIRS are relatively portable, flexible and
inexpensive, and have a wider range of possible applications.
EEG can capture the macro-time dynamics of brain electrical
activity by recording neuron firing (Pan et al., 2020), and fNIRS
estimates brain hemodynamic fluctuations through spectral
measurement (Chincarini et al., 2020). These two technologies
reflect different aspects of brain neural activity. In addition, EEG
measurement has high time resolution but poor stability, while
fNIRS has higher spatial resolution and good anti-interference
but lower time resolution (He et al., 2020). Therefore, the
multi-modal brain imaging system that combining both
EEG and fNIRS can simultaneously obtain high-temporal-
spatial resolution information, and dynamically observe the
information processing processes of the cerebral cortex from the
two dimensions of neuroelectric activity and hemodynamics.
This is undoubtedly a better strategy for exploring brain activity.
Li et al. (2020a) developed an EEG-informed-fNIRS analysis
framework to investigate the neuro-correlate between neuronal
activity and cerebral hemodynamics by identifying specific EEG
rhythmic modulations which contribute to the improvement of
the fNIRS based General Linear Model (GLM) analysis. Putze
et al. (2013) used EEG and fNIRS to distinguish and detect visual
and auditory stimuli processing. They extracted the time-domain
and frequency-domain features of EEG and the mean feature
of fNIRS and then used the classifier to classify them. They
concluded that the fusion of different features of different modal
signals has more advantages than the classification accuracy
of single-modality features. The multi-modal EEG-fNIRS can
provide richer brain activity information than a single-modality.
Inspired by the above research, we tried to integrate the multi-
modal brain imaging technology of EEG and fNIRS to explore
brain activity evoked by personal preferred music.

However, EEG and fNIRS signals are two different brain
signals, and the multi-modal integration of EEG-fNIRS is still a
challenge in the field of multi-modal research. The commonly
used multi-modal integration methods mainly include three
strategies: data-level fusion, feature-level fusion, and decision-
level fusion. Among them, the feature-level fusion strategy
with relatively good effect and relatively simple processing has
attracted more attention (Qi et al., 2018). However, most of
the current researches using this strategy simply use feature
vector splicing to fuse multi-modal features (Hubert et al., 2017).
Although the splicing method is simple, it does not consider
the correlation and difference between different modalities, and
it is difficult to utilize the multi-modal information of EEG-
fNIRS fully and effectively. An effective multi-modal integration
method can further improve the performance of the EEG-fNIRS
system (Khan and Hasan, 2020).

In this work, we propose a multi-modal integration
framework of EEG-fNIRS from data collection to data analysis
to explore the influence of personal preferred music on brain
activity. Under the stimuli of personal preferred music and
neutral music, we synchronously collected the brain signals of
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the two modalities, and combined their features to explore the
brain activities evoked by music. Meanwhile, we employed an
improved Normalized-ReliefF algorithm to fuse and optimize
the multi-modal features from the two brain signals, which
effectively improves the accuracy of distinguishing brain
activity caused by preferred music and neutral music. The main
contributions of this work are as follows:

(1) Based on the complementarity of EEG and fNIRS, multi-
modal data of EEG and fNIRS were simultaneously collected
to explore the relationship betweenmusic (especially favorite
music) and brain activity from different perspectives, which
provides imaging-based evidence for the clinical application
of personalized music therapy.

(2) A multi-modal integration method of EEG-fNIRS is
proposed. We first normalized the multi-modal features
from EEG and fNIRS, and then developed an improved
ReliefF algorithm to perform feature selection on these
multi-dimensional features, and finally fused these features
together to realize the full utilization and effective fusion of
EEG and fNIRS information.

MATERIALS AND METHODS

Subjects
Nine right-handed volunteers (five males and four females, with
an average age of 31.25 years) with no history of neurological,
psychiatric or other brain-related dis-ease participated in this
study. No subjects reported damage to the auditory channel or
received professional musical education. Before the start of the
experiment, each subject was fully informed of the experimental
purpose and methods, and provided writ-ten informed consent
prior to the start of the experiment.

Paradigm Design
Participants’ personal preferred and neutral music was used
as the experimental stimulus in the present study. Before the
experiment, we conducted a questionnaire survey for each
participant, asking them to provide one of their personal favorite
music, and choosing one of the four unfamous relax music (e.g.,
soft music) we provided as the neutral music stimulus. All music
has lyrics. During the experiment, music was played outside
via mobile phones, and the playback volume of each song was
basically the same. In order to minimize the interference of
environmental noise, we kept the experimental environment as
quiet as possible. At the beginning of the experiment, the subject
was asked to close their eyes and sit awake in a comfortable
chair. Short beeps were emitted at the beginning and end of
music playback to indicate the beginning and end of the music
stimulus. At the beginning of the measurement, the subjects
were asked to stay relaxed for 2min, and then performed neutral
music stimulus task, that is, to continuously listen to a piece of
neutral music (about 4min). After the stimulus task of neutral
music, the subjects were asked to stay relaxed for 2min, and then
performed the stimulus task of personal preferred music, that is,
listen to a continuous music that the subjects are favorite (about
4min). After the stimulus task of personal preferred music, the

FIGURE 1 | The paradigm design of this experiment.

subjects remained at rest for 2min before ending the experiment.
The specific process of the experimental paradigm is shown in
Figure 1.

Data Collection
In this study, we first used EEG technology alone to collect the
brain signals of four subject listening to neutral music and their
personal preferred music. After preliminary analysis confirmed
that the two kinds of music did have an effect on brain activity, we
then used EEG and fNIRS technology to simultaneously collect
data from five other subjects. EEG signals were collected using
a BrainAmp DC EEG recording system (Brain Products GmbH,
Germany). The electrode placement follows the international 10–
20 convention of a 32-channel cap, and the signal was recorded
at a sampling rate of 500Hz. The fNIRS signals were recorded
using a multi-channel NIRScout system (NIRx Medizintechnik
GmbH, Germany) at a sampling rate of 3.91Hz. The source-
detector distance was fixed at 3 cm, and a total of 44measurement
channels. The EEG-fNIRS acquisition equipment and the EEG
and fNIRS channel locations is shown in Figure 2. During the
data collection, we used a computer and E-Prime software to
form a signal prompting device. We connected the mobile phone
to the computer via a USB data cable, and the computer controls
the mobile phone to play music, so as to achieve the purpose of
controlling the signal prompt device and the mobile phone to
play music synchronously. The signal prompting device sends
a trigger signal to BrainAmp DC EEG recording system and
NIRScout system at the same time through the parallel port.
BrainAmp DC EEG recording system and NIRScout system,
respectively, amplify these two kinds of brain signals. Finally,
the computer simultaneously recorded the brain signals and the
event markers processed by the two system.

Data Processing
EEG-fNIRS Data Preprocessing
EEG preprocessing was performed using EEGLAB software
(v2021.0). Data was first re-referenced to a common-average
reference and then filtered from 0.5 to 50Hz. In order tomaintain
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FIGURE 2 | Acquisition equipment and measuring cap. (A) View of the acquisition equipment; (B) Acquisition amplifier of EEG; (C) Laser light source of fNIRS; (D)

View of measuring cap; and (E) Channel location of EEG and fNIRS. Where the red circles represent the 16 light sources of fNIRS, the green circles are 15 detesctors

of fNIRS, the blue lines are 44 channels of fNIRS, and the gray circles represent 32 EEG electrodes.

the consistency of the data of each subject, we kept the 200-s
climax part of the two pieces of music, so the EEG data of each
piece of music were segmented to form a period of data from 5
to 205 s after the start of the stimulus. Then, a baseline correction
was performed on the segmented data of each stimulus. Finally,
independent component analysis (ICA) was used to remove the
ocular artifact for each subject.

fNIRS preprocessing was performed using nirsLAB software
(v201904). First, a 4th order Butterworth band-pass filter with
cut-off frequencies of 0.01–0.1Hz, was applied to remove artifacts
such as those originated from heartbeats (∼1Hz), venous
pressure waves due to respiration (∼0.2Hz) and arterial pressure
oscillations (Mayer waves ∼0.1Hz). Then, the concentration
changes of oxyhemoglobin (HbO) and deoxyhemoglobin (Hb)
were computed according to the Modified Beer-Lambert Law.
In fNIRS, HbO and Hb are the parameters that can indirectly
reflect the neural activity of the brain, and are often used in fNIRS
data analysis (Yücel et al., 2021). Then, the baseline correction of
each channel of the fNIRS signals were performed by subtracting
the mean value of the 10 s baseline signal before the start of the
stimulus from the signal during each stimulus task. Finally, the

fNIRS data of each piece of music were also segmented to form a
period of data from 5 to 205 s after the start of the stimuli.

Feature Extraction
(a) EEG signals:We extracted time domain, frequency domain,

time-frequency domain and spatial domain features to
analyze the characteristics of brain activity.

• Time Domain Features

Regarding the feature extraction in time domain, and
we used centralized statistical methods to represent the
time series of EEG (Li et al., 2020b). These time-domain
statistic features include:
Mean:

µs =
1

N

N
∑

i=1

S (i) (1)

Standard deviation:

σ 2
s =

1

N

N
∑

i=1

[S (i) − µs]
2 (2)
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Mean of the 1st difference absolute value:

δs =
1

N − 1

N−1
∑

i=1

|S (i+ 1) − S (i)| (3)

Mean of the normalized 1st difference absolute value:

δs =
1

N − 1

N−1
∑

i=1

∣

∣S̄ (i+ 1) − S̄ (i)
∣

∣ =
δs

σs
(4)

Mean of the 2nd difference absolute value:

γs =
1

N − 2

N−2
∑

i=1

|S (i+ 2) − S (i)| (5)

Mean of the normalized 2nd difference absolute value:

γ̄s =
1

N − 2

N−2
∑

i=1

∣

∣S̄ (i+ 2) − S̄ (i)
∣

∣ =
γs

σs
(6)

where i is the sampling point, Si represents the EEG
signals, N is the number of samples. Then, we put the
above statistical features of the signals into a vector
as follows:

FVstatistic =
[

µs, σ
2
s , δs, δs, γs, γ̄s

]

(7)

• Frequency Domain Features

For frequency domain features, we extract the two most
typical features: PSD feature (Åkerstedt and Gillberg,
1986) and DE feature (Duan et al., 2013).

PSD is a measure of the mean square value of a
random variable, and it is the average power dimension
per unit frequency. The average power of the signal can
be obtained by integrating the power spectrum in the
frequency domain. We used the periodogram method
(Meziani et al., 2019) to obtain the power spectral density,
and we calculated the PSD of the five frequency bands [δ
(0.5–3Hz), θ (4–7Hz), α (8–13Hz), β (14–30Hz), and γ

(30–50Hz)]. Periodogram is a simple and popular method
of spectrum estimation, which is based on Discrete
Fourier Transform (DFT):

F
[

k
]

=

N−1
∑

n=0

x [n] e−
j2πkn
N (8)

where Fs is the sampling rate of the EEG signals, j and
π are constants, and N is the number of samples, n is
the sampling point, k = 0, 1, 2...N − 1. We can get
the periodic diagram of a discrete-time signal x[n], n =

1, 2, ..., N with a sampling rate of Fs is calculated as:

p
(

f
)

=
1

NFs

∣

∣

∣

∣

∣

F
[

k
]

N
∑

k=1

w
[

k
]

∣

∣

∣

∣

∣

2

(9)

where f = kFs/N and p
(

f
)

is the PSD feature of the EEG.
DE is the generalized form of Shannon entropy (ShEn)

Sen =
∑n

i=1 p (si) loga
1

p(si)
= −

∑n
i=1 p(si)logap(si) on

continuous variables:

DE =

b
∫

a

Sendx = −

b
∫

a

p (si) log
[

p (si)
]

dsi (10)

where p(si) represents the probability density function of
continuous information, [a, b] represents the interval of
information value.

• Time-Frequency domain

Wavelet Entropy is the entropy value calculated by
the wavelet transform of the signal according to its
probability distribution (Quiroga et al., 2001). Shannon’s
theory of entropy provides a useful tool for analyzing
and comparing probability distributions. The calculation
formula of wavelet entropy is as follows:

SWT = SWT

(

p
)

= −
∑

i

pi ln
[

pi
]

(11)

where p represents the energy intensity ratio of a
certain signal.

• Spatial Features

The spatial features of EEG signals generally refer to
the combined features obtained by comparing the signal
features of left-right symmetrical area by using the
spatial position information of the EEG electrodes. The
spatial domain features are based on the principle that
different brain activity states have different activation
levels in different areas of the brain. The spatial domain
features are calculated as follows: Time domain, frequency
domain, and time-frequency domain features of the
EEG signals of each channel are used as preliminary
features, and then the left-right symmetric electrode
feature combination is used as the final spatial domain
features. The placement of the 32 EEG electrodes used
in our experiment corresponds to the position on the
international 10–20 convention. The Cz and Pz in
the middle position are removed, and the remaining
30 channel electrodes from 15 symmetrical left-right
electrode (AFp1-AFp2, AFF1h-AFF2h, AFF5h-AFF8h,
F7-F8, FFC5h-FFC8h, FFC1h-FFC2h, FCC3h-FCC4h,
FCC5h-FCC8h, FTT7h-FTT8h, CCP3h-CCP6h, CCP5h-
CCP6h, TTP7h-TTP8h, CPP3h-CPP4h, TPP7h-TPP8h,
PO3-PO4, a total of 15 pairs of electrodes).

RASM refers to the ratio of the eigenvalues of the
symmetrical electrode pair on the left and right (Li et al.,
2020b). We used the symmetrical electrode feature values
(FXL−EEG, FXR−EEG) of the left and right brain regions to
obtain RASM features. The calculation formula of RASM
is as (12):

FRASM =
FXL−EEG

FXR−EEG
(12)
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(b) fNIRS signals: We analyzed the features of the fNIRS
signals from the perspective of time domain (Naseer and
Hong, 2015), considering the features of the change of
HbO concentration and the change of Hb concentration
(we denoted it as and), including their statistic features and
features based on GLM.

• Statistic Features

We extracted the mean and variance the HbO and Hb
signals of 44 channels of the fNIRS signals as statistical
features. The calculation formulas of the two statistic
features are shown in (13) and (14):

µf =

∑t2
n=t1

|x (n)|

fs (t2 − t1)
(13)

σ 2
f =

∑t2
i=t1

[

x(n)′ − µf

]2

fs (t2 − t1)
(14)

where x(n) are the and signals, t1 and t2 (t2 > t1) are
two time points, µf and σ 2

f
are the mean and the variance

value of the fNIRS signals in the time periods t1 and t2.We
combine the above two statistical features into a feature
vector as the statistical feature SFf of the fNIRS signals.

SFf =
[

µf , σ
2
f

]

(15)

• Feature based on GLM

When the brain activation changes, HbO usually exhibits
an approximately linear trend. Using GLM, the B value
representing the degree of activation of each channel
can be calculated to detect the activated channel. The
calculation formula of GLM of fNIRS signals is:

Y = BX + E (16)

In formula (15), Y is the preprocessed HbO data or
Hb data of the fNIRS signals as the dependent variable,
and X is a design matrix. E is a residual matrix that
obeys a normal distribution, and B is a matrix with
estimated parameters. Based on formula (16), each item
of the matrix Y is yij, i = 1, 2, ..., N represents the
number of time points of data acquisition, and j =

1, 2, ..., N represents the number of channels. That is, yij

is the HbO data or Hb data collected by the jth channel at
the ith time point. Therefore, when each item of Y is yij, we
can get the calculation formula of yij as:

yij = xi1β1j + xi2β2j + . . . + xikβkj + εij (17)

Then we can transform formula (17) into:











y1
y2
...
ym











=











x11 x12 . . . x1n
x21 x22 . . . x2n
...

xm1

...
xm2

. . .
...

. . . xmn





















β1

β2

...
βn











+











ε1
ε2
...

εn











(18)

Finally, we can obtain the feature B value of fNIRS signals
by the least square method:

B =
(

X′X
)−1

X′Y = [β1β2 . . . βk]
T (19)

Feature Fusion
Since EEG data and fNIRS data are two different brain signals,
they are quite different in principle and acquisition mechanism.
When combining these two different types of data, simple
feature splicing often leads to poor performance of the machine
learning algorithm. Therefore, it is very necessary to normalize
the features of the two before fusion and perform feature
selection after fusion. Based on this, we proposed a multi-modal
feature-level fusion method, the Normalized-ReliefF method.
Due to the amplitude and dimension of the various features
of the two brain signals are different, in order to more
effectively fuse them, we used the normalization algorithm of
formula (20) to modulate all the features so that they were
scaled to the range of 0 to 1. The normalized features were
fused into a new multi-modal feature vector MulFeat , as in
formula (21).

Feati
′ =

Feati −min(Feati)

max (Feati) −min(Feati)
(20)

MulFeat = [Feat1
′ . . . Feati

′] (21)

Considering that there may be redundant information between
these between these multi-modal features, it is often difficult
to manually extract complementary and non-redundant
information. Therefore, we further used the ReliefF algorithm to
optimize the selection of features to achieve more efficient fusion
of the two signals. ReliefF is based on the ability of features to
distinguish close samples of each class, and evaluates the features
by assigning different weights to the features. The larger the
feature weight, the more helpful it is to distinguish the categories.
When the correlation between the feature and the classification
is extremely low, the weight of the feature will be very small, even
close to 0. The feature weight may be negative, which means that
the distance between similar neighboring samples is greater than
the distance between different types of neighboring samples,
that is, the feature has a negative impact on classification. For
the sample set Q, a sample S is randomly selected each time,
and then k neighboring samples NH of S are searched for in
the same sample set of S, and k neighboring samples NM are
searched for each sample set of a different category from S.
Iteratively update the weight ω(x) of each feature, and the update
formula is:

ω(x)′ =

∑k

j=1
diff

(

X, S,NHj

)

+
∑

C 6=Cl(s)
[

P (C)

1− P
[

Cl (S)
] ∗

∑k

j=1
diff [X, S,NM(C)j]

]

m ∗ k
(22)

ω (x) = ω (x) − ω(x)′ (23)
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diff
(

X, S, S′
)

=











|S[X]−S′[X]|
max(X)−min(X)

, where X is continuous

0, where X is discrete and S [X] = S′[X]
1, where X is discrete and S [X] 6= S′[X]

(24)

In the formulas (22) and (24), m represents the number of
iterations, NHj defines the jth nearest neighbor sample of the

same class, and NM(C)j is the jth nearest neighbor sample of a
different class of class C samples. P(C) represents the probability
of the Cth target, Cl(S) refers to the category to which sample S
belongs, diff (X, S, S′) is the distance between sample S and S′with
respect to feature X.

Classification
The time domain, frequency domain and spatial domain features
are extracted from the EEG signals of each subject, and the
statistical features and features based GLM are extracted from
fNIRS. Based on these features of EEG and fNIRS, we used six
classifiers to classify subjects’ brain activity induced by personal
preferred and neutral music. The six classifiers we used are
support vector machines (SVM), k-nearest neighbor (KNN),
Random Forest, AdaBooting, Naive Bayesian and discriminant
analysis classifiers (DAC). In order to better performmulti-modal
signal fusion, we modulated the signal characteristics of these
two different modalities into signals with the same sampling
rate (1Hz) through sample packaging before classification.
Furthermore, we performed a 5-fold cross-validation for each
classification in order to avoid the phenomenon of false
high accuracy.

SVM is probably one of the most popular and watched
machine learning algorithms. The hyperplane is the line that
divides the input variable space. In SVM, the hyperplane is
selected to best separate the points in the input variable space
from their class (level 0 or level 1). The SVM learning algorithm
finds the coefficients that make the hyperplane to best separate
the classes.

KNN is a commonly used statistical classification method,
which can be used not only for regression or linear classification,
but also for non-linear classification. It can achieve high
classification accuracy, has no assumptions about the data, and
is not sensitive to outlier.

Random Forest is a classifier that contains multiple decision
trees in machine learning, and the output category is determined
by the modal of the category output by the individual tree.

Naive Bayesian is a series of simple probability classifiers
based on the use of Bayes’ theorem under the assumption
of strong independence between features. The classifier model
assigns class labels represented by feature values to the problem
instances, and the class labels are taken from a limited set.

AdaBoosting is a kind of ensemble method classifier. Each
time this method uses bootstrap sampling to construct a tree,
it increases the sampling weight for the misjudged observations
based on the results of the previous tree, so that the next tree can
be more representative of the misjudged observations.

The basic idea of DAC is to project high-dimensional pattern
samples into the best discriminant vector space to achieve the

effect of extracting classification information and compressing
the dimension of the feature space. After projection, it is ensured
that the model samples have the largest inter-class distance and
the smallest intra-class distance in the new subspace, that is,
the model has the best separability in the space. Therefore, it is
an effective feature extraction method. Using this method can
maximize the inter-class scatter matrix of the pattern samples
after projection, and at the same time minimize the intra-class
scatter matrix.

In summary, as shown in the overall framework of multi-
modal EEG-fNIRS integration in Figure 3, we integrated EEG
and fNIRS from data collection to data analysis to explore the
characteristics of music on brain activity.

RESULTS

For EEG signals recorded by nine subjects while listening to
neutral music and their personal preferred music, we calculated
the DE values of the five common frequency bands (i.e., δ:
0.5–3Hz, θ: 4–7Hz, α: 8–13Hz, β: 14–30Hz, and γ: 30–
50Hz) of all channels and distribution of all nine subjects in
the five frequency bands induced by personal preferred music
and neutral music. Figure 4A is the average DE distribution
diagram of personal preferred music, Figure 4B is the average
DE distribution diagram of neutral music, and Figure 4C is the
difference diagram of the average DE distribution of personal
preferred music and neutral music (personal preferred music
minus neutral music). It can be seen from Figure 4 that when
the subjects listened to personal preferred music (A) and neutral
music (B), the brain had a similar response pattern. The specific
performance is as follows: firstly, the two kinds of music in each
frequency band show a similar DE distribution pattern; secondly,
personal preferred music and neutral music mainly activate the
prefrontal lobe (especially the right frontal lobe) and the occipital
lobe; finally, in the same brain area, the activation of the lower
frequency band (e.g., δ and θ) is often stronger than that of the
higher frequency band (e.g., β and γ). Moreover, we analyzed
the differences in brain activity induced by the two music by
subtracting the average DE of neutral music (B) from the average
DE of personal preference music (A), as shown in Figure 4C.
It can be seen that personal preferred music activates our brain
more in right prefrontal, occipital and right temporal regions,
and this difference is more obvious in the δ frequency bands.

In this study, due to the limited number of optodes of
the fNIRS equipment, which cannot cover the entire human
head, we used the high spatial resolution of fNIRS to distribute
the 44 channels mainly in the prefrontal and left and right
temporal lobes to collect signals. For the fNIRS signals recorded
by five subjects while listening to neutral music and their
personal preferred music, we calculated the changes in HbO
concentrations in all 44 channels of each subject. We averaged
the HbO concentration of all subjects and compared the HbO
concentration during music listening with theHbO in the resting
state. We found that compared with the resting state, personal
preferred music and neutral music significantly enhanced brain
activity. As shown in Figure 5, HbO concentration indicates that
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FIGURE 3 | The overall framework of EEG-fNIRS multi-modal integration.

FIGURE 4 | Averaged DE distributions of all nine subjects in the five frequency bands induced by personal preferred music (A) and neutral music (B), and their DE

difference distribution [i.e., personal preference minus neutral music, as shown in (C)] in the five frequency bands. Where δ: 0.5–3Hz; θ: 4–7Hz; α: 8–13Hz; β:

14–30Hz; γ: 30–50Hz; All (0.5–50Hz).

the brain response patterns induced by personal preferred music
(A) and neutral music (B) are also similar, both of which are
significantly (p < 0.05) activates the prefrontal lobe and part of

the right temporal lobe activation. Moreover, the brain activation
induced by personal preferred music is stronger than that of
neutral music, and their differences are mainly manifested in the
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FIGURE 5 | HbO of contrasts of (A) personal preferred music stimulus vs. baseline, (B) neutral music stimulus vs. baseline, and (C) personal preferred music vs.

neutral music. The area shown in the figure represents a statistically significant difference (p < 0.05). Where the blue circles represent the light sources of fNIRS and

the green circles are the detectors of fNIRS. The darker the red, the more significant the difference and the smaller the p-value.

TABLE 1 | Classification accuracy of different classifiers based on EEG different features.

DE PSD Statistic Wavelet entropy RASM Combined features Averaged accuracy

SVM 93.94% 94.32% 96.60% 49.06% 83.12% 97.17% 85.70%

KNN 80.59% 86.49% 91.00% 52.01% 70.34% 88.01% 78.07%

Random forest 92.12% 94.91% 95.69% 52.17% 87.41% 97.63% 86.66%

AdaBoosting 92.12% 94.91% 96.35% 50.77% 86.55% 97.94% 86.44%

Naive bayesian 78.49% 70.71% 80.81% 51.67% 82.01% 84.78% 74.75%

DAC 91.29% 90.11% 92.42% 49.12% 85.35% 95.14% 83.91%

Averaged accuracy 88.09% 88.58% 92.14% 50.80% 82.4%7 93.45%

bilateral temporal lobes, as shown in Figure 5C. In this study, t-
test2 was used for significance analysis. The brain areas shown in
Figure 5 are statistically significant (p < 0.05).

In order to further explore the differences in brain activity
induced by personal preferred and neutral music, we used six
classifiers (i.e., SVM, KNN, Random Forest, AdaBoosting, Naïve
Bayesian, and DAC) to classify the features of EEG and fNIRS
under the personal preferred and neutral music. For EEG, the
features used for classification include DE, PSD, Statistic,Wavelet
Entropy, RASM and all EEG fused features. The classification
results based on EEG features is shown in Table 1. It can be
seen from Table 1 that most of the classifiers can effectively
distinguish whether the subject is listening to personal preferred
or neutral music based on the characteristics of brain activity.
Among multiple features, the combined features have the best
average classification effect in all classifiers, with an averaged
accuracy of 93.45%. Among the six classifiers, the Random Forest
classifier has the highest average classification accuracy, with an
averaged accuracy of 86.66%.

For fNIRS, we converted it into HbO and Hb through the
modified Beer Lambert’s law, then divided the data and extracted
the statistical feature values and the feature values based on GLM
ofHbO andHb per second. After that, we encapsulated the above
four features at one sample per second, and statistic feature has

a dimension of 400∗280 and the feature based on GLM has a
dimension of 400∗140. We also used the above six classifiers to
classify the four features of which are the statistic features and
the feature based on GLM of HbO and Hb. As shown in Table 2,
the accuracy of the statistical feature based on Hb classification
under the KNN classifier is the highest, reaching 91.39%, and
the statistic feature are better than the classification effect of the
features extracted based on GLM.

Based on the multiple features of the above two modalities
of EEG and fNIRS, we then used a Normalized-ReliefF method
for fusion processing and classification. From Table 3, we can
see that compared with features based only on EEG and
only based on fNIRS, the classification accuracy of multi-
modal features based on the fusion of the Normalized-
ReliefF method have been significantly improved, with an
average accuracy rate of 93.38%.To further demonstrate the
effectiveness of the fusion method of Normalized-ReliefF, we also
conducted a set of comparative experiments, that is, comparing
classification performance of the direct feature splicing method,
the normalization algorithm only, the ReliefF algorithm only,
and the Normalized-ReliefF method. As shown in Table 3,
the average classification accuracy of the six classifiers based
on the direct feature splicing method is 85.25%, while the
classification accuracy of multi-modal fusion based only on the
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TABLE 2 | Classification accuracy of different classifiers based on fNIRS different features.

Statistic (HbO) GLM (HbO) Statistic (Hb) GLM (Hb) Averaged accuracy

SVM 80.91% 55.64% 83.35% 54.46% 68.59%

KNN 88.14% 54.46% 91.39% 58.25% 73.06%

Random forest 88.86% 53.82% 91.19% 55.31% 72.30%

AdaBoosting 88.82% 57.67% 91.65% 53.06% 72.80%

Naive bayesian 67.31% 63.33% 69.21% 55.98% 63.96%

DAC 79.85% 55.78% 82.06% 53.67% 67.84%

Averaged accuracy 82.32% 56.78% 84.81% 55.12%

TABLE 3 | Classification accuracy of different classifiers based on the EEG and fNIRS fusion feature.

Splicing Only normalization Only ReliefF Normalized-reliefF

SVM 87.24% 96.84% 92.81% 97.72%

KNN 72.38% 91.55% 74.61% 92.12%

Random forest 91.63% 97.87% 98.04% 98.38%

AdaBoosting 90.22% 94.41% 94.39% 95.79%

Naive bayesian 79.43% 79.91% 80.83% 82.90%

DAC 90.62% 95.26% 95.72% 96.79%

Accuracy averaged 85.25% 92.64% 89.40% 93.68%

normalization algorithm is 92.64%, which is 7.39% higher than
the classification accuracy based on the direct feature splicing
method. In the multi-modal fusion classification experiment
based only on the ReliefF algorithm, the average accuracy of
the six classifications was 89.40%, which is 4.15% higher than
the direct feature splicing method. Experimental results prove
that these two algorithms are more effective than the direct
feature splicing method. The Normalized-ReliefF algorithm,
which combines the normalization and ReliefF algorithm, has
the highest average classification accuracy, which is 8.43%
higher than the direct stitching method, 1.02% higher than the
normalized algorithm only, and 4.28% higher than the ReliefF
algorithm only. These results prove that the Normalized-ReliefF
method we proposed is effective for the multi-modal fusion of
EEG-fNIRS. In the comparative experiment, we also calculated
the running time required to classify a single subject in each
classifier in four methods (i.e., direct splicing method, only
the normalize algorithm, only the ReliefF algorithm, and the
Normalized-ReliefF method).

DISCUSSION

Many studies have shown that music not only has a positive
effect on people’s emotions, but the pleasure of music also
has a positive effect on the brain’s activity response. To
better understand the effect of personal preferred music on
brain activity, in this study, we combined EEG and fNIRS
technology to simultaneously measure the brain activity of
healthy subjects when listening to neutral music and their
preferred music, and used the Normalized-ReliefF method to
identify the characteristics of the brain activity evoked by the

two types of music. Previous work exploring the influence of
music on brain activity was mostly based on a single-modality,
and our work is to integrate two different modalities, EEG and
fNIRS, so as to obtain more abundant brain information from the
two aspects of neuroelectric signals and cerebral hemodynamic
signals. Furthermore, most of the previous feature fusion studies
were to fuse multiple features of a single-modality such as
EEG signals (Nguyen et al., 2018; Li et al., 2019; Hua et al.,
2021). Our study focuses on the feature fusion of two different
brain signals (EEG and fNIRS), which are different in principle,
acquisition mechanism, and signal amplitude. Therefore, we
combined normalization and ReliefF algorithms in the fusion
strategy. Normalization is mainly used to modulate features from
differentmodes to the same scale. The ReliefF algorithm ismainly
used to optimize and select high-dimensional multi-scale features
from two modalities.

From the results of EEG and fNIRS analysis, we can draw a
conclusion that both personal preferred and neutral music can
enhance brain activity and have similar activation patterns. The
activated area is mainly distributed in the prefrontal lobe. The
functions of the prefrontal lobe are mainly related to emotion,
cognition and memory, and is also related to reward system of
human brain (Rouault et al., 2019). There’s evidence showing
that music is closely connected to the stimulation of neurons
and executive function of the prefrontal cortex. There may
be integration of music and autobiographical memory in the
medial prefrontal cortex, facilitating retrieval of personally salient
episodic memories when listening to familiar musical excerpts
(Janata, 2009).

In the EEG analysis, we also found that the occipital lobe
was also partially activated when the subjects listened to music.
Since we did not collect fNIRS data from the occipital lobe,
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it was impossible to compare with EEG data. The activation
of the occipital lobe may due to the fact that this experiment
required the subjects to close their eyes during the experiment.
Participants did experiments with their eyes closed, the activation
of the occipital lobes of the brain will be significantly enhanced
in the α band. Barry and Blasio (2017) studied the changes in
the EEG of the elderly and young people in the resting state
with the eyes open and closed, and found that people have a
stronger α response in the occipital lobe when the eyes are closed
than when the eyes are open. Our fNIRS results show that in
addition to the prefrontal lobe, the temporal lobe is also partially
activated, especially the right temporal lobe, which is consistent
with a previous study (Alfredson et al., 2004). The functions of
temporal lobe is mainly related to hearing, memory and mental
activity (Bougeard and Fischer, 2002). There is evidence that
music can also activate the temporal lobe area (Alfredson et al.,
2004; Hosseini and Hosseini, 2019). For the right hand, the
right temporal lobe is its non-dominant hemispherical temporal
lobe. Its main function is to recognize high-level neural activities
such as memory, association, and comparison. Music have been
demonstrated has a positive effect on cognitive development of
the brain, including memory, learning and attention (Franco
Jarava, 2018). Pan et al. (2018) projected the DE and common
spatial pattern (CSP) features of happy and sad emotions onto the
scalp for subjects and confirmed that different emotional states
will produce different responses in brain regions. At the same
time, they also found that during positive emotion processing,
the neural patterns had significantly higher brain responses at the
temporal lobes.

How to integrate information of different modalities has
always been a difficult problem in the field of multi-modal
research. In this study, we proposed an EEG-fNIRS multi-modal
integration framework from data collection to data analysis to
explore the effect of personal preference music on brain activity.
First, we used a synchronous trigger device in data acquisition
to integrate EEG and fNIRS into an EEG-fNIRS synchronous
acquisition system, achieving the synchronous recording of two
different brain signals. In data analysis, in order to make full use
of the information of the twomodalities, we proposed an improve
Normalized-ReliefF method to fuse and optimize multi-modal
features. Most of the current studies are to splice the features
of different modalities directly into the classifier without any
processing (Al-Shargie et al., 2016; Hong et al., 2018; Cicalese
et al., 2020). Although this splicing method can also achieve
higher accuracy than single-modalities, it does not consider
that the types and scales of features from different modes are
different, and there is also information redundancy between
them. Obviously, this processing method cannot make full and
effective use of multi-modal information and truly realize the
superiority of multi-modal systems.

The Normalized-ReliefF method we proposed can effectively
solve the problem of feature fusion of EEG and fNIRS. We first
normalized all the feature data of EEG and fNIRS to modulate
them to the same scale. Then, the ReliefF method was used
to perform feature selection on multiple features from different
modalities and different dimensions to achieve the effect of
removing redundant information and reducing dimensionality at

the same time. The normalization process can not only evaluate
the features of the two modalities of EEG and fNIRS on the same
scale, but also shorten the data training time to a certain extent.
The ReliefF algorithm is a feature weighting algorithm, which
assigns different weights to features according to the correlation
of each feature and category, and features with a weight less than a
certain threshold will be removed The running time of the ReliefF
algorithm increases linearly with the increase in the number of
samples and the number of original features, so the running
efficiency is relatively high (Stamate et al., 2018; Kshirsagar and
Kumar, 2021; Satapathy and Loganathan, 2021). In our previous
work (Pan et al., 2021), we also confirmed the effectiveness of the
ReliefF algorithm for EEG-based multi-modal feature extraction,
and it can achieve the effect of feature optimization and feature
dimensionality reduction to a certain extent. The Normalized-
ReliefF method we proposed can effectively solve the problem of
fusion of EEG and fNIRS features.

In order to further verify the effectiveness of the Normalized-
ReliefF method, we conducted a set of comparative ablation
experiments. By comparing the classification performance of
direct feature splicing method, only the normalized algorithm,
only the ReliefF algorithm and the Normalized-ReliefF, we found
that the Normalized-ReliefF method can effectively improve the
average accuracy of the classification of brain activities induced
by preferred and neutral music. In terms of calculation time,
the Normalized-ReliefF method is also more efficient than the
other three fusion methods. This fully proves the efficiency of
the Normalized-ReliefF method in the fusion of the two modal
features of EEG and fNIRS. Furthermore, our experimental
results also verify that the multi-modal features based on EEG-
fNIRS have better classification performance than signal-modal
features based only on EEG and only on fNIRS, because the
combination of the two modalities can provide richer brain
activity information.

In the exploration of the effect of preferred music on brain
activity in this work, we proposed an EEG-fNIRS integration
framework to systematically integrate EEG-fNIRS multi-modal
signals from data collection to data analysis. The results of multi-
modal analysis found that personally preferred music promotes
brain activity, and our proposed fusion method, Normalized-
ReliefF, effectively improves the recognition accuracy of brain
activity induced by different music. Our work may provide
neuroimaging-based references for the research and application
of personalized music therapy. Taking patients with DOC as an
example, patients with DOC can be divided into MCS and VS
patients (Xie et al., 2018). At present, the clinical diagnosis and
assessment of consciousness in patients with DOC mainly rely
on behavioral scales, but the misdiagnosis rate of this method
is as high as 37–43% (Hirschberg and Giacino, 2011). It is
very necessary to make an objective and effective diagnosis of
the consciousness of patients with consciousness disorders. Our
work has confirmed that personal preferred music can promote
the brain. In other words, personal preferred music cannot only
be used as a brain stimulus, but also as a treatment method
for patients. In view of the current difficulties in diagnosing
and treating DOC patients in clinical practice, we can use the
patients’ personal preferred music as a stimulus, and explore
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the characteristics of brain activity induced by music in patients
with different states of consciousness by using multi-modal
imaging technology.

However, our study still has some limitations. First, our
sample size is relatively small. Secondly, our experimental
paradigm only listened to preferred music and neutral music
once, and did not conduct multiple rounds of repeated task.
Finally, we only analyze the activation analysis, not the analysis of
the brain functional connectivity. In the future, we will increase
samples, improve the experimental design and data analysis
methods, and include patients with neurological diseases (such as
DOC patients) into the scope of subjects to compare the effects of
personal preferred music on healthy subjects and patients’ brain
functions, and truly realize music therapy.

CONCLUSION

In this study, we proposed the integration framework of the
two modalities of EEG and fNIRS, including data collection
and various data processing and analysis. We used this multi-
modal integration framework to explore the characteristics of
brain activity induced by personal preferred and neutral music,
and found that music can enhance the brain activity, especially
the prefrontal lobe, and personal preferred music activated
their brain more than neutral music. We also proposed an
improved Normalized-ReliefF algorithm to fuse and optimize
multiple features of two different physiological signals EEG
and fNIRS to identify the characteristics of brain activity
induced by personal preference music and neutral music.
We found that using the Normalized-ReliefF algorithm is
more effective than the method of simple multi-feature vector
splicing of the two modalities for classification. We also found
that the classification accuracy rates obtained by using fusion
features based on EEG-fNIRS are higher than the classification
accuracy rates obtained by EEG-based features and fNIRS-
based features, which proves that multi-modal brain imaging
can provide better classification performance than single-
modality. Our work can provide an objective reference based on

neuroimaging for the research and application of personalized
music therapy.
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Using Non-linear Dynamics of EEG
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Movement Intent Under Opposite
Hand Movement
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Decoding human handmovement from electroencephalograms (EEG) signals is essential

for developing an active human augmentation system. Although existing studies have

contributed much to decoding single-hand movement direction from EEG signals,

decoding primary hand movement direction under the opposite hand movement

condition remains open. In this paper, we investigated the neural signatures of the

primary hand movement direction from EEG signals under the opposite hand movement

and developed a novel decoding method based on non-linear dynamics parameters of

movement-related cortical potentials (MRCPs). Experimental results showed significant

differences in MRCPs between hand movement directions under an opposite hand

movement. Furthermore, the proposed method performed well with an average binary

decoding accuracy of 89.48 ± 5.92% under the condition of the opposite hand

movement. This study may lay a foundation for the future development of EEG-based

human augmentation systems for upper limbs impaired patients and healthy people and

open a new avenue to decode other hand movement parameters (e.g., velocity and

position) from EEG signals.

Keywords: EEG, hand movement decoding, human augmentation, human factors, human-machine interaction

INTRODUCTION

Human augmentation refers to using assistive devices and technologies to help people overstep
human motor, perception, and cognition limitations. The applications of human augmentation
have shown diversity, including but not limited to prostheses (Kvansakul et al., 2020), exoskeleton
(Chen et al., 2017; Yandell et al., 2019), and augmented reality (Kansaku et al., 2010; Chen et al.,
2021). For human augmentation systems, providing active assistance instead of passive assistance
according to human intention is of high value. Fusing human intention into augmentation
technology makes it possible to establish a more intelligent, flexible, and user-friendly system.

Brain-computer interfaces (BCIs) have been the essential tool to detect human intention
with the development of neuroscience. BCIs could translate human intention from neural
signals directly. Among various brain signal recording methods, electroencephalogram
(EEG) is more practical for human augmentation because it is non-invasive, cheap, and
convenient to use. Over the past decades, numerous studies have been focused on using
EEG signals to decode human intention and develop a body augmentation system, e.g.,
P300 speller (Farwell and Donchin, 1988), steady-state visually evoked potential-based
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BCI systems (Gao et al., 2021), e.g., exoskeleton control (Kwak
et al., 2015) and motor rehabilitation (Zhao et al., 2016), motor
imagery (MI)-based mobile wheelchair (He et al., 2016; Zhang
et al., 2016), movement-related cortical potential (MRCP)-based
robotic arm control (Schwarz et al., 2020a,b). Compared with
evoked potentials-based BCIs (Yin et al., 2015a,b) and MI-based
BCIs (Pei et al., 2022), MRCP-based BCIs do not rely on external
evoked stimuli (such as P300) and repetitive imagination (such
as MI). It can decode human intention from natural movement
execution and provide a more realistic application scene for
human augmentation.

MRCP-based hand (or arm) movement intention decoding
is an important branch of MRCP-based movement intention
decoding. Existing studies on upper limb movement intention
decoding include movement parameters decoding (e.g., direction
(Robinson et al., 2013; Chouhan et al., 2018), position (Hammon
et al., 2008; Sosnik and Zheng, 2021), velocity (Robinson et al.,
2013; Ubeda et al., 2017; Korik et al., 2018), acceleration
(Bradberry et al., 2009), handgrip force (Haddix et al., 2021)
and movement type recognition (Ofner et al., 2019). Reviewing
existing studies about upper limb movement decoding, we find
that most existing studies are concentrated on single hand (or
arm) movement decoding. However, for the practical application
of human augmentation, both-hand movement is common.
Considering this issue, in 2020, Schwarz et al. (2020) first used
the low-frequency EEG features to discriminate unimanual and
bimanual daily reach-and-grasp movement types and achieved
a multi-class classification accuracy of 38.6% for a combination
of one rest and six movement types. Furthermore, to put the
single-hand and both-hand movement intention decoding from
EEG signals into an active human augmentation system, in
2020, we investigated the neural signatures and classification of
single-hand and both-handmovement directions, and the 6-class
classification achieved a peak accuracy of 70.29% (Wang et al.,
2021).

It should be noted that both studies by Schwarz et al. (2020)
and Wang et al. (2021) are focused on the discrimination
of single-hand and both-hand movement. However, it is not
enough to discriminate single-hand movement from both-hand
movement. In many both-hand movement cases, we value the
primary hand movement (e.g., the movement direction, velocity,
or trajectory of single right hand) instead of whether we move
one hand or both hands. Thus, it is necessary to decode the
primary hand movement under the opposite hand movement
condition. To solve the problem, in this study, we stride the first
step by investigating the decoding of the movement direction of
the primary hand (i.e., right hand in this paper) from EEG signals
recorded during the opposite hand (i.e., left hand in this paper)
movement. Notably, in this paper, we define the movement
condition with the opposite hand movement as “W-OHM.”

The contribution of this paper is that it is the first work to
investigate the neural signatures and decoding of primary hand
movement direction from EEG signals under the opposite hand
movement and propose a novel decoding method based on non-
linear dynamics parameters of MRCPs. This work not only can
lay a foundation for the future development of BCI-based human
augmentation systems for upper limbs impaired patients and

healthy people, but it also may open a new avenue to decode
other hand movement parameters (e.g., velocity and position)
from EEG signals.

The remainder of the paper is structured as follows:
section Methods introduces the methods. Section Results shows
the results. Section Discussion and Conclusion presents the
discussion, limitations of our work, and future work.

METHODS

Experimental Paradigm and Procedure
We recruited and measured 14 participants (one female), aged
between 22 and 27 years. They reported having normal vision
and no brain diseases. According to the Hand-Dominance-Test,
they were all confirmed to be right-handed (Bryden, 1977).
The study adhered to the principles of the 2013 Declaration
of Helsinki. The research was approved by the local research
ethics committee. All data were recorded at the IHMS Lab
of the School of Mechanical Engineering, Beijing Institute of
Technology, China. Subjects were seated on a chair in a room free
of noise and electromagnetic interference. In front of them, there
was a monitor for experimental instructions. Figure 1 shows the
experimental protocol.

Considering that all subjects were right-handed, we regarded
the right-hand movement as the primary movement to be
decoded and the left-hand movement as the opposite hand
movement. For the primary movement task, all subjects were
required to move their right hands in right or left directions.
We preliminarily set the opposite hand movement in the vertical
directions rather than horizontal directions. All subjects were
asked to move their left hands in forward and backward
directions. The movement of both hands was restricted in
the horizontal plane parallel to the desktop. We defined the
movement of right-hand in the right or left direction as “R” or
“L” and the movement of left-hand in the forward or backward
direction as “F” or “B.” As shown in Figure 1A, on the monitor,
two solid blocks colored as red and green correspond to the
movement cue of left and right hands, respectively. When one
trial was initiated, the red block would randomly appear in the
F or B directions, and the green block would randomly appear
in the L or R directions. That means, after 0 s (movement-cue
onset), subjects were indicated for the movement directions and
prepared for the movement. At the fourth second, both blocks
changed from the solid into hollow, which were regarded as go-
cue. Immediately, subjects were required to move both hands
from the initial center to target positions appointed by green and
red blocks. The movement tasks must be completed before the
7th second. After the 7th second, both hands were required to
move back to the initial center position. At the 11th second, one
trial ended.

During the experiment, the gaze of subjects was asked to
fix on the screen to avoid eye movement. The experiment was
composed of four sessions, including the right-hand movement
in the R or L direction with the left-hand movement in the F
or B direction. One session consisted of five runs, and each run
consisted of 16 trials. In total, we recorded 80 trials per session.
It meant that, for each combination of directions, there were 80

Frontiers in Neurorobotics | www.frontiersin.org 2 April 2022 | Volume 16 | Article 84512722

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wang et al. Classifying Primary Hand Movement Intent

FIGURE 1 | Experimental protocol. (A) Timeline of experiment setup. Note that time 4 s refers to the Go-Cue, and time 4.5 s is the actual movement onset. (B)

Illustration of both hand movement directions. Note that “F” and “B” refer to the movement of left-hand in the forward or backward direction, respectively, and “R” and

“L” refer to the movement of right-hand in the right and left direction, respectively.

FIGURE 2 | Used electrodes position diagram.

trials uniformly. Between each run, the subjects were asked to
perform a break of 2 min.

Experimental Paradigm and Procedure
EEG signals were recorded by using a 64-electrode portable
wireless EEG amplifier (NeuSen.W64, Neuracle, China), located
at the following positions (according to the international 10–
20 system): Cz, C1, C2, C3, C4, Fz, F3, F4, FCz, FC3, FC4,
CP3, CP4, Oz, O1, O1, T7, T8, POz, Pz, P3, P4, P7, P8 (Wang
et al., 2021), as shown in Figure 2. The selected electrodes

involved the frontal, central, parietal, and occipital regions,
which were related to the cognition, motion, perception function.
The reference electrode was placed at CPz, and the ground
electrode was placed at AFz. Electrooculogram (EOG) signals
were recorded from two electrodes located below the outer
canthi of the eyes. Two position-detecting sensors (FASTRACK)
were positioned at tiger positions of both hands to track
hands movement in real-time. The sampling rate of EEG
signals was 1,000Hz, and the sampling rate of position sensors
was 60 Hz.
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TABLE 1 | EEG signals decoding algorithm steps.

EEG signals decoding algorithm

Step 1: Down-sample EEG signals to 100Hz and

re-reference by binaural electrodes;

Step 2: Baseline correction and common average

reference for EEG signals;

Step 3: Eye movement artifacts rejection by

independent component analysis;

Step 4: Band-pass filter in [0.01, 4] Hz by using fast

Fourier transform filter;

Step 5: Apply z-score for EEG signals normalization;

Step 6: Extract features from EEG signals by using

echo state network (ESN);

Step 7: Reshape ESN features to one-dimension and

use PCA for feature dimension reduction;

Step 8: Apply LDA for primary hand movement

directions decoding.

EEG, EOG, and position data were processed in MATLAB
R2019b. The algorithm in steps for EEG signals-based primary
hand movement direction decoding is listed in Table 1. For
the signals preprocessing, EEG and EOG data were first down-
sampled to 100Hz, and each channel signal of EEG was re-
referenced by subtracting the average of binaural electrodes.
Baseline correction was used to eliminate the baseline drift for
both EEG and EOG signals and common average reference was
applied to remove common background noise for EEG signals.
Eye movement artifacts were removed by using independent
component analysis (ICA). The specific steps are as follows:
(1) decomposing EEG signals into dependent component by
applying independent component transform; (2) computing the
correlation coefficients between the independent component and
EOG signals; (3) rejecting the component whose correlation
coefficient exceeds 0.4; (4) applying the inverse transformation
on the remained component into EEG signals.

Movement Related Cortical Potential
(MRCP)
To correlate the neural activity during movement preparation
and execution, MRCPs were extracted from EEG signals in the
low-frequency band. After signal preprocessing, a zero-phase,
4th order Butterworth filter was used to filter EEG signals in
the low-frequency band [0.01, 4] Hz. The weighted average filter
was applied for electrode Cz to remove the spatial common
background noise (Liu et al., 2018). To observe the difference
of MRCPs for right-hand movement direction decoding, the
MRCPs were obtained under condition of W-OHM for right-
hand movement in L and R directions. The MRCPs under
condition of W-OHM were average across all subjects.

Feature Extraction
After signal preprocessing, a fast Fourier transform (FFT) filter
was used to filter EEG signals in the frequency band [0.01, 4] Hz
(Wang et al., 2010). For the primary hand movement decoding,
an echo state network (ESN) was used to extract non-linear

dynamics of EEG signals as the classification feature (in short
ESN feature) (Sun et al., 2019).

As shown in Figure 3A, ESN is composed of the input layer,
reservoir (hidden layer), and readout layer. The connecting
matrix from the input to reservoir layers is defined as Win.
The internal connection matrix of the reservoir is sparse, and
is defined asWNN . Both Win andWNN are randomly initialized
and kept invariant during network updating. The connecting
matrix from the reservoir to readout layer is defined asWout , and
it is updated with the input and output data. WithWin, the ESN
maps the input signals from the low-dimensional space into the
high-dimensional non-linear space:

x (n) = f • ( Winu (n) + Wnnx (n− 1)) , (1)

f • was set to be tanh • to realize the non-linearity
of the network. In the high-dimensional non-linear space,
the ESN model trains the Wout by linear regression (e.g.
Ridge Regression).

Wout = YtX
T(XXT + λrI)

−1
, (2)

where λr is the readout regularization coefficient.
As the core part of the ESN, the reservoir layer has the

following parameters: (1) sparsely connecting with the sparse
degree c, (2) reservoir size (i.e., the number of neurons) NN,
(3) spectral radius ρ (usually ρ < 1, to ensure that the effects
of input and reservoir states on network vanishing after enough
time), (4) the output of the reservoir layer at the current
time x(n), and (5) internal connection matrix WNN (randomly
initialized and kept invariant during network updating). With
the enormous and sparse reservoir layer, the ESN could capture
the dynamics of a non-linear system. As mentioned in Waldert
et al. (2008), EEG signals are non-steady and non-linear. From
this perspective, we made a hypothesis that using the proposed
method to establish the movement decoding model could obtain
well-decoding performance.

In this paper, the multi-channel time-domain signals at the
current time point were used as input signals, and the multi-
channel time-domain signals at the next time point were used as
output signals (as shown in Figure 3B). The output connection
matrixWout , which could reflect the non-linear dynamics of EEG
signals over time, was chosen as the ESN features for decoding. In
addition to the parameters c and NN that have a major influence
on the ESN performance and were determined in the subsequent
training (by using mesh grid search), we empirically set the
residual parameters: (1) ρ = 0.98; (2) x(0) was zero-matrix; (3)
λr = 1 × 10−4. Besides, before encoding EEG signals to ESN
features, z-score was applied for normalization, as follows

Z =
X − µ

σ
, (3)

where X is the raw EEG signals before normalization, µ

and σ are the mean and standard deviation of EEG signals,
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FIGURE 3 | ESN schematic diagram. (A) Network structure diagram. (B) Illustration of the input and output data selection based on the time series of EEG signals.

u(·) refers to the input data and y(·) refers to the output data.

respectively. The original feature dimensions could be calculated
by the following equation,

NumF = C • (NN + C + 1) , (4)

where NumF is the original feature dimension, NN is the
reservoir size, C is the channel number. To suppress feature
redundancy and accelerate computation, principal component
analysis (PCA) was applied to reduce feature dimension.
Choosing the principal component with the percentage above
99%, the dimension of ESN feature was reduced to 40.

Classification
The fixed window [0, 1] s of the Go-Cue (i.e., [−0.5 0.5]
s of the actual movement onset, calibrated by FASTRACK)
was used for the primary hand movement direction decoding.
Linear discriminant analysis (LDA) classifier was performed to
decode the primary hand movement direction. The classification
accuracy was used to measure the decoding performance, and
the decoding accuracy was calculated by dividing the number of
correctly classified test samples by the total number of the test
samples. Mean classification accuracy was calculated by a 5 ×

5 cross-validation. For the primary hand movement direction
decoding under W-OHM, the classification accuracy was first
calculated separately for the opposite hand movement in F or B
direction and then averaged.

Statistics
Power tables from Cohen were used to evaluate the number of
participants needed to obtain a significant result (Puce et al.,
2003). When 14 participants were involved in this experiment,
partial eta squared (R2) was calculated as 0.417 by using ANOVA
in IBM SPSS Statistics 25. Effect size for F-ratios was calculated
as follows:

f 2 =
R2

1− R2
(5)

When f 2 is 0.7153, the equivalent effect size d is 1.6. At the given
two-tailed α = 0.05 and the recommended power level of 80%,

the number of participants needed for significant results was 9,
which justified the sufficiency of subjects in our experiment.

RESULTS

Neural Signatures
(1) Movement related cortical potential: Figure 4 shows the
MRCPs at electrode Cz under the condition of W-OHM.
Considering that the primary purpose of this study was to decode
right-hand movement directions, the MRCPs associated with the
right-hand movement in L and R directions were presented.
The MRCPs were calculated from −1.5 to 1.5 s of the Go-
Cue and averaged across all subjects. As shown in Figure 4,
under all movement conditions, the amplitudes of MRCPs kept
steady around 0 µV from −2 to 0 s, which was the movement
preparation period. A positive peak was observed at around
300ms, and after that a substantial negative shift arose and
peaked at about 500ms. The peak time of the negative shift
was in agreement with the actual movement onset calibrated by
FASTRACK (as labeled in Figure 1). For the movement under
condition of W-OHM, the average negative shift maximums of
the MRCPs for right-hand movements in R and L directions
were −9.4153 and −10.4324 µV, respectively. By comparing
the negative shift amplitudes of MRCPs between two primary
hand movement directions, larger negative shift amplitude of the
primary hand movement in L direction was found. However, this
difference was not significant (Wilcoxon signed-rank test, p =

0.17). Furthermore, Wilcoxon signed-rank test showed that there
was a significant difference between the MRCPs (from −1.5 to
1.5 s) associated with two primary hand movement directions (p
< 0.01).

(2) Time-Frequency plots: Figure 5 presents the grand average
time-frequency plots in the time period [−1.5, 1.5] s of the
movement cue onset across all subjects. It was seen that a
prominent increment in spectral power appeared after the
movement cue onset in the low frequencies of smaller than
7Hz (especially smaller than 4Hz), indicating that main power
modulations during bimanual movement was centralized in the
low frequency band, and this result was similar to the finding in
Robinson et al. (2015).
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FIGURE 4 | The averaged MRCPs at electrode Cz during the time period

[−1.5, 1.5] s of Go-Cue. “L” and “R” refer to the right-hand movement in right

and left directions. Note that time 0 s is the Go-Cue, and time 0.5 s is the

actual movement onset.

FIGURE 5 | Time-Frequency plots of movement. The averaged results are in

frequencies [0 16] Hz at Cz channel from −1.5 to 1.5 s of the movement cue

onset. Note that time 0 s is the Go-Cue, which indicates the movement

execution, and time 0.5 s is the actual movement onset.

(3) Scalp topographical maps: The average EEG potential
topographical distributions of the primary hand movements
under the condition of W-OHM are shown in Figure 6. The
scalp topographical maps were plotted from −1,000 to 1,500ms
with an interval of 500ms in between. It was seen that cortical
brain activities were steady from −1,000 to 0ms with no specific
modulation patterns. A significant decline in EEG potentials on
central regions and a significant increment on occipital regions
occurred from 0 to 500ms. After 500ms, peaks of these plots
were centralized on central regions increasingly. Furthermore,
the potential of EEG signals on temporal lobes turned into a
negative shift and reached the negative maximum gradually,
which was in line with the finding in Puce et al. (2003).

FIGURE 6 | Averaged EEG potential topographic maps of hand movement

across all subjects. Note that time 0 s is the Go-Cue, which indicates the

movement execution, and time 0.5 s is the actual movement onset.

Parameters Selection
The parameters of reservoir sparse degree c and reservoir sizeNN
were critical to the performance of the proposed decoding model.
The reservoir sparse degree is related to the number of neurons
activated, and the reservoir size is associated with the complexity
of the proposed model. Only with befitting parameters, the
proposed model could capture the dynamics of EEG signals well.
In this study, we used the mesh grid search to determine well-
behaved subject-specific parameters c and NN. For determining
the reservoir sparse degree c, the step size was set to be 0.1, and
the search range was in [0.1, 0.9]. For determining the reservoir
size NN, the search set was {10, 20, 30, 40, 50, 60, 70} (Sun et al.,
2019).

Table 2 shows the subject-specific decoding accuracies and
parameters selected (NN and c) by using ESN-based models
under condition of W-OHM. Figure 7 shows the example of
the decoding accuracy of Subject 1 under condition of W-OHM
against the reservoir sparse degree c and reservoir size NN. It was
seen that, with the increase of the reservoir sparse degree c, the
variation of decoding accuracy was slight for each reservoir size
NN. Furthermore, with the increment of the reservoir size NN,
the decoding accuracy was gradually improved and tended to be
steady. The parameter combination with the best performance,
i.e., “c 0.4, NN 60,” was selected for Subject 1 under condition of
W-OHM.

Decoding Performance Comparison
In this study, the classification performance of the proposed
ESN model was compared with two models in (Wang et al.,
2021), and we named two comparison models as Model 1 and
Model 2 in this study. Specifically, Model 1 used potential
amplitudes of EEG signals as feature and used LDA as classifier,
and Model 2 used the sum of spectral power of EEG signals as
feature and used LDA as classifier. For both model 1 and model
2, no personalized parameters tuning strategy was applicable.
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TABLE 2 | Subject-specific decoding accuracies and parameters selected (NN

and c) under W-OHM by using the proposed model.

Subject No. acc [%] NN c

S1 91.33 60 0.4

S2 92.44 70 0.7

S3 96.94 60 0.5

S4 91.81 50 0.1

S5 89.88 60 0.7

S6 97.69 70 0.3

S7 96.88 50 0.7

S8 86.56 70 0.3

S9 87.37 70 0.5

S10 82.75 60 0.4

S11 89.56 70 0.7

S12 84.25 70 0.6

S13 75.00 60 0.4

S14 90.19 70 0.9

Mean ± Std 89.48 ± 5.92 63.57 ± 7.18 0.51 ± 0.21

FIGURE 7 | ESN parameter selection with different reservoir sparse degree c

and reservoir size NN.

Table 3 shows the decoding accuracy comparison results based
on different kinds of classification models under condition of
W-OHM. Figure 8 shows the decoding accuracy comparison
under condition of W-OHM among three kinds of models in
the box-plot form. As shown in Table 3, the highest average
decoding accuracy was obtained when using the proposedmodel,
and was 89.48 ± 5.92%. Correspondingly, when using Model 1
and Model 2, the decoding accuracies were 82.28 ± 6.98% and
74.99 ± 6.13%, respectively. Significant differences were found
between classification models by performing one-factor analysis
of variance [F(2,39) = 16.88, p < 0.01]. The post-hoc pairwise

TABLE 3 | Decoding accuracies across subjects under condition of W-OHM

using different kinds of models.

Subject No. Model 1 [%] Model 2 [%] Proposed Model [%]

S1 86.88 75.56 91.33

S2 81.25 77.69 92.44

S3 80.81 88.25 96.94

S4 71.56 70.19 91.81

S5 80.93 70.63 89.88

S6 89.25 77.10 97.69

S7 92.94 80.38 96.88

S8 74.56 70.81 86.56

S9 89.88 76.06 87.37

S10 77.13 73.31 82.75

S11 86.75 67.69 89.56

S12 86.06 82.75 84.25

S13 68.50 63.56 75.00

S14 85.44 75.81 90.19

Mean ± Std 82.28 ± 6.98 74.99 ± 6.13 89.48 ± 5.92

FIGURE 8 | Box-Plots of average decoding accuracy under W-OHM by using

three kinds of models. The asterisk marks significant differences.

Tukey-Kramer post hoc test: *p < 0.05, **p < 0.01.

comparison with the Tukey-Kramer method showed that there
were significant differences between the Model 1 and Model 2 (p
= 0.02), the Model 1 and the proposed model (p = 0.02), and
the Model 2 and the proposed model (p < 0.01), as shown in
Figure 8.

Computational Time Comparison
Table 4 shows the computational time comparison results
of different decoding models. The total computational time
included the sum of signal processing, feature extraction,
dimensionality reduction, and classification of a single sample.
For the proposed model, averaged NN and c (64 and 0.5)
calculated from Table 2 was used for calculating computational
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TABLE 4 | Computational time of different decoding models.

Computational Time [ms]

Model 1 Model 2 Proposed Model

13.1 7.4 37.5

time. As shown in Table 4, the computational time of the Model
1, Model 2, and proposed decoding models was 13.1, 7.4, and
37.5ms, respectively. It showed the feasibility of putting the
proposed decoding model into real-time detection.

DISCUSSION AND CONCLUSION

This paper explored using EEG signals to decode primary
hand movement direction under the opposite hand movement.
MRCPs, time-frequency plots, and scalp topographic maps were
shown for neural signatures. The decoding model was built
by using an ESN to extract non-linear dynamics parameters
of MRCPs as decoding features. Experimental results showed
that the proposed method performed well in decoding primary
hand movement directions with the opposite hand movement.
This paper is the first to investigate neural signatures and
decoding of hand movement parameters under the opposite
hand movement.

In this study, we followed the classic center-out paradigm
(Robinson et al., 2013, 2015; Chouhan et al., 2018), and evolved
it to both-hand center-out paradigm for the both-movement
decoding. Specifically, we set the primary hand movement in
L or R directions and the opposite hand movement in F
or B directions. Considering that two hands often move in
different directions in practical human-machine collaboration
systems, we preliminarily set the primary hand and opposite
hand movement in orthogonal directions. The advantages of
this paradigm were that it was basic and representable for
hand movement decoding and its experiment results were
general and could be extended to practical hand movement
decoding problem. By comparing the negative shift amplitudes
of MRCPs between two primary hand movement directions, a
larger negative shift amplitude of the primary hand movement
in L direction was found (L: 10.4324 vs. R: 9.4153 µV). This
result was in accord with our previous study, which indicated
that the larger negative shift amplitude of MRCP might be
related to the higher torque-level for the leftward motion of
the right arm (Wang et al., 2021). The increment of spectrum
energy was mainly centralized in the low-frequency band, which
was similar to the finding in Waldert et al. (2008), which
indicated that hand movement directions could be decoded from
power modulations in the low-frequency band. The increment
of event-related potentials (ERPs) on central regions and the
decrement of ERPs on temporal regions were found in scalp
topographic maps from 500 to 1,500ms, which was in line
with the findings in Puce et al. (2003) and (Wang et al.,
2021), respectively.

Experimental results showed that the proposed decoding
model outperformed the models used in (Wang et al., 2021

(89.48% vs. 82.28% or 74.99%). One main reason for the
results is likely that the proposed method could capture
more discriminable information of MRCPs for decoding hand
movement direction. This ability of the proposed model may
be because ESN can establish a complex non-linear dynamic
system of EEG signals with a large reservoir size and complex
transmission relationships between neurons and can constantly
update the network parameters according to the information
from the previous moment. Furthermore, compared with other
neural network (e.g., convolution neural network and deep belief
network), ESN, as one kind of recurrent neural network, could
capture the nonstationary and nonlinear features and is good at
dealing with the time sequence problem.

This work has values in at least two implications. First,
the proposed method can capture more meaningful non-linear
information of MRCPs for decoding hand movement direction.
Thus, this work may open a new avenue to decode other hand
movement parameters, such as velocity and trajectory. Second,
since, for human augmentation, many tasks need to be carried
out by the movement of both hands, these findings can lay
a foundation for the future development and use of human
augmentation systems based on hand movement decoding from
EEG signals.

However, at least three limits exist in this work. First, although
the proposed decoding method of primary hand movement
direction under the opposite hand movement performed well,
the movement intensity of the left hand was kept at a certain
level. For further exploration of the decoding of primary hand
movement under the opposite hand movement, different kinds
and intensities of the opposite hand movement, including more
natural and complex movement, should be considered. Second,
like many studies in the field of using EEG signals to decode hand
movement (Robinson et al., 2015; Chouhan et al., 2018; Schwarz
et al., 2020), we used able-bodied subjects to investigate neural
signatures and decoding of hand movement direction. However,
it is unclear whether these results can be extended to persons
with disabilities. Thus, more subjects, especially the target users
(including the disabled), should be applied to validate these
findings further. Third, in this study, all recruited participants
were right-handed, and 1 female among which was recruited.
Though the influence of handedness and gender were focused
on in this paper, handedness and gender may be the factors
that influenced the decoding of primary hand movement under
opposite hand movement, which could be explored in future.

Our future work will be dedicated to solving the weaknesses
mentioned above, including using more types of hand movement
directions given more types and intensities of the opposite hand
movements, using more subjects and even some persons with
motion impairment and exploring the influence of handedness
and gender on decoding.
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Depression affects many people around the world today and is considered a

global problem. Electroencephalogram (EEG) measurement is an appropriate way to

understand the underlyingmechanisms of major depressive disorder (MDD) to distinguish

depression from normal control. With the development of deep learning methods, many

researchers have adopted deep learning models to improve the classification accuracy

of depression recognition. However, there are few studies on designing convolution filters

for spatial and frequency domain feature learning in different brain regions. In this study,

SparNet, a convolutional neural network composed of five parallel convolutional filters

and the SENet, is proposed to learn EEG space-frequency domain characteristics and

distinguish between depressive and normal control. The model is trained and tested by

the cross-validation method of subject division. The results show that SparNet achieves a

sensitivity of 95.07%, a specificity of 93.66%, and an accuracy of 94.37% in classification.

Therefore, our results can conclude that the proposed SparNet model is effective in

detecting depression using EEG signals. It also indicates that the combination of spatial

information and frequency domain information is an effective way to identify patients

with depression.

Keywords: SENet, SparNet, space-frequency domain characteristics, depression, EEG

1. INTRODUCTION

Major depressive disorder (MDD, also known as unipolar depression) is a physical disease of the
brain, also known as a mental health disorder. It mainly affects the process of thought, behavior,
and mood, and also can lead to the loss of interest and energy, interpersonal relationships, and job
performance. According to the statistics of the World Health Organization, more than 300 million
people in the world suffer from depression, and about 800,000 people die of depression every year
(Belmaker and Agam, 2008; Olesen et al., 2012;Whiteford et al., 2013). Early and accurate diagnosis
of depression is crucial for patients who need timely clinical treatment.

Most of the previous diagnoses of depression are based on the questionnaires as a
judgment and screening tool. One of the major drawbacks of this method is that it
requires experienced doctors. Therefore, finding a suitable and effective way to detect
depression is an emerging research area. Currently, various physiological measurement
tools are developing rapidly, such as functional magnetic resonance imaging (fMRI),
electroencephalogram (EEG), and positron emission tomography (PET). Many studies attempt to
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measure psychological data and develop auxiliary diagnostic
methods in clinical practice (Van Der Stelt and Belger, 2007;
Michel andMurray, 2012; Olbrich and Arns, 2013; Kerestes et al.,
2014; de la Salle et al., 2016). The quantitative measurement of
EEG signals is a neuroimaging technique with obvious practical
advantages because it does not involve invasive manipulation,
and it is easy tomanage, well-tolerated and relatively inexpensive.
In addition, the prevalence and persistence of depressive
symptoms make scalp recording EEG an appropriate method to
understand the underlying mechanisms of depression.

Most of the existing deep learning methods take the original
data of EEG signals or transform them into frequency-domain
signals as input, thus losing the spatial features between multiple
brain regions and the whole brain. Liao et al. (2017) and Jiang
et al. (2021) showed the effectiveness of spatial information
in distinguishing depression. Considering that the irregular
EEG network is one of the possible physiological symptoms of
depression, the EEG activity has spatial characteristics originating
from different brain regions, so the spatial EEG characteristics
extracted from different brain regions can be used to identify
depression. Cai et al. (2018) also found that the features in
the frequency domain were more likely to distinguish patients
than those in the time domain. By fusing these two features
of comprehensive mixed information, it is expected to achieve
richer and more accurate identification of depression. Although
it is possible to explore the spatial information of the brain
based on the internal structure of neural networks, there are
seldom studies that have explored the spatial information of
the various brain regions in depression based on the whole
brain structure from EEG signals. The purpose of this study is
to combine the spatial information and the frequency domain
information of each brain region, and integrates them with
deep learning.

The main contributions of this study are as follows.
First, phase space reconstruction is used to denoise the EEG
signals in the time domain and smooth the feature in the
frequency domain. Second, a new model called SparNet is
proposed to capture more specific information about depression
in this study. It is a parallel convolutional network used
to extract the features of different brain regions, and the
attention mechanism module is added to the network. Third,
the channels for each brain region are selected to explore
the local spatial-frequency domain features. The frequency
domain and the spatial features of each brain region are
combined by the multi-layer parallel convolutional filter. By
adding the attention mechanism, our deep learning model
can assign the weights to different channels in the local
brain region and also to different contribution degrees in the
global brain region.

2. RELATED STUDY

All approaches to depression identification fall into two broad
categories: those based on the manual features and those based
on the raw data. Hosseinifard et al. (2013) used a large EEG
recording dataset of 90 subjects (45 normal subjects and 45

depressed subjects) and found that in non-linear features, the
correlation dimension is a powerful feature for analyzing EEG
signals and identifying the depressed and the non-depressed
subjects. Cai et al. (2018) through three-electrode channel
acquisition, found that features were mainly concentrated in the
frequency domain, and achieved the best accuracy of 79.27%
with KNN. Their recent study, Cai et al. (2020b) compared
KNN, DT, and SVM on the same data set. Their KNN model
achieved the highest accuracy of 89.98%. Liao et al. (2017)
proposed a nuclear feature filtering group common space Mode
(KEFB-CSP) based on the scalp EEG signals. The signals were
decomposed into each frequency band and then the spatial
features were extracted by the CSP algorithm. Mumtaz et al.
(2017) conducted the time-frequency decomposition of an EEG
data and constructed EEG data matrix. Compared with other
time-frequency methods such as STFT and EMD, the wavelet
analysis has the highest classification accuracy of 87.5%. Mahato
and Paul (2020) found that the average theta asymmetry of
normal people was higher than that of patients with depressive
people. In SVM, the classification accuracy of alpha2 and theta
asymmetric combination is 88.33%. Peng et al. (2019) collected
128 electrodes of the subjects, and the research results showed
that depression would affect the brain activity of almost the entire
cerebral cortex, and the accuracy of 92.73% was achieved by
using SVM and full frequency band features. Sun et al. (2020a)
found that there were far more functional connections within
hemispheres than between hemispheres. High frequency parietal
occipital lobe plays an important role in depression recognition.
They Sun et al. (2020b) achieved the highest classification
accuracy of 82.31% by using the ReliefF feature selection method
and LR classifier on the same data set. They further indicated
that the functional connection feature plays an important role in
depression recognition. Jiang et al. (2021) proposed an effective
EEG based spatial classification detection method for depression,
task-related common spatial pattern (TCSP), which significantly
improved the accuracy of depression classification by using
spatial information.

Although feature extraction and machine learning can
effectively identify patients with depression, manual feature
extraction and selection are required, which is time-consuming
and laborious. There are many studies that use raw EEG data or
pre-processed data as model input. Zhang et al. (2020) extracted
the temporal and spatial characteristics of EEG signals by
1DCNN and added the population attention mechanism. They
suggested that the combination of EEG signals and demographic
factors could be better for patients with depression. Fan et al.
(2020) combined CNN and LSTM to better extract time and
space information. Ke et al. (2020) designed a lightweight CNN
model for the online identification of patients with depression.
Wan et al. (2020) proposed a convolutional neural network
HybridEEGNet composed of two parallel lines for learning
synchronization and regional EEG features. Seal et al. (2021)
found that the right extreme value of the subjects with depression
was significant, while the left extreme value of normal subjects
was significant. Sharma et al. (2021) proposed a computer-aided
(CAD) hybrid neural network based on EEG, that used CNN for
time learning and LSTM architecture for sequence learning.
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In the detection of depression, the spatial and frequency
domains are two important factors, but there are no suitable
neural networks to combine them together. Therefore, we
propose the SpatNet neural network to combine the two features
to improve the detection of depression.

3. MATERIALS AND METHODS

3.1. Participants
The dataset used in this study is from Lanzhou University.
The dataset (Cai et al., 2020a) mainly includes data from
patients with depression and the normal control group. Prior
to the experiment, all participants signed the written informed
consent. The consent and study design were approved by
the Local Biomedical Research Ethics Committee of Lanzhou
University Second Hospital in accordance with the World
Medical Association rules. There were 48 participants, including
24 patients with depression (13 men and 11 women; 16–56 years
old) and 24 healthy controls (17 men and 7 women; 18–55 years
old). All patients with depression underwent a structured MINI
interview, which met the diagnostic criteria for depression in
the DSM-IV-based Diagnostic and Statistical Manual of Mental
Disorders (DSM). Patients with MDD were selected based on
their PHQ-9 (Kroenke and Spitzer, 2002), GAD-7 (Spitzer et al.,
2006), and PSQI scores. Participants should be between 18 and 55
years old and have primary or higher education. For depression,
inclusion criteria were MINI meeting the diagnostic criteria,
patient health Questionnaire (PHQ-9) score of 5 or greater, and
no psychotropic medication in the past 2 weeks.

3.2. Data Acquisition and Preprocessing
Subjects were asked to stay awake and still, and to reduce head
and body movements and eye movements to reduce EMG and
EOG, respectively, which record a 5-min resting state of closed
eyes. EEG signal acquisition equipment is 128-channel HydroCel
Geodesic Sensor Net. The sampling rate is 250 Hz. The reference
electrode is Cz. The skin impedance of each electrode channel is
kept below 70 k�.

The resting EEG signals are further processed using MATLAB
2021b. In the first step, the infinite impulse response digital
filter IIR is used to perform 1–40 Hz band-pass filtering on
the signal, and the order of the filter is set as 6. The filter can
eliminate the “baseline drift” caused by low frequency noise
and electrical interference from the 50 Hz-line noise. In the
second step, independent principal component analysis is used
to remove the EOG and EMG. Meanwhile, the integrity of
channel recording signals is checked. If the invalid channels are
detected, spherical interpolation is used for interpolation. The
EEG signals of depressed patients and normal people are shown
in Figure 1. In the third step, the processed time-domain signal
is decomposed and reconstructed to remove the noise. A phase
space reconstruction of a time-domain signal is decomposed into
three signals, and then the new signal is reconstructed through
the least square interpolation. The fourth step is to keep the same
sample size between the subjects. The sliding window with the 2s
non-overlap method is adopted for sectioning (Siuly et al., 2015),
and the sample size of each subject is 148*2s. In the process of
beginning and ending the experiment, the interference of brain
electricity would be relatively large, so we discarded the first
sample and the last sample.

3.3. The Time-Domain Denoising
3.3.1. Phase Space Reconstruction
Compared with normal EEG signals (Knott et al., 2001;
Puthankattil and Joseph, 2012; Sharma et al., 2018), inhibited
EEG signals have stronger stability and lower complexity. Hence,
the phase space reconstruction is used to better analyze the
complexity and non-stationary behavior of normal and depressed
EEG signals in two-dimensional space, and the unstable noises
are removed. In Sharma and Pachori (2015), Bhattacharyya
and Pachori (2017), the two-dimensional diagrams of EEG
signals have been used for seizure detection. The phase space
reconstruction was first proposed in 1980. There are mainly
two methods for phase space reconstruction: the derivative
reconstruction method and the coordinate delay reconstruction
method. The data set is collected in the resting state, so the
signal is generally stable. The current signal feature can be

FIGURE 1 | Electroencephalogram (EEG) signals from (A) normal and (B) depressed subjects.
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predicted by the previous signal feature and the following feature.
Based on this characteristic, the coordinate delay reconstruction
method is finally adopted. The generation of the PSR requires
the determination of delay time t and embedding dimension d,
which can be obtained by mutual information (MI) (Roulston,
1999; Bradley and Kantz, 2015) and false nearest Neighbor (FNN)
(Bradley and Kantz, 2015), respectively. Supposing the time series
is x(i): i = 1, 2, . . . , n, the d dimensional phase space vector is
constructed by different delay time t of one-dimensional time
series x(i), as shown in Equation (1).

y(i) = (x(i), . . . , x(i+ (d − 1)t)), 1≤i≤n− (d − 1)t (1)

The initial application of the PRS is in the chaotic time series.
According to Takens’ embedding theorem (Stark et al., 1997;
Muldoon et al., 1998; Kukavica and Robinson, 2004), we can
reconstruct a phase space from one-dimensional chaotic time
series that is the same as that of the prime motorial system in the
sense of topology. According to this principle, the EEG signals as
the general time series can reconstruct a phase space topologically
identical to the original signal by determining the delay time t
and d dimensions of the phase space. Since the EEG signal is
collected by the subject in the resting state with eyes closed, the
brain activity is relatively stable, and the characteristics of the
current signal can be determined by the characteristics of the
front and rear signals. If there are interference noises at this time,
the original signal will have a mutation in the waveform. We can
determine and correct the reconstructed phase space.

3.3.2. Least Square Fitting
After the original EEG signal is reconstructed in the phase space,
the reconstruction is selected as a three-dimensional phase space
vector. Then, the linear least square method by Kiers (1997)
is used to fit each point inside, because the EEG signal in the
resting state would not have mutations. Thus, the current signal
point could be fitted according to the characteristics of the signals
before and after. Given n points (xi, yi), i = 1, 2, 3, . . . , n. xi is not
the same, as shown in Equation (2).

f (xi) = a1r1(xi)+ a2r2(xi)+ · · · + amrm(xi) (2)

f (x) is closest to all the data points. We assume that the
current data point is i (unknown) and all known points before
and after are taken to determine the fitting function. Where,
the steps to determine the coefficient ak are as follows: First,
the error function of the fitting curve and the original curve
is Equation (3).

J(a1, a2, . . . , am) =

n
∑

i=1

δ2 =

n
∑

i=1

[f (xi − yi)]
2 (3)

For a1, a2, . . . , am minimizes J, use the necessary extreme
conditions: ∂J/∂ak = 0 (k = 1, . . . ,m) to get the linear
Equation (4).

n
∑

i=1

rj(xi)[

m
∑

k=1

akrk(xi)− yi] = 0, (j = 1, . . . ,m) (4)

FIGURE 2 | Phase space reconstruction and the least square method were

used to detect EEG signals before and after denoising in patients with

depression.

make R=







r1(x1) · · · rm(x1)
...

. . .
...

r1(xn) · · · rm(xn)






, A = [a1, . . . , am]

T , Y =

[y1, . . . , yn]
T , so we can rewrite this equation as Equation (5).

RTRA = RTY (5)

Thus, when the equation satisfies r1(x), . . . , rm(x) linearly
independent,R column full rank,RTR invertible, there is a unique
solution Equation (6).

A = (RTR)−1RTY (6)

For the selection of function rk(x), we use the polynomial curve to
better fit the EEG signal. Figure 2 shows the comparison before
and after denoising EEG signals of patients with depression by
using phase space reconstruction and the least square method.

3.4. Characteristics of Feature Smoothing
Pham et al. (2015) proposed the importance of feature smoothing
for emotional EEG classification. The denoised EEG signal is
converted into the frequency domain signal by the fast Fourier
transform. The frequency domain signal is used as the input
of the neural network. Each sample is segmented according to
the time sliding window. Therefore, the transformed frequency
domain signals are also smoothed according to 148 time points
(each sample size). The EEG signals are collected by the subjects
with their eyes closed, so the changes in the EEG signals in the
frequency domain are not particularly obvious. Equations (7) and
(8) are used to calculate the difference between the signals at each
time point and the mean value of the signals.

δij = |yij − E(Y)i|, 1≤i≤40, 1≤j≤148 (7)

E(Y)i =
1

J

J
∑

j=1

yij (8)
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Where Y represents the amplitude, i represents the frequency,
and j represents the time point. E(Y) is the mean of a sample of
a subject at frequency i. δij is the error between each sample point

and the mean.

δij − 3

√

√

√

√

√

1

J

J
∑

j=1

(yij − E(Y)i)2 > 0 (9)

Mark yij as an outlier if the value of yij differs from the

mean by more than three standard deviations as shown in
Equation (9). After the outliers are detected, the yij sample points

marked before are smoothed by the method of before-and-
after mean interpolation. In this way, the influence of abnormal
features can be further cleaned up, while maintaining the overall
trend of frequency domain features. At the same time, it can
reduce the risk of over-fitting during the training of the neural
network.

3.5. Attention Module
The attention mechanism is a special structure embedded in
a machine learning model, which is used to automatically
learn and calculate the contribution of input data to output
data. The attention mechanism is a signal processing
mechanism discovered by some scientists in the study of
human vision. Some practitioners in the field of artificial
intelligence have introduced this mechanism into some
models. At present, the attention mechanism has become
one of the most widely used “components” in the field of
deep learning, especially in the field of natural language
processing. The classic ones are BERT, Transformer (Devlin
et al., 2018; Wang et al., 2019), and other models or structures
that are highly exposed in the past 2 years. In this article,
we adopt the SENet (Squeeze-and-Excitation Networks)
(Hu et al., 2018) module incorporated with the channel
attention mechanism.

In our proposed network model, the EEG signals are
converted into frequency domain features and then used as the
input of the SENet module. The SENet module is originally used
to process the two-dimensional images, in this article, we use it in
one-dimensional signal processing. It can mainly use the global
information to selectively emphasize the information features
and suppress the less useful features by assigning different weight
values to each channel. This is a combinatorial function of five
consecutive operations: channel global average pooling (Lin et al.,
2013), complete connection layer, Relu, complete connection
layer, and finally Sigmoid. The sigmoid activation plays an
important role as the channel weights that adapt the input specific
descriptors. Due to the fully connected layer and pooling layer,
the number of parameters and the computation load increased
slightly. The unique structure of this extrusion and excitation
network, shown in Figure 3, can be used with any standard
architecture.

FIGURE 3 | Structure diagram of SENet network applied to one dimensional

EEG signal. The weight of each channel of EEG signal before processing is

equal, so the color of the channel is the same. The different channels after

processing were assigned different weights, with different colors representing

this change.

3.5.1. Squeeze
SENet implements compression operations through the global
average pooling to generate channel statistics. Where Z∈RC, and
the kth element zk of Z is calculated by Equation (10).

zk = Fsq(uk) =
1

L

L
∑

i=1

uk(i), k = 1, 2, · · · ,C (10)

where Fsq(·) is the compression operation, and uk is the feature
on the kth channel. C is the total number of channels.

3.5.2. Excitation
The excitation operations help to capture channel dependencies
and greatly reduce the number of parameters and calculations.
The excitation part is mainly composed of two fully connected
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layers and two activation functions, which can be written as
Equation (11).

S = Fex(Z,W) = σ (γ (Z,W)) = σ (W2δ(W1Z)) (11)

where S = s1, s2, . . . , sC,sk∈R
L(k = 1, 2, . . . , L). Fex(·) is the

excitation operation. W1∈R
C
r ×C, W2∈R

C× C
r , W1, and W2 are

the weights of the two fully connected layers used for dimension
reduction and dimension enhancement. Z is the fully connected
input after global average pooling. r is a hyperparametric ratio,
which can change the capacity and calculation cost. δ(x) is
the activation function Relu used to prevent the gradient from
disappearing (Gu, 2017). σ (x) = 1

(1+e−x)
is a sigmoid function.

Equation (12) is used to calculate the final output x̃k(k =

1, 2, · · · ,C). The output is obtained by multiplying the input
channels by their respective weights.

x̃k = Fscale(uk, sk) = uk · sk (12)

where x̃k ∈ RL refers to the multiplication above the channel. skis
the processed channel weight. uk is the original eigenvector.

4. PROPOSED DEEP LEARNING SCHEME

Convolutional Neural Network is a special type of neural network
which is widely used in image processing and classification
tasks. It is a state-of-the-art deep learning method consisting
of many stacked convolutional layers. The network consists of
a convolution layer, pool layer, and final complete connection
layer. The EEG signals are one-dimensional time series signals.
After converting them into frequency domain signals, multi-
channel one-dimensional frequency domain signals are input.
Therefore, 1DCNN is used in the convolutional neural network.
The features in the frequency domain can be fully combined with
the spatial information between channels.

4.1. Convolution Layer
At the convolution layer, 1DCNN carries out the convolution
operation on the local area of the input signal to generate
the corresponding one-dimensional feature map. Different
convolution kernels extract different features from the input
signal respectively. Each convolution kernel detects the specific
features of all positions on the input feature graph to achieve
the weight allocation on the same input feature graph. The
characteristics of the local connectivity and weight sharing
effectively can reduce the complexity of the network and the

FIGURE 4 | The proposed architecture of the CNN model based on SENet and SparNet. Where ** represents the level of the convolution filter. Conv1d is a

one-dimensional convolution operation.
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number of training parameters. If the L layer is the convolution
layer, Equation (13) of the one-dimensional convolution layer is

xlj = f (

M
∑

i=1

xl−1
i ∗ klij + blj) (13)

where k represents the convolution kernel, j represents the
number of convolution kernels, and M represents the number
of channels of the input x(l − 1) of the upper layer. b is the
offset of the convolution kernel, and * stands for the convolution
operation. f (·) is the activation function.

4.2. Activation Layer
What is done in the convolution layer of the upper layer is to
process the input features in the way of convolution, i.e., to assign
a weight to each pixel point. This operation is linear. But for
samples, they are non-linear separable instead of linear separable.
Thus, we add the activation function Relu Equation (14) here.

f (x) = max(0, x) (14)

As a non-linear factor, the activation function added to the model
can make the model more expressive and better fit the data.

4.3. Pooling Layer
The downsampling stage is after the convolution layer and the
number of feature graphs increases. This leads to the expansion
of the data dimension, which is not conducive to calculation.
Therefore, the average pooling or maximum pooling is used
to process each feature map in this stage. The average pool
is calculated according to the size of the predetermined pool
window, and the maximum pool method selects the maximum
parameter within the predetermined window range as the output
value. In our study, the maximum pooling operation is adopted.
The pooling kernel size is 1*2, the step size is 1, and there is
no filling.

4.4. Connection Layer
After passing through the convolution layer, the data scale
is channel×features, and the feature dimension needs to
be straightened into one dimension. At this point, the full
connection layer of the node is connected with all neuron nodes
output from the feature mapping of the previous layer, and the
activation function is softmax function. If the final pooling layer
is l+1 and output to the full connection layer, then the output of
the full connection layer is Equation (15).

h(x) = f (wl+1 · xl+1 + bl+1) (15)

where w represents the weight of each feature, and b represents
the offset. F(·) represents the activation function.

4.5. Loss Function
It is used to calculate the error between the classification
prediction label and the actual label. The classification cross
entropy is used as the loss function, and the probability
distribution is compared with the real distribution. L1, L2, . . .,

TABLE 1 | Detailed information about the proposed SparNet deep model.

No Names of layers Kernel size Parameters of layers

0 Input — —

1 SENet(1−5) — Reduction = 2

2 Conv1D(1)(3−5) 12*5 Stride = 1

Conv1D(2) 25*5 Activation = Relu

3 MaxPooling1D(1−5) 2 Stride = 2

4 SENet — Reduction = 2

5 Conv1D 5*2 Stride = 1, Activation = Relu

6 MaxPooling1D 2 Stride = 2

7 Dense — Neurons = 2

8 Softmax — —

The ** represents the level of the convolution filter: SENet(1−5) represents the SENet of the

1st to 5th layers.

TABLE 2 | Channels in different brain regions are selected.

C E36-E104,E30-E105,E41-E103,E37-E87,E42-E93,E47-E98

F E19-E4,E22-E9,E24-E124,E27-E123,E32-E1,E33-E128

O E70-E83,E71-E76,E69-E89,E74-E82,E73-E83,E75,E81

P E52-E92,E60-E85,E51-E97,E67-E77,E59-E91,E72,E62

T E58-E96,E45-E108,E114-E44,E100-E46,E102-E57,E50-E101

and LT are represented by the one-hot encoding strategy. The loss
function can be calculated as Equation (16).

Loss = −

T
∑

i=1

M
∑

j=1

Li,j ∗ logpi,j (16)

where T is the number of verification data samples, M is the
number of classes, pi,j is the predicted value obtained from the
fully connected layer, and Li,j is the true value.

4.6. SparNet
In view of the advantages of CNN, one-dimensional CNN is
used to extract the spatial frequency features of EEG signals. In
the proposed SparNet network architecture, each layer is directly
connected to each other in feedforward mode. In Figure 4,
the SparNet network consists of six sub-CNNs. Each sub-CNN
consists of a SENet, Conv1d, Relu, and Maxpooling. Five of them
are at the same level to form a network of parallel structures to
operate the brain region, and the last convolutional operation
performs a processing operation on the global brain. Finally,
there is a fully connected layer output result. The SENetmodule is
added to each sub-network to increase the attention mechanism
between channels and brain regions. Table 1 details each layer of
the proposed SparNet network and the parameters of each layer.

First of all, the same sample size is kept between the subjects.
We use the sliding window 2s non-coincidence method to slice,
and the sample size of each subject is 148*2s. In this study, since
the recognition features of depression patients are mainly in the
frequency domain signals, we manually extracted the features in
this step. The EEG signals are transferred from the time domain
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to the frequency domain (1–40 Hz) by a fast Fourier transform,
and the frequency domain signal is used as the input of the neural
network. The channels are sorted out before entering the first
layer of the model. The channels are divided into five regions
according to the brain regions. At this point, the data size of each
brain region is channeled *40. Before entering the convolution
layer, the SENet module will adjust the weight of each channel,
and then the space frequency domain features of each brain
region will be extracted through convolution operation and
maximum pooling. The features of five brain regions will be
spliced to form a feature scale of 5*features, where 5 represents
five brain regions. The SENet module then weights each brain
region based on global features. After the convolution operation,
the output of the full connection layer is entered. Figure 4 shows
the whole signal processing process of the network.

4.7. Characteristics in the Space
Frequency Domain
Peng et al. (2019) and Jiang et al. (2021) showed that the EEG
signals of depressed patients had better feature representation in
the frequency domain, where absolute power and relative power
in the frequency domain were of great help in identifying patients
with depression. Moreover, the expression of EEG signals in the
power spectrum of patients with depression is obviously different
from that of healthy people. Stark et al. (1997) and Lin et al.
(2013) showed that in the spatial domain of channels, the brain
functional connections of patients with depression were different
from those of normal people, and the accuracy of classification of
patients with depression was significantly improved.

Therefore, this article aims to combine frequency domain and
spatial domain to effectively identify patients with depression

FIGURE 5 | The division of the brain between different brain regions.
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in space-frequency domain. Based on the characteristics of the
brain, it is divided into five brain regions. First, the local space-
frequency domain is explored, and then the feature extraction
of the global space-frequency domain is carried out. The brain
regions are shown in Table 2.

In order to explore the influence of various brain regions on
patients with depression, we divide the brain into five parts as
shown in Figure 5: central region, frontal lobe region, occipital
lobe region, parietal lobe region, and temporal lobe region. The
first layer of the SparNet network has five parallel sub-CNNs
corresponding to the five brain regions. Due to the tightness
between brain regions, we initially select 12 channels in each
brain region to carry out space frequency domain characteristics
of brain regions. In order to accurately locate the channels in
each brain region, we obtained the channel location information
from Luu and Ferree (2005) by referring to the 128-channel
HydroCel Geodesic Sensor Net device. Each channel contains
spatial information about the brain. Additionally, in order to
avoid the influence of multiple brain regions on a single channel,
we select 12 channels distributed in the central location of each
brain region without selecting channels at the edge of the brain
region. The channels are then added individually according to
each brain region’s contribution to the recognition of depression.
The selection of preliminary channels is shown in Table 2.

5. RESULTS

5.1. Evaluation
There are 48 subjects in total. In order to better generalize the
model, we adopt dataset division among subjects. A total of 24
sets are obtained by combining a depressed patient with healthy
control, using the one-subject cross-validation (LOSOCV) to
assess the generalization ability of each classification model.

In this study, accuracy, sensitivity, and accuracy based on
the confusion matrix are used as the performance evaluation
indexes. Sensitivity (recall rate) is defined as the percentage of
patients with MDD predicted in all MDD patients (TP+ FN),
and precision is defined as the percentage of healthy controls
predicted in all healthy controls (TP+FP). Accuracy is defined
as the percentage of correctly classified patients with MDD
and healthy controls. F1 index takes into account both model
accuracy and recall rate and is defined as the harmonic mean of
model accuracy and recall rate.

Accurary =
TP + TN

TP + TN + FP + FN
(17)

Sensitivity =
TP

TP + FN
(18)

Precision =
TP

TP + FP
(19)

F1Score = 2×
Precision×Sensitivity

Precision× Sensitivity
(20)

FIGURE 6 | Network structure diagram of brain regions.

The Receiver Operating characteristic (ROC) curve is used for
evaluation. The ROC curve is widely used in binary classification
evaluation, which evaluates sensitivity and specificity against
several thresholds.

5.2. Partial Results
The brain is divided into five regions: frontal, central, parietal,
occipital, and temporal. In order to more effectively identify
people with depression, we explored the importance of different
brain regions. The importance of 12 channels in each brain region
is evaluated. 1DCNN is performed on each of the five brain
regions, and the evaluation index is the average accuracy after
each fold. The neural network model of brain regions is shown
in Figure 6.

Each subject is included in the test set by a 24-time retention
cross-validation method for each brain region. The accuracy of
each brain region is shown in Figure 7.

As can be seen from the results, the frontal lobe has a greater
contribution to the identification of patients with depression
compared with other brain regions, which is consistent with the
results of Jiang et al. (2021), indicating the feasibility of the frontal
lobe channel detection for depression. Wan et al. (2020) also
prefer the frontal lobe channel in terms of channel selection.
Depression patients with low moods will lead to emotional
differences from normal people. Since the frontal lobe is the main
brain area for emotional processing, the frontal lobe is more
important for the identification of depression patients. Thus, in
order to better explore the characteristics of the global space
frequency domain, the number of channels in the frontal lobe is
increased to 25 channels, E19-E4, E22-E9, E24-E124, E27-E123,
E32-E1, E33-E128, E15, E11, E1 - E32, E27 - E123, E13 - E112,
E29 - E111, E28-117, the E6, E121 - E38, E34 - E36, combined
with the cerebral cortex region occupied by the frontal lobe.
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FIGURE 7 | The accuracy of different brain regions in identifying people with depression.

5.3. Global Results
The software Matlab 2020b is used to preprocess the data, and
the EEG data are segmented with a 2s window length. After that,
the time domain signal is converted to the frequency domain
as the characteristic input of the model. The space frequency
domain features of the EEG signal will be extracted by a two-layer
convolution operation. In addition, in the convolution operation,
each channel will be adjusted according to the parameters of a
convolution kernel, and will not be affected by the parameters
of other channels. Therefore, the channel grouping order has no
significant impact on performance.

For training the model, the batch size is 8, and each network
is trained with 50 epochs. The cross entropy is selected as the
loss function. In the optimization stage, the RMS algorithm is
selected to obtain better results and a shorter running time. If
the loss function is verified not to improve after 10 consecutive
epochs, the early stop criterion is used. Figure 8 shows the
calculation results for each fold. The ROC and AUC values of
the above methods are shown in Figure 9 for each fold. Due
to the differences between the subjects, the minimum AUC

area obtained is 0.829, and there are 16-fold AUC areas over
0.95, which also demonstrates the effectiveness of the model.
The results of cross-validation are statistically analyzed. The
mean values of F1, Acc, Precision, Sensitivity, Specificity are
0.947, 0.953, 0.937, 0.951, and 0.942, respectively. The standard
deviation of F1, Acc, Precision, Sensitivity, Specificity are 0.054,
0.056, 0.082, 0.063, 0.056, respectively.

The results of 24-folds are combined and analyzed, and the
evaluation indexes obtained are shown in Table 3, in which the
accuracy rate reaches 94.37%. At the same time, the ROC and
AUC values of the above methods are shown for the overall
results, including the ROC and AUC values of the individual
categories of normal people and depressed patients, as shown
in Figure 10. The AUC area of the overall data is 0.9682. All
the evaluation indicators decrease when the input characteristics
in SparNet are time domain signals. The results are shown
in Table 4, named “With Time Domain”. Thus, the frequency
domain feature is more effective than the time domain feature.

For the proposed model, in order to verify the effectiveness of
the attention mechanism in identifying patients with depression,
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FIGURE 8 | Twenty-four-fold cross-validation results including accuracy, precision, sensitivity, specificity, and F1 evaluation indicators.

six SENet modules are removed from the model and the
comparison before and after the results are shown in Table 4.

It can be seen from the results that adding an attention
mechanism into the model can improve the learning ability
of the model. The accuracy rate of depression identification
is improved by 3.13%, and all the evaluation indicators are
also improved.

In this article, after converting the EEG signals into the
frequency domain, the smoothing operation is performed on
the frequency domain features. The comparative experiments
are conducted before and after feature smoothing, and the
experimental results are shown in Table 4.

It can be seen from the results that the accuracy is improved
by 4 % using the smoothed features as the input. Furthermore,
we can observe that all the evaluation indicators are improved at
the same time. The calculation cost of the network is calculated.
The parameter number of the SparNet network is 8,725, and
the network parameter without the SENet module is 455.
The number of network parameters without smooth is 8,725,
mainly to illustrate the necessity of feature smoothing for neural
networks. The SparNet parameters are mainly contributed by the
SENet module.

6. DISCUSSION

Screening for depression is very important for early diagnosis
and treatment. However, the previous diagnosis of depression
is confined to a manual questionnaire survey and feature
extraction, which is subject to many limitations. For example, a
questionnaire survey required experienced doctors, while feature
extraction required a lot of manpower to find the characteristics
of relevant indicators. The deep learning methods can overcome

this limitation and can be used anywhere without highly trained
experts. In this study, we use feature smoothing and deep
learning for the automatic detection of patients with MDD
and healthy controls with good performance. The attention
mechanism is combined with 1DCNN, and the spatial-frequency
domain features are extracted by brain regions. The accuracy rate
of our model reaches 94.37%.

The main innovation of this study is to make full use of the
spatial and frequency domain characteristics of the brain. We
also try to smooth the input of the neural network. Experimental
results show that the frequency domain characteristics of
the input smoothing processing can effectively improve the
identification accuracy of patients. In addition, due to the
characteristics of the convolutional neural network, the brain
is divided into different regions for feature extraction of
parallel structures.

It can be seen from the final results that adding the SE module
into the 1DCNN neural network can make the model have
higher accuracy. This is because the convolutional layer provides
a powerful feature fusion technology, although the weights
between channels are unified by default. The SE module can
better highlight the importance of different channels. At the same
time, although there has been a feature of converting the EEG
signal into the frequency domain as the input, the segmentation
of brain regions according to the brain’s structure can make
the spatial information of brain regions better interpreted. The
results for each brain region and the final results for the whole
brain region show that although each brain region is helpful in
identifying depression, the characteristics of the whole brain are
better. It could be thought that a large amount of space-frequency
information is lost for a single brain region and cannot get a
significant effect.
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FIGURE 9 | Twenty-four-fold cross-verified ROC curves and areas.

TABLE 3 | Performance values obtained when testing the SparNet model using EEG data.

Class
Predicted

depression Normal Acc Precision Sensitivity Specificity F1

Actual Depression 3,327 225 0.9437 0.9375 0.9507 0.9366 0.9440

Normal 175 3,377 0.9500 0.9366 0.9507 0.9432

Table 5 is a comparison of results on the same data
set. It can be seen that the accuracy of this study is
higher than that of traditional machine learning methods
for linear and non-linear extraction. Additionally, compared
with Peng et al. (2019), we use fewer channels to achieve
better accuracy and obtain the best results in this dataset in
automated detection of patients with depression and healthy

controls, which could provide better solutions for future
clinical applications. Compared with Zhang et al. (2020), the
combination of multi-parallel 1DCNN and SE modules in
this study tests the importance of space-frequency information
and other advantages. However, the main shortcoming of this
study is the data size to train the network, which can be
overcome by simplifying the deep model. Our future goals
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FIGURE 10 | Receiver Operating characteristic (ROC) curves and area of overall EEG data tests.

TABLE 4 | Comparison of results before and after adding SENet module.

Acc Precision Sensitivity Specificity F1

SparNet 0.9437 0.9375 0.9507 0.9366 0.9440

With time domain 0.8851 0.9189 0.8607 0.9104 0.9130

Without the SENet 0.9124 0.8953 0.9341 0.8907 0.9143

Without smooth 0.9037 0.9099 0.9042 0.9104 0.9070

TABLE 5 | The confounding matrix and evaluation index are used to compare the classification results of SparNet and correlation methods in the same data set.

References Methods Channels number Classification methods Accuracy (%)

(Sun et al., 2020b) Linear features, non-linear features, PLI 16 Channels ReliefF, LR 82.31

(Peng et al., 2019) PLI 128 Channels Kendall rank correlation coefficient+SVM 92.73

(Sun et al., 2020a) Linear features, non-linear features, PLI, network measures 128 Channels C4.5, BFDT, LR 84.18

(Zhang et al., 2020) Time domain feature 3 Channels 1DCNN 75.29

SparNet Frequency domain feature 73 Channels 1DCNN 94.37

The bold value is the accuracy derived from the SparNet.
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are to further expand the experimental space, collect more
samples, and apply the developed methods to other types of
EEG data.

7. CONCLUSION

The main study in this article is using the novel neural
network called SparNet based on the EEG signals to identify
depressed people or not. First, the denoising method of the
phase space reconstruction is used to denoise and clean the
data. Second, the input features are smoothed before the
frequency domain features are input into the model. Third, a
new model called SparNet is proposed to extract the space-
frequency domain features of the local brain regions and
the whole-brain. Finally, the cooperating of the attentional
mechanisms to the model improves the identification accuracy of
the patients with depression. Compared with other methods, the
proposed model can obtain a better classification performance.
From the results of the local brain regions, it can be seen
that the frontal lobe plays a better role in the identification
of patients with depression. From the results of the global
brain region, it can be seen that the combination of the
spatial features and the frequency domain features can
effectively improve the accuracy of depression identification.
The combination of features of the different brain regions may
be the focus of future research. The methods and findings
of this study may contribute to the wider application of
the diagnosis of deep depression in clinical applications and
neuroscience research.
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Electroencephalogram (EEG) authentication has become a research hotspot in the

field of information security due to its advantages of living, internal, and anti-stress.

However, the performance of identity authentication system is limited by the inherent

attributes of EEG, such as low SNR, low stability, and strong randomness. Researchers

generally believe that the in-depth fusion of features can improve the performance

of identity authentication and have explored among various feature domains. This

experiment invited 70 subjects to participate in the EEG identity authentication task,

and the experimental materials were visual stimuli of the self and non-self-names. This

paper proposes an innovative EEG authentication framework, including efficient three-

dimensional representation of EEG signals, multi-scale convolution structure, and the

combination of multiple authentication strategies. In this work, individual EEG signals are

converted into spatial–temporal–frequency domain three-dimensional forms to provide

multi-angle mixed feature representation. Then, the individual identity features are

extracted by the various convolution kernel of multi-scale vision, and the strategy of

combining multiple convolution kernels is explored. The results show that the small-

size and long-shape convolution kernel is suitable for ERP tasks, which can obtain

better convergence and accuracy. The experimental results show that the classification

performance of the proposed framework is excellent, and the multi-scale convolution

method is effective to extract high-quality identity characteristics across feature domains.

The results show that the branch number matches the EEG component number can

obtain the excellent cost performance. In addition, this paper explores the network

training performance for multi-scale module combination strategy and provides reference

for deep network construction strategy of EEG signal processing.

Keywords: EEG, identity authentication, multi-scale, 3D-CNN, ERP

INTRODUCTION

Electroencephalogram (EEG) identity authentication extracts the neural activity pattern of the
user’s brain and applies the EEG signal as a biological feature to the individual identity recognition
system. Modern brain science research shows (Nakamura et al., 2017) that people brains have
not only the structural differences determined by genes such as fingerprints and faces, but also
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functional differences in memory, personality, and thinking
patterns. EEG has unique advantages in the field of biometric
identification, such as in vivo, stress resistance, and internality.
As a high-level security authentication method, EEG has become
a research hotspot. A large number of studies (Marcel and
Millan, 2007; Alariki et al., 2018) have verified the possibility
of EEG identifying individuals. Individuals show significant
individual differences under both evoked (Rathi et al., 2020) and
spontaneous (Thomas and Vinod, 2017) tasks.

However, the randomness and weak signal-to-noise
ratio of EEG signals restrained the performance of identity
authentication, and the current mainstream feature extraction
methods have limited improvement in classification
performance. It is an urgent problem to improve the performance
of EEG identity authentication by constructing fusion features to
comprehensively characterize individual EEG features.

Researchers explored a variety of feature fusion methods.
In the field of traditional machine learning (Palaniappan
and Mandic, 2007), the sensor domain and spatial domain
features were spliced, and the fused EEG features effectively
improved the classification accuracy. In addition (Arvind
et al., 2012), multiple feature domains were arranged and
combined. Linear combination (Zhang et al., 2021) was
applied in the feature space. Yuan et al. (2018) focused on
the time series information of EEG to extract the features
through the contextual semantics of EEG, and the proposed
method improved the performance of epileptic seizure detection.
The above studies have improved the performance of EEG
data features.

In this paper, an innovative 3D input representation and
multi-scale vision CNN framework is proposed for EEG
identity authentication task, which effectively integrates spatial,
temporal, and frequency domains in EEG features. The 3D
representation of EEG signals comprehensively analyzes the
individual’s brain identity features from multiple perspectives,
and the hybrid mode across feature domains is more integrated
and diverse. Themulti-scale convolution kernel extracts the brain
identity information from different views and characterizes the
individual identity by analyzing the individual characteristics
of EEG signals from different fields of vision. Furthermore, we
discuss the performance and combining strategies of multiple
convolution kernels. The proposed multi-scale CNN framework
of mixed features significantly improves the performance of
EEG authentication. On the feature level, the mixed features
integrate the multi-angle information of the research object.
On the network level, multi-scale networks further expand the
advantages of parallel feature extraction. The proposed method
has broad application prospects in dynamic timing information
processing, such as video data processing, satellite image analysis,
gait recognition, and so on.

The main contributions of this paper are as follows:

(1) An efficient 3D EEG data fusion representation method
is proposed to characterize EEG features from multiple
perspectives in the spatial, temporal, and frequency domains.

(2) The convolution kernel scale and combination strategy
suitable for EEG data were explored, and the rectangular

convolution kernel that prefers temporal features has better
EEG extraction performance.

(3) The depth of multi-scale modules and the branch number
are studied. The branch number should match the number
of EEG components, and the shallow multi-branch structure
has high application cost performance.

BACKGROUND

There were some common methods of individual identity in
spatial, time, and frequency domains. For example, event-related
potential (ERP) components were extracted in time domain
(Zeng et al., 2018), power spectral density (PSD) energy of
each frequency band in frequency domain (Harshit et al.,
2016), and common spatial pattern (CSP) method in spatial
domain (Jayarathne et al., 2016). The research results showed
that the classification performance of mixed feature domain
concatenation was better than single feature domain, and feature
fusion methods relying on researchers’ experience have been
rapidly developed. The above research provided a valuable
reference, but the fusion degree of feature domain and feature
diversity is still needed to be improved.

In addition to relying on empirical combination features,
with the gradual rise of end-to-end learning mode of deep
learning framework, automatic and non-linear feature fusion
methods based on neural network were widely used, and the
efficiency and performance of fusion features were better than
traditional empirical methods. Specifically, after the application
of multi-scale convolution model in two-dimensional image
processing, the features of different scale fields were automatically
extracted and fused by parallel structure. We summarized that
the latest research improves the input form to three-dimensional,
and the convolution neural network (CNN) performed rich,
comprehensive, and complementary feature domain fusion. The
multi-scale convolution network in the field of EEG had a
lot of exploration. The application scenarios included emotion
recognition, fatigue driving (Cho and Hwang, 2020), epilepsy
prediction (Ozcan and Erturk, 2019), and motor imagery (Zhang
et al., 2019) tasks.

EEG Presentation Form
For 3D CNN, several methods were designed to convert scalp
EEG signals into 3D presentation forms. Common dimensions
were assigned to the main features of two dimensions and
the auxiliary features of one dimension. Zhao et al. (2019a)
demonstrated that in the motor imagery task, the strategy of
electrode combination was studied. According to the electrode
position, it wasmapped to a 3× 3 or 4× 4 two-dimensional plane
to form spatial features, and another dimension shows temporal
features. In Deng et al. (2021) research, a two-dimensional 9
× 9 spatial representation matrix was designed for 32-channel
electrodes, and the other dimension was the temporal domain
signal of EEG array. Zhang et al. (2019) combined 2D temporal
features and 1D frequency feature in the motor imagery task to
form a three-dimensional feature domain, representing the time-
frequency feature tensor of EEG. In the study of psychological
load (Kwak et al., 2020), EEG signals were presented as 2D spatial
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information and 1D frequency information and focused on the
rhythm characteristics of EEG frequency band.

For different cognitive tasks, 3D feature combination focuses
on two kinds of temporal, frequency, and spatial domains and
abandons a feature domain as a cost, which is not fully utilized.
The rich temporal, frequency, and spatial features of EEG data
have not been fully excavated, and more efficient 3D feature
domain fusion method remains to be explored.

Multi-Scale Convolution Module
The three-dimensional convolution model applied in the field of
EEG is still dominated by single convolution kernel and serial
stack architecture. Inadequate advanced studies have found that
the performance of parallel multi-scale convolution structure
was better than serial mode, and the parallel structure of multi-
scale is beneficial to capture the characteristics of different scales.
The inception module (Lee et al., 2020) in the field of image
was used in the task of brain control manipulator to obtain
better stability and accuracy in decoding motion intention. In
addition, Zhao et al. (2019b) research designed small receptive
field network (SRF), medium receptive field network (MRF),
and large receptive field network (LRF), using multi-scale three-
dimensional dimensions (2 × 2 × 1, 2 × 2 × 3, 2 × 2 × 5) to
extract EEG features.

The combination strategy of convolution kernel continues
the experience in the field of image, without improving the
characteristics of EEG. Moreover, insufficient study researched
on the performance of different convolution sizes in the EEG
field, and the editing and parameter setting were based on the
researcher experience. The above research shows that the fusion
feature domain of EEG identity authentication is not sufficient
and diverse, and the performance of single convolution kernel
and multi-scale combination strategy needs to be studied.

METHODS

Database
As shown in Figure 1, the EEG authentication task (Zhang et al.,
2022) was to distinguish between the self and non-self-names.
The oddball paradigm randomly showed 500 names, including
100 subjects’ own names, 150 familiar names, 300 strangers’
names, and 50 blank names. The acquaintances were the names
of the subjects’ family members or closest friends, which were
provided by the subjects before the experiment. The names
of acquaintances interfere greatly with the subjects, which was
used as a supplement to the control of non-self-names in the
experiment. Strange names were randomly selected from the
citizen name database. The subjects confirmed that each stranger
was unfamiliar before the experiment. Blank name was black
background and no text. To eliminate the influence of cross
and mask factors on participants, the study only retained the
brain response of name stimuli. In the preprocessing stage, the
blank name was subtracted as the name response baseline of
the brain. First, the blank names of all subjects were collected
and averaged globally. Second, the global average of blank names

was subtracted from the single trial of each self, familiar, and
stranger name.

Electroencephalogram identity authentication experimental
flow chart is shown in Figure 2. In the preprocessing stage,
0.1–20Hz band-pass filter was used to filter out slow drift and
high-frequency noise offline. Band-pass filter consisted of low-
pass and high-pass Chebyshev filters. The low-pass Chebyshev
filters (order, 2; stopband starting frequency, 20Hz; stopband
cutoff frequency, 40Hz; attenuation in the passband, 0.5 dB;
attenuation in the stopband, 5 dB) were acquired through
the built-in function of MATLAB. The high-pass Chebyshev
filters (order, 2; stopband starting frequency, 0.01Hz; stopband
cutoff frequency, 0.5Hz; attenuation in the passband, 0.5 dB;
attenuation in the stopband, 10 dB) were also acquired. The
original EEG data were down-sampled to 256Hz to reduce the
amount of data processing and calculation. Reference electrode
standardization technique (REST) was applied for re-reference,
and this method was considered to have higher accuracy
in traceability and brain network analysis. The independent
component analysis (ICA) was used to remove eye electrical
artifacts in the signal. The ICA decomposition of EEG signals
was realized by Fast-ICA toolbox of MATLAB, and the method
applied the default parameters. We observed the decomposition
waveform and determined the electrooculogram component, and
this study only excluded the component of ocular artifacts. After
the electrooculogram channel was set to zero, the rest of the
ICA signal was converted back to the EEG signal. The test with
amplitude >100 µv was automatically eliminated. EEG signals
were cut into a period from−200 to 800ms. The baseline of EEG
signals was from−200 to 0ms before stimulus presentation.

We invited 70 subjects (52 men and 18 women, age range
of 18–25, standard deviation 1.7 years, 70 right-handed) to
participate in the experiment, all of them were college students
and had normal or corrected-to-normal visual ability. None
of the subjects had a history of psychiatric illness or taking
psychotropic drugs. The experimental design was approved
by Ethics Committee of China National Digital Switching
System Engineering and Technological Research Center. Each
participant filled in the informed consent before the experiment
and obtained a payment after completing the experiment.
Compared with the current EEG database of 20–30 people, this
experiment applied the relatively sufficient data of 70 people
database. A total of 70 subjects were divided into training sets
(50 subjects) and test sets (20 subjects). To avoid the contingency
and increase the reproducibility, the participants in the training
set and the test set were randomly selected. The result was
the experiment average for 100 rounds of random training
set and test set. To avoid the overfitting problem of identity
authentication model, the two types of data sets have no overlap
to test the robustness of the method.

The collected EEG signals were seriously disturbed by noise.
The valuable ERP signal amplitude at 10−6 voltage, and any
subtle influence seriously interferes with EEG data. Therefore,
the applied EEG analysis and processing method needs to have
good robustness. The ERP amplitude of valuable information in
this experiment was below 10 µv, but the magnitude of other
interference was above 100 µv. The collected EEG signals were

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 90176548

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. EEG Multi-Scale 3D-CNN

FIGURE 1 | Task paradigm of EEG authentication.

FIGURE 2 | EEG identity authentication experimental flow chart.

mainly in the following three categories: environmental noise,
electromyographic artifact, and psychological. Environmental
noise includes equipment noise, power frequency interference,

electromagnetic interference, etc. The artifacts include eye
movements, head movements, and other EMG signals. In
addition, EEG signals are affected by physical conditions such as
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mood, circadian clock, sleeping, and other psychological factors.
To ensure the robustness of the proposed method, we have two
special designs in our experiment. On the one hand, we collected
a large-scale EEG database of 70 people, which tested the
method’s universality and effectiveness in the group. On the other
hand, the experimental results were derived from 100 rounds
randomly selected of training set and test set. The average results
avoid the specificity and contingency of the proposed method.

EEG 3D Presentation Form
To present more comprehensive and abundant EEG features,
the 3D representation of EEG was assigned one dimension
each for the spatial, temporal, and frequency domains. The
three common feature domains were reflected in the three-
dimensional representation, which fully characterizes individual
identity from multiple perspectives. The neural activity recorded
by EEG was shown in the time, frequency, and spatial domains.
As shown in Figure 3A, the EEG contains P200, P300, and late
negativity (LN) components, which represent the neuron activity
of name stimuli. P200 shows the brain’s pre-attention of visual
stimuli, representing the early cognitive process. P300 is the
most prominent component of EEG in this task. The presence of
P300 means that the subjects’ brains fully perceive name stimuli
and stimulate large-scale, intense brain activity. Previous studies
have found that LN belongs to post-processing of consciousness,
indicating that stimulus materials are deeply processed in the
brain. Figure 3B reveals the main energy centers at 375–625ms
in time domain and 0–10Hz in frequency domain, which
indicates that the brain’s response to names is low frequency. In
the spatial domain, the main energy was concentrated in the Fz,
F3, F4, C3, and C4 channel. Brain activation is located in the
frontal lobe and central area, which is responsible for advanced
cognition and regulation of information.

The 3D transform process of EEG signals is shown in Figure 3.
First, single-trial EEG data after preprocessing were separated
according to different electrode channels. Second, the EEG
signal time-frequency diagram conversion. The time-frequency
diagram was obtained by the spectrum function in MATLAB.
The spectrum parameters were set as follows: hamming window
length 64, overlapping window length 57, and Fourier transform
point 256. The size of the time-frequency graph of the processed
single channel was 94 × 60, representing the time domain
information of 0–800ms and the frequency domain energy of
0–30Hz, respectively. The stacking of 16 layers sensors formed
the spatial representation. The spectrum parameter settings
were constrained by the time-frequency characteristics of EEG
signals and CNN input form. In terms of CNN input form,
CNN was first outstanding in the field of image processing.
Some studies have shown that CNN has outstanding effect
on square images. Therefore, this experiment tried to generate
time-frequency graphs close to square images. In terms of
EEG characteristics, ERP signals showed high time information
and low-frequency energy. Based on the above two points, we
obtained the 94 × 60 square time-frequency diagram by setting
the parameters (window length, 64; overlapping length, 57). In
addition, the number of Fourier transform 256 points was the
EEG sampling rate. Hamming window was widely used to reduce

spectrum leakage andmaintain good frequency resolution. Then,
the spectrum of each channel is stacked to form a 16 × 94
× 60 three-dimensional input tensor, which represents the
spatial, temporal, and frequency characteristics of EEG. Data
processing decomposes EEG signals into mixed tensors of three
feature domains, which is beneficial to feature fusion of neural
network training.

Multi-Scale Vision Convolution Module
The individual identity feature of EEG was mainly extracted
by multi-scale visual field convolution module, and multiple
modules were spliced to form the overall network architecture.
The previous data were applied to multiple branch operations,
each branch connecting a convolution kernel of a unique
scale. The multi-scale vision convolution module is shown in
Figure 4. The multi-scale convolution processing flow included
1× 1 convolution layer, branch structure, feature concatenation,
and pooling.

The first input layer applied dimension reduction through
1 × 1 convolution layer, which reduced network parameters
and integrates local correlation. Then, the 3D tensor was
padded according to the scale of convolution kernel to meet
the consistency of feature size after multi-scale convolution.
To prevent gradient explosions or disappearances, the 3D
convolution kernel was initialized by “kaiming_uniform.” Multi-
branch convolution was an important structure for multi-
scale feature extraction, and diversified convolution kernel
combination strategy was the discussion focus in this study.
Compared with the common square convolution kernel in
the image field, considering the ERP signal characteristics of
unbalanced information in temporal and frequency domains,
a variety of rectangular convolution kernels with unequal edge
lengths were explored in the study.

For the excellent multi-scale strategy [(6 × 3 × 3), (6
× 5×3), (6 × 7 × 3)], the experimental results are shown
in Figure 4, and the 3D convolution kernels correspond to
spatial × temporal × frequency domains, respectively. Multi-
scale convolution kernel combination was conducive to capture
EEG features from macro to detail, and multi-branch structure
extracted diverse and complementary identity information. The
feature output layer was regularized by batch normalization to
improve the generalization ability and convergence speed of the
model. The concatenate feature layer was reduced by maxpool,
and the pooling kernel area decreased with the deepening of
the network. The feature layer output contained comprehensive
features extracted by multi-convolution kernel and transfers the
three-dimensional information into the next stage.

EEG Authentication Framework
The overall EEG authentication architecture was the stack and
expansion of multi-scale convolution modules, and the number
of branches and modules was flexibly combined. As shown in
Figure 5, multi-branch structure within the module extracted
diversity features, and multi-layer module stack can refine and
combine the features. The multi-branch structure extracted
diversity features in the basic module, and multi-layer module
stacking can refine and combine the features. The endmulti-scale
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FIGURE 3 | Three-dimensional transformation flow chart of EEG. (A) EEG after preprocessing. (B) Time-frequency energy diagram of separated channels. (C)

Spatial–temporal–frequency domain combinations of EEG three-dimensional tensor.

FIGURE 4 | The architecture of multi-scale vision convolution module.

convolution module flattens the features and then passes through
a two-layer fully connected network of 768 × 32. The activation
function used leaky rule (α =0 .01) to prevent dead neurons.
To reduce the overfitting risk, dropout with a probability of 0.4
was inserted between the fully connected layers. The network
parameters were set as follows: learning rate= 0.0005, epoch= 5,
batch size = 50. The details of the network structure used in the
experiment are shown in Table 1.

It should be noted that the scale convolution framework
should find a balance between network performance and
training cost. Since the increase in the number of modules
and branch structure will lead to a huge parameters’ number,
branch construction and module elimination are the main
methods to reduce the computational and time consumption.
The network framework in the study has flexibility and diversity.

The experiment analyzes the several combination strategies
of multi-branch and multi-layer modules and selects the
architecture scheme that balances high performance and low

time consumption.

RESULTS

Single-Scale Kernel Performance
The study explored the convolution kernel size suitable for
EEG feature extraction and provided reference for multi-scale
convolution kernel combination strategy. Figures 6, 7 show the
training loss and classification performance of 16 single-scale
convolution kernels. Due to the small spatial variability of 16
sensor space, the spatial depth of the fixed convolution kernel is 6.
The study focuses on the feature information in time-frequency
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FIGURE 5 | 3D Multi-scale convolutional framework for EEG authentication.

domain, and the convolution kernel size in the legend is time ×
frequency domain pixel).

Figure 6 shows the model training losses of convolution
kernels with different scale. Figure 6A reveals important
inflection points for convergence curves of different convolution
kernels. The loss function curve shows two processes of rapid
convergence and gentle decline. Model converges rapidly in the
first 1,000 iterations. All convolution kernels reach the inflection
point between 1,000 and 3,000 iterations, and the loss function
decreases slowly after 3,000 rounds. As shown in Figure 6B, the
top 3D kernels with the best convergence performance in time-
frequency domain are 3 × 3, 5 × 3, and 7 × 3. The convolution
kernels with the same area generally show that the long shape
is better than the wide shape (e.g., 5 × 3 is better than 3 × 5),
indicating that the attention degree of temporal characteristics
mainly affects the convergence performance. The convolution
kernels with different areas show that small size is better than
large size (e.g., 3 × 3 is better than 7 × 7), indicating that the
capture of EEG detail features by small size convolution kernel is
beneficial for model training.

The classification test applied a 5-fold cross-validationmethod
in the individual data set. A 5-fold cross-validation is a commonly
used grouping test method in classification tasks, especially
suitable for performance prediction of small-scale databases. The
long duration of EEG experiments leads to subject discomfort
and affects the data quality. The individual in single EEG
experiment collected insufficient samples, and the samples’
number of each type was <100. Individual model performance
evaluation belongs to small-scale database testing. Therefore,
we apply 5-fold cross-validation to reduce individual model
overfitting. Figure 7 shows that the classification performance of
different convolution kernels is consistent with the convergence
performance, and the small rectangular convolution kernel has
better classification performance in ERP feature extraction. The

classification performance of small-size and long kernel shape
is better.

Overall, the shape of convolution kernel affects the
performance of the model more than the size, and the
advantage order of convergence shapes under similar sizes
is long, wide, and square shape. Rectangular shape is more
suitable for ERP EEG feature model training, which is different
from the experience of square convolution kernel in image
processing field. Based on the above single-scale convolution
kernel results, the smaller-scale convolution kernel is selected in
the combined multi-scale convolution kernel strategy, and the
shape difference in convolution kernel is retained for in-depth
analysis. At present, our known literature retrieval has not found
the research of the convolution kernel size in the EEG field.
This study provides suggestions for convolution kernel selection
of ERP tasks, including kernel size and strategy. Innovative
research finds that rectangular cores and small sizes have better
performance than common specifications in ERP tasks. In the
construction of network framework, the convolution kernel can
be selected and combined according to the design and strategy of
this paper, which will be conducive to the improvement in EEG

network performance.

3D-CNN Performance Evaluation
After quantitative analysis of the network performance of single-
scale convolution kernel, the convolution kernel with excellent
single-scale performance is composed of multi-scale convolution
network. Taking the small size and non-square convolution
kernel as the basic branch, seven kinds of convolution kernel
combination strategies are proposed, and the convolution kernel
combinations of long, wide, and square shapes are tested,
respectively. One-dimensional multi-scale convolution model
is vector input and only has long convolution kernel base.
In addition, three commonly used single-scale CNN models
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TABLE 1 | Architecture of main neural networks for EEG authentication.

Type 1D-simple 2D-simple 3D-simple 1D-Multi- 2D-Multi- 2D-Multi- 2D-Multi- 3D-Multi- 3D-Multi- 3D-Multi-

scale-length scale-width scale-equal scale-length scale-width scale-width scale-equal scale-length

Multi-scale

visual

module(a)

Conv(a1)/

padding

(24) × 1 ×

7/0 × 0

(24) × 9 ×

7/0 × 0

(24) × 5 × 9

× 7/0 × 0

(24) × 1 ×

7/0 × 2

(24) × 3 ×

7/0 × 2

(24) × 7 ×

7/2 × 2

(24) × 7 ×

3/0 × 2 × 0

(24) × 6 × 3

× 7/0 × 0 ×

2

(24) × 6 × 7 × 7/0 × 2 × 2 (24) × 6 × 7

× 3/0 × 2 ×

0

Conv(a2)/

padding

/ / / (24) × 1 ×

5/0 × 1

(24) × 3 ×

5/0 × 1

(24) × 5 ×

5/1 × 1

(24) × 5 ×

3/0 × 1 × 0

(24) × 6 × 3

× 5/0 × 0 ×

1

(24) × 6 × 5 × 5/0 × 1 × 1 (24) × 6 × 5

× 3/0 × 1 ×

0

Conv(a3)

/padding

/ / / (24) × 1 ×

3/0 × 0

(24) × 3 ×

3/0 × 0

(24) × 3 ×

3/0 × 0

(24) × 3 ×

3/0 × 0

(24) × 6 × 3

× 3/0 × 0 ×

0

(24) × 6 × 3 × 3/0 × 0 × 0 (24) × 6 × 3

× 3/0 × 0 ×

0

Max pool(a) 1 × 2 2 × 2 1 × 2 × 2 1 × 2 2 × 2 2 × 2 2 × 2 1 × 2 × 2 1 × 2 × 2 1 × 2 × 2

Multi-scale

visual

module(b)

Conv(b1)

/padding

(72) × 1 ×

7/0 × 0

(24) × 12 ×

8/0 × 0

(72) × 7 × 12

× 8/0 × 0

(72) × 1 ×

7/0 × 2

(72) × 3 ×

7/0 × 2

(72) × 7 ×

7/2 × 2

(72) × 7 ×

3/0 × 2 × 0

(72) × 6 × 3

× 7/0 × 0 ×

2

(72) × 6 × 7 × 7/0 × 2 × 2 (72) × 6 × 7

× 3/0 × 2 ×

0

Conv(b2)

/padding

/ / / (72) × 1 ×

5/0 × 1

(72) × 3 ×

5/0 × 1

(72) × 5 ×

5/1 × 1

(72) × 5 ×

3/0 × 1 × 0

(72) × 6 × 3

× 5/0 × 0 ×

1

(72) × 6 × 5 × 5/0 × 1 × 1 (72) × 6 × 5

× 3/0 × 1 ×

0

Conv(b3)

/padding

/ / / (72) × 1 ×

3/0 × 0

(72) × 3 ×

3/0 × 0

(72) × 3 ×

3/0 × 0

(72) × 3 ×

3/0 × 0

(72) × 6 × 3

× 3/0 × 0 ×

0

(72) × 6 × 3 × 3/0 × 0 × 0 (72) × 6 × 3

× 3/0 × 0 ×

0

Max pool(b) 1 × 2 4 × 4 1 × 4 × 4 1 × 2 2 × 2 2 × 2 2 × 2 1 × 2 × 2 1 × 2 × 2 1 × 2 × 2

Multi-scale

visual

module(c)

Conv(c1)

/padding

(72) × 1 ×

7/0 × 0

(24) × 6 ×

4/0 × 0

(72) × 6 × 6

× 4/0 × 0

(72) × 1 ×

7/0 × 2

(72) × 3 ×

7/0 × 2

(72) × 7 ×

7/2 × 2

(72) × 7 ×

3/2 × 0

(72) × 6 × 3

× 7/0 × 0 ×

2

(72) × 6 × 7 × 7/0 × 2 × 2 (72) × 6 × 7

× 3/0 × 2 ×

0

Conv(c2)

/padding

/ / / (72) × 1 ×

5/0 × 1

(72) × 3 ×

5/0 × 1

(72) × 5 ×

5/1 × 1

(72) × 5 ×

3/0 × 1 × 0

(72) × 6 × 3

× 5/0 × 0 ×

1

(72) × 6 × 5 × 5/0 × 1 × 1 (72) × 6 × 5

× 3/0 × 1 ×

0

Conv(c3)

/padding

/ / / (72) × 1 ×

3/0 × 0

(72) × 3 ×

3/0 × 0

(72) × 3 ×

3/0 × 0

(72) × 3 ×

3/0 × 0

(72) × 6 × 3

× 3/0 × 0 ×

0

(72) × 6 × 3 × 3/0 × 0 × 0 (72) × 6 × 3

× 3/0 × 0 ×

0

Max pool(c) 1 × 6 2 × 2 / 1 × 5 5 × 5 5 × 5 5 × 5 1 × 5 × 5 1 × 5 × 5 1 × 5 × 5

Dropout 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Linear 16 × 3 × 72 72 × 3 × 2 72 × 3 × 2 ×

1

16 × 4 × 72 4 × 2 × 72 4 × 2 × 72 4 × 2 × 72 1 × 4 × 2 ×

72

1 × 4 × 2 ×

72

1 × 4 × 2 × 72

Dropout 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Linear 32 32 32 32 32 32 32 32 32 32

Softmax 2 2 2 2 2 2 2 2 2 2
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FIGURE 6 | Network training loss of single-scale convolution kernel. (a) The important inflection points of network loss convergence. The loss functions of different

convolution kernels decrease rapidly before 1,000 iterations. Additionally, the loss function curves of all convolution kernels tend to be flat before 3,000 rounds. (b)

The loss function performance of different convolution kernels after multi-round iteration. Long-shape and small-size convolution kernels are suitable for feature

extraction of ERP tasks.

FIGURE 7 | Test accuracy of single-scale convolution kernel.

and seven machine learning classification are compared in the
experiment. The details of the network model are shown in
Table 1.

The results in Figure 8 show that the classification
performance of the traditional machine learning classifier
is similar to that of the serial CNN model. The performance

of traditional classifiers is quite different. Discriminant analysis
classifier (DAC), support vector machine (SVM), and ensemble
classifiers obtain higher classification accuracy, and their
performance is close to the single-scale 3D-CNN network. The
performance of the serial single-scale CNN model is affected
by the data input dimension, and the fusion representation of
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FIGURE 8 | Classification performance of multiple authentication strategies.

multi-feature domains effectively improves the classification
performance. The 3D single-scale convolutional network
achieves 82.33% of the identity authentication accuracy, which is
higher than the optimal traditional machine learning algorithm.

The convolution architecture of multi-scale visual field
shows outstanding classification performance, and its multi-view
feature extraction method obtains more than 5% of accuracy
improvement compared with single-scale serial network. In
addition, the multi-scale network also shows the advantages of
high-dimensional feature fusion. The fusion features of multi-
feature domain can extract individual identity information more
accurately, and the accuracy rate increases with the increase of
feature input dimension.

Compared with the 2D network, the 3D convolutional
network proposed in the study has an improved accuracy
rate, indicating that the spatial features extracted from the
third dimension assist the classification decision. The cognitive
process of self-name stimulation is divided into several stages:
visual coding, semantic understanding, decision analysis, self-
awareness, advanced cognition, neural feedback, etc. Different
brain functional areas are responsible for the part of the cognitive
process. Therefore, EEG signals of different electrodes have
different contributions. However, the commonly used 2D-CNN
lack the freedom degree of EEG spatial data, which makes it

difficult to refine the importance of each electrode. The 3D-
CNN is flexible in the third dimension, which helps to utilize
spatial information of electrodes in different brain regions.
In this article, the total number of channels is 16, and the
convolution kernel size in the spatial dimension is 6. The 3D
convolution kernel performs sliding window operation on the
third dimension, and the convolution results are rich in 3D space
layout. The 3D presentation helps the convolution network to
obtainmulti-dimensional optimization space, which is conducive
to the optimization of network parameters and the improvement
in classification performance. Since each functional area of the
brain is responsible for different information processing tasks,
the overall realization of the task requires the cooperation of
multiple brain regions and the connection of the brain network,
so the three-dimensional EEG presentation form is more
suitable for the EEG biological characteristics. EEG acquisition
equipment often uses multiple sensors to extract the neuron
discharge signals of the whole brain, and the scalp electrical
signal data between multiple sensors are cross-complementary,
which effectively alleviates the spatial information lack of the
single sensor. The 3D network model obtains the spatial
correlation of EEG through the convolution vector of the
third dimension and further extracts the spatial pattern of
brain activity.
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In the performance of the combination strategy of
convolution kernel shape, the 2D and 3D networks show
that long convolution kernel is better than wide and square. It
is worth noting that the multi-scale convolution model with
one-dimensional input achieves 87.56% of accuracy, and its
classification effect is higher than that of the two-dimensional
multi-scale network with wide shape. The advantages of
rectangular convolution kernel in classification test are
consistent with those of single convolution kernel, indicating
that the rectangular kernel shape is more suitable for the ERP
task network model.

Summarizing the results of the above three groups
classification models, we find that the diverse features of
multi-scale convolution kernel help to improve the classification
performance, and the contribution of multi-scale architecture
is better than that of multi-dimensional feature representation.
In addition, a variety of long (temporal domain priority)
convolution kernel combinations are suitable for EEG
feature extraction.

Analysis of Module Branch and Network
Depth
To explore the influence of the breadth and depth of the network
on the classification performance, the architecture of multi-
branch and multi-layer networks was tested. Each branch assigns
the operations of a single-scale convolution kernel. The multi-
scale convolution kernel is expanded on the commonly used
three branches, and the commonly used depth is selected for
the network layer. The 2–6 branches are combined with the 3–
5 module layers architecture, and the classification test results are
shown in Figure 9.

The classification performance of multi-scale convolutional
networks increases with the increase of layers and branches,
indicating that the expansion of network parameters is conducive
to feature extraction and classification. When 2 branches
expand to 3 branches, the accuracy increases most significantly,
and the increase in the branch number is limited after 3
branches. This shows that the convolution kernel of three
branches can cover the basic EEG features, and too many
branches increase the repeated acquisition and redundancy
of features. In addition, the classification accuracy tends to
be stable when the network depth is >3 layers, and the
stacking module depth has limited performance improvement.
In addition, complex networks require massive data and lead
to overfitting.

The increase of branches and layers is accompanied by the
improvement in training parameters, and the improvement in
classification performance by complex networks is limited. The
results show that the network architecture with three layers
and three branches has good application cost performance, and
the shallow network with fewer branches can obtain prominent
identity authentication results.

Feature Visualization of Multi-Scale Kernel
To analyze the extraction effect of multi-scale model for EEG
identity features, we take three-branch and three model layers
as an example to analyze the attention areas of different scale

convolution kernels. Each branch outputs the feature heat map
after convolution operation by the own scale and normalizes
the attention intensity of the feature map by z-score. Figure 10
illustrates the feature layer extraction process of multi-scale
network and shows the representative results of attention
heat map.

For the results of the longitudinal single-layer feature, the
multi-scale structure captures the diversity of EEG features,
and the attention regions of different convolution kernels
complement each other. We assume that the attention of
multiple branches corresponds to the important components
of EEG, such as the three convolution kernels of feature layer
1 capture the main features of ERP, respectively. Branch 1
corresponds to P300 component (a1), branch 2 corresponds
to P200 component (a2), and branch 3 corresponds to early
cognition and late negativity component (a3). In addition,
EEG components affect convolution kernel size, the smaller
convolution kernel (a1) size leads to the smaller span of captured
features, and (a3) the longer convolution kernel size covers the
large-scope features.

For the horizontal multi-layer feature inheritance, the bottom
to the deep features represents good inheritance. The network
effectively retains EEG features in layer-by-layer iteration and
reduces the dimension of high-dimensional raw data to low-
dimensional identity features. For example, (a1) (b1) (c1) feature
maps retain the P300 component features in the conduction and
convert the 2D time-frequency map of (a1) to one-dimensional
vector of (c1). After compression in time domain and frequency
domain, the P300 feature in (c1) still be clearly presented, and
the corresponding position conforms to the temporal energy
distribution. In addition, (c2) and (c3) also inherited the P200
and LN components of the bottom heat map, respectively.
The results show that the multi-scale model integrates the
early EEG features into the corresponding low-dimensional
identity information.

The results in Figure 10 show that the features extracted by
multi-scale model are diverse, complementary, and inheritable.
The feature heat map is similar to the energy distribution of
EEG in time domain, and the frequency domain features are
merged and compressed, which is confirmed by the temporal
priority of the early kernel result. In addition, we suggest that
the branch number of the multi-scale module matches the main
component number of ERP and select the multi kernel strategy
of the corresponding ERP component size, which helps the
branch structure of the multi-scale vision to focus on the EEG
characteristics suitable for the respective scales.

Time Consumption
The practical application of BCI system considers the
computational power and time consumption of model
construction, and the actual system needs to establish a
balance between classification accuracy and time cost. Figure 11
shows the time-consuming training of the classification model
for research and application, and the model training uses two
high-performance CPU chips (Intel (R) Xeon (R) Gold 5118).
The proposed model applies the large network parameters
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FIGURE 9 | Classification performance of multi-layer, multi-branch network architecture.

FIGURE 10 | Visualization of intermediate feature layer of multi-scale convolution structure.

and the large batch size, and GPU is not applied due to
insufficient memory.

The results show that the training time of the machine
learning method is second level, and the serial single-scale
convolution network is minute level, whereas the parallel
multi-scale convolution network needs hour-level training
consumption. The traditional machine learning method and
serial single-scale convolution network have the advantages of
low parameter and obtain effective classification performance
in a short time, but the feature completeness and detection

accuracy still have great room for improvement. The high-
precision advantage of parallel multi-scale networks needs to
sacrifice the computing consumption, which is lengthy and time-
consuming for ordinary equipment. In addition, the complex
model requires massive EEG samples; otherwise, it may lead to
non-convergence or overfitting of model training.

There are some suggestions for reducing computational
complexity and time-consuming for complex model frameworks.
Data migration is a common method for training model
optimization. A small amount of new data was inputted in
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FIGURE 11 | Training time consumption of different EEG authentication strategies.

the completed complex model, which obtains the low fine-
tuning cost and the stability of the original model. In addition,
the initialized parallel multi-scale network training should
select a low-dimensional convolution framework. Figures 9, 11
show that the multi-scale network has similar classification
accuracy, and the low-dimensional framework gains higher cost
performance. Moreover, the increase in the branch number leads
to the decrease in training speed. The results in Figure 9 show
that the branch number should match the main component
number of ERP, and the excess branch structure contributes less
to the correct performance.

DISCUSSION

Convolution Kernel Size Analysis
The results of single-scale and multi-scale model framework
show that the size and shape of convolution kernel affect the
network model performance. Figure 12 shows the kernel size
corresponding to the actual EEG data. Table 2 quantizes the
time-frequency area covered by the convolution kernel. The odd
number of convolution kernel size is selected as the side length.
The single pixel scale of EEG time-frequency diagram represents
8.5ms× 0.5 Hz.

The best three convolution dimensions of EEG authentication
accuracy are 6 × 3 × 3, 6 × 5 × 3, and 6 × 7 × 3, which
represents the convolution vector length of spatial, temporal,
and frequency domains, respectively. The performance of long
convolution kernel (temporal domain priority) is prominent,

indicating that the network allocates a larger area of time
domain feature. The rectangular convolution kernel shape has
more advantages than the square convolution kernel in the
image field. This is related to the ERP characteristic of diversity
temporal components and low-frequency energy. A variety
of convolution kernel sizes are tried in the experiment, and
the results show that the larger convolution area in the time
domain can obtain good convergence and accuracy.We speculate
that there is more important information in time domain,
which can help the network to extract effective EEG features.
Large convolution kernel area can obtain larger receptive
field, which helps to fully integrate the feature information
in the field of vision. In addition, the larger convolution
area in time domain represents more convolution parameters,
which provides more optimization space for time domain
feature extraction.

Most ERP studies tend to EEG feature extraction in temporal
domain, while few studies on the low-frequency energy of the
oddball paradigm. This is consistent with the temporal domain
orientation of the convolution kernel size in this paper, and
Figure 12 shows that ERP signal has the characteristics of high
time-varying and low-frequency signals. This experiment is
mainly aimed at the single-trial P300 EEG, and the performance
of the long-during EEG convolution kernel still needs further
research. It should be noted that the long kernel in this study
corresponds to the high attention of time domain characteristics.
If the input form is transformed, and the specific size should
consider the actual corresponding time and frequency resolution.
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FIGURE 12 | The convolution kernel corresponds to the real size of EEG data.

TABLE 2 | Convolution kernel size corresponds to real EEG window size.

Square kernel Kernel size 3 × 3 5 × 5 7 × 7 9 × 9 / /

Actual size 25.5ms × 1.5 Hz 42.5ms × 2.5Hz 59.5ms × 3.5Hz 76.5ms × 5.5Hz / /

Long kernel Kernel size 5×3 7×3 9×3 7×5 9×5 9×7

Actual size 42.5ms × 1.5 Hz 59.5ms × 1.5 Hz 76.5ms × 1.5Hz 59.5ms × 2.5Hz 76.5ms × 2.5Hz 76.5ms × 3.5 Hz

Wide kernel Kernel size 3×5 3×7 3×9 5×7 5×9 7×9

Actual size 25.5ms × 2.5Hz 25.5ms × 5.5Hz 25.5ms × 5.5Hz 42.5ms × 3.5Hz 42.5ms × 5.5Hz 59.5ms × 5.5 Hz

The bold value shows the best three convolution kernel shapes.

For the input time-frequency diagram transformation, changing
the window length and overlap length of the time-frequency
diagram parameters result in unit-valued size updates. The
advantage of long convolution kernel mentioned in this work is
8.5ms× 0.5Hz unit size, and the unit size in the new experiment
needs multiple transformation on this conclusion. For the input
EEG task form transformation, EEG presents different features
in time-locked and long-term tasks such as resting state and
emotional detection. The rich frequency features of long-term
tasks may lead to convolution kernel transform shape to capture
frequency information.

Figure 6 shows that the smaller kernel size achieves better
convergence. Table 2 shows that the convolution kernels with
excessively large time span completely span the important
components of the ERP,making it difficult to extract the changing
details of the component dynamics. In addition, the energy
of ERP signal is mainly concentrated in the low-frequency
below 5Hz, and the increase in frequency domain direction size
reduces the capture of low-frequency feature details. A large

number of studies on deep network structure also show that the
performance of small-size convolution kernel is better than that
of large-size convolution kernel. The vision of multi-layer small-
size convolution kernel can replace the large-size convolution
kernel and obtain the advantages of small parameters and
conducive to training.

Work Limitation
In EEG applications, the proposed network framework is mainly
for time-locked tasks, especially P300 capture of target stimulus.
However, long-during EEG tasks such as resting state, emotional
recognition, and fatigue monitoring were not discussed. The
proposed framework can be modified appropriately in future
research to be applied to long-during EEG tasks. Due to
the different EEG components caused by diverse stimuli, the
convolution kernel size and shape of long-during EEG may be
different from the time-locked task, which requires extensive
attempts of multi-scale strategies for actual tasks. In addition,
time-locked EEG tasks analyze the meaning of network feature
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layer by the P300 component localization, whereas the long-term
stimulation usually lacks obvious observable components, which
may lead to more difficulty in feature visualization and analysis.

In the future research of neural network systems, we will learn
the advantages of excellent networks such as Vgg16, ResNet50,
101, and DarkNet53. Consistent with the strategy of stacking
small convolution kernels in Vgg16 networks, this study also
found excellent performance of small convolution kernels. Vgg16
focuses on the deep network of multilayers, and the proposed
method applies the multi-branch breadth network. In the future
network framework, the depth and breadth of the network
structure can be combined to improve overall performance.
ResNet applies the advantages of shortcut to alleviate the gradient
disappearance problem and achieves outstanding performance
in ultra-deep networks. The future network framework can
apply the advantages of residual structure and insert shortcuts
between multi-branch modules to achieve the deeper networks.
It should be noted that insufficient EEG data may limit the
performance of deep network, which should be considered in
ultra-deep network training. The problem of insufficient EEG
data can be solved by long-term collection or generation of
artificial EEG samples. DarkNet53 is widely used in the image
segmentation field, which applies the residual structure and
convolution stride to replace the pooling layer. The proposed
multi-scale 3D-CNN method can also simplify the network
structure and reduce the time consumption by adjusting the
convolution stride. The above methods inspire us with the
network structure improvement in multiple perspectives. The
proposed network should not only focus on multi-domain fusion
and network breadth, but also improve the network depth and
simplify the parameters.

CONCLUSION

In this work, for the EEG identity authentication task, we
proposed the feature domain fusion method of fusion temporal,
frequency, and spatial domains. In addition, a corresponding
3D CNN framework with multi-scale model is constructed. The
results show that sufficient feature fusion extracts individual
EEG identity from multiple domains, which is conducive to the
accurate identification of individual identity. In addition, the
shape and size of convolution kernel are quantitatively analyzed
according to the EEG signal characteristics. The research shows

that the convergence and accuracy performance of 3 × 3 small-
size kernel is outstanding in the time-frequency diagram, and the
3× 5 and 3× 7 rectangular-shape kernel with emphasis on time
domain is more suitable for ERP tasks. Inmulti-scale architecture
design, 3-layer 3-branch network matches the EEG components
(P200, P300, LN) that balance the classification performance and
time consumption. In summary, multi-scale convolution kernel
parallelly extracts EEG identity features, which significantly
improves 7% of accuracy in the identity authentication. The
proposed novel network framework is suitable for EEG identity
authentication, which can be transplanted and applied to
various brain–computer interaction scenarios such as emotion
recognition, fatigue driving, and neural rehabilitation.
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Relevant sounds such as alarms are sometimes involuntarily ignored, a phenomenon
called inattentional deafness. This phenomenon occurs under specific conditions
including high workload (i.e., multitasking) and/or cognitive fatigue. In the context
of aviation, such an error can have drastic consequences on flight safety. This
study uses an oddball paradigm in which participants had to detect rare sounds in
an ecological context of simulated flight. Cognitive fatigue and cognitive load were
manipulated to trigger inattentional deafness, and brain activity was recorded via
electroencephalography (EEG). Our results showed that alarm omission and alarm
detection can be classified based on time-frequency analysis of brain activity. We
reached a maximum accuracy of 76.4% when the algorithm was trained on all
participants and a maximum of 90.5%, on one participant, when the algorithm was
trained individually. This method can benefit from explainable artificial intelligence to
develop efficient and understandable passive brain–computer interfaces, improve flight
safety by detecting such attentional failures in real time, and give appropriate feedback
to pilots, according to our ambitious goal, providing them with reliable and rich
human/machine interactions.

Keywords: single-trial classification, pBCI, inattentional deafness, brain activity, ERP, explainable AI

INTRODUCTION

Increased operational capabilities of aircraft had considerably modified the missions of pilots and
introduce new problematics. For example, long periods of intense and sustained cognitive activities
induce cognitive fatigue that is known to impair the performance of reasoned cognitive processing
tasks over a period and also to be one of the major risks of incidents/accidents in aviation [e.g.,
Holtzer et al. (2010), Marcus and Rosekind (2017), Dehais et al. (2018), and Dönmez and Uslu
(2018)]. In this study, we aimed at furthering our understanding of the influence of cognitive
fatigue on alarm detection in order to develop passive brain–computer interfaces (pBCIs) based
on explainable artificial intelligence (AI). To achieve these ends and following previous studies
(Dehais et al., 2018, 2019), we asked participants to perform an alarm-detection task during

Abbreviations: pBCI, passive brain-computer interface; AI, artificial intelligence; ERP, event-related potential; IFBE,
instruction flight before experiment; NFBE, no flight before experiment; VAS, visual analogous scale; LCL, low cognitive load;
HCL, high cognitive load; SVC, support vector classification; KNN, K-nearest neighbors; LDA, linear discriminant analysis;
RF, random forest.
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repeated landing sessions on a flight simulator. To accentuate
the presence of cognitive fatigue, we also manipulated the
mental workload. We tested whether a real glider flight in
instruction prior to the experiment influences performance in
the alarm detection task on a flight simulator. We hypothesized
that (a) cognitive fatigue impairs alarm detection as a function
of the mental workload, (b) cognitive fatigue modulates
electrophysiological activities, and (c) these modulations can be
used as a predictor of reduced pilot’s efficiency.

Previous studies have found that pilots’ performance is
influenced by cognitive fatigue [e.g., Dehais et al. (2018, 2019),
Keller et al. (2019), Rocha and Silva (2019), Quental et al.
(2021), and Rosa et al. (2021)]. Implementing pBCI or neuro-
adaptive technology is a relevant approach to study cognitive
fatigue and to improve flight safety (Zander et al., 2016; Arico
et al., 2017; Dehais et al., 2018). For example, Dehais et al.
(2018) asked participants to perform four identical traffic patterns
along with a secondary auditory task (i.e., oddball paradigm) in
simulated and real flight conditions. The oddball paradigm is
used as an indirect index of cognitive fatigue and alarm detection
and allows evaluating the P300 component as well as the main
frequency bands associated with cognitive fatigue. They found
that pilots more erred when reporting the number of auditory
probes during the second part of the experiment than during the
first part. In other words, participants’ accuracy decreased with
time on task. However, their small sample size did not allow
them to statistically test the classification accuracies between
the used features.

Empirically, previous findings showed that cognitive fatigue
and mental workload have deleterious effects on stimulus-
detection performance [e.g., Dehais et al. (2018, 2019)],
whereas other findings showed an absence of a relationship
between mental workload, cognitive fatigue, performance, and
the occurrence of inattentional blindness [e.g., Bredemeier
and Simons (2012), Beanland and Chan (2016), and Kreitz
et al. (2016a,b)]. Unknown are the conditions under which
cognitive fatigue or mental workload leads to poorer detection
performance and their electrophysiological correlates. This is
what we sought to know in this experiment.

The previously found attenuation of the P300 amplitudes
reveals that inattentional deafness could result from an inability
to automatically shift attention to the alarm that has been
correctly detected or from an inability to process and recognize
the warning (Giraudet et al., 2015b). However, we do not know
whether event-related potentials (ERPs) and the time–frequency
signal as a neural signature of inattentional deafness are good
candidates as features to detect the occurrence of missed alarms.

The present experiment had two main goals. First, we
investigated how alarm-detection changes associated with time
on task interacted with other factors such as the cognitive
workload or the type of previous activities (same task—flight
instruction or different task—daily activities) and, via which
mechanisms these factors influence performance. Second, we
aimed at setting the scene to develop an EEG-based pBCI
to detect alarm omissions to improve flight safety. Following
previous studies on cognitive fatigue and alarm-detection tasks
[e.g., Dehais et al. (2018)], participants had to perform an

auditory task (i.e., oddball paradigm) during landing sessions.
The mental workload was also manipulated to increase resulting
cognitive fatigue. Based on previous findings that cognitive
fatigue could impair performance by modulating attentional
resources leaving fewer resources for tasks to perform [e.g.,
Chaudhuri and Behan (2004) and Holtzer et al. (2010)], two
sets of hypotheses and predictions were tested in this study. The
first hypothesis is that cognitive fatigue impairs alarm detection,
resulting in increased alarm omissions in the fatigue group
compared with the non-fatigue group and in the last landings
compared with the first ones. The second hypothesis is that an
efficient classification algorithm would be able to classify trials
in which alarms were omitted and trials in which alarms were
treated, based only on neurophysiological markers.

MATERIALS AND METHODS

Participants
Twenty-four male students of the Ecole de l’Air et de l’Espace
(EAE) [mean age: 22.6 (2.0) years; flight experience: 75.6 (79.6)
h, including 44.7 (58.9) h of glider experience; Table 1] were
recruited. Participants were divided into two groups of 12 each
based on their activity preceding the experiment: (1) Instruction
Flight Before the Experiment (IFBE) group and (2) No Flight
Before the Experiment (NFBE) group.1 An informed consent was
obtained from each participant prior to participation according
to the Declaration of Helsinki.

Subjective Scales
At the beginning and end of the experimental session,
participants rated their subjective level of fatigue (VASf; Lee
et al., 1991), sleepiness (Karolinska’s Sleepiness Scale and VASs;
Åkerstedt and Gillberg, 1990), and alertness (Samn-Perelli scale;
Samn and Perelli, 1982).

Tasks
Experimental Task in a Flight Simulator
The flight simulator of the EAE, used for training young student
pilots, was used to conduct the experiment based on previous
studies using flight simulators [e.g., Durantin et al. (2017) and

1Participants in the NFBE group did not fly during the day of experiment but had
daily activities such as classes or sports. They filled in a questionnaire with respect
to these daily activities to inform experimenters whether they performed new and
costful activities before the experiment, and this was not the case.

TABLE 1 | Participants’ characteristics.

Characteristics NFBE group IFBE group F(1,22)

N 12 12 -

Mean age, in years (SDs, range) 23.2 (2.4, 21–27) 22.1 (1.6, 20–26) 1.75

Mean flight experience (glider
and plane), in hours (SDs,
range)

102.2 (97.3, 4–300) 49.1 (47.5,
4.5–150)

2.89

Mean flight experience (glider),
in hours (SDs, range)

64.7 (59.3, 4–240) 24.7 (41.0, 4–150) 3.69
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Dehais et al. (2014, 2016, 2019)]. It simulates an ASK21 glider
using the X-plane 11 software allowing a 135◦ view of the
screen. No participant reported experiencing motion sickness or
dizziness, nor had their visual perception been disturbed during
the simulated flight.

Oddball Task
The auditory oddball task was coded and displayed using
PsychoPy3 (Peirce, 2008). In this task, 100 pure tones, 1,000 or
1,100 Hz, at approximately 75 dB (20 dB above the ambient
noise) were played, with 75% of standard sounds and 25%
of target sounds. Participants had to respond to the auditory
target (i.e., the alarm) by pressing a button on the joystick
and ignore the frequent sounds. The frequency of the target
sound was counterbalanced between participants. The intertrial
interval was randomly set between 1.5 and 2.5 s to avoid
anticipation and synchronization with brain rhythm (adapted
from Dehais et al., 2019).

Flight Scenario
Participants performed six successive runs, in optimal weather
conditions. Each run consisted of a normal approach and landing
on the grass runway of the BA701 in Salon-de-Provence and
lasted approximately 3–5 min. Each run was divided into two
conditions of cognitive load, namely, a low cognitive load (LCL)
condition (alarm detection task during the downwind leg) and
a high cognitive load (HCL) condition (alarm detection task
and backward counting task during the base leg, the final, and
the landing). In the backward-counting task (Sweller, 2011),
they had to mentally count backward in threes from 100 (e.g.,
100-97-94. . .) and pronounce the result at the end of the landing.

Procedure
The experience took place at the end of the afternoon.
First, participants completed subjective questionnaires. Second,
participants were trained for 5 min to handle the simulator and
for 5 min to perform the oddball task. The experimental session
lasted for approximately 1 h 30 min. At the end of the experiment,
participants completed again the subjective questionnaires.

Electroencephalogram Recording
The EEG apparatus contained 32 passive electrodes (R-Net-
helmet, LiveAmp-Brain Products), positioned following the
10/20 international system, recording at a 1,000 Hz sampling
rate. The offline preprocessing was achieved using the MATLAB
EEGlab package (Iversen and Makeig, 2014). Data were first
bandpass filtered between 1 and 40 Hz, the signal was re-
referenced on the average of all electrodes, and an independent
component analysis was performed to reject eye and muscle
artifacts using the RUNICA function of EEG lab. The signal
was then segmented into 1,200 ms epochs, starting 200 ms
before the stimuli. The ERPs were computed using a baseline
correction with the first 200 ms of each epoch. ERP amplitude
was considered as the averaged amplitude over the time period,
in each trial and then averaged for each participant. P300 was

considered between 400 and 650 ms, and N100 was considered
between 100 and 200 ms after the stimulus onset.2

The time-frequency analysis was achieved using the Brain
Vision Analyzer 2 software (Brain Products, version 2.2.0.7383).
Data were resampled at 512 Hz, and the power spectral density
was extracted for δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), and β

(12–30 Hz) and then decomposed in low-β (12–16 Hz), mid-
β (16–20 Hz), and high-β (20–30 Hz) bands for each trial (i.e.,
each epoch of 1.2 s). We focused our analyses on the Fz, Cz, Pz,
and Oz electrodes.

The first three runs were considered as the beginning of the
session while the last three runs were considered as the end of the
session, in the subsequent analyses.

Analyses
Based on the previous study (Dehais et al., 2019), we focused
our EEG analyses on three electrodes for ERPs and on four
electrodes for spectral power, in order to cut computation time
from the perspective of real-time analyses. All statistical analyses
were carried out using JASP software (JASP Team, 2020). Post-
hoc tests were carried out with the Bonferroni’s correction for
multiple comparisons, and a Greenhouse-Geisser correction was
applied to respond to the sphericity condition when necessary.

RESULTS

Subjective Fatigue Evaluation
No difference was observed between the beginning and the end of
the experimental task (Fs < 1, ps > 0.5) for the Visual Analogous
Scale of Fatigue, the Samn-Perelli scale, and the Karolinska scale.

Experimental Task
Oddball Task
A 2 (group: NFBE and IFBE) × 2 (Time on task: beginning and
end) × 2 (cognitive load: low and high) ANOVA with repeated
measures and group as a between-subject factor was performed.

Detection Rate
The detection rate was higher in the LCL condition than in the
HCL condition (83.8 vs. 61.2%), F(1,14) = 102.92, p < 0.001,
η2

p = 0.88, and participants in the IFBE group detected more
alarms than the NFBE group (79.8 vs. 63.2%), F(1,14) = 7.46,
p = 0.016, η2

p = 0.35 (Figure 1). No other effect was found.
Participants responded faster in the LCL condition than in the

HCL condition (547 vs. 609 ms), F(1,13) = 22.66, p < 0.001, and
η2

p = 0.64. No other effect was found on reaction times.

Electrophysiological Results
To compare electrophysiological signals between alarm detection
and alarm omission, we focused our analyses on the HCL
condition (participants missed more alarms in this condition).
Data were analyzed with 2 (group: NFBE and IFBE) × 2 (time
on task: beginning and end) × 3 (electrode: Fz, Cz, and Pz) × 2
(response: hit and miss) ANOVAs with repeated measures and
group as the between-subject factor.

2After evaluation of a control group doing the oddball task only.
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FIGURE 1 | Mean detection rate in the oddball task across cognitive load conditions for the two groups of pilots. LCL corresponds to the low cognitive load
condition, and HCL to the high cognitive load condition. Error bars represent the standard deviation of the mean.

FIGURE 2 | Event-related potential (ERP) measured on Pz (A), Cz (B), and Fz (C) for hit (full line) and miss trials (dotted line). (D) Averaged spectral power on Pz, Cz,
Fz, and Oz for hits (full line) and missed trials (dotted line). Gray parts correspond to frequency bands of interest (delta, alpha, and mid-beta) and gray lines
correspond to a significant difference between hit and miss trials in all conditions.
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FIGURE 3 | (A) Mean accuracy on the training dataset across classifiers. KNN < LSVC, t = 2.89, p = 0.050; KNN < SVC, t = −4.88, p < 0.001; RF < SVC,
t = 4.12, p < 0.001. (B) Performance of classifiers on the test set. LSVC < KNN, t = 4.60, p < 0.001; KNN < SVC, t = −5.41, p < 0.001; KNN < LDA, t = −4.09,
p < 0.001. KNN, k-nearest neighbor; SVC, support vector classification; RF, random forest.

Event-Related Potentials
The P300 amplitude varied across electrodes, F(2,32) = 13.45,
p < 0.001, and ηp

2 = 0.46. The amplitude was larger on Pz
than on Cz and Fz, respectively, t = −2.88, p = 0.02 and
t = −5.17, p < 0.001 (Figures 2A–C). Numerically, the P300
amplitude measured on Pz is reduced in miss trials compared

with hit trials, but this difference did not reach significance
(Figure 2A).

The N100 amplitude also varied across electrodes,
F(2,32) = 8.57, p = 0.004, and η2

p = 0.35, being larger on Fz
and Cz compared with Pz, respectively, t = −3.86, p = 0.001 and
t =−3.198, p = 0.01 (Figures 2A–C).
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FIGURE 4 | Decision tree generated by the decision tree algorithm.

δ, θ, α, and β Frequency Bands
The spectral power of the δ frequency band tended to be larger
in hit trials (Figure 2D) compared with miss trials, F(1,17) = 3.16,
p = 0.093, and η2

p = 0.16. No other effect was found.
On the α frequency band, the significant effect of response

(Figure 2D), F(1,17) = 5.28, p = 0.035, and η2
p = 0.24, was qualified

by the response × time on task interaction, F(1,17) = 5.28,
p = 0.035, and η2

p = 0.24. In the first three landings, the spectral
power of the α frequency band was larger in hit trials compared
with miss trials t = 3.248 and p = 0.016.

For the β frequency band, only the effect of the electrode
was significant, F(3,51) = 4.28, p = 0.053, and η2

p = 0.20, with a
maximum on Oz compared with Fz and Cz, t = −2.89, p = 0.034
and t = 3.15, p = 0.017, respectively.

In the mid-β frequency band, post-hoc tests of the
response × time on task × electrode × group interaction,
F(3,51) = 3.36, p = 0.075, and η2

p = 0.17, revealed that in the NFBE
group, the spectral power was larger for hits than for miss trials
at the beginning of the session, t = 4.74 and p = 0.003, and it was
also larger in the beginning than at the end of the session, for hit
trials, t = 4.06 and p = 0.048.

No effect was found on the θ frequency band.

Single-Trial Classification
The classification pipeline was performed with the Scikit-Learn
package of Python (Pedregosa et al., 2011). The first step of this
process was to evaluate the performance of five classifiers [linear
kernel, k-nearest neighbor (KNN), linear discriminant analysis
(LDA), and random forest (RF) classifier] in participant-specific
decoding of inattentional deafness, to distinguish trials in which
the alarm was detected vs. trials in which alarms were omitted.
Thus, classifiers were trained (80% of trials) and tested (20%
of other trials) on individual pilots’ electrophysiological data,
and features were tested according to previous results. Accuracy
values of the different algorithms were analyzed with a five

[classifier: linear support vector classification (SVC), KNN, SVC,
LDA, and RF] × 7 (features: δ, α, mid-β, δ and α, δ and mid-β, α

and mid-β, α and δ, and mid-β) ANOVA.
The cross-validated scores obtained on the training set were

first compared. The main effects of classifier, F(4,76) = 7.48,
p < 0.001, and η2

p = 0.28, and the interaction between classifier
and features, F(24,456) = 2.84, p < 0.001, and η2

p = 0.13,
were significant. Across all features, the support vector machine
(SVM) classifier reached the best performance of 75.2% on
average (Figure 3A). For the SVM classifier, the most efficient
configuration was the combination of the three frequency bands,
with 75.9% of accuracy.

The inter-participant variability was quite high in the
single-trial classification process, with accurate classification
ranging from 47.1 to 90.5% across all configurations. However,
generalization performance was then compared across
configurations. In this analysis, the main effect of classifier
was significant, F(4,76) = 8.92, p < 0.001, and η2

p = 0.32. Across
all features, the SVM classifier remained the most performant
classifier on the testing dataset (Figure 3B).

The SVM algorithm aims at optimizing the classification
accuracy and the distance between the boundary (which is a
hyperplane) and each class. In fact, the algorithm is trained on
the training dataset to minimize the expression of the form:[

1
n

n∑
i = 1

max(0, 1− yi(wTxi − b))

]
C||w||2

where n is the number of data points, w is the normal vector to
the hyperplane, b is the offset of the hyperplane from the origin,
and Cis the trade-off between correct classifications and distance
separating the boundary hyperplane and each class.

For every classifier and feature, on average, the classifier
performance exceeded the adjusted chance level of 61% based
on Combrisson and Jerbi’s recommendations (Combrisson and
Jerbi, 2015) to consider the number of available trials. We reached
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a maximum average performance of 76.4% (range: 57.7–90.5%)
in participant-specific single-trial classification from the spectral
power of δ and α frequency bands.

In a second step, data from all participants were taken
altogether, and the different configurations were also tested for
inter-participant classification. The main effect of classifier was
significant, F(4,16) = 40.67, p < 0.001, and η2

p = 0.91, showing that
the KNN classifier is the least efficient classifier on the training set.
We reached a maximum accuracy of 72.3% with the RF classifier
and the combination of the three frequency bands.

DISCUSSION

This study aimed to implement an EEG-based pBCI with
explainable AI to monitor alarm detections under cognitive
fatigue in aviation. Cognitive fatigue could be accentuated by
the previous activities (i.e., IFBE or NFBE). Participants had
to perform flying sessions with a secondary auditory alarm
detection task under HCL or LCL. Our results replicate previous
findings on inattentional deafness (Dehais et al., 2014; Giraudet
et al., 2015a,b; Causse et al., 2016) showing that participants
performed better to detect alarms under LCL conditions
compared with HCL conditions. However, the difference between
the P300 evoked by detected alarms and the P300 evoked by
omitted alarms did not reach significance. Also, we did not
find the expected effect of cognitive fatigue on alarm detection
performance, potentially because our task was not sufficiently
difficult to induce high cognitive fatigue in such a short time.
By comparing alarm detection with respect to alarm omission,
we found increased α, δ, and β (only at the beginning of the
session and for the NFBE group) power. Based on these three
frequency bands, we performed a single-trial classification of
alarm detection or omission. The SVM reached a mean of 76.4%,
which is considered sufficient for pBCIs. In fact, there is a
need to detect these attentional failures in cockpits, and as our
classifier overpassed the adjusted chance level (i.e., 61%), this
study showed that frequency features, and more specifically d and
a bands, implemented in an SVC formed an efficient tool to assess
auditory alarm misperception in simulated flight conditions, with
a classification process adapted to each individual pilot. However,
real-time implementation of pBCI is still difficult to achieve due
to the large preprocessing step that is needed before classification.
The challenge in these analyses was to reduce computation
time and noise related to other factors (e.g., muscle activities).
Possibly, neural oscillations are also related to movement and
so, the differences we found between hits and miss trials could
reflect not just inattentional deafness per se but also a difference
in behavior. The same results have already been observed in
previous studies using the same protocol and interpreted as
inattentional deafness (Somon et al., 2022). As our goal was
to classify alarm detection vs. alarm omission, motion-related
variation could be used as an effective detection marker and be
a true single-trial classification tool.

Another promising direction we investigated is to exploit
explainable results from classification and machine learning
computations. The objective is two-fold: to enlarge the

experimentation process by relaying the result of the classification
with an appropriate sequence of actions as a virtuous loop
and ultimately to design new doctrines based on reliable
and rich human/machine interactions. Such an understandable
information (numerical, symbolic, and logical) constitutes a
ground cognitive support and justifies the interpretability
criterion (Lundberg and Lee, 2017) providing a good level of
confidence at the operational level. The initial step is to look for
explainable classification methods. For instance, a decision tree
delivers logical rules characterizing the criteria separating alarm
omission and alarm detection. The idea is to detect abnormal
behaviors by our apparatus, and from sense-making information,
to apply safely decision-making later (Bartheye and Chaudron,
2019, 2020), for instance, to enable a sequence of actions to be
engaged, whether these actions are automatic or not. As a use-
case, one can mention the situation in a cockpit characterized by
a loss of attention of the pilot and his/her inability to continue
his/her current mission. That is, the operator did not consciously
detect the alarm although his brain processed the signal. It is,
therefore, necessary to inform the operator that he has omitted
the alarm (by feedback) and to adapt the work environment with
the explainable AI to help him in his task so that he comes
back in the loop.

The interpretability criterion provides a good level of
confidence at the operational level and leads to the choice of
the best candidate machine learning model, which will not
necessarily be the most efficient in terms of classification, but one
which would enable a sequence of actions to be engaged at the
end, whether automatic or not. This choice of machine learning
methods agreeing with the interpretability criterion is strongly
restricted and one can mention decision trees and to a lesser
extent RFs but there are great expectations to be associated with.

To illustrate our discourse, we shall restrict the α frequency
band full case study (2,855 individuals), and one can illustrate
the principle on a single participant for sake of clarity (107
individuals) although the full case provides satisfactory results
but obviously with more complicated formulas. The decision
tree algorithm used is the Classification and Regression Trees
(CART) algorithm (Breiman et al., 1984) and it provides the
decision tree shown in Figure 4. The CART algorithm is a
type of classification algorithm able to build a decision tree
according to the Gini’s impurity index. This index computes
the degree of probability of a specific variable that is wrongly
being classified when chosen randomly. It works on categorical
variables and provides outcomes either be “successful” or
“failure” and hence conducts binary splitting only. The R
statistical language implementation is called RPART (Recursive
Partitioning And Regression Trees) (Therneau, 1997) and is
available in a package of the same name. The control is
defined according to an integer value, the minimum number of
observations that must exist in a node for which the routine will
even try to compute a split (4 for 107 individuals and 40 for 2855
individuals).

Starting from a normalized form of these decision rules, we
generated the appropriate code in a static context or in dynamic
context. In a static context, the missed hit logical rules generated
in the R statistical language are the following:
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experiment[which(((experiment$Fz<1.050255
| (experiment$Pz<1.3769 |
experiment$Cz>=35.19693 & experiment$Pz>
=1.3769) &

experiment$Fz>=1.050255) & experiment$Cz>
=3.040795 |
(experiment$Fz>=0.17683 & experiment$Fz<
0.26921 | experiment$Fz<5.33816 &
experiment$Oz>=7.444865 & experiment$Fz>
=0.26921) &
experiment$Cz<3.040795)),]

which means: print out all the columns of the table
experiment whose lines correspond to missing hits as the
column target shows (0 instead of 1) and the execution
of this expression gives the classification result by extracting
the right lines.

Fz Pz Oz Cz target

12 3.00544 1.55082 7.83941 1.64613 0

14 0.97795 1.66771 1.85181 4.23368 0

15 2.97765 0.87634 2.49094 3.12279 0

32 0.58338 2.46886 4.05271 3.06769 0

33 0.25340 1.28057 1.86640 1.40851 0

51 2.22273 3.67557 2.41245 61.71373 0

72 0.59377 0.98492 2.32070 4.86425 0

One can predict that way attention failure applying these
rules regardless of the software involved (R, Python, Java, . . .).
One can write a computer program as a case-based analysis
by executing a task once a condition identifying a missing hit
situation is true. If this situation characterizes a loss of attention
for the pilot and his/her inability to continue his/her current
mission, the associated task corresponds to crisis management.
In a dynamic context, one can reengineer completely these rules

according to a simulation platform intertwining actuators and
sensors to be more creative on human/machine interactions.
To summarize, our contribution to that field is to post-
process the measurement and the acquisition mechanisms to
deliver understandable statements able to be translated into
program statements contributing to the global loop in studying
cognitive fatigue.
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model using the symmetric
positive definite matrices for
cross-subject EEG classification
with meta-transfer-learning

Lezhi Chen1, Zhuliang Yu1,2* and Jian Yang1*

1College of Automation Science and Engineering, South China University of Technology,

Guangzhou, China, 2Pazhou Laboratory, Guangzhou, China

The electroencephalography (EEG) signals are easily contaminated by various

artifacts and noise, which induces a domain shift in each subject and

significant pattern variability among di�erent subjects. Therefore, it hinders

the improvement of EEG classification accuracy in the cross-subject learning

scenario. Convolutional neural networks (CNNs) have been extensively applied

to EEG-based Brain-Computer Interfaces (BCIs) by virtue of the capability

of performing automatic feature extraction and classification. However, they

have been mainly applied to the within-subject classification which would

consume lots of time for training and calibration. Thus, it limits the further

applications of CNNs in BCIs. In order to build a robust classification algorithm

for a calibration-less BCI system, we propose an end-to-end model that

transforms the EEG signals into symmetric positive definite (SPD) matrices

and captures the features of SPD matrices by using a CNN. To avoid the

time-consuming calibration and ensure the application of the proposed

model, we use the meta-transfer-learning (MTL) method to learn the essential

features from di�erent subjects. We validate our model by making extensive

experiments on three public motor-imagery datasets. The experimental results

demonstrate the e�ectiveness of our proposed method in the cross-subject

learning scenario.
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1. Introduction

An EEG-based Brain-Computer Interface (BCI) is a system to measure and

analyze the electroencephalography (EEG) brain signal (Rao, 2013), thus enabling the

communication or interaction between the brain and external environment (Kothe and

Makeig, 2013). Recent research has opened up the possibility for EEG signals to apply in

rehabilitation (Tariq et al., 2018), entertainment (Nijholt et al., 2008), and transportation

(Göhring et al., 2013) because of the harmless, non-invasive, and inexpensive features

of the EEG-BCI. Motor imagery (MI), which refers to the mental simulation of body
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movements, is a famous paradigm of the EEG-BCI system (Lotze

and Halsband, 2006). MI signals are widely used in the BCI

system (Alamgir et al., 2010; Arvaneh et al., 2013; Jayaram et al.,

2016) because of their flexibility in reflecting the bioelectrical

activity of the brain. These signals attract increasing attention

in rehabilitation therapy (Naseer and Hong, 2013, 2015; Hong

et al., 2015).

However, due to the separation between the signal source

(inside the human brain) and the detector, the EEG signals

would be easily contaminated by various artifacts and noise,

including muscle movements, eye blinks, heartbeats, and

environmental electro-magnetic field in the applications of the

BCI-system. This phenomenon induces a domain shift in each

subject, even in different sessions of the same subject (Reuderink

et al., 2011), and exhibits significant pattern variability between

different subjects. Consequently, it hinders people from using

the data generated from different subjects to improve the

performance of the BCI system (Lotte and Guan, 2010) and

increasingly reduces the accuracy and stability of EEG cross-

subject classification. Currently, the users of the BCI-system

have to provide tons of EEG-data to build a user-specific

classifier so that the system can work properly. Accordingly, it

greatly lengthens the time of calibration of the BCI system and

heavily inhibits BCI-system development.

To overcome this problem, lots of methods are proposed

to eliminate the shifting problem of data distribution among

different subjects. Rodrigues et al. (2018) present a transfer

Learning approach to match the statistical distributions of

different sessions/subjects. This method allows the BCI systems

to reuse the data from different users and reduce the calibration

time. He and Wu (2019) propose a Euclidean Space Data

Alignment Approach to align the time-domain EEG trials in

the Euclidean Space and alleviate the domain shift between

different sessions and subjects successfully. However, this

kind of data-augmentation method normally classifies the

data by the traditional geometry-aware classifiers (such as

support vector machine and the minimum distance to mean

classifier) (Barachant et al., 2013), which are insufficient for

feature extraction. Also, it requires people to use certain prior

knowledge of brain science.

With the development of machine learning, deep learning

technology has been applied to extract discriminative features

from EEG (Lotte et al., 2018) and many model-based

learning algorithms have been proposed for MI-EEG cross-

session/subject classification (Wu et al., 2020). Schirrmeister

et al. (2017) focus on the application of different CNN

architectures in EEG-MI classification and design an efficient

network architecture to decode information from the EEG-MI

signal. This method shows the powerful feature extraction ability

of CNN and draws a great deal of attention to the applications of

CNN in the BCI system. Lawhern et al. (2018) propose a brand-

new compact CNN-based model called EEGNet, which contains

depth-wise and separable convolutions to extract the descriptive

information from EEG signal directly. This network structure is

robust enough to learn a wide variety of interpretable features

over a range of BCI tasks in cross-session/subject learning

and gain outstanding classification performance. Fahimi et al.

(2019) propose an inter-subject transfer learning framework

built on top of the CNN model which is fed into three different

EEG representations and transfers knowledge between different

subjects thus avoiding time-consuming re-training. However,

this kind of network focus on the feature extraction of EEG

signal and their performances would deteriorate when the data

of the user are insufficient, especially in the few-shot scenario of

cross-subject learning.

In the most recent studies, meta-learning, which is a task-

level learning method, has seen substantial advancements in

computer vision and speech recognition recently (Vanschoren,

2018). This kind of learning method helps the neural network to

extract usable features from related tasks and largely increases

the generalization ability of the neural network. Li et al.

(2021) use the training method called Model-Agnostic Meta-

Learning (MAML) (Finn et al., 2017) and build the CNN-

based classifier which combines one and two dimensional-CNN

layers to improve the accuracy of the MI-EEG classification.

However, these kinds of meta-learning structure are very

sensitive to neural network architectures (usually shallow neural

networks), which often leads to instability during training and

easily induces overfitting problems. Therefore, it limits the

effectiveness of meta-learning.

In consequence, given the above, an effective model that

is capable of capturing essential features and a robust meta-

learning method are both essential to cross-subject learning

in EEG classification. The symmetric positive definite (SPD)

matrices have been widely used in motor imagery EEG-based

classification over the past few decades (Barachant et al., 2013;

Xu et al., 2021), because of their capacity to capture informative

structure from the data (Huang and Van Gool, 2017). In terms

of the ability to capture input data structure, the CNN has the

powerful capability of extracting features of two-dimensional

matrix-shape data (LeCun et al., 1998; Krizhevsky et al., 2012)

and the SPD matrices are one of the two-dimensional matrix-

shape data. Therefore, Hajinoroozi et al. (2017) combine the SPD

matrices of EEG data and the deep learning method and present

a series of deep covariance learning models for drivers’ fatigue

prediction, which explore the potential of this kind of method

for the application of BCI system. Inspired by this, we propose

a plain CNN-based model called SPD-CNN, which transforms

the EEG signal into the SPD matrices and uses a CNN with

five convolutional layers to capture the features of SPDmatrices.

Also, we apply a cutting edge meta-updating strategy called the

meta-transfer-learning (MTL) (Sun et al., 2019) which combines

the advantage of transfer learning and meta-learning to extract

the subject invariant features and alleviates the shifting problem
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TABLE 1 Key information of the three MI-EEG datasets used for experiences.

Dataset
Number Trails

Class
Band pass Number of

of subjects per subject filter (Hz) electrodes channnels

BNCI2014001 9 576 4 4–250 22

BNCI2015004 9 400 5 0.5–100 30

Sch2017 14 1,000 4 4–250 128

TABLE 2 Table of symbols used in the article.

Symbols Meaning

F(2, θ) The classification network with parameter 2 and θ

2, θ The parameter of the feature extractor block and the classifier block

2pre ,2meta The parameter after the pre-train phase and the meta-adaption phase

f (2, θ) The network after the F(2, θ) is upgraded by specific task

X The multiple time-series of a EEG matrix

C The covariance matrix estimated by X

Dtr ,Dval ,Dte Dataset D for Training,Validation and Testing phase

Ti The specific task which is sample from the D

li The loss function in task i during the inner-loop

Lφ The meta loss function in meta training

between the source domain (training subjects) and the target

domain (test subjects). The major contributions of this article

can be summarized as follows.

• The SPD-CNN model we proposed uses the SPD

matrices of the EEG signal as descriptors to highlight

the spatial information of the EEG-MI signal and

reduces the diversity of EEG data characteristics of

different subjects. Additionally, the proposed descriptor

tremendously decreases the size of data and effectively

reduces the difficulty of feature extraction.

• Using the MTL as our learning strategy helps the network

extract the crucial features. In other words, it can transfer

the domain knowledge between different subjects during

the training process and enhance the robustness of the

network in the BCI system.

• To the best of our knowledge, the network we proposed

is simple to design and has fewer parameters than most

networks for EEG classification currently. Therefore, it

could simplify the training process tremendously and

shortens the training time extremely.

The remainder of the article is organized as follows. Section

2 presents the framework of the proposed approach. Section

3 describes the experimental settings, then shows the results,

and provides a comprehensive analysis. The effectiveness of

the proposed SPD descriptor is discussed in Section 4 and the

conclusion is summarized in Section 5.

2. Materials and methodology

2.1. Data description

We present examples with three public EEG-MI

datasets which are BNCI2014001 (Tangermann et al., 2012),

BNCI2015004 (Scherer et al., 2015), and Sch2017 (Schirrmeister

et al., 2017).

BNCI2014001 consists of the EEG data from 9 subjects

and this MI-paradigm consists of four different motor imagery

tasks that the subjects are required to make the imagination of

movement of the left hand, right hand, both feet and tongue.

The EEG Signals are recorded with 22 electrodes at a 250 Hz

sampling rate and two sessions were recorded for each subject.

Each session is composed of 6 runs separated by short breaks.

One run consists of 48 trials (12 for each of the four possible

classes), yielding a total of 288 trials per session.

BNCI2015004 is a 30-electrode dataset obtained from 14

subjects with disability (spinal cord injury and stroke). The

dataset consists of five classes of imagined movements of right-

hand and feet, mental word association, mental subtraction, and

spatial navigation. The EEG signals are recorded at a 250 Hz

sampling rate, and two sessions were recorded for each subject.

Each session consists of 8 runs, resulting in 40 trials of each class.

The EEG signals were bandpass filtered 0.5–100 Hz and sampled

at a rate of 256 Hz.

Sch2017 is a 128-electrode dataset obtained from 14 healthy

subjects [6 women, 2 left-handed, age 27.2 ± 3.6 (mean ± std)]

and this MI-paradigm consists of four different motor imagery

tasks which ask subjects to make the imagination of movement

of the left hand, right hand, both feet, and rest (no movement),

with roughly 1,000 four-second trials of executed movements

divided into 13 runs (each run consist of the approximately 1,000

trails per subject.

Three datasets mentioned above are publicly available on the

"Mother of all BCI Benchmarks"(MOABB) framework (Jayaram

and Barachant, 2018).In the experiment section, the subjects in

the same dataset will be divided into training subjects, validation

subjects, and test subjects who provide data for the training
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FIGURE 1

Overall visualization of the SPD-CNN architecture. It starts with an SPD descriptor to transform EEG into SPD matrices, then the matrices are

encoded by Feature Extractor Block and flattened as the input data of the classification block. In the classification block, the features are passed

to a two-fully connected layer and put into a soft-max classification with K units, K is the number of classes in the data.

set, validation set, and test set for the cross-subject learning

experiments, respectively. More details can be seen in Table 1.

2.2. SPD-CNN model

Table 2 gives a brief description of the mathematical symbols

that will be used in the rest of the article.

As mentioned above, we are particularly interested in

the case where the SPD matrices are spatial covariance

matrices, which describe the second-order statistics of zero-

mean multivariate time series. We assume that the information

on the power and spatial distribution of EEG sources can be

coded by a covariance matrix. Therefore, the spatial covariance

matrixC of a T-sample realization of a zero-mean d-dimensional

time series (d being the number of electrode channels) X ∈

Rd
×T , is estimated as

Ci =
1

T
XT
i Xi, i = 1, 2, . . . , n (1)

where Xi is the sample from the EEG dataset D = {Xi, i =

1, 2, · · · , n} and n is the total amount of samples in dataset D.

Based on the analysis above, we develop a covariance matrix

estimator called the SPD descriptor that captures not only

the diversity among different electrode channels but also the

statistical properties of EEG image regions. The descriptor is

capable of estimating the d × d covariance matrix of the EEG

features mentioned in Equation (1). Then, these matrices are

normalized with the whole sample setmentioned in Equation (2)

to improve the numerical stability of the model. Consequently,

the network is able to focus on the critical features and accelerate

the learning process (Shanker et al., 1996).

C∗i = (Ci − Cmean)

/

Cstd, i = 1, 2, · · · , n (2)

where Cmean, Cstd is the mean and SD of covariance matrix

set C = {Ci, i = 1, 2, · · · , n} and C∗i is the output sample

of the descriptor.

TABLE 3 Basic parameter of SPD-CNNmodel.

Block Layers Size andKernel Activation

Feature extractor

Conv1 4× (2× 2) Relu

Conv2 8× (2× 2) Relu

Conv3 16× (2× 2) Relu

Max− pool (2× 2) -

Conv4 32× (2× 2) Relu

Conv5 64× (2× 2) Relu

Clasiifier FC 2× 32 softmax

In the Feature Extractor block,Conv means a convolutional layer and FC represents a

two-layer fully-connected network, with 32 neurons inside the hidden layer as shown in

Figure 1.

After being processed by the SPD descriptor, the

d × d matrices are taken into a Feature Extractor

block. This block contains five convolutional layers

(Conv1,Conv2,Conv3,Conv4,Conv5) with minimum

convolution kernel (2 × 2). Then the output data from

Feature Extractor were flattened and taken through a classifier

block with a two-layer fully-connected network (FC) onto

the BCI outputs. A whole visualization and full description

of the SPD-CNN model can be found in Figure 1 and

Table 3.

2.3. Training structure and learning
strategy

Our training structure is to help the model extract the

key features through learning a better initial set of parameters

from various tasks of different subjects. Hence, the network

gains a fast adaption to new user tasks using only a few data.

This learning strategy is based on the assumption that the

EEG data from different subjects share the same representative

features. These features are just masked by the effect of

individual variation and wide discrepancy in the experiment
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FIGURE 2

Workflow of our training framework. The dataset for training, validation, and test process is displayed on di�erent rectangular regions with the

colors blue, yellow, and red, respectfully. The picture of human heads in di�erent colors (such as purple, blue, yellow, brown, and red) with a

hand or feet inside represent the data from di�erent subjects doing motor-imagery tasks. The black horizontal lines with a black arrow represent

the change of the parameter of the neural network and the colorful vertical and horizontal lines (such as purple, blue, gray, and green) indicate

the direction of data flow. In addition, the black gears in the circle represent the update process of parameters. (A) Pre-train phase, (B)

Meta-update phase, and (C) Domain-adaption phase.

FIGURE 3

Diagram of parameters variation through the learning process in di�erent phases. (A) Pre-train phase, (B) Meta-update phase, and (C)

Domain-adaption phase.

environment. In this section, we illustrate the main idea of

MTL and describe its application in the EEG cross-subject

learning scenario.

The MTL combines the advantage of transfer

learning and meta-learning structure. This training

method uses the fine-tune skill and model-agnostic

meta-learning (MAML) algorithm (Finn et al., 2017)

with a novel constrained setting on network parameters

called scaling and shifting (SS) operation to solve the

overfitting problem. Hence, our training framework

consists of three parts: Pre-train, Meta-updating, and Fast

adaption. The whole workflow in this framework is shown

in Figure 2.

As shown in Figures 2, 3, in the Pre-train phase, data of

training subjects are merged randomly into a training dataset

Dtr for classifier F(2∗, θ∗). The network F with initialized

parameter (2∗, θ∗) is optimized by the traditional gradient

descent method (refer to Equation 3) and gains the better

initialized parameter(2pre, θpre).

[2∗; θ∗] = :[2∗; θ∗]− α∇LDtr ([2
∗; θ∗]) (3)

where α is the learning rate of and LDtr denotes the most

frequently used empirical loss in machine learning like cross-

entropy (Zhang and Sabuncu, 2018). This process neglects the
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FIGURE 4

In each radar picture, every axis is assigned a variable that represents the classification accuracy of the specific subject (such as 1:subject1 and

2:subject2) and the di�erent colors represent di�erent network architectures (Blue:EEGNet,Red:DeepConvNet,Green:SPD-CNN).Also, the radar

pictures arranged in the same column are shown the performance of experiences in the same dataset. The subgraph (A) represents the

experiments that train the network with the ML method using zero-shot in the target domain. The subgraphs (B,C) represent the experiments

that train the network with TL and MTL methods, respectively and fine-tune the network using 10shot on the target domain.

domain shift from different subjects and provides a rough

direction for the network to upgrade the parameter.

In the meta-update phase(b), we randomly re-initialize the

parameter θ∗ first and use the MAML structure (Finn et al.,

2017) as a training structure with constraining parameter 8ss.

The 8ss is updated by Equation (4) as follows,

8ss = :8ss − λ∇8ssLTi1 ,··· ,Tin
([2; θ],8ss) (4)

where λ is the learning rate during the update process of 8ss.

The main idea of constraining parameter 8ss is to restrict the

learning process of weight and bias in each convolutional layer,

which means the weights and the biases of the same CNN layer

are scaled and shifted as a whole, respectively.

To be specific, the weights W in the same CNN layer

will time a scaling factor 8s1 and the biases b in the same

CNN layer will add a shifting factor 8s2 through an update

process. Assuming X is the input data, the SS operation could

be expressed by Equation (5).

SS(X; ,W, b;8s1 ,8s2 ) = (W ⊙8s1 )X + (b+8s2 ) (5)

where ⊙ denotes the element-wise multiplication (For details,

refer to the article by Sun et al., 2019).

Inside the MAML learning framework, we sample the data

of j classes (where j is the number of ways in few-shot learning)

from the same training subject for a task. Therefore, each

subject-specific task is seen as an independent sample of the

same classification problem.
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FIGURE 5

The aim of this radar picture is to show the di�erent performances using di�erent training methods and di�erent colors represent di�erent

training strategies (Blue:ML,Red:TL,Green:MTL).The three subgraphs (A–C) represent the classification performance of the three models,

respectively.

More specifically, the train set Dtr was segmented into

different training tasks Tik and test tasks T∗ik
,where Tik ⊂ T =

{Ti1 ,Ti2 , ...Tin} and T∗ik
⊂ T∗ = {T∗i1

,T∗i2
, ...Ti∗n}, n being the

number of tasks in meta-learning. Significantly, the data of Tik
and T∗ik

are sampled from the same training subject xi and the

data of the subject-specified task (Tik or T∗ik
) are divided into

training data and test data for the training process. As a result,

the generalized model F(2pre, θ∗).

will be trained into different subject-specified networks

f (2pre, θ ik ) by gradient descent method. Also, after training the

fik (2
pre, θ ik ) with the training data of the test task T∗ik

again and

calculating the loss function based on the test data of the T∗ik
,

each network f (2pre, θ ik ) would generate subject-specified loss

lik . After updating the parameter 2pre several learning epochs,

which is guided by themeta-loss L(2) based on different subject-

specified loss lik (refer to Equation 6), the parameters 2meta

with better generalization ability are selected by validate setDval

through the meta-validation process.

L(2)T =
∑

lik , k = 1, 2, · · · , n (6)

In the domain-adaption phase(c), we fix the parameter of

Feature Extractor 2meta learned from the Meta-update phase

and use the Fine-tune skill to train a user-specify network

f (2meta, θuj ), which is greatly adapted to the user uj pattern. In

this process, a few data of the user from the test set are used to

train the F(2meta, θ∗) into f (2meta, θuj ) and the parameter of

the classifier block is updated by the Equation (7).

θ∗
′
← θ − β∇θLTuj

([2meta; θ∗],8ss) (7)
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TABLE 4 The 4-way, 10-shot, and 5-shot classification accuracy (%) on three datasets (5-way for BNCI2015004).

Dataset BNCI2014001

Method
ML TL-10 MTL-10 TL-5 MTL-5

Network

EEGNet 37.65±2.847 35.25±2.7 35.95±3.56 28.68±3.17 29.84±3.15

DeepConv 33.96±3.14 38.75±4.32 38.8±3.9 34.52±3.52 35.64±3.4

SPD-CNN 36.88±3.56 46.78±2.78 47.44±4.1 42.99±2.78 43.39±2.63

BNCI2015004

EEGNet 20.88±2.72 21.22±3.32 22.76±2.36 21.3±4.28 22.79±3.4

DeepConv 20.46±2.23 21.37±2.21 23.29±3.02 21.74±3.76 22.47±4.31

SPD-CNN 22.74±2.45 27.92±3.3 28.57±2.58 25.62±3.63 26.82±3.77

Sch2017

EEGNet 50.2±4.23 48.07±3.91 49.27±3.12 43.82±4.21 45.13±4.26

DeepConv 44.25±3.06 56.02±3.49 59.22±4.39 51±2.67 56.4±3.53

SPD-CNN 50.44±3.04 56.31±4.53 56.92±3.79 51.13±3.44 52.94±3.67

Each accuracy is averaged over all subjects and folds. (in 95% confidence level). Bold values represents best results in this set of experiments.

TABLE 5 The time complexity and scale of the dataset for di�erent

networks are compared in this table.

Method EEGNet DeepConvNet SPD-CNN

Dataset Training Time (minute)

BNCI2014001 48 m 156 m 23m

BNCI2015004 52 m 179 m 36m

Sch2017 218 m 418 m 175m

Data Size(Gigabyte)

BNCI2014001 0.89G 0.016G

BNCI2015004 1.5G 0.022G

Sch2017 30.8G 1.7G

In this table, we train different network architectures using MTL, then calculate the scale

of input data and the average consuming time of all folds. Bold values represents best

results in this set of experiments.

where β is the learning rate during the update process. After this

phase, the network is greatly adapted to the situation of user uj

and gains better prediction in the BCI system.

3. Experiments and results

Our experiments aim to assess whether SPD-CNN is

capable of extracting the discriminative information of EEG

data recorded from different subjects and evaluate the transfer

capacity of our proposed learning structure in the cross-subject

scenario based on the recognition accuracy in the few-shot

learning framework.

3.1. Implementions details

We conduct normal machine learning and few-shot

learning experiments on the cross-subject scenario. In these

experiments, we compare SPD-CNN with two wildly used

models, DeepConvNet (Lawhern et al., 2018) and EEGnet

(Schirrmeister et al., 2017), which perform well on EEG

classification with code publicly available. The experiments show

the different performance of classification between our training

strategy and the benchmark of transfer learning methods

in EEG classification.

In the experiences of datasets BNCI2014001 and

BNCI20150004, we choose three subjects for the validation set,

two subjects as the user for the test set and all the remaining

subjects for the training set randomly. This choosing process

repeats 18 times, thus, producing 18 different folds. We follow

the same procedure for the experiences of dataset Sch2017

except we increase the number of validate subjects to 5 and

generate 28 folds.

In the few-shot scenario, we consider the 4-class

classification (5-class classification for BNCI2015004), so

we sample 4-class(5-class classification for BNCI2015004),

5-shot/10 shot episodes to contain 5 or 10 samples for a train

episode and 10 samples (each class) for episode test.

The parameter of the network in our experiments are

initialized by the normalization method from He et al. (2015)

and the whole model is trained by Adam optimizer (Kingma

and Ba, 2014). The learning rates α, λ, and β of all learning

phases are initialized as 0.001 and dropped by 1% every 10

epochs. All the loss functions are the normal form of cross-

entropy cause there is no sample imbalance problem in all

datasets (Fatourechi et al., 2008). In the Pre-train phase, the

batch size is set to 64 and the network will be trained 50 epochs

in each fold. In the experiments of MTL, each task is sampled

from the same subjects of all classes evenly in the meta-update

phase. Furthermore, we use 60 tasks that form 12 meta-batch(5

tasks for each meta-batch) in one training update loop and

choose 30 random tasks for meta-validation and meta-test. In

the meta-update phase, the network will be trained 40 epochs in

each fold.
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FIGURE 6

The disparity among five subjects of two classes, right hand and feet, which are on the left and right of the figure, respectively. (A) The

visualization of sample distributions of raw EEG data. (B) The visualization of sample distributions of the SPD matrices.

All the models were implemented based on PyTorch (Paszke

et al., 2019) and trained on a single GPU of 12 GB TITAN-Xp

with Intel Xeon CPU E5-2620 v4 as CPU. More details can be

found in the GitHub repository https://github.com/sabinechen/

SPD-CNN-Using-Meta-Transfer-Learing-EEG-Cross-Subject-

learning.

3.2. Experimental evaluation

To show the effectiveness of ourmodel and learning strategy,

we design some comparative experiments and ablative settings:

Three networks are trained on the chosen dataset using Normal

Machine Learning (ML), Transfer Learning (TL), and MTL

method. In the experiments of ML, we train the networks from

scratch only using the source-domain data, which is also called

zero-shot.In the experiments of TL, we pre-train the networks

on the source domain and fine-tune the classifier block of the

networks on the target domain (5-shot and 10-shot). Figures 4, 5

provide a qualitative summary of the results for the cross-subject

classification accuracy.

Figure 4 gives an overall picture of the performances

obtained by training EEGNet, DeepConvNet, and SPD-CNNnet

on the target domains (10shot) with three learning strategies:
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ML, TL, and MTL. It shows that the three networks show

noticeably varying patterns in the accuracy of different subjects

in cross-subject learning. The green area, which represents the

performance of SPD-CNN, almost covers other different color

areas. It reveals that SPD-CNN has the remarkable ability to

transfer source domains (train set) to the target domain (test set)

in three datasets.

Figure 5 gives an overall picture of the performances of

using different learning strategies on different networks. It shows

that the coverage area of MTL is more evenly distributed in

all dimensions than other learning strategies in most cases,

indicating that the MTL strategy performs better than the

other two learning strategies in the experiments. Therefore, we

can conclude that the MTL learning strategy strengthens the

generalization ability and robustness of the networks.

Furthermore, we present the accuracy of different

experiments and give a quantitative summary of the results in

Table 4 below.

As can be seen in Table 4, there was a statistically significant

difference in the performance of different models [Friedman

Test X2
(15)
= 16.53, p = 0.0002 < 0.05, Post-hoc analysis

with Wilcoxon signed rank tests was conducted] and our model

outperforms EEGNet (p = 0.0003 < 0.05) and DeepConv

(p = 0.005 < 0.05) in most cases through vertical comparison

in the table.

Also, there was a statistically significant difference in the

performance of different learning structures [X2
(9)
= 8.67, p =

0.013 < 0.05] and our learning structure (MTL-10) outperforms

the traditional learning structures (TL-10: p = 0.0039 < 0.05,

ML: p = 0.019 < 0.05) by a margin of 0.4–5.4% on accuracy

through horizontal comparison and the improvement is much

more evident when the data provided by the user for fast

adaption (number of shots) is fewer in most cases. Furthermore,

DeepConvNet gains much more improvement (about 3–5% in

Sch2017) through MTL learning strategy than EEGNet and

SPD-CNN net with shallow layers and little parameters. It

suggests that the SS operation of MTL can effectively avoid the

problem of “catastrophic forgetting” (Lopez-Paz and Ranzato,

2017) (It means forgetting general patterns when adapting to

a specific task) and as a result, the performance advantage of

large-scale CNN is unleashed thoroughly, especially facing with

large-scale data.

Nevertheless, there is no free lunch, DeepConvNet required

complex network design, and this kind of large-scale network

architecture needs a high level of hardware, which consumes lots

of time on the design and calibration in the BCI system. To be

specific, the comparison of time complexity and the scale of data

of neural networks are shown in Table 5. Table 5 shows that SPD-

CNN has a high speed of convergence and shorter training time,

which are attributed to the small-scale input data and the plain

network structure with little parameter.

As described above, it can be concluded that the proposed

SPD-CNN with few learnable parameters has a stronger feature

extraction ability to find an approximate boundary to separate

TABLE 6 The averaged Euclidean distance among di�erent subjects of

SPD matrices and EEG data in the feature space.

Class Euclidean Euclidean

distance distance

(SPDmatrices) (EEG data)

Right hand 8.85 13.85

Feet 8.71 13.72

Left hand 8.90 13.86

Tongue 8.33 13.96

different samples from different labels, when the datasets

are well described in the SPD manifold. Moreover, with the

improvement coming from the MTL learning structure, the

CNN-based model would rapidly adapt to the target domain

with efficient usage of target data without forgetting key features

learned from the source domain.

4. Discussion

4.1. Analysis of the SPD descriptor

Extensive experiments above show that the SPD matrices

are capable of retaining the discriminative information of brain

activity and the information can be effectively extracted by the

proposed network.

To study the impact of different data descriptions in the

cross-subject learning scenario, the raw EEG data and the SPD

matrices of different subjects in BNCI2014001 were reduced

to two dimensions by Principal Component Analysis (PCA)

and all the samples from the same class were projected to

this 2D feature space (Zhang et al., 2018). Consequently,

the sample distributions of the different subjects could be

visualized in Figure 6. Then we use averaged Euclidean distance

to quantitatively measure the distance among different subjects

in the feature space, and the result are shown in Table 6.

The results of Figure 6 and Table 6 revealed that the gaps in

the sample distributions among different subjects were closed by

transforming the EEG data into SPD matrices.

4.2. Limitations and future directions

Though the proposed network and learning strategy have

achieved great performance in the cross-subject scenario, the

limitation is still involved in the current study. For the

experiments, we only validate our method on the paradigm of

motor imagery and the effectiveness of our method on the other

paradigm in the EEG-BCI system is still unclear. Therefore,

in future studies, we will focus on the other paradigm such

as Steadystate Visually Evoked Potential (SSVEP) datasets and

further explore the potential of the proposed approach.
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5. Conclusion

In this study, we represent a brand-new model to extract

cognitive information from EEG data. Compared with the two

famous EEG networks, which utilize different convolutional

layers to learn specific filters, we transform EEG signals into

SPD matrices and design a plain CNN to learn the essential

features from it. Considering the shifting problem between

different subjects, we use theMTL training strategies to train our

model and related experiments show that our training strategy is

capable of keeping the adaptation ability of the networks while

significantly reducing the number of parameters to transfer. It

can be concluded that our proposed model performs well in the

cross-subject learning scenario.

Our contribution is part of a larger effort in the BCI

learning research, intending to design robust algorithms which

use the experience of deep learning in image recognition to

mitigate inter-subject variability (Xu et al., 2021) and extract

shared information between different subjects. Besides, it is

easy to notice that we could use more complex CNN-based

models, which have the powerful feature extraction ability for

SPD data. Given that, the topic considered here also opens

several important questions to be investigated in the future. For

instance, considering the feasibility of the network to extract the

characteristics of the SPD data, to determine how to design the

specific network architecture for this kind of data is promising

research. Furthermore, with the feature expression based on the

SPD form, data formats of different experiments in the same

paradigm can be unified, and it allows us to gather information

from several databases and use the CNN-based model to form a

more robust classifier in the future.
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With the development of autonomous vehicle technology, human-centered

transport research will likely shift to the interaction between humans and

vehicles. This study focuses on the human trust variation in autonomous

vehicles (AVs) as the technology becomes increasingly intelligent. This study

uses electroencephalogram data to analyze human trust in AVs during

simulated driving conditions. Two driving conditions, the semi-autonomous

and the autonomous, which correspond to the two highest levels of automatic

driving, are used for the simulation, accompanied by various driving and car

conditions. The graph theoretical analysis (GTA) is the primary method for

data analysis. In semi-autonomous driving mode, the local efficiency and

cluster coefficient are lower in car-normal conditions than in car-malfunction

conditions with the car approaching. This finding suggests that the human

brain has a strong information processing ability while facing predictable

potential hazards. However, when it comes to a traffic light with a car

malfunctioning under the semi-autonomous driving mode, the characteristic

path length is higher for the car malfunction manifesting a weak information

processing ability while facing unpredictable potential hazards. Furthermore,

in fully automatic driving conditions, participants cannot do anything and need

low-level brain function to take emergency actions as lower local efficiency

and small worldness for car malfunction. Our results shed light on the design

of the human-machine interaction and human factor engineering on the high

level of an autonomous vehicle.

KEYWORDS
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Introduction

With progressions in automotive safety technologies, both
passive and active methods such as lane-centering assistance
and adaptive cruise control have contributed to a considerable
reduction in traffic fatalities (Van Arem et al., 2006; Lee and
Litkouhi, 2012; Milanés et al., 2013). However, the driving
death toll in China is still significant and human error
accounts for a large proportion (Bhalla et al., 2013). Moreover,
traffic congestion is another factor that contributes to traffic
accidents. Hence, autonomous vehicles (AVs), which can make
optimal decisions bypassing human intervention and avoiding
congested routers, have attracted much interest for a long time.
In addition to improving driving safety and route planning,
AVs can outperform driving efficiency. Most importantly,
they can create a passion for driving in people of all ages
(Choi and Ji, 2015).

The society of automotive engineering (SAE) categorizes
driving automation into six levels ranging from levels 0
to 5. Levels 0 and 5 represent no automation and full
automation driving, respectively, in which either the driver
or the vehicle independently performs all driving tasks under
all conditions. Meanwhile, from levels 1 to 4, the degree of
automation increases from drive assistance to high automation.
The discrimination of automation levels lies in the drivers’
vigilance of the surrounding environment. Interestingly, the
discrimination between levels 4 and 5 is blurred due to
the condition that the vehicle performs all driving functions.
Therefore, it will be interesting to investigate the impact
of malfunction of the vehicle under these two degrees of
automation as there will likely be a psychological difference
between with and without control of a vehicle while facing an
emergency for an individual. Evidence shows that the driver
and the copilot exhibit different attitudes during an emergency.
Therefore, the psychological difference can be regarded as the
trust of humans in machines and such trust is most important
to developing full automation driving with the maturity of
driving automation.

Along with the increasing automation of the AV area,
human-computer interaction will be fully utilized in which
the human trust in AV will play a crucial role. This is
because the driver is permitted to do a secondary task
instead of concentrating on driving along the journey (Ma
and Kaber, 2005; Carsten et al., 2012; Hergeth et al., 2016;
Petersen et al., 2019). Lee and See consider trust from
the organizational, sociological, interpersonal, psychological,
and neurological perspectives. Trust in AVs can be defined
as the human attitude toward how AVs can help achieve
user goals in a situation characterized by uncertainty and
vulnerability (Lee and See, 2004). They consider how the
context, automation characteristics, and cognitive processes
affected the appropriateness of trust. Previous studies on

human trust in AV limit subjective feelings, such as a well-
designed questionnaire for self-reported measurement so that
it can be used to repeatedly measure the subjects’ trust in the
autonomous driving process (Kraus et al., 2020). Moreover,
an objective assessment was confined to testing reaction time
while facing an emergency (Payre et al., 2016). Then a more
comprehensive method includes heart rate measurement and
the grasp of eye gaze while executing commands of the
driving assistant system (Petersen et al., 2019). However, such
measurements can be regarded as the achievement of the
delayed and filtered signal from the brain. Therefore, Seet
M. et al. (2020) utilized EEG analysis, a fast and highly
correlated electrophysiology measurement for trust in AVs.
Nonetheless, the analysis focused more on the power spectral
density and the functional connectivity graph metrics, which
lacks the analysis according to scene switching. In addition,
EEG analysis was also used for the trust testing scenario in
which the participants in a matrix game included both human
and machine counterparts (Dong et al., 2015). Two strategies
(collaboration and egoism) were used. Results demonstrated
that human-like cues affected neural responses related to the
partner’s capability. In contrast, in the egoism session, the
trust level of predictive partners was reflected by a statistically
significant capability effect in the midline electrodes. However,
the EEG analysis was confined to the ERP amplitude of
different nodes, which lacks the consideration of connectivity
between nodes. The results described above suggested that the
discrimination of EEG signals in human-computer interaction
can be a potential candidate for the study of human trust in
AV whereas a more comprehensive method that considers the
brain’s global or local effect should be proposed.

Recently, graph theoretical analysis (GTA) for functional
connectivity networks has attracted much attention. In
neuroscience, because of the intricate connections inside the
brain, GTA can build a network model that contains regions
of interest (nodes) and their connection (edges) to represent
characteristics of the brain during different tasks. In this way,
both global and local effects of the brain can be analyzed for
different tasks. For example, GTA can be used for the diagnosis
of degenerative disease and the analysis of working memory
tasks (Langer et al., 2013; Sun et al., 2014). The advantage
of GTA lies in the analysis of EEG signals in a subdivision
frequency (Dai et al., 2017). Many studies have shown that
the amplitude of alpha activity is negatively correlated to the
number of cortical resources in performing cognitive tasks
(Gevins et al., 2012; Roux et al., 2012; León-Domínguez et al.,
2015). Therefore, by GTA, the human brain can be modeled
as a complex network and have a small-world structure at
the level of anatomical as well as functional connectivity
(Stam and Reijneveld, 2007).

In this study, we will adopt GTA for the analysis of human
trust in AVs. First, we introduce the simulated platform and
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the well-designed experimental protocol in the method section.
Then we show the results of behavior performance and the
analysis based on graph theory. Finally, we discuss our results
and provide a conclusion.

Materials and methods

Participants

Fifty healthy students aged from 21 to 35 (mean:23.6
SD = 3.06) are recruited for this study. They should have
normal vision or corrected-to-normal vision with no history
of any mental diseases. They are also forbidden to take any
medications during the participation of this study. In addition,
they should have sufficient driving experience and be aware of
the basic traffic rules and norms. This study was approved by
the Institutional Review Board (IRB) at the National University
of Singapore. Written informed consent was obtained from
participants before the study and monetary compensation was
given for their participation.

Driving platform

The driving platform consists of three 65-inch LCD screens
for monitoring the driving scene, a driving console (Logitech
G27 Racing Wheel; with a steering wheel, a pedalboard, and
a gear shifter unit) for operating, and a host computer for the
control of the simulation. More details about the experimental
senior could be found in our previous studies (Wang et al.,
2020a,b). Before the experiment, it takes about 2 min for the
participant to get familiar with the platform, which guarantees
the comfort of driving for individuals and well follow road
rules and navigational instructions. The participant follows
instructions of the platform in terms of hearing and vision
assembling one abides by the road navigation during driving.

Experimental protocol

Before starting and after finishing the experiment,
participants are asked to fill out two trust questionnaires
that help to analyze the initial feeling of the AV and the
impact of the experimental procedure on trust, respectively
(Jian et al., 2000).

The car drives in an urban area with a scene of cars and
pedestrians on the road. There are two basic traffic scenarios that
the driver should handle. One scenario is the traffic light (TL)
in which the participant should stop the car before a junction
while seeing the traffic light is red. The other scenario is a car
approaching (CA) in which the participant is asked to stop the
car before a junction without any traffic light to avoid collision

with other cars. A trial of driving is defined as an encounter with
a version of the aforementioned scenario. The intertrial interval
is set to be about 1 km distance. The whole experiment consists
of two stages one is the practice and the other is the driving
simulation. In the practice stage, the driver is navigated to drive
the car manually on a road without any junction. After 2-min
of driving, the driving platform guides the driver to switch to
autonomous mode by pressing a switching button. Then the
car will run automatically without any possible crashes and
malfunctions for another 2 min.

After the practice stage, it comes to the driving simulation
stage, which consists of three modes: manual driving mode
(SAE Level 0), semi-autonomous driving mode (SAE Level 4),
and fully autonomous driving mode (SAE Level 5). In the
manual driving mode, as is shown in Figure 1, participants
face four junction trials, alternating between the TL and CA
junctions. In the semi-autonomous mode, the trial starts with
an autonomous mode which can be taken over by pressing
the manual button on the steering wheel. The driver goes
through eight trials arranged by the program. However, in a
trial of the autonomous phase, the car condition may turn
from normal to malfunction without advance notice. The
malfunction is defined as the car running at the stoplight
or the car still running while another car approaches the
intersection. There are four trials with malfunction for both
semi-autonomous driving mode and autonomous driving
mode. The order of malfunction trials should fulfill the following
criteria:

1. No strict trial-type alternations (or other discernable
patterns) can set up the expectancy of malfunctions
and unduly influence trust dynamics as the
experiment progresses.

2. No more than two consecutive trials which have the same
car condition (normal or malfunction). This was to avoid
excessive cumulative loss of trust that would happen if
there were massing of malfunctions in succession.

3. To avoid trust loss as the participant gets used to the new
phase, the trial sequence must always begin with a normal
trial.

At the end of each trial, the driver should guarantee the
driving mode is retrieved to the autonomous driving mode.
In the fully autonomous mode, the driver will repeat the drive
through the routine as in the semi-autonomous mode.

Signal processing

The flow chart of functional connectivity graph metrics was
extracted after analysis of the EEG data as shown in Figure 2,
which mainly includes parts which are EEG apparatus, EEG data
pre-processing, brain functional network, and GTA.
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FIGURE 1

The experimental protocol of the work.

FIGURE 2

Flow chart of functional connectivity graph metrics extracted after analysis of the EEG data.

EEG apparatus
During the simulated driving, EEG data are recorded using

WaveguardTM caps (CA-142; ANT Neuro, Netherlands) with
a sampling rate of 512 Hz and 64 Ag/AgCl electrodes whose
impedance is below 15 k�. We also use additional electrodes
to record horizontal and vertical electrooculograms (hEOG and
vEOG) on both temples, as well as below and above the right
eye. In particular, participants are asked to reduce unnecessary
movements for the reduction of artifacts during driving.

EEG data preprocessing
The recorded EEG signals will be resampled to 256 Hz

and bandpass filtered between 0.3 and 40 Hz. Then the

processed data will be re-referenced to the left and right
mastoids. At the same time, we will remove ocular and
muscle artifacts with automatic artifact rejection (AAR) (Sun
et al., 2014). The channels that have poor contact with the
scalp will be replaced with interpolated signals of neighboring
channels. Then we will do data segmentation according
to the trial that the driver simulated. For each trial, 2 s
were selected from the onset of the traffic light turning
yellow at junctions or when the first car can be seen at
intersections. In semi-autonomous or fully autonomous mode,
the car may turn to malfunction during such period and
thus permits us to probe into drivers’ cognitive states when
they react to the AV. Finally, we will use independent
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component analysis to filter data with only EEG signals
remaining (Figure 3).

Brain functional network
After the EEG data preprocessing, we employed

phase synchronization (PS) to compute the statistical
coupling for the functional connectivity construction
in each frequency band. It is the same as the feature
of EEG data, the PS was computed between two-time
series. We employed the phase lag index (PLI) to estimate
the degree of pairwise coupling. The EEG signals were
divided by dividing the floating time window over the
step for each band.

We employed the Hilbert transform to compute the
instantaneous phase zi(t):

zi (t) = si (t)+ jHT (si (t)) (1)

where HT(si(t)) is the Hilbert transform of each time series si(t),
which is estimated by:

HT (si (t)) =
1
π
P.V.

∫
∞

−∞

si (t)
t − τ

dτ (2)

In Eq.2, P.V. represents Cauchy principal value. Once the
phase of each time series is computed, the relative phase locking
can be estimated as:

1ϕ (t) = arg
(

z1 (t) z∗2 (t)
|z1 (t)| |z2 (t)|

)
(3)

The PLI value ranges between 0 and 1 and is calculated with the
following equation:

PLI =
∣∣〈signϕ (t)〉∣∣ (4)

The PLI value is defined as [0,1] with 0 representing the case
where there is no phase synchronization (PS), while 1 represents
the perfect phase locking between two-time series.

Graph theoretical analysis

To delve into the unknown information in the EEG data,
we employed the method of GTA after building the functional
connectivity network.

There were N ∗ N adjacency matrices (N = 64 in this
study) computed after building the functional connectivity
network, which represents the connectivity structures of brain
nodes. Because the functional connectivity network contains
complex information and numerous useless combinations,
the sparsity ranged from 10 to 20% with the step of 1%
utilized in these networks, which is the ratio of the present
connection number to preserve a real functional connection.
In this way, we will transform the PLI matrix into a sparse
matrix with different thresholds. The threshold is a proportion
of the most important elements within the PLI matrix. We
need to do such transformation 11 times with the proportion
ranging from 10 to 20%. Hence, the weighted adjacency
matrices were computed, which preserved the connection

FIGURE 3

Data preprocessing.
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strength of the real connections. For the graph-theoretical
properties with the considered sparsity, the area under the
curve of the corresponding properties was extracted as features
for further study.

To quantitatively investigate the topological properties of
functional connectivity between the CA condition and TL
condition, we implemented GTA with the Brain Connectivity
Toolbox. We characterized the graph in the aspects of local
segregation including clustering coefficient (Cw) and local
efficiency (Ewlocal) and global integration including characteristic
path length (Lw) and global efficiency (Ewglobal) and small
worldness (SW) based on the weighted adjacency matrices.

Cw is the main indicator of information differentiation in
complex network computing, which can measure the degree of
aggregation within the brain functional network and reflect the
possibility of each node being a neighbor. It is given by Equation
(5):

Cw
=

1
n

∑
i∈N

2twi
ki
(
ki − 1

) (5)

where twi is the number of connections, which is the weighted
geometric mean of a triangle in the neighbored node i and ki is
the number of connected nodes of i. Cw reflects that the network
forms the tendency of the local loop, and the bigger the Cw. the
more nodes connecting with i. Lw is the mean of the shortest
path length and is the path with the maximum total weight
between vertices. It is given by Equation (6):

Lw =
1
n

∑
i∈N

∑
j∈N, j6=i d

w
ij

n− 1
(6)

where dwij is the shortest path length between node i and node
j. Lw is the main indicator of global integration. The shorter
the path length, the stronger the functional integration and the
more direct connections between brain regions. The calculation
method of SW is shown in Equation (7):

SW =
Cw/Cw

rand
Lw/Lwrand

(7)

where Lwrand and Cw
rand is the mean of a random network of

Cw and Lw after 100 times random circulation. They have
the same degree, node, and edge with a functional connection
network. Ewglobal measures the capability of global information
transmission and is the inverse of the length of the shortest path.
It is shown in Equation (8):

Ewglobal =
1
n

∑
i∈N

∑
j∈N,j6=i

(
dwij
)−1

n− 1
(8)

Ewglobal is a measure that evaluates the efficiency of information
transfer within a region of the network. It is shown in Equation
(9):

Ewlocal=
1
2

∑
i∈N

∑
j,h∈N,j6=i

(
wijwih

[
dwjh (Ni)

]−1
)1/3

ki
(
ki−1

) (9)

where wij is the connecting weight between node i and node j.

Results

Behavioral performance

The quality of the recorded data was validated by the
trial-by-trial trust rating, takeover decision-making, and user
preference. From the trial-by-trial trust rating, there was
no difference between normal and malfunctioning trials in
the semi-autonomous driving mode (p = 0.82). Furthermore,
participants showed lower trust after car malfunction than in car
normal conditions (p < 0.001). we also find that participants in
the semi-autonomous driving mode have a stronger willingness
to take over the control of the vehicle during the malfunction
trials (p < 0.001). Finally, participants prefer the semi-
autonomous driving mode to the fully autonomous driving
mode (p< 0.001).

Graph theoretical analysis in
semi-autonomous driving mode

The graph’s theoretical properties show significant local
segregation of the brain function during the semi-autonomous
driving condition. In the theta band and the car approaching
condition, the participants show significant higher local
efficiency [F(1, 74) = 4.848, p = 0.031, η2 = 0.061, 0.192 ± 0.007
vs. 0.189 ± 0.008] and clustering coefficient [F(1, 74) = 6.716,
p = 0.012, η2 = 0.083, 0.128 ± 0.009 vs. 0.123 ± 0.009] in
malfunction trials than normal trials (Figure 4), which suggests
the human brain showed more efficient information processing
ability when participants encounter malfunction of a vehicle.

On the contrary, in the TL condition, participants show
significant higher characteristic path length [F(1, 74) = 6.084,
p = 0.015, η2 = 0.077, 0.608 ± 0.019 vs. 0.599 ± 0.010] and
lower global efficiency [F(1, 74) = 6.379, p = 0.014, η2 = 0.079,
0.174 ± 0.003 vs. 0.176 ± 0.002] in the theta band during the
malfunction condition (Figure 5). Such results suggest human
brains have low level of information processing ability when
approaching the traffic light.

Graph theoretical properties in full
automation condition

In this paper, the graph-theoretical properties in
autonomous driving conditions were evaluated. In CA
condition, participants show significant lower local efficiency
[F(1, 74) = 4.491, p = 0.029, η2 = 0.063 0.188 ± 0.007 vs.
0.192 ± 0.008] in beta band during malfunction occurred
(Figure 6). Furthermore, the significant lower small worldness
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FIGURE 4

The local efficiency and clustering coefficient alterations between normal condition and malfunction condition in the CA condition. Both two
indexes show significantly higher values in malfunction conditions. *p < 0.01.

[F(1, 74) = 6.982, p = 0.010, η2 = 0.086 0.415 ± 0.035 vs.
0.436 ± 0.034] was observed which means the brain has lower
information processing ability in such condition (Figure 6).
Such results may suggest participants cannot do anything in the
fully autonomous driving condition and need low-level brain
function to take emergency actions.

Discussion

Resource identification initiative

The extent to trust in new technology always decides the
speed of the development of the corresponding technology
(Gefen and Straub, 2000; Gefen et al., 2003), especially in various
automation that trust is a decisive factor in the acceptance of
automation (Lee and Moray, 1992; Pavlou, 2003; Lee and See,
2004; Carter and Bélanger, 2005; Parasuraman et al., 2008). For
example, Jong and Yong investigated the importance of trust in
adopting AVs and the factors that promote people to trust AVs
(Choi and Ji, 2015). In addition, digging insights into factors that
build trust can encourage a better understanding of trust in a
specific item (Leimeister et al., 2005). Therefore, systematically
studying AV can boost us to understand ourselves more clearly.

For example, Seet M.S. et al. (2020) optimize driver-vehicle trust
management according to the subtypes of trust in AV. The
trust can be subdivided into competence-based trust (CT) and
integrity-based trust (IT) which refer to the functional capacity
of AV and the integrity of AV that will not cause deliberate harm,
respectively. However, most of the analysis of trust is based
on the analysis of the collected questionnaire, which is more
subjective and lacks a more comprehensive consideration. These
questionnaires often assume some scenarios and preconditions.
However, if we encounter the scene in the questionnaire,
people are often at a loss in practice. Meanwhile, survey-based
investigations always give out similar conclusions in which the
circumstances, as well as the performance of a robot, directly
affect trust, satisfaction, and frustration. It is hard to objectively
elucidate how these factors influence our trust in the interaction
of human-robot let alone emergent human-vehicle interaction
(Castelfranchi and Falcone, 2000; Murphy et al., 2004; Hancock
et al., 2011; Abd et al., 2017). Therefore, a more objective method
that seeks factors that contribute to human trust in AV is needed.

In this study, we adopt the GTA for the investigation of
human trust in a high level of autonomous driving, including
semi-autonomous driving (SAE level 4) and autonomous
driving (SAE level 5) in a simulated driving environment.
The graph-theoretical properties are efficient approaches to
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FIGURE 5

The characteristic path length and global efficiency alterations between normal condition and malfunction condition in the TL condition. Both
two indexes show significantly higher values in malfunction conditions. *p < 0.01.

evaluating the function of the human brain. Particularly, the
human brain showed local segregation and global integration
of brain functions (Dai et al., 2017). On one hand, the local
efficiency and the clustering coefficient are measurements of
the brain’s local information transmission ability. On the
other hand, the characteristic path length and global efficiency
measured the information spreading ability of the whole brain.
The local and global properties are the critical indexes to assess
the brain states of different driving conditions and reflect the
trust degree during driving a vehicle.

Seet M. et al. (2020) also paid attention to the EEG-
based analysis of human trust in AV. And they also concluded
that a reduction in trust during full automation malfunctions.
However, they focus on the analysis of brain regional influence
on the driving condition. For example, they found that there
was a remarkable decrease in functional segregation in the right
frontal area during the fully autonomous driving mode and
such regional discrimination may be related to the momentary
impairment of the ability to plan logically about specific actions.
In contrast, our analysis focuses more on the influence of the
driving scene on brain activity.

The development of human trust in AVs can be divided
into several stages. The first one is to investigate human
trust once there is a malfunction of the vehicle. In previous
work, Seet M. et al. (2020) used self-reported trust ratings to

demonstrate the difference in human trust in normal or
malfunctioning driving conditions in both high automation
mode and full automation mode. They found that there is no
significant difference between normal and malfunction trials in
high automation driving mode whereas there is a significant
difference for that in full automation mode. And drivers are
prone to take over the task in high automation mode once
there is a malfunction. The second stage that we need to
focus on is to elucidate how the brain reacts to the different
scenarios during automatic driving. In this study, we focus on
the analysis of the brain reaction to CA and TL conditions with
different car conditions. As is shown in Figures 4, 5, there is
an opposite way for the brain to process the malfunction in
which it shows high local efficiency and low global efficiency for
CA and TL, respectively. The opposite information-processing
ability of the human brain during the CA condition and TL
condition demonstrates that participants have different levels
of trust during these two conditions. When the vehicle runs
into a complex environment, such as an intersection without
a traffic light, the participants show a low level of trust in
the machine and can handle an emergency in time (higher
information processing ability). However, while driving in a
safe condition (TL condition), participants show a high level
of trust in the machine and cannot take emergency action in
time (lower information processing ability). The third stage
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FIGURE 6

The small worldness and local efficiency alterations between normal condition and malfunction condition in the CA condition. Both two
indexes show significantly lower values in malfunction conditions. *p < 0.01.

may lie in the facilitation of human trust in AVs. However, the
premise of many studies is that the driver should observe the
vehicle’s performance and be ready to take over the task once
there is an emergency. The secondary task is always regarded
as the distraction of driving that deviates from the original
intention of automatic driving. Situational awareness can help
the driver to promote their trust in AVs (Miller et al., 2014).
Petersen et al. (2019) changed the situational awareness with the
variation of a verbal message to the driver and found that the
high situational awareness condition can cause a significantly
high level of trusting behavior. In the future, we can also add
voice prompt with situational awareness into the experiment for
the analysis of brain reaction to the AV.

Seet M. et al. (2020) also analyzed the AV malfunction on
human trust. However, there are some discriminations between
these two works. One of them is that the frequency band used
for analysis is different. In our analysis, we focus on the theta
band whereas they aim on the alpha band.

Conclusion

In this study, a simulated driving platform with an EEG data
collection system is used for the evaluation of human trust in
AVs. The behavior performance shows that the driver has less
trust during the fully automatic driving mode. We also used

GTA to illustrate how the brain reacts to both semi-autonomous
driving mode and fully autonomous driving mode. Our results
have the potential to be adopted for the improvement of
human trust in AV.
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Temporal lobe epilepsy (TLE) is a chronic neurological disorder that is

divided into two subtypes, complex partial seizures (CPS) and simple partial

seizures (SPS), based on clinical phenotypes. Revealing di�erences among the

functional networks of di�erent types of TLE can lead to a better understanding

of the symbology of epilepsy. Whereas Although most studies had focused

on di�erences between epileptic patients and healthy controls, the neural

mechanisms behind the di�erences in clinical representations of CPS and SPS

were unclear. In the context of the era of precision, medicine makes precise

classification of CPS and SPS, which is crucial. To address the above issues,

we aimed to investigate the functional network di�erences between CPS

and SPS by constructing support vector machine (SVM) models. They mainly

include magnetoencephalography (MEG) data acquisition and processing,

construction of functional connectivity matrix of the brain network, and the

use of SVM to identify di�erences in the resting state functional connectivity

(RSFC). The obtained results showed that classification was e�ective and

accuracy could be up to 82.69% (training) and 81.37% (test). The di�erences

in functional connectivity between CPS and SPS were smaller in temporal

and insula. The di�erences between the two groups were concentrated in

the parietal, occipital, frontal, and limbic systems. Loss of consciousness and

behavioral disturbances in patients with CPS might be caused by abnormal

functional connectivity in extratemporal regions produced by post-epileptic

discharges. This study not only contributed to the understanding of the

cognitive-behavioral comorbidity of epilepsy but also improved the accuracy

of epilepsy classification.

KEYWORDS

temporal lobe epilepsy, resting-state functional connectivity, MEG, machine learning,

classification
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Introduction

According to the World Health Organization, about 50

million people worldwide suffered from epilepsy (Fiest et al.,

2017). In recent years, epilepsy has been proposed to be

a disorder of the brain network caused by hypersynchrony

of neuronal activity (Zhang et al., 2011; Richardson, 2012).

Epilepsy could be divided into focal, generalized onset,

and unknown onset based on clinical manifestations and

electroencephalogram (EEG) in line with the new International

League Against Epilepsy ILAE criteria in 2017 (Scheffer et al.,

2017). Depending on whether awareness was impaired, focal

seizures were classified as aware or impaired awareness seizures,

which are also known as “simple partial seizure (SPS)” and

“complex partial seizure (CPS),” respectively (Falco-Walter et al.,

2018).

Temporal lobe epilepsy (TLE), a common neurological

disorder originates in the temporal lobe (de Lanerolle et al.,

1989). Seizures types in TLE primarily incorporated SPS,

which can cause focal motor or selective emotional or

visual changes with relatively preserved consciousness, and

CPS, which has more sophisticated clinical manifestations,

including epigastric paresthesia, cognitive impairment,

paresthesia, and automatisms (Proposal for Revised Clinical and

Electroencephalographic Classification of Epileptic Proposal

for Revised Clinical Electroencephalographic Classification

of Epileptic Seizures., 1981; Depaulis et al., 1997). The EEG

is mostly normal in SPS, and abnormal EEG changes were

transient and were generally restricted peaks or paroxysmal

activity in the temporal lobe regions (Inoue et al., 2000; Janszky

et al., 2004).

During the past few decades, increasing evidence have

linked epileptic cognitive impairment and loss of consciousness

to diffuse brain network changes (Blume, 2002; Blumenfeld

et al., 2009; Xu et al., 2009; Englot et al., 2010; González

et al., 2019; Hermann et al., 2021). The duration of CPS

invariably exceeded 30 s, and the discharge position was

deeper. Meanwhile, CPS tended to spread to the brainstem

or contralateral hemisphere, resulting in extensive neurological

alterations (Stayman and Abou-Khalil, 2011; Hauf et al., 2013).

“Network inhibition hypothesis” was a new theory of CPS

proposed by Blumenfeld (Blumenfeld et al., 2004, 2009; Guye

et al., 2006), was According to the theory, focal discharges in the

temporal lobe interfered with brainstem–diencephalon arousal

system, and then inhibited ascending reticular activation system,

which indirectly brought forth impaired cortical function and

loss of consciousness (Steriade, 1970; Motelow et al., 2015).

Pathophysiological studies had shown a significant increase

in slow-wave activity in the frontoparietal neocortex and an

enhanced rate of diffusion of fast EEG activity from the

medial temporal lobe to the contralateral side during CPS

compared to SPS (Englot et al., 2017). In animal studies,

it was also found that blood oxygenation level-dependent

in the hippocampus of TLE increased, while it decreased

in the cortex and thalamus (Motelow et al., 2015). This

suggested that cortical and subcortical structures are involved

in regulating consciousness. Studying alterations in resting-

state brain functional connectivity could be conducive to

explore the mechanisms underlying cognitive dysfunction in

individuals with epilepsy. Memory deficiencies in individuals

with CPS were associated with compensatory increases in

the hippocampus. There was also evidence that executive

dysfunction was relevant to a reduced resting-state functional

connectivity in the frontoparietal lobe (Park et al., 2017; Ives-

Deliperi and Butler, 2021; Li et al., 2022). Language dysfunction

was associated with reduced functional connectivity in the

frontotemporal lobe language network. EEG researches have

revealed that even if the bilateral pikes in patients with SPS

and CPS originated in disparate brain regions, the discharges

spread to the same area, the temporal lobe base (Sirven et al.,

1996). This indicated that SPS and CPS may have shared

network nodes in the temporal lobe. However, the mechanisms

by which CPS brain network alterations are associated with

impaired consciousness and behavioral abnormalities have not

been systematically studied.

Unlike other diseases, the first symptom defined the epilepsy

type, consciousness turned into a “watershed,” differentiated

SPS from CPS. Nevertheless, a flat dichotomy may result in

neglecting the other clinical symptoms (Muayqil et al., 2018).

Currently, there is a lack of direct studies on brain network

alters among SPS and CPS individuals. Therefore, our study

hypothesized that aberrant differences in functional connectivity

of CPS and SPS were vital nodes involved in the regulation

of brain network consciousness and behaviors. Furthermore,

seizures were primarily self-reported by the patient, and even

with EEG testing, the underreporting rate was still as high as

50% (Glauser et al., 2010; Elger and Hoppe, 2018; Verdru and

Van Paesschen, 2020). Especially, when epilepsy originates in

deep or non-dominant regions, the initial weak signal may not

be obtained on scalp EEG (Benbadis et al., 2020). Compared to

EEG, the sensitivity and specificity of magnetoencephalography

(MEG) for localization of minute EEG activity were higher than

that of EEG (van Mierlo et al., 2014). In contrast to MRI, even

though functional brain networks were widely used in MRI

(Salma et al., 2019; McKavanagh et al., 2021), the time span for

information processing was only milliseconds to seconds when

the brain was in a resting state. Therefore, the selection of MEG

with higher localization accuracy for the analysis of functional

connectivity differences wasmore promising for detecting subtle

changes in the brain (Kakisaka et al., 2013; Nissen et al., 2018;

van Klink et al., 2019).

Prior to this study, we preprocessedMEG data from patients

with SPS and CPS and normal controls, and performed a source

level analysis. The results of the coherence analysis showed that

the functional connectivity of patients with both SPS and CPS

was lower than that of normal individuals in the whole brain,

while there was no significant difference between the two groups.

Therefore, to address the problems of low efficiency and easy
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FIGURE 1

The working flowchart of the proposed framework. CPS, complex partial seizures; SPS, simple partial seizures; SVM, support vector machine;

ACC, the accuracy rate.

misdiagnosis in manual identification of EEG signals, we chose

machine learning to further differentiate the differences between

patients with SPS and CPS (Fallahi et al., 2021). At present,

machine learning has shown sound application prospects for

various neurological diseases incorporating epilepsy (Craley

et al., 2020; Gleichgerrcht et al., 2020; Pavel et al., 2020). (Li

et al., 2018; Bharath et al., 2019). In a previous study, SVM was

able to distinguish temporal lobe epilepsy from benign epilepsy

in healthy controls or central temporal spikes (Jin and Chung,

2017; Sriraam and Raghu, 2017; Yang et al., 2020). In addition,

the use of SVM could also distinguish between resected and

unresected regions based on preoperative interictal MEG data

in epileptic patients. Therefore, the present study intends to

use SVM combined with two sample selection approaches to

explore the differences in functional connectivity between the

two groups at rest.

Materials and methods

Patient population

This study was part of a research program on neuroimaging

in epilepsy. It consecutively recruited 40 patients with TLE

between 2015 and 2020. Inclusion criteria were as follows: 1. in

line with the International League Against Epilepsy (ILAE, 1989)

diagnostic criteria for epilepsy; 2. partial epilepsy diagnosed

by V-EEG observation and medical history; 3. the clinical and

EEG characteristics were onefold SPS or CPS ; 4. individuals

had no visible lesions in structural MRI images.; 5. able to

cooperate with the inspection and the head movement during

MEG examination was nomore than 5mm. Exclusion criteria: 1.

combined with a history of generalized seizure ; 2. suffered from

other types of paroxysmal illness (e.g., mental illness, severe

systemic illness, etc.); 3. implants that may seriously interfere

with MEG and MRI data collection (such as dentures, cochlear

implants, pacemakers, etc.); 4. unable to cooperate with MEG

and MRI examination. Of the 40 patients we recruited, All of

them underwent MEG andMRI scans at Nanjing Brain Hospital

affiliated with Nanjing Medical University. All individuals have

read and signed voluntary and written informed consent for the

study prior to enrollment, according to the standards set by the

ethical committee of Nanjing Brain Hospital of Nanjing Medical

University, which approved this study.

MEG resting state acquisition

All studies were performed in a magnetically shielded room

by using our 275-channel whole-head biomagnetometer (VSM
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TABLE 2 Ictal semiology in the three groups of patients,the number of

patients in each group having the concerning symptoms.

CPS (n = 16) SPS (n = 16)

Age (year) 29.11± 8.63 23.53± 5.66

Male (n, %) 5 (31.25) 8 (50)

Seizure duration (second) 104.06±34.62 15.56±6.12

Impairment of consciousness

(n, %)

16 (100) 0 (0)

Oro-alimentary Automatisms

(n, %)

13 (81.25) 5 (31.25)

Motor Automatisms (n, %) 15 (93.75) 2 (12.5)

Vegetative symptoms (n, %) 6 (37.5) 2 (12.5)

MedTech, Coquitlam, BC, Canada). The full head sensor of the

275 super-conducting quantum interference device (SQUID)

was used to measure the brain magnetic field in the direction

perpendicular to the scalp. Three electrically active coils were

placed as fiducial markers at the nasion and 1 cm anterior to

the left and right tragus to measure the position of each person’s

head relative to the MEG sensor.

All individuals did not have seizures at least 16 h before the

examination. If the frequency of seizures was less than once a

week, individuals were required to stop anti-epileptic drugs for 2

days and overnight sleep deprivation (increased seizure activity).

MEG recording is performed at a sample rate of 1,200Hz for

twenty 120-s recordings with the patient in the state of rest and

their eyes closed to detect interictalMEG sharpwaves and spikes,

as well as bursts of rhythmic activity.

Anatomical mri

MRI data were collected using a US GE Signa NV/i

1.5 T super-conducting magnetic resonance apparatus, and

the head of the subject was fixed with a sponge pad. The

routine anatomical MRI data were acquired to detect structural

details. T1-weighted image scans were obtained, with following

parameters: TR/TE = 1,750 ms/24ms, FA = 90◦, matrix = 256

× 256, FOV = 24 × 24 mm2, slice thickness = 6mm, slice gap

= 2mm, and acquired slices= 16. Coronal T2-FLAIR-weighted

image scans were also obtained, with following parameters:

TR/TE = 8,400 ms/135ms, FA = 150◦, matrix = 256 × 256,

FOV= 24× 24mm2, slice thickness= 16mm, slice gap= 2mm

and acquired slices= 16.

Data preparation

All MEG recordings were reviewed by two experienced

epileptologists at Nanjing Medical University, and the peaks of
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all epileptic spikes and inter epileptic discharge were marked

manually based on the MEG recordings.

Artifact rejection and subtraction of
inter-spikes relative-stable activity

All analyses were done with custom-written MATLAB

(Mathworks, Natick, MA) scripts and FieldTrip (http://www.

ru.nl/fcdonders/fieldtrip/). Firstly, all spikes and abnormal

discharge before and after the 10 s time period were excluded.

Then we short-cut the remaining segments with a non-

overlapped length of 10 s and further extracted the sub-segments

which are free from jump-like artifacts and muscular artifacts.

To ensure the same length of the remaining sub-segments, we

further removed the ones with a length <4 s and short-cut the

others with a length of 4 s. The number of segments per subject

varied from 33 to 169 at last. The total number of segments for

all the individuals with CPS was 1,306, and the total number of

segments for all the individuals with SPS was 1,526.

Filtering and removing artifact

The remaining signals were low-pass-filtered at 70Hz and

high-pass-filtered at 1Hz with notch-filtered around 50Hz (the

vertical refresh rate of the LCD projector). Furthermore, to

increase the speed of the following data analysis, the data

were down-sampled to 100Hz. In addition, we removed blink

artifacts and ECG noise from data by using Independent

Component Analysis (ICA).

Source reconstruction

We performed source reconstruction after preprocessing

using a partial cannonical correlation/coherence (PCC)

(Mukuta and Harada, 2014). Specifically, first, the subject-

specific T1-weighted MR images were re-sliced and segmented

to obtain brain/skull boundary by using FieldTrip. Then,

we generated the individual cortical meshes with > 1,00,000

vertices per hemisphere by using the Freesurfer package

(version 5.3.0) (surfer.nmr.mgh.harvard.edu), and we

downsampled them to 8,196 nodes in all by using MNE Suite

(martinos.org/mne/stable/index.html). Next, the downsampled

cortical sheet was coregistered to the sensor-based coordinate

system with FieldTrip. Finally, the volume conduction for the

forward model was computed by using FieldTrip’s “single shell”

method, and the source reconstruction was computed between

1 and 40Hz with a partial canonical correlation/coherence

(PCC) method.

Functional connectivity analysis

For each segment time course, we calculated functional

connectivity (FC) by the imaginary part of the coherency

index between the time courses at every two sheets after

source reconstruction. To reduce the dimensionality

of the FC matrix, we applied a parcellation scheme

according to the Destrieux Atlas, which consists of 74

parcels in the whole cortical surface (Destrieux et al.,

2010). Therefore, each FC matrix was merged to a size

of 74-by-74.

Classification of fc matrix between cps
and sps

In the next step, we tried to find the functional connectivity

pairs that were different between CPS and SPS groups by

using a nonlinear classification method with feature extraction

and leave-one-out loop. The features which contributed well

and were stable for separating the two patient groups were

considered to indicate the corresponding cortical pairs having

obvious distinct functional connectivity between them. The

operational flowchart of the proposed framework is shown

in Figure 1.

Specifically, as shown in Table 1, we divided all the subjects

into 16 subsets, and each subset had one patient with CPS and

one with SPS. For each subset, the number of CPS FC matrices

was basically equal to the number of SPS FC matrices. We

randomly selected two subsets as the testing set, and the others

were considered as a training set for classification.

To improve the generalization ability of the classification

model as possible as we can, we adopted a leave-one-out method

for the training processing in this work. For each loop, we

selected 13 subsets from the training set as sub-training set

and left one subset as validating set to select the best hyper-

parameters for the classification model. For the sub-training

set, we selected the FC features, which have stable and great

contribution for separating the CPS and SPS, as the methods

introduced in “Feature extraction” section. Then, we trained

SVM classifier as introduction in “Support vector machine

classifier”. And then, we repeated this process 14 times for all

possible selection options.

After leave-one-out training, we counted the overlap rate

of all appeared features among 14 times leave-one-out training

loop and extracted the features with the highest (≥12/14)

overlap rate as a reliable feature assemblage. Finally, we extracted

the corresponding feature values in the testing dataset as the

input for the classifier and performed the classification as we

trained. The test accuracy rate here was calculated. The method

for feature extraction and classification were introduced below

in detail.
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Feature extraction

To reduce the duplicate information in the FC matrix which

was symmetrical, we extracted its lower triangular part and

its main diagonal as the vector. Each value in the vector is a

feature for classification, indicating an FC strength between a

pair of cortical areas. The total number of features contained

in each vector is C_74∧2+74=2,775. It is important to select the

FIGURE 2

The F-score of 2,775 features.

most essential features using feature selection before entering the

classifier (Guyon and Elissee, 2003) when the number of features

is much more than the number of subjects used in classification.
To more effectively enhance the efficiency of computation

and avoid the high-dimensional and small-sample-size problem
for classification, we further measured the classification
capability of each feature by the F-score method (Chen et al.,
2006) and removed the features which were irrelevant or has
low correlation to the classification (Guyon and Elissee, 2003).
F-score is a simple and generally quite an effective technique
that can measure the ability of a feature to discriminate
between two classes of samples. Given a set of training samples
xk, k = 1, · · · ,m, then the F-score of the ith feature is defined
as follows:

Fi =
(x

(−)
i − xi)

2
+ (x

(+)
i − xi)

2

1
n+−1

∑n+
k=1

(x
(+)

k,i
− x

(+)
i )

2
+ 1

n−−1

∑n−
k=1

(x
(−)

k,i
− x

(−)
i )

2

(1)

where xi is the average of the i
th feature in the whole data set,

whereas x
(+)
i , x

(−)
i are the average of the ith feature in CPS, and

SPS data sets, respectively; n+ and n− represent the number

of samples in CPS and SPS data sets, respectively; and x
(+)

k,i

and x
(−)

k,i
indicate the ith feature of the kth sample in the two

groups’ data sets, respectively. F-score is positive, and the larger

FIGURE 3

The nodes and edges involved in the FC features with high overlap rate (12/14) among training. (A,B) Regions involved in 28 FC features with

overlapping ratios ≥12/14 across 14 training sessions. (C) Edges involved in 28 FC features with overlap ratio ≥12/14 in 14 training sessions.
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TABLE 4 The nodes and edges involved in the FC features with high

overlap rate (12/14) among training.

Index ROI 1 ROI 2

1 G_pariet_inf-Angular G_front_middle

2 S_parieto_occipital G_cuneus

3 S_interm_prim-Jensen G_front_middle

4 S_intrapariet_and_P_trans G_cingul-Post-ventral

5 S_intrapariet_and_P_trans G_cuneus

6 G_cingul-Post-ventral G_and_S_cingul-Mid-

Post

7 S_pericallosal G_pariet_inf-Angular

8 G_parietal_sup G_and_S_cingul-Ant

9 S_front_inf G_oc-temp_med-

Lingual

10 G_occipital_middle G_pariet_inf-Angular

11 S_intrapariet_and_P_trans G_and_S_cingul-Ant

12 G_precuneus G_and_S_cingul-Ant

13 G_pariet_inf-Angular G_cingul-Post-ventral

14 S_interm_prim-Jensen Lat_Fis-post

15 S_subparietal G_precuneus

16 S_pericallosal G_cingul-Post-ventral

17 S_subparietal G_cuneus

18 G_pariet_inf-Angular G_and_S_cingul-Mid-

Ant

19 S_intrapariet_and_P_trans S_calcarine

20 S_front_middle G_occipital_middle

21 G_cuneus G_and_S_occipital_inf

22 S_parieto_occipital S_intrapariet_and_P_trans

23 S_subparietal G_and_S_cingul-Ant

24 Pole_temporal G_oc-temp_med-

Lingual

25 S_postcentral G_front_middle

26 S_cingul-Marginalis G_cingul-Post-ventral

27 S_interm_prim-Jensen S_front_middle

28 S_front_inf G_pariet_inf-Angular

The pairs are ranked in descending order according to the mean F-score value of each

feature among 14 times training.

the F-score of a feature is the stronger its ability to distinguish

two categories of samples.

As a pretest, we calculated the F-score of 2,775 features on

the whole training set first and arranged them in descending

order. As shown in Figure 2, it can be found that the F-score

curve of 2,775 features declines rapidly and there are a large

number of feature F-scores close to zero, suggesting only a

very small number of features have a good contribution to

classification while the others are redundant. Therefore, in the

following classification processing, we extracted the features

with the top 1% F–scores from the training subset as the input

for classification.
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Support vector machine classifier

The SVM is one type of binary supervised learning classifier

that has been widely used in recent years (Ines et al., 2013)

with a high ability for generalization (Vapnik, 2000). Rajpoot

et al. (2015) used AP clustering combined with SVM to study

functional connectivity changes in individuals with epilepsy

and normal subjects. Its basic model is a linear classifier. For

linearly separable data, SVM generates a separating hyperplane

which separates the data with the largest margin. For linearly

inseparable data, SVM can efficiently perform a non-linear one

using kernel function Φ(x) (2), mapping their inputs into high-

dimensional feature spaces.

Φ(x) :Rn → Rnh (2)

By choosing a suitable Φ(x), the SVM constructs an optimal

separating hyperplane in higher-dimensional feature space to

solve the linear-inseparable problem (Cantor-Rivera et al.,

2015). The kernel function mentioned above may be any of

the symmetric functions that satisfies the Mercel conditions

(Dhanalakshmi et al., 2009). We selected the Radial Basis

Function (RBF) in this work since it was the most frequently

used kernel function, and there were two parameters C and

γ , whichmust be preset before training the SVM classifier.

In the experiment, we implemented the scikit-learn, a

machine learning tool package in python, to train the SVM

classifier with parameter C of 1.2 and parameter γ of 5, and

each sample was converted to scikit-learn input data format in

this work.

Results

Five patients had obvious head movement during scanning,

defined as more than a 2mm translation. Two patients refused

to participate in further research and asked to withdraw. This

meant that 32 patients met the stringent inclusion criteria and

were finally included in the study. Among them, 16 patients (five

male, 29.1± 8.63 years) were suffering fromCPS and 16 patients

(11male, 23.5± 5.66 years) from SPS. The detailed demographic

and electroclinical data are summarized in Table 2.

We calculated the classification accuracies from each

validating subset in the leave-one-out loop to evaluate the

effectiveness of our feature extraction method and SVM

classifier. The results were summarized in Table 3. For all the 14

times of training, the validation accuracies varied from 72.39 to

88.73%, of which the mean is 79.87%.

After leave-one-out training, we got 28 FC features whose

overlap rate was ≥12/14 among 14 times training. Figure 3

and Table 4 demonstrated the nodes and edges involved in

these 28 FC features. According to the mean F-score value

of each feature among 14 times training, we marked the FCs

with great mean F-scores (higher than 75% of the highest

mean F-score value among all the features) as a red line

and colored the others in blue. They were mainly located
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FIGURE 4

The nodes and edges involved in the FC features with a high overlap rate (12/14) among training with random sample selection. (A,B) Regions

involved in 28 FC features with overlapping ratios ≥12/14 across 14 training sessions. (C) Edges involved in 28 FC features with overlap ratio

≥12/14 in 14 training sessions.

within and between the parietal, the occipital, the frontal

lobe, and the limbic system. For the temporal lobe and

the insula, there was less different functional connectivity

between SPS and CPS individuals. Specifically, as shown in

Figure 3 and Table 4, the FCs with great mean F-scores were

located between the middle frontal gyrus (G_front_middle),

and the angular gyrus (G_pariet_inf-Angular), and Sulcus

intermedius primus (of Jensen) (S_interm_prim-Jensen);

between the Cuneus (G_cuneus) and the parieto-occipital

sulcus (S_parieto_occipital), and the intraparietal sulcus

(S_intrapariet_and_P_trans); and between the intraparietal

sulcus (S_intrapariet_and_P_trans) and the posterior-ventral

part of the cingulate gyrus (vPCC, G_cingul-Post-ventral); and

between the posterior-ventral part of the cingulate gyrus (vPCC,

G_cingul-Post-ventral) and the middle-posterior part of the

cingulate gyrus and sulcus (pMCC, G_and_S_cingul-Mid-Post).

According to these 28 FC features, we extracted the

corresponding values in the testing dataset which contained 117

FC matrices for individuals with CPS and 114 FC matrices for

individuals with SPS (as shown in the “Testing set” in Table 1).

The test accuracy rate was 78.52%.

To further verify the stability of the results described above,

we also adopted another criterion for sample selection in the

training set. First, we mixed all the samples (FC matrices from

all the time segments and all the subjects in the training set). For

each time of the leave-one-out training procession, we randomly

selected 90% of all the samples as a subset for training and the

rest of 10% for validation. By calculating the F-score of each

feature in the training subset, we took the features with top 1%

F-score values as the input for the following SVM classifier. We

also repeated this process 14 times. The validation accuracies

in each leave-one-out loop are shown in Table 5, which varied

from 78.55 to 87.21%, of which the mean is 82.69%. The final

test accuracy rate reached upto 81.37%.

With random sample selection in leave-one-out training

loop, we got 20 FC features with an overlap rate≥12/14. Figure 4

and Table 6 demonstrated their nodes and edges. They were

mainly located within and between the parietal, the occipital,

and the frontal lobe, and the limbic system, similar to the

results in Figure 3. For the temporal lobe and the insula,

there was less different functional connectivity between SPS

and CPS individuals, either. In Figure 4, we marked the FCs

with great mean F-scores (higher than 75% of the highest

mean F-score value among all the features) as a red line, and

colored the others in blue. Specifically, the FCs with great

mean F-scores were located between the intraparietal sulcus

(S_intrapariet_and_P_trans) and the posterior-ventral part of

the cingulate gyrus (vPCC, G_cingul-Post-ventral) and the

cuneus (G_cuneus), between the angular gyrus (G_pariet_inf-

Angular) and the middle frontal gyrus (G_front_middle)

and pericallosal sulcus (S_pericallosal). Comparing the results

obtained with the two different ways of sample selection, we can
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find that there are many coincident ROIs and edges, as shown in

Figure 5 and Table 6 (marked with ∗).

Discussion

Summary

In our pre-experiment, we found a significant decrease in

functional connectivity in both groups of patients compared

to healthy controls, which was consistent with previous studies

(Ives-Deliperi and Butler, 2021). To date, few studies have

focused on the resting state of SPS and CPS, especially the

analysis of differences in brain functional connectivity between

the two groups.We evaluated subjects’ FC for exploring network

connection markers for TLE with altered consciousness status.

The synchronicity of activities between network nodes was

calculated at the brain network level. A higher mean F-score

value indicated a stronger activity of network nodes and a

greater connectivity with other nodes. The network connection

differences of CPS from SPS were distinguished by SVM. In

this way, dissimilar regions in the functional connectivity of

global networks in SPS and CPS were determined. The following

primary results were made: (1) The SVM classification model

used the optimal feature set of 28 functional connections

calculated from MEG data to distinguish the CPS subjects

from SPS at a mean accuracy of 81.37% (sensitivity =

81.1%; specificity = 81.54%) on test data. (2) Compared with

SPS, individuals with CPS revealed a hyper-connectivity in

several primary regions including intraparietal sulcus, transverse

parietal sulcus of brissaud, middle frontal gyrus, callosal suleus,

ventral posterior cingulate gyrus, cuneus, and inferior parietal

marginal angular gyrus. By comparing the differences in FC

between SPS and CPS, it was possible to explore the pathological

basis of consciousness impairment and cognitive abnormalities.

Relationship between cps network
connections and consciousness

There was no significant relationship between the

occurrence of impaired consciousness in CPS and the

functional connectivity of the epileptic region of origin (Najm,

2018). We did find that CPS and SPS functional connectivity

differences were concentrated in extratemporal lobe regions. It

was mainly distributed between the parietal, occipital, frontal.

and limbic systems. This implied that the occurrence of CPS

was not only associated with structural damages in the temporal

lobe but also with abnormal brain network connectivity in

extratemporal brain regions (Englot et al., 2010). Abnormal

functional connectivity in these brain regions might accelerate

the outward diffusion of temporal lobe discharge (Yoo et al.,

TABLE 6 The nodes and edges involved in the FC features with high

overlap rate (12/14) among training with random sample selection.

Index ROI 1 ROI 2

1* S_intrapariet_and_P_trans G_cingul-Post-ventral

2* S_intrapariet_and_P_trans G_cuneus

3* G_pariet_inf-Angular G_front_middle

4* S_pericallosal G_pariet_inf-Angular

5* S_parieto_occipital S_intrapariet_and_P_trans

6* S_front_inf G_oc-temp_med-

Lingual

7 S_intrapariet_and_P_trans G_occipital_sup

8 G_pariet_inf-Angular G_cuneus

9* G_pariet_inf-Angular G_cingul-Post-ventral

10* G_occipital_middle G_front_middle

11* S_subparietal G_precuneus

12* G_cingul-Post-ventral G_and_S_cingul-Mid-

Post

13* S_intrapariet_and_P_trans S_calcarine

14* S_front_middle G_occipital_middle

15* S_parieto_occipital G_cuneus

16 S_intrapariet_and_P_trans G_precuneus

17* S_interm_prim-Jensen G_front_middle

18 S_postcentral G_cingul-Post-ventral

19* G_cuneus G_and_S_occipital_inf

20* G_pariet_inf-Angular G_and_S_cingul-Mid-

Ant

The pairs are ranked in descending order according to the mean F-score value of each

feature among 14 times training (* after index represents the pair is overlapped in the

results with two different ways of sample selection).

2014; Sirin et al., 2020). This may lead to individuals who

showed up with the loss of consciousness (Li et al., 2020).

Our observations were consistent with the “network

inhibition hypothesis.” If seizures spread beyond the

epileptogenic zone, consciousness may be vulnerable to

impairment Bancaud et al., 1994; So, 1995; Norden and

Blumenfeld, 2002; Blumenfeld et al., 2004; Englot et al., 2009,

2010. Previous studies have shown that the activation state of the

frontoparietal region was associated with loss of consciousness

(Untergehrer et al., 2014). CPS also had a distinct “spatial

shift of slow waves”, that was, after a seizure, slow waves

spread from the frontal cortex to the contralateral parietal and

temporal lobes. However, this phenomenon was not found in

SPS individuals (Yang et al., 2012). Similar results were seen in

neuroimaging. Both SPECT and fMRI detected a reduction in

subcortical cerebral blood oxygen level-dependent signals in

the frontoparietal region in patients with generalized epilepsy

(Gotman et al., 2005; Bai et al., 2010). Similarly, individuals with

other unconscious states, such as coma, anesthesia, and brain

death, showed impaired functional integration of the resembled

cortex (Noirhomme et al., 2010; Crone et al., 2013; Gruenbaum,
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FIGURE 5

The overlapped ROIs and edges in both approaches (A,B) Regions involved in 28 FC features with overlapping ratios ≥12/14 across 14 training

sessions. (C) Edges involved in 28 FC features with overlap ratio ≥12/14 in 14 training sessions. Red line: feature mean functional connections

greater than the remaining 75% are marked with a red line. Blue line: no more than the remaining 75% of the feature mean functional

connections are marked with blue lines.

2021). Therefore, we speculated that in TLE, the presence

of abnormal functional connectivity in the frontoparietal

cortex had led to impairment of consciousness. Aberrant

neuronal discharge in patients with CPS activated significant

network disturbances at a later stage, which in turn led to

frontoparietal network abnormalities that clinically manifested

as impaired consciousness.

Possible causes of automatism in patients
with cps

Increased epilepsy network coherence was a

pathophysiology of epilepsy semiotics (Chauvel and McGonigal,

2014). Semiology depended on the interaction of epileptogenic

focus and dissemination targets (Maillard et al., 2004).

Automatism was considered to be one of the most common

symptoms of CPS. About 75% of individuals with CPS

might present with buccal and tongue movements, including

smacking, swallowing, and spitting, called oral automatisms

(OAAs) (Maldonado et al., 1988; Janati et al., 1990; Kramer

et al., 1997).

Automatisms had been proposed to be associated with

widespread cortical excitation. Several previous stimulation

studies had shown that stimulation of frontal, insular, and

temporal cortex or amygdala regions could induce automatisms

(Maestro et al., 2008). Themechanism by which OAAs arose was

the synchronous propagation of brain waves in the temporal–

insular–parietal lobes, disturbing the cortical masticatory region.

The abnormal cerebral cortex triggered the emergence of

oral movements (Aupy et al., 2018). Similarly, individuals

with preserved verbal responsiveness had lower frequencies of

perfusion in ipsilateral parietal regions during interictal episodes

of automatisms (Park et al., 2018). In our study, patients in

the CPS group exhibited more complex clinical symptoms

in addition to impaired consciousness compared to patients

with SPS. There was a prominent difference in the functional

connectivity in the CPS group. This further demonstrates that

the clinical behavioral differences in patients with CPS were

likely due to alterations in network connectivity between the

limbic system and parietal lobes during the late stages of

neuronal firing.

Limitations

The present study has several limitations. First, since the

number of features was much more than the number of subjects

used in classification, we used the F-score method to measure

the classification ability of each input feature so as to select the

most important edges for making accurate predictions (Guyon

and Elissee, 2003). However, the F-score method did not take
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the mutual information between features into account (Chen

et al., 2006), and it can only be used for two classifications.

Once the number of classifications was more than two, the F-

score method will fail. Second, an insufficient sample size of

subjects was still a factor that cannot be ignored due to the

limitation of the research. Due to the small sample size of

individuals with simple clinical SPS or CPS, to strictly enroll the

criteria, we only absorbed individuals whose timing of onset was

short and the frequency of clinical seizure was low. Thus, there

were only individuals who were up to standard with a single

seizure form.

Conclusions

In this research, we divided the individuals with TLE

into two subtypes according to different clinical symptoms,

SPS and CPS, and constructed an SVM classifier to classify

the functional connectivity corresponding to these two types

of individuals. Finally, a classification accuracy of 78.52%

was achieved when we used the already existing SVM

classifier on the testing set. To further verify the stability

of the results above, we redesigned the data set allocation

method and extracted the features, and finally obtained

81.37% classification accuracy. The final results showed that

the nodes and edges involved in these features extracted by

the above two methods had a high coincidence. Moreover,

the two groups of individuals had significant differences in

the connection between the parietal lobe and other brain

regions. This finding may provide an idea for studying the

pathogenesis of CPS or new thinking that can be used to research

refractory epilepsy.
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Motor imagery (MI)-based brain-computer interface (BCI) systems have shown

promising advances for lower limb motor rehabilitation. The purpose of this

study was to develop an MI-based BCI for the actions of standing and

sitting. Thirty-two healthy subjects participated in the study using 17 active

EEG electrodes. We used a combination of the filter bank common spatial

pattern (FBCSP) method and the regularized linear discriminant analysis (RLDA)

technique for decoding EEG rhythms o	ine and online during motor imagery

for standing and sitting. The o	ine analysis indicated the classification ofmotor

imagery and idle state provided amean accuracy of 88.51± 1.43% and 85.29±

1.83% for the sit-to-stand and stand-to-sit transitions, respectively. The mean

accuracies of the sit-to-stand and stand-to-sit online experiments were 94.69

± 1.29% and 96.56 ± 0.83%, respectively. From these results, we believe that

the MI-based BCI may be useful to future brain-controlled standing systems.

KEYWORDS

brain-computer interface (BCI), electroencephalogram (EEG), motor imagery (MI), sit-

stand, filter bank common spatial pattern (FBCSP), regularized linear discriminant

analysis (RLDA), online BCI

1. Introduction

A brain-computer interface (BCI) system provides a communication channel

between the brain and an external device. These systems have been developed for

decades and the choice of the BCI paradigm depends on the application (Lotte

et al., 2018b). Among the possible strategies reported in the literature, the most

successful noninvasive BCI paradigms are based on three main approaches: evoked

response (P300), steady-state visually evoked potential (SSVEP), and motor imagery

(MI) (Lee et al., 2019). However, research on electroencephalogram (EEG) based MI

of lower limb movements toward BCI-controlled applications remains relatively scarce
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(Bobrova et al., 2020; Asanza et al., 2022). Many of these studies

have only been tested in offline scenarios due to the complexity

of the movements and experimental setups that produce

unrealistic EEG signals when compared to experimental setups

in online scenarios (Rodríguez-Ugarte et al., 2017). Only a small

number of studies have been conducted on standing and sitting

behaviors in offline scenarios (Zhou et al., 2007; Bulea et al.,

2014; Singh et al., 2017; Chaisaen et al., 2020). Therefore, we

examined the use of an EEG-based BCI to decode offline and

online MI information for these types of movements.

In recent decades, a wide variety of methods have been

developed to decode motor imagery tasks from EEG signals

in order to improve the performance of BCI systems (George

et al., 2021; Singh et al., 2021). These methods include feature

extraction techniques that use temporal (Rodríguez-Bermúdez

and García-Laencina, 2012; Hamedi et al., 2014; Kee et al., 2017;

Samuel et al., 2017), spectral (Al-Fahoum and Al-Fraihat, 2014;

Oikonomou et al., 2017), and time-frequency representations

(Kevric and Subasi, 2017; Gao et al., 2018; Aggarwal and Chugh,

2019; Padfield et al., 2019; Ortiz et al., 2020). Nevertheless, the

usefulness of spatial filtering techniques in BCI applications

has been explored for many years now, as a way to select

the most discriminative features in EEG recordings for motor

imagery tasks, as well as to reduce the huge dimensionality

that can be present in feature spaces (Ang et al., 2012;

Congedo et al., 2017; Lotte et al., 2018a; Rejer and Górski,

2018). In this sense, the common spatial pattern (CSP) method

has been shown to extract discriminative information more

effectively than other spatial filters such as bipolar, Laplacian,

or common average reference, as well as unsupervised data-

driven techniques such as independent component analysis

(ICA) (Naeem et al., 2009; Ortner et al., 2015; He and Wu,

2018). While research already exists concerning the CSPmethod

and was successfully applied (Chaisaen et al., 2020), important

knowledge is still missing regarding the challenge of decoding

EEG rhythms online during motor imagery tasks for standing

and sitting.

Some researchers use the term “BCI illiteracy” for people

unable to control a BCI (Allison and Neuper, 2010; Ahn et al.,

2013). Nevertheless, the effective control threshold depends

on many factors, including the BCI application and paradigm

(Edlinger et al., 2015; Lee et al., 2019). For example, an accuracy

level of less than 80% might be insufficient in a BCI system

designed for communication. Conversely, for BCI systems

intended for motor rehabilitation purposes, an accuracy above

the confidence level might become sufficient (Thompson, 2018).

Previous studies have focused on decoding EEG signals of left-

hand and right-hand motor imagery tasks (which represented

sitting down and standing up) (Noda et al., 2012; Wang

et al., 2018), or SSVEP signals (in which flickering lights

corresponded to the command for standing and sitting) (Kwak

et al., 2017), instead of investigating the decoding of continuous

EEG rhythms during motor imagery concerning standing and

sitting. For these reasons, considering the applications of lower

limb motor imagery and the necessity of using an online BCI

for these little-researched movements, this study establishes an

offline and online performance analysis of an EEG-based BCI

during motor imagery tasks for standing and sitting.

In the present study, we investigated whether people could

control an EEG-based BCI using motor imagery for standing

and sitting movements. For this purpose, we explored two

different classification scenarios: offline and online. The goal of

the offline scenario was to obtain individual training sets for

each participant in offline experiments to adjust and evaluate

the machine learning models of the BCI (one model for sit-to-

stand, one model for stand-to-sit). After training the interface,

the online scenario aimed to measure the speed and accuracy

of the BCI to decode EEG rhythms in real time during motor

imagery tasks for standing and sitting. To our knowledge, the

proposed EEG-based BCI is the first one to recognize motor

imagery tasks online for standing and sitting, which is crucial

for implementing brain-controlled standing technology. The

filter bank common spatial pattern (FBCSP) method was used

for feature extraction based on the modulation of theta wave

(4–8 Hz) and sensorimotor rhythm (SMR), which includes

two bands in the spectrum: alpha (8–12 Hz) and beta (12–

30 Hz), which are associated with movement-related tasks

in physical activity execution, motor planning, intention to

move, and motor imagery (Yuan and He, 2014). To make the

classification as fast and simple as possible, the regularized

version of the linear discriminant analysis (RLDA) approach

was used.

2. Materials and methods

2.1. Participants

The study involved 32 healthy subjects aged 19–29 years (16

women and 16 men). The mean (± standard deviation) age of

the participants was 22.4 (± 2.3) years. None of the participants

reported a history of neurological, musculoskeletal, or other

disorders, and all had normal or corrected-to-normal vision.

All participants were undergraduate students, with no academic

relationship to the experimenters, and none had previous

experience with EEG or BCI experiments. Before starting their

experimental session, participants were duly informed of the

nature of the study and instructed on the correct execution of

the experiments. In addition, participants voluntarily signed an

informed consent form in accordance with the experimental

protocol approved by the ethics committee of the Universidad

Antonio Nariño. This experimental protocol followed the

standards of the Declaration of Helsinki (Association, 2013).

Each subject was paid for their participation at the end of

their session.
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2.2. Electroencephalographic data
recording

EEG data were obtained from 17 active wet electrodes

(g.LADYbird) mounted on a g.Nautilus PRO biopotential

amplification system (g.tecmedical engineering GmbH, Austria)

with wireless data transmission technology (see Figure 1).

Electrodes were moistened with conductive gel and placed

according to the international 10–20 system at the following

positions around the primary motor cortex (Xu et al., 2017): F3,

Fz, F4, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6,

P3, Pz and P4, with the ground (GND) electrode placed at AFz

and the reference (REF) electrode placed in the right earlobe.

EEG signals were acquired at a sampling rate of 250 Hz and

digitally band-pass filtered with cutoff frequencies from 0.01 Hz

to 60 Hz, using 6th order Butterworth filter at each electrode

(Podder et al., 2014). Before starting the EEG recording, the

impedance of the electrodes was verified to be below 30 k� using

the impedance measurement tool provided by the manufacturer

of the g.Nautilus PRO. Additionally, an in-house software

platform developed in C++ was used to manage and control the

execution of the experiment, collect EEG signals, store the data,

and process them both offline and online (Copyright @ 2018

Instituto Tecnologico y de Estudios Superiores de Monterrey).

2.3. Experimental design

The experiments were conducted in an acoustically isolated

room where only the participant and the experimenter were

present. The participant was seated in a chair in a posture that

was comfortable for him/her but did not affect data collection.

In front of the participant, a 40-inch TV screen was placed at

about 3 m, as shown in Figure 1. On this screen, a graphical user

interface (GUI) displayed images that guided the participant

through the experiment. Each experimental session was divided

into two phases: an offline phase and an online phase.

2.3.1. O	ine phase

The offline experiments consisted of recording participants’

EEG signals during motor imagery trials for standing and sitting

that were guided by the GUI presented on the TV screen (see

Figure 2). Just before starting the recording of the EEG signals,

the participants practiced the sequences of mental tasks that

were indicated by the GUI on the TV screen. Once the recording

of the EEG signals started, six offline runs were conducted in

which the participants were standing in three runs and sitting

in the other three runs. The participant could choose the order

of the runs, and between each run, there was a break of a

few minutes for the participant to avoid fatigue and boredom,

FIGURE 1

Experimental setup with a participant in front of the TV screen

with the graphical user interface (GUI) to present visual cues

regarding each step in the sequence of a trial. The participant is

equipped with a g.Nautilus PRO system with 17 gel-based active

electrodes (g.LADYbird technology) to acquire the

electroencephalogram (EEG) and transmit it wirelessly from the

headset (transmitter) to the receiver (base station) connected to

the computer with the BCI software. REF, reference electrode;

GND, ground electrode at AFz.

recover, and prepare to continue with the recording of the

next run.

In each run, the participant had to repeat a block of 30 trials

of mental tasks indicated by visual cues continuously presented

on the screen in a pseudo-random sequence. The temporal

sequence of mental tasks performed by each participant is

shown in Figure 2. Each sequence of a trial consisted of

four steps:

1. Fixation: As a first step, a cross symbol appeared on the TV

screen for 4 s during which the participant was asked to

avoid any body movement or effort and to stay focused while

looking at the symbol.

2. Action observation: In the second step, a figure appeared

on the TV screen for 3 s, which the participant had to

observe and perform one experimental task subsequently in

the third step.

3. Imagining: In the third step, the participant had to

visualize the action indicated by the figure shown in
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FIGURE 2

Illustration of the temporal sequence of a trial performed by the participant in the sit-to-stand experiment (Top) and in the stand-to-sit

experiment (Bottom). Each sequence consisted of four steps: fixation, action observation, imagining, and resting.

the second step and perform one experimental task

for 4 s in response to the figure. For instance, the task

could be sitting motionless while actively imagining the

sit-to-stand movement (labeled as MotorImageryA),

sitting motionless without imagining the sit-to-stand

movement (labeled as IdleStateA), standing motionless

while actively imagining the stand-to-sit movement

(labeled as MotorImageryB), or standing motionless

without imagining the stand-to-sit movement (labeled

as IdleStateB).

4. Resting: Finally, in the fourth step of the sequence, the text

“Descanso” (the Spanish word for “Rest”) appeared on the

TV screen for 4 s, instructing the participant to rest from

the experimental task, blink, or move the head and body

if necessary.

Participants were asked to avoid or minimize muscle effort

and blinking from the first step to the third step of each

sequence. For each participant, an offline experimental session

was conducted for the construction of two datasets: (A) Sit-

to-stand and (B) Stand-to-sit. The participant’s EEG data

were collected from 90 sequences of dataset A (45 trials of

MotorImageryA tasks and 45 trials of IdleStateA tasks) and 90

sequences of dataset B (45 trials of MotorImageryB tasks and 45

trials of IdleStateB tasks). In total, the time duration of the offline

experimental session was at least 1 h for the collection of the two

EEG datasets.
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2.3.1.1. EEG data preprocessing

The two EEG datasets recorded from the offline experiments

were independently subjected to the following automatic pre-

processing pipeline (Mendoza-Montoya, 2017). First, the EEG

data were split into epochs (2-s data segments of contiguous

sample points of each trial) from 1 s before to 1 s after beginning

the experimental task of step 3 in the sequence of a trial.

Second, each epoch was separated and labeled according to

one of the four experimental tasks: MotorImageryA, IdleStateA,

MotorImageryB, or IdleStateB, and Ek ⊆ {1, 2, . . . , 45} was

the subset of indices of the epochs that belong to the task

k ∈ {MotorImageryA, IdleStateA,MotorImageryB, IdleStateB}.

For each participant, the total number of epochs for each pair

of experimental tasks was nepochs = 90. Third, each EEG

epoch X = [xe(t)]ne×nt of ne electrodes (or 17 EEG channels)

and nt sample points (500 sample points per EEG epoch) was

filtered using digital finite impulse response (FIR) filters with

cut-off frequencies between 20–40 and 4–40 Hz. The result of

this filtering step was the signal X20−40(t) = [x20−40
e (t)] ∈

R
ne×nt to detect muscle artifacts and the signal X4−40(t) =

[x4−40
e (t)] ∈ R

ne×nt to encompass the motor-related frequency

bands of the oscillatory EEG activity. Then, the peak-to-peak

voltage V
pp
e , the standard deviation σe, and the normalized

power Pnorme of each channel were calculated as below:

V
pp
e = maxt(x

4−40
e (t))−mint(x

4−40
e (t)), (1)

σe =

√

√

√

√

1

nt − 1

nt
∑

t=1

(x4−40
e (t)− µe)2, (2)

Pnorme =

∑nt
t=1(x

20−40
e (t))2

∑nt
t=1(x

4−40
e (t))2

, (3)

where

µe =
1

nt

nt
∑

t=1

x4−40
e (t). (4)

The processed data for each experimental task from each

participant contained a collection of epochs × time points ×

channels (45× 500× 17). The following exclusion criteria were

applied to identify and discard noisy epochs: (i) Maximum peak-

to-peak value V
pp
e greater than 200 µV; (ii) Standard deviation

amplitude σe greater than 50 µV; and (iii) Noise to signal ratio

Pnorme greater than 0.7. These criteria may indicate if the subject

is blinking, the amplifier is saturated, the electrodes are not

making good contact with the scalp, or there are some muscle

artifacts, as suggested in Mendoza-Montoya (2017), Delijorge

et al. (2020), and Hernandez-Rojas et al. (2022). Finally, any

epoch where at least one electrode met these criteria was

visually inspected to rule out noise-contaminated trials (as a

double check) and labeled as an “artifact” manually. The trials

with epochs labeled as “artifacts” were discarded and were

not used in the subsequent analysis. Conversely, the epochs

below the threshold levels passed validation and were used to

investigate spatially discriminative EEG features with the filter

bank common spatial pattern (FBCSP) method.

2.3.1.2. EEG signals analysis

Time-frequency analysis (TFA) of EEG time series is a

suitable technique to study cognitive events, such as motor

imagery tasks, that induce transient power modulations of

the EEG spectrum (Graimann and Pfurtscheller, 2006; Zhang,

2019). Modulations of this kind appear as a decrease (event-

related desynchronization or ERD) or an increase (event-related

synchronization or ERS) of spectral power at specific frequency

bands (Pfurtscheller and Lopes da Silva, 1999). ERD/ERS is

also known as an event-related spectral perturbation (ERSP),

which measures the event-related spectral changes relative to

a reference interval used as the spontaneous EEG baseline in

a wide range of frequencies (Makeig, 1993). Therefore, TFA

was performed on the aforementioned preprocessed trials to

visualize the ERD/ERS patterns using the EEGLAB toolbox

(version 2021.1) (Delorme and Makeig, 2004).

The resting stage of every trial was discarded and not

considered in the present study, as it does not contain relevant

EEG activity for the analysis. ERSP was computed at the

frequency ranges from 4 to 30 Hz for all channels to calculate

the power spectrum by applying the Morlet wavelets transform

with incremental cycles (7 cycles at the lowest frequency to

14 at the highest), resulting in 200-time points (−6.03, 3.02)

s. The baseline reference was then taken from −3.5 to −3

s (which corresponds to the non-movement interval) at the

beginning of step 3 in the sequence of each trial. Spectral

power changes were averaged at each time point and normalized

by baseline spectra. The significance of ERSP deviations from

the baseline was analyzed using the bootstrap method (α =

0.05) (Graimann and Pfurtscheller, 2006). Accordingly, ERSP

could identify significant ERD and ERS as negative and positive

spectral changes, respectively (Zhang, 2019).

2.3.1.3. Feature extraction

One of the most successful algorithms in BCI research for

feature extraction is the common spatial pattern (CSP) (Padfield

et al., 2019). This method finds spatial filters that project EEG

data into a new space in which the variances corresponding to

one class are maximized while the variances of a second class are

minimized (Lotte and Guan, 2011). In this study, an enhanced

version of the original CSP algorithm, known as the filter bank

common spatial pattern (FBCSP) algorithm (Ang et al., 2012),

was implemented using a FIR filter bank of five digital band-

pass filters centered on five EEG frequency bands (theta: 4–8 Hz,

alpha: 8–12 Hz, low-beta: 12–16 Hz, mid-beta: 16–20 Hz, high-

beta: 20–30 Hz) (Chen et al., 2018). All the filters in the filter

bank were designed in the frequency domain using a Gaussian

kernel with unitary gain.
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The FBCSP algorithm is useful when the frequency

components of the modulated signals may vary among subjects.

For instance, in the motor imagery paradigm, a particular

frequency of the sensorimotor rhythm is not the same for

all users (Saha and Baumert, 2020). For this reason, each

preprocessed epoch of a training set was filtered using the FIR

filter bank in order to obtain spectrally filtered epochs Y =

[ye,f (t)]ne×nt×nf , where nf is the EEG frequency subband (4–8

Hz, 8–12 Hz, 12–16 Hz, 16–20 Hz, 20–30 Hz).

We studied the bi-class classification of two pairs of

experimental tasks: MotorImageryA vs. IdleStateA for the sit-

to-stand transition and MotorImageryB vs. IdleStateB for the

stand-to-sit transition. The CSP algorithm was then applied

to each subband and each pair of the experimental tasks. The

CSP algorithm provided an ne × ne projection matrix W =

[w1,w2, . . . ,wne ]
′
for each pair of experimental tasks. This

matrix was a set of subject-dependent spatial patterns, reflecting

the specific activation of cortical areas during the experimental

task. With the projection matrix W, the decomposition of an

epoch Y was described by Z = WY , where this transformation

projected the variance of the filtered EEG signals of Y onto the

rows of Z and gave rise to ne new time series. The columns of

W−1 were a set of CSPs that can be thought of as time-invariant

EEG source distributions (Ortner et al., 2015).

The number of spatial filters retained was chosen as six

for all subjects and training sets, as recommended in Blankertz

et al. (2008b). The three first spatial filters contribute most to

the variance of class one data, and the last three spatial filters

contribute most to the variance of class two data. If nm = 6

represents the number of spatial filters retained per frequency

subband, the spectrally filtered epochs Y are transformed into

spatially filtered epochs YCSP = [yCSP
e,f

(t)]nm×nw×nt×nf , where

nw is the number of timewindows of nt time points for each EEG

epoch. During the offline feature extraction, each EEG epochwas

split into two-time windows of intervals [−1, 0) s and [0, 1) s,

respectively, where 0 s is the onset time of step 3 in the sequence

of a trial. Finally, for each frequency subband and projected

channel, the BCI calculated the log-variance. This resulted in

30 features (nm × nf ) by 180 observations (nepochs × nw)

for each pair of experimental tasks from each participant that

would be used in the regularized linear discriminant analysis

(RLDA) classifier. The Fisher’s criterion was applied to evaluate

the extracted features.

2.3.1.4. Classifier

Linear classifiers have proven to be an efficient option for

the detection of EEG rhythms in motor imagery paradigms

for BCI applications (Oikonomou et al., 2017). In this

category, linear discriminant analysis (LDA) can provide

optimal results and outperform more complex classification

techniques. Additionally, LDA is relatively easy to train and

evaluate and requires a low computational cost to classify

new observations. Therefore, two binary classification models

based on LDA with regularized covariances were used to

discriminate with a first model, MotorImageryA vs. IdleStateA

for the sit-to-stand classification scenario, and with a second

model, MotorImageryB vs. IdleStateB for the stand-to-sit

classification scenario.

These types of binary-class models are highly employed in

MI-based BCI applications (Lotte et al., 2018a). The proposed

BCI employed the regularized linear discriminant analysis

(RLDA) as a classification machine learning model to decide

what class to assign to the processed data according to a linear

combination of the feature vector (Fu et al., 2019). If x represents

a real vector of nc = 30 features for an EEG epoch, the

classification model evaluates the function

f (x) = g(

nc
∑

i=1

bixi + d), (5)

where b = [b1, b2, . . . , bnc ]
′
and d are the coefficients of

the linear model, and g(a) is a scalar function. Then, the

classification model returns a label or category l ∈ {1,−1} to

the given observation based on the evaluation of f (x). A typical

approach is to use a threshold value such that values above it

have the class label l = 1. Conversely, values below this threshold

correspond to the other class label l = −1.

LDA finds the class label l that maximizes the conditional

probability p(L = l|X = x) (Ng and Jordan, 2001). It assumes

that the probability density functions p(X = x|L = −1) and

p(X = x|L = 1) are both normally distributed with mean

vectors m−1, m1 and covariance matrices C−1, C1. Under these

assumptions, the decision rule p(L = 1|X = x) > p(L =

−1|X = x) is expressed as a dot product b′x+ d > 0, where

b = 2C−1(m1 −m−1), (6)

d = ln

(

P(L = −1)

P(L = 1)

)

+m′
−1C

−1
−1m−1 −m′

1C
−1
1 m1, (7)

and P(L = l) is the probability of class label l. Additionally, for

the automatic regularization of the LDA algorithm, the BCI uses

the method proposed by Ledoit and Wolf (2004) to compute

C−1 and C1 (Lotte and Guan, 2011).

The goal of the two classification models was the

discrimination of the different pairs of experimental tasks to

return a motor imagery state or class label l that represented

when the participant was imagining (l = 1) or not imagining

(l = −1) a movement based on the observations or

corresponding resulting features for each EEG epoch. For this

purpose, the BCI incorporated two RLDA classifiers to complete

the two machine learning models for the sit-to-stand and stand-

to-sit transitions, respectively. These classifiers are simple and

have a low computational requirement, which makes them

suitable for the online BCI (Mao et al., 2017).
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2.3.1.5. Classification model performance

In the final steps of the offline phase, the two complete

machine learning models of the study subject were evaluated

for the transitioning actions: (i) Sit-to-stand and (ii) Stand-to-

sit. The evaluation of these models depends on the collection

of labeled data obtained from datasets A and B in the offline

experiments. For this assessment, the machine learning models

i and ii for each participant were independently assessed

by applying a five-fold cross-validation procedure to avoid

overfitting and measure generalization on each model (Berrar,

2019). In this procedure, the set of trials of A and B were

randomly split into five equal-sized subsets each, respectively.

For each fold, the BCI uses four subsets to train the models

m ∈ {i, ii}. Then, the remaining subset is used to test

the corresponding model m. This process was repeated with

mutually exclusive training and test subsets until the five cross-

validations were completed. The classification accuracy accm,c

of each class c ∈ {MotorImagery, IdleState} was calculated as

described below:

accm,c =
ncorrect

ntotal
× 100%, (8)

where accm,c is the offline accuracy, ntotal is the total number

of instances of class c, and ncorrect is the number of instances

classified correctly in class c by model m. The overall model

accuracy accm,overall = 0.5×(accm,MotorImagery+accm,IdleState)

and the confusion matrices were also computed.

Additionally, permutation testing was applied to assess the

significance level of the overall model accuracies (Good, 2006).

This test repeats the five-fold cross-validation procedure by

shuffling the class labels during the training of the classifiers

to compute the empirical random classification accuracy. In

this methodology, the null hypothesis (H0) indicates that

observations of both classes are exchangeable so that any

random permutation of the class labels produces similar

accuracies to the obtained with the non-permuted data. The

alternative hypothesis (H1) is accepted when the overall model

accuracy is an extreme value in the empirical distribution built

with several random permutations of the labels. When the

alternative hypothesis is accepted, we can say that the overall

model accuracy is above the chance level.

2.3.2. Online phase

For each participant, the two machine learning models

obtained in the offline phase were used to carry out two

online experiments: (I) Sit-to-stand and (II) Stand-to-sit. Each

participant was instructed to select, in no particular order, 30

sequences for experiment I (15 trials of MotorImageryA tasks

and 15 trials of IdleStateA tasks) and 30 other sequences for

experiment II (15 trials of MotorImageryB tasks and 15 trials

of IdleStateB tasks). Each trial was unique and was generated

pseudo-randomly before the experiment.

The timeline of the online sequences was indicated by the

user interface in the same way as shown in Figure 2. However,

the difference between the offline and online timelines was in

step 3. In the third step of the online timeline, the participant

performed one experimental task in response to the figure shown

in step 2, and the BCI attempted to detect this task in real time

for 3–15 s at the same time that provided feedback.

Technically, the online classification of single-trial EEG data

could be done as in the offline phase since the trained classifiers

can be applied to feature vectors calculated from an arbitrary

window. However, this is likely to lead to unreliable results since

those classifiers are adjusted to detect signals with a specific

time related to the response (Blankertz et al., 2001). There is

no guarantee that the classifier will behave similarly elsewhere.

As suggested in Blankertz et al. (2001, 2008a), Syan and

Harnarinesingh (2010), and Mendoza-Montoya (2017), sliding

windows are usually used to increase online classification’s

robustness to time-shifted signals. Thus, during the online

feature extraction, the data length of each epoch was 1 s,

that was 250 sample points, and the BCI split them into five

sliding windows (50 sample points each), resulting in five feature

vectors from each trial.

The BCI processed and provided continuous visual feedback

on the results obtained after classifying five consecutive

time windows (50 sample points each) from one epoch

(250 sample points). If one experimental task produces high

MI-related activity, the BCI makes the white background

of the corresponding figure look bigger (see Figure 3A). If

the idle state-related activity is higher, that figure’s white

background looks bigger (see Figure 3B). Otherwise, both

figures’ backgrounds are the same size (see Figure 3C). This

visual feedback notifies the participant when the BCI is detecting

MI-related activity and helps to increase the MI modulations of

the intended movement (Yu et al., 2015).

As shown in Figure 4, the RLDA classifier labeled each of

the time windows from 50 sample points with the name of one

of the experimental tasks. The label might be used directly to

determine the action or control command to produce with the

BCI. However, because the accuracy of the MI-based BCI is

typically below 90%, the risk of executing the wrong action is

high (Irimia et al., 2018). For this reason, the BCI only generates

command or action signals when an experimental task has been

detected several times for a few seconds. The minimum time

required is about 3 s: 1 s to acquire a whole epoch of EEG signals,

another second to classify the EEG data five times, and a third

second to select a command or action to execute.

When the same experimental task label has been detected

five consecutive times in one epoch, the BCI synchronizes the

state of the GUI to produce visual feedback on the selected

task, and the corresponding figure background is colored blue

(see Figure 3D). On the other hand, if the BCI does not detect

the same label five consecutive times, it waits for new labels

and dismisses the oldest ones. If the BCI detects the requested
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FIGURE 3

Continuous visual feedback during the online stand-to-sit experiment when: (A) the BCI has detected a high MI-related activity, (B) the BCI has

detected a high idle state-related activity, (C) the BCI has not detected a dominant experimental task, and (D) the BCI has detected a dominant

experimental task.

experimental task in less than 15 s, the sequence is interrupted to

provide visual feedback (see Figure 3D) and continues with step

4 (see Figure 4). On the contrary, if the BCI does not recognize

the experimental task and reaches the time limit of 15 s, the BCI

simply continues with step 4.

2.3.2.1. Online BCI evaluation

The online assessment aims to investigate the feasibility

of decoding in real time the two classes (MotorImagery vs.

IdleState) of the two binary machine learning models in the

sit-to-stand and stand-to-sit experiments. Consequently, the

online evaluation procedure was carried out for each participant

independently. Two machine learning models were used for

each participant to assess the feasibility of continuous detection

of motor information along the online trials. To this end, the

performance of the BCI was evaluated in terms of the following

detection metrics that were calculated using Equations (9)–(13).

TPR =
TP

TP + FN
, (9)

TNR =
TN

TN + FP
, (10)

acconline =
TP + TN

TP + TN + FP + FN
, (11)

PPV =
TP

TP + FP
, (12)

NPV =
TN

TN + FN
, (13)

where:

• Sensitivity or true positive rate (TPR) indicates the

percentage of times that the motor imagery class was

detected correctly (TP are the true positives and FN are the

false negatives).

• Specificity or true negative rate (TNR) denotes the

percentage of times that the idle state class was detected

correctly (TN are the true negatives and FP are the

false positives).
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FIGURE 4

Flowchart of the online classification. In online conditions, the BCI processes each time window of the epoch and assigns it one class between

motor imagery and idle state. The BCI also provides continuous visual feedback on the classifications by making the white background of the

icon corresponding to the class look bigger or turn blue. The time limit to detect five consecutive times the same class and pass step 3 is 15 s.

• Accuracy (acconline) represents the probability of correctly

detecting the motor imagery and idle state classes given the

total number of attempts to detect them.

• The positive predictive value (PPV), also called precision,

is the probability that the detection of the motor imagery

class is correct given the total number of times that class

is detected.

• The negative predictive value (NPV) is the probability that

the detection of the idle state class is correct given the total

number of times that class is detected.

The information transfer rate (ITR) was also used as a

performance metric for the online evaluation of the BCI. The

calculation of this metric is based on the amount of information

transferred per unit of time. The ITR was calculated for each

participant in bits/min using the following formula (He et al.,

2018):

ITR =
60

T
× [1+ (acconline) log2(acconline)

+ (1− acconline) log2(1− acconline)], (14)

where T is the average time from task performing to

task detection (detection time in seconds). Under these

conditions, the maximum possible information transfer rate

is 20 bits/min for each online experiment (Wolpaw et al.,

2002).

3. Results

ERD/ERS has been studied widely as one of the brain activity

markers for motor imagery tasks. Figure 5 demonstrates the

grouped ERSP across 32 participants in the time-frequency

(TF) plots on all electrodes and in the group-level 2-D scalp

topographies during each stage of the sit-to-stand and stand-to-

sit experiments (excluding the rest period). The ERSP estimates

ERD/ERS from the entire duration of the trials relative to the

baseline spectra from 4 to 30 Hz. All present ERSP values

were significant (see Figure 5, ERD in blue, ERS in red)

compared to the baseline (α = 0.05). There was a tendency

to decrease the alpha-band power for the action observation

stage in all sit-to-stand and stand-to-sit trials, indicating ERD

mainly in the parietal and parieto-occipital regions. Only for

the motor imagery stage, the ERD sustained toward the centro-

parietal and central electrode sites was found. However, this

ERD was not present for the idle state in all trials of both

experiments. Furthermore, we observed a significant increase
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FIGURE 5

Group-level event-related spectral perturbation (ERSP) for frequencies between 4 and 30 Hz across all trials pooled for sit-to-stand (top panels)

and stand-to-sit (bottom panels) experiments compared to the baseline from −3.5 to −3 s. Time-frequency (TF) plots combined the TF

decompositions across all channels. Note that these plots with the 2-D scalp topographies also combined ERSP from di�erent subjects and all

present ERSP values were statistically significant compared to the baseline (α = 0.05). The time interval (−6,−3] s corresponds to the fixation

stage, (−3, 0) s corresponds to the action observation stage, and [0, 3) s corresponds to the stage of one of the four experimental tasks: (A)

MotorImageryA, (B) IdleStateA, (C) MotorImageryB, or (D) IdleStateB.

in the beta-band power, indicating ERS, in the motor imagery

stage of sit-to-stand and stand-to-sit trials compared to the idle

state.

The Fisher’s criterion was applied to evaluate the extracted

features from each participant and show the highest rank

features, as reported in Table 1. The features most common

to all participants for the sit-to-stand and stand-to-sit

classification scenarios were the low-beta frequency band

with the fifth spatial filter and the alpha frequency band

with the sixth spatial filter, respectively. In both classification

scenarios, the highest Fisher score values were 5.08 and

9.65 in the low-beta frequency band of participant ID

P25. The lowest Fisher score values were 0.32 for the

sit-to-stand classification scenario in the theta frequency

band of participant ID P03 and 0.34 for the stand-to-sit

classification scenario in the alpha frequency band of participant

ID P13.

Box plots were used to present the distribution of

the offline classification accuracy estimated with the five-

fold cross-validation procedure across all participants (see

Figure 6). In particular, the mean accuracies (denoted by

×) of the MotorImageryA, IdleStateA, and overall A classes

were, respectively, 89.21, 87.81, and 88.51% in the sit-

to-stand classification scenario. Likewise, the medians of

the MotorImageryA, IdleStateA, and overall A classes were

90.58, 89.60, and 89.36%, respectively. The worst classifier

performances were below 80% (2 women and 1 man), whereas

15 participants obtained classifier performances above 90% (7

women and 8 men). The best model performance was 98.49%

and the worst was 58.02%.
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TABLE 1 Comparison of the highest-ranking features.

Participant ID Sit-to-stand Stand-to-sit

Feature Fisher score value Feature Fisher score value

Rhythm Spatial filter Rhythm Spatial filter

P01 Alpha 1 3.64 High Beta 2 2.03

P02 Low Beta 4 1.23 Mid Beta 1 0.52

P03 Theta 5 0.32 Alpha 4 0.40

P04 Low Beta 6 2.61 Alpha 6 2.01

P05 High Beta 6 1.65 High Beta 2 1.13

P06 Alpha 5 2.71 Alpha 4 1.98

P07 Mid Beta 2 1.31 High Beta 2 1.68

P08 Mid Beta 6 0.58 Low Beta 6 0.54

P09 Low Beta 5 2.32 Low Beta 5 1.93

P10 Alpha 5 3.97 Alpha 6 1.75

P11 High Beta 5 1.13 Alpha 6 1.70

P12 Mid Beta 2 0.57 Theta 1 0.88

P13 Alpha 6 0.67 Alpha 5 0.34

P14 Alpha 5 0.87 Alpha 1 1.00

P15 Alpha 1 0.79 Alpha 5 0.54

P16 Theta 1 3.04 Alpha 2 3.33

P17 Mid Beta 1 2.14 Mid Beta 1 1.61

P18 High Beta 6 0.71 Alpha 5 0.57

P19 Low Beta 6 0.84 Alpha 6 0.72

P20 Low Beta 1 1.04 Low Beta 2 2.45

P21 Theta 6 0.62 Mid Beta 6 0.55

P22 Low Beta 4 1.00 Theta 1 0.95

P23 Low Beta 5 4.82 High Beta 2 0.63

P24 Low Beta 1 0.90 High Beta 1 1.15

P25 Low Beta 5 5.08 Low Beta 6 9.65

P26 High Beta 2 1.30 Theta 2 0.99

P27 Low Beta 6 2.39 Alpha 5 1.63

P28 Alpha 6 0.72 Alpha 1 1.51

P29 Low Beta 5 3.10 Low Beta 5 2.16

P30 Low Beta 5 0.98 Alpha 6 0.80

P31 Low Beta 6 2.19 Alpha 6 1.24

P32 Theta 6 1.61 Alpha 3 1.05

Features were ranked using Fisher’s separability criterion.

In the stand-to-sit offline classification scenario, the mean

accuracies of the MotorImageryB, IdleStateB, and overall B

classes were, respectively, 84.99, 85.60, and 85.29%. Similarly,

the medians of the MotorImageryB, IdleStateB, and overall B

classes were 86.12, 87.43, and 86.83%, respectively. Additionally,

7 participants obtained classifier performances below 80% (4

women and 3 men) and 10 participants above 90% (6 women

and 4men). In this case, the best model performance was 99.44%

and the worst was 56.51%.

In the permutation tests, the overall classification accuracies

in 30 of 32 participants were statistically significant (p < 0.05,

1,000 random permutations) for the sit-to-stand and stand-to-

sit classification scenarios. Only participant ID P03 presented

p-values higher than 0.05 for both classification scenarios, which

means not statistically significant. Likewise, for the stand-to-

sit classification scenario, the p-values of participant ID P13

were higher than 0.05, not statistically significant, and indicate

strong evidence for the null hypothesis. Altogether, the offline

classification results showed the feasibility of recognizing the

studiedmotor imagery tasks vs. idle state above empirical chance

levels. The Supplementary material section provides the results

for each participant.
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FIGURE 6

Classification accuracies (%) estimated with five-fold cross-validation across all participants for the motor imagery vs. idle state classes in the

sit-to-stand and stand-to-sit o	ine experiments. × represents the mean. The Supplementary material section provides the result for each

participant.

Figure 7 shows the results of the confusionmatrices obtained

in the sit-to-stand and stand-to-sit classification scenarios

for the MotorImagery vs. IdleState classes. Regarding the

confusionmatrix in Figure 7A, corresponding to the sit-to-stand

scenario, the true positive rate (TPR), false negative rate (FNR),

false positive rate (FPR), and true negative rate (TNR) were,

respectively, 89.2, 10.8, 12.2, and 87.8%. As for the confusion

matrix in Figure 7B, for the stand-to-sit scenario, the TPR, FNR,

FPR, and TNR were 85.0, 15.0, 14.4, and 85.6%, respectively.

Overall, the sit-to-stand and stand-to-sit offline classification

scenarios showed comparable results and a relatively balanced

performance among the different classes.

The box plots in Figure 8 were used to show the

characteristics of the sensitivity, precision, specificity, and

negative predictive value calculated across all participants in the

sit-to-stand and stand-to-sit online classification scenarios. In

the sit-to-stand scenario, most of the characteristics had a mean

(indicated by×) of between 90 and 100% and a median of 100%

for both the women and men groups. With respect to the stand-

to-sit scenario, these characteristics had also a mean of between

90 and 100% and a median of 100%. These results indicate that

models for the sit-to-stand scenario can discriminate between

EEG epochs of MotorImagery vs. IdleState classes just as well as

models for the stand-to-sit scenario.

Finally, the distribution of the online accuracy, detection

time and ITR in the sit-to-stand and stand-to-sit online

experiments are represented in Figure 9. The mean accuracies

± standard error of the sit-to-stand and stand-to-sit online

experiments were 94.69 ± 1.29% and 96.56 ± 0.83%,

respectively. The average detection times were 4.70± 0.11 s and

4.77± 0.16 s, and the mean ITRs were 10.12± 0.73 bit/min and

11.13 ± 0.72 bit/min for the sit-to-stand and stand-to-sit online

experiments, respectively. The shortest detection times were 3.75

s in the sit-to-stand experiments and 3.60 s in the stand-to-sit

experiments. The longest detection times were 6.15 s in the sit-

to-stand experiments and 6.90 s in the stand-to-sit experiments.

Likewise, theminimum ITRs were 2.57 bits perminute in the sit-

to-stand experiments and 4.10 bits per minute in the stand-to-sit

experiments. The maximum ITRs were 16.02 bits per minute in

the sit-to-stand experiments and 16.68 bits per minute in the

stand-to-sit experiments.

4. Discussion

In this study, we found that sitting and standing motor

imagery tasks can be recognized online using an EEG-based

BCI. From our findings, a high percentage of participants

(above 80%) can control the motor imagery (MI)-based BCI for

standing and sitting. In addition to expanding the participant

sample size, using more EEG active electrodes, and improving

signal processing, this study enhanced previous research by

proposing a solution to the problem of online decoding of motor

imagery electroencephalography (MI-EEG) signals for standing

and sitting.

For the first time, decoding EEG rhythms offline and online

during motor imagery tasks for standing and sitting had a

satisfactory performance using a feasible BCI paradigm. Current
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FIGURE 7

Confusion matrices obtained in the sit-to-stand (A) and stand-to-sit (B) o	ine classification scenarios for all participants.

FIGURE 8

Across-all-participants distributions (%) of sensitivity, precision, specificity, and negative predictive value obtained in the sit-to-stand and

stand-to-sit online experiments. × represents the mean. The Supplementary material section provides the result for each participant.

BCI paradigms that consider the complexity of shifting from

sitting to standing and vice versa are usually either based on

left-hand and right-handmotor imagery tasks (Noda et al., 2012;

Wang et al., 2018) or SSVEP signals (Kwak et al., 2017). These

BCI paradigms have proven effective in transferring information

from the brain to a computer. However, they are unnatural for

the brain to interact with and thus require much more cognitive

resources to act as traditional human-computer interfaces for

the sit-to-stand and stand-to-sit transitions. For this reason,

one of the main contributions of the proposed BCI paradigm

is to provide a more natural interaction between the user and

the interface, which is a current challenge in the design of BCI

systems (Xu et al., 2021).

Previous studies have shown the effects of task complexity

on ERD/ERS rhythms and the complexity of the sit-to-stand and

stand-to-sit movements (Bulea et al., 2014; Singh et al., 2017;

Mashat et al., 2019; Chaisaen et al., 2020). To overcome these

limitations, we used information from the idle state, a neutral

condition, to facilitate the classifier’s recognition of distinctive

characteristics of the related motor imagery task. ERD BCIs

have pursued this approach with considerable success generating

brain signals that are easier to categorize (see Figure 5). This

BCI paradigm with a low cognitive load could explain why our

study did not show the typical BCI inefficiency (Allison and

Neuper, 2010; Edlinger et al., 2015; Liu et al., 2020; Xu et al.,

2021). Additionally, the frequency bands and spatial filters of

the extracted features reported in Table 1 could provide the most

discriminated information.

The overall classification accuracies (see Figure 6), estimated

with cross-validation in the offline classification scenarios,

are similar to those reported in other related BCI literature

(Wang et al., 2018; Chaisaen et al., 2020). For instance, in the
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FIGURE 9

Box plots of the online accuracy (A), task detection time (B), and ITR values (C) of the BCI online experiments. The Supplementary material

section provides the result for each participant.

offline analysis by Chaisaen et al. (2020), the classification of

action observation (AO) and motor imagery (MI) provided

the grand average accuracy ± standard error (SE) of 82.73

± 2.54% in the stand-to-sit transition, which is lower

compared to 85.29 ± 1.83% between the classification of

motor imagery and idle state in this study. In the current

study, the highest grand average accuracy ± SE was 88.51 ±

1.43% between the classification task of motor imagery and

idle state in the sit-to-stand transition, compared to 76.14

± 3.14% in the classification of AO and MI by Chaisaen

et al. (2020). Furthermore, within the 60 min of training,

30 of 32 participants achieved an overall accuracy above

chance level.

The confusion matrices (see Figure 7) showed that the

trained classification models generated balanced results for

the different classes. The overall accuracy results obtained

in the classification models trained with the permutation

testing method also confirm this situation empirically (see

Supplementary material section). These results show that the

classifiers were not highly biased toward any experimental

task. Furthermore, sensitivity, precision, specificity, negative

predictive value, and accuracy in the online phase are

not measured by cross-validation as in offline experiments.

Therefore, due to the heuristics described to detect one

experimental task and compute the performance metrics in the

online experiments, these metrics are not directly comparable

between the online and offline phases.

The online classification results (see Figure 8) demonstrated

the feasibility of the BCI to decode real-time EEG rhythms

during the studied motor imagery tasks, whereas previous

studies usually only presented classification accuracy. We

also calculated sensitivity, precision, specificity, and negative

predictive value to illustrate the online detection ability of

the BCI to motor imagery-related potentials vs. idle state

potentials. When considering all participants as a single group,

the mean accuracies ± SE of the sit-to-stand and stand-

to-sit online experiments were 94.69 ± 1.29% and 96.56 ±

0.83%, respectively, which are above the range of previous

studies (Noda et al., 2012; Wang et al., 2018; Choi et al.,

2020).

In both online classification scenarios (see Figure 9), the

number of processed epochs and thresholds for motor imagery

and idle state classes are customizable for each participant to

improve online accuracy, detection time, and ITR of the MI-

based BCI system. However, we used the same parameters

for all participants, and it is essential to improve the system

performance for participants who cannot achieve high detection

rates. One potential strategy for improving system performance

would be to modify the detection criteria in the third step of

the online timeline. For instance, the classification of multiple

sliding windows per trial provides a simple way to find a balance

between the detection speed and the average accuracy of the

system (Lee et al., 2019).

Both the offline (five-fold cross-validated data) and online

(not cross-validated data) classification results demonstrated

that the MI-based BCI could identify new observations of each

class with high accuracy. Nevertheless, the results are similar

to those reported in other MI-based BCI studies (Irimia et al.,

2018; Choi et al., 2020; Gurve et al., 2020). These may be due

to the high motivation of the research subjects. Additionally, the

instructions provided during the subjects’ training emphasized

the differences between the studied motor imagery tasks with

a high cognitive load vs. the no imaginary movement state

(idle or rest state) with a low cognitive load to achieve a good

performance. At the same time, the strategy applied to increase

the online accuracy by single-trial classification using sliding

windows allowed to reduce the classification errors but slowed

down the detection time and ITR. Therefore, the choice of the

parameters is crucial to keep a balance between the detection

speed and the classification accuracy of the interface.
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If we consider the response times of the present BCI system,

it is not possible to implement an active fine control for a

robotic device. However, by improving the response times of this

new BCI, users could send commands to standing devices (like

standing wheelchairs) to execute complete sit-to-stand or stand-

to-sit transitions using the interface. For this reason, it is our

view that theMI-based BCI system is suitable for themovements

studied in this research.

One of the difficulties encountered in this study is the

lack of an objective comparison between offline vs. online

results. Ideally, the online classification performance should

be calculated similarly to the values calculated using the

cross-validation procedure of the offline phase. However, the

crucial problem is to perform cross-validation with only a

few observations in the online phase because it may lead

to overfitting and poor generalization. Hence, cross-validation

was necessary to evaluate the classification performance of the

machine learning models in the offline phase. By contrast, in

the online phase, the classification of multiple sliding windows

per trial addressed the problem of single-trial misclassification

and false positives in order to evaluate the online classification

performance of the models (Mendoza-Montoya, 2017; Delijorge

et al., 2020; Hernandez-Rojas et al., 2022).

The results suggest that a large population can control

the EEG-based BCI and that high accuracy of above 90%

can be achieved. Further research is required to establish

whether people suffering from mobility impairments (who had

previously been able to stand up and sit down before the

impairments developed) could perform motor imagery tasks

and operate the EEG-based BCI system for standing and sitting.

Furthermore, more techniques for feature extraction and more

machine learning models also are considered to extend the

analyses. Classification techniques such as deep learning can

be another alternative to analyze the problem studied here.

Another interesting aspect would be to include more motor

imagery tasks (e.g., three-class classification: imagining standing

vs. imagining sitting vs. resting) that the system can interpret

and test in more realistic environments. This system could

represent the basis for modern interfaces’ integration into future

technologies (e.g., exoskeleton-based rehabilitation systems or

brain-controlled standing wheelchairs) where the interface can

be adapted to the user’s specific disability.
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Many studies have used motor imagery-based brain–computer interface (MI-

BCI) systems for stroke rehabilitation to induce brain plasticity. However, they

mainly focused on detecting motor imagery but did not consider the e�ect

of false positive (FP) detection. The FP could be a threat to patients with

stroke as it can induce wrong-directed brain plasticity that would result in

adverse e�ects. In this study, we proposed a rehabilitative MI-BCI system

that focuses on rejecting the FP. To this end, we first identified numerous

electroencephalogram (EEG) signals as the causes of the FP, and based on

the characteristics of the signals, we designed a novel two-phase classifier

using a small number of EEG channels, including the source of the FP. Through

experiments with eight healthy participants and nine patients with stroke, our

proposed MI-BCI system showed 71.76% selectivity and 13.70% FP rate by

using only four EEG channels in the patient group with stroke. Moreover,

our system can compensate for day-to-day variations for prolonged session

intervals by recalibration. The results suggest that our proposed system, a

practical approach for the clinical setting, could improve the therapeutic e�ect

of MI-BCI by reducing the adverse e�ect of the FP.

KEYWORDS

brain-computer interface, brain plasticity, contamination, false positive rejection,

motor imagery, neurorehabilitation

Introduction

Brain–computer interface (BCI) using electroencephalogram (EEG) signals is

gaining significance in stroke neurorehabilitation owing to its positive effect on

rehabilitation (Friehs et al., 2004; Lebedev and Nicolelis, 2006; Daly and Wolpaw,

2008; Grosse-Wentrup et al., 2011; Young and Tolentino, 2011; Bai et al., 2020).

Rehabilitative BCI systems use EEG signals to provide motor-related neurofeedback

immediately after the motor intention to generate a planning execution cycle.
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By repeating this cycle, brain plasticity can be induced by

firing mirror neurons to reorganize the damaged neural circuits

in the brain (Bennett et al., 1964; Livingston, 1966; Murphy

and Corbett, 2009; Duffau, 2016; Reinkensmeyer et al., 2016;

Sasmita et al., 2018). Many studies have shown that these

BCI systems can improve the rehabilitation results in patients

with stroke by increasing motor function after the training

sessions (Friehs et al., 2004; Lebedev and Nicolelis, 2006;

Daly and Wolpaw, 2008; Murphy and Corbett, 2009; Grosse-

Wentrup et al., 2011; Young and Tolentino, 2011; Bai et al.,

2020).

Rehabilitative BCI systems can be classified into two

types: synchronous and asynchronous. The synchronous system,

which detects target brain signals during a pre-defined time after

a visual or sound cue is provided to the users (Pfurtscheller

et al., 2003), is inappropriate for training protocols based on

the activities of daily living (ADL) as users cannot freely control

BCI whenever desired. In contrast, the asynchronous system,

which keeps monitoring until the target brain signal is detected

(Leeb et al., 2007; Diez et al., 2011; Chae et al., 2012; Kus et al.,

2012), is beneficial to rehabilitative BCI as it can provide a more

ADL-like experience (Aricò et al., 2020). Since the asynchronous

system monitors the brain signal continuously, the feedback

of the system can be provided not only in the user-intended

time (true positive; TP) but also for the rest of the time (false

positive; FP).

For the asynchronous system of rehabilitative BCI, event-

related desynchronization (ERD), an attenuating power on

certain frequency (alpha and beta) bands, is a typical feature

(Pfurtscheller and Lopes Da Silva, 1999). Motor execution

(ME) results in ERD; however, most patients with stroke have

difficulties performing ME due to motor impairments. Hence,

ERD caused by motor imagery (MI) has been regarded as an

alternative to ME ERD. This is supported by the following facts.

MI ERD shares almost the same activation area and frequency

band if the participant performs the exact image of the desired

motor task (Miller et al., 2010; Jeong et al., 2019), and motor

function recovery after MI training has been reported in patients

with stroke (Sun et al., 2016).

It is well known that asynchronous BCI systems are more

complicated than their synchronous counterparts (Nicolas-

Alonso and Gomez-Gil, 2012; Hramov et al., 2021). Moreover,

MI is a complex mental task, namely, intention, tactile,

proprioceptive, and visual feeling of the specific motor task

(Jeannerod, 2006); thus, MI ERD generated by stroke patients

with chronic motor impairments would be weak, leading the

asynchronous system to become more challenging. To solve

this challenge, a study used an additional electromyogram

(EMG) sensor to deliver synchronous-like situations in an

asynchronous system (Bhagat et al., 2016); however, this scheme

can only be used by a minority of patients with stroke who

can provide sufficient EMG on the limb. In contrast, many

studies have used spatial pattern-based detection methods, such

as spatially applied linear discriminant analysis (Lew et al.,

2012; Mrachacz-Kersting et al., 2017), independent component

analysis (Ahmadian et al., 2013), and common spatial patterns

(Wang et al., 2005; Blankertz et al., 2008), to increase the

overall accuracy of BCI based on MI (Hortal et al., 2015;

Mrachacz-Kersting et al., 2017); thus, these methods could be

applied to overcome the aforementioned challenges. However,

it is inappropriate for use in rehabilitative BCI in the clinical

environment as they require excessive EEG channels, which

leads to a lack of motivation and a decrease in concentration

due to fatigue. Note that there were a few attempts to reduce the

number of channels; however, they were not successful owing

to the significant deterioration of their accuracy (Arvaneh et al.,

2011; Tam et al., 2011).

To provide rehabilitative BCI to a broad patient population

and to reduce the number of EEG channels, single-channel-

based MI detection, also called as brain-switch has been

attempted (Müller-Putz et al., 2010; Ge et al., 2014; Camacho

and Manian, 2016; Chen et al., 2017; Ko et al., 2017). However,

some previous studies just focused on the increase of TP

detection and it leads to an increase in FP detection (Camacho

and Manian, 2016). The increased number of FPs is more

dangerous than decreasing TP of MI from a rehabilitation

perspective as the wrong-directed neural cycle could induce

inappropriate (pathologic) brain plasticity and interfere with the

improvement of MI skills (Barbero and Grosse-Wentrup, 2010;

Grosse-Wentrup et al., 2011; Liu et al., 2013; Alimardani et al.,

2014; Niazi et al., 2022).

An alternate approach to reduce FPs in ERD is to identify

possible sources of the signals that can be confused. The possible

sources can be considered non-region of interest (non-ROI)

channels for MI task, whereas the region of interest (ROI)

channels are interesting channels for investing the effects of the

MI task, which is generally contralateral motor area (Kober et al.,

2019). Some brain signals (other movement-related signals and

cognitive task signals) and the EMG signals generated by eye

movement, contraction of the frontalis, temporalis, and neck

muscles can be formed as alpha and beta attenuation, similar

to MI alpha and beta rhythm (Goncharova et al., 2003). They

can be reduced by experimental instructions or easily rejected

by using EOG/EMG sensors. The sensory-related signals such

as visual evoked potential (VEP) and auditory evoked potential

(AEP) also show ERD-like short-lasting attenuation in the alpha

and beta bands in non-motor areas (Makeig, 1993; Salenius

et al., 1995; Duarte et al., 2009; Toscani et al., 2010; Oppitz

et al., 2015). However, the visual/auditory stimuli are generally

used in BCI but are difficult to eliminate with external sensors

or experimental instructions. Especially, patients with stroke

lack attention and require various types of visual and auditory

aids to properly concentrate on the rehabilitative BCI (Thaut

and McIntosh, 2014; Loetscher and Lincoln, 2019). Therefore,

identifying and rejecting these signals could minimize the

expected FPs during BCI sessions.
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This study addressed a detection and rejection algorithm

for a fully asynchronous BCI system using MI ERD. We first

identified the sensory-related signals, which could confound

individual MI ERD. Then, based on the characteristics of the

signals, we designed a classifier for an asynchronous BCI system

to detect MI ERD and reject FPs by combining (1) a single-

channel-based MI detection in ROI and (2) a non-region

of interest (non-ROI) channel-based FP rejection algorithm

originating from our previous work (Song et al., 2018). Through

experiments with healthy participants and patients with stroke,

the validity of the idea of a non-ROI channel was investigated,

and the MI detection performance of the proposed classifier was

evaluated using both offline simulations and online BCI sessions.

Methods

Classifier design for rejecting EEG
contamination

The experimental protocol for MI-based BCI generally

contains a calibration session before the BCI. In this study,

the calibration session not only extracts training data but also

screens ROI and non-ROI candidate channels. Note that, in this

study, ROI indicates an EEG channel that contains the origin

of our interested EEG signal (i.e., MI) and non-ROI indicates

the region made of EEG channels outside of our interested

area, where we define the sources that EEG contaminations

occur. Along with the MI task, the session included several

paradigms for screening the source of EEG contamination

from sensory (visual/auditory) stimuli: (1) VEP from action

observation, (2) VEP from non–motor-related various themed

images, and (3) AEP from the auditory cue. The VEP from

action observation represents passive action observation in a

rehabilitation environment and action recollection that may

occur during rest, which refers to unintended cognitive activity

that unconsciously reminds the patient of exercise execution.

For another VEP, the various themed images were intended

to induce unwanted non–motor-related cognition tasks by

showing different images for each trial, to mimic the lack

of concentration of patients with stroke. The AEP represents

miscellaneous auditory cues and sound originated diversions

in the rehabilitation environment, which attract attention from

the patient. VEPs are known to have a negative peak in the

alpha band in the posterior–occipital area (Salenius et al., 1995;

Toscani et al., 2010), and the AEP is known to show negative

oscillations in the alpha band in the temporal and midline

areas (Makeig, 1993; Duarte et al., 2009; Oppitz et al., 2015).

Considering these characteristics, we designed paradigms to

reveal the time-frequency patterns of EEG contamination that

can be used to develop classifiers for rejecting them.

Selection of ROI and non-ROI EEG channels

Instead of applying conventional spatial filters with many

EEG channels to overcome the limitation of weak MI ERD,

we used a small number of channels and algorithm following

characteristic of EEG signals: the EEG signals radially flow

through the scalp-like electrocortical ripple, affecting nearby

electrodes (Salenius et al., 1995; Mcfarland et al., 1997). If MI

ERD appears in the EEG channel located in the MI-related

area (ROI channel), we could find similarly desynchronized

power of signals on the nearby channels; however, the signals

would be weaker than the ROI channel due to skin impedance.

In contrast, if stronger power desynchronization appeared

in the channel located outside of the MI-related area (non-

ROI channel) when ERD is detected in the ROI channel, the

detected power desynchronization can be regarded as pseudo-

MI ERD, originating from the non-ROI channel due to EEG

contamination. This means that the use of proper non-ROI

channel information could enable the effective discrimination of

pseudo-MI ERD without using many EEG channels.

To implement the approach above, ROI and non-ROI

channels for individuals should be carefully selected. Figure 1A

is a diagram of a workflow of channel selection, which is colored

by a group of tasks that can be represented by characteristic

example figures (Figures 1B,C). Figure 1B shows a characteristic

example of the selection process of the ROI channel. Based on

the event-related spectral perturbation (ERSP) map of the MI

task, we extracted the data during the MI task in five frequency

bands from 8Hz to 28Hz (mu and beta) with 4Hz intervals

(yellow boxes in Figures 1A,B). Note that EEGLAB functions

were used to calculate ERSP and sinusoidal wavelet (short-

time DFT) transform was used for the computation of spectral

estimate (Delorme and Makeig, 2004). Baseline correction is

applied to ERSP based on the pre-stimulus segment (−4 to−2 s

from the cue). Then, the averaged ERSP in the task period for

each band data was drawn into a topographical map (Figure 1B),

and a channel that was closest to the area, where it showed the

lowest averaged ERSP power among all five maps, was chosen as

the ROI channel, the source channel of MI ERD (yellow dotted

circle on the topographical map in Figure 1B). Finally, we drew

the ERSP map of the chosen channel to specify the frequency

band of the MI ERD (green box in Figure 1B). The ROI channel

selection was double-checked by drawing the topographical map

of the frequency band specified to see whether the selected

channel showed the strongest ERD (Figure 1B).

The candidates for the non-ROI channel were also chosen

as follows: To find the source channel of EEG contamination,

the inducers of contamination, visual and auditory stimulation,

were provided to the participants. Based on the determined

frequency band in ROI selection, the ERSP map and

topographical maps of the ROI for the paradigms were drawn.

Then, the sources showing the lowest averaged ERSP values

in the topographical maps were chosen as candidates for the
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FIGURE 1

The process to select a region of interest (ROI) and non-ROI candidate channels of a representative participant (P3). (A) The flow chart for the

process to select ROI and non-ROI candidate channels. (B) The process to select a ROI. The yellow dotted circle on the topographical map

represents the selected ROI. (C) Non-ROI candidate channels. The red dotted circle on the topographical map represents the source of

electroencephalogram (EEG) contamination and candidate channels for non-ROI.
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FIGURE 2

Simple illustrations of two-phase classifier algorithm. (A) Flow chart for the whole algorithm; (B) Flow chart for phase 1: an illustration of the

event-related desynchronization (ERD)-like shape of the band power relative potential (RP) signal and its features; (C) Flow chart for phase 2:

cross-correlation coe�cients (CC), latency (CClat), and Pearson’s correlation, R; (D) Structure of proposing classifier; and (E) Characteristic of

ERD samples used in classifier training (participant P9).

non-ROI channel (Figure 1C). Offline MI-BCI simulation was

performed in a proposed classifier with multiple combinations

of candidates to determine the best combination with the highest

FP rejection rate as a non-ROI channel.

Classifier structure

The classifier, which contains the detection algorithm of MI

ERD and rejection algorithm of pseudo-MI ERD, was designed

with the following hypothesis: The ERD signals generated by

EEG contamination spread-like radial waves from the non-

ROI channel and affect the ROI channel as pseudo-MI ERD.

Based on this hypothesis, the proposed classifier was built by

comparing the non-ROI channels obtained from various EEG

contamination paradigms with the ROI channels obtained from

the MI paradigm. It should be noted that we validated this

hypothesis using experimental data in this study. To detect

the desired feature of MI ERD by rejecting pseudo-MI ERD,

the proposed classifier adopted a two-phase structure, MI-ERD

detection method in a single ROI channel, and FP rejection

method with non-ROI channels as illustrated in Figure 2A.

We first specified the characteristics of the 3-s-long

windowed signal that we wanted to detect as MI ERD. For the

feature of the proposed classifier, the relative potential (RP)

was used for the ERD calculation method (Pfurtscheller and

Lopes Da Silva, 1999). The length of the windowed signal was

3 s, to distinguish the feature by including the signal during

“rest” before the ERD begins. The desired characteristic of

the signal was basically to contain the negative peak of ERD;

however, we also considered that the peak is located at the

hind area of the windowed signal, as illustrated in Figure 2D, to

minimize its detection latency (Song et al., 2018). Based on this

characteristic, the first phase was to distinguish the promising

MI ERD from the incoming windowed signals using the features

for describing the shape and amplitude of the signal. After

dividing the signal into the front and hind areas (Figure 2D), we

calculated the following features: the minimum peak in the hind

area (PeakHW ) and its timing (tPH), mean band power value of
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the hind area (MeanHW )), mean band power difference between

the areas (Mean = MeanFW−MeanHW ), and decline angle of

ERD (θERD), as summarized in Figure 2B. The decline angle was

calculated as follows:

θERD = atan (
PeakHW −MeanFW

tPH − tFW
) (1)

where tFW denotes the timing of the baseline, determined

as the end of the front area. Using the features of the ROI and

non-ROI channels, we constructed the conditions to find the

promising MI ERD, as shown in Figures 2B,C, based on the

following statement originating from the hypothesis: the signal

on the ROI channel would be MI ERD when it has the lowest

peak (PeakHW,ROI < 0) and average amplitude (MeanHW ) in

the hind window (3s < tPH < 2s), with larger amplitude

(PeakHW,ROI < PeakHW,non−ROI , and MeanHW,ROI <

MeanHW,non−ROI), and larger reduced amplitude (Mean =

MeanFW−MeanHW ) and deeper decline angle (θERD < 0)

compared with pseudo-MI ERD on the non-ROI channels

(Mean ROI < Mean non−ROI , and θERD,ROI < θERD,non− ROI).

In the second phase, the following correlation-related

features between each windowed signal (on the ROI and non-

ROI channels) and the actual MI ERD signal collected as

training data were calculated: the maximum value of the cross-

correlation coefficients (CCmax), latencies of the coefficients

(CClat) (Lewis, 1995; Sadeghian and Moradi, 2008; Chandaka

et al., 2009; Siuly and Li, 2012), and normalized Pearson’s

correlation coefficients (R) (Pearson, 1895). The similarity

between the training data and windowed signal on the ROI

was evaluated using CClat and R (Figure 2C). Moreover, by

comparing CCmax and R from the ROI with those from the

non-ROI, we checked whether the windowed signal on the ROI

was more similar to the training data than the windowed signal

on the non-ROI (Figure 2C). Note that the correlation features,

CCmax and R, are insensitive to the magnitude of the signals.

Since our algorithm relies on a relative comparison between

ROI and non-ROIs, we focused on detecting the similarity with

training data from calibration session rather than its magnitude.

Participants and experimental design

The experiment comprised two sessions. In the calibration

session, we measured the participant’s EEG behavior when

performing a targeted MI task and when exposed to different

sensory stimulations. After a few days, the MI-BCI session was

conducted based on the classifier that was calibrated for each

participant using the data obtained from the calibration session,

to evaluate the performance of the proposed MI-BCI system.

Eight healthy young adults (four men, four women, average

age: 22.8 ± 4.1 years) and nine patients with stroke (seven

men, two women, average age: 56.7 ± 7.9 years) who were in

the chronic stage post-stroke for 124.2 ± 42.7 months were

recruited in this study. All healthy participants were right-

handed with no history of brain–nervous system injuries or

neurological diseases. Seven patients had a hemorrhage in the

left hemisphere, resulting in hemiplegia on the right upper

limb, while the other two patients had the opposite. Note

that three of the eight healthy participants did not participate

in the MI-BCI session owing to personal reasons. With the

approval of the institutional review board (DGIST-170721-HR-

025-08), all participants voluntarily signed their consent after the

experimental details were provided.

Figure 3 shows the experimental setup. The experiment was

performed in a quiet and air-conditioned room with minimal

visual artifacts blocked by partitions (Figure 3A). A custom

hand exoskeleton robot was used to provide the participant’s fist

open/close motor feedback for the MI-BCI session (Bae et al.,

2017; Lee et al., 2017) (Figure 3B). The classifier for the MI-BCI

session was implemented using customized OpenVibe (Inria,

France), Python, and LabVIEW (National Instruments, USA)

codes.

We used a 32-channel EEG (Active Two EEG, BioSemi Co.

Ltd., Netherlands), in which electrodes were attached to a 64-

channel EEG cap (FLASH type EEG holder, Shimadzu Corp.,

Japan) based on a 10–20 system. The channel locations were

widespread and densely distributed on the left motor cortex

to locate the ROI channel when the participants imagined

right-handed movement, as illustrated in Figure 4. For better

convenience for the patient group, two channels on each

temporal area (T9 and T10) were relocated to the left and medial

parietal areas (P1, POz) (Figure 4).

Protocols

Calibration session

The participant sat on a chair with an armrest in front

of the monitor leveled on the eye level (Figure 3A). Each

paradigm shared the same block design as that described in

Figure 3C. During the rest period, the other cognitive actions

were restricted. The single beep sound was played for 0.25 s

at the beginning of the task period to notify the participants.

The task period of each paradigm had its event cue and

certain cognitive or motor tasks for 2 s (Figure 3C). In the MI

paradigm, the participants were asked to perform pure MI of

opening and closing the fist for a single time after a visual

cue (green circle) with closing their fist of the right hand (or

affected hand for the patient group) during the task period

(Figure 3C).

For the paradigm to measure AEP, the participant was asked

to relax and to concentrate on the sound cue (a beep sound

repeated four times at 0.5 s intervals) provided during the task

period (Figure 3C). For VEP, we measured two types of VEP:

VEP with action observation and non–motor-related VEP. In

Frontiers inNeurorobotics 06 frontiersin.org

130

https://doi.org/10.3389/fnbot.2022.971547
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Song et al. 10.3389/fnbot.2022.971547

FIGURE 3

Experiment setup and block design of the Paradigms. (A) Experiment setup for the measurement session. (B) Exoskeleton hand rehabilitation

robot setup for the motor imagery-based brain–computer interface (MI-BCI) session. (C) Block design-based experiment paradigms.

(VEPAO: VEP with action observation; VEPNM: non–motor-related VEP).

FIGURE 4

The 10–20 system-based 32-channel locations of two participant groups. (A) Locations of the healthy group and (B) locations of the stroke

group.

both paradigms for the VEPs, the participants were asked to

relax without any movement and to watch the monitor. In each

VEP paradigm, the monitor displayed a top-view image of the

fist open/close for the former VEP and random images not

related to the motor task for the latter VEP (Figure 3C), which

turned black during the rest period for proper relaxation.
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FIGURE 5

Experiment block design for the motor imagery-based brain–computer interface (MI-BCI) session. (A) The healthy participant group and (B)

stroke participant group.

During the calibration session, the participants participated

in paradigms in the following order: MI was performed first to

avoid the influence of other EEG contamination paradigms, and

following AEP, VEP with action observation, and non–motor-

related VEP were performed in randomized order. The block for

each paradigm was repeated 30 times for 7min, with 5min of

rest between each paradigm.

MI-BCI session

First, the participants were asked to perform the MI

paradigm of the calibration session as practice, as the last

MI was performed a few days ago. During the paradigm,

the operator monitored the classifier and slightly adjusted the

threshold for Pearson’s product-moment correlation coefficient

(PPMCC) from the second phase of the classifier to compensate

for the day-to-day variation. After the MI paradigm, the hand

exoskeleton robot was attached to the chair armrest, the right

side for healthy participants and affected side for patients with

stroke (Figure 3B), and the participants were put on the robot

for the MI-BCI session.

In the MI-BCI session, participants were instructed to

perform MI to open and close their fist for a single time

during the task (control) period and asked to remain as calm

as possible in the rest (non-control) period (Leeb et al., 2007)

following block design, as shown in Figure 5. Here, we used

a synchronous block design for evaluating asynchronous MI-

BCI systems as there are no observable signs to confirm the

execution of MI. The BCI system went to the offline state

(cool-down) immediately before and after the task period

(Figure 5). Except for the cool-down status, the system was

online to wait for the detection of MI, and the detection

resulted in movement feedback by the robot. The cool-down

was used to calm the brain signals after MI and/or movement

feedback. If the detection occurred during the task period, it

was considered TP, and if it occurred during the rest period,

it was considered FP. The number of TPs and that of FPs

were counted to evaluate the performance of the proposed

MI-BCI system.

The experimental block designs for the healthy and patient

groups were slightly different (Figure 5) because the patients

with stroke felt more difficulty performing MI and took more

time to concentrate than healthy participants. To compensate

for the burden increase due to a longer task period, the time of

rest period and cool-down were also increased to maintain the

time ratio between control, non-control, and cool-down.
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Data analysis

Data processing

To investigate the source of EEG contamination, raw EEG

data from the calibration session were epoched based on the

time information of the cue (−4 to 4 s from the cue). Epoched

data were normalized by subtracting the baseline, which is the

averaged data from −4 to −2 s based on the cue. A baseline-

corrected data epoch was used to plot the time-frequency

information map and ERSP map. As mentioned in Method.1.a,

five frequency bands were extracted from the ERSP map and

used to draw topographical maps to select the participant-

specific frequency band, ROI channel, and candidates of the

non-ROI channel.

To validate our hypothesis for the proposed classifier, RPwas

calculated the same as the ERD calculation for the feature of the

proposed classifier as follows:

(A− R)/R× 100 (2)

where A is the power of filtered data and R is the power

of preceding baseline data (Pfurtscheller and Lopes Da Silva,

1999). To calculate the RP, 8 s data epochs (−4 to 4 s from

the cue) were extracted based on the time information in the

filtered data, and the band power of the epoch was normalized

by the average power of the baseline data (−4 to −2 s before

the task cue) (Song et al., 2018; Song and Kim, 2019). The

mean and standard deviation for the peak amplitude of RP from

the ROI and non-ROI channels in the three paradigms were

compared by quantitative comparison. For statistical analysis,

we performed a paired t-test on the peak values of ROI and

non-ROI. For the non-ROI in the comparison, the amplitude

of the negative peak for non-ROI candidate channels was

averaged for the MI paradigm, and the non-ROI candidate

with the largest peak amplitude was selected for the other EEG

contamination paradigms.

After screening the frequency bands and channels, to extract

the training data, raw EEG signals were resampled to 64Hz

and band-pass filtered using the determined frequency band in

the ROI selection. The filtered signal was sliced to 3 s moving

window, overlapping every 20ms (50Hz). We then applied a

phase 1 classifier to each moving window. The data that fit the

classifier and its lower peak existed between 0 and 2 s after the

cue were selected as the training data. The average of the training

data was used for the phase 2 classifier. During the MI-BCI

session, online EEG signals were sliced to a 3 s moving window

(50Hz) and applied to the proposed classifier.

Performance evaluation

We evaluated the performance of the classifier during both

the calibration and MI-BCI sessions. For the calibration session,

we obtained offline simulation results of the classifier, and the

actual online performance of the classifier was analyzed for the

MI-BCI session. Based on the number of TPs and FPs, the

performance was evaluated using sensitivity (Altman and Bland,

1994; Bhagat et al., 2016), selectivity (Altman and Bland, 1994;

Chae et al., 2012), FP rate (Pfurtscheller et al., 2003; Leeb et al.,

2007; Chae et al., 2012; Lew et al., 2012; Liu et al., 2013; Bhagat

et al., 2016; Mrachacz-Kersting et al., 2017), and FP per minute

(FPM) (Li et al., 2013; Rodriguez-Ugarte et al., 2017), as follows:

Sensitivity =
Number of TP

Number of trials
× 100 (%) (3)

Selectivity =
Number of TP

Number of total detections
× 100 (%) (4)

FP rate =
Number of FP

Number of trials
× 100 (%) (5)

FP per minute =
Number of FP

Total elapsed rest period
× 100 (%) (6)

For the quantitative comparison between offline and online

results, we applied a paired t-test on the number of TPs and

FPs from offline results of the MI paradigm in the calibration

session and online results of the MI-BCI session. Note that as

the number of participants in the healthy group was too small for

statistical analysis, the analysis was applied in the case of a stroke

group (n= 9) and in the case of all participants who participated

in the MI-BCI session (n= 14).

To investigate the effect of the key idea in the proposed

classifier for FP rejection, the classification without non-ROI

channels was simulated using MI-BCI session data of healthy

participants and stroke patient groups and compared with

online classification results in the same MI-BCI session by

calculating the rejection rate, as follows:

rejection rate =
Number of rejected FP

Number of FP without non ROI channels

×100 (%) (7)

Results

Calibration session

Figure 6 shows the group analysis results for three paradigms

(AEP, VEP with action observation, and non–motor-related

VEP) of the calibration session to screen for EEG contamination.

Figure 7 shows the comparison results of the relative

potential between the ROI and non-ROI candidate channels.

Figure 7A illustrates the statistical analysis of the peak ERDs for

each participant group during each paradigm. This result implies

that the non-ROI candidate channels show stronger ERD

signals when EEG contamination occurs due to visual/auditory

stimulation. It should be noted that the largest peak amplitude

of the non-ROI candidate channel exceeded the amplitude of
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FIGURE 6

Group analysis of event-related spectral perturbation (ERSP) and its topographical map of Mu and Beta ERD. The red circles represent the

average source area of EEG contaminations. (A) The healthy group and (B) stroke patient group (VEPAO: VEP with action observation; VEPNM:

non–motor-related VEP).
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FIGURE 7

The relative potential from the region of interest (ROI) and non-ROI candidate channels, and the mean peak value of overall participants. (A) The

average peak value of the ROI and non-ROI candidate channels for each participant group during each paradigm. The paired t-test is performed

between the ROI and non-ROI candidate channels. Statistically mild significance (p<0.08) is described using a single asterisk (*) and statistical

significance (p < 0.05) using a double asterisk (**). The candidates of the non-ROI channel for the MI paradigm are an average of three di�erent

non-ROI candidate channels. (B) The relative potential of the characteristic participant. The blue line represents the data of the ROI channels,

and the red line represents the data from the non-ROI candidate channels. VEPAO, VEP with action observation; VEPNM,

non–motor-related VEP.

Frontiers inNeurorobotics 11 frontiersin.org

135

https://doi.org/10.3389/fnbot.2022.971547
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Song et al. 10.3389/fnbot.2022.971547

FIGURE 8

Group analysis of the topographical map for the number of regions of interest (ROI) and non-ROI candidate channels. The number of ROI

channels is shown in blue, and the number of non-ROI candidate channels is shown in red. VEPAO, VEP with action observation; VEPNM,

non–motor-related VEP.

the ROI channel for all paradigms except the MI paradigm in

all trials and subjects, and the difference in the amplitude was

statistically significant (p<0.05). As shown in Figure 7B, the

relative potentials in the ROI channel tended to show larger ERD

compared with that in the selected non-ROI candidate channels

after the cue during the MI paradigm. The contamination

paradigms tend vice versa.

The distributions of the chosen ROI and non-ROI candidate

channels are illustrated as color maps in Figure 8. Here, themore

the channels are concentrated, the darker the color. The ROI

channels for the patient group were distributed in channels near

the motor area (FC5, Cz, C3, C5, and CP5 for the right affected

participants and C2 and CP6 for left affected participants), while

most of the ROI channels were located on the motor cortex (C3

for six participants) and few were located in the somatosensory

cortex (CP3 and CP5) in the healthy group (Figure 8). The

candidates of the non-ROI channel for the healthy group were

distributed on each diagonal end of the scalp, and those in the

stroke group were mostly distributed in the left frontal (FT7 and

FC5) and parietal lobes (P5).

MI-BCI session

Tables 1, 2 describes the performance of the classifier in the

offline simulation results and online MI-BCI sessions for all

participants. The sensitivity was below 30% for both the healthy

and stroke groups, and the FP rate was 12.67% in the healthy

group and 8.52% in the stroke group. The non-ROI channels

were widespread but mostly located in the temporal, parietal,

and occipital lobes, as we targeted AEP andVEPs. For the patient

group, the non-ROI channels were located similar to that of the

healthy group; however, these channels were also located in the

premotor cortex. Tables 2A,B describe the performance of the

online MI-BCI session. For the healthy group, both sensitivity

and selectivity increased compared with the offline simulation.

For the patient group, the sensitivity increased; however, the

selectivity slightly decreased.

Figure 9 describes the mean and standard deviation of

parameters during the offline analysis of the MI paradigm

(day 1) and online MI-BCI session (day 2). For the stroke

group, the TPs showed a statistically significant increase (p =

0.015), and the FPs increased but were not significant (p =

0.071). The sensitivity also showed a significant increase as the

sensitivity was dominantly related to the number of TPs. For all

participants in the MI-BCI session (n = 14), the TPs showed

a significant increase (p = 0.007), while the FPs did not (p =

0.246). The selectivity showed no significant difference between

sessions for both groups (p = 0.792, p = 0.359 for the patient

group and all participants’ group each).

Table 3 describes the rejected number of FPs due to the non-

ROI channel-based method for the healthy and stroke patient
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TABLE 1 Performance of the classifier in o	ine simulation.

Subject Freq. band ROI Non-ROIs TP FP FPR FPM Selec. Sens.

(A) Offline simulation result of healthy group

S1 17–21Hz CP5 F7, Cz, P5 10 3 10 0.6 76.92 33.33

S2 20–25Hz C3 C4, P3, P6 13 8 26.67 1.6 61.90 43.33

S3 9–12Hz C3 F7, P3, P4 10 4 13.33 0.8 71.43 33.33

S4 17–22Hz CP3 Cz, T8, O1 8 3 10 0.6 72.73 26.67

S5 24–28Hz C3 T7, P6, O2 4 1 3.33 0.2 80 13.33

S6 10–14Hz C3 F7, T7, Cz 8 2 6.67 0.4 66.67 26.67

S7 18–22Hz C3 T10, P6, O2 4 0 0 0 100 13.33

S8 8–12Hz C3 F7, FC1, P5 4 2 6.67 0.4 66.67 13.33

Average – – – 7.62 2.87 9.58 0.58 72.62 25.42

(B) Offline simulation result of stroke group

P1 8–10Hz Cz FC5, CP5, P5 8 5 16.67 1 61.54 26.67

P2 8–12Hz C5 P3, P4, F7 9 4 13.33 0.8 69.23 30

P3 16–22Hz FC5 F7, FC6, CP6 8 1 3.33 0.2 88.89 26.67

P4 10–12Hz C3 FC5, P5, O2 6 3 10 0.6 66.67 20

P5 8–10Hz Cz F7, T7, P6 9 3 10 0.6 75 30

P6 19–22Hz C5 F7, F3, CP6 4 2 6.67 0.4 66.67 13.33

P7 8–12Hz CP6(L) FC4, P5, O1 4 2 6.67 0.4 66.67 13.33

P8 14–17Hz CP5 F3, FC5, Cz 10 2 6.67 0.4 83.33 33.33

P9 17–23Hz C2 (L) FC5, FC1, P5 4 1 3.33 0.2 80 13.33

Average – – – 6.88 2.55 8.52 0.51 72.94 22.96

TP, true positives; FP, false positives; FPR, false positive ratio; FPM, false positive per minute.

TABLE 2 Performance online MI-BCI (A) in the healthy group and (B) in the stroke patients’ group.

Subject *Session interval (days) TP FP FPR FPM Selec. Sens.

(A) Online result of healthy group

S1 40 10 4 13.33 1.33 71.43 33.33

S2 29 15 7 23.33 2.33 68.18 50

S3 22 10 3 10 1 76.92 33.33

S4 23 7 1 3.33 0.33 87.5 23.33

S5 18 10 0 0 0 100 33.33

Average 26.4± 8.6 10.4 3 10 1 77.61 34.67

(B) Online result of stroke group

P1 14 14 6 20 1.5 70 46.67

P2 14 9 3 10 0.75 75 30

P3 14 10 3 10 0.75 76.92 33.33

P4 20 6 2 6.67 0.5 75 20

P5 14 8 3 10 0.75 72.72 26.67

P6 7 8 3 10 0.75 72.72 26.67

P7 8 12 7 23.3 1.75 63.16 40

P8 10 15 4 13.33 1 78.95 50

P9 5 12 6 20 1.5 66.67 40

Average 11.8± 4.7 10.44 4.11 13.70 1.03 71.76 34.81

TP, true positives; FP, false positives; FPR, false positive ratio; FPM, false positive per minute.

*Session interval indicates the interval between calibration session and online MI-BCI session.
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FIGURE 9

Mean and standard deviations of parameters between day 1 and day 2. The asterisk (*) is statistically significant (p<0.05) between days. FPR, false

positive ratio.

group. Themost rejected FPs were 21, which is 75% of the FPs on

P7. The highest and lowest rejection rates were 100 and 53.33%,

respectively. The total rejection rate was 76.04% for all FPs.

Discussion

This study aimed to reduce FPs during rehabilitativeMI-BCI

that could result in wrong-directed brain plasticity. To this end,

we proposed a classifier that contains single-channel-based MI

detection and FP rejection using non-ROI channels.

As shown in the ERSP and band power of Figures 6, 7, EEG

contamination elements (AEP, VEPwith action observation, and

non–motor-related VEP) affect the mu and beta bands in the

motor area. The candidates of the non-ROI channel show larger

amplitudes than the ROI channel when EEG contamination

occurs due to visual or auditory stimulations. This means

that the contamination elements originating from the non-

ROI candidates can result in desynchronization at the ROI

channel, and it could be detected as FP in the ROI. Despite the

desynchronization at the ROI, there were significant band power

differences between the ROI and non-ROI candidates (Figure 7).

Therefore, it is feasible to find and reject contamination based on

power differences.

Since the sources of the contamination elements on the scalp

were differently distributed, it is essential to identify the sources

through individual calibration (Figure 8). The MI signals of

patients with stroke were also distributed around the motor

area, which explains why finding a participant-specific ROI

channel is an important task to improve MI-BCI performance

for clinical application.

The experimental results suggest that our proposed MI-

BCI system has a good FP rejection performance online, with

a rejection rate of over 75%. As shown in Figure 9, both TP and

FP tend to increase on day 2, compared with day 1. However, the

mean selectivity did not show a significant difference and even

increased slightly. This implies that our proposed algorithm is

robust as it rejected a certain ratio of FP despite a significant

session interval (day-to-day variation), even a month.

Our method consists of two phases of classifiers: (1) hand-

crafted detection algorithm, and (2) correlation-based detection

algorithm. The design intention was to use the phase 1 algorithm

on reducing the number of sample windows and provides a

synchronous-like state for assisting the phase 2 algorithm. To
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TABLE 3 The number of false positives before and after applying the non-ROI channel-based method of the proposed classifier, and FP rejection in

the online MI-BCI session.

Subject TP FP (pre) FP (post) Rejected Rejection rate (%)

S1 10 13 4 9 69.23

S2 15 15 7 8 53.33

S3 10 10 3 7 70

S4 7 3 1 2 66.67

S5 10 2 0 2 100

P1 14 14 6 8 57.14

P2 9 20 3 17 85

P3 10 17 3 14 82.35

P4 6 18 2 16 88.89

P5 8 16 3 13 81.25

P6 8 18 3 15 83.33

P7 12 28 7 21 75

P8 15 20 4 16 80

P9 12 23 6 17 73.91

Average 146 217 52 165 76.04

TP, true positive; FP (pre), false positive before applying non-ROI channel-based method; FP (post), false positive after applying non-ROI channel-based method.

evaluate if the purpose was fulfilled, we performed an offline

performance test of the phase 1 algorithm combined with non–

ROI-based false positive rejection using day 1 MI data (Table 4).

The results show relatively high sensitivity near 75% for both

subject groups, with selectivity below but near 50%. These

numbers indicate that the phase 1 algorithm combined with

non-ROI technique provides a 50% chance of distinguishing

true and false positives for the phase 2 algorithm with 25% of

data loss.

Several studies have applied BCI systems to patients with

stroke (Hortal et al., 2015; Bhagat et al., 2016; Mrachacz-

Kersting et al., 2017; Miladinović et al., 2020; Niazi et al.,

2022). Table 5 compares the proposed method with existing

studies. The main difference is that our system relies on a

hand-crafted feature classifier, which is discriminated approach

compared to spatial pattern-based machine-learning methods.

Our method is originated from single-channel-based MI

ERD detection, which cannot apply any spatial pattern-based

machine-learning approach, but can only rely on the time-

frequency aspect of the signal. Since our target signal has

been clearly justified and it follows with the neurophysiological

agreement throughoutmany studies (Pfurtscheller and LopesDa

Silva, 1999; Pfurtscheller et al., 2003; Kus et al., 2012; Nicolas-

Alonso and Gomez-Gil, 2012; Sun et al., 2016; Jeong et al.,

2019). We decided to use its nature to design features and

algorithms without leaving them to machine learning; since

machine-learning methods depend on the amount of training

data, they are inappropriate to induce a decision rule like the

proposed one, which consists of a large number of required

features, out of such small datasets (patient’s data) (Choi et al.,

2018; Lee et al., 2021).

An advantage of our method is the use of a small number

of channels. It uses the smallest number (four) of channels in

theMI-BCI session after a one-time calibration with 32 channels

(Table 5). This can reduce the setting time of EEG for MI-BCI,

which results in minimal fatigue for the patients and clinicians

as well as better time efficiency of rehabilitative MI-BCI therapy.

Since patients with stroke generally lose their attention and

motivation easily, fatigue due to heavy EEG settings for the

therapy would be critical for clinical application. All existing

studies relied on spatial-basedmethods, such as LDAwith spatial

features (Blankertz et al., 2008; Lew et al., 2012) and LPP-LDA

(Mrachacz-Kersting et al., 2017), Source Power Co-Modulation

(Meinel et al., 2019), SpectrallyWeighted Common Spatial Filter

(CSP) (Wei et al., 2008), Filter Bank CSP (Park and Chung,

2019), and CSP with likelihood ratio method (Niazi et al.,

2011, 2022); thus, these approaches suffer from heavy MI-BCI

performance deterioration under a small number of channels

(Arvaneh et al., 2011; Tam et al., 2011). Another advantage is

the rare occurrence of FP duringMI-BCI. For a fair comparison,

we checked the false positives and experimental paradigms to

calculate the FP rate (equation 5). The study by Hortal et al.

(2015), Bhagat et al. (2016), Mrachacz-Kersting et al. (2017),

and Miladinović et al. (2020) used the same calculation method

as our study to report the FP rate. The study by Niazi et al.

(2022) reported false positive per minute, true positive rate, and

percentage of false positives over true positive. We inversely

calculated the false positive rate using given parameters. Our
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TABLE 4 Performance of the phase 1 classifier in o	ine simulation.

(A) Offline simulation result of healthy group

Subject TP FP FPR FPM Selec. Sens.

S1 23 20 0.67 4 0.53 0.77

S2 24 32 1.67 6.4 0.43 0.8

S3 21 18 0.6 3.6 0.54 0.7

S4 21 16 0.53 3.2 0.57 0.7

S5 26 28 0.93 5.6 0.48 0.87

S6 24 27 0.9 5.4 0.47 0.8

S7 22 20 0.67 4 0.52 0.73

S8 22 24 0.8 4.8 0.48 0.73

Average 183 185 0.77 4.1 0.50 0.76

(B) Offline simulation result of stroke group

P1 22 17 0.57 3.4 0.56 0.73

P2 23 31 1.03 6.2 0.43 0.77

P3 25 31 1.03 6.2 0.45 0.83

P4 19 22 0.73 4.4 0.46 0.63

P5 24 24 0.8 4.8 0.5 0.8

P6 26 25 0.83 5 0.51 0.87

P7 21 22 0.73 4.4 0.49 0.7

P8 21 23 0.77 4.6 0.48 0.7

P9 20 30 1 6 0.4 0.67

Average 201 225 0.83 5 0.47 0.74

TP, true positives; FP, false positives; FPR, false positive ratio; FPM, false positive per minute.

system showed a 10% FP rate in the healthy group and 13.7%

in the stroke group, which is the lowest FP rate compared with

other existing studies (Table 5). It should be noted that our FP

rates were obtained under the longest session interval between

calibration and MI-BCI (Table 5). Along with the classifier

used, the paradigm design also affected the occurrence of FP.

Although a short task period is a disadvantage as patients

with stroke generally require a longer time for MI due to

chronic motor impairments, we used a shorter task period than

other existing studies as extending the task period would cause

misclassification between FP and TP. Moreover, the possibility

of FP increases as the rest period becomes longer; however, our

total rest period is the longest. Therefore, we believe that the

FP rejection performance of the proposed system outperforms

other existing studies, even though our paradigm design has

disadvantages for FP.

The positive and negative effects of FP remain controversial

(Levine et al., 2000; Barbero and Grosse-Wentrup, 2010;

Alimardani et al., 2014). The exact effect of FP has not been

determined; however, some studies claim that FP could be

useful for improving MI in naïve BCI users (Alimardani et al.,

2014). However, the goal of rehabilitative MI-BCI systems for

patients with stroke is to guide them to perform correct MI

based on neurophysiology to stimulate direct brain plasticity and

improve the neuro-circuits. The most effective way to achieve

this goal is by applying MI-BCI asynchronously; however, in

this situation, the participant and/or clinician cannot notice

whether the robotic feedback comes from TP or FP, without

any cue. Since the nature of the training experience dictates

the nature of neural plasticity (Kleim and Jones, 2008), if the

patient is repeatedly exposed to the feedback induced by FP, it

might lead to inappropriate brain plasticity. Therefore, reducing

and minimizing FP would be essential for MI-BCI systems

for neurorehabilitation.

Many patients with stroke who participated in the

experiment commented that moving the rehabilitation robot

due to TPs induced the feeling of body ownership like “I was

controlling the robot hand” (Altman and Bland, 1994; Botvinick

and Cohen, 1998; Michielsen et al., 2010; Evans and Blanke,

2013; Liang et al., 2016; Sun et al., 2016). In contrast, they

also commented that the wrong robotic feedback due to FPs

caused them to lose the agency and ownership of their hand,

and this was frustrating and unpleasant. These comments show

that rejecting FP is important for maintaining body ownership

and agency in the MI-BCI system. However, some patients

experienced anxiety and loss of interest when MI detection did
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TABLE 5 Comparison of the method, experiment, and results with other studies applied to patients with stroke.

Study Task Feature Method # obtained

Calibration

data/time spent

Session

intervals

Subjects # of

channels

used

Experiment paradigm Performances

Task

time (s)

Rest

time (s)

T:R ratio/

total

rest

time per

set (s)

Type

of

performance

evaluation

dataset

Sensitivity

(%)

FPR

(%)

Hortal et al.

(2015)

Motor Imagery,

Grasping

ERD SVM Spatial

Pattern

304 task data

912 rest data/

10min.

1 day (no

interval)

3 healthy

5 stroke

16 10 10 1:1/100 Online H 82.9

S 45

H 19.2break

S 15.0

Bhagat et al.

(2016)

Motor Execution,

Elbow

MRCP/EMG SVM Spatial

Pattern

160–320

data/53min./day

(not mentioned)

2-days

ofmeasurement

1-day

calibration

2-days of the

online trials (1

day interval)

4 stroke 60 15 5 1:0.33/100 Online Day4 62.7

Day5 67.1

Day4 27.74

Day5 27.5

Mrachacz-

Kersting et al.

(2017)

Motor Execution,

Reaching

MRCP LPP-LDA 30 data/15 mins 1 day (no

interval)

6 stroke 9 4 7 1:1.75/210 Online 1st 68.6

2nd 68.6

1st 33.6

2nd 21.2

Miladinović

et al. (2020)

Motor Imagery,

Grasping

ERD (1) Source

Power Co-

Modulation*, (2)

Spectrally

Weighted CSP**,

(3) Filter

Bank CSP***

35–40 data per

session (day),

15 sessions/

10 mins

1 day (no

interval)

5 stroke 15 5 2.1–2.8 1:0.48–0.56

/78.75–105

Offline 1) 83.0

2) 83.8

3) 85.1

1) 16.9break

2) 15.5

3) 15.5

Niazi et al.

(2022)

Motor Execution,

Ankle dor-siflexion

MRCP Spatial pattern,

likelihood

50 dataset, 6–10

min/(not mentioned)

2 day, ≥24 h 9 stroke 9 1.5 3–4 1:2–2.6/150 Online 82.68 15.25

Proposed Motor imagery,

Grasping

ERD Shape, correlation 30 dataset/day

1:30min.

Day 2: 3min.

2 days (avg. 17

days interval)

5 healthy

9 stroke

Day 1: 32

Day 2: 4

4 8 1:2/240 Online H 35

S 34.8

H 10

S 13.70

*Meinel et al. (2019), **Wei et al. (2008), ***Park and Chung (2019).
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not occur. This implies that low sensitivity could negatively

affect MI-BCI therapy for some participants and work as

an obstacle.

The proposed asynchronous MI-BCI system showed state-

of-the-art FP rejection performance, while the sensitivity of

the system was decreased compared with existing spatial-based

approaches. The classifier design based on the characteristics of

EEG contamination led our MI-BCI system to use a minimal

number of channels for detecting MI ERD and for rejecting

FP. Moreover, the classifier was insensitive to day-to-day

variations. Therefore, we believe that the proposed system fits

the conditions for practical use in clinics, fast setup time due to

the small number of channels, and reliable performance owing

to its insensitive day-to-day variation.

Our study mainly considered the EEG contamination

on motor-related VEP, non–motor-related VEP, and AEP.

However, our proposing algorithm can be applied to other EEG

contaminations due to sensory stimuli, such as sound generated

from medical devices and visual distractions in a rehabilitation

facility, which show pseudo-MI ERD-like behavior. It is because

the design of the algorithm intended to reject all pseudo-MI

ERD originated from non-ROI channels which could be easily

extended by screening the candidates of the non-ROI channel.

Despitemany benefits, the limitation of our proposed system

is its low sensitivity. The study of brain-switch on healthy

subjects address that ERS-based single-channel MI detection

could be achieved to a sensitivity of 59.2%, with FP rate below

10%, but sensitivity decreased to 28.4%, while ERD was used as

a feature (Pfurtscheller and Solis-Escalante, 2008). This result

suggests that ERD is a challenging feature compared to ERS.

However, since our goal is to detect movement intention at the

right timing to induce brain plasticity, ERS was inappropriate

due to its delayed appearance. The averaged peak value during

the MI paradigm in Figure 7A shows the low significance of

ERD between ROI and non-ROI, which illustrates that some

ERD from ROI channels might be rejected by the non–ROI-

based classifier in some cases. This might imply that our

non-ROI selection needs to be improved to consider the MI

paradigm. Moreover, the second phase in the classifier, which

was intended to detect samples with similar patterns to training

data, might be too conservative because we only used 30

training data for each subject. In the viewpoint of inducing

brain plasticity, whereas the FP-rejected asynchronous MI-BCI

system induced cortical plasticity more than a typical self-paced

asynchronous system with FP (Niazi et al., 2022), the correlation

between sensitivity and cortical plasticity showed a negative

association with significance (Jochumsen et al., 2019). The pieces

of literature could illustrate that sensitivity does not significantly

affect cortical activation compared to the FP rate. Nevertheless,

the goal of the asynchronous MI-BCI system detects users’

movement intention and gives them feedback at the proper

time. Therefore, further research is needed to determine the

appropriate level of sensitivity to encourage users, and it needs

to be improved for better sensitivity in future. In future studies,

we would like to evaluate the cortical activation difference

between intensity-focused algorithms (high sensitivity, low FP)

and specificity-focused algorithms (high FP) during MI-BCI

training to verify the more important factor. Since the study did

not evaluate the actual effect in the patients after the MI-BCI

sessions, a long-term follow-up study would also become our

next objective.

Conclusion

This study aimed to develop the asynchronous MI-BCI

system for neurorehabilitation use for people with stroke.

To apply EEG-based BCI, we prioritized two factors: (1)

small number of channels for user convenience and (2)

reducing the number of FP to prevent wrong-directed brain

plasticity and rehabilitation.We developed anMI ERD detection

and FP rejection algorithm based on the time-frequency

characteristics of MI ERD and EEG contaminations, with

rippling characteristics of EEG signals. We categorized three

EEG contaminations to assume as sources of FP: VEP during

action observation, VEP during random images, and AEP with

simple beep sound. These contaminations are easily found

in the clinical rehabilitation environment, where our future

system will be applied. We localized the surface source of each

contamination and used a combination of those channels to

reject FPs.

The designed algorithm was validated online for eight

healthy subjects and nine patients with hemiplegic stroke.

As a result, we showed the best FP rate compared to other

asynchronous MI-BCI studies (10% for healthy subjects, 13.70%

for patient subjects with stroke), while 76.04% of FP was

rejected by applying a non-ROI channel method to single-

channel detection-based algorithm. However, our system also

showed the least sensitivity. The proposed system matched

our intended objective; to reject FP conservatively. However,

the sensitivity of the proposed system should be improved by

further research.
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Hanyang University, Seoul, South Korea

In this study, we proposed a new type of hybrid visual stimuli for steady-

state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs),

which incorporate various periodic motions into conventional flickering

stimuli (FS) or pattern reversal stimuli (PRS). Furthermore, we investigated

optimal periodic motions for each FS and PRS to enhance the performance

of SSVEP-based BCIs. Periodic motions were implemented by changing

the size of the stimulus according to four di�erent temporal functions

denoted by none, square, triangular, and sine, yielding a total of eight

hybrid visual stimuli. Additionally, we developed the extended version of

filter bank canonical correlation analysis (FBCCA), which is a state-of-the-

art training-free classification algorithm for SSVEP-based BCIs, to enhance

the classification accuracy for PRS-based hybrid visual stimuli. Twenty healthy

individuals participated in the SSVEP-based BCI experiment to discriminate four

visual stimuli with di�erent frequencies. An average classification accuracy and

information transfer rate (ITR) were evaluated to compare the performances

of SSVEP-based BCIs for di�erent hybrid visual stimuli. Additionally, the user’s

visual fatigue for each of the hybrid visual stimuli was also evaluated. As the

result, for FS, the highest performances were reported when the periodic

motion of the sine waveform was incorporated for all window sizes except for

3 s. For PRS, the periodic motion of the square waveform showed the highest

classification accuracies for all tested window sizes. A significant statistical

di�erence in the performance between the two best stimuli was not observed.

The averaged fatigue scores were reported to be 5.3± 2.05 and 4.05± 1.28 for

FSwith sine-wave periodicmotion and PRSwith square-wave periodicmotion,

respectively. Consequently, our results demonstrated that FS with sine-wave

periodic motion and PRS with square-wave periodic motion could e�ectively

improve the BCI performances compared to conventional FS and PRS. In
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addition, thanks to its low visual fatigue, PRSwith square-wave periodicmotion

can be regarded as the most appropriate visual stimulus for the long-term use

of SSVEP-based BCIs, particularly for window sizes equal to or larger than 2 s.

KEYWORDS

brain-computer interfaces (BCIs), steady-state visual evoked potential (SSVEP),

steady-statemotion visual evoked potential (SSMVEP), hybrid visual stimulus, periodic

motion

Introduction

Brain-computer interfaces (BCIs) are promising alternative

communication technologies that have been generally developed

for people who suffer from neuromuscular disorders or

physical disabilities such as spinal cord injury, amyotrophic

lateral sclerosis, and locked-in syndrome (Daly and Wolpaw,

2008). BCIs have provided new non-muscular communication

channels that allowed for interaction between a user and the

external environment. A variety of non-invasive brain imaging

modalities have been employed to record brain activities in

the field of BCIs. For example, functional magnetic resonance

imaging (fMRI), magnetoencephalography, and functional near-

infrared spectroscopy have been successfully employed to

implement BCIs. In addition, electroencephalography (EEG)

is another representative non-invasive neuroimaging modality

that has been the most intensively studied owing to its

advantages over the other modalities, such as high temporal

resolution, affordability, and portability (Dai et al., 2020; Zhang

et al., 2021).

In the EEG-based BCIs, the user performs certain mental

tasks according to paradigms designed for eliciting task-related

neural activities. Motor imagery, event-related potential, P300,

and auditory steady-state response are popular paradigms

employed to implement EEG-based BCIs (Lotte et al., 2018;

Abiri et al., 2019). Steady-state visual evoked potential (SSVEP)

is also one of the most promising EEG-based BCI paradigms,

which has attracted increased interest from BCI researchers in

recent decades (Waytowich et al., 2018). SSVEPs are periodic

brain activities evoked in response to the presentation of visual

stimulus flickering or pattern-reversing at a specific temporal

frequency. SSVEP signals are entrained at the fundamental

and harmonic frequencies of the visual stimulus and are

well-known to be mainly observed in the occipital region of

the brain over a wide range of 1–90Hz (Herrmann, 2001;

Choi et al., 2019a). SSVEP-based BCIs interpret the user’s

intention by detecting the visual stimulus that the user gazed

at based on these characteristics and have various advantages

over the other paradigms, such as high information transfer

rate (ITR), excellent stability, and little training requirement

(Zhang et al., 2020; Kim and Im, 2021). Thanks to these

advantages, SSVEP-based BCIs have been successfully applied

to various applications including mental speller (Nakanishi

et al., 2018), assistive technology for patients (Perera et al.,

2016), online home appliance control (Kim et al., 2019), and

hands-free controllers for virtual reality (VR) (Armengol-Urpi

and Sarma, 2018) or augmented reality (AR) (Arpaia et al.,

2021).

In general, two types of visual stimuli have been employed

to evoke SSVEPs: (1) flickering stimulus (FS) and (2) pattern-

reversal stimulus (PRS) (Bieger et al., 2010; Zhu et al., 2010). FS

is the visual stimulus that modulates the color or luminance of

the stimulus at a specific frequency. Flickering single graphics in

the form of squares or circles rendered on an LCDmonitor is the

representative FS used to elicit the SSVEPs. PRS evokes SSVEP

responses by alternating the patterns of the visual stimuli (e.g.,

checkerboard or line boxes) at a constant frequency. Based on

these visual stimuli, a number of studies have been conducted

to improve the performance of SSVEP-based BCIs, examples

of which include optimization of stimulus parameters such

as spatial frequency of PRS, stimulation frequencies, colors,

and waveform of FS (Bieger et al., 2010; Teng et al., 2011;

Duszyk et al., 2014; Jukiewicz and Cysewska-Sobusiak, 2016;

Chen et al., 2019). Recently, Choi et al. (2019b) and Park

et al. (2019) proposed a novel type of visual stimulus called

grow/shrink stimulus (GSS) to improve the performance of

SSVEP-based BCI in AR and VR environments, respectively.

GSS was implemented by incorporating a periodic motion into

FS to concurrently evoke SSVEP and steady-state motion visual

evoked potential (SSMVEP), inspired by previous studies that

reported that the periodic motion-based visual stimuli could

elicit SSMVEP (Xie et al., 2012; Yan et al., 2017). GSS has

shown a higher BCI performance compared to the conventional

PRS or FS in both VR and AR environments. However, no

study has been conducted on the performance of GSS-like

visual stimuli for SSVEP-based BCI when the LCD monitor

is used as a rendering device. Furthermore, the effect of the

motion parameters (i.e., the waveform of the temporal motion

dynamics) on the BCI performances has not been investigated.

Indeed, the investigation of the performance of various GSS-

like visual stimuli with the LCD monitor environment is

important because most SSVEP-based BCI studies employ the
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LCD monitor to present the visual stimuli (Ge et al., 2019;

Chen et al., 2021; Xu et al., 2021). In addition, to the best of

our knowledge, hybrid visual stimuli that consolidate PRS with

periodic motions have never been proposed in previous studies.

In this study, we proposed novel hybrid visual stimuli that

consolidate the conventional PRS with periodic motions and

further investigated the effect of waveforms of the periodic

motions for hybrid visual stimuli based on either FS or

PRS on the performance of SSVEP-based BCIs. As for the

periodic motions, the stimulus size was changed according

to four different waveforms: none (no change in the size),

square (changing size in a binary manner), triangular (linearly

increasing and decreasing size), and sine (changing size with

a sinusoidal waveform), resulting in a total of eight different

hybrid visual stimuli (i.e., FS and PRS each with four periodic

motions). We evaluated two crucial factors for the practical

use of SSVEP-based BCIs: (1) BCI performances and (2) visual

fatigue, for each visual stimulus, with 20 healthy participants. A

filter bank canonical correlation analysis (FBCCA) algorithm,

which is a state-of-the-art training-free algorithm for SSVEP-

based BCIs was employed to evaluate the performances

of SSVEP-based BCIs in terms of classification accuracy

and information transfer rate (ITR). Moreover, an extended

version of FBCCA, named subharmonic-FBCCA (sFBCCA) was

developed for the SSVEP-based BCIs with PRS-based hybrid

visual stimuli.

Methods

Participants

A total of 20 healthy adults (10 males, aged 23.7 ± 3.5

years) with normal or corrected-to-normal vision participated

in the experiments. None of the reported any serious history

of neurological, psychiatric, or other severe diseases that could

otherwise influence the experimental results. All participants

were informed of the detailed experimental procedure and

provided written consent before the experiment. This study and

the experimental paradigm were approved by the Institutional

Review Board Committee of Hanyang University, Republic

of Korea (IRB No. HYU-202006-004-03) according to the

Declaration of Helsinki.

Visual stimuli

The visual stimuli were developed with the Unity 3D engine

(Unity Technologies ApS, San Francisco, CA, USA). Based on

previous GSS studies (Choi et al., 2019b; Park et al., 2019),

all stimuli were designed in a star shape, with a base size of

7 cm (5.7◦) to increase the visibility of periodic motions. The

background color was set to gray. Both FS and PRS changed the

color or reversed the patterns with the periodic square waveform

according to the results of previous studies that reported

that square-wave FS exhibited significantly higher classification

accuracy than FS of other waveforms (Teng et al., 2011; Chen

et al., 2019). The periodic motions were implemented by varying

the size of visual stimuli according to four different types of

waveforms: none (no change in the size), square (changing

size in a binary manner), triangular (linearly increasing and

decreasing size), and sine (changing size with a sinusoidal

waveform) waveforms with amodulation ratio of 33% compared

to the base size (i.e., the radius of each stimulus was changed

from 0.67 to 1.33 when the radius of the base stimulus was

assumed to be one). The conventional visual stimuli of FS and

PRS were combined with four periodic motions, resulting in

eight hybrid visual stimuli. Hereinafter, none, square, triangular,

and sine waveforms are referred to as None, Square, Triangular,

and Sine, respectively, and each hybrid visual stimuli are referred

to as FS-None, FS-Square, FS-Triangular, FS-Sine, PRS-None,

PRS-Square, PRS-Triangular, and PRS-Sine. Note that FS-None

and PRS-None were the same as the conventional FS and

PRS with the base size. Figure 1 illustrates the examples of the

hybrid visual stimuli when the stimulation frequency was set

to 6Hz. Blue circles indicate the stimulus size presented to the

participants considering the refresh rate of the LCD monitor

(= 60Hz). It is worthwhile noting that the most important

difference between FS and PRS is that FS elicits SSVEP responses

at the number of full cycles (i.e., two reversals) per second,

whereas PRS evokes SSVEP responses at the number of reversals

per second (Zhu et al., 2010). Therefore, the stimulation

frequencies of periodic motions for PRS were set to be half of

those for FS, which were considered as subharmonics of the

stimulation frequencies in the further analysis.

Experimental paradigm

The participants sat 70 cm away from a 27-inch LCD

monitor with a resolution of 1920 x 1080 pixels and the

60Hz refresh rate. The experiment consisted of eight sessions

corresponding to each hybrid visual stimuli and the order of

the sessions was randomized for each participant. Each session

was composed of 20 trials (5 trials × 4 stimuli), each of which

consisted of the visual cue of 3 s and the stimulation time of

5 s. The red bar was presented under the target stimulus during

visual cue period in a randomized order. The timing sequence of

a single trial is shown in Figure 2. The stimulation frequencies

of four stimuli were determined as 6, 6.67, 7.5, and 10Hz

considering the refresh rate of the LCD monitor. In each trial,

the participants were instructed to focus their attention on the

target stimulus among four simultaneously flickering stimuli

without eye blinks and body movements during the stimulation

time. At the end of each session, the participants evaluated the

Frontiers inNeuroinformatics 03 frontiersin.org

148

https://doi.org/10.3389/fninf.2022.997068
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Kwon et al. 10.3389/fninf.2022.997068

FIGURE 1

Examples of (A) FS-based hybrid visual stimuli and (B) PRS-based hybrid visual stimuli when the stimulation frequency was 6Hz. Blue circles

indicate the stimulus size presented to participants considering the refresh rate of the LCD monitor.

FIGURE 2

The timing sequence of a single trial. Each trial consisted of the

visual cue of 3 s and the stimulation time of 5 s.

visual fatigue score for each hybrid visual stimulus in the range

of 1–10 (1, low fatigue; 10, high fatigue).

Data recording and pre-processing

EEG data were recorded from eight scalp electrodes (O1,

Oz, O2, PO7, PO3, POz, PO4, and PO8) using a commercial

EEG system (BioSemi Active Two; Biosemi, Amsterdam, The

Netherlands) at a sampling rate of 2,048Hz. A CMS active

electrode and a DRL passive electrode were used to form a

feedback loop for the amplifier reference (Park et al., 2019).

MATLAB 2020b (Mathworks; Natick, MA) was used to analyze

the EEG data, and the functions implemented in the BBCI

toolbox (https://github.com/bbci/bbci_public) were employed.

The raw EEG data were down-sampled to 256Hz to reduce the

computational cost and then bandpass-filtered using a sixth-

order zero-phase Butterworth filter with cutoff frequencies of 2

and 54Hz. Considering a latency delay in the visual pathway, the

EEG data were segmented into epochs from 0.135 to 0.135+w s

with respect to the task onset time (0 s), where w indicates the

window size used for SSVEP detection (Rabiul Islam et al., 2017).

Classification methods

Canonical correlation analysis

CCA is a multivariate statistical method used to measure

the underlying correlation between two sets of multidimensional

variables, X ∈ Rdx×Ns and Y ∈ Rdy×Ns where, Ns is the number

of sample points and dx and dy indicate the dimension of X

and Y , respectively (Nakanishi et al., 2015). Considering their

linear combinations x = XTWX and y = YTWY , CCA

finds a pair of weight vectors WX ∈ Rdx×1 and WY ∈ Rdy×1

that maximize Pearson’s correlation coefficients between x and y

using the following equation:

max
Wx ,Wy

ρ
(

x, y
)

=
E

[

WT
XXY

TWY

]

√

E
[

WT
XXX

TWX

]

E
[

WT
YYY

TWY

]

. (1)

Here, T denotes the transpose operation. The maximum

correlation coefficient with respect to WX and WY is called the

“CCA coefficient.”

For SSVEP detection, the CCA coefficients, ρf , between

multichannel EEG signals, X ∈ RNc×Ns , and the reference

signals for each stimulus frequency, Yf ∈ R2Nh×Ns , were

evaluated and the frequency with the largest CCA coefficient was

classified as the target frequency, as follows:

ftarget = max
f

ρf , f = f1, f2, . . . , fK . (2)
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Here, K is the number of stimulus frequencies presented to

the participants.

The reference signal for each stimulus frequency (Yf ) was

set as

Yf =

















sin
(

2π fn
)

cos
(

2π fn
)

...

sin
(

2πNhfn
)

cos
(

2πNhfn
)

















, n =
1

fs
,
2

fs
, . . . ,

Ns

fs
, (3)

where, f is the stimulus frequency. In this study, Nc and fs

denote the number of channels and sampling frequency, which

were set to 8 and 256, respectively. Nh represents the number

of harmonics, which was set to 5 according to previous studies

(Chen et al., 2015).

Filter bank CCA

FBCCA combines CCA with filter bank analysis to extract

the discriminative information in the harmonic components

(Chen et al., 2015). The filter bank is applied to decompose

EEG data into multiple sub-band data, and CCA coefficients

are evaluated for each sub-band. The weighted sums of the

squared sub-band CCA coefficients for each stimulus frequency

are calculated using the following equations:

ρf =

Nm
∑

m=1

w (m) ·
(

ρmf

)2
, (4)

w (m) = m−a + b , (5)

where, Nm is the number of subbands, m is the index of the

subbands, and ρm
f

denotes the CCA coefficient of sub-band m.

The target frequency is determined in the same manner as in

CCA. According to previous studies (Chen et al., 2015; Zhao

et al., 2020), the following parameters were set: a = 1.25,

b = 0.25, and Nm = 5. The filter bank for five sub-bands was

designed with lower and upper cutoff frequencies of 4–52, 8–

52, 12–52, 16–52, and 20–52Hz, respectively (Chen et al., 2015).

In this study, FBCCA was employed to identify SSVEPs because

it is generally regarded as the best available algorithm, yielding

the highest classification accuracy without the need for training

sessions (Zerafa et al., 2018; Liu et al., 2020).

Subharmonic FBCCA (sFBCCA)

In this study, we proposed an extended version of

FBCCA, named subharmonic-FBCCA (sFBCCA), to utilize the

information in the subharmonic component, elicited by periodic

motions for PRS. In sFBCCA, the reference signal was expanded

to include the subharmonic component as follows:

Yf =
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fs
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. (6)

In addition, the equation for the weighted sums of the

squared sub-band CCA coefficients is extended as the

following equations:

ρf =

Nm
∑

m=1

w (m) ·

(

ρmf

)2
+ wsub ·

(

ρfsub

)2
, (7)

w (m) = m−a + b, (8)

wsub = msub
−a + b, (9)

where, msub represents the index of the subharmonic, set to

0.5, in this study. The bandpass filter for the subharmonic

component was designed with lower and upper cutoff

frequencies of 1–52Hz. sFBCCA was employed to classify

SSVEPs for hybrid visual stimuli of PRS-Square, PRS-Triangular,

and PRS-Sine.

Information transfer rate

In addition to the classification accuracy, ITR (bits per

minute) has been widely employed as a metric to assess the

performance of the BCI system (Wolpaw et al., 2002). The ITR

was evaluated using the following equation:

ITR =
60

T

{

logp2N + plogp2p+
(

1− p
)

logp2

(

1− p

N − 1

)}

,

(10)

Where, T denotes the window size (in seconds), N indicates

the number of classes, and p represents the classification

accuracy. In the present study, the N value was 4.

Statistical analysis

Statistical analyses were also performed using MATLAB

2020b (MathWorks; Natick, MA, USA). The non-parametric

method was employed because the normality criterion was not

satisfied owing to the small sample size. Friedman test was

conducted to verify if there were significant differences among

the BCI performances. Wilcoxon signed-rank test with the false

discovery rates (FDRs) correction for multiple comparisons was

performed for post-hoc analyses.
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FIGURE 3

SSVEP amplitudes of the averaged EEG signals across all the participants at the Oz electrode for FS-based hybrid visual stimuli. Red circles

indicate the stimulation frequencies and their harmonics, and black circles represent the subharmonic frequencies.

Results

FS-based hybrid visual stimuli

Figure 3 illustrates the grand mean amplitude spectra

of SSVEPs averaged across all participants with respect to

waveforms of periodic motions. The amplitudes of SSVEPs

were obtained from the EEG signals of 5-s long recorded at

the Oz electrode. Here, the first five harmonic components

of the stimulation frequencies, which were used for the

classification, and the subharmonic components were presented

in the figure. The red circles indicate the fundamentals

and harmonics of stimulation frequencies, and the black

circles represent the subharmonics. For FS-based hybrid

visual stimuli, clear SSVEP peaks were mainly evoked at the

fundamental and second harmonic frequencies. No SSVEP

peaks were observed at the subharmonic frequency. The grand

average amplitudes of each SSVEP component are listed in

Supplementary Table 1.

The grandmean amplitudes of SSVEP components averaged

over all stimulation frequencies across all the participants

are illustrated in Figure 4 as a function of waveforms of

periodic motions, where the error bars represent the standard

errors. The statistical analyses were performed to compare

the differences in the amplitude of SSVEP components at the

subharmonic, fundamental, and second harmonic frequencies

among FS-based hybrid visual stimuli. Four SSVEP amplitudes

at each harmonic frequency were calculated from the EEG

signals averaged over each stimulation frequency recorded

at the Oz electrode for each participant. Consequently, a

total of 80 SSVEP amplitudes (4 stimulation frequencies ×

20 participants) were statistically compared. The Friedman

test indicated significant differences in the amplitudes at

fundamental and second harmonic frequencies (subharmonic

frequency: χ2 = 0.05, p = 0.998, fundamental frequency: χ2

= 28.26, p < 0.001, second harmonic frequency: χ2 = 32.81,

p < 0.001). At the fundamental frequency, SSVEP amplitude

elicited by FS-Sine and FS-Triangular was significantly higher

than that elicited by FS-None and FS-Square (FDRs-corrected

p < 0.05 between FS-Square vs FS-Triangular, and FDRs-

corrected p < 0.001 for the others, Wilcoxon signed-rank

test). For the second harmonic frequency, SSVEP amplitude

evoked by FS-Sine was significantly higher than that evoked

by FS with other waveforms (p < 0.005 for FS-None and p

< 0.001 for the others, Wilcoxon signed-rank test with FDRs

correction). Additionally, FS-Square elicited significantly lower
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FIGURE 4

Grand mean SSVEP amplitudes for FS-based hybrid visual stimuli averaged across all the participants at (A) the subharmonic frequency, (B) the

fundamental frequency, and (C) the second harmonic frequency. Error bars represent the standard errors. Here, the asterisks of *, ***, and ****

represent FDRs-corrected p < 0.05, p < 0.005, and p < 0.001, respectively (Wilcoxon signed-rank test).

FIGURE 5

The average performance of FS-based hybrid visual stimuli in terms of (A) classification accuracies and (B) ITRs as a function of waveforms with

di�erent window sizes. Error bars represent the standard errors. Here, •p < 0.1 and *p < 0.05 are the FDRs-corrected p-values from Wilcoxon

signed-rank test.

SSVEP amplitude than that elicited by the other waveforms

(FDRs-corrected p < 0.005 for FS-None and FS-Triangular,

and FDRs-corrected p < 0.001 for FS-Sine, Wilcoxon signed-

rank test).

The average classification accuracies and ITRs for FS-based

hybrid visual stimuli with respect to different window sizes

are depicted in Figures 5A,B, respectively. The Friedman test

indicated statistically significant differences for all window sizes

except for 1.5 and 3.5 s (1 s, χ2 = 8.10, p < 0.5; 1.5 s, χ2 = 6.20,

p = 0.102; 2 s, χ2 = 9.50, p < 0.05; 2.5 s, χ2 = 11.38, p < 0.001;

3 s, χ2 = 9.88, p < 0.05; 3.5 s, χ2 = 7.47, p = 0.058, identical to

both the classification accuracy and ITR). TheWilcoxon signed-

rank test with FDRs correction showed statistically significant

differences in both classification accuracy and ITR between FS-

None and FS-Sine for window sizes of 1, 2, and 2.5 s (p < 0.5

for both classification accuracies and ITRs). Additionally, the

performances of FS-Sine were significantly higher than those

of FS-Square for the window size of 2 s (p < 0.5, Wilcoxon

signed-rank test with FDRs correction). As illustrated in the

figure, the performances of SSVEP-based BCI could be improved

by incorporating triangular- and sine-wave periodic motions

into the conventional FS for all window sizes. For FS, FS-Sine

exhibited the highest average performances for every window

size except for 3 s, especially for short window sizes.

Figure 6A illustrates the fatigue scores of FS-based hybrid

stimuli as a function of periodic motion waveforms. The gray

bars represent the interquartile ranges from the first quartile to

the third quartile and white circles indicate the median values.

The averaged fatigue scores were 4.8 ± 1.82, 4.6 ± 1.90, 5.4 ±

2.01, and 5.3± 2.05 for FS-None, FS-Square, FS-Triangular, and

FS-Sine, respectively. A statistically significant difference was not

observed in the Friedman test (χ2 = 2.55, p= 0.467).
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FIGURE 6

Fatigue scores for (A) FS-based hybrid visual stimuli and (B) PRS-based hybrid visual stimuli as a function of waveforms. Gray bars represent the

interquartile range from 25 to 75% and white circles indicate median values.

PRS-based hybrid visual stimuli

The grand mean amplitude spectra of SSVEPs averaged

across all participants are illustrated in Figure 7 as a function of

waveforms of PRS-based hybrid visual stimuli. The red circles

indicate the fundamental and harmonic frequencies, and the

black circles represent the subharmonic frequencies. Unlike the

FS-based hybrid visual stimuli, clear SSVEP peaks were observed

at the subharmonic frequency for PRS-Square, PRS-Triangular,

and PRS-Sine, as expected. The grand mean amplitudes of each

SSVEP component are listed in Supplementary Table 2.

The grand mean amplitudes of SSVEP components at the

subharmonic, fundamental, and second harmonic frequencies

averaged over all stimulation frequencies across all the

participants are illustrated in Figure 8 with respect to the

periodic motion waveforms incorporated with PRS. The error

bars represent the standard errors. The Friedman test indicated

significant differences in amplitudes at all harmonic frequencies

(χ2 = 110.53, p < 0.001; χ2 = 10.69, p < 0.05; χ2

= 32.81, p < 0.05). PRS-None evoked the lowest SSVEP

amplitudes at the subharmonic frequency (p < 0.001 for PRS-

Square, PRS-Triangular, and PRS-Sine, Wilcoxon signed-rank

test with FDRs correction). In addition, the SSVEP amplitude

induced by PRS-Triangular was significantly lower than that

induced by PRS-Square and Sine (FDRs-corrected p < 0.001,

Wilcoxon signed-rank test). For the fundamental frequency,

PRS-Triangular induced significantly lower SSVEP amplitudes

compared to other PRS-based hybrid visual stimuli and even

conventional PRS (p < 0.05, Wilcoxon signed-rank test with

FDRs correction). The SSVEP amplitudes elicited by PRS-None

and PRS-Square were significantly higher than those elicited by

PRS-Triangular and PRS-Sine at the second harmonic frequency

(p< 0.001 between PRS-None and PRS-Triangular, and p< 0.05

for the others, Wilcoxon signed-rank test, FDRs-corrected).

Figures 9A,B depict the average classification accuracies and

ITRs, respectively, for PRS-based hybrid visual stimuli with

respect to different window sizes. Here, all the performances

of SSVEP-based BCIs were evaluated using FBCCA for PRS-

None and sFBCCA for PRS-Square, PRS-Triangular, and PRS-

Sine cases. The Friedman test indicated statistically significant

differences for window sizes of 1.5 and 2 s (1 s, χ2 = 5.59,

p < 0.133; 1.5 s, χ2 = 9.30, p < 0.05; 2 s, χ2 = 8.06, p

< 0.05; 2.5 s, χ2 = 6.38, p < 0.1; 3 s, χ2 = 7.12, p < 0.1;

3.5 s, χ2 = 4.63, p = 0.201, identical to both the classification

accuracy and ITR). For all window sizes, PRS-Square showed

the highest performance in terms of both classification accuracy

and ITR, although statistically significant differences were

not observed.

To investigate the effect of sFBCCA, the SSVEP-based BCI

performances for PRS-Square were evaluated using FBCCA and

sFBCCA with respect to different window sizes. In Figure 10,

the white and gray bars indicate the averaged classification

accuracies and ITRs evaluated using FBCCA and sFBCCA,

respectively. The error bars represent standard errors. The

SSVEP-based BCI performances evaluated using sFBCCA were

significantly improved compared to those evaluated using

FBCCA for every window size except 3.5 s (Wilcoxon signed-

rank test). The result demonstrated that the proposed sFBCCA

could significantly improve the performance of SSVEP-based

BCIs when PRS-based hybrid visual stimuli are employed.
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FIGURE 7

SSVEP amplitudes of averaged EEG signals over all participants for PRS-based hybrid visual stimuli at the Oz electrode. Red circles indicate the

stimulation frequencies and their harmonics, and black circles represent the subharmonic frequencies.

FIGURE 8

Grand mean SSVEP amplitudes for PRS-based hybrid visual stimuli averaged across all the participants at (A) the subharmonic frequency, (B) the

fundamental frequency, and (C) the second harmonic frequency. Error bars represent the standard errors. Asterisks of * and **** represent

FDRs-corrected p < 0.05 and p < 0.001, respectively (Wilcoxon signed-rank test).

The fatigue scores for PRS-based hybrid visual stimuli

are illustrated in Figure 6B as a function of periodic motion

waveforms. The gray bars represent the interquartile ranges

from 25 to 75% and white circles indicate the median values.

For PRS-None, PRS-Square, PRS-Triangular, and PRS-Sine, the

averaged fatigue scores were reported as 3.85± 1.63, 4.05± 1.28,

4.55± 1.43, and 4.8± 1.51, respectively.

Comparison between FS-sine and
PRS-square

The average classification accuracies and ITRs for FS-Sine

and PRS-Square, which exhibited the highest performances

among FS- and PRS-based hybrid visual stimuli, are shown

in Figures 11A,B, respectively. The differences in the average
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FIGURE 9

The average performance of PRS-based hybrid visual stimuli in terms of (A) classification accuracies and (B) ITRs as a function of waveforms with

di�erent window sizes. Error bars represent the standard errors. Here, •p < 0.1 is the FDRs-corrected p-value from Wilcoxon signed-rank test.

FIGURE 10

(A) Classification accuracies and (B) ITRs of SSVEP-based BCI for PRS-Square evaluated using FBCCA and sFBCCA with di�erent window sizes.

Error bars represent the standard errors. Here, *, ***, and **** represent p < 0.05, p < 0.005, and p < 0.001, respectively (Wilcoxon signed-rank

test).

classification accuracies were reported to be 5.5, 2.5, 0.75, 0.25,

0.00, and 0.75%p for window sizes of 1, 1.5, 2, 2.5, 3, and 3.5 s,

respectively. As for the ITRs, the differences were 12.93, 5.35,

1.60, 0.56, 0.00, 0.94 bits/min for the 1-, 1.5-, 2-, 2.5-, 3-, and

3.5-s window sizes. Statistically significant differences were not

observed (Wilcoxon signed-rank test).

The violin plot in Figure 12 illustrates the fatigue scores

for FS-Sine and PRS-Square. The distributions of fatigue scores

from the first quartile to the third quartile are presented as gray

bars and the median values are indicated as white circles. The

average fatigue scores were reported to be 5.3 ± 2.05 and 4.05

± 1.28 for FS-Sine and PRS-Square, respectively. A statistically

significant difference in the fatigue score was observed between

the FS-Sine and PRS-Square conditions (p < 0.005, Wilcoxon

signed-rank test), implying that PRS-Square is more visually

comfortable to the users than FS-Sine.

Discussion

In this study, we proposed novel types of hybrid visual

stimuli that incorporate periodic motions into conventional

SSVEP visual stimuli. Periodic motions were realized by

changing the size of the visual stimulus according to four

different types of waveforms. We then investigated the effect

of periodic motion waveforms for the hybrid visual stimuli on

the performances of SSVP-based BCIs, for the first time. Our

results demonstrated that the conventional SSVEP visual stimuli

combined with appropriate periodic motions could increase the

SSVEP amplitudes significantly, resulting in the enhancement

of SSVEP-based BCI performances. For FS, the hybrid

stimulus of FS-Sine elicited the highest SSVEP amplitudes at

the fundamental and second harmonic frequencies, thereby

resulting in the highest average performances in terms of
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FIGURE 11

(A) Classification accuracies and (B) ITRs for PRS-Square and FS-Sine with di�erent window sizes. Error bars represent the standard errors.

FIGURE 12

Average fatigue scores for FS-Sine and PRS-Square. Gray bars

represent the interquartile range from 25 to 75% and white

circles indicate the median values. Here, the asterisk of ***

represents p < 0.005 (Wilcoxon signed-rank test).

classification accuracies and ITRs for every window size except

for 3 s. As for PRS, PRS-Square evoked the highest SSVEP

components, thereby exhibiting the highest performances for

all window sizes. No statistically significant difference in the

performances between FS-Sine and PRS-Square was observed;

however, the visual fatigue score of PRS-Square was significantly

lower than that of FS-Sine. Visual fatigue is one of the main

obstacles to implementing practical SSVEP-based BCIs because

visual fatigue generally decreases SSVEP amplitudes, yielding

degradation of overall SSVEP BCI performances (Makri et al.,

2015; Ajami et al., 2018). Therefore, our results suggest that

the proposed PRS-Square is the most appropriate stimulus

that could improve the SSVEP-based BCI performance without

inducing high visual fatigue. It is believed that the use of PRS-

Square stimuli has a great potential to improve the practicality

of SSVEP-based BCIs, particularly for long-term use.

We hypothesized that the performances of SSVEP-based

BCIs with any kind of hybrid visual stimuli could outperform

those with conventional SSVEP visual stimuli because the hybrid

visual stimuli could induce both SSVEP and SSMVEP. However,

unlike our expectation, FS-Square and PRS-Triangular exhibited

lower average classification accuracies and ITRs than the

conventional visual stimuli for some window sizes. In addition,

the periodic motion of the same waveform showed different

effects on FS and PRS. For example, contrary to FS-Square,

PRS-Square achieved the highest classification accuracies and

ITRs for every window size, suggesting that it is important to

combine conventional visual stimuli with periodic motions with

appropriate waveforms for implementing high-performance

SSVEP-based BCIs. We believe that these results might originate

from different mechanisms of FS and PRS to evoke SSVEP.

However, imaging modalities with higher spatial resolution

such as fMRI would be necessary to further investigate the

mechanisms of FS and PRS to evoke SSVEP. On the other hand,

the luminance or pattern of FS and PRS was changed according

to the square waveform because previous studies (Teng et al.,

2011; Chen et al., 2019) demonstrated that square-wave FS

achieved significantly higher classification performances than

other waveform stimuli. However, as there is a possibility

that the hybrid visual stimuli combining FS or PRS of

other waveforms with periodic motions might improve the

performance of SSVEP-based BCI, further investigations would

be necessary for the future.

In contrast to the FS-based hybrid visual stimuli, the PRS-

based hybrid visual stimuli were implemented by incorporating

periodic motions whose stimulation frequency was half of

PRS frequency. Although not mentioned in this manuscript,

we also tested PRS-based hybrid visual stimuli with periodic

motions of which the stimulation frequency was the same as
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FIGURE 13

Average classification accuracies for PRS-Square as a function of

msub in sFBCCA with di�erent window sizes.

that of PRS in our preliminary tests. For PRS with periodic

motions of twice the frequency, most participants complained

of severe visual fatigue and discomfort due to the rapid change

in the stimulus size although almost the same classification

accuracy as the PRS-based hybrid visual stimuli employed

in this study was reported. As a result, the stimulation

frequency of periodic motions was determined as half of PRS

frequency. Since the use of the reduced stimulation frequency

for periodic motions evoked subharmonic component, we

extended the conventional FBCCA and proposed sFBCCA to

fully exploit useful information contained in SSVEP evoked

by the proposed PRS-based hybrid visual stimuli. The use of

sFBCCA significantly enhanced the classification performances,

compared to the results of FBCCA applied to PRS-Square, as

shown in Figure 10. In the sFBCCA, the index of subharmonic,

msub, was set to 0.5, which showed the highest classification

accuracies for all window sizes except 1 s, as shown in Figure 13.

However, there is still a possibility of further improvement

of SSVEP-based BCI performances by optimizing sFBCCA

parameters. Additionally, PRS-based hybrid visual stimulus has

a promising possibility of increasing the number of commands

limited by the refresh rate of the LCD monitor (Li et al.,

2021), thanks to its characteristics of dual main stimulation

frequencies induced by SSVEP and SSMVEP. This would be one

of the promising topics we would like to further investigate in

our future studies for implementing high-performance SSVEP-

based BCIs.
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Objective: Brain-computer interface (BCI) can translate intentions directly into

instructions and greatly improve the interaction experience for disabled people

or some specific interactive applications. To improve the e�ciency of BCI, the

objective of this study is to explore the feasibility of an audio-assisted visual

BCI speller and a deep learning-based single-trial event related potentials (ERP)

decoding strategy.

Approach: In this study, a two-stage BCI speller combining the motion-onset

visual evoked potential (mVEP) and semantically congruent audio evoked ERP

was designed to output the target characters. In the first stage, the di�erent

group of characters were presented in the di�erent locations of visual field

simultaneously and the stimuli were coded to the mVEP based on a new

space division multiple access scheme. And then, the target character can be

output based on the audio-assisted mVEP in the second stage. Meanwhile,

a spatial-temporal attention-based convolutional neural network (STA-CNN)

was proposed to recognize the single-trial ERP components. The CNN can

learn 2-dimentional features including the spatial information of di�erent

activated channels and time dependence among ERP components. In addition,

the STA mechanism can enhance the discriminative event-related features by

adaptively learning probability weights.

Main results: The performance of the proposed two-stage audio-assisted

visual BCI paradigm and STA-CNN model was evaluated using the

Electroencephalogram (EEG) recorded from 10 subjects. The average

classification accuracy of proposed STA-CNN can reach 59.6 and 77.7% for

the first and second stages, which were always significantly higher than those

of the comparison methods (p < 0.05).

Significance: The proposed two-stage audio-assisted visual paradigm showed

a great potential to be used to BCI speller. Moreover, through the analysis of

the attention weights from time sequence and spatial topographies, it was

proved that STA-CNN could e�ectively extract interpretable spatiotemporal

EEG features.

KEYWORDS

brain-computer interface, audio-assisted visual evoked EEG, space division multiple

access, spatial-temporal attention, convolutional neural network
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Introduction

As an emerging human-computer interaction technique, the

brain-computer interface (BCI) can realize the communication

between the brain and the external devices without depending

on the peripheral nervous and muscular tissues. The BCI

can significantly improve the interaction experience for

disabled people or some specific interactive applications

including medical rehabilitation, healthcare, intelligent control,

entertainment and so on (Chaudhary et al., 2016; Song

et al., 2020). The scalp Electroencephalogram (EEG)-based BCI

system has received more attention due to its easily used,

relatively inexpensive, and high time resolution. Currently,

some kinds of EEG signals with intentions modulated from

the large neuronal activity are widely used in BCI systems

including sensorimotor rhythm (SMR), steady-state visual

evoked potential (SSVEP), and event-related potential (ERP).

The SMR-based BCI usually requires a relatively long training

time and even becomes ineffective after a certain amount of

training for some users (Blankertz et al., 2010). The SSVEP-

based BCI usually has a strong visual stimulation, which could

cause the user’s visual fatigue (Allison et al., 2014).

In the past few years, ERP-based BCIs have been widely

investigated. One is the P300 speller, where a P300 component

is elicited when the target character in a matrix is flashed with

a small probability (Aloise et al., 2012). The P300 is a positive

peak potential with a latency of about 300ms after the stimulus

onset. To avoid flashing stimuli, the motion-onset visual evoked

potential (mVEP) has been widely applied in BCI by attending

to the target with a moving bar in an overt or covert way (Hong

et al., 2009; Schaeff et al., 2012). The mVEP is composed of three

main ERP components: P1 (P100), N2 (N200) and P2 (P200).

The positive peak P1 with a latency of about 130ms and the late

negative peak N2 with a latency of 160–200ms are considered as

the main motion specific components (Zhang et al., 2015).

However, most of the ERP-based BCI must take a long time

to output a target, where the stimuli must traverse all the target

and nontarget with mutiple different time slices. To improve the

detection speed, the dual-directional motion encoding paradigm

was presented to reduce the stimuli presentation time by half

(Liu et al., 2021). A new speller based on miniature asymmetric

visual evoked potentials and space-code division multiple access

(SDMA) scheme was developed, which can reduce stimuli time

to implement an efficient BCI (Xu et al., 2018). For the SDMA

scheme, the stimuli of targets and nontargets appear at different

locations in the visual field simultanously, where an intended

stimulus is attended to output the target quickly (Gao et al.,

2014). Therefore, this study explored a new SDMA scheme to

develop an efficient mVEP-based speller.

Compared with spontaneous EEG, the amplitude of single-

trial ERP is so small that it is difficult to identify the target.

Generally, to improve the signal-to-noise ratio (SNR) of ERP,

averaging the EEG over several trials is used to obtain the

discriminated ERP components. Nevertheless, it would decrease

the output speed of the BCI system. An audiovisual hybrid BCI

was designed to evoke stronger P100, N200, and P300 responses

than the visual modality (Wang et al., 2015). The observed

audiovisual integration effects can enhance the discriminability

between target and nontarget brain responses. Moreover,

an audiovisual P300-speller paradigm was proposed, which

significantly improved the classification accuracies compared

with the visual-based P300-speller (Lu et al., 2019). So, to

enhance the quality of the ERP components, a semantically

congruent audio-assisted mVEP paradigm was further used to

output the target character in this study.

In addition, it is essential to decoding the ERP from a

single-trial EEG to achieve fast and accurate target output.

In some methods, the ERP components and spontaneous

EEG were separated from a single-trial EEG based on a

priori ERP pattern using wavelet transform (WT) (Quiroga,

2005), independent component analysis (ICA) (Lee et al.,

2016) and so on. An iterative principal component analysis

(PCA) method was proposed to extract single-trial ERP

by reconstructing the principal components with a higher

correlation with the target ERP (Mowla et al., 2016). Other

methods aimed to improve the classification performance of

single-trial ERP. The linear discriminant analysis (LDA)

usually worked well for single-trial ERP classification.

However, an accurate covariance matrix estimation was

required in high-dimensional feature spaces. A shrinkage

LDA was proposed to achieve excellent results for single-

trial ERP classification (Blankertz et al., 2011). Meanwhile,

a spatial-temporal discriminant analysis (STDA) algorithm

was introduced to learn spatial and temporal projection

matrices collaboratively by adopting matrix features, and

the ill-conditional problem of covariance matrix can be

effectively solved (Zhang et al., 2013). To enhance the SNR

of ERP and classification accuracy simultaneously, current

detection methods of single-trial ERP were reviewed, and

the best performance of the xDAWN-based spatial filter and

Bayesian LDA method was proved during a rapid serial visual

presentation task (Cecotti and Ries, 2017). A data-adaptive

spatiotemporal filtering method based on the clustering

and array WT was proposed to improve the discriminative

features of single-trial ERP (Molla et al., 2018). To adapt

to the ERP diversities, the discriminative canonical pattern

matching (DCPM) was proposed and obtained outperformed

classification performance for the single-trial classification of

EEG datasets including P300, mVEP components and so on

(Xiao et al., 2020).

Recently, deep learning has been demonstrated that it can

deal with EEG feature learning and classification effectively

(Amin et al., 2019). A convolutional neural network (CNN)

with a layer dedicated to spatial filtering was proposed to detect
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the single-trial ERP (Cecotti et al., 2014). The EEGNet, using

the depthwise and separable CNN, was introduced to construct

an EEG-specific model, which achieved comparably high

performance for within-subject and cross-subject classification

(Lawhern et al., 2018). Furthermore, a novel CNN model

was proposed to better use the phase-locked characteristic to

extract spatiotemporal features for single-trial ERP classification

(Zang et al., 2021). However, due to the inter-trial and inter-

subject variability of single-trial ERP, it is still challenging

to build an efficient decoding strategy for single-trial ERP.

Current studies have suggested that large inter-trial and inter-

subject differences exist in the amplitude and latency of ERP

components. So, it becomes crucial to construct an adaptive

learning model to extract the spatial-temporal features from

single-trial EEG.

In sum, there are still some current challenges to the

application of the EEG-based BCI, including the friendly

cognitive load and EEG characteristics-guided BCI classification

algorithms (Xu et al., 2021). Compared with the flashing or

flickering visual BCIs, the mVEP is a convenient way to

encode targets with briefly moving stimuli (Libert et al., 2022b).

On single trial classification, CNN can achieve comparable

performance to both the LDA and support vector machine,

but slightly less stable and interpretable (Vareka, 2020). In

this study, similar to the Hex-o-Spell (Treder and Blankertz,

2010), a two-stage overt attention BCI speller combining

with the mVEP and semantically congruent audio evoked

ERP was designed to output a target by taking advantage of

audiovisual properties. The main contributions of this paper are

as follows.

(1) In the first stage, the different character groups coded

with mVEP were presented simultaneously in the

different locations of the visual field based on a new

SDMA scheme to improve the efficiency of visual

stimuli presentation.

(2) The target character was selected based on the audio-

assistedmVEP in the second stage, which can enhance the

quality of the ERP components.

(3) The spatial-temporal attention-based CNN (STA-CNN)

was proposed to deal with single-trial ERP components

learning and classification. The STA-CNN can effectively

extract interpretable spatiotemporal EEG features by

adaptively learning probability weights.

The rest of the paper is organized as follows:

materials and methods are demonstrated in Section

Materials and methods. Then experiment results of

our proposed BCI speller are presented in Section

Experiment results.. Finally, the discussion and conclusion

of this paper are provided in Section Discussion

and conclusions.

Materials and methods

Two-stage audio-assisted visual BCI
paradigm

This study implemented a two-stage audio-assisted visual

copy-spelling BCI, as shown in Figure 1. The paradigm was

designed by using the Psychtoolbox in the Matlab 2012b

environment. The visual stimuli were presented on a 17-inch

LCD monitor with a 60Hz refresh rate and 1440 × 900 pixels

resolution. The audio stimuli were played by the headphone at a

sensible volume.

In the first stage, forty alphanumeric characters were divided

into 8 groups with 5 characters in each group, as shown in

Figure 1A, wherein the size of each character group area was

280 × 280 pixels, and the size of each motion visual stimulus

(red vertical bar) was 10× 80 pixels. The target character group

was selected based on the mVEP with a new SDMA scheme.

For the SDMA scheme, three sub-trial motion visual stimuli

sequences constituted eight parallel spatial channels. In each

group, the red vertical bar appeared on the left side and moved

rightward until it reached the right side, which lasted for 0.3 s

as a brief motion-onset stimulus. Specifically, the motion-onset

stimulus from left to right was regarded as code “1”, while no

motion-onset stimulus was regarded as code “0”. The interval

between two successive motion-onset stimuli was 0.2 s, and a

complete stimulation sequence lasted for 1.5 s. Eight groups of

code sequences were allocated to different character groups, as

shown in Figure 1B. Take character A as an example, and its

group code is “101”. That is, the ‘moving bar—none—moving

bar’ was presented by turns in the location of the top left group.

During the spelling period, the motion-onset stimuli would be

presented simultaneously for all character groups with different

code sequences. The spatial information is embedded in the

group codes. After three sub-trials of motion-onset stimuli in the

first stage, the target character group would be selected.

Upon choosing of a character group, the speller switches to

the second stage, and the target character can be selected based

on the audio-assisted mVEP. One example of the second stage

paradigm, including motion-onset stimuli and pronunciation

of character A, is shown in Figure 1C. The motion-onset

stimuli and semantically congruent audio (pronunciation) for

each character would be presented simultaneously. During the

presentation of audiovisual stimuli, when a moving bar was

presented on a character, the pronunciation of the character was

played by the headphone. Each group contained 5 characters,

and the audiovisual stimuli of each character were presented

randomly for 0.3 s with a time interval of 0.2 s. A complete

stimulation sequence lasted for 2.5 s. Specifically, the audiovisual

stimulation was similar to the “oddball” paradigm, and the

target stimulation produced a P300 response. In the stimulation

interface, the size of each character area was 170 × 250
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FIGURE 1

Speller paradigm example. (A) The first stage paradigm includes 3 sub-trials motion-onset stimuli based on the SDMA scheme. (B) A list of group

code sequences for the first stage. (C) One example of the second stage paradigm includes motion-onset stimuli and pronunciation of

character A simultaneously.

pixels, and the size of each motion visual stimulus was 10 ×

100 pixels.

Subjects and experimental procedure

Ten healthy volunteers (22–26 years of age, 7 males, all right-

handed) with normal hearing and normal or corrected to normal

vision participated in this study. The experimental procedures

were performed in accordance with the Declaration of Helsinki.

The written informed consent was obtained from all subjects

before the experiments, and the required tasks of the study were

explained. After the experiments, the subjects received money

for their participation. A total of 467 characters, including 10

sentences, were spelled in the copy-spelling task for each subject,

with a 2min rest between the sentences.

During the experiment, subjects were seated 50 centimeters

in front of the LCD monitor. When a target character was

introduced, it was shown on the screen center. In the first

stage, the subjects were asked to pay attention to the center of

the character group where the target character is located. In

the second stage, the subjects were asked to pay attention to

the target character. During the experiment, the subjects were

asked to keep their heads as still as possible and blink less. And

then, EEG was recorded using the Neuroscan SynAmps2 system

with 64 channels referring to the international 10–20 electrode

positions (Xu et al., 2018). The reference electrode was put in

the position near Cz, and the ground electrode was put in the

position near Fz. The impedance between the scalp and the

electrode is <10 kΩ . The recorded EEG was bandpass-filtered

at 0.1–100Hz, sampled at a rate of 1000Hz, and then stored in

a computer.

After the EEG data were acquired, the recorded EEG data

were re-referenced to the average of the bilateral mastoids (M1

and M2), filtered by a band-pass filter at 1–30Hz, and down-

sampled at 200Hz. A 0.6 s time window was used to extract

event-related data frames from – 0.1 to 0.5 s after stimulus onset,

and 0.1 s baseline correction was applied in the first and the

second stages. The format of a single trial EEG data in both two

stages was a matrix of 62 channels× 100 time samples.
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Spatial-temporal attention CNN model

To enhance the discriminative event-related features from

spatial-temporal domains, the spatial-temporal attention CNN

(STA-CNN) model is proposed, which consists of four modules,

as shown in Table 1.

The module 1 is mainly used for temporal filtering, which

contains a reshape layer, a convolutional layer (Conv2D), and

a batch normalization (BN) layer. The reshape layer transforms

the EEG data into the input format of the Conv2D layer. And

then, we perform a convolutional step in time sequence, and

a 2D convolutional filter of size (1, 50) and stride 1 is used to

output 16 feature maps containing the EEG data at different

band-pass frequencies. The time length of the output is still 100

due to a 2D zero-padding of size (24, 25, 0, 0). In addition, the

BN layer is performed before the activation function to avoid the

distribution shift (Ioffe and Szegedy, 2015), and the exponential

linear unit (ELU) activation function is used.

The module 2 performs the temporal features extraction,

including a temporal attention layer, a Conv2D layer, and a BN

layer. In the temporal attention layer, we adopt the adaptive

event-related features learning, which can assign weights to

different time samples based on importance. Suppose the feature

maps T ∈ RNs×Nf×Nc×Nt from the module 1, we first

apply a grand average pooling (GAP) for each time sample

from different channels to obtain temporal-wise statistics T ∈

RNs×Nf×1×Nt , where Ns is the batch size, Nf is the number

of filters, Nc is the number of channels, Nt is the number

of time points. The temporal attention mechanism adopts

two fully-connected (FC) layers, including a dimensionality-

reduction Linear layer 1 with tanh activation function and

a dimensionality-increasing Linear layer 2, to reduce model

complexity and improve generalizability. Thus, the temporal

attention mechanism is expressed as follows.

At = softmax
(

Linear2
(

tanh
(

Linear1
(

T
))))

(1)

where the softmax function transforms the importance of

time points to a probability distribution. Finally, we consider

probability as the weight to recode the feature maps T at

each time point. Thus, the attentive temporal feature can be

represented as follows.

Ta = T • At (2)

The design of temporal attention on different periods utilizes

relatively stable latency of event-related features for different

channels. Then, we further perform a convolutional step in time

sequence, and a 2D convolutional filter of size (1, 51) and stride

1 is used to output 32 feature maps. The time length of output

becomes 50 to reduce the temporal dimension. And the BN layer

is performed before the ELU activation function. To prevent

over-fitting, we use the Dropout technique (Srivastava et al.,

2014) and set the dropout probability to 0.5.

To further extract spatial information from the featuremaps,

the module 3 consists of a spatial attention layer, a Conv2D

layer, and a BN layer. Similar to the temporal attention layer, the

spatial attention layer assigns weights to different channels based

on importance. Suppose the feature maps S ∈ RNs×Nf×Nc×Nt

from the module 2, we apply a GAP for each channel of feature

maps to obtain channel-wise statistics S ∈ RNs×Nf×Nc×1. The

spatial attention mechanism also adopts two FC layers 3 and 4,

which are expressed as follows.

As = softmax
(

Linear4
(

tanh
(

Linear3
(

S
))))

(3)

Finally, we consider probability as the weight to recode the

feature maps S in each channel as follows.

Sa = S • As (4)

Compared with the traditional channel attention (Woo et al.,

2018), this study only utilizes the average pooling instead of the

sum of average and maximum pooling to become insensitive to

the noise in EEG feature learning. Then, to learn a spatial filter,

we further perform a 2D convolutional filter of size (62, 1) and

stride 1 to output 4 feature maps. The BN layer is used before

the ELU activation function. A maximum pooling layer of size

(1, 5) and stride 5 is utilized to reduce the feature dimensions.

To prevent over-fitting, we use the Dropout technique and set

the dropout probability to 0.5.

In themodule 4, after feature maps are flattened into vectors,

a dense layer with the softmax function is used as the classifier

of the model. The output size of the dense layer is set to 2, which

corresponds to the target and non-target classes.

In summary, we have designed a model, as shown in

Figure 2 to extract spatial-temporal features and classification

from single-trial EEG data. The model was trained using the

Adam optimizer and the categorical cross-entropy loss function

in PyTorch. We ran 300 training iterations and performed

validation stopping, saving the model weights when we got the

lowest loss of validation set.

Experiment results

ERP components analysis

The performance of the proposed two-stage audio-assisted

visual BCI paradigm and the STA-CNN model was evaluated

using the EEG recorded by our experiment in Section Materials

and methods. A total of 467 characters, including 10 sentences,

were spelled for each subject. Hence, 714 target EEG segments

and 687 nontarget EEG segments in the first stage, and 467 target

EEG segments and 1868 nontarget EEG segments in the second

stage were recorded for each subject.

We firstly analyzed the ERP components evoked from

the audio-assisted visual BCI paradigm. The grand average of
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TABLE 1 Parameters setting of STA-CNNmodel.

Module Layer #Filters Size Strides Output Options

1 Input (62, 100)

Reshape (1, 62, 100)

Conv2D 16 (1, 50) 1 (16, 62, 100) Padding= (24, 25)

BatchNorm (16, 62, 100)

Activation (16, 62, 100) ELU

2 TemporalAttention (16, 62, 100)

Conv2D 32 (1, 51) 1 (32, 62, 50)

BatchNorm (32, 62, 50)

Activation (32, 62, 50) ELU

Dropout (32, 62, 50) P = 0.5

3 ChannelAttention (32, 62, 50)

Conv2D 4 (62, 1) 1 (4, 1, 50)

BatchNorm (4, 1, 50)

Activation (4, 1, 50) ELU

MaxPool2d (1, 5) 5 (4, 1, 10)

Dropout (4, 1, 10) P = 0.5

4 Flatten (40)

Dense (2) Softmax

FIGURE 2

Schematic diagram of STA-CNN model.

the target and nontarget EEG epochs in the first stages and

the second stages for each subject were calculated separately.

Figure 3 illustrates the averaged scalp potentials on 62 channels

and topographies from the target and nontarget EEG epochs

for one example subject S10. The amplitude of some time

periods of target-related signal in Figures 3A,B is obviously

higher than that of nontarget-related signal in Figures 3C,D.

The three main time periods in Figure 3A with latencies of

about 90, 130, and 195ms after the motion-onset stimulus

could be categorized as the P1, N2, and P2 components of

mVEP. Compared with Figure 3A, the latencies of the mVEP

components in Figure 3B become shorter, which are about

50, 90, and 180ms after the motion-onset stimulus. This

may be due to the earlier picked-up target cues in the first

stage and the congruent audiovisual integration effect (Hessler

et al., 2013; Simon and Wallace, 2018). Besides the mVEP

components, there is an obviously larger amplitude with a

latency of 350ms in Figure 3B, which could be categorized

to the P300 component evoked by the audio-assisted visual

oddball paradigm. The above-mentioned P1, N2, P2, and P300
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components are distributed in the central, temporo-occipital,

and associate parietal cortical areas and dominate in the right

hemisphere, which are consistent with the previous findings

aboutmVEP and P300 components (Kuba et al., 2007; Guo et al.,

2008; Belitski et al., 2011).

Moreover, to further analyze the ERP components during

the character spelling process, taking character A as an example,

the grand average of target and nontarget related signals in

the first stage and the second stage on channel P4 are shown

in Figure 4. The reason for choosing channel P4 is based on

the significant differences between target and nontarget related

signals shown in Figure 3 and the previous findings (Zhang

et al., 2015). In the first stage, the three epochs could be coded

as “101” for the group code sequence of characters A-E. The

amplitudes of the target-related mVEP components, including

P1, N2, and P2 (color area) during the first and third epochs

are significantly higher than that of the nontarget-related signal

during the second epoch, as shown in Figure 4A, where the

mVEP components from the first 500ms and the third 500ms

epochs are coded as “1” and the nontarget signal in the middle

500ms epoch is coded as ‘0’. In the second stage, besides the P1,

N2, and P2 components, the audio-assisted visual target stimuli

can evoke obviously P300, while the nontarget stimuli had no

obvious ERP components. Therefore, the proposed two-stage

audio-assisted visual stimulus paradigm shows great potential to

be used for BCI speller.

Single-trial ERP classification
performance

Due to the different spatial-temporal characteristics of the

ERP components in both two stages, the STA-CNN classification

models were constructed based on the single trial EEG data

in the first stage and the second stage, respectively. For the

integrity of spelling characters, 448 target EEG segments and 452

nontarget EEG segments for 300 characters in the first stage were

used as the training set for each subject, ten percent of which

were used as the validation set. Similar to the first stage, 300

target EEG segments and 1200 nontarget EEG segments in the

second stage were used as the training set, 10% of which were

used as the validation set. For the training set, target samples

were replicated 3 times to ensure the same number of samples

from the two categories in the second stage, which could avoid

model deviation caused by an unbalanced sample number. The

remaining EEG segments for 167 characters were used as the test

set in both stages. The classification performance was evaluated

by the metrics: accuracy and F1-score.

In this part, the proposed STA-CNN was compared with

several LDA variants and deep learning methods, including

STLDA, DCPM, DeepLDA (Wu et al., 2017) and EEGNet,

to validate the single-trial ERP classification performance. For

the above comparison methods, the model parameters in this

study were set by referring to the original literature. Tables 2,

3 present the classification results in terms of accuracy and

F1-score for each subject using the above five methods. The

classification accuracy of the second stage with the audio-

assisted visual stimulus is higher than that of the first stage

with visual stimulus. The overall classification results vary with

different subjects, and subjects 2, 4, 7 and 10 could obtain

higher spelling performance. The average classification accuracy

of proposed STA-CNN across all subjects can reach 59.6% and

77.7% in the first and second stages, which are always higher

than those of the comparisonmethods. The paired samples t-test

was utilized to verify whether there were significant differences

in classification performance between STA-CNN and other

comparison methods. The results show that the STA-CNN can

obtain significantly higher accuracy (p < 0.01) and F1-score

(STLDA: p = 0.03 < 0.05, DCPM: p = 0.041 < 0.05, DeepLDA:

p= 0.014< 0.05, EEGNet: p= 0.143) in the first stage, while the

STA-CNN can obtain significantly higher accuracy (p < 0.01)

and F1-score (EEGNet: p= 0.027 < 0.05, others p < 0.01) in the

second stage.

Furthermore, according to the trained STA-CNN models in

the first and second stages, we provide the total classification

accuracy of the above-mentioned test set (EEG segments for

167 characters) to evaluate the effectiveness of the paradigm

and classification method. In the first stage, the group (during 3

sub-trials) with the group code corresponding classifier output

was chosen, and in the second stage, the character (out of 5

characters) with the highest classifier output was chosen. The

total classification accuracy of 10 subjects is listed in Table 4.

Notice that the chance level is 1/40 = 2.5% for the two-

stage spelling paradigm. The total classification accuracy varied

with different subjects and ranged from 27.0 to 61.7%. Herein,

the total classification accuracy is greatly affected by the first

stage, and once the spelling error occurs in the first stage, it

should be returned to the group selection during the actual

spelling process.

Meanwhile, we provided the ablation study to validate

the effectiveness of the spatial-temporal attention module in

the STA-CNN method. The CNN is the baseline model that

removes the spatial and temporal attention modules. The TA-

CNN is the model that removes the spatial attention module

from STA-CNN. The SA-CNN is the model that removes the

temporal attention module from STA-CNN. The structures and

parameters of all these three models were set according to the

STA-CNNmodel in Table 1. As shown in Table 4, compared with

CNN, TA-CNN and SA-CNN achieve better performance, which

validates the effectiveness of the spatial and temporal attention

modules. Combing with the spatial-temporal attention module,

the STA-CNN is more effective than the TA-CNN and SA-CNN.

The TA-CNN extract effective target ERP features based on

the difference of special time periods between the target and

nontarget EEG signals, which can obtain higher classification
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FIGURE 3

Averaged scalp potentials on 62 channels and topographies from the target and nontarget EEG epochs, for one example subject S10. (A) The

mVEP components of P1, N2, and P2 and their topographies are in the first stage. (B) The audio-assisted visual evoked components of P1, N2,

and P300 and their topographies are in the second stage. (C) The nontarget-related signal and topographies are in the first stage. (D) The

nontarget-related signal and topographies are in the second stage.

accuracy than that of SA-CNN. And then, the paired samples t-

test was utilized to verify whether these methods had significant

differences. The results show that the STA-CNN can obtain

significantly higher accuracy than other comparison methods

(CNN: p = 0.001 < 0.01, TA-CNN: p = 0.002 < 0.01, SA-CNN:

p= 0.005 < 0.01).

Influence of spatial-temporal attention

The deep learning methods can automatically learn the

EEG features, but it is difficult to determine if the spatial-

temporal characteristics of ERP have been extracted efficiently.

The spatial-temporal attention becomes essential to learn the

individual spatial filters for particular time periods. In order

to show the influence of spatial-temporal attention, Figure 5

shows the average weights of temporal and spatial attention

from the test samples based on the STA-CNN model for the

two stages.

In the first stage, as shown in Figure 5A, the results

show that there are higher temporal weights nearby the

time periods of 90, 130, and 210ms, and higher spatial

weights located at temporo-occipital cortical and parietal

cortical areas. The time periods with higher temporal weights

are similar to the latencies of mVEP in Figure 3A, and

the higher spatial weights reflect the differences between
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FIGURE 4

The grand average of target and nontarget signals during the character A spelling process for S10 was recorded on channel P4. (A) The mVEP of

the group characters A-E in the first stage, P1, N2, and P2 are the three main target components. (B) The audio-assisted visual ERP components

of character A in the second stage, P1, N2, P2, and P300 are the main target components.

TABLE 2 The classification accuracy and F1-score of 10 subjects using five methods in the first stage (%).

Subject Accuracy F1-score

STLDA DCPM DeepLDA EEGNet STA-CNN STLDA DCPM DeepLDA EEGNet STA-CNN

S1 56.3 56.7 54.9 57.9 59.1 60.7 60.6 55.2 61.6 59.7

S2 74.9 74.3 77.1 78.0 78.2 76.0 75.1 78.1 79.1 78.6

S3 50.9 51.5 53.3 53.3 54.3 53.2 54.4 54.5 55.9 59.9

S4 60.3 60.1 62.1 62.5 63.7 58.8 60.6 59.1 60.2 62.6

S5 50.3 50.5 51.5 53.3 56.5 51.0 49.3 50.3 52.1 56.4

S6 48.7 50.3 52.3 50.5 50.5 52.0 54.3 52.1 47.5 50.4

S7 58.7 58.3 60.1 60.5 62.7 62.8 61.5 62.3 64.8 60.3

S8 50.5 50.5 50.5 52.1 53.7 52.6 50.4 52.9 53.3 55.2

S9 50.5 52.1 51.7 54.1 54.5 51.9 54.6 53.8 56.6 59.0

S10 56.9 54.5 57.3 61.1 63.3 59.3 57.0 57.4 61.4 64.6

Mean± Std 55.8± 7.8 55.9± 7.3 57.1± 8.0 58.3± 8.1 59.6± 8.0 57.8± 7.7 57.8± 7.4 57.6± 8.0 59.2± 8.7 60.7± 7.4

target and non-target activated brain regions in Figures 3A,C.

Similar to the first stage, as shown in Figure 5B, there

are also higher temporal weights nearby the time periods

of 50, 100, 180, and 310ms, and higher spatial weights

located at occipital and right temporo-parietal cortical areas

in the second stage, which are similar to the latencies

of ERPs and the differences between target and nontarget

activated brain regions in Figures 3B,D. These results are

consistent with the ERP components analysis in Section

Introduction and Figure 3. The proposed STA-CNN benefits

from spatial-temporal weights of attention mechanism to

learn the ERP features effectively, and thus it can achieve

superior performance.

Discussion and conclusions

The mVEP-based paradigm is suitable for BCI speller

application because it can encode the intentions as the

identifiable target components and does not make subjects

feel visual fatigue even for a long-time use (Liu et al., 2019).

However, the problems restricting the practical application

of mVEP-based BCI are the coding efficiency of the large

command set and the decoding accuracy of the single-trial

ERP due to low SNR (Lotte et al., 2018; Xu et al., 2020).

Similar to telecommunication systems, the multiple targets

coding strategy aims to simultaneously share the bandwidth

from time, frequency, code and space with the least performance

Frontiers inNeurorobotics 09 frontiersin.org

167

https://doi.org/10.3389/fnbot.2022.995552
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen et al. 10.3389/fnbot.2022.995552

TABLE 3 The classification accuracy and F1-score of 10 subjects using five methods in the second stage (%).

Subject Accuracy F1-score

STLDA DCPM DeepLDA EEGNet STA-CNN STLDA DCPM DeepLDA EEGNet STA-CNN

S1 52.7 54.0 63.5 67.9 71.4 28.8 28.1 36.6 30.6 34.2

S2 74.5 72.1 72.0 74.7 79.2 48.9 42.5 41.2 49.2 52.5

S3 54.3 58.6 64.6 60.1 63.0 30.8 32.7 33.0 34.8 34.1

S4 83.1 85.4 87.3 87.7 88.7 64.1 67.7 70.1 71.3 72.8

S5 76.5 74.6 77.8 80.0 83.0 49.2 47.3 48.8 52.2 55.9

S6 61.3 57.0 68.0 65.5 69.6 34.2 34.4 35.7 41.2 39.5

S7 83.2 84.4 84.4 86.6 87.9 65.4 67.2 64.5 68.0 71.2

S8 59.4 58.6 56.3 60.5 65.5 24.5 32.7 28.0 25.7 26.8

S9 71.7 73.1 78.4 78.0 79.9 43.5 46.3 51.1 49.7 52.5

S10 78.3 79.5 87.1 87.7 89.0 60.2 61.9 72.2 71.5 75.5

Mean± Std 69.5± 11.6 69.7± 11.8 73.9± 10.8 74.9± 10.9 77.7± 9.8 45.0± 15.1 46.1± 14.9 48.1± 16.0 49.4± 16.7 51.5± 17.6

TABLE 4 The total classification accuracy of 10 subjects for the ablation study (%).

Subject Total classification accuracy

CNN TA-CNN SA-CNN STA-CNN

S1 25.8 30.5 29.9 31.7

S2 55.1 58.7 56.3 61.7

S3 24.0 26.4 24.6 28.1

S4 50.3 55.7 53.3 56.9

S5 46.1 53.9 47.9 55.7

S6 32.9 30.5 24.6 29.9

S7 52.4 59.0 57.5 59.9

S8 22.8 25.2 24.6 27.0

S9 35.9 43.7 40.1 44.3

S10 53.9 55.1 59.3 56.3

Mean± Std 39.9± 13.1 43.9± 14.2 41.8± 14.8 45.2± 14.5

degradation (Gao et al., 2014). In this paper, the SDMA method

was utilized to present multiple motion-onset visual stimuli

in the different locations of the visual field simultaneously, as

shown in Figure 1, which can effectively improve the coding

efficiency of spelling intentions. For example, to achieve the

presentation of 40 characters, at least 14 times presentations

are required using a determinant matrix. In contrast, this paper

requires 8 presentations, including 3 parallel mVEP stimuli for

determining group codes and 5 audio-assisted visual stimuli for

determining character codes. The purpose is to improve the

SNR of ERP components by utilizing the integration effect of

audiovisual stimuli. Suppose the group and character codes are

presented in parallel based on mVEP, a target character can

be coded with a maximum of 6 times presentation, which can

achieve a higher output speed.

On the other hand, according to the characteristics of

mVEP and P300 from the audiovisual stimulus, extracting

temporal and spatial information from single-trial EEG is the

key to effectively decoding target ERP (Wirth et al., 2020).

The traditional method is the grand average to improve the

SNR of ERP. The second one is to extract ERP components

from a single EEG according to the prior knowledge, such as

wavelet transform, PCA, ICA and so on, but the computational

complexity is high, and the result is not good. The others are

using classification algorithms to identify targets and nontargets

by mapping the original EEG to the separable space, such

as the LDA method and its variants for optimizing key

temporal segments and spatial activation positions of ERP. The

development of deep learning (Li et al., 2018) has obvious

advantages for decoding ERP, especially EEGNet has achieved

good results. Based on EEGNet, this paper further introduces

a spatial-temporal attention mechanism, which can effectively

learn the key spatial-temporal features and make the deep

learning method better interpretable. As seen in Figure 5,
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FIGURE 5

The average weights of temporal and spatial attention from the test samples based on STA-CNN using line charts and topographies in the first

stage (A) and the second stage (B).

the spatial-temporal attention mechanism can obtain larger

weighted values in the time period corresponding to the active

components of mVEP and P300, as well as in the spatial

channels corresponding to the active brain areas of the target.

Moreover, the deep learning method can realize end-to-end

feature learning, thereby improving the adaptive ability between

different subjects or trials.

The high reliability and robustness of audiovisual BCI

should be furtherly considered for different subjects, different

times, and different scenarios (Liu et al., 2020). According to

the results in Table 4, the total classification accuracy of our

paradigm is greatly affected by the first stage, which still needs

to be improved. Due to the visual interference in the first

stage, the classification accuracy of SDMA-based mVEP is not

high. According to the literature (Lu et al., 2020), audiovisual

integration could enhance the activation of attention-related

brain areas. We tried to introduce the semantically congruent

audio (pronunciation) to enhance the strength of the target ERPs

in the second stage. The experimental results showed that the

classification accuracy in the second stage was higher than in

the first stage, which proves the audio-assisted effect’s positive

influence. But there are 5 characters that need to be traversed

one by one in the second stage, which would lead to a decrease

in presentation efficiency. To improve the efficiency of the BCI

paradigm, we analyze further possible strategies, including novel

paradigms to enhance the EEG features, such as the leftwards or

rightwardsmotion-onset stimuli translating (Libert et al., 2022b)

and the two-dimensional auditory stimuli with both pitch

(high/medium/low) and direction (left/middle/right) (Hohne

et al., 2011), and the stable classification algorithm of ERP for

cross subjects or scenarios, such as the analytic beamformer

transformation (Libert et al., 2022a), ternary classification

method (Zhang et al., 2021) and some transfer learningmethods.

This study proposed the spatial-temporal attention CNN

method for decoding a novel audio-assisted mVEP-based BCI

speller. A two-stage stimulation framework combined with

mVEP and semantically congruent audio evoked P300 was

designed based on a new SCDMA scheme to improve efficiency.

Meanwhile, the STA-CNN method was proposed to deal

with single-trial ERP components learning and classification.
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Specifically, the spatial-temporal attention mechanism can

enhance the discriminative event-related features by adaptively

learning probability weights. The experiment results, obtained

from a dataset including 10 subjects, showed that the

classification accuracy and F1-score were significantly improved

using the proposed STA-CNN compared with the LDA variant

and deep learning methods. Moreover, through the analysis

of the attention weights from time sequence and spatial

topographies, it was proved that STA-CNN could effectively

extract interpretable spatiotemporal features. It is possible to

extend the proposed strategy in the mVEP-based BCI system in

the online test scenario, and future studies are needed to avoid

the mutual interference of different intentions in the SDMA

scheme and develop a robust classification algorithm of ERP.
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Brain-Computer Interfaces (BCIs) are increasingly useful for control. Such

BCIs can be used to assist individuals who lost mobility or control over their

limbs, for recreational purposes such as gaming or semi-autonomous driving,

or as an interface toward man-machine integration. Thus far, the performance

of algorithms used for thought decoding has been limited. We show that by

extracting temporal and spectral features from electroencephalography (EEG)

signals and, following, using deep learning neural network to classify those

features, one can significantly improve the performance of BCIs in predicting

which motor action was imagined by a subject. Our movement prediction

algorithm uses Sequential Backward Selection technique to jointly choose

temporal and spectral features and a radial basis function neural network

for the classification. The method shows an average performance increase

of 3.50% compared to state-of-the-art benchmark algorithms. Using two

popular public datasets our algorithm reaches 90.08% accuracy (compared

to an average benchmark of 79.99%) on the first dataset and 88.74% (average

benchmark: 82.01%) on the second dataset. Given the high variability within-

and across-subjects in EEG-based action decoding, we suggest that using

features from multiple modalities along with neural network classification

protocol is likely to increase the performance of BCIs across various tasks.

KEYWORDS

Brain-Computer Interfaces, motor, EEG, neural networks, deep learning

Introduction

Brain-Computer Interfaces (BCIs) act as a link between neural activity and machine
operations. The BCI extracts data from electrodes or sensors acquiring neural signals
and translates those data into digital code (Bulárka and Gontean, 2016). Applications of
BCI include those focused on improved health outcomes (i.e., rehabilitation of impaired
motor function; Courtine et al., 2013), restoration of sensory functions (Hochberg et al.,
2012), interpreting thoughts from individuals who cannot otherwise communicate them
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(Cerf et al., 2010), enhanced control of devices (i.e., operating
heavy machinery, flying drones, or driving; Chiuzbaian et al.,
2019, Nader et al., 2021), or recreational uses (i.e., gaming; Cerf
and Garcia-Garcia, 2017). Invasive BCIs, such as ones built on
single-neuron recordings, have recently shown high accuracy
in interpreting human/animal intentions, actions, and imagery
(Cerf et al., 2010; Hochberg et al., 2012). Non-invasive tools
such as ones using electroencephalography (EEG) data have
demonstrated high performance in interpreting thoughts and
actions. For example, interpreting imagined motor action–a
commonly used task for evaluating BCIs–has shown decoding
accuracies ranging between 70 and 85% in recent works
(Gordleeva et al., 2017).

Notably, BCIs based on motor imagination (MI) tasks,
where subjects imagine an action (i.e., clenching of the
fist) and the BCI aims to identify the action imagined,
have shown remarkable improvement in recent years. In
a typical MI task, the BCI derives neural signatures (i.e.,
power changes in the alpha and beta rhythms extracted
from sensory-motor regions) that accurately predict the
action intent following a training period. Given that non-
invasive signals generated by EEG are often contaminated by
artifacts derived from eye movement or muscle movement,
a typical EEG-based BCI requires larger training data and
isolated trials to increase the action identification accuracy.
The repeated trials enable the averaging of the event-
related signals and the extraction of a synchronized clean
input. Variance across individual subjects, electrode montages,
experimental sessions, and trial types add difficulty to the
interpretation of the signals.

Given the challenges in EEG-based BCI development
using noisy inputs, numerous methods have been proposed
to improve the decoders performance (Lebedev and Nicolelis,
2006; Lotte et al., 2007; Prashant et al., 2015; Abiri et al., 2019;
Andersen et al., 2019). The suggested methods often focus
on the isolation of temporal or spectral components in the
signal. Algorithms based on spectral feature selection are more
prominent in the BCI arsenal since the time courses of event-
related synchronization (or de-synchronization) vary heavily
among subjects during motor tasks (Hochberg et al., 2012;
Andersen et al., 2019).

Within the feature selection BCIs signal toolkit arsenal,
common spatial patterns (CSPs) algorithms are dominant
(Bhatti et al., 2019). These algorithms seek to find an optimal
spatial filter that distinguishes one brain state from another.
In EEG, the performance of CSPs is highly sensitive to the
choice of frequency bands, making the decision on which filter
to use heavily dependent on the recording configuration. To
afford some generalization, variants of CSP were proposed as
ways to improve the signal processing. Those variants often use
narrower frequency bands (termed: sub-band CSP; SBCSP; Novi
et al., 2007) and Filter Banks (FBCSP; Ang et al., 2008) and show
increased performance for action decoding, yet are still scarce.

In addition to the extended frequency bands and filters
improvements, recent attempts to include temporal signals in
BCIs emerged in the form of Temporally Constrained Group
Spatial Pattern (TSGSP) algorithms (Zhang et al., 2018). TSGSP
optimally select the CSP features by considering different
temporal windows for signal extraction derived from multi-task
learnings. That is, instead of collapsing all the trials within one
MI class (i.e., all left-hand movement trials) various MI tasks
are combined to suggest the ideal CSP for a specific individual
subject. The TSGSP algorithms use Support Vector Machines
(SVM) for the classification of new trials to their corresponding
action class. This inclusion of temporal data was recently shown
to improve the performance of CSP-based BCIs (Sakhavi et al.,
2018; Zhang et al., 2018; Deng et al., 2021).

Neural network based classifiers that frequently show
superiority in data-rich non-linear clustering tasks such as MI
decoding were recently suggested as a potential improvement
for the CSP algorithms (Bhatti et al., 2019). Specifically, the
usage of Sequential Backward Floating Selection method along
with a radial basis function neural network (RBFNN) for
optimal CSP features selection was suggested as a potential
superior algorithm for BCIs (Bhatti et al., 2019).

Here we implement and test a combination of the suggested
improvements for MI decoding and show the tuning curves
of key parameters driving the performance increase. Namely,
we introduce a number of additions to the BCI motor
classification algorithms arsenal. First, we incorporate both
temporal and spectral features in the MI BCI. Second, we
use sub-bands rather than typical frequency bands for the
BCI inputs. Third, we combine the successful Sequential
Backward Selection (SBS) method with CSP features for the
temporal-spectral feature selection. Fourth, we separate the
feature selection process from the following feature classification
process. Finally, we incorporate the suggested RBFNN (rather
than SVM) in the motor classification. We demonstrate the
effectiveness of our method using popular public datasets and
compare our performance to the current state-of-the-art BCI
benchmark algorithms.

This work contributes to the BCI literature by showing that
the combination of a SBS and temporal-spectral EEG signals
with RBFNN significantly outperforms other methods. This is
the first work to test the combination of all previously suggested
improvements to existing algorithms in a single implementation
(see Sakhavi et al., 2018; Zhang et al., 2018; Deng et al., 2021; for
discussions of the improvements implemented here).

Materials and methods

Data

Two popular BCI datasets were used for the algorithm
testing:
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Dataset 1
Brain-computer interface competition IV, dataset 2a, which

contains 22-channel EEG data recorded from 9 healthy subjects
(A01–A09) participating in different MI tasks. In each task,
subjects were asked to imagine movement of the left hand,
right hand, feet, and tongue. The experiment consisted of two
sessions. In each session, there were 72 trials for each of the
four classes of movement. The EEG signals were sampled at
250 Hz and bandpass filtered between 0.5 and 100 Hz with a
50 Hz notch filter. We used the data from the left- and right-
hand imagery tasks alone to align with the second dataset and
some of the benchmark algorithms that focused solely on those
movement classes.

Dataset 2
Brain-computer interface competition IV, dataset 2b, which

contains 3-channel EEG data recorded from 9 different subjects
(B01–B09) participating in two MI tasks. The experimental
protocol was nearly identical to dataset 1 other than the fact
that subjects only imagined movements of the left-hand and
right-hand, and that instead of two sessions there were five
session. For each subject, separate training and testing sets were
available. The EEG signals were sampled at 250 Hz and bandpass
filtered between 0.5 and 100 Hz with a 50 Hz notch filter.

See Leeb et al. (2008) for additional details on the two
datasets.

Feature extraction

Pre-processing
Raw EEG signals were filtered between 4 and 40 Hz

with fifth-order Butterworth filter. For each trial, we used
samples between 500 and 4,500 ms from the trial onset in the
analyses. The first 500 ms were excluded, in alignment with
the instructions of the BCI IV competition winners, because of
response times deviations across trials.

Feature selection
The neural signals were divided to five overlapping 2-s

windows with a step size of 500 ms. This ensured temporal
generalizability within a trial. Following, the data were filtered
along 17 overlapping frequency bands ranging from 4 to 40 Hz
with a 2 Hz step. Finally, a common spatial filter (Bhatti et al.,
2019) was identified such that it maximized the variance within
a single class (i.e., across all left-hand trials) and minimized the
variance across classes (i.e., between left-hand and right-hand
trials).

The data for a single trial were represented as a matrix, X ∈
RN·T (with N reflecting the number of channels, and T the time)
whose normalized covariance matrix, C, is:

C =
XXT

trace(XXT)
(1)

Averaging across all trials within a class yielded a matrix, Ct (t
indicating the class type).

The spatial covariance was calculated by averaging all
covariance matrices:

Cc = Cleft−hand + Cright−hand (2)

The Cc matrix was white transformed:

CC = UCλCUT
C (3)

with UC the eigenvector matrix and λC the eigenvectors.
Defining P as:

P =
√

λ−1
C UT

C (4)

the individual class matrices were transformed to:

Sleft−hand = PCleft−handPT (5)

Sright−hand = PCright−handPT (6)

such that the St matrices have the same eigenvectors.
Given that St could be represented as BλtBT with B the

eigenvectors matrix and λt the eigenvalues:

St = BλtBT (7)

the projection matrix, W, was derived:

W = BTP (8)

Thus, the EEG data were projected to a matrix, Z:

Z =WTX (9)

where the columns of Z corresponded to the data’s spatial
source distribution vectors. The vectors maximized the variance
across classes and corresponded to the maximum eigenvalues
(λleft−hand and λright−hand ).

Finally, the classification features were represented by:

fp = log(
var(Zp)∑n
i=1 var(Zi)

) (10)

where Zp are the CSPs (p = 1..N).
A subset of Z (first and last m rows) were used in

further analyses.
An SBS (Pasyuk et al., 2019) was used to reduce the

initial 85-feature set (17 frequency bands × 5 time-windows)
from each individual trial. According to the SBS criteria, in
every iteration of the algorithm the feature yielding the lowest
accuracy was discarded. That is, if the initial performance
with all 85 features was, say, 87%, the performance using 84
features was computed next, leaving one feature out in each
iteration (f1 = 78%, f2 = 82%, f3 = 77%, . . .). Comparing
all 85 leave-one-out iterations, the feature whose contribution
to the performance was lowest (i.e., one without whom the
performance drops least; f2 in the particular example) was
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discarded. Following, the performance of the remaining 84
features was set as the anchor performance and the evaluation
was repeated with 83 features. Each run led to a drop of a single
feature. The optimal performance across all 3,655 iterations
(85+84+. . .) was regarded the network’s accuracy, with the
feature set yielding the highest performance being the preferred
set.

Neural network

An RBFNN was used for the classification. The network
consisted of two layers: an input layer and a hidden layer. The
output of the hidden layer was summed proportionally to the
input features to yield the output classification. Formally, this is
represented as:

F (x) =

k∑
i=1

wifi(x, ci)+ b (11)

where wi are the weights, fi the Gaussian radial basis functions,
ci the center values of the Gaussian radial function, b the bias,
and k the number of neurons in the hidden layer.

With fi formally computed as:

fi(x, ci) = e
(
−||x-ci||

2

2σ2
i

)
(12)

where σi is the standard deviation.
In each iteration of the RBFNN implementation the

extracted input features are scaled and used to train the network,
followed by a testing. The network was implemented using

Matlab’s newrbe function default hyperparameters, with the
spread of the radial basis functions set to 16.

Implementation

The implementation of the method–pre-processing, feature
selection, and neural network classification are available online
at https://www.morancerf.com/publications.

Analyses
We compared our algorithm’s performance to that of all

state-of-the-art methods which: (a) were published in the last
5 years, (b) used the same datasets as ours, and (c) were
implemented on both the left- and right-hand MI data. We used
one implementation of each method to avoid focusing on coding
variations but rather on conceptual differences in the protocol.
Altogether, 38 methods were compared to our algorithms, and
19 were not included in our analyses because they did not satisfy
the inclusion criteria (namely, those algorithms used different
movement classes outside of the ones we tested).

For dataset 1 we compared our performance to the following
methods (see results in Table 1):

(1) Deep Neural Network (DNN) (Kumar et al., 2016)
(2) Kernel Principal Component Analysis using Conformal-

Isometric Linearizing Kernel (KPCA-CILK) (Sadatnejad
and Ghidary, 2016)

(3) Weighted Overlap Add Common Spatial Patterns
(WOLA-CSP) (Belwafi et al., 2018)

TABLE 1 Performance comparison for dataset 1, sorted by accuracy.

Method Year A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± std

SBS-FBCSP 2022 80.00 72.76 83.79 70.42 73.10 68.97 75.17 77.93 77.59 75.52± 4.76

DNN 2016 86.81 66.70 95.83 76.39 57.64 68.06 75.00 93.75 77.08 77.47± 12.72

KPCA CILK 2016 88.89 59.03 90.28 78.47 62.50 75.00 72.92 93.06 87.50 78.63± 12.34

WOLA-CSP 2018 86.81 63.19 94.44 68.75 56.25 69.44 78.47 97.91 93.75 78.78± 15.15

MEMDBF-CSP-LDA 2019 90.78 57.75 97.08 70.69 61.48 70.37 72.14 97.76 94.62 79.19± 15.85

JSTFD-LDA 2020 86.40 55.90 96.30 73.10 89.50 58.20 76.10 93.80 86.60 79.54± 14.78

nCSP-TSLR 2019 89.23 76.15 90.60 71.38 59.82 63.26 91.70 89.18 85.26 79.62± 12.36

W-CNN 2019 76.67 72.00 90.00 73.33 83.33 80.00 82.67 80.00 80.00 79.78± 5.45

SS-MEMDBF 2018 91.49 60.56 94.16 76.16 58.52 68.52 78.57 97.01 93.85 79.87± 15.01

CSP-Wavelet + LOG 2020 93.06 61.81 95.83 72.92 58.33 68.06 81.25 95.14 93.06 79.94± 15.06

SW-LSR 2021 86.81 64.58 95.83 67.36 68.06 67.36 80.56 97.22 92.36 80.02± 13.45

EEGnet 2016 71.43 78.51 100 64.28 71.43 78.57 71.43 92.86 100 80.95± 13.37

R-MDRM 2019 91.61 63.28 97.20 72.91 64.08 69.71 81.25 96.52 92.30 80.98± 13.86

SR-MDRM 2019 90.21 63.28 96.55 76.38 65.49 69.01 81.94 95.14 93.01 81.22± 13.19

TSGSP 2018 87.00 64.70 93.80 74.30 90.40 63.90 91.40 95.80 81.30 82.51± 12.24

DCR-MEMD 2021 89.79 94.18 78.92 94.01 71.32 86.71 89.36 82.11 86.18 85.84± 7.40

Ours 2022 93.45 84.83 95.52 88.33 86.55 83.10 88.97 95.52 94.48 90.08± 4.78
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(4) Multivariate Empirical Mode Decomposition Based
Filtering-Common Spatial Pattern-Linear Discriminant
Analysis (MEMDBF-CSP-LDA) (Gaur et al., 2019)

(5) Joint Spatio-temporal Filter Design Linear Discriminant
Analysis (JSTFD-LDA) (Jiang et al., 2020)

(6) Normalized Common Spatial Pattern Tangent Space
Logistic Regression (nCSP-TSLR) (Olias et al., 2019)

(7) Wavelet Convolutional Neural Network (W-CNN) (Xu
et al., 2018)

(8) Subject Specific Multivariate Empirical Mode
Decomposition Based Filtering (SS-MEMDBF) (Gaur
et al., 2018)

(9) Common Spatial Pattern-Filter Bank-Log (CSP-FB-LOG)
(Zhang S. et al., 2020)

(10) Sliding Window-Longest Consecutive Repetition (SW-
LSR) (Gaur et al., 2021)

(11) EEG Network (EEGnet) (Lawhern et al., 2018)
(12) Regularized Minimum Distance to Riemannian Mean (R-

MDRM) (Singh et al., 2019)
(13) Spatial Regularized Minimum Distance to Riemannian

Mean (SR-MDRM) (Singh et al., 2019)
(14) Temporally Constrained Sparse Group Spatial Patterns

(TSGSP) (Zhang et al., 2018)
(15) Dynamic Channel Relevance-Multivariate Empirical

Mode Decomposition (DCR-MEMD) (Song and
Sepulveda, 2018)

For dataset 2 we compared our results to the following
methods (see results in Table 2):

(1) Robust Support Matrix Machine (RSMM) (Zheng et al.,
2018)

(2) Deep Learning with Variational Autoencoder (DLVA) (Dai
et al., 2019)

(3) Sparse Group Representation Model (SGRM) (Jiao et al.,
2018)

(4) Unsupervised Discriminative Feature Selection (UDFS)
(Al Shiam et al., 2019)

(5) Sparse Spectro-temporal Decomposition Squeeze-and-
Excitation Convolutional Neural Network (SSD-SE-CNN)
(Sun et al., 2020)

(6) Wavelet Spatial Filter Convolution Network (WaSF
ConvNet) (Dy et al., 2019; Fang et al., 2022)

(7) Neighborhood Component analysis based Feature
Selection (NCFS) (Molla et al., 2020)

(8) Common Spatial Pattern-Wavelet-Log (CSP-Wavelet-
LOG) (Zhang S. et al., 2020)

(9) Multi-Attention Adaptation Network (MAAN) (Chen
et al., 2021)

(10) Multilayer Temporal Pyramid Pooling EEG Network
(MTPP-EEGNet) (Ha and Jeong, 2020)

(11) Dynamic Joint Domain Adaptation (DJDA) (Hong et al.,
2021)

(12) SincNet-based Hybrid Neural Network (SHNN) (Liu et al.,
2022)

(13) Tangent Space Linear Discriminant Analysis (TSLDA) (Ai
et al., 2019; Fang et al., 2022)

(14) Deep Representation-based Domain Adaptation (DRDA)
(Zhao et al., 2020)

(15) Random Forest Dynamic Frequency Feature Selection
(RF-DFFS) (Luo et al., 2016)

(16) Frequential Deep Belief Network (FDBN) (Lu et al., 2016)
(17) Temporally constrained Sparse Group Spatial Patterns

(TSGSP) (Zhang et al., 2018)
(18) Multi-branch Multi-scale Convolutional Neural Network

(MMCNN) (Jia et al., 2020)
(19) Wavelet Package Decomposition Spatio-Temporal

Discrepancy Feature (WPD-STDF) (Luo et al., 2019)
(20) Central Distance Loss Convolutional Neural Network

(CD-CNN) (Yang et al., 2021)
(21) Filter Banks and Riemannian Tangent Space (FBRTS)

(Fang et al., 2022)

Additionally, we implemented a version of the Sequential
Backward Selection Filter Bank Common Spatial Patterns (SBS-
FBCSP) algorithm, which is an adaptation of the Sub-Band
Common Spatial Patterns with Sequential Backward Floating
Selection (SBCSP-SBFS) proposed by Bhatti et al. (2019). The
original SBCSP-SBFS algorithm did not use temporal features
and was limited to 12 overlapping frequency bands (4–30 Hz).
Conceptually, the SBS-FBCSP algorithm resembled our method
in that it, too, used sub-bands and CSPs feature selection. SBS-
FBCSP differed from our method in that it used the full trial as
temporal dimension.

For dataset 1, we varied the parameter m from 1 to 7 (with
2m options yielding up to 14 features in each trial) since the
parameter selection impacts the performance. To calculate the
accuracy, we used 5-fold cross validation with all the trials
from the first dataset (combining the first and second sessions
onto one data set).

For dataset 2 we varied m from 1 to 3 yielding up to six
features. To calculate the accuracy, we combined all sessions
data in random order and used 80% of the trials for training and
the remaining 20% for testing sessions as training set and the
remaining two for testing, with five-fold cross validation (see
Luo et al., 2016).

The excluded methods were:

(1) Distance Preservation to Local Mean (Davoudi et al.,
2017)

(2) Neighborhood Rough Set Classifier (Udhaya Kumar and
Hannah Inbarani, 2017)

(3) Channel-wise Convolution with Channel Mixing
(Sakhavi et al., 2018)
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TABLE 2 Performance comparison for dataset 1, sorted by accuracy.

Method Year B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean ± std

SBS-FBCSP 2022 70.14 60.29 62.50 89.19 82.43 73.61 66.67 74.34 79.86 73.23± 9.49

RSMM 2016 72.50 56.43 55.63 97.19 88.44 78.75 77.50 91.88 83.44 77.97± 14.56

DLAV 2019 76.10 67.30 71.80 95.40 82.30 82.10 77.50 75.30 75.90 78.19± 7.95

SGRM 2019 76.30 56.00 49.20 98.20 91.10 74.80 88.30 85.40 84.90 78.24± 16.26

UDFS 2019 76.09 58.64 53.45 99.38 83.83 76.96 83.15 90.66 83.48 78.40± 14.53

SSD-SE-CNN 2021 78.50 67.90 68.30 96.50 81.40 85.70 76.90 79.30 79.60 79.34± 8.65

WaSF ConvNet 2019 73.80 64.20 85.70 96.20 85.20 68.50 88.30 90.10 81.50 81.50± 10.58

NCFS 2020 79.25 63.48 56.65 99.28 88.67 79.96 88.76 92.66 84.95 81.52± 13.72

CSP-FB-LOG 2020 88.75 52.50 48.75 98.75 88.75 90.00 90.00 92.50 83.75 81.53± 17.98

MAAN 2021 82.81 60.36 59.06 97.50 91.88 86.38 84.06 93.44 86.88 82.49± 13.73

MTPP-EEGNet 2020 78.75 66.43 67.50 95.00 94.38 84.38 85.31 92.19 81.56 82.83± 10.61

DJDA 2021 83.44 58.57 59.06 98.13 96.56 84.38 86.25 92.81 87.81 83.00± 14.64

SHNN 2022 83.33 61.76 58.33 97.30 91.89 88.89 86.11 92.11 91.67 83.49± 13.89

TSLDA 2019 76.30 68.90 86.40 94.20 88.10 72.30 89.20 92.80 87.30 83.94± 9.13

DRDA 2021 81.37 62.86 63.63 95.94 93.56 88.19 85.00 95.25 90.00 83.98± 12.67

RF-DFFS 2016 73.24 67.48 63.01 97.40 95.49 86.66 84.68 95.93 92.61 84.06± 13.06

FDBN 2016 81.00 65.00 66.00 98.00 93.00 88.00 82.00 94.00 91.00 84.22± 11.94

TSGSP 2018 84.00 62.60 56.30 99.40 94.80 83.80 94.10 93.30 90.10 84.27± 15.01

MMCNN 2020 84.90 70.40 75.50 96.30 92.40 86.30 87.60 84.20 81.80 84.38± 7.92

WPD-STDF 2019 69.50 64.00 86.50 96.00 94.00 87.00 83.00 95.50 92.00 85.28± 11.47

CD-CNN 2021 79.69 60.71 82.19 96.87 94.37 89.37 82.19 93.75 90.00 85.46± 11.08

FBRTS 2022 82.40 75.20 86.90 95.20 89.70 80.20 90.50 91.20 91.10 86.93± 6.40

Ours 2022 90.28 75.00 73.61 100 97.30 90.28 84.03 92.11 95.83 88.72± 9.40

Li M.-A. et al., 2019 2019 – – – – – – – – – 96.48

Li M. et al., 2021 2021 – – – – – – – – – 97.03

Two of the algorithms that were excluded from our benchmark comparisons are shown in the table in gray. These algorithms were excluded since they could only be implemented on
the second dataset. However, since they showed higher performance than ours on we listed them here to highlight their potential superiority (no individual subject data were available for
these works, hence we only show the overall average performance).

(4) Gated Recurrent Unit Recurrent Neural Network Long-
Short Term Memory-Recurrent Neural Network (Luo et al.,
2018)

(5) Deep Recurrent Spatial-Temporal Neural Network (Ko
et al., 2018)

(6) Long-Short Term Memory network (Wang et al., 2018)
(7) Dempster-Shafer Theory (Razi et al., 2019)
(8) Densely Feature Fusion convolutional neural Network

(Li D. et al., 2019)
(9) Convolutional Neural Network Long-term Short-term

Memory Network (Zhang R. et al., 2019)
(10) Multi-branch 3D Convolutional Neural Network (Zhao

et al., 2019)
(11) Channel-Projection Mixed-scale convolutional neural

Network (Li Y. et al., 2019)
(12) Convolutional Recurrent Attention Model (Zhang D.

et al., 2019)
(13) Weight-based Feature Fusion Convolutional Neural

Network (Amin et al., 2019)
(14) Multi-Scale Fusion Convolution Neural Network (Li D.

et al., 2020)
(15) Multiple Kernel Stein Spatial Patterns (Galindo-Noreña

et al., 2020)
(16) Graph-based Convolutional Recurrent Attention

Model (Zhang D. et al., 2020)

(17) Temporal-Spatial Convolutional Neural Network
(Chen et al., 2020)

(18) Temporal-Spectral-based Squeeze-and-Excitation
Feature Fusion Network (Li Y. et al., 2021)

(19) Shallow Convolution Neural Network and Bidirectional
Long-Short Term Memory (Lian et al., 2021)

(20) Temporal Convolutional Networks-Fusion (Musallam
et al., 2021)

(21) EEG-Inception-Temporal Network (Salami et al., 2022)

Results

Performance

Our algorithm, which we term Sequential Backward
Selection with Temporal Filter Bank Common Spatial
Patterns (SBS-TFBCSP), significantly outperformed the
average performance (79.99% ± 2.23; mean ± std) of all
other algorithms. By 12.61% (T(8) = 5.057, p < 0.001;
t-test; Table 1) and outperformed each of those algorithms
individually. The algorithm outperformed the contender
leading algorithm (DCR-MEMD) by 4.94%, yet this was not
significant (T(8) = 1.322, p = 0.223, t-test). While conceptually
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similar, the SBS-FBCSP yielded the lowest score among the
methods compared.

Using the second dataset, our algorithm significantly
outperformed the average (82.01% ± 3.25) of all other
algorithms by 8.18% (T(8) = 5.697, p < 0.001; t-test) and
each of those algorithms individually (Table 2). Comparing
our algorithm’s performance to the leading state-of-the-art
contender algorithm (FBRTS), we see a non-significant 2.06%
increase in performance favoring our method (T(8) = 0.707,
p = 0.499, t-test). The SBS-FBCSP again yielded the lowest
performance among the methods compared.

Noting that the performance of SBS-FBCSP is lower across
datasets while the key difference between our algorithm and
the SBS-FBCSP is the features selected, we suggest that the
inclusion of temporal features in the CSPs is likely driving
the performance increase (Figure 1). The expansion of the
frequency range implemented in our algorithm increases the
feature selection granularity, and in turn the performance. As
an intuition for the advantage of the method with respect to the
feature selection, we show examples (subjects A01, A02; chosen
arbitrarily; Figure 1) where the feature-subsets selected by the
algorithms are highlighted. In both subjects, a larger proportion
of the selected features were drawn from the last 2 s (which
SBS-FBCSP would ignore since it averages across the entire
4-s window). Additionally, a number of the selected features
were drawn from frequency bands above 30 Hz which would be
excluded in the standard SBCSP-SBFS implementations (Bhatti
et al., 2019) because they correspond to frequencies not typically
associated with MI.

To further investigate the difference between our work
and similar methods we highlight two additional algorithms
that share various features with ours. The Sparse Filter Bank
Common Spatial Pattern (SFBCSP) and the Multiple Windows

SFBCSP (SFBCSP-MT) both used a feature selection to choose
the CSP features from multiple filter banks (SFBCSP) and
5 (dataset 1) or 6 (dataset 2) time windows (SFBCSP-MT).
However, the contender algorithms did not use SBS. Our
method outperformed the SFBCSP contender algorithm among
eight of the nine subjects using both dataset 1 and 2, and among
seven (dataset 1) and eight (dataset 2) of the nine subjects with
the SFBCSP-MT contender algorithm (Tables 3, 4).

Taken together, our results suggest that the performance
increase is driven by broader choice of inputs, and the feature
selection process.

Results of other performance measure
To further evaluate the performance of our algorithm

we used additional standard accuracy metrics. Namely, we
estimated the Positive Precision Value (PPV, TP/TP + FP),
Negative Precision Value (NPV, TN/TN + FN), sensitivity
(True Positive Rate, TP/TP + FN), specificity (True Negative
Rate, TN/TN + FP), and Kappa value (Po − Pe

/
1− Pe), where

TP represents the number of testing samples whose real
value aligned with the model prediction (True Positive), TN
represents the number of testing samples whose real value and
model predicted values were both negative (True Negative), FP
represents the number of testing samples whose real value is
negative while their model predicted value is positive (False
Positive), and FN represents the number of testing samples
whose real value is positive while their model predicted value
is negative (False Negative). Po is the proportion of observed
agreement, and Pe probability that the agreement is at chance.
In both dataset 1 (Table 5) and dataset 2 (Table 6) our
algorithm proved superior compared to the SBS-FBCSP using
those metrics.

FIGURE 1

Illustration of the results of the 5-fold feature selection comparing a contender algorithm (SBS-FBCSP) and our algorithm, which namely differ
in the breakdown of temporal features. The colors (taken from subject A01, A02; chosen arbitrarily) denote the number of times a
feature-subset was selected during the 5-fold cross validation.
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TABLE 3 Performance comparisons of our method and two similar ones, for dataset 1.

Measurement A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± std

SFBCSP 82.80 59.80 92.00 68.00 81.03 59.30 89.10 92.80 70.20 77.30± 13.30

SFBCSP (MT) 84.10 62.90 92.90 71.60 86.90 61.20 89.80 94.30 80.90 80.50± 12.50

Ours 93.45 84.83 95.52 88.33 86.55 83.10 88.97 95.52 94.48 90.08± 4.78

Performance metrics for the algorithms were taken from Zhang et al. (2018).

TABLE 4 Performance comparisons of our method and two similar ones, for dataset 2.

Measurement B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean ± std

SFBCSP 79.10 59.00 53.10 98.90 91.50 81.30 90.80 88.90 85.40 80.90± 15.30

SFBCSP (MT) 81.80 60.30 54.00 99.10 92.60 82.00 91.80 91.10 87.30 82.20± 15.30

Ours 90.28 75.00 73.61 100 97.30 90.28 84.03 92.11 95.83 88.72± 9.40

Performance metrics for the algorithms were taken from Zhang et al. (2018).

TABLE 5 Performance comparison between SBS-FBCSP and our method, using dataset 1.

Measurement A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± std

SBS-FBCSP

PPV 81.10 74.57 85.91 70.78 75.19 72.63 75.00 80.28 78.65 77.12± 4.75

NPV 80.04 72.64 82.97 71.93 71.46 67.41 76.85 77.52 77.41 75.36± 4.85

TPR 79.31 71.03 82.07 71.67 68.97 62.07 77.24 77.24 76.55 74.02± 6.15

TNR 80.69 75.17 85.52 69.17 77.24 75.86 73.10 78.62 78.62 77.11± 4.64

Kappa 60.00 46.21 67.59 40.83 46.21 37.93 50.34 55.86 55.17 51.13± 9.47

Ours

PPV 94.58 85.77 94.57 88.65 88.48 82.28 90.51 94.75 92.40 90.22± 4.35

NPV 92.89 85.48 96.62 88.39 87.62 86.56 88.10 96.56 97.35 91.06± 4.79

TPR 92.41 84.14 96.55 88.33 85.52 86.21 87.59 96.55 97.24 90.50± 5.23

TNR 94.48 85.52 94.48 88.33 87.59 80.00 90.34 94.48 91.72 89.66± 4.89

Kappa 86.90 69.66 91.03 76.67 73.10 66.21 77.93 91.03 88.97 80.17± 9.56

TABLE 6 Performance comparison between SBS-FBCSP and our method, using dataset 2.

Measurement B01 B02 B03 B04 B05 B06 B07 B08 B09 Mean ± std

SBS-FBCSP

PPV 65.93 61.67 62.50 87.18 83.33 72.97 64.29 74.03 77.22 72.12± 9.25

NPV 77.36 59.21 62.50 91.43 81.58 74.29 70.00 74.67 83.08 74.90± 10.09

TPR 83.33 54.41 62.50 91.89 81.08 75.00 75.00 75.00 84.72 75.88± 11.51

TNR 56.94 66.18 62.50 86.49 83.78 72.22 58.33 73.68 75.00 70.57± 10.49

Kappa 40.28 20.59 25.00 78.38 64.86 47.22 33.33 48.68 59.72 46.45± 18.97

Ours

PPV 86.25 73.61 75.00 100 97.30 92.65 78.82 92.00 95.83 87.94± 9.95

NPV 95.31 76.56 72.37 100 97.30 88.16 91.53 90.91 95.83 89.77± 9.44

TPR 95.83 77.94 70.83 100 97.30 87.50 93.06 90.79 95.83 89.90± 9.68

TNR 84.72 72.06 76.39 100 97.30 93.06 75.00 92.11 95.83 87.39± 10.60

Kappa 80.56 50.00 47.22 100 94.59 80.56 68.06 82.89 91.67 77.28± 18.74

Specifically, with respect to dataset 1, our algorithm
significantly outperformed the PPV of the SBS-FBSP
(77.12% ± 4.75) by 16.99% (T(8) = 13.653, p < 10−7;
t-test), the NPV of the SBS-FBSP (75.36% ± 4.85) by 20.83%

(T(8) = 14.704, p < 10−7; t-test), the TPR of the SBS-FBSP
(74.02% ± 6.15) by 22.26% (T(8) = 11.469, p < 10−6;
t-test), the TNR of the SBS-FBSP (77.11% ± 4.64) by 16.28%
(T(8) = 8.125, p < 10−5; t-test), and the Kappa of the
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SBS-FBSP (51.13%± 9.47) by 56.80% (T(8) = 18.318, p < 10−8;
t-test).

In dataset 2, our algorithm again significantly outperformed
the PPV of the SBS-FBSP (72.12% ± 9.25) by 21.94%
(T(8) = 14.33, p < 10−7; t-test), the NPV of the SBS-FBSP
(74.90% ± 10.09) by 19.85% (T(8) = 10.952, p < 10−6;
t-test), the TPR of the SBS-FBSP (75.88% ± 11.51) by 18.48%
(T(8) = 8.514, p < 10−5; t-test), the TNR of the SBS-FBSP
(70.57% ± 10.49) by 23.83% (T(8) = 8.169, p < 10−5; t-test),
the Kappa of the SBS-FBSP (46.45% ± 18.97) by 66.37%
(T(8) = 15.479, p < 10−7; t-test).

Parameters sensitivity

Given that the performance of our proposed method heavily
depends on the selection of the m parameter we tested the
robustness of our results by enumerating over all m values
possible in dataset 1 (Table 7) and dataset 2 (Table 8). While,
indeed, the choice of m impacts the algorithm performance
across subjects, the average difference in performance for dataset
1 was 2.23% ± 0.85 and average difference in performance for
dataset 2 of 0.99%± 0.67 (with the highest drop in performance
yielding 83.94% accuracy). The lowest performance was aligned
with the accuracy of the DCR-MEMD algorithm, but better than
all other methods. The highest performance drop yielded an
accuracy of 86.79%. which was on par with the FBRTS method
but better than all other methods. Combined, these results
suggest that the method is robust to perturbations of its single
free parameter and maintains its efficiency irrespective of the
parameter choice.

Additionally, as our algorithm used temporal windows
similar to those suggested in previous work (Zhang et al., 2018),
yet the selection of number of windows in both ours and the
previous work was arbitrary, we estimated the sensitivity of
the algorithm to the selection of window sizes. We altered the
number of temporal windows used from 4 to 6 to see the impact
of this change on the accuracy. We used this range under the
assumption that keeping the number of windows proportional
to the number of frequency bands would align with existing
works and the theoretical reasoning that they suggest for the bin
sizes (Zhang et al., 2018). Testing the algorithm with varying
window sizes shows that the range of perturbations yields a
performance change of ±1.74%, proportional to the number of
windows used. While manipulating the window size impacted
the performance, the change was not significant. That is, the
impact of ±1 window size usage had a marginal difference in
performance (±1.29% on average for dataset 1, and ±0.87% for
dataset 2). This non-significant change in performance along
with the fact that a change from a single window (SBS-FBCSP)
to 5 bins (ours) yields a notable difference suggest that there is a
plateau in the performance increment after four bins.

Ablation study
To further investigate the validity of the proposed algorithm

we conducted a series of tests where we hindered the algorithm’s
inputs and evaluated the performance change. As one key
difference between our algorithm and existing ones is the
inclusion of both temporal and spectral bands, we varied both
input features. In a series of ablation studies, we decreased
the range of spectral features from 17 (our algorithm) to

TABLE 7 Performance comparison of different values ofm for our method, using dataset 1.

m A01 A02 A03 A04 A05 A06 A07 A08 A09

1 84.48 80.69 88.28 83.75 82.41 77.24 82.41 86.56 89.66

2 88.97 81.38 92.41 84.58 84.83 80.69 85.52 86.90 93.10

3 89.31 83.79 94.83 84.58 84.83 82.76 85.52 90.69 93.79

4 91.38 84.83 94.83 85.00 85.52 83.10 85.17 93.10 94.14

5 93.45 81.38 95.52 88.33 84.14 81.38 87.24 94.83 93.79

6 92.41 83.45 95.52 86.25 86.55 82.41 88.62 95.17 93.45

7 93.45 82.41 93.79 87.50 83.79 82.41 88.97 95.52 94.48

STD 3.21 1.51 2.59 1.70 1.32 2.02 2.27 3.85 1.62

TABLE 8 Performance comparison of different values ofm for our method, using dataset 2.

m B01 B02 B03 B04 B05 B06 B07 B08 B09

1 90.28 75.00 72.92 100 93.92 90.28 84.03 91.47 93.75

2 88.89 72.79 73.61 100 97.30 90.28 84.03 92.11 95.83

3 89.58 70.69 72.22 100 95.95 88.89 83.33 90.13 93.06

STD 0.70 2.16 0.70 0 1.70 0.80 0.40 1.01 1.44
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12 (as is done in contender algorithms) and the range of
temporal features from five (our algorithm) to one (as is done
in contender algorithms, namely SBS-FBCSP). Across all tests,
the feature selection (Sequential Backward Selection) and the
classifications parameters were held constant. Across all ablation
tests, the performance drop ranged from −4.62% to −2.05%
for dataset 1, and −7.33% to −1.61% for dataset 2. Our
algorithm remained on par with the state-of-the-art benchmarks
despite the drop in performance. The algorithm maintained its
superiority for dataset 1, and ranked 15th (out of 21) for dataset
2 at its most hindered state, when the number of frequency
bands used was lowest. That is, the selection of time windows
and frequency bands that led to our algorithm’s performance
seem to be mostly sensitive to the number of frequency bands
used as inputs (Figure 2). Importantly, the drop in frequency
bands to a lower number puts our algorithm in line with the
contender ones, suggesting that some of the improvement is
contingent on this input feature broadening.

Additionally, we replicated the accuracy metrics tests with
the ablated inputs to evaluate the impact of the input on
performance in an additional manner (Table 9). We attempted
various implementations of the model with input features
ranging from 12 to 17 frequency bands and 3–5 temporal
windows. Our algorithm significantly outperformed a variety
of contender algorithms with ablated input. Highlighting three
of the ablation studies (“Ablation 1” with 60 input features,
“Ablation 2” with 51 input features, and “Ablation 3” with
36 input features), our algorithm maintained its performance
improvement. Specifically, for ablation test “1” our algorithm
outperformed the non-ablated input by over 2% (T(8) = 4.143,
p = 0.003; t-test) using dataset 1, and by over 1.5% using dataset
2 (T(8) = 2.024, p = 0.078; t-test). Similarly, in ablation test “2,”
dataset 1 (T(8) = 3.869, p = 0.005; t-test), dataset 2 (T(8) = 2.883,
p = 0.020; t-test) as well as in ablation test “3,” dataset 1
(T(8) = 7.051, p < 10−4; t-test) and dataset 2 (T(8) = 6.553,
p < 10−4; t-test) the performance was consistency significantly
higher for the non-ablated implementation.

Comparison of computational time

Finally, to demonstrate that the new method is useful for
BCI applications, we tested its computational efficiency. As BCIs
require not only high decoding accuracy but also relatively
fast parsing of the intended motion, a speedy classification is
important. We used a 2.67 GHz i5-M480 processor with 4 Gb
RAM to analyze the classification speed.

Runtime profiling of the algorithm took 366.91 ± 51.29 s
for the entire assessment. While this is nearly 2.8 orders of
magnitude longer than the similar contender algorithm (SBS-
FBCSP) which took only 8.05 ± 3.02 s) this test compared both
the feature selection/validation and classification. As the feature
selection is only required for the model training, a comparison

of the online classification alone showed that our algorithm is on
par with competing algorithms that report their computational
efficiency (Zhang et al., 2018). Namely, it is within 3 s from
the SBS-FBCSP algorithm (n.s.). Together with the improved
classification accuracy, we argue, the sacrifice in computational
efficiency still renders our method ideal for BCI applications,
and comparable to leading benchmark algorithms.

Discussion

We evaluated the performance of a novel neural decoding
algorithm, which used both temporal and spectral EEG signals,
in predicting a motor action planned by subjects. Our algorithm
showed increased accuracy of 2.06–4.94% above benchmark
algorithms using two different standard dataset (Tables 1, 2).

The main differences between our method and the state-of-
the-art algorithms tested were the inclusion of both temporal
and spectral signals as inputs, and the extended features
selection process. We suggest that these changes are key drivers
of the performance improvement. Namely, we propose that
the combined feature sets capture information that amplifies
the variance within trials of a single individual and therefore
increase the performance. To explore this hypothesis, we
performed an ablation study where we hindered the inputs by
altering the set of features included in the analyses and showed
that the decoding accuracy decreased by an average of 3.88%.
Even with the drop in accuracy, our algorithm was on par
with state-of-the-art algorithms. As a sanity check, our results
show that a decrease of the number of temporal features to a
single feature yielded performance that was parallel to that of
contender methods which only used spectral features.

Given that our method relies on the choice of a free
parameter, m, we also tested the algorithm’s robustness to
the parameter selection and showed that the results remain
consistent (Tables 7, 8). Further, given that the choice of
temporal window size was done arbitrarily in previous works,
we tested a range of windows as well as a numbers of frequency
bands permutations and showed that the results remain within
±1.49% for dataset 1 and ±1.74% for dataset 2, indicating that
the decision is valid and reasonable.

In dataset 2, two algorithms outperformed our
implementation. Both algorithms used an approach that
deviated from traditional feature extraction methods. One
algorithm used multi-scale CNN as a mechanism for the feature
selection and the other used montage irregularities. These
algorithms’ average performance increase was 8.03% (0.85
standard deviations) above our method. Given that both our
algorithm and the contender ones show an effective deviation
from traditional feature extraction methods, we suggest that a
focus on improving this part of the MI classification process
may be key to the success of novel methods.
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FIGURE 2

Ablation tests. Reducing the number of features as ablation tests for dataset 1 (top row) and dataset 2 (bottom row). The shaded areas depict
the range of performance for all nine subjects across all ablation tests, with the three tests showing the extremal performance highlighted
individually as “Ablation #.” Right panels show the average performance across all subjects. “Ablation 1” corresponds to a test that included all
five time windows (500–4,500 ms range, with 2 s windows size, and 500 ms step size) and 12 frequency bands (4–30 Hz range, with 4 Hz
window size, and 2 Hz step size) for a total of 60 input features (12 bands × 5 time windows) reduced gradually to 10 features through the
selection. “Ablation 2” corresponds to a test with three time windows (500–3,500 ms range, with 2 s windows size, and 500 ms step size) and 17
frequency bands (4–40 Hz range, with 4 Hz window size, and 2 Hz step size) for a total of 51 input features (17 bands × 3 time windows)
reduced gradually to 10 features through the selection. “Ablation 3” corresponds to a test with three time windows (500–3,500 ms range, with 2
s windows size, and 500 ms step size) and 12 frequency bands (4–30 Hz range, with 4 Hz window size, and 2 Hz step size) for a total of 36 input
features (12 bands × 3 time windows) reduced gradually to 10 features through the selection.
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TABLE 9 Details of three ablation tests using our algorithm in dataset 1 and 2.

Measurement A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± std Significance
[T(8) = (T,p,

t-test)]

Ablation 1

PPV 89.94 84.06 92.35 83.33 84.94 83.32 89.52 97.23 91.75 88.49± 4.88 2.033, 0.076

NPV 92.38 82.36 95.77 87.50 79.92 81.20 86.39 94.83 95.76 88.46± 6.43 3.232, 0.012

TPR 92.41 80.69 95.86 88.33 77.93 80.00 85.52 94.48 95.86 87.90± 7.16 2.908, 0.020

TNR 89.66 83.45 91.72 81.67 85.52 83.45 89.66 97.24 91.03 88.16± 5.02 1.394, 0.201

Kappa 82.07 64.14 87.59 70.00 63.45 63.45 75.17 91.72 86.90 76.05± 11.34 4.140, 0.003

Ablation 2

PPV 88.54 79.32 94.15 89.93 84.94 76.19 90.06 94.69 92.96 87.86± 6.51 2.235, 0.056

NPV 89.90 80.00 91.81 86.01 84.97 86.98 87.42 93.89 96.04 88.56± 4.91 4.034, 0.004

TPR 89.66 80.00 91.03 85.00 84.83 88.97 86.21 93.79 95.86 88.37± 4.91 2.701, 0.027

TNR 88.28 78.62 93.79 90.00 84.83 71.72 90.34 94.48 92.41 87.16± 7.59 2.021, 0.078

Kappa 77.93 58.62 84.83 75.00 69.66 60.69 76.55 88.28 88.28 75.54± 10.95 3.871, 0.005

Ablation 3

PPV 87.23 80.10 88.30 86.12 79.23 78.15 85.33 91.70 93.07 85.47± 5.36 4.870, 0.001

NPV 88.94 77.16 92.92 84.55 80.72 78.15 88.37 93.82 92.59 86.36± 6.47 5.048, 10−4

TPR 88.28 75.86 93.10 84.17 78.62 77.24 88.28 93.79 92.41 85.75± 7.07 4.792, 0.001

TNR 86.90 80.69 87.59 85.83 79.31 77.93 84.14 91.03 93.10 85.17± 5.18 4.313, 0.003

Kappa 75.17 56.55 80.69 70.00 57.93 55.17 72.41 84.83 85.52 70.92± 11.97 7.047, 10−4

Ablation 1

PPV 82.72 75.38 75.00 100 89.87 95.45 82.43 94.37 87.18 86.93± 8.81 0.669, 0.552

NPV 92.98 73.24 72.37 100 95.65 88.46 84.29 88.89 93.94 87.76± 9.61 2.618, 0.031

TPR 93.06 72.06 70.83 100 95.95 87.50 84.72 88.16 94.44 87.41± 10.19 2.577, 0.033

TNR 80.56 76.47 76.39 100 89.19 95.83 81.94 94.74 86.11 86.80± 8.68 0.308, 0.766

Kappa 73.61 48.53 47.22 100 85.14 83.33 66.67 82.89 80.56 74.22± 17.42 1.897, 0.094

Ablation 2

PPV 83.13 69.62 75.36 100 90.12 89.23 83.78 88.24 91.30 85.64± 9.01 1.942, 0.088

NPV 95.08 77.19 73.33 98.67 98.51 82.28 85.71 80.95 88.00 86.64± 9.20 2.213, 0.058

TPR 95.83 80.88 72.22 98.65 98.65 80.56 86.11 78.95 87.50 86.59± 9.43 1.881, 0.097

TNR 80.56 64.71 76.39 100 89.19 90.28 83.33 89.47 91.67 85.07± 10.27 1.427, 0.191

Kappa 76.39 45.59 48.61 98.65 87.84 70.83 69.44 68.42 79.17 71.66± 16.94 2.938, 0.019

Ablation 3

PPV 74.42 69.14 66.25 100 86.67 85.48 74.36 83.78 86.49 80.73± 10.58 5.884, 10−4

NPV 86.21 78.18 70.31 96.10 87.67 76.83 78.79 82.05 88.57 82.75± 7.71 4.510, 0.002

TPR 88.89 82.35 73.61 95.95 87.84 73.61 80.56 81.58 88.89 83.70± 7.42 2.953, 0.018

TNR 69.44 63.24 62.50 100 86.49 87.50 72.22 84.21 86.11 79.08± 12.77 5.040, 0.001

Kappa 58.33 45.59 36.11 95.95 74.32 61.11 52.78 65.79 75.00 62.78± 17.75 6.560, 10−4

Bold significance values indicate p-values below 0.05.

Contribution

In addition to proposing a new algorithm that implements
various suggestions from a large corpus of prior works and
yielding an improved performance, we also demonstrate the
robustness of the method in multiple ways. We estimate the
algorithm on two different datasets (allowing for generalizability
of the implementation) and identify dominant parameters
driving the performance. We situate the work in the context
of existing algorithms and suggest that the process of feature

extraction followed by independent classification maximizes
the performance yield. Using inputs that are not traditionally
considered for MI the expansion of classification set affords the
algorithm a richer idiosyncratic noise minimization and tuning
option. We show that the algorithm is offering an improvement
without considerable hyperparameters tuning. Finally, we show
that expanding the input set and the processing steps does
not come at a significant cost with respect to decoding speed.
The proposed algorithm can show generalized improvement in
near real-time on consumer-grade computation tools, making
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it a viable method for future implementations by practitioners
(Massaro et al., 2020) as well as academics (Cerf et al., 2007).

Prior works

Our method is not the first to consider the multi-modal
structure of EEG signals along with a dedicated classification
tool during MI. For example, previous work (Deng et al.,
2021) has combined temporally constrained group LASSO
with CNN to interpret the underlying mechanisms driving the
successful EEGNet decoding (Lawhern et al., 2018). Similarly,
a framework for time frequency CSP smoothing was recently
implemented to improve EEG decoding performance through
ensemble learning (Miao et al., 2021). Both those methods
focused on selecting CSP features by ranked weight. Conversely,
our method incorporated the temporal features selection
using a neural network. The neural networks classifiers were
previously suggested as an extension of the establish body
of works for MI tasks (Bhatti et al., 2019), yet were not
implemented. Our work suggest that the non-linear feature
selection provided by the network yields notable performance
increase.

Focusing on the neural network implementation, it is
noteworthy that a number of classifiers were proposed as
variations on the method we used. Due to the recent
developments in deep learning algorithms a majority of the
methods proposed focused on CNN for the motor classification
(Lawhern et al., 2018; Xu et al., 2018; Amin et al., 2019;
Dy et al., 2019; Zhang D. et al., 2019; Zhang R. et al.,
2019; Zhao et al., 2019; Chen et al., 2020; Ha and Jeong,
2020; Jia et al., 2020; Lian et al., 2021; Musallam et al.,
2021). Specifically, Sakhavi et al. (2018) utilized CNN with
temporal data, spectral data, and combination of these data to
show a notable improvement in the classification performance
compared to benchmark methods. Similarly, Dai et al. (2019)
and Sun et al. (2020) showed that adoption of Squeeze-and-
Excitation networks (Hu et al., 2018) in the CNN architecture
improved the classification further because they accounted
for the inter-dependencies among the EEG channels in the
calibration of the spectral responses. In parallel, Zhang D.
et al. (2019, 2020) and Chen et al. (2021) have implemented
attentional mechanisms within the neural network architecture
to benefit from the temporal dynamics of subject-specific signal
properties. In line with these methods, Zhang D. et al. (2019) and
Jia et al. (2020) deployed a multi-branch strategy that benefited
from the idiosyncratic temporal-properties of different subjects
by utilizing complementary networks. Applying the same logic
to spatial-temporal signals, Li Y. et al. (2019) used CNN to
capture mixed-scale temporal information and improve the
decoding accuracy. In addition to improving the input signal
features selection, novel methods have focused on bettering
the feature discrimination and selection strategies (Yang et al.,

2021) and the data augmentation tools (Li Y. et al., 2019;
Yang et al., 2021). Specifically, investigating the input features
further, Jin et al. (2021) have introduced time filter to a task-
related component analyses method that enhanced the signal
detection. The works used singular value decomposition to
suppresses the general noise and increase the classification
accuracy. The method was implemented on steady-state visual
evoked potential based BCIs which are different than our data,
but it is likely that the method will be useful for our data
as well because of the similarity in decoding performance.
Beyond similarity in noise reduction, previous works have also
improved the feature selection optimization as we did. Jin et al.
(2020) implemented feature selection based on the Dempster-
Shafer theory which considers the distribution of the features
and found the optimal combination of CSPs that minimized
the influence of non-stationarity in the signal. Similar to our
implementation, this method took into account the inherent
defects of CSPs. Further, the work proposed an investigation
of the temporal-spectral feature binning for the BCIs similar
to the way bins were integrated into the sequential backward
feature selection process in our work. Additionally, Jin et al.
(2019) have proposed a correlation-based channel selection
combined with regularized CSP (RCSP) as a way to improve
the classification accuracy. The method seems to align with
ours in its performance despite the fact that the RCSP does not
consider both the temporal and spectral properties of the MI.
The inclusion of both temporal and spectral feature types is
suggested in the work as a future endeavor to be investigated.
Completing the previous work, Li et al. (2018) have reported
that using multiple modality inputs (in their work, both audio
and visual signals) to enhance the representation of incoming
signals yield increased accuracy in action decoding task (in
their case: decoding “crying” vs. “laughing”). The work suggests
that in addition to richer signal, the multi-modal inputs afford
comprehensive data that benefits from the internal correlation
among features. Besides being analogous to our work in their
approach to the decoding, these works suggest that rich (or
even superfluous or noisy) data inputs can prove useful in
classification improvement. While the data in some of the
listed works are different (i.e., fMRI data, or different tasks
data) we intuit that the methods could be used to improve
our work toward an even greater accuracy in the MI decoding.
Finally, the network architecture itself was optimized in several
works. For example, LSTM and RNN were incorporated in
the CNN with the intent to capture additional properties of
the EEG signal segments (Ko et al., 2018; Zhang D. et al.,
2019; Zhang R. et al., 2019; Lian et al., 2021). Together, all
these methods have demonstrated the benefit of incorporating
subject-specific temporal properties in the neural network and
the advantages these data have in improving the decoding
performance.

Since our method implements feature selection and
subject-idiosyncratic inputs in the training, as well as
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further granular features breakdown along the one discussed
here, we suggest that our proposed method benefits from
the collection of previous advantages. Namely, as our
method separated the feature selection process from the
following classification task, we suggest that the two-
stage process, which enabled the reduction of features
number, is one of the significant drivers of the performance
increase.

Comparison to leading contender
algorithms

Comparing our method to an algorithm that uses similar
routines (SBS-FBCSP) showed average increased performance
of 20.22% (19.28% for dataset 1, and 21.15% for dataset 2).
Similarly, a comparison to two other algorithms that share key
characteristics with ours, albeit with less direct alignment in
the protocol (SFBCSP and SFBCSP-MT) showed an incremental
performance increase for our proposed method.

While the SBS-FBCSP was the algorithm conceptually
closest to ours and, therefore, the subject of the main
comparison, it is useful to highlight some of the similarities
and differences between our method and other popular
classification protocols.

Examining the notable similarities and differences between
our method and 15 methods tested with dataset 1 (Table 10) or
21 tested with dataset 2 (Table 11) we note the main difference
being the type of features selected as inputs, and the separation
of the feature selection and generation steps.

Limitations

The proposed decoding method suffers from a number of
limitations that are driven by the extension of the temporal
components. First, the method requires a priori intuition
about the data in order to accurately choose the temporal
segments. To prove the method’s superiority in datasets where
no prior knowledge is available it would be useful to test either
arbitrary datasets, or randomly selected temporal windows. If

TABLE 10 Comparison of contender algorithm implemented with dataset 1.

Method Similarity Difference

1 DNN Combined CSP with neural network Did not use both temporal and spectral
information

2 KPCA-CILK Applied a conformal transformation to decrease the
non-Euclidian characteristics of the signal while
preserving the geometry

Did not use both temporal and spectral
information

3 WOLA-CSP Performed dynamic filtering of the EEG signal Implemented the BCI on embedded
platform, and did not use both temporal
and spectral information

4 MEMDBF-CSP-LDA Adopted common spatial pattern on reconstructed data
from the multivariate empirical mode decomposition

Did not use both temporal and spectral
information

5 JSTFD-LDA Considered both temporal and spatial features by
extending the CSPs

Did not use spectral information

6 nCSP-TSLR Normalized and regularized the CSP to improve
performance

Did not use temporal and spectral
information

7 W-CNN Took the wavelet time-frequency image of the EEG as
input for the CNN

Both feature generation and selection done
by the neural network

8 SS-MEMDBF Utilized the MEMD to extract cross channel information
as well as localize the specific frequency information

Did not use temporal information

9 CSP-FB-LOG Adopted ensemble learning for feature selection from
newly proposed feature extraction based on CSPs

Did not use temporal information

10 SW-LSR Introduced the sliding windows techniques into the CSP Did not use spectral information

11 EEGnet Utilized depth-wise and separable convolutions in the
CNN

Both feature generation and selection done
by the neural network

12 R-MDRM Regularized the covariance matrices using data from
prior analyses of the EEG channels in small sample
settings to reduce calibration time

Did not use both temporal and spectral
information

13 SR-MDRM Regularized the covariance matrices using data from
other subjects in small sample settings to reduce
calibration time

Did not use both temporal and spectral
information

14 TSGSP Adopted Group Lasso selecting the temporal-spectral
common spatial pattern features in a multi-task learning
manner. The selection of filter banks as well as temporal
windows was similar to ours

Used SVM. Tuned three parameters rather
than one

15 DCR-MEMD Utilized the Gini and Maximum Information Coefficient
for optimal channel selection as well as Multivariate
Empirical Mode Decomposition for feature extraction

Did not use both temporal and spectral
information
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TABLE 11 Comparison of contender algorithm implemented with dataset 2.

Method Similarity Difference

1 RSMM Adopted a novel unified framework of robust matrix
classifier as well as decomposition of EEG solved by
alternating direction method of multipliers

Eliminated the effect of outlier and noise.
Did not use temporal and spectral
information

2 DLVA Simultaneously incorporated temporal, spatial and
spectral information using a CNN-variational
autoencoder

Both feature generation and selection
done by the neural network, and had no
independent feature selection process

3 SGRM Reduced the required training samples from target
subject using auxiliary data from other subjects

Did not use temporal and spectral
information

4 UDFS Utilized an unsupervised feature selection strategy to
select the potential CSP feature from multiple
frequency bands

Did not use temporal information

5 SSD-SE-CNN Proposed squeeze-and-excitation blocks embedded
CNN to explore time-frequency features and
classification

No independent feature selection process

6 WaSF ConvNet End-to-end CNN using time-frequency and spatial
information and using wavelet-like kernels to reduce
the number of parameters

No independent feature selection process

7 CSP-Wavelet-LOG Ensemble learning for feature selection using
CSP-based feature extraction

Did not use temporal and spectral
information

8 MAAN CNN with multi-attention layers to capture the spatial
property of the signal as well a domain discriminator to
reduce the difference between sessions

Did not use spectral information

9 MTPP-EEGNet Multi-layer temporal pyramid pooling approach
incorporated into the CNN

Did not use spectral information

10 UDFS Utilized an unsupervised feature selection strategy to
select the potential CSP features from specific multiple
frequency bands

Did not use temporal information

11 DJDA Novel dynamic joint domain adaptation network based
on adversarial learning strategy to learn
domain-invariant feature representation using
information from the source session

Did not use temporal and spectral
information

12 SHNN Consider both temporal and spectral information by
segmenting the raw EEG into different windows and
band-pass filtering the signal

Both feature generation and selection
done by the neural network

13 TSLDA Linear discriminant analysis included in covariance
matrix

Covariance matrix did not use temporal
and spectral information

14 DRDA Deep representation-based domain adaptation to
improve the classification performance on a single
subject using information from multiple subject
sources

CNN did not use temporal and spectral
information for both the source and target
domains

15 RF-DFFS Dynamic feature selection strategy where EEG
frequency domain features are selected one by one in a
boosting protocol

Did not use temporal information

16 FDBN Deep Belief Network classifier using the FFT features Did not use temporal information

17 TSGSP Group LASSO selecting the temporal-spectral CSPs in
a multi-task learning manner. Selection of filter banks
as well as temporal windows

Used SVM. Tuned three parameters rather
than one

18 MMCNN Multi-scale, multi-branch CNN to overcome the
variation between time and subjects using convolution
kernel in different sizes

Did not use both temporal and spectral
information

19 WPD-STDF New spatio-temporal discrepancy feature combined
with frequency information

No feature selection strategy

20 CD-CNN EEG data augmented using a circular translation
strategy, followed by a central vector shift strategy to
strengthen the discriminative power of the CNN

Did not use both temporal and spectral
information

21 FBRTS Fusing the features extracted from CSP as well as
multiple time windows

Fusion strategy did not have feature
selection strategy

Frontiers in Neuroinformatics 15 frontiersin.org

186

https://doi.org/10.3389/fninf.2022.952474
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-952474 October 5, 2022 Time: 11:31 # 16

Wang and Cerf 10.3389/fninf.2022.952474

the method proves superior even with those selections, it will be
regarded more robust.

Second, the algorithm has additional degrees of freedom
that could be optimized with regards to the selection
of hyperparameters. We elected to use the default ones
operationalized by the Matlab implementation (Matlab version
2018a) without any additional tuning, but recognize that future
work could focus solely on tuning those hyperparameters.
Given the lack of theoretical justification for any alternative
choice and given that the contender algorithms also used
the default hyperparameters without additional emphasis on
tuning, we did not deviate from this norm. Ideally, future
work will yield theoretical reasoning for some of the tuning
alternatives and thereby improve the algorithm’s performance
as well as its usefulness for varying test cases outside of the MI
implemented here.

Third, our method could be orders of magnitude slower in
its initial computation training time than other methods. This
means that usage of the method for BCIs that continuously
update the feature set would either be challenging or require
extensive computational resources. To overcome this challenge,
one should investigate whether smaller time-window sizes
(presumably yielding faster processing) could produce higher
performance. Shorter time-window that maintain the high
performance would elevate the usefulness of the algorithm.

Fourth, it is not clear whether the method would easily
generalize to BCI tasks outside of MI. Specifically, because MI
tasks are less likely to show the types of noise that pollutes
active motor actions, the fact that our method shows superiority
in one domain does not guarantee its success in others. We
focused on implementing the method on MI tasks as these are
the ones mostly implemented thus far and because of their
ecological validity in the context of therapy and rehabilitation
(Sokol et al., 2019). Implementing the method in other domains
(i.e., language decoding) would validate the usefulness of the
method further, or highlight the differences in the BCI uses.

Future directions

Two research venues that directly extend our work are: i)
the enhancement of the features selection granularity (while
attempting to maintain the feature-classification performance),
and ii) the generalization of the temporal features classification
process. Specifically, as EEG and other biological signals
are heavily dependent on combined temporal and spectral
dynamics, usage of feature selection process with tools such as
the recently proposed attention guided neural networks (Sun
et al., 2019) may improve the ability to extract the appropriate
features without a priori knowledge on the data. This would
make the algorithm generalizable to other BCI inputs.

Further, as the majority of the benchmark algorithms we
compared use neural networks for the full classification process

(thereby effectively using all the available features without pre-
selection) we suggest that amending the benchmark algorithms
to focusing on the deep learning ones incorporating the two-step
selection-classification process may increase the performance of
all the benchmark methods.

It has not escaped our notice that as SVMs were previously
shown to be superior with respect to feature classification
(whereas deep learning networks were shown to be superior in
BCI feature selection; Li Y. et al., 2019; Deng et al., 2021; Tiwari
and Chaturvedi, 2021) a combination of both methods might
improve our algorithm further and allow it to generalize to tasks
outside of MI or motor control (i.e., non-verbal communication,
language decoding, or parsing of thoughts).

Conclusion

In this work we have shown that an algorithm which
incorporates both temporal and spectral EEG inputs can
yield high performance in recognizing which action was
imagined by a subject. The algorithm uses SBS technique
to reduce the number of inputs and to identify which
inputs are less likely to be idiosyncratic across subjects. Once
the input features are selected, a RBFNN is used for the
classification of the action. We suggest that the method yields
performance improvements compared to existing protocols
primarily because the inclusion of the large subset of features
reduces the individual noise idiosyncrasies within subjects. The
suggested algorithm incorporates many of the benefits of the
current corpus of state-of-the art BCI protocols and implements
the improvements suggestion offered by numerous prior works.
In line with these prior suggestion, the method could be
applicable for other neural classification problems, modalities,
and domains outside of the ones tested herein.
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Music plays an essential role in human life and can act as an expression

to evoke human emotions. The diversity of music makes the listener’s

experience of music appear diverse. Di�erent music can induce various

emotions, and the same theme can also generate other feelings related

to the listener’s current psychological state. Music emotion recognition

(MER) has recently attracted widespread attention in academics and industry.

With the development of brain science, MER has been widely used in

di�erent fields, e.g., recommendation systems, automatic music composing,

psychotherapy, and music visualization. Especially with the rapid development

of artificial intelligence, deep learning-based music emotion recognition

is gradually becoming mainstream. Besides, electroencephalography (EEG)

enables external devices to sense neurophysiological signals in the brain

without surgery. This non-invasive brain-computer signal has been used to

explore emotions. This paper surveys EEG music emotional analysis, involving

the analysis process focused on the music emotion analysis method, e.g.,

data processing, emotion model, and feature extraction. Then, challenging

problems and development trends of EEG-based music emotion recognition

is proposed. Finally, the whole paper is summarized.

KEYWORDS

EEG, emotions, music, recognition, song

1. Introduction

Music is a product created by musicians in the brain and mapped to reality through

playing and is also a meaningful way to express emotions and generate emotional

resonance. Music is a sound symbol representing people’s thoughts and has specific

acoustic and structural characteristics. The structure and features of music, such as

pitch, tonality, rhythm, and volume, play an essential role in emotional expression.

For example, fast rhythms (dense rhythms) typically indicate high arousal levels,

while slow rhythms (sparse rhythms) indicate low arousal emotions. Music has many

elements, including loudness, pitch, beat, tempo, rhythm, melody, harmony, texture,
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style, timbre, dynamics, structure, and more. Generally

speaking, music has three essential characteristics: loudness,

pitch, and timbre (Lin et al., 2010). Music is a type of sound

caused by objects vibrating the air regularly. It enters the brain

through the human ear and acts on the cranial nerves. Besides,

music is one of the ways of expressing emotions, which can

evoke strong emotional responses from listeners with good

cross-cultural, consistent consistency. Listening to music is an

easy and effective way to change your mood or reduce stress.

Neuroscientific research has found that the melody and rhythm

of music directly affect the human ear, and the listener can

perceive the emotion expressed by music in the subconscious

state. Studies have shown that music can induce various

emotions in humans, including sadness, nostalgia, tension,

happiness, relaxation, calmness, and joy. Listening to music

causes emotional mechanisms that are very complex, which

often involves a series of related interdisciplinary knowledge

such as psychology, physiology, and neuroscience. It isn’t easy to

find an intuitive quantitative method to analyze. When musical

stimulation acts on a person’s auditory system, the brain will

temporarily increase the activity of specific nerve cells, thereby

affecting the expression of people’s emotions. Music signals and

EEG are closely related in the root (Lin et al., 2006). The EEG

often used to verify the influence of music on human brain

activity. Studying the relationship between EEG signals and

music can help discover how music activates corresponding

neurons in the brain. And it can also affect the expression of

human emotions. Therefore, studying the correlation between

music and EEG signals is of great significance.

Human emotion is a complex phenomenon closely related

to human mental state and emotion, including psychological,

physiological, and social aspects (Cacioppo et al., 2021).

Emotions can be described as changes in the form of the human

brain in response to specific events. Emotions play a crucial

role in numerous daily experiences of human beings and exert

significant influence on their life, such as cognition, perception,

and rational decision-making. Given the correlation between

the two, emotion has been studied in psychology, philosophy,

and neurobiology, which is consistent with the basis of emotion

neuroscience (Panksepp, 2004). Although emotions are essential

to human communication and interaction, until now, there has

been no transparent, automated system for emotion recognition

in human society. With the continuous development of artificial

intelligence, the demand for emotional intelligence in the

human-machine interface is increasingly amplified (Picard,

2003). Based on this, developing and implementing a new

automatic emotional recognition algorithm becomes crucial. In

this way, it is possible to improve and humanize the interaction

between humans and machines. Many studies (Cloitre et al.,

2019; Dickerson et al., 2020) have focused on detecting emotions

by analyzing physical responses to emotional conditions. To

this end, many studies have assessed the effects of emotion on

different physiological variables, with particular efforts being

made to evaluate EEG recordings (Alarcao and Fonseca, 2017).

In recent decades, EEG-based emotion recognition research

has gained popularity in many disciplines. However, available

scientific data on emotional states and their structure are

still limited. Researchers have verified that certain music can

change neural activity and stimulate people’s potential. Activity

in the EEG correlates strongly with music-induced emotions.

Vuilleumier and Trost (2015) shows that emotion recognition

in music is a relatively rapid process.

Nordström and Laukka (2019) found that music-evoked

emotions share some characteristics with basic emotions

that map to valences observed in other emotional contexts

(Vuilleumier and Trost, 2015). These findings suggest that

emotional responses are multidimensional. Using functional

magnetic resonance imaging (fMRI), Bodner and Shaw

compared the changes in electrical signals in the brain as

participants listened to Mozart’s music and other music (Bodner

et al., 2001). The results showed that in addition to the expected

temporal lobe activation, the subjects listening to Mozart

also activated the brain’s frontal lobe, with significant α-wave

changes. This phenomenon may be because Mozart’s music

is highly organized, and the regular repetition of melody is

similar to the rhythmic cycle of brain electricity, which affects

the human body. In addition, most previous studies on emotion

recognition are based on body movement, posture, voice,

and expression. However, tone and facial expressions can be

deliberately hidden, so the corresponding credit is inaccurate.

In contrast, EEG captures the electrical signals produced by

neurons, and humans cannot control physiological signals on

purpose, so EEG-based emotion recognition is more reliable.

Brain functional network studies include magnetic

resonance imaging (MRI), functional magnetic resonance

imaging (fMRI), and functional near-infrared spectroscopy

(fNIRS). MRI is a very complex imaging examination. MRI

provides in a particular brain, such as a tumor patient’s. MRI

shows only a still image of the brain, which is an anatomical

image, with no actual brain activdes a map of the brain at

a given moment. This structural information can be used

to determine the size of a person’s brain or whether there

are abnormalitity. To get images of brain activity, fMRI is

needed. FMRI can observe the specific brain activity clearly

under test in the form of pictures, which has incomparable

advantages. However, fMRI equipment will produce huge

background noise when working, which seriously affects the

effect of music appreciation. Meanwhile, fMRI has low time

resolution, and the brain imaging obtained by fMRI is the

average of brain activity within a few seconds. However, the

brain responds effectively to stimuli within 30 ms, and the

temporal resolution of fMRI makes it impossible to accurately

analyze brain activity. fNIRS is the near-infrared spectroscopy

(NIRS) used in functional neuroimaging. In application, the

brain’s response can be detected according to the behavior of

neurons. It is a neuroimaging technique that uses spectroscopy
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to measure the level of brain activity. Functional near-infrared

spectroscopy (FNIR) is a non-invasive functional brain imaging

technique developed in recent years. But all of these methods

are more expensive than EEG, require more training, and,

most importantly, are less portable. And in the experiment,

sometimes as long as you wear headphones, you can detect the

quality of the data, so EEG is more widely used in the test.

The connection between music and the brain is

interconnected. People with hearing impairments can’t perceive

pitch and rhythm correctly, but their brains are unaffected.

Different music can trigger different emotions, and the same

music can trigger other emotions, which has a lot to do with the

current state of mind of the audience. In recent years, with the

development of brain science, music, mood, and the correlation

with EEG research have gradually become cutting-edge research

in this area. With the help of EEG, research content can

use machine learning algorithms to capture and study brain

activity signals to predict emotional recognition patterns and

translate them into commands. The development trend of EEG

recognition of music arousing emotion is proposed. Based

on this, this paper makes some conclusions about the brain

mapping of music-induced emotion.

The main contributions of this paper are as follows:

• We give a detailed introduction to the music-based

emotion recognition method and analyze the emotion

analysis of EEG signals in detail.

• We introduced EEG-based music emotion recognition

methods in detail, including data collection and processing,

feature extraction, etc

• We discuss current challenges and future research

directions for EEG-based music emotion.

The rest of the paper mainly includes some preliminary

knowledge of music emotion recognition is introduced in

Section 2. Then Section 3 reviews and summarizes the

framework of EEG-based music emotion recognition. Section

4 discusses the current challenges and future work. Finally, we

conclude this paper in Section 5.

2. Preliminary knowledge

With the rapid development of information science, various

digital technologies are flourishing. Audio digitization has

become an intermediate force in the digital trend. Audio

is the result of digitizing and preserving sound, and music

is an essential part of the audio. In recent years, digital

music has attracted many scholars to research it. Compared

with traditional music, digital music reflects its advantages in

production, storage, dissemination, and retrieval, e.g., digital

signal processing can reduce the cost of music storage and the

application. At the same time, the popularization of the Internet

has promoted the spread of digital music. With the development

of audio retrieval technology, text content is unable to meet

users’ needs. In this context, digital audio content has become

a hot spot of digital audio technology.

However, music’s essential feature is based on emotion,

and more music studies point out that emotion is a necessary

criterion for people in music retrieval. The core of emotion-

based music retrieval is music emotion recognition, which is

the essential research direction of digital music. Music emotion

recognition research covers musicology, psychology, music

acoustics, audio signal processing, natural language processing,

machine learning, and other fields.More than 100 related studies

have shown that different listeners are generally consistent

in judging the emotions expressed by music. Therefore, it is

possible to perform emotion recognition with high accuracy.

Music emotion recognition began in the 1960s and has

been around for decades. At the beginning of artificial

intelligence, some people proposed the relationship between

music content and emotion. Since then, universities and

research institutes have conducted related research. In recent

years, with the development of artificial intelligence, music

emotion recognition research has progressed rapidly and has

been successfully applied in various fields, e.g., music emotion

retrieval, music art performance, intelligent space design, etc.

Music emotion recognition technology is the research field

of music visualization. It has laid the foundation with broad

research prospects and essential application value.

In recent years, music emotion recognition has progressed

rapidly and become one of the important research directions

in digital music. In the current music emotion research, there

are many problems need to be resolved, such as the scarcity of

music emotion data sets, the difficulty of emotion quantification,

and the limited accuracy of emotion recognition, with the

test. This section will introduce the research status of music

emotion recognition.

2.1. Music emotion recognition

Music emotion recognition is an interdisciplinary work

that requires deep analysis and understanding of music, which

not only involves signal processing and artificial intelligence

but also needs to understand many fields such as auditory

perception, psychology, and music theory. People’s judgment

of music emotion is subjective, and different experiences or

ideas will influence the determination of music emotion. The

characteristics of music, e.g., timbre, rhythm, and lyrics, also

affect people’s perception and judgment of musical emotion.

Music expresses emotion with essential elements such as pitch,

length, strength, and timbre, and how quantifying music’s

emotional characteristics is the key to solving the music emotion

recognition problem.
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Xia et al. (2012) used a continuous emotion mental model

and a regression prediction model to generate robot dance

movements based on constructing emotional changes andmusic

beat sequences. Schmidt et al. (2010) chose a continuous

emotion model to link the dynamic content of music with the

acoustic feature model. Then the established regression model

can study the emotional changes in music over time. Bresin

and Friberg (2011) invited 20 music experts to express emotions

such as happiness, sadness, fear, and calm by the numerical

combination of 7 characteristic quantities in the device and

obtained the relationship between usual quantities and musical

emotions. Yang et al. (2006) used a continuous emotion mental

model with regression modeling to predict the emotional value

of music. Then, two fuzzy classifiers were used to measure

the emotional intensity to identify the emotional content of

the music. Sarkar and Saha (2015) using convolutional neural

networks to identify music models and compared them with

commonly classifiers, e.g., BP neural networks.

In recent years, music emotion recognition has received

extensive attention. With the combination of deep learning

methods, emotion recognition has been dramatically improved.

However, music emotion recognition is a long-term task that

still needs continuous innovation and improvement. As the in-

depth application in various fields, music emotion recognition

has created incomparable value, promoting the development

of other areas. Music emotion recognition can accurately carry

out personalized music recommendations. Adjusting the music

according to the emotional needs of individuals can well solve

the problem of individual differences and make music retrieval

methods more diversified. With the further application of

musical emotion recognition in the medical field, psychological

therapy with music has become an effective treatment method

in recent years. At the same time, music emotion recognition

also plays an essential role in dealing with brain nerve problems.

Therefore, the research on musical emotion recognition is of

great significance to the in-depth development of various fields.

Music emotion recognition can accurately carry out

personalized music recommendations. Adjusting the music

according to the emotional needs of individuals can well solve

the problem of individual differences and make music retrieval

methods more diversified. With the further application of

musical emotion recognition in the medical field, psychological

therapy with music has become an effective treatment method

in recent years. At the same time, music emotion recognition

also plays an essential role in dealing with brain nerve problems.

Therefore, the research on musical emotion recognition is of

great significance to the in-depth development of various fields.

2.2. The processing of MER

The existingMER algorithms are almost based on supervised

learning. Therefore, establishing a learning library is necessary,

FIGURE 1

MER framework.

i.e., music and related data, which is shown in Figure 1. Then,

the music features are extracted by an emotional model, which

forms feature vectors using dimensional reduction. This way,

the music emotion recognition model is calculated by training

the feature vectors and emotion labels. Finally, the performance

feature is extracted from the unknown music, i.e., emotional

test, and the classification result can be conducted by the trained

recognition model.

2.3. MER models

The analysis and identification of music emotion require

using a music emotion model. The music emotion model

can effectively solve the problem that emotion is difficult to

quantify. The basis for analyzing and identifying music emotion

is selecting a suitable model according to the characteristics. The

music sentiment analysis model can generally be divided into

three parts, namely the music feature model, music emotion

model, and cognitive classification model. Among them, the

music emotion model is the basis for the final classification, and

its selection is essential. Classical music emotion models include

Hevner model (Hevner, 1936), Thayer model (Thayer, 1990),

TWC model (Tellegen et al., 1999), and PAD model (Russell,

1980).

In computer music emotion analysis, the Hevner model

is a commonly used psychological model of music emotion.

As in Figure 2A, Hevner first proposed it in 1936. Hevner

categorizes emotional adjectives into eight categories: solemn,

sad, dreamy, quiet, graceful, happy, excited, and powerful.

Each type of adjective is further subdivided into several more

detailed and extensive emotional adjectives, totaling 67 words.

The model combines musicology and psychology, is richer in

selecting emotional keywords, and has a good effect on the

emotional identification of musical works. Based on the Hevner

model, Farnsworth (1954) found that several Hevner adjective

clusters were not accurate enough to describe emotions and then
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FIGURE 2

The common MER model. (A) Hevner model. (B) TWC model. (C) PAD model.

effectively updated the model using 50 Hevner adjectives. The

internal consistency was higher than in the original model, and

the category distinction was better. In 2003, Schubert (2003)

updated the Hevner model emotional adjective table, and the

final list contained 46 words, which were divided into nine

groups in the emotional space.

Thayer (1990) believes that the two underlying dimensions

of emotion are two independent dimensions of arousal: energy

awakening and tension awakening. Thayer’s emotional model

is two-dimensional, with pressure as the abscissa and energy

as the ordinate. According to the power from calm to vitality

and the force from happiness to anxiety, the plane is divided

into four extreme areas, i.e., vitality, anxiety, contentment, and

depression. The Thayer model is proposed from the perspective

of psychology. It is described by dimensional thinking and

can establish a good relationship with acoustic characteristics.

Therefore, it is suitable for emotional recognition of audio

music such as MP3 and WAV. However, it is still necessary

to map to discrete emotion representations in the specific

emotion recognition process. As shown in Figure 2B, Tellegen

et al. (1999) revised and supplemented the Thayer model

and proposed a TWC model, which used 38 adjectives to

describe emotions, and added a set of coordinate systems based

on the original two-dimensional coordinates. The horizontal

and vertical coordinates are Happy and involved. The TWC

model not only retains the Thayer model’s natural and

smooth emotional transition but also dramatically enriches the

descriptions of musical emotions.

The PAD (Russell, 1980) three-dimensional effective

model is a dimensional measurement model first proposed

by Mehrabian and Russell and is widely used in psychology,

marketing, and product satisfaction research, which is

shown in Figure 2C. The model divides emotions into three

dimensions: pleasure, activation, and dominance, where P

represents pleasure, representing the positive and negative

characteristics of an individual’s emotional state, A means

the degree of activation, representing the level of individual

neurophysiological activation, and D represents dominance,

representing the individual Control over the situation and

others. PAD model regards the degree of emotion as a

spatial angle coordinate system and divides feeling into three

dimensions, pleasure, activation, and dominance. Among them,

pleasure represents the trend of an individual’s emotional state,

activation degree represents the neurophysiological activation

level of the individual, and dominance refers to the degree

of domination of the individual relative to the situation and

others. The model describes subtle emotional intensity through

different coordinate points. Compared with traditional emotion

description methods, the characteristics and advantages of

the PAD model are that it can distinguish emotional states

such as anger and fear. The PAD model can describe a state

of emotional intensity according to specific spatial coordinates

and define emotional words continuously and subtly. The

Thayer model has only two dimensions and lacks the richness

of emotions, while the Hevner emotional ring model classifies

and describes emotions in too much detail. Except for the

8-dimensional emotional ring, each category is subdivided into

several sub-categories. This classification is too fine-tuned, and

complex semantic models are unnecessary for simple music

with a single emotion.

In addition to the emotion model listed in Figure 2, some

studies utilize probability distributions (Yang and Chen, 2011),

rankings (Fan et al., 2017), and antonym pairs (Liu et al.,

2019) to express musical emotion. Probability distributions

represent the emotion of a song as a probability distribution

in the emotion space, which can alleviate the problem of

emotional subjectivity. Ranking and recommending music

works according to emotional intensity can reduce the
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cognitive burden caused by continuous dynamic polarity and

the inaccuracy caused by emotional subjectivity. Antonym

pairs can make sentiment labels more objective. Figure 2

mainly introduces several classical music emotion models. The

discrete model and multidimensional model are extensions of

these methods.

2.3.1. Discrete model

In the discrete emotionmodel research, experts, and scholars

assume that all types of emotions can be described by a specific

subset of primary emotional states. For example, Ekman’s team

believes there are only six basic emotions (Ekman et al., 1987),

including anger, disgust, fear, happiness, sadness, and surprise.

The number of basic emotions is fixed and limited, and there

is no appropriate way to reflect the complexity and variability

of emotions. In the research process, scholars found that the

discrete emotion model is used to quantify the emotion type and

intensity. However, it has to face many limitations when solving

practical application problems. For example, Gelbrich (2010)

found that negative emotions of anger were associated with

intentions to complain and negative word of mouth, whereas

frustration and helplessness were not.

2.3.2. Multidimensional model

Another emotion model (Verma and Tiwary, 2017; Shu

et al., 2018) provides a more effective way to quantify the

types and intensity of emotions (Russell, 1980). The dimensional

approach is based on the principle that human emotions can be

represented as any point in two or three consecutive dimensions.

One of the most prominent models is Russell’s arousal valence

emotion model. In this bipolar model, valence is represented

by a positive or negative horizontal axis representing emotion.

The vertical axis represents arousal, which describes the level of

emotional activation. In this study, we used the arousal valence

emotion model, which has been proven effective and reliable for

identifying emotions during music listening, to convey human

emotions (Salzman and Fusi, 2010).

2.4. Emotion feature

Music emotion classification is one of the tasks in the field of

audio signal processing. The research work initially analyzed the

emotional trend of audio from the perspective of audio signals,

and solved the problem of music emotion classification by

using common features such as timbre, dynamics and rhythm.

Most of the methods used were some classic machine learning

methods, which greatly improved the classification accuracy and

efficiency. At present, there are two main methods for feature

extraction. One is to train traditional machine learning (ML)

models to predict emotions by extracting and using manual

features. The other is doing it together through deep learning

(DL) models.

• Machine learning features MER methods based on

traditional machine learning can be divided into three

categories, namely song-level classification MER, song-

level dimension MER and dimension MEVD.

• Song-level classification MER Most song level MER

classifications are based on mathematical-statistical

models, of which K-nearest neighbors (KNN) and Support

Vector Machine (SVM) are more common. In addition,

decision tree (DT), random forest (RF), and Naive Bayes

(NB) are also used for MER classification. MARSYAS

(Li and Ogihara, 2003) extracted timbre, rhythm, and

pitch features and input them into SVM for classification.

However, the different emotion categories varied greatly.

Yang et al. (2008a) evaluated various feature and fusion

methods to improve classification accuracy through the

late fusion of subtask merging. Liu et al. (2015) proposed

Multi-emotional Similarity Preserving Embedding (ME-

SPE), which combines ME-SPE with Calibration Label

Ranking (CLR) to identify the emotion of music.

• Song-level dimension MER Commonly used MER

regression algorithms include support vector regression

(SVR), linear regression (LR), multiple linear regression

(MLR), Gaussian process regression (GPR), and acoustic

affective Gaussian (AEG). Yang et al. (2008b) take MER as

a regression problem, extracting 114 audio features from

existing toolkits and entering them into SVR. Malheiro

et al. (2016) proposes three novel features of lyrics: slang

presence, structural analysis, and semantic features. Wang

et al. (2012) proposed a new generation model named

Acoustic Emotional Gaussian (AEG) to identify emotional

music, which shows higher accuracy than SVR and MLR

models. Chen et al. (2017) discussed how to adjust AEG

model to a personalized MER model with minimum user

load. Chen et al. (2014a) explored the personalized MER

using LR-based models. Fukayama and Goto (2016) input

new acoustic signal into account using GPR. Soleymani

et al. (2014) try static and dynamic methods by ML and DL

methods.

• DimensionMEVD The idea of musical mood tracking was

first proposed in Lu et al. (2005). Lu et al. (2005) divides the

whole song into several independent segments and assigns

an emotional label to each segment. The regression method

can also be applied to MEVD but lacks time information.

Schmidt et al. (2010) shows superior results in regression

tasks of the spectral contrast features using multiple audio

features. Xianyu et al. (2016) proposed DS-SVR method

using two independent SVR models. One identifies mood

changes between different songs, the other detects mood

changes within a song, and then merges the results of the

two SVRS into the final result.
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2.5. Emotion evoking methods

In a broad sense, some stimuli can be classified as related

to the organism’s survival, while others are related to its

growth. In this case, “emotional” stimuli are one such category,

which creates a perception of understanding the situation

and expresses the desired behavioral response accordingly.

For example, galvanic skin response (GSR) evokes emotions

by observing changes in electrical properties and autonomic

nervous system activity (Das et al., 2016). In the current

research on emotion recognition, various methods of emotion

arousal (Widmann et al., 2018) have been developed. When

we choose the proper arousal, it improves the accuracy of the

data. Therefore, how to choose suitable and effective media

to induce emotion experiments becomes the critical point of

emotion recognition. By analyzing the source of emotional

arousalmaterials, emotional arousal methods are usually divided

into internal stimuli and external stimuli (Etkin et al., 2015;

Alarcao and Fonseca, 2017). In the process of studying music to

arouse emotions, experts and scholars also have their different

views. Becker claimed that “music-induced emotional responses

are not spontaneous” (Becker, 2001) and on the other hand,

contrary to him, Peretz believed that “emotions are spontaneous

and difficult to conceal” (Peretz, 2001). Noy’s opinion is that “the

emotions evoked by music are different from those generated

in daily life and interpersonal communication” (Hunter and

Schellenberg, 2010), and Peretz believes that “there is no theory

that postulates this specificity of musical emotions” (Peretz,

2001).

2.6. Emotional information acquisition

In the experiments, it is not difficult to find that the

results obtained by using multimedia emotional labels cannot

be generalized to more interactive situations or everyday

environments. To address this real-world problem, new

research that uses interactive emotional stimuli to ensure

the generality of Brain Computer Interfaces (BCI) results

would be welcome (Pallavicini et al., 2018). Many experiments

elicit emotions in different environments but don’t use

electroencephalography devices to record changes. Instead,

other physiological indicators such as heart rate, electrical

skin changes, and respiratory rate are collected. Conceptually,

these paradigms could be helpful if replicated for EEG signal

acquisition (Iacoviello et al., 2015).

Computer technology and emotion recognition algorithms

are usually used when developing a human-computer emotional

interaction system. Spontaneous physiological signals can be

detected from a physiological perspective, allowing us to

objectively and effectively analyze emotional states (Healey and

Picard, 2005; Kreibig, 2010). When we want to know the activity

of the cardiac autonomic nervous system corresponding to

different emotional states, we can use the ECG to complete

it (Agrafioti et al., 2011). Respiratory signals (RSP) can

reveal a lot of information about emotions. For example,

the frequency or depth of breathing is closely related to

emotional changes (Zhang et al., 2017). However, during the

experiment, the spontaneous physiological signals in the case

will encounter problems such as no quantification standard

and low classification accuracy when quantifying emotions

(Fairclough, 2009; Nie et al., 2011). In processing automatic

signals, EEG signals can provide a direct and comprehensive

method for emotion recognition (Mauss and Robinson, 2009;

Waugh et al., 2015).

2.7. EEG

EEG is a process of monitoring and recording information

about the electrical activity of the human brain by generating

spontaneous, rhythmic impulses from neurons in the brain.

In neuroscience and psychology, EEG signals can describe

the emotional state of the brain and human behavior, which

can pick up subtle fluctuations in a person’s emotional state.

However, EEG signals are too weak to be recorded and are easily

interfered by other physiological factors. In addition, to make

the EEG signal non-linear, the original EEG signal needs to

be preprocessed.

EEG has been widely used in clinical practice, and its

characteristics can be summarized as follows:

• The EEG signal is feeble, with an amplitude around

microvolts. Collecting EEG signals is easy to be interfered

with by other signals. Therefore, the original EEG signal

can be used for subsequent research after filtering, noise

reduction, and further processing.

• The advantages of EEG signals are that they can directly

reflect brain activity and change quickly. People’s thinking,

emotional changes, and other physiological factors can

cause changes in EEG. An electroencephalogram differs

from a typical electrocardiogram, a non-stationary and

non-linear time series.

2.8. EEG datasets

With the rapid development of emotion recognition, a

series of standardized emotion trigger databases have been

established with corresponding emotion labels provided by

psychologists. However, current research using music-based

methods of emotional arousal is still limited without generally

accepted standards. The researchers developed a number of

mood databases on EEG. The benefit of open databases is that

more standard methods can be used to verify the performance

of emotional classification when different algorithms or
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TABLE 1 A summary of datasets.

Datasets Conceptualization Number of songs Data type Genres

MediaEval Dimensional 744 MP3 Rock, Pop, Soul, Blues

CAL500 Categorical 500 MP3 -

CAL500exp Categorical 3,223 MP3 -

AMG 1608 Dimensional 1,608 MAV Rock, Metal, Country, Jazz

DEAM Dimensional 1,802 MP3 Rock, Pop, Electronic

Soundtracks Both 360 MP3 Rap, R&B, Electronic

Emotify Categorical 400 MP3 Rock, Classical, Pop, Electronic

DEAP Dimensional 40 CSV -

classification models are used in experiments. Due to music

copyright restrictions, some MER researchers use self-built and

unpublished data sets. Table 1 lists some common data sets that

are commonly used.

• MediaEval1 The data set contains randomly extracted 45-

s musical snippets of complete songs. The 45 s excerpt

(clip) is also annotated for the full length clip using

a 9 point arousal and potency level. A set of features

extracted by openSMILE are also available for data. The

dataset initially had 1,000 creative general License songs

annotated continuously (dynamically) on the wake and

potency dimensions. We found some redundant songs and

fixed some problems, which reduced the number of songs

to 744.

• CAL5002 is a data set designed to evaluate music

information retrieval systems. It consists of 502 songs from

western pop music. Audio is represented as a time series of

the first 13 Meir frequency cepstrum coefficients (and their

first and second derivatives), extracted by sliding a 12 ms

semi-overlapping short time window across the waveform

of each song. Each song is annotated by at least 3 people and

contains 135 music-related concepts covering six semantic

categories.

• CAL500exp3 is a rich version of the CAL500 Music

Information Retrieval dataset. CAL500exp is designed to

facilitate automatic tagging of music on smaller time scales.

The dataset consisted of the same songs, divided into 3,223

acoustically homogenous segments ranging in length from

3 to 16 s. Tags are annotated at the segment level rather than

the track level. Notes are obtained from annotators with a

strong musical background.

1 http://www.multimediaeval.org/mediaeval2015/

emotioninmusic2015/

2 https://paperswithcode.com/dataset/cal500

3 https://paperswithcode.com/dataset/cal500exp

• AMG 16084 It’s a data set for emotional analysis of

music. It contains frame-level acoustic features extracted

from 1,608 30-s music clips and corresponding valency

awakening (VA) notes provided by 665 subjects. The

dataset consists of two parts: Campus subset. It is a subset

of 240 songs annotated by 22 subjects fromNational Taiwan

University and Academia Sinica. AmazonMechanical Turk

(AMT) subset. This subset contained 643 subjects using

annotations for all 1,608 songs provided by the AMT each

song received a total of 15 emotional annotations from each

subject in this subset.

• DEAM5 The DEAM dataset consists of 1,802 fragments

and complete songs annotated consecutively (per second)

and for the entire song with valence and wake values. This

dataset is a collection of data sets for the “Emotions in

Music” task from the 2013–2015 MediaEval benchmark

campaign, in addition to the original tags. The purpose

of the emotional annotation collection is to detect the

emotions expressed by music and musician composition

content.

• Soundtracks6 The dataset provides complete audio files,

documents, and behavioral ratings for the sharing of

stimulatingmaterial for academic research. Audio files have

been compressed into MP3 files using medium quality

compression.

• Emotify7 The dataset contains extracts (1 min long) from

400 songs in 4 genres (rock, classical, pop, electronic).

Notes were collected using the GEMS Scale (Geneva

Emotional Music Scale). Each participant could choose up

to three items from the scale (the strong emotions he felt

while listening to the song).

• DEAP8 The most commonly used database for EEG

emotion recognition is DEAP. The database was created

4 http://amg1608.blogspot.com/

5 https://cvml.unige.ch/databases/DEAM/

6 https://osf.io/p6vkg/

7 http://www2.projects.science.uu.nl/memotion/emotifydata/

8 http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
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by a consortium of four universities in the UK, the

Netherlands and Sweden. The researchers collected

physiological signals from 32 participants as they watched

a 1-min music video and recorded the participants’ SAM

scale before and after the experiment (Koelstra et al., 2011).

SAM scale was used to collect self-assessment of emotion

in valence, arousal, dominance, and liking dimensions.

3. EEG-based music emotion
recognition

With the emergence of advanced analytical tools, including

mathematical models and brain-machine interface apparatus,

the connectivity patterns between music and mood have

attracted ever-lasting attention in the last decades. EEG

plays a pivotal role in exploring the human body. EEG-

based music emotion recognition combines the methods

commonly used in processing EEG data and application in

music emotion recognition. Other detection methods often

describe the mental and physical changes of the human body

by detecting the physiological response of the human body.

An electrocardiogram (ECG) records changes in the heart’s

electrical activity during each cardiac cycle. Electromyogram

(EMG) uses sensing electrodes to capture electrical signals

from muscle impulses beneath the skin. Galvanic skin response

(GSR) describes the mental state of the human body through

the secretion of sweat glands. Electrooculography (EOG)

records the electrical potential between the cornea and the

retina of human eyes. Other detections such as speech, facial

expression, heart rate, and respiratory rate are commonly

used to profile emotional states. Of all the methods, EEG

is the most used approach to physiological signals. EEG

works by placing probe electrodes on a particular scalp and

monitors the most complex response center of the human body

indirectly, the brain. The most complex signals can be obtained,

meaning that EEG signals contain valuable information. EEG-

based music-induced emotion recognition is a method of

great essence.

3.1. Data collection

Many factors have to be taken into consideration when

acquiring MER data. This section presents an overview of

common restrictions and unwritten rules followed by a mass of

investigators. First of all, most subjects were between 20 and 30

years of age, and the ratio of men to women remained balanced.

The subjects were also required to be free of brain diseases

and mental illness. In music-related emotion studies, it is also

necessary to exclude whether the subjects have received any

professional training in music. Moreover, liking or familiarity

with the music must also be considered in particular research

tasks (Hadjidimitriou and Hadjileontiadis, 2012; Thammasan

et al., 2017b; Naser and Saha, 2021). In addition, subjects were

usually required to rest before data acquisition. Data acquisition

is generally carried out in a dark and quiet environment,

excluding interference from the external environment. A certain

amount of participants, mainly from 9 to 27 in total, was usually

allowed in a study. In another aspect, The choice of music

was relatively personalized and varied considerably in different

studies. An endeavor (Sangnark et al., 2021) have been made

toward the perceptual distinctions from listening to two music

types: music without lyrics (Melody) and music with lyrics

(Song), which denoted that music of different forms could bring

different emotional information within. Increasing numbers of

researchers have been willing to using standard music databases

for study as MER continues to develop, which eliminates

the subjective operation of music selection and reduces the

inconsistency of outcomes of different studies. Moreover, Some

databases contain EEG data from subjects, which saves the

experimenters from having to collect EEG data.

There are two main annotation methods for music emotion

label annotation. The first one is Expert-based annotation. A

given piece of music has been emotionally labeled, and the

people’s feelings are unique and subjective. The same song can

bring different feelings to different people, which triggers the

appearance of another criterion called Subject-based annotation.

Subjects were asked to rate the degree of musical valence,

arousal, and dominance. Target music selected from a set of

music candidates shares a standard emotional label across all

subjects, and the difference between different songs is significant

enough simultaneously.

In different studies, the classification criteria of emotions

vary according to the various tasks that researchers are interested

in or the difficulty of the tasks. The most adopted is the two-

dimensional emotion model. Self-evaluation reports, such as

the Self-Assessment Manikin (SAM), are commonly used for

evaluating a person’s mental state in bipolar dimensions. The

subjects were required to rate valence and arousal on a scale of 1

to 9. The higher the score, the stronger it is. There are usually

four types: HVHA, HVLA, LVHA, and LVLA, namely happy,

angry, relaxed, and sad. Some studies divide a single dimension

into three categories: a score below three is considered low,

and a score over six is considered high. In classification tasks,

accuracy and F-score are generally used as model indicators.

Unlike classification tasks, Sam Score can also be predicted

by regression and other methods, while Root Mean Square

Error (RMSE) is used as an indicator to evaluate the quality of

the model.

3.2. Data preprocessing

EEG signal feature extraction has always been the key to

music emotion recognition. Data preprocessing can transform
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TABLE 2 A summary of EEG data.

Frequency

band

Frequency

range (Hz)

Describe

α 8–13 Appear in a relaxed state

β 14–30 Appear in a state of tension

δ 1–3 Appear in a state of extreme exertion

γ 31–50 Appear in a state of concentration

θ 4–7 Occurs in people with mental illness

complex EEG signals into data structures that are easier

to understand and use. Different experiments used different

pretreatment processes, which would affect the subsequent

results. In general, according to the purpose of the pretreatment,

the processing process can be divided into noise filtering and

signal feature extraction.

Raw EEGs typically incorporate noise generated by eye

movements, facial muscle movements, heart rate, and breathing.

ICA (Independent Component Analysis) and Blind Source

Separation commonly remove the above noise before processing

EEG data. Another option is to filter out EEG bands of no

interest. In the past few decades, EEGs have generally been

classified into the following bands with different frequencies,

i.e., δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–30 Hz), and

γ (31–50 Hz), as shown in Table 2. δ band is related to Deep

sleep. β and γ bands are related to Relaxed. In many studies,

δ and γ bands are usually excluded to reduce EMG and power

line artifacts. EEG sequence is a typical time-varying signal,

and a range of signal analysis techniques is proven to extract

information from that effectively. The signal feature extraction

method varies in different studies. Based on the above partial

noise filtering methods, signal feature extraction can be divided

into three parts: time, frequency, and time-frequency domain.

• Time domain Independent Component Analysis attempts

to decompose a multivariate signal into independent

non-Gaussian signals by maximizing the statistical

independence of the estimated components. As mentioned

above, it is applied to lessen the noise caused mainly by eye

movement. Fractal dimensions, a widely used measure of

complexity and irregularity, characterize a broad spectrum

of objects, especially human physiology. The Higuchi

algorithm is a selectable approach to calculating the FD

value of EEG data and could give an outcome close to

the theoretical value. Fluctuation Analysis is a universal

analytic method of various fields for time-varying signals.

Time series can generally decompose into trend,

periodic, and random terms. Fluctuation analysis is a

method used to judge whether the noise items in the

time series have positive or negative self-correlation and

whether the self-correlation is a long-range correlation.

The detrended Fluctuation analysis is an improvement to

the detrended analysis. The purpose is to eliminate the

influence of the trend item on the detrended analysis.

The entropy of the signal is a dimensionless indicator

used to characterize the complexity of the signal sequence.

The larger the entropy value, the greater the signal

complexity. It is a big family containing approximate

entropy, sample entropy, multiscale entropy, etc. Sample

entropy is widely used in EEG signal processing because

the calculation of sample entropy does not depend on data

length and has a better consistency.

• Frequency domain The Frequency Domain refers to the

analytic space in which mathematical functions or signals

are conveyed in terms of frequency. Fourier transform and

its variant, such as the short-time Fourier transform, are the

most common paradigms to convert the time function into

a set of sine waves representing different frequencies. Power

spectral density has been adopted based on a fast Fourier

transform with a window to obtain EEG signal frequency

information.

• Time-Frequency domain Wavelet transform is a feature

extraction algorithm combining the time and frequency

domains. The wavelet decomposes the signal into different

approximation and detail levels according to a specific

frequency range while preserving the time information of

the signal. The discrete wavelet transforms the signal into

coarse approximations and details associated with low-pass

and high-pass filters.

Empirical Mode Decomposition decomposes the signal

according to the time scale characteristics of the data itself.

It does not need to set any basis function in advance,

which is different from the Fourier decompositionmethods

based on a priori harmonic and wavelet basis functions.

The EMDmethod can theoretically be applied to any signal

decomposition, so it has obvious advantages in processing

the non-stationary and non-linear signals with a high

signal-to-noise ratio.

3.3. Model collection

Sequentially, feature extraction is closely followed by model

training. In this review, various relevant algorithms have been

collected according to the taxonomy of machine learning. In

most cases, MER is a label-available task. Commonly used

classical classifiers or regressors, including General Linear

Regression(GLR), Support Vector Machine(SVM), and Random

Forest(RF), had yielded precise accuracy. SVM was the most

used tool among all traditional algorithms and achieved

remarkable prediction performance in different studies (Sourina

et al., 2012; Thammasan et al., 2016c; Bo et al., 2019).

Radial basis function (RBF) kernel-based SVM can non-

linearly map features onto a higher dimension space. It has
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been widely approved that kernel-based SVM has ensured better

representation for samples and robustness. Thus, kernel-based

SVM has been popular in MER (Thammasan et al., 2017a;

Avramidis et al., 2021; Luo et al., 2022). Other machine learning

methods like random forest (Pisipati and Nandy, 2021) and

KNN (Bhatti et al., 2016) were also developed for MER. Fatemeh

introduced a novel approach named Fuzzy Parallel Cascades

outperformed the CNN-LSTMmodel.

Recently, with the trending usage of neural networks, deep

learning-based algorithms, e.g., Multi-Layer Perception (MLP),

Long Short-Term Memory (LSTM), have been referred to as

better substitutes for traditional machine learning methods.

In Rahman et al. (2020), MLP selected handcraft features as

input. Convolution Neuron Network (CNN) is well-suited to

processing image data with the bias of transitional invariance.

Thus, the power spectrogram generated by the EEG frequency

signal was adopted reasonably (Er et al., 2021; Liu et al., 2022).

LSTM was born for time series data since it can keep track

of arbitrary long-term dependencies in the input sequences.

Luo et al. (2022) utilizes LSTM for sequence generation in

his work. Additionally, deep learning algorithms overcome

a troublesome and controversial problem, namely feature

extraction, which liberates researchers from handcrafted feature

selection to a certain extent. Panayu (Keelawat et al., 2019) used

almost raw EEG signal as input into a 5-layer CNN without

feature extraction and revealed supremacy compared to SVM.

Sheykhivand et al. (2020) uses a fusion network of CNN and

LSTM had been developed. Deep Belief Networks (Thammasan

et al., 2016a) and Stacked Sparse Auto-Encoder (Li and Zheng,

2021) invented another path to solving MER.

3.4. EEG emotion recognition method

EEG is a physiological detection method mainly used to

reflect brain activity. It has rich information on mental activity

and is widely used by doctors and scientists to study brain

function and diagnose neurological diseases. However, EEG

signals generate a huge amount of data that can be difficult

to analyze by observation during a study. Therefore, how to

efficiently extract the required information from EEG signals has

become the most urgent problem to be solved.

3.4.1. EGG feature selection

High-dimensional EEG features may contain a large number

of unnecessary features. In order to improve the classification

performance, it is necessary to filter out the EEG features

related to emotion before modeling the emotion classifier.

Feature selection can be simply divided into supervised and

unsupervised feature selection according to whether label

information is used or not.

3.4.2. Supervised feature selection

In supervised learning, Linear Discriminant Analysis (LDA)

is a dimensionality reduction method for feature selection.

The main idea of LDA is to find the appropriate projection

direction according to the discriminative information of the

class (Koelstra et al., 2011). The projection direction can

be determined when the minimum within-class variance

and the maximum within-class variance are simultaneously

achieved. On the other hand, Maximum Relevance Minimum

Redundancy (mRMR) is also an algorithm commonly used by

supervised learning to obtain EEG features. It uses MI algorithm

to select EEG features that can satisfy bothmaximum correlation

and minimum redundancy (Atkinson and Campos, 2016).

3.4.3. Unsupervised feature selection

Principal Component Analysis (PCA) is a commonly used

method for unsupervised feature selection. By projecting the

samples into a low-dimensional space, a series of linearly

independent principal components are obtained. Principal

component analysis preserves as much data information as

possible by minimizing reconstruction errors during feature

selection. K Nearest Neighbor (KNN) is also a non-parametric

statistical method for classification and regression. Its core

strategy is to identify k samples closest to the unknown sample

point, and determine the classification information of the

unknown samples from the majority of k samples (Hwang

and Wen, 1998; Zhang et al., 2006). The selection of k value

generally depends on the data used. Increasing k value in the

classification task can suppress the interference of noise, but it

will also blur the boundary between categories. Its advantages

are easy to implement, small sample size and low computational

complexity. It is relatively simple to implement and robust to

noisy training data.

3.4.4. EEG signal preprocessing and analysis

Since the architecture of the EEG headset is not exactly

the same, and the cost of the equipment is also different, it is

necessary to set different EEG equipment during the experiment.

The main difference between these devices is the duration of

time when the brainwave signals are collected, and the type

of electrodes is also a factor (Chen et al., 2014b; Casson,

2019). Due to the sensitivity of the electrodes, the experiment

required participants to remain still as they began collecting

brainwave signals.

Over the past few years, there has been a lot of interest

in using EEG signals to observe mood changes. In order

to efficiently use EEG signals for emotion identification, the

following steps are performed:

• Participants had to be tested for musical stimulation.
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• The participants’ brain voltage changes were observed and

recorded throughout the experiment.

• Remove noise, shadow, and other interference items.

• The experimental results were analyzed and the eigenvalues

were extracted.

• Training data, analyzing, and interpreting raw signals.

EEG signals have better temporal resolution than spatial

resolution. In the process of music arousing emotion, the time

change of electroencephalogram can be observed, including its

amplitude and the change with time. In the process of EEG signal

acquisition, due to the influence of environment and equipment,

many noises are usually introduced, such as power frequency

noise, ECG, EOG, and EMG caused by physiological signals

of human body. In order to obtain relatively pure EEG data,

it is necessary to preprocess the original EEG signal. Power

frequency noise is mainly caused by the power supply of the

device itself, and its frequency is 50 Hz. In the experimental

process, the usual way is to use a 50Hz notch filter to work at 50

Hz frequency to remove the power frequency noise. In addition,

the ECG is generated by the rhythmic operation of the heart, and

the amplitude is large. However, the heart is far away from the

electrode position, and the ECG signal is greatly weakened when

it reaches the scalp. Therefore, this part is often ignored when we

preprocess EEG signals.

The most widely used EEG analysis methods include four

categories: time domain, frequency domain, time frequency

domain, and non-linear method (Babloyantz et al., 1985; Phneah

and Nisar, 2017).

(1) There are two main methods of time-domain EEG

analysis: linear prediction and component analysis. Linear

prediction is a linear combination of past output values with

current and past input values. Component analysis is the

mapping of datasets to feature sets for unsupervised learning.

(2) Spectrum analysis is to obtain frequency domain

information in the EEG waveform through statistics and Fourier

transform. Among them, power spectrum analysis is the most

commonly used method.

3.5. Results and analysis

Works in MER were extremely hard to compare with

each other owing to the processes of data acquisition and

feature elicitation. In this part, we present the contribution

of relevant research and shed light on the distinction

between closely related jobs. Most studies focus on the

improvement of prediction. Some others pay additional

attention to feature selection for saving computational

complexity or seek profound mechanisms inside. Tables 3,

4 present an overview of the scope and contributions of

relevant works.

To summarize the works mentioned above, this article

divides them into four categories regarding their focus

and contributions.

3.5.1. Performance comparison

Many works have listed a series of algorithms. Therefore,

differences can be quickly concluded by their achievements

in prediction results. Diverse versions of SVMs have been

investigated in Lin et al. (2009). In Bhatti et al. (2016), MLP

had been proven to outperform KNN and SVM in MER. A

comparison to random forest and multilayer perceptron shows

slight superiority of hyper pipes (Zainab and Majid, 2021). In

addition, model selection is time-dependent. In the early years

of MER, shallow machine learning methods, e.g., SVM, kernel

SVM, KNN, and RF, were widely adopted. As time went by,

algorithms went more profound and more complex, like CNN

(Salama et al., 2018; Keelawat et al., 2019; Er et al., 2021), LSTM

(Sheykhivand et al., 2020), and SSAE (Li and Zheng, 2021), and

promising performances have been witnessed.

3.5.2. Features selection preference

Generally, linear features like Mean, Standard Deviation

are considered insufficient for precise prediction. Therefore,

non-linear hand-crafted features showed up in the traditional

machine learning methods. Several taxonomies of feature

elicitation patterns have been broadly endorsed. Most works set

a high value on FD in the time domain. The entropy of many

forms of EEG signal was also available in predicting emotion.

Undoubtedly, PSD is the most used method in the frequency

domain andWavelet Transform is pivotal in the time-frequency

domain. However, earthshaking change have taken place as deep

learning based algorithms began to flourish in MER, which

diminished the importance of feature selection largely.

3.5.3. Accessory e�ective factors

Manyworks also took liking or familiarity into consideration

because whether a person enjoys or gets familiar with a specific

song would have an impact on the correctness of prediction to a

great extent. Such investigation has been carried out by Naser

(Naser and Saha, 2021), who found that testing in low-liking

music could perform better than high-like. In Thammasan et al.

(2017b), the same phenomenon can be observed. Familiarity

effects in MER have been proven to impair the capacity of

the model to predict. Both observations indicate that liking or

familiarity would impact emotion recognition.

3.5.4. Multi-modal fusion

Despite a series of efforts have been exerted in algorithm

melioration, another promising path had been opened up for
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TABLE 3 Details of music emotion recognition algorithms based traditional method.

Method Dataset Features Classifier/

regressor

Performance

Avramidis et al.

(2021)

DEAP PSD, HFD, MFD, MADFA RBF-SVM Accuracy of 67% in Binary classification of

arousal.

Hasanzadeh et al.

(2021)

15 recruited listened to 7 songs Spectrograms from Morlet wavelet

transform

Fuzzy Parallel Cascades 2 types regression of Valence with RMSE

0.089.

Thammasan et al.

(2016c)

15 recruited listened to 16 songs

selected from MIDI

HFD SVM 3% performance increase over the

non-filtered.

Zainab and Majid

(2021)

27 recruited listened to bilingual

audio music of five genres

PSD, HFD, Hjorth Parameters. A

series of linear measures of time

domain

Hyper Pipes Accuracy of 83.95% in quaternary

classification..

Thammasan et al.

(2016b)

12 recruited listened to 16 songs

selected from MIDI

FD for EEG and handcraft feature

for music

SVM MCC of 84.17 and 90.25% in binary

classification of arousal and valence,

respectively.

Naser and Saha

(2021)

DEAP Wavelet transform, functional

connectivity, graph-theory based

features

RBF-SVM Accuracy of arousal, valence, and dominance

were 22.50, 14.87, and 19.44% above the

empirical chance-level, respectively.

Thammasan et al.

(2017b)

DEAP PSD, HFD Kernel SVM, MLP,

Decision Tree

An average of 5% classification improvement

of Unfamiliar set above familiar set in three

methods.

Shahabi and

Moghimi (2016)

19 recruited listened to six classical

music excerpts

Connectivity matrices SVM Joyful vs. neutral, joyful vs. melancholic and

familiar vs. unfamiliar trials reach accuracy of

93.7, 80.43, and 83.04%, respectively.

Lin et al. (2009) 26 recruited PSD One-against-one scheme

SVM

Accuracy of 92.57% in quaternary

classification.

Bhatti et al. (2016) 30 recruited listened to 4 genres of

music

Latency to Amplitude Ratio, PSD,

Wavelet transform

MLP, KNN, SVM Accuracy of 78.11% (MLP) in quaternary

classification.

better performance, that is multi-modal fusion. Multi-modal is

a trend in future works owing to the shortness of EEG signals,

which is too complex to understand for a machine, speaking of

only a few data available for training in a very single experiment.

Data from other pathways are welcome for affective recognition

that would improve performance. Like Nattapong (Thammasan

et al., 2016b) did in his work, he fused features from both EEG

and music and reached higher performance.

3.5.5. Applications

Music emotional recognition is an interdisciplinary field

that spans medical psychology and computer science. Human’s

affection could be precisely detected by machine. By this way,

it’s certified that the inner alteration in mood could be effected

by the external music. The quantified emotional score could be

viewed as a criterion in music therapy. A bulk of jobs (Shahabi

and Moghimi, 2016; Thammasan et al., 2017b) centered on

the brain communication by analyzing connectivity among

disparate EEG channels when exposed to music stimulation,

which attempted to uncover the function of areas of brain.

Interestingly, A reverse research have been conducted that

generated emotion-related music by feeding neuron network

with EEG signal (Li and Zheng, 2021).

4. Discussion and future work

Music emotion recognition is an interdisciplinary subject

with a wide range of applications. Many researchers have

carried on the in-depth discussion on it and have made some

achievements. However, music emotion recognition is still in

the process of development and should be further explored.

The subjectivity of music emotion has a significant influence

on the expression of emotion. In analyzing music emotion,

studying its characteristics is a basic premise for emotional

calculation. It is not trivial for researchers to obtain objective and

accurate emotional expression and establish effective and high-

quality teaching resources because of the subjective nature of

the expression and emotion inspired by music. Recently, music

emotion recognition-based EEG is an emerging topic in affective

computing and social signal processing, gaining more attention.
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TABLE 4 Details of music emotion recognition algorithms based deep learning method.

Method Dataset Features Classifier/

regressor

Performance

Keelawat et al.

(2019)

12 recruited listened to 16 songs

selected from MIDI

Segmented EEG CNN Accuracy of 78.36 and 83.67% in binary

classification of arousal and valence,

respectively.

Er et al. (2021) Nine recruited listened to 16 audio

tracks

Power spectrogram Pretrained VGG16 Accuracy of 73.28% in quaternary

classification.

Thammasan et al.

(2016a)

15 recruited listened to 16 songs

selected from MIDI

HFD, PSD, Discrete Wavelet

Transform

Deep Belief Networks Accuracy of 81.98% in binary classification of

arousal and valence.

Rahman et al.

(2020)

24 recruited listened to Twelve

songs

DFA, Approximate Entropy, Fuzzy

Entropy, Shannon’s Entropy,

Permutation Entropy, Hjorth

Parameters, Hurst Exponent

Neuron Network 3 emotion scales (Depressing vs. Exciting and

Sad vs. Happy and Irritating vs. Soothing).

Liu et al. (2022) 15 recruited listened to 13 music

excerpts

Power spectrogram Xception Accuracy of 76.84% in HVHA vs. LVLA

Luo et al. (2022) DEAP PSD RBF-SVM, LSTM A SAM score of 6.17(high) and 4.76(low) in

continuous valance scale, that is close to 6.98

and 4.36 evaluated in music database.

Hsu et al. (2018) IADS Segmented EEG Neuron Network MSE of 1.865 in 2D continuous SAM score.

Sheykhivand et al.

(2020)

16 recruited listened to ten music

excerpts

Segmented EEG CNN, LSTM Accuracy of 76.84% in HVHA vs. LVLA.

Li and Zheng

(2021)

21 recruited listened to 15 music

excerpts

Segmented EEG Stacked Sparse

Auto-Encoder

Accuracy of 59.5% and 66.8% in binary

classification of arousal and valence,

respectively.

Salama et al. (2018) DEAP Segmented EEG 3D CNN Accuracy of 88.49% and 87.44% in binary

classification of arousal and valence,

respectively.

Development in this field is to meet the demand of People’s Daily

lives, such as in human-computer interaction, the machine can

communicate and understand humans.

In the future, multimodal-signals-based MER can be

studied. For example, music emotion analysis based on

physiological and EEG signals can obtain more comprehensive

and practical information by analyzing the correlation between

EEG signals and physiological signals. At the same time,

signal conversion based on music sentiment analysis is also a

promising research direction. The mutual conversion between

EEG signals and physiological signals is realized through music

emotion analysis.

5. Conclusion

Music plays an essential role in People’s Daily life. It is

necessary to relax their emotions and regulate their physical and

mental health. It can affect people’s emotions, intelligence, and

psychology. As the research progressed, the researchers began to

explore what happens to the body during listening to music and

the association between different music and induced emotions.

EEG is one of the physiological signals of the human body,

which contains rich physiological and disease information and

is widely used in clinical practice.
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