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G protein-coupled receptors (GPCRs) represent a large and physiologically important class of cell 
surface receptors. There are approximately 750 known GPCRs present in the human genome that 
can be subdivided into general classes based upon sequence homology within their transmembrane 
domains. Therapeutically, GPCRs represent a fertile source for the development of therapies as 
they are a significant percentage of our current pharmacopeia.

Among the three subclasses of GPCRs, the Class A (rhodopsin-like) receptors are by far the most 
prevalent and extensively studied. However, within the Class A receptors, sub-families of receptors 
can be distinguished based upon common sequence motifs within the transmembrane domains 
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as well as extracellular and intracellular domains. One such family of Class A receptors is characterized 
by multiple leucine-rich repeats within their amino- terminal domains (the Leucine-rich Repeat family 
(LRR)). This family of GPCRs are best represented by the glycoprotein hormone receptors (LHR, FSHR 
and TSHR) which have been studied extensively but also includes receptors for the peptide hormone 
relaxin (RXFP1 and RXFP2 (RXFP2 also binds insulin-like peptide 3)) and three other receptors (LGR4, 
LGR5 and LGR6). LGR4-6 were, until recently, considered orphan receptors. However, emerging data have 
revealed that these proteins are the receptors for a family of growth factors called R-spondins. 

Over the last 20 years much has been learned about LRR receptors, including the development of synthetic 
agonists and antagonists, new insights into signaling (including signaling bias) and the physiological role 
these receptors play in regulating the function of many tissues. This topic will focus on what is known 
concerning the regulation of these receptors, their signaling pathways, functional consequences of 
activation and pharmacology.

Citation: Arey, B. J., Dias, J. A., eds. (2016). The Physiology and Pharmacology of Leucine-rich Repeat GPCRs. 
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The Editorial on the Research Topic

The Physiology and Pharmacology of Leucine-rich Repeat GPCRs

G protein-coupled receptors represent a large family of proteins that act as receptors for many types 
of physiological ligands, including peptides, metabolites, and lipids. These receptors are important 
for understanding physiology since they contribute to the regulation of all major organ systems. 
Additionally, they are also a key focus for the development of therapeutics for the treatment of patho-
physiology and are still recognized as the most druggable class of macromolecules today. GPCRs are 
classified into separate subfamilies (Classes A, B, and C) based on protein sequence homology in their 
transmembrane domains. Within the Class A family of GPCRs, these receptors can be further placed 
into sub-groups based on other structural features and similarities in function. In this Special Topic for 
Frontiers in Endocrinology: Molecular and Structural Endocrinology, we have focused on a subfamily 
of Class A GPCRs, the leucine-rich repeat family of receptors (LGR). The Physiology and Pharmacology 
of Leucine-rich Repeat GPCRs captures the continuum of structure to function, agonist to effector, and 
reproduction to metabolism that provides an overview of this important family of receptors.

The LGRs are characterized by the leucine-rich repeat structural motif (1) that provides the rigid 
structure of their large extracellular domains. The predicted heptahelical transmembrane domains 
and their sequence homology in this region with other receptors classify them as Class A GPCRs (2). 
Furthermore, there are currently three sub-groups of LGRs recognized. The Type A receptors have 
been extensively studied and are receptors for the pituitary and placental glycoprotein hormones. The 
endogenous ligands for the Type B (R-spondins) and C (relaxin) receptors have only recently been 
identified and rapid progress has been made that has advanced understanding of their structure and 
function. These receptors are important mediators in the regulation of diverse physiological process, 
such as reproduction, cardio-renal function, cell growth, and stem cell differentiation. Within this 
Special Topic, we seek to provide an understanding of this family of receptors while addressing both 
future opportunities and challenges that lay ahead.

Petrie et al. provide an overview of LGRs in terms of structure and organization that places this 
family of receptors within the larger context. This review provides in depth knowledge of the RXFP1 
and RXFP2 receptors whose cognate ligands are two insulin- related peptides, H2 relaxin, and 
INSL3. Thus, this review while calling out the uniqueness of the Type C LGRs RXFP1 and RXFP2, 
also introduces us nicely to the three Types of LGRs based on the size of their leucine-rich repeat 
extracellular domains.

Continuing on this theme of structure and function, activation of the most well studied of the 
LGRs, the gonadotropin receptors, is reviewed. The structural basis of activation of the gonadotropin 
receptors in the absence of a full crystal structure remains an enigma. However, we do know that the 
large extracellular domains are the binding site of the large heterodimeric ligands for these receptors. 
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A remaining question is the potential role of the other parts of 
the receptor structure in determining function. Banerjee and 
Mahale provide evidence using site-directed mutagenesis that 
signaling of the LH receptor is dependent on specific residues of 
the extracellular loops. Furthermore, Grzesik et al. demonstrate 
that differences in signaling by the two physiological ligands of 
the LH receptor, are at least in part, mediated by the hinge region 
of the extracellular domain. While both receptors coexist in the 
same cell during folliculogenesis, it is unclear how their agonist-
induced signals are parsed out. Further refining this thought, this 
paper addresses how one receptor can bind two nearly identical 
ligands and produce two different signaling profiles. It turns out 
that both hormone and extracellular loops coordinate to produce 
the breadth of nuance seen in signaling of these receptors. This 
seems a critical point if small molecules are to be developed which 
mimic some or all of these signaling patterns.

The physiological and therapeutic importance of the Type B 
and C receptors is discussed as well. The importance of RXFP1 in 
cancers is exemplified by Thanasupawat et al. in a review of new 
ligands for RXFP1 other than the canonical relaxin and INSL3; 
specifically C1q/TNF-related proteins and the role of RXFP1 as 
a brain cancer promoter. The theme is further explored with an 
in-depth look by Li et  al. of the Type B LGR4 where we learn 
that this receptor that is critical for developmental signaling and 
tissue homeostasis has as its ligand, R-spondins. We learn that 
R-spondins are the sole secreted potentiators of Wnt signaling 
and stem cell maintenance and appreciate that the Type B LGRs 
do not signal via G-proteins but do interact with the FZD–LRP 
complex to stimulate unique signaling pathways.

The LGR receptor family has been the subject of drug develop-
ment for decades. Focusing on improving the natural ligand for 
therapeutics based on these receptors, a perspective is provided 
by Szkudlinski on a journey toward the successful development 
of superagonists of the thyroid-stimulating hormone receptor, a 
Type A LGR. This review shines light on the potential of utilizing 
the naturally occurring ligands as a scaffold for engineering by 
structure-based drug design to develop “super biosimilars.” This 
is contrasted with the development of small molecule agonists 
and antagonists that act at this same class of LGR Type A as 
described by Nataraja et al. Here, we learn that it is possible to 
bypass the complicated interactions of heterodimeric ligands 
and the large extracellular domains of the LGR Type A receptors, 
to effect activation or inhibition with molecules a fraction of the 
size of the natural ligands. Although this represents a clear step 
forward in our ability to develop small molecule agonists and 
antagonists to these receptors, it is not without its challenges. 
In what would seem to be a reasonable assumption that cAMP 
as readout would predict efficacy in vivo, this is shown to not 

necessarily be the case. In the end, primary cells and iterative 
testing reveal the true candidate.

This concept is further exemplified in the article by Huang 
et al. An overwhelming majority of the preclinical animal test-
ing for relaxin treatment includes rodent models and, thus, the 
inability of small molecule agonists to activate the mouse receptor 
has hampered preclinical studies. In a search for animal models 
to study RXFP1 small molecule agonists as potential acute heart 
failure therapeutics, it was determined that non-human primate 
and porcine species could be used but the standard laboratory 
mouse model was unable to respond to the lead compound! These 
examples illustrate how development of small molecule therapeu-
tics is fraught with potential pitfalls and how appropriate models 
are needed for screening and selection of leads.

Finally, in an era of optogenetics and real-time inquiry, the 
use of transgenic methods may yield some recourse. Narayan 
describes how, for the gonadotropin receptors, a combination of 
knockout and knock-in approaches can yield novel mouse models 
that either simulates human disease or tests whether genomic vari-
ants can explain disease. In this regard, the luteinizing hormone 
receptor has been very well studied using transgenic animals to 
better understand the effect of mutations causing constitutive 
activation as a model for Familial Male Precocious Puberty.

Advanced methods in cellular imaging are also available 
which will aid in the study of LGR signaling. Certainly in the area 
of the gonadotropin receptors, these methods have contributed to 
an understanding that, although the canonical cAMP pathway is 
operative in the gonadotropin receptors, additional pathways are 
likely at play. Thus, Ayoub et al. describes the use of biolumines-
cence resonance energy transfer (BRET) to study activation of 
gonadotropin receptors in living cells. Using this method, they 
confirm that these receptors exhibit biased agonism.

It has been nearly a century since Smith discovered the relation-
ship between pituitary extracts and follicular development and 
60 years since Hisaw discovered relaxin as a hormone that could 
cause a loosening of the pubic symphysis prior to parturition. These 
seminal findings have led to the identification of the importance 
of these peptides on the physiology of the reproductive system 
but have also ultimately revealed a more complex endocrine role 
of these hormones and the identification of a unique family of 
receptors. Research over the ensuing decades has revealed that the 
LGRs exert varied and comprehensive controls on processes that 
include but are certainly not limited to reproduction and point to 
their potential as therapeutic targets to treat disease.
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The leucine-rich repeat-containing G protein-coupled receptors (LGRs) family consists of
three groups: types A, B, and C and all contain a large extracellular domain (ECD) made
up of the structural motif – the leucine-rich repeat (LRR). In the LGRs, the ECD binds
the hormone or ligand, usually through the LRRs, that ultimately results in activation and
signaling. Structures are available for the ECD of type A and B LGRs, but not the type C
LGRs. This review discusses the structural features of LRR proteins, and describes the
known structures of the type A and B LGRs and predictions that can be made for the
type C LGRs. The mechanism of activation of the LGRs is discussed with a focus on the
role of the low-density lipoprotein class A (LDLa) module, a unique feature of the type C
LGRs. While the LDLa module is essential for activation of the type C LGRs, the molecular
mechanism for this process is unknown. Experimental data for the potential interactions
of the type C LGR ligands with the LRR domain, the transmembrane domain, and the
LDLa module are summarized.

Keywords: leucine-rich repeat-containing G protein-coupled receptors, LGR, RXFP1, RXFP2, GPCR

Introduction

The receptors for the peptide hormones H2 relaxin and insulin-like peptide-3 (INSL3) are unique
members of the leucine-rich repeat-containingGprotein-coupled receptors (LGRs) family (1). LGRs
are class A G protein-coupled receptors (GPCRs) and are divided into three groups: types A, B, and
C. Type A LGRs are receptors for the glycoprotein hormones follicle-stimulating hormone (FSH),
luteinizing hormone (LH), and thyroid-stimulating hormone (TSH). Although the Type B LGRs
were identified in 1998 (1, 2), LGR4-6 were only recently deorphanized as the R-spondin (Rspo)
receptors (3, 4). These receptors have roles in stem cell differentiation and are associatedwith cancers
affecting the gut. The identification of LGR7 in 2000 resulted in the formation of the third group,
Type C (1). Soon after, LGR7 was joined by the receptor encoded by the GREAT gene (5), (LGR8),
when the phenotype of the knockout mouse correlated with abnormal testicular descent noted in
INSL3 knockout mice (6, 7). In 2002, LGR7 and LGR8 were deorphanized as H2 relaxin receptors
(8). At this exciting time of GPCRdeorphanization, the grouping of LGR7 [later defined as RXFP1 in
Ref. (9)] and LGR8 (RXFP2) with the glycoprotein hormone receptors into the LGR family appeared
to correlate with the known reproductive roles and tissue-specific expression of H2 relaxin and
INSL3. H2 relaxin is a major circulating hormone produced by the corpus luteum and placenta with
important roles inmaintaining pregnancy and facilitating parturition [reviewed in Ref. (10)]. INSL3
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Petrie et al. Structure and mechanism of RXFP1-2

is produced in testicular Leydig cells in males and follicular theca
cells in the female ovary (11), and therefore, has central roles
in fertility.

Almost 15 years since the initial identification of RXFP1, the
landscape of H2 relaxin research is diverse and complex. H2
relaxin is considered a pleiotropic hormone with many func-
tions, including central roles in collagen turnover (12, 13) wound
healing (14), and roles in cardiovascular function (15) [further
reviewed in Ref. (10)]. The key roles of relaxin in cardiovascular
function lead to the use of the human form of relaxin, H2 relaxin,
in clinical trials for the treatment of acute heart failure. With the
success of these clinical trials (16–18), a clear understanding of
the mechanism of how H2 relaxin binds and activates RXFP1 is
highly desirable. Unfortunately, no structures of a Type C LGR
are available. In this context, as structural understanding of other
members of the LGR family grows, we review the structural
knowledge of the LGR family, and examine what is known about
ligand interactions at the extracellular domains (ECDs) of the
Class C LGRs in comparison to the other members of this diverse
family of GPCRs.

Leucine-Rich Repeat-Containing G-Protein
Receptor

The LGR family is classified as “Type A” rhodopsin-like GPCRs
based on the similarity of its transmembrane (TM) domain. They
are unified into this family based on their large ECDs containing
leucine-rich repeats (LRRs). The first LRR-containing protein to
be identified was leucine-rich α2-glycoprotein (LRG) (19) but
since then, LRR domains have been identified in various pro-
teins including extracellular, intracellular, and TM proteins with
a wide variety of functions, such as neural circuit formation
[reviewed in Ref. (20)], inflammation [reviewed in Ref. (21)],
immune response against pathogen (22, 23), and development and
immunity in plants (24).

LGRs Classification
The LGR family is differentiated on the basis of the number of
LRRs within the ECD, the length of the hinge region between
the LRR domain and the TM domain and the presence of a
low-density lipoprotein class A (LDLa) module (25, 26). Cur-
rently, there are three types of LGRs: type A, type B, and type
C (Table 1). Mammalian type A LGRs include the follicle-
stimulating hormone receptor (FSHr), thyroid-stimulating hor-
mone receptor (TSHr), and luteinizing hormone receptor (LHr)
[or lutropin/choriogonadotropic receptor (LCGr)] (27). Type A
are characterized by 7–9 LRRs within the LRR domain and have
a distinctively long hinge region, connecting the LRR to the
TM domain, which is essential for receptor activation (26). The
type B LGRs (LGR4–6) are the receptors for the Rspo family
(R-spondin1–4) and have roles in development, including cell
proliferation and differentiation, and oncogenesis (28). These
LGRs, typically have 16–18 LRRs and so constitute a longer
LRR domain than type A and type C LGRs (26). The hinge
region of type B LGRs is “medium length” compared to that
of type A. Type C members are distinct in that they have an
N-terminal LDLa module, which is also known to be impor-
tant for receptor activation (29). These latter receptors include
the mammalian LGR7 and LGR8 (now known as RXFP1 and
RXFP2, respectively) along with a snail LGR and LGR3 and LGR4
from Drosophila (30) and are grouped as C1 or C2 based on
the number of LDLa modules in their ECD. Type C LGRs have
a similar number of LRRs compared to type A LGRs, although
they have a shorter hinge region connecting the LRR domain
to the TM domain (26). There is no evidence to suggest that
the hinge has the same role in modulating receptor activity
as it does in type A LGRs. RXFP1 and RXFP2 are the only
mammalian class C LGRs and contain a single LDLa module,
while type C LGRs found in echinoderm and molluskan can
contain up to 12 modules (26). Thus, the evolution of these
receptors is difficult to determine and in the context of this

TABLE 1 | Ectodomains and ligands of the LGR family.

Name Short annotated
name

Ligand No of
LRRs

Residues per
repeat

Ligand affinitya PDB

Type A
LGR1 FSHr Follicle-stimulating hormone 9 21–25 0.03–3 nMb 1XWD, 4AY9, 4MQW
LGR2 LH/CGr Lutropin or choriogonadotropic hormone 6 22–31 0.3–0.5 nMc

LGR3 TSHr Thyrotropin (thyroid-stimulating hormone) 7 20–31 0.25 nMd 3XWT,3GO4
Type B
LGR4 LGR4 Rspondin1–4 17 20–25 56 nMe 4KT1, 4QXE, 4QXF
LGR5 LGR5 Rspondin1–4 17 21–26 3 nMf 4BSR, 4BSS, 4BST

4BSU, 4KNG
LGR6 LGR6 Rspondin1–4 17 21–25 0.5–7 nMg

Type C
LGR7 RXFP1 H2 relaxin 10 24–25 9.2–9.8h 2JM4 (LDLa module)
LGR8 RXFP2 INSL3, H2 relaxin 10 24 9.3–9.7, 8.5–9.0h 2M96 (LDLa module)

aReported Kd, unless noted.
bSimoni et al. (31).
cAscoli et al. (32).
dHarfst et al. (33).
eWang et al. (34).
fde Lau et al. (3).
g IC50 (35).
hpKd or pKi (36).
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review only the mammalian RXFP1 and RXFP2 receptors will be
discussed.

Structural Features of LRR Domains
The LRR Domain
The first structure of a LRR-containing protein, ribonuclease
inhibitor (RI), showed a horseshoe-shaped structure (37). This
curved structure consists of a β-sheet on the concave side of
the LRR and an array of α-helices on the convex side. A single
LRR consists of a β-strand and α-helix connected with loops and
therefore a sequence of LRRs forms alternating parallel β-strands
and α-helices along the α/β fold (38). The β-strand is formed by a
highly conserved motif, xLx, within a LRR, connected to adjacent
parallel β-strands by hydrogen bonds to form the β-sheet on the
concave side of the structure. Comparison of LRR domains show
the presence of a repeated conserved hydrophobic-rich sequence
motif, LxxLxLxxNxL, where the underlined residues form the β-
strand, x is any amino acid and leucine may be substituted by
valine, isoleucine or phenylalanine; and asparagine by cysteine,
serine or threonine (38, 39).

The convex side of the LRR domain is comprised of more
variable sequence and secondary structure including 310 helices,
polyproline II helices, β-turn or β-strand (39). In addition to the
length, the nature of the sequence contributes to the curvature
of the LRR domain. Two distinct sequences are observed on the
convex side, LPxxL (LP motif) and IxxxAF (AF motif) (40). The
prototype LRR protein comprising the LP motif is the platelet-
receptor glycoprotein Ibα that has a steep curvature (41), whereas
the prototype AF motif is the Nogo receptor which has a relatively
flat curvature (42). The LRR domain is an exceptionally stable
solenoid-like structure. The side chains of the leucine residues (or
other aliphatic residues) are closely packed and oriented toward
the interior of the domain to form a hydrophobic core in a
similar fashion as observed in other globular proteins (39). The
β-sheet along its concave side also contributes to the stability of
the structure as each β-strand forms five hydrogen bonds to the
adjacent β-strand. To further stabilize the structure, the conserved
asparagine residues (on the concave side) form an asparagine
ladder where the side chains stack on top of adjacent asparagine
residues and form hydrogen bonds (39, 43). For LRR proteins
with repeating AF motifs, the phenylalanines on the convex side
form a phenylalanine spine that also adds to the stability of the
LRR domain (42, 44). Commonly, a binding site is located in the
concave surface of the LRR domain, however, the convex surface
also can be utilized as site of ligand interaction (39).

The N- and C-Terminal Caps
Although the LRR domain is a stable solenoid structure, it would
appear that capping structures are essential to maintain stabil-
ity. In most cases, especially extracellular LRR and membrane-
associated LRR proteins, there are cysteine-rich subdomains at the
N- and C-terminal ends of the LRR domain, termed N-terminal
(LRRNT) and C-terminal (LRRCT) capping motifs, respectively.
Based on sequence analysis, LRRNT motifs have a consensus
sequence of CPx(2-5)CxCx(6-19)Cx(6-8)Px(3)Px(5)LxL, where x
indicates any residue (39, 45). The typical structure of LRRNT
contains a β-strand antiparallel to themain LRR β-sheet, followed

by 20 to 21 residues before entering a β-strand that is parallel to
the LRR. As this strand is often not a canonical LRR, it is excluded
from the description of the body of the LRR domain.

Based on phylogenetic analysis and the number of cysteine
residues present, there are four types of LRRCT motifs, CF1–4
(45). CF1 is the most common capping structure containing four
cysteines (CxCx(17–24)Cx(9–18)CxxP). CF2 has two cysteines,
separated by 33 to 34 residues and is found in small proteoglycans,
CF3 has three cysteines (CCx(14–27)C) found inGPCRs, andCF4
has two cysteines separated by 1 to 11 residues and is found in
plant LRR proteins.

Structures of LGRs

Type A LGRs
The FSHr crystal structure is the best understood of the LGRs
(46). The LRR domain consists of repeats of irregular length
and conformation (Figure 1A). As expected the LRR domain
contains an LRRNT with an antiparallel β-strand followed by
the expected parallel β-strand of this cap. This is then followed
by nine parallel β-strands of the LRR domain (Table 1), and
additional two parallel β-strands in the C-terminal cysteine cap,
which form a typical CF3 cap. Prior to the last parallel β-strand,
there is an insertion of an α-helix and a long hairpin loop that
contains a sulfated tyrosine, collectively referred to as the hinge
region, and forms an integrated structure within the LRR domain
(Figure 1A) (47). Consequently, the entire LRR domain consists
of 12 parallel β-strands. On the convex side of the LRR domain,
there are seven short β-strands separated into three β-sheets.
Importantly, the intervening sequences of the convex side follow
from the N-terminal end as: an LP motif, three AF motifs, one
LP motif, two AF motifs, and then three LP motifs. Thus, there
is an increasing curvature of the domain running from N- to C-
terminus. Superimposing the structures of the FSHr and TSHr
LRR domains shows similar structures despite different primary
sequences and disulfide connectivity (40).

Upon binding to ligand, there is a significant change to the
hinge structure of FSHr, otherwise the LRR domain is similar to
that of the ligand free (47). The binding of FSH is described as
a “handclasp” interaction, where 10 parallel β-strands of FSHr,
including the parallel β-strand of the LRRNT, are in contact with
the hormone mainly via electrostatic interaction (46). The inter-
actions can be divided into two flat surfaces; one is where the C-
terminal end of the α- and β-units of FSH interactwith the parallel
β-strand of the LRRNT and the first six LRRs and the other is
where the second loops of the α- and β-units of FSH interact
with the tips of the β-strands of LRR1–5 and the C-terminal
ends of LRR7–9, respectively. The hairpin loop between the
last two parallel β-strands presents an essential tyrosine residue,
which becomes sulfated (sTyr). This sTyr makes an important
contribution to ligand binding by inserting into a hydrophobic
pocket in FSH. As it is clear that FSH can bind in the absence
of this hinge region, this structure provides evidence of a “two-
step” binding mechanism (47). Following FSH binding to FSHr,
the sTyr binds to the hormone lifting the hairpin loop from an
inhibitory state of the TM domain that results in activation of
the receptor.
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FIGURE 1 | Structures of ectodomains of members of the LGR family.
(A) The type A member FSHr (PBD: 4AY9) shows nine LRRs. LRR1–6 show a
shallow curvature while the dominance of LP motifs in the convex side of
LRR7–9 results in a steep curvature. The ligand shows interactions to most of
the LRRs, especially LRR1–5 and LRR7–9 (B) The type B member LGR4 (PDB:
4KT1). The concave side of the LRR protein is separated into two sheets,
LRR1–10 and LRR11–17, due to the absence of the conserved Asn residues
within the LRR motif of LRR11 and 12. The ligand binds to the first sheet,
making contacts with residues in LRR1, LRR3–9. (C) A homology model of the
ECD of the type C member RXFP1. The 10 LRRs are predicted to form a
shallow curvature. The ligand, H2 relaxin, is expected to bind to LRR4–6 and
LRR8. The structure of the N-terminal LDLa module (PDB: 2JM4) for this ECD is

also shown, although the structure of the linker that joins to the LRR domain
remains unknown. In each structure, additional β-strands (red), which are
integral to the domain, are shown but these strands typically lack the xLx
portion of the LRR motif, and usually include disulfide bonds characteristic of
the N- and C-terminal capping motifs. At the N-terminal end of each LRR
domain, an antiparallel β-strand followed by a β-strand parallel to the remainder
of the LRR is observed. At the C-terminal end, significant differences for the
three members are observed. For FSHr, a large hinge containing a functionally
important sulfated Tyr residue is present; for LGR4, this hinge is absent, but a
typical CF3 capping motif is present; for RXFP1, the C-terminal cap does not
appear conserved, the hinge is short, and therefore, the structure of this region
is difficult to predict.

The LRR domain and the ligand of FSHr and TSHr are similar,
although the disulfide arrangement of the LRRNT differs (48).
Nevertheless the mechanism is suggested to be the same for these
receptors as TSHr has a structurally similar sTyr site (49, 50),
which is essential for TSH binding and activation (51–53). Cur-
rently, there is limited knowledge about the activation mechanism
of LHr. Although the sTyr site is present in the hinge region of LHr
(54, 55), the mechanism of LHr differs from FSHr and TSHr as
removal of the ectodomain does not result in constitutively active
receptor (56).

Type B LGRs
The LRR domains in Type B LGRs are typically larger than those
of Type A LGRs (Table 1). The crystal structures of both LGR4
and LGR5 comprise 17 typical LRR β-strands with an N-terminal
antiparallel β-strand followed by another β-strand that is parallel
to the LRR domain, and two additional parallel β-strands at
the C-terminus (Figure 1B) (34, 57). On the convex side, the
secondary structures are more variable with various lengths of
loops, α-helices, and β-strands. In LGR4 andLGR5, the conserved
asparagine residues in LRR11 and LRR12 are missing, resulting
in two separate β-sheets, one from LRR1–10 and the other from
LRR13–17 (Figure 1B) (34, 58–60). The intervening sequences
on the convex side follow from the N-terminal end: in the first

β-sheet, two AF, four LP, one AF, two LP, and one AF; and in the
second β-sheet, three LP, two AF, and one LP motif. The large
number of LP motifs result in a more curved surface than the type
A receptors. These proteins have a typical LRRNT, whereas the
LRRCT has a short four-residue intervening sequence within the
otherwise CF3 cap.

Recently, Rspos were identified as the native ligands of type
B LGRs (4, 61, 62). In LGR4, the ligand binds to the first LRR
and LRR3–LRR9 (the first β-sheet) and the binding interface is
smaller compared to FSH–FSHr (1860 compared to 2600 Å2)
(34, 60). The interface is mainly electrostatic within LRR4 and
hydrophobic within LRR5–7. Similar to LGR4, the LGR5 binding
interface consists of LRR3–9 with total surface area of 870Å2

(58). LGR5 binds to Rspo in a similar manner to LGR4, a mix of
charged and hydrophobic clamping interactions. Based on these
observations, the binding of Rspo is conserved across the type B
LGRs and it is supported by the fact that there is lack of specificity
between different Rspos and type B LGRs (3). In type B LGRs,
there is no evidence that the hinge region or even the LRRCT is
involved in ligand binding or activation. The LRRCT of LGR4
can be deleted or substituted with LRRCT motifs from other
proteins without affecting activity or binding (63). Moreover,
antibodies targeted to the LRRCT of LGR5 do not block Rspo
activity (62). However, another antibody targeted specifically to
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the hinge region has been shown to induce activity in the absence
of Rspo (58).

While there are similarities in how typeA and type B LGRs bind
ligand, the signal pathways and receptor activation are different.
Rspo signalingmediated by LGR4, LGR5, or LGR6 is throughWnt
signaling and not the canonical GPCR pathways (3, 61, 63), which
is in contrast to type A and type C LGRs. Multiple mechanisms
have been proposed to explain how type B LGRs regulate Wnt sig-
naling. The binding of Rspo to the ectodomains of LG4–6 recruits
the E3 ligases (RNF4 and ZNRF3) to form a ternary complex that
promotes clearance of the E3 ligase, thus a reduction inWnt recep-
tor ubiquitination and degradation, and consequently increased
Wnt signaling (64). In addition, the Rspo–LGR4 recruits the
scaffold protein IQ motif containing GTPase-activating protein 1
(IQGAP1) into the Wnt complex to potentiate signaling (65).

Type C LGRs
Presently, there are no structures of the LRR domains of type C
LGRs. However, the structures of type A and type B LGRs, as
well as those of other LRR domains, allow predictions to be made
for this class of LGRs. Based on the primary sequence, the LRR
domain is expected to have 10 LRR repeats (Table 1) with an N-
terminal antiparallel β-strand and an additional parallel β-strand
forming the N-terminal cap. Analysis of the LRRs from the type C
LGRs, RXFP1 andRXFP2, suggests that the LRRs aremore regular
than the type A and type B LGRs. The intervening sequences on
the convex side of RXFP1 following from the N-terminal end
are predicted to be four AF, one LP, two AF, and one LP motif.
Such an arrangement predicts a relatively flat surface and the
predominance of the AF motif allows straight forward homology
modeling of the LRR domain of RXFP1 based on the prototypeAF
motif Nogo receptor (42). A homology model built by Modeler
(66), using the Nogo receptor (PDB: 1OZN) as a template with
~29% sequence identity, shows a spine of phenylalanine residues
down the convex side, except at LRR5 where a leucine residue is
aligned, and a ladder of asparagine residues of the LRR motif on
the concave side of themodel (Figure 1C). The conservation of the
N-terminal cysteine residues predicts an LRRNT similar to type A
and type B LGRs. However, there are only two cysteine residues in
the C-terminal hinge of RXFP1, separated by eight residues, and
therefore are CF4-like rather than the CF3 cappingmotif expected
in LRR-containingGPCRs (45). Thereforemodeling of this region
against the Nogo receptor, or any other LRR protein, is highly
speculative. The hinge region of RXFP1 and RXFP2 is relatively
short (~30 residues compared to 72–123 residues in other LGRs)
(1). Considering the shortness of the hinge region and the fact that
the LDLa module at the N-terminus is key for receptor activation
suggests that the hinge region in the RXFPs might not be involved
in the binding and activation mechanism of these receptors.

The cognate ligands of RXFP1 and RXFP2 are H2 relaxin and
INSL3, respectively. These peptides share structural similarity to
insulin, where an A-chain and a B-chain are held together by two
disulfide bonds (67, 68). Extensive studies of these two peptides
conclude that the B-chain is essential for receptor binding [as
reviewed in Ref. (10)]. The B-chain binding cassette of H2 relaxin
is defined as RxxxRxxI/L, where x is any amino acid, and of INSL3
as HxxxRxxVR (68). Furthermore, a tryptophan residue located

at the C-terminal of the B-chain is wrapped back around the
structure of INSL3 and has been shown to be essential for binding
and activation of its receptor, RXFP2 (69, 70). Binding to the
LRR domains of RXFP1 and RXFP2 has been extensively studied
by mutagenesis of both the receptors and H2 relaxin or INSL3.
Previous modeling of the H2 relaxin–RXFP1 interaction has used
RI as a template and subsequently, mutagenesis studies were per-
formed to verify thismodel (71). Themodel of H2 relaxin–RXFP1
shows the conserved basic residues (Arg13 and Arg17) in the B-
chain interact with acidic residues within the LRR6 and LRR8 of
RXFP1, respectively. The other conserved hydrophobic residue
(Ile20) within the B-chain is predicted to interact with a cluster
of hydrophobic residues across LRR4-5. Hence, based on these
data, it is proposed that H2 relaxin binds to the LRR domain
at a 45o angle across the face of LRR4–8. Scott et al. (72) also
used the Nogo receptor as a template to model the INSL3–RXFP2
interaction, and given the expected structural similarity of RXFP1
and RXFP2 with the Nogo structure we present a model of RXFP1
(Figure 1C). The model of INSL3–RXFP2 concludes that the
positively charged residues (Arg16 and Arg20) of INSL3 interact
with negatively charged residues in LRR6 and 8 and the conserved
hydrophobic residues in the B-chain of INSL3 (His12, Val19, and
Trp27) with hydrophobic residues across LRR1–4. In this model,
the B-chain of INSL3 requires a larger surface area thanH2 relaxin
and lies perpendicular to the LRRs.

The molecular details of how H2 relaxin and INSL3 bind and
activate RXFP1 and RXFP2 are still ambiguous, despite extensive
research. It is clear that a ligand-binding site is present in the
LRR domain, but the relatively short LRRCT makes it unlikely
to interact with the ligand in a type A LGR manner. While
various receptor constructs show that neither the LDLa module
nor the TM domain are required for high-affinity binding (29,
73), additional weak affinity binding sites for the ligand have been
proposed for both RXFP1 andRXFP2 on the TMdomain (73–75).
Support for an interaction between the ligand and the TMdomain
includes experiments conducted on human relaxin 3 (H3 relaxin)
(76), a homolog ofH2 relaxin, and INSL3.H3 relaxin binds to both
RXFP1 and RXFP3 (GPCR135). The latter lacks an ECD and so
binding and activation is solely through the TMdomain of RXFP3
(77). Taking advantage of the binding specificity of H3 relaxin for
RXFP1 over RXFP2, ECD/TMdomain chimeras of RXFP1/2 were
constructed and tested for ligand binding and signaling (74). The
chimera of the ECD of RXFP1 with the TM of RXFP2 binds H3
relaxin more weakly than to wild-type RXFP1, and signaling is
reduced. On replacing the exoloop-2 of the TM domain in this
construct with exoloop-2 of RXFP1, binding was similar to wild-
type RXFP1 and signaling was fully restored, supporting an inter-
action by H3 relaxin with both the ECD and exoloop-2 of RXFP1.
To further investigate the binding of H2 relaxin to the exoloops,
exoloop-1 and exoloop-2 were engineered onto a soluble protein
scaffold preserving the disulfide between exoloop-1 and -2 and
therefore potentially creating a native-like structure of exoloop-
2 (75). Using NMR spectroscopy and pull-down assays, specific
interactions of H2 relaxin were observed to this scaffold, but not
in a construct lacking the disulfide. These latter experiments show
that the ligand binds to the exoloop-2, and also the importance
of the integrity of the conformation of exoloop-2. Furthermore,
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mutation of a phenylalanine residue (equivalent to Phe564) to
alanine within exoloop-2 showed loss of binding to H2 relaxin,
and when this mutation was tested in the full-length receptor
signaling was lost. Collectively, these data indicate that for type C
LGRs, in contrast to type A and possibly type B, the ligands have
binding sites on both the ECD and TM domain, where the latter
are also essential for activation.

H2 relaxin binds to both RXFP1 and RXFP2, whereas INSL3
only binds RXFP2. To investigate if important differences lie
within the LRR domain or involve the TM domain, a series of
RXFP1/2 chimeras were prepared (78). These included constructs
that swapped the TM domains or consisted of only the ECDs
attached to single TM helices: referred to as 7BP or ECD-1 for
the protein containing the ECD of RXFP1, and 8BP or ECD-2
for RXFP2 (8, 78). To test the contribution of the LRRs within
the ECDs to ligand specificity and activation, residues within the
LRRs of the RXFP1 constructs were swapped with LRRs of RXFP2
in order to gain INSL3 binding. Notably, in contrast to RXFP1,
7BP (ECD-1) binds INSL3, albeitmoreweakly than 8BP or RXFP2
but suggests that a binding site for INSL3 already exists in RXFP1.
A high-affinity binding site for INSL3 was engineered into 7BP
with as little as swapping a single LRR (specifically LRR1), and this
binding was indistinguishable to that for 8BP or RXFP2. However,
when themutations that produce a high-affinity binding of INSL3
in 7BP were tested in full-length RXFP1, no gain in the binding of
INSL3 was observed. As additional binding sites for INSL3 and
H2 relaxin are proposed to be present on the TM domain (73–
75), the TM domain of RXFP2 was also replaced on the RXFP1
construct that included the putative high-affinity binding site for
INSL3. However, again binding or activation by INSL3 was not
recovered. These data suggest thatwhile clearly the LRRdomain of
these receptors harbors a ligand-binding site, additional binding
features remain to be elucidated. Indeed, issues of the juxtapo-
sition of the LRR with respect to the TM domain may sterically
hinder INSL3 binding (78).

There is additional evidence of distinct differences in the mode
of peptide binding to the RXFP1 and RXFP2 ECDs and the
impact on receptor activation. Studies on synthetic H2 relaxin
and INSL3 peptides with A-chain truncations or substitutions
show distinct differences in the ability of the peptides to bind and
activate RXFP1 and RXFP2. H2 relaxin peptides with truncations
of the A-chain (79) or A-chain substitutions with other relaxin
family peptide A chains (80) show loss of binding affinity in both
RXFP1 and RXFP2 with parallel decreases in activation whereas
truncations or alterations in the A-chain of INSL3 do not affect
the high-affinity binding to RXFP2 (81–83) but abolish activa-
tion. These observations highlight that differences in the mode of
ligand binding to these receptors exist and these modes have not
been fully elucidated. Additionally, they highlight that H2 relaxin
binds to RXFP2 in a manner different from the INSL3 mode and
similar to the mode it binds to RXFP1.

The LDLa Module of Type C LGRs
The presence of a unique N-terminal LDLa module distinguishes
RXFP1 and RXFP2 from other LGRs, and indeed are the only
GPCRs to contain this module (84). The LDLa module was first
described as repeating units in the LDL receptor (85) and other

related proteins (86) where they are involved in lipid metabolism.
LDLa modules have since been described in a variety of proteins
both as repeats and single domains in proteins with diverse func-
tions, such as viral entry (87), breast cancer invasion and metas-
tasis (88), and cell differentiation (89). LDLa modules are typi-
cally 4 kDa in size and have highly conserved structural features,
including three disulfide bonds and an essential calcium ligation
motif that contributes to maintaining overall fold and structure of
the modules (85, 90, 91). The significance of the LDLa module in
RXFP1 and RXFP2 was discovered during the characterization of
splice variants of the receptors that lacked the LDLamodules (29).
A naturally occurring splice variant of RXFP2 (LGR8-short) was
identified and found to lack the LDLa module. While LGR8-short
binds H2 relaxin and INSL3, no INSL3- or H2 relaxin-induced
cAMP signaling was detected. This prompted the production of
an engineered RXFP1 without the LDLa module (LGR7-short or
RXFP1-short) and while it bound H2 relaxin equal to full-length
RXFP1, no cAMP-induced signaling was detected (29). Recently,
a panel of reporter genes was used to assess whether RXFP1 or
RXFP2without the LDLamodule could signal through alternative
GPCR signaling pathways other than those that signal through
cAMP (92, 93). However, both RXFP1-short and RXFP2-short
were unable to signal through any signaling pathway.

The structures of both the RXFP1 and RXFP2 LDLa modules
have been solved using nuclear magnetic resonance (NMR) spec-
troscopy in an effort to understand the importance of specific
residues (84, 93). While RXFP1 and RXFP2 have evolved to use
the LDLa module for an essential role in signal activation, the
molecular details are different between the two receptors. For
example, chimeric RXPF2 (RXFP2–LB2), where the LDLamodule
is replaced with the second ligand-binding domain (LB2) of the
low-density lipoprotein receptor (LDLr), showed some INSL3-
induced cAMPactivity (93), whereas a similar construct of RXFP1
(RXFP1–LB2) showed no significant H2 relaxin-induced cAMP
activity (92). Adding back regions of the native RXFP2 LDLa
sequence into RXFP2–LB2 did increase signaling of the mod-
ule; however, this appeared to be due to reconstitution of the
correct structure rather than specific side chain interactions. In
comparison, in an attempt to rescue signaling in a RXFP1–LB2
chimera, the hydrophobic portions of the side chains of a cluster of
residues (Leu7, Tyr9, and Lys17) were pinpointed to be essential,
highlighting these residues may be involved in receptor activation
(92). The capacity of these chimeric studies are insufficient to
understand exactly the activation mechanism by the LDLa mod-
ule, however, in a separate study using an engineered scaffold
containing the extracellular loops of RXFP1, a weak interaction of
the scaffold with the LDLa module was observed supporting the
notion that it interacts with the TM domain for activation (75).
Thus, in RXFP1 and RXFP2, the LDLa module is not involved in
ligand binding, rather plays a crucial role in receptor activation by
potentially interacting with the TM domain (29, 84, 92, 93). The
LDLa module may therefore act as a tethered ligand that requires
binding of H2 relaxin to mediate activation of the receptor; a
mechanism which is distinct from the Type A LGRs two-step
binding mechanism (47).

Joining the LDLa module to the LRR domain is a linker of
variable length, 32 or 25 residues in human RXFP1 and RXFP2,
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respectively. This linker has been considered a simple tether with
the function of intramolecular localization of the LDLa module
to the TM domain for efficient activation. Swapping the LDLa
module of RXFP2 onto RXFP1 resulted in loss of signaling, sug-
gesting that the LDLa modules cannot be swapped; although in
this study a large portion of the linker of RXFP2 was also swapped
(94). However, in a second study, the LDLamodules of RXFP1 and
RXFP2 were swapped, taking care not to alter the linker length
or sequence, and these showed ligand-mediated activation (95).
In this latter work, swapping the LDLa module of RXFP2 onto
RXFP1, thus preserving the linker, LRR, and TM domains of
RXFP1, showed wild-type H2 relaxin-induced cAMP activation.
Importantly, maximum activation could not be obtained, suggest-
ing that the LDLa module of RXFP2 could not make essential
interactions with the TM domain of RXFP1 for full activation.
These observations are consistent with site-directed mutagenesis
experiments of the LDLa module in full-length RXFP1 (84, 92).
When both the LDLa module and TM domain of RXFP2 were
swapped onto RXFP1,maximum activationwas achieved suggest-
ing that the LDLa module was now acting as a full agonist and the
interactions between the LDLamodule and TMdomainwere fully
restored. Swapping the LDLa module of RXFP1 onto RXFP2, thus
preserving the linker, LRR, and TM domains of RXFP2, showed
similar potency for both ligands (95). This may reflect the fact
that H2 relaxin is a ligand of both RXFP1 and RXFP2 and the
RXFP2–INSL3 evolvedmore recently (96). Thus the RXFP1 LDLa
module may be equally efficacious on both RXFP1 and RXFP2.
These results are in contrast to the LDLa-linker deletion where
activation was lost (94) and challenge the notion that the linker
is only a tether. Furthermore, these data suggest that the linker
may play a role in activation akin to the hinge of the type A
receptors. Importantly, a natural splice variant of RXFP1 where
the LDLa module and the following linker residues are expressed
as a soluble protein can antagonize the activity of H2 relaxin at
RXFP1 supporting a functional role of the linker (29). Further
research into whether the linker interacts with H2 relaxin or the
TM domain is required.

Conclusion

The LGR family has in common a LRR domain that serves as a
ligand-binding site. From the point of view of mechanism, this is
the only common feature of the three subtypes of receptors. At
the extreme, the type B LGRs on binding ligand do not function
through a canonical GPCR pathway by activation of either G-
proteins or β-arrestin. When the ligand binds to type A LGRs,
it undergoes a conformational change that enables an interac-
tion between the ligand with the C-terminal hinge of the ECD,
which is proposed to release the TM domain of the receptor
from an inhibited state. Evidence presented for the type C LGRs,
RXFP1 and RXFP2, shows that the true agonist of these recep-
tors is the N-terminal LDLa module. Thus, it is hypothesized
for these receptors that the binding of ligand results in a con-
formational change to the ECD to present the LDLa module to
the TM domain for activation. Structures of the ECDs of type
A and type B LGRs, free and in complex with ligand, suggest
that conformational change of the LRR domain of the type C
LGRs is unlikely. Given the size and structure of the ligands,
H2 relaxin and INSL3, and the LDLa modules, it is difficult to
envisage significant conformational changes to these molecules.
Therefore, hypotheses of reorientation of the LDLa module or
localization through modification of the structure of the linker
that tethers the LDLa module to the LRR domain may be key
to the activation process. Further research, including structure
elucidation, is required to understand how the type C LGRs
are activated.
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Follicle-stimulating hormone receptor (FSHR) is a leucine-rich repeat containing class A 
G-protein coupled receptor belonging to the subfamily of glycoprotein hormone receptors 
(GPHRs), which includes luteinizing hormone/choriogonadotropin receptor (LH/CGR) and 
thyroid-stimulating hormone receptor. Its cognate ligand, follicle-stimulating hormone 
binds to, and activates FSHR expressed on the surface of granulosa cells of the ovary, 
in females, and Sertoli cells of the testis, in males, to bring about folliculogenesis and 
spermatogenesis, respectively. FSHR contains a large extracellular domain (ECD) con-
sisting of leucine-rich repeats at the N-terminal end and a hinge region at the C-terminus 
that connects the ECD to the membrane spanning transmembrane domain (TMD). The 
TMD consists of seven α-helices that are connected to each other by means of three 
extracellular loops (ELs) and three intracellular loops (ILs) and ends in a short-cytoplasmic 
tail. It is well established that the ECD is the primary hormone binding domain, whereas 
the TMD is the signal transducing domain. However, several studies on the ELs and 
ILs employing site directed mutagenesis, generation of chimeric receptors and in vitro 
characterization of naturally occurring mutations have proven their indispensable role in 
FSHR function. Their role in every phase of the life cycle of the receptor like post transla-
tional modifications, cell surface trafficking, hormone binding, activation of downstream 
signaling, receptor phosphorylation, hormone–receptor internalization, and recycling of 
hormone–receptor complex have been documented. Mutations in the loops causing 
dysregulation of these processes lead to pathophysiological conditions. In other GPHRs 
as well, the loops have been convincingly shown to contribute to various aspects of 
receptor function. This review article attempts to summarize the extensive contributions 
of FSHR loops and C-terminal tail to its function.

Keywords: C-tail, extracellular loops, FSH receptor, intracellular loops, receptor function

introduction

The ability of all organisms to receive external stimuli in the form of light, water, sound, hormones, 
odors, to name a few, is essential to bring about a necessary physiological response. This process is 
mediated through cell surface receptors, mainly the G-protein coupled receptors (GPCRs), which 
form the largest and most diverse class of receptors. GPCRs form a repertoire of about 800 receptors 
and are the largest set of drug targets in the market, thus signifying the importance of their study in 
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greater detail. The GPCR superfamily is composed of five major 
families as defined by phylogenetic analysis: glutamate, rhodopsin, 
adhesion, frizzled/taste2, and secretin, which constitute the GRAFS 
classification system (1). All GPCRs are characterized by a common 
structure consisting of a ligand binding extracellular domain (ECD) 
and a signal transducing transmembrane domain (TMD) consist-
ing of seven alpha helices spanning the membrane. The helices 
are connected to each other by means of three extracellular loops 
(ELs) and three intracellular loops (ILs) and end in a cytoplasmic 
tail. The GRAFS system family members differ in the sizes of their 
ECDs, ranging from 60 to 80 residues for growth hormone releasing 
hormone and calcitonin receptors in Family S, to 280–580 residues 
for metabotropic, glutamate receptors in Family G. Rhodopsin 
Family R, receptor ECD sizes vary considerably, as this is the largest 
family and is subdivided into four groups designated as alpha, beta, 
gamma, and delta (2). The delta group consists of the glycoprotein 
hormone receptors (GPHRs), namely, the follicle-stimulating hor-
mone receptor (FSHR), luteinizing hormone/choriogonadotropin 
receptor (LH/CGR), and thyroid-stimulating hormone receptor 
(TSHR). A hallmark of GPHRs is the presence of a large ECD of 
nearly 350–400 residues containing leucine-rich repeats (LRRs), 
which mediate ligand binding with high affinity and specificity 
(3). Several other receptors also harbor the horseshoe-shaped LRR 
structure, which facilitates high-affinity ligand binding, e.g., LGR 
4–7 (4) and some members of the relaxin family peptide recep-
tors, namely RXFP1 and RXFP2 (5). Figure 1 is a diagrammatic 
representation of the GPCR families showing the delta group of 
Rhodopsin family containing leucine-rich repeat GPCRs.

The glycoprotein hormones include the gonadotropins, 
follicle-stimulating hormone (FSH), luteinizing hormone (LH), 
the placental hormone chorionic gonadotropin (CG), and the 
non-gonadotropin thyroid- stimulating hormone (TSH). They 
belong to the cystine-knot growth factor superfamily and share a 
common heterodimeric structure composed of two non-covalently 
associated α and β subunits (6). The α subunits are common for all 
the hormones, whereas the β subunits confer functional specificity. 
All the glycoprotein hormones bind to their cognate GPHRs to 
elicit specific biological effects. FSH binds to FSHR expressed on 
the granulosa cells of the ovary in females, to bring about follicular 
maturation (7) and on the Sertoli cells of the testis in males, where 
it maintains the Sertoli cell population and sperm production (8).

Although a lot of research has been focused on the ECD and 
TMD of FSHR, emerging evidence suggests the importance of the 
ELs and ILs of the receptor in its function. In spite of this, a com-
pendium of available data on the role of the loops and especially 
the ELs of FSHR is lacking. Hence, in this review article, we have 
discussed the involvement of the loops in many FSHR functions 
like cell surface trafficking, hormone binding, signal transduction, 
internalization, and recycling of the hormone–receptor complex. 
A few relevant examples from studies on the loops of LH/CGR 
and TSHR have also been cited.

Life Cycle of FSH Receptor

The life cycle of the FSH receptor, like all other GPCRs, includes 
post translational modifications like glycosylation, palmitoylation, 
and also formation of higher order oligomers in the ER and Golgi 

networks, after which the mature receptor is trafficked to the cell 
surface (9). Abell et al. (10) have shown that deletion mutants 
of ELs of LH/CGR result in the mutant receptor being trapped 
intracellularly showing the importance of ELs in cell surface recep-
tor trafficking. In the case of the FSHR, once the mature receptor 
is localized on the surface of target cells, FSH first binds to the 
high-affinity leucine-rich LRR domains of FSHR, which results 
in additional interactions at the hormone–receptor interface and 
formation of a sulfated Tyr pocket into which the FSHR sulfated 
Tyr335 is inserted, eventually resulting in receptor activation (11). 
This interaction of the ligand with the ECD and relay of the signal 
to the TMD is probably mediated by the ELs of the FSHR. Ji 
et al. (12) carried out an elegant study wherein FSHR mutants, 
which were either binding deficient or signaling deficient, were 
co-expressed. It was seen that FSHR ECD (of signaling deficient 
mutant which was capable of binding FSH) could transactivate 
non-binding FSHR mutants to bring about cAMP or IP produc-
tion but not both. This hormone bound to the ECD probably 
contacts the ELs of the receptor to bring about its activation. In 
TSHR, co-operative signal amplification of constitutively activat-
ing mutations (CAMs) in ELs was shown by Kleinau et al. (13) 
by combining the CAMs and studying the effects in vitro. This 
proved that switching of the receptor from an inactive to an active 
conformation takes place by means of several contacts involving 
both the ECD and the ELs and this is the case for FSHR too. 
Binding of FSH to FSHR triggers several downstream signaling 
pathways other than the canonical cAMP/PKA pathway, such as 
the protein kinase B (PKB/Akt) and serum and glucocorticoid-
induced kinase (Sgk) (14), p38 MAPK (15), ERK1/2 (MAPK3/1) 
(16), and IP3 production (17). The receptor is then uncoupled 
from the G-protein, the desensitized hormone–receptor complex 
becomes internalized, following which most of the complex is 
recycled back to the cell surface and a small fraction is routed to 
lysosomes for degradation (18). Reports from naturally occurring 
and induced mutations of residues in the ELs and ILs of FSHR 
provide evidence for the roles of each loop in various aspects of 
receptor function (Figure 2).

extracellular Loop 1

Alanine scanning mutagenesis of the first five amino acids in 
extracellular loop 1 (EL1) of FSHR showed that a His407Ala 
mutation decreased FSH binding affinity, whereas substitutions 
at Asp405, Thr408, and Lys409 abolished cAMP production (19). The 
revertant mutants showed FSH binding and cAMP production 
similar to WT indicating the importance of EL1 residues in 
FSH binding and signaling. Casas-González et al. (20) reported 
a novel activating FSHR mutation N431I in EL1 in a male who 
exhibited normal spermatogenesis but low-serum FSH levels. 
The mutation impaired the desensitization and internalization 
of the hormone–receptor complex due to its inability to recruit 
beta arrestin proteins, which mediate internalization, as well as 
affected the recycling of the complex, as studied by pulse chase 
assays. In case of TSHR, several activating mutations have been 
identified. One such mutation in the ECD that has been studied 
in detail is S281T/I/N (21). Ala substitution mutagenesis studies 
on the aromatic residues in the vicinity of S281, proximal to TSHR 
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EL1, revealed that mutation of Y481in EL1 along with the surround-
ing aromatic residues was shown to affect receptor signaling. 
Antipeptide antibodies corresponding to EL1 region (residues 
405–426) of FSHR could detect the receptor as determined by flow 
cytometry as well as inhibit FSH binding and cAMP production 
in a dose-dependant manner (22). Thus, FSHR EL1 residues are 
probable secondary hormone binding sites and important in 
FSH binding, cAMP signaling, internalization, and recycling of 
hormone–receptor complex.

extracellular Loop 2

As in most other GPCRs, extracellular loop 2 (EL2) plays an 
indispensable role in FSHR function. Chimeric receptors of FSHR 
ECD/TMD and C-tail of the Drosophila melanogaster fly recep-
tor LGR2 had high-basal cAMP levels suggesting constitutive 
activation of receptor due to removal of the constraint imposed 
by the interaction of exoloops with the ECD (23). In the case 
of the LHR, this constraint was imposed by EL2, and hence, 
it is possibly true for EL2 of the FSHR too. Meduri et al. (24) 
reported a novel homozygous mutation Pro519Thr in a patient 
with primary amenorrhea. The mutation at this highly conserved 
Proline residue resulted in the inability of the mutant receptor 
to traffick to the cell surface and subsequently abolished FSH 
binding and cAMP production. Since the receptor was trapped 
intracellularly, follicular maturation was blocked, resulting in the 
clinical manifestation of premature ovarian failure. Functional 
characterization of a novel heterozygous mutation M512I in a 
woman with spontaneous ovarian hyperstimulation syndrome 
(sOHSS): ovarian enlargement due to several luteinized cysts 
within the ovaries due to abnormally high levels of hCG in 
pregnancy (25) or sometimes due to high levels of TSH (26) 
revealed that the mutation impaired cAMP signaling and PI3K/
AKT pathways (27). Recently, a novel mutation Val514Ala was 

FiGURe 1 | Flowchart showing the classification of GPCR families. The 
rhodopsin family consists of four main groups designated as alpha (α), beta (β), 
gamma (γ), and delta (δ). Members of the delta group include the Leucine-rich 

repeat GPCRs comprising of the three glycoprotein hormone receptors (GPHRs: 
FSHR, LH/CGR, and TSHR), Relaxin/insulin-like family peptide receptors RXFP 
(1–4) and Leucine-rich repeat containing G-protein coupled receptors (LGRs 4–7).

identified in a patient undergoing IVF who exhibited symptoms 
of iatrogenic ovarian hyperstimulation syndrome (aOHSS): 
excessive follicular recruitment and enlargement due to ovarian 
stimulation with exogenous FSH during ART (28). The mutation 
at this conserved Val residue conferred higher cell surface recep-
tor expression, higher FSH binding, and attained saturation of 
cAMP production at low doses of FSH as compared to wild type 
receptor (29). Both the Pro519 and Val514 residues, mentioned here, 
are not only conserved across FSHR of all species but also across 
LHR and TSHR, indicating their importance. The significance of 
FSHR specific, that is, non-conserved residues of EL2 of FSHR was 
demonstrated by swapping six FSHR specific residues in EL2 with 
those from LH/CGR (30). The chimeric EL2M receptor had an 
impaired cAMP response as well as reduced internalization of the 
FSH–FSHR complex. Further, characterization of six individual 
substitution mutants of the FSHR specific residues of EL2 was 
performed and it was found that a L501F mutant showed weak 
interaction with beta arrestins consistent with its low internaliza-
tion, impaired FSH-induced cAMP response, as well as low levels 
of ERK phosphorylation (31). The I505V substitution also affected 
receptor function to some extent. Figure 3 shows the low levels of 
ERK phosphorylation in chimeric EL2M and the point mutants 
L501F and I505V as compared to WT FSHR as reported in Banerjee 
et al. (31). Molecular modeling studies revealed that the L501F and 
I505V substitutions in EL2 resulted in gain of interactions in the 
mutant receptors as compared to wild type receptor (Figure 4). 
Mutations in EL2 of LHR have also been reported to either 
enhance internalization and cAMP signaling (F515A and T521A) or 
impair internalization (S512A and V519A) and cAMP signaling (32) 
indicating the importance of ELs of GPHRs in agonist-induced 
internalization of the hormone–receptor complex. Thus, FSHR 
EL2 residues are essential for cell surface receptor trafficking, FSH 
binding, cAMP/ERK pathway/PI3K pathway, internalization of 
FSH–FSHR complex, and beta arrestin recruitment.
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FiGURe 2 | Partial sequence of the human FSHR showing the TMD. The 
seven alpha helices, shown as cylinders designated, I–VII, are connected by 
means of three ELs and three ILs and ends in a short C-tail. Shaded residues 
(●) are naturally occurring mutations, (◾) indicates residues crucial for cell 
surface receptor trafficking, (★) indicates residues important for FSH binding, 
(▴) indicates residues important for FSH-induced cAMP production, (#) 

indicates residues crucial for internalization of FSH-FSHR complex, and (●) 
indicates SNP. Explanation for each of these residues is provided in the text 
wherever applicable. The numbering system followed is according to that for 
the mature receptor without the 17 amino acid residue signal peptide. The 
numbers in parentheses correspond to the amino acid residue number 
including the signal peptide. The ECD comprising residues 1–349 is not shown.
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extracellular Loop 3

Extracellular loop 3 (EL3) is the shortest EL of FSHR consisting 
of only 11 amino acid residues compared to 22 for EL1 and 20 
for EL2. In  vitro characterization of a mutated FSH receptor 
in a compound heterozygous patient (Asp224Val in ECD and 
Leu601Val in EL3), with POF was carried out by Touraine et al. 
(33). Although the cell surface FSHR expression and FSH binding 
affinity of Leu601Val mutant were similar to wild type receptor, 
this substitution impaired cAMP response, which might have 
led to a block in follicular maturation beyond the early antral 
stage. Contrary to this observation, Ryu et  al. (34) and Sohn 
et al. (35) showed that substitution/deletion of Leu583 [same as 
Leu601 reported by Touraine et  al. (33)] and Ile584with a panel 
of amino acids enhanced FSH binding. However, substitutions 
at Leu583, Ile584, and Lys590 abolished cAMP, consistent with the 
study carried out by Touraine et al. (33), thus clearly indicating 
the importance of EL3 residues in cAMP signal transduction. 
Sohn et al. (35) also showed that substitution at Leu583with the 
aromatic amino acids Phe or Tyr, improved the hormone bind-
ing and cAMP induction, but impaired inositol phosphate (IP) 
production. IP induction was also found to be abolished for Ile584 
and Lys590 substitutions. Photoaffinity labeling studies revealed 
that interaction of FSH–FSHR takes place through contact of FSH 

beta with the N-terminal ECD, whereas the FSH alpha subunit is 
oriented toward EL3, indicating the important role of this loop in 
hormone–receptor interaction (36). Along with EL1, antipeptide 
antibodies corresponding to EL3 (FSHR residues 581–591) were 
also found to be surface accessible and capable of inhibiting 
hormone–receptor interaction as determined by radioreceptor 
assay and cAMP assay (22). This information along with the data 
obtained by the study conducted by Sohn et al. (36) indicate that 
the ELs of FSHR probably serve as secondary hormone binding 
sites by means of their interaction with the alpha subunit of FSH. 
In the TSHR, Claus et al. (37) showed that a hydrophobic cluster 
in the center of EL3 is essential for cAMP signaling as seen by 
the loss of signal generation after mutation of residues 652–656, 
comprising the cluster. Another interesting observation with 
respect to the role of EL3 in receptor function was obtained by 
generation of FSHR/LH-CGR chimeric receptors, as mentioned 
earlier (30). Substitution of the three FSHR specific residues in 
EL3 of FSHR with the corresponding residues in LH/CGR resulted 
in the chimeric EL3M receptor exhibiting higher internalization 
of FSH–FSHR complex without any change in the affinity for 
hormone binding. The cAMP signaling response, however, was 
comparable to that of wild type receptor. Pulse chase experiments 
revealed that recycling of the chimeric EL3M receptor was affected. 
Thus, FSHR EL3 residues seem to be essential for FSH–FSHR 
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FiGURe 3 | FSH-induced eRK phosphorylation in wild type (wT) FSHR, 
chimeric eL2M FSHR, and the point mutants L501F and i505v (31). 
(A) Representative western blot showing the levels of phospho ERK (P-ERK) 
and total ERK2 in cell lysates from HEK293 cells transiently expressing the 
FSHR constructs and stimulated without or with 100 ng FSH for 5 or 30 min. 
Untransfected cells served as a negative control. (B) Densitometric analysis 

showing the ratio of phosphorylated ERK: total ERK2. The maximum response 
obtained by WT FSHR at 5 min post stimulation with 100 ng FSH was 
considered to be 100% and the % response obtained for the mutants at 0, 5, 
and 30 min post FSH induction (100 ng) was determined by comparing it with 
the maximum response and plotted. The value of *P < 0.05 and ***P < 0.001 
with respect to WT FSHR was considered to be statistically significant.
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interaction, FSH binding, FSH-induced cAMP and IP production 
and internalization, and recycling of FSH–FSHR complex.

intracellular Loop 1

Phosphorylation of FSH receptor post ligand stimulation was 
reported by Quintana et al. (17). Phosphorylation is mediated by 
G-protein-related kinases (GRKs), mainly GRK2 and GRK6, in 
the case of FSHR (38). The phosphorylated receptor then recruits 
adaptor proteins called beta arrestins, which help in mediating the 
internalization of the hormone–receptor complexes via clathrin 
coated pits (39). Generation of a mutant rFSHR-1L where the S/T 
residues in intracellular loop 1 (IL1) of rat FSHR were mutated 
(T369I, S371I, T376N of IL1) greatly affected the phosphorylation of 
the receptor even though FSH binding affinity was unaffected and 
basal cAMP response of mutant receptor was higher (constitutively 
active) (40). This study showed that phosphorylation of IL1 of 
FSHR is required both for uncoupling of receptor in response to 
FSH stimulation and its internalization. Further, abolishing the 
phosphorylation sites at IL1 was shown to affect beta arrestin-2 
recruitment, hence receptor internalization (41). Nechamen et al. 
(42) have also shown interaction of the APPL1 (adaptor protein 
containing PH domain, PTB domain, and leucine zipper motif) 
with hFSHR IL1 and that it links the FSH-stimulated receptor to 
the PI3K/Akt pathway essential for survival of the dominant fol-
licle. Alanine scanning mutagenesis of IL-1 residues demonstrated 
that L377A and F382A mutants showed low-FSH binding, whereas 
K376A showed FSH binding and cAMP production similar to wild 
type FSHR (43). However, the K376A mutation in FSHR inhibited its 

interaction with the adaptor protein APPL1 and abrogation of this 
interaction blocked FSHR-mediated inositol 1, 4, 5-trisphosphate 
(IP3) induction and FSH-induced calcium signaling. Thus, FSHR 
IL1 residues seem to be crucial for FSH binding, FSH-induced 
PI3K pathway, interaction with APPL1 protein to bring about IP3 
production, receptor phosphorylation, and interaction with beta 
arrestins to mediate internalization.

intracellular Loop 2

A yeast-based interaction trap assay identified the interaction of 
intracellular loop 2 (IL2) of FSHR with 14-3-3 tau protein, which is 
important for ER localization of membrane proteins (44). Scanning 
alanine mutagenesis of the IL2 residues 447TLE449 and 450RWH452 
resulted in loss of this interaction with 14-3-3 tau protein thus 
identifying the residues crucial for this interaction (45). Despite 
normal FSH binding, the H452A mutant showed low levels of inter-
nalization and no cAMP production indicating the importance of 
IL2 residues. IL2 of FSHR bears the highly conserved class A GPCR 
ERW motif, which is crucial for receptor activation (46). Timossi 
et al. (47) generated minigene constructs of three ILs of human 
FSHR and found the IL2 to be essential for Gs coupling and cAMP 
production. Minigene encoding free IL-2 as well as minigene IL2 
mutants R467A and R467K and co-expression of full length WT with 
minigene mutant L477A lowered FSH stimulated but not basal 
cAMP levels. Further full length IL2 mutants were made and it 
was found that FSH binding to these mutants was moderately 
affected in the constitutively active mutants L477A/D/P and to a 
lesser extent in L477K/R mutants. Full length FSHR IL2 mutants 
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FiGURe 4 | Structural models of the TMD and eLs of wT FSHR, 
chimeric eL2M FSHR, and the point mutants L501F and i505v (31). The 
acquired interactions in chimeric EL2M FSHR and point mutants L501F 
and I505V with the adjacent residues in EL1 and EL3, which are absent in 
WT FSHR is depicted. EL2 region in all the models is shown in yellow. 
The residues involved in interaction in all the four models are circled in 
cyan (Y415, L501/F501, and M503). Residues showing similar interaction in 

chimeric EL2M and L501F mutant are shown in white square boxes (I417 and 
I505/V505). Residues showing similar interaction in chimeric EL2M and I505V 
are shown in green square boxes (Y494 and V582). Hydrogen bonds and 
hydrophobic interactions are depicted in pink and green lines. The models 
were built using Discovery Studio 3.5 and minimized using Schrodinger 
2013 OPLS 2005 force field with default parameters, as described in 
Banerjee et al. (31).
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R467A/H, T470A abolished FSH-induced cAMP production without 
altering basal levels, L477A/D/P mutations led to elevated basal 
cAMP levels, L477K/R mutants showed less FSH-induced cAMP 
production. The FSHR-2L mutant, in which the two threonine of 
IL2 were subjected to alanine substitution (Thr451Ala, Thr453Val), 
and a rFSHR-(2L + 3L) mutant, in which the two threonines in the 
second IL along with the seven Ser/Thr residues in the intracellular 
loop 3 (IL3) were substituted with alanine residues (Thr451Ala, 
Thr453Val, Thr536Ala, Thr541Ala, Ser544Ala, Ser545Ala, Ser546Ala, 
Ser547Ala, Thr549Ala), were deficient in phosphorylation, bound 
FSH with comparable affinity to WT but showed low levels of 
FSH-induced cAMP production (inactivating mutations) (48). 
Further, in this study, it was shown that rFSHR-D389N and rFSHR-
Y530F (D and Y are highly conserved residues across GPCRs), two 
inactivating mutations possessing intact phosphorylation sites 
showed impairment in phosphorylation. Overexpression with 
GRK-2 was shown to rescue phosphorylation of both the mutants 
but internalization of only D389N mutant, whereas overexpression 
of arrestin-3 (β-arrestin 2) could rescue internalization of both 
mutants providing the first evidence of the role of beta arrestins in 
FSH-mediated receptor internalization post receptor phosphoryla-
tion with GRKs. In LHR too, mutagenesis studies revealed several 
residues in IL2, like Lys455 and His460, to be essential for ligand 

binding and Glu441and His460 to be important for cAMP response 
(49). Thus, FSHR IL2 residues are especially important for cAMP 
production and also for receptor phosphorylation.

intracellular Loop 3

A synthetic peptide corresponding to residues 533–555 of IL3 
of the rat FSHR was shown to inhibit cAMP production and 
estradiol synthesis in cultured Sertoli cells from immature rat 
testes (50). Along with IL1, mutations in IL3 residues also were 
shown to affect receptor phosphorylation; however, the effect was 
not as pronounced as in IL1 mutation. The rFSHR-3L mutant, 
in which the Ser/Thr residues in IL3 were mutated to alanine 
(Thr536Ala, Thr541Ala, Ser544Ala, Ser545Ala, Ser546Ala, Ser547Ala, 
Thr549Ala of IL3)and a rFSHR-(3L + CT) mutant, in which the 
Ser/Thr residues in both IL3 and C-tail were mutated to alanine 
(Thr536Ala, Thr541Ala, Ser544Ala, Ser545Ala, Ser546Ala, Ser547Ala, 
Thr549Ala, Ser624Ala), showed unaltered FSH binding, whereas 
rFSHR-3L was found to be a constitutively active mutant, as it 
exhibited high-basal cAMP response (40). The mutant receptors 
affected the phosphorylation of FSHR to some extent, as well as 
its uncoupling from adenylyl cyclase enzyme without affecting 
its internalization. Using chimeric FSHR and LHR receptors, the 
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interaction of threonine residues in IL3 with beta arrestin proteins, 
and hence, internalization of these gonadotropin receptors was 
shown by Bhaskaran et al. (51). GPCRs harbor a BBXXB motif 
(where B represents a basic amino acid whereas any amino acid 
can be presented at “X”) in the intracellular domains, which is 
an essential determinant of receptor activation. FSHR contains a 
reverse BXXBB situated at the juxtamembrane region of IL3and C 
tail, which was subjected to Ala substitution mutagenesis (52). All 
the IL3 mutant receptors BXXAB, AXXBB, and BXXBA showed 
FSH binding similar to WT, but binding was affected in the same 
three mutants of C-tail. However, cAMP production was abolished 
in AXXBB and BXXBA mutants but was normal in BXXAB mutant 
of IL3. In the case of the C-tail, cAMP production of all three 
mutants was affected. Thus, it appears that the BXXBB motif at 
the IL3 of the hFSHR is essential for Gαs coupling and cAMP 
production, whereas the same motif in the C-tail is more important 
for membrane expression as the mutation resulted in an immature 
form of the receptor, which was unable to bind the hormone. An 
interesting study by Cohen et al. (53) identified IL3 to be a site 
of FSHR ubiquitination by a yeast two-hybrid screen. However, 
mutating the only Lys residue available for ubiquitination (K555R) 
did not disrupt FSHR–ubiquitin interaction indicating that other 
determinations of receptor ubiquitination exist. The importance 
of this loop is further emphasized by the presence of naturally 
occurring mutations in the loop that affect receptor function. Beau 
et al. (54) reported that a woman with secondary amenorrhea and 
high-serum FSH levels was found to harbor two FSHR mutations: 
Ile160Thr (ECD) and Arg573Cys (IL3). The mutation in the ECD 
affected cell surface receptor expression, whereas the IL3 mutation 
impaired cAMP signaling. A constitutively active mutation D567G 
was identified by Gromoll et al. (55) in a hypophysectomized man. 
Later in 2003, Smits et al. (56) reported a mutation at the same posi-
tion in FSHR IL3 in a woman with spontaneous OHSS. The D567N 
substitution in this case conferred high-basal cAMP response as 
well as loss of functional specificity as the mutant receptor showed 
a dose-dependent increase in cAMP production upon hCG or 
TSH stimulation. The importance of this residue is further cor-
roborated by the fact that it lies in a protein kinase CK2 consensus 
site and brings about phosphorylation of adaptor proteins like beta 
arrestins, which mediate receptor internalization (57) via their 
interaction with FSHR (58). Kluetzman et al. (59) showed that 
both the naturally occurring D550G (same as D567G) mutation and 
the alanine substituted mutation D550A showed accumulation of 
FSH in mutant receptors in intracellular stores due to decreased 
degradation after internalization as evidenced by radioreceptor 
assay as well as visualization by confocal microscopy. Thus, FSHR 
IL3 residues seem to be important for receptor phosphorylation, 
cAMP response as well as ubiquitination.

C-Terminal Tail

As in all other GPCRs, the carboxy-terminal tail bears the highly 
conserved F(X)6LLmotif (where X can be any residue, and L is 
leucine or isoleucine), which is important for trafficking of the 
mature receptor from ER to the cell surface (60). This motif is 
located between 616 and 624 residues in the mature FSH receptor 
(9). Another important post translational modification in GPHRs 

is palmitoylation of the cysteine residues and this is crucial for 
receptor endocytosis and other post endocytic events (61). Two 
conserved cysteine residues (at positions 629 and 655) and one 
non-conserved Cys residue (at position 627) are present in the 
C-tail of human FSHR, which are potential sites for S-acylation 
with palmitic acid, were investigated by Uribe et al. (62). Low-FSH 
binding in C629A, double mutants C627/629A and C629/655A, and the 
triple C627/629/655A receptor mutants without change in FSH binding 
affinity was observed due to low-cell surface FSHR expression of 
mutants, whereas low internalization for FSH–FSHR complex of 
Cys655A/S/T mutants was seen. C629A, C655A/S/T, the double mutant 
C627/629A, and the triple mutant C627/629/655A showed low-cAMP pro-
duction. The triple mutant C627/629/655A did not show palmitoylation 
indicating the importance of all the three residues for palmitoyla-
tion. Single-alanine substitutions of residues in the IL3 of TSHR 
also revealed that the residues were crucial for G-protein activation 
(63). Truncation mutants of the C-terminal tail (removal of the 
last eight residues) of hFSHR and rFSHR decreased the amount of 
internalized 125I-hFSH (18). Confocal microscopy analysis showed 
that in contrast to the internalized WT receptors, which localized 
only to endosomes, the internalized truncated receptors localized 
to both endosomes and lysosomes. This study showed that most of 
the FSH–FHSR complex gets recycled back to the cell surface and 
truncation of eight residues from the C-tail reroute a substantial 
portion of the internalized FSH–FSHR complex to a degradation 
pathway. Ala substitution of the Ser/Thr cluster T638A, T640A, S641A, 
S642A, T644A in the C-tail of rFSHR showed similar FSH binding 
affinity to mutant receptor as compared to WT but impaired 
internalization of FSH–FSHR complex (64). Loss of the Ser/Thr 
cluster in the mutant FSHR resulted in enhanced cAMP production 
due to its inability to get desensitized, impaired phosphorylation, 
β-arrestin recruitment, and hence, impaired internalization of 
FSH–FSHR substantiated the importance of the C-tail in FSHR 
function. Thomas et al. (65) reported that FSHR forms oligomers 
in a constitutive manner before coming to the cell surface and dis-
covered during the course of this study that the C-terminal epitope 
tags undergo proteolytic processing, so such C-terminal tagged 
receptors could not be exploited to study receptor oligomerization. 
To overcome this shortcoming, Mazurkiewicz et al. (66) generated 
chimeras of FSHR and extreme C-tail fluorescent fusion proteins: 
FSHR-LHRcT-YFP/FSHR-LHRcT-mCherry pairs possessing 
amino acid residues 1–611 of the hFSHR and residues 604–674 
of the rLHR. Fluorescence correlation spectroscopy and photon 
counting histogram studies with these chimeric FRET pairs dem-
onstrated the presence of freely diffusing FSHR homodimers on the 
surface of live cells. FRET experiments also demonstrated that the 
hFSHR-rLHR-cT chimera formed hetero-dimers/hetero-oligomers 
with LHR and this possibly occurred during granulosa cell dif-
ferentiation. Zariñán et al. (67) had reported that co-transfection 
of WT FSHR with mutants R556A (IL3) or R618A (C-tail) showed 
dose-dependent inhibition in FSH binding and cAMP produc-
tion with increasing amounts of mutant DNA and subsequently 
rescue of function by co-transfection with WT fragments of TMD 
5, 6, or 7 and/or C-tail suggesting oligomerization of FSHR. The 
crucial role played by the C-tail in receptor function is reinforced 
by the existence of a SNP p.Asn680Ser (rs6166), which has been 
studied extensively in various ethnic groups across the world and is 
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believed to serve as a marker to predict ovarian response in women 
undergoing assisted reproductive technology programs (68–74). 
Thus, the C-tail of FSHR plays an indispensable role in palmitoyla-
tion, cell surface receptor trafficking, receptor phosphorylation, 
interaction with beta arrestin proteins, and hence, internalization 
of FSH–FSHR complex.

Conclusion and Future Directions

Genetic alterations in GPCRs, resulting in loss or gain of function, 
lead to several pathological conditions and are being studied by 
several groups to develop drugs targeted at the receptor to rescue its 
function (75, 76). Knowledge of combination of SNPs in FSH beta 
and FSHR is essential for determining patient risk/treatment out-
come and for designing treatment in cases of infertility (77). Also, 
in vitro studies on several naturally occurring mutations [reviewed 
by Desai et al. (78)] and studies on both FSH beta and FSHR knock-
out mice (79) indicate the pivotal role of this  hormone–receptor 
interaction, failure of which leads to reproductive dysfunctions. 
Owing to the large size of the receptor, its interaction with FSH takes 
place at several discrete regions on the ECD and this hormone–
receptor ECD complex possibly makes contacts with the ELs and 
the signal is then relayed downstream through the TMD. Other than 
mutations in the ECD and TMD, which may result in intracellular 
retention of the receptor, its inability to bind FSH or bring about 
signal transduction, several such mutations in the loops display 
similar characteristics and this necessitates their study in greater 
detail. Therefore, in order to develop drugs targeted to rescue the 
function of the receptor, a thorough understanding of the epitopes 
crucial for FSH–FSHR interaction is a must. In recent times, several 

small molecule FSHR agonists, which can be orally administered 
like Org 214444-0 (80), FSHR allosteric modulators like Compound 
5 (81) have been developed, which can be administered to patients 
for ovulation induction. Pharmacoperones (pharmacological chap-
erones that assist in folding and routing of mutant receptors to the 
cell surface) like Org 41841 have been shown to rescue the function 
of the A189V FSHR mutant, which was trapped intracellularly and 
hence exhibited low-cell surface FSHR expression (82). As these 
molecules hold great therapeutic potential, the understanding of the 
biochemical mechanism of their interaction with the receptor and 
identification of sites of interaction with the receptor is imperative. 
Along with the ECD and TMD, detailed analysis of the residues 
in the ELs and ILs is therefore of utmost importance given their 
versatile roles in FSH–FSHR interaction.
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Differences in signal activation 
by lh and hcg are mediated by the 
lh/cg receptor’s extracellular 
hinge region
Paul Grzesik 1, Annika Kreuchwig 1, Claudia Rutz 1, Jens Furkert 1, Burkhard Wiesner 1,  
Ralf Schuelein 1, Gunnar Kleinau 2, Joerg Gromoll 3 and Gerd Krause 1*

1 Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany, 2 Institute of Experimental Paediatric Endocrinology, 
Charité-Universitätsmedizin Berlin, Berlin, Germany, 3 Centre of Reproductive Medicine and Andrology, University Hospital 
Münster, Munich, Germany

The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be 
activated by binding two slightly different gonadotropic glycoprotein hormones, 
choriogonadotropin (CG)  –  secreted by the placenta, and lutropin (LH)  –  produced 
by the pituitary. They induce different signaling profiles at the LHCGR. This cannot 
be explained by binding to the receptor’s leucine-rich-repeat domain (LRRD), as this 
binding is similar for the two hormones. We therefore speculate that there are pre-
viously unknown differences in the hormone/receptor interaction at the extracellular 
hinge region, which might help to understand functional differences between the two 
hormones. We have therefore performed a detailed study of the binding and action of 
LH and CG at the LHCGR hinge region. We focused on a primate-specific additional 
exon in the hinge region, which is located between LRRD and the serpentine domain. 
The segment of the hinge region encoded by exon10 was previously reported to be 
only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased 
hLH signaling, but unchanged hCG signaling. We designed an advanced homology 
model of the hormone/LHCGR complex, followed by experimental characterization of 
relevant fragments in the hinge region. In addition, we examined predictions of a helical 
exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. 
These helix preserving modifications showed no effect on hormone-induced signaling. 
However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/
E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, 
but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be 
explained by distinct sites of hormone interaction in the hinge region. In conclusion, our 
analysis provides details of the differences between hLH- and hCG-induced signaling 
that are mainly determined in the L2-beta loop of the hormones and in the hinge region 
of the receptor.
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introduction

The G protein-coupled receptors (GPCR) comprise a large super-
family of signal-mediating membrane bound proteins. The human 
lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) is 
evolutionary linked with the follitropin receptor (FSHR) and the 
thyrotropin receptor (TSHR). These three receptors belong to the 
group of glycoprotein-hormone receptors (GPHR), a subfamily 
of the rhodopsin-like GPCR (1). The structural topology of the 
GPHR is characterized by a large N-terminal extracellular region, 
which can be subdivided into the leucine-rich-repeat domain 
(LRRD) and the hinge region. The LRRD is responsible for the 
initial interaction with its corresponding hormone; the hinge 
region (LHCGR: L285-E354), harbors a second hormone binding 
site. It acts as a structural and functional link with the transmem-
brane region and thus assumes a key role in signal initiation and 
transduction (2). The transmembrane spanning region consists of 
seven transmembrane helices (TMH), connected by intra-cellular 
loops (ICLs) and extracellular loops (ECLs) and a cytoplasmic tail 
(Figure 1). Conformational changes in the TMH region during 
the activation lead to interaction and release of the intracellular 
signaling proteins (3).

In mammals, especially in primates, LHCGR has an essen-
tial role during male sexual differentiation and fertility. This is 
mainly mediated by the receptor-mediated signal transduction 
stimulating androgen biosynthesis, either in female theca or male 
Leydig cells. Lack of androgen biosynthesis due to impaired or 
inactivated LHCGR results in severe disturbances in male sexual 
differentiation (Leydig cell hypoplasia) or primary amenorrhea 
(4). An additional glycoprotein, choriogonadotropin (CG), is 

specific to primates. This is produced by the trophoblasts dur-
ing pregnancy and is required for androgen production in male 
fetuses. Thus, in human and (most) primates, we have a unique 
two hormone/one receptors system consisting of LH/CG and 
its cognate receptor the LHCGR. The two hormones are evolu-
tionary homologs, with LH being produced by the pituitary and 
CG secreted by the placenta/trophoblasts (4).

Both hormones are heterodimeric glycoproteins that consist 
of a common α-subunit but differ in a non-covalently associated 
specific β-subunit. These differences lead to the activation of 
different signaling pathways and finally to distinct physiological 
responses (5). Moreover, differences in G-protein activation of 
Gs and Gq (6) and in trans-activation and cis-activation have 
been reported for hCG and hLH (7), which suggest that the hinge 
region does not only participate in signal initiation, but also 
plays a key role in the differentiation of signal transduction at 
the level of receptor activation. Functional studies have focused 
on this issue and have uncovered sensitive sections within the 
hinge region that are responsible for LH- and CG-mediated 
function (8, 9).

The concept that the hinge region within the ectodomain of 
the GPHR may have a key role in their activation was initially 
developed decades ago for TSHR, FSHR (10, 11), and also for 
the LHCGR (12). Subsequent work on numerous mutations and 
studies on chimeric receptors [TSHR (13–16), on FSHR (17) 
and on LHCGR (17–20)] have identified several key residues in 
the respective hinge regions that are essential in conveying the 
activation signal. Although the sequence differs most between the 
GPHRs in the hinge region, these studies on chimeric receptors 
showed that the hinge region of TSHR can be replaced by that 

FigUre 1 | sketch (a) and homology model (B) of the full length lhcg-receptor with heterodimeric hormone (α and β subunit) bound to the 
extracellular leucine-rich-repeat domain (lrrD) and the hinge region. The hinge region that harbors exon10 and the second hormone binding site (sTyr) 
provides a structural and functional link between the LRRD and the heptahelical transmembrane domain.
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FigUre 2 | Predicted structural segments for the middle part of the extracellular hinge region of lhcgr. For exon10, and the following residues, there is 
great sequence similarity to the crystal structural fragment of transferritin, which contains a helix. Four different methods I-TASSER [Cyan in (B)] (30, 31), Robetta 
[orange in (B)] (32), IntFold [magenta in (B)] (33), and RaptorX [blue in (B)] (34) predicted a common tertiary structure of the middle hinge region resulting in two helix 
segments, one for the exon10-region [orange cylinders in (a)] and for the following residues [gray cylinders in (a)]. Due to the consistent helix predictions by different 
methods and with the existing helix structure in homologous fragments, it is likely that this sequence contains a high propensity for an exon10-helix and an adjacent 
helix. The hormone binding sensitive sulfation site sTyr331 is located in an accessible coiled region.
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of FSHR (21) and LHCGR (10) while maintaining function to a 
certain extent, which indicates both a common topology, but also 
specificity, e.g., in the case of FSHR (22).

In this context, the naturally occurring deletion in LHCGR of 
the complete exon10-encoded segment (LHCGR-delExon10), 
corresponding to 27 amino acids (Figure 2A) within the hinge 
region of the hLHCGR, could be directly linked to a case of 
type 2 Leydig cell hypoplasia in which the natural hLH-, but 
not hCG-induced function was disturbed (8, 9). The resulting 
dysfunction in sexual puberty could be overcome by medica-
tion with hCG, but the observed functional differences in the 
exon10-deletion mutant have not yet been fully explained at the 
molecular level.

Further investigation on this receptor region uncovered a 
signaling-sensitive motif in close proximity to the exon10-region. 
A tyrosine rich-motif, located downstream of the exon10-region 

(Figure  2A), was proved to be crucial for hormone-induced 
receptor function. In vitro studies on the LHCGR showed that 
the sulfated tyrosine 331 (sTyr331) is essential for hLH triggering 
during receptor activation, but less sensitive toward hCG func-
tion (23). However, the complex structure–function relationship 
of the LHCGR and its hormones, in which LH and CG induce 
different signaling pathways upon receptor activation, is still 
unclear.

We postulated that specific structural determinants for 
the activation process lead to the differences in signaling. We 
aimed to shed light on the structure–function relationship of 
the LHCGR hinge region toward its hormones and gain in 
depth structural insights, by generating homology models of the 
interaction between the LHCGR hinge region with bound hLH 
and hCG hormones. In combination with functional data from 
mutagenesis studies within the exon10-region, our studies led us 
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to propose a molecular interaction model which is able to explain 
the complex situation in this hormone/receptor system during 
activation.

Materials and Methods

experimental setup
Construction of Vectors and Site-Directed 
Mutagenesis
The expression vector pEGFP-N1 (clontech) containing the 
fluorescent protein GFP as a C-terminal fusion partner was 
prepared for ligation by restriction with the restriction enzymes 
KpnI and BamHI. Amplicons of human receptor constructs 
wild-type LHCGR, hLHCGR-delExon10, and alanine-block 
constructs LHCGR-Ala1–6 were synthesized by standard PCR 
and overlapping extension-PCR, respectively, digested with 
corresponding restriction enzymes and sub-cloned into the 
backbone of vector pEGFP-N1. Site-directed mutagenesis of 
the LHCGR-wild type was performed by using the QuikChange 
Site-Directed Mutagenesis Kit (Stratagene), resulting in the pro-
line mutants LHCGR-Q303P/E308P and LHCGR-M320P. The 
entire coding region of each LHCGR construct was sequenced. 
Recombinant expression vectors were propagated using the 
DH5α E. coli strain.

Cell Culture and Transfection
LHCGR constructs were expressed as GFP fusion proteins in 
HEK 293 cells (DSMZ), by growing in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with 10% fetal calf 
serum (Biochrom) at 37°C in a humidified 5% CO2 incubator. 
HEK293 cells were seeded in 24-well plates and transfected with 
0.8 μg DNA/7.5 ×  104 cells. After 24  h of culture, one portion 
of the cells was prepared for FACS measurements, while the 
second portion was stimulated with the hormones hLH or hCG 
and prepared for the cAMP accumulation assay. For qualitative 
determination of cell surface expression, transfected cells were 
seeded in 24-well plates with 12 mm glass cover slips (pretreated 
with 100 μg/ml poly-l-lysine) and prepared in 12 mm diameter 
dishes for scanning microscopy. Transfection with PEI was car-
ried out according to the supplier’s recommendations 24 h after 
seeding the cells.

Determination of Overall Receptor Expression  
Levels by FACS
The overall expression levels of the GFP-tagged LHCGR con-
structs in singly transfected HEK 293 cells were quantified with 
a FACS flow cytometer (FACSCalibur; Becton-Dickinson). All 
steps were performed at 4°C. Twenty-four hours after seeding in 
24-well plates, cells were harvested by the use of 1 mM EDTA in 
PBS. After detachment, cells were centrifuged at 300 g for 3 min, 
and the supernatant was discarded. Cells were washed three times 
in FACS buffer (PBS containing 0.5% BSA), centrifuged (300 g 
for 3 min), and incubated for 5 min on ice. 7-Aminoactinomycin 
D (7-AAD) (Becton–Dickinson) was added to exclude damaged 
cells from analysis. The fluorescence of at least 10,000 cells per 
tube was assayed (FL1, 505–540 nm band pass filter). Expression 
of single expressed receptor constructs was determined from the 

mean fluorescence intensity. The overall receptor expression is 
presented as percentages of the corresponding singly expressed 
constructs compared with wild-type LHCGR, which is set as 
reference at 100%.

Confocal LSM: Localization and Quantification of the 
Receptor Constructs at the Plasma Membrane
Transiently transfected HEK 293 cells (1.5 × 105) expressing the 
receptors were grown on 30 mm glass cover slips (pretreated with 
100 μg/ml poly-l-lysine) in 35 mm dishes. After 24 h of culture, 
cover slips were transferred into a self-made chamber (details on 
request) and covered with 1ml DPBS(+)(+).

For colocalization studies, the GFP-tagged receptor constructs 
were visualized using the laser confocal scanning microscope 
LSM510 (Carl Zeiss Microscopy GmbH, Jena, Germany) with a 
100×/1.3 oil objective. The GFP-tagged constructs were detected 
in one channel (argon laser λexc = 488 nm, 495–545 nm band pass 
filter). Plasma membrane staining was performed with trypan 
blue, as previously described (24). The red fluorescence of trypan 
blue was recorded on a second channel (HeNe laser λexc = 543 nm, 
560  nm long pass) and the overlay with the GFP-signals was 
computed. The spectral ranges were split using an MBS 488/543. 
Images were analyzed using AIM software (release 3.2, Carl Zeiss 
Microscopy GmbH, Jena, Germany). Images were imported 
into PHOTOSHOP software (Adobe Systems), and contrast was 
adjusted to approximate the original image.

Quantification of the fluorescence intensity of the GFP-tagged 
constructs in the plasma membrane was carried out using the 
same microscope system. In this case, only one channel (green 
fluorescence, see above) was used. Images with frame sizes of 
512 × 512 pixels were generated and the ratio of receptor expres-
sion at the plasma membrane to that in intracellular membranes 
was calculated by measuring the fluorescence signal intensities of 
GFP in the selected regions of interest. The membrane/intracel-
lular ratio was calculated for each single cell after subtracting 
the background. At least 28 cells per construct were analyzed 
(Table 1).

Determination of Intracellular cAMP Accumulation  
by Radioimmunoassay
After transient transfection of HEK 293 cells, the functional 
properties of each LHCGR construct were tested by measuring the 
accumulated cAMP after stimulation with hLH and hCG in inde-
pendent experiments performed in triplicate. HEK 293 cells were 
seeded in 24-well plates, cultured for 24 h, and stimulated for 1 h at 
37°C with stimulation buffer (DMEM supplemented with 10 mM 
Hepes, 0.5% BSA, 0.25 mM 3-isobutyl-1-methylxanthine) alone, 
or with stimulation buffer containing increasing concentrations of 
hLH (14 000 IU/mg; Sigma-Aldrich) or hCG (5000 IU/mg; Merck 
4Biosciences). The experimental procedure of the cAMP radioim-
munoassay (RIA) was performed as previously described (25, 26).

Homology Models of LHCGR LRRD-Hinge Region 
With Bound Hormones LH and hCG
Structural homology models for the extracellular domains of 
LHCGR were built on the basis of the available FSHR crystal 
structures (27). The procedure for the homologous hTSHR 
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modeling has been already described in detail (28). Disulfide 
bridges between cysteines of cysteine boxes Cb-2 and Cb-3 
were built as suggested by the FSHR crystal structure. The 
sulfated sTyr335 of hFSHR was already known to be manda-
tory for hormone binding and signaling and interacts tightly 
with amino acids of the hormone subunits between the L2-beta 
loop and the L1-alpha loop (27). Both interaction models, 
hLHCGR/hLH and hLHCGR/hCG, were built (Figure 3). For 
the complex with bound hCG, hFSH in the template structure 
of the hFSH–hFSHR complex was substituted with the crystal 
structure of hCG [PDB-code: 1HRP, Ref. (29)]. In the hLH 
model, the alpha and beta-subunit of this hormone structure 
were used as template. Except for sequence 70PPLPQ74 that is 
different in the L2 loop of the beta-subunit, the corresponding 
fragment of another template 3TUV from PDB was used. On the 
basis of the N- and C-terminal fragments of the L2-beta loop 
of the crystal structures of CG (1QFW, 1HRP) and by overlap-
ping superimposition with the elongated conformation of the 
70PPLPQ74 fragment, the homology model of L2-beta loop was 
changed for hLH. Initially, side chains of the homology models 
were subjected to conjugate gradient minimizations [until they 
converged at a termination gradient of 0.05  kcal/(mol*Å)]. 
The AMBER F99 force field was used. Finally, the models were 
minimized without constraints. Structural modifications and 
homology modeling procedures were performed with Sybyl 
X2.0 (Certara, Inc., St. Louis, MI, USA).

Structure Predictions of Exon10
To build a three-dimensional model of the exon10-region as a 
part of the hinge region of LHCGR, we applied four different 
in silico web accessible methods for structure prediction:

We selected I-TASSER (30, 31), a de novo fold recognition 
method, the Robetta (32) protein structure and analysis server, 

TaBle 1 | expression of ec50 values and caMP-max values from caMP accumulation (a) and cell surface expression (B) of each lhcgr construct.

a. caMP accumulation B. cell surface expression

constructs lh stimulation cg stimulation

name ec50 (iU/ml) significance caMPmax ec50 [iU/ml] significance caMPmax Overall expression ratio sD N

(ci 95%) p < 0.05 % Wild type (ci 95%) p < 0.05 % Wild type % lhcgr-wild type Mem/intr

LHCGR-wild type 0.13 (0.08–0.18) 100 0.15 (0.03–0.27) 100 100 2.2 0.4 31
LHCGR-Ala1 0.25 (0.04–1.03) – 87 ± 11 0.13 (0.04–0.37) - 94 ± 11 89 ± 08 2.3 0.8 31
LHCGR-Ala2 0.28 (0.01–0.60) – 83 ± 12 0.04 (0.01–0.09) - 88 ± 12 104 ± 10 2.2 0.6 30
LHCGR-Ala3 0.11 (0.05–0.19) – 106 ± 10 0.05 (0.05–0.10) - 88 ± 16 105 ± 12 2.1 0.6 29
LHCGR-Ala4 0.13 (0.07–0.20) – 101 ± 08 0.06 (0.04–0.10) - 86 ± 16 104 ± 12 2.2 0.5 30
LHCGR-Ala5 0.13 (0.07–0.27) – 106 ± 11 0.08 (0.02–0.31) - 102 ± 10 94 ± 02 2.2 0.4 31
LHCGR-Ala6 0.19 (0.13–0.38) – 104 ± 07 0.13 (0.07–0.24) - 98 ± 08 98 ± 03 2.2 0.6 30
LHCGR-M320P 0.28 (0.18–0.43) – 98 ± 12 0.23 (0.13–0.41) - 99 ± 04 99 ± 04 2.2 0.6 28

LHCGR-Q303P/
E305P

0.24 (0.04–0.89) – 101 ± 10 0.85 (0.71–1.01) *** 98 ± 08 93 ± 03 2.2 0.6 30

LHCGR-delExon10 0.51 (0.13–0.89) ** 97 ± 08 0.18 (0.02–0.62) – 102 ± 10 89 ± 08 2.2 0.4 31

(A) EC50 and cAMP-max values were calculated from concentration-response curves (6 till 11 concentration values as duplicates or triplicates) of each construct and represent 
the mean (confidence interval CI 95%) from a representative experiment of at least two independent experiments. Within each single experimental run, the significance of the 
variance between the EC50 values and between the cAMP-max values of each LHCGR construct and LHCGR-wild type was tested in an ANOVA significance test. Significance 
is expressed as (–)-no significance, *significance (p < 0.05), **high significance (p < 0.005), ***very high significance (p < 0.001). (B) Relative cell surface receptor expression 
was calculated by combining FACS and membrane quantification data of single transfected cells. Calculated values are expressed as percentages of the corresponding singly 
expressed constructs tagged with GFP (FL1). Experiments were independently repeated at least three times, and data are shown ± SD. N, number of enumerated cells for 
membrane quantification.

IntFold2 (33), an integrated protein structure prediction pipeline 
based on fragment assembly and fold recognition, and finally 
RaptorX (34), which excels at modeling without using a large set 
of sequence homologs.

These differing prediction methods were chosen since they 
are the most successful modeling procedures in the “template 
free” category of the CASP7 experiment (35). All four methods 
build the initial protein models from short fragments of known 
structures with similar sequences. The predicted structures were 
visualized in Pymol (PyMOL, version 1.7.4 Schrödinger, LLC) 
(Figure 2B).

statistical analysis
For statistical analysis, PRISM Version 3.00 (GraphPad Software) 
was used. Concentration–response curves of the cAMP accumu-
lation data were obtained by utilizing a four-parameter logit-log 
model. Statistical significance was determined with one-way 
ANOVA (with Dunnett’s multiple comparison test as a post hoc 
test) or unpaired t-tests (with the Welch correction for cases with 
significant variance differences). We analyzed the key parameters 
of the whole dose–response curves (EC50 and maximal activity) 
within each experimental run (see legend of Table 1) considering 
the kind of parameter distribution (logarithmic normal distribu-
tion or Gaussian distribution).

results

First, we modeled the hormone receptor interactions, with 
consideration of (i) the differences between hLH and hCG and 
(ii) the potential structural conditions of the exon10-region of 
LHCGR. Second, we employed site-directed mutagenesis of 
exon10 in LHCGR to study the structure–function relationships 
of interaction of each hormone.
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FigUre 3 | There are differences in the l2-beta loop for hlh and hcg. This gives rise to tighter binding for hLH than for hCG at sTyr331, the second binding 
site at LHCGR. (a) Homology model details of superimposed hormones hLH and hCG extracellularly bound to LRRD and hinge region of LHCGR based on the 
crystal structure of FSH/FSHR [4AY9, Ref. (9)]. (B) Sequence differences in L2-beta loop of these glycoprotein hormones (cjCG: New world monkey Callithrix 
jacchus). Gray: positions representing interacting elements of the sTyr moiety of the LHCGR hinge region. White on black background: differences in prolines 
between FSH and hLH, hCG, and even between hLH (red boxed) and hCG. (c) hLH was modeled based on the hCG structure (PDB: 1HRP, light green). Close up 
view: the L1-alpha loop is similar for hLH (dark blue) and hCG (cyan). The differing conformations of the L2-beta loop for hLH is based on a fragment in the crystal 
structure of Insulysin (3TUV) with identical sequence PPLPQ. The resulting backbone conformation of hLH (red) clearly differs from that in hCG structure (light green). 
The additional proline in hLH (see red box in B) restricts the conformational degree of freedom of βR63 (red) located in the N-terminal flank of the L2-beta loop. 
(D) Detailed view for hLH. The resulting binding cavity for sTyr331 formed by the L1-alpha loop (dark blue surface) and L2-beta loop (red surface) is more 
surrounded in hLH, and is flanked by the βR63 (red) and thus provides an additional H-bond donor for the interaction with the sTyr331 (yellow) of LHCGR compared 
to (e) detailed view for hCG (light green), where βR63 does not interact with sTyr331 and the binding pocket is much wider.
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structural Differences Derived From the 
homology Models of the complexes Between 
hcg/hlhcgr and hlh/hlhcgr With Focus on 
the sTyr Binding site
The binding mode of glycoprotein hormones (GPHs) at GPHRs 
was in principle determined by the crystal structures of the ecto-
domain of FSHR with bound FSH (9).

This structural complex confirmed previous assumptions of a 
primary (high affinity) and a secondary (low affinity) hormone 
binding site. The high affinity binding site at the LRRD has already 
been described in detail (36), but the structure of the low affin-
ity site around the sulfated tyrosine (sTyr) (37) has not yet been 
described for the LHCGR. This point is of specific importance, 
as it has already been shown experimentally that there must be 

differences between the receptor/hormone interactions at this site 
at LHCGR (20). We therefore first analyzed the differences in our 
designed homology models between the LHCGR/LH and LHCGR/
CG complexes in comparison to the FSHR/FSH structure (9).

The GPHs are heterodimers composed of a common alpha-subu-
nit and a variant beta-subunit. The binding site for the common sTyr 
motif of the GPHR’s hinge region (2) is formed by loops L1-alpha 
and L2-beta (Figure 3). The L1-alpha loop residues αN39 and αQ51 
of the common alpha-subunit are thus matching parts of the recep-
tors’ sTyr moiety that interact with all GPHs. However, in the L2-beta 
loop of the beta-subunit, there are a few but significant sequence 
differences between the GPHs. We therefore focus on the structural 
differences in the L2-beta loop in the different GPHs (Figure 3B), 
especially hLH and hCG, as well as their interactions with the 
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respective receptor. The N- and C-terminal flanks of the L2-beta loop 
exhibit some differences among the GPHs. The N-terminal flank of 
this loop provides interactions with negatively charged residue(s) of 
the respective receptor’s hinge region preceding the sTyr and with 
sTyr itself. For the different hormones, this is done by different 
residues in the relevant L2-beta loop. In FSH, the positively charged 
residue R53 and the hydrophobic residue L55 (Figure 3B) are the 
counterparts for the interaction with sTyr 335 (via water molecules) 
of the FSHR crystal structure (PDB: 4AY9, not shown).

Instead of an arginine (R53 in FSH) and leucine (L55 in FSH), 
the sequence of hLH and hCG exhibit at the corresponding posi-
tions: the hydrophobic M61 and the positively charged R63 at 
the N-terminal flank of the L2beta loop (Figure 3B). Thus, this 
opposite order of side chain properties lead to different spatial 
arrangements when hLH and hCG interact with sTyr331 of 
LHCGR, compared when FSH interacts with sTyr335 of FSHR.

Finally, these diverse molecular properties and interactions 
indicate that there are differences between FSHR and hLHCGR 
at this particular hormone/receptor interface.

In addition, the C-terminal flanking sequence of the L2beta 
loop differs between hLH and hCG with respect to specific and 
important prolines (Figure 3B). In contrast to hCG, hLH possesses 
two consecutive prolines (P70, P71). In order to model the different 
L2beta loop of hLH, a search for a structural template for the hLH 
motif 70PPLPQ revealed a fragment in the crystal structure of insuly-
sin (3TUV) with an identical sequence. This structural fragment 
was inserted into the L2beta loop of the hLH interaction model 
(red in Figures 3B–D) instead of the 70PALPQ sequence (green in 
Figures 3C,E of the hCG structure). In this homologous conforma-
tion, the side chain of the second proline P71 of hLH is oriented 
oppositely to A71 of hCG located in the corresponding position. The 
resulting L2-beta loop backbone conformation of our hLH interac-
tion model (red in Figures 3C,D) clearly differs from that in the 
crystal structures of hCG (green in Figures 3C,E). It is noticeable 
that this additional proline in our hLH interaction model is placed in 
a very similar orientation to the corresponding P63 in hFSH/FSHR 
crystal structure. However, due to the two consecutive prolines P70-
P71 in hLH (Figure 3B), this proline restricts the conformational 
degree of freedom of βR63 located in the N-terminal flank of the 
hLH L2-beta loop, instead of the L37 in hFSH (Figure 3B). As a 
consequence, the side chain of βR63 (red stick in Figure 3C, red 
surface in Figure 3D) is oriented toward the L1-alpha loop. This 
in turn results in hLH being in a more bordered binding cavity 
flanked by the βR63 and thus providing additional H-bond donors 
for the interaction with the sTyr331 (Figure 3D). This scenario is 
different in the analogous hCG interaction model, which lacks the 
second proline. Therefore βR63 (green in Figure 3C, green surface 
in Figure 3E) is not forced to orient toward L1-beta loop and does 
not participate in the interaction with sTyr331 (Figure 3E). In turn, 
hCG provides fewer H-bond donors than hLH for the interaction 
with sTyr331, the second hormone binding site of hLHCGR.

homology Models Predict a helical structure 
for the exon10-encoded hinge region of 
the lhcgr
Sequence-based secondary structure predictions suggest a helical 
secondary structure for the exon10-encoded region. An initial 

search for a structural template for the exon10-region of LHCGR 
by sequence similarity revealed a fragment of transferritin’s crystal 
structure (PDB entry 1BG7) with 54% sequence similarity to the 
exon10-encoded amio acid sequence. This structure showed an 
alpha-helical conformation (Figure 2A). For the residues next to 
the exon10-region, an additional helical structure of transferritin 
could be assigned.

Four different methods [I-TASSER (30, 31), Robetta (32), 
IntFOLD2 (33), and RAPTORX (34)] were applied for prediction 
of the tertiary structure of the exon10-region. All four methods 
agreed in predicting two helix segments for the exon10-region as 
well as for the following residues (Figures 2A,B).

Although not identical in every particular position, the four 
resulting models (Figure  2B) share at least similar topolo-
gies for the exon10-region and the following structural parts. 
Comparison of the applied approaches show that helix predic-
tions by different methods match with existing helix structures in 
homologous fragments. Therefore, it is likely that helical entities 
might exist within exon10 and within the directly following 
part of the hinge region of LHCGR prior to the sTyr moiety. 
Comparison of exon10 sequences of LHCGR among mamma-
lian species revealed a sequence similarity/IDENDITY pattern 
“QNfsfSIfeNFSkQCEST.Rkpnnel,” indicating that the identical 
residues (upper case) are matching with the conserved common 
region of the predicted helix.

The IntFold2 fragment matches the experimental data best. The 
initial homologous interaction model for the extracellular domain 
of LHCGR with bound hormones lacked the sequence in the 
middle of the hinge region, as this segment was unresolved in the 
crystal structure of FSH/FSHR (dashed orange line in Figure 3A). 
Thus, we inserted our predicted fragment for this missing part and 
generated an hLH/hLHCGR interaction model of the extracellular 
domain containing a complete hinge region for the first time. This 
resulted in an LHCGR/hLH interaction model, where  –  apart 
from the sTyr331 interaction with the binding pocket between 
alpha and beta-subunits of hLH (insert Figure 4) – the predicted 
exon10-helix and adjacent helix of LHCGR interact with the 
alpha-subunit of the hormone (zoomed in box, Figure 4).

Description of lhcgr Variants for Transient 
single expression and Functional 
characterization
To reveal the structure–function properties of the exon10-
encoded part of the LHCGR hinge region, an alanine-block 
scan was performed. Since polyalanine constructs are prone to 
form helix structures and helix formation was predicted, the 27 
exon10 amino acids (Q290-L316) were systematically substituted 
by five (LHCGR-Ala1–LHCGR-Ala3) and six (LHCGR-Ala4 and 
LHCGR-ALa5) alanines in a row. The predicted adjacent helix 
(construct LHCGR-Ala6) contains an alanine-block substitution 
of the amino acids 318–324 (Figure 5A). This region has been 
described as signaling sensitive (23). Since alanine blocks are 
capable of mimicking a helical structure (38), we introduced 
proline mutations which might disturb potential helical por-
tions, such as the double proline mutant at the position Q303P/
E305P. Additionally, in the wild-type LHCGR, position M320 was 
mutated to proline.
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LHCGR-Ala3 QNFSHSISENAAAAAESTVRKVSNKTLYSSMLAESELSGWDY
LHCGR-Ala4 QNFSHSISENFSKQCAAAAAAVSNKTLYSSMLAESELSGWDY
LHCGR-Ala5 QNFSHSISENFSKQCESTVRKAAAAAAYSSMLAESELSGWDY
LHCGR-Ala6 QNFSHSISENFSKQCESTVRKVSNKTLYAAAAAAAELSGWDY

LHCGR-Q303P/E308P QNFSHSISENFSKPCPSTVRKVSNKTLYSSMLAESELSGWDYY
LHCGR-M320P QNFSHSISENFSKQCESTVRKVSNKTLYSSPLAESELSGWDYY
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A

FigUre 4 | extension of the hinge region in the homology model of the ectodomain of lhcgr with hlh bound to both the leucine-rich-repeat 
domain (lrrD) (wheat) and to this extension of the hinge region (lilac). The two predicted helices within the middle of hinge region, the exon10-helix (orange) 
and the adjacent helix (gray), interact with the alpha-subunit of hLH. The following sulfation group of sTyr331 (yellow) binds in a binding pocket between the 
alpha-subunit (blue) and beta-subunit (green) of hLH. The specific conformation of the hLH beta-subunit in the L2-beta loop caused by 70PPLP (colored in red) that 
differs from hCG (see also fig 2 colored in green) performs more productive H-bond interactions (insert upper right panel) than hCG.
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The Occurrence of a helical structure 
Within exon10 is supported by results of 
Mutagenesis studies
FACS measurements revealed receptor expression of the LHCGR-
alanine-block constructs and the LHCGR-proline mutants, which 
was comparable to that of wild type (Table 1). The membrane/
intracellular ratio of expression of all the constructs was likewise 
similar to that of the wild type (Table 1). Analysis of confocal 
LSM (Figure 5B) confirmed plasma membrane expression of all 
LHCGR constructs.

The signaling properties of LHCGR-alanine-block mutants 
and proline mutants were then tested by cAMP accumulation 
assay. The EC50 and cAMP-max values were estimated from dose–
response curves of hLH and hCG stimulation. All of the LHCGR-
alanine-block mutants 1–6 (Figure  5) show stable cAMP-max 

values and also wild-type-like concentration-response curves 
with similar EC50 values for hLH and hCG stimulation (Table 1).

The LHCGR-delExon10 construct shows wild-type-like 
properties by stimulation with hCG [EC50 0.18 (0.02–0.62) 
IU/ml, Table  1; Figure  6A], however, a substantially right 
shifted concentration-response curve (Figure  6B) was 
observed for stimulation with hLH [EC50 0.51 (0.13–0.89) IU/
ml, Table 1]. This result indicates reduced receptor function with 
hLH and confirms previous observations (8, 9).

However, surprisingly the double proline LHCGR mutant 
Q303P/E305P substituted into exon10 gave exactly the opposite 
response to the deletion construct. The LHCGR-delExon10 con-
struct, lacking exon 10 entirely, affects hLH but not hCG-induced 
function. By contrast, the LH-induced function is not affected by 
LHCGR-Q303P/E305P [EC50 0.24 (0.04–0.89) IU/ml]. However, 
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FigUre 5 | Mutations introduced in the middle of the lgcgr hinge region. (a) Sequence of LHCGR constructs of helix supporting block-wise polyalanine and 
directed helix-disturbing proline mutations within the exon10-helix and adjacent helix. (B) Localization of the GFP fluorescence signals of the LHCGR constructs in 
transiently transfected HEK 293 cells by confocal LSM. The GFP-signals of the fusions (left panel, green) and the Trypan blue signals of the membranes of the same 
cells (central panels, red) were computer-overlayed (right panels, yellow). GFP fluorescence is detectable only for transfected cells, whereas all cells show cell surface 
trypan blue fluorescence. All constructs are expressed on the plasma membrane surface.
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FigUre 6 | concentration-response curves differ for lh and hcg at 
lhcgr-wt and lhcgr-delexon10. It is shown that the mean of 
experimental values of two independent runs normalized on maximal activity. 
(a) Stimulation with hCG shows for the LHCGR-delExon10 construct (dark) 
LHCGR-wild-type (black) like properties; the helix-disturbing double proline 
LHCGR mutant Q303P/E305P substituted into exon10 (light) shows a 
right-shifted concentration-response curve. (B) By contrast, stimulation with 
hLH, shows a substantial right shift for the LHCGR-delExon10 construct 
(dark), whilst the function of the double proline LHCGR mutant Q303P/
E305P is nearly unaffected (light).
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the potency of hCG at this helix-disturbing construct is reduced, 
as is indicated by a right-shifted concentration-response curve 
with an increased EC50 value [EC50 0.85 (0.71–1.01) IU/ml, 
Table 1; Figure 6A]. It is striking that the single proline LHCGR 
mutant M320P shows no significant difference in comparison to 
the wild-type LHCGR for hLH and hCG stimulation (Table 1).

Discussion

The intramolecular activation mechanism at the extracellular side of 
LHCGR remains to be illuminated. Inspired by the crystal structure 
of the ectodomain of the FSHR/FSH complex (27), we recently 
described the specific hormone-hinge region interaction using a 
homology model of the TSH and TSHR complex (28). In this con-
text, we have utilized the crystal structure of the FSHR/FSH complex 
as a template to study structure–function relationships of hormone/
receptor interactions for LHCGR, with focus on the hinge region.

Thus, we initially built the first LHCGR model especially 
for the middle segment of the hinge region, not only since this 
section of 34 residues (I296-Y330) is not resolved in the FSHR 
structure (27), but also because molecular details of the interac-
tions between the respective hormone and the receptor’s hinge 
region evidently differ in this part of the LHCGR. The resulting 

LHCGR models share coincident spatial locations for LRRD 
and a pair of two cysteines from cysteine box 2 (Cb-2) and 3  
(Cb-3) which form cysteine bridges between Cys279–Cys343 and 
Cys280–Cys353 (Figures  1 and 8). This is consistent with the 
reported spatial proximity of Cb-2 and Cb-3, due to the disulfide 
bridges for LHCGR (23) and also for TSHR (39).

The hlh Binding site at a sulfated Tyrosine is 
Different From That of hcg
Apart from hormone binding to the LRRD, the sTyr331 of the 
hinge region is crucial for the second hormone binding site in 
LHCGR. According to the crystal structure of the FSHR/FSH 
(27), the sulfated group of sTyr interacts with a binding cavity 
formed by the loops L1-alpha and L2-beta in the hormone.

In our bound hLH model, a sequence difference between hLH 
and hCG in the L2-beta loop, with a proline P71 in hLH, instead 
of an alanine in hCG, causes a different backbone conformation in 
the L2-beta loop, from that in hCG. Therefore, the orientation of 
βR63 in bound hLH in our LHCGR–hLH interaction model has 
a much greater tendency to interact with the oxygen atom in the 
sulfated group of sTyr331 in the hinge region of LHCGR than with 
bound hCG (Figure 3). Moreover, in our models for the sTyr bind-
ing pocket, βR63 of hLH functions as an additional interaction 
partner for sTyr331 (βR63: red in Figure 3D) that is not present in 
hCG (βR63: green in Figure 3E). This is in good agreement with 
previous experimental data (20), in which the LHCGR mutation 
of Tyr331 to Ala leads to a greater decrease in potency for hLH, by 
more than 2300-fold relative to CG. Therefore, our LHCGR inter-
action models differ between LH and CG and provide a plausible 
explanation as to why hLH binds more tightly to the sTyr binding 
site of LHCGR hinge region than does hCG. Other discrepancies 
between hLH and hCG have been described previously (40).

Moreover, it is also very likely that hCG binds slightly differ-
ently than hLH to the LRRD of LHCGR, due to the additional 
C-terminal tail of the hCG beta-subunit. In that case, the loops 
L1-alpha and L2-beta, and thus also the sTyr binding pocket 
of bound hCG, might be placed closer to the hinge region and 
cause less or different movement of the hinge region prior to helix 
determined by exon10 and in comparison to bound hLH.

In a broader context and with reference to the in vivo situation, 
it might be interesting to note, that in the aforementioned patient 
who suffered from a homozygous exon 10 deletion, LH signaling 
is severely hampered, while hCG action is seemingly normal (9). 
This observation corroborates our functional studies in this man-
uscript. Moreover, studies by others on the LHCG-receptor have 
revealed that, in New world primates, LHCGR naturally lacks exon 
10, due to an aberrant splicing event. As a consequence thereof, 
the interacting hormone system has dramatically changed, with 
completely inactivated LH expression and activated CG system in 
the pituitary. This only can be explained by a selective interaction 
of the LHCGR lacking exon 10 with CG, but not LH (4).

The lhcgr exon 10 Determined region 
and adjacent Parts are Probably in helical 
structure-conformations
For homology modeling of the middle hinge region, including 
exon 10, for LHCGR, we selected four different servers, namely 
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IntFold2, RaptorX, I-TASSER, and Robetta, because in competi-
tion they have proven to be successful methods in predicting fold 
and tertiary structures of medium sized proteins or domains (35). 
As regards their prediction of secondary structural elements, all 
four different approaches coincidently suggest the topology of 
two helical structural entities in exon10 and in the region fol-
lowing shortly after. As regards the tertiary structure predictions, 
the two helices of the four models overlap, but are not exactly 
identical (Figure 2B).

We analyzed this critically by incorporating all four predicted 
structures into the hinge region and selected the IntFOLD2 
prediction that best fit the available data (Figure 4). We regarded 
these cautiously as rough estimates, since the regions – especially 
before exon 10 and after sTyr – might be conformationally flex-
ible. This has already been suggested for the corresponding region 
in the TSHR, where in the hormone-unbound state the region 
prior to sTyr might come close to the agonistic unit proximal to 
Cys-box 2 and 3 located at the pivotal helix of the hinge (28) (see 
Figure 8). Complementary charge distributions on the C-terminal 
end of the LRRD and on the sTyr moiety have been discussed 
for TSHR/FSHR chimeras (22). This supported the view that 
negative charges of the Asp-sTyr-Glu motif might interact with 
particular positive charges located in the LHCGR at LRRD repeat 
10 (R247) and on the pivotal helix of Cb-3 (e.g., R283) and on beta 
strand-12 (K339, R342; see residues, mutations and models also 
at our GPHR information resource: www.SSFA-GPHR.de (41)).

This hypothesis is consistent with the results reported for an 
activating antibody 13B1 of the hinge region of LHCGR (42), 
which interacts via a discontinuous sequence epitope comprising 
the N-terminal end of the exon10-region (Cb-2: 291–298), at 
Cb-3 with the signaling-sensitive tyrosine region (30–33), and 
two further residues (37, 39). It seems feasible that these three 
discontinuous sequence regions will be assembled close together 

as a fully accessible patch on the surface of the hinge region. 
Since this is the case in three of the four models of the exon 10 
fragments (Figure S1 in Supplementary Material), it suggests that 
the hinge region model of LHCGR matches most of the known 
experimental data and might be considered in the future for 
further refinement by experimental validations.

helix supporting and Disturbing Mutations 
confirm suggested structural elements
Since polyalanines are thought to form helical structure [54] and 
to test whether particular amino acids and/or the helical character 
of exon10 are responsible for full activation of LHCGR by hLH, we 
introduced block-wise polyalanine mutants in the exon10-region 
and into the predicted adjacent helical-region (Figure 5). Each 
alanine-block construct showed wild-type behavior in terms of 
signaling properties, characterized by cAMPmax and EC50 values 
(Table 1).

Importantly, the presented polyalanine scan also revealed 
that there is no specific influence of a particular amino acid and 
side-chain in the studied region, but supports the predicted two 
potential helical portions, one in exon10 and a second in the 
proximate following region (Figure 2).

To validate the conclusion that there are two structural 
elements, we next substituted, in contrast to helix supporting 
mutations, prolines into the predicted helical portions of exon10 
(Q303P, E305P) and into the adjacent helix (M320P), in order 
to disturb potential helical structures. The substituted prolines 
in exon10 gave completely opposite results for hLH- and hCG-
induced function than had been found for deletion of exon 10 in 
LHCGR. While in the construct, which lacks exon 10, only hLH 
signaling is affected, the construct with two prolines introduced 
into exon10-helix showed a significant negative effect on signal-
ing only for hCG.

FigUre 7 | sketches of the different hlh and hcg interactions with the middle section of the hinge region with various lhcgr constructs. 
(a) LHCGR-wt: exon10-helix shifts the sulfated sTyr331 into an appropriate spatial position necessary to interact with hLH, while, for hCG, exon10-helix acts as a 
structural interface. (B) LHCGR-delExon10: deletion of exon 10 leads to displacement of the remaining residues beyond the cutting point (red triangle). 
Subsequently sTyr331 abrogates the interaction with hLH, However, the adjacent helix moves into the position previously occupied by the exon 10-helix and thus 
provides a structural interface for activation by hCG; (c) LHCGR-Q303P/E308P double proline mutation within exon10 disturbs the helical structure of exon10-helix 
and interferes with the hCG-induced hinge movement and signaling. However, in this case, the retained length of the middle hinge region allows the appropriate 
adjustment of sTyr331 for proper hLH interaction and signaling.
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FigUre 8 | Differences between hlh bound homology models of lhcgr hinge region and lhcgr hinge-delexon10. For LHCGR, the sulfated sTyr 
(yellow) of the hinge region (lilac) fits deep into the binding pocket of bound hLH between alpha- (surface blue) and beta-subunit (green, red adapted conformation 
for 70PPLP). For clarity, exon10-helix (orange) of LHCGR is cut open and the adjacent helix is omitted (dotted line). By contrast, the deletion in LHCGR-delExon10 
(pale pink) causes displacement of the residues in the middle of the hinge region after the deletion position (red triangle). Subsequently sTyr331 is displaced and thus 
the interaction of the sulfation group with the hLH binding pocket is impaired. However, the deletion of 27 residues in LHCGR-delEx10 (contains exon10-helix) 
causes the polypeptide chain to contract, so that the adjacent helix (gray) is arranged in the same place as the exon10-helix (orange). Upon hormone binding, the 
signal is conveyed via the hinge region (lilac) through a hormone-induced movement of the pivot helix, the disulfide linked agonistic unit and the area prior to the 
exon10-helix, both of which are probably embedded (dashed box) in between the loops of the transmembrane domain of LHCGR.
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These data suggest that the exon10-region serves for the two 
hormones in a different manner. For hLH-induced receptor 
activation, the exon10-helix is necessary as a non-specific spacer-
element to adjust the sulfated Tyr331 into an appropriate location 
and orientation for a compatible H-Bond interaction with hLH. 
For hCG-induced activation, the exon10 determined helix acts 
as a structural interface within the hinge region (Figure  7A). 
Deletion of exon 10 causes shortening of the middle hinge loop, 
which subsequently leads to spatial delocalization of the down-
stream regions. The sequence forming the adjacent helix comes 
into the position of the previous exon10-helix (Figures 7B and 
8). This might explain why hCG can induce signaling, probably 
because the displaced adjacent helix adopts the structural func-
tion of exon10-helix.

The delocalization also leads to displacement of the sulfate 
group of sTyr331, which is then unable to form H-bond inter-
actions with hLH (Figures  7B and 8). This explains why the 
LHCGR-del Exon10 construct affects hLH signaling much more 
strongly, since sulfated Tyr331 is not absolutely essential for 
hCG-induced function, in contrast to the case with hLH. In the 
case of the double proline mutation within exon10, the helical 
structure of exon10-helix is disturbed (Figure 7C); this interferes 
with the correct interaction of the hinge region with hCG and in 
consequence cAMP signaling is impaired. However, the length 
of the loop in the middle of the hinge region is retained, which 

still allows appropriate adjustment of sulfated Tyr331 for proper 
hLH interaction.

From these data, we conclude that LHCGR activation in 
the hinge region by hLH mainly depends on the distance from 
a specific amino acid (hormone in relation to sTyr331), while 
LHCGR function with hCG is closely related to an interaction 
with a structural element within the hinge region.

To summarize, by studying the activation mechanism of 
LHCGR using a naturally occurring pathogenic LHCGR-variant 
with reduced hLH function, we were able to pinpoint a sequence 
difference in the beta2 loop of hLH and hCG and assign two 
different structural features in the exon 10 determined region 
that are together probably responsible for the different modes 
of action of the hormones hLH and hCG within the receptor 
activation process. The exon10 part acts, on the one hand, as 
a non-specific spacer element that adjusts the sensitive residue 
sTyr331 to the appropriate position for triggering the hormone 
hLH. On the other hand, it functions as a structural interface 
for hCG-induced function. This implies that the two hormones 
interact differently with the hinge region. We conclude from pre-
vious work (27, 28) and our study here that the flexible part of the 
hinge region allows movement of the middle hinge region. In the 
hormone-free state, the hinge is arrested, probably by interac-
tions between pivot helix (Cb-2 linked Cb-3) and sTyr vicinity, 
since both areas comprise positions of activating mutations in 
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The relaxin-like RXFP1 ligand–receptor system has important functions in tumor growth
and tissue invasion. Recently, we have identified the secreted protein, CTRP8, a member
of the C1q/tumor necrosis factor-related protein (CTRP) family, as a novel ligand of the
relaxin receptor, RXFP1, with functions in brain cancer. Here, we review the role of CTRP
members in cancers cells with particular emphasis on CTRP8 in glioblastoma.

Keywords: C1q/TNF-related proteins, RXFP1, CTRP8, cancer, brain tumor

Relaxin-Like Peptides and Cognate Receptors in Cancer: A Brief
Overview

Most of the cellular and molecular mechanisms involved in RXFP1-mediated cancer promotion
have been established in breast, thyroid, and prostate cancer models. For more detailed reviews on
relaxin-like peptides and their cognate receptors, the reader is referred to recent excellent reviews (1–
5). Increased expression of relaxin-like peptides has been detected in breast cancer (6, 7). Using the
ERα-positive human breast cancer cell line MCF-7, the group of Mario Bigazzi showed that highly
purified porcine relaxin acted in a dose- and time-dependent manner and promoted proliferation
only with short-term exposure at low concentrations. Long-term exposure over up to 7 days reduced
proliferation and promoted differentiation of MCF-7 cells as demonstrated with up-regulation
of cell surface protein E-cadherin (8, 9). This was accompanied by an increase in inducible NO
synthase activity and intracellularNOproduction (10). In co-culturewithmyoepithelial cells, relaxin
enhanced ultrastructural signs of MCF-7 cell differentiation (11). Exposure to human recombinant
RLN2 for 24 h induced S100A4 expression and increased cell migration in ERα-negativeMDA-MB-
231 triple-negative breast cancer cells, but exposure for more than 3 days downregulated S100A4
levels and reduced cell migration and invasiveness in the same cell model in an RXFP1-dependent
manner, leading to reduced tumor xenograft growth in vivo (12). In an in vitro brain metastasis
model, RLN2 promoted the invasion of RXFP1-expressing MCF-7 human breast cancer cells into
brain tissue slices (13). These data suggest concentration-, time-, and cell context-dependent actions
of relaxin in breast cancer and an essential role for RXFP1 in mediating cell motility and invasion.

Increased expression of RLN2 and RXFP1 was also shown in thyroid cancer. RLN2/RXFP1
signaling promotes thyroid cancer motility and invasiveness. RXFP1 mediated the motility-
enhancing effect of RLN2 via induction of S100A4 in human thyroid carcinoma cells and
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RLN2 enhanced thyroid xenograft angiogenesis (14). RLN2/
RXFP1 signaling increased the expression and secretion of the
lysosomal proteinases, cathepsin-D and cathepsin-L, resulting in
enhanced elastinolytic activity and cell invasion through elastin
matrices (15). RXFP1 activation by RLN2 in human thyroid
cancer cells increased cell migration and extracellular matrix
invasion resulting from enhanced collagenolytic activity through
the upregulation of MMP2 and MT1-MMP/MMP14 and the
increased secretion of MMP2 (16).

In prostate cancer, RLN2/RXFP1 signaling increased cellmigra-
tion and proliferation in androgen-receptor (AR)-dependent
LNCaP and AR-independent PC3 prostate cancer cells (17) and
promoted growth in xenografts derived of androgen-independent
PC3 prostate cancer cells (18). The siRNA-mediated knockdown
of RXFP1 prevented the RLN2-induced increase in prostate can-
cer cell proliferation and invasiveness and induced apoptosis
(19). Injection of siRNA-loaded biodegradable nanoparticles into
xenografts of AR-positive LNCaP cells and AR-negative PC3 cells
downregulated RXFP1 and resulted in a significant reduction
in tumor proliferation and metastasis, implicating RXFP1 as an
important growth and survival factor in prostate cancer (20).
RXFP1-dependent and RLN2-induced proliferation of prostate
carcinoma cells was mediated via a PI3K/Akt signaling pathway.
Simultaneous blocking of protein kinase A (PKA) and NF-κB sig-
naling almost completely abolished RLN2-mediated proliferation
and colony formation in LNCaP cells (21). The extracellular N-
terminal low density lipoprotein A (LDL-A) module of RXFP1
was shown to reduce S100A4, S100P, IGFBP2, and MUC1 expres-
sion and inhibit RXFP1-mediated proliferation and invasion of
PC3 prostate cancer cells. Similar to RXFP1 knockdown in PC3
cells, LDL-A expression reduced pAKTT308 and decreased cell
proliferation and colony formation, suggesting LDL-A to block
activation of endogenous RXFP1 in PC3 cells (22).

The established role of RXFP1 in cancer and other diseases has
prompted attempts to identify specific agonists and antagonists of
RXFP1. A recent large high-throughput screen of small molecule
libraries yielded RXFP1 agonists (23, 24). The challenging search
for RXFP1 antagonists has so far produced few promising candi-
dates. The conversion of the two arginine residues (B13, B17) to
lysines (ΔH2) within the receptor binding domain of the B-chain
of humanRLN2 (“GRELVR”) was shown to reduce bioactivity and
cAMP production in RXFP1-positive myelo-monocytic THP1
cells and RXFP1 expressing HEK293 cells. This ΔH2 mutant
was able to bind to RXFP1 and function as a partial antagonist
to functional RLN2 in an in vivo xenograft model of prostate
cancer (25). In MCF-7 cancer cells and renal myofibroblasts
endogenously expressing relaxin, the ΔH2 analog blocked RXFP1
activation and significantly inhibited RLN2-induced MCF-7 cell
migration (26). When a chemically synthesized ΔH2 antago-
nist, named AT-001, was used alone or in combination with
the anti-mitotic taxane drug docetaxel, xenografts derived from
PC3 androgen-independent prostate cancer cells were reported to
show a dramatic 60 and 90% reduction in growth, respectively
(18). Although these are promising results, the vulnerability of
peptide antagonists to proteolytic attack, size restrictions limiting
their tissue penetration, and the difficulty in chemically synthe-
sizing large amounts of ΔH2 derivatives remains challenge. Our
recent discovery of a novel RXFP1 ligand that is structurally

distinct from relaxin-like peptides may provide new opportuni-
ties for developing RXFP1 antagonists. We identified C1q/tumor
necrosis factor-related protein (CTRP) family member CTRP8
as a novel RXFP1 ligand. Importantly, a small competitor pep-
tide derived from the closely related C1q/tumor necrosis factor-
related factor 6 (CTRP6) was able to disrupt the CTRP8-induced
and RXFP1-dependent migration of human glioma cells (27).
This suggests a novel and as yet poorly understood regula-
tory network in which C1q/tumor necrosis factor-related factors,
depending on the presence of resident secreting cells, can mod-
ulate RXFP1 functions in a tissue-dependent and tumor-specific
manner.

Tissue Distribution and Structure of CTRP
Family Members

The family of complement C1q/tumor necrosis factor-related pro-
teins is composed of adiponectin and 16CTRPmembers (CTRP1-
9, 9B, 10−15). All CTRPs are secreted proteins that get assem-
bled into trimers and higher-order oligomers. In co-expression
systems, CTRPs can also form heteromeric complexes (28–30).
The C-terminal globular domain of CTRPs shares close similarity
with the 3D structure of the complement component C1q and
the tumor necrosis factor (TNF) homology domain present in
members of the TNF family (31–33). Unlike adiponectin, which is
produced at high level and almost exclusively by adipocytes, many
CTRP members have broad expression profiles. CTRP members
were shown to be expressed in various tissues and cell types (28,
34–45). Of particular interest for this review is CTRP8 detected by
PCR in the testis and lung (29).

The structure of CTRPs is highly conserved during vertebrate
evolution as determined by sequence comparison of orthologous
CTRPs from zebrafish, frog, mouse, and human genomes (46).
All CTRPs share a common protein structure with adiponectin,
with CTRP9 showing the highest homology (54%) in the globular
C1q domain to adiponectin (30). Ctrp8 and Ctrp9B are both
pseudogenes in the mouse genome (29). The structure of CTRPs
consists of four distinct domains (Figure 1A). The N-terminal
signal peptide facilitates protein secretion and is followed by a
short variable region. The variable region contains one or more
conserved cysteine (Cys) residues, which create disulfide bonds
to facilitate higher-order multimeric protein assembly and/or
secretion (28, 30, 46–49). Next, a collagen-like domain contains a
variable number of Gly-X–Y (where X and Y indicate any amino
acid; often Y is a proline or hydroxyproline) repeats, which are
essential for the formation of a left-handed coiled coil structure
composed of three collagen-like chains. This collagen triple helix
acts as a stabilizing stalk for the formation of CTRP trimers
(Figure 1B) (32). Located at the C-terminus of each collagen-
like domain is a jelly-roll β-sandwich folded globular domain with
3D structural homology to complement component C1q and the
tumor necrosis factor ligand family, hence the name CTRP (28,
45, 46, 50). Connected by the collagenous stalk, three such C1q-
like protomers form the globular head typical for CTRPmembers.
The collagen domain not only facilitates trimer formation but
also contributes to multimerization of CTRPs into bouquet-like
quaternary structures (Figure 1C) (32, 51). CTRP4 is unique
among the secreted members of the C1qTNF family as it lacks
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FIGURE 1 | Structure of CTRP family members. (A) Domain structure of a
single CTRP protomer, which is composed of a signal peptide (SP), variable
region (V), collagen domain (Col – Gly-X-Y), and globular C1q/TNF domain;
(B) CTRP are secreted and can form homotrimers; (C) trimers can form
higher-order multimeric 3D structures composed of multiple trimers.

the collagen domain but, instead, contains two tandem globular
C1q domains connected by a short non-conserved 18 amino
acid linker. CTRP4 protein is encoded by a single exon and its
globular C1q domain shows highest homology (44%) to the CTRP
member C1qDC1/Caprin-2 (52). The crystal structure of CTRP5
identified residues Y152, F230, andV232 within the globular domain
as important contributors to the trimer formation and these
residues are highly conserved among C1q family proteins (29, 33,
51). Exceptions are CTRP1Y230 and CTRP6H230 and CTRP8H230

where the phenylalanine residue F230 of CTRP5 is replaced by
less hydrophobic His (H) or Tyr (Y) residues, suggesting poten-
tial differences in trimerization and complex stability (51). This
finding is intriguing for three reasons: (i) phylogenetic analysis
of currently known C1q globular domains of C1q-like family
members identified a close relationship of CTRP members 1, 6,
and 8 (33, 53); (ii) CTRP1 and CTRP8 share an identical peptide
sequence identified as a binding motif for the relaxin receptor
RXFP1 (54, 55), and (iii) we described CTRP8 as a novel ligand
of RXFP1 (27).

CTRPs are subjected to posttranslational modifications.
This includes N-linked glycan modifications for CTRP1,
CTRP2, CTRP6, CTRP12, and CTRP15, whereas CTRP3,
CTRP5, CTRP9, CTRP10, CTRP11, and CTRP13 contain other
carbohydrate moieties (28, 30, 46–48, 50, 53, 56, 57). However,

N-glycanase-sensitive glycosylation was not detected for CTRP8
(29). Also, bacterially produced (non-glycosylated) recombinant
proteins, CTRP1, CTRP6, and CTRP8, retain bioactivity,
suggesting that posttranslational glycan modifications are not
required for some of their biological effects. Adiponectin, CTRP2,
CTRP3, CTRP4, CTRP7, CTRP9, CTRP10 contain Ca2+ binding
sites, whereas CTRP1, CTRP5, CTRP6, and CTRP8 lack a Ca2+-
binding element (32, 49, 51). Ca2+ ions were reported to promote
stable trimer formation and oligomerization of adiponectin
(58, 59).

CTRP Members in Cancer

Research on the role of C1q-TNF-related proteins in cancer
is an emerging field and so far CTRP3, CTRP4, and CTRP6
have been associated with tumor-promoting effects. Secreted
CTRP3/cartducin plays a role in cartilage development. Ele-
vated protein expression of CTRP3/cartducin in mouse osteosar-
coma cell lines was shown to promote cell proliferation in a
dose-dependent manner. The MAPK/ERK kinase 1/2 (MEK1/2)
inhibitor, U0126, prevented the mitogenic effect indicating that
CTRP3 induces cell proliferation via ERK1/2-signaling (60).
CTRP3 was also shown to induce migration of mouse endothe-
lial cells in an ERK1/2-dependent manner (39) suggesting a
role in angiogenesis. The receptor mediating the effects of
CTRP3/cartducin is unknown. HeLa and HEK293 cells were used
to show that CTRP4 functions as tumor-promoting inflamma-
tory regulator. CTRP4 overexpression increased NFκB activa-
tion in a dose-dependent manner and induced transcriptional
activity of the NFκB target TNF-α. In human HepG2 hep-
atocarcinoma cells, secreted CTRP4 and recombinant CTRP4
caused enhanced STAT3Tyr705 phosphorylation and increased
IL6 and TNF-α secretion dose-dependently with a maximal
stimulation at 4 ng/ml. Interestingly, increased expression of
CTRP4 upon IL-6 exposure indicated a positive feedback regu-
lation in cancer cells (61). Immunoreactive CTRP6 was detected
in human hepatocellular carcinoma tissue specimens and was
localized to hepatocellular carcinoma cells and to endothe-
lial cells within the tumor. Recombinant CTRP6 increased
Akt phosphorylation in isolated liver endothelial cells and this
signaling was mediated via the C-terminal C1q domain of
CTRP6. Indeed, HepG2 xenografts with exogenous expression
of CTRP6 showed increased tumor angiogenesis and reduced
necrosis (62).

CTRP8 is a Novel RXFP1 Ligand in
Glioblastoma

CTRP8 is evolutionarily highly conserved and secreted as a
homotrimer or heterotrimer with the C1qTNF family mem-
ber C1q-related factor (CRF) (63); the latter also forms het-
erotrimers with CTRP1, CTRP9, and CTRP10 when co-expressed
in cells (29). Until recently, CTRP8 was the least understood
C1q-TNF-related protein member, in part, because Ctrp8 is a
pseudogene in mice and PCR analysis revealed restricted expres-
sion of CTRP8 in human lung and testis (29). We recently
identified CTRP8 as a novel ligand for RXFP1 in human
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glioblastoma cells (27).Humanpatient-derived glioblastoma (GB)
cells and established GB cell lines express RXFP1, but lack the
classical RXFP1 ligands, RLN1 and RLN2. We demonstrated the
expression and secretion of CTRP8 in patient GB cells and dis-
covered that RXFP1 serves as a novel receptor for CTRP8 in
GB. CTRP8 and RLN2, as well as two biologically active pep-
tides homologous to a peptide sequence within the N-terminal
region of the C1q globular domain of human CTRP8, P59, and
P74 (54, 55), activated RXFP1 by inducing cAMP signaling and
PI3K–PKCζ/PKCδ–ERK1/2 signaling in GB cells. The RXFP1-
negative U251 GB cell line and HEK293 cells devoid of RXFP1
with exogenous expression of the related receptor RXFP2 did
not respond with increased cAMP levels demonstrating a spe-
cific RXFP1-mediated signaling. Furthermore, the increased cell
motility by CTRP8, P59, and P74 showed a dose–response and
was critically dependent on RXFP1. RXFP1 activation by CTRP8,
P59, and P74 increased cathepsin-B protein production and secre-
tion, which mediated the RXFP1-induced enhanced GB cell inva-
siveness through laminin matrices. Specific inhibitors for PKCζ,
PKCδ, PI3K, and cathepsin-B and RNAi-mediated RXFP1 knock-
down abolished GB invasiveness. We demonstrated the inter-
action between RXFP1 and CTRP8 by co-immunoprecipitation
of epitope-tagged HA-RXFP1 and CTRP8-His in HEK293 cells.
Our structural simulation studies predicted that the amino acid
sequence “YAAFSVG” present in the P59 and P74 peptides and
located within the N-terminal C1q globular domain of CTRP8
were likely interacting with the leucine-rich repeats (LRR) 7 and
8 of RXFP1 (27). We dismissed the possibility of the formation of
CTRP8/CRF heterotrimers because GB cells were devoid of the
CTRP8 hetero-oligomerization partner CRF (29). Importantly,
competitive binding assays demonstrated that a small peptide
derived from the N-terminal region of the globular C1q domain
of human CTRP6 successfully blocked the PI3K–PKCζ/PKCδ-
mediated increase in cathepsin B secretion and cell motility (27).

Summary and Prospective Goals

The discovery of CTRP8 as RXFP1 agonist in brain cancer is novel
for a number of reasons: (i) RXFP1 is the first receptor to be
identified for any of the CTRP members; (ii) CTRP8 is the first
RXFP1 ligand, which is not structurally related to the relaxin-
like family; (iii) the CTRP8–RXFP1 ligand–receptor system is a
novel player in brain tumor; (iv) our discovery of a competitor
peptide resembling a linear peptide sequence at the transition
from the collagen- to the C1q globular domain of CTRP6, a
close relative of CTRP8, provides first intriguing evidence for a
regulatory network of CTRP factors modulating RXFP1 functions
in a tissue-specific context. These findings are the exciting start of
an emerging field in CTRP and RXFP1 research with the potential
to linkmetabolic and immunological functions of CTRPmembers
withmolecularmechanisms in cancer (45). Future cancer research
activities will elucidate the molecular signaling mechanisms and
functional relevance of CTRP-derived RXFP1 regulation in a
variety of tumors. The use of CTRP-based peptides capable of
blocking CTRP8-mediated actions is currently tested for potential
clinical applications.
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Leucine-rich repeat-containing G protein-coupled receptors were identified by the unique
nature of their long leucine-rich repeat extracellular domains. Distinct from classical G
protein-coupled receptors which act via G proteins, LGR4 functions mainly through
Wnt/β-catenin signaling to regulate cell proliferation, differentiation, and adult stem cell
homeostasis. LGR4 is widely expressed in tissues ranging from the reproductive system,
urinary system, sensory organs, digestive system, and the central nervous system,
indicating LGR4 may have multiple functions in development. Here, we focus on the
digestive system by reviewing its effects on crypt cells differentiation and stem cells
maintenance, which are important for cell regeneration after injury. Through effects on
Wnt/β-catenin signaling and cell proliferation, LGR4 and its endogenous ligands, R-
spondins, are involved in colon tumorigenesis. LGR4 also contributes to regulation of
energy metabolism, including food intake, energy expenditure, and lipid metabolism, as
well as pancreatic β-cell proliferation and insulin secretion. This review summarizes the
identification of LGR4, its endogenous ligand, ligand–receptor binding and intracellular
signaling. Physiological functions include intestinal development and energy metabolism.
The potential effects of LGR4 and its ligand in the treatment of inflammatory bowel
disease, chemoradiotherapy-induced gut damage, colorectal cancer, and diabetes are
also discussed.

Keywords: LGR4, R-spondin, digestive system, energy metabolism, diabetes, colon cancer

Introduction

Leucine-rich repeat-containing G protein-coupled receptors (LGRs) are a distinct group of highly
conserved proteins of the GPCRs family, characterized by a large extracellular domain (ectodomain)
that harbors multiple copies of leucine-rich repeats (LRRs) (1). LRRs represent amphipathic
sequences with leucine as the predominant hydrophobic residue and are important for pro-
tein–protein interaction (2). The packing of similar repeats allows the formation of a specific
hydrogen bond network between neighboring repeats to form a unique tertiary structure (3). LRRs
are involved in ligand binding (4), connected via a cysteine-rich region to a seven-transmembrane
(TM) domain responsible for heterotrimeric G protein activation (5).

LGRs are divided into three subgroups (groupsA–C) (1, 6). GroupA receptors include FSH recep-
tor (LGR1), LH receptor (LGR2), and TSH receptor (LGR3), which recognize follicle-stimulating
hormone (FSH), luteinizing hormone (LH), and thyroid-stimulating hormone (TSH), respectively
(7, 8). These receptors contain seven to nine LRRs in their ectodomains and long hinge regions
connecting the LRR domains to TM domains. Group C LGRs have similar number of LRRs but
contain a low-density lipoprotein receptor class A domain motif at the N terminus and a short
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hinge region between the LRR domain and the 7TM domain.
Group C LGRs include RXFP receptor 1 (LGR7) and RXFP recep-
tor 2 (LGR8), recognizing relaxin and INSL3 (insulin-like peptide
3), respectively (1, 7, 8). The group B receptors include LGR4,
LGR5, and LGR6, which are characterized by a long ectodomain
containing 17 LRR repeats (6, 8) flanked by the N-terminal
LRRNT region and the C-terminal LRRCT region (8). Group B
receptors play crucial roles in embryonic development and are
involved in several types of cancer (9). They have also drawn
significant attention recently because of their roles in adult stem
cells, especially when LGR5 and LGR6were identified as stem cells
markers in multiple adult tissues (10–12).

The ligands of LGR4-6 remained unidentified for a prolonged
time. In 2011, the secreted R-spondin proteins (Rspo1-4) were
identified as the endogenous ligands for these receptors to regulate
cell proliferation, differentiation, and adult stem cell maintenance
through the activation of Wnt signaling pathways (13, 14). Details
on the binding between R-spondins and LGRs, and the subse-
quent intracellular signaling pathways are still under investiga-
tion. Recent studies have also revealed a relationship between
LGR4 and energy metabolism in areas ranging from food intake
and obesity to lipid metabolism.

Identification of LGR4

In 1998, based on the knowledge that large G protein-coupled
seven-TM receptors for LH, FSH, and TSH contain LRRs which
interact with glycoprotein ligands, and the theory that the puta-
tive glycoprotein hormone receptor sequences are conserved in
Drosophila and sea anemone (15, 16), human sequences related to
the sea anemone and Drosophila glycoprotein hormone receptors
(15, 16) were sought using expression sequence tags. Fragments
of two new mammalian receptors in the subfamily of leucine-
rich repeat-containing G protein-coupled receptors (LGR) were
identified. Adding to the three known LGRs, these two new
mammalian receptors were named LGR4 and LGR5 (17).

The full-length cDNAs for these novel receptors were isolated
using RT-PCR and repeated screening of sub-libraries from rat
ovary or human placenta enriched with each receptor cDNA.
LGR4 cDNA from rat ovary consists of 3,504 base pairs with a
predicted open reading frame (ORF) of 951 amino acids, whereas
LGR5 from human placenta has 4,208 base pairs with a 907 amino
acids ORF (17). Similar to three known glycoprotein hormone
(LH, FSH, and TSH) receptors, LGR4 and LGR5 are characterized
by multiple LRR sequences. The ectodomains of LGR4 and LGR5
are composed of 17 LRR motifs, each 22–24 amino acids in length
(17). In contrast to the restricted tissue expression pattern of
known gonadotropin and TSH receptors, these new receptors
were found in multiple tissues (17).

Identification of this expanding family of LGRs promoted stud-
ies to identify putative ligands and to unravel the evolutionary
origin of proteins in this subfamily of receptors.

Ligands of LGR4

The R-spondin (Rspo) protein family is a group of four secreted
proteins (Rspo1-4) that were isolated as strong potentiators of
Wnt/β-catenin signaling (18–20). These proteins share 40–60%

identity between each other and a similar structure with a
cysteine-rich furin-like domain preceding a thrombospondin-like
domain (21, 22). Despite their similarity, the four known Rspos
serve in different developmental events. Rspo1 regulates sexual
development; Rspo2 modulates development of limbs, lungs, and
hair follicles; Rspo3 is involved in placenta development; and
Rspo4 affects nail development (23).

Beginning in 2011, several groups have demonstrated that R-
spondins (Rspo 1-4) are endogenous ligands for LGR4 and LGR5.
A fusion gene construct (mRspo1-Fc), encoding the mature form
of mouse Rspo1 and the Fc fragment of mouse IgG2a, is biologi-
cally active (24). When incubating cells expressing LGR4 or LGR5
withmRspo1-Fc at 4°C (to prevent internalization), a strong signal
indicative of binding was observed on the cell surface. Whole-
cell competition binding assay showed that recombinant Rspo1-4
could compete with mRspo1-Fc for binding to LGR4 and LGR5
(25). The results of binding analyses indicate that Rspo1-4 can
bind to LGR4 and LGR5 with Rspo2 having the highest affinity
to both receptors. Using β-catenin-responsive reporter assay (26),
cells transfectedwith LGR4 or LGR5displayed a dramatic increase
in the potencies of Rspo1-4, ranging from 10- to 1,000-fold, on
Wnt/β-catenin signaling in the presence of exogenousWnt3a (25).

Experiments using an unbiased screening strategy have also
identified LGR4 and LGR5 as receptors of Rspo proteins (27).
Depletion of LGR4 completely abolishes Rspo1 signaling, while
overexpression of LGR4 potentiates Rspo1-4 signaling. Rspo1
interacts with the extracellular domain of LGR4 and LGR5 (27).
Further, Rspo1 does not induce coupling between LGR4 and
heterotrimeric G proteins, suggesting that LGR4 transmits Rspo
signaling through a novel undefined mechanism independent of
G protein signaling. This likely contributes to the relatively long
time taken to deorphanize LGR4. This study further supports
the conclusion that Rspo potentiates Wnt/β-catenin signaling
through LGR4 and LGR5, which is described in detail in Section
“Intracellular Signaling of LGR4.”

Binding of R-Spondins to LGR4/5

The extracelluar domain (ECD) of LGR4 exhibits a twisted
horseshoe-like structure. Rspo1 adopts a flat and fold architecture
and is bound in the concave surface of LGR4 through electro-
static and hydrophobic interactions (28). All the Rspo1-binding
residues are conserved in LGR4-6, suggesting that LGR4-6 bind
R-spondins through an identical surface. R-spondin proteins have
the same structural organization. They have two adjacent furin-
like domains (FU1 and FU2) at the amino terminus, and a throm-
bospondin (TSP) domain close to the carboxyl terminus (29)
(Figure 1). Sequence similarities of furin-like domains and TSP
domain of four Rspo proteins from different species are high,
for example, the identities of Rspo1 protein sequences between
human and mouse is 94% (from Pubmed Blast), suggesting R-
spondin proteins have conserved functions. A fragment contain-
ing two furin-like domains of R-spondin is sufficient to activate
Wnt signaling, and both furin-like domains are required for the
signaling activity of R-spondin (18, 30). In addition to LGR4/5,
various membrane proteins have been reported to bind to R-
spondin, including Wnt receptors Frizzled (20) and LRP6 (20,
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FIGURE 1 | Rspondin1-LGR4 linear sructure illustration. Linear structure of
Rspondin1 and LGR4-ECD. Rspondin1 consists of a signal peptide (SP), two
adjacent cysteine-rich furin-like domains (FU1/2), a common thrombospondin
(TSP-1) motif and a basic amino acid-rich (BR) domain. LGR4 ectodomain

(LGR4-ECD) are characterized by 17 leucine-rich repeats (LRRs) flanked by the
N-terminal LRRNT region and the C-terminal LRRCT region. The main
interacting residues of LGR4-ECD are LRR3-9 [refer to Ref. (4, 5) for detailed
information].

31), Kremen (32), Syndecan 4 (33), and membrane E3 ubiquitin
ligases ZNRF3/RNF43 (34). For example, Xie et al. reported that
mutation of furin-like domain 1 (FU1) (R66A orQ71A) abolished
the interaction between Rspo1 and ZNRF3, without affecting the
interaction between Rspo1 and LGR4, while mutation of two
residues of the furin-like domain 2 (FU2) (F106A or F110A)
blocked the interaction between Rspo1 and LGR4, without affect-
ing the interaction between Rspo1 and ZNRF3 (29). These results
suggest that Rspo1 binds to ZNRF3 and LGR4 through distinct
domains: the FU1 domain is involved in ZNRF3 binding, whereas
the FU2 domain is involved in LGR4 binding. In the absence of
Rspo, ZNRF3/RNF43 ubiquitinates the FZD receptors for degra-
dation, resulting in low Wnt signaling activity. Rspo1 can bind to
bothZNRF3 and LGR4 to induce their dimerization (34). In the R-
spondin-LGR4–ZNRF3 complex, LGR4 serves as the engagement
receptor to recruit R-spondin to ZNRF3. ZNRF3 serves as the
effector receptor. Inhibition of ZNRF3 by R-spondin potentiates
Wnt signaling. The R-spondin-LGR4/5–ZNRF3/RNF43 complex
represents a fascinating example of a secreted protein regulating
receptor turnover by targetingmembrane E3 ubiquitin ligases (29)
(Figure 2).

Intracellular Signaling of LGR4

Studies have suggested that interaction betweenRspo proteins and
LGR4potentiates canonicalWnt/β-catenin signaling, but does not
activate Gi, Gs, or Gq pathways. Structurally, LGR4 and LGR5 are
quite similar to other LRR-containing GPCRs which are coupled
to heterotrimericG protein signaling by ligand binding. The intra-
cellular signaling pathway by which Rspo and LGR4 potentiate
Wnt/β-catenin signaling remains largely unknown.

By examining proteins co-immunoprecipitated with LGR4,
Kendra et al. identified IQGAP1 and IQGAP3 as potential
candidates that could mediate the intracellular signaling of
Rspo–LGR4 to the Wnt signalosome (35). Interaction between
LGR4 and IQGAP1 occurs between the 7TM domain of LGR4
and the rasGAP-related domain (GRD) of IQGAP1. Stimula-
tion of LGR4 by Rspos increases the affinity of IQGAP1 to

FIGURE 2 | LGR4-Wnt/βββ-catenin signaling pathway. In the absence of
Rspos, membrane E3 ubiquitin ligases ZNRF3/RNF43 ubiquitinates the
(Frizzled) FZD receptor for degradation, Wnt signaling activity is blunted.
Cytoplasmic β-catenin is degradated by the β-catenin destruction complex,
leading to no β-catenin complex formation with T-cell transcription factor (Tcf)
and subsequent silence in active transcriptional response. In the presence of
Rspos, simultaneous binding of LGR4 and ZNRF3 inhibits the ubiquitination of
FZD receptor, meanwhile, LGR4 recruits IQGAP1 and increases its affinity to
DVL, leading to the formation of supercomplex with Wnt signalosome. This
allows β-catenin accumulation in cytoplasm, followed by translocation into the
nucleus and activation of TCF target genes. LGR4, leucine-rich
repeat-containing G protein-coupled receptors 4; ZNRF3, zinc and ring finger
3; FZD, Frizzled class receptor; Rspos, R-spondins; LRP5/6, low-density
lipoprotein receptor-related protein 5/6; Ubi, ubiquitination; DVL, disheveled.

disheveled (DVL), leading to the formation of a supercomplex
between Rspo–LGR4 and the Wnt signalosome (35). Potentia-
tion of Wnt signaling requires the MEK1/2-binding domain of
IQGAP1, which provides the hint that LGR4-bound IQGAP1
brings in MEK1/2 to phosphorylate LRP6. In this configuration,
IQGAP1 not only engages MEK1/2 to phosphorylate LRP5/6
but significantly enhance canonical Wnt signaling. IQGAP1
also recruits actin-polymerization complexes through binding to
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neural Wiskott–Aldrich syndrome protein (N-WASP) and mDia1
to coordinate actin dynamics (35), which is critical to the control
of cell adhesion and migration (36–38). This dual-mechanism
model provides an explanation for the pleiotropic functions of
Rspo–LGR4 signaling in normal and cancer development, par-
ticularly for the crucial role of LGR4 in tubule elongation and
branching in multiple organs (Figure 2).

Other signaling pathways have also been reported for LGR4.
LGR4 (GPR48) participates in the development of the male
epididymis and efferent ducts through regulation of ERalpha
expression via the cAMP/PKA signaling pathway (39). LGR4
(GPR48) knockout suppressed ATF4, a key transcription fac-
tor in erythropoiesis, in midgestation fetal livers through the
cAMP–PKA–CREB pathway, suggesting that GPR48 regulates
erythropoiesis through ATF4 (40).

LGR4 in Intestinal Development

Expression in Stem Cells
A common feature of the LGR4/5/6 receptors is their expression
in distinct types of adult stem cells. LGR5 is a marker for resident
stem cells in Wnt-dependent compartments, including the small
intestine, colon, stomach, and hair follicles (9). LGR6 serves as a
marker of multipotent stem cells in the epidermis (12). LGR4 is
widely expressed in proliferating cells (41).

The expression of LGR4 was investigated using an animal
model with disrupted LGR4 gene by a trap vector carrying
two biological markers, β-geo (a fusion between bacterial β-
galactosidase and neomycin phosphotransferase) and a placental
alkaline phosphatase (PLAP) (42). Due to the perinatal lethality of
homozygosity for this insertion, LacZ and PLAP activity patterns
in heterozygous mice were investigated. In embryonic day (E) 14
embryos, LGR4was strongly labeled in eyes, tongue surface, olfac-
tory epithelium and vomeronasal organ, ribs, esophagus, cartilage
condensation of vertebrae, umbilical cord, medulla oblongata,
pons, and Rathke’s pouch (41). In adults, strong LacZ staining
signals were detected in cartilage, kidney, adrenal gland, salivary
glands, and testis, while lower intensity was observed in a wide
range of organs (41).

LGR4 in Digestive System
At E15 and at birth, LacZ activity was detected in the pseudo-
stratified epithelium and intervillus progenitors, respectively. In
adults, epithelial expression of LGR4 was found along the crypts,
but not in the villi by using X-gal staining and in situ hybridization
(41). In the crypts, LGR4 expression was found above the Paneth-
cell zone, in the transit-amplifying (TA) cell region, in crypt
basal columnar cells, and co-localized with some Paneth cells.
Outside the epithelium, LGR4 is expressed in the mesenchyme
and smooth-muscle layers, intestinal subepithelial myofibroblasts
and enteric neurons. A similar expression patternwas found in the
duodenum and colon (41).

Another study has validated the presence of LGR4 immunore-
activity in Paneth cells whichwere distinguished by large secretory
granules in the cytoplasm (43). Similar staining was also noted in
crypt stem cells which are sandwiched between Paneth cells (44).
No significant staining of LGR4 was found beyond the cells in

the crypts. The intense LGR4 positive staining signal observed in
Paneth cells and stem cells in the crypt region of mouse intestine
were consistent with that of LGR4mRNAdistribution determined
using lac-Z alleles (45). In the mouse colon, only diffuse, weak
LGR4 immunoreactivity in the cytoplasm was found in all cells
from the base to the epithelial surface, with slightly stronger
staining at the surface. No distinct staining was found in stem cells
located at the crypt base in colon (43).

Intense LGR4 immunoreactivity was also found in the pancre-
atic isletswith no staining in acinar cells. Co-staining of anti-LGR4
and anti-insulin antibody onmouse pancreas sections showed that
LGR4was expressed in all β-cells (43).Moreover, among the three
LGR receptors, only LGR4 is expressed in the pancreas based on
the analysis of EST data and Northern blotting (46). The intense
staining of LGR4 in the islets strongly suggests that LGR4mediates
the effects of its endogenous ligands in the pancreas.

LGR4 in Intestinal Development
Intestinal crypts contain LGR5+ stem cells and their TA daughter
cells, as well as terminally differentiated Paneth cells. Cells exiting
crypts terminally differentiate into enterocytes, goblet cells, M-
cells, Tuft cells, and enteroendocrine cells, and move up the flanks
of the villi to undergo apoptosis upon reaching the villus tips (47).
Paneth cells escape the crypt–villus flow by migrating to crypt
bottoms where they persist for several weeks (48).

Mice homozygous for the gene trap LacZ knock-in allele,
referred to as “Lgr4 knockout”, displayed a hypomorphic pheno-
type with intrauterine growth retardation and perinatal lethality.
Heterozygous mice with a LacZ gene trap knocked in the Lgr4
locus (42) have also been used. Although the timing of crypt
development was normal in Lgr4-knockout mice, reduction in the
crypt depth and epithelial cell proliferation were obvious from
postnatal day (P) 15 (49). Differentiation of absorptive, enteroen-
docrine, and goblet-cell lineages was not modified significantly.
However, defects in Paneth-cell differentiation were observed at
all postnatal stages, with reduction in Paneth-cell number at P21
and decreased expression of the terminal differentiation markers
P-lyzozyme and cryptdin 4 (49), suggesting a key role for LGR4
in postnatal epithelial cell proliferation and terminal Paneth-cell
differentiation.

Ex vivo experiments have demonstrated that LGR4 is required
for the maintenance of crypt stem cells. Crypts cultured from
P15 wild-type or heterozygous mice differentiated into multi-
fingered organoids after 3 days in culture. After generation
of hollow spheres containing mainly stem and TA cells (day
0.5–1), structures grown from P15 Lgr4-knockout intestine
did not increase further in size and became filled with cellular
material (days 1.5–2) (49). Lgr4-knockout organoids started to
disaggregate between days 2 and 3, and died before day 7. The
same phenotype was observed in Lgr4-knockout progenitors
isolated from newborn mice, when fully differentiated Paneth
cells are not yet present (49).

LGR4 in Energy Metabolism

The presence of LGR4 in hypothalamic energy homeostatic
areas and its co-localization with key energy homeostatic neu-
rons suggests that it may contribute to the regulation of energy
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homeostasis. In situ hybridization revealed that LGR4 mRNA
is highly expressed in the cortex, hippocampus, amygdala, and
the hypothalamus (41). In the cortex, LGR4 mRNA is expressed
in layers II and III. In the hippocampus, LGR4 is expressed
in CA1, CA2, CA3, and the dentate gyrus (DG).The habenu-
lar nuclei (Hbs) of the epithalamus also express LGR4. In the
amygdala, LGR4 mRNA is expressed with high levels in the
medial amygdaloid nucleus, posteroventral nucleus, and basal
lateral amygdaloid nucleus (41). In the hypothalamus, LGR4 is
expressed in the ventromedial hypothalamus (VMH), the arcu-
ate nucleus (ARC), median eminence (ME), and the ependymo-
cytes lining the third ventricle (50). The ME and ependymo-
cytes have the highest levels of LGR4 expression, followed by
VMH and ARC. The expression pattern of LGR4 in the VMH
overlaps that of brain-derived neurotrophic factor (BDNF) (51).
Double in situ hybridization showed that in the ARC, LGR4 is
expressed by most neuropeptide Y (NPY) neurons and proop-
iomelanocortin (POMC) neurons. NPY neurons express higher
levels of LGR4 compared with POMC neurons in the ARC. All
POMC neurons in the ME express LGR4 at the highest lev-
els. In the VMH, LGR4 is expressed by the majority of BDNF
neurons (50).

Rspo1 and Rspo3, ligands of LGR4, are expressed in hypotha-
lamic energy homeostatic areas (50). Their levels were down-
regulated by fasting and up-regulated by the satiety factor insulin,
indicating that they might be involved in the regulation of
energy homeostasis as anorexigenic factors. The inhibition of food
intake observed after intracerebroventricular injection ofRspo1 or
Rspo3 support this concept (50). Rspo1 ismore potent than Rspo3
in inhibiting food intake. Consistent with this observation, Rspo1
binds to LGR4 with an affinity higher than Rspo3 (25).

GPR48 (LGR4) is critical in development, and Gpr48 mutant
mice display early neonatal lethality. Wang et al. have estab-
lished the Gpr48 (LGR4) hypomorphic mutant mice by microin-
jecting gene trap-mutated Gpr48 ES cells into C57BL/6 blas-
tocysts. The insertion of the trap vector into intron 1 of the
Gpr48 gene resulted in approximately 90% knockdown efficiency
in the kidney and adrenal gland of adult LGR4 mutant mice.
Approximate half of LGR4 mutant newborns died within 28 h
after birth, but no further deaths occurred in the following 20 h
(52). Studies of the Lgr4-knockout mice have revealed a critical
role of LGR4 in lipid metabolism. Relative to wild-type mice
fed normal chow diet, both male and female Lgr4 mutant mice
exhibited decreased body weight and body fat content, includ-
ing epididymal white adipose tissue (eWAT) and inguinal WAT
(iWAT), whereas brown adipose tissue (BAT) content remained
unaltered (53). Consistent with the lean phenotype, Lgr4 mutant
mice showed improved glucose tolerance and reduced fasting total
cholesterol levels. When challenged with a high-fat diet (HFD),
both male and female Lgr4 mutant mice showed a resistance to
HFD-induced body weight gain, with improved glucose tolerance
and insulin sensitivity (53). Higher O2 consumption, CO2 pro-
duction, and body temperature indicated that energy expendi-
ture was elevated in Lgr4 mutant mice. Compared to the white,
large, and unilocular adipocytes comprising WAT in wild-type
mice, Lgr4 mutant mice showed reduced WAT mass with beige
color, smaller, and multilocular adipocytes containing increased

mitochondrion number. These results indicate an adipocyte phe-
notype transformation in Lgr4 mutant mice (52). Consistent
with this concept, Ucp1 and other thermogenic genes, includ-
ing Pgc-1α, Cidea, cytochrome c, Cpt2, and Nrf1, were signifi-
cantly increased in eWAT of Lgr4 mutant mice, and were further
enhanced under cold stress or isoprenaline treatment. Beige cell
markers CD137 and TMEM26 (54) were also increased in eWAT
of Lgr4 mutant mice after isoprenaline treatment. These results
demonstrate that Lgr4 ablation drives the acquisition of functional
brown-like adipocytes in the WAT depots, leading to increased
energy expenditure (52).

The association of LGR4 with human obesity has been demon-
strated by a case–control study of early-onset obesity in which
four SNPs, located in the encoding and flanking regions of
the LGR4 locus, were found to be significantly correlated with
body mass index. A low-frequency non-synonymous LGR4 vari-
ant (A750T) was identified more than twice as commonly in
obese patients when compared with controls (52). This site in
LGRs is highly conserved among different species, and consti-
tutively activated point mutations of the corresponding site in
LHR, TSHR, and FSHR have been reported (55–57). The A750T
variant showed higher stimulating activity of a CRE-luciferase
reporter than wild-type LGR4, suggesting a functional variation.
All these observations suggest a contribution of LGR4 to human
adiposity.

Another study based on the LGR4 mutant mice described
before also indicates a correlation between LGR4 and lipid
metabolism (58) in a circadian rhythm-related manner. Resting
energy expenditure (RER) is higher in the dark phase than in the
light phase in wild type (WT) mice (59), suggesting the existence
of a circadian rhythm in substrate utilization for energy during the
day, more glucose in the dark phase, and more lipid usage in the
light phase. In Lgr4 mutant mice, the RER was higher than that
of their WT littermates during the dark phase with no difference
during the light phase (57), suggesting that lack of LGR4 altered
the circadian rhythm of lipid metabolism. Lgr4-knockout mice
consumed less lipids but more sugar compared with WT mice
(60, 61). Lgr4 mutant mice exhibited higher plasma triglyceride
levels and lost the rhythmic pattern comparedwithWTmice. Lgr4
mutantmice also presented a change in plasmanon-esterified fatty
acid levels, reflected by lower plasma levels during the light phase
and higher levels in the dark phase in comparison with WT mice.
Interestingly, loss of LGR4 does not affect clock gene expression in
the liver. In WT mice, LGR4 expression in liver was higher during
the light phase than the dark phase, presenting a peak at ZT4 and
a nadir at ZT16, indicating a circadian rhythm. Lgr4 expression
levels in Lgr4 mutant mice were very low and amplitude was
dampened (57). Lack of LGR4 causes an arrhythmic plasma lipid
phenotype in mice.

Therapeutics Potential of Rspos-LGR4

Treatment for Inflammatory Bowel Disease
As defective epithelial restitution is an important risk factor
for inflammatory bowel disease (IBD), it is not surprising that
dysfunction of genes involved in intestinal development, prolif-
eration, and differentiation will increase susceptibility to IBD.
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When Lgr4 hypomorphicmice are subjected to the dextran sulfate
sodium (DSS)-induced IBD, a more severe colitis developed in
Lgr4 mutant mice than in WT sex-matched littermates. Higher
body weight loss, a hallmark of intestinal inflammation, was
observed in Lgr4 mutant mice. This observation was concor-
dant with a more severe anemia (45). Although the small intes-
tine is not the major target of DSS-induced tissue damage (62),
the relative length reduction was significantly increased in Lgr4
mutant mice, indicating critical functions of Lgr4 in the small
intestine. Almost all crypts throughout the small intestine were
lost in Lgr4 mutant mice but remained intact in WT littermates.
Histological examination showed dramatically increased signs
of colitis, which is characterized by the loss of crypts and the
infiltration of leukocytes into the colons of Lgr4 mutant mice
(45). Infiltration of neutrophils was significantly higher in the
colon of Lgr4mutant mice. Additionally, inflammatory cytokines,
such as TNFα, IL6, and IL1, were significantly increased in
Lgr4 mutant mice after DSS administration, suggesting a more
severe inflammatory response (45). Significant decreases in Ki67-
positive proliferating cells were observed in Lgr4mutant intestines
during tissue regeneration. No significant alteration of apopto-
sis was observed either in control conditions or in the recov-
ery period, indicating that LGR4 is responsible for epithelial
cell proliferation but not apoptosis during DSS-induced tissue
regeneration (45).

Human Rspo1 protein effectively increases survival and prolif-
eration of LGR5+ intestinal stem cells in vitro through activation
of Wnt/β-catenin signaling (63). The mitogenic activity of Rspo1
on intestinal stem cells may be useful in the therapy of IBD
because of its stimulating effect on crypt cell growth to accelerate
mucosal regeneration. In both acute and chronic phases of coli-
tis in mouse models, administration of Rspo1 protein preserves
mucosal integrity in both small and large bowel by stimulating
crypt epithelial cell mitosis (64).

Protective Effects of R-Spondin in
Chemoradiotherapy-Induced Gut Injury
Stimulation of Wnt/β-catenin signaling with Rspo1 can amelio-
rate 5-fluorouracil (5-FU) and radiation-induced gut damage,
including radiation-induced gastrointestinal syndrome (RIGS)
(64–66). Recently, Zhou et al. have found that combination of Slit2
andRspo1 could potentially protect gut from chemoradiotherapy-
induced damage (67). Slit is a secreted protein which func-
tions through the TM protein Roundabout (Robo) receptor as
a chemorepellent in axon guidance and neuronal migration,
and as an inhibitor in leukocyte chemotaxis (68). The ther-
apeutic dosage of 5-FU (19), a well-characterized chemother-
apy agent, markedly shortened villus length, reduced numbers
of LGR5+ intestinal stem cells, and Ki67+ transient amplify-
ing cells in jejunum. Using Lgr5–enhanced green fluorescent
protein (eGFP)–internal ribosome entry site (IRES)–CreERT2
(Lgr5–GFP) mice to detect the intestine stem cells (10), the
lethal dose of 5-FU has been found to abolish >90% of GFPhigh

intestinal stem cells. However, a 3-day treatment of rSlit2 or
rRspo1 alone protected 40% of GFPhigh stem cells. Combination
rRspo1 plus rSlit2 preserved 80% of GFPhigh intestinal stem cells,
indicating that Slit2 acts synergistically with Rspo, leading to

prolongation of overall survival after exposure to lethal doses of
chemotherapy (67).

ApcMin/+ mice with spontaneous intestinal adenomas were
treated with DSS to induce inflammation-related intestinal car-
cinogenesis, a murine model of multifactorial human colorectal
cancer (CRC) (69). Administration of DSS-treated ApcMin/+ mice
with rSlit2 or rRspo1 alone led to a 20–30% survival rate upon
the lethal dosage of 5-FU. Combination of rSlit2 and rRspo1 led
to a 60% survival rate (67), demonstrating functional cooperation
between Slit2 and Rspo1. Concomitant prolongations of the villus
length, augmentations of Lgr5+ stem cells and Ki67+ transient
amplifying cells in the jejunum were observed when animals were
treated with a combination of rSlit2 plus rRspo1 (67).

R-Spondin Fusion Protein in the Treatment of
Colorectal Cancer
Colorectal cancer is the fourth most prevalent cancer, accounting
for over 50,000 deaths per year in the United States. Approxi-
mately 15% of CRCs have microsatellite instability arising from
defects in the DNA mismatch-repair system, whereas the other
85% of microsatellite-stable CRCs are the result of chromosomal
instability (70).

Using RNA-seq data, Seshagiri et al. have identified 36
rearrangements that result in gene fusions (71), including two
recurrent ones. The recurrent fusions found in microsatellite-
stable samples involve the R-spondin family members, Rspo2 and
Rspo3 (70). Both of them were expected to produce functional
Rspos protein. The expression of Rspo2 and Rspo3 in colon tumor
samples, containing the fusions, was elevated compared with
the tumor samples lacking R-spondin fusions (70). Furthermore,
all of the Rspo-positive fusion tumors expressed the potential
R-spondin receptors LGR4, LGR5, and LGR6. Additionally,
alteration of the Rspo2 gene is linked to CRC in a transposon-
based genetic screening in mice (72).Consistent with the elevated
expression of Rspo genes observed in human tumors, a 20-fold
increase in Rspo2 messenger RNA expression in a mouse tumor
carrying a transposon insertion near the Rspo2 transcription
start site was detected relative to adjacent normal tissue. These
observations indicate that the R-spondins may function as drivers
in human CRCs (70). Although further studies are required
to fully understand the role of R-spondin fusions in CRC
development, they represent attractive targets for antibody-based
therapy in CRC patients positive for R-spondin fusions. Other
therapeutic strategies that target downstream components of the
Wnt signaling cascade might be effective against tumors positive
for R-spondin fusions.

R-Spondin in the Treatment of Diabetes
The development of type 2 diabetes mellitus (T2DM) usually
requires the presence of insulin resistance, impaired β-cell func-
tion, and the loss of β-cells (73). Type 1 diabetes mellitus (T1DM)
is characterized by autoimmune-mediated destruction of β-cells.
Novel therapeutic approaches might include expanding β-cell
mass. As reported by Wong et al., Rspo1 enhances insulin mRNA
levels after stimulation for 12 h. Rspo1 can also regulate insulin
secretion in mouse islets. Static incubation of islets with Rspo1
for 2 h induced a significant increase in insulin secretion in a
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TABLE 1 |Roles of LGR4 in intestinal functions and energy metabolism, and
summary of the therapeutic potentials of Rspos-LGR4 system.

Roles of
LGR4

Physiological functions Therapeutics potentials

In intestine 1. Postnatal epithelial cell
proliferation and terminal
Paneth-cell differentiation

1. Inflammatory bowel disease
2. Chemoradiotherapy-induced

gut injury
2. Maintenance of crypt

stem cells
3. Colorectal cancer

In energy
metabolism

1. Inhibition of food intake 1. Obesity
2. Acquisition of functional

brown-like adipocytes in the
WAT depots in Lgr4−/− mice

2. Diabetes mellitus
3. Lipid metabolism

3. Association with human
obesity

4. Arrhythmic plasma lipid
phenotype in Lgr4−/− mice

glucose-independent manner (74). Treatment with recombi-
nant mouse Rspo1 also increases MIN6-cell proliferation. Rspo1
induced an increase in BrdU incorporation in insulin-positive
cells (74). When treated MIN6 cells were exposed to a mixture
of cytokines for 18 h, the level of activated, cleaved caspase3 was
significantly increased. The increase in cleaved caspase 3 was
prevented by pretreatment with Wnt3a, as well as by Rspo1. A
similar observation was made in dispersed murine β-cells. Treat-
ment with cytokines for 18 h significantly increased the number
of TUNEL-positive β-cells; pretreatment with Rspo1 significantly
reduced cytokine-induced apoptosis (74). These observations
suggest that Rspo1 may be a potential novel molecule for the
treatment of patients with T2DM or T1DM.

Conclusion

The importance of LGR4 and its ligands-Rspos in the regulation
of canonical and non-canonical Wnt signaling pathways has been
established in a variety of in vitro and in vivo studies using animal
models and human genetic analysis. Although significant progress
has been made in our understanding of how Rspo binds with
LGR4 and regulates the Wnt signaling pathway at the molecular
level, the following fundamental questions remain unanswered.
How does LGR4 interact with FZD (Wnt receptor) after bind-
ing with Rspo proteins? Does LGR4 have a specific intracellular
signaling pathway or simply function as a potentiator of Wnt
signaling? Additionally, discrepancy between gain and loss of
LGR4 function exists. While LGR4-knockout mice showed an
improvement in glucose metabolism, Rspo1 has been reported
to significantly induce β-cell proliferation and insulin secretion.
Further studies on the functions and signaling mechanisms of
the LGR4 and Rspo proteins will facilitate the development of
therapeutic strategy for human diseases, such as IBD, CRC, and
diabetes, by targeting Rspo-LGR4 (Table 1).
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Last two decades of structure–function studies performed in numerous laboratories pro-
vided substantial progress in understanding basic science, physiological, pathophysio-
logical, pharmacological, and comparative aspects of glycoprotein hormones (GPHs) and
their cognate receptors. Multiple concepts and models developed based on experimental
data in the past stood the test of time and have been, at least in part, confirmed and/or
remained compatible with the new structures resolved at the atomic level. Major advances
in understanding of the ligand–receptor relationships are heralding the dawn of a new era
for GPHs and their receptors, although many basic questions still remain unanswered.
This article examines retrospectively several basic science aspects of GPH super-agonists
and related “biosuperiors” in a broader context of the advances in the ligand–receptor
structure–function relationships and new mechanistic models generated based on the
structure elucidation. Due to selective focus of my comments and perspectives in certain
parts, the reader is directed to the most relevant publications and reviews in the field for
more comprehensive analyses.

Keywords: glycoprotein hormone, glycoprotein hormone receptor, structure–function, protein engineering, charge
cluster, super–agonist, biosuperior, biobetter

Origins and Evolution of Function

The family of glycoprotein hormones (GPHs) consists of luteinizing hormone (LH), chorionic
gonadotropin (CG), follicle-stimulating hormone (FSH), and thyroid-stimulating hormone (TSH),
which are heterodimers formed by the non-covalent association of a common alpha (α) and a
hormone-specific beta (β) subunit. Structurally, GPHs and their subunit ancestors belong to the
cysteine-knot growth factor superfamily and due to relatively high glycosylation are recognized
as the most complex protein hormone molecules (1–3). Their cognate GPH receptors (GPHRs)
are type A leucine-rich repeat (LRR)-containing G-protein-coupled receptors (LGR) with a large
glycoprotein extracellular domain (ECD). Early ancestors of GPHs and their receptors emerged at
the origin of metazoan animals (multicellular mitochondrial eukaryotes) (4), although two domains
of GPHRs, LRRs and 7-helix transmembrane domain (TMD), havemuch earlier evolutionary origin
and are very well-diversified in extremely large number of functionally unrelated proteins in animals
and plants (5). Parallel evolution ofGPHs, their subunits, and cognateGPHRswas previously studied
and discussed in detail (2, 6, 7). An evolution of the receptor–ligand interface likely progressed
through the series of fine-tuning within the concave face of the LRRs and activating configuration
within the hinge region located between the LRRs and TMD. Interestingly, as previously proposed
(6), numerous early vertebrate GPHRs are functioning at least in part by utilizing their constitu-
tive activity, which is determined in each individual cell by the number of receptors expressed
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in its cell membrane. Remarkably, nematode LGRs are constitu-
tively activating only the Gs/cAMP, but not Gq/IP3 inositol phos-
phate pathway (8). In addition, comparative analysis of GPHRs
signaling may suggest that Gs/cAMP pathway as the only mech-
anism of the agonist-dependent and -independent receptor acti-
vation has evolved into more diversified and complex signaling
system (9, 10).

Significant level of inherent constitutive activity is present in
various vertebrate GPHRs (11–13), including wild-type (WT)
hTSHR. In sharp contrast, human LHRs and FSHRs are activated
almost exclusively by their respective ligands and the number of
natural or artificial receptor mutations in their respective ECDs
causing constitutive activity is very low (14–16). With regard
to the TSHR, there is an apparent correlation between a high
level of basal constitutive activity and much more relaxed ligand
specificity (promiscuity), which is exemplified by the prevalence
of hCG-induced subclinical or overt hyperthyroidism in the first
trimester of pregnancy (17).

Charge Cluster in the Common ααα-Subunit

Significant contribution of electrostatic interactions to high
affinity receptor binding has been recognized for various lig-
and–receptor pairs, including different cysteine-knot growth fac-
tors and their respective receptors (18). Accordingly, a long-
standing postulate held that charge–charge interactions are of
major importance in the TSH–TSHR interactions (19). For the
entire G-protein-coupled receptor, strong statistical evidence was
provided that negatively charged amino acids are enriched in

the ECDs, including extracellular loops (ECLs), but positively
charged amino acids dominate within the intracellular domains
(20). Design and sequential development of human TSH and
gonadotropin super-agonists (Figure 1) were described previously
in details (1, 21, 22). Our early mutagenesis studies, which has
been recognized as “the advent of super hormone drugs” (21, 23)
focused primarily on the 11–20 region of the human α-subunit.
These studies have revealed that a basic charge cluster in this
region, which has evolved in vertebrates and disappeared in apes
and humans, is an important modulator of hormone–receptor
binding and activation. Amino acid substitutions to positively
charged lysine (K) or arginine (R) in the 11–20 region individually
(T11K/R, Q13K/R, E14K/R, P16K/R, Q20K/R) and in various
combinations increased the potency and efficacy of hTSH and
hCG (21). Such human analogs remain highly specific for their
respective receptors and inactive (up to 1000-fold higher concen-
tration) at the other GPHRs (24). The effect of these substitutions
on the in vitro bioactivity was highly correlated with their effects
on the receptor binding activity. It was repeatedly demonstrated in
media and buffers with various salt concentrations, and confirmed
by studies in other laboratories (25, 26) as well as by using CHO-
TSHRcells with largely depleted pool of the negatively charged cell
surface proteoglycans. Notably, mutations to alanine did not alter
hormone activity, indicating that only selective substitutions to K
or R amino acid residues are causing an enhancement of cAMP
and IP3 production, iodine uptake, proliferation of FRTL-5 cells,
thyroxine and progesterone production, respectively (1, 21, 24).
All our previous theoretical models of GPH–GPHR interaction
derived from super-agonist studies were placing the mutagenized

FIGURE 1 | A range of dose–response curves and relative efficacy spectrum of GPHR ligands. The efficacies of the selected classes of ligands are illustrated
by the in vitro stimulation of cAMP production and comparison with an endogenous, WT agonist (full agonist with 100% intrinsic efficacy). Although the term
“super-agonist” has not been yet officially addressed in the NC-IUPHAR nomenclature, super-agonists show higher efficacy than full agonists, variable
assay-dependent increases in receptor-binding affinity and potency, differences dependent on the receptor densities, differences related to the degree of signal
amplification in the activation cascade, and significant enhancement of clinical efficacy in human and veterinary applications. High affinity super-agonists are
especially desirable in various disorders with largely impaired receptor-binding and cell-surface expression (22, 24, 31). Multiple partial agonists of all GPHRs and
TSHR-blocking anti-TSHR antibodies (silent or orthosteric antagonists) have been studied (32), but only one human monoclonal anti-TSHR antibody was recognized
as an inverse agonist with a significant suppression of the basal constitutive activity of the WT TSHR (33).
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α-subunit αL1 and αL3 loops in a close proximity to the hinge
region and the ECLs of the receptor TMD (1, 27), very similar
to early structural predictions by Jiang et al. (28) and highly
compatible with two epitope-mapping studies (29, 30).

Super-agonists of human GPHs, also named as “superac-
tive analogs,” have been generated by introduction of positively
charged amino acid residues in selected locations of the αL1, αL3,
and βL3 beta-hairpin loops (1, 21, 27). Our “signal-enhancing
αL1 loop mutations” were described as fully consistent with the
model of receptor activation based on the structure of FSH bound
to N-terminal cysteine cluster together with the LRRs proposed
in 2005 (34). Highly unique position of the α-subunit αL1 13–20
mutations was more recently confirmed by Jiang et al. and the
structure of hFSH bound to the entire ECD of hFSHR (35)
(Figure 2). Moreover, Jiang et al. (36) discovered that such α-
subunit αL1 loop amino acid substitutions to K (21) or R (37)
are “concentrated near the top right side of the ‘activation pocket’
generating stronger electrostatic interaction to pull and lift the
sulfated-tyrosine 335 (sTyr335) of the FSHR hairpin loop,” which
is essential in the receptor activation.

GPH Super-Agonists – Tools in
Structure–Function Studies

Two step activation mechanism proposed based on
FSH–FSHR/ECD complexes (35, 36), and other structure-
based models (38, 39) incorporated and explained, at least in part,
several our previous findings as described below.

First, the new structure-based model by Jiang et al. (36) is plac-
ing much emphasis on the signal-specificity subdomain (SSSD).
It explains, at least in part, why positive charge cluster in the αL1
loop, from our studies initiated in 1995, was rescuing (restoring)
several major “loss-of-function” mutations including two muta-
tions of K51 in the α-subunit (K51A and K51P) (40), which later
have been found to be essential in the formation of salt bridge with
highly conservedD153 within the receptor LRRs domain (34) and
several others described elsewhere (1, 41) [see also Ref. (3, 38, 42,
43)]. Moreover, largely reduced binding activity and potency of
single-chain hCG and its minimized variants were restored using
αL1 loop substitutions (α4K and α4R) (25, 26). Remarkably, also
the LH activity of the hTSH/hCG “seat-belt” “determinant loop”
chimera was further increased by concomitant introduction of a
cluster of K residues (α4K) into a highly distant from “seat-belt”
αL1 13–20 domain (41). The results of several other published
and unpublished studies further reinforced the role of αL1 loop
basic charge cluster in the compensatory mechanism functioning
within the SSSD.

Second, activation of the TSHR by free or fused homodimeric
αL1 α-subunit analogs, but not the WT human α-subunits has
been detected in a concentration range only 1–2 log orders higher
than that of hTSH-WT (44, 45). Such agonistic activity of α-
subunit analogs was observed only in free, non-tethered forms,
but not in the yoked subunit-TSHR complexes constrained by the
fusion of α-subunit and TSHR. These findings first challenged the
most dominant at that time concept that the hormone-induced
receptor activation is highly restricted to interactions primarily
or exclusively within LRRs. In the light of new structures, the

FIGURE 2 | FSH–FSHR/ECD complex (PDB 4AY9) as reported by Jiang
et al. (35). The locations of human α-subunit αL1 residues 13, 14, 16, and
20 are marked by red triangles and circled in red. The α-subunit α-helix is
seen at the top as a light brown circle and is marked with a blue arrow. LRRs
together with the hinge region are forming one large domain interconnected
with three disulfide bridges. The recent “two-step model” subdivided this
domain into the hormone-binding subdomain (HBSD) and signal-specificity
subdomain (SSSD) (36).

location and configuration of “signal-enhancing substitutions”
in the activating complex is important and may not be altered,
particularly considering much weaker binding of the free α-
subunit analog than the hormone heterodimer. This explanation
is also consistent with our data indicating that synthetic linear
and cyclic peptides corresponding to the human α-subunit 11–20
residues with α4K substitutions and 10 μMconcentrations are not
inducing any significant cAMP responses (45).

Third, testing hTSH-WT in comparison to hTSH super-agonist
TR1401 with the same α4K substitutions using mutated hTSHR
in the hinge region, revealed that non-conservative substitutions
E297, E303, and D382 are strongly reducing TR1401 binding
and cAMP signaling based on TSHR cell surface expression nor-
malization using FACS analysis (46). Two substitutions to the
positively charged K residue (E297K and D382K) led to partic-
ularly strong decrease of TR1401 binding and cAMP signaling.
Regardless of specific mechanism of electrostatic steering and
repulsion involved, and considering well known limitations of
simultaneous hormone and receptor mutagenesis (47–49), such
studies indicated that the analogs with a limited number of “gain-
of activity” substitutions can serve as an excellent tool for probing
hormone–receptor interactions. Use of such minimally mutag-
enized human hTSH analogs (e.g., TR1401 with α4K) together
with largely different bovine bTSH-WT (36 amino acid differ-
ence) combined with systematic receptor mutagenesis and TSHR
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expression normalization allowed to narrow interactions areas
within the hinge region and SSSD (49, 50).

Fourth, heterothyrotropic activity of mammalian GPHs can be
increased in goldfish by the same α4K substitutions and interac-
tions within the SSSD and hinge region. Such interactions likely
evolved long before diversification of LHR and TSHR receptors
(51). Co-evolution of early GPHs and their receptors, driven
by positive selection within the hormone-binding subdomain
(HBSD), related to the need for adaptation of new functions, likely
controlled “spillover” of hormone activity to other GPHRs.

Fifth, in addition to supergonists based on selective introduc-
tion of positively charged amino acid residues into the αL1 loop,
additional substitutions to R or K in the αL3 and βL3 loops led
to noticeable increases in the receptor binding both individually
and in combination (21, 52–54). The oligomerization of GPHRs
was observed in the past, but recent structures providedmore con-
vincing evidence for functional relevance of receptors oligomers,
dimers, and trimers. An interaction of βL3 loop with three muta-
tions to R (β3R) located in proximity to the FSHR trimer exosite,
suggests potential role of such exosites for additional hTSH βL3
loop binding in trimeric receptors (36, 52, 55), which could be
affected by the proportion of receptor trimers in different cells and
in vitro bioassay conditions. Although, the trimeric FSH model
does not precisely predicts the extend of cAMP increase due to
signal amplification by the adenylate cyclase, it places again the
location of both αL1 and αL3 loops near the TMD and predicts
that upon dissociation of trimers into monomers both binding
and signaling activities of glycosylated WT hFSH should increase
threefold. Dual FSHR signaling by monomers and/or by trimers
may serve as a part of evolutionarily based protection of repro-
ductive functions, and constitute a possible compensatory mech-
anism preserving some minimum level of FSH induced signaling
in various stress conditions affecting GnRH pulsatile secretion
depressing pituitary hFSH production and secretion, observed
during chronic malnutrition or starvation (56, 57). hFSHR and
likely hLHR signaling bymonomers or trimersmay alsomodulate
action of elevated endogenous gonadotropins during malignant
cell transformation in the menopausal women and their ovarian
epithelial and granulosa cells, later associated with the decreased
FSHR expression, low receptor number in the cell membrane
as well as altered receptor occupancy, trafficking, and biased
signaling (58, 59).

Although, activation of GPHRs induces the coupling of dif-
ferent G proteins (60), most of physiological activities are medi-
ated through a Gαs protein induced adenyl cyclase catalyzing
the conversion of ATP into cAMP (1). However, as suggested
by studies on TSHR deletions and others focusing on GPHRs
signaling and trafficking, “biased agonism,” also referred to as
“ligand directed signaling” is likely caused by a spectrum of dif-
ferent ligand–receptor complex conformations in combination
with other cell-specific factors (1, 61–63). Recent studies indi-
cated that different GPH glycoforms may have distinct effects
on signaling and result in a biased agonism (64). Thus, it is
expected that each GPH variant may have different and some-
times completely unique signaling pattern. However, there is
also pharmacologically justified possibility that super-agonists
are in general less capable of inducing multiple conformations

and therefore much less biased (65). Selected super-agonists
are known to have an extended receptor-residence time, which
in turn may affect GPHR interactions with the cell adapter
proteins, endosome signaling, and signal compartmentalization
(61, 66–68).

In summary, new investigative strategies including “charge
scanning and reversal mutagenesis,” “loss-of-function restora-
tion by superagonist,” as well as “loss-of-superagonism” with
mutated or truncated GPHRs constitute highly valuable tools in
the structure-function studies both in the absence and presence
of structural information (1, 46, 53, 69). We have first showed
directly using large deletions that the ECD suppresses an inher-
ent constitutive activity of the TMD of the human TSHR (14).
Such an intrinsic property of the ECD acting on the TMD as a
partial inverse agonist was recognized after introduction of the
“driver hemagglutinin (HA) tag-sequence” at the N-terminus of
the truncated constructs designed to improve and assess cell sur-
face expression (14). We have demonstrated that the presence of
such “driver sequence” in the TSHR and other GPHRs constructs
with large ECD deletions in the ECD is absolutely necessary for
an efficient cell surface expression (1, 14, 70). Similar “driver
sequences” were subsequently used to express and normalize
expression of various other GPHR constructs with several major
ECD deletions, assess their interactions with analogs, and deter-
mine their constitutive activities in both cAMP and IP3 signaling
pathways (1, 15, 62). Several newer studies analyzing the role
of charged residues in the receptor hinge region attributed an
inherent agonistic property to this domain and supported our
early concept that the receptor charge clusters adjacent to the
TMD are critical in a downstream signal transmission (49, 50, 71).

Development of GPH Biosuperiors and
Other Related Molecules

“Biosuperiors” (biobetters or next-generation biological therapeu-
tics) are defined as the second-generation products with substan-
tial advantages over the originator molecules. Biosuperiors have
the same receptor target and general mechanism of action as pre-
viously approved WT recombinant molecules but include struc-
tural changes and/or altered properties that result in an improve-
ment in their clinical profile. GPH biosuperiors can be classified
into three main categories: super-agonists, long-acting analogs,
and WT molecules with optimized glycosylation, formulation, or
delivery.

Long-acting bovine FSH super-agonists with much higher effi-
cacy than all other products in veterinary markets have been
developed at Trophogen Inc. and entered clinical trials for super-
ovulation in cows and heifers (72). Human TSH and FSH super-
agonists for diagnostic and therapeutic applications in the thy-
roid cancer of follicular origin and the treatment of infertility,
including poor responders in the controlled ovarian stimula-
tion (COS), respectively, have entered the late-phases of preclin-
ical development (22, 24, 37, 73). Long-acting analog of WT
hFSH (corifollitropin alfa; ElonvaR, Merck) has been approved
in Europe for COS. It was constructed by fusion of the carboxy-
terminal peptide of the β-subunit of hCG to the β-subunit of
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hFSH. Such additional 28 amino acid residues peptide containing
4-5 O-linked carbohydrate chains resulted in twofold increase
in the FSH plasma half-life. Elonva® substituted for 7 days daily
injection of the WT hormone in the standard COS procedure
(74–76). Additional post-approval assessments are expected to
determine its clinical convenience value and acceptance in the IVF
market. Glyco-optimized highly sialylatedWT FSH (FSH-GEX™)
developed by Glycotope GmbH is based on its production in the
human GT-5s cell line providing more optimal glycan structure
pattern than standard CHO cell line (77). Similar efforts are now
also directed to engineering CHO cells and generation of more
homogenous FSH glycosylation, including “human-like” α2,6-
terminal sialic acid linkages (78). Recent developments of vari-
ous GPH biosimilars, improved formulations (79), injection fre-
quency and convenience-focused preparations have not addressed
several largely unmet needs formuch higher efficacy-based biosu-
periors (80, 81).

Clinical utility of thyrostimulin, GPH-related protein found in
both vertebrates and invertebrates (82), still awaits full elucidation
and rigorous assessment of specificity, selectivity and potential, if
any, therapeutic benefits. Small molecules given orally may also
lack sufficient specificity, but modified and/or minimized protein
variants may provide sufficient balance between specificity, selec-
tivity, half-life and convenience of enteral or topical administra-
tion (83). In contrast to large GPHs, there is largely incorrect per-
ception that highly improved affinity of smallmolecules toGPHRs
should result in parallel increase of their specificity. However, the
specificity of small molecules ismore relative to the degree of non-
relevant binding than the strength of their interactionwith specific
receptor (84). These reservations aside, during the last 10 years,
several new advances have been made in the development of
GPHR small molecule ligands and allosteric modulators (85–87).

Closing Remarks and Future Perspectives

Glycoprotein hormone–glycoprotein hormone receptor struc-
ture–function research is evolving into new highly promising
phase, which will likely culminate in elucidation of the entire
active and inactive structure(s) of hormone–receptor complexes,
including constitutively active receptors, entire receptors bound to
super-agonists, antibodies and smallmolecule ligands. The advent
of new optical techniques based on FRET and BRET sensors,
as well as single-molecule microscopy, will allow more detailed
analysis of real-time receptor activation and direct spatial assess-
ment of signaling in the living cells. Such new optical techniques

made already possible detection of TSHR signaling to cAMP after
receptor internalization into endosomes (68, 88).

In analogy to human genome sequencing, full benefits of the
structure–function achievements may not immediately translate
into the new drugs and the third generation of GPH biosuperiors
and theranostics. Further progress in the understanding of func-
tional and therapeutic potential of signaling bias, receptor trimer-
ization, trafficking, compartmentalization of signaling as well as
detailed elucidation of the mechanism of super-agonists binding
and signaling, should move this field to a new very exciting times
of personalized drugs with predefined pharmacodynamics (PD),
pharmacokinetics (PK), and signaling profiles (89).

Future third-generation recombinant protein biosuperiors will
likely have even more advantages related to efficacy, potency and
half-life, but also in relation to largely improved stability, formu-
lation, bioavailability, and new methods of administration, elimi-
nating the need for multiple injections (83, 90). New automated
single-use sensor-based manufacturing technology platforms of
biologics as well as largely improved purification and characteri-
zation methods should make a whole development process faster,
safer, and more efficient, assuming necessary improvement and
streamlining in the regulatory agencies, their flexibility, commit-
ment to a case-by-case considerations and willingness to accept
well justified unorthodox development strategies.

It is apparent to many biotechnology experts and market ana-
lysts that major biosuperiors, which are largely improved versions
of the originator molecules, will be the next big opportunity in
the entire field of biologics and GPCR protein ligands (80). It is
predicted that biotech and pharma companies, well known for
innovation and experience with the first-generation recombinant
proteins and biosimilars, will be the best positioned to achieve
early success with biosuperiors as well as with the biosuperior-
based targeting conjugates and the nanoparticles with theranostic
capabilities. New highly exciting frontier of precision medicine
combining targeted and personalized interventions is already
looming on the horizon. The sense of wonder, excitement, and
anticipation of the future progress in the structure–function and
novel drug design can be well expressed by Carl Sagan’s visionary
quote: “Somewhere, something incredible is waiting to be known.”

Acknowledgment

The author thanks Dr. Bruce D. Weintraub, President and CEO
of Trophogen, Inc., for his visionary leadership, inspiration, and
passion in the development of groundbreaking biosuperiors.

References
1. Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating

hormone and thyroid-stimulating hormone receptor structure-function
relationships. Physiol Rev (2002) 82(2):473–502. doi:10.1152/physrev.00031.
2001

2. Cahoreau C, Klett D, Combarnous Y. Structure-function relationships of glyco-
protein hormones and their subunits’ ancestors. Front Endocrinol (2015) 6:26.
doi:10.3389/fendo.2015.00026

3. Dias JA, Cohen BD, Lindau-Shepard B, Nechamen CA, Peterson AJ, Schmidt A.
Molecular, structural, and cellular biology of follitropin and follitropin receptor.
Vitam Horm (2002) 64:249–322. doi:10.1016/S0083-6729(02)64008-7

4. Roch GJ, Sherwood NM. Glycoprotein hormones and their receptors emerged
at the origin of metazoans.Genome Biol Evol (2014) 6(6):1466–79. doi:10.1093/
gbe/evu118

5. Taddese B, Upton GJ, Bailey GR, Jordan SR, Abdulla NY, Reeves PJ,
et al. Do plants contain g protein-coupled receptors? Plant Physiol (2014)
164(1):287–307. doi:10.1104/pp.113.228874

6. Farid NR, Szkudlinski MW. Minireview: structural and functional evolution
of the thyrotropin receptor. Endocrinology (2004) 145(9):4048–57. doi:10.1210/
en.2004-0437

7. Moyle WR, Campbell RK, Myers RV, Bernard MP, Han Y, Wang X. Co-
evolution of ligand-receptor pairs.Nature (1994) 368(6468):251–5. doi:10.1038/
368251a0

Frontiers in Endocrinology | www.frontiersin.org October 2015 | Volume 6 | Article 15559

http://dx.doi.org/10.1152/physrev.00031.2001
http://dx.doi.org/10.1152/physrev.00031.2001
http://dx.doi.org/10.3389/fendo.2015.00026
http://dx.doi.org/10.1016/S0083-6729(02)64008-7
http://dx.doi.org/10.1093/gbe/evu118
http://dx.doi.org/10.1093/gbe/evu118
http://dx.doi.org/10.1104/pp.113.228874
http://dx.doi.org/10.1210/en.2004-0437
http://dx.doi.org/10.1210/en.2004-0437
http://dx.doi.org/10.1038/368251a0
http://dx.doi.org/10.1038/368251a0
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Szkudlinski Glycoprotein hormones and receptors structure–function

8. Kudo M, Chen T, Nakabayashi K, Hsu SY, Hsueh AJ. The nematode leucine-
rich repeat-containing, G protein-coupled receptor (LGR) protein homologous
to vertebrate gonadotropin and thyrotropin receptors is constitutively active in
mammalian cells.Mol Endocrinol (2000) 14(2):272–84. doi:10.1210/mend.14.2.
0422

9. Ulloa-Aguirre A, Crépieux P, Poupon A, Maurel MC, Reiter E. Novel pathways
in gonadotropin receptor signaling and biased agonism. Rev Endocr Metab
Disord (2011) 12(4):259–74. doi:10.1007/s11154-011-9176-2

10. Landomiel F, Gallay N, Jégot G, Tranchant T, Durand G, Bourquard T, et al.
Biased signalling in follicle stimulating hormone action. Mol Cell Endocrinol
(2014) 382(1):452–9. doi:10.1016/j.mce.2013.09.035

11. Van Hiel MB, Vandersmissen HP, Proost P, Vanden Broeck J. Cloning, constitu-
tive activity and expression profiling of two receptors related to relaxin receptors
in Drosophila melanogaster. Peptides (2015) 68:83–90. doi:10.1016/j.peptides.
2014.07.014

12. Van Hiel MB, Vandersmissen HP, Van Loy T, Vanden Broeck J. An evolution-
ary comparison of leucine-rich repeat containing G protein-coupled receptors
reveals a novel LGR subtype. Peptides (2012) 34(1):193–200. doi:10.1016/j.
peptides.2011.11.004

13. Van Loy T, Vandersmissen HP, Van Hiel MB, Poels J, Verlinden H, Badisco
L, et al. Comparative genomics of leucine-rich repeats containing G protein-
coupled receptors and their ligands.GenCompEndocrinol (2008) 155(1):14–21.
doi:10.1016/j.ygcen.2007.06.022

14. Zhang M, Tong KP, Fremont V, Chen J, Narayan P, Puett D, et al. The extra-
cellular domain suppresses constitutive activity of the transmembrane domain
of the human TSH receptor: implications for hormone-receptor interaction and
antagonist design. Endocrinology (2000) 141(9):3514–7. doi:10.1210/endo.141.
9.7790

15. Vassart G, Pardo L, Costagliola S. A molecular dissection of the glycoprotein
hormone receptors. Trends Biochem Sci (2004) 29(3):119–26. doi:10.1016/j.tibs.
2004.01.006

16. Kreuchwig A, Kleinau G, Kreuchwig F,Worth CL, Krause G. Research resource:
update and extension of a glycoprotein hormone receptors web application.Mol
Endocrinol (2011) 25(4):707–12. doi:10.1210/me.2010-0510

17. Hershman JM. Physiological and pathological aspects of the effect of human
chorionic gonadotropin on the thyroid. Best Pract Res Clin Endocrinol Metab
(2004) 18(2):249–65. doi:10.1016/j.beem.2004.03.010

18. Szkudlinski MW, Grossmann M, Weintraub BD. Progress in understand-
ing structure-function relationships of human thyroid-stimulating hormone.
Curr Opin Endocrinol Diabetes (1997) 4(5):354–63. doi:10.1097/00060793-
199710000-00007

19. Rees Smith B, McLachlan SM, Furmaniak J. Autoantibodies to the thyrotropin
receptor. Endocr Rev (1988) 9(1):106–21. doi:10.1210/edrv-9-1-106

20. Wallin E, von Heijne G. Properties of N-terminal tails in G-protein cou-
pled receptors: a statistical study. Protein Eng (1995) 8(7):693–8. doi:10.1093/
protein/8.7.693

21. Szkudlinski MW, Teh NG, Grossmann M, Tropea JE, Weintraub BD. Engineer-
ing human glycoprotein hormone superactive analogues.Nat Biotechnol (1996)
14(10):1257–63. doi:10.1038/nbt1096-1257

22. Szkudlinski MW. Recombinant human thyrotropins of the twenty-first century.
Expert Opin Pharmacother (2004) 5(12):2435–40. doi:10.1517/14656566.5.12.
2435

23. Ruddon RW. Super hormones. Nat Biotechnol (1996) 14(10):1224. doi:10.1038/
nbt1096-1224

24. Szkudlinski MW. Past, presence and future of thyroid-stimulating hormone
(TSH) superactive analogs. Cancer Treat Res (2004) 122:345–56. doi:10.1007/
1-4020-8107-3_19

25. Heikoop JC, Huisman-de Winkel B, Grootenhuis PD. Towards minimized
gonadotropins with full bioactivity. Eur J Biochem (1999) 261(1):81–4. doi:10.
1046/j.1432-1327.1999.00232.x

26. Setlur SR, Dighe RR. Single chain human chorionic gonadotropin, hCGalpha-
beta: effects of mutations in the alpha subunit on structure and bioactivity.
Glycoconj J (2007) 24(1):97–106. doi:10.1007/s10719-006-9016-x

27. Grossmann M, Weintraub BD, Szkudlinski MW. Novel insights into the molec-
ular mechanisms of human thyrotropin action: structural, physiological, and
therapeutic implications for the glycoprotein hormone family. Endocr Rev
(1997) 18(4):476–501. doi:10.1210/edrv.18.4.0305

28. Jiang X, Dreano M, Buckler DR, Cheng S, Ythier A, Wu H, et al. Structural pre-
dictions for the ligand-binding region of glycoprotein hormone receptors and

the nature of hormone-receptor interactions. Structure (1995) 3(12):1341–53.
doi:10.1016/S0969-2126(01)00272-6

29. Remy JJ, Couture L, Pantel J, Haertlé T, Rabesona H, Bozon V, et al. Mapping
of HCG-receptor complexes. Mol Cell Endocrinol (1996) 125(1–2):79–91. doi:
10.1016/S0303-7207(96)03955-X

30. Pantel J, Remy JJ, Salesse R, Jolivet A, Bidart JM. Unmasking of an immunore-
active site on the alpha subunit of human choriogonadotropin bound to the
extracellular domain of its receptor. Biochem Biophys Res Commun (1993)
195(2):588–93. doi:10.1006/bbrc.1993.2086

31. Kenakin T. New concepts in drug discovery: collateral efficacy and permissive
antagonism. Nat Rev Drug Discov (2005) 4(11):919–27. doi:10.1038/nrd1875

32. Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, et al. Crystal struc-
ture of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody.
J Mol Endocrinol (2011) 46(2):81–99. doi:10.1530/JME-10-0127

33. Sanders J, Miguel RN, Furmaniak J, Smith BR. TSH receptor monoclonal
antibodies with agonist, antagonist, and inverse agonist activities. Methods
Enzymol (2010) 485:393–420. doi:10.1016/B978-0-12-381296-4.00022-1

34. Fan QR, Hendrickson WA. Structure of human follicle-stimulating hormone
in complex with its receptor. Nature (2005) 433(7023):269–77. doi:10.1038/
nature03206

35. Jiang X, Liu H, Chen X, Chen PH, Fischer D, Sriraman V, et al. Structure
of follicle-stimulating hormone in complex with the entire ectodomain of its
receptor. Proc Natl Acad Sci U S A (2012) 109(31):12491–6. doi:10.1073/pnas.
1206643109

36. Jiang X, Dias JA, He X. Structural biology of glycoprotein hormones and their
receptors: insights to signaling. Mol Cell Endocrinol (2014) 382(1):424–51. doi:
10.1016/j.mce.2013.08.021

37. Reinfelder J, Maschauer S, Foss CA, Nimmagadda S, Fremont V, Wolf V, et al.
Effects of recombinant human thyroid-stimulating hormone superagonists on
thyroidal uptake of 18F-fluorodeoxyglucose and radioiodide. Thyroid (2011)
21(7):783–92. doi:10.1089/thy.2010.0394

38. Núñez Miguel R, Sanders J, Chirgadze DY, Blundell TL, Furmaniak J, Rees
Smith B. FSH and TSH binding to their respective receptors: similarities, dif-
ferences and implication for glycoprotein hormone specificity. J Mol Endocrinol
(2008) 41(3):145–64. doi:10.1677/JME-08-0040

39. Fan QR, Hendrickson WA. Assembly and structural characterization of
an authentic complex between human follicle stimulating hormone and a
hormone-binding ectodomain of its receptor. Mol Cell Endocrinol (2007)
26(0–262):73–82. doi:10.1016/j.mce.2005.12.055

40. Szkudlinski MW, Teh NG, Grossmann, M, Tropea JE, Witta, J, Weintraub BD,
Role of the 40-51 region of the alpha-subunit in the bioactivity of human
thyrotropin and gonadotropins: implications for the design of new hormone
analogs based on simultaneous mutagenesis of multiple domains. Program &
Abstracts, Abstract OR1-4. 78th Annual Endocrine Society Meeting. San Fran-
cisco, CA (1996).

41. Grossmann M, Szkudlinski MW, Wong R, Dias JA, Ji TH, Weintraub BD. Sub-
stitution of the seat-belt region of the thyroid-stimulating hormone (TSH) beta-
subunit with the corresponding regions of choriogonadotropin or follitropin
confers luteotropic but not follitropic activity to chimeric TSH. J Biol Chem
(1997) 272(24):15532–40. doi:10.1074/jbc.272.24.15532

42. Bhowmick N, Huang J, Puett D, Isaacs NW, Lapthorn AJ. Determination of
residues important in hormone binding to the extracellular domain of the
luteinizing hormone/chorionic gonadotropin receptor by site-directed mutage-
nesis and modeling. Mol Endocrinol (1996) 10(9):1147–59. doi:10.1210/mend.
10.9.8885249

43. Ulloa-Aguirre A, Zariñán T, Pasapera AM, Casas-González P, Dias JA. Multi-
ple facets of follicle-stimulating hormone receptor function. Endocrine (2007)
32(3):251–63. doi:10.1007/s12020-008-9041-6

44. Angelova K, Fremont V, Jain R, Zhang M, Puett D, Narayan P, et al. Human
alpha-subunit analogs act as partial agonists to the thyroid-stimulating hor-
mone receptor: differential effects of free and yoked subunits. Endocrine (2004)
24(1):25–31. doi:10.1385/ENDO:24:1:025

45. Szkudlinski MW, Zhang M, Chen J, Tong KP, Leitolf H, Weintraub BD. Against
the dogma: recombinant free alpha-subunit analogs with biological activity:
implications for glycoprotein hormone minimization, evolution and hormone-
receptor interaction. Program & Abstracts, Abstract – Hot Topic 9. 81th Annual
Meeting of the Endocrine Society. San Diego, CA (1999).

46. Mueller S, Kleinau G, Szkudlinski MW, Jaeschke H, Krause G, Paschke R.
The superagonistic activity of bovine thyroid-stimulating hormone (TSH) and

Frontiers in Endocrinology | www.frontiersin.org October 2015 | Volume 6 | Article 15560

http://dx.doi.org/10.1210/mend.14.2.0422
http://dx.doi.org/10.1210/mend.14.2.0422
http://dx.doi.org/10.1007/s11154-011-9176-2
http://dx.doi.org/10.1016/j.mce.2013.09.035
http://dx.doi.org/10.1016/j.peptides.2014.07.014
http://dx.doi.org/10.1016/j.peptides.2014.07.014
http://dx.doi.org/10.1016/j.peptides.2011.11.004
http://dx.doi.org/10.1016/j.peptides.2011.11.004
http://dx.doi.org/10.1016/j.ygcen.2007.06.022
http://dx.doi.org/10.1210/endo.141.9.7790
http://dx.doi.org/10.1210/endo.141.9.7790
http://dx.doi.org/10.1016/j.tibs.2004.01.006
http://dx.doi.org/10.1016/j.tibs.2004.01.006
http://dx.doi.org/10.1210/me.2010-0510
http://dx.doi.org/10.1016/j.beem.2004.03.010
http://dx.doi.org/10.1097/00060793-199710000-00007
http://dx.doi.org/10.1097/00060793-199710000-00007
http://dx.doi.org/10.1210/edrv-9-1-106
http://dx.doi.org/10.1093/protein/8.7.693
http://dx.doi.org/10.1093/protein/8.7.693
http://dx.doi.org/10.1038/nbt1096-1257
http://dx.doi.org/10.1517/14656566.5.12.2435
http://dx.doi.org/10.1517/14656566.5.12.2435
http://dx.doi.org/10.1038/nbt1096-1224
http://dx.doi.org/10.1038/nbt1096-1224
http://dx.doi.org/10.1007/1-4020-8107-3_19
http://dx.doi.org/10.1007/1-4020-8107-3_19
http://dx.doi.org/10.1046/j.1432-1327.1999.00232.x
http://dx.doi.org/10.1046/j.1432-1327.1999.00232.x
http://dx.doi.org/10.1007/s10719-006-9016-x
http://dx.doi.org/10.1210/edrv.18.4.0305
http://dx.doi.org/10.1016/S0969-2126(01)00272-6
http://dx.doi.org/10.1016/S0303-7207(96)03955-X
http://dx.doi.org/10.1006/bbrc.1993.2086
http://dx.doi.org/10.1038/nrd1875
http://dx.doi.org/10.1530/JME-10-0127
http://dx.doi.org/10.1016/B978-0-12-381296-4.00022-1
http://dx.doi.org/10.1038/nature03206
http://dx.doi.org/10.1038/nature03206
http://dx.doi.org/10.1073/pnas.1206643109
http://dx.doi.org/10.1073/pnas.1206643109
http://dx.doi.org/10.1016/j.mce.2013.08.021
http://dx.doi.org/10.1089/thy.2010.0394
http://dx.doi.org/10.1677/JME-08-0040
http://dx.doi.org/10.1016/j.mce.2005.12.055
http://dx.doi.org/10.1074/jbc.272.24.15532
http://dx.doi.org/10.1210/mend.10.9.8885249
http://dx.doi.org/10.1210/mend.10.9.8885249
http://dx.doi.org/10.1007/s12020-008-9041-6
http://dx.doi.org/10.1385/ENDO:24:1:025
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Szkudlinski Glycoprotein hormones and receptors structure–function

the human TR1401 TSH analog is determined by specific amino acids in the
hinge region of the human TSH receptor. J Biol Chem (2009) 284(24):16317–24.
doi:10.1074/jbc.M109.005710

47. Ji I, Zeng H, Ji TH. Receptor activation of and signal generation by the
lutropin/choriogonadotropin receptor. Cooperation of Asp397 of the receptor
and alpha Lys91 of the hormone. J Biol Chem (1993) 268(31):22971–4.

48. Schaarschmidt J, Huth S, Meier R, Paschke R, Jaeschke H. Influence of the
hinge region and its adjacent domains on binding and signaling patterns of the
thyrotropin and follitropin receptor. PLoS One (2014) 9(10):e111570. doi:10.
1371/journal.pone.0111570

49. Mueller S, Szkudlinski MW, Schaarschmidt J, Günther R, Paschke R, Jaeschke
H. Identification of novel TSH interaction sites by systematic binding analysis
of the TSHR hinge region. Endocrinology (2011) 152(8):3268–78. doi:10.1210/
en.2011-0153

50. Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on
thyroid-stimulating hormone receptor signal transduction. Endocr Rev (2013)
34(5):691–724. doi:10.1210/er.2012-1072

51. Miller TC, Jaques JT, Szkudlinski MW, Mackenzie DS. Thyrotropic activity of
recombinant human glycoprotein hormone analogs and pituitary mammalian
gonadotropins in goldfish (Carassius auratus): insights into the evolution of
thyrotropin receptor specificity. Gen Comp Endocrinol (2012) 177(1):70–5. doi:
10.1016/j.ygcen.2012.02.012

52. Grossmann M, Leitolf H, Weintraub BD, Szkudlinski MW. A rational design
strategy for protein hormone superagonists.Nat Biotechnol (1998) 16(9):871–5.
doi:10.1038/nbt0998-871

53. Leitolf H, Tong KP, Grossmann M, Weintraub BD, Szkudlinski MW. Bio-
engineering of human thyrotropin superactive analogs by site-directed “lysine-
scanning” mutagenesis of the common βL3 loop of human glycoprotein
hormones. Analysis of cooperative effects within and between peripheral
β-hairpin loops. J Biol Chem (2000) 275(35):27457–65. doi:10.1074/jbc.
M003707200

54. Szkudlinski MW, Leitolf H, Dong W, Grossmann M, Weintraub BD. Super-
agonists of human lutropin (hLH) and human chorionic gonadotropin (hCG)
obtained by introduction of charged amino acids in the peripheral β hairpin
loops. Program & Abstracts, Abstract OR28-2. 80th Annual Meeting of the
Endocrine Society. New Orleans, LA (1998). 88 p.

55. Jiang X, Fischer D, Chen X, McKenna SD, Liu H, Sriraman V, et al. Evidence for
follicle-stimulating hormone receptor as a functional trimer. J Biol Chem (2014)
289(20):14273–82. doi:10.1074/jbc.M114.549592

56. Campbell GA, Kurcz M, Marshall S, Meites J. Effects of starvation in rats
on serum levels of follicle stimulating hormone, luteinizing hormone, thy-
rotropin, growth hormone and prolactin; response to LH-releasing hormone
and thyrotropin-releasing hormone. Endocrinology (1977) 100(2):580–7. doi:
10.1210/endo-100-2-580

57. Parrott JA, Doraiswamy V, Kim G, Mosher R, Skinner MK. Expression and
actions of both the follicle stimulating hormone receptor and the luteinizing
hormone receptor in normal ovarian surface epithelium and ovarian can-
cer. Mol Cell Endocrinol (2001) 172(1–2):213–22. doi:10.1016/S0303-7207(00)
00340-3

58. Puett D, Angelova K, da Costa MR, Warrenfeltz SW, Fanelli F. The luteinizing
hormone receptor: insights into structure-function relationships and hormone-
receptor-mediated changes in gene expression in ovarian cancer cells. Mol Cell
Endocrinol (2010) 329(1–2):47–55. doi:10.1016/j.mce.2010.04.025

59. Mertens-Walker I, Baxter RC, Marsh DJ. Gonadotropin signalling in epithe-
lial ovarian cancer. Cancer Lett (2012) 324(2):152–9. doi:10.1016/j.canlet.2012.
05.017

60. Laugwitz KL, Allgeier A, Offermanns S, Spicher K, Van Sande J, Dumont
JE, et al. The human thyrotropin receptor: a heptahelical receptor capable of
stimulating members of all four G protein families. Proc Natl Acad Sci U S A
(1996) 93(1):116–20. doi:10.1073/pnas.93.1.116

61. Ulloa-AguirreA,Dias JA, BousfieldG,Huhtaniemi I, Reiter E. Trafficking of the
follitropin receptor. Methods Enzymol (2013) 521:17–45. doi:10.1016/B978-0-
12-391862-8.00002-8

62. Fremont V, Zhang M, Weintraub BD, Szkudlinski MW. Novel insights into the
molecular mechanism of glycoprotein hormone receptor activation. FASEB J
(2001) 15(4):A175.

63. Nechamen CA, Thomas RM, Dias JA. APPL1, APPL2, Akt2 and FOXO1a
interact with FSHR in a potential signaling complex.Mol Cell Endocrinol (2007)
260–262:93–9. doi:10.1016/j.mce.2006.08.014

64. Arey BJ, Lopez FJ. Are circulating gonadotropin isoforms naturally occurring
biased agonists? Basic and therapeutic implications. Rev Endocr Metab Disord
(2011) 12(4):275–88. doi:10.1007/s11154-011-9188-y

65. Langmead CJ, Christopoulos A. Supra-physiological efficacy at GPCRs: super-
stition or super agonists? Br J Pharmacol (2013) 169(2):353–6. doi:10.1111/bph.
12142

66. Szkudlinski MW. Challenges and opportunities of trapping ligands. Mol Phar-
macol (2007) 72(2):231–4. doi:10.1124/mol.107.038208

67. Dias JA,Mahale SD, Nechamen CA, DavydenkoO, Thomas RM, Ulloa-Aguirre
A. Emerging roles for the FSH receptor adapter protein APPL1 and overlap of
a putative 14-3-3tau interaction domain with a canonical G-protein interaction
site.Mol Cell Endocrinol (2010) 329(1–2):17–25. doi:10.1016/j.mce.2010.05.009

68. Calebiro D, Nikolaev VO, Lohse MJ. Imaging of persistent cAMP signaling by
internalized G protein-coupled receptors. J Mol Endocrinol (2010) 45(1):1–8.
doi:10.1677/JME-10-0014

69. Szkudlinski MW, Grossmann M, Leitolf H, Weintraub BD. Human thyroid-
stimulating hormone: structure-function analysis.Methods (2000) 21(1):67–81.
doi:10.1006/meth.2000.0976

70. Vlaeminck-Guillem V, Ho SC, Rodien P, Vassart G, Costagliola S. Activa-
tion of the cAMP pathway by the TSH receptor involves switching of the
ectodomain froma tethered inverse agonist to an agonist.Mol Endocrinol (2002)
16(4):736–46. doi:10.1210/mend.16.4.0816

71. Chen CR, Salazar LM, McLachlan SM, Rapoport B. The thyrotropin receptor
hinge region as a surrogate ligand: identification of loci contributing to the
coupling of thyrotropin binding and receptor activation. Endocrinology (2012)
153(10):5058–67. doi:10.1210/en.2012-1376

72. Szkudlinski MW, Fremont V, Wolf V, Han Y, Wu D, Weintraub BD. Novel high
affinity and long-acting recombinant bovine FSH analogs for veterinary super-
ovulation. Program & Abstracts, Abstract 16. 18th Biennial AAVPT Symposium.
Potomac, MD (2013).

73. Galli F, Manni I, Piaggio G, Balogh L, Weintraub BD, Szkudlinski MW, et al.
(99m)Tc-labeled-rhTSH analogue (TR1401) for imaging poorly differentiated
metastatic thyroid cancer. Thyroid (2014) 24(8):1297–308. doi:10.1089/thy.
2013.0429

74. Boime I, Ben-Menahem D. Glycoprotein hormone structure-function and ana-
log design. Recent Prog Horm Res (1999) 54:271–88.

75. Pouwer AW, Farquhar C, Kremer JA. Long-acting FSH versus daily FSH for
women undergoing assisted reproduction. Cochrane Database Syst Rev (2012)
6:CD009577. doi:10.1002/14651858.CD009577.pub2

76. Croxtall JD, McKeage K. Corifollitropin alfa: a review of its use in controlled
ovarian stimulation for assisted reproduction. BioDrugs (2011) 25(4):243–54.
doi:10.2165/11206890-000000000-00000

77. Goletz S, Stockl L. Recombinant Human Follicle-Stimulating Hormone. USPTO
US Patent Application 201301376636 (2013).

78. Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, et al. Engineered
CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotech-
nol (2015) 33(8):842–4. doi:10.1038/nbt.3280

79. Clark E, Magner J, Skell J. Formulations for Therapeutic Administration
of Thyroid Stimulating Hormone (TSH). USPTO, US Patent Application
WO2008036271 (2008).

80. Louet S. Banking on a Big Biobetters Bonanza. Cpb Review (2012) 48–52.
81. Ubaldi F, Vaiarelli A, D’Anna R, Rienzi L. Management of poor responders in

IVF: is there anything new? Biomed Res Int (2014) 2014:352098. doi:10.1155/
2014/352098

82. Bassett JH, van der Spek A, Logan JG, Gogakos A, Bagchi-Chakraborty J, Mur-
phy E, et al. Thyrostimulin regulates osteoblastic bone formation during early
skeletal development. Endocrinology (2015) 156(9):3098–113. doi:10.1210/en.
2014-1943

83. Low SC, Nunes SL, Bitonti AJ, Dumont JA. Oral and pulmonary delivery of
FSH-Fc fusion proteins via neonatal Fc receptor-mediated transcytosis. Hum
Reprod (2005) 20(7):1805–13. doi:10.1093/humrep/deh896

84. Vance D, Martin J, Patke S, Kane RS. The design of polyvalent scaffolds for
targeted delivery. Adv Drug Deliv Rev (2009) 61(11):931–9. doi:10.1016/j.addr.
2009.06.002

85. Gershengorn MC, Neumann S. Update in TSH receptor agonists and antago-
nists. J Clin EndocrinolMetab (2012) 97(12):4287–92. doi:10.1210/jc.2012-3080

86. Palmer SS, McKenna S, Arkinstall S. Discovery of new molecules for future
treatment of infertility. Reprod Biomed Online (2005) 10(Suppl 3):45–54. doi:
10.1016/S1472-6483(11)60390-8

Frontiers in Endocrinology | www.frontiersin.org October 2015 | Volume 6 | Article 15561

http://dx.doi.org/10.1074/jbc.M109.005710
http://dx.doi.org/10.1371/journal.pone.0111570
http://dx.doi.org/10.1371/journal.pone.0111570
http://dx.doi.org/10.1210/en.2011-0153
http://dx.doi.org/10.1210/en.2011-0153
http://dx.doi.org/10.1210/er.2012-1072
http://dx.doi.org/10.1016/j.ygcen.2012.02.012
http://dx.doi.org/10.1038/nbt0998-871
http://dx.doi.org/10.1074/jbc.M003707200
http://dx.doi.org/10.1074/jbc.M003707200
http://dx.doi.org/10.1074/jbc.M114.549592
http://dx.doi.org/10.1210/endo-100-2-580
http://dx.doi.org/10.1016/S0303-7207(00)00340-3
http://dx.doi.org/10.1016/S0303-7207(00)00340-3
http://dx.doi.org/10.1016/j.mce.2010.04.025
http://dx.doi.org/10.1016/j.canlet.2012.05.017
http://dx.doi.org/10.1016/j.canlet.2012.05.017
http://dx.doi.org/10.1073/pnas.93.1.116
http://dx.doi.org/10.1016/B978-0-12-391862-8.00002-8
http://dx.doi.org/10.1016/B978-0-12-391862-8.00002-8
http://dx.doi.org/10.1016/j.mce.2006.08.014
http://dx.doi.org/10.1007/s11154-011-9188-y
http://dx.doi.org/10.1111/bph.12142
http://dx.doi.org/10.1111/bph.12142
http://dx.doi.org/10.1124/mol.107.038208
http://dx.doi.org/10.1016/j.mce.2010.05.009
http://dx.doi.org/10.1677/JME-10-0014
http://dx.doi.org/10.1006/meth.2000.0976
http://dx.doi.org/10.1210/mend.16.4.0816
http://dx.doi.org/10.1210/en.2012-1376
http://dx.doi.org/10.1089/thy.2013.0429
http://dx.doi.org/10.1089/thy.2013.0429
http://dx.doi.org/10.1002/14651858.CD009577.pub2
http://dx.doi.org/10.2165/11206890-000000000-00000
http://dx.doi.org/10.1038/nbt.3280
http://dx.doi.org/10.1155/2014/352098
http://dx.doi.org/10.1155/2014/352098
http://dx.doi.org/10.1210/en.2014-1943
http://dx.doi.org/10.1210/en.2014-1943
http://dx.doi.org/10.1093/humrep/deh896
http://dx.doi.org/10.1016/j.addr.2009.06.002
http://dx.doi.org/10.1016/j.addr.2009.06.002
http://dx.doi.org/10.1210/jc.2012-3080
http://dx.doi.org/10.1016/S1472-6483(11)60390-8
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Szkudlinski Glycoprotein hormones and receptors structure–function

87. Kenakin TP. Biased signalling and allosteric machines: new vistas and chal-
lenges for drug discovery. Br J Pharmacol (2012) 165(6):1659–69. doi:10.1111/
j.1476-5381.2011.01749.x

88. Calebiro D, Sungkaworn T, Maiellaro I. Real-time monitoring of GPCR/cAMP
signalling by FRET and single-molecule microscopy. Horm Metab Res (2014)
46(12):827–32. doi:10.1055/s-0034-1384523

89. Kenakin T. A Pharmacology Primer: Theory, Applications, and Methods. Lon-
don: Academic Press (2010).

90. Szkudlinski MW, et al. Superagonists of human TSH with increased stability
and prolonged plasma half-life. Thyroid (1997) 7(Suppl 1):S-8.

Conflict of Interest Statement: The author is Executive Vice President, CSO, and
Co-founder of Trophogen, Inc. discovering and developing biosuperior drugs for
profit.

Copyright © 2015 Szkudlinski. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordancewith
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Endocrinology | www.frontiersin.org October 2015 | Volume 6 | Article 15562

http://dx.doi.org/10.1111/j.1476-5381.2011.01749.x
http://dx.doi.org/10.1111/j.1476-5381.2011.01749.x
http://dx.doi.org/10.1055/s-0034-1384523
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


ORIGINAL RESEARCH
published: 17 August 2015

doi: 10.3389/fendo.2015.00128

Edited by:
Brian J. Arey,

Bristol-Myers Squibb Co, USA

Reviewed by:
Jeremy Tavare,

University of Bristol, UK
Sophie Jane Bradley,

Medical Research Council, UK

*Correspondence:
Alexander I. Agoulnik,

Department of Human and Molecular
Genetics, Herbert Wertheim College

of Medicine, Florida International
University, 11200 SW 8th Street,

AHCI 419B, Miami, FL 33199, USA
aagoulni@fiu.edu

†Zaohua Huang and Courtney Myhr
have contributed equally to this work.

Specialty section:
This article was submitted to

Molecular and Structural
Endocrinology, a section of the journal

Frontiers in Endocrinology

Received: 17 June 2015
Accepted: 31 July 2015

Published: 17 August 2015

Citation:
Huang Z, Myhr C, Bathgate RAD,

Ho BA, Bueno A, Hu X, Xiao J,
Southall N, Barnaeva E, Agoulnik IU,

Marugan JJ, Ferrer M and
Agoulnik AI (2015) Activation of relaxin

family receptor 1 from different
mammalian species by relaxin peptide
and small-molecule agonist ML290.

Front. Endocrinol. 6:128.
doi: 10.3389/fendo.2015.00128

Activation of relaxin family receptor 1
from different mammalian species by
relaxin peptide and small-molecule
agonist ML290
Zaohua Huang1†, Courtney Myhr 1†, Ross A. D. Bathgate2, Brian A. Ho1, Amaya Bueno1,
Xin Hu3, Jingbo Xiao3, Noel Southall3, Elena Barnaeva3, Irina U. Agoulnik 4,
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Relaxin peptide (RLN), which signals through the relaxin family peptide 1 (RXFP1) GPCR
receptor, has shown therapeutic effects in an acute heart failure clinical trial. We have
identified a small-molecule agonist of human RXFP1, ML290; however, it does not
activate the mouse receptor. To find a suitable animal model for ML290 testing and to
gain mechanistic insights into the interaction of various ligands with RXFP1, we have
cloned rhesus macaque, pig, rabbit, and guinea pig RXFP1s and analyzed their activation
by RLN and ML290. HEK293T cells expressing macaque or pig RXFP1 responded to
relaxin and ML290 treatment as measured by an increase of cAMP production. Guinea
pig RXFP1 responded to relaxin but had very low response to ML290 treatment only
at highest concentrations used. The rabbit RXFP1 amino acid sequence was the most
divergent, with a number of unique substitutions within the ectodomain and the seven-
transmembrane domain (7TM). Two splice variants of rabbit RXFP1 derived through
alternative splicing of the fourth exon were identified. In contrast to the other species,
rabbit RXFP1s were activated by ML290, but not with human, pig, mouse, or rabbit
RLNs. Using FLAG-tagged constructs, we have shown that both rabbit RXFP1 variants
are expressed on the cell surface. No binding of human Eu-labeled RLN to rabbit RXFP1
was detected, suggesting that in this species, RXFP1 might be non-functional. We used
chimeric rabbit–human and guinea pig–human constructs to identify regions important
for RLN or ML290 receptor activation. Chimeras with the human ectodomain and rabbit
7TM domain were activated by RLN, whereas substitution of part of the guinea pig 7TM
domain with the human sequence only partially restored ML290 activation, confirming the
allosteric mode of action for the two ligands. Our data demonstrate that macaque and
pig models can be used for ML290 testing.

Keywords: relaxin, G protein-coupled receptor, RXFP1, receptor structure–function, small-molecule allosteric
agonist
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Introduction

The relaxin hormone was discovered by Dr. Frederick Hisaw
90 years ago in experiments involving the injection of serum
from pregnant guinea pigs or rabbits into virgin guinea pigs
that resulted in the softening of the pubic ligament (1). Further
experiments led to the identification of the peptide responsible for
this effect. It was the first peptide hormone identified inmammals.
The relaxin gene, RLN1, has a relatively simple structure, contain-
ing only two exons (2). The mRNA encodes the preprohormone,
which is processed by convertases to the mature 6 kDa hormone
with A- and B-chains connected to each other by two disulfide
bonds. An additional disulfide bond is located within the A-chain.
Relaxin (RLN) peptides from various mammalian species show
significant variations in amino acid sequence; however, almost
all maintain the conserved functional RXXXRXXI/V motif in the
B-chain. The analysis of the full genome sequences revealed the
presence of only one RLN gene in various species. One exception
is primates, where two RLN1 and RLN2 genes coding for almost
identical peptides are located next to each other, most likely the
result of genomic DNA duplication. It is believed that the RLN2
gene is the functional copy, as only the RLN2 peptide was isolated
from the peripheral blood (1).

The cognate receptor for RLN peptide is the G protein-
coupled receptor Relaxin Family Peptide Receptor 1, or RXFP1
(3). All RXFP1 genes cloned to date from various mammalian
species have the same conserved 18-exon genomic organization
and encode proteins with very similar structures. RXFP1 con-
tains a large extracellular ectodomain, which is unique among G
protein-coupled receptors. This domain consists of a single low-
density lipoprotein receptor type Amodule (LDLa) followed by 10
leucine-rich repeats (LRRs). The classical seven-transmembrane
(7TM) region of the RXFP1 is well-conserved among different
species. Structural studies of RLN and RXFP1 binding and activa-
tion have revealed a complexmechanismof their interaction (2). It
was established that primary high-affinity binding of RLN occurs
within the LRRs, while the secondary low-affinity interaction
occurs via the second extracellular loop (ECL) of the 7TM region.
The LDLa domain is not necessary for binding but is essential for
activation of the receptor signaling, although the detailed mecha-
nism of these interactions is still under investigation.When trans-
fected into HEK293T, CHO, or other cells, human, mouse, and rat
RXFP1s respond to RLN treatment by increasing cAMP produc-
tion. Increased phosphorylation of extracellular signal-regulated
kinase 1/2 (ERK1/2), MAPK, tyrosine kinase(s) and activation
of nitric oxide (NO) signaling in various RXFP1-transfected cells
and cells endogenously expressing RXFP1were also found (2).

Non-reproductive functions of this hormone/receptor pair
were identified through analysis of Rln1- and Rxfp1-deficient
transgenic mice, experiments with RLN injection into rodents,
and inactivation of RLN signaling using antibodies or peptide
antagonists (1, 2). It was shown that RLN behaves as an antifi-
brotic, antiapoptotic, vasodilatory, and angiogenic factor. This led
to the investigation of the therapeutic potential for RLN in several
diseases. The most advanced clinical trial to date tested the use
of recombinant RLN as a treatment for acute heart failure. The
reported analysis suggests that the treatment is well tolerated by

patients, safe, and most importantly, results in a reduced 180-day
mortality (4).

As with other peptide-based pharmaceuticals, the use of such
drugs in chronic conditions is complicated due to their short half-
life and the need for intravenous administration. An additional
disadvantage is the cost of recombinant peptide production. To
overcome these limitations, we have initiated the search for a
small-molecule agonist of RXFP1. High throughput screening of
a small-molecule library and the subsequent structure activity
campaign resulted in the identification of the first series of RXFP1
agonists with preferred biochemical and in vivo pharmacokinetic
properties, which supported further therapeutic investigation of
RLN biology (5, 6). Surprisingly, these compounds, including lead
compound, ML290, did not activate the mouse RXFP1 recep-
tor. Using chimeric human–mouse RXFP1 variants and point
mutations, we have established that amino acid differences in
the third ECL of 7TM are responsible for such specificity (5).
This mouse variant is also present in rat and hamster RXFP1s.
An overwhelming majority of the preclinical animal testing for
RLN treatment includes rodent models, and thus the inability
of small-molecule agonists to activate the mouse receptor ham-
pers preclinical studies. To find suitable in vitro and in vivo
models, we have cloned and tested in a functional cAMP assay
RXFP1 receptors from four mammalian species: rhesus macaque
(Macaca mullata), pig (Sus scrofa), European rabbit (Oryctolagus
cuniculus), and the guinea pig (Cavia porcellus). We also tested
various chimeric human constructs that had their extracellular
or 7TM parts swapped for corresponding guinea pig and rabbit
fragments to establish regions responsible for RLN and ML290
activation. For rabbit RXFP1s, which were non-responsive to
RLN, we tested surface expression, RLN binding, and activa-
tion by RLN peptides from various species. We have concluded
that pig and macaque models are suitable for ML290 testing,
whereas rodent RXFP1 genes have to be humanized for preclinical
studies.

Materials and Methods

Sequence Analysis
Genomic sequences of the RXFP1 genes for different species were
obtained from the Ensembl database1. The full-length human
and mouse RXFP1 cDNA were used to identify exons using the
Blast2seq program (7) available from the NCBI website2. Mul-
tiple sequence alignments and evolutionary tree rendering were
performed using the MUSCLE algorithm (8) at the EMBL-EBI
website3.

Production of RXFP1 Expression Constructs
From Various Species and Human–Guinea Pig or
Rabbit Chimeric RXFP1s
The human, mouse, macaque, and pig RXFP1 cDNA constructs
in baculovirus BacMam mammalian expression vector (Invit-
rogen, Carlsbad, CA, USA) were synthesized at the Eukaryotic

1http://www.ensembl.org
2www.ncbi.nlm.nih.gov
3http://www.ebi.ac.uk/Tools/msa/

Frontiers in Endocrinology | www.frontiersin.org August 2015 | Volume 6 | Article 12864

http://www.ensembl.org
http://www.ncbi.nlm.nih.gov
http://www.ebi.ac.uk/Tools/msa/
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Huang et al. Activation of mammalian RXFP1s by relaxin and ML290

Expression Group-Protein Expression laboratory (NCI, Freder-
ick, MD, USA). The PCR primers for RT-PCR were designed
to cover the full-length sequence of the open reading frame
(ORF). PCR amplifications were performed with PfuUltra High-
Fidelity DNA polymerase (Agilent Technologies, Santa Clara,
CA, USA). Guinea pig RXFP1 (G-RXFP1) was amplified from
guinea pig ovarian cDNA (Zyagen, San Diego, CA, USA). Rab-
bit RXFP1 (R1-RXFP1 and R2-RXFP1) cDNAs were amplified
from rabbit uterus cDNA (Zyagen). All cloning was performed
using the In-Fusion® HD Cloning Kit (Clontech Laboratories,
Mountain View, CA, USA). Rabbit and guinea pig RXFP1s were
cloned into pCR3.1 mammalian expression vector (Invitrogen).
In order to study RXFP1 surface expression, rabbit cDNAs
were cloned into pcDNA3.1™/Zeo+ mammalian expression vec-
tor (Invitrogen), which contained an N-terminal FLAG-tag and
a bovine prolactin signal sequence (3). It was shown previ-
ously that such additions do not alter receptor activity (14). To
make chimeric clones, the human, guinea pig, and rabbit plas-
mid were used as templates to produce PCR amplicons, which
were then used for overlapping PCR and subsequent cloning
with the In-Fusion kit. The chimeric guinea pig/human GH-
RXFP1 construct contains guinea pig RXFP1 cDNA (G-RXFP1,
1–1499 bp) encoding the ectodomain, TM1, TM2, and part of
TM3 (amino acids 1–499 of G-RXFP1), and human RXFP1
(hRXFP1, 1509–2274 bp) encoding TM3 to the C-terminal tail
of the receptor (amino acids 503–757 of hRXFP1) (Figure 1A).
The recombinant chimeric human–rabbit HR-RXFP1 was made
with the 5′-part of the hRXFP1 sequence (1–972 bp, LDLa-LRR9,
1–324 aa), with the remainder being the rabbit RXFP1 sequence
(973–2277 bp, LRR9-C-terminal tail, 325–759 aa) (Figure 1A).
The recombinant chimeric rabbit–human R1H-RXFP1 or R2H-
RXFP1 contains theN-terminal rabbit RXFP1 sequence (1–972 bp
for R1-RXFP1 or 975 bp for R2-RXFP1), with the remaining
sequence being hRXFP1 (973–2274) (Figure 1A). R1- and R2-
RXFP1 denote two variants of rabbit RXFP1 cDNA. All numbers
correspond to the full-length cDNAs with the first nucleotide of
the ORF.

The rabbit RLN gene SQ10 (9) was synthesized and cloned into
pCR2.1-TOPO (Invitrogen) by Eurofins MWG Operon LLC. The
SQ10 cDNA was PCR amplified and cloned using In-Fusion kit
into a pCR3.1 vector.

At least three independent plasmids were obtained in each
cloning experiment. The cDNA inserts were fully sequenced using
overlapping primers by Eurofins MWG Operon LLC (Huntsville,
AL, USA). GenBank accession numbers are KT149378 (guinea
pig RXFP1), KT149379 (rabbit variant 1 RXFP1), and KT149380
(rabbit variant 2 RXFP1).

Relaxin Peptides and Cell Lines
Porcine relaxin peptide (10) was a gift from Dr. O. David
Sherwood (University of Illinois at Urbana-Champaign). Human
recombinant RLN peptide was obtained from PeproTech Inc.
(Rocky Hill, NJ, USA) or from Corthera (San Carlos, CA,
USA). Chemically synthesized mouse RLN peptide was a gift
from Prof. John D. Wade (Florey Institute of Neuroscience
and Mental Health, Melbourne, VIC, Australia). Human embry-
onic kidney HEK293T cells (ATCC #CRL-1573; American

Type Tissue Culture Collection, Manassas, VA, USA) used for
transfection experiments were maintained in 37°C, 5% CO2 in
Dulbecco’s Modified Eagle medium (DMEM) supplemented with
10% fetal bovine serum (FBS), 1% -glutamine, and 1% peni-
cillin/streptomycin.

CRE-Luc BacMam Luciferase Assay
GloResponse™ CRE-luc2P HEK293T cells stably transfected with
cAMP response element-driven luciferase (CRE-Luc) reporter
(Promega, Madison, WI, USA) were transduced with human,
macaque, pig, and mouse RXFP1 expression BacMam vectors
according to the manufacturer’s protocol (Invitrogen) and incu-
bated at room temperature for 2 h in the darkwith occasionalmix-
ing. The volume of the cell culture was adjusted to 1000 cells/μl
with DMEM+ 10% FBS. Cells (3 μl, 3000 cells) were plated on
1536-well white solid-bottom TC plates and incubated overnight
at 37C°, 5% CO2. Four hundred micromoles Ro 20-1724 (Sigma-
Aldrich, St. Louis, MO, USA) in PBS (1 μl) was added in each
well. The cells were treated with serial dilutions of either Forskolin
(Sigma-Aldrich), ML290 (5) or porcine RLN at final concen-
trations’ range (57 μM–3.5 pM) for Forskolin and ML290, and
(8.7 μM–1.8 pM, or 57 ng/μl–0.012 pg/μl] for RLN. After 2 h
stimulation at 37°C, 4 μl of detection reagent from Amplite™
Luciferase reporter gene assay kit (AAT Bioquest, Sunnyvale, CA,
USA) was added as a mix of 90% Component A, 5% Compo-
nent C, and 5% Component D, and incubated at room temper-
ature for 5min. Luminescent signal was measured on Viewlux
uHTS Microplate Imager (PerkinElmer, Santa Clara, CA, USA).
The data were processed using GraphPad Software (San Diego,
CA, USA).

Cell Transfection and cAMP Assays
HEK293T cell transient transfections were performed using Lipo-
fectamine 2000 transfection reagent (Life Technologies, Grand
Island, NY, USA) according to the manufacturer’s instructions.
Cells transiently expressing the RXFP1 receptors were usedwithin
48 h of transfection. Each construct was tested at least three
times. For cell-conditioned media stimulation, HEK293T cells
were transfected with the rabbit RLN construct (SQ10) or an
empty pCR3.1 vector, and cells were cultured for 24 h. The media
was used to stimulate HEK293T cells transfected with the RXFP1
receptors.

Directmeasurement of cAMPproductionwas performed using
the HTRF cAMP HiRange kit (CisBio, Bedford, MA, USA).
HEK293T cells transiently transfected with different RXFP1
receptors were stimulated with various concentrations of RLN
peptides or ML290 for 60min at 37°C, 5% CO2, after which,
two HTRF detection reagents (diluted according to assay kit
directions in HTRF lysis buffer) were added. The plates were
incubated for 60min at room temperature, and the signal was
read on a FLUOstar Omega (BMG Labtech, Cary, NC, USA)
plate reader. cAMP levels were calculated according to the
manufacturer’s instructions against a standard curve. Statistical
processing of the data was performed using GraphPad Prism
software.

For the indirect cAMP assay, changes in cAMP signaling
were measured by co-transfection of receptors with a CRE-β-
galactosidase (CRE-β-gal) reporter construct (11). Cells were
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FIGURE 1 | Alignment of RXFP1 proteins from various species.
(Continued)
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FIGURE 1 | Continued
(A) Amino acid alignment of RXFP1 receptor sequences. The position of the
extra amino acid (V98) in rabbit receptor variant R2 is shown above the
sequence with an arrow. Functional domains are shown below the sequences.
LDLa is low-density lipoprotein class A domain; LRR is leucine-rich repeat,
TM1–7 are transmembrane domains; ICL1–3 are intracellular loops of
seven-transmembrane domain; ECL1–3 are extracellular loops of
seven-transmembrane domain. The highlighted brown box is the third

extracellular loop and adjacent amino acids required for ML290 activation of
RXFP1. Amino acids conserved in all seven species are in red; amino acids
specific for the rabbit sequence are highlighted in yellow. The vertical line at
position 324 indicates the fusion site in chimeric rabbit/human receptor
(RH-RXFP1). The vertical line at position 502 indicates the fusion site in chimeric
guinea pig/human receptor (GH-RXFP1). (B) Evolutionary tree showing the
relationship of various RXFP1 proteins. The rabbit sequence is the most
diverged.

stimulated for 6 h at 37°C with RLN peptides or ML290 at various
concentrations. A non-linear regression sigmoidal dose–response
curve was then produced using GraphPad Prism. All experiments
were conducted at least three times with three to four replicates
each time.

Cell Total and Surface Expression Assay of
RXFP1
HEK293T cells were transfected with RXFP1 plasmid DNA or
empty vector pCR3.1 as described above. After 24 h incubation
at 37°C, cells were harvested in PBS/5mM EDTA. To deter-
mine surface expression, 0.5× 106 cells were fixed in stain buffer
(2% BSA/PBS) containing 3.7% formaldehyde, washed, and incu-
bated with 0.5 μg anti-FLAG M1 Ab (Sigma) for 30min at 4°C.
After washing, the cells were then incubated with 1 μg Alexa
Fluor 488 goat anti-mouse IgG (Life Technologies) for 20min
at 4°C. Cells were washed and resuspended in stain buffer for
analysis on an Accuri C6 flow cytometer (BD Biosciences, San
Jose, CA, USA). For total expression, 0.2% Tween-20 (Bio-Rad)
was added to the stain buffer at all steps and the cells were
processed identically. Cells transfected with empty vector were
used as the negative cut-off to determine RXFP1 expression. All
experiments were repeated three times in triplicates. Differences
in receptor expression were quantified as the ratios of surface
expression to total expression, and analyzed with a one-way
ANOVA.

Ligand-Binding Assays
Saturation-binding studies using Eu-labeled human H2 RLN (Eu-
H2 RLN) were performed on whole cells as described previously
(12). Cells stably expressing RXFP1 (13) or with a semi-stable
transfection of R1-RXFP1 selected using FACS (14) were used
in this experiment. Increasing concentrations of Eu-H2 RLN
(0.1–50 nM) were utilized and non-specific binding was deter-
mined in presence of 1 μM of unlabeled H2 RLN. Readings were
taken in triplicate and read on a BMG PolarStar plate reader
in clear-bottomed, opaque-walled 96-well plates (PerkinElmer).
All experiments were repeated three times. Data were ana-
lyzed using GraphPad PRISM and presented as the mean per-
centage specific binding± SEM of independent experiments. A
non-linear regression one-site binding curve was then fitted
and resulting pKd, and Bmax values were subjected to one-
way ANOVA and uncorrected Fisher’s LSD comparison test.
In this experiment, the cell total and surface expression was
analyzed using a previously described method (15). Differ-
ences in receptors expression were assessed using a Student’s
t-test.

Results

RXFP1 Genes
The ENSEMBL sequence of rhesus macaque RXFP1 (RXFP1-
202 ENSMMUT00000041571) had high homology to the human
RXFP1 sequence at both the mRNA and amino acid level. The
18-exon structure encoded 757 amino acids with 99% identity to
the human protein after removing 22 extra amino acids at the N-
terminus (Figure 1). Of the 10 substitutions identified, two were
located in the N-terminal signal peptide. The LDLa and LRRs
were identical between the two species, as well as ECL3, which
is important for the ML290 response. Analysis of the pig RXFP1
annotated sequence revealed the absence of the first exon, but
three additional 5′ small exons with no homology to the human or
mouse sequence. Using human exon 1 as a probe, we performed
a BLAST search of the 50 kb pig genomic sequence upstream of
the putative RXFP1 exon 2. The search revealed exon 1 of pig
RXFP1, separated from exon 2 by a 42 kb intron, a size comparable
to hRXFP1 intron 1. All intron–exon boundaries contained con-
served GT and AG sequences at the 5′- and 3′-ends of the introns,
which are required for proper RNA splicing. Alignment of the
resulting full-length 2277 bp sequence with human cDNA showed
91% identity. The pig RXFP1 758 aa protein sequence was 92%
identical to the human sequence (Figure 1A). The second valine
in the TM6 domain, adjacent to ECL3, was substituted for leucine
in the pig sequence (V L/V K F L S L L Q V E I P G T). As both
macaque and pig cDNAs showed high homology to the human
sequence, we chemically synthesized corresponding cDNAs and
cloned them into a BacMam vector. Mouse and human cDNA
expression BacMam vectors were also produced.

Analysis of the guinea pig annotated RXFP1 genomic sequence
and cDNA sequences identified 17 exons with high homology to
the corresponding human exons. A BLAST search of the upstream
genomic sequence revealed that exon 1 was separated from exon
2 by a 42.8 kb intron. The putative full-length G-RXFP1 cDNA
was 2268 bp long, encoding a 755 aa protein. At the amino acid
level, the guinea pig RXFP1 sequence was 84 and 80% identical to
the human and mouse RXFP1 proteins, respectively (Figure 1A).
The ECL3 sequence was identical to the pig sequence. Since
the guinea pig sequence was more divergent from the human
and mouse sequences, we used RT-PCR with primers designed
from the established first and last exons to generate full-length
cDNA. The RT-PCR fragments were obtained from total ovarian
guinea pig RNA. Comparison of the sequenced cDNA clones
with the genomic sequence from GenBank identified only one
synonymous substitution.

Next, we analyzed rabbit genomic DNA. Both the cDNA and
predicted protein sequence of rabbit RXFP1 were quite different
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from the human and mouse sequences, with the 3′ exons not well
defined. We used RT-PCR with primers designed from the first
and the last exons and total uterine rabbit RNA to obtain the
expected 2.3 kb full-length sequence of R-RXFP1. The fragments
were cloned into pCR3.1 vector, and sequencing of the resultant
cDNA clones revealed two variants differing by 3 bp in the 5′end
(Figure 2). Comparison with the genomic sequence suggested
that the variant with the additional TAG sequence was a result of
alternative splicing at the 5′-end of exon 4. We performed direct
sequencing of the RT-PCR products to confirm the presence of
both variants in total mRNA. As shown in Figure 2, the chro-
matogram depicts a single sequence at the end of exon 3, followed
by two overlapping sequences present at equal ratios, as evident
by the heights of the overlapping nucleotide picks. Alignment with
the genomic sequence showed that the 2277 bp (or 2280 bp) cDNA
was encoded by the 18 exons as in other species. When com-
pared to GenBank genomic sequence, all putative exon–intron
boundaries, with the exception of the beginning of exon 4, were
conserved in rabbit cDNAs. Four synonymous differences were
found in our cDNA versus GenBank genomic sequence. At the
amino acid level, rabbit RXFP1 sequence was 84 and 79% identical
to human and mouse proteins, respectively. The ECL3 sequence
was identical to the pig sequence (Figure 1A).

Multiple sequence analysis showed the primate and rodent
RXFP1s grouped together, with the pig RXFP1 sequence situated
between them (Figure 1B). Rabbit RXFP1 was the most diverged.
In rabbit RXFP1, there were multiple substitutions in amino acid
positions conserved among the other species, including in the
extracellular, 7TM, and C-terminal part (Figure 1A).

Macaque and Pig RXFP1 Receptors Respond to
RLN and ML290 in a CRE-Reporter cAMP Assay
To analyze the functional activity of the synthesized macaque
and pig RXFP1s, we used a CRE-Luc BacMam luciferase assay
(Figure 3). Human and mouse RXFP1s were used in these exper-
iments as controls. The cells were stimulated for 2 h, and the ele-
vation of cAMP production was detected by increased luciferase

FIGURE 2 | Alternative splicing of the intron 3 and exon 4 in rabbit
RXFP1 genomic DNA. The upper sequence shows the intron (green) and
exon (black) boundaries in the genomic DNA. Three additional nucleotides (in
red) are added to the mRNA as result of alternative splicing, as shown with
the red line. Below is the sequencing chromatogram showing the presence of
two sequences after the alternative splicing site. Note an equal size of the
peaks in the overlapping sequence, indicating an equal representation of the
two variants in the total mRNA pool.

activity. All four receptors showed similar EC50when treated with
porcine RLN (Figure 3A). Human,macaque, and pig RXFP1s also
responded strongly to ML290 stimulation (Figure 3B; Table 1).
Previously, we did not see an increase of cAMP in cells transfected
with the mouse receptor in a direct cAMP HTRF assay (5). In this
experiment, there was significant increase in luciferase activity in
cells expressing mouse RXFP1 receptor in response to the highest
concentrations of ML290.

Characterization of Guinea Pig RXFP1
G-RXFP1 response to RLN and ML290 treatment was tested
by measuring cAMP production in HEK293T cells transiently
transfected with receptor. A direct HTRF assay to measure cAMP
concentrationwas used in these experiments, and cells transfected

FIGURE 3 | Activation of macaque and pig RXFP1 receptors by RLN
and ML290. (A) Porcine RLN-induced cAMP response. (B) ML290-induced
cAMP response. HEK293T cells with CRE-luc reporter were transduced with
BacMam RXFP1 expression vectors. RLU, relative luciferase units. Data are
expressed as mean±SEM.

TABLE 1 | Activation of RXFP1 receptors with relaxin and ML290.

Ligand RLN ML290

Receptor
Human *** ***
Macaque *** ***
Pig *** ***
Guinea pig *** No
Guinea pig/human *** *
Rabbit 1 and 2 No **
Human/rabbit ** **
Rabbit 1(2)/human No **
Mouse *** No

*Weak, **intermediate, ***strong activation of the receptor.
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with hRXFP1 were used as a control. As shown in Figure 4,
G-RXFP1 responded to porcine RLN, although the maximum
response was lower than that of hRXFP1. There was small
response to ML290 only at highest concentration of compound
used. A chimeric guinea pig receptor containing the TM3-C-
terminal end of human RXFP1 was created (Figure 1); analy-
sis of cAMP production in cells transfected with the chimeric
receptor GH-RXFP1 showed ML290 responsiveness, albeit to
a much lower level than in hRXFP1 (p< 0.001) (Figure 4;
Table 1).

Characterization of Rabbit RXFP1
Two variants of rabbit RXFP1 cDNA with and without the addi-
tional amino acid in the LDLa-LRRs linker (R1-RXFP1 and R2-
RXFP1, respectively) were used in a transient transfection of
HEK293T cells, and the cAMP response to ligand treatment was
measured. Both failed to respond to porcine RLN, but generated
an increase in cAMP after stimulation with ML290 (data not
shown). One explanation for the lack of receptor activation could
be poor expression of the rabbit receptors on the cell membrane.
To test for cell surface expression, we used modified R1- and
R2-constructs with a FLAG-tag at the N-terminal part of the

FIGURE 4 | Activation of guinea pig and guinea pig–human chimeric
receptors by RLN and ML290. (A) Porcine RLN-induced cAMP response.
(B) ML290-induced cAMP response. HEK293T cells were transiently
transfected with RXFP1 expression vectors and cAMP was determined using
HTRF cAMP assay. cAMP activity is expressed as the percentage of 10μM
Forskolin-stimulated response. Data are expressed as mean±SEM, each
point represent triplicate measurements. The experiment was repeated three
times. *p<0.05, **p<0.01, ***p<0.001 compared to hRXFP1.

receptor. Both receptors were expressed at the same or greater
levels relative to a FLAG-tagged human RXFP1 (Figure 5). The
HTRF assay on FLAG-tagged rabbit receptors failed to detect
cAMP production when they were stimulated by porcine RLN.
Stimulation withML290 produced a cAMP increase in cells trans-
fected with both rabbit receptors, albeit with lesser efficacy than
hRXFP1 (Figure 6).

Two chimeric constructs were created to identify the region of
the rabbit receptor responsible for its lack of RLN response: R1H-
RXFP1 and R2H-RXFP1, which contain most of the ectodomain
of the two rabbit receptors and the 7TM domain of hRXFP1; and
HR-RXFP1, which contains most of the hRXFP1 ectodomain and
rabbit 7TM (Figure 1). The N-terminus contains LRR4, 5, 6, and
8, which have been identified as the sites of RLN binding (2). As
shown in Figure 6A, R1H-and R2H-RXFP1 were inactive when
stimulated with porcine RLN, whereas HR-RXFP1 responded at
a low level to RLN stimulation. While all three receptors respond
to ML290, the level of activation of R1H- and R2H-RXFP1 was
higher than that of R1-, R2-, or HR-RXFP1-transfected cells
(Figure 6B; Table 1).

In addition to porcine RLN, we analyzed the response of the
two rabbit RXFP1 variants to human andmouse RLN in theHTRF
cAMP assay (Figure 7A). In all cases, 10 nM of peptide failed to
stimulate cAMP production in cells transiently transfected with
rabbit receptors, whereas they responded to 5 μM of ML290.
Human receptor was active with all ligands.

To test the activity of rabbit receptor versus rabbit RLN (SQ10),
we designed an expression construct of the latter gene. HEK293T
cells were transfected with SQ10, and conditioned medium was
used for activation of cells expressing rabbit, human, and guinea
pig RXFP1s. Cells transfected with the latter two receptors
responded to SQ10 treatment with cAMP production measured
by the HTRF assay (Figure 7B). No response was recorded from
cells transfected with R1- or R2-RXFP1, suggesting that rab-
bit RLN does not induce cAMP production through RXFP1 in
rabbits.

FIGURE 5 | Expression of two rabbit RXFP1 receptors compared to
human RXFP1. Shown is the total and cell surface RXFP1 expression in
transiently transfected HEK293T cells. Data are expressed as mean±SEM,
each point represent triplicate measurements. The experiment was repeated
three times. *p<0.05 compared to hRXFP1.
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FIGURE 6 | Activation of rabbit and rabbit–human chimeric receptors by
RLN and ML290. (A) Porcine RLN-induced cAMP response.
(B) ML290-induced cAMP response. HEK293T cells were transiently
transfected with RXFP1 expression vectors and cAMP was determined using

the HTRF cAMP assay. cAMP activity is expressed as the percentage of
hRXFP1 cAMP activation by 10 nM of RLN. Data are expressed as
mean±SEM; each point represents triplicate measurements. The experiment
was repeated at least three times. ***p<0.001 compared to hRXFP1.

Binding of Eu-human RLN to the rabbit R1-RXFP1 recep-
tor was evaluated in a saturation binding assay using selected
HEK293T cells with a high level of RXFP1 (Figure 8). The R1-
RXFP1 was well-expressed on the cell surface membrane, with an
even somewhat higher level than hRXFP1 (Figure 8A), similar
to what was detected in transiently transfected cells. These cells
were used in human RLN-binding experiments. While strong
binding of labeled RLN was detected with human RXFP1, no
binding to rabbit R1-RXFP1 receptor was found (Figure 8B). In
the CRE-reporter-based cAMP assay, hRXFP1 and R1-RXFP1
were stimulated with human RLN and ML290. For ML290
treatment, the cAMP response in cells transfected with rab-
bit receptor measured using this approach was comparable to
hRXFP1. At very high concentrations of RLN (>1 μM), there was
some increase in β-gal activity for R1-RXFP1-transfected cells
(Figures 8C,D).

Discussion

Due to its vasodilatory, antifibrotic, and cytoprotective properties,
among others, RLN hormone induces pleotropic responses in
multiple normal and diseased tissues and organs (2). In animal
models, treatment with RLN has shown therapeutic effects in
induced liver, pulmonary, kidney, and heart fibrosis, as well as
diabetes, ischemia–perfusion injury, wound healing, and other
common diseases. Most of these studies were performed with

rodents, although other species were used to a lesser degree.
However, there are noted differences in the physiology of this
hormone in other species; for instance, the concentration of RLN
during pregnancy in mice is 100 times higher than in women
(1). The largest clinical trial of the therapeutic use of RLN was
in acute heart failure patients (4). The data indicated the possible
benefits of even short-term intravenous RLN administration. We
have recently reported the discovery of the first small-molecule
agonist series for the RLN receptor (5, 6). This has raised the
possibility of developing a therapeutic agent with high stability,
activity, specificity, and potentially oral delivery. However, we
have shown that the identified compounds did not activate the
mouse RLN receptor. Using chimeric human–mouse receptors
and site-specific mutagenesis, we have determined that the amino
acid sequence of the ECL3 of the 7TM determines the recep-
tor selectivity. The mutation of four amino acids in the mouse
receptor ECL3 made it responsive to small agonist treatment.
Analysis of the available sequences in GenBank revealed that
both rat and hamster RXFP1s have the mouse variant of ECL3,
and thus these rodents could not be used for the analysis of
small molecules. Here, we have cloned and tested the functional
activation of RXFP1s from mammals of four different orders,
Primates (rhesus macaque), Artodactyla (pig), Lagomorpha (rab-
bit), and Rodentia (guinea pig). The data show that the RXFP1
receptors from the first two species are fully activated by RLN
and ML290 and hence, the corresponding animal models can
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FIGURE 7 | Activation of rabbit receptors by relaxin peptides from
different species. (A) Activation of two rabbit receptor variants (R1- and
R2-RXFP1) and hRXFP1with 10 nM of human (hRLN), mouse (mRLN), and
porcine (pRLN) relaxin peptides, and by 5μM of ML290. Treatments of rabbit
RXFP1 are statistically significant compared to hRXFP1, ***p<0.001.
(B) Activation of rabbit (R1-), human (h), and guinea pig (G-) RXFP1s with
rabbit relaxin SQ10. Conditioned media from HEK293T cells transfected with
SQ10 and control empty vector was used for cell stimulation. cAMP activity is
expressed as the percentage of 10μM Forskolin stimulation for each type of
cells. Data are expressed as mean±SEM; each point represents triplicate
measurements. The experiment was repeated at least three times. Treatment
of R1-RXFP1 is statistically significant (p<0.0001) compared to hRXFP1 or
G-RXFP1.

be used for RLN and ML290 studies. Guinea pig RXFP1 does
not respond to ML290. The use of rabbit in studies of RLN
biology should be further critically assessed as in our experiments
RLN did not bind to the rabbit RXFP1 receptors nor did it acti-
vate cAMP response at physiologically relevant concentrations
(Table 1).

The availability of genome sequencing data allows quick
retrieval of gene information. However, a critical appraisal of
this information is required. In the case of RXFP1, the genomic
structure of cloned human, mouse, and rat receptors is well-
established and each comprises 18 coding exons (16). The same
conserved structure was annotated for macaque and pig genes. In
the case of guinea pig and rabbit, we identified the missing first
exon using a BLAST search of the genomic DNA. The correct

assembly of the ORFs was further confirmed by RT-PCR isolation
of the full-length cDNAs, cloning, and sequencing. We found
two splice variants of the rabbit receptor mRNA, an apparent
consequence of a mutation in the splice site of the intron 3/exon 4
boundary, which results in one extra amino acid in the LDL–LRR
linker. While splice variants of hRXFP1 affecting full exons were
described (13, 17, 18), such additional insertion of only three
nucleotides is unique for rabbit RXFP1.

Comparison of the various sequences indicated that pig, rabbit,
and guinea pig receptors share the same ECL3 sequence, differing
from the human and monkey sequence by only one amino acid
(V647). Multiple substitutions were found in the rabbit sequence,
including three unique substitutions in the LDLa domain, numer-
ous changes in the LDLa–LRR linker (17 unique amino acids)
and in several LRR repeats. Notably, all previously identified
amino acids essential for the structural and functional integrity of
human RXFP1 remained conserved in the rabbit receptor: amino
acids required for the coordination of Ca2+ binding and receptor
activation in the LDLa domain (19, 20), previously described
LRR amino acids important for primary RLN binding by the
RXFP1 ectodomain (2), and the sites crucial for secondary binding
of RLN peptide to the ECL1 or ECL2 (21). However, there is
a substitution of serine at amino acid 33, which is proline in
all the other RXFP1 receptors. This residue is located next to
one of the crucial cysteine residues in the LDLa module that
are essential for its function. It is possible that this substitution
results in a structural perturbation in the LDLamodule. Addition-
ally, there are numerous proline substitutions in the LDLa–LRR
linker region which would result in structural changes in this
domain. Recent studies have suggested that this linker region
may have an important role in receptor activation by the LDLa
module (14).

Analysis of RLN response measured by cAMP production
revealed RLN activity in all but the rabbit receptor. Neither of the
two rabbit RXFP1 variants responded to stimulation with RLN
peptides from various mammalian species, including previously
described rabbit RLN homolog SQ10 (22). Moreover, we were
not able to detect binding of labeled human recombinant RLN
to the rabbit receptor. Taken together, the homology of the iso-
lated rabbit clones with other species RXFP1s, almost identical
sequence of our cDNAs to the GenBank genomic DNA, and
identity of the cloned cDNA with the DNA obtained by direct
sequencing of the isolated RT-PCR fragments all suggest that
we have isolated the correct full-length rabbit RXFP1 clones.
The rabbit receptors were activated by ML290, indicating their
functionality.

It was recently suggested that there are five copies of the RLN
gene in the rabbit genome, which raises the question of whether
the rabbit RLN peptide used in our experiments is correct (23).
Putative translation of two rabbit RLN genes produced identical
peptides. The three other RLN genes encoding putative rabbit
RLN peptides each differ from the first two by a single evolu-
tionary non-conserved amino acid (23). The sequence of the first
peptide was also identical to the previously reported sequence
encoded by SQ10 cDNA obtained by RT-PCR (9) and partial pro-
tein sequencing (24). Therefore, we decided to use SQ10 cDNA in
our experiments to generate rabbit RLN. Importantly, it activated
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FIGURE 8 | Rabbit RXFP1 does not bind relaxin peptide. (A) Total and cell
surface expression of hRXFP1 and R1-RXFP1. Expression is normalized to the
expression of human receptor. ***p<0.001 compared to hRXFP1.
(B) Saturation binding using Eu-labeled H2 RLN. (C) Human RLN-induced

cAMP response. (D) ML290-induced cAMP response. cAMP activity is
expressed as the percentage of the 5μM Forskolin-stimulated response for
each receptor. Data are expressed as mean±SEM; each point represents
triplicate measurements. The experiment was repeated at least three times.

human and guinea pig receptors and thus was fully functional.
Taking into account that there is only a single amino acid dif-
ference between the SQ10 sequence and other three putative
peptides, it seems highly unlikely that the latter RLNs will activate
rabbit RXFP1.

Surprisingly, in an indirect assay, activation of a CRE-reporter
was detected when RLNwas used at a concentration far exceeding
the detected serum RLN range in rabbits (25). Similarly, activa-
tion of the CRE-reporter was observed with high-dose ML290
treatment on the mouse receptor, despite no activation being seen
in the direct HTRF cAMP assay. One explanation is that ligand
interactions with the receptor triggered signaling pathways other
than cAMP in both CRE-reporter assays, which then affected
CRE transcriptional activity (26). It was demonstrated that RLN
activated various signaling pathways in cells expressing RXFP1
(27, 28). It should be noted, however, that the fact that we were
not able to detect human RLN binding to the rabbit receptor in
our assays contradicts this suggestion.

Another possible explanation for the loss of activity of rabbit
receptors is that the activation of rabbit receptor by RLN requires
dimerization or interaction with other GPCRs or other cellular
partners. It is possible that such partners might be rabbit-specific
or that the receptor works only in rabbit cells. Such interactions
have been shown; for instance, RXFP1 can directly interact with
the angiotensin II type 2 receptor to regulate downstream cellular

signaling (29). It is also possible that rabbit RLNs do not signal
through RXFP1, and other ligands activate this receptor. In any of
these scenarios, the question of whether rabbit is an appropriate
model for RLN studies should be carefully examined. One might
wonder if treatment of rabbits rather than guinea pigs with serum
from the pregnant animals in Dr. Hisaw’s original experiments
would have led to the discovery of RLN.

The rabbit and guinea pig receptors provide new structural
templates for analysis of RLN and ML290 activation of RXFP1.
Using chimeric human and rabbit receptors, we showed here that
the extracellular part of the rabbit receptor is responsible for the
failure of RLN activation. Indeed, it was shown that primary
binding of RLN to RXFP1 involve sites within LRR4, 5, 6, and 8
(2). In contrast, the 7TM region of RXFP1, which is the site of
allosteric small-molecule agonist binding, is functional in rabbits.
The opposite was true for guinea pig RXFP1: despite having the
same ECL3 sequence as pig or rabbit RXFP1, the receptor was
activated by ML290 only at highest concentration of ML290 and
with much lower efficacy than hRXFP1. As noted above, one
potential site of ML290 interaction with the receptor is ECL3
(5). To further define the region of interaction, we substituted
the C-terminus guinea pig fragment with human sequence in
chimeric GH-RXFP1. This part contained peptide regions adja-
cent to ECL3: TM3–7, ICL2–3, and ECL2–3. The data showed
that the efficacy of ML290 stimulation was improved, however,
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it was still lower than in hRXFP1-transfected cells. Thus, spe-
cific amino acids in the guinea pig TM1–3, or their interac-
tion with TM3–7 amino acids might be responsible for ML290
binding or activation. Importantly, a modified mouse receptor
with humanized ECL3 is activated by ML290 (5). Thus, amino
acid substitutions unique for the guinea pig 7TM domain and
not present in other species might be responsible for the lack of
activation with ML290. Identification of such sites might help in
understanding the structural basis of ML290 and RXFP1 inter-
actions. Collectively, our data demonstrate that different parts of
the receptor are important for RLN- or ML290-induced activa-
tion and thus indicate the allosteric mode of activation by two
ligands.

In summary, the information derived from this study may
help in the selection of appropriate animal models to study the
biological effects of RLN and ML290. The comparisons of RXFP1
sequences have provided further insights into the structural basis,
mechanism of activation, and selectivity of peptide and small-
molecule agonists for RXFP1.
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Glycoprotein hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), 
and thyroid-stimulating hormone (TSH) are heterodimeric proteins with a common 
α-subunit and hormone-specific β-subunit. These hormones are dominant regulators 
of reproduction and metabolic processes. Receptors for the glycoprotein hormones 
belong to the family of G protein-coupled receptors. FSH receptor (FSHR) and LH 
receptor are primarily expressed in somatic cells in ovary and testis to promote egg 
and sperm production in women and men, respectively. TSH receptor is expressed in 
thyroid cells and regulates the secretion of T3 and T4. Glycoprotein hormones bind to 
the large extracellular domain of the receptor and cause a conformational change in 
the receptor that leads to activation of more than one intracellular signaling pathway. 
Several small molecules have been described to activate/inhibit glycoprotein hormone 
receptors through allosteric sites of the receptor. Small molecule allosteric modulators 
have the potential to be administered orally to patients, thus improving the convenience 
of treatment. It has been a challenge to develop a small molecule allosteric agonist for 
glycoprotein hormones that can mimic the agonistic effects of the large natural ligand 
to activate similar signaling pathways. However, in the past few years, there have been 
several promising reports describing distinct chemical series with improved potency in 
preclinical models. In parallel, proposal of new structural model for FSHR and in silico 
docking studies of small molecule ligands to glycoprotein hormone receptors provide a 
giant leap on the understanding of the mechanism of action of the natural ligands and 
new chemical entities on the receptors. This review will focus on the current status of 
small molecule allosteric modulators of glycoprotein hormone receptors, their effects on 
common signaling pathways in cells, their utility for clinical application as demonstrated 
in preclinical models, and use of these molecules as novel tools to dissect the molecular 
signaling pathways of these receptors.

Keywords: small molecule allosteric modulators, follicle-stimulating hormone, leutinizing hormone/chorionic 
gonadotropin, thyroid-stimulating hormone, G protein-coupled receptor, glycoprotein hormone receptors, 
leucine-rich repeat
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introduction

Glycoprotein hormones, FSH, LH, and TSH, are secreted from 
the anterior pituitary gland (1, 2). These hormones are composed 
of two subunits, a common α-subunit and a hormone-specific 
β-subunit (2, 3). Specificity of the hormone for receptor binding 
is determined by the β-subunit (4, 5). Chorionic gonadotropin 
(CG), a homolog of LH, is secreted from the placenta of primates 
during pregnancy (6, 7). Human CG β-subunit (beta-hCG) gene 
has evolved from LH β-subunit by gene duplication and read-
ing through into the 3′ untranslated region (8–10). Beta-hCG 
differs from LH β-subunit at the C-terminal end of the protein, 
which contains additional 34 amino acids called the C-terminal 
peptide (CTP) (11). Glycoprotein hormones are characterized by 
glycosylation of both subunits (11, 12). The common α-subunit 
carries two N-linked glycans and the β-subunits of all three glyco-
proteins have one or two N-linked glycans (13). Human CGβ has 
additional four O-linked glycans in their CTP (14). The N-linked 
oligosaccharide chains have a minor role in receptor binding 
of glycoprotein hormones, but they are critical for bioactivity 
(15). Glycoprotein hormones lacking N-linked oligosaccharides 
behave as antagonists (16–19). On the other hand, it was sug-
gested that the four O-linked oligosaccharides play an important 
role in the survival of hCG in circulation, and thus increasing the 
half-life of the protein (15, 20). Naturally occurring glycosyla-
tion variants of hFSH and hCG with differing activity in human 
granulosa cells have been described (14, 21–23).

Stimulation of FSH and LH secretion is controlled by gon-
adotropin-releasing hormone (GnRH), released from the hypo-
thalamus (24, 25). FSH and LH secretion from the pituitary is 
also modulated by gonadal feedback through steroid and protein 
factors (26–28). Gonadotropins, FSH and LH, play critical roles 
in regulating reproduction. In females, FSH induces follicular 
development, while LH stimulates egg maturation and ovulation 
in ovaries, and subsequently supports the corpus luteum (29, 30). 
In males, FSH supports early stages of sperm production in testes 
and LH stimulates final maturation of sperm through stimulation 
of testosterone from Leydig cells (31).

Thyrotrophin-releasing hormone (TRH), released from the 
hypothalamus, regulates TSH secretion with fine tuning by the 
feedback action of thyroxine (T4) and tri-iodo-thyronine (T3) 
(32, 33). The primary role of TSH is in stimulating the growth of 
thyrocytes and biosynthesis of thyroid hormone (T3/T4) through 
increased uptake of iodide by thyrocytes (34–36). TSHR is also a 
major autoantigen for autoimmune processes in Grave’s disease 
(37–41).

Receptors for the glycoprotein hormones belong to the large 
family of G protein-coupled receptors (GPCRs) that play crucial 
roles in cellular homeostasis. While GPCRs account for only 3% 
of the human functional genes, this class of proteins have proven 
to be extremely valuable as targets for drug discovery with >30% 
of the small molecule therapeutics developed to date modulat-
ing this class of membrane proteins (42–44). Common features 
shared by GPCRs are their hepta-helical or 7-transmembrane 
domain (7TM) that links an N-terminal extracellular domain with 
a C-terminal intracellular domain. The 7TM domain of GPCRs 
have, in common, three extracellular loops and three intracellular 

loops that have been shown to be involved in transmission of 
hormone-binding events into cellular signaling responses (45). 
GPCRs are activated by variety of stimuli, such as glycoproteins, 
peptides, neurotransmitters, and ions (46).

The GPCR superfamily can be divided into subfamilies on the 
basis of phylogenetic analysis of the sequence (47). Glycoprotein 
hormone receptors belong to the leucine-rich repeat containing 
GPCR (LGR) subfamily (48). The LGR subfamily is part of the 
larger Family-A or rhodopsin like GPCR (42, 49). LGRs differ 
from other Family-A receptors through their extracellular 
domain. While non-LGRs have a short extracellular region and 
bind small molecules (e.g., aminergic receptor, opioid receptor, 
etc.), LGRs have exceptionally large extracellular domains with 
the leucine-rich repeats (LRRs) of about 340–420 amino acids 
(50). Binding of glycoprotein hormone to their receptor leads to 
activation of the receptor by stabilizing the active confirmation 
(51). Active receptor, in turn, communicates the extracellular 
event to intracellular signal transducers primarily through a 
G-protein heterodimer leading to the dissociation of the α and 
β, γ subunits (52, 53). Following dissociation, the α-subunit 
stimulates adenylate cyclase, and consequently increases cAMP 
(54). Increase in intracellular cAMP results in activation of PKA 
(54). In parallel, the β, γ subunits recruit GPCR-kinases (GRK) to 
phosphorylate the receptor. This, in turn, leads to the recruitment 
of β-arrestin to the receptor, resulting in downregulation of the 
receptor (53, 55–57). In addition to the classical intracellular sig-
nal, cAMP, activated glycoprotein hormone receptors have also 
been shown to invoke other signaling pathways like Ca2+, MAPK, 
and Akt (Figure 1) (54, 58–60). In summary, glycoprotein hor-
mones or FSH, as shown in Figure 1, provokes a complex pattern 
of gene expression through actions of many different signaling 
cascades culminating in their physiological response.

Structure of Glycoprotein Hormone and Their 
Receptor
Structural determination of glycoprotein heterodimers bound to 
their cognate GPCRs is extremely challenging. However, several 
groups have utilized improved technological advances in molecu-
lar biology, structural biology, and impressive crystallization 
methods to stabilize and anchor GPCRs to obtain quality crystals. 
Solving the crystal structure of hCG was a major milestone in 
the early quest for elucidating the structure for glycoprotein hor-
mones (61, 62). Subsequently, Fox et al. determined the crystal 
structure of βThr26Ala hFSHR, a partially deglycosylated protein 
(63). These studies interestingly revealed that both subunits of 
glycoprotein hormones are folded into elongated non-globular 
structures belonging to the cysteine-knot superfamily, which 
includes some growth factors. The heterodimer is stabilized by 
a segment of the beta subunit, which wraps around the alpha 
subunit and is covalently linked like a seat belt (61–63). Based 
on charge distribution, β93–100 (determinant loop), located at 
the center of the “seatbelt” of beta-hCG conferred specificity of 
the hormone binding to the receptor. This has been confirmed 
experimentally by several groups (64–66). In addition to the 
determinant loop, a second site in the β subunit, L2β has also 
been implicated in hormone binding to the receptor (67–69). In 
α-subunit, the CTP 88–92, is required for receptor activation of 
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intracellular signals (70–72). Thus, these three regions of the hor-
mone, the determinant loop, the L2β loop of the β-subunit, and 
the CTP of the α-subunit, are the major contributors of receptor 
binding and activation.

Extracellular domain of these receptors can be further divided 
into two distinct regions, the N-terminal LRR domains, and the 
hinge region that connects the LRRs to the TMD. In 1990s, several 
groups identified the importance of the LRR of the extracellular 
domain of glycoprotein hormone receptor for ligand interaction 
(73–75). Elucidation of the crystal structure of FSH complexed 
with truncated FSHR in 2005 by Fan and Hendrickson revealed 
a detailed interaction of the hormone with the extracellular 
domain of the receptor (76). The crystal structure revealed that 
FSH binds to FSHR like “a handclasp” (76). According to their 
hypothesis, the basal receptor exists as a monomer and ligand 
binding induces formation of an activated dimer. Recent crystal 
structure analysis of the complete ectodomain of FSHR confirms 
that the heterodimeric FSH is bound into the concave surface of 
LRR in a “handclasp” fashion similar to that described by Fan and 
Hendrickson (77).

The concave high-affinity hormone-binding surface in the LRR 
region is a common feature among other members of this family 
of LRR-GPCRs. TSH and the TSHR stimulating monoclonal anti-
body M22 bind to the corresponding concave surface of TSHR in 
the complex (78, 79). Very recently crystal structure of R-spondin 
with LGR4 and LGR5 revealed that the concave surface of these 
LGRs is the sole interacting site for R-spondin (50, 80).

The role of the hinge domain in hormone binding and 
signal transduction has been intensively investigated (81–86). 
Jiang and co-workers identified a critical function for the 
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sulfated Tyr-335 (sTyr) in the FSHR hinge region as a second 
interaction site with FSH (Figure 2) (77). According to their 
findings, binding of FSH to the high-affinity inner concave 
face of the ECD is a transitory event. This first binding event 
is followed by the formation of sTyr-binding pocket at the 
interface of α and β subunits of FSH. Then, sTyr is drawn into 
the pocket lifting the hairpin loop. The lift of the loop releases 
the inhibitory nature of the hairpin loop and activation of the 
transmembrane domain. A sulfated tyrosine located in the 
hinge domain of both LH/CGR and TSHR is also essential for 
the activation of the hairpin loop domain by their respective 
ligands (87, 88), suggesting that glycoprotein receptors utilize 
a common two-step mechanism for ligand recognition and 
activation.

Glycoprotein hormone receptors have been proposed to 
undergo dimerization in living cells (86, 89–92). The previous 
crystal structure of FSH with the extracellular domain of FSHR, 
lacking the hinge domain, proposed that the dimeric FSH-FSHR 
may be involved in receptor signaling (76). Evidence supporting 
intermolecular co-operativity as a component of transactivation 
of receptor has been cited as supportive evidence for the activated 
form of the receptor to be a dimer for all three glycoprotein recep-
tors (86, 90, 93, 94). In a very elegant series of genetic models, 
Huhtaniemi’s group demonstrated that in LHR deficient mice co-
expressing equal ratios of both binding deficient and signaling-
deficient forms of LHR receptor transactivation can reestablish 
normal LHR function through intermolecular interaction to 
restore spermatogenesis (95). In contrast, in transgenic mice 
expressing only the binding deficient receptor or the signaling-
deficient receptor, males were spermatogenically incompetent. 
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Further, single-molecule analysis of these mutant receptors 
reveal diverse structural assembly of LHR with varying degree of 
oligomerization that can regulate signaling of the receptor (96).

Zonen and co-workers propose that ligand binding induces 
strong negative cooperativity within the glycoprotein hormone 
receptor (86). At physiological concentrations, a single ligand 
binds a dimer, leading to transmission of the intracellular signal 
before horizontally causing a negative impact on the transmem-
brane domain of the other protomer. This leads to lowering of 
the binding affinity of the second protomer, providing allosteric 
cooperativity across the receptors (86). Very recently, single-
molecule analysis of FSHR/LHR co-expressed in HK293 cells 
demonstrates heterodimeric interaction between FSHR and 
LHR (97). This heterodimeric interaction results in attenua-
tion of LH-induced signaling through LHR and attenuation of 
FSH-mediated signaling through FSHR. The authors propose 
that heterodimerization of glycoprotein receptors could play a 
significant role in fine tuning the signaling event of FSH and LH 
during granulosa cell differentiation. However, it will be critical 
to demonstrate heterodimerization in primary cell systems and 
in in vivo models where the receptor expression is at low level 
compared to the overexpression system.

The recent crystal structure of the FSH complexed with the 
complete extracellular domain of FSHR challenged the previous 

view of the structural changes imposed on this receptor upon 
ligand binding (98). According to this model, in basal state, 
FSHR exists as a trimer (Figure 2A), and only a single unit of fully 
glycosylated FSH bind the trimeric receptor (Figure 2B), leading 
to dissociation and activation of the ligand-bound monomeric 
receptor. On the other hand, due to the lack of bulky glycans, 
three deglycosylated hormones can bind to the receptor keep-
ing it in the trimeric inactive state (Figure  2D). Although the 
trimer model of FSHR in FSH recognition could well explain 
some observation in biochemical and functional studies, the 
in vivo relevance of the FSHR-FSH trimerization and the actual 
oligomerization form in living cells still need to be determined.

Small Molecule Modulators of Glycoprotein 
Hormone Receptors
Development of drugs that target the ligand-binding domain has 
been highly successful for agonists or antagonists that address 
the large superfamily of GPCRs. Unfortunately, many of the cur-
rent GPCR-based drugs produce unwanted dose-limiting side 
effects due to cross reactivity with other related receptors that 
share structurally conserved features. Yet, another challenge for 
developing innovative drugs targeting GPCRs is that many of the 
synthetic molecules that replace peptide or protein ligands have 
been intractable (not ‘‘drug-able”) largely because the molecules 
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must fit into highly lipophylic regions of the GPCR transmem-
brane domains (99). However, for the past several decades, it 
has been realized that receptors can be regulated by allosteric 
sites that are distinct from the ligand-binding orthosteric site 
(100). Accordingly, there is now ample evidence over the past 
decade and half that a GPCR response to endogenous ligand can 
be modulated by synthetic small molecules targeting allosteric 
sites (101–105). These allosteric modulators can exert negative 
or positive effects on endogenous ligand signaling. There are 
four types of allosteric ligands, antagonist known as negative 
allosteric modulators (NAMs), potentiators also called positive 
allosteric modulators (PAMs), allosteric agonists (allo-agonists), 
and finally silent modulators (SAMs) (106). For glycoprotein 
hormone receptors, since the ligands are very large and involve 
multiple binding sites at the receptor, a small molecule binding 
the orthosteric site cannot be envisaged. The advent of allos-
teric modulators in other GPCR programs has encouraged the 
incorporation of drug discovery strategies to screen for allosteric 
modulators that modulate glycoprotein hormone receptors.

The primary market driver invoked by drug discoverers to 
pursue allosteric modulators for glycoprotein hormones over 
available injectable proteins is patient convenience. A second-
ary motivation is the hope that a new mechanism of action for 
allosteric agonists can improve the biological response relative 
to “glyco-uniform” biotherapeutics. As the number and quality 
of allosteric modulators increases, subtle advantages of PAMs 
or NAMs over the injectable proteins are beginning to emerge. 
In the late 1990s, recombinant therapeutic proteins were devel-
oped to provide superior consistency than could be obtained by 
purification of hormones from natural sources. However, the 
recombinant proteins continue to be administered by injections, 
which are inconvenient and results in low patient engagement for 
infertility treatment. Recombinant proteins are also constrained 
by regulatory requirements for uniform post-translational modi-
fications, such as glycosylation. The preference of patients and 
physicians for orally active therapeutics has motivated develop-
ment of replacements for injectable treatments in rheumatoid 
arthritis (anti-TNF agents vs JAK inhibitors) (107, 108) and 
multiple sclerosis (interferons vs Fingolimod or Teriflunomide) 
(109, 110). For infertility patients, the motivation is similar; it 
is more desirable to have small molecule agonists of glycopro-
tein hormones that can be used as an oral therapy. Secondarily, 
if the allosteric agonist can amplify the receptor response to 
endogenous biodiverse glycoprotein forms, this may provide a 
preferred therapeutic over suppressing endogenous glycoprotein 
production followed by replacement with a bio-constrained uni-
formly glycosylated glycoprotein. A NAM of FSHR and/or LHR 
may lead to development of a highly specific oral contraceptive 
with lesser side effects than the currently available steroidal-
based drugs. In addition, glycoprotein hormone receptor small 
molecule antagonists may have a better long-term safety than 
steroidal contraceptives (111–113).

Developing small molecule agonists or antagonists for 
glycoprotein hormone receptors has been challenging for 
medicinal chemists; however, in the last few years, great strides 
have been achieved in developing chemical scaffolds targeting 
the glycoprotein receptors through advances in screening tools, 

access to larger diverse library of small molecule compounds and 
robotic systems to conduct high-throughput campaign. Most 
of the new allosteric modulators have been identified through 
high-throughput screening (HTS) campaigns using cell-based 
assays (114–117). The availability of a wide range of assays from 
overexpressed isolated proteins to engineered cell culture systems 
measuring second messengers, to primary cell cultures, and to 
ex vivo animal tissues has made it critical to identify the appropri-
ate system for screening as well as various transitions to more 
physiologically relevant models. The key objective of the optimal 
screen is to quickly filter false positives identified because of the 
artificial system and confirm their activity in physiologic cellular 
responses that address the therapeutic goal (118).

In our own drug discovery experience, there has been an 
evolution in the approaches we have used to identify and develop 
small molecule agonists of glycoprotein hormone receptors. In 
the process, we learned three key lessons: (a) molecules that 
stimulate cAMP in immortalized cell systems expressing FSH 
receptor (FSHR) as a primary screen do not necessarily reflect the 
compound requirements to stimulate follicular development; (b) 
the diversity of intracellular and intrafollicular events stimulated 
by FSH cannot be reproduced by measuring single endpoints in 
single cell types in vitro; and (c) the highest potency compound 
in  vitro does not always correlate with best efficacy in  vivo. In 
the next several sections, we will highlight how these lessons 
influenced our current discovery process.

Molecules that Stimulate cAMP in Immortalized Cell 
Systems Expressing FSH Receptor as a Primary 
Screen Do Not Necessarily Reflect the Compound 
Requirements to Stimulate Follicular Development
It is intuitively obvious that it is a huge challenge to engineer a 
small molecule (molecular weight 500–600) that can replicate 
the integrated biochemical response of a large protein (molecular 
weight 33,000). A small molecule glycoprotein hormone receptor 
agonist cannot occupy the same space in the extracellular ligand-
binding domain of the FSHR. Therefore, binding assays were 
discarded as a primary screen in these programs, but instead were 
applied to understand changes in receptor conformations induced 
by the small molecule. Cell-based assays using physiologically 
reasonable levels of expression of the appropriate receptor and 
intracellular signaling cascades are important to interpret screen-
ing results. Exaggerated overexpression systems can make a 
weakly active compound look more potent than it really is. FSHR 
expression in our CHO-cell system, as detected by FSH binding 
to receptors, was approximately threefold greater than expression 
in primary granulosa cells. It has been demonstrated that receptor 
density at the plasma membrane can control the balance between 
distinct signal transduction pathways (56).

Diversity of Intracellular and Intrafollicular Events 
Stimulated by FSH Cannot be Reproduced by 
Measuring Single Cell, Single Outputs in Cell Culture
It is imperative to confirm changes in second messengers induced 
by allosteric modulators, in subsequent primary cell culture sys-
tems that measure physiologically relevant products associated 
with the same intracellular pathways. In the earliest attempts 
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to identify FSHR agonists, compounds with activity in FSHR-
expressing CHO cells were quickly advanced into in vivo models 
without evaluation in primary granulosa cells. Over several 
iterations of screening, we learnt that the structure–activity rela-
tionship (SAR) from immortalized CHO cells does not translate 
well to activity in rat granulosa cells or human granulosa cells. 
Compounds active in the immortalized cell screen were tested 
in relevant functional assays using rat granulosa cell cultures 
and measuring estradiol secreted in the media. Responses of the 
compounds varied between CHO-hFSHR cells and in granulosa 
cells (Table 1). Among compounds that were moderately potent 
in CHO cells (EC50 between 10–49.9 nM and 50–250 nM) ~30% 
of compounds were ineffective in stimulating estradiol in the 
functional assay (Table  1). Furthermore, among compounds 
that were potent in CHO-FSHR cells (1–4.9 nM and 5–9.9 nM 
EC50), ~25% of the compounds were unable to stimulate 
estradiol production in granulosa cell culture. Among the most 
potent compounds (EC50 < 1 nM), only 7% of compounds were 
inactive in granulosa cells (Table 1). This data suggests that the 
result obtained from overexpression system should be treated 
with caution, as response in functional assay at the beginning of 
the lead optimization effort had nearly 30% false positive rate.

The converse relationship between physiological activity in 
granulosa cells and signaling activity in immortalized cells was 
observed for FSHR NAMs. An FSHR NAM was shown capable to 
partially reduce cAMP induced by FSH in HEK293 cells, but it was 
very effective in blocking cAMP and progesterone production in 
a primary granulosa cell system (119). This clearly highlights that 
the SAR developed in an immortalized cell system is not always 
transferable to the physiologically relevant functional cell model. 
It is imperative to test molecules in a therapeutically relevant 
cell very early on in the screening program before progressing 
molecules to animal models.

Highest Potency Compound In Vitro Does Not 
Always Correlate with Best Efficacy In Vivo
The correlation between granulosa cell activity and in vivo activity 
is much lower, and is affected by multiple variables. Compounds 
in our program as well as compounds from other efforts 
[thiazolidinones (TZDs)] that are very potent (EC50  <  1  nM) 
are poorly absorbed and/or extensively metabolized following 
oral exposure (117, 120). In general, these molecules have very 
high logD values, and are metabolized faster. One has to balance 
the desire for highly potent compounds with candidates that can 
be orally available. Highly potent compounds frequently share 

TABLe 1 | Not all compounds active in CHO-hFSR cells can stimulate 
estradiol secretion in primary rat granulosa cells.

eC50 in   
CHO-hFSHR (nM)

Rat granulosa cell assay (GC)

No. of compounds

Tested in GC No activity % inactive

<1 44 3 7
1–4.99 97 20 21
5–9.99 52 15 29
10–49.9 84 30 36
50–250 10 3 30

undesirable absorption, distribution, and metabolism (ADME) 
properties. There are some excellent reviews published on the 
small molecule allosteric modulators of glycoprotein hormone 
receptors (121–123). We will focus on the most recent advances 
made in this exciting field.

FSH Receptor Modulators
Among the three glycoprotein hormones used in infertility treat-
ment, FSH is the major value driver for therapeutic intervention. 
Without the FSH treatment, there is no ovarian hyperstimulation. 
As expected, there are several publications on FSHR modulators 
and fewer reports on development of LHR and TSHR modula-
tors. The first report of FSHR agonist was published as a patent 
in 2001 by Serono (124), describing a piperidine carboxyamide, 
which had an EC50 of 3.9 nM in CHO-hFSHR cells measuring 
cAMP. These molecules were originally identified through HTS 
of a compound library. Unfortunately, piperidine carboximides 
lacked in  vivo activity. In this program, there was virtually no 
systematic structure-based optimization of the lead through 
iterative Med Chem efforts using granulosa cell cultures to guide 
their development. Since then, several groups have followed up 
with various chemical scaffolds targeting FSHR, including TZDs 
(125–127), substituted gamma-lactam (128), diketopiperazines 
(129, 130), N-alkylated sulfonyl piperazine (131), tetrahydro-
quinolines (132), hexahydroquinoline (133), thienopyrimidines 
(134), and benzamides (117). Chemical structures for some of 
these are provided in Figure  3. For more detailed review on 
chemical nature of other series, please refer to van Straten and 
Timmers (123). The cellular and physiological effects of specific 
chemical classes are summarized below.

Thiazolidinones Agonists
Thiazolidinones were identified through a combinatorial library 
screening (126–128). The initial hit obtained through screening 
had an EC50 of 20 μM in CHO-hFSHR cells, but this potency was 
optimized over 10,000-fold during lead optimization (127). In 
addition to their effects in immortalized cells, TZDs were capable 
of stimulating estradiol production in functional rat granulosa 
cells (127). These authors further explored the site within the 
receptor where these compounds might be working. Using mul-
tiple reconstitutions of FSHR and TSHR transmembrane domain 
chimeras, they identified that TZDs activated FSHR through 
the transmembrane domain 1–3 (127). They also observed a 
range of biochemical features of this series of compounds from 
PAM to mixed modulators and to negative modulators (125), 
suggesting that a small change in the TZD scaffold can provide 
FSHR analogs of differing pharmacology. The agonists stimulated 
cAMP and estradiol in granulosa cells. On the other hand, the 
negative modulators were completely devoid of agonistic activity 
and inhibited FSH-induced cAMP and steroidogenesis, through 
activation of Gi pathway. The mixed modulators at lower concen-
trations behaved as agonist stimulating cAMP through Gs, while 
at higher concentration, the compound activated Gi pathway 
and reduced cAMP demonstrating negative cooperativity as was 
demonstrated within cells expressing constitutively active glyco-
protein receptors (86, 125). These molecules provide evidence 
that it is possible to selectively trigger specific signaling pathways 
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A Agonists

1. Thiazolidinone (Compound 5, Yanofsky et al. 2006)

2. Hexahydroquinolines (Org214444-0, van Koppen et al. 2013)

3. Benzamide (Compound 9K, Yu et al. 2014)

B Antagonists

1. Thiazolidinone (Compound 3, Arey et al. 2008)

2. Dimethoxybenzamide (ADX68692, Dias et al. 2014) 

3. Aminoalkyamine (van Straten et al. 2005)

FiGURe 3 | Chemical structure of selected small molecule modulators 
of FSHR. (A) Agonists: (1) thiazolidinone [compound 5 (127)], 
(2) hexahydroquinolines [Org214444-0 (135)], and (3) benzamide [compound 
9K (117)]. (B) Antagonists: (1) thiazolidinone [compound 3 (125)], 
(2) dimethoxybenzamide [ADX68692 (147)], and (3) aminoalkyamine (132).
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of the receptor. Recently, our group demonstrated that the TZD 
compound was capable of stimulating multiple signaling path-
ways, in addition to cAMP, in an integrated cellular signal very 
similar to FSH (120). These molecules behaved as “allo-agonists,” 
in that they can potentiate FSH action in the presence of low FSH, 
and also directly activate FSHR in rat granulosa cells (120). In 
relevant physiological cellular models, TZD stimulated cumulus 
expansion of granulosa cells, and induced in  vitro follicular 
growth. Due to extremely low oral bioavailability, TZD was not 
suitable as orally active therapeutics; however, the compound was 
quite effective in stimulating follicular development in immature 
rat when delivered continuously by Alzet pump (120).

Hexahydroquinoline Agonists
A series of hexahydroquinolines with nanomolar activity in CHO 
cells were reported (133). Cyclocondensation reaction of hexahy-
droquinolines resulted in mixtures of four diastereoisomers with 
EC50 <1  nM. One such compound, Org214444-0, was highly 
lipophilic and stereoselective on FSHR over related LHR and 
TSHR (135). Org214444-0 was quite potent in stimulating rat and 
human granulosa cells. In binding experiment with 125I-FSH, this 
compound was able to increase FSH binding affinity by 6.5-fold, 
while in CHO-CRE luciferase assay, a three to fivefold increase 
in potency was observed, behaving as “allo agonist.” They also 
demonstrated oral bioactivity as measured by increased follicular 
development and ovulation in mature rats (135). This is the first 
report of an orally active FSHR molecule. In an attempt to reduce 
the lipophilicity, several pyridyl- and sulfonamide-substituted 
hexahydroquinolines were prepared (136). The compounds had 
moderate in vitro activity but there is no report on their in vivo 
potency.

FSHR Antagonists
In addition to the pursuit of the development of small molecule 
FSHR agonists to promote fertility, several novel series of com-
pounds have shown potential to suppress fertility as contracep-
tives. Contraceptives have played a significant role in avoiding 
unwanted pregnancy, for family planning, and for slowing 
population growth. Currently the widely used contraceptives are 
steroid based and have a number of side effects, so developing a 
safer method of contraceptive is a significant unmet medical need 
(137, 138). FSH plays a critical role in follicular development and 
the onset of sperm production (139–142). Thus, blocking FSH 
action with a receptor antagonist can be a novel non-steroidal-
based approach with specific activity in ovary and testes without 
affecting other peripheral and central tissue.

The first report of an FSHR antagonist for use in contraception 
was reported in 2002 (143). The compound inhibited FSH-induced 
cAMP and steroid production. In vivo at 100 mg/kg, provided by 
ip, the compound blocked increases in ovarian weight and ovula-
tion (143). Aminoalkylamides were described in 2003 to have 
antagonistic activity against FSHR (144). Two compounds were 
tested for their ability to interrupt estrous cycle in female rats and 
their effect on spermatogenesis in male, but in both cases, the 
compounds were not very effective (144). Organon later reported 
identification of tetrahydroquinolines agonists from HTS with 
EC50 on FSHR at 4.4 μM (132). Hit optimization of this series led 
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to switch from agonist to antagonist with IC50 of 5 nM (132). This 
compound showed antagonistic activity in granulosa cells and 
inhibited in vitro follicle growth and ovulation (132). However, 
in vivo efficacy of this molecule was not reported. Antagonists 
with greater potency were obtained with dimeric compounds 
(145). Connection of two weakly antagonistic molecules with a 
spacer of sufficient length generated antagonists with much better 
activity in vitro (145).

Small molecule FSHR agonists have varying pharmacokinet-
ics properties, hence shown to have quite different half-life. 
A clever approach was used by van de Lagemaat to develop a 
contraceptive using a FSHR agonist with a very short half-life 
(146). Follicle stimulation in mammals is achieved when the cir-
culating concentration of FSH is sustained above the threshold 
for sufficiently long time. Thus in rats, optimal follicular growth 
occurs only when FSH is administered twice a day for 2 days due 
to its short half-life, in contrast to a single injection of PMSG, 
which has longer half-life and remains in the circulation for 
a longer duration (119). Van de Lagemaat et  al. observed that 
oral administration of the short-acting FSHR agonist inhibited 
ovulation by inducing premature luteinization of unruptured 
follicles in rat and guinea pig (146). This effect was reversible; 
therefore, this novel approach of short follicular stimulation fol-
lowed by premature withdrawal presents a unique mechanism of 
contraceptive action relative to that used by steroidal hormones, 
which blocks the entire ovarian follicular phase. However, in 
cynomolgus monkey, the effect of the compound was partial as 
only about 40% of animals showed luteinized unruptured folli-
cle. Due to the variation in response in non-human primate, this 
molecule was not pursued for development, but the approach 
is quite novel. Thus, having allosteric modulators with differing 
pharmacology can be a useful tool for both stimulating and 
controlling fertility.

Investigators from Addex, in collaboration with Dias and 
co-workers, characterized three of the NAM identified from 
their drug discovery effort. These are low molecular weight 
compounds effective in blocking FSH-induced cAMP produc-
tion in CHO-hFSHR and rat granulosa cells. In the first paper, 
they demonstrate ADX61623 to increase the affinity of 125I-hFSH 
binding to the receptor (119). In rat granulosa cells, FSH-induced 
progesterone secretion was inhibited by ADX61623, but not estra-
diol, demonstrating biased antagonism on FSH signaling. This 
molecule was only partially effective in blocking FSH-induced 
follicular development and ovulation in rats (119). Results with 
ADX61623 provide proof that small molecule modulator of 
FSHR can be used to dissect the signaling pathways of the recep-
tor. In a more recent publication, Dias et al. have tested two other 
NAMs, ADX68692 and its analog ADX68693 (147). ADX68692 
inhibited FSH-induced progesterone and estradiol production in 
granulosa cells. In vivo, this compound blocked FSH-mediated 
follicular maturation and ovulation in immature rats (147). While 
in mature cycling rats, though ADX68692 disrupted estrous 
cycle, it had only a partial effect in blocking pregnancy following 
mating (147). Its contraceptive efficacy in mature rat remained 
lower than that can be achieved with steroidal contraceptives. 
ADX68693, on the other hand, showed biased antagonistic 
activity on FSH-mediated steroid production like ADX61623 by 

inhibiting FSH-stimulated progesterone, but rather stimulating 
estradiol secretion in granulosa cells and no significant effect in 
blocking ovulation in immature rat (147). These studies demon-
strate that, for an effective contraception, it is critical to inhibit 
both arms of FSH-induced steroidogenesis, i.e., progesterone and 
estradiol biosynthesis. At present, the available FSH antagonists 
lack pharmacological properties that would justify development 
as alternatives to steroidal contraceptives.

LH Receptor Modulators
The first series of small molecule LHR agonist reported in litera-
ture were thienopyrimidines (116). An HTS campaign followed 
by hit optimization resulted in Org41841 with EC50 of 20 nM 
in CHO-hLHR assay. This compound stimulated testosterone in 
mouse Leydig cells. Org41841 at 50 mg/kg administered orally 
induced ovulation in 40% of immature mice primed with FSH 
(116). This was the first report of oral activity of LHR analog. 
Intensive medchem optimization of thienopyrimidines led to 
the identification of several potent molecules. One compound, 
a trifluoroacetic acid salt form of thienopyrimidine, Org42599 
behaved as a pharmacochaperone of mutant LHR (148). In 
previous work, mutations in LH receptors (LHRs) at two loca-
tions, A593P and S616Y, cause misfolding of the receptor and 
these receptors fail to get trafficked to the plasma membrane. 
Org42599 facilitated expression of the mutant receptors to the 
plasma membrane behaving as pharmacochaperone and rescued 
the stimulatory response to LH (148). This approach may have 
translational application for treatment of patients bearing such 
mutation.

A series of pyrazole compounds with mixed FSH/LH activ-
ity was reported (149). Compound 5 was described to have an 
EC50 of 20  nM (efficacy 53%) in CHO-hLHR and an EC50 
value of 130 nM (efficacy 73%) in CH-hFSHR assays (122). This 
compound stimulated testosterone production in rat (122, 149), 
though its effect on follicular development was not reported. 
Bonger et al. obtained a highly selective LHR agonist by linking 
a dual LHR/FSHR molecule to a previously characterized FSHR 
antagonist (115, 150).

Another interesting molecule from optimization of thienopy-
rimidine is Org43553. This molecule stimulated LHR to produce 
cAMP with EC50 3.4 nM, while FSHR was activated at 110 nM 
(151). LH at higher concentration can activate phospholipase C 
(PLC), but Org43553 inhibited LH-induced PLC, showing biased 
agonism on LHR (152). Pharmacokinetic analysis showed that 
the compound had high oral bioavailability with short half-life 
(151). Oral administration of Org43553 induced ovulation in 
female (immature mice and adult rat) and serum testosterone 
in male rat (151). Since the half-life of this molecule was shorter 
than that of hCG, it can potentially reduce the risk of ovarian 
hyperstimulation syndrome (OHSS), a condition believed to be 
induced by hCG (153–155). In fact, in rat, Org43553 induced ovu-
lation without the increased vascular permeability or increased 
expression of vascular endothelial growth factor (VEGF), caused 
by hCG (156). At present, it is unclear if it is biased agonism or 
short half-life of the Org43553 that is able to induce ovulation, 
but reduce the risk of OHSS (156). Finally, in the most excit-
ing study, Org43553 and another molecule Org43902 were well 

A Agonist
1. Phenylpyrazole ( Compound 10, Jorand-Lebrun et al. 2007)

2. Thienopyrimidine (Org43553, van de Lagemaat1 et al. 2009)

B Antagonist
1. Terphenyl derivative (LUF5771, Heitmann et al. 2012)

FiGURe 4 | Chemical structure of LHR modulators. (A) Agonist: 
(1) phenylpyrazole [compound 10 (149)] and (2) thienopyrimidine [Org43553 
(151)]. (B) Antagonist: (1) terphenyl derivative [LUF5771 (158)].
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tolerated in normal healthy women and demonstrated that single 
oral administration of the small molecule agonist induced ovula-
tion of gonadotropin-stimulated, mature follicles in pituitary-
suppressed women (157). This represents a giant stride toward 
the demonstration of proof of concept for development of an 
orally active small molecule modulator of glycoprotein hormone 
receptor in human.

Antagonist
Development of LHR antagonists is very limited. A binding 
assay using small molecule radioligand 3H-Org43553 (LHR 
agonist, described above) was used as a screening tool to identify 
LHR antagonists (158). Binding of 3H-Org43553 with hLHR 
membrane was saturable with Kd of 2.4 nM and Bmax of 1.6 pmol/
mg protein (159). Five small molecule agonists evaluated in this 
assay showed good correlation between binding affinity relative 
to Org43553 and their potency in cellular assay (159). Using 
this binding assay as the screening tool, terphenyl derivatives 
were identified to inhibit 3H-Org43553 binding to the mem-
brane (158). Interestingly, one of the derivatives, compound 24 
(LUF5771) was able to increase the Kd of 3H-Org43553 by 3.3-
fold. In a functional assay, LUF5771 inhibited the activation of 
the receptor by hLH and Org43553. In vivo efficacy of LUF5771 
as an allosteric inhibitor was not demonstrated. Figure 4 illus-
trates the chemical structure of some of the interesting LHR 
modulators.

TSH Receptor Modulators
For the past few years, there are reports on the development of 
small molecule allosteric modulators for TSHR (160, 161). The 
chemical structure of few of the TSHR allosteric modulators 
are shown in Figure  5. The first TSHR agonist started from a 
thienopyrimidine, Org41841, the LHR agonist (116). Due to high 
homology between TMD of LHR and TSHR, it was predicted 
that Org41841 would bind to TSHR. This prediction was con-
firmed by docking studies, and eventually experimental results 
identified Org41841 as a partial agonist (162). Further, HTS and 
optimization of a hit resulted in identification of compound 2 
(C2), which was a full agonist at TSHR with an EC50 of 40 nM 
and no activity at FSHR or LHR (163). More importantly, C2 was 

A Agonist

1. Tetrahydroquinazolinone (Compound 2, Neumann et al. 2009)

2. Tetrahydropyrimidinone (MS438, Latif et al. 2015)

B Antagonist

1. Tetrahydroquinazolinone (Compound 1 and ANTAG3, Neumann et al. 2011; 
Neumann et al. 2014)

2. Tetrahydroquinoline (Org274179-0, van Koppen et al. 2012)

FiGURe 5 | Chemical structure of TSHR modulators. (A) Agonist: 
(1) tetrahydroquinazolinone [compound 2 (163)] and 
(2) tetrahydropyrimidinone [MS438 (114)]. (B) Antagonist: 
(1) tetrahydroquinazolinone [compound 1 and ANTAG3 (165, 169)] and 
(2) tetrahydroquinoline [Org274179-0 (167)].
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estradiol biosynthesis. At present, the available FSH antagonists 
lack pharmacological properties that would justify development 
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translational application for treatment of patients bearing such 
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value of 130 nM (efficacy 73%) in CH-hFSHR assays (122). This 
compound stimulated testosterone production in rat (122, 149), 
though its effect on follicular development was not reported. 
Bonger et al. obtained a highly selective LHR agonist by linking 
a dual LHR/FSHR molecule to a previously characterized FSHR 
antagonist (115, 150).

Another interesting molecule from optimization of thienopy-
rimidine is Org43553. This molecule stimulated LHR to produce 
cAMP with EC50 3.4 nM, while FSHR was activated at 110 nM 
(151). LH at higher concentration can activate phospholipase C 
(PLC), but Org43553 inhibited LH-induced PLC, showing biased 
agonism on LHR (152). Pharmacokinetic analysis showed that 
the compound had high oral bioavailability with short half-life 
(151). Oral administration of Org43553 induced ovulation in 
female (immature mice and adult rat) and serum testosterone 
in male rat (151). Since the half-life of this molecule was shorter 
than that of hCG, it can potentially reduce the risk of ovarian 
hyperstimulation syndrome (OHSS), a condition believed to be 
induced by hCG (153–155). In fact, in rat, Org43553 induced ovu-
lation without the increased vascular permeability or increased 
expression of vascular endothelial growth factor (VEGF), caused 
by hCG (156). At present, it is unclear if it is biased agonism or 
short half-life of the Org43553 that is able to induce ovulation, 
but reduce the risk of OHSS (156). Finally, in the most excit-
ing study, Org43553 and another molecule Org43902 were well 

A Agonist
1. Phenylpyrazole ( Compound 10, Jorand-Lebrun et al. 2007)

2. Thienopyrimidine (Org43553, van de Lagemaat1 et al. 2009)

B Antagonist
1. Terphenyl derivative (LUF5771, Heitmann et al. 2012)

FiGURe 4 | Chemical structure of LHR modulators. (A) Agonist: 
(1) phenylpyrazole [compound 10 (149)] and (2) thienopyrimidine [Org43553 
(151)]. (B) Antagonist: (1) terphenyl derivative [LUF5771 (158)].

http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org


September 2015 | Volume 6 | Article 14284

Nataraja et al. Allosteric modulators of FSH/LH/TSH receptors

Frontiers in Endocrinology | www.frontiersin.org

active in a physiologically relevant cell system, primary human 
thyrocyte culture. C2 stimulated serum thyroxine (T4) in mice 
when administered orally (163). This is the first proof of princi-
ple study that a small molecule agonist for TSHR is active in an 
in vivo preclinical model. However, there is no report on further 
development of the compound. Very recently, Latif et al. described 
two molecules, MS437 and MS438, with potent activity on TSHR 
and thyrocytes (114). Both these molecules demonstrated in vivo 
activity in stimulating thyroxine in male rats when administered 
intraperitoneally. It is not known if these molecules are orally 
active. Molecular docking studies showed that these compounds 
bind to the TMD3 of TSHR (114).

The first antagonist against TSHR also had its origin from 
Org41841. Based on the model of Org41841–TSHR complex, it 
was predicted that elongated analogs would bind differently to 
the receptor, so a long propylene-methyl-ether group was added 
at the para position of the aromatic moiety to obtain compound 
52 (164). This compound inhibited TSH-stimulated cAMP by 
71% with an IC50 of 4.2  μM and blocked antibody-induced 
thyroperoxidase mRNA in primary thyrocytes, suggesting it 
could be used in pathological condition like Grave’s disease 
(164). However, due to its weak potency, it could only be used as 
a starting point to make more potent analogs to develop as thera-
peutics. This group also described developing a TSHR inverse 
agonist with antagonistic activity that can block TSHR antibody-
induced orbital fibroblast functions (165, 166). Van Koppen et al. 
reported development of Org274179-0 as nanomolar potent 
allosteric antagonist capable of inhibiting M22-induced cAMP 
production in orbital fibroblast, but this compound was equally 
effective in inhibiting FSHR as well (167, 168). Perhaps, the 
most potent and selective TSHR antagonist, ANTAG3, inhibited 
TSH and M22-induced elevation of serum-free T4 and mRNAs 
for thyroperoxidase and sodium-iodide cotransporter in  vivo 
(169). Availability of several chemical series of small molecule 
modulators of TSHR opens an exciting opportunity for develop-
ing novel therapy for pathological conditions as well as to use 
them as research tools to understand the basic biology of TSHR 
signaling.

Mechanism of Action of Small Molecule 
Modulators
Small molecule modulators of glycoprotein hormone identified 
to date, except for stilbene bisulfonic acid 20 (143), do not dis-
place the binding of the protein ligand. Several chemotypes have 
been demonstrated experimentally to bind to the transmembrane 
domains of the receptors (127, 162, 170). Molecular modeling 
and mutagenesis studies have helped us to understand the func-
tional mechanism of allosterism of small molecule modulators of 
the glycoprotein receptors. The structure of rhodopsin is adopted 
as a general model for elucidating the functional domains of all 
GPCRs. Using this approach, it is proposed that there are two 
pockets of allosteric binding sites in the transmembrane regions 
of glycoprotein receptors (121, 170). Pocket1 (P1) is formed 
between TMD III, IV, V, and VI, while the 2nd pocket (P2) is 
formed by TMD I, II, III, and VII (121, 170, 171). P1 has been 
suggested to be the site of interaction of pyrazole, pyrimidine, 
and tetrahydroquinoline chemotypes (121, 162). Using chimeric 

FSHR–TSHR hybrid receptors, activity of TZD on FSHR was 
dependent on presence of transmembrane regions I, II, and III, 
suggesting this chemical series interacts with the P2 pocket of the 
receptor (121, 127).

Based on the docking studies and experimental evidence 
with Org43553 and two other small molecules (LUF5771 and 
LUF5419), Heitman et  al. confirmed two binding sites in the 
transmembrane region of LHR for small molecule modulators 
(170). By in silico docking studies, the binding site for LUF5771 
was proposed to be in the pocket created by TMDs 1, 2, 3, 6, 
and extra cellular loop 2, corresponding to site P2 [reviewed in 
Ref. (121)]. Org43553 interaction was restricted to site P1 (170). 
LUF5771, the allosteric inhibitor, strongly overlapped with the 
binding site of LUF5419, an allosteric enhancer of Org43553. 
However, the antagonist interacts with additional residues in 
TM2 and 7, which are likely to restrict the receptor in an inactive 
conformation (170). It is noteworthy to mention that similar 
structural constraint is induced by compound 52 on TSHR to 
behave as an antagonist (161). The existence of multiple allosteric 
sites on glycoprotein hormone receptors provides opportunities 
to design and develop new compounds with improved selectivity 
and therapeutic value.

Recent crystal structure of FSH with FSHR extracellular 
domain provided evidence for the existence of trimer in the basal 
state (Figure  2A) (98). Receptor trimerization is mediated by 
both the transmembrane domains and the ectodomain. Binding 
of one fully glycosylated FSH to the basal trimer results in dis-
sociation of a single monomer from the trimer, resulting in the 
activation of the single monomer (Figure  2B). Based on this 
model of hormone receptor activation, refined through the use of 
several small molecule ligands, the mechanism proposed is that 
small molecules induce 1–3 active monomers in concentration-
dependent manner that can be monitored by binding of three 
glycosylated FSH heterodimers to the dissociated monomers 
(Figure 2C) (98). Increased binding of FSH in the presence of 
the modulators confirms this observation (119, 135, 172). An 
important question is whether the FSHR trimer described by 
the new crystal structure is functionally relevant in physiological 
systems.

Summary

With greater understanding of GPCR biology and improved 
methods to develop allosteric modulators, several chemical 
series have emerged. Currently, we are pursuing a new chemi-
cal series for FSHR modulator, which has shown great promise 
in preclinical models including DMPK, safety, and toxicology 
studies. Successful development of an oral LH/hCG as well as 
GnRH antagonist modulator in clinical studies has kindled our 
hopes to have an oral therapy for fertility treatment in assisted 
reproductive technology. Encouraging progress in the develop-
ment of allosteric modulators of GPCRs can transform the 
dream of physicians and patients for having a more convenient 
therapy associated with infertility treatment into reality. Access 
to an orally active glycoprotein hormone agonist provides hope 
for patients that are considering dropping out of the treatment 
due to the stress involved in injection of the drugs. Similarly, for 
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Genetic models for the study of 
luteinizing hormone receptor 
function
Prema Narayan*

Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, USA

The luteinizing hormone/chorionic gonadotropin receptor (LHCGR) is essential for fertility 
in men and women. LHCGR binds luteinizing hormone (LH) as well as the highly homol-
ogous chorionic gonadotropin. Signaling from LHCGR is required for steroidogenesis 
and gametogenesis in males and females and for sexual differentiation in the male. 
The importance of LHCGR in reproductive physiology is underscored by the large num-
ber of naturally occurring inactivating and activating mutations in the receptor that result 
in reproductive disorders. Consequently, several genetically modified mouse models 
have been developed for the study of LHCGR function. They include targeted deletion of 
LH and LHCGR that mimic inactivating mutations in hormone and receptor, expression 
of a constitutively active mutant in LHCGR that mimics activating mutations associated 
with familial male-limited precocious puberty and transgenic models of LH and hCG 
overexpression. This review summarizes the salient findings from these models and their 
utility in understanding the physiological and pathological consequences of loss and gain 
of function in LHCGR signaling.

Keywords: luteinizing hormone receptor, gonadotropins, inactivating and activating mutations, genetic models, 
knockout mice, knockin mice, transgenic mice

introduction

The luteinizing hormone/chorionic gonadotropin receptor (LHCGR), together with the glyco-
protein hormone receptors, follicle-stimulating hormone receptor (FSHR) and thyroid stimulating 
hormone receptor (TSHR), belongs to the G protein-coupled receptor superfamily (1). LHCGR is 
the target receptor for the pituitary-derived luteinizing hormone (LH) and the highly homologous 
placental chorionic gonadotropin (CG). The fully processed human LHCGR is 675 amino acid resi-
dues long and is characterized by a large extracellular domain that is sufficient for hormone binding 
(2). The LHCGR has 11 exons with the first 10 exons encoding the extracellular domain and exon 
11 encoding the C-terminal tail of the hinge region of the extracellular domain, the transmembrane 
helices with the connecting extra- and intracellular loops, and the cytoplasmic tail (1, 2). Functional 
LHCGR is essential for sex differentiation in the fetus and reproductive function in the adult. During 
fetal development in males, LHCGR present in the interstitial fetal Leydig cells of the testis binds to 
placental CG to produce testosterone required for male sexual differentiation (3, 4). Postnatally, LH 
stimulates LHCGR in the Leydig cells to produce testosterone required for development of puberty, 
male secondary sexual characteristics, and spermatogenesis. Female fetal sex differentiation does not 
require LH or steroid hormones. Postnatally, in females, LHCGR is present in the theca cells lining 
the follicle, mature granulosa cells, stromal cells, and luteinized cells. LH activation of LHCGR in the 
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theca cells stimulates androgen production, thereby providing 
the substrate for conversion to estradiol by follicle-stimulating 
hormone (FSH) induced aromatase in granulosa cells and trig-
gering puberty (5). LHCGR activation is required for ovulation 
and subsequent progesterone production by the corpus luteum 
(6). The canonical signaling pathway mediated by LHCGR for 
steroidogenesis is the Gαs/cAMP/protein kinase A pathway. 
However, LHCGR can also activate additional pathways, includ-
ing the Gαq/inositol phosphate/protein kinase C, protein kinase 
B, and ERK1/2 pathways (6–10). In the testis, the ERK1/2 cascade 
modulates androgen synthesis as well as proliferation/survival 
of Leydig cells (11–15). In the ovary, LHCGR-mediated activa-
tion of the EGF network and ERK1/2 cascade via Gαs/cAMP 
is required for resumption of meiosis, cumulus expansion, and 
luteinization, whereas follicular rupture is dependent on both 
Gαs and Gαq/11 (6, 16).

Naturally Occurring Mutations in LHCGR 
and LHB Genes

The large number of naturally occurring mutations and poly-
morphisms in the LHCGR gene that result in disorders of sexual 
development and reproductive function (4, 17) highlights the 
critical role of this receptor in reproduction. Mutations are 
inactivating, resulting in loss of receptor function, or activating 
resulting in constitutive activation of the receptor. These muta-
tions have been particularly useful in elucidating the molecular 
mechanisms of LHCGR activation. Inactivating mutations are 
present in all domains of the receptor and may be missense muta-
tions, insertions, deletions, and nonsense mutations. As a result, 
there may be partial inactivation or complete loss of receptor 
function caused by premature truncation of the receptor protein 
or failure to traffic to the cell surface (18). The mutations are 
recessive (19) and patients are either homozygous or compound 
heterozygous carriers. In males, inactivating mutations result in 
failure of testicular Leydig cell differentiation, resulting in the 
disorder called Leydig cell hypoplasia (LCH). Two types of Leydig 
cell hypoplasia are identified. The severe form is caused by muta-
tions that result in loss of receptor protein, failure of receptor to 
traffic to cell surface, or failure to transduce a signal. This results 
in 46,XY male pseudohermaphroditism with female external 
genitalia, undescended testes, low testosterone, and high LH 
levels. The milder form, caused by mutations that allow partial 
LHR function, results in micropenis and hypospadia (4, 17, 20). 
Testicular histology showed hyalinized basement membrane in 
the seminiferous tubules with Sertoli cells but few or no germ cells 
(4). Females with inactivating mutations exhibit amenorrhea and 
infertility, but normal feminization at puberty indicating that LH 
is not essential for pubertal development. Activating mutations 
resulting in single amino acid replacements in LHCGR were the 
first to be described in patients with familial male-limited preco-
cious puberty (FMPP) (21, 22). This is a rare disorder affecting 
upto 9/million (Orphanet/NIH, Office of Rare Diseases). In 
early studies, before the availability of molecular analyses, this 
disorder was called familial testotoxicosis (23, 24). These muta-
tions are heterozygous and inherited in an autosomal dominant 
male-limited pattern although a few sporadic cases have been 

reported (25). Clinically, these boys present with precocious 
puberty by 3–4  years of age, Leydig cell hyperplasia, and high 
circulating levels of testosterone in the context of prepubertal 
levels of LH (26–28). Surprisingly, female carriers of activating 
mutations are normal. The mutations are limited to exon 11 and 
clustered in transmembrane helix 6 and the third intracellular 
loop with aspartic acid at position 578 most commonly mutated 
to glycine (D578G) (22, 28). This mutation is found in about 62% 
of all FMPP cases and 29% of all sporadic cases of male-limited 
precocious puberty (29). Only one activating somatic mutation 
(D578H) has been identified so far in boys with precocious 
puberty and Leydig cell adenomas (30–32) and this mutation has 
not been identified in boys with FMPP.

In contrast to the large number of activating and inactivating 
mutations in LHCGR, no germ line mutations in the common 
α-subunit or hCGβ subunits and no gain-of-function mutations 
in LHβ have been identified. Only three inactivating mutations in 
LHβ resulting in complete loss of bioactive LH have been reported 
in four men and one woman (33–35). In all cases, the males were 
normally masculinized at birth but later presented with delayed 
or lack of spontaneous puberty, hypogonadism, low testosterone 
levels, and infertility. Testicular biopsy revealed absence of com-
plete spermatogenesis and mature Leydig cells (33, 34). This sug-
gests that LH is not required for male sexual differentiation. Fetal 
testosterone production begins autonomously and then becomes 
dependent on maternal hCG activation of LHCGR. Postnatal 
testicular development and function is, however, dependent on 
pituitary LH. Treatment with exogenous LH and hCG resulted in 
an increase in testosterone, indicating that receptor function was 
normal (33). The single female patient showed normal pubertal 
development but presented with secondary amenorrhea and 
infertility (35). The normal pubertal development is similar to 
that seen in women with a homozygous inactivating mutation 
in the LHCGR gene (36–39). A fourth mutation resulting in a 
deletion of amino acid residues 10–12 of LHβ was reported in 
a man and his sister (40). In spite of undetectable levels of LH 
and low serum and intratesticular testosterone, the man had 
complete spermatogenesis and normal sperm count. The low 
residual activity of the mutant LH detected in vitro was apparently 
sufficient for normal spermatogenesis. The single female patient 
underwent normal puberty, but developed secondary amenor-
rhea and infertility (35).

Genetic Models to Study LHCGR Function

Several mouse models have been developed that model human 
reproductive disorders involving LHCGR signaling. They include 
knockout models of LH and LHCGR to mimic the inactivating 
LHβ and LHCGR mutations (41–43) and knockin mice express-
ing a constitutively active mutant LHCGR (44, 45) to mimic the 
activating LHCGR mutations. In addition, several transgenic 
models of enhanced LH/hCG action have been generated. They 
include mice expressing the LHβ-CGβ carboxyl terminal peptide 
(CTP) fusion protein under the control of the bovine common α 
subunit promoter (46), mice expressing hCG under the control 
of the ubiquitin C (47, 48) or metallothionein promoter (49), 
and mice expressing a yoked hCG–LHCGR fusion protein and 
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D556H rat LHCGR under the control of the inhibin α subunit 
promoter (50).

LHβ Knockout Mice
Phenotype of Male Mice
LHβ knockout mice were generated by deleting the coding 
sequence of the Lhb gene (43). Heterozygous mice were fertile 
and homozyous male and female mice were infertile. Serum 
levels of LH were undetectable, while serum FSH levels were 
normal. Male mice had significantly smaller testes and accessory 
glands consistent with reduced levels of serum and testicular 
testosterone. Testes contained very few Leydig cells, which were 
mostly fetal and immature adult Leydig cells as indicated by 
increased levels of serum androstenedione and upregulation of 
the fetal Leydig cell marker, thrombospondin. Spermatogenesis 
in the mutant mice was arrested at the round spermatid stage, 
indicating that LH and/or testosterone are required for the last 
step in spermatogenesis. Some Sertoli cell markers (FSHR) and 
inhibin α were unchanged in the knockout mice, while others 
(anti-mullerian hormone and the inhibin β subunits) were 
upregulated, indicating that lack of LHβ caused both somatic 
and germ cell defects. Sexual differentiation and fetal gonadal 
development was normal in the knockout mice, indicating that 
pituitary LH is not required for fetal testosterone production 
and gonadal development. A similar result was seen in mice 
lacking the common alpha subunit (α-GSU) for gonadotropin 
hormones (51).

Phenotype of Female Mice
Female KO mice were also infertile with abnormal estrous cycles. 
Serum estradiol and progesterone were greatly reduced. Primary 
and secondary follicles were present in the ovary, but healthy 
antral, preovulatory, and corpora lutea (CL) were absent. Antral 
follicles contained degenerating oocytes. However, the theca cell 
layer appeared normal, indicating that the differentiation of this 
layer was independent of LH signaling. Expression of steroido-
genic enzyme genes was reduced in both sexes consistent with the 
reduction in steroid hormone levels. Treatment of the knockout 
mice with hCG rescued the phenotype in both male and female 
mice, indicating that receptor responsiveness was normal.

LHCGR Knockout Mice (LuRKO)
Two groups independently reported the development of the 
LHCGR knockout mice by deleting part of the promoter region 
and exon 1 (41) or exon 11 encoding the transmembrane and 
intracellular domain of the receptor (42). Both models showed 
a complete loss of functional receptor resulting in infertility in 
both sexes. The reproductive phenotypes described by the two 
groups were similar.

Phenotype of Male Mice
Sexual differentiation was normal, demonstrating again that, 
unlike in humans, fetal testosterone production required for 
masculinization is gonadotropin independent in mice, as pre-
viously shown with the LHβ and the common alpha subunit 
(αGSU) knockout models (43, 51). The mice were phenotypically 
normal at birth. Postnatally, the mice exhibited cryptorchidism, 

reduced testis size, poorly developed accessory sex glands, and 
micropenis. Testosterone levels were dramatically reduced while 
levels of both serum LH and FSH were increased. The testis had 
dramatically reduced Leydig cell numbers and spermatogenesis 
was arrested in the round spermatid stage (41, 42). The slightly 
elevated FSH levels in the LuRKO mice apparently stimulated 
spermatogenesis to the round spermatid stage. Further analysis 
revealed that the testicular histology of the LuRKO mice was 
similar to wild type (WT) mice until about 3 weeks of age. After 
3 weeks, the growth rate of the testis was dramatically decreased 
(52) and the interstitium lacked adult-type Leydig cells. Leydig 
cell-specific and steroidogenic enzyme genes showed similar 
level of expression in the neonatal WT and LuRKO mice but the 
LuRKO did not show the pubertal increase seen in WT mice. 
Testicular testosterone levels were similar between the genotypes 
at birth. Expression of the fetal Leydig cell marker Tsp2 was similar 
between the genotypes but the adult Leydig cell markers, Hsd3b6 
and Hsd17b3, were downregulated at postpubertal ages. Together, 
these data suggested that testosterone production by fetal Leydig 
cells and initial differentiation of the adult Leydig cell population 
are not dependent on LHCGR action. However, differentiation 
to the mature Leydig cells with steroidogenic potential requires 
LHCGR signaling.

Testosterone replacement therapy at puberty restored full 
spermatogenesis and testicular descent, but failed to restore adult-
type Leydig cells (53, 54), indicating that androgen-independent 
actions of LH are required for adult Leydig cell differentiation. 
However, the fertility of the mice could not be completely restored 
(54, 55). The subfertile phenotype was determined to be due to 
reduced epididymal sperm counts and low ejaculatory frequency. 
Additionally, inflammation in the prostate and vas deferens was 
observed (54). Interestingly, additional studies by Zhang et  al. 
(56) reveal that complete spermatogenesis with the appearance 
of elongated spermatids can be observed in the LuRKO mice 
at 12 months of age although intratesticular testosterone levels 
remained suppressed and similar to the levels in 2-month-old 
mice. This result suggested that the low level of constitutively 
produced intratesticular testosterone was sufficient for differen-
tiation of round to elongated spermatids.

Phenotype of Female Mice
Female KO mice were phenotypically normal at birth, which is 
not surprising since female sexual differentiation is independ-
ent of ovarian function and ovarian LHCGR expression begins 
after birth (57, 58). The age of vaginal opening was delayed in 
the KO mice and they did not exhibit normal estrous cyclicity. 
The uterus was atrophic with a thinning of all layers and lack of 
endometrial glands. Serum levels of estradiol and progesterone 
were suppressed but not absent (41). Estradiol and progesterone 
replacement therapy of 4-week-old KO mice for a period of 
3  weeks stimulated vaginal growth and increased uterine size 
(55). However, the number of endometrial glands remained low 
and fertility was not restored. The ovaries were greatly reduced 
in size and ovaries contained preantral and antral follicles but 
no preovulatory follicles or CL (41, 42). This indicates that both 
ovulation and the maturation of antral to preovulatory follicles 
require LH action. The requirement of LHCGR action for follicle 
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maturation beyond the antral stage was novel and was further 
investigated in the LuRKO mice (59). This study showed that pro-
gression of folliculogenesis beyond the antral stage and induction 
of ovulation could not be achieved by hCG or recombinant FSH 
in the absence of LHCGR.

Knockin Mice expressing the Constitutively 
Active Mutant D582G LHCGR (KiLHRD582G)
We have recently generated mice expressing a constitutively 
active Asp582Gly (D582G) mutant in the mouse LHCGR (44). 
The mice are heterozygous with one WT allele replaced by the 
mutant allele as seen in patients with FMPP. Expression from 
both WT and mutant alleles could be detected in the testis. This 
mutation is analogous to the most prevalent Asp578G muta-
tion in humans with FMPP. When tested in cell culture, the 
mouse D582G LHCGR showed a similar binding affinity as WT 
LHCGR. However, the basal level of cAMP was 23-fold higher 
in cells expressing the mutant receptor compared to WT. These 
levels are much higher than the three- to fourfold increase in 
basal cAMP seen with the human LHCGR (22, 60), and similar 
to that obtained with the D578H mutation found in Leydig cell 
adenomas (30).

Phenotype of Male Mice
KiLHRD582G mice exhibited precocious puberty as shown by the 
advancement of balanopreputial separation and the early detec-
tion of mouse urinary proteins in the urine by 15 days compared 
to 22 days for WT mice (44). Both are androgen-dependent events 
and indicators of puberty in mice (61, 62). Testosterone levels 
were elevated as early as 7 days of age while gonadotropin levels 
were suppressed. The high testosterone levels resulted in enlarged 
seminal vesicles and prostate but not in significantly higher body 
weights. Several of the Leydig cell-specific genes involved in the 
steroidogenic pathway, including Lhcgr were upregulated. In 
spite of the precocious puberty, no advancement in the timing 
of spermatogenesis was seen. Spermatogenesis and Sertoli cell 
development and function appeared unaffected although testis 
size was decreased in the KiLHRD582G mice presumably due to 
the suppressed FSH levels. Significantly, Leydig cell hyperplasia 
was detected as early as 7 days (Figure 1). The hyperplasia was 
patchy with a higher prevalence around the periphery of the testis. 
Precocious maturation of adult Leydig cells occurred in the mutant 
mice leading to the hyperplasia. The severity of the hyperplasia 
appeared to increase in the older animals (Figure 1). Interestingly, 
the KiLHRD582G mice became progressively infertile and were 
unable to produce litter after an average age of 5–6 months. This 
was not due to a defect in spermatogenesis as the number of total 
and motile sperm from the cauda epididymis of 6-month-old 
KiLHRD582G mice was not different from the WT mice.

Phenotype of Female Mice
Female KiLHRD582G mice exhibited precocious puberty and the 
age of vaginal opening was advanced by 2 weeks compared to 
WT mice (45). Mutant mice demonstrated irregular estrous 
cyclicity and were infertile. A temporal study from 2 to 24 weeks 
of age demonstrated elevated levels of androstenedione, testos-
terone, estradiol, and progesterone in the serum of KiLHRD582G 

FiGURe 1 | Leydig cell hyperplasia in KiLHRD582G mice. Representative 
photomicrographs of PASH stained testis sections of WT and KiLHRD582G 
from 7 days to 24 weeks of age. At least three animals per age and genotype 
were examined. The Leydig cell interstitium is marked by the dashed lines 
in sections from the 7-day-old mice. Sections of testis from two 24-week-old 
KiLHRD582G mice shows variation in the severity of the Leydig cell hyperplasia. 
Bar = 100 μm. From McGee and Narayan (44).

mice compared to WT mice. Consequently, gonadotropin levels 
were suppressed. The ovaries and uterus of the KiLHRD582G 
mice were enlarged and large cysts were apparent in the gross 
morphology of the ovaries. The ovarian histology was normal 
in the 2-week-old KiLHRD582G mice. However, degenerating fol-
licles and hemorrhagic cysts were observed starting at 3 weeks 
of age (Figure 2). Follicles did not progress beyond the preantral 
stage likely due to lack of FSH stimulation. CL were not present 
indicating anovulation. Extensive stromal cell hypertrophy 
and hyperplasia with luteinization was apparent. In 6-month-
old mice, granulosa cell tumors were evident in 50% of the 
KiLHRD582G mice. Interestingly, the anovulatory phenotype could 
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FiGURe 2 | Ovarian pathology in KiLHRD582G mice. Representative 
photomicrographs of H&E stained ovary sections of WT and KiLHRD582G mice. 
At least three animals per age and genotype were examined. Higher 
magnification of the boxed areas in sections of KiLHRD582G mice at 4, 6, 12, 
and 24 weeks are shown in the last column. C, hemorrhagic cyst; GCT, 
granulosa cell tumor; AF, atretic follicle. Arrow indicates tubulostromal 
hyperplasia. Scale bars represent 100 μm. From Hai et al. (45).
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not be rescued by superovulation with pregnant mare serum 
gonadotropin (PMSG) and hCG. Although preovulatory 
follicles with oocytes could be detected in the ovaries of the 
KiLHRD582G mice, they did not rupture to form CL. This result 
suggests that neither the WT or D582G mutant LHCGR is 
able to respond to exogenous gonadotropins. LH-dependent 
induction of Gαs/cAMP is required for the activation of 
the EGF network and the ERK1/2 cascade responsible for 
oocyte maturation and cumulus expansion while LH activa-
tion of Gαq/11 and Gαs is required for ovulation (6, 16). 
Coexpression of a constitutively active hLHR (L457R) that 
was unresponsive to additional hormone stimulation, with 
the WT LHR in cell culture, caused an attenuation of the 
hCG/Gαs stimulated cAMP production by WT LHCGR (63). 
This attenuation was not due to a decrease in the cell surface 
expression of the WT receptor, but due to the activation 
of phosphodiesterase 4D3 resulting in decreased levels of 
cAMP. Perhaps a similar mechanism occurs in  vivo in the 
granulosa cells of the KiLHRD582G mice to inhibit ovulation. 
The body weights of KiLHRD582G mice were higher than that 
of WT mice. However, there were no changes in body fat 
composition or insulin resistance as seen in experimentally 
induced hyperandrogenic rodent models of polycystic ovar-
ian syndrome (PCOS).

LHβ Overexpressing Transgenic Mice
Transgenic mice expressing a chimeric protein (bLHβ-CTP) con-
sisting of the bovine LHβ subunit fused in frame to the C-terminal 
peptide of hCGβ subunit driven by the pituitary-specific bovine 
glycoprotein α-subunit (α-GSU) promoter was first reported by 
Risma et al. (46). The addition of the CTP increased the circulatory 
half-life of LH resulting in constitutive high levels (5- to 10-fold) 
in the female but not male mice. Preliminary observations with 
the male mice showed reduced fertility and smaller testis in spite 
of normal hormone levels and the mice were not characterized 
further. Female LHβCTP mice presented with precocious puberty, 
elevated levels of testosterone, and estradiol and infertility due to 
anovulation (64). The predominant ovarian phenotype was the 
presence of hemorrhagic cysts with widespread luteinization of 
the interstitial tissue. Accelerated depletion of primordial follicles 
was also observed (65). Although anovulation could be reversed by 
treatment with exogenous gonadotropins, pregnancy could not be 
maintained due to defects in uterine receptivity and mid-gestation 
pregnancy failure (66). Additional ovarian defects included granu-
losa cell tumors by 5 months of age only in the genetic background 
of CF-1 mice (67). In a hybrid background, the phenotype 
resembled the luteoma of pregnancy and it was shown that three 
genes likely control the different phenotypes (67). In addition to 
the ovarian tumors, the LHβCTP mice also developed mammary 
gland tumors (68). An interesting non-reproductive phenotype 
resulting from the elevated LH in the LHβCTP mice is adrenal 
hyperplasia and induction of LHCGR expression and activity in the 
adrenal gland. As a result, corticosterone production is stimulated 
(69). This phenotype was dependent on the dysfunctional ovaries 
of the transgenic mice as gonadectomy abolished the adrenocorti-
cal hyperfunction. LHβCTP mice also have elevated levels of 
prolactin caused by the enhanced estrogen synthesis (69). It has 
been suggested that prolactin synergizes with LH in the induc-
tion of LHCGR expression in the adrenal glands. Additionally, 
LHβCTP female mice are obese (70). Obesity was associated with 
hyperphagia, increased intra-abdominal fat, increased levels of 
serum leptin and insulin, and reduced thermogenic activity of 
brown adipose tissue. The elevated androgens and corticosterone 
most likely contribute to the obesity seen in the LHβCTP females 
as ovariectomy normalized corticosterone levels and reversed the 
obesity and hyperphagia (70). Transgenic females also developed 
renal abnormalities, including enlarged bladders, dilated ureters, 
and hydronephrosis presumably due to the elevated steroids (46).

hCG Overexpressing Mice
Additional models of enhanced LH/hCG action were indepen-
dently developed by two groups. Supraphysiological levels of hCG 
were expressed using the human ubiquitin C promoter or the mouse 
metallothionein-1 (MT-1) promoter (47–49). Transgenic mice 
expressing only the hCGβ subunit or both the common α subunit 
and hCGβ from multiple tissues were examined in both sexes.

Phenotype of Male Mice
In male mice expressing only the hCGβ subunit (hCGβ+) under 
the human ubiquitin C promoter, circulating levels of dimeric 
hCG were detected, indicating that the hCGβ subunit associated 
with the endogenously produced α subunit in the pituitary (48). 
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However, dimeric hCG levels were only 3-4 fold higher than WT 
mice because the amount of endogenous α−GSU produced by the 
pituitary is rate-limiting. These mice were fertile and presented 
with only a mild reproductive phenotype of smaller testes (48). 
By contrast, mice expressing the hCGβ subunit under the mouse 
MT-1 promoter were infertile although hCG dimer could not be 
detected in the serum of these mice and the testes were morpho-
logically and physiologically normal (49). This was surprising as 
individual subunits of hCG are devoid of activity (71).

Mice expressing both subunits (hCGαβ+) under the control 
of the ubiquitin C promoter produced extremely high levels of 
dimeric hCG with about 2000-fold increase in circulating LH/
hCG bioactivity in male mice (48). Serum and testicular testos-
terone and progesterone were elevated in spite of down regulation 
of receptor expression. Male mice were infertile and vaginal plugs 
were not observed when mice were mated with superovulated 
females in spite of motile and morphologically normal sperm in 
the cauda epididymis. Adult mice at 2–6 months of age showed 
smaller testes with normal tubular structure. However, progres-
sive degenerative changes in the seminiferous tubules were 
observed. Mice developed focal Leydig cell hyperplasia/hyper-
trophy but not adenomas. Subsequent studies in prepubertal mice 
showed Leydig cell adenomas that were of fetal Leydig cell origin 
and disappeared at puberty (72). No sign of precocious puberty 
was observed in these young mice in spite of elevated levels of 
testosterone. The seminal vesicle and prostate were enlarged. The 
distention and sperm accumulation in the distal vas deferens 
as well as the dilated urinary bladder and ureters and enlarged 
kidneys pointed to a functional uretheral obstruction caused by 
the overproduction of secretory fluids or impaired emptying of 
the accessory glands. This may be a likely cause of infertility in 
these mice. Aggressive behavior of the males toward the females 
during mating may also contribute to the infertile phenotype.

Matzuk et al. used the MT-1 promoter to generate transgenic 
mice expressing low and high levels of the dimeric hCG (49). 
Males with low levels of heterodimer expression showed pro-
gressive infertility of unknown etiology. Adult males with high 
expression levels had similar reproductive defects as described 
above, including reduced testis size, Leydig cell hyperplasia, 
enlarged fluid-filled seminal vesicles, elevated testosterone levels, 
and infertility. Males were very aggressive toward both transgenic 
and non-transgenic males or females.

Phenotype of Female Mice
In contrast to male mice, female transgenic hCGβ+ mice using 
the ubiquitin C promoter associated with the endogenously 
expressed mouse α-subunit to produce a 40-fold increase in 
bioactive LH/hCG compared to WT females (47). Although 
female hCGαβ+ mice expressing both subunits as transgenes 
produced a 2000-fold elevation in bioactive LH/hCG, the 
phenotype of the hCGβ+ and hCGαβ+ mice were similar. Mice 
presented with precocious puberty, disrupted estrous cycles, 
and infertility. Adult mice were obese due to abdominal fat 
accumulation. Transiently elevated estradiol and persistent 
elevation of testosterone and progesterone were observed in 
the transgenic mice. The ovaries were significantly enlarged 
with massive luteinization, resembling luteomas, which may 

explain the transient increase in estradiol. Hemorrhagic cysts 
and CL were present. Females also developed macroprolacti-
nomas and mammary gland tumors at 9–12  months of age. 
Serum prolactin was greatly elevated and may help maintain the 
ovarian luteinization and progesterone production. Metastasis 
of the mammary tumors to the liver, spleen, and lung was seen 
in about 47% of the mice. The mammary gland and pituitary 
tumors were dependent of ovarian function and ovariectomy 
prevented their development even when hCG levels were high. 
Subsequent studies (73) showed that the hCGαβ+ mice with the 
2000-fold elevation in bioactive LH/hCG develop teratomas.

Mice overexpressing only the hCGβ subunit under the MT-1 
promoter were infertile although heterodimer could not be detected 
in the serum (49). These mice also had ovarian defects, including 
block in folliculogenesis and cysts. Mice with low levels of hCG 
dimer became progressively infertile. Mice expressing high levels 
of hCG dimer had elevated estradiol levels and developed enlarged 
cystic and hemorrhagic ovaries with stromal cell proliferation and 
enlarged thecal cell layers. Degenerating kidneys were also evident. 
These mice did not develop mammary gland or pituitary tumors.

Yoked Hormone Receptor and Rat D556H 
LHCGR Transgenic Mice
Transgenic mice expressing a yoked hormone receptor (YHR+) 
genetically engineered by covalently linking hCG to LHCGR 
was generated to create a model for constitutively active LHCGR 
mutations. In cell culture, YHR exhibited an increase in the 
basal level of both cAMP and inositol phosphate similar to that 
seen with constitutively active mutants (50, 74). The transgene 
was expressed under the control of the gonadal-specific inhibin 
α-subunit promoter and male mice were fertile (75). Serum and 
testicular testosterone levels were elevated in YHR+ mice at pre-
pubertal ages of 3 and 5 weeks, but not at 8 and 12 weeks of age. 
Consistent with the increased testosterone was the increase in 
seminal vesicle weights. However, there was no evidence of preco-
cious puberty. Serum levels of LH and FSH were decreased due to 
elevated testosterone. Testis size was decreased at all ages in YHR+ 
mice and histological analysis showed a significant decrease in 
the cross-sectional area of the tubules. Spermatogenesis was not 
initiated earlier and Leydig cell hyperplasia, as seen in patients 
with constitutively active LHCGR, was also not observed. Further 
characterization of the male phenotype showed a reduction in 
the number of Leydig cells in YHR+ mice accompanied by a 
reduction in the expression of several Leydig cell specific genes 
(76). The difference in the phenotype of the YHR+ mice from 
humans with activating LHCGR mutations is likely because the 
inhibin α-subunit promoter did not faithfully mimic the spatial 
and temporal expression of LHCGR.

Female YHR+ mice exhibited precocious puberty and were 
subfertile. Increased levels of estradiol and progesterone were 
observed at 5  weeks of age. However, the hormonal changes  
were no longer apparent in adult mice. Increased folliculogenesis 
and CL were observed in 5-week-old mice and interstitial cell 
hypertrophy, degenerating follicles, and follicular cysts were 
observed in adult mice.

Transgenic mice expressing the rat D556H LHCGR under the 
control of the inhibin α-subunit promoter was also generated 
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TABLe 1 | Summary of genetic models for the study of LHCGR function.

Gene (mutation/
mouse model)

Major human phenotypes Major mouse phenotypes Reference

A. COMPARiSON OF HUMAN AND MOUSe PHeNOTYPeS FOR iNACTivATiNG AND ACTivATiNG MUTATiONS iN LH AND LHCGR

LHB (inactivating/
knockout)

Male: infertility, delayed puberty, hypogonadism, Leydig cell 
hypoplasia, spermatogenic arrest, normal sexual differentiation

Male: infertility, hypogonadism, Leydig cell hypoplasia, 
spermatogenesis arrested at round spermatid stage, normal 
sexual differentiation

(43)

Female: normal pubertal development, normal uterus, 
folliculogenesis blocked at antral stage, secondary 
amenorrhea, infertility

Female: hypogonadal, folliculogenesis blocked at antral stage, 
hypoplastic uterus, infertility

LHCGR (inactivating/
knockout)

Male: micropenis, hypospadia, pseudohermaphroditism, 
Leydig cell hypoplasia, germ cell defects

Male: infertility, Leydig cell hypoplasia, underdeveloped sex 
organs, spermatogenesis arrested at round spermatid stage, 
normal sexual differentiation

(41, 42)

Female: normal pubertal development, amenorrhea, 
folliculogenesis blocked at antral stage, infertility

Female: delayed puberty, underdeveloped accessory glands, 
follicles arrested at antral stage, infertility

LHCGR (activating/
knockin)

Male: precocious puberty, Leydig cell hyperplasia, 
high testosterone

Male: precocious puberty, Leydig cell hyperplasia, high 
testosterone, progressive infertility

(44, 45)

Female: normal Female: precocious puberty, cystic hemorrhagic ovaries 
with stromal cell hyperplasia with luteinization, granulosa cell 
tumors, infertility

Construct Major phenotypes Reference

B. TRANSGeNiC MOUSe MODeLS OF eNHANCeD LH/hCG ACTiON

α-GSU promoter/
bLHβ-CTP

Males: subfertility, smaller testis (46, 66, 67)

Females: precocious puberty, infertility, polycystic ovaries, 
stromal cell luteinization, granulosa cell tumors, mammary 
gland tumors, hydronephrosis

Ubiquitin C promoter/
hCGβ

Males: no phenotype (47, 48)

Females: precocious puberty, infertility, luteinized cystic 
ovaries, prolactinomas, mammary gland tumors

Ubiquitin C promoter/
hCGαβ

Males: infertility, adult Leydig cell hyperplasia, fetal Leydig cell 
adenomas, urethral obstruction, and kidney defects

(48, 73)

Females: infertility, ovarian teratomas

MT-1 promoter/hCGβ Males: infertility (49)

Females: infertility, cystic, and hemorrhagic ovaries

MT-1 promoter/hCGαβ Males: infertility, Leydig cell hyperplasia (49)

Females: infertility, cystic, and hemorrhagic ovaries, 
degenerating kidneys

Inhibin α-subunit 
promoter/YHR

Males: fertile, elevated testosterone with smaller testis, and 
Leydig cell hypoplasia

(75)

Females: subfertile, precocious puberty, interstitial cell 
hypertrophy
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(50). This mutation corresponds to the somatic D578H mutation 
found in Leydig cell adenomas (30–32). Unfortunately, male and 
female mice expressing the transgene were infertile which pre-
vented their further characterization. Preliminary analysis of two 
infertile founder male mice did not show testicular adenomas.

Comparison of the Mouse Models with 
Human Reproductive Pathologies of 
LHCGR Function

inactivating Mutations and Knockout Models
The mouse models of inactivation of LHCGR function have veri-
fied existing knowledge, but more importantly have provided new 
information on the function of LH. Although the homozygous 

inactivating mutations in the LHB gene result in single amino acid, 
changes they cause result complete loss of bioactivity similar to 
the deletion of the Lhb gene in the mouse. The phenotype of the 
homozygous LHβ knockout male and female mice closely mimics 
that of humans with the inactivating LHβ mutations (Table  1). 
In males, sexual differentiation is normal in humans and mice. 
However, in humans, testosterone required for masculinization 
in utero is dependent on placental hCG stimulating LHCGR while 
in mice it is independent of LH action. LH is critical postnatally and 
both humans and mice show hypogonadism, low testosterone levels, 
arrest of spermatogenesis, Leydig cell hypoplasia, and infertility.

Female LHβ knockout mice displayed several characteristics 
similar to the single female patient with LHβ inactivating muta-
tion identified thus far. Folliculogenesis was arrested at the antral 
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stage resulting in infertility. Surprisingly, this patient had normal 
puberty, with normal sized ovaries and breast and uterine devel-
opment. Presumably, the low level of estradiol was sufficient for 
normal breast and uterine development (35).

Inactivating mutations in LHCGR in human males have a 
more severe phenotype, resulting from abnormal sexual dif-
ferentiation, that those in LHβ emphasizing the importance of 
LHCGR signaling in sexual development and postnatal pubertal 
development. By contrast, the LuRKO mouse demonstrates that 
LHCGR signaling is not essential for mouse sexual differentia-
tion, highlighting a major species difference. LHCGR activation 
is, however, important for postnatal development in both species. 
The phenotypes of the LHβ and LHCGR knockout male mice are 
very similar. Spermatogenic arrest at the round spermatid stage 
in both models indicates that FSH alone is not sufficient for full 
spermatogenesis and that testosterone produced by LH signaling 
is required for postmeiotic germ cell maturation. A novel observa-
tion that resulted from studies on the LHCGR knockout mice was 
that at 12 months of age, qualitatively complete spermatogenesis 
was possible in the absence of LH stimulated high testosterone 
production (56). This process, however, requires a long priming 
period. From a clinical standpoint, this finding may explain why 
men treated with testosterone for contraceptive purposes are not 
azoospermic (56).

Women with inactivating LHCGR and LHβ mutations have 
normal pubertal development, indicating that LH signaling is not 
essential for puberty in women. This process is more dependent 
on FSH signaling as demonstrated by lack of pubertal develop-
ment in women with inactivating mutations in the FSHβ or  
FSHR (77). LH signaling is, however, required in the mouse where 
absence of LHCGR delays pubertal development (Table 1). There 
is a remarkable similarity in the ovarian phenotype of women 
with inactivating LHβ and LHCGR mutations, LHβ knockout 
and LuRKO mice showing a block in folliculogenesis at the antral 
stage. The studies from these mouse models clearly showed for 
the first time that, in addition to its well-known role in ovulation, 
LH is also required for the final stage of follicular maturation 
before ovulation. Studies with the LuRKO mice (59) also clarified 
that ovulation could not be induced by FSH in the absence of 
functional LHCGR as has been previously suggested (78, 79).

Activating Mutations and Knockin Models
The most common mutation in FMPP is the D578G mutation 
in transmembrane helix 6. In the mouse model (KiLHRD582G) 
generated in our laboratory, the corresponding D582G mutation 
was introduced into the WT Lhcgr gene (44). The male mouse is 
a good phenocopy of men with constitutively activating LHCGR 
mutations as shown by the development of precocious puberty, 
Leydig cell hyperplasia and high testosterone (Table 1). A major 
difference between the mouse model and FMPP patients is that 
spermatogenesis is not advanced in the KiLHRD582G mouse. 
Presumably, the seminiferous cycle of 35 days is at a minimum 
in mice and cannot be shortened further even with premature 
testosterone production. Furthermore, spermatogenic develop-
ment requires the expression of the androgen receptor in Sertoli 
cells and significant levels are not detected till around postnatal 
day 15 in mice (80). It has been demonstrated that premature 

expression of the androgen receptor in Sertoli cells can acceler-
ate spermatogenic development (80). Two new findings form the 
mouse model, not previously reported or confirmed in FMPP 
cases, are that the hyperplasia is not uniform throughout the 
testis and that it results from the precocious development of 
adult Leydig cells. The progressive infertility and hyperplasia 
seen in the KiLHRD582G mice suggest that FMPP patients may 
be susceptible to infertility and perhaps tumor development 
later in life. There is only one report of a FMPP patient with the 
D578G mutation who was diagnosed with nodular Leydig cell 
hyperplasia (81), primarily due to lack of long-term follow-up of 
FMPP patients past puberty.

The phenotype of female KiLHRD582G mice (45) is distinctly 
different from women with activating mutations who are normal 
(82–84). Mice undergo precocious puberty and are infertile with 
significant ovarian pathology of hemorrhagic cysts, stromal 
cell hyperplasia, and granulosa cell tumors. The reason for this 
discrepancy is unclear. The low level of LHCGR expression in 
prepubertal girls, the requirement for the activation of both 
LHCGR and FSHR for puberty, and less efficient androgen syn-
thesis in theca cells compared to Leydig cells (4, 82). A higher 
magnitude of LHCGR activation may be required for develop-
ment of ovarian pathology. In this context, the mouse LHCGR 
has a higher level of constitutive activation than the human 
receptor and the phenotype of the female KiLHRD582G mice is 
similar to transgenic models of LH and hCG overexpression. A 
novel finding from the study of KiLHRD582G mice is the dominant 
negative effect of the mutant receptor on the function of the WT 
receptor. The lack of rescue of the anovulatory phenotype by 
the administration of PMSG and hCG indicated that D582G 
LHCGR inhibits signaling of the WT receptor and is the first 
report of such an effect in vivo.

In general, the knockout and knockin mouse models are 
close phenocopies of the human disorders; however, species 
differences in LHCGR function clearly exist. Although these 
differences provide useful knowledge on LHCGR physiology, 
they should be considered when the mice are used as models of 
human diseases.

Transgenic Models of enhanced LH/hCG Action
Activating mutations in LH or hCG have not been identified. 
However, there are physiological and pathological states when 
these hormone levels are elevated. hCG is produced in high 
amounts in the first trimester of pregnancy and in gestational 
trophoblastic disease (1). In men and women, hCGβ, hyper-
glycosylated hCGβ, and occasionally hCG dimer are secreted 
from a variety of tumors (1). Gonadotroph adenomas induce 
high gonadotropin levels and hypersecretion of LH is observed 
in pathological conditions such as PCOS. Chronic elevation of 
gonadotropins occurs in menopause and this is proposed as risk 
factor for ovarian cancer (85).

A comparison of the phenotypes of the overexpressing LH/
hCG mice is shown in Table  1. The LHβ-CTP model was the 
first overexpressing model described. Hormone levels were not 
elevated in male mice because the α-GSU promoter is inefficient 
in the male. Overexpression of dimer hCG driven by either the 
ubiquitin C or MT promoter resulted in similar male phenotypes 
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of infertility and Leydig cell hyperplasia with high testosterone 
levels. Aggressive behavior of the males toward the females was 
observed in both hCG models and this may contribute in part 
to the infertile phenotype. The infertility in the ubiquitin C 
promoter-driven hCG mice was not due to defects in sperm but 
possibly due to the urethral obstruction (48).

The pathological changes seen in the female LHβ-CTP and 
hCG overexpressing mice were similar with precocious puberty 
and infertility. Significant pathology was seen in all models, with 
cystic, hemorrhagic, and luteinized ovaries. Granulosa cell tumors 
were seen in the LHβ-CTP mice, but ubiquitin C promoter-hCG 
mice had ovarian luteomas and teratomas and no tumors were 
found in the MT-hCG mice. Both LHβ-CTP and ubiquitin C 
promoter-hCG mice develop mammary gland tumors, but the 
latter also develop prolactinomas in older mice. This indicates that 
chronic high levels of gonadotropins promote tumor formation 
in gonadal and non-gonadal tissues. The pituitary and mammary 
gland tumors are secondary effects of aberrant gonadal function. 
The inhibin α-subunit promoter-YHR mice did not exhibit the 
robust changes seen in the overexpressing mice in either males 
or females.

The LH/hCG overexpressing models and the inhibin α-subunit 
promoter-YHR mice were expected to mimic the activating 
LHCGR mutations by precocious activation of the receptor. 
Comparison of the male KiLHRD582G mice with the transgenic 
mouse models of LH/hCG overexpression showed similar phe-
notypes of Leydig cell hyperplasia and high testosterone. Similar 
to the ubiquitin C promoter-hCG mice, the progressive infertility 
in the KiLHRD582G mice was not due to sperm defects. However, 
there were distinct differences as well. The overexpressing models 
did not exhibit precocious puberty and Leydig cell adenomas in 
the ubiquitin promoter-hCG mice were of fetal origin rather than 
from adult Leydig cells as seen in the KiLHRD582G mice. The inhi-
bin α-subunit promoter-YHR mice did not exhibit phenotypes 
similar to either the KiLHRD582G mice or LH/hCG overexpressing 
mice except for the increase in testosterone. Presumably, the 
promoter used was regulated differently from the endogenous 
LHCGR.

The reproductive (precocious puberty, infertility) and ovar-
ian phenotypes (cystic, hemorrhagic ovaries, interstitial cell 
hypertrophy with luteinization, granulosa cell tumors) of the 
KiLHRD582G mice are similar to the LH/hCG overexpressing 
mice. The luteomas, teratomas (47), and enlarged thecal cell 
layer are specific to the hCG overexpressing mice (49, 73). 
The extra-gonadal phenotypes of pituitary and mammary 
gland tumors are not also seen in the KiLHRD582G mice. The 
obese phenotype seen in the LHβ-CTP and ubiquitin-hCG 
overexpressing mice is not evident in the KiLHRD582G mice. In 
contrast to the KiLHRD582G mice, the anovulatory phenotype of 
the LHβ-CTP could be rescued by exogenous gonadotropins 
(66), further confirming an inhibition of WT LHCGR func-
tion in the KiLHRD582G mice. The differences in the phenotypes 
between the overexpressing models and KiLHRD582G mice, 
particularly the extra-gonadal phenotypes, are likely due to 
the high levels of LH/hCG secreted by transgenes that were 
expressed ubiquitously under the control of promoters that do 
not mimic the spatial or temporal expression of LHCGR. Some 

of the differences between the three overexpressing models 
may be the result of different levels of hormone production, 
different promoters, and genetic background. However, the 
remarkable number of similarities between the models empha-
sizes the importance of LH/LHCGR action on reproductive 
physiology and pathophysiology.

Future Perspectives

Mouse models are now available that can mimic the genetic 
alterations in LH and LHCGR and physiological and pathologi-
cal states of hormone excess. These models have reinforced the 
well-established roles of LH and LHCGR but have also uncovered 
novel functions. The KiLHRD582G mice can be used to investigate 
the long-term reproductive and non-reproductive abnormalities 
that result from constitutive LHCGR activity, particularly the 
mechanism of the progressive infertility. This information will 
be useful in predicting the long-term health of FMPP patients. 
This mouse model will be valuable to test new therapeutic agents 
that can block constitutive activity and to further determine the 
in vivo mechanism of the dominant negative effect of the mutant 
receptor on WT receptor function. Based on the phenotypic 
changes seen in the models of enhanced LH/hCG action, it 
appears that female physiology is more sensitive to changes in 
LH-mediated signaling. In particular, these models can be used 
to better understand the signaling mechanisms important in the 
development of ovarian and extra-gonadal tumors and under-
stand the role of LH in obesity and related metabolic changes. 
The models can be helpful in sorting out the controversies and 
conflicting data regarding the extra-gonadal actions of LHCGR. 
In general, all the described models are amenable to large-scale 
gene expression profiling to better understand LHCGR signaling 
mechanisms.

An area that has not been explored extensively is the neuro-
logical changes associated with LHCGR signaling. Testosterone 
is important in brain development and sexual differentiation. 
Behavioral studies have shown that FMPP patients are suscep-
tible to attention deficit hyperactivity disorder and a higher 
rate of anxiety disorder (86). The KiLHRD582G mice are an ideal 
animal model to assess cognitive and behavioral changes associ-
ated with FMPP. There is also increasing evidence that elevated 
levels of LH can exacerbate age-related cognitive decline in 
Alzheimer’s disease (87, 88). LHβ-CTP mice exhibit cognitive 
deficits (89). Considering that functional LHCGR is expressed 
in the brain (90), it will be of interest to determine if cognitive 
and behavioral changes are due to direct LHCGR signaling 
in the brain or indirectly due to its activity in gonads. These 
mechanisms and the contributions of direct vs. indirect effects 
on the brain can be teased out with the mouse models. Clearly, 
these mouse models have the potential to uncover novel aspects 
of LHCGR signaling.
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Gonadotropin receptors belong to the super family of G protein-coupled receptors and 
mediate the physiological effects of follicle-stimulating hormone (FSHR) and luteinizing 
hormone (LHR). Their central role in the control of reproductive function has made them 
the focus of intensive studies. Upon binding to their cognate hormone, they trigger 
complex signaling and trafficking mechanisms that are tightly regulated in concentration, 
time, and space. Classical cellular assays often fail to capture all these dynamics. Here, 
we describe the use of various bioluminescence and fluorescence resonance energy 
transfer (BRET and FRET) assays to investigate the activation and regulation of FSHR 
and LHR in real-time, in living cells (i.e., transiently expressed in human embryonic kidney 
293 cells). Indeed, the dynamics of hormone-mediated heterotrimeric G protein activa-
tion, cyclic adenosine-monophosphate (cAMP) production, calcium release, β-arrestin 
2 recruitment, and receptor internalization/recycling was assessed. Kinetics and dose–
response analyses confirmed the expected pharmacological and signaling properties 
of hFSHR and hLHR but revealed interesting characteristics when considering the two 
major pathways (cAMP and β-arrestin 2) of the two receptors assessed by BRET. Indeed, 
the EC50 values were in picomolar range for cAMP production while nanomolar range 
was observed for β-arrestin 2 recruitment as well as receptor internalization. Interestingly, 
the predicted receptor occupancy indicates that the maximal G protein activation and 
cAMP response occur at <10% of receptor occupancy whereas >90% of activated 
receptors is required to achieve full β-arrestin 2 recruitment and subsequent receptor 
internalization. The rapid receptor internalization was also followed by a recycling phase. 
Collectively, our data reveal that β-arrestin-mediated desensitization, internalization, 
and the subsequent fast recycling of receptors at the plasma membrane may provide 
a mechanistic ground to the “spare receptor” paradigm. More generally, the novel tools 
described here will undoubtedly provide the scientific community investigating gonado-
tropin receptors with powerful means to decipher their pharmacology and signaling with 
the prospect of pathophysiological and drug discovery applications.
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introduction

The gonadotropin receptors play a central role in the control 
of mammal reproduction by mediating the physiological 
responses of the two major pituitary glycoprotein hormones, 
follicle-stimulating hormone (FSH) and luteinizing hormone 
(LH). Their respective receptors, follicle-stimulating hormone 
receptor (FSHR) and luteinizing hormone receptor (LHR), are 
mainly expressed in the gonads where they control the ovarian 
and testicular functions in females and males, respectively, by 
regulating both steroidogenesis and gametogenesis (1, 2). Both 
FSHR and LHR belong to a subgroup of class A (rhodopsin-like) 
G protein-coupled receptors (GPCRs) characterized by the pres-
ence of multiple leucine-rich repeats (LRRs) in their extracellular 
amino-terminal domain. This subgroup also includes the thyroid-
stimulating hormone receptor (TSHR) and the receptors for the 
peptidic hormone relaxin and INSL3 (RXFP1 and 2). The LRRs 
containing region in FSHR has been shown to be determinant 
for its interaction with FSH (3–5). In terms of the intracellular 
signaling, FSHR and LHR are known to mediate the canoni-
cal G protein-mediated signaling pathway through coupling 
to heterotrimeric Gαs proteins, which activates the adenylate 
cyclase, resulting in an increase in intracellular cyclic adenosine-
monophosphate (cAMP) levels and activation of protein kinase 
A (PKA) as well as the exchange protein directly activated by 
cAMP (EPAC). This in turn triggers the activation of multiple 
downstream kinases that modulate the nuclear activity of cAMP 
response element-binding protein (CREB) and the expression of 
the genes involved in the physiological responses of the gonado-
tropins. However, recent evidences point to a multiplicity of the 
signaling that can be mediated by FSHR and LHR by engaging 
additional G protein-dependent and independent pathways [for 
review, see Ref. (6–9)], including β-arrestin-dependent pathways 
(10–13). As a consequence, similar to most other GPCRs, these 
receptors’ pharmacology and signaling involve highly diverse and 
complex mechanisms. Therefore, the use of recent innovative 
technologies to investigate these receptors could certainly help 
understanding better their activation mode.

Among the emerging methods to study GPCRs, the focus is on 
energy transfer-based assays that rely on the biophysical biolumi-
nescence and fluorescence resonance energy transfer (BRET and 
FRET) technologies. These approaches link the concept of dis-
tance/proximity, in space and time, between an energy donor and 
an energy acceptor to the biological question of interest accord-
ing to Förster’s Law in both static and dynamic configurations 
(14–16). Since their development, BRET and FRET have been 
extensively used to study different cellular and molecular aspects 
related to the function and regulation of cell surface receptors, 
such as GPCRs and tyrosine kinase receptors (TKRs) (17, 18). In 
fact, GPCRs constitute the research field of choice where BRET/
FRET are elegantly used and are being the subject of permanent 
development and improvement (16, 19–21). Indeed, by using 
BRET and FRET, it is now possible to quantitatively address, in 
real-time and live cells, different questions about the functioning 
of GPCRs including ligand binding, receptor activation, G protein 
coupling, intracellular downstream signaling, β-arrestin recruit-
ment, receptor trafficking, and oligomerization (16, 19–26). In 

this context, BRET and FRET significantly contributed to major 
recent advances in the field with the emergence of new concepts, 
such as receptor heteromerization, receptor/G protein preas-
sembly, and biased signaling. Even though these advances further 
illustrate the complexity of the GPCR functioning, they pushed 
the scientific community one step further in understanding better 
the involvement of GPCRs in physiology and pathophysiology. 
However, the application of BRET and FRET approaches to the 
gonadotropin receptors has remained limited to date. In this 
study, we report the application of a series of novel BRET and 
FRET assays to study the activation and regulation of the human 
gonadotropin receptors, hFSHR and hLHR/hCGR (here designed 
as hLHR), when they are transiently expressed in HEK 293 cells. 
Kinetics and dose–response analyses using various assays were 
performed in 96- and 384-well formats in real-time and live cells.

Materials and Methods

Materials and Plasmid constructions
The plasmid encoding human FSHR was generated as previously 
described (12). The other plasmids encoding the different BRET/
FRET sensors and fusion proteins were generously provided as 
follows: hLHR from A. Ulloa-Aguirre (Universidad Nacional 
Autónoma de México, México, Mexico), different Rluc8- and 
Venus-fused G proteins from J. P. Pin (Functional Genomics 
Institute, Montpellier, France) and K. D. Pfleger (Harry Perkins 
Institute of Medical Research, Perth, WA, Australia) (also hV2R–
Rluc8), Rluc8-fused hFSHR and hLHR from A. Hanyaloglu 
(Imperial College, London, UK), yPET-β-arrestin 2 from M. 
G. Scott (Cochin Institute, Paris, France), Aequorin-GFP from 
B. Lambolez (Pierre et Marie Curie University, Paris, France), 
CAMYEL from L. I. Jiang (University of Texas, TX, USA), ICUE 
from J. Zhang (The Johns Hopkins University, Baltimore, MD, 
USA), and Venus-KRas from N. A. Lambert (Georgia Health 
Sciences University, Augusta, GA, USA). Recombinant hFSH 
was kindly gifted by Merck-Serono (Darmstadt, Germany), 
hCG was kindly donated by Y. Combarnous (CNRS, Nouzilly, 
France), forskolin and DDAVP were purchased from Sigma-
Aldrich (St. Louis, MO, USA). All the 96- and 384-well white 
microplates were from Greiner Bio-One (Courtaboeuf, France). 
Coelenterazine h substrate was purchased from Interchim 
(Montluçon, France).

cell culture and Transfection
HEK 293 cells were grown in complete medium (DMEM sup-
plemented with 10% (v/v) fetal bovine serum, 4.5 g/l glucose, 
100  U/ml penicillin, 0.1  mg/ml streptomycin, and 1  mM 
glutamine) (all from Invitrogen, Carlsbad, CA, USA). Transient 
transfections were performed by reverse transfection in 96-well 
plates using Metafectene PRO (Biontex, München, Germany) 
following the manufacturer’s protocol. Briefly, for each well, the 
different combinations of coding plasmids were used as follows: 
200 ng of total plasmid per well were resuspended in 25 μl of 
serum-free DMEM and mixed with Metafectene PRO (0.5 μl/
well) previously preincubated 5  min at room temperature in 
25 μl serum-free DMEM (2 × 25 μl/well). Then the two solutions 
of serum-free DMEM-containing plasmids and Metafectene 
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PRO were mixed and incubated for 20 min at room temperature. 
Cells (105 in 200 μl/well) in DMEM supplemented with 10% FCS 
were then incubated with the final plasmid-Metafectene PRO 
mix (50  μl/well). Transfection efficiency was typically in the 
60–70% range and the correct expression of the different fusion 
proteins used for BRET and FRET was examined by fluores-
cence and luminescence measurements using a Mithras LB 943 
plate reader (Berthold Technologies GmbH and Co. Wildbad, 
Germany).

BreT Measurements
Forty-eight hours after transfection, cells were washed with 
PBS and BRET measurements were performed depending on 
the experiments as described previously (27). For the endpoint 
dose–response analysis, cells were first preincubated 30  min 
at 37°C in 40 μl/well of PBS 1×, HEPES 5 mM, 200 μM IBMX 
(for cAMP assays) containing or not increasing concentrations 
of hFSH or hCG as indicated. Then BRET measurements were 
performed upon addition of 10  μl/well of coelenterazine h 
(5 μM final) using a Mithras LB 943 plate reader. For the real-
time BRET kinetics, cells were first resuspended in 60  μl/well 
of PBS-HEPES 10 mM (+IBMX 200 μM for cAMP assays) and 
then BRET measurements were immediately performed upon 
addition of 10 μl/well of coelenterazine h (5 μM final) and 10 μl/
well of the sub-maximal concentrations of hFSH or hCG (fivefold 
concentrated).

calcium Measurements Using aequorin-gFP
Forty-eight hours after transfection, cells co-expressing 
hFSHR and aequorin-GFP (AEQ-GFP) were incubated for 3 h 
with 40  μl/well of coelenterazine h substrate (5  μM final) in 
PBS 1×, HEPES 10 mM, BSA 0.1%, in the dark, and at 37°C 
to allow aequorin reconstitution. Luminescence emission at 
480 and 540 nm was then measured in each well individually 
every 0.05 s before and after the rapid injection of 10 μl/well of 
hFSH (fivefold concentrated) or of vehicle, using the injection 
system and the dual emission detection of a Mithras LB 943 
plate reader.

caMP accumulation Measured by hTrF ®
Intracellular cAMP levels were measured using a homogeneous 
time-resolved fluorescence (HTRF ®) cAMP dynamic 2 assay 
kit (CisBio Bioassays, Bagnol sur Cèze, France) (28). Forty-
eight hours post-transfection cells were detached and seeded 
into white 384-well microplates with 5,000 cells/well in 5  μl 
of stimulation buffer (PBS 1×, 200 μM IBMX, 5 mM HEPES, 
0.1% BSA). For their stimulation, 5 μl/well of the stimulation 
buffer containing or not different doses of hFSH and hCG as 
indicated were added. Then, cells were incubated for 30  min 
at 37°C and then lysed by addition of 10  μl/well of the sup-
plied conjugate-lysis buffer containing d2-labeled cAMP and 
Europium cryptate-labeled anti-cAMP antibody, both recon-
stituted according to the manufacturer’s instructions. Plates 
were incubated for 1  h in the dark at room temperature and 
time-resolved fluorescence signals were measured at 620 and 
665 nm, respectively, 50 ms after excitation at 320 nm using a 
Mithras LB 943 plate reader.

caMP accumulation Measured by Microscopic 
FreT assay
Forty-eight hours after transfection, cells co-expressing the 
cAMP sensor (ICUE) with either hFSHR or hLHR were plated in 
imaging dishes and imaged in the dark at 37°C on a temperature-
controlled stage using a Leica DM IRB (Leica Microsystems) 
microscope with a CoolSnap fx cooled charge-coupled device 
camera (Ropper Scientific) controlled by METAFLUOR 7.5 
(Universal Imaging Corporation, Downingtown, PA, USA). 
Dual emission ratio imaging was carried out using a 436DF10 
excitation filter, a 436–510 DBDR dichroic mirror, and 480-AF30 
and 550-AF30 emission filters for CFP and YFP, respectively. 
Exposure time was 400  ms and images were taken every 30  s. 
Typically, equal sensor-positive cells and non-specific areas 
were chosen in the field of the microscope. The evolution of 
fluorescence was recorded individually in each area for the whole 
duration of the experiments. Several independent plates were 
analyzed according to this procedure, and the specific FRET 
signal of each cell (positive minus negative area) was pooled. 
Cells displaying a whole range of intensities were selected and 
analyzed without any impact of the expression level of the sensor 
on the responsiveness being noticed. After 5  min of baseline 
measurement, cells were stimulated with either 1 nM of hFSH or 
hCG, and 1 μM of forskolin was added as a positive control after 
20 min of stimulation. A low hormone dose has been chosen in 
order to avoid saturation of the ICUE sensor, which has a limited 
dynamic range compared to BRET assays. Fluorescent intensity 
of non-specific areas was subtracted to the intensity of fluorescent 
cells expressing the sensor in order to quantify the specific signal. 
The FRET ratio (CFP/YFP) was calculated for each individual 
cell. Data represent the mean ± SEM of at least 20 individual cell 
responses measured in three independent experiments.

β-arrestin recruitment assessed by  
TangO assay
This assay was carried out as previously described by Barnea 
et al. (29). We generated HTLA cells (HEK293T-derived cell line 
containing a stably integrated tTA-dependent firefly luciferase 
reporter gene) stably expressing FSHR/AVPR2-CT chimera, and 
β-arrestin 2-TEV fusion protein. Growing HTLA hFSHR cells 
were plated in white 96-well assay plates at 4 × 104 cells per well 
in MEM, supplemented with 10% FBS, glutamine, and antibiotic 
cocktail. Twenty-four hours after plating, increasing concentra-
tions of hFSH were added and cells were cultured for 14–20 h 
before measuring reporter gene activity. Luciferase activity was 
determined by using the Bright-Glo luciferase assay system 
(Promega, Charbonnieres, France), following the manufacturer’s 
protocol, and using a POLARstar OPTIMA luminometer (BMG 
Labtech, Ortenberg, Germany).

Data analysis
Bioluminescence resonance energy transfer data are represented 
either as 480  nm/540  nm (ICUE sensor), 540  nm/480  nm 
(β-arrestin and internalization kinetics), or as hFSH/hCG-
induced BRET changes by subtracting the ratio 540 nm/480 nm 
of luminescence in a well of PBS-treated cells from the same 
ratio in wells where the cells were treated with hFSH or hCG. In 
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this calculation, only ligand-induced BRET changes (increase or 
decrease) are represented and the PBS-treated cell sample repre-
sents the background eliminating the requirement for measuring 
an Rluc-only control sample since fast kinetics and dose–response 
analyses were performed. Kinetic and dose–response curves were 
fitted following the appropriate non-linear regression equations 
using Prism GraphPad software (San Diego, CA, USA). Statistical 
analyses were performed using two-way ANOVA included in 
Prism GraphPad software.

results

receptor-Mediated caMP Production
First, we examined cAMP response by hFSHR and hLHR since 
they are both known to couple to heterotrimeric Gs protein, lead-
ing to adenylyl cyclase activation and ultimately to an increase 
in the intracellular cAMP levels. To this end, we used the BRET-
based cAMP sensor, CAMYEL, developed by Jiang et  al. (30) 
(Figure 1A), which allows the assessment of intracellular cAMP 
changes in real-time and live cells. Under basal conditions, a 
high-BRET signal occurs between the donor (Renilla luciferase 
or Rluc) and the acceptor (green fluorescent protein or GFP) due 
to the favorable conformation and proximity/orientation of the 
Rluc and GFP within the Epac motif composing the sensor. In 
contrast, an increase in the cytosolic cAMP concentrations and 
its binding to Epac induce changes in the conformation of Rluc-
Epac-GFP sensor, resulting in a significant decrease in the BRET 
signal (Figure 1A). The receptors were transiently co-expressed 
with CAMYEL in HEK 293 cells and real-time kinetics were con-
ducted (Figures 1B,C) at different doses allowing the inference of 
sigmoidal dose–response curves (Figures 1D,E). Kinetic analyses 
showed a relatively fast cAMP response (t1/2 of 3.2 and 1.7 min for 
FSHR and LHR, respectively) (Table 1) upon stimulation with 
5 nM of gonadotropins with a plateau reached after ~10 min for 
both hFSHR (Figure 1B) and hLHR (Figure 1C). As expected, 
both hormones, hFSH (Figure 1D) and hCG (Figure 1E), showed 
very potent effects on their specific receptors with EC50 values in 
the picomolar range (Table 1). Similar results were obtained using 
HTRF®-based cAMP assay (28) on both hFSHR (Figure 1F) and 
hLHR (Figure 1G) either wildtype or Rluc8-fused receptors. This 
indicates that both Rluc8-fused receptors retained correct expres-
sion and function and can therefore be used in BRET assays 
for the recruitment of β-arrestin 2 and receptor internalization 
(Figures 5 and 6).

We also used a FRET-based cAMP sensor (ICUE) allowing 
real-time measurements of cAMP production as previously 
shown (31) (Figure  2A) using both real-time FRET measure-
ments in 96-well plate format every 0.5 s as well as individual cell 
analysis with the appropriate fluorescence microscopy setting. 
The 96-well plate format clearly allowed to measure very rapid 
changes in the FRET signals in cells co-expressing ICUE and 
hFSHR and challenged with 1  μM of forskolin (Figure  2B) or 
5 nM of hFSH (Figure 2C). These changes were specific to hFSH/
forskolin-induced cAMP production since vehicle injection did 
not induce any change in the FRET signal (Figure 2D). In paral-
lel, the FRET analysis by fluorescence microscopy on individual 
stimulated cells co-expressing ICUE and either hFSHR or hLHR 

showed a time-dependent increase of cAMP production induced 
by 1 nM of hFSH or hCG, respectively, as well as 1 μM of forskolin 
(Figure 2E), as previously reported (12).

receptor-gαs Protein coupling assessed 
by BreT
Next, we examined the functional coupling of hFSHR and hLHR 
to the heterotrimeric G protein (Gαs and Gβγ) in real-time and 
live cells by measuring BRET changes between the different G 
protein subunits as previously reported (27, 32–36). In this assay, 
a change (in this case a decrease) in the proximity/association 
between the Gα subunit and Gβγ dimer as well as their confor-
mation upon receptor activation is assessed in time-dependent 
manner reflecting the functional coupling of the receptor with 
its cognate heterotrimeric G protein (Figure 3A). Gαs-Rluc8 was 
transiently co-expressed with either Venus-Gγ2 (Figures 3B,C) 
or Venus-Gβ1 (Figures 3D,E) in the presence of hFSHR or hLHR 
as indicated. BRET changes were then rapidly assessed every 0.5 s 
before and after receptor activation by the injection of 10 nM of 
hFSH or hCG. As shown, hFSH nicely induced a very rapid and 
significant BRET decrease between Gαs-Rluc8 and Venus-Gγ2 
(Figure  3B) and Venus-Gβ1 (Figure  3D) co-expressed with 
hFSHR. Similar albeit noisier effects were observed with 10 nM of 
hCG on BRET between Gαs-Rluc8 and Venus-Gγ2 (Figure 3C) 
and Venus-Gβ1 (Figure 3E) in the context of hLHR expressing 
cells. Such BRET changes likely reflect the activation of Gαs pro-
tein by the hFSHR and hLHR and are consistent with the cAMP 
measurements shown in Figures 1 and 2. Our data are consistent 
with the previous BRET data reported for other GPCRs, showing 
a decrease of the BRET signals between Gαs and Gβ/γ subunits 
(32, 33, 35, 36). As expected, the observed kinetics with these 
sensors was much faster than the one measured for cAMP (i.e., 
t1/2 between 10 and 16 s) (Table 1).

receptor-Mediated calcium release
We also assessed the intracellular calcium release mediated by 
the activation of gonadotropin receptors as previously reported 
(37, 38). For this, we used an aequorin-dependent calcium assay 
(AEQ-GFP) based on luminescence and BRET increase upon 
binding of calcium to the aequorin protein fused to GFP (39, 40) 
(Figure 4A). In the presence of calcium, aequorin emits lumines-
cence at 480 nm part of which is transferred to GFP due to their 
sufficient proximity leading to GFP excitation and light emission 
at 540 nm. As shown in Figure 4B, in cells co-expressing AEQ-
GFP and hFSHR, a significant and rapid increase in light emission 
at 540 nm occurred upon cell stimulation with 10 nM of hFSH 
(Figure 4B) indicating intracellular calcium increase. However, 
in cells co-expressing AEQ-GFP and hLHR, a significant basal 
emission at 540 nm was observed and stimulation with 10 nM 
hCG only induced weaker response (Figure 4C) as compared to 
hFSH on its receptor (Figure 4B). Such an effect was specific to 
gonadotropins since no increase in light emission was observed 
in AEQ-GFP and hFSHR co-expressing cells upon vehicle injec-
tion (Figure 4D) and the hFSH-promoted luminescence increase 
was dose-dependent (Figure 4E). Moreover, no significant light 
emission was measured in cells expressing AEQ-GFP alone and 
stimulated with 10 nM of hFSH (data not shown).
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recruitment of β-arrestin 2 assessed by BreT
The role of β-arrestins not only in desensitization/internalization 
but also in signaling of GPCRs is now well established (41–43) 
and this has been previously reported for the FSHR (10, 11, 13, 44) 
and LHR (45). Here, we examined for the first time the recruitment 
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FigUre 1 | BreT- and hTrF-based caMP production assays.  
(a) Principle of the BRET-based cAMP assay (CAMYEL sensor). HEK 293 cells 
transiently expressing the indicated proteins (wildtype receptors and CAMYEL 
for BRET; wildtype or Rluc8-tagged receptors for HTRF) were stimulated with 
either 5 nM (for kinetics) or increasing concentrations (for dose–response 

curves) of hFSH (B,D,F) or hCG (c,e,g) as indicated. Then BRET and HTRF 
measurements format were performed as described in the Section “Materials 
and Methods” in 96-well and 384-well plates, respectively. Data are 
means ± SEM of three experiments performed either in a single point or 
triplicate.

of β-arrestins to activated hFSHR and hLHR in real-time and live 
cells using BRET technology as illustrated in Figure 5A. Indeed, 
under the inactive conformation of the receptors, β-arrestins are 
mostly cytosolic. Upon activation, the receptors are phosphoryl-
ated by G protein-coupled receptor kinases (GRKs) leading to 
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the translocation of β-arrestins from the cytosol to the intracel-
lular domains of the receptors triggering their desensitization, 
internalization, and signaling. The BRET increase between the 
receptors and β-arrestins is used to assess this process in real-time 
and living cells. For this purpose, the receptors were fused to 
BRET donor (Receptor-Rluc8) and co-expressed with β-arrestin 
2 fused to BRET acceptor (here yPET as a GFP variant) and the 
translocation of β-arrestin 2 to the receptor was then measured 
before and after receptor activation (Figure 5A). The functionality 
of FSHR-Rluc8 and hLHR-Rluc8 is verified by the cAMP assay 
shown in Figures 1F,G. Dose–response and kinetics experiments 
were carried out in cells co-expressing yPET-β-arrestin 2 and either 
hFSHR-Rluc8 (Figures  5B,E) or hLHR-Rluc8 (Figures  5C,F). 
Real-time kinetic analyses showed a significant BRET increase 
over the basal signal with hFSHR-Rluc8 (Figure  5B) or hLHR-
Rluc8 (Figure 5C) and yPET-β-arrestin 2 upon stimulation with 
10 nM of hFSH or hCG, respectively. The BRET increase occurred 
in a time-dependent manner with a sustained plateau reached after 
20–30 min of receptor activation indicating a class B profile accord-
ing to the common GPCR classification with respect to β-arrestin 
association (46). We used the human vasopressin V2 receptor 
(hV2R–Rluc8) as a prototype for class B GPCR in our BRET assay 
and observed a similar kinetic profile compared to hFSHR and 
hLHR (Figure 5D). Moreover, the effects were dose-dependent for 
both hFSH (Figure 5E) and hCG (Figure 5F) on their respective 
receptors with EC50 values largely higher (i.e., nanomolar range) 
than those observed for cAMP signaling (Figure 1; Table 1). Such 
shift in the hormone potencies is not due to the effect of fusion 
of the receptors with Rluc8 since these constructs showed cAMP 
responses similar to that observed with their corresponding wild 
type receptors (Figures 1F,G). Moreover, dose–response experi-
ments were also performed using an indirect TANGO assay on 
hFSHR bearing the vasopressin receptor 2 (V2R) C-terminus and 
showed similar potency of hFSH on hFSHR/β-arrestin 2 associa-
tion as assessed by BRET (Figure 5G).

receptor internalization and recycling 
assessed by BreT
Finally, we examined gonadotropin-induced receptor internali-
zation in real-time and live cells using BRET between the Rluc8-
tagged receptors (BRET donor) and a plasma membrane marker, 
KRas, fused to BRET acceptor (Venus, another GFP variant), as 
recently described (47). This assay is based on the changes in the 

TaBle 1 | ec50 and t1/2 values for gonadotropin-promoted caMP production, β-arrestin 2 recruitment and receptor internalization/recycling of hFshr 
and hlhr.

receptors caMP production BreT g 
proteins

β-arrestin 2 recruitment internalization recycling

ec50 (pM)  
BreT

ec50 (pM)  
hTrF

t1/2 (min)  
BreT

t1/2 (s)  
BreT

ec50 (nM)  
BreT

ec50 (nM) 
TangO

t1/2 (min)  
BreT

ec50 (nM)  
BreT

t1/2 (min)  
BreT

hFSHR 3.0 ± 1.2 1.4 ± 0.1 3.2 ± 0.3 16.8 ± 11.7a 3.7 ± 2.0* 5.7 ± 2.6* 4.8 ± 0.3 2.6 ± 1.0* 10.5 ± 0.2
10.9 ± 0.3b

hLHR 3.5 ± 2.2 1.9 ± 0.3 1.7 ± 0.1 ND 2.0 ± 0.1 ND 6.6 ± 0.2 4.9 ± 1.9 8.6 ± 0.3

Data are means ± SEM of three to four independent experiments.
aBRET between Gαs-Rluc8 and Venus-Gγ2.
bBRET between Gαs-Rluc8 and Venus-Gβ1, both calculated by fitting the curves in Figures 3B,D using “plateau then one phase decay equation.”
*p < 0.05 versus EC50 values measured in cAMP production assay.

physical proximity between KRas and the receptors at the plasma 
membrane upon receptor activation and thereby internalization 
as illustrated in Figure 6A. The agonist-induced decrease in the 
high basal BRET signals was assessed in cells co-expressing Venus-
KRas with either hFSHR-Rluc8 or hLHR-Rluc8 (Figure  6A). 
We observed a very rapid decrease in the BRET signal between 
hFHSR-Rluc8 and Venus-KRas following cell stimulation with 
10 nM of hFSH to reach the maximal decrease up to 2–5 min post-
stimulation, indicating the rapid internalization of hFSHR under 
our conditions (Figure 6B). Interestingly, we observed a recovery 
phase of the BRET signal after 5–10 min of stimulation, which 
returns back to the basal level after 20 min suggesting recycling 
of the internalized receptors (Figure 6B). To confirm this obser-
vation on both hFSHR and hLHR, we performed time-course 
analysis where cells were first preincubated with hFSH or hCG at 
different times at 37°C before BRET signals were measured. The 
BRET measurements showed a maximal internalization of both 
receptors after 2–5 min and a total recovery of the BRET signals 
after 20 min (Figure 6C). Interestingly, the recovery phase con-
tinued to increase after 30 min to reach maximal BRET signals 
even higher than the basal levels after 45–60 min (Figure 6C), 
suggesting the recycling of the internalized receptors and/or the 
recruitment of an intracellular pool of receptors. Such behavior 
was specific to hFSHR and hLHR, since it was not observed for 
the human vasopressin 2 receptor (hV2R–Rluc8) activated with 
1 μM of AVP (Figure 6C). In fact, these data are consistent with 
a delayed internalization (maximum after 30 min) and absence 
of recycling to the plasma membrane after internalization as 
it is well documented for V2R (48–50). Moreover, in order to 
estimate the kinetic parameter of the receptor recycling, we 
normalized the part of the curves corresponding to the recovery 
phase of hFSHR and hLHR shown in Figure 6C by taking 0 and 
100% of the maximal BRET changes measured after 2 (maximal 
internalization) and 60 min of stimulation (maximal recycling), 
respectively (Figure  6D). As a result, both receptors recycled 
with similar kinetics with a half-time of about 10 min (Table 1), 
indicating that the recycling of hFSHR and hLHR was slower than 
their internalization, at least in our system. Finally, we performed 
BRET dose–response experiments after 5  min of stimulation 
showing the decrease in the BRET signals between Rluc8-tagged 
receptors and Venus-KRas in a dose-dependent manner with no 
significant differences between the two receptors (Figure 6E). It 
is worth noting that the potencies of hFSH and hCG on receptor 
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internalization were similar to that observed for the recruitment 
of β-arrestin 2 (Figures 5D,E; Table 1), consistent with the notion 
that both events may be linked.

Discussion

In this study, we provide new insights on the activation and regula-
tion of gonadotropin receptors by applying energy transfer-based 
technologies (BRET and FRET). These aspects were studied in 
real-time in live HEK 293 cells in dose- and time-dependent man-
ners using various BRET configurations and BRET/FRET sensors. 
This allowed us to cover critical steps in the signaling of hFSHR 
and hLHR going from their intimate coupling to the heterotrimeric 

Gαs/Gβγ proteins at the membrane to the accumulation of cyto-
solic cAMP and calcium as well as β-arrestin 2 recruitment, recep-
tor internalization, and recycling. Together, our data illustrate the 
robustness of the different BRET and FRET assays used to examine 
such components of GPCR activation and signaling with exquisite 
precision. In our hand, FRET, which gives beautiful results in 
fluorescence microscopy, is less suited to multiwell plate measure-
ments than BRET since it displayed highly reduced amplitude of 
response. However, FRET sensors combined with microscopy 
offers the advantage of measuring individual cell responses.

The set of data presented in this study on hFSHR and hLHR 
confirm and expand previous reports from the literature using con-
ventional approaches in terms of G protein-dependent signaling, 
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β-arrestin recruitment, and receptor trafficking. Indeed, a high 
potency (picomolar range) (Table 1) was classically observed for 
both hFSH and hCG with respect to the activation of the canoni-
cal Gs/cAMP signaling pathway, which is thought to account for 
the most physiological responses of FSH and LH in the gonads, 
hence in the control of reproduction (1, 2, 8). BRET measurements 
between the Gαs and Gβγ subunits activated by hFSHR and hLHR 
showed relatively rapid BRET changes upon receptor activation 
consistent with previous observations using similar BRET assays on 
different heterotrimeric G proteins and GPCRs (32, 33, 35, 36, 51).  
Moreover, BRET-based calcium sensor allowed the assessment of 
rapid and transient calcium release in response to the hormones 
confirming previous reports of FSHR- and LHR-mediated calcium 
response (37, 38). Moreover, our data suggest differences between 

the two receptors in terms of the basal calcium response, and 
further investigation will be needed to better understand this 
aspect of FSHR/LHR signaling. One possible explanation could 
be that the higher basal level observed in LHR-transfected cells is a 
reflexion of the fact that this receptor leads to significant constitu-
tive activity while FSHR does not (52, 53).

Interestingly, our BRET data provide the first direct evidence 
for the dynamics of receptor/β-arrestin association, in real-time 
and live cells, in response to FSH and hCG stimulation. We 
confirmed the accuracy of the measurements for hFSHR/β-
arrestin association using an indirect TANGO assay, both data 
sets being also consistent with those recently reported on FSHR 
using the PathHunter β-arrestin assay from DiscoverRx (4, 5). 
This commercial assay, similar to our home-made TANGO assay, 
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precludes real-time measurements since 90 min of agonist stimu-
lation are followed by 1 h of incubation before the assay detection 
(overnight incubation in the TANGO assay). In addition, it is 
worth noting that non-trivial modifications are introduced in the 
C-terminus of FSHR in these two assays, although this region 
is known to be critical for receptor phosphorylation by GRKs 
and β-arrestin interaction. The real-time kinetic analysis using 
BRET showed a time-dependent increase in β-arrestin 2 recruit-
ment with a plateau reached after 20–30  min of stimulation 
consistent with previous BRET data on β-arrestin recruitment 
to other GPCRs (26, 27, 33, 34, 51, 54). The sustained BRET 
signals induced after 20–50  min of stimulation suggests that 

hFSHR and hLHR present a class B GPCR profile similarly to 
the prototypic vasopressin V2 receptor (41, 46). In addition, the 
BRET data on β-arrestin 2 recruitment were nicely correlated 
with the internalization data in terms of efficiency and to some 
extent kinetics (Figure  7; Table  1). This is consistent with the 
previously reported central role played by β-arrestins in the 
internalization of hFSHR and hLHR (55, 56) and fits well with the 
classical paradigm of GPCR trafficking (41, 42, 57, 58). However, 
our real-time BRET analysis on both receptors clearly showed 
receptor recycling and/or recruitment of new receptors at the 
plasma membrane as indicated by a recovery of BRET signals 
occurring after 10 min of stimulation and reaching a maximum 
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concentrations (D–F) as described in the Section “Materials and Methods.” 
In parallel, hFSHR/β-arrestin 2 association was also assessed in dose-
dependent way using TANGO assay in 384-well format (g). Data are 
means ± SEM of three to four independent experiments performed in 
triplicate points.
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higher than the basal level after 45–60 min. Such an observation 
was specific to hFSHR and hLHR since the internalization of 
hV2R was significantly delayed with no recycling of the receptor 
observed, as previously reported for this receptor (48–50). This 

difference with V2R suggests that the trafficking of hFSHR and 
hLHR is more complex than their simple classification into class 
A versus B GPCRs. In fact, the recovery phase observed with 
hFSHR and hLHR may be explained either by the recycling of the 
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FigUre 6 | receptor internalization and recycling assessed by BreT. 
(a) Principle of the BRET-based receptor internalization assay. HEK 293 cells 
transiently co-expressing Venus-KRas with either hFSHR-Rluc8, hLHR-Rluc8, 
or hV2R–Rluc8 were used for BRET measurements using 96-well format as 
described the Section “Materials and Methods.” Real-time kinetics (B) and 
dose–response analysis (e) after 2 min of stimulation with 10 nM (B) or 
increasing concentrations (e) of the hormones. In addition, time-course 
experiments were performed upon cell stimulation with 10 nM of the 

indicated agonists for 2, 5, 10, 20, 30, 45, and 60 min (c). The BRET 
recovery phases for hFSHR and hLHR in (c) were also fitted using a 
non-linear regression (one phase kinetic equation) and by taking the signals 
after 2 and 60 min as 0 and 100% of recovery, respectively (D). This allowed 
the calculation of t1/2 values of receptor recycling indicated in Table 1. Data 
are means ± SEM of three independent experiments performed in triplicate 
points. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant compared to 
unstimulated controls.
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internalized receptors as previously shown for FSHR (44, 59) and 
LHR (60), or by the mobilization of a new intracellular pool of 
“spare receptors” or “receptor reserve” to the plasma membrane, 
or a combination of both processes. Beside, both FSHR and LHR 
have been reported to traffic through pre-early endosomes (60). 
This unusual trafficking may explain the fast internalization and 
recycling observed in our system.

To get a better picture of what happens with hFSH and hLHR 
in terms of activation, desensitization, and internalization, we 

normalized the dose-dependent responses of both receptors with 
regard to cAMP pathway, β-arrestin 2 recruitment, and receptor 
internalization assessed by different BRET assays reported in 
this study (Figure 7). For both hFSHR (Figure 7A) and hLHR 
(Figure 7B), we found a spectacular left-warded shift (about three 
logs) of cAMP curve (EC50 ≈ pM) as compared to β-arrestin 2 and 
internalization curves (EC50 ≈ nM), indicating the high efficiency 
of gonadotropins for this signaling pathway. In contrast, there was 
no difference between β-arrestin 2 recruitment and internalization 
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FigUre 7 | comparative analysis of the dose–response analysis on 
caMP responses, β-arrestin 2 recruitment, and receptor internalization. 
For both hFSHR (a) and hLHR (B), the individual dose–response data obtained 
in each BRET assay were normalized to the maximal signal taken as 100% of 
receptor-mediated responses. Moreover, receptor occupancy curves were 

incorporated to correlate the different specific responses with the percentage 
of occupied receptor. The occupancy was estimated using the following 
equation: % Occupancy = (Ligand)/(Ligand) + Kd, considering a Kd of 2 nM for 
both hFSH and hCG determined by radioligand binding assay on hFSHR 
expressed in HEK 293 cells (data not shown).
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curves since both processes are tightly linked. Such a shift cannot 
be due to the fusion of the receptors with Rluc8 since both hFSHR-
Rluc8 and hLHR-Rluc8 respond to gonadotropin stimulation 
with similar potencies as their respective unmodified receptors 
as shown by BRET (Figures 1D,E) and HTRF® (Figures 1F,G) 
assays. In addition, dose–response curves of receptor internaliza-
tion using BRET with KRas were similar to that for β-arrestin 2 
recruitment even though no yPET-β-arrestin overexpression was 
used in the internalization assay, ruling out the possibility that the 
shift observed for β-arrestin 2 recruitment could reflect a dimin-
ished functionality of the yPET-β-arrestin 2 (Figures 5E and 7) or 
the modified variant in TANGO assay (Figure 5G).

Interestingly, the predicted receptor occupancy curves, using 
a Kd of 2 nM determined by radioligand binding assay on HEK 
293 cells stably expressing hFSHR, indicated that <10% of the 
activated receptors is sufficient to promote maximal cAMP 
response whereas more than 90% of the receptors needed to be 
occupied to have full β-arrestin 2 recruitment as well as receptor 
internalization (Figures 7A,B). Noteworthy, our measurements 
of the rapid internalization phase displayed maximal response 
in the nanomolar range for both receptors, demonstrating that 
the full complement of receptor is accessible to hormone bind-
ing, even at early stimulation times. This observation rules out 
the scenario where only a limited fraction of receptors would 
be present at the plasma membrane at the time of stimulation. 
Together with the recycling data shown in Figure 6, our results are 
in accordance with the concept of “spare receptors,” postulating 
that for high-efficacy hormones, a small population of receptors 
occupied is sufficient to fully promote the biological response 
(61–63), a paradigm, which has also been previously evoked 
for gonadotropin receptors (61, 64–66). The “spare receptors” 
concept predicates that there is a mechanism by which only small 
amount of gonadotropin receptors needs to be occupied to fully 
elicit cAMP-dependent function of the gonadotropin hormones. 
This is consistent with the well-established amplification of the 
intracellular cAMP signaling pathway and suggests a model where 
Gαs and/or adenylyl cyclase would be limiting yet accessible to all 
the occupied receptors in the cells. Alternatively, the existence of 
pre-assembled receptor-G protein complexes, as demonstrated 

for many GPCR-G protein pairs (27, 51, 67–69), may explain 
such an observation. Indeed, a limited amount of pre-assembled 
complexes could preferentially bind hormones by virtue of its 
well-established affinity increase for the ligand within the ternary 
complex (70). In contrast, β-arrestin recruitment and receptor 
internalization processes are remarkably proportional to receptor 
occupancy, suggesting that neither mechanism is amplified but 
rather that they depend on a 1:1 stoichiometric interaction with 
the receptors. Moreover, the differences in hormone potencies and 
receptor efficacies between cAMP and β-arrestin 2 recruitment/
internalization pathways may explain the balance between recep-
tor activation and receptor desensitization but also the balance 
between G protein-dependent and β-arrestin-dependent signal-
ing pathways. Therefore, further investigation will be required 
to better dissect these aspects of FSHR and LHR trafficking and 
their putative link with the G protein- and β-arrestin-dependent 
downstream signaling in the gonads in physiological and patho-
physiological settings. From the technological point of view, 
our study illustrates the advantage of applying BRET and FRET 
approaches to study the signaling and trafficking of FSHR and 
LHR in real-time and live cells. Of course, these approaches are 
based on transient expression of fusion proteins of the receptors 
and their different signaling and regulatory partners. Therefore, 
it will be important in the future, to apply other methods in order 
to confirm our observations in cells or native tissues expressing 
unmodified receptors and regulatory proteins at endogenous 
levels. Despite these potential shortcomings, the assays presented 
here may nonetheless have considerable potential for pharmaco-
logical profiling of gonadotropin receptors.
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