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Editorial on the Research Topic
Women in remote sensing: 2022

In a world where less than 30% of researchers are women, with similar proportions
reflected in the remote sensing community, this Research Topic of Frontiers in Remote
Sensing stands as a beacon of change and diversity. This collection of 15 papers led by
women researchers offers a panoramic view of the remarkable contributions of women
across the spectrum of remote sensing research. With over 28,000 views as of January 2024,
these studies not only showcase scientific excellence but also serve as a testament to the
crucial role of gender equality in driving sustainable development. This goal is underscored
by the United Nations Educational, Scientific and Cultural Organization (UNESCO), a
world leader dedicated to fostering global peace and security, sustainability, and gender
equality through the encouragement of international collaboration in the fields of
education, the arts, sciences, and cultural endeavors.

The scope of this issue spans from theoretical advancements to practical applications,
addressing global challenges through a multifaceted lens. Together, these papers weave a
rich tapestry of innovation, diversity, and scientific rigor. They not only demonstrate the
invaluable contributions of women in remote sensing but also chart a course for future
research in this dynamic field. As we stand at the intersection of technology, environmental
science, and gender equality, this Research Topic marks a significant milestone in our
collective journey toward a more inclusive and sustainable future. Highlighting the themes,
synergies, and connections among the 15 works in this Research Topic on Women in
Remote Sensing demonstrates the diversity and collaborative potential within the field.
Broadly speaking, these manuscripts, together with the participants in and sponsors of the
6-part Women in Remote Sensing presentation sessions, the Remote Sensing Specialty
Group Highlight Session, the mentoring reception, and the community-building dinner at
the 2023 American Association of Geographers (AAG) illustrate the breadth and depth of
foundational contributions that span: 1) data/data collection devices and protocols, 2)
methodological and analytical approaches, 3) a variety of regions and units of analysis, and
4) many topical areas of study, while at the same time highlighting the community building,
mentoring, and inclusivity inherent in this collaborative approach to science (Figure 1).
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1. Technological Innovation and Methodological Advances:
Several papers, like those by Mattilio et al., Herrmann et al.,
and Krause et al., demonstrate innovative applications of
machine learning and terrestrial laser scanning (TLS). These
technological advancements underscore the common theme of
leveraging cutting-edge tools to address ecological and
environmental challenges.

2. Environmental Monitoring and Conservation: Carvalho et al.,
Rivarola et al., and Digiacomo et al. focus on different aspects of
environmental monitoring. While analyze coastal
morphological changes, assess the effectiveness of protected
areas, and evaluate coastal wetland habitats using Unoccupied
Aircraft Systems (UAS). Collectively, these studies highlight the
critical role of remote sensing in environmental conservation
and management.

3. Climate Change and Ecosystem Dynamics: The
contributions by Southworth et al., Parkinson, and
Vogeler et al. share a common thread in studying the
effects of climate change. Work on global biome shifts,
Parkinson’s research on Arctic Sea ice, and assessment of
forest structure are all crucial to understanding and
responding to climate change impacts.

4. Urbanization and Land Use Change: Fontana et al. and Yang
et al. explore urban development and land use transitions.
Urbanization predictions in Brazil and study of forest
management strategies in the U.S. both address how land
use changes impact the environment, offering insights for
sustainable development.

5. Data Integration and Interdisciplinary Approaches: The works
by Karale and Yuan. and Hanlon et al. represent the integration
of various data sources, such as satellite data with ground
measurements and drone-based water sampling, to improve
environmental monitoring. This integration reflects a broader

theme of interdisciplinary approaches to addressing complex
environmental issues.

6. Policy Implications and Conservation Strategies: Several
studies, including those by Herrmann et al., Rivarola et al.,
and Vogeler et al., have direct implications for policy and
conservation strategies. Collectively, these papers contribute
to a better understanding of how scientific research can inform
and shape environmental policy and practice.

7. Diversity and Inclusivity in Science: The paper by Joyce et al.
stands out for addressing the meta-theme of diversity in the
scientific community, particularly within editorial boards. This
paper connects to the broader issue of gender representation
and inclusivity in science, technology, engineering, and
mathematics (STEM) fields, which is a central theme of the
Research Topic.

8. Synergies in Remote Sensing Applications: The works by
Huelsman et al. and Digiacomo et al. both utilize
unoccupied aerial vehicles (UAVs), showcasing the synergy
in remote sensing applications across different environmental
contexts. Their research highlights the versatility and potential
of remote sensing technologies.

Each contribution in this Research Topic underscores the
diversity of thought and high level of rigor in remote sensing,
with Joyce et al. initiating the discourse by examining the
composition of editorial boards in remote sensing journals. Their
audit exposes a striking lack of diversity, shedding light on the
implicit biases and citation disparities faced by underrepresented
communities. They propose an action plan aimed at fostering
inclusivity within the field, paving the way for a more diverse
and equitable research environment.

In a blend of geospatial analysis and environmental science,
Carvalho et al. delve into the morphological dynamics of a tropical

FIGURE 1
This thematic concept map represents the keywords for each of the articles in this special issue of Women in Remote Sensing. The keywords are
grouped similarly to the list of key themes and include methods of analysis, data/data collection approaches, fields of study, region/unit of analysis in
addition to the characteristics of the Women in Remote Sensing ethos, which is open to all remote sensing practitioners.
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barrier island. Utilizing Landsat imagery and Google Earth Engine,
they unravel the complex interplay of erosional trends and seasonal
shifts, providing valuable insights into coastal processes along the
southeastern coast of Brazil. This study not only contributes to our
understanding of coastal morphology but also underscores the
importance of long-term environmental monitoring.

Rivarola et al. shine a light on the effectiveness of protected area
zoning, employing remote sensing to evaluate conservation
strategies in Nahuel Huapi National Park, Argentina. Their work
highlights the need for critical evaluation of conservation goals, and
emphasizes the role of remote sensing in large-scale environmental
management.

Taking a step into the realm of global ecology, Southworth et al.
harness the power of the normalized difference vegetation index
(NDVI) time series to decipher patterns of vegetation change over
3 decades. Their findings not only reveal the impact of climate and
land-use change on global biomes but also underline the utility of
statistical time series analysis in ecological research.

In a demonstration of precision agriculture, Mattilio et al.
present a novel application of machine learning to map leafy
spurge infestations. Their work, rooted in high-accuracy
classification models, offers a glimpse into the potential of
technology to manage invasive species—a critical aspect of
sustainable land management. The theme of machine learning
continues with Herrmann et al. who apply these techniques to
the regulatory landscape of highland grassland fires in Brazil’s
Atlantic Forest Biome. Their findings reveal significant
discrepancies between authorized and actual burned areas,
offering evidence to inform policy revision and environmental
governance.

Krause et al. bring a technological edge to forestry research by
employing terrestrial laser scanning for biomass estimation. Their
work challenges existing methodologies, offering more accurate
assessments that have significant implications for carbon
quantification and forest management. Vogeler et al. investigate
the potential of satellite data, particularly the Global Ecosystem
Dynamics Investigation (GEDI), in generating predictive models of
forest structure. Their study evaluates the utility of GEDI data in
biodiversity assessments and wildlife habitat modeling, contributing
to our understanding of forest ecosystems. Yang et al. explore the
intersection of forest management, land use transitions, and citizen
science in the southeastern United States. Their integration of
crowdsourced data underscores the value of public participation
in scientific research, particularly in the context of regional land
change dynamics.

Digiacomo et al. assess the utility of UAS for monitoring coastal
wetland habitats. Their work not only addresses the need for
methodological standardization but also demonstrates the
potential of UAS in large-scale ecological assessments. In the
field of water quality, Hanlon et al. introduce an innovative
drone-based method for sampling harmful algal blooms. This
approach, which overcomes the limitations of traditional
sampling methods, offers a timely and precise tool for
monitoring and managing aquatic ecosystems. Huelsman et al.

utilize drones for species identification, shedding light on the
capabilities of UAV-based spectroscopy in differentiating between
invasive plant species. Their findings contribute to the advancement
of remote sensing techniques in biodiversity conservation.

Parkinson (2022) presents a comprehensive record of Arctic Sea
ice changes over 43 years, utilizing satellite passive microwave data.
Her work provides crucial evidence of long-term trends in sea ice
coverage, and reinforces the role of satellite observations in climate
change research. In urban studies, Fontana et al. examine land use
and land cover changes in the Metropolitan Region of Porto Alegre,
Brazil. Their integration of historical Landsat data and spatial
modeling not only paints a picture of urban expansion but also
provides a forecast of future developments, serving as a valuable tool
for urban planning and policy formulation. Finally, Karale and Yuan
improve the estimation of particulate matter (PM) concentrations in
PM2.5 by integrating satellite data with ground measurements.
Their approach, which uses a Convolutional Neural Network, not
only improves air quality monitoring but also opens new avenues for
environmental health research.

In summary, this Research Topic, diverse in approach, topical
foci, and occupational roles of the authors, collectively emphasizes
the importance of technological innovation, environmental
stewardship, climate change research, urban and land use studies,
data integration, policy impact, and the promotion of diversity in the
field of remote sensing. This Research Topic not only contributes
significantly to the scientific literature but also reinforces the vital
role of women in advancing remote sensing research and its
applications for an inclusive, collaborative, and sustainable future.
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Assessing Protected Area Zoning
Effectiveness With Remote Sensing
Data: The Case of Nahuel Huapi
National Park, Argentina
María Daniela Rivarola1*, Jacob Dein2, Daniel Simberloff 1 and Hannah Victoria Herrero2

1Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, United States, 2Geography Department,
University of Tennessee, Knoxville, TN, United States

Protected areas (PAs) remain the most important tool to prevent biodiversity loss and
habitat degradation worldwide, but the formal creation of a PA constitutes only the first
step. In recent decades, concerns about PA effectiveness have arisen, and several PAs
have been evaluated using different methods. Results show that while some PAs are
achieving their conservation goals, others have been less effective. Particularly, assessing
broadscale outcomes is a method that allows us to monitor change over time at a large
scale, using remote sensing data. In this study, we evaluated the effectiveness of Nahuel
Huapi National Park, with particular attention to its three protection categories: Strict
Natural Reserve (SNR), National Park (NP), and National Reserve (NR) (IUCN categories Ia,
II, and VI respectively). We compared changes in Normalized Difference Vegetation Index
(NDVI) among sites in these categories and between them and neighboring unprotected
areas, over the period 2000–2020. Overall, habitat degradation was low, and we found no
difference among the four categories evaluated. Nevertheless, a greening process has
been conspicuous in the entire area, with higher values both in the SNR and in the
unprotected area. We propose possible explanations as we consider variables such as
dominant tree species, precipitation, temperature, elevation, and wildfires. This study
supports the importance of NHNP at the regional and national levels, particularly its
SNR areas.

Keywords: conservation, NDVI, protection categories, temperate forest, time series analysis

INTRODUCTION

Some consider the biodiversity loss occurring nowadays to be the worst biological disaster since the
last mass extinction 65 million years ago (Soulé, 1987). Although protecting certain areas or
ecosystems is not enough to stop and reverse this trend, the creation of protected areas (PAs)
remains one of the most important measures in conservation biology (Hunter & Gibbs, 2007), as
shown by the fact that protected area coverage rapidly achieved the goal of 17% of land and inland
water protected set by the Convention of Biological Diversity in 2010 (CBD, 2010; WDPA, 2021).

Establishing a PA is the first step toward ecosystem conservation; however, creating a PA does not
by itself guarantee its effectiveness at achieving its conservation and management goals. The need to
assess PA effectiveness has been widely noted, resulting in a growing number of studies addressing
the outcome from different perspectives (Bruner et al., 2001; Nagendra, 2008; Leverington et al.,
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2010a; Coad et al., 2015; Barnes et al., 2016; Barnes et al., 2017;
Coad et al., 2019). Leverington et al. (2010a) summarized
different approaches used to assess PA effectiveness as follows:
Coverage–studies biodiversity representation within PAs, also
known as Gap Analysis (Scott et al., 1993; Armenteras &
Villareal, 2003; Chape et al., 2005; Rodríguez-Cabal et al.,
2008); Broadscale Outcomes–compares environmental changes
within and outside protected areas, generally using remotely
sensed data (Nagendra et al., 2013; Herrero et al., 2016);
Protected Area Management Effectiveness Assessments
(PAME)—uses the scoring framework developed by the IUCN
(Hockings, 2003; Coad et al., 2015) or a similar approach; and
lastly, Detailed Monitoring–generally reports animal population
trends, vegetation conditions, or socioeconomic impacts of a
particular PA (Barnes et al., 2016; Geldmann et al., 2018).
These different approaches are complementary, as each
addresses the outcome from a singular perspective (Hockings
et al., 2006).

The term “protected area” comprises areas known by
different names, often referring to different types of
management. The International Union for Conservation of
Nature (IUCN) recognizes six management categories
organized from more to less strict as follows: Ia-Strict
nature reserve, Ib-Wilderness area, II-National Park, III-
Natural monument or feature, IV-Habitat/species
management area, V-Protected landscape or seascape, and
VI-Protected area with sustainable use of natural resources
(Dudley, 2013). While extractive use is forbidden or minimal
in categories from I to IV, the restrictions are reduced in
categories V and VI. The idea that a stricter management
category will yield better habitat preservation has been widely
explored in a variety of environments, with contrasting results.
A study conducted in Bolivia, Costa Rica, Indonesia, and
Thailand found that, although deforestation was generally
lower inside the strictest PAs, it was unclear whether this
outcome was related to the management category or instead to
the remote location of most of the strict PAs (Ferraro et al.,
2013). The Royal Chitwan National Park in Nepal allows use
by and involvement of local residents, while Celaque National
Park in Honduras has a more traditional management
approach in which local residents do not participate in this
endeavor. Although deforestation rate was lower inside both
PAs, the regeneration and conservation of the buffer zones
surrounding the PAs were better where local residents were
involved, suggesting that regulated use of PAs could be more
effective in the long run (Nagendra et al., 2004). Fire incidence
in tropical forest located in strict PAs in Latin America and
Asia was lower than in the unprotected area; however, multi-
use PAs in these continents sustained an even lower fire
incidence (Nagendra, 2008).

While most studies looked at entire units belonging to one
particular management category, the division of a PA into zones
with differing categories of protection has been less studied (Hull
et al., 2011). A common management approach is subdividing a PA
into more than one management category, resulting in more strictly
regulated areas surrounded by less regulated categories acting as
buffer zones between the most highly protected area and the

unprotected area (Geneletti & van Duren, 2008). This is the
situation in Nahuel Huapi National Park (NHNP), located in the
northern portion of the temperate forests in Patagonia, Argentina.
This protected area, originally created in 1922 as National Park
(formerly SouthernNational Park, thenNahuel Huapi National Park;
NP category II IUCN), was later subdivided into National Reserve
(NR; category VI IUCN) and Strict Nature Reserve (SNR; category I
IUCN) (Rivarola et al., 2021a). The National Reserve was established
in 1970 as a buffer zone between the National Park (west) and the
unprotected area (east); furthermore, most of the private properties
that existed at the time were included in this new (lower) category,
allowing for regulated extractive use. Finally, in 1990 pristine and
remote areas within the National Park were declared Strict Nature
Reserve with no human intervention allowed (Martin & Chehébar,
2001; Rivarola et al., 2021a). NHNP has one city and two small towns
on its borders, accounting for a total population of approximately
170,000 people. This region had a low human population density for
most of the 20th century, a situation that changed in the 1980s. The
population growth rate between 1980 and 1991 reached 101.58%, and
it peaked again between 2001 and 2005 (74%), resulting in an
unplanned and unregulated urbanization expansion in which
social and economic inequity are evident, pressing on natural
resources in a complex manner (Madariaga, 2007).

The economic development of this region was historically
based on agriculture, livestock, and logging but later switched
to tourism, the main source of income nowadays (Schlüler,
1994; Nuñez & Vejsbjerg, 2010). Three biomes are protected by
NHNP: high Andes, Patagonian temperate forests, and steppe,
with Patagonian temperate forests accounting for the largest
extent (Monjeau et al., 2005). These forests have been isolated
from other temperate forests since the mid-Tertiary Period
(Axelrod et al., 1991; Villagrán and Hinojosa, 1997), and, as a
result, 90% of the woody species are endemic (Arroyo et al.,
1996) and the region is characterized by one of the highest
known rates of plant-animal mutualisms (Aizen & Escurra,
1998). Despite the existence of multiple PAs incorporating
Patagonian forests in Chile and Argentina (Armesto et al.,
1998; Burkart, 2005), more than 1/3 of the Patagonian forests
have been lost since the arrival of Europeans in the 19th
century (Tecklin et al., 2002). The assessment of NHNP
effectiveness in preserving its biodiversity is crucial. Integral
and pluralistic approaches are needed in order to assess PA
performance (Caro et al., 2009). Three of the effectiveness
assessment methods suggested by Leverington et al. (2010a)
have been implemented in this PA. The first was a PAME
assessment that found that NHNP management falls in the
fairly satisfactory category (Rusch, 2002). Secondly, a coverage
study concluded that the hotspot of Patagonian biodiversity is
not fully covered by the current PAs (Rodríguez-Cabal et al.,
2008). Lastly, a detailed monitoring of the small mammal
community of NHNP concluded that there is no clear
evidence that a stricter category preserves this community
better, with the exception of the endemic marsupial
Dromiciops gliroides (Rivarola et al., 2021b). The fourth
type of PA effectiveness assessment, broadscale outcome,
has not yet been performed, and it is the main goal of the
present study.
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Ecological applications of satellite remote sensing (SRS) can
potentially improve environmental management by providing
verifiable and standardized data at a large temporal and spatial
scale (Pettorelli et al., 2014). For decades, access to SRS data was
very expensive, limiting its use in many countries and regions.
The shift toward free SRS databases provided the opportunity for
better and wider use of these data (Woodcock et al., 2008).
Concomitantly, advances in processing methods have allowed
such data to be used in a more comprehensive manner (Hansen &
Loveland, 2012). An increasing number of studies have used SRS
to assess PA broadscale outcomes, facilitating the evaluation of
large areas that would not have been possible to assess from the
ground (Nagendra et al., 2004; Buchanan et al., 2008; Wiens et al.,
2009). Among all sensors, Landsat provides the longest
consistently calibrated data set registering surface changes
since 1972 (Markham & Helder, 2012), providing an excellent
source of data for habitat monitoring, allowing detection of
habitat fragmentation and disturbances in PAs (Nagendra
et al., 2013).

Several vegetation indices have been developed in order to draw
inferences about vegetation structure, photosynthetic capacity, and
leaf water content among other ecological data. Normalized
Difference Vegetation Index (NDVI) is the most widely used
index and is defined as the ratio of the difference between the
spectral reflectance in near-infrared (NIR) and the red (RED)
wavelengths divided by the sum of both, where NIR and RED are
the light reflected by the vegetation in the NIR and RED wavelength
bands, respectively (Gandhi et al., 2015; Yengoh et al., 2016). This
index is based on the fact that chlorophyll absorbs RED, while the
mesophyll disperses NIR (Pettorelli et al., 2005), and its values range
between −1 and +1, where negative values correspond to unvegetated
areas (Myneni et al., 1995). This index is highly sensitive to changes in
canopy photosynthetic activity, and such changes can be used as an
early warning of habitat modification (Leisher et al., 2013; Nagendra
et al., 2013). In terrestrial ecosystems, the amount and distribution of
vegetation directly influence the abundance and distribution of
resident and migrant animals; thus, NDVI is a valuable tool not
only for assessing photosynthetic activity but also to infer overall
ecosystem status at a large spatial and temporal scale (Pettorelli et al.,
2005). Time series analysis of NDVI has been used to assess PA
effectiveness, allowing researchers to differentiate between seasonal
and yearly changes (Waylen et al., 2014; Herrero et al., 2016;
Southworth et al., 2016; Herrero et al., 2020).

The research reported here explores vegetation status of
NHNP among its three protection categories along with a
neighboring unprotected area. We aimed to assess the
effectiveness of the three levels of protection in the NHNP
during the 21st century by comparing NDVI time series from
2000 to 2020 of areas under each level of protection to that for
“matching” (or “apples-to-apples”) unprotected areas in order to
reduce variation associated with different land characteristics
(Joppa & Pfaff, 2011). Variation in NDVI can be associated
with variables including land cover, precipitation, temperature,
and elevation; therefore, we incorporated these factors in our
analysis. Using NDVI as a comprehensive metric for all change in
vegetation aimed to identify overall trends while serving to
suggest influential land change processes for further analysis.

METHODS

Study Area
Nahuel Huapi National Park is located between parallels 40° 08′
18″ and 41° 35′ 19″ South and longitudes 71°50′ 52″ and 71° 04’
45” West (Figure 1). It is bordered in the west by Chile, in the
north by Lanín National Park, in the east by the Patagonian
steppe (a small area of which is included within NR), and in the
south by the Manso river. Its total area of 7,172.61 km2 is
subdivided into different management categories. The eastern
2,253.8 km2 are designated National Reserve (NR), IUCN
category VI. This area contains several private properties,

FIGURE 1 | Map of Nahuel Huapi National Park. Levels of protection
indicated by different colors.
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where authorized livestock and logging are frequent.
Furthermore, this category allows more intensive use and the
development of infrastructure related to tourism (hotels, sky
resorts). The western 4,918.81 km2 are designated National
Park (NP), IUCN category II (WDPA, 2021). There are fewer
private properties in this region, and although livestock and
logging are forbidden by law in a category II PA, these
activities are still common. More extensive use is also allowed,
such as campsites and low-impact developments. In 1990,
pristine areas within the National Park were declared Strict
Nature Reserve (SNR, IUCN category Ia), covering
755.25 km2; and later in 1994, a new subdivision of the NP
was proclaimed Wilderness Natural Reserve (WNR, IUCN
category Ib). Information regarding the decision process that
led to selection of those areas to be included under the strictest
category level is unavailable, other than that they were pristine
areas, remotely located, with difficult or no ground access.
Consequently, several are located at higher elevations (where
conflicts with human uses are minimal) or in areas accessible only
by boat. This category does not allow any use, other than
patrolling and scientific research (Rivarola et al., 2021a). In
this study, we investigated NR, NP, and SNR, insofar as we
lacked access to spatial data that includedWNR. Additionally, we
evaluated 2,423.8 km2 of unprotected area located south of the
Manso river, using the same NHNP longitudinal range
(Figure 1).

NHNP lies within the Valdivian Ecoregion, where High
Andean, Patagonian Forests, and Steppe biomes are
represented (Burkart et al., 1999). It has a mean annual
precipitation of 1,800 mm, with a marked west-east gradient
(from above 2,000 mm to approximately 200 mm) owing to
the shadow effect of the Andes Mountains (Cabrera, 1976).
Most of the NHNP is covered by forest dominated by
evergreen or deciduous species of the genus Nothofagus (N.
pumilio—Lenga, N. antarctica—Ñire, N. dombeyi—Coihue, N.
betuloides—Guindo, and N. nitida—Coihue de Chiloé) and
Araucaria araucana (Araucaria) in the northern area, and
Austrocedrus chilensis—cypress along the eastern fringe in the
ecotone between forest and steppe (Cabrera, 1976).

Data Collection
To quantify NDVI change in the study area in relation to
significant environmental variables, we collected satellite
imagery, precipitation, and temperature data from available
remote sensing products from years 2000–2020, leveraging the
resources of Google Earth Engine (Gorelick et al., 2017). While
limited remote sensing data are available before 2000, sufficient
data available starting in year 2000 allowed us to analyze vegetation
change one decade after the strict reserves were first established. In
addition to remote sensing data, we also acquired fire history
(Mermoz et al., 2005), land cover provided from CIEFAP (Centro
de Investigación y Extensión Forestal Andino Patagónico), and
tourism data from APN (Administración de Parques Nacionales).

We created cloudless composites using Landsat data by selecting
the “greenest” pixel from all scenes captured between December 1
andMarch 1 of each summer season.We selected only summer data
because the presence of evergreen and deciduous forests prevents us

from evaluating photosynthetic activity in fall and winter, while
frequent presence of snow during the spring would also bias our
analysis. The greenest pixel was taken to be that with the highest
NDVI, which we computed for each available scene during each
season. At least 25 scenes were available for each season.

Composites before 2013 were created using Landsat 7 scenes
(Landsat 7 Collection 1 Tier 1 TOA Reflectance courtesy of the
U.S. Geological Survey), and composites 2013 and after were
created using Landsat 8 (Landsat 8 Collection 1 Tier 1 TOA
Reflectance courtesy of the U.S. Geological Survey).

Selecting the greenest pixel allowed for the best interseason
NDVI comparisons. However, while the method works well for
creating cloudless composites in areas with vegetation present,

FIGURE 2 | Land cover of NHNP and neighboring area.
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pixels containing clouds are often selected over areas with low
NDVI values, such as water bodies, urban areas, and areas above
the tree line. Because these areas contained little vegetation (e.g.,
sparse ground vegetation growing above the tree line) or no
vegetation (water bodies, rocks, bare ground), they were
irrelevant to our analysis, and we masked them from the
resulting composites to exclude them from analysis. The mask
was taken from land cover data provided to us by CIEFAP

(Centro de Investigación y Extensión Forestal Andino
Patagónico) and shown in Figure 2.

We collected precipitation data within the study area from the
Global Precipitation Measurement (GPM) Integrated Multi-
satellitE Retrievals for GPM (IMERG) dataset (Huffman et al.,
2019). IMERG provides total precipitation for every month at 0.1
× 0.1° (approximately 11.1 × 11.1 km) spatial resolution and
calibrates multiple satellite estimates with ground sources.

FIGURE 3 | Variation in mean NDVI at different levels of protection (0: Unprotected area, 1: National Reserve, 2: National Park, 3: Strict Nature Reserve). Horizontal
lines on top indicate statistical differences between levels of protection (pairs).

FIGURE 4 | NDVI values over time recorded for a total of 375 random points equally distributed among the four levels of protection and four dominant tree species
(Nothofagus dombeyi, N. antarctica, N. pumilio, and Austrocedrus chilensis).
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We collected temperature data within the study area from the
MOD11A1 V6 product derived from data collected by satellites
equipped with the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument (Wan et al., 2015).
The data provide daily (one daytime and one nighttime) land
surface temperature estimates at 1 × 1 km resolution. We
computed the mean daytime temperature for every year (Jan
1st-December 31st) for use in analysis.

Data Analysis
We calculated the mean NDVI per austral summer from 2000 to
2020 at each level of protection (SNR, NP, NR, Unprotected). We
evaluated the synergistic effect of protection and time on changes
in mean NDVI using an analysis of covariance (ANCOVA),
followed by a post hoc Bonferroni adjustment test. Level of
protection and years (2000–2020) were the categorical and
continuous variables, respectively. Since differences in NDVI

among the levels of protection do not necessarily mean
healthier vegetation, but rather could be related to differences
in dominant species cover (e.g., NP mostly dominated by N.
dombeyi vs. NR mostly dominated by A. chilensis), precipitation,
elevation, or temperature, in a second step we selected random
points in each of the Unprotected, NR, NP, and SNR levels. Using
the available data regarding dominant species cover across NHNP
(Margutti & Arosteguy, 2019), we selected 25 random points per
area dominated by one of the four most common dominant tree
species: N. dombeyi, N. antarctica, N. pumilio, and A. chilensis,
accounting for a total of 100 random points each for NP, NR and
Unprotected area, and 75 random points for SNR, because no
area is dominated by A. chilensis within this category (Figure 2).
For these 375 random points we extracted the elevation, and their
NDVI values, temperature, and precipitation from 2000 to 2020.

For each random point we ran a linear regression in which we
evaluated NDVI change over time, resulting in a total of 375 linear
regressions. From each linear regression, we extracted the slope, as it
provided us with information regarding the general trend of NDVI
change per level of protection. Lastly, we ran an ANOVA test to
evaluate if the slopes (indicating NDVI change over time) varied
among the four levels of protection, followed by a Tukey HSD test.

Nothofagus dombeyi,N. antarctica,N. pumilio, and A. chilensis
respond differently to disturbances such as wildfire, drought,
livestock, and windstorm (Raffaele et al., 2014). To investigate if
these species experienced a different trend among the levels of
protection, we ran a two-way ANOVA test, grouping by level of
protection and dominant species and using as dependent variable
the 375 slopes from the random points mentioned above,
followed by a Bonferroni test.

Previous studies have indicated that precipitation plays an
important role in determining NDVI (Herrero et al., 2020). Other
characteristics, such as elevation and temperature, might also
affect the NDVI values. In order to reduce the number of physical
variables used to explain changes in NDVI, we used Pearson’s

FIGURE 5 | Comparison of the NDVI increases over time, indicated as
positive slope values, among the different levels of protection (DF = 3, 368, F =
4.366, p = 0.005). 0: unprotected area, 1: National Reserve, 2: National Park,
and 3: Strict Nature Reserve.

FIGURE 6 |Comparison among the NDVI increases over time, indicated as positive slope values, for each of the four most common dominant tree species, among
the different levels of protection. 0: unprotected area, 1: National Reserve, 2: National Park, and 3: Strict Nature Reserve.
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product-moment correlation to evaluate the correlation between
precipitation and elevation (t = 2.16, df = 7,810, p-value = 0.03)
and correlation between precipitation and temperature (t =
−36.20, df = 7,810, p-value=<1.1e-16). We ran a linear
regression to evaluate if annual precipitation in the studied
area affected its NDVI. We transformed NDVI values using a
Box-Cox transformation to satisfy the normality assumption,
then evaluated by ANCOVA whether different levels of
protection differed in annual precipitation.

To identify areas where changes in NDVI over the 20-year period
were more notable, we filtered those pixels where values changed by
more than 1 standard deviation (1 SD = 0.05) in both positive and
negative directions.We ran a linear regression to evaluate if increases
in NDVI were related to the level of protection, and we ran a second
linear regression to analyze the relation between NDVI decreases
and level of protection. Asmentioned above, total area differs among
levels of protection. To standardize the measure among them, we
used the percent of area (of each level of protection) where NDVI
changed bymore than 1 SD.While an increase inNDVI is associated
with vegetation growth, this does not necessarily mean that natural
vegetation is thriving; in fact, several undesired landscape
modifications can induce that change, such as land abandonment
and agriculture expansion (Pan et al., 2018). On the other hand, a

decrease in NDVI in areas dominated by a particular tree species
could reflect disturbances with negative effects on that species. To
investigate this situation further, we conducted an ANOVA test to
evaluate if decreases in NDVI were related to the type of forest.

We performed the statistical analyses using R 4.0.3 (R Core
Team, 2014).

The study area is highly visited during the summer months,
when the risk of wildfire is higher owing to low seasonal
precipitation. Campsites distributed in NP, NR, and in the
neighboring unprotected area receive thousands of visitors,
increasing the risk of wildfires. We performed a colocation
analysis to determine if fires were more likely to occur near
designated campsites. Colocation analysis yields a colocation
quotient for each fire centroid, where values less than 1 indicate
isolation and values greater than 1 indicate spatial correlation
(Leslie & Kronenfeld, 2011). We performed the analysis using the
Spatial Statistics toolbox in ESRI ArcGIS Pro version 2.8 using the
four nearest neighbors. Fire data were provided by INIBIOMA
(Instituto de Investigaciones en Biodiversidad y Medioambiente)
and campsite data were provided by NHNP.

RESULTS

We performed an ANCOVA to determine the effect of level of
protection on NDVI after controlling for time (years). There was
a statistically significant difference in NDVI between the groups
(F (3,91) = 170.43, p < 0.0001). Mean NDVI in the Strict Nature
Reserve (0.724 ± 0.003) significantly exceeded that in the National
Park (0.711 ± 0.003), Unprotected area (0.707 ± 0.003), and
National Reserve (0.642 ± 0.003), p < 0.001 (Figure 3).

Linear regressions based on the 375 random points showed an
overall NDVI increase over time (Figure 4). We analyzed differences
in slope among protection categories by ANOVA. The greening
process (NDVI increase over time) was significantly higher in the

FIGURE 7 | Annual precipitation change for each level of protection. prot0: unprotected area, prot1: National Reserve, prot2: National Park, prot3: Strict Nature
Reserve.

TABLE 1 | Results from a Bonferroni test indicating differences between changes
in annual precipitation at each protection category. Statistical significance is
indicated by p.

Levels Compared DF F p

Unprotected vs. NR 79 4.28 5.16e-5 ppp

Unprotected vs. NP 79 −1.66 0.100
Unprotected vs. SNR 79 −3.35 1.24e-3 pp

NR vs. NP 79 −5.97 7.07e-8 pppp

NR vs. SNR 79 −7.63 4.5e-11 pppp

NP vs. SNR 79 −1.69 0.096
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unprotected area than in theNatural Reserve (p= 0.022), theNational
Park (p = 0.01), and the Strict Nature Reserve (p = 0.03) (Figure 5).

We further investigated if dominant tree species had a
different trend of NDVI change over time in each protection
category with a two-way ANOVA. The interaction term between
level of protection and dominant tree species was not significant
(DF = 8, 357, F = 0.283, p = 0.971), indicating that the tree species
did not follow different trends over time in different protection
categories (Figure 6). Nevertheless, the “Group” term indicated
that different species did follow a different trend without
accounting for the protection level (DF = 3, 357, F = 4.036,
p = 0.008). We then computed a pairwise comparison using a
Bonferroni test and found that the trend of NDVI change over
time was more pronounced inN. dombeyi than in N. pumilio (p =
0.0009), with no differences among the other species.

Precipitation and temperature were negatively correlated (t =
−36.198, df = 7,810, p-value < 2.2e-16, r = −0.38), and areas with
higher temperature had lower NDVI. On the other hand,
precipitation and elevation were positively correlated (t =
2.1616, df = 7,810, p-value = 0.03, r = 0.02). We further
analyzed the effects of precipitation on NDVI, since it was the
physical variable that explained the highest fraction of the
variation. We found a positive correlation between annual
precipitation and NDVI (F (1,82) = 17.87, p = 6.1e-05). We
conducted an ANCOVA in order to determine if annual
precipitation has changed in the studied area, and furthermore,
if this change is consistent among the different levels of protection.
We found an overall decrease in annual precipitation (F (1,79) =
38.428, p = 2.42e-08), although this decrease differed among levels
of protection (F (3,79) = 21.469, p = 2.88e-10) (Figure 7). In
addition, a post-hoc Bonferroni analysis showed that estimated
mean annual precipitation in the National Reserve was
significantly lower than in the other three categories and that

the estimated mean precipitation in the Strict Nature Reserve was
higher than in the unprotected area (Table 1; Figure 8).

Areas where NDVI changed by more than 1 standard
deviation (both positive and negative) are indicated in
Figure 9. The percent of greening areas in the unprotected
area significantly exceeded that in the NR (Adj. R-squared =
0.435, F (4, 91) = 19.26, p = 1.666e-11), while no significant
differences with and among the other categories were found
(Figure 10). On the contrary, the same analysis applied to
percent of areas with a decreased NDVI yielded no
relationship with years or level of protection (Adj. R-squared
= 0.001, F (4, 91) = 1.039, p = 0.392) (Figure 11).

To evaluate if negative changes in NDVI were more frequent in
forests dominated by a particular tree species, we conducted an
ANOVA. We found a significant difference between the number of
pixels with a decreased NDVI and the type of forest (F (4,15) = 3.922,
p = 0.023). Forests dominated by N. pumilio contained larger
proportional areas with a decreased NDVI than did mixed forests
(p = 0.0339) and forests dominated by shrub species (p = 0.026)
(Figure 12).

As shown in Figure 13 and Table 2, colocation analysis
suggests that some fires were more likely to occur near
campsites than if they were randomly distributed. However,
none of the quotients are statistically significant, which could
be due to the low number of both fires (n = 23) and campsites (n =
28). Overall, approximately 1.7% of the land within the study area
burned between 2000 and 2020.

DISCUSSION

Remote sensing data provide an excellent opportunity to evaluate
land surface changes over time at different scales, from local to

FIGURE 8 | Estimated mean annual precipitation for each level of protection based on 20 years of precipitation data (period 2000–2020). Statistical differences
among the protection categories are indicated with *. prot0: unprotected area, prot1: National Reserve, prot2: National Park, prot3: Strict Nature Reserve. Horizontal
lines on top indicate statistical differences between levels of protection (pairs).
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global assessments, and they have been widely used to evaluate
fragmentation and degradation within protected areas (Nagendra
et al., 2013). Leisher et al. (2013) analyzed land and forest
degradation in 1,788 PAs in Latin America between 2004 and
2009, concluding that the rate of degradation increased from 0.04
to 0.10% per year, resulting in 1,097,618 ha degraded. They
evaluated 166 Argentinean PAs, concluding that almost 20%
of them have experienced land and forest degradation, despite
having a funding level three times the average for the Latin
American countries (US$ 8.60 versus US$ 2.50 per hectare). In
this study, we evaluated in detail the conservation status of the
oldest and one of the largest of the Argentinean PAs, Nahuel

Huapi National Park (NHNP). The second NHNP Management
Plan published in 2019 (Margutti & Arosteguy, 2019) highlighted
the importance of unifying the criteria used to subdivide the PA
following its formal and legal delimitation between different
conservation categories (Strict Nature Reserve, Wilderness
Natural Reserve, National Park, National Reserve; IUCN
categories Ia, Ib, II and VI respectively) rather than by zoning
categories based on its uses, as the first management plan
proposed (Gil et al., 1986). Because the strictest category was
created in 1990, our study spanning from 2000 to 2020 provides
the best up-to-date evidence at a broad scale regarding the
effectiveness of this high conservation category. NDVI values
were consistently higher in the SNR compared to the other
protection categories and the unprotected area with an
assessment based on the average NDVI per category per year.

This result would provide an optimistic assessment of the
effectiveness of the strictest category. However, differences in
area, location (affecting precipitation, temperature, elevation),
and dominant tree species among the protection categories
might bias our understanding of differences among them in
effectiveness. To address this problem, we re-evaluated NDVI
changes based on the selection of 375 random points, with an
equal representation of different dominant tree species among the
four levels. Surprisingly, with this second analysis, the unprotected
area shows the highest values of NDVI, which differ statistically
from those values reported in the three categories inside the PA. A
common approach is to compare vegetation inside and outside
PAs. However, the border of a PA may coincide with a natural
change in habitat type leading to misinterpretation regarding the
effectiveness of such a PA (Mas, 2005; Joppa & Pfaff, 2011; Ferraro
et al., 2013). We purposely selected as unprotected area the
neighboring southern region based on landscape, climatic
conditions, and floral similarities with the PA, since the eastern
area transitions into steppe and the western area is in a different
nation, Chile. Finally, NDVI values within NHNP coincided with
the levels of protection (NDVI values SNR > NP > NR).

The general NDVI change trend was positive for all four
categories. We found similar results with both assessments
(average NDVI per category and using 375 pixel values). The
observation of increasing NDVI values agrees with the greening
phenomenon reported globally (Zhu et al., 2016). However,
interpreting positive NDVI changes remains challenging
because no rigorous method has yet been validated (Leisher
et al., 2013). Greener does not necessarily mean better
conserved. Seasonal or annual changes in NDVI could be
associated with an increase in leaf size, number of leaves per
plant, plant density, and crop grown per year, but it can also
reflect replacement of natural ecosystems by agricultural lands, or
non-native species colonization after disturbances (Piao et al.,
2020). We selected the widespread NDVI as a comprehensive
metric to assess overall vegetation trends between levels of
protection. Established land change detection algorithms, such
as LandTrendr (Kennedy et al., 2018) and CCDC (Arévalo et al.,
2020), for example, could be used to study specific land change
processes, such as forest degradation/regeneration (e.g., Piffer
et al., 2022), in more detail. However, algorithms designed to
detect abrupt changes may not identify land change processes,

FIGURE 9 | Map with areas with NDVI increase (blue) and decrease
(yellow) in the period 2000–2020.
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such as the spread of invasive species or global greening. In the
case of NHNP, no forest has been replaced by agricultural land,
but rather more gradual land change processes of livestock
grazing and spread of non-native species were identified as
main threats to the PA, along with the more abrupt
disturbances of logging and wildfire (Margutti & Arosteguy,

2019). While a compelling body of evidence depicts negative
effects associated with non-native plant species in NHNP
(Simberloff et al., 2002; Nuñez, 2008; Svriz et al., 2013;
Franzese & Ghermandi, 2014), where 25% of the plant species
are non-native (Raffaele et al., 2014), further studies are needed to
evaluate if this colonization is related to the increased NDVI

FIGURE 10 | Percent of area with an increase in NDVI, per level of protection, over time. prot0: unprotected area, prot1: National Reserve, prot2: National Park,
prot3: Strict Nature Reserve.

FIGURE 11 | Percent of area with a decrease in NDVI, per level of protection, over time. prot0: unprotected area, prot1: National Reserve, prot2: National Park,
prot3: Strict Nature Reserve.
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values reported here. Furthermore, introduced animals impact
forest structure and regeneration in NHNP (Barrios-Garcia &
Simberloff, 2013; Nuñez et al., 2013; Rodríguez-Cabal et al., 2013;
Martin-Albarracin et al., 2015). Land change processes can
interact to produce complex outcomes. For example, the
combination of cattle and wildfires negatively affected
regeneration of Nothofagus dombeyi - Austrocedrus chilensis
mixed forests in NHNP, facilitating a post-fire transition from

forest to bamboo-dominated shrubland (Blackhall et al., 2008),
which could increase NDVI values (Franco et al., 2020). Specific
studies addressing this question are needed and could be aided by
land cover classification in combination with established land
change detection algorithms.

We found a positive relationship between NDVI and
precipitation, supporting previous findings (Herrero et al.,
2020). Furthermore, the variation in precipitation among the

FIGURE 12 | Total number of pixels where NDVI decreased over a 20-year period for each type of forest.

TABLE 2 | Colocation Analysis Summary: relation between wildfires and campsites.

ID Year Area (ha) Colocation Quotient p-value Colocation Label

2 2013 201.2 1.4 0.5 Colocated
3 1999 99.4 0.0 0.06 Isolated
4 2002 14.8 1.1 0.96 Colocated
9 1999 593.8 1.2 0.86 Colocated
10 1999 2.1 1.4 0.76 Colocated
11 1999 145.0 0.3 0.2 Isolated
12 1999 3,830.6 1.4 0.48 Colocated
13 1999 513.4 0.0 0.06 Isolated
15 2002 191.8 1.4 0.42 Colocated
19 2015 459.9 0.9 0.74 Isolated
20 1999 123.1 1.4 0.72 Colocated
21 1999 8.6 1.4 0.52 Colocated
1 1999 1933.2 Not analyzed — —

22 1999 177.8 Not analyzed — —

23 2004 272.4 Not analyzed — —

5 2013 1.0 Not analyzed — —

6 2006 246.8 Not analyzed — —

7 2012 322.3 Not analyzed — —

8 2009 2160.0 Not analyzed — —

14 2012 39.6 Not analyzed — —

16 2002 2364.4 Not analyzed — —

17 2002 317.0 Not analyzed — —

18 2004 278.6 Not analyzed — —
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levels of protection resembles the differences found among their
NDVI values (SNR > NP > Outside > NR, see Figure 3 and
Figure 8), suggesting that precipitation might be the cause of these
differences in NDVI rather than levels of protection. However,
mean annual precipitation fluctuated over time across this region,
but the overall trend manifests a decreasing pattern. Precipitation
therefore cannot explain the increasing NDVI trend.

In addition to identifying the general greening pattern
explained above, we further investigated this process by
extracting pixels where the NDVI changed more than 1 SD
during the period studied. The unprotected area accounted for
a larger increase compared to the NR, while this difference was
not evident between unprotected and NP, unprotected and SNR,

or within the three levels of protection inside NHNP. As stated
above, interpretation of increasing NDVI is difficult; however, as
a similar pattern or tendency was observed inside and outside the
PA, the greening process could be a consequence of a global
phenomenon such as climate change and increased CO2

(Ogunkoya et al., 2021), further exacerbated in the
unprotected area where extensive livestock and logging are
common.

Negative NDVI change could be more easily related to
degradation and habitat fragmentation (Morton et al., 2005;
Leisher et al., 2013). We found no evidence that degradation
was more extensive in the unprotected area compared to that in
areas under any level of protection. However, during the year
2012 there was a peak in the percentage of area with a negative
NDVI change inside the PA (NR ~ 30%, NP ~ 20%, SNR ~16%),
but this value remained low in the unprotected area (~5%). This
result could be explained by the massive ash deposit as
consequence of the Puyehue-Cordón Caulle volcanic eruption
that dispersed about 100 million metric tons of ash, covering
7.5 million ha in Patagonia (Wilson et al., 2013).While the central
and northern areas of NHNP were severely affected by ash
deposition, the southern portion of NHNP and the
unprotected area evaluated in this study remained free of ash.
The area more severely affected by ash deposition (Bignami et al.,
2014) coincides with the yellow area observed in the NW section
of Figure 9.

Fragmentation or degradation were more striking in areas
dominated by Nothofagus pumilio (both inside and outside the
PA) compared to areas dominated by mixed forests and
shrublands. Nothofagus pumilio forests are distributed at high
elevations along approximately 3,000 km of the southern Andes
Mountain chain (Mathiasen & Premoli, 2010). A previous study
found a positive correlation between N. pumilio growth and
precipitation, and a negative correlation with mean annual
temperature (Lara et al., 2005). Severe droughts in the 20th
century following relatively wet and cool years have been
associated with a persistent decline in N. pumilio growth,
suggesting that current and future trends with lower
precipitation and higher temperatures associated with climate
change would further promote the decline of these forests
(Rodríguez-Catón et al., 2016). Furthermore, wildfires have
historically affected forests of N. pumilio by direct burning
(Veblen et al., 2003) and also by reducing root
ectomycorrhizal colonization after fire (Longo et al., 2011).

Wildfires in the region are common between September and
April, with record numbers in January and February, due to the
combination of low precipitation and high temperatures during
the austral summer. The causes of most of these wildfires remain
unknown owing to lack of trained personnel and low budgets.
However, human activities are thought to be closely related to
their occurrence (Monjeau et al., 2005; Margutti & Arosteguy,
2019). Although tourists arrive in NHNP throughout the year,
more than 23% of the total annual visitation occurs during the
summer months (Área Técnica y Estadística, 2015). Campsites
are distributed in NP, NR, and the unprotected area, and camping
during summer is one of the favorite activities for both residents
and tourists. Since the establishment of campsites within the PA

FIGURE 13 | Fires and campsites within the study area.
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is regulated by the APN (National Park Administration), we
explored if the locations of wildfires were associated with the
authorized campsites. We used available data (date, location, and
area burnt) for 22 wildfires that occurred between 1999 and 2015
within NHNP. Although we found no relationship between these
two variables, it is important to notice that there were a total of
239 fires recorded in this period, most of which (150) affected less
than 0.5 ha (Margutti & Arosteguy, 2019), and no location data
were available, so we could not include such data in our analysis.
Furthermore, illegal campfires are common across the region, and
the low number of personnel and lack of appropriate vehicles
make it difficult for authorities to prevent them (Rivarola et al.,
2021a). On the other hand, the combination of the current trend
of warmer and drier summers following unusually dry springs
(phenomena associated with La Niña events), uncommon
electrical storms during the summer, and the massive
accumulation of fuel material in the forests constitutes a
permanent threat for these forests, across all levels of
protection. The remote and isolated location of most SNR
areas makes them particularly vulnerable to fires, since ground
access is difficult, preventing prompt response to many fires,
resulting in thousands of hectares affected. On 7 December 2021,
lighting ignited a wildfire in the southern area of NHNP, within
the SNR. The initial, small fire could not be controlled because
firefighters could not access the area. The wildfire is spreading
and remains active at the time this manuscript is being written,
1.5 months after the initiation of the fire. It is estimated that more
than 6,000 ha of pristine native forests within NHNP (both in
SNR and NP) have been burned (ADN, 2022; Sala de Noticias,
2022).

Effectiveness assessments should be performed regularly,
using multiple and complementary approaches, which would
provide crucial information to update management plans as
needed, and ultimately, would secure PA conservation goals.
The inclusion of PA protection categories, reports regarding
effectiveness assessments implemented in those PAs with

multiple categories, and current and past management plans
within WDPA (the global databases on PAs) would allow a
consistent evaluation at the local and global scale. Effective
management of PAs is essential to conserve natural
ecosystems. Their role in ecosystem services and preserving
biodiversity goes beyond the limits of a PA, and they
constitute a substantial fraction of a country’s national capital,
supporting national sustainable development and human well-
being (Bovarnick et al., 2010). The Argentinean PA system has a
long history, and despite political and economic instability in the
country, the general trend of PA establishment and management
by the APN is promising (Rivarola et al., 2021a). Weaknesses and
threats were well identified in the latest management plan for
NHNP, and general and specific goals were established for both
the short and the long term. This study provides new information
that stakeholders in NHNP could take into account to better
assess the conditions and changes occurring in this PA and act
accordingly. NHNP is an emblematic PA at the national and
international level, and its successful management would benefit
not only the natural ecosystems represented in the area but also
people who are directly or indirectly connected to this PA.
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Innovative and beneficial science stems from diverse teams and authorships that are
inclusive of many perspectives. In this paper, we explore the status of inclusivity in remote
sensing academic publishing, using an audit of peer-reviewed journal editorial board
composition. Our findings demonstrate diversity deficiency in gender and country of
residence, limiting themajority of editors to men residing in four countries. We also examine
the many challenges underrepresented communities within our field face, such as implicit
bias, harsher reviews, and fewer citations. We assert that in the field of remote sensing, the
gatekeepers are not representative of the global society and this lack of representation
restricts what research is valued and published, and ultimately who becomes successful.
We present an action plan to help make the field of remote sensing more diverse and
inclusive and urge every individual to consider their role as editor, author, reviewer, or
reader. We believe that each of us have a choice to continue to align with a journal/
institution/society that is representative of the dynamic state of our field and its people,
ensuring that no one is left behind while discovering all the fascinating possibilities in
remote sensing.

Keywords: equity, diversity, inclusion, gatekeepers, editorial boards, bias, women in STEM, remote sensing

1 SETTING THE SCENE

The rules of any game determine the winners and losers, whether it is in sports or academia. In
academia, the definition of success includes who is talented, who is competent, who is brilliant, what
research has potential, and what methods are innovative. However, this very definition of success has
been and continues to be determined by a group incongruous with the demographic depth of the
field. Yet rules defining success do not have to be static. Science, just like nature, is dynamic andmust
evolve, to provide the greatest opportunity for advancement. It is, therefore, time to examine the
various stages in academic publishing to make themmore inclusive and representative of the present
state of our dynamic planet.

Perhaps the ultimate determinant of a journal´s success is its financial bottom line, and its ability
to stay ‘in business’ and sustain a high impact factor. Contributions from editors, authors, reviewers,
and the readership drives any journal as a business. These stakeholder groups are not mutually
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exclusive, and many people act in two or more of these roles at
any given time. If large numbers of individuals within any of these
groups disengage, the journal’s ‘success’ may be in jeopardy. It is
therefore beholden on a journal to keep its mission, publications,
and management in line with stakeholders’ desires, demands, or
values. The stakeholders therefore have the power to shape the
success of the journal. Including a diverse set of voices from a
variety of communities and geographical locations into these
stakeholder groups compels the journal to be representative of the
current state of global research.

However, not all stakeholders hold equal power and weight in
shaping the vision and trajectory of a journal. The editors - and to
a lesser extent reviewers - act as gatekeepers, deciding which
research is worthy of publication (Demeter, 2020; Schurr et al.,
2020). Previous studies have shown marginalisation in research
gatekeeping positions work against promoting research by
women, especially women of colour (Davies S. et al., 2021;
Davies S. W. et al., 2021) and a phenomenon known as the
“Matilda Effect” where women’s achievements are attributed to
men. This Effect acknowledges and contributes to the gender gap
in recognition, award winning, tenure, and citations for women,
that clearly exists in scientific publishing (Lerchenmueller and
Sorenson, 2018; Lincoln et al., 2012; Weisshaar, 2017). While
these articles only studied the marginalisation of women, implicit
bias and discrimination exist for all underrepresented genders,
communities, and groups in science, technology, engineering,
and mathematics (STEM) at every career stage (Larivière et al.,
2013; Jones et al., 2014; Silbiger and Stubler, 2019; Chaudhary and
Berhe, 2020; Huang et al., 2020; Berhe et al., 2022).

As scientists in the field of remote sensing, we must ask
ourselves–Are the present publishing gatekeepers representative
of the entire scientific community? We assert that in the field of
remote sensing, the gatekeepers are not representative of the global
society and that this lack of representation restricts what research is
valued and published, and ultimately who becomes successful.

2 STATUS OF DIVERSITY IN REMOTE
SENSING ACADEMIC PUBLISHING

To demonstrate the diversity deficiency in our discipline, we
conducted a baseline audit of the editorial boards of 30 well
-established peer reviewed journals within the remote sensing
discipline based on Schurr et al. (2020), over the period
September–November 2020. It was necessary to create our
own editorial board audit for baseline demographics
characteristics because this information was not easily
accessible for a majority of the top remote sensing journals.
Our findings indicate eight out of the top ten remote sensing
journals (by impact factor) have editorial boards with more than
80% men (Figure 1). Three (10%) of the audited journals do not
have any women on their editorial boards, and the largest
percentage of women on any editorial board was just 40%. In
fact, 84% of the journals had fewer than 20% women on their
board. Our findings reinforce previous analyses in other scientific
fields that there are fewer women in scientific journal editorial
roles (Chawla 2018; Feeney et al., 2019). We also note that in a
recent study of leading geoscience journals, women were
identified as first author in 13–30% of publications (Pico et al.,
2020), which is consistent with broader analyses of scientific
authorship (Larivière et al., 2013; West et al., 2013). First author
publications and editorial board roles seem to reflect each other in
other fields (Dhanani and Jones, 2017; Helmer et al., 2017). As we
advocate for diversifying editorial boards, we believe this will also
result in more diverse authorship and more inclusive publication
processes (Cho et al., 2014; Lerback and Hanson, 2017; Cheng
et al., 2021), leaving no one behind.

Further documenting the gatekeeping countries, based on the
affiliation of the editorial board members, we report that the
majority of editors reside within just four countries. The
United States (27%), China (11%), Italy (8%), and Germany
(6%) represent 52% of the residence countries of editorial

FIGURE 1 | Proportion of women on the editorial boards of 30 peer-reviewed journals in the remote sensing discipline audited as part of this article. The four
journals with the highest proportion of women on their boards are also shown.
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board members (Figure 2). While we bring to light gender and
country of residence, these are not the only aspects of gatekeeping
needing attention. In particular, there is a lack of survey data of
other self-identification characteristics, like race, in the field of
remote sensing. We suggest that future analyses could conduct
direct surveys of editorial board members to gather stakeholder
information and work towards reducing other disparities in the
field of remote sensing. While we treat gender and country of
residence as separate metrics, we acknowledge the complexity of
privilege, exclusion, and intersectionality associated with these
identities (e.g., Schurr et al., 2020), which could be examined in
future survey analyses.

The lack of representation and diversity at this evolved stage of
scientific publishing in fields like remote sensing restricts science
from reaching its full potential (Murray et al., 2019; Schurr et al.,
2020). Conversely, developing more gender and geographically
diverse editorial boards will provide the opportunity to connect
with research from around the globe, thereby aiding in
considering global opinions and voices (Cheng et al., 2021).
This will better represent different global, regional, or local
communities and interests, and ultimately lead to superior
science -based solutions to the world’s most pressing problems
like climate change or loss of diversity. By acknowledging and
tackling implicit biases, we will benefit from more fair and
balanced conversations and debates about what we as a
remote sensing community value in our field.

The history of bias in remote sensing science is a two-fold
problem. Like many other disciplines, remote sensing has

historically been driven and shaped by the most dominant
voices who hold positions of power, many of whom have
acted as gatekeepers when they have consciously or
unconsciously chosen to not recognise or act to rectify the
implicit bias and lack of representation in the field. These
dominant voices include the most frequently published
authors, the members of technical science teams, and the
most-funded principal investigators. Further, the remote
sensing field has fewer marginalised voices in positions of
power, and many describe feeling invisible or feel like their
voices go unnoticed (Crowley, 2019; Adams et al., 2020;
Crowley, 2020; Crowley et al., 2021a; Crowley et al., 2021b;
Stéphenne et al., 2021; Vizireanu et al., 2021). It is the
responsibility of every individual in our remote sensing
community to proactively make our field’s editorial boards
more diverse and inclusive, but it is the duty of gatekeepers to
act responsibly and promote underrepresented and diverse voices
(Ryan 2022).

Gatekeeping occurs at every stage of science, and not just on
editorial boards. Our remote sensing community consists of all of
our combined excellence, with many gears that fit together and
depend on one another. The success of a scientist depends on
their host institution, faculties, co-investigators, affiliations,
citations, number of publications, and other factors (van den
Besselaar and Sandström, 2017; Davies S. et al., 2021; Davies S. W.
et al., 2021). Our field is not exempt from implicit and explicit
bias. Some of the authors on this article have suffered implicit
bias, especially when submitting manuscripts to technical and

FIGURE 2 | Global distribution of editorial board members (n = 1055) within 30 peer reviewed journals in the remote sensing discipline. (A) Count of editors per
country (including Special Administrative Regions). (B) World cartogram (Gastner et al., 2018) weighted by number of editors demonstrating the skew towards the
United States, China, Italy, and Germany with negligible contribution from South America and Africa. Note that regions identified in yellow each have between two and
eight editors identified, while those in green have one editor.
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methods -oriented journals that have a larger gender gap, not
only in the editorial or review boards, but also in the number of
manuscripts submitted by first authors that are men. Our
experience is that as authors who identify as women, we gain
lesser visibility and increased risk due to biases from editors,
reviewers, and readers throughout the publication process in
many remote sensing journals, similar to what has been found
in the field of ecology (Fox et al., 2016; Fox and Paine, 2019).
Further, authors with non-western presenting names from
underrepresented communities receive harsher reviews and
fewer citations (Fejes and Nylander, 2017; Silbiger and Stubler,
2019). In addition to men self-citing their papers more than
women (King et al., 2017), women’s research is less likely to be
cited by others, their ideas are more likely to be attributed to men,
and women’s solo-authored research takes twice as long to move
through the review process (Dion et al., 2018). In a world where
metrics and h-indices define the success of a scientist (Davies S.
et al., 2021; Davies S. W. et al., 2021; Maas et al., 2021), this
implicit bias against women and other minorities hinders their
career forcing many to leave science (Bostwick and Weinberg,
2022; Huang et al., 2020; Larivière et al., 2013). The loss of
scientists and their ideas has detrimental impacts on potential
scientific innovations.

3 IT’S TIME TO DO BETTER

To reduce negative impacts incurred from bias, it is not enough
for any organisation to claim to be ‘champions of diversity and
inclusion’, without demonstrating actions towards achieving a
goal. It takes active allies to put the work in turning the ship
towards more diversity and inclusivity. To increase
representation, institutions must actively increase visibility of
their scientists, researchers, and authors from underrepresented
and marginalised groups and communities. These could be by
using social media platforms and professional networks such as
the Ladies of Landsat, Sisters of SAR, Women in Copernicus,
IEEE GRSS IDEA, Women+ in Geospatial, and other networks
(Crowley et al., 2021a; Crowley et al., 2021b; Riedler et al., 2021;
Stéphenne et al., 2021; Vizireanu et al., 2021) that aim to promote
and support women in remote sensing. Actively nominating
women for grants/awards, or by creating ‘special issues’ within
a journal to amplify their work can also help to promote and
support their research (Amon 2017; Van Oosten et al., 2017;
Joyce et al., 2021).

Within the remote sensing community, we must assign roles
with decision-making powers to researchers and scientists from
previously underrepresented groups, actively and consciously.
This must not be tokenistic, instead including them on editorial
boards, in senior management and positions with power to make
change. Focusing solely on empowerment programs does not
change the system, because underrepresented groups do not need
‘fixing’ and rarely lead such programmes. They have the skills and
knowledge but may lack the resources that enable visibility. They
need to be heard, and we need to listen.

We suggest an action plan to change this, specifically within
our remote sensing discipline.

1) Collect diversity data to learn and change: Publishers,
professional societies, institutions, and individuals need to
actively collect baseline demographic data over time and
assess the extent of gender, racial, regional, and
institutional bias and their impacts on remote sensing
scientists (e.g. van Veelen et al., 2019) to enable change.

2) Journals and gatekeepers must act responsibly: Gatekeepers
and journals should actively make their editorial and review
boards more representative and inclusive, and with modesty
enable regional experts to evaluate what is relevant work in
specific areas. These efforts can be achieved through policies
that support more diverse editorial and review boards (Cho
et al., 2014; Cheng et al., 2021; Maas et al., 2021).

3) Editorial boards must strive for internal diversity: This will
drive change from the top, create visible pathways for junior
academics, and encourage diverse perspectives and expertise
in areas sought for special issue publications (Cheng et al.,
2021; Cho et al., 2014; Emerald Publishing, n.d.; Lerback and
Hanson, 2017; Squazzoni et al., 2021).

4) Double blind reviews or fully open reviewing to tackle bias and
harsh reviews: Given the bias observed towards accepting
papers from authors considered ‘similar’ to the editors and
reviewers (Helmer et al., 2017; Murray et al., 2019), we should
investigate more widespread double blind reviews (Darling
2015), or alternatively fully open reviews where all are
accountable for their words and decisions. We must also
continue to provide clear guidelines for reviewers to
produce constructive and fair reviews to avoid negative
impacts on authors from underrepresented groups (Silbiger
and Stubler, 2019).

5) Actively promote work undertaken by underrepresented
or marginalised remote sensing scientists: This might
include promoting the work and authors once
published, but also in actively seeking out/inviting work
from these authors in the first place (Maas et al., 2021) and
offering language or financial support where required. We
also recognise that there are further accessibility challenges
regarding publishing fees and gaining access to the articles
once published. Open access publications help to remove
the barrier of access to publications, and initiatives
supporting fee waivers for minoritised groups help to
provide financial support by reducing or removing
article-processing charges (Valenzuela-Toro and Viglino,
2021; Ross-Hellauer, 2022).

6) Accept and encourage ideas and manuscripts that are
multidisciplinary, transdisciplinary, and different from
the established norm: By promoting and inviting these
types of articles in remote sensing and special
collections, especially from minoritised scientists, we can
contribute as a field towards reaching global targets such as
the Sustainable Development Goals and the Sendai
Framework.

7) Ensure that local communities/institutions are credited
appropriately and benefit from “successful publications”
conducted in their geographic regions: This includes
collaborating with local representatives and organizations
and recognizing their contributions to the remote sensing
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research to avoid “helicopter” science and increase the impact
of remote sensing articles (Abbasi and Jaafari,2013).

Systemic change will not happen overnight. However, our audit
shows that the remote sensing literature is driven by and largely
contains the voice of primarily men from a minority of countries.
Can we afford to let only a narrow scientific community make a
majority of the editorial decisions in the field of remote sensing? As
a result, is the field of remote sensing limiting the inclusion of
remote sensing scientists from the rest of the world (Maas et al.,
2021)? It is the responsibility of the privileged, including
established institutions, journals, and scientists to help create
the platform and spaces for underrepresented and marginalised
groups and communities to be in line with the motto of Agenda
2030 of “leaving no one behind”. Therefore, more journals must
update their editorial boards and policies. Creating diverse and
inclusive organisations includes more than doing what is right for
individuals and underrepresented groups: it is vital that we make
large-scale structural changes to the system. The data clearly
demonstrate that we see more innovative and beneficial science
that stems from diverse teams and authorships that are inclusive of
many perspectives (Abbasi and Jaafari, 2013; Freeman and Huang,
2014; AlShebli et al., 2018). This is a change we must embrace to
excel our discipline.

4 OUR CALL TO ACTION

It is difficult to translate individual desire or demand into
systemic change, particularly at a discipline level. That is
where the power of the collective is increasingly important.
We can choose to continue to ‘hold our stake’ in journals
whose mission aligns with our own values, and advocate for
others to do so with us. As a community, we can strive to create

enough noise in hope that it will 1 day resonate loud enough to
be heard.

As an individual, consider your role as an editor, author,
reviewer, or reader. Is the journal you select or represent
demonstrating their worth as an active ally in creating a
diverse and inclusive remote sensing discipline? You have the
choice to continue aligning with that journal, or you can seek
alternatives and be the change you wish to see, leaving no one
behind.

As the all-women team of co-authors on this paper, we invite
all active allies to join us for a more inclusive future in our
discipline.
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Freshwater harmful algal blooms (HABs), caused mostly by toxic cyanobacteria,

produce a range of cyanotoxins that threaten the health of humans and

domestic animals. Climate conditions and anthropogenic influences such as

agricultural run-off can alter the onset and intensity of HABs. Little is known

about the distribution and spread of freshwater HABs. Current sampling

protocols in some lakes involve teams of researchers that collect samples by

hand from a boat and/or from the shoreline. Water samples can be collected

from the surface, from discrete-depth collections, and/or from depth-

integrated intervals. These collections are often restricted to certain months

of the year, and generally are only performed at a limited number of collection

sites. In lakes with active HABs, surface samples are generally sufficient for

HAB water quality assessments. We used a unique DrOne Water Sampling
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SystEm (DOWSE) to collect water samples from the surface of three different

HABs in Ohio (Grand Lake St Marys, GLSM and Lake Erie) and Virginia (Lake

Anna), United States in 2019. The DOWSE consisted of a 3D-printed sampling

device tethered to a drone (uncrewed aerial system, or UAS), and was used to

collect surface water samples at different distances (10–100m) from the shore

or from an anchored boat. One hundred and eighty water samples (40 at GLSM,

20 at Lake Erie, and 120 at Lake Anna) were collected and analyzed from

18 drone flights. Our methods included testing for cyanotoxins, phycocyanin,

and nutrients from surfacewater samples. Mean concentrations ofmicrocystins

(MCs) in drone water samples were 15.00, 1.92, and 0.02 ppb for GLSM, Lake

Erie, and Lake Anna, respectively. Lake Anna had low levels of anatoxin in nearly

all (111/120) of the drone water samples. Mean concentrations of phycocyanin

in drone water samples were 687, 38, and 62 ppb for GLSM, Lake Erie, and Lake

Anna, respectively. High levels of total phosphorus were observed in the drone

water samples fromGLSM (mean of 0.34 mg/L) and Lake Erie (mean of 0.12 mg/

L). Lake Anna had the highest variability of total phosphorus with concentrations

that ranged from 0.01 mg/L to 0.21 mg/L, with a mean of 0.06 mg/L. Nitrate

levels varied greatly across sites, inverse with bloom biomass, ranging from

below detection to 3.64 mg/L, with highestmean values in Lake Erie followed by

GLSM and Lake Anna, respectively. Drones offer a rapid, targeted collection of

water samples from virtually anywhere on a lake with an active HAB without the

need for a boat which can disturb the surrounding water. Drones are, however,

limited in their ability to operate during inclement weather such as rain and

heavy winds. Collectively, our results highlight numerous opportunities for

drone-based water sampling technologies to track, predict, and respond to

HABs in the future.

KEYWORDS

drone (uncrewed/unmanned aerial vehicle), cyanobacteria, cyanotoxin, phycocyanin,
freshwater (health/environment), harmful algal bloom (HAB), water samplingmethods

Introduction

Harmful algal blooms (HABs), caused mostly by toxic

cyanobacteria, have been observed around the world (Anderson

et al., 2002). Different HAB-associated cyanobacteria produce a

range of toxins called cyanotoxins that impact human health,

including microcystins (MCs), saxitoxin (STX), anatoxin-a

(ANA), and cylindrospermopsin (CYN) (Zurawell et al., 2005;

Du et al., 2019; Ballot et al., 2020). HABs appear to be increasing in

prevalence and severity around the world (Anderson et al., 2002;

Schmale et al., 2019; Wells et al., 2020), and new information is

necessary to understand the fate and transport of HABs and their

associated toxins (Stumpf et al., 2016; Topp et al., 2020; Ross et al.,

2022). Research is needed to understand threats, manage risks,

mitigate incidents, develop capabilities, and strengthen

collaborations for water quality (Topp et al., 2020). This

information is critical for determining time-sensitive health

advisories for drinking water and recreation in water bodies

impacted by HABs (US EPA, 2016; Oregon Health Authority,

2019).

The first known report of cyanotoxins was documented in

Australia in 1878. In the United States, from 1882 to 1946, five

states reported an occurrence of cyanotoxins [MN, CO, MT, IA,

and ND (Yoo, 1995)]. These numbers have increased by orders of

magnitude in recent years, leading to HABs being increasingly

characterized as one of the largest threats to food and water

resources in the future (Anderson, 2012; Graham, 2016). In 2014,

the municipal water supply in Toledo, Ohio was contaminated

with MC levels above the US EPA adult health advisory limit for

drinking and resulted in non-potable water for 400,000 people

(Jetoo et al., 2015; Qian et al., 2015). The maximum

recommended recreational use value (RUV) for canine

exposure is 0.2 ppb MC (CFR, 2022) (Table 1). The

United States Environmental Protection Agency (US EPA) 10-

day health advisory limit for infants is 0.3 ppb MC, and for

6 years old to adult is 1.6 ppb (MC) for drinking water (US EPA,

2019) (Table 1). The US EPA recommended RUV limits for MC

and CYN toxin in recreational waters is 8 and 15 ppb,

respectively (US EPA, 2016; US EPA, 2019).

Two of the lakes in our study, GLSM and Lake Erie in Ohio,

have a long history of HABs. One of the lakes, Lake Anna in

Virginia, has only recently experienced a HAB, offering a unique

look at a freshwater lake near a tipping point. GLSM experiences

a HAB for most of the year and is nature’s example of an extreme
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HAB environment. GLSM is classified as a hypereutrophic

system and has been designated as a distressed watershed

since 2011 (Jacquemin et al., 2018). The West section of Lake

Erie (including the southern basin) has been classified as

Eutrophic on the trophic state index (TSI) scale since 1999

(Lake Erie Forage Task Group, 2020). Lake Anna is a recent

location of concern with the potential to experience a seasonal

HAB. Forty-eight water samples were collected in Lake Anna in

2018 by the Virginia Department of Environmental Quality

(DEQ) and potentially toxigenic cyanobacterial cell counts

were recorded by the Virginia Department of Health (VDH).

Twenty-seven percent (13/48) of these samples had potentially

toxigenic cyanobacteria counts above 100,000 (personal

communication with VDH, 2021). All three of these lakes

serve as unique locations that vary in their temporal and

spatial distribution of HABs.

Nutrient runoff from agricultural and industrial sites that has

been linked to the overall health of aquatic environments

(Fraterrigo and Downing, 2008; Anderson, 2012). An increase

in phosphorus content could push a population of cyanobacteria

to be nitrogen-limited and shift toxin production from one

congener of microcystin to another (MC-RR to MC-LR)

(Maliaka et al., 2021). MC-LR is ten-fold more toxic than

MC-RR (Zurawell et al., 2005). The TSI for lakes was

developed to categorize lakes on a scale of 0–100 with each

multiple of 10 representing a doubling of biomass (Carlson,

1977). TSI can be used to categorize lakes into oligotrophic

(TSI 0–40), mesotrophic (TSI 41–50) eutrophic (TSI 51–60),

and hypereutrophic (TSI 61–100) (Carlson, 1977) (Table 1).

Oligotrophic lakes have a low level of nutrients and high level

of water clarity, while eutrophic lakes have high nutrient levels,

and a low level of water clarity. Hypereutrophic lakes have an

extreme overload of nutrients, usually greater than 0.1 mg/L of

phosphorus and 40 μg/L of chlorophyll. Lakes can transition

between trophic states (Scheffer et al., 1993).

Collection guidelines for freshwater lakes and reservoirs

differ based on the research objective. Reconnaissance studies

usually address the presence of cyanobacteria, toxins, and

compounds associated with taste and smell (Graham et al.,

2008). Interpretive studies are generally long-term studies that

assess environmental factors that affect the occurrence of

cyanotoxins. Depth-integrated studies are continuous or

discontinuous with equal intervals of collections. The potential

location and vertical distribution of cyanobacteria in the water

column has been described as having six general configurations

in lakes and reservoirs (Graham et al., 2008). Open water

accumulation, surface scum, and photic zone distributions

were shown to have cyanobacteria present at the surface and

evenly distributed below the surface at least halfway to the lake

bottom (Graham et al., 2008). Discoloration is usually obvious in

such locations (blue-green, or brown, or red), and filaments or

large colonies may be visible at or near the surface. Cyanobacteria

sample collections for recreational areas are typically collected as

surface samples or integrated photic zone samples. Our study was

a reconnaissance type study carried out in three recreational

freshwater lakes that had a history of HABs, visible discoloration

TABLE 1 Water quality index table with nomenclature to denote water quality based on concentration metrics for microcystin (MC), phycocyanin
(PC), and phosphorus. This classification table is an expansion of the Trophic State Index (TSI) table in Carlson (Carlson 1977) that defined a range
of total phosphorus concentration in freshwater lakes as oligotrophic, mesotrophic, eutrophic, and hypereutrophic (healthy to unhealthy). MC and
PC concentration ranges have been defined here to create a more inclusive water quality index. The color bands denote water quality conditions
relative to toxin load. Microcystin (MC) toxin concentration value ranges from 0.0–0.2 ppb are classified as Dog recreational use value (Dog RUV)
(blue), 0.21–1.60 ppb are classified as Adult Drinking health advisory (HA) (green), 1.61–8 ppb are classified as below toxin RUV (yellow),
and >8ppb is Toxin >8 ppb (orange) for MC. (EPA 820-R-15-100 (2015), EPA 822-R-10-001 (2019), Oregon Health Authority (2019). PC
concentration ranges of 0–1.9 ppb (blue), 2.0–4.9 ppb (green), 5.0–49.4 ppb (yellow), and 49.41–800 ppb (orange) are denoted as Alert level 1,
Alert level 2, Alert level 3, and Action level, respectively (Izydorczyk et al., 2009; Cotterill et al., 2019).

Microcystin (ppb) Advisory level Phycocyanin (ppb) Advisory level Total Phosphorus (mg/L) Trophic state TSI

0.00 No advisory 0.0 Alert level 1 0.00075 Oligotrophic 0

0.10 Below dog RUV (MC) 1.9 Alert level 1 0.0015 Oligotrophic 10

0.20 Dog RUV (MC) 1.9 Alert level 1 0.003 Oligotrophic 20

0.20 Dog RUV (MC) 1.9 Alert level 1 0.006 Oligotrophic 30

0.20 Dog RUV (MC) 1.9 Alert level 1 0.012 Oligotrophic 40

0.21 Above dog RUV (MC) 2.0 Alert level 2 0.017 Mesotrophic 45

0.30 Infant drinking HA (MC) 2.0 Alert level 2 0.017 Mesotrophic 45

1.60 Adult drinking HA (MC) 4.9 Alert level 2 0.024 Mesotrophic 50

1.61 Below RUV (MC) 5.0 Alert level 3 0.030 Eutrophic 53

8.00 Below RUV (MC) 49.4 Alert level 3 0.048 Eutrophic 60

8.10 Toxin >8 ppb (MC) 50 Action level 0.096 Hypereutrophic 70

15 Toxin >8 ppb (MC) 75 Action level 0.192 Hypereutrophic 80

18 Toxin >8 ppb (MC) 150 Action level 0.384 Hypereutrophic 90

21 Toxin >8 ppb (MC) 800 Action level 0.768 Hypereutrophic 100
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at the time of sampling, with occasional scum or large clumps of

cells near the shoreline.

Within the last decade, a variety of remote sensing tools have

been used to study freshwater HABs. Stumpf et al. (2016) used

satellite images to map distributions of cyanobacteria and predict

MCs. The relationship between MC and cyanobacterial pigments

was analyzed using data from three different lake studies.

Derivative algorithms were determined to be the most robust

predictors of cyanotoxins. Mishra et al. (2021) took satellite-

based measurements one step further and compared detection of

cyanobacteria to MC data. Data were collected from 30 different

lakes in 11 states, and the authors showed that their algorithm

could be used as a pre-screening tool to identify areas most likely

to experience a HAB. A variety of measurements used in multiple

linear regression models were accurate above 80% of the time

when site-specific locations were tested in Ohio (Francy et al.,

2020). Accuracy above 90% was achieved when continuous

monitoring data was used in the models to forecast toxin

levels over the action threshold. Correlations between pigment

measurements (e.g., phycocyanin, PC and Chl-a) and

cyanotoxins are difficult to predict, and studies thus far have

focused on specific locations with historic water quality data that

extends over several seasons (or years). Recently, drone imagery

was used to detect and characterize rhodamine dye (a surrogate

HAB) in the ocean (Filippi et al., 2021). This method could find

use in freshwater lakes to pinpoint areas of sample collection that

would be most useful in determining water quality metrics in

lakes with a history of HABs.

Traditional water sampling methods collected by hand are

labor intensive, arduous, and require the use of various pump

technologies in conjunction with water sampling devices (e.g.,

Wilde et al., 1998). For example, inertial, peristaltic, pneumatic,

and bladder pumps have been used and some of these require

compressors on site to run these pumps. The United States

Geological Survey (USGS) has used devices such as the

Kemmerer sampler, the Van Dorn, and a double check-valve

bailer for water sampling (Wilde et al., 1998). Primary

disadvantages of these samplers are the care needed to

prevent cross-contamination between samples, time needed to

implement these monitoring protocols, often narrow spatial

coverage of possible sampling, and requisite personnel

expertise to maintain sampling consistency. Thus, new tools

and accessible technologies with quick turn-around times are

needed to understand the fate and transport of HABs and their

associated toxins. Recent advances in uncrewed robotic systems

offer one solution to many of these problems and have allowed

researchers to conduct environmental research in aquatic

systems at an unprecedented level of detail (Powers et al.,

2018a; Powers et al. 2018b; Powers et al., 2018c; Ribas-Ribas

et al., 2019). Aerial and aquatic robots have been used to collect

and characterize microorganisms (Powers et al., 2018b) and

detect and track fluorescent dyes (surrogates for hazardous

agents) in lakes (Powers et al., 2018a) and the ocean (Filippi

et al., 2021). Ore et al. (2015) developed a pump-driven drone

water sampling platform for water quality measurements in a

variety of aquatic environments. Benson et al. (Benson et al.,

2019) used the DrOne Water Sampling SystEm (DOWSE) to

collect water and study microorganisms from eight remote

Alpine lakes in Austria. Drones have also been used to collect

samples from hazardous pit lake environments (Castendyk et al.,

2020). Koparan et al. (2020) developed adaptive water sampling

approaches for bathymetry and turbidity maps at Lake Issaquena,

SC. In recent years, water quality sampling equipment has

become easier to manage with faster sampling times and

autonomous systems have enabled the collection of

environmental samples in remote or dangerous locations. The

ability of the DOWSE to collect numerous samples at different

distances from shore or boat and the quick turnaround time for

preliminary water quality data highlight the potential for

predicting and tracking HABs to inform citizens and establish

possible mitigation protocols.

The overall goal of this work was to use drone-based water

sampling methods to characterize cyanotoxins, phycocyanin,

and nutrients in three freshwater lakes in the United States

that had active HABs. We chose water quality metrics with

specific measurements to provide indicators for human and

animal health (cyanotoxins), the presence of cyanobacteria

(phycocyanin), and the extent of anthropogenic influence

(nutrients). This study was specifically designed to quickly

gather small-volume samples and produce a rapid

turnaround of measurable water quality using a small set of

metrics. The specific objectives of our work were to 1) collect

surface water samples using a drone-based water collection

system (DOWSE) at different distances (10–100 m) from the

shore and from an anchored boat in GLSM, Lake Erie, and Lake

Anna and 2) characterize cyanotoxins, phycocyanin, and

nutrients in drone water samples from each of the lakes

while establishing improved understanding of the

relationships among these parameters. Our work

demonstrates the potential for drone-based water sampling

technologies to be used by public health and water quality

experts to provide critical and timely information for

regulatory decisions and health advisories.

Materials and methods

Lake collections using the DrOne water
sampling SystEm

The DOWSE (Benson et al., 2019) was used to collect water

samples from three freshwater lakes with active HABs. Briefly, a

Phantom 4 quadcopter (DJI, Shenzhen, China) outfitted with a

carbon fiber mount on the landing gear was used to gather water

samples by attaching the 3D printed water sampler apparatus to

the quadcopter with a 4.6 m tether line (Figure 1). The water
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sampler was lowered to the surface until the sample tube filled

with water. Once the water sample was at the surface, a picture

was taken from the drone showing the sampler in the water.

Each drone image contains metadata that ultimately allows

the precise location of the sampler in the lake to be determined

(Filippi et al., 2021). This method was repeated for each

sampling point along a 100-m transect (10–100 m) [e.g.,

transects as highlighted in (Benson et al., 2019)] from land

or from an anchored boat until 10 samples were collected for

each flight. The average time span between the first (10 m) and

last (100 m) collection along the transect was 12 min. Ten

water samples spaced 10 m apart from each other, and

collected in a short time frame, allowed for variability of

water quality metrics to be compared across a 100 m

transect. A freshly opened sterile tube was inserted into the

water sampling device immediately before each collection. As

each sample was returned via the drone tether (to shore or

boat), the filled sample tube was replaced with a freshly

opened sterile collection tube while the drone hovered in

place to allow for sample tubes to be switched quickly.

Following the ten sample collections for each flight, a 50 ml

control tube was filled with sterile water and flown out to the

furthest collection point (100 m from the shore or boat), held

at an altitude greater than 4.6 m above the lake surface, and

then returned via the tether to be capped and stored with each

flight sample set of ten tubes. To avoid potential cross

contamination among lakes, a new tether was used for each

of the lakes and the sampling devices were soaked in a dilute

solution of sodium hypochlorite. Water samples were held on

ice in a cooler in the dark until all samples were collected for

each sampling day.

Lake study sites

Field experiments were conducted at GLSM, Celina, OH,

Lake Erie at Maumee Bay OH, and Lake Anna, Mineral, VA

(Figure 2). Seasonal HAB conditions persist at both GLSM

and Lake Erie during August. Lake Anna is a recent concern

for HABs so August and September provided two temporal

measurements when potential toxins could be measured

toward the end of the season when cyanobacterial

accumulation and or cell death could provide a scenario

of increased toxin production at levels that could be

detected, especially in a lake that has recently been

identified as a potential HAB concern. Samples were

collected from GLSM (August 5–6), Lake Erie (August 8),

and Lake Anna (August 23, and September 10) during the

2019 HAB season. GLSM covers 13,500 acres and is a

shallow (5–7 feet in depth) man-made reservoir lake

constructed from 1837 to 1845. The Celina Water Plant

began testing intake water from GLSM for MC in 2009 and

continues to test weekly for the presence of toxins as part of

the water purification process. Lake Erie is the 11th largest

lake globally and covers over six million acres. For over

20 years, Lake Erie has been plagued with HABs that

produce MC and in 2014 the Toledo water crisis left half

a million people without safe water. Lake Anna is another

inland reservoir lake that covers 13,000 acres. The lake

bottom was cleared, and the North Anna River dam was

completed in 1972. Cyanobacterial cell counts of potentially

toxigenic taxa have been reported as above recreational

advisory thresholds at Lake Anna since 2018

(>100,000 cells/ml). These freshwater lakes were sampled

in field year 2019 and are shown in Figure 2. Freshwater

samples were collected from a single location at GLSM and

Lake Erie. The GPS location in decimal degrees (DD) for

GLSM (40.544873, −84.510843) is shown with a green map

marker and for Lake Erie (41.702472, −83.463598) with a

red marker. Collections at Lake Anna (Lake Anna) were

carried out at 12 unique locations (Figure 2). GPS locations

for Lake Anna are listed in Table 2. These locations were

selected based on the predictable incidence of annually

occurring HABs (GLSM, Lake Erie) and/or high

cyanobacteria cell counts, >100,000 cells/ml of potentially

toxigenic species, or >40,000 cells/ml of Microcystis species

(Lake Anna).

FIGURE 1
The DrOne Water Sampling SystEm (DOWSE) returning a
water sample collected in 2019 at GLSM in Celina, OH (A). The
DOWSE collects water samples at the surface (B), and a drone
returns the filled sample tube in the sampler on a 4.6 m nylon
tether (C).
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Handling of water samples

Water samples were aliquoted on the day of collection. Tubes

were labeled for toxin analysis and nutrient determination for all

flight samples (Figure 3). Tubes for downstream toxin analysis

were frozen at −20°C. The remaining sample tubes were held at

4°C prior to processing.

Cyanotoxin analysis with LC-MS/MS

Water samples from the three lakes were analyzed for the

presence of putative cyanotoxins (Table 3) with the most

abundant toxins in each lake shown in Figure 4. Toxin

analysis was performed at the Lumigen Instrument Center,

Wayne State University, Detroit, MI. The 15 cyanotoxins

analyzed include 12 microcystins (MCs), nodularin, anatoxin-

a, and cylindrospermopsin. The internal standard C2D5 MC-LR*

was run with the suite of MC toxins and nodularin, whereas, two

internal standards, L-Phenylalanine-D5** and Uracil-D4** were

analyzed in the anatoxin-a and cylindrospermopsin suite. Sample

aliquots of 5 ml were subjected to three freeze-thaw cycles and

analyzed by LC-MS/MS with controls to determine toxin

concentrations. The Lumigen Instrument Center tested for

cyanotoxins using two methods. One method included 12 MC

congeners and nodularin (NOD), and the second method

cylindrospermopsin and anatoxin-A.

The detection of MCs and nodularin using LC-MS/MS was

completed using the method described in Birbeck et al. (2019).

Briefly, samples were analyzed by an online concentration

method using a Thermo Scientific TSQ Altis™ triple

quadrupole mass spectrometer (Thermo Scientific, Waltham,

MA, United States) with an EQuan MAX Plus™ system. An

injection volume of 1 ml of sample was injected onto the loading

column (Thermo Scientific Hypersil GOLD aQ 2.1 × 20 mm,

12 µm particle size) using an HTC PAL autosampler (CTC

Analytics, Zwingen, Switzerland). Analytes were then

separated on a Thermo Accucore aQ, 50 × 2.1 mm, 2.6 µm

particle size column. Mass spectrometry analysis was

performed using an electrospray ionization source in positive

ion mode.

The detection of anatoxin-a and cylindrospermopsin were

analyzed using a Thermo Scientific TSQAltis™ triple quadrupole

mass spectrometer (Thermo Scientific, Waltham, MA,

FIGURE 2
Three freshwater lakes with known HABs were sampled in the US in 2019. Locations are marked as follows: Grand Lake Saint Mary’s (GLSM),
Celina, OH (40.544873, −84.510843), Lake Erie at Maumee Bay, OH (41.702472, −83.463598), and Lake Anna, Mineral, VA (multiple sampling
locations, with 38.10642, −77.84076 designating the location near the “splits” at the State Park). GLSM, was sampled on August 5–6, Lake Erie was
sampled on August 8, and Lake Anna was sampled on August 23 and September 10.
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United States) with an EQuanMAX Plus™ system. Samples were

separated on a Hypersil GOLD™ aQ C18 columns, 2.1 ×

100 mm, 1.9 µm. Mobile phases for the step gradient were (A)

100 mM acetic acid in LC-MS grade water and (B) 100 mM acetic

acid in LC-MS grade methanol. The flow rate was set at 0.4 ml/

min and gradient started at 0% B from 0 to 0.1 min, stepped to

10% B from 0.1 to 2.7 min, then stepped to 95% B from 2.7 to

4.7 min. At 4.71 min the gradient was stepped back down to 0% B

until 7.5 min for re-equilibration. Sample injection volume was

10 μl, and the column temperature was held constant at 30°C. All

analysis was in positive ion mode, and the mass spectrometer

settings were as follows: positive ion voltage at 3500 V, sheath gas

TABLE 2Details for each of the drone flights including date of collection, lake (Grand Lake StMary’s, Erie, or Anna), time (24-h), GPS location of launch
site on ground or from boat, Nitrate-N (mg/L), total phosphorus (mg/L), and N/P ratio.

Flight Date Est Lake GPS location Mean NO3-N
mg/L ± SE

Mean TP -P
mg/L ± SE

N/P ratio

FLIGHT01 5-Aug-19 09:40–09:53 GLSM (40.544873, −84.510843) 0.13 ± 0.01 0.33 ± 0.01 0.41

FLIGHT02 5-Aug-19 13:31–13:44 GLSM (40.544873, −84.510843) 0.14 ± 0.01 0.27 ± 0.01 0.53

FLIGHT03 6-Aug-19 09:36–09:46 GLSM (40.544873, −84.510843) 0.10 ± 0.01 0.39 ± 0.01 0.26

FLIGHT04 6-Aug-19 13:47–13:58 GLSM (40.544873, −84.510843) 0.12 ± 0.01 0.37 ± 0.01 0.32

FLIGHT05 8-Aug-19 12:36–12:46 Erie (41.702472, −83.463598) 2.48 ± 0.02 0.11 ± 0.01 23.04

FLIGHT06 8-Aug-19 14:31–14:41 Erie (41.702472, −83.463598) 3.27 ± 0.10 0.14 ± 0.01 24.14

FLIGHT07 23-Aug-19 08:18–08:28 Anna (38.148070–77.892803) 0.09 ± 0.01 0.09 ± 0.02 1.01

FLIGHT08 23-Aug-19 09:04–09:15 Anna (38.138523, −77.894524) 0.08 ± 0.01 0.06 ± <0.01 1.21

FLIGHT09 23-Aug-19 09:48–09:59 Anna (38.132604, −77.864658) 0.07 ± <0.01 0.03 ± <0.01 2.27

FLIGHT10 23-Aug-19 10:40–10:52 Anna (38.125945, −77.849134) 0.08 ± 0.01 0.03 ± <0.01 2.72

FLIGHT11 23-Aug-19 12:01–12:13 Anna (38.106428, −77.804766) 0.09 ± 0.01 0.03 ± <0.01 3.35

FLIGHT12 23-Aug-19 12:46–13:01 Anna (38.102509, −77.863082) 0.10 ± 0.01 0.03 ± <0.01 3.14

FLIGHT13 23-Aug-19 13:39–13:50 Anna (38.111752, −77.886401) 0.09 ± 0.01 0.05 ± <0.01 1.89

FLIGHT14 23-Aug-19 14:26–14:38 Anna (38.113106, −77.936464) 0.12 ± 0.01 0.10 ± <0.01 1.16

FLIGHT15 10-Sept-19 08:22–08:34 Anna (38.161642, −77.903738) 0.10 ± 0.01 0.04 ± 0.01 2.45

FLIGHT16 10-Sept-19 08:59–09:11 Anna (38.161476, −77.903289) 0.10 ± 0.01 0.05 ± 0.01 2.06

FLIGHT17 10-Sept-19 10:17–10:30 Anna (38.140964, −77.928508) 0.14 ± 0.02 0.10 ± 0.01 1.36

FLIGHT18 10-Sept-19 12:26–12:38 Anna (38.118197, −77.954825) 0.07 ± 0.01 0.11 ± 0.01 0.69

FIGURE 3
Schematic illustrating how samples were processed for each 50 ml drone water sample. Aliquots were made for toxin analysis (5 ml), nutrient
analysis (10 ml), and filtrate nutrient analysis (</ = 0.45 µm) (10 ml), for all flights. Onemilliliter was aliquoted for flow cytometry (1 ml) from Lake Anna
collections (Flight 07–Flight 18). The remaining volume in the 50 ml collection tube was adjusted to 12 ml and used for phycocyanin (PC) readings
with the Cyclops-7 sensor from Turner Designs, Inc. (Sunnyvale, CA) on the day of collection. PC data was recorded with the Precision
Measurement Engineering data logger (Vista, CA).
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(arb units) at 45, aux gas (arb units) at 13, sweep gas (arb units) at

1, ion transfer tube temperature (°C) at 342, and vaporizer

temperature (°C) at 358. Transitions that were used for the

cyanotoxins are listed in Table 3. Data were analyzed using

TraceFinder™ EFS 4.1 where retention time, and quantitative

and qualitative ion qualifications were set and monitored to

ensure proper cyanotoxin identification.

Phycocyanin concentration using the
Cyclops-7 sensor

Freshwater cyanobacteria produce phycocyanin, and the

presence of this pigmented protein can be measured to give

an indication of the concentration (i.e., estimate of biomass) of

cyanobacteria in a collected water sample. The biomass of

cyanobacteria does not have a direct correlation to cyanotoxin

production or toxin concentration (Christensen et al., 2019;

Christensen et al., 2022). The use of the word biomass in this

manuscript is not critically defined but used as a common

language word in reference to its relationship with nutrient

levels, its use in the description of trophic lake state values,

and its use as a possible indicator of elevated PC pigments. This

objective measure of PC can be recorded as parts per billion (ppb)

or micrograms per liter (µg/L) in a water sample and these values

can be used to assign risk levels to areas of HAB concern

(Cotterill et al., 2019; Thomson-Laing et al., 2020). Alert level

1 and 2 indicates a state of surveillance while alert level

3 indicates the need for repeat testing. Action level indicates

that advisories should be posted by authorities to inform citizens

that a specific aquatic environment is a potential human health

hazard. Last year in Virginia total potentially toxigenic

cyanobacterial counts at or above 100,000 cells/ml or total

MC species counts at or above 40,000 cells/ml were used as

the action level advisory limit for posting HABwarning signs (US

EPA, 2019). A Precision Measurement Engineering data logger

outfitted with a Turner Instruments Cyclops-7 PC sensor (Model

No: 2110-000) was used to collect PC measurements (Figure 5).

Water samples were moved to room temperature 20 min prior to

PC measurements. For all collections, the sensor was submerged

into approximately 12 ml of lake water and held in place 2.4 cm

from the bottom of a 50 ml conical tube. The sensor collected PC

concentration in ppb at 5-s intervals in the dark for a minimum

of 30 s. The PC sensor was rinsed with distilled water and wiped

with a Kimwipe between each sample. Distilled water blanks were

measured prior to, and after completion of, sample readings.

Phycocyanin sensor calibration

The Cyclops-7 PC sensor (Model No: 2110-000) was

calibrated with the Cyclops Solid Standard (Turner, cat #

2100-900, rev. J). The rhodamine WT (water tracing), 400 ppb

(cat # 6500-120) liquid calibration standard was diluted to

TABLE 3 List of 15 cyanotoxins analyzed in drone water samples. Toxins not detected are noted as ND. The MCs present at a mean above 0.05 ppb at
GLSM and Lake Erie are noted in bold and shown in Figure 4 for two flights from each lake. At Lake Anna three MC were detected in addition to
Anatoxin-a. These toxins are noted in bold and shown for two flights from Lake Anna (Figure 4).

Analyte Quantifier ion
(m/z)

Qualifier ion
(m/z)

GLSM mean
(ppb)

Lake Erie mean
(ppb)

Lake Anna mean
(ppb)

[D-Asp3]-MC-RR 135.07 498.91 12.79 <0.05 ND

MC-RR 135.07 212.94 <0.05 0.89 ND

MC-YR 135.00 213.03 1.66 0.31 ND

MC-HtyR 135.05 1031.46 ND <0.05 ND

MC-LR 135.07 155.08 0.08 0.58 0.009

[D-Asp3]-MC-LR 135.01 213.03 0.44 <0.05 ND

MC-HilR 135.00 155.08 ND <0.05 ND

MC-WR 135.03 626.25 ND >0.05 ND

MC-LA 776.41 375.16 ND 0.054 0.010

MC-LY 868.42 494.18 <0.05 <0.05 0.0001

MC-LW 517.18 446.17 <0.05 <0.05 ND

MC-LF 852.41 478.17 ND <0.05 ND

Nodularin 135.00 389.16 ND ND ND

C2D5 MC-LR * 135.09 163.08

Anatoxin-a 149.000 131.000 ND ND 0.098

Cylindrospermopsin 194.058 176.040 ND ND <0.10
L-Phenylalanine-D5 ** 125.040

Uracil-D4 ** 98.000
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200 ppb and the sensor calibration set point was equilibrated to

260 ppb PC as per manufacturers specifications.

Nutrient analyses for phosphorus and
nitrogen

Phosphorus and nitrate concentrations (mg/L) were

determined for all lake collections. These small volume

samples were designed to provide a rapid turnaround of

measurable nutrients. To this end, we analyzed samples for

nitrate-N and not for total Kjeldahl nitrogen. Analyses were

performed at the Wright State University Lake Campus, Celina,

OH. Upon collection, a portion of the water was immediately

filtered (</ = 0.45 µm), at which point both samples were kept in

the dark at 4°C prior to nutrient analyses. All samples were

analyzed within 24 h to 2 weeks of collection. The raw

(unfiltered) sample was used to determine total phosphorus

(0.025 mg/L MDL) following acid-persulfate sample digestion

while the filtered portion of the samples was used to determine

dissolved reactive phosphorus (Ortho-P 0.025 mg/L LOD) and

nitrate-N (NO3-N 0.15 mg/L MDL) concentrations. Due to

sample volume limitations, it was not possible to analyze

samples for total Kjeldahl nitrogen (and thus total nitrogen as

a function of TKN + NOx). Phosphorus concentrations were

assessed using ascorbic acid methods (EPA 365.1; www.ecfr.gov/)

FIGURE 4
Graphical summary of toxins from two flights collected fromeach lake. The data shown for GLSM (A,B), Lake Erie (C,D), and Lake Anna (E,F)were
collected in consecutive flights. Distance across the 100 m transect is shown on the x-axis. Toxin concentration in ppb is shown on the y-axis. The
color bands denote water quality conditions relative to toxin load. Water quality metrics for MC toxin concentrations are shown in Table 1 and
correspond to the trophic state lake classifications of oligotrophic (blue), mesotrophic (green), eutrophic (yellow), and hypereutrophic (orange).
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while nitrate was measured using the dimethylphenol method

(EPA 40 CFR 136; www.ecfr.gov/) using a benchtop visible

spectrum spectrophotometer (HACH DR 3900). A series of

blanks, analytical duplicates, field duplicates, premixed

standards, and spikes were run concurrent with every 20-

sample batch. Specific to these QA/QC checks for this study,

no instances of any appreciable variations greater than 10% from

“expected” values were detected.

Results

Lake collections using the DrOne water
sampling SystEm

A total of 180 water samples was collected across 18 flights at

three freshwater lakes in 2019. Forty samples were collected from

GLSM, 20 samples from Lake Erie, and 120 from Lake Anna.

Each drone-based water sampling mission was comprised of a

10-tube transect over distances of 10–100 m. Temporal

differences between sample sites ranged from 2 h to 18 days.

Drone-sampling missions at GLSM and Lake Erie were

performed from the shore at a single GPS location. Drone-

sampling missions at Lake Anna were performed from an

anchored boat at 12 different locations at 11 unique sites on

the lake. Two drone samples at Lake Anna were collected within

close spatiotemporal parameters; both transects were collected

inside a 49-min time span, and within a lake surface area of

200 m2. Each sample site location was given a unique flight

number, Flight 01–Flight 18 (Table 2). Flight 16, collected at

Lake Anna on 10 September 2019 departed from a traditional line

transect to target a visual pattern of floating expected on the

surface of the lake.

Our collections incorporated ten measurements along a

distance of 100 m in an effort to examine the potential

variability of water quality metrics in a spatially repeatable

sampling regime. Each flight was able to collect ten samples

in a short time frame (12 min). Water quality metrics at GLSM

and Lake Erie were repeated at the same location with various

increments of time among collections. Since these lakes were

experiencing late summer HAB conditions (i.e., August), the

flights were able to explore high resolution temporal variation

with repeated sample collections at the same site. The second

sampling date at Lake Anna allowed for a spatial extension of

water quality metrics in the three northern branches of the lake:

Terry’s Run, Upper Pamunkey, and North Anna. The back-to-

back sampling flights shown in Figures 4, 6, 7 were an example of

the difference between morning and afternoon sampling times

(when were able to conduct flights safely around inclement

weather) for GLSM and Lake Erie. Lake Anna Flights 15 and

16 were collected in close spatial proximity since we were

following visual scum on the lake surface. Consequently, the

Lake Anna flights were both collected in the morning.

Cyanotoxin analysis with LC-MS/MS

Cyanotoxins were present in all three of the freshwater lakes.

Graphical summaries of the four most abundant cyanotoxins in

each lake are represented by two flights from each lake and are

shown in Figure 4. The two flights from each lake represent

measured variation across a 100 m transect with the same spatial

location taken on the same day with little temporal variation.

Three MC congeners were present in Lake Anna, seven in GLSM,

and 12 in Lake Erie. Anatoxin-a (ANA) was only detected at Lake

Anna, and was present in 93% (111/120) of the samples.

Cylindrospermopsin was detected in a single collection at

Lake Anna. Nodularin was not detected in any of the lake

samples. The highest individual MC congener toxin level was

found at GLSM (D-Asp3-Dhb7-RR) and was present at a mean

value of 17.97 ppb. This concentration is well above the RUV

advisory level of eight total ppb for MC as a result of the D-Asp3-

Dhb7-RR congener values alone. Cyanotoxins with the highest

mean concentrations from Flight 03 and Flight 04 at GLSM were

D-Asp3-Dhb7-RR (17.97 ppb), MC-YR (2.32 ppb), D-Asp3-LR

(0.619 ppb), and MC-LR (0.0719 ppb). All 12 congeners of MC

were detected in the western basin of Lake Erie in a total of two

collections, Flight 05 and Flight 06. Ten MC congeners were

detected in at least 65% (13/20) of the samples. MC-HtyR was

detected in 30% of the samples (6/20) andMC-LF was detected in

10% (2/20) of the Lake Erie collections. The four toxins with the

highest mean toxin concentration in Lake Erie were MC-RR

FIGURE 5
Phycocyanin (PC) values shown in parts per billion (ppb) for
the 18 flights collected at the three lakes in field year 2019. Four
flights were collected from GLSM, two from Lake Erie, and 12 from
Lake Anna. The mean PC concentration at GLSM, Erie, and
Anna was 687, 38, and 62 ppb, respectively. The error bars
represent standard error of the mean (n = 10) for the ten transect
tubes collected for each flight.
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FIGURE 7
Graphical representation of total phosphorus from two
consecutive flights collected on the sameday, for each freshwater lake.
The color bands denote lake water quality as oligotrophic (blue),
mesotrophic (green), eutrophic (yellow), and hypereutrophic
(orange) (Table 1). Trophic State Index (TSI) values for oligotrophic (TSI
0–40), mesotrophic (TSI 41–50), eutrophic (TSI 51–60), and
hypereutrophic (TSI 70–100) follow the TSI table published by (Carlson,
1977). Collection points in 10-m increments are shown on the x-axis.
Total phosphorusmg/L for both flights from each lake is shown on the
y-axis. A total phosphorus concentration is 0–0.80 mg/L.

FIGURE 6
The concentration of PC from each transect location is
shown for two consecutive flights from each lake. Distance across
the 100 m transect is shown on the x-axis. PC concentration in
ppb is shown on the y-axis with a scale of 0–800 ppb (GLSM),
or a scale of 0–140 ppb (Lake Erie and Lake Anna). The color bands
represent Alert level 1 (blue), Alert level 2 (green), Alert level 3
(yellow), and Action level (orange). The water quality metrics are
shown in Table 1 and correspond to the trophic state lake
classifications of oligotrophic, mesotrophic, eutrophic, and
hypereutrophic.
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(0.893 ppb), MC-LR (0.579 ppb), MC-YR (0.310 ppb), and MC-

LA (0.0544 ppb). Several samples from Lake Erie had MC

concentrations above the adult drinking health advisory limit

of 1.6 ppb (Table 1). Three of the 12 MC congeners were present

in Lake Anna. MC-LA and MC-LR were identified in 77% (92/

120) and 85% (102/120) of flight collections, respectively, while

MC-LY was exclusively detected in Flights 15–16. The most

abundant cyanotoxins identified in Lake Anna from Flight

15 and Flight 16 were ANA (0.0984 ppb), MC-LA (0.0124),

MC-LR (0.00959), and MC-LY (0.00130). The US EPA RUV

limit for MC and ANA is 8 ppb.

Phycocyanin

PC concentrations from the three lakes was measured for

each of the 18 flights (Figure 5). GLSM had the highest PC values

with a mean of 687 ppb for Flight 01–Flight 04. The mean PC

from Lake Erie (Flight 05 and Flight 06) was 38 ppb. Lake Anna

had a mean of 62 ppb for the 12 flights (Flight 07–Flight 18)

collected on both sampling days, 23 August and 10 September

2019. A subset of six flights was chosen to analyze PC

concentration at each 10 m interval (Figure 6) on a color

band graph to show the alert level of PC as listed in Table 1

(Izydorczyk et al., 2009; Cotterill et al., 2019). The flights chosen

for each lake were Flight 03–Flight 04 (GLSM), Flight 05–Flight

06 (Lake Erie), and Flight 15–Flight 16 (Lake Anna). The high PC

concentrations in GLSM and Lake Anna place these lakes in the

Action level. PC concentrations in Lake Erie declined between

themorning Flight 5 (action level) to the afternoon Flight 6 (Alert

level 3) in a time span less than 2 h.

Nutrient analyses for phosphorus and
nitrogen

A graphical summary of total phosphorus mg/L

concentration is shown for two drone-sampling missions for

each lake in Figure 7 (Lake Erie Forage Task Group, 2020). Total

phosphorus was the highest at GLSM, with a mean TP-P

concentration of 0.378 mg/L (Flight 03 and Flight 04), placing

GLSM in a hypereutrophic state (0.0481–0.768 mg/L) for

phosphorus content as denoted in Table 1 (Carlson, 1977).

Lake Erie was just above eutrophic levels for phosphorus with

a mean TP-P concentration of 0.122 mg/L for Flight 05 and

Flight 06. Flight 15 and Flight 16 from Lake Anna had a mean

concentration of 0.043 mg/L TP-P, placing this lake in a

eutrophic state (0.0241–0.048 mg/L) for phosphorus.

Individual water samples for phosphorus in Lake Anna

spanned both mesotrophic (0.0121–0.024 mg/L) and eutrophic

lake state values. Dissolved reactive phosphorus (Ortho-P) was

highest in GLSM with a mean of 0.139 mg/L (0.127–0.153 mg/L)

followed by Lake Erie with a mean of 0.022 mg/L (BDL-

0.046 mg/L) and Lake Anna with a mean of 0.01 mg/L (range

BDL-0.021) mg/L). Nitrogen content measured as nitrate (NO3-

N) was the highest at Lake Erie with a mean of 2.875 mg/L (Flight

05 and Flight 06), placing Lake Erie in a hypereutrophic state

(1.471–23.6 mg/L) for total nitrogen content even without total

Kjeldahl nitrogen (TKN) measurements to add to these NOx

values (Kratzer and Brezonik, 1981). GLSM (Flight 03 and Flight

04) and Lake Anna (Flight 15 and Flight 16) had mean nitrate

concentrations of 0.111 and 0.097 mg/L NO3-N, respectively

(Table 2). It is worth noting that grab samples from GLSM

around this time indicated TKN values between 3 and 4 mg/L

(unpublished data), unsurprisingly, likely putting GLSM above

Lake Erie or Lake Anna.

Discussion

New remote sensing tools and technology are needed to

detect and monitor freshwater HABs. The distribution of

cyanobacteria in aquatic habitats is influenced by a variety of

anthropogenic and environmental factors that are in constant

flux (Anderson, 2012; Graham et al., 2016). Not all cyanobacteria

produce cyanotoxins, and limitations in testing capabilities

further limit water quality assessments. We used a unique

DrOne Water Sampling SystEm (DOWSE) to collect water

samples from three HABs in three freshwater lakes in the

United States. Drone water sampling technologies can be

deployed quickly and can provide access to remote areas that

are not easily accessible or typically monitored (Ore et al., 2015;

Benson et al., 2019; Filippi et al., 2021). This study demonstrates

the utility of a such a rapid water sampling system capable of

obtaining water samples to assess the parameters one would

require to better understand a HAB (e.g., concentrations of

toxins, phycocyanin, and nutrients). In addition to quick

sampling capabilities in remote aquatic locations, advantages

of our drone-based water sampling approach include the ability

to collect surface samples without disturbing the surrounding

water and without entering a body of water on foot and wading

out to grab a sample. Disadvantages include the need for drone

equipment and a certified (and preferably skilled) drone pilot.

Though GLSM and Lake Erie have a long history of HAB

research, our work represents the first drone-based water

sampling of these lakes. Moreover, our work is the first to

report anatoxins in surface water samples of Lake Anna—a

lake with a relatively new (young) HAB near its tipping point.

Cyanotoxins were measured from each of the samples

because they provide an indication of a potential health

hazard to humans and domestic animals. Representative

congeners of the cyanotoxin MC were present in each of the

lakes. GLSM was characterized by total MC levels that averaged

15 ppb, well above the RUV of 8 ppb (Figure 4). The total MC

toxin levels at Lake Erie and Lake Anna were lower than GLSM,

with mean values of 1.92 and <0.02 ppb, respectively. The MC
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concentrations at Lake Erie were highly variable with

concentrations both above and below the adult drinking

health advisory limit (1.6 ppb) in the same flight (Figure 4).

This variability of MC concentration within a distance of only

100 m highlights the importance of testing multiple water

samples across space and time. Another example of spatial

variability of MC toxins was observed in the Prespa Lakes,

Greece during 2012–2014 (Maliaka et al., 2021).

Concentrations of MC in Lesser Prespa ranged from 25 to

861 ug/L (ppb) in 2014. In addition to the spatial

heterogeneity observed in MC toxin concentrations in Lake

Lesser Prespa, a high variability was observed in the surface

accumulation of cyanobacteria in 2012 (Maliaka et al., 2021). The

cyanotoxin levels found in Lake Anna were much lower than the

other lakes and were below the dog RUV level (Figure 4).

Interestingly, Lake Anna was the only lake that showed the

presence of the anatoxin-A (ANA) (the US EPA RUV limit

for ANA is the same as MC at >8 ppb). Several cyanobacteria can
produce ANA, including Anabaena, Aphanizomenon,

Cylindrospermum, Microcystis, Planktothirix, and Raphidiopsis

(Varner, 2018). Though the genus or genera of cyanobacteria in

Lake Anna that are responsible for ANA production are presently

unknown, the potentially toxigenic cyanobacterial genera with

counts above 100,000 cells/mL as reported by VDH for Lake

Anna in 2018 were Microcystis, Cylindrospermopsis,

Rahpidiospsis, Pseudoanabaena, and Planktolyngbya (personal

communication with VDH, 2021). Anabaena, Aphanizomenon,

and Planktothrix were among the potentially toxigenic taxa

identified at Lake Anna in 2018 (personal communication

with VDH, 2021) at counts lower than the 100,000 cells/mL

threshold for concern. A recent algal bloom assessment in

2021 listed Pseudoanbaena, Raphidiopsis, and Planktolyngbya

as dominant species in the North Anna branch (Solitude Lake

Management, 2022). High-use recreational areas with HABs

need timely information regarding the presence of

cyanotoxins above RUVs. This information should be used to

keep citizens informed about how safe it might be to have their

dog at the lake or if toxin levels could cause skin irritation.

Phycocyanin was analyzed because this pigment is a

signature of cyanobacteria, and different sensors are available

to measure PC and other pigments found in water due to the

presence of living organisms. Phycocyanin was present above

action levels in GLSM and Lake Anna. Although Lake Erie had a

lower average PC, samples along 100 m drone water sampling

transects ranged from Alert level 3 to Action level within a 2-h

time interval. This highlights the need for quick remote sampling

capabilities that could be used to provide health advisory data on

a body of water that provides drinking water to a population of

over 400,000 residents.

Phosphorus and nitrogen content was measured because

these components contribute to growth and accumulation of

cyanobacteria in freshwater environments. Phosphorus levels

varied from oligotrophic (Anna) to hypereutrophic (GLSM)

(Figure 7). The total phosphorus load measured at GLSM was

extremely high and stable in the hypereutrophic range. Although

our measurements were taken in a single month, the mean value

of total phosphorus measured bimonthly in 2019 at GLSM

(samples were collected by hand) was 0.30 mg/L (S.

Jacquemin, unpublished observations). This value is

hypereutrophic and in line with our drone sampling of

GLSM. Lake Erie had phosphorus levels that were just above

eutrophic, and Lake Anna ranged from oligotrophic to eutrophic.

It is important that future studies ensure multiple species of

nitrogen are measured to be able to calculate total nitrogen as

well as phosphorus. Such measurements are important in the

context of environmental changes required to improve water

quality; after 2011 Distressed Watershed legislation limited

allowable nutrient loads in the agricultural watershed the

water quality improved tremendously (Jacquemin et al., 2018).

Specifically, reductions were more notable during winter months

when a ban on manure was implemented, and all parameters

were decreased by 20%–60%. However, analyzing multiple

species of nitrogen in a water sample requires increased

sample volumes, which depending on the analytical methods

used could be up to 150 ml. Should larger volumes of water be

necessary for future work, our water sampling device could be

modified to sample larger volumes of water. Such a design

modification would need to consider the payload limits of the

platform (for the drone used in this work, the sampling payload

when full of water should not exceed 500 g for safe operations)

and reduced flight times due to additional battery consumption

to power the drone with a heavier payload.

Our work to characterize HABs in different freshwater lake

environments could be enhanced by additional information from

other technology platforms. We were able to quickly sample and

characterize HABs in three freshwater lakes using a unique

drone-based water sampling approach. Though we focused

our analyses on cyanotoxins, phycocyanin, and nutrients,

future work could include additional analyses such as

cyanobacterial concentrations or other water quality

parameters. Such analyses would likely require larger

collection volumes; our current sampling method is limited to

sampling 50 ml of water. Future work could include additional

remote sensing tools such as the Cyanobacteria Monitoring

Collaborative website (Cyanobacteria.org, 2021) or the new

US EPA CyAN web application released July 2021 (US EPA,

2019). The EPA CyAN platform is free and designed to support

real-time decisions regarding HABs based on the Copernicus

Sentinel-3 European satellite. The CyAN imagery interface is a

new web-based tool that could be used in future research efforts

to add another layer of information to current tools and

technology. For example, the CyAN could be used with real-

time water quality measurements to observe changes in a HAB

that was characterized by high levels of MC-RR and could shift to

the MC-LR congener due to a decrease in total available nitrogen.

In August 2019, the higher level of nitrogen content relative to
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phosphorus at Lake Erie could favor the nitrogen rich congener,

MC-RR over the more toxic congener, MC-LR (MC-RR was the

most abundant congener with MC-LR the next abundant

congener). A shift in nutrient content in the Western basin

area of Lake Erie that would favor the MC-LR congener,

could quickly pose a safety hazard to drinking water in the

greater Toledo area. This is notable with regard to Lake Erie,

because the MC congeners with the highest concentrations were

MC-RR and MC-LR and several collections along the 100 m

transect had total MC values above drinking advisory levels. A

shift in conditions that would favorMC-LR as the prominentMC

congener could quickly contaminate the drinking water supply to

nearby citizens. The MC-LR variant showed a lethal dose

response in mice at levels 10 to 40 times greater than the

MC-RR congener (Zurawell et al., 2005). Late summer blooms

in Lake Erie occur when the annual TN:TP input from the

Maumee River is low and N is limited (Gobler et al., 2016).

Cyanobacterial blooms have been studied to better understand

communities with regard to abundance of biomass, the

composition of species present, and the ability to produce

toxins (Christensen et al., 2019, 2021, 2022; Chorus and

Welker, 2021). Christensen et al. (2022) showed that similar

water quality metrics from three spatially separate locations on

Kabetogama Lake had differences in phytoplankton

communities at the same locations.

Additional water quality research is needed to make

accurate predictions about toxin levels in any area where

cyanobacteria loads are elevated to a level of concern.

Informing the public with accurate information on water

quality and the presence of cyanotoxins is becoming an ever-

increasing need in locations where cyanobacteria persist. As

climate conditions shift to higher temperatures for longer

periods of time, the danger of HABs producing toxins above

the US EPA health advisory drinking limit for adults (1.6 ppb,

MC) becomes more of a threat (Wells et al., 2020). The US EPA

RUV limit for dogs (0.2 ppb, MC) is much lower, and MC

toxins could become a deadly threat to dogs if climate

conditions increase toxicity of HABs. Many factors influence

the growth and accumulation of cyanobacteria in freshwater

environments. Elevated cell counts are an indicator that a

harmless HAB could become a toxic HAB. Comparing the

dominant species of cyanobacteria in a specific area could

indicate how a new HAB might behave relative to existing

information on toxic HABs that have been characterized over

several seasons. However, a myriad of environmental factors

has been shown to influence the growth and accumulation of

HABs. These factors influence the production of cyanotoxins

from such HABs. Predicting the presence and level of

cyanotoxins based solely on the abundance of cyanobacteria

requires additional work and careful experimentation.

Chasing the visual clues of a potential toxin producing

bloom are challenging due to the spatial complexity and highly

variable conditions that can occur in a dynamic water

environment (Janssen et al., 2014). Visual clues of a

potential HAB location can disappear before samples can be

collected or measured. Citizens rely on state sponsored

collections and toxin testing or cell count information to be

gathered, analyzed, and posted to make decisions about

spending time in recreational waters. In some instances,

monitoring efforts identify high concentrations of

cyanobacteria but do not necessarily provide toxin

information. Long-term datasets are needed to study the

influence of climate change on the occurrence and severity

of HABs (Wells et al., 2020). Remote sensing technologies have

been used to gather data and test models related to water quality

(Topp et al., 2020). There is a knowledge gap in using this

information to turn methods and models into scientific

characterization of inland water quality (Topp et al., 2020).

Spatial and temporal differences in water quality

measurements highlight the need for new approaches to

test water, determine quality, and use these measurements

as a proxy to predict the likelihood of harmful toxins in lakes

and other aquatic environments. Drones can be used to collect

water samples from lakes with a long or even recent history of

HABs. The spatial and temporal sampling regime determined

at any freshwater lake can be successfully carried out by the

DOWSE, provided environmental conditions are suitable to

safe drone operations. It is important to note that our

sampling of the three lakes in this study was designed to

collect water quality data, not to establish a recommended

sampling regime for a specific lake. Once a sampling regime

has been determined at a specific lake, the DOWSE has the

capability to collect water quickly and precisely at any time in

any location with line of sight from the collection point. The

collection ability of the DOWSE makes it a great tool for lakes

that experience persistent HAB conditions since it can be

deployed as often as needed, and in specific areas that require

intensive sampling approaches. For freshwater lakes that

experience HAB conditions seasonally, the DOWSE can be

used as needed temporally and can sample in remote or new

locations to help elucidate the extent of the HAB across the

lake. Our work is important for informing coordinated

sampling efforts with uncrewed robotic systems and

providing critical and timely information to guide advisory

decisions to provide quick and accurate information to

citizens and stakeholders.

In conclusion, the sampling methods described here

provide a precise and immediate sampling protocol for

potentially dangerous surface waters on freshwater lakes. The

DOWSE could help elucidate the temporal and spatial

distribution of HABs in freshwater lakes that are under

visual surveillance. This would allow HAB hazard

notifications to be posted and sent to citizens and businesses

near the HAB location. The drawbacks include the need for a

competent and certified drone pilot, and the need for fair

weather during flight operations.
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Coastal wetlands of the Southeastern United States host a high abundance and

diversity of critical species and provide essential ecosystem services. A rise in

threats to these vulnerable habitats has led to an increased focus on research

and monitoring in these areas, which is traditionally performed using manual

measurements of vegetative characteristics. As these methods require

substantial time and effort, they are often limited in scale and infeasible in

areas of dense or impassable habitat. Unoccupied Aircraft Systems (UAS)

provide an advantage over traditional ground-based methods by serving as a

non-invasive alternative that expands the scale at which we can understand

these ecosystems. While recent interest in UAS-based monitoring of coastal

wetland habitats has grown, methods and parameters for UAS-based mapping

lack standardization. This study addresses variability introduced by common

UAS study techniques and forms recommendations for optimal survey designs

in vegetated coastal habitats. Applying these parameters, we assess alignment

of computed estimations withmanually collectedmeasurements by comparing

UAS-SfM mapping products to ground-based data. This study demonstrates

that, with careful consideration in study design and analysis, there exists great

potential for UAS to provide accurate, large-scale estimates of common

vegetative characteristics in coastal salt marshes.

KEYWORDS

coastal monitoring, UAS, vegetation structure, biomass, salt marsh

1 Introduction

Estuarine intertidal habitats are rich in both species diversity and abundance

(Noss et al., 2015). Tidal wetlands are used as foraging grounds, nursery habitat, and

reproductive space for commercially and recreationally important fishery stocks

(Barbier et al., 2011). Beyond providing critical habitat for fauna, vegetated
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wetlands enhance coastal water quality by trapping sediments

and filtering nutrients, are valued for their ability to sequester

carbon, and can protect coastal communities by dampening

wave energy and slowing the inland transfer of water during

storm induced flood events (Morris et al., 2002; Barbier et al.,

2011; Spalding et al., 2014). Intertidal wetlands occupy the

narrow zone between upland and open water regions and as a

result, are uniquely vulnerable to sea level rise. Salt marshes

dominated by smooth cordgrass (Spartina alterniflora,

recently reclassified as Sporobolus alterniflorus (Peterson

et al., 2014)) are common along southeastern US coastlines.

These systems serve as sentinels of coastal change and as a

result, resource management agencies, academic researchers

and non-profits expend considerable effort monitoring

wetlands for change detection.

Despite the known ecological value of these habitats, tidal

wetlands continue to suffer area loss and degradation (Jackson

et al., 2001; Lotze et al., 2006). Erosion from storms, sea level

rise, and coastal development threaten these vulnerable

habitats (Morris et al., 2002; Meixler et al., 2018). The

resultant losses in tidal wetlands have jeopardized coastal

communities through increased exposure to flooding and

diminished habitat for local fish stocks (Barbier et al., 2011;

Spalding et al., 2014). In response, rapid and consistent

monitoring of these wetland ecosystems has become a

priority for coastal management efforts (Psuty et al., 2018).

An example of these efforts is the National Estuarine Research

Reserve System (NERRS) program. NERRS, funded by the

National Oceanic and Atmospheric Administration (NOAA),

was designed to produce research that informs and aids

coastal managers seeking to conserve and restore coastal

resources (Trueblood et al., 2019). The NERR system

consists of 30 coastal US sites covering over 1.3 million

acres of estuarine habitat (National Estuarine Research

Reserve System, 2021). Monitoring these wetland habitats

for change detection is central to understanding resilience

to shifting environmental conditions and informing coastal

management decisions within the NERRS and beyond.

Traditional marsh monitoring practices involve on-the-

ground measures of vegetative structure (i.e. species presence

and abundance, stem density, stem height, total standing

biomass, percent cover, and often sediment surface

elevation) (Roman et al., 2001; James-Pirri et al., 2002).

While manual field surveys provide crucial information

about plant community structure, they are time and labor

intensive. As a result, manual surveys are limited in scale and

often rely on several small (1 m2) fixed monitoring plots to

characterize the entire marsh. Moreover, some areas of these

ecosystems are inaccessible by foot and trampling of wetland

vegetation in the process of manual monitoring can have

lasting negative impacts (Minchinton et al., 2019).

Monitoring approaches that minimize boots on the

ground and maximize spatial coverage of observations will

allow for greater ability to detect change at scales that are

meaningful to resource managers (MacKay et al., 2009).

Remote sensing can provide a non-invasive, scalable

alternative to manual estimates of marsh properties

(Roughgarden et al., 1991; Fennessy et al., 2007). Rapid

monitoring regimes that minimize costs while maximizing

coverage are increasingly recognized as essential for wetland

assessment programs and effective resource management

(Fennessy et al., 2007). The use of remote sensing to

understand coastal ecosystems is well-established (Green et al.,

1996). Satellite imagery has provided breakthroughs in the ability

of researchers to understand and visualize ecosystem change

(Pettorelli et al., 2018). Satellite remote sensing has improved

management capabilities in coastal regions by facilitating large-

scale mapping of critical habitats and associated ecosystem

properties over time (McCarthy et al., 2017). However,

limitations to satellite-based approaches include cloud cover

obstruction, image resolution, and limited spatial and

temporal coverage of available datasets (Pettorelli et al., 2018).

Light Detection and Ranging (LiDAR) data can improve

monitoring accuracy from satellite data by providing multi-

temporal high spatial resolution imagery (Pham et al., 2019).

Airborne and hyperspectral LiDAR have been used to map salt

marsh vegetation height and bare earth elevation but the high

cost associated with LiDAR collection is a barrier to widespread

use (Klemas, 2013; Pham et al., 2019). Unoccupied Aircraft

Systems (UAS), or drones, can provide an alternative to time

and labor-intensive manual measurements with the benefit of

fine-scale resolution that provides an edge over satellite-based

imagery (Klemas, 2013; Whitehead and Hugenholtz, 2014). UAS

have been applied to the study of salt marsh and estuarine

habitats, providing large-scale, efficient monitoring of these

habitats (Doughty and Cavanaugh, 2019; Farris et al., 2019;

DiGiacomo et al., 2020; Thomsen et al., 2021). Structure-

from-Motion (SfM) processing of overlapping UAS imagery

make possible the 3-dimensional reconstruction of salt marsh

habitats (DiGiacomo et al., 2020).

Though UAS-based methods are increasingly being utilized

for monitoring coastal wetlands (Doughty and Cavanaugh, 2019;

Farris et al., 2019; DiGiacomo et al., 2020; Thomsen et al., 2021),

imaging protocols and analysis methods lack standardization

amongst studies. Inter-sensor comparisons reveal differences in

surface reconstruction and reflectance values between common

consumer-grade UAS platforms (Sona et al., 2014; Yanagi and

Chikatsu, 2016). Moreover, other studies have found differences

in mapping products produced by different SfM software

packages for forested (Fraser and Congalton, 2018; Kameyama

and Sugiura, 2021) and unvegetated (Sona et al., 2014; Yanagi

and Chikatsu, 2016) areas. Variability introduced by UAS flight

protocols and UAS-SfM workflows for mapping dynamic coastal

wetland environments has not yet been well explored. Identifying

sources of uncertainty in mapping products is a critical first step

to building standardized protocols that can generate rigorous
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estimates of coastal habitat metrics. For this purpose, this study

evaluates the use of several UAS-SfM photogrammetry-based

approaches for the estimation of standard wetland monitoring

parameters. The specific goals of this study were to 1) conduct

spatial error analyses exploring the impact of Ground Control

Point (GCP) distribution and UAS operational parameters

(ground sampling distance, sensor resolution, and sensor

specifications) on horizontal and vertical error of UAS-based

mapping products and use the results of which to 2) compare

UAS-SfM computed vegetative characteristics to manually

collected data (above ground biomass, canopy height, percent

cover).

2 Materials and methods

2.1 Study site

A test site at Swan Island, Maryland (38.005197, -76.044356)

was used before exploring the NERR sites to establish an initial

FIGURE 1
National Estuarine Research Reserve (NERR) field sites. (A) North Carolina NERR and (B) North Inlet-Winyah Bay NERR. Orthomosaic imagery
from both sites was collected at 50 m altitude in September 2020.
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understanding of best practices to reduce spatial error. This site

was recently restored with dredged sediments and largely devoid

of vegetation.

The North Carolina (NC) NERR at Masonboro Island, NC

and North Inlet-Winyah Bay (NIWB) NERR in Georgetown, SC

were selected as the field sites for this study. Both sites are S.

alterniflora-dominated salt marsh habitats in which NERR

scientists annually document vegetative characteristics and

marsh surface elevation at fixed, long-term monitoring plots

(Figure 1). The NC NERR is a back-barrier island marsh system

dominated by S. alterniflora with a ribbon of mixed species (S.

alterniflora, Salicornia spp., Distichlis spicata) at its upland edge

that transitions to a narrow ribbon of Spartina patens-dominated

vegetation in the back-barrier dune system (Figure 1A). The

NIWB NERR study site is a bar-built, ocean-dominated estuary

characterized by expansive salt marsh habitat drained by a

network of sub-tidal and intertidal creeks. The study area

within NIWB NERR is the intertidal marsh platform in the

western-most sub-basin of the North Inlet estuary, where the

lower elevations are characterized by monoculture S. alterniflora

which transition at mid-marsh elevations to a patchy mosaic of

mixed species (Salicornia spp., Distichlis spicata, Juncus

romerianus) surrounding areas of barren hyper-saline salt

panne (Figure 1B).

2.2 Ground control

Ground control points (GCPs) were used to improve 3-

dimension positional accuracies (X, Y, Z) of all UAS based

mapping products. Expanding upon previous analyses of

optimal GCP density (Haskins et al., 2021), this study

explored the impact of GCP distribution in both horizontal

and vertical space on model accuracy. It has been previously

demonstrated that the optimal GCP density for maximizing

efficiency and model accuracy is 2 GCPs/ha (Haskins et al.,

2021).

Swan Island, the test site used for this GCP analysis, was

largely devoid of vegetation at the time of sampling. Therefore,

the bare-earth surface models produced by SfM processing were

not influenced by the presence of vegetation and SfM-produced

estimates of elevation were likely to represent the true ground

surface. Twenty-four 5-gallon bucket lids painted with markers

were randomly distributed as GCPs across the island. To assess

horizontal and vertical error, true elevations were manually

collected by surveying checkpoints (n = 115) across the

expanse of the island using a Real-time Kinematic Global

Navigation Satellite Systems (RTK-GNSS). Computed

elevations were extracted from SfM-generated models of the

site surface. These Digital Surface Models (DSMs) were

generated at Swan Island using 3, 6, 12, and 24 GCPs,

corresponding to approximately 0.25, 0.5, 1, and 2 GCPs/ha,

respectively. For each GCP density explored, a “clustered”

iteration, with GCPs clustered toward one end of the site, and

a “spaced” iteration, with GCPs relatively evenly spaced, was

performed. Computed elevations were extracted from UAS-SfM-

derived surface models and compared to manually surveyed

checkpoints. Vertical error was computed as the root mean

square error (RMSE) of differences between computed

elevation and true elevation. Horizontal error was computed

by SfM softwares as the RMSE of horizontal differences in the XY

plane given by each GCP in the process of fitting the DSMs.

Results of this investigation were used to informGCP density and

placement for surveys at the NERR sites.

GCPs used at the NERR study sites included 0.25 m2 high-

density polyurethane black and white checkerboard tiles (NIWB

NERR, n = 11), permanent structural features (NIWB NERR, n =

4), or 5-gallon bucket lids painted with point markers (NC

NERR, n = 12). Each GCP contained a clearly defined center

point which was surveyed with a survey-grade RTK-GNSS (NC:

Trimble R8 Model 4, NIWB: Trimble R8s). These known

locations were later incorporated into image processing by

partial-automation using Structure-from-Motion (SfM)

softwares. Horizontal data were referenced to the North

American Datum 1983 State Plane (NAD 1983 North

Carolina FIPS 3200, Meters) at NC NERR. At NIWB NERR,

horizontal data were referenced to the World Geodetic Datum

1984 (WGS 1984) universal Transverse Mercator (UTM) Zone

17N. Vertical data were referenced to North American Vertical

Datum of 1988 (NAVD88).

2.3 Flight information

At Swan Island, flights for GCP analysis were conducted in

August 2019 with a DJI Phantom 4 Pro equipped with a 20 MP

camera with 1 inch CMOS sensor. Images were collected from an

altitude of 37 m with a neutral density polarizing filter (ND8-PL)

to minimize glare.

At NIWB, aerial imagery was collected using a DJI Matrice

200 V2 quadcopter equipped with a Micasense Altum sensor

(Table 1). At NC, optical (Red-Green-Blue; RGB) imagery was

collected using a Hasselblad L1D-20c camera. Multispectral

imagery was collected by a Sentera Double 4K sensor that

uses Red Edge, Near-Infrared (NIR), and Red bands to

produce Normalized Difference Vegetation Index (NDVI) and

Normalized Difference Red Edge Index (NDRE) imagery. The

Sentera Double 4K NDVI + NDRE sensor was mounted on a DJI

mavic 2 Pro quadcopter with a Built-in Hasselblad camera

(Table 1). At NIWB, Radiometric calibration of the Altum

imagery was performed by imaging a Micasense-provided

reflectance panel pre-and post-flight. The Altum is also

equipped with an ambient light sensor (DLS2) that measures

intensity and angle of incident light for each of the five bands of

the sensor, allowing for at-sensor calibration of each image set

acquired during flight. Sentera Double 4K and DJI Mavic 2 Pro
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sensors lacked radiometric calibration capabilities. Optical and

Multispectral imagery was collected simultaneously, with the

exception of one multispectral flight (NC 9/14/20 at 25 m

altitude) reflown due to camera malfunction on 10/15/20.

Lithium-ion polymer batteries were used to power the aircraft.

Duplicate image datasets were collected at each of the NERRS

sites during two sampling periods: September 2020, near annual

peak marsh biomass, and February 2021, near annual minimum

biomass (referred to herein as dormant season). The area of

interest was flown three times during each sampling period at

three different altitudes (25, 50, 120 m) to determine the

influence of ground sampling distance on image-based

product accuracy. An average of 286 (NC) and 574 images

(NIWB) were collected during each sampling period, focusing

on an area of approximately 2–3 ha. The ground sampling

distance was between 0.5–6 cm resolution depending on flight

altitude and sensor resolution. All flights were conducted in

compliance with the Federal Aviation Administration 14 CFR

Part 107 regulations. Ground-based aircraft launches and

retrievals were performed at the Swan Island and NERR field

sites and specialized launching equipment was not required. UAS

details are provided in accordance with Barnas et al. (2020).

To further investigate the impact of sensor resolution and

specifications on UAS-based mapping products, an additional set

of test flights was conducted in May of 2021. In this case, both

aircraft-sensor combinations were flown in succession at NC

NERR. Both flights were conducted at an altitude of 50 m and

images from both sensors were geolocated using the same GCPs.

UAS mission planning softwares were used to ensure

consistent image overlap and monitoring of the same area

among flights. Flight paths were developed by Drone Deploy

(Swan Island), Pix4D Capture mapper application (NC) and DJI

Pilot mission flight application (NIWB). The same flight path

was used for all repeat flights to ensure that the same area was

covered across altitudes and seasons. Optical imagery data was

collected as 20-megapixel RGB images (Hasselblad, NC; 5,472 ×

3,648 pixels) or 3.2-megapixel individual band imagery

(Micasense Altum, NIWB; 2064 × 1,544 pixels) (Altum and

MicaSense, 2021; Mavic 2, 2021). Multispectral imagery was

collected by the 12-megapixel (Sentera Double 4K, NC) or

radiometrically calibrated 3.2-megapixel (Micasense Altum,

NIWB) sensor with imagery at 4,032 × 3,024 pixels and

2064 × 1,544, respectively (Altum and MicaSense, 2021;

Double 4K Sensor - Sentera, 2021). All aircraft are equipped

with onboard GPS recording geolocation data. Onboard SD cards

recorded imagery data with associated aircraft metadata and were

offloaded to computers during post-flight processing.

2.4 UAS-SfM processing

UAS imagery were stitched together using commercially-

available Structure-from-Motion (SfM) softwares Agisoft

Metashape (v.1.6.1) and Pix4Dmapper (v. 4.6.4) to generate

continuous models of each site. All image data sets were

processed using both software packages. Imagery was

geolocated using GPS onboard the UAS aircraft, which

attaches geotag information to each image, and georectified by

incorporating GCP data in the SfM software processing

workflow.

Pix4Dmapper. Using Pix4Dmapper, key points were

extracted at the full imagery resolution and image matching

was set up for an aerial grid or pre-planned flight path. The

number of key points was automatically determined and the

calibration method was set to standard. A minimum of five

images per band were identified by partial-automation to register

each GCP in UAS-SfM softwares.

Agisoft Metashape. In Agisoft Metashape, the software aligns

imported images, approximating camera position and

orientation to generate tie points in the form of a sparse point

cloud. A high accuracy was chosen for the photo alignment such

that tie points were extracted from the full-resolution images.

After alignment, GCPs were manually picked in order to

georeference all images. The software then grids the dense

cloud and filters out erroneous points based on the angle and

distance between points. The cloud was also filtered on the basis

TABLE 1 UAS platforms and sensors used at each site. Optical sensors collect RGB images (Hasselblad and Phantom built-in) or individual Red (R),
Green (G), and Blue (B) band imagery post-processed to composite RGB imagery (Altum). Multispectral sensors collect composite NDVI images
(Sentera) or individual Red Edge (RE) and Near-Infrared (NIR) imagery post-processed to composite NDVI imagery (Altum). Optical andmultispectral
sensors are provided with the associated sensor resolutions derived from company-reported platform and sensor specifications.31–33

Site Platform Optical sensor Multispectral sensor Resolution Radiometric
calibration

Swan Island DJI Phantom 4 Pro Built-in DJI camera NA 20 MP CMOS no

RGB composite

NC DJI Mavic 2 Pro Hasselblad L1D-20c Sentera Double 4K NDVI + NDRE 20 MP CMOS (Optical) no

RGB composite NDVI composite 12 MP BSI-CMOS (Multispectral)

NIWB DJI Matrice 200 V2 Micasense Altum 3.2 MP per band yes

individual band imagery (R, G, B, RE, NIR)
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of reconstruction uncertainty, projection accuracy, and

reprojection error. Camera and point optimization was

performed after each round of point filtering (Agisoft LLC, St.

Petersburg, Russia).

Optical (RGB) data was used to generate orthomosaics of

each site. RGB images were also used to generate Digital Surface

Models (DSMs), 3-dimensional models of the marsh surface

(including vegetation), and Digital Terrain Models (DTMs), 3-

dimensional bare-earth elevation models. By default, DSMs, RGB

orthomosaics, and NIR orthomosaics in Pix4D were generated at

a pixel size of 1 x the Ground Sampling Distance (GSD) of the

corresponding UAS flight. DTMs were generated by Pix4D at 5 x

GSD. RGB and NIR orthomosaics in Agisoft were generated at a

pixel size of 1 x the GSD, while DSMs and DTMs were generated

at 2 x the GSD. All models were subsequently resampled to

matching resolutions for analysis. Orthomosaics, DSMs, and

DTMs were further analyzed in ArcGIS Pro Mapping

Software version 2.7.3 (Esri Inc., Redlands, CA, United States).

2.5 Ground validation of vegetative
characteristics

Field measurements of vegetative properties were recorded at

fixed long term monitoring plots within each NERR project site

in the 1–2 weeks following UAS flights. These data provide true

metrics with which to validate UAS-SfM computed values.

Percent Cover. At NC NERR, percent cover of S. alterniflora

was assessed through a point-intercept method (Roman et al.,

2001). A thin rod was lowered perpendicular to the substrate at

50 equally spaced grid nodes within a 1 m2 quadrat. Species

intercepting the rod were recorded and their binary presence at

each node was summed across the 50 nodes and multiplied by

two for a percent cover estimate (0–100%). At NIWB NERR,

percent cover was estimated visually for each species and

recorded at 5% intervals. At both sites, estimates represent

percent cover of S. alterniflora because only monospecific

plots were included.

Canopy Height. In September, average maximum canopy

height was estimated by recording the height above the sediment

of the three tallest S. alterniflora stems observed in each sampling

plot. The S. alterniflora stems were manually measured with a

meter stick after stretching the stem to its full straight length. In

February, average maximum canopy height estimates were

derived from an average of the three maximum elevations

reached by vegetation in each sampling plot and stems were

not stretched vertically to their full straight-line length. In both

seasons, plot centers were recorded by RTK-GNSS to align

ground data with UAS-SfM products.

Biomass. Aboveground biomass was quantified by clipping

standing vegetation to the soil surface within 0.25 m2 plots

proximal to the plots used for measuring percent cover and

canopy height. In September, standing S. alterniflora biomass

was mostly live (green) with very few senescent leaves. Dead

stems without leaves, likely from previous years, were discarded

before weighing. In February, much of the existing S. alterniflora

biomass was dead (brown) or senescent (yellow). As a result,

clipped biomass was separated into three categories (green,

yellow, and brown) and each group was dried and weighed

separately. Estimates of live above-ground biomass used for

analysis were the total of green and yellow biomass (total

biomass = green biomass + yellow biomass). After harvest,

stems were washed, dried at 60 °C for 72 h, and weighed to

the nearest 0.1 g to provide total standing biomass data. Total

above-ground biomass (g) was standardized by area (g/m2) by

dividing biomass weight by the plot area (0.25 m2). Plot centers

were recorded by RTK-GNSS to identify these plots in UAS-SfM

products.

2.6 Sensor comparison

There are a wide range of commercially-available UAS

sensors and platforms with varying specifications.

Considerations of cost, flight time, and multispectral

capabilities are among the reasons that UAS platform and

sensor choice varies among research groups. In this analysis,

different UAS were used for data collection at NC NERR and

NIWB NERR. The Sentera Double 4K, used to collect

multispectral data at NC NERR, is a 12 Mega-Pixel (MP)

non-radiometrically calibrated camera. The Micasense Altum,

used at NIWB NERR, is a lower-resolution 3.2 MP sensor that is

radiometrically calibrated. To understand whether site

differences in multispectral products (NDVI rasters) were due

to differences in sensors or true variability among sites, a

comparative analysis was conducted using data collected in

May 2021 when both platform-sensor combinations were

flown at NC NERR during sequential flights. Sampling plots

(n = 1,000) were randomly generated across the vegetated survey

area in ArcGIS Pro to imitate 0.25 m2 vegetation sampling plots

collected in the manual analysis. Mean Normalized Difference

Vegetation Index (NDVI; described below) values within the

plots were extracted and compared across softwares and sensors.

2.7 Spatial error quantification

As the SfM softwares stitch individual 2-D images into a

continuous 3-D surface, SfM-computed locations may differ

slightly from true position. The quality of SfM-derived

orthorectification was assessed by evaluating the differences

between photogrammetrically-computed positions and true

measured positions. True measured positions were surveyed

by RTK-GNSS systems (see Section 2.2) with horizontal error

of approximately 1–2 cm and a vertical error of approximately

2–4 cm. Projection error in UAS-SfM derived products was
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assessed in the XY plane using visually-identified GCPs. XY error

was derived directly from UAS-SfM software reports, which

report GCP error as the difference between the true (RTK-

GNSS-derived) position of the GCP center and the computed

(SfM-derived) position as identified by the photogrammetry

software in the orthomosaic. Vertical error (in the Z plane)

was assessed using additional GNSS observations taken across

the field sites referred to as checkpoints (CPs). Vertical estimates

were computed by overlaying RTK-GNSS surveyed CPs onto

SfM-derived Digital Surface Models (DSMs) and Digital Terrain

Models (DTMs). CP elevation was extracted from elevation

models in ArcGIS Pro via the Extract Values to Points tool

and directly compared to true elevation.

2.8 Alternative terrain modeling

Vertical error from UAS-SfM models was compared to

that of available LiDAR datasets accessed via the National

Oceanic and Atmospheric Administration’s (NOAAs) data

access viewer (NOAA, 2021). LiDAR DEM data at NC NERR

is derived from the 2018 United States Army Corps of

Engineers (USACE) National Coastal Mapping Program

(NCMP) Post-Florence Topobathy Lidar DEM collected in

October 2018. This dataset was collected by the Joint

Airborne Lidar Bathymetry Technical Center of Expertise

(JALBTCX) at a cell size of 1 m and a reported vertical

accuracy of 19.6 cm (OCM Partners, 2018). LiDAR DEM

data at NIWB NERR is derived from the 2017 South

Carolina (SC) Department of Natural Resources (DNR)

Lidar DEM collected between December 2016 and March

2017. Raster DEMs have a cell size of 0.76 m and vertical

accuracy of 5.8 cm (OCM Partners, 2017). LiDAR vertical

elevation accuracy was assessed by overlaying ground-

surveyed checkpoints on LiDAR DEMs in ArcGIS and

computing the difference between LiDAR DEM elevation

and GNSS-surveyed elevation. LiDAR DEM vertical

checkpoint error was compared to that of UAS-SfM DTMs

(computed as outlined in Section 2.7).

2.9 Image-based quantification of
vegetative metrics

Products generated from SfM softwares (DSMs, DTMs,

orthomosaics, and vegetation indices) were used to compute

estimates of percent cover, canopy height, and biomass.

Above-ground Biomass. The relationship between SfM-

computed vegetation indices and field-derived biomass was

explored through a simple linear correlation analysis.

Sampling plots were digitized in ArcGIS by generating a

0.25 m2 square around each GNSS-recorded plot center

point. The ArcGIS Zonal Statistics tool was used to extract

the cell values of the corresponding vegetation index raster

within each plot. The mean index raster value within each

plot was computed and compared to field-recorded

measurements of biomass.

Vegetation Indices. Alternative indices were tested for a

relationship with biomass. The Near-Infrared (NIR) band

was used in combination with the Red band (R) to generate

NDVI rasters. NDVI has been widely used to identify and

quantify vegetation (Adam et al., 2010). Additional

vegetation indices Excess Green (ExG) and Vegetative

Index Green (VIg) were calculated using combinations of

the Green (G), Red (R), and Blue (B) bands to test for a

relationship with biomass (Meyer and Neto, 2008). To do

this, individual bands were extracted from RGB composite

imagery collected by the Mavic 2 Pro at NC and image pixel

values were normalized. Original imagery was used at NIWB,

as Micasense Altum sensors collect individual band imagery.

Indices were computed by combining individual bands using

the raster calculator in ArcGIS according to the following

equations:

NDVI � (NIR − Red)/(NIR + Red) (1)
ExG � 2pGreen − Red − Blue (2)

VIg � (Green − Red)/(Green + Red) (3)

Mean index value was computed as the average of all pixels

that fell within the area of each ground-sampled biomass plot

using Zonal Statistics in ArcGIS.

Canopy Height. Canopy height was computed as the

difference between SfM-generated DSM and DTM elevations

at monitoring plots according to the following equations:

Canopy Height =

max(DSM) −min(DTM) (4a)
max(DSM) −mean(DTM) (4b)

where the maximum value is represented by the maximum

cell value of the corresponding elevation raster (DSM or

DTM) within the area of the fixed monitoring plot.

Accordingly, the minimum value is represented by the

minimum cell value, and the mean value is represented by

the average cell value. Raster values within digitized sampling

plots were extracted using Zonal Statistics in ArcGIS. Prior to

this analysis, elevation model rasters were resampled to the

lowest resolution models within each site-season pair (DSM

and DTM) and snapped to ensure proper overlay of raster

cells. All computed canopy height metrics were compared to

ground-validated values using the Tidyverse and Dplyr

packages in R (v.1.3.1093). Canopy height analysis is

broken down by season due to the differences in ground-

based methodologies across seasons (see Section 2.5). R2 and

Root Mean Square Error (RMSE) were computed in R to

assess the potential to use UAS-SfM data to provide canopy

height estimates of S. alterniflora.
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Percent cover. Training samples consisting of ground

points (n = 30) and vegetated points (n = 30) were

manually identified using the respective site orthomosaics.

NDVI values were extracted at these points. A dynamic

NDVI threshold was employed to distinguish bare ground

from vegetation. While some studies have employed fixed

thresholds to identify vegetation (Chen et al., 2016; Laengner

et al., 2019), others have developed dynamic thresholds as

NDVI has been shown vary in different environmental

conditions (Lopes et al., 2020). In this study, after

analyzing the distribution of NDVI values across ground

and vegetated training samples, the vegetation threshold was

set as the average of the minimum recorded NDVI value for

vegetated training points and the maximum recorded value

for ground training points. The threshold was set according

to the following equation:

Threshold � [min(vegetation NDVI) +max(ground NDVI)]/2

(5)

Raster cell values within each of the plots were re-coded to a

binary value (vegetated/non-vegetated) on a per-pixel basis using

the corresponding threshold value. Percent vegetated cover was

estimated as the % of pixels within the area of each fixed

vegetation monitoring plot that were classified as vegetated

with NDVI values above the threshold. Given the observed

differences in NDVI values across sites and seasons, separate

thresholds were computed for each site-season pair.

3 Results

3.1 Spatial error analyses

3.1.1 Ground Control Point distribution
The impact of both GCP density and distribution on vertical

accuracy were analyzed using data from a test site at Swan Island,

Maryland. Increased GCP density was associated with decreasing

model error (Figure 2). Regularly distributed (“spaced”) GCPs

minimized model error as compared to unevenly spaced

(“clustered”) GCPs (Figure 2). This trend held for both SfM

softwares, though error was more pronounced at low GCP

density using Agisoft Metashape.

Pix4D-generated products demonstrate sensitivity to

GCP distributions, with substantially lower vertical RMSE

using spaced distributions as compared to that of clustered

distributions in all three density scenarios (0.25, 0.5, 1 GCPs/

ha). Metashape-generated products appear sensitive to

spacing at low GCP densities, with extreme vertical error

(1.39 m RMSE) using clustered 0.25 GCP/ha, but low error

(0.03–0.06 m RMSE) for clustered and spaced iterations at

mid-range GCP densities (0.5 and 1 GCP/ha). Using both

softwares, spaced distributions of GCPs resulted in low

vertical error (<0.06 RMSE) for GCP densities of

0.5 GCPs/ha and greater. The result of the GCP spatial

analysis was used to inform the distribution of GCPs at

the two sampling sites (NC NERR and NIWB NERR).

FIGURE 2
Vertical Root Mean Square Error (RMSE) is minimized at higher GCP densities with regularly spaced GCPs. Vertical RMSE is calculated from
differences between SfM-computed DSM elevations and GNSS-recorded true elevations at checkpoints (n = 115) across the test site at Swan Island.
Y-axes are segmented for visualization of extreme values.

Frontiers in Remote Sensing frontiersin.org08

DiGiacomo et al. 10.3389/frsen.2022.924969

53

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.924969


With information from the Swan Island distributional

analysis, well-spaced GCPs were distributed around NC

NERR resulting in a density of approximately 3.5 GCPs/ha.

Permanent GCP targets clustered along a boardwalk in the

center of the site were used at NIWB NERR. While spacing

could not be modified as much of the marsh area is inaccessible

at NIWB NERR, the resultant GCP density was approximately

3 GCPs/ha.

TABLE 2 Ground Control Point (GCP) reprojection error in the XY plane is similar (<5 cm) across softwares, altitudes, and sites. RMSE error is calculated as the
average of reported X and Y RMSE. Horizontal RMSE is computed in SfM softwares by comparing of GNSS-recorded GCP (n = 5–12) positions with SfM-
computed GCP positions. GNSS recorded positions are recorded with less than 1 cm of horizontal error.

Site Season Flight altitude (m) GSD (cm) Horizontal RMSE (cm)

Pix4d, Agisoft

NC September 25 0.57 0.119, 2.01

NC February 25 0.59 0.396, 3.66

NC September 50 1.17 1.395, 3.28

NC February 50 1.17 1.110, 4.06

NC September 120 2.83 1.94, 2.595

NC February 120 2.84 1.58, 2.835

NIWB September 25 1.18 0.7195, 1.300

NIWB February 25 1.08 0.996, 1.44

NIWB September 50 2.35 1.11, 0.885

NIWB February 50 2.16 2.345, 2.175

NIWB September 120 5.72 0.9325, 0.575

NIWB February 120 5.26 1.245, 0.995

FIGURE 3
Vertical error appeared to differ acrossmodels and altitudes. Vertical error was calculated as the difference between GNSS-recorded elevations
and SfM-computedmodel elevation at site checkpoints. Checkpoints recorded during both September (n = 46, NC, n = 64, NIWB) and February (n =
56, NC, n = 42, NIWB) were included in the RMSE.
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3.1.2 Horizontal error
Horizontal error, calculated as the difference between GNSS-

recorded GCP position and SfM-software computed GCP

position, is reported for each site orthomosaic. Ground

Sampling Distances (GSDs), or pixel sizes, differed across

sites, sensors, and altitude (Table 2). Altum-derived GSDs

were approximately twice as large as Mavic Pro-derived GSDs

at the same altitude. GSD differences between softwares were

negligible (<0.1 mm). Reprojection error in the XY direction was

similar (<5 cm) for Pix4D and Agisoft across altitudes, seasons,

and sites. There does not appear to be a trend in XY error across

altitudes despite the increasing GSD.

3.1.3 Vertical error
Elevation root mean square error (RMSE) at checkpoints

ranged from approximately 0.2–0.7 m. RMSE appeared to

increase with altitude, with higher RMSEs reported at higher

UAS flight altitudes. Within each altitude, DTMs were

associated with lower RMSE as compared to DSMs. RMSE

values were similar across softwares for the DSMs (mean

RMSE difference = 5 cm) while DTM RMSE values showed

greater spread (mean RMSE difference = 10 cm).

At NIWB, 50 m altitude DTMs appeared to minimize

vertical error relative to 25 and 120 m altitude models

(Figure 3). For the DSMs, 50 m altitude models showed a

slight uptick in vertical error using Pix4D models (<5 cm), but

a large jump in vertical error from 50 to 120 m altitude models

(>10 cm RMSE). Metashape model error was minimized in

both the DTMs and DSMs using 50 m altitude imagery. At

NC, 50 m altitude models demonstrated slight increases in

vertical error (<5 cm RMSE). Additionally, because less

images are contained in higher altitude datasets, processing

time decreases with altitude. From this analysis,

models constructed from 50 m imagery were chosen for all

further analyses to reduce vertical error and optimize

processing time.

FIGURE 4
LiDAR datasets demonstrate higher vertical error than SfM-derivedmodels at NC but lower error at NIWB. DTM vertical error is calculated as the
difference between model elevation and GNSS-recorded elevations and represented for each site-method pair as the Root Mean Square Error
(RMSE).
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Vertical error at checkpoints was compared across SfM-

derived DTMs and available LiDAR datasets (Figure 4).

Root mean square error (RMSE) are used to show

agreement between computed and true data and indicate

overshooting or undershooting of digitally-computed

models. At NC and NIWB, computed and true elevations

are well correlated using all three methods (R2 = 0.64–0.84)

with relatively low error (RMSE = 0.24–0.32 m). At NC,

UAS-SfM processing workflows outperform LiDAR

datasets in accuracy (UAS-SfM: RMSE = 0.24–0.40 m,

LiDAR: RMSE = 0.64) (Figure 4). At NIWB, the LiDAR

DTM yields a lower error (RMSE = 0.20 m) than either UAS-

SfM software (RMSE = 0.30–0.32 m). Comparing across

sites, DTM performance was similar within each UAS-SfM

software, but noticeable differences in accuracy were

observed using the LiDAR datasets (NC LiDAR: R2 = 0.64,

RMSE = 0.64 m, NIWB LiDAR: R2 = 0.83, RMSE = 0.20 m).

3.2 Vegetative metrics

Preliminary analyses of 3D surface models indicated that

the 50 m altitude imagery represented the optimal tradeoff

between model accuracy and processing time (details in

Section 3.1.3). All image based vegetation metrics were

calculated using models generated from 50 m altitude

imagery in Pix4D only. An initial appraisal of the models

generated in the two softwares indicated good agreement, so

only Pix4D was used to evaluate vegetation metrics to reduce

the number of variables present.

3.2.1 NDVI
The two multispectral sensors used in this analysis

(MicaSense Altum and Sentera Double 4K) demonstrated

different NDVI readings when flown concurrently over the

same test site (Figure 5). An analysis of mean NDVI at

FIGURE 5
Multispectral sensors used in this analysis demonstrate different NDVI readings of the same area. Random 0.25 m2 samples (n = 1,000) were
generated across SfM-derived NDVI rasters and the mean NDVI value was compared across sensors and softwares.
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randomly generated test plots (n = 1,000) across the marsh

platform showed that NDVI readings are highly correlated

between sensors (Pix4D: R2 = 0.85, Metashape: R2 = 0.67).

However, Altum NDVI readings were greater than Sentera

readings by a mean of 0.29 in Pix4D and 0.25 in Metashape.

Sensor resolution and specifications potentially driving these

differences are detailed in Table 1. Within sensors, reading

differences across softwares may be a result of unique software

workflows and processing algorithms as described in

Section 2.4.

3.2.2 Above-ground biomass
There was a strong positive correlation between SfM-

computed NDVI and field-derived above ground biomass

(Table 3). Imagery collected in September, when biomass was

near its annual maximum, demonstrated higher computed

TABLE 3 Vegetation indices demonstrate significant relationships with ground-derived biomass measurements. Data represented are Pix4D-
processed data using 50 m altitude flights in both February and September. ***: p < 0.001, **: p < 0.01, *: p < 0.05

Vegetation index Site Season Best fit line R2 p

NDVI NC September y = 5.08e-4 x + 0.022 0.69 ***

February y = 7.77e-4 x + 0.0086 0.65 **

NDVI NIWB September y = 4.50e-4 x + 0.32 0.73 ***

February y = 8.19e-4 x + 0.35 0.43 *

ExG NC September y = 1.46e-4x + 0.0050 0.46 *

February y = 2.73e-4 x + 0.017 0.56 **

ExG NIWB September y = 2.16e-5 x + 0.017 0.52 **

February y = 3.98e-5 x + 0.016 0.17

VIg NC September y = 9.90e-6 x + 0.015 0.01

February y = -2.22e-05 x - 0.00020 0.008

VIg NIWB September y = 1.63e-4 x + 0.069 0.38 *

February y = 2.46e-4 x - 0.0044 t0.18

FIGURE 6
Mean vegetation index values within biomass sampling plots demonstrate varying relationships with ground-derived S. alterniflora above
ground biomass (AGB). Excess Green (exG) and Normalized Difference Vegetation Index (NDVI) correlate well with AGB, but these relationships vary
by season (denoted by color), and Vegetation Index Green (VIg) shows no clear relationship with AGB.
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NDVI values. February imagery, collected when standing dead

vegetation was abundant, demonstrated lower computed NDVI

values (Figure 6). Alternative indices derived from optical data

demonstrated variable performance relative to that of NDVI.

Excess Green (ExG) demonstrated a strong linear correlation

with biomass at both sites (NC: R2 = 0.50, NIWB: R2 = 0.65)

(Table 3). VIg demonstrated a weak relationship with biomass at

both sites (NC: R2 = 0.13, NC: R2 = 0.15).

3.2.3 Canopy height
Canopy height, assessed using two different methods (Eqn.

4a, 4b), is substantially underpredicted by UAS-SfM computed

methods (Figure 7). At higher true stem heights, canopy height is

underpredicted by greater amounts as shown by the comparison

of computed data to the 1:1 line (Figure 7). At NC, there were no

significant relationships between ground and computed

measurements (p > 0.05) with R2 values ranging from 0.08 to

FIGURE 7
Computed canopy height underpredicts true canopy height. Data is visualized by season andNERRS site. Each point represents a canopy height
sampling plot from which ground data (x-axis) and UAS-SfM computed data (y-axis) were extracted. Red line represents the identity line. R2 is
assessed for individual linear relationships. Error is computed as the Root Mean Square Error (RMSE) observed vs expected data (error as it relates to
the 1:1 line) are computed to assess the goodness of fit. Subpanels represent differences between DSM and DTM values within a given digitized
sampling plot (e.g. max - min: maximum DSM value - minimum DTM value).

FIGURE 8
Percent cover estimates. (A) An NDVI threshold, denoted in red, is used to distinguish between ground and vegetation. (B) Computed percent
cover estimates are compared to ground-recorded data, demonstrating weak alignment. Example sampling plots projected onto site orthomosaics
are included. Points are colored by ground-recorded canopy height values within a sampling plot. Dashed lines represent the identity line.
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0.15. At NIWB, ground-derived and UAS-SfM computed

measurements were significantly correlated (p < 0.01) using

all methods, with R2 ranging from 0.79 to 0.85.

3.2.4 Percent cover
Pixel-based percent cover estimates demonstrate difficulty

assessing percent cover on the scale of ground-recorded

measurements in 1 m2 plots (Figure 8). Manual identification

of ground and vegetated points revealed distinct NDVI

signatures at NIWB in both September and February.

However, NDVI signatures were mixed with overlapping

ranges in both seasons at NC (Figure 8A). Thresholds

developed according to Equation 5 were employed to produce

computed percent cover estimates. Percent cover estimates

demonstrated weak alignment with ground-recorded data at

NC (Figure 8B) and no alignment with ground-recorded data

at NIWB. Percent cover estimates were high at NIWB (mean =

95.05%, sd = 12.40%) despite ground estimates encompassing a

wide range of values between 10 and 95%.

4 Discussion

The findings of this study reveal that the quality of UAS-

based mapping products can be substantially impacted by survey

design. In addressing aim 1), we demonstrate that optimal GCP

density and distributions can improve product georectification

and UAS survey altitude impacts product resolution and surface

model error. Moreover, data collection and analysis methods,

which often vary across studies, can introduce variability. SfM

software packages and platform-sensor combinations can have

variable outputs, limiting comparability and flexibility of this

approach. To address aim 2), we show that UAS hold promise for

monitoring wetlands, with particular success using indexed-

based proxies of above-ground biomass. In detailing UAS-SfM

methods and analyzing product alignment, the results of this

study lay the groundwork for a standardized methodology for

UAS-SfM based monitoring of coastal wetlands.

4.1 Spatial error analyses

4.1.1 Ground control point distribution
The observed relationship between GCP density and error

reinforces that increased GCP density leads to an improved

ability for UAS-SfM softwares to properly georectify the

orthomosaic and provide accurate ground elevation estimates

(Figure 2), which has been supported by other studies (Tonkin

and Midgley, 2016; Seymour et al., 2018; Villanueva and Blanco,

2019). While increasing GCPs density improves the product

accuracy via georeferencing, the return on effort appears

minimal at densities greater than 1 GCP/Ha (Figure 2).

Studies of unvegetated habitats also show this pattern of

diminishing returns in vertical accuracy at GCP densities

greater than 1-2 GCP/ha (Martínez-Carricondo et al., 2018;

Brunetta et al., 2021). In addition to density, this study finds

that the distribution of GCPs can substantially influence vertical

accuracy. Large vertical errors and high variance using

“clustered” spacing highlights the importance of regularly

spaced GCPs (Figure 2). This is supported by other studies

which note that GCPs should stretch to the site edges to

avoid tilt in the resultant elevation models (James et al.,

2017), and reinforce the relationship between well-spaced

GCPs and reduced model error (Tonkin and Midgley, 2016).

However, in this study, both GCP distribution and density are

analyzed together to provide a comprehensive recommendation

for study designs. Minimal vertical errors using regularly-spaced

GCPs with density 0.5 GCPs/ha or greater were observed

(Figure 2), revealing a threshold that optimizes product

accuracy while minimizing GCP density since each GCP

requires time and effort to deploy and survey. Thus, coastal

wetlands potentially do not need to be overloaded with GCPs for

SfM processing if GCPs are well spaced. However, this

distributional analysis also indicates that increasing the

density of GCPs can reduce error to offset the impact of

clustered GCPs. At many protected coastal sites it may be

infeasible to regularly distribute GCPs across the study area

due to inaccessibility or habitat protections. In these cases, it

would be recommended to increase the number of GCPs to

2 GCP/ha or greater. NIWB NERR represented one such site,

where permanent GCPs were fairly clustered along a boardwalk.

High GCP densities (~3 GCPs/ha) were used to offset errors

introduced by spacing and maximize model accuracy.

4.1.2 Horizontal error
The horizontal reprojection error analysis demonstrates the

tradeoff between flight altitude, with higher altitudes allowing for

greater area coverage, and product resolution. Within a given

UAS sensor, pixel size (GSD) increases proportionally with

altitude. Across sensors, GSD differences were the result of

differences in sensor resolutions (see Table 1), as GSD

depends on inherent camera properties. The Mavic (NC)

demonstrated higher resolution products indicated by a lower

GSD as compared to the Altum (NIWB) likely due to sensor

resolution differences (Table 1). The resultant GSD of Mavic

flights at 50 m altitude approximately matches that of Altum

flights at 25 m, indicating that users can decrease UAS flight

altitude to offset reduced sensor resolutions and still achieve an

optimal GSD for mapping purposes.

Horizontal error remained fairly constant across altitudes,

even whilst product resolution (GSD) increased substantially

(Table 2). For mapping projects, high UAS flight altitudes

(>100 m) may be optimal as it allows the user to rapidly

cover large areas without sacrificing much horizontal

accuracy. However, the increase in GSD with altitude should

be noted for projects intending to precisely map fine-scale
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features or boundaries. Horizontal error was generally similar

(<4 cm difference) across SfM software packages, but Pix4D-

generated products tended to produce smaller errors (Table 2),

potentially indicating a heightened ability to georectify

orthomosaics to meet ground-surveyed points. Overall, low

horizontal errors (<5 cm) demonstrated by this analysis

provide promising information for precise mapping of coastal

and estuarine habitats, improving abilities to perform spatial

analyses like the delineation of ecological boundaries and

assessment of marsh retreat and advancement.

4.1.3 Vertical error
The analysis of GCP distribution at Swan Island (Section

3.1) demonstrated that with well-spaced GCPs at a density of

1 per hectare, vertical accuracies on the order of 5 cm or less

are achieved on unvegetated surfaces. When vegetation is

present, SfM-derived surface models represent the top of

the vegetative canopy rather than the ground surface. As a

result, comparisons between modeled (SfM) and measured

(GNSS) elevations are influenced by the presence of

vegetation. With SfM, as with LiDAR, the ability to

accurately sense marsh sediment elevation is dependent

upon the density of vegetative cover as this determines the

number of ground hits (ie. pixels that represent sediment

surface) that are sampled.

DSMs are constructed to represent the marsh canopy (i.e.

plant tips) while DTMs (created by filtering the 3D point cloud to

remove all points above the ground surface) represent bare-earth

models intended to exclude vegetation and other structures.

Because these sites are vegetated ecosystems, it is expected

that GNSS-recorded, “true” values represent bare-earth

elevation and therefore should closely align with DTM-

derived elevations. Anders et al. (2019) assessed Agisoft

Metashape-generated (formerly Agisoft Photoscan) DTMs

over shrubland habitat which yielded an RMSE of 0.5m,

similar to the values observed in this study (Figure 3) (Anders

et al., 2019). However, the range of RMSE values for both surface

and terrain models demonstrate the challenges with accurately

measuring vegetation height from imagery. With S. alterniflora

stems ranging from approximately 0–2 m tall, high error in

elevation models means that, proportionally, much of the

plant stem may be missed in calculations.

Comparing error across softwares, the notable differences

in DTM error is potentially a result of dissimilarity in DTM

construction methods across softwares. Metashape allows for

more user input in the DTM construction, permitting the user

to define the maximum angle and distance between points to

filter the DSM in the creation of a DTM (Agisoft Metashape

User Manual - Professional Edition, Version 1.5). In contrast,

Pix4D does not allow these parameters to be defined (Pix4D,

2022). Because of these differences, the DTMs do not appear

to be comparable across softwares. The DSMs contain higher

RMSE than DTMs but are more consistent when comparing

across softwares (Figure 3) presumably due to software

similarities in DSM construction methods.

Analyzing altitudinal trends, the increase in vertical error

observed at higher altitudes speaks to the tradeoff between

efficiency (higher altitude flights cover a larger area in fewer

images) and precision (Figure 3, Supplementary Figure S1). For

this study, 50 mwas chosen as the optimal flight altitude based on

Figure 3, as it minimizes DSM RMSE at NIWB, only shows a

slight increase in error from 25 m altitude at NC, and is the most

consistent across softwares. While there is a clear tradeoff in

product resolution with flight altitude (see Table 2), vertical

accuracy does not demonstrate a clear trend with altitude. A

similar study using a consumer-grade UAS to survey a shrubland

area revealed an increase in vertical error with altitude (altitude

range: 126–235 m) at the first site and consistent vertical error

across altitudes at the second site (Anders et al., 2020). The range

of low altitudes (25–120 m) used in this study are those most

commonly used by United States UAS pilots given that flight

altitudes above 120 m are restricted by the Federal Aviation

Administration (FAA). In analyzing product accuracy over

this relevant altitudinal range, this study may inform flight

planning for efficient mapping of coastal vegetated areas.

UAS-SfM-derived DTM errors are similar to that of other

studies of similar habitats (Yanagi and Chikatsu, 2016;

Goodbody et al., 2018). For example, Goodbody et al. (2018),

using a fixed-wing UAS to construct DTMs of vegetated habitats,

reported an average of 0–0.5 m error in shrubland habitats. UAS-

SfM DTM error in similar short vegetation in this study is

comparable (RMSE: 0.24–0.32 m; Figure 4). Comparing the

two UAS-SfM methods to LiDAR data, it is clear that LiDAR

datasets, though substantially lower in resolution and lacking

real-time observations, yield comparable elevation estimates to

UAS-SfM-constructed bare-earth models. This observation,

which is supported by other studies, may be due to the high-

accuracy positioning of aircraft hosting LiDAR sensors (Dayamit

et al., 2015; DiGiacomo et al., 2020). Comparing all three

methods, Metashape-generated DTMs align best with GNSS-

recorded values with high R2 values and low RMSE estimates

(Figure 4). This may be explained by noting that Metashape

DTM-generation, discussed in Section 2.4, allows for a high level

of user input.

4.2 Vegetation metrics

4.2.1 NDVI
The observed differences in NDVI readings across sensors

indicate that raw NDVI values cannot be compared across the

two sites (Figure 5). With an observed difference in NDVI

readings between sensors of approximately 0.3 across the

biomass values observed in this study, it is clear that absolute

NDVI values cannot be compared across sensors, even when

flying the same site under the same conditions. For comparative
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work (i.e. observing changes in marsh biomass over time), it is

therefore recommended that the same sensor is used. However,

this may become difficult as sensors improve and change over

time. For this reason, test flights of the same area under the same

conditions may be flown to develop a transformation between

sensors and enable direct comparisons of NDVI values. Sensor-

specific differences in NDVI values have been outlined across

different satellite-derived datasets and between UAS and satellite

data and attributed to differences in bandwidths, spatial

resolutions, and data processing (Huang et al., 2021). One

important distinction is that multispectral data from the

Micansense Altum (NIWB) sensor is radiometrically calibrated

using a calibration panel while that of the Sentera Double 4K (NC)

is non-calibrated. Radiometric calibration, which converts the

sensor radiance into reflectance values and accounts for

changes in ambient light, works to provide standardized data

that is more comparable across conditions (Lu, 2006). While

this adds greater consistency and reliability to the Altum

dataset, it has been noted that the factory-provided calibration

of commercial-grade UAS with multispectral capabilities can be

limited and fail to account for sensor changes and deterioration

over time (Mamaghani and Salvaggio, 2019). Alternative

calibration methods have been developed to improve accuracy

across flights, but these methods may require additional time and

specialized knowledge (Mamaghani and Salvaggio, 2019).

4.2.2 above-ground biomass
NDVI is recommended as the most reliable option as it has the

strongest relationship with biomass (R2 = 0.42–0.73, Table 3) and is

significantly linearly correlated with biomass across sites and

seasons. Moreover, these linear relationships (slopes, intercepts)

are consistent across seasons at each site (Table 3). This indicates

the potential to use a linear model to accurately predict biomass

changes over time at a given site from UAS imagery. Previous

studies of S. alterniflora biomass using SPOT6 satellite remote

sensing images and airborne hyperspectral scanners report a similar

relationship with NDVI (R2 = 0.499, R2 = 0.635, respectively)

(Wang et al., 2017; Zhou et al., 2018). Several UAS-based

studies have shown clear linear relationships between biomass

and NDVI readings in coastal wetlands (Zhou et al., 2018;

Doughty and Cavanaugh, 2019). This study supports the ability

of UAS-based multispectral imagery to provide non-invasive

estimates of wetland biomass across multiple sites and seasons.

Indices that rely on optical data alone, like ExG and VIg,

provide a clear advantage in that these data are more accessible

and generally less expensive. ExG also demonstrates a strong

relationship with biomass (R2 = 0.17–0.56, Table 3), although the

strength of this relationship is variable across seasons (Figure 6).

In the absence of multispectral data, ExG may provide reliable

estimates during peak biomass that don’t require advanced

multispectral sensors or calibrations. While VIg largely fails to

capture changes in biomass in this study, it is possible that VIg

may perform well in other systems. This is supported by other

work showing that VIg is tightly correlated to biomass in studies

using commercial-grade UAS to survey maize fields (R2 = 0.68)

(Niu et al., 2019) and hyperspectral UAS to study changes in

summer barley biomass (R2 = 0.62) (Bendig et al., 2015). While

these represent several common vegetation indices, future work

may explore the potential of more complex indices, or

combinations of indices, which have been shown in certain

studies to improve predictions of AGB (Huete, 1988; Qi et al.,

1994; Fuentes-Peailillo et al., 2018; Poley and McDermid, 2020).

Relationships with biomass should be further analyzed with an

understanding that many current vegetation characteristics are

designed for allometric-based estimates of above-ground biomass.

Traditional approaches involve clipping plants, like the ground-

based data in this study, to assess biomass. Even non-invasive

approaches, like measuring density and stem height as a proxy for

biomass, require substantial effort and result in sparse data points

across a dynamic habitat. Furthermore, in many coastal marshes

the sediments of the lower elevations are so unconsolidated as to

make access for ground-based measurements impractical or

simply too physically destructive to warrant repeat sampling.

The ability to estimate AGB using image-based indices across

landscapes transforms the scale at which we can monitor these

ecosystems. Moreover, the consistency across seasonal endpoints

(dormant season and peak-biomass) demonstrated by linear

models (Table 3) indicates potential to accurately monitor

biomass within a given site. In this way, UAS may be used to

rapidly and efficiently collect vegetation data over time, allowing

researchers and managers to estimate biomass across meaningful

spatiotemporal scales.

4.2.3 Canopy height
All canopy height estimation methods employed here

indicate that canopy height is substantially underestimated by

UAS-derived heights and that UAS-SfM methods underestimate

plant height more at higher stem heights (Figure 7). This trend,

observed in previous studies of S. alterniflora structure, has been

addressed in other studies by inflating UAS-SfM computed plant

heights to improve the accuracy of canopy height estimates

(DiGiacomo et al., 2020). Because the purpose of this study is

to understand the feasibility of the SfM software user to produce

canopy height estimates from UAS-SfM products, a

transformation was not employed and only raw values were

analyzed. The finding that canopy height underprediction

increases with stem height is likely due to the fact that taller

S. alterniflora plants tend to bend more under their own weight

and the outer leaves of tall plants often drape outward from the

main stem, whereas shorter plants tend be more compact and

erect. The results of the current investigation indicate that canopy

height estimate accuracy is variable across sites and seasons. Site-

based differences may be explained by the fact that the two sites

represent different ranges of canopy heights, with NIWB

generally representing taller plants (mean ± sd: 1.26 ± 0.45 m)

and NC representing shorter plants (0.81 ± 0.49 m). While short
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plants (0–0.5 m) appear to fall close to the 1:1 line with low error

(RMSE: 0.22–0.23 m), deviation from the 1:1 line becomes more

pronounced with canopy height (Figure 7). Tall plants

(height >0.5 m) observed at both sites and seasons have large

errors (RMSE: 0.95–1.09 m). Seasonal differences in canopy

height estimation accuracy may be explained by this height-

driven error, as plant height tends to be reduced in the dormant

season. Methodological differences for height measurements

across seasons (see Section 2.5), however, may also impact

this relationship as stem straight-line length was measured in

the peak-biomass data, while sloped stem height was measured in

the dormant season. While we might therefore expect to observe

more underestimation in plant height by UAS in the September

data, which is observed at NC (Figure 7), it is difficult to tease

apart whether methodological differences or true seasonal

differences in plant height (i.e. senescence) drive these

observed differences. We believe that this highlights the need

to re-evaluate and standardize field practices for canopy height

measurements. While it is typical to use straight-line stem height

as “true” canopy height in manual vegetation height field studies,

remotely sensed measurements record natural, or sloped, canopy

height (Currin et al., 2008; DiGiacomo et al., 2020). However, in

the dormant season, when the same ground-based methods were

employed across sites, a better fit was still observed at NC

(Figure 7). This may be explained by lower vertical error in

NC DSM and DTM products (Figure 3) or the previously

mentioned difference in ranges of canopy heights across sites.

Future studies might better resolve this trend by targeting field

sites with a wider range of stem heights to reduce the number of

variables potentially impacting metrics of canopy height error.

Additionally, as canopy height may vary within a 1 m2 area, we

suggest that future work decrease the plot size within which

ground-based measurements of stem height are recorded.

4.2.4 Percent cover
The NDVI signatures of ground and vegetation at NC show

considerable overlap, indicating a difficulty to separate ground

from vegetation using a fixed NDVI threshold at NC (Figure 8A).

In contrast, the distinct NDVI signatures observed at NIWB

(Figure 8A) may provide evidence for the possibility of NDVI-

based thresholding to separate ground and vegetation pixels for

percent cover estimates. However, as can be seen in Figure 8B,

this thresholding approach does not produce percent cover

values aligned with ground-recorded estimates. The failure of

a pixel-based percent cover approach to align with field-recorded

values may be a result of an oversaturation of NDVI. Spectral

indices such as NDVI can present a saturation problem, where

indices plateau at a threshold where the index is fully saturated,

typically an issue in areas characterized by densely vegetated

canopies (Asner et al., 2003; Lu, 2006; Zhao et al., 2016). As a

result, changes in cover beyond these thresholds cannot be

isolated. With taller plants at NIWB, and therefore greater leaf

area, computed percent cover estimates appear to become

saturated with all image-based estimates nearing 100% cover

(Figure 8B). These tall plants (>1.0 m) are associated with high

percent cover estimates (mean ± sd: 84.38 ± 24.26%), while short

plants (defined as < 0.5 m), that characterize NC are associated

with lower computed percent cover estimates (mean = 20.17%,

sd = 35.78%). Therefore, beyond canopy density, as outlined in

previous studies (Lu, 2006; Zhou et al., 2018), plant height may

influence aerial multispectral estimates of percent cover given

that there is greater leaf area. It is also possible that, given the

resolution of the sensors, percent cover may not be feasible to

extract on this scale. Classification of wetland imagery and the

development of percent cover estimates has been executed using

UAS-based approaches at larger scales, such as Chabot and Bird

(2013), who used 25 m radius circular plots to successfully assess

percent cover (Chabot and Bird, 2013).

Though, in this study, ground-based estimates of percent cover

are considered to be “true” data, it should be noted that these

manual estimates vary in methodology and may be inconsistent.

Differences in percent cover ground data collectionmethods at NC

and NIWB may be a source of variability in the data. The point-

intercept method used at NC may be more objective, as it has

rigorous quantitative metrics for computing cover (see Section

2.5), which may help to explain the increased alignment of UAS

and ground data at NC (Figure 8A). Ground-based methods for

assessing percent cover may be limited by the horizontal frame of

reference and impacted by canopy height, density, and vegetation

type. For these reasons, aerial estimates may be less subjective than

ground-based estimates and provide more consistent, reliable

estimations of vegetation cover.

5 Conclusion

Inexpensive, widely available UAS platforms provide a

valuable tool for habitat monitoring and change detection in

coastal ecosystems. We demonstrate that mapping product

accuracy is impacted by GCP density and distribution as well

as common UAS operational parameters. With adequate

attention to flight planning and SfM processing routines, UAS

can be used to estimate plant biomass and create marsh surface

models that are comparable in accuracy to manually-derived

products. The consistently low error in XY position associated

with UAS-SfMmodels suggests that these products will also be of

great value for measuring elevation change and structural metrics

over time in the face of rapid change in coastal and estuarine

habitats. In describing the variability and tradeoffs associated

with UAS-based mapping operations and parameters, this study

helps to increase transparency and comparability of UAS-SfM

based monitoring and assessment of coastal wetlands. The results

of this work will expand our ability to accurately and rapidly

assess and monitor coastal wetlands on unprecedented scales, a

critical step forward in light of recent coastal change and

restoration efforts.
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Arctic sea ice coverage from 43
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Satellite passive-microwave instrumentation has allowed the monitoring of

Arctic sea ice over the past 43 years, and this monitoring has revealed and

quantified major changes occurring in Arctic sea ice coverage. The 43-year

1979–2021 record shows considerable interannual variability but also a long-

term downward trend in Arctic sea ice that is clear frommany vantage points: A

linear-least-square trend of −54,300 ± 2,700 km2/year for yearly average sea

ice extents; statistically significant negative trends for each of the 12 calendar

months; negative trends for each of nine regions into which the Arctic sea ice

cover is divided; the fact that for all 12 calendar months the highest monthly

average sea ice extent came in the first 8 years of the record and the lowest

monthly average sea ice extent came in the last 10 years of the record; and a

prominent shortening of the sea ice season throughout much of the marginal

ice zone, with the length of the sea ice season in some locations decreasing by

over 100 days and some locations previously experiencingmonths-long sea ice

seasons now typically no longer having a sea ice season at all. The overall,

Arctic-wide trend value of the yearly average sea ice extents since 1979 has

consistently had a negative magnitude exceeding two standard deviations of

the trend line slope since 1990 and has remained in the narrow range

of −53,000 km2/yr to −55,500 km2/yr since 2011.

KEYWORDS

sea ice, Arctic sea ice, Arctic, climate change, polar climate change, satellite Earth
observations

1 Introduction

Prior to the 1970s, sea ice was one of the lesser-known climate variables. With sea ice

extending over vast areas and no permanent settlements on the sea ice, the records were

generally limited to those obtained from explorers and from ships traversing the area for

economic reasons, often whaling and sealing, plus some records from coastal

communities and from the few scientific expeditions that had ventured into the

Arctic sea ice territory. The most prominent coastal-community record is a centuries-

long record from Iceland (Koch, 1945).

The situation today regarding records of the Arctic sea ice cover is remarkably

different from what it had been prior to the 1970s, and in substantial part this is due to the

records obtained from satellite data. Satellites go a long way toward “leveling the playing
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field” when it comes to data collection. With satellites there is no

advantage or disadvantage to being close to a human settlement.

Passive-microwave instrumentation in particular has allowed a

satellite record of Arctic sea ice coverage that extends back to the

late 1970s.

This paper presents an array of results from a 43-year record

of Arctic sea ice derived from a sequence of satellite passive-

microwave instruments. These results quantify the decreasing

Arctic sea ice coverage over the last 43 years, robustly illustrating

the changes in one key component of the Earth’s climate system.

Sea ice coverage matters to the Earth system in many ways: It

reflects solar radiation back to space, thereby keeping the polar

regions colder than they otherwise would be; it is an insulator

between the liquid ocean and the atmosphere, restricting

exchanges of heat, mass, and momentum; it is a buffer

helping to protect coasts from wind-driven waves; it

transports cold, relatively fresh water equatorward; and it

serves as a platform for such polar animals as polar bears and

Arctic foxes, while hindering the movement of such marine

animals as whales (e.g., Barry et al., 1993; Walsh, 2013; Meier

et al., 2014; Vihma, 2014). Without sea ice, the Arctic climate and

ecosystem would be quite different from what they are today.

2 Data and methods

The data used in this paper come from satellite passive-

microwave instruments, specifically the Scanning Multichannel

Microwave Radiometer (SMMR) on NASA’s Nimbus 7 satellite,

the Special Sensor Microwave Imager (SSMI) on the F8, F11, and

F13 satellites of the United States (U.S.) Department of Defense’s

Defense Meteorological Satellite Program (DMSP), and the SSMI

Sounder (SSMIS) on the DMSP F17 satellite. The Nimbus

7 satellite was launched on 24 October 1978; the F8 satellite,

carrying the first SSMI instrument, was launched on 18 June

1987; and the F17 satellite was launched on 4 November 2006.

For this study, SMMR data are used for January 1979–mid-

August 1987, SSMI data for mid-August 1987–December 2007,

and SSMIS data for January 2008–December 2021. The SMMR,

SSMI, and SSMIS are not identical instruments orbiting in

identical orbits: They fly at different altitudes, they take

measurements at different combinations of frequencies, and

they have different fields of view even for channels with the

same frequencies. Still, they are similar enough that an extensive

effort at intercalibration between successive instruments has

yielded a consistent long-term record. Details of the

instrument differences and the intercalibration process are

provided in Cavalieri et al. (1999) for the SMMR/SSMI

transition and in Cavalieri et al. (2012) for the SSMI/SSMIS

transition. Advances in satellite instrumentation have been quite

noticeable in the reduction of missing and flawed data when

moving from the SMMR to the SSMI and from the SSMI to the

SSMIS.

One of the primary reasons that the SMMR, SSMI, and SSMIS

can each provide robust records of sea ice coverage is that they each

measure at one or more frequencies where there is a sharp contrast

between the microwave emissions of ice versus liquid water. For

instance, for the SMMR 18 GHz horizontally polarized data, the

brightness temperature of liquid water tends to be ~98.5 K, whereas

the brightness temperature of first-year ice is ~225.2 K and the

brightness temperature of older, multiyear ice is ~186.8 K (Cavalieri

et al., 1999). The corresponding values for the SSMIS 19 GHz

horizontally polarized data are 113.4 K for liquid water, 232.0 K

for first-year ice, 196.0 K for multiyear ice (Cavalieri et al., 2012).

With such large distinctions between ice and water, the ice edge

tends to be readily distinguished onmaps of the 18 and 19 GHz data.

Furthermore, there are sharply different contrasts at other

frequencies, with, for instance, liquid water having a brightness

temperature (~199.4 K) between the brightness temperatures of

first-year ice (~239.8 K) and multiyear ice (~180.8 K) for the

SMMR 37 GHz vertically polarized data (Cavalieri et al., 1999).

By incorporating these different contrasts, algorithms are able to

distinguish first-year ice frommultiyear ice as well as ice from liquid

water.

Two other crucial factors enhancing the value of passive-

microwave sensors for sea ice studies are: 1) microwave radiation

(at selected microwave wavelengths) can pass through clouds,

thereby enabling sea ice observations in the presence of clouds as

well as under cloud-free conditions; and 2) the microwave

radiation is emitted from within the Earth system rather than

being reflected sunlight, thereby enabling sea ice observations in

the dark winter months as well as during sunlit periods. These

two factors provide major advantages for the use of microwave

radiation rather than visible radiation in generating and

analyzing climate-relevant sea ice data sets.

The passive-microwave data are gridded onto a polar

stereographic projection with grid cell (or pixel) areas of

approximately 625 km2 (25 km × 25 km) at 70° latitude,

ranging up to approximately 665 km2 at the North Pole. The

gridded radiative data are received at NASA Goddard Space

Flight Center from the U.S. National Snow and Ice Data Center

(NSIDC) and are then used to calculate sea ice concentrations,

which are sent to NSIDC for archival and distribution. Sea ice

concentrations are the percent areal coverages of sea ice in each

grid cell. The algorithm used to calculate the sea ice

concentrations is the NASA Team Algorithm described in

Gloersen et al. (1992). This algorithm has been widely used in

analyses of sea ice coverage from satellite passive-microwave

data, for both the Arctic and the Antarctic (e.g., Parkinson et al.,

1999; Zwally et al., 2002).

The sea ice concentrations provide the basis for the

calculation of sea ice extents, with sea ice extent, at any given

time, being the sum of the areas of each grid cell in the region of

interest having a calculated or assumed sea ice concentration of at

least 15%. [Calculations are done for each ocean pixel covered by

the satellite data. The only assumed sea ice concentrations are for
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pixels in the immediate vicinity of the North Pole, where there

are no SMMR, SSMI, or SSMIS data due to the satellites not

passing directly over the Pole. The satellite orbits and instrument

scanning characteristics differ, with the result that the SMMR

data extend poleward to 84.6°N, the SSMI data extend poleward

to 87.6°N, and the SSMIS data extend poleward to 89.2°N.

Fortunately, in each case the data surrounding the missing-

data region suggest that it is extremely likely that each pixel

within the Pole-centered missing-data region has an ice

concentration of at least 15%, and consequently that is the

assumption made in the calculation of ice extents.] Sea ice

extents are calculated on a daily basis (every-other-day for the

SMMR data) and are combined to monthly and yearly averages.

Linear-least-square trends are calculated both for the yearly

averages and for a variable called “monthly deviations,” which

eliminates the prominent annual cycle in the monthly average

data by subtracting from each individual month (e.g., January

1979) the average of that calendar month’s values through the

entire record (e.g., the average January for 1979–2021). Standard

deviations of the slopes of the linear-least-square trend lines are

calculated following Draper and Smith (1981) and Taylor (1997).

The satellite passive-microwave datasets used in this study are

archived at NSIDC in Boulder, Colorado, and are available on the

NSIDCwebsite, https://nsidc.org (Cavalieri et al., 1996, updated yearly).

FIGURE 1
Average Arctic sea ice concentrations for: (A)March 1979, (B) the 43-year March average, 1979–2021, (C)March 2021, (D) September 1979, (E)
the 43-year September average, 1979–2021, (F) September 2021. The prominent black circular region centered on the North Pole in the 1979 and
1979–2021 images represents missing data and reflects the fact that the orbit of the Nimbus 7 satellite, obtaining the data for the first 8.6 years of the
43-year record, did not bring the satellite close enough to the Pole to allow data collection poleward of 84.6°N.
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3 Results

3.1 Sea ice concentrations and geographic
expanse

Every year, Arctic sea ice coverage undergoes a substantial

expansion in autumn and winter and a substantial decay in

spring and summer, with sea ice in March extending over almost

the entire Arctic Ocean and many of the surrounding seas and

bays (Figures 1A–C) and sea ice coverage by the end of summer

reducing to an area largely within the Arctic Ocean (Figures

1D–F). Ice concentrations tend to be greater than 90% for most of

the region in late winter but much lower at the end of summer

(Figure 1). The winter ice distributions reflect the importance of

the Gulf Stream in bringing warm waters northeast across the

North Atlantic, resulting in ice-free waters at quite high latitudes

(70–75°N) immediately north of Norway (Figures 1A–C). In

contrast, Hudson Bay remains covered with ice in late winter,

despite its much lower latitudes (52–65°N), as a result of the

continentality effect, wherein mid-continent locations tend to

have colder winters and hotter summers than coastal locations

affected by the moderating effect of the oceans (Figures 1A–C).

FIGURE 2
(A) Monthly average Arctic sea ice extents, January 1979–December 2021. March ice extents are depicted in green, September ice extents in
red, and all others smaller and in black. (B) Monthly Arctic sea ice extent deviations, January 1979–December 2021, with March values in green,
September values in red, and all others smaller and in black. (C) Yearly average Arctic sea ice extents, 1979–2021. The (B) and (C) plots both include
the linear-least-square trend line through the data and the trend line slope and standard deviation. The x-axis tick marks for plots (A) and (B)
come at the January values for each year.
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The lesser sea ice coverage in 2021 versus 1979 is apparent in

both the March and September maps (Figure 1). For instance, in

March the ice-free waters to the north of Norway extended

noticeably further north in 2021 than in 1979, and much of

the eastern half of the Sea of Okhotsk (the sea centered at about

54°N, 150°E) was ice-free in March 2021 but ice-covered in

March 1979 (Figures 1A,C). Comparison of the 1979 and

2021 September images reveals notably less sea ice coverage in

2021 than in 1979 to the east of northern Greenland and in the

Canadian Archipelago region and, even more strikingly, to the

north of Russia. In September 2021, a ship could have traversed a

northeast passage from the Atlantic to the Pacific in the waters

north of Russia with little if any complications from sea ice,

whereas that would not have been the case in September 1979

(Figures 1D,F).

3.2 Sea ice extents and trends

3.2.1 Arctic-wide sea ice extents and trends
Figure 2 presents the monthly average sea ice extents,

monthly deviations, and yearly averages for the entire 43-year

record. In every one of the years 1979–2021, the month with the

lowest monthly average northern hemisphere sea ice extent was

September, with the September average values ranging from

3.60 × 106 km2 in 2012 to 7.75 × 106 km2 in 1980 and

averaging 6.05 × 106 km2 overall (Figure 2A). The month with

the highest monthly average sea ice extent was March for every

year except 1987, 1989, 1998, and 2015, in which instances it was

February by a narrow margin (Figure 2A). These monthly-high

values ranged from 14.10 × 106 km2 in March 2018 to 16.05 ×

106 km2 in March 1979, with the overall average March ice extent

being 15.07 × 106 km2 (Figure 2A).

The prominent annual cycle of Arctic sea ice extents, with far

more sea ice coverage in winter than in summer, dominates plots

of monthly averages (Figure 2A). In fact, in the early years of the

record, it was not immediately obvious from the monthly average

plots that there was a downward trend, although by the late 1990s

this had become obvious through the removal of the annual cycle

in the monthly deviation and yearly average calculations

(Parkinson et al., 1999). By now, the downward trend is

apparent even from the monthly average plots (Figure 2A),

although it is still more strongly highlighted through the

monthly deviations (Figure 2B) and yearly averages

(Figure 2C), where the downward trend is quite prominent,

with linear-least-square trend lines having slopes of −54,200 ±

1,400 km2/yr for the monthly deviations and −54,300 ±

2,700 km2/yr for the yearly averages. This equates, on average,

to an areal loss of sea ice extent each year exceeding the area of

Costa Rica (area of 51,100 km2).

There had been vague hints of a downward trend in Arctic

sea ice extents as early as the late 1980s (e.g., Parkinson and

Cavalieri, 1989) andmore solid indications by the late 1990s (e.g.,

Johannessen et al., 1995; Maslanik et al., 1996; Parkinson et al.,

1999). Quantitatively, it is with the 1990 data that the negative

trend in yearly average Arctic sea ice extents since 1979 first

reaches a value low enough that two standard deviations above it

is also negative (Figure 3). This has continued to be the case ever

since, with a narrowing of the standard deviation bars as more

years are added (Figure 3). The calculated trend value has been in

the narrow range of −53,000 km2/yr to −55,500 km2/yr since

2011 (Figure 3).

Despite the downward trend being apparent for many years

before 2007, the major plummeting of the ice cover in summer

2007 (Figure 2B) came as a shock to the sea ice research

community. Not only did the 2007 decrease in ice extent

establish a new record low for Arctic sea ice extent in the

satellite era, at 4.1 × 106 km2, on 14 September 2007, but it

was 24% below the previous record low, 5.4 million km2, reached

2 years earlier on 21 September 2005. The 2007 decrease was so

stunning that speculations arose regarding the possibility of a

sea-ice-free late-summer Arctic occurring within the next

decade. This did not happen, as instead the ice extents

rebounded somewhat in the subsequent few years, before

falling to a new record low in 2012 (as reflected in Figures 2A,B).

Both the 2007 and 2012 cases generated studies examining

why the ice retreat in those 2 years was anomalously large, with

results in both cases attributing the unusually low ice extents to a

combination of preconditioning of the ice cover [with thinner ice

and more open water than was common at the start of the

satellite record (e.g., Maksym, 2019)] and the specific weather

conditions in those two summer seasons. In the 2007 case,

weather conditions included higher than normal temperatures

and winds blowing into the Beaufort and Chukchi seas from the

south, pushing the ice to the north (e.g., Comiso et al., 2008), and

the fact that conditions were unusually cloud-free over the Arctic

Ocean, favoring increased melt through increased incident solar

radiation (Kay et al., 2008). In the 2012 case, a major storm in the

central Arctic in early August contributed to the ice decreases

(Simmonds and Rudeva, 2012; Parkinson and Comiso, 2013), as

likely did also the unusual amount of relatively warm water

discharged into the sea ice region north of Alaska and

northwestern Canada by the Mackenzie River by early July

(Nghiem et al., 2014). Through use of a computer model,

Zhang et al. (2013) were able to simulate the August

2012 storm and examine different variables and processes,

concluding that the decrease in ice volume during the storm

was in large part due to increased bottom melt caused by the

increased upward ocean heat flux from the wind-induced

enhanced ocean mixing.

Because September is almost always the month when Arctic

sea ice coverage reaches its annual minimum ice extent, and

because September has also experienced a strong downward

trend in sea ice coverage, it tends to be the month when

media attention to Arctic sea ice is greatest. However, all

12 calendar months have experienced decreasing ice coverage
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since 1979, and the 1979–2021 negative trend for October is

comparable to (numerically even very slightly greater in

magnitude than) that for September (Figure 4). In both the

2007 and 2012 cases of record low sea ice coverages, July was

the month when the unusually low ice conditions became

apparent, continuing in August, and lasting beyond September

into October (Figure 4). For all 12 months, the sea ice extent

trends since 1979 have been consistently below 0 by at least two

standard deviations at least since 1998. The 2 months

consistently clearing the two-standard-deviation threshold for

the longest period are April and May, both of which first cleared

the threshold with the 1979–1989 trend and have continued to do

so ever since.

The 43-year time series of ice extents for the individual

months (Figure 4) and for the yearly averages (Figure 2C) all

illustrate the variability of the Arctic sea ice cover as well as the

downward trend in sea ice coverage. For every calendar month

and the yearly averages, there is at least one period of 6 years or

longer when the trend in ice extents was positive rather than

negative (Figure 2C, Figure 4). For instance, the rebounding from

the still-record-low in 2012 results in positive August and

September trends for the final 10 years of the record

(2012–2021), despite August and September having quite

substantial downward trends overall (Figure 4). Interannual

variability is a common feature of climate records, and

Figure 2C and Figure 4 are illustrative of that for the Arctic

sea ice cover.

3.2.2 Sea ice extent record highs and lows
Another way to assess the changes in Arctic sea ice extents,

complementary to the trend results, is to examine the occurrences

and frequency of new record high and record low ice extent values.

This was first done in a 2016 paper covering the SMMR/SSMI/SSMIS

record for 1979–2015 (Parkinson and DiGirolamo, 2016) and was

later updated through 2020 (Parkinson and DiGirolamo, 2021).

These studies specify for each calendar month every time a new

record high was reached for that month and every time a new record

lowwas reached for thatmonth. The results are striking, and since no

new records were reached in 2021, the Parkinson and DiGirolamo

(2021) results remain valid for the full 1979–2021 period. Specifically:

1) There has not been a single new record high monthly average

Arctic sea ice extent for any of the 12 calendar months since 1986,

when a record high was registered for October; 2) 93 new record low

monthly average Arctic sea ice extents have occurred since 1986; 3)

every one of the 12 calendarmonths has experienced at least one new

record low since 2011; 4) on a yearly average basis, the last record

high was in 1982, with 12 new record low yearly average sea ice

extents since that time, the latest (and hence current record low for

yearly averages) coming in 2020 (Parkinson and DiGirolamo, 2021).

These results add compelling confirmation of the declining Arctic sea

ice coverage.

Figure 5 presents the 43-year average annual cycle of

monthly average Arctic sea ice extents along with the highest

and lowest monthly average values reached for each month and

the years in which those values occurred. For 3 months the

record high came in 1979, the first year of the 43-year record,

and for all 12 months the record high came in the first 8 years of

the record, whereas all 12 record lows came in the last 10 years of

the record (Figure 5). Still, for most months (December through

June), the percent difference between the highest and lowest

monthly average value over the 43 years is less than 18%

(Figure 5).

FIGURE 3
Linear-least-square slopes of the trend line in Arctic yearly average sea ice extents, from the 1979–1980 slope with only 2 years of data to the
1979–2021 slopewith 43 years of data. The bars centered on each trend value after the first have ticksmarking one and two standard deviations from
the trend.
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3.2.3 Regional results
Examination of different regions within the Arctic sea ice

cover reveals much greater variability in the regional results than

in the results for the Arctic sea ice cover as a whole. Still, using

nine regions identified in earlier studies (e.g., Parkinson et al.,

1999), every one of the regions has a negative trend over the

course of the 43-year 1979–2021 record (Figure 6). This is

decidedly not the case for shorter time periods. For instance,

the Gulf of St. Lawrence and Baffin Bay/Labrador Sea had visually

prominent upward (positive) trends through 1994 and 1993,

respectively, and the Bering Sea had a clearly positive trend even

as late as 2013, for the 1979–2013 period (Figure 6). In fact, the

trend values of the annual average Bering Sea ice extents since

1979 were consistently positive (although not statistically

significant) from the start of the trend record, at 1979–1980,

to the 1979–2002 period, then slightly negative from the

1979–2003 period to the 1979–2008 period, then positive

again for 1979–2009 through 1979–2015, before turning

negative at 1979–2016 and finally clearing a two-standard-

deviation threshold with the 1979–2019 trend (Figure 7).

Although the nine regions vary greatly in the sequence of

their trend values, by the end of the record all nine have

1979–2021 negative trends that have magnitudes exceeding

two standard deviations of the trend slope, some much more

so than others (Figure 7). Furthermore, in a study covering the

42-year 1979–2020 period, Meier et al. (2022) subdivide the

Arctic-wide sea ice cover into more regions and find negative

trends for all 14 of them.

Many studies have examined sea ice conditions within

individual regions and/or differences between regions. For

instance, in the case of the Sea of Okhotsk, examinations have

been done on the impacts on the sea ice cover of oceanic

processes (e.g., Alfultis and Martin, 1987) and atmospheric

conditions, including the Siberian High and Aleutian Low

FIGURE 4
Arctic sea ice extents and trends, 1979–2021, for each of the 12 calendar months. The y-axis values vary for the different months, but in each
case there is a range of 5 × 106 km2, to allow ready visual comparison of the trend-line slopes.
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pressure systems (e.g., Parkinson, 1990; Rikiishi and Takatsuji,

2005), and the impact of sea ice formation, movement, and

melting on the ocean (e.g., Nihashi et al., 2012). The contrast

between generally rising sea ice extents in the Bering Sea and

falling sea ice extents in the Seas of Okhostk and Japan in the

early years of the record (Figure 6) have been examined in the

FIGURE 5
Average annual cycle of monthly-average Arctic sea ice extents over the 43-year period 1979–2021, along with the 43-year highest and lowest
monthly-average values for each month and the years in which those highs and lows occurred.

FIGURE 6
Yearly average sea ice extents and least-square trend lines, 1979–2021, for the following regions: Seas of Okhotsk and Japan; Bering Sea;
Canadian Archipelago; Hudson Bay; Arctic Ocean; Kara and Barents Seas; Greenland Sea; Baffin Bay/Labrador Sea; and Gulf of St. Lawrence.
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context of atmospheric circulation patterns (e.g., Cavalieri and

Parkinson, 1987; Rikiishi and Takatsuji, 2005); the sea ice

patterns in the Labrador Sea, Greenland Sea, and Barents Sea

have been examined in connection with the atmospheric North

Atlantic Oscillation (NAO) (Fang and Wallace, 1994); and the

relationship between the late-autumn sea ice cover of the Kara

and Barents Seas and the winter NAO have been further

examined in a modeling study that reproduces the observed

relationship through simulated atmospheric internal variability

(Warner et al., 2020).

3.3 Length of the sea ice season

To examine trends at a pixel-by-pixel level rather than on a

regional level, Parkinson (1992) introduced the concept of the

length of the sea ice season, defined for each pixel as the number

of days in the year when the pixel had a calculated sea ice

concentration of at least 15%. This definition intentionally

avoided the complications of having to determine a start and

end date for the sea ice season, which can be highly controversial

given the fluid nature of the sea ice cover and the fact that winds

can lead to a pixel becoming free of ice briefly even in the midst of

winter.

When initially introduced, the length of the sea ice season

calculations were done for the 1979–1986 period of the SMMR

record and were done with ice-concentration cutoffs of 30% and

50% as well as 15%. The 1979–1986 results found a coherent

picture of trends that was extremely consistent irrespective of the

choice of ice-concentration cutoff. Results showed that during

1979–1986 the sea ice season shortened in the marginal ice zones

of the eastern hemisphere and the Greenland Sea but lengthened

in much of the western hemisphere other than the Greenland Sea

(Parkinson, 1992).

As the passive-microwave data set has lengthened with the

addition of the SSMI and SSMIS data, the picture of the length of

the sea ice season trends has become increasingly dominated by

shortening sea ice seasons (e.g., see Parkinson, 2014 for the

1979–2013 results). By now, with a 43-year 1979–2021 record,

comparison of the length of the sea ice season for the start and

end years of the record shows substantial differences (Figure 8),

and the 43-year trends show shortened sea ice seasons

FIGURE 7
Linear-least-square slopes of the trend line in yearly average sea ice extents, from the 1979–1980 slope with only 2 years of data to the
1979–2021 slope with 43 years of data, for the following regions: Seas of Okhotsk and Japan; Arctic Ocean; Kara and Barents Seas; Bering Sea;
Greenland Sea; Baffin Bay/Labrador Sea; Canadian Archipelago; Hudson Bay; and Gulf of St. Lawrence. The bars centered on each trend value after
the first have ticks marking one and two standard deviations from the trend.
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throughout almost the entire marginal sea ice zone, with very few

locations having a lengthened sea ice season and those almost

entirely along the coast and hence subject to contamination of the

gridded pixels by land presence (Figure 9).

Visually, some particularly prominent contrasts between the

1979 and 2021 maps of sea ice season length are: 1) A sizeable

portion of the eastern Sea ofOkhotsk that had ice seasons lasting up to

as much as 120 days in 1979 had no ice season at all in 2021; 2) in the

northern Barents Sea to the north of Norway, there were locations

with ice seasons exceeding 180 days in 1979 that had no ice season in

2021; 3) in the Arctic Ocean, the area with ice seasons exceeding

360 days is considerably smaller in 2021 than in 1979 (Figure 8). The

highestmagnitude trends for the 43-year period occur in the northern

Barents Sea, where some pixels have negative trends with magnitudes

exceeding 5 days/year (50 days/decade), equating to a shortening of

the sea ice season by 210 days ormore over the full 43 years (Figure 9).

4 Discussion

In significant part because of the convincing satellite-based recordof

Arctic sea ice decreases in the past several decades, sea ice has

transitioned from being a relatively little-discussed climate variable to

now often being a “poster child” for climate change discussions,

frequently accompanied by pictures of forlorn polar bears seated

uncomfortably on small remaining ice floes. This paper documents

some important aspects of what the satellite record shows, including

decreased sea ice concentrations, decreased sea ice extents, anddecreased

sea ice season lengths (Figures 1–9).However, these are far fromtheonly

important changes occurring in the Arctic sea ice cover.

Other satellite-based studies using passive-microwave data have

documented substantial additional evidence of the declining Arctic

sea ice cover, from decreases in multiyear ice coverage (Maslanik

et al., 2011; Comiso, 2012; Bi et al., 2020) to earlier onset ofmelt of the

FIGURE 8
Length of the sea ice season in 1979 and 2021, as determined from satellite passive-microwave data by tallying, for each pixel, the number of
days with calculated sea ice concentration at least 15%.

FIGURE 9
Trends in the length of the sea ice season, 1979–2021. For
each pixel, the linear-least-square trend was calculated from the
43 yearly values of the length of the sea ice season at that pixel.
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ice and/or its snow cover (Markus et al., 2009; Bliss and Anderson,

2014, 2018; Singh et al., 2021). Satellite radar altimetry has been used

to document thinning of the Arctic ice in the 2002–2018 period

(Mallett et al., 2021), and satellite laser and radar altimetry have been

used to document thinning of the ice in the 2018–2021 period, with

thinning found to be especially large for multiyear ice (Kacimi and

Kwok, 2022). Submarine sonar records have documented Arctic sea

ice thinning in the second half of the 20th century (Rothrock et al.,

1999; Yu et al., 2004). While the submarine records extend much

further back in time than the satellite records, they are far less

comprehensive geographically and far less frequent and regular in

their observations. Satellite altimetry provides likely the best hope for

eventual long-term records of Arctic sea ice thickness, although

obtaining ice thickness from the satellite data remains challenging,

hindered by such complicating factors as snow cover on the ice and

clouds above the ice (e.g., Kwok et al., 2021; Mallett et al., 2021).

Studies extending the sea ice record back to well before the

start of the satellite era include the data-based study of Walsh et al.

(2016), synthesizing the sparse pre-satellite records with the more

complete modern records into a database extending back to 1850,

and the model-based study of Schweiger et al. (2019), presenting a

reconstruction of Arctic sea ice thickness and volume back to 1901.

The Schweiger et al. (2019) reconstruction was produced by

forcing the Pan-Arctic Ice Ocean Modeling and Assimilation

System (PIOMAS) with atmospheric data.

In light of the expectation of warming and the very close tie

between temperature and sea ice formation and decay, Arctic sea

ice decreases had been expected, although, overall, the ice extent

decreases have occurred at a noticeably faster rate than model

simulations predicted (e.g., Stroeve et al., 2007; Stroeve et al.,

2012). As the sea ice extent decreases, the resulting lessened

reflection of solar radiation back to space contributes to further

regional warming and hence to the much greater warming

experienced in recent decades in the Arctic than over the

globe as a whole (Rantanen et al., 2022).

The decreases in Arctic sea ice have consequences ranging far

beyond contributing to Arctic warming, as the interconnectedness

of the global climate system ensures that major changes in one

region of the globe will influence other regions as well. A study

done with the Goddard Institute for Space Studies (GISS) climate

model even found that 37% of the global warming simulated for a

doubling of atmospheric carbon dioxide was due explicitly to the

inclusion of sea ice calculations in the model simulation (Rind

et al., 1995). Furthermore, the sea ice calculations increased the

simulated warming at all latitudes, not just in the polar regions

(Rind et al., 1995). Both observational and modeling studies have

suggested that Arctic sea ice changes could impact mid-latitude

weather events (e.g., Francis et al., 2009; Francis and Vavrus, 2012;

Mori et al., 2014; Nakamura et al., 2016; McCusker et al., 2017; Luo

et al., 2019; Cohen et al., 2021; Sun et al., 2022) and even the Indian

Ocean Dipole (Chen et al., 2021). Other studies have questioned

how great the influence might be (e.g., Overland, 2016; Blackport

et al., 2019; Blackport and Screen, 2021); but given the

interconnectedness of the system, some influence is almost

assured despite the fact that scientists have not yet sorted out

exactly what and how great the influence is.

In addition to the climate and weather impacts, Arctic sea ice

changes impact many polar species, including most prominently

polar bears (e.g., Stirling and Parkinson 2006; Stirling and

Derocher, 2012) but going well beyond polar bears to the entire

polar ecosystem, bothmarine and terrestrial (e.g., Post et al., 2013).

Impacts also extend to human economic activities, among them

the increased viability of shipping routes through the Arctic (Smith

and Stephenson, 2013; Stephenson and Smith, 2015).

The analyzed Antarctic changes over the past several decades

are not nearly so well aligned with global warming and sea ice

expectations (e.g., Parkinson, 2019; Meier et al., 2022), but the

Arctic results quite compellingly show a warming Arctic (e.g.,

Rantanen et al., 2022) and lessened sea ice coverage (this paper),

and the satellite data have been crucial in solidly establishing

these results.
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Spectral variability in fine-scale
drone-based imaging
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species
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Landmanagers are making concerted efforts to control the spread of invasive plants,
a task that demands extensive ecosystem monitoring, for which unoccupied aerial
vehicles (UAVs or drones) are becoming increasingly popular. The high spatial
resolution of unoccupied aerial vehicles imagery may positively or negatively
affect plant species differentiation, as reflectance spectra of pixels may be highly
variable when finely resolved. We assessed this impact on detection of invasive plant
species Ailanthus altissima (tree of heaven) and Elaeagnus umbellata (autumn olive)
using fine-resolution images collected in northwestern Virginia in June 2020 by a
unoccupied aerial vehicles with a Headwall Hyperspec visible and near-infrared
hyperspectral imager. Though E. umbellata had greater intraspecific variability
relative to interspecific variability over more wavelengths than A. altissima, the
classification accuracy was greater for E. umbellata (95%) than for A. altissima
(66%). This suggests that spectral differences between species of interest and
others are not necessarily obscured by intraspecific variability. Therefore, the use
of unoccupied aerial vehicles-based spectroscopy for species identification may
overcome reflectance variability in fine resolution imagery.

KEYWORDS

hyperspectral, spectral variability, invasive plants, drone, visible, near-infrared, discriminant
analysis

1 Introduction

Globally, invasive plants pose significant threats to natural ecosystems (Gurevitch & Padilla,
2004) and biodiversity (Gaertner et al., 2009; Kimothi & Dasari, 2010; Peerbhay et al., 2016).
Across the state of Virginia, invasive, non-native plants are radically altering natural
environments by inhibiting the growth of native species upon which native wildlife and
insects depend (Miller et al., 2013). These widespread changes in species composition also have
broader impacts on soil chemistry and forest canopies, with effects on dynamics of carbon,
nutrients, water, and energy (Liao et al., 2008; Lovett et al., 2016).

Ailanthus altissima (tree of heaven) is a notably widespread and harmful invasive tree not
only in Virginia but across the U.S. (Burkholder, 2010). It tends to impact the soil chemistry and
species composition of ecosystems in which it is present by: increasing nutrient cycling rates;
increasing soil C, N, K, and Mg; and encouraging the encroachment of other plant species that
thrive in high nutrient environments (Gómez-Aparicio & Canham, 2008). Elaeagnus umbellata
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(autumn olive) is a common invasive shrub; as of 2017, it was found on
39,000 ha in the U.S. (Oliphant et al., 2017). It has a relationship with
N-fixing endosymbionts and affects nitrifying (ammonium-oxidizing)
microorganisms (Naumann et al., 2010; Malinich et al., 2017), and
therefore is especially competitive in disturbed areas with N-poor soils
(Malinich et al., 2017). In addition to its tolerance of nutrient-poor
conditions, E. umbellata is also drought resistant and able to survive in
a wide range of soil moisture conditions (Naumann et al., 2010;
Malinich et al., 2017). Last, it can outcompete native plants after
establishment due to its dense shading (Oliphant et al., 2017).

Land managers are making concerted efforts to control the spread
of invasive plant species, a task that demands extensive ecosystem
monitoring (Miller et al., 2013). Traditional approaches to ecosystem
observation and monitoring are satellite-based and ground-based.
Each approach, however, has caveats. Satellite imagery covers large
areas but cannot provide fine-scale details, whereas ground surveying,
despite its ability to provide fine-scale details, is labor intensive, and is
challenging for surveying broad areas. Unoccupied aerial vehicles
(UAVs) provide data on an intermediate scale, with much higher
spatial resolution than satellite data and with more spatial coverage
than ground surveys (Alvarez-Vanhard et al., 2021). As UAVs merge
the benefits of more traditional satellite-based and ground-based
monitoring, they are becoming an increasingly popular means to
observe ecosystems, including invasive plant species monitoring (Sun
& Scanlon, 2019).

Whereas UAVs are becoming increasingly popular as a vehicle for
invasive plant species monitoring, spectroscopy has been and
continues to be used for the remote sensing of plant and ecosystem
observation. Spectroscopy, which includes a large number of narrow,
contiguous bands, provides detailed spectral information (Kaufmann
et al., 2008; Chance et al., 2016), which is influenced by differences in
biophysical and biochemical characteristics of plants (Matongera et al.,
2016; Yang et al., 2016; Wang et al., 2020), including: pigments
(Mahlein et al., 2010; Xiao et al., 2014), such as chlorophyll (Asner
& Martin, 2008; Thenkabail et al., 2014; Chance et al., 2016),
anthocyanins, and carotenoids (Blackburn, 2007); plant water and
vegetation stress (Thenkabail et al., 2014); and leaf N, P, and K
(Mutanga et al., 2004; Asner & Martin, 2008; Thenkabail et al.,
2014; Chance et al., 2016). Thus, spectroscopic data, which serve as
an indication of plant chemical and structural properties, vary within
and across ecosystems (Martin & Aber, 1997; Ustin et al., 2004).

Spectra are strongly related to certain biochemical and structural
plant traits (Jacquemoud et al., 2009; Ollinger 2010; Kattenborn et al.,
2019). Generally, greater spectral variation is associated with species or
trait variation (Palmer et al., 2002). Certain wavelengths, such as those
associated with upper-canopy pigments, water, and nitrogen, can be
analyzed to differentiate among species. Intraspecific (within species)
trait variability, however, is sometimes similar to or even greater than
interspecific (among species) variation (Jung et al., 2010; Messier et al.,
2010; Leps et al., 2011; Auger & Shipley 2013).

Though imaging spectroscopy has been previously used to identify
individual plant species (Mishra et al., 2017), particularly invasive
species (Chance et al., 2016; Aneece & Epstein, 2017; Kganyago et al.,
2017; Skowronek et al., 2017), using spectroscopic sensors in concert
with UAVs is a relatively new application for these technologies.
Whereas a few UAV-based studies have been successful in identifying
individual plant species, this has been accomplished in large
monocultures where the target plant is easily distinguished from
the surrounding vegetation (Huang & Asner, 2009).

Additionally, UAV imagery has much finer spatial resolution than
satellites. It is not known, however, whether the very fine spatial
resolution of data provided by UAVs is beneficial or detrimental to the
process of differentiation. Smaller pixel size overcomes the challenge
of averaged spectral properties of large pixel sizes over heterogeneous
landscapes (Underwood et al., 2007). Peña et al. (2013), for example,
found that increased resolution from 2.4 m to 1.2 m increased the
differentiability of tree species by 25%. Similarly; Roberts et al. (2004)
found that plant species were least distinct at the stand scale and most
distinct at the branch scale, a scale similar to that of Peña et al. (2013).
Detection of invasive plant species is likely improved by the fine spatial
resolution that a UAV can achieve, as it does not require large and
homogeneous infestation stands. With very fine spatial resolution,
however, spectral variation among pixels will be greater than with
coarser spatial resolution, which yields a smoothing effect of extreme
values. It is expected, then, that spectral variation will be greater with
decreasing spatial resolution. It is essential to understand the
mechanisms that allow for the detection of target invasive plant
species within these fine-resolution images.

To explore the fundamental questions of whether variability
caused by fine-resolution spectroscopy enhances or impedes the
ability to differentiate plant species, we collected images during the
2020 growing season from forest canopies in northwestern Virginia at
the Blandy Experimental Farm (BEF), where invasive species are
present and common. We address the following questions:

1) Over which wavelengths do intra-individual and intraspecific
variability of target invasive plant species exceed interspecific
variability?

2) Can the spectral signal from individual pixels within a tree crown
be used to effectively detect target invasive plant species in an
image?

3) How much does intra-individual and intraspecific variability of
target invasive plant species impede the ability to differentiate
among species?

2 Materials and methods

2.1 Study site

Blandy Experimental Farm (BEF), a biological field station owned
by the University of Virginia, is located in the Shenandoah Valley in
northwestern Virginia (39.06oN, 78.07oW). At 190 m elevation, BEF
has a mean annual precipitation of 975 mm, a mean annual
temperature of 12°C, and a mean July high temperature of 31.5°C.
It contains 80 ha of old fields in various stages of succession (Bowers,
1997).

Aerial spectroscopic data collection took place over three 1-ha
fields at BEF, based on their abundance of the invasive plant species of
interest, A. altissima and E. umbellata, along with several other trees,
shrubs, forbs, and grasses. The fields are in early-to mid-successional
stages and are approximately 20, 25, and 30 years in age (Figure 1;
green, blue, and purple polygons, respectively). Each field is located on
low-relief topography. The early successional field (green polygon in
Figure 1A; Figure 1B) contains abundant invasive shrubs, including E.
umbellata within a heterogeneous matrix of forbs, graminoids, shrubs,
and trees (including A. altissima). The 25-year-old early-to-mid-
successional field (blue polygon in Figure 1A; Figure 1C) contains
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abundant invasive shrubs, including E. umbellata, within a
heterogeneous matrix of forbs, graminoids, shrubs, and trees, but
with more prevalent trees and shrubs than the early successional field.
The mid successional field (purple polygon in Figure 1A; Figure 1D)
contains abundant invasive shrubs, along with abundant A. altissima.

2.2 Data collection and image post-
processing

Spectroscopic images were collected using a DJI Matrice 600 Pro
drone equipped with a high-precision GPS system and an imaging
spectrometer (Nano-Hyperspec, Headwall Photonics, Bolton, MA).
The imaging spectrometer has a spectral range of 400–1,000 nm (in
the visible and NIR portions of the electromagnetic spectrum), with a
spectral resolution of 2–3 nm over 270 spectral bands. Flight plans over
each field were created using universal Ground Control Software (UgCS),
in which the UAVwould fly in straight lines at a consistent height of 48 m
above the ground to obtain images with 3 cm pixels. The imaging
spectrometer was programmed to capture images along the flight plan
using HyperSpec III software (Headwall Photonics, Bolton, MA).

Images were collected in themiddle of the growing season in late June
(DOY 178), midday between 10h and 15 h to reduce bidirectional
reflectance distribution function (BRDF) effects and under consistent
sky conditions. This date of collection was chosen for its proximity to
when the National Ecological Observatory Network (NEON) collects
spectroscopic images using a fixed-wing aircraft with coarser resolution

(approximately 1 m resolution, compared to .03 m resolution). Collected
spectroscopic images were adjusted for incoming and scattered solar
radiation using a sampled dark reference at the time of flight and a grey
scale reference tarp with known reflectance located in the flight scene,
respectively. Using HyperSpec III software, terrain and perspective effects
were removed with a 1-m digital elevation model provided by the US
Geological Survey, and a mosaic of multiple images was created.

2.3 Image sampling

Individuals of 16 tree and shrub species and plant types (A. altissima,
Celastrus orbiculatus, E. umbellata, Gleditsia triacanthos, Galium verum,
Maclura pomifera, Juglans nigra, Juniperus virginiana, Lonicera japonica,
Loniceramaackii, Pinus virginiana,Rhamnus davurica, Rubus sp., Solidago
altissima, Symphoricarpos orbiculatus, and graminoids) were identified in
each of the three fields using a high-precision Trimble GPS with
measurement accuracy of 0.5 m and used to catalogue individuals
within imagery. If a given species was present in images of a field, up
to eight individuals were selected for analysis. In cases where fewer than
eight individuals were present, as many as were present were sampled.

Within the images, 15 well-lit and representative pixels were
selected for spectral sampling from each individual. To remove
outliers, a mean was taken across all wavelengths for each
reflectance spectrum of a pixel, and a mean was calculated in a
similar fashion for all 15 pixels from each individual. Any pixel
within an individual that differed more than 25% from the mean

FIGURE 1
(A). Locations of fields in which spectroscopic data were collected during the 2020 growing season. A field in early secondary succession, an
intermediate early-to-mid successional field, and amid-successional field, shown in green, blue, and purple, respectively. (B). Early successional field, which is
about 20 years in age and contains abundant invasive shrubs, including E. umbellata. (C). Mid-successional field, which is about 30 years in age and contains
abundant invasive shrubs, along with A. altissima. (D). Early-to-mid successional field, which is about 25 years in age and contains abundant invasive
shrubs, including E. umbellata.
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of the individual was removed from the dataset. This removed
approximately 1% of pixels from observation.

2.4 Assessing variability due to fine-scale
images

Both relative and absolute intraspecific (among individuals
within a species) spectral variability were calculated. Relative
variability was determined using the coefficient of variation
(CV), which compares the variability among the means of each
individual to the grand mean of the species. Absolute variability
was determined using standard deviation (SD). CV and SD were
calculated across all wavelengths for each species. Interspecific
(among species) spectral variability was also quantified using
CV and SD for comparison to intraspecific variability.

To differentiate A. altissima and E. umbellata, individuals from
Fields E and M were used to train an algorithm with Partial Least
Squares Discriminant Analysis (PLS-DA) using the pls R package
(Liland et al., 2022). To create an algorithm to detect A. altissima,
pixels known to be species other than A. altissima were recoded into
“other” and were separated from A. altissima. The same process was
followed for E. umbellata. Once an algorithm was established using
reflectance at each wavelength to separate A. altissima and E.
umbellata pixels in the component space from other species, it was
applied to a testing dataset using Field EM, to test the effectiveness of
each algorithm. The algorithms to detect A. altissima and E. umbellata
with PLS-DA on the training data were applied to each pixel in the
testing dataset. Because the pls R package applies the PLS-DA
algorithm to each pixel in both components, only pixels
categorized as the species of interest in both components were
classified as the species of interest, while pixels categorized as the
species of interest in only one component were not.

Then the percentage of pixels within each individual tree or shrub
was calculated for each class, and if over half the pixels were classified
as the species of interest, the individual was classified as the species of
interest. If fewer than half the pixels were classified as the species of
interest, the individual was classified as other species. This was done
for all individuals using each algorithm to detect both A. altissima and
E. umbellata. Following classification, omission error (false negatives),
commission error (false positives), overall accuracy, and Matthew’s
Correlation Coefficient (MCC; Eq. 1) were calculated. MCC uses the
balance of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) and can range from −1 to 1, where -1 is
entirely incorrect classification and 1 is entirely correct classification.
An MCC value of 0 represents classification due to chance.

TPpTN( ) − FPpFN( )
��������������������������������������
TP + FP( )p TP + FN( )p TN + FP( )p TN + FN( )√ (1)

3 Results

3.1 Intra-individual and intraspecific variability
relative to interspecific variability

TheCVof intra-individual variability exceeded theCVof interspecific
variability at 454 nm, 514–663 nm and 694–714 nm in A. altissima, with
the greatest ratio of relative intra-individual to interspecific variability of

1.42 occurring at 701 nm. The CV of intra-individual variability of E.
umbellata did not exceed the CV of interspecific variability (Figure 2A).
The SD of intra-individual variability exceeded the SD of interspecific
variability in A. altissima at 530 nm, 570 nm, 574 nm, 583–645 nm,
696–714 nm, and 940 nm and in E. umbellata from 450 to 530 nm and
585–705 nm. The greatest ratio of absolute intra-individual to
interspecific variability of 1.18 in A. altissima occurred at 703 nm and
at 459 nm with a ratio of 1.35 in E. umbellata (Figure 2B).

The CV of intraspecific variability exceeded interspecific
variability in A. altissima from 527 to 641 nm and 699–719 nm
and in E. umbellata from 516 to 521 nm, 603–667 nm, and
690–703 nm. The greatest ratio of relative intraspecific to
interspecific variability of 1.29 in A. altissima occurred at
703 nm and 1.29 in E. umbellata at 696 nm (Figure 3A). The SD
of intraspecific variability in A. altissima exceeded the SD of
interspecific variability at 603 nm, 607 nm, and from 701 to
719 nm and in E. umbellata from 450 to 530 nm and
585–705 nm. The greatest ratio of absolute intraspecific to
interspecific variability of 1.16 in A. altissima occurred at
707 nm and 2.04 in E. umbellata at 690 nm (Figure 3B).

3.2 Detection using pixel spectra

The two components of the PLS-DA used to differentiate A. altissima
pixels from all other species explained a total of 81% of variability in the
training data (36% in component 1, and 45% in component 2). A. altissima
separated most from other species in component 1 and overlapped
considerably in the component space (Figure 4A). Wavelengths in the
NIR region (763–935 nm) loaded heavily in component 1 (Figure 4B), and
wavelengths in the green to yellow spectral region (525–590 nm) loaded
heavily in component 2, with the greatest loading values occurring around
540–550 nm (Figure 4C). The two components of the PLS-DA to
differentiate E. umbellata pixels from all other species explained a total of
72% of variability in the training data (46% in component 1, and 26% in
component 2). UnlikeA. altissima,which separatedmost in component 1,E.
umbellata separated from other species in both components and overlapped
much less in the component space (Figure 5A). Wavelengths in the blue to
green spectral regions (450–510 nm) loaded heavily in component 1 in the
negative direction, with a maximum magnitude occurring around 480 nm
(Figure 5B).Wavelengths in the red edge region (705–725 nm) loaded most
heavily in component 2 (Figure 5C).

Applying the algorithm to the test field to detect A. altissima
provided an overall accuracy of 66%, with all 3 A. altissima individuals
(5% of all individuals) falsely classified as not A. altissima and
17 individuals (29% of individuals) falsely classified as A. altissima.
Of the 17 individuals incorrectly classified as A. altissima, 5 were
Lonicera maackii, an invasive shrub, and 3 wereMaclura pomifera and
Rhamnus davurica. Overall accuracy to detect E. umbellata was 95%,
with 7 out of 8 individuals correctly classified as E. umbellata and
2 individuals falsely classified as E. umbellata (Table 1).

3.3 Variability and differentiation

Wavelengths in the visible spectral region with a ratio of relative intra-
individual to interspecific variability (CV) greater than 1 also loaded heavily
in component 2 in the PLS-DA to separateA. altissima from other species in
discriminant analysis (Figure 6A). Wavelengths in the visible and red edge
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spectral regions with a ratio of absolute intra-individual to interspecific
variability (SD) greater than 1 also loaded heavily in component 1 to separate
E. umbellata from other species in discriminant analysis (Figure 6B).

Wavelengths in the visible spectral region with a ratio of relative
intraspecific to interspecific variability (CV) greater than 1 also loaded
heavily in component 2 to separate A. altissima from other species in
discriminant analysis (Figure 7A). Wavelengths in the visible and red
edge spectral regions with ratios of relative and absolute intraspecific
to interspecific variability (CV and SD, respectively) greater than 1 also
loaded heavily in component 1 to separate E. umbellata from other
species in discriminant analysis (Figure 7B).

4 Discussion

We utilized both relative (CV) and absolute (SD) variability, as
they provide complementary pieces of information; relative variability

is calculated by normalizing differences by the mean absolute
reflectance values. Normalizing using absolute reflectance values
can inflate variability in wavelengths with generally low reflectance
values (e.g., visible), compared to those wavelengths with typically
higher reflectances (e.g., near infrared). Together however, these two
indices provide a more holistic perspective of variability.

Spectral signals from individual pixels detect E. umbellata more
accurately than A. altissima, even with some wavelengths exhibiting
absolute intraspecific variability more than twice that of interspecific
variability. Despite the overall degree of absolute intraspecific
variability for E. umbellata, it exceeds interspecific variability over
fewer wavelengths compared to A. altissima, and the relative
variability within E. umbellata individuals (intra-individual
variability) does not exceed interspecific variability for any
wavelength. These patterns suggest that not only degree of
variability but also frequency of high levels of variability, metric of
variability, and scale at which variability occurs are all of importance.

FIGURE 2
(A) Ratio of intra-individual (within individuals, averaged for a single species) to interspecific (among species) coefficient of variation (CV; the variation
normalized by mean) across all wavelengths. (B) Ratio of intra-individual to interspecific standard deviation (SD) across all wavelengths. Spectra are split into
visible, red edge, and near-infrared regions. Ratio values over 1 indicate variability that is greater on average within individuals of a species than among species.

FIGURE 3
(A) Ratio of intraspecific (among individuals within a species) to interspecific (among species) coefficient of variation (CV; the variation normalized by
mean) across all wavelengths. (B) Ratio of intraspecific to interspecific standard deviation (SD) across all wavelengths. Spectra are split into visible, red edge,
and near-infrared regions. Ratio values over 1 indicate variability that is greater on average among individuals within a species than among species.
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Spectral regions in which both relative and absolute intra-
individual or intraspecific variability exceed interspecific
variability are of interest, as they may hinder differentiation of
species. Wavelengths at which both relative and absolute intra-
individual variability exceed interspecific variability in A.
altissima are 530 nm, 570 nm, 574 nm, 583–645 nm, and
696–714 nm. Wavelengths at which both relative and absolute
intraspecific variability exceed interspecific variability in A.
altissima are 603 nm, 607 nm, and 701–719 nm. Wavelengths
at which both relative and absolute intraspecific variability exceed
interspecific variability in E. umbellata are 516–521 nm,
603–667 nm, and 690–703 nm, whereas relative intra-individual
variability in E. umbellata does not exceed interspecific variability
for any wavelengths. Therefore overall variability likely does not
impede classification of E. umbellata to the same extent as for A.
altissima.

In addition to considering the degrees to which and frequencies
with which intra-individual and intraspecific variability exceed
interspecific variability, the specific wavelengths over which
variability is high and how they relate to separation in PLS-DA are
also important. Intra-individual variability exceeds interspecific
variability over some wavelengths that are important for separation
in PLS-DA for both species. For A. altissima, only relative intra-
individual variability exceeds interspecific variability in wavelengths
that are important for separation, while absolute intra-individual
variability does not. For E. umbellata, only absolute intra-
individual variability exceeds interspecific variability at wavelengths
that are important for separation, while relative intra-individual

variability does not. The lack of overlap between wavelengths
important for separation and both high relative and absolute
variability for each species suggests intra-individual variability
likely does not influence classification.

Intraspecific variability also exceeds interspecific variability
over some wavelengths that are important for separation in PLS-
DA for both species. For A. altissima, only relative intraspecific
variability exceeds interspecific variability in wavelengths that are
important for separation, while absolute intra-individual
variability does not. For E. umbellata, both absolute and
relative intraspecific variability exceed interspecific variability
for wavelengths that are important for separation. As both
relative and absolute variability are high in wavelengths
important for separation of E. umbellata from other species,
intraspecific variability could potentially influence
classification, but intra-individual variability likely does not.

The classification results suggest that differences between the
species of interest and all other species are more important than the
variability among all species, represented by interspecific
variability. The amount of overlap in locations of pixels in the
PLS-DA component space further supports that factors in addition
to intra-individual and intraspecific variability may affect
classification. Not only is classification of E. umbellata
ultimately more accurate than that of A. altissima, but also A.
altissima overlaps with other species more than E. umbellata does
in the PLS-DA component space. The lower accuracy of A.
altissima classification, as well as its location in the PLS-DA
component space, suggests that similarities in spectra across

FIGURE 4
(A) Location of all E. umbellata training pixels (purple) and all other species (grey) in component space. (B) Shown below the x-axis is Component 1, and
(C) beside the y-axis are the loadings for each wavelength in Component 2.
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individuals of multiple species may have a greater impact on
detection than intra-individual and intraspecific variability. This
implies that A. altissima has more spectral features in common
with other species, particularly L. maackii, M. pomifera, and R.
davurica. The similarities of reflectance spectra among a subset of
all species are not necessarily captured in the values of interspecific
variability, which is why examining pixels in the PLS-DA
component space is an additional useful tool.

Traditional hyperspectral data collection efforts are inadequate on the
basis of either time or space. For example, satellite data, though temporally
robust and therefore providing phenological data, are often too coarse in
resolution to detect individual tree and shrub canopies. Collection by
fixed-wing aircraft has a finer spatial resolution but is typically collected at
much lower frequency, often on an annual basis. Fixed-wing aircraft data
collection also requires an open field, which can be a challenge in some
forest studies. UAV-based data collection combines the spatial and
temporal benefits of each data collection method to provide data with

high temporal and spatial resolution. Our results suggest the very fine,
leaf-scale resolution of hyperspectral data collected by UAV does not
impede differentiation, but rather, the differences among the species of
interest and all other species are most important. As these data were
collected mid-growing season when phenological differences are least
noticeable, utilizing additional dates for differentiation will likely improve
detection of invasive plant species.

According to a 2021 literature review (Dainelli et al., 2021),
utilizing UAVs to identify invasive plants is not only novel but
also tends to be used in concert with RGB, thermal, or
multispectral sensors rather than hyperspectral sensors.
Researchers who have used hyperspectral imagery to
accomplish species recognition and detection have done so in
Brazilian tropical forests (Miyoshi et al., 2020a; Miyoshi et al.,
2020b), boreal forest (Nezami et al., 2020), and subtropical forest
fragments (Sothe et al., 2019) to detect vines, conifers, and
broadleaf trees. To our knowledge, this is the first effort to

FIGURE 5
(A) Location of all E. umbellata training pixels (light green) and all other species (grey) in component space. (B) Shown below the x-axis is Component 1,
and (C) beside the y-axis are the loadings for each wavelength in Component 2.

TABLE 1 Accuracy of the algorithm to detect A. altissima and E. umbellata in a test field. Individuals were classified based on the classification in each component. True
positives and negatives and false positives and negatives are given as number of individuals out of 59 total individuals.

True
positive

True
negative

Omission error (false
negative)

Commission error (false
positive)

Overall
accuracy (%)

Matthew’s correlation
coefficient

A. altissima 0 39 3 17 66 −0.15

E. umbellata 7 49 1 2 95 .96
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identify and map invasive plant species within heterogeneous
vegetation communities using UAV-based hyperspectral data
in plant communities typical of the eastern U.S.

We expect to produce an effective general methodology in
utilizing spectroscopy to identify and locate targeted invasive
plants, although we focused here on the invasive tree A.
altissima and shrub E. umbellata from aerial images. These two
invasive plants are commonly occurring across the U.S. and are
particularly relevant to the understanding of the ecological impact
of invasive species. The conclusion that differences between the
species of interest and all other species is more important than
intra-individual and intraspecific variability indicates that the
temporal flexibility of sampling via UAV will aid in the effort of
individual species detection. The ability to detect invasive plants
allows for the potential to map and monitor their spread. Future
work may build on this foundation to generalize detection of these

plants in additional plant communities. The addition of
spectroscopy in these efforts also provides the opportunity to
incorporate an understanding of the variability in plant
chemical and structural traits, from canopy to landscape scales.
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Introduction: The dynamics of terrestrial vegetation are shifting globally due to
environmental changes, with potential repercussions for the proper functioning of
the Earth system. However, the response of global vegetation, and the variability of
the responses to their changing environment, is highly variable. In addition, the study
of such changes and themethods used tomonitor them, have in of themselves, been
found to significantly impact the findings.

Methods: This research builds on a recently developed vegetation persistence
metric, which is simple to use, is user-controlled to assess levels of statistical
significance, and is readily reproducible, all designed to avoid these potential
pitfalls. This study uses this vegetation persistence metric to present a global
exploration of vegetation responses to climatic, latitudinal, and land-use changes
at a biomes level across three decades (1982–2010) of seasonal vegetation activity
via the Normalized Difference Vegetation Index (NDVI).

Results: Results demonstrated that positive vegetation persistence was found to be
greater in June, July, August (JJA), and September, October, November (SON), with
an increasing vegetation persistence found in the Northern Hemisphere (NH) over
the Southern Hemisphere (SH). While vegetation showed positive persistence
overall, this was not constant across all studied biomes. Overall forested biomes
along with mangroves showed positive responses towards enhanced vegetation
persistence in both the northern hemisphere and southern hemisphere.
Contrastingly, desert, xeric shrubs, and savannas exhibited no significant
persistence patterns, but the grassland biomes showed more negative
persistence patterns and much higher variability over seasons, compared to the
other biomes. The main drivers of changes appear to relate to climate, with tropical
biomes linking to the availability of seasonal moisture, whereas the northern
hemisphere forested biomes are driven more by temperature. Grasslands respond
to moisture also, with high precipitation seasonality driving the persistence patterns.
Land-use change also affected biomes and their responses, with many biomes
having been significantly impacted by humans such that the vegetation response
matched land use and not biome type.

Discussion: The use here of a novel statistical time series analysis of NDVI at a pixel
level, and looking historically back in time, highlights the utility and power of such
techniques within global change studies. Overall, the findings match greening trends
of other research but within a finer scale both temporally and spatially which is a
critical new development in understanding global vegetation shifts.
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Introduction

The dynamics of terrestrial vegetation are shifting globally due to
environmental changes, with potential repercussions for the proper
functioning of the Earth system and provision of ecosystem services.
These changes are most apparent in the vegetation composition and/
or structure, with shifts in species dominance and/or abundance, and
changes in phenology. In some cases, there may be a complete loss of
vegetation cover. Such changes can alter the local climate, hydrology,
and soil properties, affecting a range of other ecosystem processes. The
consequences of these vegetation changes can be far-reaching,
impacting human societies through alterations in the provision of
food, water, fuel, and timber resources, as well as affecting carbon
storage and greenhouse gas emissions. Therefore, it is essential to
monitor and quantify landscape level vegetation change to anticipate
and adapt to the consequences of environmental change (Winkler
et al., 2021; Potapov et al., 2022).

The vegetation of the Earth is constantly changing in response to a
variety of biotic and abiotic factors. The study of vegetation change,
and the methods used to monitor it, have in themselves been found to
significantly impact the findings. Vegetation variability is a function of
many factors, including climate, land use, and disturbance regime.
Climate variability, for example, can cause changes in vegetation type,
composition, and distribution. Land use can also impact vegetation,
through activities such as deforestation, agriculture, and urbanization
(Winkler et al., 2021; Friedl et al., 2022; Potapov et al., 2022).
Disturbance regimes (such as fire or grazing) can also affect
vegetation changes. Monitoring vegetation change is essential to
understanding the health of our ecosystems. Vegetation provides
critical ecosystem services such as carbon sequestration, water and
soil conservation, and habitat for wildlife. Changes in vegetation can
therefore have profound impacts on the environment and human
wellbeing (Winkler et al., 2021).

There is large variability in the way vegetation responds to changes
in the environment. This variability is due to a range of factors,
including the species composition of vegetation, the growth form of
plants (e.g., trees vs. shrubs), the level of disturbance, climatic
conditions, and the soil type. For example, forests are more likely
to respond slowly to environmental change than grasslands or
savannas, due to the longer life span of trees. In addition,
deciduous species are generally more responsive than evergreen
species, as annual leaf drop means a quicker response to short-
term changes in conditions. The magnitude and direction of
vegetation change also varies regionally. In general, vegetation
changes are more pronounced in the northern hemisphere than in
the southern hemisphere, due to the greater land area and more
diverse range of vegetation types. Finally, vegetation changes are
typically more rapid in the tropics than in other regions, due to
the higher levels of radiation and precipitation.

The study of vegetation change is essential to understanding the
health of our ecosystems and the potential impacts of environmental
change on human wellbeing. A variety of monitoring techniques are
available to researchers, each with its own advantages and
disadvantages. The selection of the most appropriate method(s)
depends on the vegetation type of interest, the scale of analysis,
and the desired level of detail. There are a variety of methods used

to monitor vegetation change. Remote sensing techniques, such as
satellite imagery, are commonly used to detect changes in vegetation
cover. Ground-based monitoring, such as vegetation surveys, can
provide detailed information on vegetation type and composition.
Finally, model-based approaches can be used to simulate vegetation
change under different scenarios. It is important to monitor vegetation
change in order to anticipate and adapt to the consequences of
environmental change.

Remote sensing is a powerful tool for monitoring vegetation
change, as it allows for repeated measurements over large areas.
Satellite-based remote sensing provides global coverage and can be
used to track changes in vegetation cover and structure. By measuring
the reflectance of vegetation in different spectral bands, we can
produce an index known as the Normalized Difference Vegetation
Index (NDVI). This index can be used to track changes in vegetation
health and density over time. The Advanced Very High Resolution
Radiometer (AVHRR) is a satellite sensor that is often used for this
purpose. AVHRR data has been used to monitor trends in global
vegetation cover since the early 1980s (de Jong et al., 2012; Cortes et al.,
2021). More recently, satellite based NDVI products have become
available from other sensors, such as theModerate Resolution Imaging
Spectroradiometer (MODIS). These products provide higher spatial
resolution and more frequent coverage, making them ideal for
tracking short-term changes in vegetation cover. Vegetation
monitoring is important for a variety of reasons. Changes in
vegetation cover can be used to track the progress of land
degradation and deforestation. Additionally, NDVI data can be
used to monitor the effects of drought and other environmental
stresses on vegetation health. Ultimately, satellite remote sensing
provides a cost-effective means of monitoring large areas of
vegetation over time, which is essential for understanding and
managing the world’s natural resources (Southworth and Muir, 2021).

Vegetation is viewed as one of the more significant elements in the
land-atmosphere system (Liu et al., 2020), involved in maintaining the
water cycle, GPP (Gross Primary Productivity), and the fluxes of
carbon between the atmosphere and land (Yao et al., 2019). In
addition, vegetative biomass (above-ground) is also one of the chief
sources of carbon sink, hence modulating ecosystem services via
carbon sequestration (Tian et al., 2021). With the increase in the
concentration of carbon dioxide (CO2) in the atmosphere owing to
anthropogenic stresses, the global vegetation cover and amount, often
referred to as “greenness,” is also increasing, and this greening is most
often attributed to CO2 fertilization (it speeds up photosynthesis and
limits leaf transpiration of plants) and afforestation (Lenka and Lal,
2012). Studies have suggested an increase in greenness is expected to
continue until 2,100, which will alter the dynamics of vegetation
globally (Zhu et al., 2016; Liu et al., 2022). Thus, monitoring such
change is indispensable given their susceptibility to anthropogenic
pressures (land-use change and release of CO2), including those
associated with climatic variability (atmospheric temperature,
humidity, and precipitation) and the importance of monitoring
change and understanding the drivers is of critical importance (de
Jong et al., 2012; 2013).

Global greening is a phenomenon that has been studied over the
last few decades, and most evidence details such global greening
signals from the beginning of the satellite record in the early 1980s
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(Nemani and Running 1997; Nemani et al., 2003; de Jong et al., 2012;
2013; Zhu et al., 2016; Piao et al., 2020; Jiang et al., 2022). It was only
the development of satellite technologies that led us to be able to
monitor such changes globally and then link these greening signals to
potential drivers of change. Globally, the dominant driver of greening
which has been identified relates to CO2 fertilization (Zhu et al., 2016;
Piao et al., 2020) with additional drivers becoming important only at
more regional scales. Most global greening studies have focused on
satellite data as the variable under study, and most often have utilized
vegetation metrics, such as NDVI, a measure which links to the
amount and health of green vegetation biomass, often used as a
proxy for net primary production (NPP) globally (Piao et al.,
2020). Such greenness measures are thus used to identify trends of
NDVI as measured over space and time, which may relate to
vegetation type; fertilization of plant growth (in the form of more
leaves, bigger leaves or even different species); the start, length and
duration of the growing season; and thus the signal of greening
measured, and also potential changes in crop production and
multiple crop cycles. As such, the observed signal is an index
representing a wide range of possible ground level changes, and
while some studies do integrate limited ground-based data, given
that many such studies are globally focused, real ground truthing is not
always feasible. Modelling is frequently utilized to link the greening
measures to possible drivers of change. Such modelling exercises
clearly highlight the role of increased CO2 concentration as the
main driver of the observed greening, with matches over seasons
and years.

Regional scale drivers have been identified as land cover change
and changing management, such as reforestation, afforestation and
improved agricultural practices (irrigation, improved crop types,
intensification, etc.), nitrogen deposition and changing climate
(especially changes in temperature and precipitation patterns and
ranges) (Nemani and Running 1997; Xiao and Moody 2005; Zhu et al.,
2016; Piao et al., 2020). Climatic drivers have also been identified, with
different regions globally responding to different drivers. More climate
focused drivers were identified by Xiao and Moody (2005), whereas
Chen et al. (2019) focused on human land-use management,
specifically related to agricultural lands and system improvements
in China and India as the leading cause of greening. Across many
drylands regions precipitation change is linked most directly to the
greening signal (Herrmann et al., 2005) and concomitantly, linked to
decreases in NPP related to large-scale droughts and a drying trend
seen in the Southern Hemisphere (Zhao and Running, 2010).

One limitation of most of these studies of greening, as highlighted
by de Jong et al. (2012) is related to the type of data used within such
studies. Specifically, all of the greening studies have utilized remotely
sensed time-series of vegetation indices, most of which have
seasonality and serial auto-correlation, and while the studies
attempted to correct for these trends using such techniques as
harmonic regression, linear models with non-parametric
components for seasonality, time series development from calendar
days, and similar techniques, de Jong et al. (2012) found the results in
terms of greening or browning, varied significantly, depending on the
methods used. In addition, no single ideal method was identified and
the difficulty of comparisons across different methods and outcomes
was highlighted. In response to such difficulties, as identified by
multiple researchers, the creation of a simple, statistically valid, and
repeatable method has become increasingly warranted. NDVI time
series can be used to study global vegetation change in several ways.

For example, NDVI data can be used to map the areal extent of
vegetation changes, as well as to quantify the magnitude and direction
of those changes. NDVI data can also be used to assess the temporal
patterns of vegetation change, allowing scientists to identify possible
drivers of those changes. Finally, NDVI data can be used to estimate
net primary productivity, which is an important measure of ecosystem
health. NDVI time series also provides a way to assess the statistical
significance of changes in vegetation greenness at a pixel level
(Southworth and Muir, 2021). This is important for understanding
whether the observed changes are due to natural variability or to
anthropogenic activity.

Waylen et al. (2014) developed an NDVI-derived time-series of
remotely sensed data products within which the user could define the
appropriate statistical significance for their given research question.
The directional persistence (D) metric allowed for the analysis of
change in NDVI relative to a fixed benchmark value—which could be
defined as a period, e.g., the beginning of a time series such as in
analysis of greening, or an event, e.g., a drought, thereby facilitating a
much more detailed and nuanced understanding of a given landscape.
The D statistic borrows heavily from the theory associated with
random walk processes (Wilson and Kirkby, 1980), in which each
positive departure from the previous value in the time series cumulates
the statistic by +1, and each negative departure by −1. The null
hypothesis against which the statistic can be tested is that the
statistics for a time series is not significantly different from zero.
Critical values of the test statistic at various significance levels and for
varying length of time series are derived from Monte Carlo
simulations. The statistic has the benefits of being easy to calculate,
readily interpreted in terms of the natural processes, comparable
spatially, and the capability of being tested for significance by a
method based in statistical theory. This metric has been tested at a
smaller scale to understand vegetation persistence across Florida (Tsai
et al., 2014) and within specific ecosystems types more broadly
(Southworth et al., 2016; Bunting et al., 2018). Results have been
very promising in terms of their innovation and in making the
continuous vegetation metrics approach both more useful and
more rigorous for use in global change studies.

Utilizing the length of the satellite data record and such measures
as the D metric, such systematic quantification of vegetation change
globally can be derived, and then interpreted with a view to better
understand the spatial patterns and trends and how these relate to
different global biomes and their land use diversity. Given the recent
focus on greening papers to attempt to better determine the more
regional-scale drivers of change, often completed at a more regional
focus, e.g., China, India (Chen et al., 2019) or review papers which
highlight the need for this regional level view at this time (Piao et al.,
2020), our research will utilize this new metric, D, to evaluate global
trends in vegetation persistence since the more reliable records of
remotely sensed data began in the early 1980s. Specifically though, we
will focus on the differences in patterns of vegetation persistence as a
function of their biomes, and also the actual land use diversity at the
pixel level, as determined by FAO data (FAO 2010 data available at
FAO.org). Biomes are selected as the broad unit of analysis, as these
represent similar ecosystems which, by definition, share comparable
processes and major vegetation types wherever they are found.
Studying at the level of biomes is important because they may
display substantial variation in the extent of change, face different
drivers of change, and there may be differences in the options for
mitigating or managing these drivers. Biomes are important, but so is
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land cover and related land use diversity. As such, even within our
biomes, we will also account for the land use diversity, as stated by
FAO in their 2010 global product (FAO.org), which will reflect the
final use or end point of the time series in terms of land use with a
reputable data source such as FAO which is readily available and
downloadable for analysis. In addition, FAO products are considered
comparable globally. As such, this research will cover over 30 years of
vegetation persistence analysis at the biomes level, accounting for land
use diversity and evaluating at a seasonal scale. Seasons are something
that show different patterns and as such, it is important to both explain
and account for these possible phenological signals.

This research addresses the following questions: 1) Globally, does
the pattern of Vegetation Persistence, or D, match the findings
demonstrated in previous global greening papers, and do the
observable patterns and trends match up spatially? 2) Do these
trends, most of which were analyzed at an annual time step, hold
constant across seasons or do trends vary within the growing season?
3) How do the trends and patterns vary across the different biomes
and are there obvious winners or losers to the greening trend? Lastly,
4) how does land use diversity impact these biomes-based trends and
findings? Given the focus on the metric D as opposed to continuous
indices measures of NDVI, this research bypasses many of the
concerns of methods utilized potentially influencing the trend of
the findings (de Jong et al., 2012), while also providing a very
simple and easily understandable and replicable final product.

Materials and methods

Remote sensing of vegetation cover

The NDVI 3rd generation time-series product from the Global
Inventory Monitoring and Modeling System (GIMMS) was used to
study vegetation dynamics globally in this research. The NDVI
product is constructed based on AVHRR observations and has a
temporal resolution of 15 days. Spatial resolution of the NDVI product
is five arc minutes which translates to about 8 km at the equator. In
this research, data from 1982 to 2010 was used.While MODIS or other
products could be used to extend the time series into more current
time periods the importance of consistency of data source and the
known variability between MODIS and AVHRR data make this
problematic. As such, the goal of determining global environmental
change signals with NDVI persistence metrics from 1982 to 2010 was
considered ideal and a better data source to provide accuracy to this
approach and to test the validity and robustness of this new persistence
metric. The use of a benchmark value is required in this analysis as all
pixel values are compared to this initial value. The AVHRR data series,
beginning in 1982 and running through 2010 was used for this
analysis, resulted in the first 5 years being utilized to create this
benchmark. A five-year series removes the likelihood of selecting
an anomalous year climatically and in creating a five-year average
benchmark value from 1982 to 1986 data, a more reliable and robust
measure of change can be obtained. It is worth noting that the
selection of an anomalous or otherwise unrepresentative
benchmark could invalidate the results and so care must be taken
in this selection process.

First, the NDVI product’s quality band was used to mask poor
quality pixels. Then, any pixel with more than 20% masked
observations of the whole time-series was excluded from the

analysis. The missing values of the included pixels, due to quality
masking, were gap-filled using a temporal interpolation. The biweekly
NDVI values were aggregated to monthly composites based on per-
pixel maximum NDVI value. To account for seasonality, the monthly
NDVI composites were aggregated into four boreal seasons and the
analysis was conducted independently for each season. The seasons
included 1) December, January, February = DJF (boreal winter); 2)
March, April, May =MAM (boreal spring); 3) June, July, August = JJA
(boreal summer); and 4) September, October, November = SON
(boreal autumn). Finally, seasonal NDVI composites were
calculated based on maximum monthly values from the
corresponding months.

Vegetation change analysis was conducted based on the time-
series analyses of NDVI seasonal composites, as a proxy of vegetation
abundance and health. Previous research has utilized the actual NDVI
time-series information in studies of global vegetation change
(Nemani and Running 1997; Xiao and Moody 2005; Zhu et al.,
2016; Piao et al., 2020). One limitation of most of these studies of
greening, as highlighted by de Jong et al. (2012) is related to the type of
data used within such studies. Specifically, all of the greening studies
have utilized remotely sensed time-series of vegetation indices, most of
which have seasonality and serial auto-correlation (Herrmann et al.,
2005; Zhao and Running, 2010). While the studies attempted to
correct for these trends using such techniques as harmonic
regression, linear models with non-parametric components for
seasonality, time series development from calendar days, and
similar techniques, de Jong et al. (2012) found the results in terms
of greening or browning, varied significantly, depending on the
methods used and so consistency in results and a global trend was
impossible to ascertain from these studies. In addition, no single ideal
method was identified and the difficulty of comparisons across
different methods and outcomes was highlighted. In response to
such difficulties, as identified by multiple researchers, the creation
of a simple, statistically valid, and repeatable method has become
increasingly warranted. As such, our research group has developed
such a metric (see Waylen et al., 2014 for in depth discussion of metric
development), which is central to this analysis, and which is known as
directional persistence “D” (Tsai et al., 2014; Waylen et al., 2014;
Southworth et al., 2016; Bunting et al., 2018). This metric is used to
detect vegetation gain, loss, or no change at the pixel level using its
time-series NDVI observations. To calculate directional persistence
for a pixel, first, its initial or benchmark NDVI value was established
based on its average NDVI value for 1982 to 1986. The five-year
averaging was used to obtain robust benchmark values. Then, the
pixel’s NDVI values for the subsequent 23 years were compared to the
benchmark value to identify the numbers of years with observed
NDVI larger and smaller than the benchmark value. The persistence
metric value, D, simply counts the difference between the number of
years with NDVI observations larger and smaller than the benchmark.
Thus, the persistence value of a pixel was calculated using the
following equation:

D � ∑
n

i�1
ti; where ti � −1 ifNDVIBM > NDVIi

+1 ifNDVIBM < NDVIi
{

where n was equal to 23, i.e., the number of years after the benchmark
period,NDVIBM andNDVIi were the benchmark and ith year NDVI
values, respectively, and ti indicates if NDVI of the ith year was larger
or smaller than the benchmark NDVI. The persistence values were
calculated independently per-pixel/per-season. This resulted in four
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global persistence products, corresponding to the four boreal seasons.
Given the focus on the metric D as opposed to continuous indices
measures of NDVI, this research bypasses many of the concerns of
methods utilized potentially influencing the trend of the findings (de
Jong et al., 2012), while also providing a very simple and easily
understandable and replicable final product.

Statistical tests were conducted to investigate if the observed
persistence value of a given pixel was statistically significant. Under
the null hypothesis of no change, i.e., no vegetation gain or loss over
the period of 1987–2010 with respect to the benchmark period of
1982–1986, ti is expected to have a Bernoulli distribution with
success and failure outcomes corresponding toNDVIi being larger
or smaller thanNDVIBM, respectively. The ti sequence represents a
Bernoulli process with p = 0.5 and the total number of successes or
failures would follow a binomial distribution (with n = 23 and p =
0.5). Therefore, the persistence value, D, would follow a random
walk process with the distribution of values represented by Pascal’s
triangle, which can be used to identify the critical values of
statistical tests (Waylen et al., 2014). Based on Pascal’s triangle,
for n = 23, D values larger than 10 or smaller than −10 are
statistically significant at a significance level of 0.05.
Accordingly, the D values in the persistence product outputs
were categorized to positive significance (n = ≥ 10), negative
significance (n = ≤ −10), and not significant (n = −9 to +9).
This resulted in four global persistence significance products,

corresponding to the four boreal seasons. This analysis uses a
high threshold to indicate significance of the D statistic for the
Persistence metric. Utilizing a rigorous threshold enables detection
of pixels in which there has been significant change in vegetation
dynamics over the study period, as compared to the baseline. This
approach emphasizes identification of long-term shifts in
vegetation greenness and is less concerned with small-scale
individual events that impact local areas. To better capture
pixels with significant change in NDVI for individual events, it
is possible to adjust the baseline values and temporal scale, though
given the global extent of this study it is not possible to account for
all local level change in NDVI.

Biomes

This study used the World Wildlife Fund (WWF) terrestrial
ecoregions (biomes) data (Olson et al., 2001). This data is archived
as a part of the Millennium Ecosystem Assessment (MEA) project,
which seeks to assess the consequences of ecosystem change in the
context of human wellbeing (“Millennium Ecosystem Assessment,”
2005). The MEA project details conditions and trends of the
world’s various ecosystems and their resultant ecosystem
services. It also supports a scientific basis for conservation and
sustainable use of ecosystems. The ecoregions data comes from a

TABLE 1 Global biomes used for analysis and their descriptions, from the WWF (2020).

Biome Description

Deserts and xeric shrublands Less than 10 inches precipitation annually, evaporation exceeds rainfall. Extreme temperature variability due to lack of
plants and global distribution. Woody plants characterize these regions to minimize water loss. Unusually adapted
plants, like the giant cacti in North America.

Tropical and subtropical moist broadleaf forests Large discontinuous patches around the equatorial belt. High rainfall and low temperature variability. Dominated by
semi-evergreen and evergreen deciduous trees. Highest species diversity of any terrestrial biome. 5 layers: overstory with
emergent crowns, medium layer of canopy, lower canopy, shrub level, and understory.

Tropical and subtropical dry broadleaf forests Warm year-round with several hundred centimeters of rain. Long dry season. Deciduous trees dominate.

Tropical and subtropical coniferous forests Low precipitation and moderate temperature variability. Diverse species of conifers. Thick, closed canopy with little
underbrush. Fungi and ferns thrive instead.

Temperate Broadleaf and Mixed Forests Temperate forests experience a wide variability in temperature and precipitation, which is why they are mixed species
and types. 4 layers: canopy, lower layer of mature trees, shrub, understory of herbaceous plants.

Temperate Coniferous Forest Evergreen forests in areas with warm summers and cool winters. Common in coastal areas with mild winters with heavy
rainfall or inland with drier climate and montane areas. Understory (herbaceous and shrub) and overstory (trees).
Highest biomass of the terrestrial biomes.

Boreal forests/Taiga Low annual temperatures, high northern latitudes, most precipitation falls as snow. Nutrient poor soils and permafrost
favor coniferous trees. Low species richness.

Tropical and subtropical grasslands, savannas and
shrublands

Large expanses where rainfall limits extensive tree cover. Grassland dominated with scattered trees. Large mammal
fauna.

Temperate grasslands, savannas and shrublands Prairies and steppes. Differ from tropical grassland by being mostly devoid of trees except riparian forests. Large
vertebrates.

Flooded grasslands and savannas Large expanses of flood grasslands. Large congregation of waterbirds. Sensitive to hydrologic uses in these areas.

Montane grasslands and shrublands High elevation grasses and shrubs. Can be tropical, subtropical, and temperate. High endemism.

Tundra Treeless polar desert found at high latitudes. Sedges, health, and dwarf shrubs are supported, though vegetation is
patchy. Most precipitation falls as snow in winter.

Mediterranean Forests, woodlands, and scrubs Fire dependent plants. Occur in regions with hot, dry summers and cool, moist winters.

Mangroves Short trees with prop-like roots that thrive in saline waterlogged areas along coasts.
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shapefile of WWF designated biomes globally (Olson et al., 2001).
There are fourteen defined global biomes (Table 1), and their global
distribution is highlighted in Figure 1. Biomes were selected as the
unit of analysis given that these ecosystems share dominant
vegetation types wherever they are found, most often based on
similar biophysical processes and climatic regimes. In addition,
studying at the level of biomes is important because they display
substantial variation in the extent of change, they face different
drivers of change, and there may be differences in the options for
mitigating or managing such changes.

Utilizing the length of the satellite data record and the D metric,
systematic quantification of vegetation change globally can be
derived, and then interpreted with a view to better understand
the spatial patterns and trends and how these relate to different
global biomes as defined here from the WWF product. Specifically,
we will focus on the differences in patterns of vegetation persistence
as a function of biome type. Biomes are selected as the broad unit of
analysis, as these represent similar ecosystems which, by definition,
share comparable processes and major vegetation types wherever
they are found. Studying at the level of biomes is important because
they may display substantial variation in the extent of change, face
different drivers of change, and there may be differences in the
options for mitigating or managing these drivers. As such, this
research will cover over 30 years of vegetation persistence analysis
at the biomes level which is calculated from the global persistence
product we created, extracted for each of the 14 biome types. In
addition, these biomes are each evaluated at a seasonal scale (DJF,
MAM, JJA, and SON) as seasons are something that show different
patterns and as such, it is important to both explain and account for

these possible phenological signals. Therefore, the created products
for analysis and statistical comparison are the persistence patterns
for each of the 14 WWF biomes (Table 1; Figure 1) for each of our
four seasons, with statistical significance further summarized at a
pixel scale and presented for both negative and positive vegetation
persistence.

FAO land use diversity data

Information on global land use is of paramount importance within
this analysis. Determining biome type does not mean that the land use
or land cover matches this type as in many locations land cover change
because of changes in land use has already occurred (Winkler et al.,
2021; Friedl et al., 2022; Potapov et al., 2022). Therefore, in order to
account for the differences as predicted by biomes based on climate
and biophysical factors, versus the actual land use, an additional data
set was needed. Global data on land use is collected by the Food and
Agriculture Organization (FAO) of the United Nations and provides a
standardized methodology for land use classification and mapping
globally. Given this study was undertaken at a global scale a reputable
and readily available global land use data set was needed. The data
used for this study was the global land use data product for 2010 which
was selected as it related to the end point of the time series used (fao.
org website for data download, last accessed September 2022) and so
could be used to indicate the actual land use diversity within each
biome type. The land use classes available were at a very broad scale
and were agriculture, grazing, wetlands, urban, forest, natural non-
forest, and open water. The use of the FAO data, allowed us to

FIGURE 1
Map of the global distribution of the fourteen WWF designated biomes WWF (2020).
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understand land use diversity within each biome class, where land area
within the biome was previously converted, for example, to
agricultural or development-based uses, by providing a land use
diversity product for 2010. While this data is not ideal, and the
time period used was only 2010 it was still useful in interpreting
the persistence metrics by biome and by latitude, through a land use

diversity analysis, to link to the vegetation dynamics highlighted by the
persistence analysis. This allowed us to identify and highlight regions
of significant land use diversity, which resulted in the changes in
persistence. The data on land use was obtained for the entire globe and
then subdivided by biomes, and within each biome was broken down
into latitudinal bands, in 10-degree blocks. This was also useful to

FIGURE 2
Global persistence by season for 1987–2010, compared to the baseline of 1982–1986 for (A) December, January, February (DJF); (B) March, April, May
(MAM); (C) June, July, August (JJA); and (D) September, October, November (SON). Positive versus negative trends are shown in green versus purple
respectively.
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highlight land use diversity across the northern and southern
hemispheres when interpreting the results.

Utilizing the length of the satellite data record and the D metric,
systematic quantification of vegetation change globally can be derived, and
then interpreted with a view to better understand the spatial patterns and
trends and how these relate to land use diversity as calculated here from the
FAO product. Specifically, we will focus on the differences in patterns of
vegetation persistence as a function of the actual land use diversity at the
pixel level, as determined by FAO data (FAO 2010 data available at FAO.
org). Biomes are important, but so is land cover and related land use
diversity. Therefore, we will calculate the diversity of land uses occurring
within each Biomes, and in order to assist interpretation we will calculate
this land use diversity for every 10° north and south. This will allow us to
add land use diversity into the already complex analysis incorporating
biome and season. While this is an added level of complexity, it is essential
to highlight the land use diversity within the global biomes data, and how
variable this is over the different hemispheres of analysis.

Results

Global patterns of vegetation persistence

We calculated vegetation persistence at a pixel level for each
season, for each year, and compared every season/year from
1987 to 2010 to the baseline period of 1982–1986. Initial
analysis found AVHRR and MODIS to differ enough that they
were not compatible for use within this type of analysis and may
impact the findings due to different products and so bias results.
Due to these differences across satellite products we chose to utilize
the dataset with the longest timeframe and hence selected the
AVHRR data product. The results can be evaluated spatially
(Figure 2) and an initial review would highlight the
overwhelmingly positive pattern of vegetation persistence
globally. Despite these overall patterns it is also evident that
some regions differ, and negative patterns of vegetation

FIGURE 3
Proportion of each biome type globally representing either significant positive vegetation persistence (green) or significant negative vegetation
persistence (purple) as a function of total pixels in that biome, and shown for all four seasons for (A) December, January, February (DJF); (B)March, April, May
(MAM); (C) June, July, August (JJA); and (D) September, October, November (SON). Where acronyms are: TSMB, Tropical Subtropical Moist Broadleaf Forest;
TSDB, Tropical Subtropical Dry Broadleaf Forest; TSCF, Tropical Subtropical Coniferous Forest; TBMF, Temperate Broadleaf and Mixed Forest; TCF,
Temperate Coniferous Forest; BFT, Boreal Forests-Taiga; TSGS, Tropical Subtropical Grasslands, Savannas, and Shrublands; TGSS, Temperate Grasslands,
Savanna, Shrubland; FGS, Flooded Grassland and Savanna; MGS, Montane Grassland and Shrubland; TUN, Tundra; MFWS, Mediterranean Forest, Woodlands,
and Scrub; DXS, Deserts and Xeric Shrublands; and MANG, Mangroves.
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persistence do exist, especially in Africa, and over time, the DFJ or
boreal winter experiences more negative persistence patterns.
MAM, boreal spring has the most positive patterns of
persistence. Such global analysis, while useful, simply provides
an overview within which we can start to breakdown findings by
biomes and seasons and begin to evaluate potential drivers of these
changes.

Vegetation persistence patterns by season
and biome

Evaluating changes in vegetation persistence by season and biomes
provides much more useful data and starts to highlight differences
over time and place (Figure 3). For the months DJF there were higher
positive trends overall, especially for Tropical Subtropical Moist
Broadleaf Forests, Temperate Broadleaf and Mixed Forests, and
Tropical Subtropical Grasslands, Savannas and Shrubs (Figure 3A).
Two biomes had higher negative persistence patterns over positive
patterns, and these were Boreal Forests-Taiga and Temperate
Grasslands, Savanna, and Shrublands. The behaviour of these
biomes were significantly different for the DJF period, and given
their locations may relate in part to data issues related to snow cover at
the more northern latitudes recording as low NDVI. As the recorded
value is the maximum NDVI in the period this variability with snow
cover and snowmelt could result in some erroneous results in terms of
vegetation. This also links to the higher areas of negative persistence in
the map for DJF (Figure 2A) which helps support this theory.

For MAM, the results were overwhelmingly positive, with the
lowest number of negative pixels for any period. The biomes with the
highest numbers of positive persistence values were Boreal Forests/-
Taiga, the Temperate Broadleaf and Mixed Forest, and the Tropical
Subtropical Moist Broadleaf Forests. The Tundra had equal
proportions in negative and positive persistence, all other classes
the persistence was dominated by the positive patterns (Figures 2B,
3B). Such an overwhelmingly positive pattern of vegetation persistence
in the boreal spring most likely relates to the dominance of the NH in
terms of land mass, and the spring season equating to plant growth.
Over the time period of study, this indicates that at a pixel level the
dominant patterns one of higher NDVI values every year compared to
the baseline period, for all biomes except Tundra. This is a real
dominance of positive vegetation persistence globally.

During the JJA periods there were overwhelmingly higher positive
persistence patterns in every single biome. Again, this likely relates to
the growing cycle and the dominance of the NH land mass in the
signal. The result of no biomes experiencing more negative persistence
versus positive persistence trends though is clearly a major finding.
The most significant positive persistence proportions were found in
Boreal Forests (with the highest recorded proportion of pixels in the
positive persistence class at almost 80%), and then Tundra, Temperate
Broadleaf and Mixed Forests, Tundra, Tropical Subtropical Moist
Broadleaf Forests, (Figures 2C, 3C).

Finally, for SON there were higher positive persistence patterns
again for most classes, although with lower proportions of pixels than
for the MAM and JJA periods. The largest proportion of positive
persistence was in Temperate Broadleaf and Mixed Forests, followed
by Tropical Subtropical Moist Broadleaf Forests and Boreal
Forests—Taiga (Figures 2D, 3D). The Deserts and Xeric
Shrublands class only record negative persistence patterns and

Tropical Subtropical Dry Broadleaf Forests has equal amounts of
negative and positive persistence values. As the boreal autumn season
occurs then, some of the water-limited or drier environments do
appear to have more negative persistence patterns, and the overall
greening or vegetative persistence patterns are lower than in the boreal
spring and summer periods.

Looking overall at these results, we can view across seasons, and
state that positive vegetation persistence is greater in the MAM and
JJA seasons (Figures 2, 3) and this likely relates to growing season and
more positive vegetation persistence is found in the NH over the SH
(Figure 2). Biomes which always have a strong pattern of positive
vegetation persistence are the Tropical Subtropical Moist Broadleaf
Forests, Temperate Broadleaf andMixed Forests, and to a lesser degree
Tropical Subtropical Grasslands, Savannas and Shrublands. Boreal
Forests-Taiga, has very strong patterns of positive vegetation
persistence, except for the DJF period, which we believe relates
more to snow cover variations than actual land cover. Reviewing
these biomes (Figure 1), except for the Argentina pampas grasslands
and the tropical subtropical grasslands, savannas and shrublands,
these are dominated by the northern hemisphere locations. Overall,
it can be seen from the analysis by biomes that forests tend to exhibit
more positive patterns of vegetation persistence. Savannas, grasslands
and desert regions seem to exhibit much more mixed trends, with
more variability intra-annually, or across seasons and hemispheres.
From these overview results more information is available and can be
extracted to discern any possible drivers of change. As such, the biome
data is further broken down, to better understand and explain these
trends.

Vegetation persistence patterns accounting
for land use diversity within biomes and
variation with latitude

Persistence patterns for each biome by latitudinal bands and land
use diversity to aid in the analysis and interpretation of the
persistence patterns, are illustrated in Figures 4–7. Only those
latitudes that represent greater than 5% of the global land surface
area of that biome are now included and a vertical grid has been
inserted at 33.3% and 66.7% on the significant change bars to provide
a rough quantitative estimate of percentages of pixels showing
significant positive or negative changes. In addition, each graph
also has a right-hand bar chart extended horizontally to
accommodate and display the breakdown of land use diversity
data in the biome, within each latitudinal band. As such we can
interpret the changes in persistence by latitude and discuss each in
terms of the actual land use diversity observed within each biome
type. This is to account for the land cover changes which have
occurred globally, such that a biome has often been converted from
its natural vegetation type to more human-dominated uses. This is
important to clarify. The biome data represents the vegetation type
which would result naturally, but in many cases human driven
changes have occurred and the resulting land use is different
from the original biome. Therefore, it is essential to highlight that
within the biome type the land use diversity is highly variable,
emphasizing the alteration that has already occurred within each
biome. Clustering of biome types with similar patterns and outcomes
can thus be determined and possible reasons for these patterns of
change discussed. The patterns of biome responses can be grouped
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into some similar types where the resulting patterns do appear to
follow some similar trends and patterns. To highlight these similar
trends in persistence patterns, across seasons, for these biome
clusters we have plotted them together (Figures 4D, 5D, 6E, 7E).
These graphs show the proportion of pixels in each persistence
category (so each biome and season = 100%, similar to soil type
triangular charts or “textural triangles”) and plotting by biome
across seasons allows us to highlight shifts by season and so link
to climatic drivers more effectively.

Tropical Subtropical Moist Broadleaf Forest reveals a significant
amount of forest cover is remaining in this biome (Figure 4A) and that
the dominant trend is that of positive vegetation persistence. In
addition, this trend is clearly stronger in the NH than in the SH.
Tropical Subtropical Dry Broadleaf Forest (Figure 4B) has been
significantly converted to agriculture and pasture land-uses. The
NH shows more positive persistence patterns and for the seasons

SON and DJF there is a strong negative trend in the SH. Also, of note,
there is more forest cover left in the SH, thus representing more of this
original biome cover. Tropical Subtropical Coniferous Forest
(Figure 4C) is dominated more by grazing lands, than forest cover
along with some agriculture classes.

Positive persistence dominates and this trend is stronger in the NH
than the SH, although there is very little SH area in this biome.
Figure 4D shows the Tropical and Subtropical Forest types and we can
see that Moist Broadleaf and Coniferous Forest types basically run
horizontally with very low percentages (5%–10%) of pixels reporting
significant negative persistence. By contrast the Tropical and
Subtropical Dry Broadleaf Forests show higher percentages of
negative persistence in JJA and SON than the other two tropical
forest biomes. Given the limiting factors on growth for these biomes, it
looks like seasonal availability of moisture may be causing the
differences in these three forest types.

FIGURE 4
Composition of significant persistence values (Negative, None, Positive) in each biome, broken down by latitudinal band, with land use diversity of each
bank also shown, for (A) Tropical Subtropical Moist Broadleaf Forest, (B) Tropical Subtropical Dry Broadleaf Forest, (C) Tropical Subtropical Coniferous Forest,
and (D) Ternary plot of the seasonal changes in percentages of global areas returning significant percentages of positive and negative persistence, and those
reporting to significant persistence, for three tropical forest biomes.
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Temperate Broadleaf and Mixed Forest (Figure 5A) is now mainly
agriculture and grazing lands, with only some limited areas of forest
cover left. As with other forest biomes, we find that positive persistence
dominates, and this trend is stronger in the NH than the SH.
Temperate Coniferous Forest (Figure 5B) has lots of forest cover
left, and some limited grazing areas. Again, positive persistence
dominates. This biome is only found in the NH and so there is no
NH versus SH variability. Boreal Forest-Taiga (Figure 5C) is still
predominantly forest cover with much lower rates of conversion and is
also found only in the NH. Once again, as with all the forested biome
types, positive persistence dominates, especially in the growing season.
All non-tropical forest biomes are almost exclusively limited to the NH
and display roughly similar shapes, with three triads showing little
change in percentages of negative persistence (3%–8%) and DJF
(winter) showing the greatest propensity towards negative
persistence (Figure 5D). Boreal Forests-Taiga indicate lower

percentages (5%–35%) of positive changes, and Temperate
Broadleaf and Mixed Forests higher ones (40%–60%). Given
limiting factors on growth in these biomes, temperatures seem to
have a big role here. In general, cooler temps lead to, a) fewer positive
values, b) slightly more negatives (especially DJF), c) more “no
significant” and d) a greater amplitude in these observations
between the various seasons.

Tropical Subtropical Grasslands, Savannas, Shrublands
(Figure 6A) have experienced significant conversion, and are
now mainly areas of grazing, with some agriculture. Positive
persistence dominates in the NH but the SH is much more
variable, with more negative persistence in their winter and
spring seasons (JJA and SON respectively). Temperate
Grasslands, Savannas, and Shrublands (Figure 6B) have again
been mainly transformed to areas of agriculture and grazing.
Positive persistence dominates in the NH with the SH again

FIGURE 5
Composition of significant persistence values (Negative, None, Positive) in each biome, broken down by latitudinal band, with land use diversity of each
bank also shown, for (A) Temperate Broadleaf Mixed Forest, (B) Temperate Coniferous Forest, (C) Boreal Forest -Taiga, and (D) Ternary plot of the seasonal
changes in percentages of global areas returning significant percentages of positive and negative persistence, and those reporting to significant persistence,
for three non-tropical forest biomes.
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reflecting a more mixed response, with more negative persistence
in their winter and spring. Also of note is that these areas are very
spatially limited in the SH. Flooded Grassland, and Savanna
(Figure 6C) has very mixed actual land uses but despite this,
positive persistence dominates in the NH although in the SH
results are much more mixed, with more negative persistence in
their spring (SON). Montane Grassland and Shrubland
(Figure 6D) is composed of mainly grazing and natural
vegetation and follows the same trend of positive persistence
dominating in the NH, with the SH being a little more mixed,
but generally positive overall. Seasonal patterns of persistence for
grasslands are very distinct from those of the forest biomes
(Figure 6E). The dominant orientation of forest biomes (except
tropical dry forest) is horizontal, whereas diagonal (temperate and

montane grasslands) and box-like (subtropical and flooded
grasslands) shapes dominate here. Flooded grasslands evince
greater variability in the vertical position on the graph than
tropical grasslands which tend towards a more equilateral
shape. From these patterns it seems most likely that they are
responding to high seasonality in their rainfall regimes within
these grassland biomes.

Tundra (Figure 7A) has mainly natural vegetation cover. Positive
persistence dominates in the NH during their growing season. The SH is
again much more mixed across seasons although also of note, the SH has
very limited area spatially. Mediterranean Forest, Woodlands, and Scrub
(Figure 7B) have been heavily converted and so are nowmainly agriculture
and grazing lands. Positive persistence dominates and this trend is much
stronger in the NH than for the SH. Deserts and Xeric Shrublands

FIGURE 6
Composition of significant persistence values (Negative, None, Positive) in each biome, broken down by latitudinal band, with land use diversity of each
bank also shown, for (A) Tropical and Subtropical grasslands, savannas and shrublands, (B) Temperate grasslands, savannas and shrublands, (C) Flooded
grasslands and savanna, (D)Montane grassland and shrubland and (E) Ternary plot of the seasonal changes in percentages of global areas returning significant
percentages of positive and negative persistence, and those reporting to significant persistence, for four grassland biomes.
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(Figure 7C) are made up of mainly grazing and natural vegetation. Positive
persistence dominates in the NH and following the patterns of many of the
grassland and shrub regions, the patterns in the SH aremuchmore variable.
Finally, Mangroves (Figure 7D) are greatly transformed and so actually
represent very mixed land covers and very small areas. Positive persistence
dominates in theNHwith the SHmoremixed, but with positive persistence
overall. Tundra exists almost exclusively in the northern hemisphere,
during JJA a high percentage (35%) now exhibit positive persistence,
and with very few (<5%) examples of negative persistence (Figure 7D).
Between 30% and 40% of the three remaining biomes lie within the
southern hemisphere, so what little seasonal variability they exhibit should
be interpreted with caution. Regardless of season, just under 80% of the
pixels in the desert and xeric shrub biome report no significant persistence
and so a discussion of possible drivers of change is not possible.

One important issue here, and a cautionary note on the
interpretation of these graphs is related to the fact that any
expression and physical interpretation of these changes is partially
dependent upon the hemispheric distribution of each biome. As such,
it is important to review this percentage of biomes by latitude and
hemisphere (Figures 4–8) when reviewing and assigning importance
to these results, as we have attempted here.

Discussion

This study utilizes a novel approach to analysing NDVI timeseries
to better understand global distributions of changes in vegetation
greenness. The importance of seasons, biomes, and land use in shaping

FIGURE 7
Composition of significant persistence values (Negative, None, Positive) in each biome, broken down by latitudinal band, with land use diversity of each
bank also shown, for (A) Tundra, (B)Mediterranean Forest, Woodlands and Scrub, (C) Deserts and Xeric Shrublands, (D)Mangroves and (E) Ternary plot of the
seasonal changes in percentages of global areas returning significant percentages of positive and negative persistence, and those reporting to significant
persistence, for four other biomes.
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greenness trajectories was also investigated. This highlighted several
advantages and strengths of the directional persistence metric, which
utilizes a time series analysis of vegetation persistence, with initial
benchmark conditions (1982–1986), and implementing statistical
significance at a pixel level for the globe. NDVI time series was
shown to be a powerful tool for understanding vegetation change
at the global scale. This approach emphasizes identification of long-
term shifts in vegetation greenness and is less concerned with small-
scale individual events that impact local areas, even though these may
be of interest at these more local and regional scales, e.g., forest
mortality, disaster related clearing activities, etc. To better capture
pixels with significant change in NDVI for individual events, it is
possible to adjust the baseline values and temporal scale, though given
the global extent of this study it is not possible to account for all local
level change in NDVI in the analysis presented here. Future research
could look more closely at some areas of interesting change, that do
not hit the required significance levels for this research (±9). By using
NDVI data to assess the areal extent, magnitude, direction, and
temporal patterns of vegetation change, scientists can gain
important insights into how vegetation is responding to changes in
climate and other environmental conditions, as well as understand the
health of ecosystems globally (Southworth et al., 2016; Southworth and
Muir 2021).

We calculated vegetation persistence at a pixel level for each
season, for each year, and compared every season/year from
1987 to 2010 to the baseline period of 1982–1986. The results
highlight the overwhelmingly positive pattern of vegetation
persistence globally, although there were also clear regional
patterns and variations with season (Figure 2). Looking overall at
these results, positive vegetation persistence is greater in theMAM and
JJA seasons (Figures 2, 3) and this likely relates to growing season and
more positive vegetation persistence as found in the NH over the SH
(Figure 2). Overall, forests tend to exhibit more positive patterns of
vegetation persistence. Savannas, Grasslands and Desert regions seem
to exhibit much more mixed trends, with more variability intra-
annually, or across seasons and hemispheres. When broken down
further to include land use diversity and latitudinal variation, clearer
patterns emerge related to biome types. Tropical Subtropical Moist
Broadleaf Forest, Tropical Subtropical Dry Broadleaf and Tropical

Subtropical Coniferous Forest have all been heavily converted to
agricultural land uses, and the seasonal availability of moisture may
be causing the differences in these three forest types (Figure 4).
Temperate Broadleaf and Mixed Forest has also been heavily
converted to agricultural uses, unlike the Temperate Coniferous
Forest Boreal Forest, or Taiga, which are still predominantly intact
forest cover. As with all the forested biome types, positive persistence
again dominates, especially in the growing season. Given limiting
factors on growth in these biomes, temperatures seem to have a big
role here in terms of increased patterns of positive vegetation
persistence with warmer temperatures (Figure 5). Tropical
Subtropical Grasslands, Savannas, Shrublands and Temperate
Grasslands, Savannas, and Shrublands have again been largely
transformed to areas of agriculture and grazing, whereas Flooded
Grassland, and Savanna has very mixed actual land uses. Montane
Grassland and Shrubland is composed of mainly grazing and natural
vegetation. All follow the same trend of positive persistence
dominating in the NH, with the SH being a little more mixed, but
generally positive overall. Seasonal patterns of persistence for
grasslands are very distinct from those of the forest biomes. From
the seasonal patterns and amplitudes (Figure 6) it seems most likely
that these grassland biomes are responding to high seasonality in their
rainfall regimes. Tundra has mainly natural vegetation cover.
Mediterranean Forest, Woodlands, and Scrub and Mangroves have
both been heavily converted and so are now mainly agriculture/
grazing and mixed covers, and Deserts and Xeric Shrublands are
made up of mainly grazing and natural vegetation. Positive persistence
dominates in the NH with the SH more mixed, but with positive
persistence overall. Variability across these final biome types is high
and areal extent often quite small, and no clear patterns or drivers were
discernable from the results.

Vegetation persistence (D) is a metric that can be used to
understand dynamics and highlight areas of vulnerability based on
the patterns of positive and negative vegetation persistence over time.
NDVI is a key measure of vegetation health, and by tracking changes
in NDVI over time, D can be used to identify areas where vegetation is
greening or browning. Positive persistence indicates greening, while
negative persistence indicates browning. Areas with high levels of
positive persistence are more likely to be resilient to disturbance, while
areas with high levels of negative persistence are more vulnerable. By
understanding the patterns of vegetation persistence, we can better
understand the dynamics of ecosystems and identify areas of possible
current or future vulnerability. Over and above that, traditional
approaches only highlight the conversion of systems, but
“directional persistence,” D, can be used to understand dynamics
and highlight areas of vulnerability based on the patterns of positive
and negative vegetation persistence over time, as presented here.

This research finds that vegetation persistence exhibited a positive
trend overall which matches many of the reports of global greening
over the same period (de Jong et al., 2012; 2013; Cortés et al., 2021).
Notably, in seasons, positive vegetation persistence is greater in the
growing season in the NH. More positive vegetation persistence was
found in the NH over the SH, which also corroborates the seasonal and
the NH trends exhibited here, and similarly found by other researchers
(de Jong et al., 2012; 2013; Cortés et al., 2021). Cortez emphasizes the
need for reliable statistically valid tests to detect vegetation change,
specifically significant trends related to vegetation greening and
browning globally. The research presented here helps validate
research finding global greening with much more significant

FIGURE 8
Percentage of global biomes by their hemispheric and latitudinal
distribution for the 14 biomes under study.
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statistical patterns in the NH regions and during the NH growing
season, as well as trends of browning, which are much more limited,
but found most in the SH. In addition, the importance of land use
change and land cover conversions are highlighted and the importance
of such land use changes, which are documented as impacting
approximately one-third of the global land area since 1960, is
critical to incorporate within such studies of global greening or
browning (Winkler et al., 2021). The research presented here
combines all of these requirements utilizing a well-regarded NDVI
vegetation index within a novel and innovative statistical approach,
which incorporates mathematical theory to apply statistical
significance in a rigorous and repeatable manner, while
incorporating season, latitude, and land use diversity. One
limitation of this research lies with the use of a single date to
develop the land use diversity variable, rather than using multiple
dates to determine land use changes. However, the purpose of this
research was to focus on the vegetation dynamics represented by the
NDVI time-series analysis creating the vegetation persistence metric.
Therefore, the use of the single date land use product to create the land
use diversity analysis for 2010, to highlight that within each biome type
the land use diversity is highly variable, emphasizing the alteration that
has already occurred within each biome, is an ideal compromise,
within this global focus.

This analysis builds on these previous greening studies of Lu
et al. (2016), Piao et al. (2020), Cortés et al. (2021), and Zhu et al.
(2016), with the important additions of changes by season, biome,
and land use diversity. More regionally and spatially variable,
changes in temperature and precipitation, CO2 fertilization,
changes in land cover, and the important role of seasons are
all highlighted in these former research studies, as crucial drivers
of global greening (vegetation persistence), as can also be
observed in the present research. Drivers of global greening
from earlier studies, with the key driver being CO2 fertilization
(Lu et al., 2016; Zhu et al., 2016). In the boreal region, temperature
change was regarded as the major driver behind vegetation
greening as summer facilitated the growth of plants (Lucht
et al., 2002), which is in line with findings presented here. But
Piao et al. (2005) and Nemani et al. (2002) discovered
precipitation as a cause behind enhanced vegetation
productivity overall, which again showed congruity with this
research, and also highlights the importance of looking within
biomes and latitudinal zones, and not just at global trends.

The higher greenness trend in the NH over the SH, is explained
by Kaufmann et al. (2002), as rising temperature in the NH as the
key factor behind improved vegetation growth. Zhou et al. (2001)
and Nemani et al. (2003) also documented enhanced terrestrial
greenness in high and middle latitudes of the NH from 1980 to
2000. Box (2002) suggested that because of increased rates of
temperate increase in the NH greenness rates are increasing at a
higher rate there as compared to the SH. Complimentarily, Piao
et al. (2020) suggested that the SH has experienced a wide-ranging
trend of greening since 1980, but this rate is lower than compared
to higher latitude NH locations. Chen et al. (2019) also regarded the
NH as a vegetation greening hotspot because of its faster rates of
greening. Winkler et al. (2021) studied sub-Saharan grasslands and
savanna systems and showed that the greening pattern is consistent
with an increase in rainfall. Zhu et al. (2016) further gave
justifications that like climate change, land-use change
(deforestation, afforestation, and agricultural intensification)

also put forth a highly spatially variable influence on vegetation
changes. Deforestation in tropical forests reduced vegetative
persistence, described by Brandt et al. (2017), while afforestation
increased greenness in the temperate region (Curtis et al., 2018).
Additionally, agricultural intensification in terms of irrigation,
fertilizer and pesticide use, multiple cropping, etc. contribute
significantly (25%–50%) in leaf area enhancement in
Mediterranean forest, temperate broadleaf forest, mangroves,
and temperate grasslands, as depicted by Feng et al. (2016);
Chen et al. (2019), and Winkler et al. (2021). Our research not
only supports these same findings but also helps to highlight the
latitudinal, seasonal and land use related variations causing these
trends.

Conclusion

Vegetation greening is one of the most distinguished
characteristics of biosphere change, since 1980, as indicated from
long-term satellite records (Lu et al., 2016; Zhu et al., 2016; Piao et al.,
2020; Cortés et al., 2021). This study presented an approach to
analyzing vegetation persistence for three decades (1982–2010),
thus highlighting significant spatial and temporal variations at
biome, season and land use diversity levels. By setting
1982–1986 as a benchmark period, the subsequent 23 years of data
revealed that forests overall have positive vegetation persistence, but
this trend is not consistent across all biomes. Savannas, desert, and
grasslands seem to be the most vulnerable although results are highly
variable. In contrast, tundra, moist broadleaf forests, boreal forests,
and coniferous forests exhibited the highest positive vegetation
persistence proportions.

This method in time series remote sensing analysis is pivotal in
importance to assist in the user designed, easily replicated, analysis of
patterns of vegetation change, which—once identified—can lead to
more in-depth and regional scale studies of drivers (Southworth et al.,
2016; Southworth and Muir 2021). Vegetation persistence methods,
such as the approach in this study, using the vegetation persistence or
“D” metric, are much more reproducible and innovative than
traditional approaches to vegetation analysis. They take into
account patterns of longer-term vegetation persistence, at a pixel
level, over extended time periods, rather than just an absolute
value. This enables identification of patterns of vegetation change
over time, which can then be used to study the drivers of those
changes.

This study found similar results to other global studies (de Jong
et al., 2012; 2013; Cortés et al., 2021; Jiang et al., 2022), which found
an increase in global vegetation persistence since the early 1980s,
frequently referred to as the “global greening” trend. However, this
study also highlights the importance of exploring these trends
across seasons, biomes, and land use diversity, revealing that this
trend is not consistent across all locations. Savannas, desert and
grasslands seem to be the most vulnerable and highly variable, and
forest biomes have the highest patterns of positive vegetation
persistence, especially within the growing season. There is a lot
of interest in the global greening trend, as it has potential
implications for food security, the water cycle and carbon
sequestration. However, there is still much work to be done to
fully understand the drivers of these trends and their implications.
This study provides a valuable contribution to this debate by
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highlighting the importance of using time series approaches, such as
the one presented here, to understand vegetation dynamics and
identify areas of vulnerability.

The pixel-level perspective of the vegetation persistence method is
useful for understanding dynamics of change and identifying areas of
vulnerability. The ability to assign statistical significance to pixel level
trajectories helps to further understand the patterns of change. This time
series based remote sensing approach has many potential applications for
monitoring environmental change. Vegetation persistence, D, can be used
to understand dynamics and highlight areas of vulnerability based on the
patterns of positive and negative vegetation persistence over time. This
can help identify which areas are most likely to experience change and
where management action may be necessary to protect against further
change. As such, this is a simple and valuable tool for resource managers
and policymakers as it provides insight into the long-term impacts of
human activities on landscapes.
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Remote mapping of leafy spurge
(Euphorbia esula, L.) in
Northwestern Colorado

Chloe M. Mattilio1*, Daniel R. Tekiela2 and Urszula Norton1

1Department of Plant Sciences, University of Wyoming, Laramie, WY, United States, 2United States
Department of Agriculture, Invasive Plant and Pesticide Use Program, United States Forest Service,
Lakewood, CO, United States

Leafy spurge (Euphorbia esula L.) has been introduced to the Yampa River in
Northwestern Colorado for over 40 years and flood and runoff events transport
leafy spurge propagules onto adjacent landscapes. The spread of leafy spurge
beyond the river channels has yet to be mapped and recorded, and this research
was conducted tomap leafy spurge occurrence in the Yampa River Valley. Significant
stakeholder mapping efforts took place in the summer of 2019–2021, leading to
excellent spatial data on leafy spurge presence and absence along the main channel.
In summer 2019, multispectral SPOT seven satellite imagery, stakeholder ground
mapping efforts, and bright yellow-green leafy spurge bracts were used to interpret
imagery, identify dense, unobscured patches of leafy spurge, and digitize them.
Spectral signatures from training samples for leafy spurge and other land cover
classes (generalized as “not leafy spurge”) were then used to train a Random Forest
machine learning classification. In the summer of 2021, generated classification
maps were compared to multispectral satellite imagery and stakeholder ground
mapped leafy spurge presence. Mismatches were identified, and 271 validation
locations were identified, navigated to, and evaluated for leafy spurge presence.
Leafy spurge training samples were classified with 96% accuracy. Correctly classified
leafy spurge locations had higher leafy spurge coverage and lower overstory canopy
than missed leafy spurge locations. Leafy spurge growing beneath shrub canopy or
growing as individual plants along the riverbanks were more likely to be missed. A
frequency analysis for other plant species found at validation locations determined
that smooth brome (Bromus inermis Leyss.), dandelion (Taraxacum officinale L.), and
willow (Salix sp.) were most frequently misclassified as leafy spurge. In conclusion,
multispectral satellite imagery was useful at remote detection of leafy spurge in open
areas with dense leafy spurge coverage, but more work must be done for
identification of sparse and diffuse leafy spurge infestations.

KEYWORDS

invasive plantmapping, leafy spurge (Euphorbia esula L.), satellite remote sensing, validation
mapping, rangeland management

1 Introduction

Leafy spurge (Euphorbia esula L.) is a perennial invasive weedy species that has successfully
established across a wide range of ecosystems and has a noxious weed designation in 22 US
states (Goodwin et al., 2001). Leafy spurge is difficult to eradicate, despite heavy use of
herbicides, targeted grazing, and various biocontrol agents (Goodwin et al., 2001). Leafy spurge
is adapted to a wide range of growing conditions, including disturbed areas, rangelands,
pastures, and river bottoms (Hyder et al., 2008).
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With blue-green stems, linear leaves, small green flowers, and
bright yellow bracts, mature leafy spurge is easily identifiable.
Individual stems can produce over 200 seeds annually, which when
mature, can be expelled up to 15 feet from the plant (St. John and
Tilley, 2014). Seeds are small and buoyant, easily transported by water
to areas downstream. Tissues contain a milky white sap that contains
ingenol, which is released when plants are injured (Larry Leistritz,
2004). Once ingested, leafy spurge can be toxic to livestock, horses and
wildlife, and result in significant economic losses to producers and
other land users (Goodwin et al., 2001).

Remote sensing for leafy spurge mapping has been conducted since
1995, when leafy spurge was mapped with real color aerial imagery at
Theodore Roosevelt National Park and found to be associated with high
proximity to waterways (r2 = .98) (Anderson et al., 1996). Multispectral
sensors, which record reflectance beyond the visible spectrum in
3–10 spectral bands, have been used in a mixed-grass prairie in
North Dakota (Casady et al., 2006) Leafy spurge was mapped with
67% accuracy, with decreasing classification accuracy when grown with
herbaceous vegetation (Casady et al., 2006).

Successful remote detection of leafy spurge depends on capturing
spectral differences between leafy spurge and other land cover, and imagery
with limited spectral bands can make identifying leafy spurge challenging
(Hunt andParker Williams, 2006). In a heterogeneous landscape near
Devil’s Tower National Monument Crook County, Wyoming,
hyperspectral (remote sensing imagery consisting of hundreds to
thousands of spectral wavelengths) classifications performed best in
prairie vegetation, and better in bottomlands than uplands, which was
caused by dense leafy spurge cover in riparian areas and longer periods of
blooming in moist habitats (Williams and Raymond, 2002). In a study by
Parker and Hunt. (2004), leafy spurge was well correlated with higher near
infrared (NIR) reflectance, which is also known to be well correlated with
dense vegetation cover. Leafy spurge was detected with 95% accuracy, and
classification performed well in mixed-prairie and riparian vegetation than
in forested areas (Williams and Raymond, 2002). In the sagebrush
(Artemisia tridentata subsp. tridentata) steppe of Swan Valley, Idaho
with 84%–94% accuracy (Glenn et al., 2005) and with 96%–99.5%
accuracy at the mixed-grass prairie at Theodore Roosevelt National
Park (O’Neill et al., 2000).

Leafy spurge has been spreading along the Yampa River main
channel and constructed irrigation ditches for over 40 years (Yampa
River Leafy Spurge Association, 2018; Turnage, 2021). The Yampa
River flows for 250 river miles in Moffat and Routt Counties,
Colorado, United States. Increased presence of leafy spurge in this
area can be indicative of disturbance and large flooding events (Yampa
River Leafy Spurge Project, 2018; Goodwin et al., 2001). The Yampa is
one of the last free-flowing rivers in the Western United States, with
seasonal flooding temporarily inundating sandbars and terraces away
from the active river channel (Merritt and Cooper, 2000).
Understanding the current extent of leafy spurge invasion with
high spatial resolution is critical as its presence has already been
observed beyond the riverbanks and floodplains, such as upland
meadows, hillslopes and mountain ridges. High spatial resolution is
a priority, as small satellite clusters of leafy spurge away from the main
invasion are more likely to be effectively managed and to spread to
new areas (Westbrooks, 2004). This project aimed to: 1) produce
detailed maps of the current leafy spurge infestation along the Yampa
River corridor with SPOT seven satellite remote sensing and 2), visit
locations and validate leafy spurge presence or absence to describe
classification performance.

2 Materials and methods

2.1 Study area

The Yampa River flows from the FlattopsWilderness to a confluence
with the Green River deep inside of Dinosaur National Monument. The
stretch of the Yampa River under investigation flows through the Moffat
and the Routt Counties, between Hayden, Colorado, and Dinosaur
National Monument (Figure 1). There, leafy spurge has already
invaded riparian areas such as riverbanks and islands and is now
advancing to uplands covered by juniper forests, sagebrush shrublands,
grasslands, and agricultural fields. Figure 2.

2.2 Data collection

2.2.1 Ground mapping of leafy spurge
Groundmapping of leafy spurge took place during over three summers

between 2019 and 2021, as water levels allowed each year. Mapping was
conducted by stakeholder volunteers from the Yampa River Leafy Spurge
Project (YRLSP) via water to map the extent of infestation along the
Yampa’s main channel and beyond riverbanks. Coverage was extensive,
with one or more observers scanning the riverbanks of the main channel
for leafy spurge rafts to map the perimeter of the invasion to full extent or
property lines where owners rejected mapping requests. During each stop,
the location and presence of leafy spurge (density, abundance, and patch
size), land characteristics, vegetation type and overstory canopy cover were
recorded on location service enabled tablets equipped with Map It Fast
(Agterra, 2017) (Table 1.a). All information was imported into a
Geographic Information System (GIS) (ArcMap 10.5 (ESRI, 2018) and
used for identification of leafy spurge presence visible in the imagery. These
mapped polygons were not used directly as classification training samples,
as the imagery represented one sample in time, leafy spurge growing
beneath shrubs and trees, and leafy spurge infestations that were too small
to be represented by tablet spatial accuracy and imagery spatial resolution.

2.2.2 Satellite imagery acquisition
YRLSP funds were acquired and budgeted to purchase one set of

SPOT seven satellite imagery from early July of 2019 from L3Harris
Geospatial (L3Harris Geospatial, 2019). The beginning of summer in
2019 was cool and wet, so this sampling represents the late peak bloom
of 2019. The spatial extent of this satellite imagery and resulting
classification covers the area from Hayden, Colorado to Cross
Mountain within 1.5 miles of the Yampa River channel (Figure 1).
The imagery consists of five spectral bands, one panchromatic
(1.5 m × 1.5 m pixels, 450–745 nm) and four multispectral: red
(625–695 nm), green (530–590 nm), blue (450–520 nm), and near
infrared (NIR, 760–890 nm) (6 m × 6 m pixels). Multispectral
imagery was resampled to approximately 4 m × 4 m pixels using
the finer resolution panchromatic band in ArcMap to increase the
spatial resolution and identify the smallest clusters of leafy spurge
plants possible with this imagery set. Despite this resampling of pixels
of the spectral imagery, pan-sharpened imagery showed spectral
patterns that delineated land cover classes that were difficult to
distinguish, like riparian hay meadows, sparse rangeland vegetation,
and wetlands. Once pan-sharpened, band combinations and
representation were experimented with to highlight contrasts
between ground mapped leafy spurge polygons and other
recognizable land cover classes.
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2.3 Data analysis

2.3.1 Training and classification
One hundred and eight training polygons of unobscured leafy

spurge were digitized based on interpretation of the YRLSP ground
mapped leafy spurge presence in the imagery in ArcMap. Volunteer
ground mapping work was essential for development of these training
samples, as they covered the main channel comprehensively with
locations and detailed descriptions of leafy spurge presence. In
addition, 96 polygons were developed for other land cover classes
within the study area (water, forage fields, other vegetation, roads,
structures, bare ground, etc.) and combined to create a “not leafy
spurge” dataset. These training polygons represent the leafy spurge
invasion as of imagery collection in July of 2019, and were imported
into Program R, where SPOT seven imagery spectral reflectance values
(red, green, blue, and NIR) were extracted to train the classification
algorithm for leafy spurge and not leafy spurge. The method used a
machine learning technique known as Random Forest (Breiman and
Cutler, 2001), from the random Forest package in Program R (Liaw
and Wiener, 2002). For this classification, 101 trees were grown, and
20% of the training samples were reserved for an internal validation.
Two classification maps were developed with both, binary
classification of “leafy spurge” and “not leafy spurge” classes using
a probabilistic scale from 0 (most likely to be not leafy spurge) to 1
(most likely to be leafy spurge).

An accuracy assessment of the binary leafy spurge classification
was conducted using a confusion matrix of classified and digitized
training data, and users’ accuracy, producer’s accuracy, and overall
accuracy. The kappa coefficient for the classification accuracy was
calculated. To investigate differences in reflectance for red, green, blue,
and NIR bands, correctly and incorrectly classified ground mapped
leafy spurge presence polygons were selected from the classification
map, and reflectance values were extracted for all four spectral bands
for each class. To test differences in reflectance for detected andmissed
leafy spurge polygons for each spectral band, a two-way analysis of
variance (ANOVA) was conducted in Program R.

2.3.2 Validation
To better understand classification performance, ground

validation was conducted by identifying 271 points of interest,
especially suspected classification mismatches within the study area.
These areas were identified and discussed in 2020 during multiple
remote open table discussions with Yampa River stakeholders in who
know the area well and conducted ground mapping efforts for the
YRLSP. These locations were selected to cover a broad range of habitat
types and areas with known leafy spurge infestations. Within these
locations, four or more pixels of the same class were generalized to
make polygons of the same class. To avoid GPS inaccuracies,
validation points were placed within these polygon centroids. In
June of 2021, these validation points were visited by floating the

FIGURE 1
Map of the Yampa River study area, with location in Colorado (upper panel) and closer view of study area (lower panel) with satellite imagery extent
buffered to 1.5 miles from river’s edge (pink).
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river and on foot with a handheld preprogrammed GPS unit. Selected
locations were scattered at the Yampa River State Wildlife Area,
through Craig, Colorado, in the Little Yampa Canyon, and through
Axial Basin. In addition to confirming leafy spurge presence and
absence, binary classification performance (correct or incorrect),
geomorphologic type, vegetation type, count and identification of
other species present, inundation frequency, leafy spurge cover,
canopy cover, and bare ground were recorded (Table 1 b).

Binary and continuous classification maps were exported back to
ArcMap where classification values were extracted from both,
classification methods for leafy spurge presence polygons from
Yampa River Leafy Spurge Project ground mapping and from
2021 validation points. Proportion of correctly identified leafy

spurge polygons from the binary classification were calculated for
each level of infestation characteristic (i.e. trace, low, moderate, and
high for the overstory canopy cover infestation characteristic).
Characteristics recorded were geomorphological features, vegetation
type, leafy spurge cover and density; overstory canopy cover and the
presence of bare ground (Table 1.a). Binary classification (leafy spurge
vs. not leafy spurge) was fit to a logistic regression to determine the
effect of infestation on classification accuracy from ground mapped
data. The same approach was applied to the 2021 validation points,
with proportional correct classification recorded for each level of
infestation characteristic and binary classification. Results were
fitted to a logistic regression model to determine which infestation
characteristics (geomorphologic type, vegetation type, count of other

FIGURE 2
a and b. Random Forest classification predictions for imagery study area (magenta outline) for a binary classifier (A) and a probabilistic classifier (B). The
binary map shows pixels not classified as leafy spurge as colorless (negatives) and pixels classified as leafy spurge in yellow (positives). The probabilistic model
represents values from 0 to 1, for least likely to be leafy spurge in dark green and most likely to be leafy spurge in red.

TABLE 1 a and b (top to bottom). Categorical infestation characteristics recorded and levels of each infestation characteristic from a. Ground mapped leafy spurge
polygons and b. Validation leafy spurge locations.

Infestation Characteristic Level 1 Level 2 Level 3 Level 4

Leafy Spurge Abundance Single Scattered Scattered Dense Dense Monoculture

Bare Ground Coverage Trace Low Moderate High

Overstory Canopy Coverage Trace Low Moderate High

Geomorphologic Type Active Channel Bank Seasonally Inundated Upland

Vegetation Type Riparian Herbaceous Riparian Shrub Riparian Forest Sparsely Vegetated

Infestation Characteristic Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Discrete Patch No Yes

Inundation Type Never 100 years 20 years Annual

Geomorphologic Type Active Channel Bank Seasonal Creek Seasonal Floodplain Agricultural

Vegetation Type Riparian
Herbaceous

Riparian Shrub Riparian Forest Herbaceous Irrigated Pasture Upland

Count of Other Plant
Species

0 1 2 3 4 5 6 7
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species present, inundation frequency, proportional leafy spurge
cover, proportional canopy cover, and proportional bare ground)
affect classification accuracy within the validation dataset
(Table 1 b).

3 Results

3.1 Imagery classification

Leafy spurge training samples were identified in the Random
Forest classification of multispectral satellite imagery with an
overall accuracy rate of 90.7%. The same classification resulted in a
95.4% class producer’s accuracy and 88% class user’s accuracy for leafy
spurge (positive) (Table 2). The final accuracy metric calculated for the
remote sensing classification was a coefficient of agreement, kappa
(ranges from −1–1, with values close to 0 showing that the
classification performed no better than random and one describing
the data perfectly). Kappa was equal to 0.902, indicating that our
remote sensing classification described our leafy spurge population
samples well. Correctly classified leafy spurge spectral reflectance was
not significantly different from missed leafy spurge reflectance for the
red, green, and blue spectral bands, but was significantly higher for the
NIR spectral band (p-value = 0.031) (Table 3).

Across a range of environmental and infestation conditions, the
number of correctly mapped presence locations varied in the ground
mapped dataset. Predictors that decreased correct classification
likelihood of ground mapped leafy spurge polygons were single
leafy spurge plant infestations (p-value = 0.011), leafy spurge
located on riverbanks (p-value = 0.036), leafy spurge growing with
shrubs (p-value = 0.021) and leafy spurge growing with trace amounts
of bare ground (Table 4).

3.2 Classification validation

Much like the groundmapped leafy spurge dataset, the 271 ground
validation points selected and visited represented a wide range of
environmental and infestation conditions. Of these validation points
that were classified as leafy spurge, 102 out of 190 were correctly
classified (54% classification accuracy for leafy spurge). 190 out of
271 points were classified as leafy spurge (70%), 81 were classified as
not leafy spurge (30%), and 159 out of the 271 total validation points
were correctly classified (59% overall classification accuracy rate in the
field). Successful classification of validation locations varied and
predictors that increased likelihood of validation areas being
correctly classified as leafy spurge are infestations that have higher
leafy spurge percent cover (p-value = 5.8e-08) and infestations that
have distinct boundaries, or discrete patches (p-value = 0.0480)
(Table 5). Plant species that were misclassified as leafy spurge and
growing alongside missed leafy spurge were smooth brome (Bromus
inermis Leyss.), willows (Salix sp.), and dandelions (Taraxacum
officinale L.) (Figure 3), while Sandberg bluegrass (Poa secunda
J. Presl), western wheatgrass (Pascopyrum smithii Rydb.), poverty
weed (Iva axillaris Pursh), dandelions, curlycup gumweed (Grindelia
squarrosa Pursh.), tamarisk (Tamarix ramosissima L.), and whitetop
(Lepidium draba L.) were misclassified as leafy spurge (Figure 4).

4 Discussion

The classification method identified mapped leafy spurge training
samples with 95.4% accuracy training and an overall classification
accuracy of 90.7%. If mapping was to take place again however,
satellite imagery with additional wavelengths of near infrared spectra
may be useful, as SPOT seven imagery NIR only covers the 760–890 nm

TABLE 2 Confusion matrix for Random Forest classification of imagery pixels as leafy spurge (positive) and not leafy spurge (negative) with training and validation
samples correctly classified contributing to class and overall classification accuracy and misclassified other ground cover (false positives) and missed leafy spurge
training samples (false negatives) and reducing class and overall classification accuracy.

Training class

Positive Negative Producer’s accuracy (%) Kappa Overall accuracy (%)

Classification Class Positive 103
True positive

5
False positive

95.4 .902 90.7

Negative 14
False negative

83
True negative

86.5

88.0% 94.3%

User’s Accuracy

TABLE 3 Results table from t-test for differences between reflectance in each spectral band (red, green, blue, and NIR) for true positives (Leafy Spurge) and false
negative (Missed Leafy Spurge) leafy spurge polygons. Values shown are mean reflectance (Mean) and p-values (p-value) testing the differences between the class
means for each spectral band. p-values marked with * are significantly different.

Spectral band of multispectral imagery

Red Green Blue Near infrared

Assigned Class Mean p-value Mean p-value Mean p-value Mean p-value

Leafy Spurge 308 0.8 434 0.1 368 0.6 1359 .03*

Missed Leafy Spurge 309 433 367 1323
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of the spectrum. Near infrared reflectance was the only spectral band that
was significantly different between correctly identified and missed leafy
spurge polygons, so more bands of varying wavelengths of near infrared
may be useful in distinguishing leafy spurge’s unique spectral signature.
Leafy spurge does seem to be spectrally identifiable within the narrow
portion of the electromagnetic spectrum captured by multispectral
satellite imagery products (Mitchell and Glenn, 2009). Our detection
rates of leafy spurge varied, as infestations that consist of a single leafy
spurge plant, leafy spurge growing with trace amounts of bare ground,
leafy spurge growing on banks, and leafy spurge growing with riparian

shrub vegetation cover types were more likely to be missed by our
Random Forest imagery classification. This may be because the
presence of a single leafy spurge population is much harder to detect
with 1) somewhat limited spatial resolution (4 m× 4mpixels), 2) changes
to bank geomorphology caused by seasonal flooding during the period
between satellite imagery collection and validationmapping, and 3), dense
shrub cover obscuring leafy spurge invasions beneath their canopy.
Overstory canopy coverage alone, however, was not a significant
predictor of leafy spurge classification accuracy.

In other research projects where remote sensingwas used tomap leafy
spurge, leafy spurge growing below overstory canopy coverage, leafy

TABLE 4 Logistic regression output for statistically significant predictors of leafy spurge classification of ground mapped leafy spurge polygons with odds ratio
(values < 1, decrease odds of correctly classifying leafy spurge, values > 1, increase odds of correctly classifying leafy spurge), impact on leafy spurge prediction rates,
and p-values of logistic regression.

Odds ratio Leafy spurge classification likelihood p-value

Geomorphology - Bank .180 − .036

Bare Ground - Low 23.515 + .010

Bare Ground -Moderate 38.318 + .003

Bare Ground - High 89.334 + .000

Vegetation – Shrub .106 − .021

Leafy Spurge – Single Plant .136 − .011

Polygon Area 1.000 + .018

TABLE 5 Logistic regression output for statistically significant predictors of leafy spurge classification of validation locations of leafy spurge with odds ratio (values < 1,
decrease odds of correctly classifying leafy spurge, values > 1, increase odds of correctly classifying leafy spurge), impact on leafy spurge prediction rates, and p-values
of logistic regression.

Odds ratio Odds of spurge p-value

Discrete Patch 8.129 + .0480

Leafy Spurge Percent Cover 1.556 + 5.8e-08

FIGURE 3
Results of frequency analysis of the three most mistaken species,
smooth brome, willow, and dandelions, with their proportional presence
in the full validation dataset (white), false positives (black, mistakenly
classified as leafy spurge), and false negatives (grey, present with
missed leafy spurge infestations).

FIGURE 4
Results of frequency analysis of false positive plant species with
their proportional presence in the full validation dataset (white) and false
positives (black, mistakenly classified as leafy spurge).
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spurge on steep slopes, sparse leafy spurge populations, and small
infestations of leafy spurge were missed (Anderson et al., 1996; Parker
and Hunt, 2004; Glenn et al., 2005), aligning with our decreased detection
accuracy of singly leafy spurge plants and leafy spurge growing below
shrub and tree canopy. In contrast to our challenges of mapping leafy
spurge in riparian areas of the Yampa River, detection accuracy of leafy
spurge mapping in Crook County, Wyoming was improved when
growing in riparian areas (Williams and Raymond, 2002; Parker and
Hunt, 2004). Adding ancillary spatial data, like vegetation cover maps and
distance to waterways may improve remote sensing classification results
(Hunt et al., 2010; Dubovik et al., 2021). Additionally, the incorporation of
citizen science data of dense, unobscured leafy spurge presence collected
and submitted from within the study area could be incorporated, to
increase training samples and obtain samples away from the Yampa River
riparian zone (Vaz et al., 2019) but increasing the temporal resolution of
the imagery with a times series of multiple imagery scenes through the
leafy spurge bloom could.

One major limitation of this project is the difference between June
2021 validation mapping and satellite imagery data collection in July of
2019. Imagery procurement was limited by YRLSP budget, and
2021 SPOT seven satellite imagery purchase and classification would
have been beneficial, as leafy spurge invasions may have advanced. If
further remote sensing was to be conducted for mapping general leafy
spurge invasion in the area, free coarser resolution multispectral
imagery like Sentinel-2 (10 m × 10 m pixels) could be used. As leafy
spurge is a deep-rooted perennial and a prolific seed producer (St. John
and Tilley, 2014) and largely uncontrolled in the Yampa River Valley,
leafy spurge populations away from the dynamic riverbanks are unlikely
to decrease, excepting extreme environmental conditions, like drought.
In experimental plots where herbicide was applied in the fall of 2019,
treatments that controlled leafy spurge reproduction left woody stems
which were recognizable during validation mapping in the summer of
2021, so some signs of past leafy spurge may be recognizable even if
plants do not regrow from established roots. Additionally, our training
samples were biased toward dense, large, and unobscured leafy spurge
recognizable inmultispectral imagery sets andmay not represent the full
range of leafy spurge infestation abundance, size, and habitat type.

Though the success rates of the validation mapping efforts were
generally low (59% of validation locations were correctly classified),
the validation locations were chosen based on anomalies in YRLSP
members expert knowledge of the area or features and areas of interest
from the classification prediction. For example, a series of validation
points were set in a seasonal Yampa River tributary, to see if positively
classified pixels as leafy spurge were true leafy spurge locations. Leafy
spurge detection accuracy varies within the 190 leafy spurge positive
presence locations within the dataset, as the Random Forest
classification was more accurate at identifying leafy spurge
populations growing as discrete patches rather than scattered
populations. Discrete patches of leafy spurge and infestations with
higher leafy spurge percent cover were more likely to be correctly
classified by the Random Forest imagery classification. Casady et al.
(2006) found that detected leafy spurge patches had higher average
leafy spurge percent cover and higher average patch size, with
infestations smaller than 200 m2 and 30% leafy spurge cover less
likely to be identified (Casady et al., 2006). Dense populations with
high leafy spurge cover may have more recognizable spectral
signatures than sparse populations. Discrete boundaries of leafy
spurge patches may be more identifiable, as scattered populations
might share pixel space with other land cover types, though the

number of additional species present at validation locations did not
significantly influence classification accuracy of leafy spurge.

5 Conclusion

Satellite remote sensing appears to be a viable option for leafy spurge
mapping on the Yampa River, but classification accuracy varies with
leafy spurge infestation characteristics and environment. Small and/or
sparse infestations of leafy spurge may go undetected, and detection
rates decreased in areas with shrubs and overstory canopy coverage.
Identification was most accurate when leafy spurge coverage was dense.
Validation mapping suggests that leafy spurge is best identified when
growing in discrete patches and when leafy spurge densities are higher.

If leafy spurge mapping was to be conducted again in the Yampa, a
time series of imagery that represents early season and mid-season would
be employed to try to differentiate leafy spurge from other vegetation, as
suggested by Lake et al. in a heterogeneous Minnesota landscape (Lake
et al., 2022). If left unmanaged, leafy spurge may become a much more
prevalent invader in Moffat and Routt Counties, producing more
propagules to spread through the Yampa, Green, and Colorado Rivers.
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Spatially lagged predictors from a
wider area improve
PM2.5 estimation at a finer
temporal interval—A case study of
Dallas-Fort Worth, United States

Yogita Karale* and May Yuan

Geospatial Information Sciences, the University of Texas at Dallas, Richardson, TX, United States

Fine particulate matter, also known as PM2.5, has many adverse impacts on human
health. However, there are few ground monitoring stations measuring PM2.5.
Satellite data help fill the gaps in ground measurements, but most studies focus
on estimating daily PM2.5 levels. Studies examining the effects of environmental
exposome need accurate PM2.5 estimates at fine temporal intervals. This work
developed a Convolutional Neural Network (CNN) to estimate the
PM2.5 concentration at an hourly average using high-resolution Aerosol Optical
Depth (AOD) from the MODIS MAIAC algorithm and meteorological data. Satellite-
acquired AOD data are instantaneous measurements, whereas stations on the
ground provide an hourly average of PM2.5 concentration. The current work
aimed to refine PM2.5 estimates at temporal intervals from 24-h to 1-h averages.
Our premise posited the enabling effects of spatial convolution on temporal
refinements in PM2.5 estimates. We trained a CNN to estimate
PM2.5 corresponding to the hour of AOD acquisition in the Dallas-Fort Worth
and surrounding area using 10 years of data from 2006–2015. The CNN accepts
images as input. For each PM2.5 station, we strategically subset temporal MODIS
images centering at the PM2.5 station. Hence, the resulting image-patch size
represented the size of the area around the PM2.5 station. It thus was analogous
to spatial lag in spatial statistics. We systematically increased the image-patch size
from 3 × 3, 5 × 5, . . . , to 19 × 19 km2 and observed how increasing the spatial lag
impacted PM2.5 estimation. Model performance improved with a larger spatial lag;
the model with a 19 × 19 km2 image-patch as input performed best, with a
correlation coefficient of 0.87 and a RMSE of 2.57 g/m3 to estimate PM2.5 at in
situ stations corresponding to the hour of satellite acquisition time. To overcome the
problem of a reduced number of image-patches available for training due to missing
AOD, the study employed a data augmentation technique to increase the number of
samples available to train the model. In addition to avoiding overfitting, data
augmentation also improved model performance.
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1 Introduction

The Global Burden Disease study reported that air pollution
caused 4.2 million deaths in 2015 due to particulate matter (Cohen
et al., 2017). In addition, recent studies found a link between
PM2.5 and several neurological disorders like dementia,
Alzheimer’s, and Parkinson’s diseases (Kioumourtzoglou et al.,
2016; Chen et al., 2017). Despite the harmful effects of PM2.5 on
health, ground monitoring stations providing information about
PM2.5 concentration are considerably sparse and unsuitable for
spatial interpolation at a local scale. As a result, interpolations of
PM2.5 from the nearest available monitoring stations to estimate the
exposure in epidemiological studies are likely unreliable due to the
underestimation of spatial variability in PM2.5 (Özkaynak et al.,
2013). In an effort to overcome sparse measurements from ground
stations, satellite-derived PM2.5 is widely used. These efforts focus on
estimating daily PM2.5 levels. However, PM2.5 data over finer
temporal intervals are necessary for accurate environmental
exposure estimation. This study explores the use of satellite data to
estimate PM2.5 over a temporal interval of 1 h in contrast to daily
PM2.5 levels.

A common approach to characterize the spatial distribution of
PM2.5 utilizes satellite-based Aerosol Optical Depth (AOD) as one of
the predictor variables (Chudnovsky et al., 2014; Lary et al., 2014; Xie
et al., 2015; Guo et al., 2017). AOD measures the amount of aerosols
present in the atmosphere according to the optical properties of
aerosols in an atmospheric column. However, the relationship
between PM2.5 and AOD is complicated. AOD is affected by the
size of the particles, the type of the particles, and meteorological
factors. Depending on the source, the composition of the particles may
vary in space and time (Bell et al., 2007). Meteorological factors (such
as cloud fraction, relative humidity, temperature, boundary layer
height, wind speed, and others) also affect this relationship (Lary
et al., 2014; Guo et al., 2017). Several studies report PM2.5-AOD
relationship varies with geography (Engel-Cox et al., 2004), time (Guo
et al., 2017), the scale of regional or local studies (Chudnovsky et al.,
2014), and AOD data resolution (Chudnovsky et al., 2014; Xie et al.,
2015; Guo et al., 2017). Therefore, empirical models using AOD to
estimate PM2.5 developed for one geographical area cannot be used
for others.

The limited number of air quality stations in a geographical
area may not meet the sample size requirements of parametric
statistical frameworks, such as multiple linear regression. As a
general rule of thumb, a multiple linear regression requires a
minimum of 30 observations. Thus, these approaches are
unsuitable in areas with sparse monitoring stations. Low-cost
sensors such as PurpleAir (https://www2.purpleair.com/) have
been deployed in large numbers across the United States. While
these low-cost sensors help reduce the gap in spatial coverage of
PM2.5 measurements, the accuracy of these sensors remains a cause
of concern. A field evaluation of three PurpleAir sensors carried out
at Rubidoux Air Monitoring Station in California for 2 months
indicates that, in general, PurpleAir sensors can show an overall
trend of PM2.5 within a day and across days but tend to overestimate
PM2.5 concentration most of the times (Gupta et al., 2018).
Specifically, the California study highlights that the bias of
PurpleAir sensors increases with rising PM2.5 concentration.
Moreover, PurpleAir sensors’ observations deviate from 0% to
90% of their hourly mean values.

A specification error due to the incorrect functional form between
dependent and independent variables leads to biases in estimation
(Ramsey, 1969), and proper relationship specifications are challenging
for PM2.5 models using AOD (Lary et al., 2014). In-situ stations
measure PM2.5 as the ground-level concentration of particles with an
aerodynamic diameter less than 2.5 micrometers. In contrast, AOD
measures the extinction of light due to aerosols in the atmospheric
column (Nam et al., 2018). AOD and PM2.5 are independently
affected by meteorological parameters (Guo et al., 2017), further
complicating their relationship. Furthermore, AOD is an
instantaneous measurement from space, and PM2.5 is an hourly
average measured in situ at respective ground monitoring stations.
Researchers proposed diverse modeling approaches to overcome the
complicated relationship but lacked sufficient attention to the
differences in temporal representations of AOD and PM2.5.

Literature reported several approaches to model the PM2.5-AOD
relationship, like land-use regression (Lee, 2019), geographically
weighted regression (Hu et al., 2013; van Donkelaar et al., 2015),
back propagation artificial neural network (Gupta and Christopher,
2009a), mixed effect models (Xie et al., 2015), linear regression models
(Gupta and Christopher, 2009b), and chemical transport models
(Geng et al., 2015). The mixed effect modeling approach appeared
popular among these approaches to 24-h average PM2.5 estimation.
Some studies used AOD as the only predictor (Chudnovsky et al.,
2014; Xie et al., 2015); others included additional parameters to
improve model performance (Hu et al., 2014; Stafoggia et al.,
2017). Xie et al. (2015) used a mixed effect model to account for
spatiotemporal variations in PM2.5-AOD relationship with day-
specific and site-specific parameters for AOD. Moreover, several
other studies implemented similar mixed effect models by
including AOD and additional spatiotemporal parameters (Hu
et al., 2014; Stafoggia et al., 2017). In addition to day-specific
random parameters, Stafoggia et al. (2017) introduced region-
specific random parameters to account for variation in PM10-AOD
relations across different regions in Italy. In the Southeastern
United States, Hu et al. (2014) used a mixed effect model to
capture temporal variability in the PM2.5-AOD relationship and
followed with Geographically Weighted Regression on the residuals
to account for spatial variability. Spatial and temporal parameters
considered in these studies include population density, emission data,
elevation, land cover, road density, Normalized Difference Vegetation
Index (NDVI), meteorological data, etc. Zheng et al. (2013) applied a
deep learning framework to predict the hourly Air Quality Index
(AQI) for Beijing at 1 km resolution with region-specific parameters
representative of traffic features (e.g., mean, standard deviation, and
distribution of speeds on the road) and human mobility features (e.g.,
number of people arriving and departing a location). Such region-
specific parameters may not be available or appropriate for areas
outside Beijing.

Machine learning recently gained traction in modeling PM2.5
(Lary et al., 2014; Di et al., 2016; Hu et al., 2017; Li et al., 2017; Park
et al., 2020). Several of these studies incorporated spatial dependence
in the machine learning methods. Di et al. (2016) used an artificial
neural network (ANN) for the northeastern United States to calibrate
PM2.5 obtained from a chemical transport model, and Li et al. (2017)
used the deep belief network approach to estimate PM2.5 in China.
They considered spatial and temporal autocorrelation using lagged
spatial and temporal terms. Spatial lag was incorporated by using
PM2.5 measurements from nearby stations weighted by the inverse of
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their distance from the monitor under consideration, hence,
essentially the classic spatial interpolation based on inverse distance
weighting. An alternative way of applying weights in PM2.5 estimation
was the boosting technique in machine learning. Boosting gave more
weight to observations with high errors to improve model
performance. Zhan et al. (2017) used geographically weighted
gradient boosting to account for spatial non-stationarity in
PM2.5 and AOD as well as meteorological factors. These methods
refine the spatial resolution of PM2.5 estimation but retain temporal
resolution at daily averages.

Advances in deep learning opened opportunities to convolute in
situ and satellite observations for PM2.5 estimation. Park et al. (2020)
used a convolutional neural network (CNN) to estimate the 24-h
averaged PM2.5 across the conterminous United States using the 1-
year data from 2011. Hu et al. (2017) incorporated inverse distance
weighted PM2.5 from nearby stations as input to the random forest
model. Clouds or high surface brightness might obscure AOD data
from MODIS. Due to the high missing rate of AOD, both studies
applied the GEOS-Chem model to simulate AOD data; Hu et al.
(2017) used GEOS-Chem AOD when MODIS AOD was missing,
whereas Park et al. (2020) used both MODIS AOD and GEOS-Chem
AOD. Along with the AOD data, both studies used meteorological
data, land-use variables, and National Emission Inventory (NEI) data
as predictors. Several data issues were prominent in both studies. NEI
database provided information about pollutant-wise emissions at
annual scales. However, methods used to estimate these emissions
might vary from year to year (U.S. Environmental Protection Agency,
2020). Therefore, the data from these emission inventories were
unsuitable for multi-year studies. Land-use data were static and
could contribute very little in explaining hourly PM2.5 variation. Li
et al. (2017) reported that the inclusion of road networks as one of the
predictors showed a minimal impact on model performance, whereas
population worsened the model performance. Furthermore, in areas
with sparsely distributed monitoring stations, a model developed with
land-use and population density around very few monitoring stations
might not be representative enough to allow model generalizability for
the entire study area. Xu et al. (2014) observed an increase in AOD
values in areas with increased human activities and decreased AOD in
areas with increasing forested land. They concluded that changes in
land-use led to changes in AOD patterns. Therefore, our study
assumes that AOD data embed the spatial effects of land-use and
surrounding activities on PM2.5 in a given hour.

Several studies assessed model performance in estimating
PM2.5 through cross-validation in three different approaches for
setting cross-validation data: spatially separated cross-validation
(SS-CV), temporally separated cross-validation (TS-CV), and
overall cross-validation (O-CV) approach (Di et al., 2016; Hu et al.,
2017; Park et al., 2020). As the names suggest, SS-CV shares no
common locations between the training dataset and the cross-
validation dataset; TS-CV uses observations for the training dataset
from different days than the observations in the cross-validation
dataset. In contrast, the O-CV approach imposed no restrictions in
days or locations on training and cross-validation datasets. Results
from studies by Di et al. (2016), Hu et al. (2017), and Park et al. (2020)
showed that models using O-CV and TS-CV outperformed the ones
using the SS-CV approach. It suggested that models developed for a set
of locations did not perform well at unseen locations; the models were
spatially untransferable. The performance of models using either the
O-CV or T-CV approach for cross-validation was comparable.

Therefore, this our study took the O-CV approach for cross-
validation.

Incorporating geographical correlations can improve model
performance in PM2.5 estimation (Li et al., 2017), but four main
challenges remain. First, many studies incorporate spatial dependence
and include spatially lagged predictors and spatially lagged PM2.5 in
the model (Hu et al., 2017; Li et al., 2017; Zhan et al., 2017; Park et al.,
2020). For the models developed by Hu et al. (2017) and Park et al.
(2020), spatially lagged PM2.5 measurements rise to the most
important variable in estimating PM2.5. However, obtaining
spatially lagged PM2.5 for areas with sparse distribution of
monitoring stations is challenging. Covariates from nearby stations
depend on the spacings between stations and the spatial distribution of
the target phenomenon PM2.5. Therefore, the density of the
PM2.5 stations can affect the accuracy of the PM2.5 estimates. A
covariate-based estimator would perform poorly in areas with sparse
monitoring networks. In contrast, an objective of this study is to
develop a model suitable even in areas with very few monitoring
stations. Moreover, the use of spatially lagged PM2.5 conceals the role
of explanatory variables in the spatial variation of PM2.5. The second
challenge relates to the hindrance of real-time PM2.5 estimation
without data from nearby monitoring stations. The third challenge
speaks for the mismatch between PM2.5 estimates and satellite
observations. For example, AOD data are instantaneous
observations around 10:30 a.m. and 1:30 p.m. by Terra and Aqua
satellites, respectively. Although few studies, such as Tian and Chen
(2010) and Xie et al. (2015), used PM2.5 obtained near MODIS AOD
acquisition time, most studies in the literature estimated the
PM2.5 concentration averaged over 24 h using instantaneous
AODs. Finally, the fourth challenge relates to previous studies
incorporating spatial dependence. These studies used predictors
from a fixed spatial extent around the PM2.5 station. Therefore,
how the model might perform over different spatial extents is not
known.

Our study fills the research gaps considering these challenges by
developing a model to estimate PM2.5 in the hour corresponding to
satellite data acquisition time. The model considers only spatially
lagged predictors from MODIS and meteorological data but does not
include PM2.5 from nearby stations. Finally, the study investigates the
model performance using CNN, where the input image-patch size
varies from 3 × 3, 5 × 5,. . to 19 × 19, with a PM2.5 station located in the
central pixel or cell of the image. Thus, the input image-patch size
represents the size of the spatial lag. Varying the input image-patch
size allows for examining the effect of spatial lag size on
PM2.5 estimation. While the research focused on PM2.5, the
proposed approach is applicable to other spatially continuous
variables, such as temperature or greenness indices, with
observations at in situ stations, remote sensing acquisitions, and
relevant auxiliary data. In particular, data from in situ observations
are commonly available as averaged values over time, such as
PM2.5 hourly, daily, or monthly averages at a specific site. In
contrast, remote sensing acquisitions are instant measures across
multiple locations. The proposed approach explores the spatial
measures captured in consecutive remote sensing images that can
aid down-scaled temporal estimates at sites. Specifically in our study,
consecutive MODIS images were taken ~3 or ~21 h apart. If we can
accurately estimate time-averaged PM2.5 values in-between MODIS
acquisitions at sites, we will be able to derive a space-time cube of
PM2.5 (or other spatial variables). Our proposed approach used
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hourly observations from in situ stations to train a model and validate
the model that estimates the PM2.5 hourly values corresponding to
two MODIS images using both AOD data and meteorological data.
Our findings showed the spatial-lag effects on the downscaled
temporal estimates. Effective spatial lags shall vary with spatial
variables. In our study, the effective spatial lag for PM2.5 expands
to 10 km.

2 Data and methods

2.1 Study area

The study area is the Dallas-Fort Worth (DFW) metroplex with
more than 7.5 million people. The DFW metroplex and its
surrounding area have only eight air-quality monitoring stations
measuring hourly PM2.5 from 2006–2015, leaving most of the
metroplex unmonitored (Figure 1). Out of the eight monitoring
stations, three are located in urban areas, whereas five are at the
periphery of the urban areas. Information on the spatiotemporal
distribution of PM2.5 at the appropriate level of detail is important
because of the harmful effects of PM2.5 on health, especially for those
already suffering from respiratory and cardiovascular diseases.
Informed of the spatiotemporal distribution of PM2.5 at a fine
interval, people can avoid areas with high concentration and
reduce the geographic context uncertainty for epidemiological
studies of PM2.5 exposure. Nevertheless, a step towards estimating
the spatiotemporal distribution of PM2.5 is to test how well an O-CV
approach can use AOD to estimate PM2.5 at these stations
corresponding to the hour of satellite overpass time. If the
estimation is acceptable at these sites, the proposed model can

provide the foundation for building a spatial interpolation method
with AOD to estimate PM2.5 at unmonitored locations with
AOD data.

2.2 Data

The study used two sets of input data: 1) aerosol optical depth
(AOD) and AOD-related variables from MODIS 2) meteorological
data to estimate PM2.5 corresponding to the hour of MODIS
overpass time.

2.2.1 PM2.5
Terra and Aqua satellites, with an equatorial crossing time of ~10:

30 a.m. and 1:30 p.m. (local time) respectively, overpass the study area
twice a day. Nevertheless, due to the broader swath of 2,330 km,
MODIS AOD is sometimes available at times other than overpass
times. PM2.5 data from ground monitoring stations are available at an
hourly interval. The study used PM2.5 for the hourMODIS overpasses
the study area. For example, if MODIS overpasses at 10:30 a.m., the
PM2.5 measured between 10 a.m. and 11 a.m. was used. The data was
downloaded from the Environmental Protection Agency’s website
(https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw) with
the parameter code of the PM2.5 data 88502. A total of 10-year
PM2.5 observations from 2006–2015 were downloaded for the
study area.

2.2.2 AOD data
MODIS AOD data have been available only at 10 km resolution. A

recently developed algorithm, Multi-Angle Implementation of
Atmospheric Correction (MAIAC) downscales AOD to 1 km

FIGURE 1
Locations of PM2.5 stations in the study area.
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resolution (Lyapustin and Wang, 2018). At 10-km resolution, two
separate algorithms, Dark Target (DT) and Deep Blue (DB) retrieve
aerosols fromMODIS data. DT retrieves AOD data for dark/vegetated
land surfaces, whereas DB works wells for bright land surfaces. In
contrast, MAIAC retrieves aerosols over both dark and bright land
surfaces. Besides providing AOD data at a finer spatial resolution,
AOD data from MAIAC has better spatial coverage, higher retrieval
frequency, low bias, and high correlation with AOD from the Aerosol
Robotic Network (AERONET) stations (Superczynski et al., 2017;
Jethva et al., 2019; Mhawish et al., 2019).

Because of the superiority of AOD data from MAIAC over other
AOD algorithms and its availability at a higher resolution, this study
selected the MCD19A2 version-6 data product for AOD estimated
with MAIAC algorithm (hereafter, MAIAC AOD data). AOD is
available at two wavelengths: 470 nm and 550 nm. This study used
AOD at 470 nm because AOD provided at 550 nm is derived from
AOD at 470 nm, and AOD at 550 nm is marginally inferior in quality
compared to AOD at 470 nm (Lyapustin and Wang, 2018). MAIAC
AOD data was transformed to WGS 1984 coordinate system using
MODIS Reprojection Tool (MRT), and then space and time references
of the MAIAC AOD were used to extract matching
PM2.5 observations from the air quality monitoring stations.
MAIAC AOD data also provided quality flags for AOD and data
on satellite retrieved water vapor content and viewing zenith angle.
This study used these variables along with MAIAC AOD. Data about

the zenith angle were available at 5 km resolution. Zenith angle data
were resampled using nearest neighbor resampling to match the
resolution of AOD data.

2.2.3 Meteorological data
Meteorological data came from European Centre for Medium-

range Weather Forecast (ECMWF). ECMWF provides reanalysis data
worldwide, at 3, 6, 9, and 12 h from 0:00 and 12:00 UTC (Berrisford
et al., 2011). Thus, the ECMWF reanalysis data were available for the
Dallas-Fort Worth metroplex four times a day, at 9 a.m., 12 p.m.,
3 p.m., and 6 p.m. local standard time, and at a spatial resolution of
0.125° (~13 km). The reanalysis data combine weather observations
with the most up-to-date weather models and provide information on
different weather variables as a continuous grid at each of the 4 hours
(Parker, 2016). The various weather parameters obtained from
ECMWF included horizontal and vertical components of the wind,
wind gust, temperature, dew point temperature, clear sky surface
photosynthetically active radiations, total precipitation, boundary
layer height, boundary layer dissipation, total cloud cover, medium
cloud cover, high cloud cover, convective precipitation, convective
available potential energy, and evaporation. The study retrieved
meteorological data closer (in time) to satellite acquisition time.

In total, the study used 21 predictor variables (see Table 1) to
model PM2.5 from 8 air quality monitoring stations around the
Dallas-Fort Worth area. The first four predictors came from

TABLE 1 List of predictors.

Sr No. Predictor Measurement unit Spatial resolution

1 AOD — 1 km

2 AOD QA Flag — 1 km

3 Column Water Vapor cm 1 km

4 Cosine of Solar Zenith Angle — 5 km

5 2-m Temperature K ~13 km

6 2-m Dew Point Temperature K ~13 km

7 Clear Sky Surface Photosynthetically Active Radiations J m-2 ~13 km

8 Photosynthetically Active Radiations at the Surface J m-2 ~13 km

9 Total Column Water Vapor kg m-2 ~13 km

10 Boundary Layer Dissipation J m-2 ~13 km

11 Boundary Layer Height m ~13 km

12 Total Cloud Cover Expressed as a fraction between 0–1 ~13 km

13 Medium Cloud Cover Expressed as a fraction between 0–1 ~13 km

14 High Cloud Cover Expressed as a fraction between 0–1 ~13 km

15 Convective Precipitation m ~13 km

16 Convective Available Potential Energy J kg-2 ~13 km

17 10-m U Wind Component (Eastward) m s-1 ~13 km

18 10-m V Wind Component (Northward) m s-1 ~13 km

19 10-m Wind Gust m s-1 ~13 km

20 Evaporation m of water equivalent ~13 km

21 Total Precipitation m ~13 km
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MODIS MAIAC AOD products, and the remaining variables were
from ECMWF reanalysis data. Predictors obtained from MODIS data
presented instantaneous observations at the time of satellite passing,
whereas ECMWF reanalysis data provided four estimates per day.

2.3 Methodology

Figure 2 shows the flowchart of the data and method used in the
study. The study resampled meteorological data to match the
resolution of the MAIAC AOD data using the nearest neighbor
resampling method. This section discusses data processing, model
architecture, and evaluation.

Through convolution operations, the Convolutional Neural
Network (CNN) algorithm takes into account the very spatial
nature of the images. It applies two-dimensional filters, also known
as kernels, on the input. The filter moves over the input image and
extracts features. Two-dimensional filters applied to compute
convolutional layers use values of spatially adjacent pixels for
feature extractions. This process, also known as convolution,
exploits the spatial patterns and relationships (Dumoulin and
Visin, 2016). An optimization algorithm with backward
propagation minimizing a loss function determines weights in
these filters (Indolia et al., 2018). These weights define the nature
of the spatial relationship among spatially adjacent grid-cells yielding
the output (LeCun et al., 1998). For the phenomenon affected by
explanatory variables in the surrounding areas, it is essential to
account for the influence of spatially adjacent locations. As

discussed in the introduction, many studies have improved the
performance of models estimating PM2.5 after considering a
correlation among variables in space. Specifically, many studies
incorporated a weighted average of PM2.5 from nearby stations.
Their approach captured existing spatial autocorrelation in the
PM2.5 values across in situ stations for PM2.5 estimation even
though these stations might be too sparse to acquire PM2.5 spatial
variances among them. On the contrary, our study intended to develop
a model that relies on variables other than spatially lagged PM2.5 and
thus may help explore the effects of other explanatory variables on
PM2.5. Therefore, we did not use measurements from nearby
PM2.5 monitoring stations but aimed to develop a model that uses
AOD and meteorological data to estimate PM2.5 corresponding to an
hour of AOD acquisition at specific sites.

Park et al. (2020) investigated spatially lagged variables over a fixed
distance using an image size of 5 × 5 but due to the coarser resolution
of the AOD data (10 km) they used, it corresponded to an area of
50 km × 50 km. Instead, this study examined the influence of spatial
lag size to evaluate the spatial scale effects of meteorological variables
with AOD on PM2.5 estimates. The underlying grid resolution of
AOD data was 1 km × 1 km. CNN accepts images as input. We located
the grid cell in which the particular PM2.5 station is located and
expanded upon that grid cell to extract a 3 km × 3 km image. We
followed a similar process for all predictor variables- AOD quality flag
data, column water vapor, resampled zenith angle, and meteorological
data. Since there are 21 predictors, the input image-patch size for one
PM2.5 observation from a particular PM2.5 station is 3 × 3 × 21. The
process was repeated for all PM2.5 observations from eight

FIGURE 2
Flowchart of data and methodology.
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monitoring stations in the study area during 2006–2015 to form an
input dataset to build a model in an O-CV approach. Similarly, we
extracted image-patches of sizes 5 × 5, 7 × 7, 9 × 9, . . . 19 × 19 to form a
total of nine different input datasets (Figure 3). We stopped at 19 ×
19 because of the gaps in AOD data due to cloud cover (more
discussion in Section 2.3.2). With a PM2.5 station in a central cell,
the input image-patch size represented the size of the area around the
PM2.5 station. Thus, it was analogous to the concept of spatial lag in
spatial statistics. A total of nine CNN models, one for each image-
patch size, were developed and compared to evaluate the effect of input
image-patch size on PM2.5 estimation.

2.3.1 CNN models of PM2.5 predictions
A larger image contains more information. With larger sizes, spatial

relations become more intricate. A neural network learns to recognize
more complex features withmore convolution layers (Lopez Pinaya et al.,
2020). Therefore, depending on the size, the study used variable
convolutional layers to account for varying complexity in spatial
relations. This led to nine separate CNN models, one for each image-
patch size. The larger the image-patch, the more convolutional layers are.
Predictors were convoluted using filters of size 3 × 3 until the input
image-patch reduces to 1 × 1. The first and the second convolutions
consisted of 24 and 16 filters, respectively, whereas each of the remaining

FIGURE 3
Different sized image-patches centered on a cell with a PM2.5 station.

FIGURE 4
The study’s CNN architecture.
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convolutions consisted of eight. Each of the dense or fully connected
layers had eight neurons. Input image-patches of sizes 3 × 3 and 5 ×
5 required only one and two convolutions, respectively, whereas the
remaining input image-patch sizes requiredmore than two convolutions.
A 7 × 7 image-patch required three convolutions, whereas a 19 ×
19 image-patch required seven convolutions. Figure 4 shows the
architecture of the CNN used in the study for a 7 × 7 image-patch.
A blue square represents 3 × 3 filters used in all convolutions. The study
used a sigmoid activation function for all layers except for the last year,
which outputs the model predictions with a linear activation function,
since the sigmoid limits the output range from 0 to 1 and the linear
activation regressed the predictions. The study used the Adam
optimization algorithm, an extension to the stochastic gradient decent
and appropriate for non-stationary objectives, problems with noisy or
sparse gradients, and computationally efficient, and typically low demand
on tuning parameters (Kingma and Ba, 2014). The study set a learning
rate of 0.01 and 200 epochs for training. The learning rate of 0.01 was
found to balance learning time and accuracy. To minimize parameters
for training, the study used stride one and no padding across all
convolutions. Also, batch normalization followed each convolution
and dense layer prior to the ensuing activation function.

2.3.2 Data augmentation
AOD data can be missing due to clouds, snow or brighter surface

conditions. The problem of missing data in AOD was well documented
in the literature (Goldberg et al., 2019; Hu et al., 2017; Park et al., 2020).
The study included only those data points for which AOD data was
available for cells in an image-patch of considered size. This problem of
missing AOD led to decreasing number of samples for larger image-
patch sizes in our study (Table 2). A larger image-patch comprised of
more cells than a smaller image-patch, and the chances of having at least
1 cell with missing AOD were greater for larger image-patch sizes. Due
to the limited number of samples available for larger image-patch sizes,
we restricted our largest input image-patch size to 19 × 19.

Machine learning approaches, such as CNN, require a large number of
samples or data points. The relatively small study area and only 10 years of
the study period resulted in small samples in the context of machine
learning. Data augmentation, a common practice used inmachine learning
to increase the sample size, provided a way to generate additional samples.
We used the geometric transformations method to augment available data
because it was computationally simple and did not introduce new

information to original data. Geometric transformation generates
additional samples by flipping, scaling, rotating, and cropping original
images (Taylor and Nitschke, 2019). The study flipped and rotated an
original image-patch (Figure 5) to generate additional image-patches
(Figure 6). Flipping generated mirror copies along an axis, whereas
rotation arranged original image-patches in different orientations
(Figure 6). Image-patches of all the input variables in a particular
sample or data point were flipped or rotated in the same way to form
a new sample or data point. As a result, the process of data augmentation
only repositioned the original sample or data point without making any
change to original data values or their inter-relation in spatial configuration.
As the study used six different ways to augment the data (Figure 6), each
sample was reconfigured in six different ways, resulting in a 6-fold increase
in the number of samples available for training and cross-validation.

2.3.3 Cross-validation
As previously noted in the introduction, out of three commonly used

cross-validation approaches for AOD-based PM2.5 models, the overall
(O-CV) and temporally separated (TS-CV) approaches outperformed
the spatially separated approach (SS-CV). The TS-CV approach can
result in the training of a model for a specified period. Therefore, this
study used the O-CV approach to evaluate model performance.
Specifically, the study adopted the five-fold O-CV approach. The data
was split into five groups; each group was iteratively used to test the
model performance, and the remaining four trained the model. The
average correlation coefficient R) and root mean squared error (RMSE)
across all five groups were used to compare model performance.

2.3.4 Reliability assessment
The data augmentation technique helped increase the size of the

data available for training by generating additional artificial samples
from the existing data. However, it raised concerns about the model’s
ability to accurately estimate the PM2.5 concentration level of a
specific data point regardless of whether it was augmented or not
in the training process. In other words, though the same data point was
present in the dataset multiple times in different forms, the model’s
PM2.5 estimates across these multiple forms may vary. To evaluate the
model’s reliability, it was necessary to consider the precision of these
estimates or how closely they match each other. We trained a model
using an entire dataset (consisting of original data points and
augmented data points) and repeated the process for each image-
patch size to evaluate the model’s ability to provide precise estimates.
The use of the entire dataset for model development enabled the
assessment of the variability in PM2.5 estimates of each data point,

TABLE 2 AOD data availability.

Image-patch size Number of samples

3x3 14570

5x5 12674

7x7 10686

9x9 8407

11x11 7488

13x13 6660

15x15 5703

17x17 5165

19x19 4205

FIGURE 5
Sample image-patch of size 5 × 5.
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which we repeated six more times in the augmented dataset. We then
calculated the difference between the maximum and minimum
estimates (also referred as the range of the PM2.5 estimates) for
each data point and calculated the statistics of these values for nine
models, each using an input image-patch of a different size.

3 Results

3.1 Description of PM2.5 data

Figure 1 showed the locations of eight monitoring stations in the
Dallas-Fort Worth metroplex and its surrounding area. During
2006–2015, the average hourly PM2.5 was 9.29 μg/m3 and

77216 valid hourly PM2.5 measurements were available at satellite
image acquisition times across these eight stations (Table 3). The
median values at all stations are less than the respective means
indicating the positively skewed distribution of PM2.5 concentration
at each station. On an average 50% of the values are below 8.29 μg/m3.
The average interquartile range of PM2.5 values across all stations is
6.88 μg/m3 with middle 50% values ranging between 5.27 μg/m3 to
12.15 μg/m3. There were several zero and negative values in the data,
which were removed based on the assumption that those were the result
of potential measurement errors. The table also presents the average
hourly PM2.5 level at each station at all available satellite acquisition
times during the study period. MODIS acquired data around 10:30 a.m.
and 1:30 p.m. The mean PM2.5 value during the satellite acquisition
times is lower than the average PM2.5 value at each station because of

FIGURE 6
Augmented image-patch derived from a sample image-patch in Figure 5.
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the improved circulation around noon. PM2.5 values were generally
higher in the early morning and late evening.

AOD data are often susceptible to data gaps due to cloud cover or
bright surfaces. The study incurred a high missing rate in AOD data
for the same reasons. Image-patches of 3 × 3 km2 with complete AOD
data constituted only 18.87% of the total AOD data; those of 19 ×
19 km2, merely 5.44%. Table 4 presents the mean and standard
deviation of hourly PM2.5 for the different-sized input patches
considered in the study. The number of samples (e.g., complete
patches) decreased as the patch size increased; the reduced sample
size (e.g., number of patches) reduced the mean and standard
deviation of PM2.5 available for training the model.
PM2.5 decreased from 7.07 μg/m3 to 5.90 μg/m3, and the standard
deviation from 5.54 to 4.96 from the smallest to the largest patch size.

3.2 Model evaluation

Machine learning methods require a large amount of data to train
the model. To overcome the challenge of a limited number of samples
to train the model, we used a data augmentation technique to

artificially increase the number of samples by introducing relational
variance of input data patches to PM2.5 data at the same site and time
of MODIS observations. Below are the results of CNN models with
augmented data.

Figure 7 shows the results for CNN across different-sized image-
patches. Out of all sizes, the model with patch size 19 × 19 km2

performed best with the correlation coefficient R) of 0.87 (or R2 of
0.76) and root mean squared error (RMSE) of 2.57 μg/m3 for
PM2.5 estimation at station locations. Unlike other studies in the
literature, this study achieved comparably good performance without
including PM2.5 covariates from nearby stations. For example,
modeling PM2.5 over the contiguous United States, Di et al. (2016)
achieved R2 of 0.84, whereas Park et al. (2020) reported R2 of 0.84 and
RMSE of 2.55 μg/m3 for 24-h averages of PM2.5. Similarly, a study
performed in China for daily PM2.5 estimation reported R2 and RMSE
of 0.76 and 13 μg/m3 respectively (Zhan et al., 2017). Because of the
differences in the geographic locations and regional extents and levels of
air pollution, results from the studies in the literature cannot be directly
compared to our results. Noteworthily, our study estimated
PM2.5 corresponding to the hour of MODIS data acquisition time
in contrast to a 24-h average of PM2.5 in the above-mentioned studies.

TABLE 3 PM2.5 concentration and data availability during 2006–2015.

Station name Hourly PM2.5 during 2006–2015 (µg/m3) Hourly PM2.5 during satellite acquisition times

Mean Median Min Q1 Q3 Max Mean Number of PM2.5 measurements available

Arlington Municipal Airport 9.30 8.3 0.1 5.2 12.2 266.3 7.94 10354

Corsicana Airport 9.07 8.1 0.1 5.2 11.8 106.6 7.47 7790

Dallas Hinton 9.50 8.6 0.1 5.3 12.6 172.7 9.67 10711

Denton Airport South 9.05 8.0 0.1 4.9 12.1 137.7 7.76 9942

Haws Athletic Center 10.19 9.1 0.1 5.9 13.3 362.2 7.97 10404

Italy 8.97 8.0 0.1 5.3 11.5 222.6 7.59 8240

Kaufman 9.17 8.2 0.1 5.3 11.9 153.3 7.72 10358

Midlothian OFW 9.11 8.0 0.1 5.1 11.8 176.0 7.68 9417

Average 9.29 8.29 0.1 5.27 12.15 199.65 7.97 Total 77216

TABLE 4 Descriptive statistics of PM2.5 values across all image sizes.

Image-patch size Number of samples Hourly PM2.5

Mean Standard deviation

3x3 14570 7.07 5.54

5x5 12674 6.79 5.34

7x7 10686 6.56 5.24

9x9 8407 6.46 5.18

11x11 7488 6.38 5.18

13x13 6660 6.27 5.12

15x15 5703 6.30 5.17

17x17 5165 6.17 5.14

19x19 4205 5.90 4.96
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3.3 Comparison with models not using data
augmentation

Without data augmentation, a correlation between estimated
PM2.5 from MAIAC AOD and observed PM2.5 at monitoring
stations for the training dataset increased with the input image-patch
size. However, the correlation degraded for the test dataset (Figure 8).
Similarly, the models did not perform as well on the test dataset as the
training dataset in terms of RMSE. This suggested that the models

performed well on the training dataset with a smaller number of data
points but failed to perform equally well over unseen data, a case of
overfitting. Finally, we compared the performance of models with and
without data augmentation on the test dataset. Data augmentation
improved R and decreased RMSE for all image-patch sizes (Figure 9).
Moreover, models with larger image-patch sizes, despite relatively small
sample size even with data augmentation, outperformed models with
smaller-sized image-patches. It suggested that a wider area around the
PM2.5 station improved PM2.5 estimation.

FIGURE 7
Correlation coefficient and RMSE for CNN with varying image-patch sizes with data augmentation.

FIGURE 8
Correlation coefficient and RMSE for CNN with varying image-patch size without data augmentation.
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The implemented data augmentation process retained spatial
variance among cells in an input data image-patch (MAIAC AOD
and weather data) and the patch’s spatial pattern across all
augmented data items but altered the orientation and facing of
the patch. No augmentation was applied to in situ observations.
Therefore, the data augmentation changed only spatial orientation
of the input data associated with a particular observation and, as
such, introduced variance to how the interaction between MAIAC-
AOD and weather data may relate to in situ PM2.5 observations.
The increased relational variance in training data made the model
more difficult to converge during the training process (i.e., reaching
the set of parameters that minimize the model’s loss function).
Meanwhile, the increased variance also lowered the risk of model
overfitting. In machine learning, a model is considered overfitting if
it performs well on training data but poorly on test data. Figures 7,
8 show the results of CNN models over augmented and non-
augmented data, respectively. The R and RMSE values over
augmented training and test data are comparable (Figure 7),
whereas their apparent discrepancies with non-augmented
training and test data suggest poor model performance
(Figure 8). As such, the data augmentation helps overcome the
data sparsity due to missing AOD without overfitting for
PM2.5 estimation in this study.

3.4 Precision evaluation on PM2.5 estimates

The data augmentation technique proved helpful to increase the
training data size and improved the model performance. However,
due to the repeated data points used in this technique, it was essential
to assess the robustness of PM2.5 estimates across these repeated

data points. For each image-patch size, a model was developed using
the entire dataset to assess the variability in the PM2.5 estimates
across the repeated measurements. Table 5 provides descriptive
statistics of the difference between maximum and minimum
estimates obtained for the same observation across
different image-patch sizes. Overall, quartile 1 (Q1), median,
and quartile 3 (Q3) values increased as image-patch size increased,
while minimum values remained consistently low. However, the
magnitude of this increase was relatively small, with the variability
only rising from 0.05 for a 3 × 3 image-patch size, 0.58 for 17 × 17,
and 0.39 for a 19 × 19 image-patch size. The results suggested that while
the precision of the PM2.5 estimates varied across the image-patch sizes,
with a smaller patch size producing more precise estimates. Yet, the
difference in precision was relatively small. Although the maximum
estimated PM2.5 range varied quite a lot across different image-patch
sizes, % of values with the range of PM2.5 estimates greater than 2.5 were
less than 6.5% across all image-patch sizes, with the lowest percentage of
0.01 for 3 × 3 and the highest percentage of 6.44 for 15 × 15 image-
patch size.

4 Discussion

In this study, PM2.5 concentration corresponding to the hour of
satellite data acquisition time was estimated using the Convolutional
Neural Network (CNN) approach for Dallas-Fort Worth metroplex
and its surrounding area. A simple CNNmodel achieved a correlation
coefficient of 0.87 and RMSE of 2.57 μg/m3 without using PM2.5 data
from nearby monitoring stations (also called spatially lagged PM2.5).
In spatial statistics, the spatially lagged dependent variables are used in
the model structure to account for the existing spatial dependence in

FIGURE 9
Percent change in R and RMSE in models without data augmentation across image-patch sizes.
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the dependent variable (Anselin, 2003). While these models aim to
derive unbiased estimators by accounting for existing spatial
autocorrelation in the dependent variable (Anselin and Bera, 1998),
for PM2.5 studies, obtaining spatially lagged PM2.5 is challenging
because the sparse distribution of air quality monitoring stations may
be distant beyond the spatial dependence. Furthermore, PM2.5 come
from point (e.g., industry and burns) and non-point (e.g., traffic,
diffusion from nearby regions) sources. As such, co-variates from
nearby stations may not be useful since a constant spatial gradient
between two stations is unlikely. Yet, the convolutional process in our
CNNmodels embedded spatial covariates among MAIAC-AOD cells,
which were closer than the distance between nearby stations. In
addition, the CNN models also considered spatially lagged
independent variables. Without covariates from nearby stations,
our best model estimated PM2.5 corresponding to the hour of
MODIS data acquisition time, at a finer temporal interval than the
24-h averaged PM2.5 concentration estimated by previous studies.

The MODIS satellite overpasses any area twice a day; however,
the recent launch of the geostationary satellite GOES-R has made it
possible to acquire AOD data with an increasing frequency of every
5 and 15 min (Schmit et al., 2017). Extending the CNN architecture
from this study to these frequently available AOD data will help
explore the diurnal trend in PM2.5 and increase the data available for
studies investigating the effects of the environmental exposome. In
addition, the independent variables used in our model are also
readily available everywhere. Therefore, this model can be easily
trained for other regions.

This study systematically investigated the effects of the input
image-patch size on model performance. The missing AOD problem
resulted in a smaller sample size for the larger spatial extents or
image-patch sizes considered in the study. The mean and variance of
the PM2.5 decreased slightly as the image-patch size increased
(Table 4). While it may appear that the improved model
performance with larger patch sizes is due to the reduced
variance, it is important to note that with a larger spatial extent
or patch-size, the model complexity also increased. With larger
spatial extents, the model must account for spatial dependence
over a larger area around a PM2.5 station. Even with the added
complexity and smaller sample size, models with larger image patch-
size demonstrated consistently better performance with data

augmentation that introduced relational variance in training data.
The improved model performance with increased input image-patch
size suggests that including spatially lagged independent variables
from a wider area around the PM2.5 station improves model
performance. Among considered image-patch sizes, image-patch
of size 19 km by 19 km performed best with R2 of 0.76 and RMSE
of 2.57 μg/m3. With a PM2.5 station at the center, image-patch of size
19 km × 19 km, considers spatially lagged explanatory variables
within 10 km of the PM2.5 station. It suggests that adjacent
locations as far as 10 km also affect the PM2.5 concentration in
addition to local factors, indicating the broader scale at which spatial
processes driving PM2.5 are operating. Harrison et al. (2015)
collected street-level PM2.5 data in our study region’s 10 km by
10 km area. Their study found that depending on weather
conditions, the spatial scale of PM2.5 variation in the area varied
between 0.8 and 5.2 km. Thus, depending on the synoptic weather
conditions, a smaller image-patch may be sufficient to estimate
PM2.5. However, further investigation is required to confirm the
same. One way to investigate this is to classify the training dataset
into several groups, each group representing homogeneous weather
conditions, and investigate if better performance is achieved with a
smaller image-patch size in certain conditions.

Although CNN incorporated information from adjacent areas to
model PM2.5, this study did not investigate how spatially adjacent
locations influence PM2.5 at the estimation location. An explainable
AI technique may help uncover this information. Park et al. (2020)
used Layerwise Relevance Propagation (LRP) to identify important
variables in the model. Their analysis also visualized the spatial
pattern of the importance of each predictor. These patterns help
investigate how adjacent areas are contributing to
PM2.5 concentration. Future studies can use a similar approach
to examine the role of adjacent locations, especially in scenarios
leading to elevated PM2.5 concentrations. Park et al. (2020) found
the weighted average of spatially lagged PM2.5 to be the most
important variable. Unlike their study, this study did not use
spatially lagged PM2.5. Further analysis of the model using
explainable AI techniques may help gain insights into how
variables other than spatially lagged PM2.5 contribute to
PM2.5 concentration and what information about the factors
contributing to PM2.5 this model provides compared to models

TABLE 5 Descriptive statistics of the range of PM2.5 estimates across image-patch sizes.

Image-patch size Min Q1 Median Q3 Max % Below 2.5 μg/m3

3x3 0.00 0.02 0.05 0.14 2.63 0.01

5x5 0.00 0.07 0.16 0.41 8.52 0.87

7x7 0.00 0.12 0.28 0.61 8.78 1.88

9x9 0.00 0.22 0.48 0.97 10.89 4.63

11x11 0.00 0.16 0.32 0.63 10.46 1.86

13x13 0.00 0.25 0.51 1.02 11.98 5.42

15x15 0.01 0.29 0.60 1.20 12.70 6.44

17x17 0.01 0.29 0.58 1.11 13.40 5.58

19x19 0.00 0.19 0.39 0.80 7.66 3.88
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using nearby PM2.5 measurements. Moreover, the use of spatially
lagged PM2.5 assumes that the spatial gradient of PM2.5 between
two stations is smooth. However, this cannot always hold true as the
different point and non-point sources of PM2.5 between stations
may vary. In our study area, the average distance between two
PM2.5 stations was 36.26 km with a range from 20.17 km to
58.19 km. The convolution process in the CNN allows embedding
MAIAC AOD values from grid cells that are closer than the nearby
PM2.5 stations. Additionally, our study aimed to develop a MAIAC
AOD-based model to estimate hourly PM2.5 corresponding to the
satellite data acquisition times.

The study demonstrated that the data augmentation technique,
commonly used in computer vision tasks to increase the sample size,
can be used to overcome the problem of limited samples due to
missing AOD data. Several studies addressed this problem through a
data-filling approach (Hu et al., 2014; Goldberg et al., 2019; Meng
et al., 2021). However, depending on the factors responsible for
incomplete AOD, missing AOD data can be systematic or non-
random. As a result, this introduces bias in the model due to
reliance on selective data. The data augmentation technique used
in the study does not help address this limitation. In contrast, gap-
filling methods can help alleviate this problem to some extent by
increasing the AOD availability. Nevertheless, the data augmentation
method by increasing sample size helps the model learn complex
patterns and relationships. Therefore, even when sufficient data is
available for model training, it would be interesting to compare models
using augmented data with those that do not and how it affects model
performance.

Our study is subject to the following limitations, which also
present opportunities for future research. Li and Tartarini (2020)
showed the impact of human activities on PM2.5 pollution. Our
study assumed that AOD embedded the effect of human activities
on PM2.5. However, the AOD is available at 1 km resolution, and
human activities can vary widely in 1 km2. Additionally, grid-cells
of 1 km spatial resolution are used to obtain point-level
PM2.5 measurements from ground monitoring stations. This
spatial mismatch can be remedied to some extent by including
fine-grained information on human activities associated with
PM2.5 pollution such as traffic and other emission sources,
especially when human-activity patterns are highly variable over
short distances. Another spatial mismatch issue arises because of
the position of a PM2.5 station in the assigned grid cell of the input
data. Because of the coarser resolution of the input datasets (1 km,
5 km and 13 km), some PM2.5 stations may fall near the center of
the cell while others may fall near the edge. One solution to this
problem is to resample the data to ensure the PM2.5 station is
centrally located in a grid cell. However, resampling is subjected to
additional errors and uncertainty in the data. Weather-related
variables used in the study had the coarsest resolution of 13 km
among all the input variables. However, as weather variables vary at
a mesoscale, values between adjacent cells do not vary much. That
the model at 19 km × 19 km performed the best also supports that
the position of the PM2.5 station with respect to the cell center will

not affect the results. Due to insufficient MAIAC-AOD data, the
study could not test spatial extents around PM2.5 stations or
sensitivity tests beyond 19 × 19 km2. MODIS acquisitions are
vulnerable to cloudy conditions that result in data gaps. While
statistical methods can interpolate the missing data gaps (Yang and
Hu, 2018), our study used only available AOD data to avoid
additional uncertainty from interpolated errors. Moreover,
PM2.5 estimates showed variability when repeated data points
were taken after data augmentation. While this variability was
relatively small across different input image-patch sizes, future
studies may explore its causes.
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Spatio-temporal morphological
variability of a tropical barrier
island derived from the Landsat
collection

Breylla Campos Carvalho*†, Carolina Lyra da Silva Gomes and
Josefa Varela Guerra

Department of Geological Oceanography, School of Oceanography, Rio de Janeiro State University, Rio
de Janeiro, Brazil

Barrier islands are low-lying elongated, narrow sandy deposits, usually parallel to
the coastline, separated from the continent by a lagoon. Due to their low
elevation above sea level, barrier islands are environments susceptible to
drastic morphological changes depending on the meteo-oceanographic
conditions to which they are subjected. This work presents the
morphological changes between 1985 and 2021 in “Restinga da
Marambaia”—a 40 km long barrier island on Brazil’s Southeastern coast. One
hundred thirty-four scenes from the Landsat collection were processed,
enabling the quantification of the barrier island area. Additionally, the rates of
change in the position of the shorelines facing the Atlantic Ocean, Sepetiba Bay,
and Marambaia Bay were computed. The barrier island’s total area and the
central sector’s width present significant seasonal variability, which is maximum
during the austral fall and winter seasons. On the shores facing the Atlantic
Ocean and Sepetiba Bay, it is noted that the central and far eastern sectors show
an erosional trend. In contrast, the coastline is more stable on the shore facing
Marambaia Bay. The seasonal variations of the barrier island area occur during a
period of low rainfall and more energetic waves associated with local winds,
which produce coastal currents, transporting the available sediments.

KEYWORDS

coastal dynamics, interannual changes, intra-annual variability, coastal geomorphology,
remote sensing, shoreline variability, Marambaia barrier island

1 Introduction

Barrier islands are low-lying elongated, narrow sandy deposits, usually parallel to the
coastline, separated from the continent by a lagoon (Kusky, 2005). Their formation and
maintenance are related to the geological environment, sediment supply, sediment transport
mechanism, wave and tidal regimes, and sea level behavior (Pilkey et al., 2009; Stutz and
Pilkey, 2011; Otvos, 2012). Due to their low elevation above sea level, barrier islands are
environments susceptible to drastic morphological changes depending on the meteo-
oceanographic conditions to which they are subjected.

It is a central issue for coastal studies to comprehend and predict the morphological
changes and the shoreline variability, as different temporal scales are involved (Turki et al.,
2013; Hapke et al., 2016). Also, some uncertainties result from the short-scale natural
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variability and the mean sea level that are not easy to identify
(Ruggiero et al., 2003; Lazarus et al., 2011).

Several tools are used in coastal studies, and remote sensing has
been one of the most applied in the last decades (Zakaria et al.,
2006; Batista et al., 2009; Garcia-Rubio et al., 2012; Sud et al., 2012;
Cenci et al., 2015; Sánchez-García et al., 2015; Azevedo et al., 2016;
Behling et al., 2018; Pardo-Pascual et al., 2018; Xu, 2018; Mitri
et al., 2020). Landsat’s freely available images, spanning a few
decades, make it possible to analyze the changing morphology and
position of the coastline (Young et al., 2017). Additionally, satellite
image processing tools have evolved considerably, especially in
handling large volumes of images, improving performance,
accuracy, and applicability (Gorelick et al., 2017; Obi Reddy
and Singh, 2018).

Throughout the last decade, the 40 km long Marambaia
barrier island has been investigated for its sedimentary

dynamics and geological evolution (e.g., Borges and Nittrouer,
2016; Gomes et al., 2019; Carvalho and Guerra, 2020; Reis et al.,
2020; Dadalto et al., 2022), with fewer studies quantifying the
shoreline dynamics (Oliveira et al., 2008; Bahiense et al., 2014;
Santos et al., 2019; Carvalho et al., 2020). Given the
geomorphological importance of this barrier island and the
emergency to understand the morphological behavior of
coastal features due to scenarios of sea level rise (IPCC, 2022)
and increased storminess (Young and Ribal, 2019; Rey et al.,
2021), this work presents a contribution to the diagnostic of its
morphological trends over 36 years (1985–2021), supported by
Landsat imagery analysis. In contrast to the previous works, this
study expands the time scale of the observation, and more images
were processed. While Oliveira et al. (2008) and Bahiense et al.
(2014) used, respectively, nine and five images, we used more
than a hundred. Therefore, our results are robust and allow the

FIGURE 1
Marambaia barrier island location. SCE, shoreline change envelope; NSM, net shoreline movement; LRR, linear regression rate. Landsat 8 satellite
imagery from 05/Jun/2021, 4R3G2B composition.
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detailed observation of the seasonal changes in shoreline position
and their consequences in the barrier island area over time.

2 Methods

2.1 Study area

The 40 km long Marambaia barrier island is located on the
southern coastline of Rio de Janeiro (SE Brazil), with an east-
west orientation and width varying from 120 to 1800 m. In the
westernmost limit, the barrier island is anchored at a pre-
Cambrian massif, the Marambaia Peak. In the easternmost
limit lie the tidal channels of Barra de Guaratiba (Figure 1).
This barrier island may be divided into three sectors: 1)
Western, including beach ridges, marshlands, inter-ridge
paleo lagoons, and overland flow features; 2) Central, where
the barrier island becomes strikingly narrow; and 3) Eastern,
characterized by a dune field, tidal wetlands and beach ridges
(Dadalto et al., 2022).

Based on the Köppen classification, Alvares et al. (2013) state
that there are two types of climate in this region: tropical without dry
season (Af) and tropical monsoon (Am), characterized by annual
mean temperature between 22°C and 24°C and annual rainfall
between 1,300 and 1,600 mm. The South Atlantic Subtropical
Anticyclone (SASA) affects the area, which, in the face of frontal
systems, causes increased cloud cover and strong winds
(Dereczynski and Menezes, 2015).

The wave climate in the Rio de Janeiro littoral is characterized by
fair-weather short-period waves from northeast and eastern
directions and storm waves from S and SSW, with higher
amplitudes and longer periods (Parente et al., 2015; Carvalho
et al., 2021).

Marambaia barrier island partially isolates Sepetiba bay from the
Atlantic Ocean, strongly influencing its circulation, which is affected
by river discharge in its northern and eastern sectors (Fragoso,
1999). The coastal region is under a microtidal regime, with tide
heights varying between 0.3 and 1.2 m (Criado-Sudau et al., 2019)
and with tidal propagation from east to west (Harari and Camargo,
1994).

2.2 Landsat imagery

Landsat satellite imagery has been globally applied for
environmental studies, including shoreline monitoring
(Zakaria et al., 2006; Misra and Balaji, 2015; Ozturk et al.,
2015; Konlechner et al., 2020; Sánchez-García et al., 2020;
McAllister et al., 2022). These images are extensively used
since they have global coverage and are freely distributed
(Young et al., 2017). For this work, using the Google Earth
Engine (GEE) platform (Gorelick et al., 2017), the TM, ETM+,
and OLI sensors images were imported from the Landsat Tier
1 collection (Supplementary Figure S1) calibrated top-of-
atmosphere (TOA) reflectance, encompassing the period
between 1985 and 2021, with a cloud coverage of less than
10% of the scene. One hundred thirty-four scenes, with orbit/
point 217/76, were used to map the Marambaia barrier island.

The atmospheric correction was done using the Dark Object
Subtraction (DOS) model (Chavez, 1988) to obtain surface
reflectance. This model is widely used for mapping change
detection, enabling reliable surface reflectance values
(Kawakubo et al., 2011; Cui et al., 2014; Nazeer et al., 2014;
Pacheco et al., 2015; Phan and Stive, 2022).

2.3 Shoreline detection and analysis

Shoreline delineation was performed on the GEE platform by
applying the Normalized Difference Water Index (NDWI)
(McFeeters, 1996) (Eq. 1), and the output rasters were converted
to vector polygons.

NDWI � GREEN −NIR( )/ GREEN +NIR( ) (1)
In the Landsat 5 and 7 series, the green and near-infrared (NIR)

bands correspond to bands 2 and 4, respectively, while in the
Landsat 8 series, they represent bands 3 and 5, respectively.

Afterward, the quantification of the barrier island area and its
central sector’s width were conducted in the QGIS 3.16 program.
Marambaia peak was excluded from the computation of the barrier
area. The width of the central sector was computed at a location
close to photography #3, shown in Figure 1 (between coordinates 43°

44′31.43″W, 23° 3′30.04″ S and 43° 44′30.66″W, 23° 3′34.30″ S).
With the computed values, it was possible to estimate the annual
average and median barrier island area and central sector width, as
well as their seasonality.

The rates of change in the position of the shorelines facing the
Atlantic Ocean, Sepetiba Bay, andMarambaia Bay were calculated in
the Digital Shoreline Analysis System (DSAS) program
(Himmelstoss et al., 2021) for ArcMap™ 10.8. For that, the
polygons were converted into polylines, representing the
shorelines for each image. Five hundred and seventy-four
transversal transects, equispaced 150 m, were used to compute
the Shoreline Change Envelope (SCE), the Net Shoreline
Movement (NSM), and the Linear Regression Rate (LRR)
(Himmelstoss et al., 2021).

The SCE is obtained by calculating the largest distance among all
shorelines on each transect, representing the total variation in
shoreline position, and is not related to the dates of the images
(Himmelstoss et al., 2021). Conversely, the NSM is the difference
between the oldest and the most recent shoreline position in each
transect. The LRR is obtained from a line of best fit, calculated using
the least squares method, with all shoreline positions in each transect
(Dolan et al., 1991), reflecting rates that indicate erosion, accretion,
or stability of the coastline.

DSAS considers information on the uncertainty and
horizontal accuracy of the shoreline mapping in the
calculations of standard errors and confidence intervals
(Ruggiero et al., 2013). In the case of using satellite imagery
for determining shoreline position, these uncertainties consider
data quality (pixel error, Ep), georeferencing error (Eg), high tide
level uncertainty (Ev), and shoreline digitization error (Ed),
compiled as a total error (Et) (Hapke et al., 2016; Nassar
et al., 2019). For the mapping presented in this manuscript,
the annualized Et was ±3.2 m/year, and the estimated
uncertainty (UR) of the shoreline change rate was 0.2 m/year,
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with values similar to those reported by Carvalho et al. (2020),
where the authors analyzed the Marambaia barrier island
shoreline facing the Atlantic Ocean. So, when analyzing the

values expressed as LRR, rates above 0.2 m/year indicate
accretion, between −0.2 and 0.2 m/year indicate stability, and
below −0.2 m/year indicate erosion.

3 Results

3.1 Barrier island area and central sector
width variability

From 1985 to 2021, the barrier island area varied between
51.3 and 57.7 km2, averaging 53.3 ± 1.2 km2 (Figure 2A). The
lowest average area was recorded in 1986 (52.1 ± 0.6 km2), while
the largest was recorded in 1998 (55.0 ± 2.1 km2). The central
sector width, one of the lowest regions of the barrier island, varied
between 121.7 and 372.3 m, with an average of 168.4 ± 34.9 m
(Figure 2B). The smallest average width was determined for 1986
(141.6 ± 16.7 m), while the largest was observed in 2020 (204.0 ±
60.2 m).

The barrier island’s total area and the central sector’s width
presented significant seasonal variability, maximum between May
and August, that corresponds to the austral fall and winter seasons
(Figures 2C, D). November is the month when the barrier island
presents the smallest average area (52.6 ± 0.4 km2), while the largest
value occurred in July (54.3 ± 1.6 km2). About the width of the
central area, the lowest monthly average was found in November
(151.8 ± 0.2 m), whereas the highest monthly average was observed
in August (178.4 ± 57.4 m).

3.2 Shoreline change metrics and rates (SCE,
NSM, and LRR)

In Figure 1 are spatialized the shoreline change envelope
(SCE), net shoreline movement (NSM), and the linear regression
rate (LRR). Regarding the shoreline facing the open ocean, the

FIGURE 2
Marambaia barrier island variability (1985–2021): annual averages and medians of (A) total area and (B) central section width; and monthly variation
of (C) total area and (D) central section width.

FIGURE 3
Shoreline change rates (1985–2021): (A) facing the open ocean;
(B) back-barrier; (C) facing marambaia bay.
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beach envelope varied between 30 and 277 m (SCE), ranging
from −62 m to +115 m (NSM), resulting in a rate of change
between −1.1 and +1.0 m/year (LRR) (Figure 3A; Table 1). The
eastern sector shows higher variability (maximum SCE of 277 m)
and erosive tendency (maximum NSM retreat of −61.5 m and
maximum LRR retreat of −1.1 m/year), representing 10% of the
whole shoreline under erosion, especially near Barra de
Guaratiba. The central area shows some stability (~20% of
the whole shoreline), since areas under erosion (26%) and
under accretion (53%) alternate along this sector (panel NSM
on Figure 1), culminating in average rates of −0.04 m/year. The
western sector is the most stable, making up 34% of the shoreline
with an average LRR of 0.09 m/year (Table 1).

On the back-barrier shoreline, the beach envelope (SCE) varied
between 95 and 894 m, ranging between −61 m and +185 m
(NSM), showing a rate of change between −2.7 and +5.5 m/year
(LRR) (Figure 3B; Table 1). Similarly to the coastline facing the
open ocean, the eastern sector of the shoreline facing Sepetiba Bay
exhibits the highest erosion rate (mean LRR of −0.6 m/year),
comprising 31% of the backbarrier shoreline that is eroding.

The central sector also shows erosional trends (mean LRR
of −0.2 m/year), although most of this sector is stable (~10% of
the entire back-barrier coastline). The western sector is the most
stable (mean LRR of 0 m/year), where almost 60% of this sector
(~6% of this shoreline) is stable (Table 1).

Finally, on the coastline facing Marambaia Bay, the beach
envelope (SCE) oscillated between 0 and 320 m, ranging
from −68 m to +88 m (NSM), with a rate of change
between −2.6 and +3.3 m/year (LRR) (Figure 3C; Table 1). This
shoreline is more stable (average NSM of 0.05 m) and exhibits the
highest accretion rates on the barrier island (38%), with an average
LRR of 0.2 m/year (Table 1).

4 Discussion

The Marambaia barrier island morphometric and shoreline
behavior suggest that the intrannual variability is the primary
driver of barrier island remodeling, intensified by interannual
changes and geological control. As for the seasonal variations of

TABLE 1 Statistical parameters of the metrics and rates of barrier island each sector.

Shoreline metrics Open ocean shore Back-barrier shore Marambaia
bay shore

Western Central Eastern Total
length

Western Central Eastern Total
length

Lenght (km) 18 (43%) 11 (26%) 13 (31%) 42 (100%) 12 (38%) 11 (36%) 8 (26%) 31 (100%) 12

SCE (m) Min 60.24 30.06 60.00 30.06 94.95 150.01 242.09 94.95 −67.62

max 182.57 151.09 276.83 276.83 589.19 470.00 893.58 893.58 87.57

avg 106.01 98.64 108.35 104.98 238.65 296.02 469.38 317.58 15.62

std 25.70 21.21 29.79 25.79 201.25 300.02 447.25 107.70 23.91

md 93.28 90.54 92.06 91.66 201.25 300.02 447.25 303.10 5.09

NSM (m) maxr −31.26 −30.26 −61.52 −61.52 −60.86 −60.91 −31.94 −60.91 −2.06

maxa 60.15 115.35 94.15 115.35 101.91 31.38 184.87 184.87 2.76

avg 2.84 0.69 21.35 8.64 −0.32 2.70 42.22 11.58 0.05

std 10.84 19.40 28.77 20.61 0.00 0.00 31.37 24.17 0.23

md 0.00 0.00 8.68 0.00 0.00 0.00 31.37 0.00 0.00

LRR (m/yr) maxr −0.33 −0.36 −1.10 −1.10 −2.65 −1.02 −2.36 −2.65 0.00

maxa 0.95 0.44 0.47 0.95 2.95 0.95 5.52 5.52 0.77

avg 0.09 −0.04 −0.21 −0.03 0.00 −0.16 −0.63 −0.22 0.16

std 0.17 0.14 0.36 0.23 −0.02 −0.08 −1.22 0.63 0.17

md 0.05 −0.06 −0.16 −0.01 −0.02 −0.08 −1.22 −0.11 0.04

% Erosion 5 16 45 20 25 36 79 43 19

Stability 79 77 37 65 59 57 2 44 43

Accretion 16 7 18 14 16 7 19 13 38

Legend: SCE, shoreline change envelope; NSM, net shorelinemovement; LRR, linear regression rate; yr, year; %, pecentage; min, minimum;max, maximum; avg, average; std, standard deviation;

md, median; maxr, maximum retreat; maxa, maximum advance.
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the barrier island area, they occur during a period of low rainfall
(Supplementary Figure S2), more energetic waves (Parente et al.,
2015; Carvalho et al., 2020), and most significant mean sea level
variation (Carvalho et al., 2023). This combination is conducive to
sediment transport conditions that favor the maintenance of
overwash zones observed in the barrier island (Photo #3 in Figure 1).

In general, the back-barrier shore presented a broader
envelope of shoreline change compared to the shores facing
Marambaia Bay and the open ocean. In this region are
observed striking rhythmic features, classified as elongated
transverse finger bars (Gomes et al., 2019). The highest
average number of NE-SW oriented bars, determined by
satellite imagery, occurs in August, reaching 11 bars/km
(Gomes et al., 2019). Thus, it is suggested that these features
influence shoreline variability. Ashton and Murray (2006);
Murray et al. (2014) associated these rhythmic patterns with
sediment erosion and accretion on the coastline.

The eastern sector of the back-barrier shore presents the
highest shoreline change envelope (SCE >240 m) determined in
the present study. This might be a consequence of its proximity to
the mouth of rivers debouching into the bay and intermittent
channels that drain wetlands (Photo #5 in Figure 1) present in the
barrier (Dadalto et al., 2022). For example, the Piraquê river, near
the eastern sector, is one of the main tributaries of Sepetiba bay,
with an average discharge of 2.5 m3/s (Cunha et al., 2006).
Furthermore, in the satellite images and aerial photographs is
possible to observe the presence of intermittent channels that
induce the formation of spur-like features (Photo #4 in
Figure 1) of variable sizes.

Although the coastline is more stable along the Marambaia Bay
shore, there is an erosional trend in its southwestern sector and a
prograding trend in the northeastern sector (Photo #1 in Figure 1).
These sediment transport trends are evidenced by morphological
features and grain size trend analysis (Carvalho and Guerra, 2020).
On the open-ocean shore, the Barra de Guaratiba tidal channels
influence the erosional trend observed in the far eastern sector,
which had been previously noted (Carvalho et al., 2020).

Regarding the width of the central sector of the barrier
island, Oliveira et al. (2008), using Landsat and CBERS
satellite images from 1975 to 2004, documented a variation
from 158 m (in 1975) to 100 m (in 2004). In our study, which
encompasses a larger temporal scale, the width increased from
151 m to 180 m. Also, between 1984 and 2004, Oliveira et al.
(2008) documented a reduction of 58 m in the central sector
width, while we observed a slight increase (+29 m). Using aerial
photographs and GeoEye satellite images, Bahiense et al. (2014)
verified that between 1975 and 2011, there was an alternation of
areas of accretion and erosion on both sides of the barrier
island’s central sector, with rates ranging between −0.30 and
0.15 m/yr.

The seasonality of shoreline change is a common trend
observed in other sandy shorelines studied in other parts of the
world. Still, the reasons for this seasonality differ regionally. For
example, Bishop-Taylor et al. (2021) found that 16% of Australia’s
shoreline retreated or progressed at rates greater than 0.5 m/year,
indicating that these may be extreme coastal change hot spots. On
the Calabrian coast (southern Italy), Foti et al. (2022) studied the

evolution of the coastline at different time scales. They noted that
eroding areas prevailed over accreting ones when analyzed over
long and medium-term time scales, while accretion prevailed over
short-term time scales. Therefore, the authors emphasize the
importance of jointly analyzing human pressures and natural
processes to understand shoreline dynamics. In this regard,
Bamunawala et al. (2021), in assessing projections of
worldwide shoreline changes near tidal inlets, emphasized that
several impacts of climate change can severely modify the
morphological dynamics of the shoreline. They mention, for
instance, changes in mean sea level and suppression of
sediment supply in coastal areas. Thus, it is apparent the
importance of understanding the processes subjacent to the
changes in the position of the coastline in its different
temporal and spatial scales, taking into account the natural
and anthropic influences.

Despite the geomorphological complexity observed on the
Marambaia barrier island, using Landsat satellite images enabled
us to quantify the morphological changes over the last 35 years.
Remote sensing is a powerful tool in places of difficult access, such as
the study area, associated with the scarcity of financial and human
resources to monitor the coastline. The observed trends
demonstrated the importance of the seasonality of coastal
processes, reinforcing the need to fully understand these systems
to cope with the changes they will undergo in scenarios of sea level
rise and an increased number of storm events.
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Using terrestrial laser scanning to
evaluate non-destructive
aboveground biomass allometries
in diverse Northern California
forests

Paris Krause1, Brieanne Forbes1, Alexander Barajas-Ritchie1†,
Matthew Clark2,3, Mathias Disney4,5, Phil Wilkes4,5 and
Lisa Patrick Bentley1*
1Department of Biology, Sonoma State University, Rohnert Park, CA, United States, 2Department of
Geography, Environment and Planning, Sonoma State University, Rohnert Park, CA, United States, 3Center
for Interdisciplinary Geospatial Research, Sonoma State University, Rohnert Park, CA, United States,
4Department of Geography, University College London, London, United Kingdom, 5NERCNational Centre
for Earth Observation, University College London, London, United Kingdom

A crucial part of carbon accounting is quantifying a tree’s aboveground biomass
(AGB) using allometric equations, but species-specific equations are limited
because data to inform these equations requires destructive harvesting of many
trees which is difficult and time-consuming. Here, we used terrestrial laser scanning
(TLS) to non-destructively estimateAGB for 282 trees from5 species at 3 locations in
Northern California using stem and branch volume estimates from quantitative
structure models (QSMs) and wood density from the literature. We then compared
TLSQSM estimates of AGBwith published allometric equations and used TLS-based
AGB, diameter at breast height (DBH), and height to derive new species-specific
allometric AGB equations for our study species. To validate the use of TLS, we used
traditional forestry approaches to collect DBH (n= 550) and height (n= 291) data on
individual trees. TLS-basedDBHandheightwere not significantly different fromfield
inventory data (R2 = 0.98 for DBH, R2 = 0.95 for height). Across all species, AGB
calculated from TLS QSM volumes were approximately 30% greater than AGB
estimates using published Forest Service’s Forest Inventory and Analysis Program
equations, and TLS QSM AGB estimates were 10% greater than AGB calculated with
existing equations, although this variation was species-dependent. In particular, TLS
AGB estimates for Quercus agrifolia and Sequoia sempervirens differed the most
from AGB estimates calculated using published equations. New allometric
equations created using TLS data with DBH and height performed better than
equations that only included DBH and matched most closely with AGB estimates
generated from QSMs. Our results support the use of TLS as a method to rapidly
estimate height, DBH, and AGB of multiple trees at a plot-level when species are
identified and wood density is known. In addition, the creation of new TLS-based
non-destructive allometric equations for our 5 study species may have important
applications and implications for carbon quantification over larger spatial scales,
especially since our equations estimated greater AGB than previous approaches.

KEYWORDS

terrestrial laser scanning (TLS), tree aboveground biomass, allometric equations,Quercus
agrifolia, Quercus garryana, Sequoia sempervirens, Pinus ponderosa, Abies concolor
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1 Introduction

Globally, forested ecosystems store more carbon both above-
and below-ground than any other terrestrial sink, making climate-
smart forest management an important strategy to mitigate excess
anthropogenic carbon production (Canadell and Schulze, 2014).
Unfortunately, the specific drivers that promote long-term carbon
storage and improve forest health are often challenging and
complicated to identify without accurate data related to the size
of trees (Pugh et al., 2018). In addition, traditional forestry-based
survey approaches (i.e., hand-measured data or non-remote sensing
data) to estimate aboveground size of trees (aboveground biomass,
or AGB) may be inaccurate for a large percentage of species due to a
lack of availability of destructive harvest data (Burt et al., 2020). In
Northern California, an area of high regional species diversity, it is
unknown how much error is introduced into AGB estimates when
using general equations based on diameter at breast height (DBH)
and height data that originate from outside the study area and are
not locally calibrated. Due to the increased prevalence of drought
and wildfire in Northern California and the need to accurately
estimate carbon in trees, there is a need to focus on: 1) improving the
quantification of AGB for tree species in this region, and 2)
determining if there is a more efficient and accurate method to
estimate AGB than traditional approaches based on destructive
sampling.

Terrestrial Laser Scanning (TLS), which can measure
three-dimensional (3D) structure to millimeter accuracy
and precision at plot (e.g., 100–1,000 m2) scales (Disney
et al., 2018), can be a solution to these needs. In forests,
TLS has been shown to be more accurate than traditional field
methods for sampling forest structure (Hudak et al., 2009;
Calders et al., 2015a; Kelly and Di Tommaso, 2015; Liang
et al., 2016; de Tanago et al., 2018; Stovall et al., 2018).
Although there are relatively few papers related to the use
of TLS to estimate AGB (reviewed in Liang et al., 2016), AGB
estimates from TLS have been found to strongly correlate
with estimates from destructive sampling. Calders et al.
(2015a) found that TLS AGB estimates highly correlated
with AGB from destructive sampling (R2 = 0.98), with an
overestimation of 9.7%; in contrast, AGB derived from
allometric equations had a lower correlation with
reference biomass samples (R2 = 0.68–0.78) and
underestimation of 36.6%–29.9%. The study also found
AGB error with allometric equations to increase
exponentially with increasing DBH, whereas TLS error was
DBH independent. Since the detailed 3D data generated from
TLS can be rapid, non-destructive, and automated with high
precision, TLS data can be used to update general allometric
equations or establish specific equations for a geographic
region (Liang et al., 2016; Lau et al., 2018; Demol et al., 2022).

To estimate AGB from TLS data, automated algorithms and
Quantitative Structure Models (QSMs) are often used (Calders
et al., 2015a; Lau et al., 2018; Stovall et al., 2018; Lau et al., 2019;
Momo Takoudjou et al., 2018; de Tanago et al., 2018; Malhi et al.,
2018; Disney et al., 2020). QSMs are a set of hierarchically
structured cylinders that can be fitted to TLS point clouds to
estimate the volume of trunk (stem) and branches of the tree, and
calculate a total (Raumonen et al., 2013; Calders et al., 2015a;

Calders et al., 2015b). Stovall et al. (2018) found that TLS stem
volume modeling via QSMs was an appropriate method of non-
destructive allometric equation development and reducing
uncertainty in tree-level AGB estimates. Similarly, Disney
et al. (2020) found QSMs of Sequoia sempervirens (redwood)
to agree with AGB estimates derived from detailed manual
measurements within 2% AGB from values from allometric
equations, with no change in regression slope.

In light of the need for non-destructive, accurate estimates of
carbon for species specific to Northern California regions, we used
TLS to non-destructively estimate AGB for 282 trees from 5 species
at 3 locations using stem and branch volume estimates from
quantitative structure models (QSMs) and wood density from the
literature. We aimed to determine if estimates of AGB calculated
using TLS QSM volume or TLS DBH and height would differ from
AGB calculated from multiple published allometric equations. We
also used TLS measurements to derive new allometric equations for
our study species using both DBH and height. We hypothesized that
both TLS-based volume AGB estimates and AGB calculated via an
individual tree’s TLS DBH and height would be greater than AGB
calculated from published equations, as TLS is species-specific and
directly measures the volume of each individual tree whereas
published allometries are often based on a small destructive
sample from a singular genus or forest type. Additionally, we
predicted that there would be less differences between TLS-based
AGB and AGB calculated from existing allometric equations for
coniferous species compared to broadleaf species (Quercus sp.), as
tree shape and biomass distribution is similar across conifers of the
size classes in our study areas, and allometric equations often assume
tapered, cylindrical growth of a single stem (e.g., conifer growth
pattern).

2 Methods

2.1 Study sites

Data were collected from three study sites in northern
California, United States: (Figure 1): Pepperwood Preserve (38°

34′ 57.5″ N, 122° 42′ 37.3″ W; Sonoma County), Saddle
Mountain Open Space Preserve (38° 30′ 3.3″ N, 122° 37′ 44.6″
W; Sonoma County) and Latour Demonstration State Forest, 40° 38′
21.5″N, 121° 43’ 26.0”W; Shasta County). At Pepperwood Preserve,
the most prominent forest community is oak woodlands. Trees at
Pepperwood were selected frommultiple plots (20 × 20 m) stratified
across topographic gradients along a narrow elevational range
(120–460 m) where DBH and height data had already been
manually collected in the past year (Evett et al., 2013; Ackerly et
al., 2020). Saddle Mountain primarily consists of mixed hardwood
and conifer forest, oak woodland, grassland, and chaparral
shrublands. Trees at Saddle Mountain were selected from
multiple plots (11.3-m radius) along a narrow elevational range
(233–549 m) where a suite of forest structure variables were
collected simultaneously (Forbes et al., 2020). Latour
Demonstration State Forest (LDSF) is located at the southern tip
of the Cascade Mountain Range (1,158 m to 2,550 m) and is
comprised of many conifer species. Trees at Latour were selected
from Continuous Forest Inventory (CFI) plots (11.3-m radius)
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where DBH and height data had already been manually collected in
the past year.

2.2 Species selection

Five species (Quercus agrifolia, Q. garryana, S. sempervirens,
Pinus ponderosa, and Abies concolor) were chosen based on both
their distribution in the study areas and availability of existing
allometric equations. Specifically, each species had to have a
minimum of 60 individuals within the surveyed plots across all
three study sites to ensure a large enough sample size for allometric
equation determination (Stovall et al., 2018). Additionally, Q.
agrifolia and Q. garryana were chosen because there is only one
known published species-specific allometric equation for either
species (Pillsbury et al., 1984). Redwoods, S. sempervirens, were
selected because local species-specific allometric equations do exist,
based on detailed partial-destructive sampling and crown mapping
(Sillett et al., 2019). S. sempervirens, P. ponderosa, and A. concolor
were also chosen because they are important timber species, making
accurate AGB estimates crucial for foresters. No species was present
at all three study sites.

2.3 Field measurements of DBH and height

Data collection included DBH, total tree height, and tree species.
For each tree included in this study, DBH was collected at 1.37 m
from the base of the uphill side on the trunk to the 10th of a
centimeter using a DBH tape for all selected species. To measure the
height of each tree, a Laser Technology Impulse 200 LR Rangefinder
was used by aiming the laser at eye level on the trunk of the tree, then
at the base of the uphill side of the trunk, and at the top of the tallest
piece of living or dead tree material. Height was collected for all trees
at Pepperwood Preserve and Saddle Mountain, but at LDSF, height
was only collected on select trees of interest due to time constraints.

2.4 TLS field measurements and plot-level
post-processing

A RIEGL VZ-400i (Horn, Austria) laser scanner was used for
all TLS measurements. One 360° vertical and one 360° horizontal
scan were collected per scan position by rotating the TLS on a tilt-
mount on the scanner surveying tripod to rotate 90° while
remaining in its fixed scan position. This scanner has a 1550-

FIGURE 1
Map of the 3 study locations in Northern California (Latour Demonstration State Forest, Pepperwood Preserve, and Saddle Mountain Open Space
Preserve) with expanded detail showing the plots (black circles) where trees were selected.
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nm wavelength and a 0.35-mrad beam divergence (Wilkes et al.,
2017; de Tanago et al., 2018). At all plots, nine scan positions
were used on a 10 × 10-m grid to ensure full scan visibility in
densely forested plots (Wilkes et al., 2017). Additional details
related to TLS field scanning is included in the Supplemental
Material and in Forbes et al. (2022).

Co-registration of TLS data was completed in RiSCAN PRO
(Riegl, www.riegl.com) where each scan was aligned to a
common local coordinate system. First, a coarse registration
used voxelized point clouds and an on-board Global Navigation
Satellite System (GNSS) to align the scans relative to the first
scan position. Then a Multi-Station Adjustment (MSA) (RIEGL
Laser Measurement Systems GmbH) performed a fine
adjustment where planes fit to the point data were aligned
using a least squares approach. Using GNSS, data were
transformed to NAD83 (2011)/UTM Zone 10N and geoid
12B for accurate height data. Once registered, the TLS
pointcloud of the entire plot was aligned to 2013 airborne
LiDAR scanner (ALS) data within RiSCAN PRO to create an
accurate digital elevation model (DEM), to better align with ALS
and unoccupied aerial system (UAS) data used in other studies
at the same field sites (see Forbes et al., 2022; Reilly et al.,
2021 for more details). The program Lidar360 (GreenValley
International, greenvalleyintl.com) was then used to create a
DEM by triangular irregular network (TIN) for each plot and
height normalize plot-level TLS data.

2.5 Data analyses

2.5.1 Allometric equations
To estimate AGB, allometric equations were used that have

been developed from destructive sampling of relatively small
numbers of trees in the same region (≥2.5 cm stem diameter) for
a subset of common species. These species-specific equations
relate main stem cubic volume via DBH or other diameter type
(e.g., above buttress), wood density and height, as well as biomass
of additional leaf and branch components (Jenkins et al., 2003;
California Air Resources Board, 2014; Chojnacky et al., 2014;
Sillett et al., 2019).

Multiple tree allometry protocols were used to calculate AGB for
each tree species: 1) U.S. Forest Service’s Forest Inventory and
Analysis Program (FIA) protocol; 2) Jenkins et al.’s (2003)
protocol; 3) Chojnacky et al.’s (2014) protocol; and 4) a local
species-specific allometry (if available). For the FIA protocol,
volume and AGB of live trees were determined with allometric
equations approved by California’s Air Resource Board (CARB) for
cubic volume and wood density (density of tree bole/stem, bark, and
branches) (CARB, 2014). Each species was assigned a specific
equation for live volume estimation, using each stem’s DBH and
height as inputs. The AGB of the tree stems (in kilograms) was
calculated as:

AGBstem � volumeft3 × wood density lb/ft3( ) × 0.453592 kg/lb

(1)
The CARB FIA protocol species-specific wood densities and

specific gravities were used in Eq. 1. Some genera with largely

varying wood specific gravities were divided into two different
taxa groups. Supplementary Table S1 shows each species within
the equation taxa group for Jenkins et al., 2003 and Chojnacky et al.,
2014. Additional details related to the specific allometric equations
used are included in the Supplemental Material.

2.5.2 TLS data
Using plot-level data, semi-automated segmentation of

individual trees from a respective seed point was performed in
Lidar360. The profile view of an individual tree was used tomanually
measure the DBH and height of a single stem, where height was
determined by the tallest visual points of the tree. After each tree was
segmented and measured, it was manually edited in CloudCompare
(www.danielgm.net/cc) to remove extraneous points (Supplemental
Figure S1) and processed via TLSeparation (v1.3.2;
tlseparation.github.io/documentation) to remove the foliage so
only wood was remaining.

Tree volume was estimated directly from the segmented and
cleaned point cloud of wood-only data using Quantitative
Structure Models (QSM) (Raumonen et al., 2013; Calders
et al., 2015b; Disney et al., 2018; Lau et al., 2018; Raumonen,
2020). A range of TreeQSM input parameters were tested to
optimize QSM outputs. All QSMs were visually compared to the
segmented point cloud and any that did not produce visually
similar structured models (i.e., large branches missing) were
discarded and not used in subsequent analyses. Additional
details related to tree segmentation, tree measurements and
QSM functions and optimization are included in the
Supplemental Materials.

2.5.3 Data comparisons
As general indicators of model accuracy, root mean square error

(RMSE) (kg), coefficient of variation root mean square error (CV
RMSE) (%), bias (kg), and percent bias (%) were calculated via
Eqs 2–5:

RMSE � √
∑n

i�1 ŷi − y( )
2

n
(2)

CVRMSE � RMSE

mean ŷ( )
× 100 (3)

Bias � ∑n
i�1 ŷi − y( )

2

n
(4)

%Bias � mean
ŷi − y

ŷ
( ) × 100 (5)

where, ŷi is ith TLS-derived volume or AGB estimate for an
individual tree, y is the allometry-derived value, and n is the
sample size (Calders et al., 2015a; Stovall et al., 2018). Bias and
RMSE were both represented in the units of their inputs and divided
by mean volume or AGB to calculate CV RMSE and percent bias
(unitless measures that represent a ratio). This normalized the data
to allow for more accurate comparisons due to differences amongst
the species, such as sample size and overall tree size. Slope and
intercept values of orthogonal regression models between TLS-
derived volume or AGB and field-measured values were used to
identify departure from the 1:1 line, and the R-squared value was
used to evaluate the regression fit (de Tanago et al., 2018; Stovall
et al., 2018).
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2.5.4 Updated allometric equations
DBH, height, volume, and AGB were used to derive a DBH

and height and a DBH only allometric equations per species
(10 equations total). TLS derived allometric equations were
computed using a linear regression model, with TLS QSM
AGB as the response and TLS DBH and height per species as
predictors. The log-transformed ordinary least squares
regression method detailed in Stovall et al. (2018) was used
to determine the slope coefficient, β1, and intercept, β0,
with DBH and height H). Specifically, two equation forms
were used:

AGB Eq. 1:

ln Biomass( ) � β0 + β1 ln DBH( ) or
Biomass � Exp β0 + β1 ln DBH( )( )

(6)

AGB Eq. 2:

Biomass � β0 + β1 DBH2 × H( ) (7)
All analyses were performed using R Statistical Software (v3.6.2;

R Core Team, 2021).

3 Results

3.1 TLS vs inventory data for height and DBH
estimation

For 550 trees, DBH ranged from 10.9–76.4 cm. For 291 trees,
height ranged from 3.16–38.74 m. Across all species, TLS derived
metrics accurately estimated DBH and height when compared to
field measured DBH and height (R2 = 0.98 for DBH, R2 = 0.95 for
height) (Figure 2).

3.2 QSM volume estimates compared to
national FIA equations

Successful QSMs were created for 282 trees across 5 species.
Across all species, except P. ponderosa, AGB calculated from TLS
QSM volumes were approximately 30% greater than AGB estimates
using published Forest Service’s Forest Inventory and Analysis
Program (FIA) equations (Figure 3, Supplemental Table S3,
Supplemental Table S8). Conifer species (A. concolor, P.
ponderosa, S. sempervirens) had QSM volumes closer to FIA
volumes compared to hardwood species (Q. agrifolia, Q.
garryana) (Figure 3, Supplemental Table S3, Supplemental
Table S8).

3.3 TLS QSM AGB estimates compared to
AGB calculated from national allometric
equations

TLS derived AGB estimates were compared to AGB calculated
using published allometric equations from FIA, Jenkins et al. (2003),
Chojnacky et al. (2014), and Sillett et al. (2019; for S. sempervirens
only) (Figure 4, Supplemental Table S4). In general, comparisons
between TLS AGB and AGB calculated from Jenkins et al. (2003)
equations had the lowest CV RMSE (36.10%) and bias (1%).
Comparisons between TLS AGB and AGB calculated using
Chojnacky et al. (2014) and FIA equations had 39.09% and
40.34% CV RMSE and 20% and 11% bias, respectively. For A.
concolor, when comparing AGB from species-specific published
allometries to TLS AGB, FIA equations had the lowest CV RMSE
of 31.78%, a bias of 59.41 kg, and percent bias of 12%. For P.
ponderosa, AGB comparisons between the three equations only
differ by 1.23 kg with FIA producing the lowest CV RMSE of

FIGURE 2
(LEFT) Linear regression of traditional DBH (cm) compared to TLS DBH (cm) and (RIGHT) linear regression of traditional height (m) compared to TLS
height (m) for each tree measured in the study plots (550 trees for DBH and 291 trees for height; sample sizes are different because traditional height was
not measured on all trees).
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25.35%. However; Chojnacky et al. (2014) equations had an CV
RMSE of 25.62% with a lower bias of 23.49 kg and percent bias of 5%
than either FIA or Jenkins et al. (2003); Jenkins et al. (2003)
equations comparisons for AGB had the lowest CV RMSE, bias,
and percent bias for the other three species, S. sempervirens, Q.
agrifolia, and Q. garryana (Supplemental Table S4). Despite Sillett
et al. (2019) having updated equations from detailed measurements,
comparisons of TLS AGBwith AGB calculated using these equations
did not produce the lowest CV RMSE for S. sempervirens. RMSE
only differed between Jenkins et al. (2003) and Sillett et al. (2019) by
2.78 kg, and Sillett et al. (2019) had a much lower bias of 16.53 kg
compared to 93.85 kg for Jenkins et al. (2003) for S. sempervirens.
Both hardwood species, Q. agrifolia and Q. garryana, had TLS AGB
estimates that were most similar to Jenkins et al. (2003) AGB
estimates when evaluated with CV RMSE and bias.

3.4 New species-specific allometric
equations created from TLS QSM AGB data

New allometric equations were developed for each species using
either DBH (Eq. 6), or both DBH and height (Eq. 7) as covariates
with TLS QSM AGB. The species-specific equation coefficients, β0
and β1, for each equation are reported in Table 1 and visualized in
Supplemental Figures S2, 3 The R2 and CV RMSE values for each

species-specific equation demonstrated that the height-DBH
equations were a better fit than the DBH only, for all species
except Q. garryana, where there was no difference in R2.

3.5 AGB calculated from new TLS species-
specific allometries compared to AGB
calculated from published allometries and
TLS QSMs

AGB calculated from new allometric equations derived from
TLS data were compared to FIA, Jenkins et al. (2003), Chojnacky
et al. (2014), and Sillett et al. (2019) (S. sempervirens only) AGB
estimates. AGB estimates created from TLS QSM AGB and DBH
(Eq. 6) were more closely correlated (CV RMSE and bias) to AGB
estimates using Jenkins et al. (2003) equations for all species
(Figure 5, Supplemental Table S5). When comparing equations
created with TLS QSM AGB and height and DBH (Eq. 7),
Jenkins et al. (2003) AGB estimates were the closest to TLS data
for all species except for A. concolor and P. ponderosa, which had the
lowest CV RMSE for AGB calculated using the FIA equations
(Figure 6, Supplemental Table S6). TLS AGB (kg) estimated from
QSMs compared to TLS AGB estimated from the new allometric
equations had slightly greater R2 for Eq. 6 (DBH2H) compared to Eq.
7 (DBH) across all species (Figure 7, Supplemental Table S7).

FIGURE 3
Individual tree volume comparison between TLS QSM volumes (L) and FIA volumes (L) by species. Individual tree sample sizes are listed next to
species names in parentheses. Grey line indicates 1:1 line.
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4 Discussion

Due to a lack of comprehensive destructive sampling, allometric
equations developed for a few species are often applied to many

species across large spatial areas (i.e., often outside their domain)
which may introduce error into AGB estimates. Further, in order to
apply these equations to any forest stand, multiple measurements
from individual trees must still be measured in the field via

FIGURE 4
Linear regression of FIA, Jenkins et al. (2003), and Chojnacky et al. (2014) and Sillett et al. (2019) individual tree AGB (kg) compared to TLS QSM AGB
(kg) for each species. Sillett et al. (2019) is used for Sequoia sempervirens only.

TABLE 1 New species-specific allometric equations created from TLS QSM AGB data.

Species by Equation Variable β0 β0 SE β1 β1 SE R2 RMSE (kg) CV RMSE (%)

AGB Equation 1 using DBH: ln (Biomass) � β0 + β1 ln (DBH) or Biomass � Exp (β0 + β1 ln (DBH))
Abies concolor −2.09 0.1889 2.35 0.0588 0.91 119.28 29.35

Pinus ponderosa −1.93 0.4937 2.29 0.1395 0.94 196.95 26.98

Sequoia sempervirens −0.69 0.6568 1.95 0.1868 0.83 179.22 25.73

Quercus agrifolia −1.06 0.7638 2.17 0.2283 0.78 270.06 41.43

Quercus garryana −0.87 0.4700 2.12 0.1459 0.81 177.76 35.43

AGB Equation 2 using DBH2H: Biomass � β0 + β1(DBH2 × H)
Abies concolor 85.51 11.0220 168.48 3.1680 0.95 115.21 28.35

Pinus ponderosa 126.08 47.0250 145.78 7.1820 0.96 154.50 21.16

Sequoia sempervirens 209.21 50.1864 108.57 7.0237 0.92 183.13 26.29

Quercus agrifolia 85.12 69.9093 451.56 42.5176 0.81 232.18 35.62

Quercus garryana 96.33 37.7261 383.34 27.2875 0.80 171.93 34.27
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expensive, time-consuming on-the-ground surveys. This study used
a relatively rapid, remote sensing approach (TLS) to estimate AGB
of 5 tree species in Northern California by calculating and then
comparing TLS QSM estimates of AGB with AGB estimated from
published allometric equations (FIA, Jenkins et al., 2003; Chojnacky
et al., 2014; Sillett et al., 2019). Data from TLS were then used to
measure AGB, DBH, and height to create new allometric equations
for these species and to compare these new equations, and their
resulting AGB, to AGB of published allometric equations and AGB
estimated directly from QSMs.

Before estimating AGB, we validated the use of TLS to accurately
capture tree dimensions by comparing TLS data to field DBH from a
tape measure and height from a laser rangefinder. Similar to other
TLS studies which also extracted these measurements and compared
them to field measurements (Olofsson et al., 2014; Calders et al.,
2015a; Liang et al., 2016; Stovall et al., 2018; Lau et al., 2019), we
determined that DBH and height could be accurately measured for
the trees sampled here. Importantly, the TLS data processing
approach developed for these measurements occurred at the plot-
level, indicating that one can easily and semi-automatically extract
DBH and height for multiple trees within a plot without individual
tree segmentation or QSM processing.

When volume estimates from TLS QSMs were compared to
volume estimated with FIA equations (the only allometries that
estimate volume directly), all TLS volumes were greater than FIA

estimated volumes (20%–86% greater), except for P. ponderosa (only
1.6% greater). Also, larger AGB discrepancies between TLS and
published FIA volume-based allometries were observed for
hardwoods (51%–86%) compared to softwoods (2%–46%). It is
possible that these volumes showed large differences because FIA
volumes allometries are developed from field-measured DBH and
height, whereas the TLS volume measurements are based on TLS
measured cylinders that measure the main stem and branches. Since
allometric equations often assume tapered cylindrical trunk growth
of a single stem and do not incorporate coppice growth with
multiple tapering stems and interlocking limbs (e.g., redwood/
tanoak forests or oak-woodlands regenerating after fire), species
that do not grow strictly following a typical fractal growth pattern
are expected to show the greatest deviations (Bentley et al., 2013). In
Sonoma County, California, allometric equations to estimate height
from DBH were found to overestimate heights for large trees,
requiring corrections via airborne light detection and ranging
(LiDAR) data (Duncanson et al., 2017). These results imply that
volume estimates using FIA equations where height is modeled
might significantly underestimate actual tree volume, especially for
hardwood species.

TLS based estimates of AGB were also greater than AGB
estimated from published allometric equations, but on average
only 10% greater, with much less variation by species than
volume-based FIA estimates. Jenkins et al. (2003) estimated

FIGURE 5
New species-specific TLS DBH-based AGB estimates (kg) (AGB Eq. 1) compared to AGB estimated using FIA, Jenkins et al. (2003), Chojnacky et al.
(2014) and Sillett et al. (2019) equations for all trees using TLS DBH. Sillett et al. (2019) equations are used for Sequoia sempervirens only.
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hardwood AGB were very similar to TLS AGB estimates, perhaps
because stem AGB is captured by both estimates and might be the
main component of total AGB. Duncanson et al. (2017) also found
that Jenkins et al. (2003) and Chojnacky et al. (2014) equations
produced AGB estimates that were statistically similar to each other,
on a plot- and forest-scale, while FIA equation AGB estimates were
20% less than Jenkins et al. (2003) and Chojnacky et al. (2014)
overall. Importantly, the greatest deviations we observed were for S.
sempervirens (23.5% greater) and Q. agrifolia (15.3% greater).
Disney et al. (2020) found that AGB for S. sempervirens in
Sonoma County calculated using TLS was 30% higher than AGB
calculated using Jenkins et al. (2003); Chojnacky et al. (2014)
equations for large redwoods. Further research (including
validation through destructive sampling) should be done to
determine if the allometric equations generated for these species
differ due to site-specific variation. Local conditions are often
ignored when creating allometric equations via destructive
sampling, but can greatly influence the morphology and biomass
of the tree as trees respond to abiotic and biotic stresses experienced
throughout their lifetime (Anderson-Teixeira et al., 2015).

New allometric equations created using TLS data validated the
use of TLS to generate new allometric equations, as these equations
produce AGB values similar to QSM volume measurements and
values using already accepted and published equations. New

allometric equations created using TLS data for AGB, DBH and
height, performed better than equations that only included TLS
AGB and DBH, perhaps because accurate TLS heights were used in
these equations. In addition, allometric equations created using TLS
data agreed most closely with general Jenkins et al. (2003) equations,
rather than FIA equations. This was surprising since FIA equations
are the only of the three biomass equation protocols that incorporate
height and use California species-specific Q. agrifolia and Q.
garryana equations (Pillsbury et al., 1984). Possibly, the close
agreement of our data with Jenkins et al. (2003) equations and
not FIA equations is due to the variety in tree form due to regional
biotic and abiotic factors that can be better quantified by more
general equations. Can general allometries in a region be used across
species without species-specific information? Equation development
for Jenkins et al. (2003) and Chojnacky et al. (2014) compiles
thousands of equations for over 100 species. While the varying
levels of agreement among TLS AGB and published allometric AGB
is most likely due to differences in species form, forest density, or
destructive sampling/published equations inaccuracies, it is possible
that these differences may not matter as much as previously
believed. Nevertheless, there is an assumption that wood densities
are consistent within a species, and even within an individual. This
might not be entirely realistic due to wood density differences
between heartwood and sapwood, or branches vs bole (Sillett

FIGURE 6
New species-specific TLS DBH2 * height-based AGB estimates (kg) (AGB Eq. 2) compared to AGB estimated using FIA, Jenkins et al. (2003), and
Chojnacky et al. (2014) and Sillett et al. (2019) equations with TLS DBH and TLS height. Sillett et al. (2019) equations are used for Sequoia sempervirens
only.
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et al., 2019) and should be verified with field measurements for
future model development and testing.

It is also possible that closer agreement between TLS AGB and
AGB estimates from Jenkins et al. (2003) equations are due to the
fact that our analysis did not include tree size as an interaction term.
Other studies comparing TLS derived AGB to AGB calculated from
published allometries often examine the effect of tree size (DBH,
height) on the success of the QSM and may even generate distinct
allometric equations from TLS data based on size (Lau et al., 2018;
Stovall et al., 2018; Lau et al., 2019). While we did not have a large
enough range of tree sizes to perform this analysis, larger individual
trees in this study did tend to deviate farther from the 1:1 line than
smaller individuals as in Disney et al. (2020). It is possible that larger
(older) trees have more complex branching architecture and bigger
contribution of branches to biomass, not captured as easily by a
regression allometry based on DBH and height. It is important that
future work should focus on comparing the effect of tree size, such as
height or DBH, on TLS based allometric equations using these data.

In addition, future work related to estimation of AGB using TLS
data should focus on QSM optimization improvement. While
optimizing QSMs for tree size, QSMs failed consistently for
individual trees without clear point clouds due to close proximity
to the TLS instrument in the field or dense foliage in the understory.
These study sites were in predominantly evergreen forests during
leaf-on conditions for deciduous species, which most likely
increased occlusion compared to less dense forests. These issues

with QSM generation suggest that future work should experiment
with different algorithms for fitting volume to TLS point clouds
rather than TreeQSM. Other methods such as convex hull (Stovall
et al., 2017) and complex primitives (Åkerblom et al., 2015) are
currently being explored with promising results as an alternative to
TreeQSM (Calders et al., 2020). Lastly, development of improved
automation of tree extraction and leaf-separation techniques would
greatly improve the feasibility of TLS over broader spatial scales
(Vicari et al., 2019; Moorthy et al., 2020).

We recognize that TLS may not be necessary at a local spatial
scale or in regions with low stand density (i.e., few trees) to measure
AGB due to the time needed to process TLS data being greater than
the time to complete field measurements. Nevertheless, this work
supports the use of TLS for non-destructive AGB estimation and
allometric equation derivation, which is incredibly useful for species
that do not yet have species-specific or local equations, because
destructive sampling is challenging or impossible due to protection
from local or federal law. While Duncanson et al. (2017) and Disney
et al. (2020) both evaluated LiDAR derived AGB in Sonoma County,
in similar regions where S. sempervirens, Q. agrifolia, and Q.
garryana data were collected for this study, there are no known
studies which specifically evaluate allometric equations for AGB of
Q. agrifolia, Q. garryana, or other hardwood species in California,
with or without TLS (Pillsbury et al., 1984), until now.

Lastly, TLS may offer a uniform, cost effective, and precise
method to collect DBH and height or estimate AGB on broader

FIGURE 7
TLS AGB (kg) compared to TLS allometric equation derived AGB (kg) using AGB Eq. 1 (DBH only) and AGB Eq. 2 (DBH and Height).
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spatial scales or in regions with high stand density, where traditional
methods and access are laborious, but species are identified and
appropriate wood density values are known. Importantly, since we
found that current traditional approaches for estimating AGB for
well-studied species produce values that are up to 85% less than TLS
AGB estimates, the implications for calculating AGB for regional
carbon budgets using TLS are large. Once height-based and/or
regional allometric equations can be evaluated, validated or
improved for a larger number of species across California, TLS
has the potential to supplement airborne or spaceborne LiDAR
biomass estimates for rapid, regional-scale, or global applications
(Silva et al., 2021).
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Fire has been an intrinsic ecological component of the ecosystems, affecting
the public, economic, and socio-cultural policies of human-nature
interactions. Using fire over grassland vegetation is a traditional practice for
livestock in the highland grasslands and has economic and environmental
consequences that have not yet been understood. A better description of the
spatio-temporal biomass burning patterns is needed to analyze the effects of
creation and application in these areas. This study used remote sensing
techniques based on Sentinel-2 data and machine learning algorithms to
identify burning scars and compare them with a national fire collection
database for the highland grasslands in the Atlantic Forest Biome in Brazil.
The aim is to evaluate public management tools and legislation evolution
during the 35 years of the time series analyzed. The results indicated that
12,285 ha of grasslands were converted to other uses, losing about 24% of their
original formation, with 10% occurring after banned this practice in 2008. The
burned areas classification using the Random Forest algorithm obtained an
AUC = 0.9983. Divergences in the burned area’s extent and frequency were
found between the municipality’s authorized license and those classified as
burned. On average, only 43% of the burned area in the Parque Estadual do
Tainhas and its buffer zone had an environmental permit in the last 5 years. This
research’s results provide subsidies for revising and creating public policies and
consequently help territorial management.

KEYWORDS

fire, grasslands, ΔNBR, GEE, MapBiomas, time series

1 Introduction

Fire activity in Brazil is influenced by several factors, the result of complex and dynamic
processes generated by interactions between climatic conditions, vegetation attributes, land
use and land cover, dynamics between regeneration, productivity and ignition patterns
(Fidelis et al., 2021; Pivello et al., 2021). Brazilian biomes have a long history of fire conflicts,
as in the Atlantic Forest Biome (AFB), one of the most critical biodiversity hotspots in the
world (Myers et al., 2000).
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Currently, the AFB remnants are highly fragmented and
restricted to highland grassland areas in southern Brazil, where
there are mosaics of Araucaria (Brazilian pine) forests and
grasslands linked to a fire events history (Pillar et al., 2009;
Meireles and Shepherd, 2015).

In these areas, fire has been an intrinsic ecological component of
the ecosystems, affecting the public, economic, social, and even
cultural policies of human interactions with nature (Andrade et al.,
2015).

In recent years, conflicts related to fire use have presented
economic and environmental consequences that have not yet
been clearly understood. The fire use on grassland vegetation in
the northeastern Rio Grande do Sul (RS) state is a traditional
practice for livestock (Carvalho and Andrades-Filho, 2019).
However, it was prohibited by Law 9,519/1992 (Rio Grande
do Sul, 1992). This has led to natural grassland area changes to
simplified land uses, such as agriculture and forestry, leading to
biodiversity loss and difficulties in recuperating degraded areas
(Buisson et al., 2019). Subsequently, Law 13,931/2012, which
amended Law 9,519/1992 (Rio Grande do Sul, 2012), attributes
to the municipal government the power to authorize and
supervise the use of fire as a grasslands management practice

in areas that cannot be mechanized or as a form of phytosanitary
treatment.

Therefore, a better description of biomass burning spatio-
temporal pattern is needed to analyze the effects of fire
legislation. So, the use of remote sensing derived products such
as 1) the Modis product MCD64A1—Collection 6, with 500 m
resolution at a global scale (Giglio et al., 2018); 2) the
MapBiomas Fire—Collection 1, based on Landsat time series,
with 30 m resolution for the Brazil territory (Alencar et al.,
2022), and 3) the global forest loss by fire product, also at a
spatial resolution of 30 m (Tyukavina et al., 2022) are
consolidated as an essential data source by covering vast areas
with a multitemporal and multispectral information.

In this study, to minimize these products limitations, such as
the spatial resolution, we used Sentinel-2 data developed by the
European Space Agency (ESA), which has four bands with 10 m,
six with 20 m, and three bands with 60 m (ESA, 2022).
Therefore, this study’s objective is to improve the spatial
resolution of burned areas and compare them with the
national MapBiomas Fire product to evaluate the fire use
legislation over time in the highland grasslands in Atlantic
Forest Biome in Brazil.

FIGURE 1
(A)RioGrande do Sul location, (B) AFB location, (C)Highland grasslands distribution, (D) Location of themunicipalities thatmake up PET, (E) Location
of the PET and its BZ in relation to the highland grasslands.
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2 Materials and methods

2.1 Study area

This study was conducted in the conservation area denominate
Parque Estadual do Tainhas (PET) and its buffer zone (BZ) located
at latitude 29°5′15″S and longitude 50°22′4″W (Figure 1). The PET
was established in 1975 to protect the grasslands and forests in the
Tainhas river valley, inserted in the AFB.

The Park is formed by mosaics of forests with Araucaria pine,
grasslands, and flooded areas (wetlands) with flatter terrain in the
southern portion to valleys in the northern part (SEMA, 2008). It has
an area of 6,654 ha with a BZ of approximately 60,000 ha, covering
the municipalities of Jaquirana (69.8%), São Francisco de Paula
(20.6%), and Cambará do Sul (9.6%) of the Park’s area. Around the
PET, communities in its BZ depend on agriculture, forestry, and
livestock and regularly use fire as a management tool (Bond-Buckup,
2008).

The PET is close to other protected areas, which favors the
emergence of the biogeographic conditions that can contribute to
the interconnection of these units through ecological corridors,
helping preserve fauna and flora populations and maintain the
ecosystem services balance in the region.

2.2 Burned areas classification in highland
grasslands (BACHG)

The methodological approach for burned area detection used in
this study is shown in the flowchart (Figure 2). We use Sentinel-2
MSIMultispectral Instrument, Level-2A data. The Level-2A product
provides Bottom Of Atmosphere (BOA) imagery derived from the
associated Level-1C products. The imagery used is available from the
Google Earth Engine (GEE). This platform combines three tools
(code editor, explorer, and client libraries) for users to perform
geospatial analysis in the cloud (Adagbasa, Adelabu, and Okello,
2020).We select images from 2018 to 2022, before the start of the fire
season, from January 1 to April 1, denominating as “pre-fire”
images, while the post-fire images were selected from July 15 to
September 15 of each year, when the “burning window” allowed by
municipal legislation was established. A cloud mask was applied.
First, the function defines two bitmask values for clouds and cirrus
(bit 10 and bit 11, respectively) and selects the image’s pixel quality
band (QA). Then, the function creates a mask that filters out all the
pixels where the cloud and cirrus bits are equal to zero, indicating
clear conditions.

We used the GEE to collect spectral signatures of the burned and
unburned areas, which served as samples for the model

FIGURE 2
Overview of the burned area classification method.
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classification. In addition, we used data collected from the field in the
year 2020 as a reference for sampling in this year’s post-fire images.
This effort resulted in 7,133 sampled pixels, manually collected as
small polygons from burned areas (2,295 sampled pixels) and the
unburned regions (4,838 sampled pixels).

For training, we used the shortwave infrared (SWIR) and near-
infrared (NIR) bands and the result of the Normalized Burn Ratio
spectral index (ΔNBR) calculation.

The NBR is a ratio of the NIR to the SWIR region, developed to
identify post-fire burned areas and provide a quantitative measure of
burn severity (Key and Benson, 2006). The NBR is calculated by the
pre- and post-fire difference (denoted as ΔNBR) using Eqs. 1, 2.

NBR � NIR − SWIR
NIR + SWIR

(1)
ΔNBR � NBRpre−f ire − NBRpos−f ire (2)

The algorithm used for our classification was the Random Forest
(RF) (Breiman, 2001; Goehry et al., 2021), which is an ensemble
algorithm operated by building multiple decision trees in a training
session and assigning the target class by majority vote (PAL, 2005). In
this study, we used the RandomForest function in the GEE library. The
parameters used were: number0fTrees (20), variablesPerSplit (null),
minLeafPopulation (1), bagFraction (0.5), maxNodes (null), and seed
(0). After classification, we applied a spatial filter to remove noise and fill

FIGURE 3
(A) Burned area accordingly MapBiomas Fire—Collection 1.0, and (B) Grassland accordingly MapBiomas—Collection 7.0, both in the PET and its BZ
from 1985–2020.

TABLE 1 Relationship of burnt areas (hectares per year) mapped and permissions of environmental permits.

Legislation Event Burned
area (ha)

Grasslands
(ha)

Law n°9.519/92 Fire use prohibition in the Rio Grande do Sul state 44 49,709

Law n°11.428/2006 Atlantic Forest Biome Law—Prohibits the conversion of grassland to other land uses 339 45,689

Decree n° 6.660/2008 Regulates the provisions of the Atlantic Forest law and defines the legal framework
for the conversion of areas

210 43,378

Law n° 13.931/2012 Conditional fire use permission 1,262 40,943

Municipal Law n° 2.954/2013 (Cambará
do Sul)

Regulation of fire use licensing by municipal agencies 80 40,464

Municipal Law n° 1.083/2013 (Jaquirana)

Municipal Law n° 2.924/2013 (São Francisco
de Paula)
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in gaps, where burned areas smaller than or equal to 1 ha (5 × 5 pixels)
were removed, and, in the same way, internal spaces were filled as
burned. The spatial filter selected was the Manhattan Kernel, which
generates a distance kernel based on rectilinear distance (city-block).
Reduction is performed by calculating the mode (most common
value) of the pixel values in a neighborhood defined by the specified
kernel (or window). The filter size was determined considering the
difference in the spatial resolution of the Landsat 8 satellite, which was
used for the MAPBIOMAS product methodology proposed for
exclusion. Finally, the Receiver Operating Characteristic (ROC
curve) was calculated to measure and compare the binary
classification model’s performance.

2.3 Temporal analysis of burned areas

To evaluate the management tools available in conjunction with
the classification data generated, we used data on the annual area

FIGURE 4
ROC curve.

FIGURE 5
Examples of burned area classification using RF.

TABLE 2 Comparison of burned areas (ha) authorized by the municipality between mapped by mapbiomas and BACHG.

2018 2019 2020 2021 2022

Mapbiomas 1,417 2,189 3,909 - -

BACHG 5,380 7,373 7,859 2,813 4,681

Match pixels BACHG and Mapbiomas 772 1,132 2,616 - -

Municipalities 2,587 2,479 1,851 1,953 2,038
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burned by MapBiomas Fire—Collection 1.0 (Alencar et al., 2022)
and the land use and land cover areas classified as grassland from
1985 to 2020 available in MapBiomas Collection 7.0 (Souza et al.,
2020). In addition, we also used the extent area authorized for
burning by Jaquirana, São Francisco de Paula, and Cambará do Sul
municipalities located within PET and its BZ.

The annual burned areas stationarity trend covered by grassland was
checked using the Augmented Dickey-Fuller (ADF) test. The ADF test is
an “augmented” version of the Dicker-Fuller test. The ADF test expands
the test equation to include high-order regression processes in the model.

Afterward, the trend was verified through time series
decomposition to verify the seasonality and the residuals. Results
are obtained by first estimating the trend by applying a convolution
filter to the data. Therefore, the trend is removed from the series, and
the average of this unbiased series for each period is the seasonal
component returned (McKinney, Perktold and Seabold, 2011).

3 Results

3.1 Reconstructing the history of fire use

The burnt areas and the grasslands from 1985 to 2020 in the PET
and its BZ are shown in (Figure 3). In this figure is highlighted in
vertical dotted lines, the primary legislation, which is also presented
in (Table 1) together with the grasslands and the total burned area
values. This analysis reveals an increasing trend for the burned area,
while there is a decreasing trend for grassland in the PET.

We can observe that the burnt areas remained low after the fire use
prohibition in 1992. However, this pattern was not established for a long
time, and the highest values for the time series analyzed occurred in
1995 and 1996, with about ten thousand hectares burnt each year.

The most significant burned areas reduction occurred in 2002,
reaching the lowest value in 2005, with only 35 ha. By observing the
trend curves of burnt area and area occupied by grassland formation,
the curve’s decline in the same years is noticed.

In 2002, the area corresponding to grassland was 49,359 ha, while in
2005, it was 46,345 ha. Therefore, the PET and its BZ lost more than
3,000 ha in only 3 years. These years precede the AFB Law creation
(Brasil, 2006) and its regulation decree (Brasil, 2008), prohibiting new
conversions of areas with native vegetation in the biome.

During the 35 years of the analyzed time series, 12.285 ha of
grassland areas were converted to other uses, losing about 24% of
their original formation, with 10% occurring after the AFB decree
banned this practice in 2008 (Brasil, 2008).

Finally, concerning the burned areas only when municipalities begin
to legislate about the use of fire, in 2013, a trend definition and a biannual
frequency can be observed, as provided by several municipal legislation
(Municipio de Cambará do Sul, 2013; Municipio de Jaquirana, 2013;
Municipio de São Francisco de Paula, 2013).

3.2 Burned area and frequency of
occurrence

The burned areas classification with the RF algorithm obtained
an AUC = 0.9983 (Figure 4). With a visual inspection, the scar’s
demarcation can be identified when comparing the pre-fire and
post-fire images (Figure 5).

The results show that larger areas were burned for all years than those
allowed by the municipalities’ environmental permits. In addition, larger
burned areas were found in our classification than those presented by the
MapBiomas Fire collection, as can be seen in (Table 2).

The licenses issued correspond to only 48.09% (2018), 33.62%
(2019), 23.55% (2020), 69.43% (2021), and 43.54% (2022) of the area
identified as burned in our classification. For the three available years of
the analyzed period from the MapBiomas collection, they represent
only 26.34% (2018), 29.69% (2019), and 49.74% (2020) of the burned
areas.

The Mapbiomas burned areas that coincide with our
classification represent only 21% of the total classified area on
average (Figure 6). The MapBiomas burned omission areas are

FIGURE 6
Representation of the comparison of classified areas in both methods for 2020.
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formed by scars smaller than 10 ha or with sites that present a non-
continuous formation with gaps of 1 ha.

In addition to the burning extent, the frequency of areas affected by
the fire was verified, and about 28% of the PET and its BZwere burned at
least once, as shown in (Figure 7). Notably, according to the legislation,
the areas could present a burning frequency of 2–3 times for 5 years.
However, the results showed that 353 ha were burned 4 to 5 times,
exceeding the legal requirements for this period. These areas are within
the Jaquiranamunicipality territory inside the PET or near its boundaries.

4 Discussion

4.1 Legislation analysis and remote sensing

No stationary trends were found in the time series, even though
there is a long history of legislation to regulate fire use and vegetation
protection practices.

During the 20 years (1992–2012) of fire use practice prohibition,
producers changed their economic profile, and extensive native
grassland areas conversion to monocultures in the region
occurred (Boziki, Beroldt, Printes, 2011; Buffon, Printes,
Andrades-Filho, 2018). Grasslands are important for livestock,
especially where other agricultural practices are not viable. In this
study, we noticed that legislation changes over the time series are
related to changes in land use.

Conservation areas (CAs) in Brazil are managed under the National
System of Conservation Units (SNUC), which is designed to protect the
country’s diverse ecosystems (BRASIL, 2000). The SNUC comprises
12 categories of CAs, each with specific objectives regarding protection
and use. The PET falls under the Park category, which provides full
protection and allows only non-consumptive uses of natural resources.
This means that handling fire is not permitted inside the PET.
Conservation areas like the PET are essential for preserving Brazil’s
rich biodiversity and ensuring the long-term sustainability of the
country’s natural resources.

FIGURE 7
Fire frequency in the PET and its BZ.
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The fire management practice in the winter period is expected in
the region, and it is used to remove dry biomass to provide the
vegetation regrowth that will be used to feed the cattle herd in spring
and summer (Pillar et al., 2009).

Once forbidden, it can be replaced by other activities much more
environmentally damaging than the old fire management grasslands
practice, such as forestry and monocultures, which have been advancing
into the grasslands (Buffon, Printes and Andrades-Filho, 2018).

It was observed during the study that municipalities lack data
and tools to manage and enforce current environmental legislation.
So it is necessary to evaluate the effectiveness of existing
environmental management tools regulated by municipal laws
related to the use of fire (Santos and Andrades-Filho, 2021).

In addition to the environmental laws presented, it was verified the
irregularity in the data availability by the municipalities, which do not
meet the legal provisions of free access to information in Brazil, especially
regarding publicity, accessibility, and transparency, making technological
advancement impossible (Brasil, 2011).

4.2 New burned area classification approach

The brief characteristics of the fire marks left on satellite imagery
complicate the burned area’s detection. There are few fire products
available globally, and only one at the national level (Alencar et al.,
2022). So, evaluating its applicability to different regions and vegetation
formations in Brazil is extremely important.

Our study found significant differences in areas mapped as burned,
increasing bymore than 50% in our study using a better spatial resolution.
The improvement of available products is substantial and progresses with
the recent technologies emergence. In previous studies of Russian
grassland, the difference in the area mapped between satellites with
lower spatial resolutions also increased dramatically from no burning to
asmuch as 19% of the total study area (Dubinin et al., 2010). The strategy
of usingΔNBR in conjunction with the NIR and SWIR bands for burned
areas classification reduced noise and class confusion, especially with
wetlands. The areas with the highest commission error were exposed soil
from recently cleared forestry areas.

Due to the rugged relief and mosaics of forest and mountainous
grassland vegetation that form the area’s landscape, remote sensing
data with higher spatial resolution can be explored as they become
available. Therefore, Earth observation can significantly support
public fire prescription policies and add to other factors that
consider CO2 emissions (Herrmann, Nascimento and Freitas, 2022).

5 Conclusion

This study uses remote sensing techniques to evaluate
legislation related to fire use in highland grasslands in Brazil.
Long-term time series and exploring new enhancement
methodologies are essential to identify the main impacts of
human-induced changes.

Divergences in extent and frequency were found between the
burned areas authorized by the municipalities and those classified as

burned. On average, only 43% of the burned area in the PET and its
BZ was licensed in the last 5 years. The municipal databases had
recorded only from the year 2018, and it is possible to improve the
time series from the continuity of data collection.

Our newly burned area methodological classification developed
in this article presented results that provide subsidies for reviewing
and creating public policies and territorial management.
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Evaluating GEDI data fusions for
continuous characterizations of
forest wildlife habitat
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Continuous characterizations of forest structure are critical for modeling wildlife
habitat as well as for assessing trade-offs with additional ecosystem services. To
overcome the spatial and temporal limitations of airborne lidar data for studying
wide-ranging animals and for monitoring wildlife habitat through time, novel
sampling data sources, including the space-borne Global Ecosystem Dynamics
Investigation (GEDI) lidar instrument, may be incorporated within data fusion
frameworks to scale up satellite-based estimates of forest structure across
continuous spatial extents. The objectives of this study were to: 1) investigate
the value and limitations of satellite data sources for generating GEDI-fusion
models and 30m resolution predictive maps of eight forest structure measures
across six western U.S. states (Colorado, Wyoming, Idaho, Oregon, Washington,
and Montana); 2) evaluate the suitability of GEDI as a reference data source and
assess any spatiotemporal biases of GEDI-fusion maps using samples of airborne
lidar data; and 3) examine differences in GEDI-fusion products for inclusion within
wildlife habitat models for three keystone woodpecker species with varying forest
structure needs. We focused on two fusion models, one that combined Landsat,
Sentinel-1 Synthetic Aperture Radar, disturbance, topographic, and bioclimatic
predictor information (combined model), and one that was restricted to Landsat,
topographic, and bioclimatic predictors (Landsat/topo/bio model). Model
performance varied across the eight GEDI structure measures although all
representing moderate to high predictive performance (model testing R2 values
ranging from 0.36 to 0.76). Results were similar between fusion models, as well as
for map validations for years of model creation (2019–2020) and hindcasted years
(2016–2018). Within our wildlife case studies, modeling encounter rates of the
three woodpecker species using GEDI-fusion inputs yielded AUC values ranging
from 0.76–0.87 with observed relationships that followed our ecological
understanding of the species. While our results show promise for the use of
remote sensing data fusions for scaling up GEDI structure metrics of value for
habitat modeling and other applications across broad continuous extents, further
assessments are needed to test their performance within habitat modeling for
additional species of conservation interest as well as biodiversity assessments.
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1 Introduction

The current generation of spatiotemporal representations of
ecological patterns provide a critical component for conservation
and management of ecosystem services. Spatial information of
vegetation structure is incorporated in the identification and
management of biodiversity hotspots (Roll et al., 2017; Thom
et al., 2017; Donald et al., 2019), distribution maps of endangered
species (Dunk et al., 2019; Colyn et al., 2020), and relationships
between carbon sequestration and patterns of biodiversity (Buotte
et al., 2020; Soto-Navarro et al., 2020). Forest planning, in particular,
often requires assessing the trade-offs and synergies associated with
maintaining biodiversity compared to meeting single species habitat
needs (Wilson et al., 2019), while also considering additional, often
conflicting, ecosystem services such as carbon sequestration and the
supply of timber resources (Kline et al., 2016). With ever increasing
human populations, habitat loss, invasive species, climate change,
and a myriad of other threats to the loss of species and ecosystem
function (Ceballos et al., 2017; Ceballos et al., 2020), the need for
spatiotemporal data to describe a wide variety of ecological patterns
and processes becomes increasingly salient.

Complex multi-use forest planning draws great benefit from
spatial and temporal mapping products at resolutions and extents
that reflect the patterns and processes important for balancing
silvicultural activities with environmental characteristics that are
critical for maintenance of quality animal habitat and biodiversity.
Vertical forest structure is among the more important remotely
sensed characteristics that can provide relevant information for
studies of carbon sequestration, species habitat modeling, and
biodiversity patterns at local scales, and airborne lidar is
frequently the source of those vertical structure data (Vierling
et al., 2008; Davies and Asner, 2014; Vogeler and Cohen, 2016).
At local scales, the use of airborne lidar data, also referred to as
airborne laser scanning (ALS), has improved our understanding of
species distributions for organisms that range in size from beetles
and spiders (Müller and Brandl, 2009; Vierling et al., 2011) to
elephants (Davies et al., 2018), and ALS has been incorporated in
studies of biodiversity that address patterns of alpha, beta, and
functional diversity perspectives (Asner et al., 2017; Bae et al., 2018).

As central as ALS has been for multiple ecological studies, it is
limited in spatial extent, and acquisitions across areas often vary in
point densities and other collection parameters, raising concerns
about comparing spatial products derived from different
acquisitions (Hudak et al., 2012; Eitel et al., 2016). Additionally,
the cost of ALS data often precludes multiple acquisitions across
short time frames, and the time lags between ALS acquisition and
wildlife data collection are important considerations of studies
relating ALS structure variables to patterns of animal habitat
and/or diversity (Vierling et al., 2014; Hill and Hinsley, 2015).
Recent spaceborne lidar missions, such as the Global Ecosystems
Dynamics Investigation (GEDI), may provide an opportunity for
characterizing forest structure across broad extents, although the
moderate resolution footprints along orbital tracks of the
International Space Station on which the sensor is mounted, do
not constitute continuous coverage across landscapes and are
temporally restricted through the limited mission lifespan
(Dubayah et al., 2020). What GEDI footprints do provide are a
consistent sample of forest architectures across near global extents

(Dubayah et al., 2020), including countries and forested regions
which are often lacking in reliable forest sampling efforts. GEDI data
also represent a free publicly available, easily accessible, and
consistently collected forest plot data base for regional to near-
global summaries of forest patterns (Dubayah et al., 2020), or for use
in scaling up forest structure information to continuous extents
using additional earth observation imagery sources (Healey et al.,
2020; Sothe et al., 2022).

Data fusion frameworks that expand high resolution
depictions of forest structure to greater spatiotemporal extents
using moderate resolution spectral data sources, such as Landsat,
have been widely applied across different forest types and regions
with varying success (Matasci et al., 2018; Filippelli et al., 2020).
Single date or annual composites of Landsat-derived spectral
indices may be able to predict some vertical structure
components, such as canopy cover (Coulston et al., 2012;
Vogeler et al., 2018), but the 2-D nature of spectral data may
fall short for characterizing more complex aspects of the canopy
profile and variability in heights (Zald et al., 2016; Matasci et al.,
2018), which are often important for identifying habitat (Burns
et al., 2020) or biodiversity patterns (Vogeler et al., 2014). While
single date Landsat-derived information may have some
limitations for predicting forest structure, studies are finding
improvements in such efforts by incorporating the value of the
long-running Landsat archive for characterizing disturbance
histories which often drive current forest structure
(Pflugmacher et al., 2012; Vogeler et al., 2016). In addition,
Synthetic Aperture Radar (SAR) systems like Sentinel-1 are
often more limited in temporal extents than the Landsat
archive but may capture some aspects of 3-D structure that
optical data are less sensitive to, providing more accurate
forest structure mapping.

Data fusion frameworks that are based on freely available public
data, such as those from the GEDI, Landsat, and Sentinel-1
programs, support the implementation of methodologies for a
wide variety of conservation and management applications across
regions where financial resources for acquiring imagery may be
limited. If such data sources are available through time, there may
also be opportunities to hindcast spatial prediction models of forest
variables (Matasci et al., 2018; Vogeler et al., 2018) to monitor
sources of change in habitat as well as better match the timing of
wildlife data collections. Testing data fusions for scaling up GEDI
information within the diverse forest systems of the western U.S.
provides the opportunity to evaluate GEDI as a reference data
source. This western U.S. region is also rich in ALS collections
which can serve as a validation baseline to inform future efforts
across international regions which may not have similar validation
data availabilities.

Lidar data have been incorporated within wildlife or biodiversity
applications across a wide variety of species, spatial scales, and with a
diverse set of lidar technologies (Davies and Asner, 2014; Müller and
Vierling, 2014; Olsoy et al., 2015; Stitt et al., 2019; Acebes et al., 2021;
Smith et al., 2022; Shokirov et al., 2023). The potential benefit of
GEDI data for wildlife applications is therefore exciting, and as with
other remotely sensed products used for wildlife and biodiversity
applications, it is important to understand how different accuracies
and biases in spatial vegetation data could possibly affect wildlife
model outcomes. For example, the use of a forest height metric is
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common in wildlife studies because tall trees (and associated
diameters) are a critical habitat component for many species of
management concern (Acebes et al., 2021); understanding the biases
and accuracies of the spatial layers that depict forest height (or other
GEDI structure metrics) can have implications for models developed
for the management of sensitive species if those metrics are over- or
underestimated within certain environmental conditions.

Within our study, we tested the value and trade-offs of free
publicly available continuous remote sensing data products for
producing wall-to-wall predictions of GEDI-derived forest
structure metrics (referred to as “GEDI-fusion” maps here
forward) relevant for wildlife and biodiversity applications.
The objectives of this study were to: 1) investigate the value
and limitations of satellite data sources for generating GEDI-
fusion models and 30 m resolution predictive maps of eight

forest structure measures (representing height and vegetation
profile information) across six western U.S. states (Colorado,
Wyoming, Idaho, Oregon, Washington, and Montana); 2)
evaluate the suitability of GEDI footprint data as a reference
data source and assess any spatiotemporal biases of GEDI-fusion
maps using samples of airborne lidar data; and 3) examine
differences in GEDI-fusion products for inclusion within
wildlife habitat models for three keystone wildlife species. We
selected three cavity excavating case study species with varying
forest structure needs that operate at three different spatial
scales. Tree cavity excavators (e.g., woodpeckers) facilitate
habitat for a diversity of species within communities of
forest-dwelling animals, so understanding woodpecker-habitat
relationships can have implications for other species (Martin
et al., 2004).

FIGURE 1
Western U.S. study region divided by EPA Level III Ecoregions with locations of validation ALS units designated by stars: orange stars depict validation
collections for the years of model creation, and blue stars represent validation collections for years of model hindcasting.
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2 Materials and methods

2.1 Study area

We focused on six western U.S. states that represent a range of
forest types and ecoregions (Figure 1). Tree species composition
ranged from subalpine forests dominated by subalpine fir (Abies
lasiocarpa), Englemann spruce (Picea englemannii) and lodgepole
pine (Pinus contorta) to more xeric forests dominated by ponderosa
pine (Pinus ponderosa). The study area transitions from wetter
climate forests in the Pacific Northwest to the drier southern
Rocky Mountain range, and thus captures a wide variety of
climatic conditions, forest disturbance dynamics, and
compositional gradients. Disturbance regimes within the study
area range in their patterns of severities and frequencies, but
dominant change agents across the area include timber harvest,
fire (natural and prescribed), insect mortality or defoliation, and
weather-driven events (e.g., drought, wind blow-down).

2.2 Remote sensing model data

2.2.1 GEDI data
Forest wildlife habitat modeling efforts often include measures

of forest height, canopy cover, foliage height diversity, and/or the
availability of vegetation within specific strata of the forest (e.g.,
understory or upper canopy); these measures often correlate with
important structure components necessary to meet life history needs
for species, or to promote overall diversity of habitat niches (Bergen
et al., 2009). After preliminary evaluations of available GEDI metrics
in the context of frequently identified forest structure measures of
value for habitat modeling purposes, we chose to focus our modeling
efforts on several GEDI-derived height, cover, foliage height
diversity, and summarized plant area density profile metrics
corresponding to important habitat structure components for a
variety of wildlife species. GEDI level 2A relative height (RH)
metrics represent the height at which a defined percentage of
GEDI waveform energy is contained. For instance,
RH98 corresponds to the height at which 98% of the waveform
energy is captured - comparable to a canopy height measure. We
also included RH50 and RH75 within our modeling efforts to test
their utility for wildlife modeling in future applied research efforts.
Among the GEDI level 2B metrics, we selected two commonly used
forest measures in wildlife habitat modeling, fractional canopy cover
(COVER) and foliage height diversity (FHD). Among the Level 2B
plant area vegetation density (PAVD) profile metrics, we choose the
lowest single profile available through the GEDI waveform metrics
that represents the 5–10 m strata (PAVD5-10 m), as well as
summarizing plant area densities above 20 m (PAVD>20 m) and
40 m (PAVD>40 m) to represent the presence of a mature upper
canopy within different forest types.

We leveraged the rGEDI package (Silva et al., 2020)
implemented in the R Statistical Software (R Core Team, 2021)
to download and filter GEDI version 2 footprint data across our
study area. We restricted our target GEDI footprints within a
summer season date range of June 6th - September 30th for both
2019 and 2020 to limit any bias in canopy cover and vegetation
density profiles in mixed or deciduous forests outside of the primary

growing season. We further filtered the summer season GEDI shots
with a series of conditional arguments to retain only the highest
quality observations to serve as model reference and testing data,
including a solar elevation below 0°, a degrade flag of 0, a quality flag
of 1, a beam sensitivity of greater than or equal to 0.95, and only
employing full power beams. After filtering, the remaining GEDI
footprints were intersected with the study area and each footprint
observation was reprojected into an Albers Equal Area Projection
(EPSG 5070).

While the rich spatial density of GEDI footprints provides value
for a wide suite of applications including direct quantification and
monitoring of forest patterns across broad extents, for our purposes
in leveraging GEDI footprints as a model reference source, we chose
to spatially thin our GEDI footprints to balance computational
efficiency while maximizing model performance. We developed a
set of spatial thinning steps to reduce the density of GEDI footprints
while ensuring a spatially balanced sample across our study area. We
first took a random subsample of 150,000 observations for each year.
Constructing a set of polygon tiles with a 60 × 60-km resolution over
the desired study region, we generated a Euclidean distance matrix
for the subsetted footprints within each tile. Based on the distance
between each footprint, 225 maximally distanced footprints were
retained per 3,600 square kilometers. The resulting spatially
subsetted dataset consisted of 99,766 observations for 2019 and
100,003 observations for 2020.

2.2.2 Continuous remote sensing predictors
We leveraged the computational efficiency of Google Earth

Engine (GEE) to generate a suite of 31 active and passive remote
sensing predictor layers for upscaling GEDI forest structure metrics
to a continuous 30 m resolution grid and to apply models at annual
time steps from 2016–2020. We wanted to test the utility of GEDI-
fusion models for hindcasting structure metrics to years outside
model creation, but were restricted to the 2016 forward time period
due to the temporal availability of Sentinel-1 data included within
our data fusion assessments. All dynamic predictors (e.g., Sentinel-1
and Landsat) were summarized for the summer growing season to
match the temporal window of our GEDI data. From median
summer composites of the Sentinel-1 C-band Synthetic Aperture
Radar (SAR) dataset, we compiled the vertical-vertical (VV) and
vertical-horizontal (VH) polarizations along with several ratios
derived from the median VV and VH data including:

VHVVratio � VH/VV

normalized difference radar index � VV − VV[ ]
VH + VV[ ]

radar vegetation index � 4*VH[ ]
VV + VH[ ]

For our Landsat spectral predictors, we created Medoid image
composites for the annual summer seasons for the full Landsat
archive (1984–2021), from which annual spectral indices were then
calculated. Studies have found that when forest attribute models are
created for a particular time period and then applied across a longer
time period, using a temporal segmentation fitting algorithm can aid
in producing more stabilized temporal representations of the
modeled attribute within predicted maps (Moisen et al., 2016;
Kennedy et al., 2018a). We used one such trend fitting algorithm,

Frontiers in Remote Sensing frontiersin.org04

Vogeler et al. 10.3389/frsen.2023.1196554

161

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1196554


LandTrendr in GEE (Kennedy et al., 2018b), to calculate vertices
within each spectral index and the original bands to produce annual
“fitted” values for all Landsat predictors (Table 1). In additional to
the original Landsat bands, we incorporated several Landsat spectral
indices in our “fitted” Landsat predictor set that are commonly used
within forest attribute modeling and change detection: tasseled cap
brightness, greenness, and wetness (Crist and Cicone, 1984); the
normalized difference vegetation index (Rouse et al., 1974); the

enhanced vegetation index (Liu and Huete, 1995); and the
normalized burn ratio (Key and Benson, 2006).

While annual Landsat information may be correlated with some
forest measures such as canopy cover (Coulston et al., 2012),
previous research has highlighted the additional value of Landsat
time series derived information of disturbance histories for
improving structure predictions (Pflugmacher et al., 2012;
Vogeler et al., 2016). To test for similar improvements, we

TABLE 1 Continuous predictor variables grouped by data source incorporated within GEDI-fusion modeling frameworks. Those predictors retained in final models
after removing highly correlated variables within individual models sets are marked with an X.

Predictor set Predictor abbreviation Description Retained in modeling

Landsat 8 (median summer composites) blue Landsat 8 band 2

green Landsat 8 band 3

red Landsat 8 band 4

nir Landsat 8 band 5

swir1 Landsat 8 band 6 - shortwave infrared 1

swir2 Landsat 8 band 7 - shortwave infrared 2

NDVI Normalized difference vegetation index X

NBR Normalized burn ratio X

EVI Enhanced vegetation index

TCB Tasseled cap brightness X

TCG Tasseled cap greenness X

TCW Tasseled cap wetness X

Landsat time series disturbance TSD Time since most recent fast disturbance derived from LCMS X

Sentinel-1 (median summer composites) VV median Median composite of vertical polarizations X

VH median Median composite of vertical horizontal polarizations X

VHVV ratio VH/VV

nDiff Normalized difference radar index

rvi Radar vegetation index X

Topography elevation SRTM elevation (m) X

slope SRTM derived slope (degrees) X

aspect SRTM derived aspect (degrees) X

eastness Aspect transformation X

northness Aspect transformation X

TOPODIV Topographic diversity index X

CHILI Continuous heat-insolation load index X

mTPI Multi-scale topographic position index X

LANDFORM Landform classification X

Bioclimatic CMD climatic moisture deficit X

GDD growing degree days X

MAP mean annual precipitation X

MAT mean annual temperature X

MWT mean winter temperature X
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generated a model predictor related to disturbance histories derived
from the United States Forest Service Landscape ChangeMonitoring
System (LCMS) dataset (Housman et al., 2022). We filtered the
annual dataset to derive an image collection representing the most
recent year of abrupt, or “fast”, forest change. We subtracted this
most recent disturbance year from the year of interest (depending on
the year of GEDI data or mapping year) to derive an annual raster
layer indicating the number of years since the last fast disturbance
(here forward referred to as time since disturbance, TSD).

To complement the dynamic spectral and SAR predictors and to
represent the gradients that exist across our study area, we also
extracted topographic and bioclimatic information (Table 1).
Utilizing the Satellite Radar Topography Mission (SRTM)
dataset, we calculated elevation, slope, aspect and aspect
transformations (eastness and northness). We also incorporated
additional topographic predictors based on SRTM including the
Topographic Diversity Index (TOPODIV), Continuous Heat-
Insolation Load Index (CHILI), Multi-Scale Topographic Position
Index (mTPI), and landform classes created by combining CHILI
and mTPI (LANDFORM) (Theobald et al., 2015). ClimateNA
(version 7.2.1; Wang et al., 2016) was used to generate a set of
bioclimatic variables derived from PRISM 4 km × 4 km gridded
monthly climate for the 1961–1990 “normal” period (Daly et al.,
2008), which were downscaled using the global 1-arcsecond
v3 SRTM digital elevation model. We chose this “normal” period
as it likely corresponds to the time when many of our mature forests
were developing across our study area. More recent normals may
provide an updated version of this data for the period impacting
younger forest development, but we believe that the older versions
are still appropriate for our purpose of representing relative
differences in climatic gradients across our study region. The
resulting bioclimatic variables included climatic moisture deficit,
growing degree days, mean annual precipitation, mean annual
temperature, and mean winter temperature (Table 1).

The spatial resolution of the processed predictor datasets varied
from 10 m (SAR) to 270 m (some of the topographic position and
diversity indices). All predictors were either aggregated or resampled
to a common 30 m grid and exported from GEE for local modeling
and predictive mapping using the EPSG 5070 projection within
analysis ready dataset tiles. The spatially filtered GEDI locations for
each year were buffered by 12.5 m to generate polygons
representative of the 25 m diameter of the GEDI footprints. All
above predictors were extracted using an area weighted mean pixel
value from all pixels intersecting a footprint’s polygon, and for
temporally dynamic predictors the year used for extraction
corresponded to that of the GEDI footprint’s acquisition year.

2.3 GEDI-fusion modeling and mapping

A primary goal of our study was to test the utility of GEDI data
as a reference source combined with various continuous predictor
layers for scaling up structure information relevant to habitat
modeling across continuous regional extents at 30 m spatial
resolutions from 2016–2020. Different predictor data sources
(e.g., Landsat, Sentinel-1) may have various tradeoffs as to model
performance, spatial biases, and potential hind-casting capabilities.
Thus, comparing different predictor sets can help inform the

potential value and trade-offs of data fusion frameworks. All
model accuracies and errors were assessed using a withheld set of
testing GEDI footprints. Further spatial bias and temporal
transferability were evaluated using our sample of ALS
collections across two-time mapping windows representing years
of model creation and model hindcasting (Figure 1; section 2.4.2).
We completed an initial evaluation of random forest regression
(Breiman, 2001) with progressively larger training samples to
identify the number of training samples at which model
performance began to stabilize for a sample set of GEDI metrics
(i.e., a learning curve), and we used this number of training and
testing samples for subsequent model development and evaluation.

We defined an a priori set of data fusion model combinations
(Table 2) to compare model performances and spatiotemporal
biases. Within each single-source predictor set (e.g., Landsat,
topography), we first tested for highly correlated variables using a
correlation threshold of 0.95. Only those not highly correlated were
retained within the model comparisons (Table 1). The reduced
variable sets were also combined to determine the best overall
model for each GEDI metric in terms of model performance and
errors as assessed using the withheld testing set of footprints. The
fusion models representing the full set of predictors (combined
model) and the model incorporating Landsat, topography, and
bioclimatic predictors (Landsat/topo/bio model) were applied to
the predictor layers to produce 30 m resolution maps of the GEDI
metrics across the study area and on annual time steps from
2016–2020. As a final post-processing step, we developed an
open-water mask using the Global Surface Water Layer
v1.4 within GEE (Pekel et al., 2016), which we applied to all final
maps to minimize false vegetation structure measures as a result of
our GEDI filtering approaches that removed all water GEDI points;
therefore, water bodies were outside the scope of our model
reference data.

2.4 Validation assessments

2.4.1 GEDI Footprint-ALS comparisons
GEDI-fusion frameworks are based on the assumption that the

information provided by the GEDI footprints are accurate
representations of forest structure for serving as modeling
reference data. To test this assumption and to inform sources of
error in the GEDI-fusion maps, such as the potential for up to 10 m
geolocation errors within the GEDI data, we compared footprint
estimates of focal metrics to those from ALS samples. ALS data may
be limited in spatial extents and temporal coverage, but the sources
of errors and vertical/horizontal accuracies are well established and
can serve as a baseline for comparisons with GEDI-derived forest
measures and for comparing patterns in spatiotemporal biases
between GEDI-fusion maps. We identified a set of ALS
collections for the years of our GEDI footprint samples
(2019 and 2020) that represent the forest-dominated ecoregions
of the study area based on the EPA Level III Ecoregions (US EPA,
2015; Figure 1). The sample ALS collections also captured a wide
range of forest structure variability and disturbance patterns. While
our models and predicted maps encompass the extent of our six
study states, the focal area for our habitat case studies were the
forested regions of those states. As such, our ALS validation samples
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represent forest and shrubland cover types and our validations are
only representative of forested lands in the region.

The majority of ALS data are collected using discrete lidar
sensors, while GEDI is a full-waveform system. To convert the
ALS measures to those comparable to waveform derived structure
metrics, we employed the GEDI waveform simulator, gediSimulator
(Hancock et al., 2019), frequently used within GEDI-ALS
comparisons. That said, by simulating waveforms with discrete
ALS, we acknowledge that we may be introducing some level of
error within our validation data set although allowing for more
direct comparisons of metrics than possible between waveform and
discrete lidar. Within the selected ALS comparison units
(Supplemental Table S1), we clipped the ALS point clouds at our
filtered GEDI footprint locations corresponding to the year of ALS.
Preprocessing the ALS clips involved identifying lidar returns within
60 cm of the ground surface and reclassifying those lidar returns as
ground returns to account for topographic variations within a
simulated footprint (Hancock, 2023). The gediSimulator tool,
gediRat, was used to convert the ALS point clouds into a
simulated waveform, which were passed to gediMetric to
calculate waveform metrics. Simulated cover outputs are reported
to be particularly sensitive to variations in topography within a
footprint (Hancock, 2023), which can be significant within our study
area. Implementing the suggested pre-processing steps for
minimizing the impacts of topographic variations on ALS
simulated metrics did not appear to improve the simulated cover
metric for our sample ALS areas. Therefore, we chose to directly
compare discrete ALS cover to our GEDI footprint and map cover
estimates, although we acknowledge that slightly different measures
of canopy cover may be represented by these two measures. We
calculated the discrete ALS cover metric as the proportion of first
returns above 2 m within the FUSION lidar processing software
(McGaughey, 2022). We then compared the simulated or direct
ALS-based metrics to the GEDI-based metrics for matching years
(e.g., 2019 GEDI footprints compared to simulated 2019 ALS
metrics) by calculating the coefficient of determination (R2),
mean bias (bias), and root mean squared error (RMSE). We
were unable to include our PAVD metrics within the footprint

and map level validations as these are not direct outputs available
from gediSimulator (Hancock, 2023), nor are there readily
comparable metrics from discrete ALS. Evaluations for the
PAVD metrics were restricted to the prediction assessments from
the large set of withheld testing GEDI footprints (described in
section 2.3).

Many studies comparing simulated ALS waveforms to GEDI
footprints conduct an additional step to better georeference the
GEDI footprints based on the ALS information as GEDI version
2 footprints may have up to 10 m geolocation error. For our
purposes, we wanted to directly compare GEDI footprints to ALS
information without additional georeferencing steps to directly test
the utility of footprints as reference data in areas where we do not
have corresponding ALS data sets for location corrections.
Therefore, some of the variability observed within our footprint
level comparisons may be due to geospatial mismatches between the
ALS data and the recorded footprint locations. As such, the
comparisons are not intended as direct validations of the GEDI
instrument measurements in the absence of geolocation errors, but
instead validations of the footprint level information in their original
form as a reference data source for scaling up structure information
which may aid in understanding the errors observed within our
resulting study-area wide GEDI-fusion predicted maps.

2.4.2 Structure map validations
In addition to comparing model performance through the

withheld set of independent GEDI footprints, we also evaluated
biases within the predicted maps and temporal transferability of
models. We leveraged our sample set of ALS units for years of model
creation (2019–2020) and a set of ALS collections from
2016–2018 to represent years of model hindcasting to evaluate
differences in map accuracies when models were applied to years
outside of the model training data (Supplemental Table S1). We
ensured that the sampled collections within both time windows were
representative of the range of forested ecoregions within our study
area (Figure 1).

Maps of simulated gridded waveform metrics within the ALS
sample units were created using a similar approach as outlined for

TABLE 2 GEDI-fusion model comparisons using a priori model predictor sets. All accuracy and error statistics calculated using a withheld testing set of
~140,000 GEDI footprints. The combined model includes metrics from all predictor sets.

GEDI metrics A Priori model sets

Combined Landsat/Topo/Bio Landsat Sentinel-1

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

RH98 0.757 5.445 0.130 0.750 5.526 0.128 0.651 6.525 0.113 0.492 7.888 0.032

RH75 0.707 4.238 0.098 0.698 4.298 0.096 0.603 4.930 0.071 0.388 6.142 0.042

RH50 0.651 3.369 0.078 0.639 3.426 0.079 0.553 3.815 0.051 0.292 4.831 0.041

FHD 0.739 0.392 −0.005 0.730 0.399 −0.004 0.643 0.458 0.004 0.564 0.507 −0.001

COVER 0.684 0.146 0.004 0.674 0.148 0.003 0.599 0.164 0.003 0.459 0.191 0.001

PAVD 5–10 m 0.363 0.051 0.002 0.359 0.052 0.002 0.288 0.054 0.001 0.224 0.057 <0.001

PAVD >20 m 0.580 0.058 0.001 0.562 0.059 0.001 0.481 0.065 0.001 0.200 0.081 0.001

PAVD >40 m 0.447 0.034 0.001 0.442 0.034 0.001 0.335 0.038 <0.001 0.079 0.045 <0.001
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footprint level comparisons above (section 2.4.1). PDAL (PDAL,
2022) was used to filter ALS lidar in the sample units to include only
ground and vegetation returns, as well as reclassifying all returns
within 60 cm of the ground surface as ground returns. The
preprocessed ALS files were then converted to simulated
waveforms and waveform metrics (Hancock, 2023). Following
our same comparison approach for cover measures as used in
our footprint-level comparisons, we utilized a gridded ALS cover
measure created within FUSION representing the proportion of first
returns above 2 m (McGaughey, 2022). The size of the ALS
collections used in the comparisons ranged between 150 and
450 km2 (Supplemental Table S1), therefore a random sample of
1,100 cells were drawn from each ALS unit for a total of 9,900 pixels
selected during the years of creation (2019–2020) and 9,900 pixels
from hindcasted years (2016–2018). We created scatterplots of the
map validation sample points for each time period, as well as
calculating R2, bias, and RMSE for each temporal validation dataset.

2.5 Case study: wildlife habitat modeling

Primary cavity excavators are considered a keystone wildlife
guild because they excavate tree cavities that provide nesting and
roosting habitat for multiple other species who cannot excavate
those cavities themselves (Martin et al., 2004; Gentry and Vierling,
2008; Tarbill et al., 2015). For instance, Bunnell et al. (1999) noted
that 25%–30% of vertebrates within Pacific Northwest forests are
reliant on woodpecker cavities for either nesting or roosting, and
many of these secondary cavity users are themselves species of
management interest (e.g., fishers (Pekania pennanti) and marten
(Martes spp.); Bissonette and Broekhuizen, 1995; Matthews et al.,
2019). We chose three cavity excavator avian species which occur
within our study region and are associated with different forest
structural elements. These include the downy woodpecker
(Dryobates pubescens), the Northern flicker (Colaptes auratus),
and the pileated woodpecker (Dryocopus pileatus). Downy
woodpeckers are small woodpeckers that prefer deciduous forest
elements, small trees, and low canopy cover (Jackson et al., 2020).
Conversely, pileated woodpeckers are associated with more mature
forest elements, particularly tall trees (Bull and Jackson, 2020).
Northern flickers are intermediately sized between the other two
woodpecker species, and are associated with forest edges (Wiebe
et al., 2017).

We followed best practices (Johnston et al., 2019; Strimas-
Mackey et al., 2020) to obtain pileated woodpecker, Northern
flicker, and downy woodpecker observations from eBird records
(eBird, 2021). As a general workflow, we obtained stationary eBird
checklists conducted in the study area between June 1 and July 31 of
2016–2020. For pileated woodpeckers, we restricted checklists to
those taking place at longitudes west of −108.723868°, to account for
the limited range of this species in the study area. Northern flicker
and downy woodpecker occur throughout the study area and
therefore checklists for these species were not restricted by
longitude. After spatiotemporal subsampling (following Strimas-
Mackey et al., 2020), we obtained the effective sample size for
positive observations for each species and retained 20% of the
data for model evaluation. We selected modeling scales based on
estimated home range sizes for each species. We used a 250 m radius

buffer size for downy woodpeckers (Jackson et al., 2020), 500 m
radius buffers for Northern flickers (Wiebe et al., 2017), and a 1 km
radius buffer size for pileated woodpeckers (Bull and Jackson, 2020).
In random forest regression models, we used the observations for
each species as our response variables and the following predictor
variables: survey particulars (survey duration and time of day); forest
type (confer, deciduous, or mixed) from MODIS data (Friedl and
Sulla-Menashe, 2015); elevation, slope, eastness and northness from
SRTM; and our set of GEDI-fusion maps produced as explained
above. We first generated models for each woodpecker species using
the GEDI-fusion layers created from the combined model and then
repeated the process for each species using only the restricted
Landsat/topo/bio model outputs. This direct comparison allows
us to ascertain how models with different accuracies and biases
affect wildlife model outputs.

3 Results

Overall, our data fusion approaches leveraging GEDI footprint
forest structure information and continuous remote sensing data
sources proved valuable for producing regional extent gridded maps
of forest architecture with moderate to high model performances
which were of value to wildlife habitat assessments for three cavity
nester species representing different forest structure associations.
Specific data, modeling, and mapping validations are presented
below.

3.1 GEDI-fusion model assessments

Model performance stabilized at approximately 60,000 training
footprints in our initial model testing, which was the sample size
used for subsequent model development along with a withheld set of
approximately 140,000 footprints for model testing. All reported
model accuracies and errors were quantified using the independent
testing set of footprints.

Our random forest combined models predicting GEDI
structure metrics from continuous satellite remote sensing
data sources had high model performance for the majority of
the GEDI metrics. Within the combined models incorporating all
predictor data sources, the highest performance was observed for
RH98 (R2 = 0.76, RMSE = 5.46 m) and FHD (R2 = 0.74, RMSE =
0.39). Lower model performances were observed for the PAVD
metrics, with R2 values ranging from 0.36 (PAVD5-10 m) to 0.58
(PAVD>20 m), and RMSE values ranging from 0.03
(PAVD>40 m) to 0.06 (PAVD>20m; Table 2). The
performance of the Landsat/topo/bio models were only slightly
lower than that of the combined model for all GEDI metrics
(Table 2). When comparing the single source Landsat model to
the Sentinel-1 model, the Landsat model exhibited higher model
performance for all metrics (Table 2). These differences in
performance for the single source predictive models were the
lowest for FHD, COVER, and RH98, in that order.

When comparing relative importance of predictor variables
within the combined random forest models, Landsat variables
were common among the top five most important predictors for
all GEDI metrics (Table 3). Sentinel-1 metrics were also within
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the top five predictors for most GEDI metrics, and within the top
ten predictors for all GEDI metrics apart from FHD (Table 3).
Disturbance information (TSD) was only among the top ten

predictors for PAVD>20 m. Topography and bioclimatic
variables were among the top ten predictors for all GEDI
metrics, and among the top five for FHD and the PAVD
metrics (Table 4), representing the importance of macro
(bioclimatic) and micro (driven by topographic patterns)
climatic gradients on driving vegetation within particular
forest strata as well as for promoting overall diversity of the
vertical vegetation profile.

3.2 Validation assessments

3.2.1 GEDI footprint- ALS comparisons
Comparisons between ALS simulated (RH and FHD metrics)

or direct discrete ALS measures (COVER) to those from GEDI
footprints showed variability in accuracies across the GEDI
metrics (Table 4). We observed the highest comparison
accuracies for RH98 (R2 = 0.74, RMSE = 6.83 m) and the
lowest accuracies for COVER (R2 = 0.44, RMSE = 0.27). The

TABLE 3 Random forest variable importance rankings for the top 10 predictor metrics within the combined models for GEDI-fusion metrics.

Predictor set (abbrev.) Combined model top 10 variable importance ranking

RH98 RH75 RH50 FHD COVER PAVD 5–10 m PAVD >20 m PAVD >40 m

Landsat 8 (L8) NDVI 4 4 3 4 5 5 3 3

NBR 5 3 2 7 4 6 1 1

TCB 1 2 4 1 2 3 4 4

TCG 2 9 7 6

TCW 1 1 2 1 2 2 2

Disturbance (Dist) TSD 9

Sentinel-1 (S1) VV median 8 8 8 8 9

VH median 3 5 5 3 1 8

RVI 9

Topography (Topo) elevation 10 10 10 10

slope 7 7 7 5 6 4 8

aspect

eastness

northness

TOPODIV 9 6 9 8

CHILI

mTPI

LANDFORM

Bioclimatic (Bio) CMD 10 9 8 10

GDD 10

MAP 6 6 6 3 7 7 5 7

MAT 9 6 5

MWT 10

TABLE 4 Comparison statistics for GEDI Level 2A and 2B footprint metrics and
ALS metrics for a sample of ALS units across our study area. Simulated
waveform metrics from ALS were used for all comparisons with the exception
of COVER, which was produced directly from discrete ALS data (proportion of
first returns above 2 m). Validation results are not included for PAVD metrics
as those are not available as outputs from the GEDI simulator or directly from
discrete ALS. RMSE units are in meters for relative height (RH) metrics and
proportions for COVER. FHD is unitless.

GEDI footprint metric R2 RMSE Bias

RH98 0.735 6.831 0.782

RH75 0.698 5.629 −0.119

RH50 0.664 4.551 −0.256

FHD 0.608 2.143 −2.107

COVER 0.436 0.271 −0.142
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remaining height metrics of RH75 and RH50 along with the FHD
metric had comparable accuracies, with R2 values of 0.70, 0.66,
and 0.61, respectively. The majority of the metrics had a negative
bias with the exception of RH98, which means that the GEDI
footprints tended to underestimate values compared to ALS
measures. The simulated FHD values exhibited a systematic

bias in that they had a higher range of values to those from
the GEDI footprints (bias = −2.107), but still exhibited a good
validation comparison with the actual GEDI footprint values
(Table 4). The lower model performances observed between
the GEDI and direct ALS cover measures may be influenced
by a multitude of factors; these include the different

FIGURE 2
GEDI-fusion RH98 2020 map across our 6-state study area with an example inset area showing 2020 maps of the full set of GEDI-fusion maps
created using the combined model (RH98, RH75, RH50, FHD, COVER, PAVD 5–10m, PAVD >20m, and PAVD >40 m). All height metrics are in meters,
COVER and PAVD metrics are proportions, and FHD is unitless.
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representations of cover within waveform vs discrete lidar
measures of cover, geolocation errors within the GEDI
footprints, or issues with the ground finding algorithm within
the GEDI footprint influencing the resulting cover estimate.

3.2.2 Structure map validations
Through our GEDI-fusion frameworks, we were able to

successfully scale up GEDI structure information to
continuous extents, capturing horizontal and vertical structural
patterns across our six-state western U.S. study area (Figure 2).
Our results show variability in map performance across the
GEDI-fusion metrics although all had moderate to high
predictive performance (R2 = 0.59–0.75; Table 5). Map
accuracies and errors were comparable between maps within
years of model creation to those representing hindcasted years
for both the combined and Landsat/topo/bio models (Table 5).
Map accuracy was only slightly higher from the combined model
than from the Landsat/topo/bio model for all GEDI-fusion
metrics (Table 5). The comparable accuracies and errors
between the model-map versions and the consistency between
years of model creation to hindcasted years, show promise for the
potential of further map hindcasting using the Landsat/topo/bio
model prior to years of Sentinel-1 data. From here forward we
focus on map validation results for the combined model-based
maps for the years of model creation.

Among the GEDI-fusion metrics, FHD had the best map
accuracy (R2 = 0.745), although it still exhibited the systematic
bias observed within the footprint level comparisons (Figure 3).
RH50 had the lowest map accuracy with an R2 of 0.59 and RMSE of
4.59 m (Table 5) and map predictions underestimated
RH50 compared to simulated values, particularly among higher
RH50 simulated heights (Figure 3). The order of validation
performance rankings of the GEDI-fusion metrics was different
between the footprint- and map-level validations, but the general
range of accuracies and errors and moderate-high performance was
consistent between scales of analyses (Tables 4, 5).

3.3 Case study: wildlife habitat modeling

Our GEDI-fusion maps show promise for supporting large
extent forest wildlife habitat modeling efforts according to the
results of our case study, which focused on three species
representing different forest structure associations and home
range scales. We were able to successfully model habitat for our
three cavity-nesting avian species with “good” performance
according to AUC values (Swets, 1988) by incorporating
structure information provided by the GEDI-fusion maps
(Table 6). Habitat models for the pileated woodpecker exhibited
the highest AUC values, closely followed by the downy woodpecker,
and then the Northern flicker (Table 6). In general, the habitat
models had very high specificity with lower sensitivity (Table 6),
meaning that the maps were better at predicting areas where the
species were not encountered than areas where they were present.

When comparing habitat models incorporating the two different
GEDI-fusion mapping versions, we observed minimal differences
for all species, with only slightly higher (or directly comparable)
AUC values for the habitat models incorporating the GEDI-fusion
metrics from the combined models compared to those from the
Landsat/topo/bio fusion maps (Table 6). The two versions of the
random forest habitat models for each species also had similar
ranking for relative importance of predictors (Table 7), so here
forward we will only discuss the habitat models incorporating the
GEDI-fusion metrics from the combined fusion maps. Following
eBird habitat modeling best practices, we incorporated variables
within our models related to survey timing and durations. Not
surprisingly, both metrics were among the top five predictors for all
three species (Table 7). There was a greater probability of detecting
an individual of the species earlier in the day when birds are known
to be more active and vocal, and as survey durations covered longer
periods of time (Figures 4–6). Likewise, measures of topography
were included in the top 9 predictors for all three species. Elevation
was particularly important for downy woodpecker, for which it was
the single most important variable (Table 7). Slope was in the top

TABLE 5 GEDI-fusion gridded predicted map validation with GEDI-simulator ALS (or direct discrete ALS for COVER) sample units for maps created with the
combined predictor model and the Landsat/topo/bio model. Validation results are not included for PAVD metrics as those are not available as outputs from the
GEDI simulator used to simulate comparable waveform metrics from the ALS sample units, or through direct discrete ALS measures.

GEDI fusion map metric Combined model Landsat/Topo/Bio model

R2 RMSE Bias R2 RMSE Bias

Modeling Years Maps (2019–2020) RH98 0.673 6.996 1.109 0.664 7.079 0.961

RH75 0.633 5.675 0.710 0.625 5.730 0.616

RH50 0.591 4.589 0.384 0.584 4.612 0.307

FHD 0.745 2.197 −2.173 0.726 2.207 −2.182

COVER 0.681 0.235 −0.144 0.674 0.238 −0.148

Hindcasting Map Years (2016–2018) RH98 0.690 6.296 0.618 0.684 6.344 0.439

RH75 0.650 5.171 0.563 0.643 5.213 0.325

RH50 0.599 4.329 0.384 0.596 4.325 0.137

FHD 0.719 2.198 −2.176 0.717 2.196 −2.174

COVER 0.653 0.206 −0.126 0.647 0.213 −0.135
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FIGURE 3
Scatterplots of the predicted GEDI-fusion metrics maps (GEDI-fusion) compared to simulated waveform grids (or direct discrete ALS grids in the
case of COVER) for our validation ALS units (ALS) for a random sample of validation pixels. Relationships shown are those for the combined model GEDI-
fusion maps and for map years and ALS units representing years of model creation (2019–2020). Scatterplot color scale depicts discrete ALS-derived
maximum canopy height.

TABLE 6 Comparison of habitat models for three case study wildlife species that incorporate the GEDI-fusion metrics from either the combined model or the
Landsat/topo/bio model. Model assessment statistics include the mean square error (MSE), sensitivity, specificity, and area under the curve (AUC).

Combined GEDI-Fusion metrics Landsat/Topo/Bio GEDI-Fusion metrics

Species MSE Sensitivity Specificity AUC MSE Sensitivity Specificity AUC

Downy woodpecker 0.056 0.501 0.945 0.862 0.059 0.463 0.945 0.855

Northern flicker 0.135 0.538 0.814 0.762 0.135 0.526 0.826 0.762

Pileated woodpecker 0.039 0.313 0.965 0.865 0.039 0.306 0.968 0.864
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7 predictors for downy woodpecker and Northern flicker, but not for
pileated woodpecker (Table 7).

Regardless of the importance of topography and survey
characteristics on detecting an occurrence for the species,

GEDI-fusion metrics were also included among the top five
most important variables for all species (Table 7). FHD was the
most important GEDI-fusion metric for both downy
woodpecker and Northern flicker, but was not ranked in the

TABLE 7 Random forest variable importance rankings for the top 10 predictor metrics within the wildlife case study habitat models using the GEDI-fusion metrics
from the combined models. Survey detectability related predictors are italicized as they are not related to environmental occurrence drivers.

Importance
ranking

Downy woodpecker (250 m habitat
buffers)

Northern flicker (500 m habitat
buffers)

Pileated woodpecker (1000 m
habitat buffers)

1 elevation survey duration RH98

2 survey duration time survey started RH75

3 time survey started FHD time survey started

4 slope RH98 survey duration

5 FHD elevation COVER

6 COVER PAVD 5–10 m Evergreen

7 PAVD >40 m slope PAVD >20 m

8 RH98 COVER elevation

9 PAVD >20 m RH75 RH50

10 RH75 northness FHD

FIGURE 4
Partial dependence plots for the top nine ranked variables within the random forest downy woodpecker occurrence model depicting observed
habitat relationships for GEDI-fusion, topographic, and survey timing metrics. Occurrence was modeled at a 250 m radius scale, comparable to the
species average home range size.
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top ten variables for pileated woodpecker (Table 7). Both
species showed higher encounter rates at higher FHD
(Figures 5, 6). RH measures were particularly important for
pileated woodpecker, with RH98 and RH75 ranked as the two
most important variables overall and RH50 as the ninth most
important variable (Table 7). All three species had highest
encounter rates at high RH98 (Figures 4–6). Pileated
woodpecker had the highest encounter rate at RH75 > 10 m
(Figure 6), while Northern flicker encounter rate was negatively
correlated with RH75 (Figure 5). COVER was ranked in the top
eight variables for all three species (Table 7). For pileated
woodpecker, encounter rate was highest at high COVER
(Figure 6), while downy woodpecker and Northern flicker
encounter rates peaked at moderate COVER (0.4–0.6; Figures
4, 5). PAVD metrics were included in the top 6–9 predictors for
each species, but the strata of greatest importance were different
across the species (Table 7). Downy woodpecker encounter rates
peaked at low values (<0.05) of PAVD> 40 m and at
PAVD>20 m values of approximately 0.1 (Figure 4).
Northern flicker encounter rates were negatively related to
PAVD5-10 m (Figure 5). Pileated woodpecker encounter
rates were positively related to PAVD>20m, but reached an
asymptote at PAVD>20 m values of approximately 0.1
(Figure 6).

4 Discussion

With the novel source of three-dimensional data provided by
GEDI, it is critical to determine the advantages and drawbacks for
use in modeling forest structure across a variety of forest types and
architectures. Our study calibrated and tested predictive models
across six western U.S. states with a variety of forest types across a
bioclimatic gradient from the wetter coastal forests in western
Washington and Oregon to the dryer southwest forests and
woodlands of Colorado. Within our model assessments, we
found moderate to high predictive performance for a set of eight
GEDI structure metrics across our diverse study region. Much of the
existing GEDI literature has focused on accuracy assessments of the
GEDI waveform geolocations and structure measures (Adam et al.,
2020; Li et al., 2023), developing footprint level biomass models
(Duncanson et al., 2022), or leveraged simulated GEDI data in lieu of
actual footprint samples (Burns et al., 2020; Silva et al., 2021).
Studies have begun to investigate GEDI footprint samples as the
basis for scaling up forest structure measures by leveraging fusions of
passive and active satellite earth observations, although the majority
of those studies have been focused on elevation, canopy height, or
biomass (Healey et al., 2020; Potapov et al., 2021; Shendryk, 2022).
Our comparison of additional GEDI metrics to ALS and our
evaluation of the trade-offs between different data fusion

FIGURE 5
Partial dependence plots for the top nine ranked variables within the random forest Northern flicker occurrence model depicting observed habitat
relationships for GEDI-fusion, topographic, and survey timing metrics. Occurrence was modeled at a 500 m radius scale, comparable to the species
average home range size.
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frameworks provides valuable information on the potential of using
GEDI data fusions to provide wall-to-wall structure information
across different forest types for metrics useful in wildlife
applications. While ALS-validation results within this study
varied slightly between the footprint- and map-level assessments,
moderate to high performances were observed for all metrics and the
general range of accuracies and errors were consistent between
scales of analyses. The consistency between footprint- and map-
level assessments further supports the promise of data fusion
approaches for scaling up GEDI structure information to
continuous extents, even with geolocation errors from both GEDI
footprints (e.g., up to 10 m error within version 2 GEDI data) and
satellite predictors (e.g., potential of 15 m error for Landsat pixels).

Among the studies focused on scaling up GEDI structure
metrics through data fusion approaches, the majority have largely
focused upon GEDI canopy heights (Healey et al., 2020; Sothe et al.,
2022; Ngo et al., 2023). Similar to these previous studies, we found
high accuracies within our maps scaling up RH98 samples to
continuous extents through optical and radar-based data fusions
with an R2 of 0.673 and RMSE of 6.996 m when compared against
simulated ALS validation samples, and an R2 of 0.757 and RMSE of
5.445 m when assessed using withheld GEDI footprint testing data.
Healey et al. (2020) found progressively improved predictions of
RH98 when global-extent models were calibrated within blocks of
decreasing sizes, with optimization at 3 km. At this 3 km local

calibration scale, they were able to achieve an RMSE of 7.08 m
for RH98 predictions using only Landsat predictors across global-
extents (Healey et al., 2020), which shows promise for the potential
of expanding GEDI structure measures to larger extents than
included in our regional study. Within sample tropical forest
sites in South America and Africa, Ngo et al. (2023) found the
greatest modeling success with RH98 among the possible upper
canopy height GEDI metrics, supporting our inclusion of this
variable. Similar to our results, Ngo et al. (2023) also found
optical data the most important predictors of RH98 even when
radar was included, with a validation R2 of 0.62 and RMSE of 5 m
when compared to an ALS canopy height. All previous studies of
scaled-up GEDI RH98 predictions reviewed here had similar biases
to those from our study, with under predictions at taller heights and
over predictions at lower RH98 values (Healey et al., 2020; Sothe
et al., 2022; Ngo et al., 2023).

To our knowledge, our study represents one of the first studies to
extend GEDI data fusion evaluations to additional structure metrics
beyond canopy height and biomass across regional extents, such as
FHD and PAVD metrics. The novelty of these additional metrics at
moderate resolutions across broad extents are likely to be extremely
informative for wildlife focused studies. FHD has long been noted to
be an important driver of local bird diversity patterns (e.g.,
MacArthur and MacArthur, 1961). Furthermore, wildlife species
are sensitive to the density of vegetation within different height

FIGURE 6
Partial dependence plots for the top nine ranked variables within the random forest pileated woodpecker occurrence model depicting observed
habitat relationships for GEDI-fusion, topographic, and survey timing metrics. Occurrence was modeled at a 1,000 m radius scale, comparable to the
species average home range size.
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strata. For instance, a dense upper canopy is important for Pacific
marten (Martes caurina), which are one of many forest mustelids of
management interest (Buskirk and Ruggiero, 1994). Scaling up these
metrics and producing continuous data layers is an important first
step to explore structural characteristics that are likely to influence
wildlife-habitat relationships.

Our results showed promise for applying GEDI-fusion models
further back in time than our study period starting in 2016, where we
found comparable map validation results for hindcasted years versus
years of model creation for all structure metrics. We also found
comparable performance for models based on Landsat, topographic,
and bioclimatic predictors compared to the model that also
incorporated Sentinel-1 and disturbance metrics, which supports
the findings of Ngo et al. (2023) for the importance of optical data
for scaling up GEDI information to continuous extents. The reliance
on Landsat data for driving our GEDI-fusion models provides the
opportunity to hindcast models further back across the Landsat
archive prior to the availability of Sentinel-1 data. In addition, we
compared the performance of the two GEDI-fusion map sets (one
incorporating all predictors and the second only leveraging Landsat,
topography, and bioclimatic predictors) within our wildlife habitat
models for three case study species representing different forest
structure associations. For all species, we found comparable habitat
model performance between the two GEDI-fusion map sets. While
Sentinel-1 data are likely to be helpful for wildlife modeling in
multiple contexts (e.g., Koma et al., 2022), its exclusion from our
GEDI-fusion models did not have downstream effects on wildlife
modeling applications. Future studies expanding the time series of
hindcasted GEDI-fusion models will require additional validation
for the expanded temporal scope outside that of our study, as well as
for implications within ecological applications.

The description of vegetation characteristics across broad
extents, including vertical and horizontal structure patterns, is
critical for managing and conserving wildlife species, since
vegetation characteristics provide food, cover, and thermal
resources for these organisms. While previous remote sensing-
based wildlife habitat modeling efforts have shown value in the
use of direct spectral indices from Landsat (Oeser et al., 2020),
Sentinel-2 (Valerio et al., 2020), and MODIS (Viña et al., 2008),
there is added applicability for habitat characterizations based on
structure measures to meet the needs of forest managers who often
manage their land in terms of across, or within, stand structure
goals. When realized habitat relationships based on structural
components can be mapped across the landscape as well as
through time (Davies and Asner, 2014; Eitel et al., 2016), there
are also opportunities for monitoring changes in habitat
availabilities and connectivity through time, or to better match
the timing of habitat variables with the timing of wildlife surveys.
The annual maps of structure components for 2016–2020 which we
produced here were successful in characterizing habitat for our three
case study species. We were able to do so leveraging citizen science
wildlife survey data sets (i.e., eBird data), where the multiple years of
GEDI-fusionmaps facilitated thematching of survey years to habitat
predictors across multiple years, increasing our records. eBird data
are now widely used in studies addressing bird distributions,
movements, and diversity hotspots (e.g., Sullivan et al., 2014),
and while a limited number of studies to date have included
eBird data with GEDI data (Burns et al., 2020, this study), we

anticipate that investigations of bird populations and communities
that use scaled up, continuous GEDI-fusion data are likely to be of
great benefit to the conservation and management of birds given
their sensitivity to forest structure.

Important to the mapping of animal habitat are considerations
of scale. Animals select their habitat at hierarchical scales from the
species’ geographic range down to the foraging and cover resources
an individual utilizes within their territory (Johnson, 1980), and
different species operate at different spatial scales. Spatially
continuous representations of fine-moderate resolution vertical
and horizontal forest structure and patch characteristics facilitate
the simultaneous evaluation of multiple scales of habitat selection
for different species (Holbrook et al., 2017), as well as the mapping of
realized wildlife habitat relationships across the landscape
(Lesmeister et al., 2019), providing valuable forest planning tools.
Our study included three species with home ranges that ranged from
2 ha (downy woodpecker; Jackson et al., 2020) to approximately
400 ha (pileated woodpecker in Oregon; Bull and Jackson, 2020),
and our analyses resulted in AUCs of 0.76–0.87, suggesting that the
GEDI-derived structure data were successfully reflecting habitat
elements. This finding is consistent with Smith et al. (2022), who
found that GEDI-derived metrics were important for modeling a
suite of mammal species that operated at different spatial scales (e.g.,
snowshoe hares (Lepus americanus) and coyotes (Canis latrans)). In
general, our habitat models had very high specificity with lower
sensitivity, meaning that the maps were better at predicting areas
where the species were not encountered than areas where they were
present; this is common within modeling of wildlife occurrence as a
number of non-environmental factors may influence the occupancy
of a suitable patch by an individual of a species, including inter- and
intra-species competition, predator-prey dynamics, and population
densities.

The GEDImetrics used in this study were hypothesized to reflect
important forest structural elements for our selected species, and our
findings suggest that the GEDI-fusion data were successful in
representing those elements. For instance, pileated woodpeckers
require large trees for nesting and roosting (Bull and Jackson, 2020),
and our results that RH98 were positively associated with the species
encounter rates are consistent with pileated woodpecker ecology.
Northern flickers often forage at the edge of stands while nesting in
large trees (Wiebe et al., 2017), and the positive relationship of this
species with increasing levels of RH98 and FHD are again consistent
with their nesting and foraging ecology. Burns et al. (2020) found
that simulated GEDI data captured structural elements important
for multiple bird species, and Smith et al. (2022) similarly found that
GEDI-derived structural elements were important in improving
distribution models of several mammal species. These studies, in
addition to our findings, suggest that GEDI data represent structural
elements at spatial scales that are important to a wide variety of
wildlife species.

Beyond characterizing wildlife habitat, the remote sensing data
fusion frameworks which we developed and tested for scaling up
GEDI-based structure information to continuous regional extents
may additionally provide value for other forest assessments. For
instance, maps of forest structure components, such as height,
canopy cover, and vegetation profiles, are also valuable for
estimating biomass (Hudak et al., 2012) and forest management
planning. In turn, this forest information may also serve as the basis
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for studies assessing the tradeoffs between managing for carbon
sequestration, timber production, species specific habitat, and
overall biodiversity (Kline et al., 2016). Understanding spatial
forest structure patterns can also aid in calibrating forest
projection models for predicting impacts of land use and
management practices, as well as climate change scenarios, on
future forested systems (Fekety et al., 2020) and habitat
availability. Our focus on the use of only publicly available
remote sensing products within our data fusions also ensures the
applicability of our developed methods across other regions around
the globe and within projects or programs with limited financial
resources.

While some countries, such as the United States, benefit from
federally funded periodic and systematic forest sampling efforts,
including the U.S. Forest Inventory and Analysis (FIA) program,
many developing countries do not have comparable forest
monitoring programs. These countries contain some of the
forests and biodiversity hotspots experiencing the greatest rates
of anthropogenic driven land conversions and other threats to
forest health and function (Jetz et al., 2007). Such areas could
greatly benefit from a consistent forest structure sampling data
set, such as GEDI, for regional assessments and monitoring, or
to serve as reference data in modeling approaches such as those
presented in this study to predict forest structures across continuous
extents at resolutions relevant for a diversity of ecological
applications. Even within valuable field sampling programs such
as FIA, there are drawbacks for serving as reference datasets for
some spatial modeling applications because of the need for meeting
data security protocols which can restrict their use within cloud
computing workflows and through their view of the forest from the
ground up with variable georeferencing accuracies (e.g., inconsistent
GPS sampling errors across regions and plots). GEDI shows promise
for filling this data gap for consistent, 3-dimensional
characterizations of the forest strata as measured from above,
and publicly available at near global extents (Dubayah et al.,
2020). While these data may provide a novel data source in
many regions of the world, the rich density and availability of
ALS collections along with the diverse gradients of forest
types and climatic gradients still make the U.S. a valuable
location to test the utility of GEDI for driving such modeling
efforts and for validating spatiotemporal biases of the resulting
products.

5 Conclusion

The purpose of our study was to test the suitability of the rich
reference source of structural information that GEDI footprints
provide within various data fusion modeling frameworks for scaling
up metrics of value to wildlife habitat modeling applications. We
conducted this assessment across broad extents at 30 m resolutions
that are of value to a variety of forest assessments. We chose to
conduct our analyses within the diverse western U.S. where there
were corresponding samples of ALS data for validation purposes.
This evaluation was intended to provide insights into the strengths
and limitations of the resulting predicted structure maps across a
variety of forest types and structures, to better inform similar
mapping efforts within regions which do not have ALS samples

or forest inventory programs. Since our goal was to use
computationally approachable workflows, we filtered and spatially
thinned our GEDI footprints to a sample size that balanced model
accuracy with computational needs. However, with the greater
density of GEDI footprints now available and the hope of an
extended mission, exciting opportunities arise for more of a
census of forest structure at varying resolutions. Such a census
should be tested for greater precision than those found in our study.
Increased temporal extents of GEDI data from the originally
planned mission period may also help in model stabilities for
increased temporal transferability or for directly monitoring
change in forest structure or habitat availabilities. Future studies
should continue to expand the evaluations of the values and
limitations of GEDI structure information and fusion products
within assessments of a wider variety of wildlife species and for
characterizing biodiversity patterns.
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transitions
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The Southeastern United States has high landscape heterogeneity, with heavily
managed forestlands, developed agriculture, andmultiplemetropolitan areas. The
spatial pattern of land use is dynamic. Expansion of urban areas convert forested
and agricultural land, scrub forests are converted to citrus groves, and some
croplands transition to pine plantations. Previous studies have recognized that
forest management is the predominant factor in structural and functional changes
forests, but little is known about how forest management practices interact with
surrounding land uses at the regional scale. The first step in studying the spatial
relationships of forest management with surrounding landscapes is to be able to
map management practices and describe their proximity to various land uses.
There are two major difficulties in generating land use and land management
maps at the regional scale by any method: the necessity of large training data sets
and expensive computation. The combination of crowdsourced, citizen-science
mapping and cloud-based computing may help overcome those difficulties. In
this study, OpenStreetMap is incorporated into mapping land use and shows great
potential for justifying and monitoring land use at a regional scale. Google Earth
Engine enables large-scale spatial analysis and imagery processing by providing a
variety of Earth observation datasets and computational resources. By
incorporating the OpenStreetMap dataset into Earth observation images to
map forest land management practices and determine the distribution of other
nearby land uses, we develop a robust regional land-use mapping approach and
describe the patterns of how different land uses may affect forest management
and vice versa. We find that cropland is more likely to be near ecological forest
management patches; few close spatial relationships exist between land uses and
preservation forest management, which fulfills the preservation management
strategy of sustaining the forests, and production forests have the strongest
spatial relationships with croplands. This approach leads to increased
understanding of land-use patterns and management practices at local to
regional scales.
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citizen science,machine learning, land use, land cover change, google earth engine (GEE),
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1 Introduction

Land-use change is greatly altering terrestrial ecosystems
(Lambin and Meyfroidt, 2011; Forman, 2014). In the
Southeastern United States (SEUS), land-use changes are
responses to a wide array of socio-economic, environmental, and
climate drivers. Not only land conversions but also land
management changes alter large proportions of land over time
(Wear and Greis, 2013). Land-use change, which is a local-scale
land practice, has regional, continental, and global ecosystem
consequences. Forest ecosystems are strongly affected by
anthropogenic factors both inside and outside the forest, such as
timber extraction and suburban growth and cultivation (Radeloff
et al., 2010; Wear and Greis, 2012). Forest management practices,
which are forest land uses, are one of the major drivers of changes in
forest structure and function (Becknell et al., 2015; Marsik et al.,
2018).

Forests play an important role in the ecological and social
conditions of the SEUS. They provide critical habitat for a wide
variety of plant and animal species, including many that are
threatened or endangered. Forests also regulate local and regional
water cycles, help control flooding and soil erosion, and contribute
to the overall health of the landscape (Riitters et al., 2002). In
addition to their ecological importance, forests are also an important
part of the region’s social and economic fabric (Marsik et al., 2018).
They provide recreation opportunities for residents and tourists
alike, support a thriving timber industry, and offer a host of other
economic benefits. With all these benefits, it is clear that forests are a
vital part of the SEUS. However, they are also under threat from a
variety of sources, including development, pollution, and climate
change (Becknell et al., 2015). It is important to work to protect and
restore forests in the region so that they can continue to provide
these important benefits for generations to come.

The interactions among different land-use types may be forces of
landscape-wide and even global importance. Land-use transitions
from one type to another are more likely in areas already close to the
second land uses (Fischlin et al., 2007). For example, in the SEUS
significant expansions of urban areas often convert forested land to
urban uses, especially as urban land spreads outwards from the
already urbanized areas, and cropland has been converted to pine
plantations in areas where plantations are nearby (Wear and Greis,
2002; 2013). These kinds of landscape transitions may represent
macrosystem changes depending on their scale and extent and can
have immediate local social and ecological implications for
landowners and their management practices (Schulte et al., 2007;
Wassenaar et al., 2007). As such, understanding the relationships
between various land-use patterns and forest management at a
macrosystem level is of utmost importance. The current body of
knowledge regarding the influence of different land-use patterns’
proximity on forest management practices, and vice versa, remains
limited. To address this gap, we undertake an investigation that will
contribute to the study of effective forest management strategies and
to understanding of the influence of the proximity of various land-
use types on land-use and land-cover transitions.

One way to protect and restore forests is to understand better the
land-use patterns around them. In many cases, human activities
such as cultivation, housing developments, and industrial
development, can influence forest ecosystems (Kramer and

Doran, 2010; Wear and Greis, 2012; Wear and Greis, 2013).
However, if we study these land uses and their effects on forest
ecosystems, we can develop practices for mitigating the impacts.
This will help to ensure that forests in the SEUS are healthy and
thriving. Also, differently managed forests can spur developments
and land-use changes in different ways (Kramer and Doran, 2010;
Wear and Greis, 2012; Wear and Greis, 2013). For example,
landscapes in proximity to preserved forested regions have more
potential to be converted to residential areas (Kramer and Doran,
2010) and residential property close to protected areas is usually
more valuable.

As implied by the material and energy flows and organism and
gene exchanges that occur between them, forest ecosystems and the
land use that surround them have an intricate relationship. While
the interactions between protected forests and adjacent land uses
have been extensively studied, our understanding of the effects of
non-protected forest land conversion on adjacent land uses remains
limited. Despite the fact that a number of theoretical interactions
have been proposed (Groenveld et al., 2017; Briassoulis, 2020), the
lack of generalizability in case studies has contributed to a paucity of
knowledge regarding the mechanisms underlying these interactions.
Effective land management strategies require a comprehensive and
nuanced understanding of the relationship between non-protected
forest land conversion and nearby land uses. Hansen and Ruth
(2007) review on the ecological mechanisms linking protected areas
to surrounding lands provides a valuable starting point for such
investigations.

Changes in land use over time are also of critical importance.
Land-use changes are associated with social and biophysical system
changes (Turner et al., 1996). For example, land-use change can lead
to the fragmentation of forests which can then impact ecosystem
function (Riitters et al., 2002). Additionally, land-use change can
also alter hydrological regimes and water quality. As such, it is
important to consider land-use change when planning for the future
of forest ecosystems in the SEUS. Changes in land-use intensity and
land-use types influence nearby and even distant forest ecosystems
(Dunford and Freemark, 2005; Fahrig, 2013). Most land change
studies focus only on the transitions among the land covers at the
class level across the landscape (e.g., the conversion between forest
and cropland) (Verburg et al., 2002; Sohl and Sayler, 2008; Verburg
et al., 2009), rather than the within-class transitions. e.g., an area
stays forested but may change use from a natural forest area to
silviculture or an agricultural cropping system, i.e., agroforestry.
Researchers also focus on projecting land-use changes and
trajectories based on past patterns (Lawler et al., 2014). In
addition, ground-reference data related to land-use temporal
changes are often omitted, most often due to lack of availability
(Hurskainen et al., 2019).

The principles of mapping land use do not share the same
assumptions as those of mapping land cover. Land cover refers to the
physical land cover on the Earth’s surface, including both natural
and man-made features (Comber, 2008). Land cover is the physical
land cover type, such as buildings, roads, forests, grassland, or
wetland. It can be monitored using satellite remote-sensing
techniques. Forest cover is one type of land cover that is of
particular interest for many reasons, including the support it
provides for biodiversity, ecohydrological processes, other
environmental services, and combating climate change. By
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monitoring forest cover, we can better understand the health of these
ecosystems and take action to protect them (Becknell et al., 2015).

Land use is the human adoption of land cover to meet specific
needs. Land use refers to the way humans use land cover, such as for
agriculture, housing, or recreation (Comber, 2008). Land-use
features are decided and driven by people’s land-management
behaviors. We can monitor land-use change by looking at both
land-cover and land-use information. There are many ways to
monitor land-use changes. One common method is remote
sensing, which uses satellites or aircraft to collect images of the
Earth’s surface. This can be used to track changes in land cover over
time (DeFries et al., 2007). Another common method is ground-
reference data collection, which involves physically visiting sites on
the ground to observe and document changes. Ground-reference
data are often used in combination with remote sensing to verify and
interpret satellite data (Sanchez-Azofeifa, 1996; Marsik et al., 2018).
It can be difficult to distinguish land use from land cover using
remote sensing alone, so ground-reference data are an important
part of land-use monitoring.

There are many challenges to monitoring land-use change. One
challenge is that land use can be hidden by land cover. For example,
a forest may still be a forest even if it will soon be logged or is part of a
protected area. Another challenge is that land use can vary greatly
over short distances. For example, a field may be used for agriculture
on one side and housing on large parcels on the other. This canmake
it difficult to create accurate maps of land use. Despite these
challenges, it is important to monitor land-use change. Land use
has a major impact on the environment and understanding how it is
changing is essential for effective environmental management
(Turner, 1994; Schulte et al., 2007).

In the phrase “social-ecological Earth observation dataset”, the
term “social” relates to information about human social systems and
includes citizen-contributed data, satellite-collected Lights at Night
data (Sutton et al., 2009; Li et al., 2017) and land ownership data. To
map regional land management practices, we utilized ground data
such as ownership information, long-term phenological patterns
and their changes, and the structure of the surrounding landscape to
infer forest management classes (Marsik et al., 2018). We use the
Earth observation datasets, which have close relationships with
human activities, such as the night light (VIIRS Stray Light
Corrected Nighttime Day/Night) and land ownership (Marsik
et al., 2018) databases. Citizen science is a term used for
scientific research that is conducted by members of the public,
rather than professional scientists (Goodchild, 2007). Citizen science
projects can be used to collect data on a wide variety of topics, from
environmental conditions to astronomical events (Goodchild and
Glennon, 2010; Haklay, 2010). Citizen science has been used in land-
use mapping for many years (Goodchild, 2007; Antoniou et al.,
2016). These maps are important tools for conservation planning, as
they can help decision-makers understand where different types of
ecosystems are located. Citizen science projects can contribute to the
creation of these maps by collecting data on the location and extent
of different types of land cover (Yang et al., 2017). Recent advances
in technology have made it possible for citizen science projects to
collect data more efficiently and accurately than ever before (Haklay
and Weber, 2008; Neis and Zielstra, 2014; Yang et al., 2017). For
example, the use of GPS devices and smartphones can allow citizen
scientists to quickly and easily record the location of different types

of land cover and use. In addition, online mapping tools can be used
to share data with other project participants and mapmakers.
Citizen science projects like these are important and useful for
creating accurate and up-to-date land-use maps. Citizen science can
increase our understanding of land-use patterns and management
practices while engaging the public at local, regional, and global
scales to study their environment (Goodchild, 2007; Haklay and
Weber, 2008; Goodchild and Glennon, 2010; Theobald et al., 2015).
For example, citizen-contributed data fromNew York Breeding Bird
Atlas detected the potential for colonization, extinction, and the
absence of bird species due to forest fragmentation (Zuckerberg and
Porter, 2010). Involving citizen science to inform land-use
management and conservation practices can usually lead to a
more effective outcome of research success and land
management practices, because it raises awareness and garners
support for the project among the public (Dickinson et al., 2012;
Yang et al., 2017).

Open Street Map® (OSM) (www.OpenStreetMap.org) is a
collaborative project to create a free, editable map of the world.
The maps are created by volunteer contributors using GPS devices,
aerial photography, and other sources. OSM is used by individuals
and organizations for a variety of purposes, including land-use
planning, disaster response, and route planning (Haklay and
Weber, 2008; Neis and Zielstra, 2014; Yang et al., 2017). OSM is
one example of a citizen science project that relies on the voluntary
contributions of its participants to create a useful resource for the
community. Organizations such as the Red Cross and the United
Nations Office for Coordination of Humanitarian Affairs use OSM
data to plan relief efforts and respond to natural disasters. Businesses
such as Foursquare and Craigslist use OSM data to provide location-
based services. Non-profit groups such as Mapbox and
OpenStreetMap US use OSM data to create maps and apps that
are available to the public. The success of OSM depends on the
continued participation of its contributors.

In this research, we collect historical crowdsourced data from
OSM to map regional land use and then generate a land-use change
map over a 5-year period to determine how land use and thus land
management have changed. We then examine the proximity of
different land uses to areas with four different forest management
approaches to determine the spatial relationships of forest
management with land uses. We focus on the SEUS region,
which has high landscape heterogeneity, heavily managed
forestlands, developed agriculture, and multiple metropolitan areas.

There are twomain types of forest ownership in the southeastern
United States: public and private. Public forests are owned by
governments and are managed for the benefit of the public.
Private forests are owned by individuals or companies and are
managed for their own benefit. In SEUS, we define forest
management types in four categories: production forestry,
ecological forestry, wilderness or preservation, and passive
forestry (Becknell et al., 2015; Marsik et al., 2018). Ecological
management involves managing the forest in such a way as to
not only realize gains from timber harvest but also maintain or
improve the forest’s ecological health (Franklin et al., 2018). This
may include activities such as planting native species, maintaining
an uneven age structure so that forest structure will be more diverse,
thinning non-native or invasive species, and reducing pollution.
Passive management is a hands-off approach that generally involves
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leaving the forest to its own devices. This approach is often used in
areas where the forest is not actively threatened by human activity or
natural disasters, is in soils too wet, such as riparian areas, to support
harvesting machinery, or belongs to owners who simply want to
have an intact forest. Wilderness or preservation management, in
contrast, seeks to protect the forest in its natural state and may be
used in certain public forests where conservation is the primary goal.
Each of these management approaches comes with its unique set of
consequences and complexities on the landscape, affecting not only
the biodiversity within the forests but also the patterns of land use in
surrounding regions. Recent developments in cloud computing,
collaborative mapping, and user-generated content platforms,
such as volunteered geographic information (VGI), have spawned
a new era in geographic visualization (geo-visualization or mapping
and visualizing the world), such that the combination of
crowdsourced mapping and cloud-based computing may
overcome these difficulties (Southworth and Muir, 2021).

In this study, OSM is incorporated into mapping land use to
identify and monitor land use at a regional scale. We use Google
Earth Engine (GEE) to enable large-scale spatial analysis and image
processing by providing a variety of Earth observation datasets and
powerful computational resources (Haklay and Weber, 2008;
Southworth and Muir., 2021). By focusing our prime objective
on the mapping of landmanagement practices, a robust, automated
regional land-use mapping approach is developed by incorporating
the OSM dataset with GEE’s available Earth observation imagery.
Since the SEUS is heavily forested, the diverse land-use
characteristics are often hidden under the canopy, which results
in the land-use patterns of the SEUS not being visible with routine
remote sensing methods. In this analysis, we incorporate

anthropogenic Earth observation datasets (such as nightlight
and ownership) with the crowdsourced OSM database to first
create land-use maps for two dates: 2013 and 2018, across our
study area, and to then create a land-use change analysis or
transition image from these products. We then use these
individual land-use maps for 2013 and 2018 to identify all
forest patches, indicating forest management type as part of the
patch type record, and highlight the fragmented nature of forest
cover across this region as a function of extensive road networks
(Reed et al., 1996; Heilman et al., 2002; Riitters et al., 2002). Finally,
we then study the spatial relationships among these managed forest
patches and the land use surrounding these patches as we increase
in distance from the forest patch edge. By proposing a land-use
change mapping framework, we aim to increase the accuracy of
mapping land use and expand the ability to map land use at the
regional scale. This analysis examines how the four dominant
forest management types interact with the surrounding land use
in the SEUS. In the heavily forested SEUS, we examine the spatial
patterns of land uses surrounding forest ecosystem patches by
asking the research question: “What are the land-use patterns
extending outwards from differently managed forestlands and
how do these change over time?”

2 Data sources and methods

The methods used within this study are highlighted in the
flowchart (Figure 1) indicating the multiple input data and steps
taken as part of this research. The specific data and details on the
analysis are outlined below.

FIGURE 1
Flowchart detailing analysis steps for the study.
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2.1 Study area

As a case for classifying land use and monitoring land-use change
around public and private forests, we chose an area of the Southeastern
U.S. Coastal Plain corresponding approximately with the Worldwide
Reference Systems II (WRS-2) path 17 row 39 (P17 R39), with
bounding latitude and longitude coordinates of approximately
31°13′N, 83°10′W (northwest corner), and 29°20′N, 81°41′W
(southeast corner) (Figure 2). The study area covers an area of
about 34,000 km2. The study area has a good representation of all
types of land uses and forest management practices in the SEUS. This
heterogeneous landscape consists of a mixture of natural and plantation
forests, large and small wetlands, several rivers with extensive riparian
areas, urban centers, urban and rural residential areas, and commercial
and small-scale agricultural operations. This diversity of land-cover
types is spatially heterogeneous, and patch sizes within the vegetation
classes vary across a wide range of scales.

2.2 Land-use change mapping strategy
design

The integration of remote sensing and GIS presents a robust tool
to monitor, quantify, and characterize landscape features in both

time and space (Reed et al., 1996; Heilman et al., 2002; Riitters et al.,
2002; Hawbaker and Radeloff, 2004; Espirito-Santo et al., 2014),
making it a promising approach to land-use change mapping
strategy design. The advent of Volunteered Geographic
Information (VGI) platforms has ushered in a new era of
mapping and visualizing land systems (Neis et al., 2011; Neils
and Zielstra, 2014; Hakley, 2010). Notably, OpenStreetMap
(OSM) is an excellent example of a VGI platform that facilitates
the rapid expansion of big data and cloud-based computing while
providing a more extensive range of applications than official
geographic road databases (Zielstra and Hochmair, 2013). The
use of OSM allows for the creation of more current and
comprehensive maps that reflect temporal changes (Girres and
Touya, 2010; Estima and Painho, 2013). Our land-use change
mapping strategy design focuses on creating multi-functional
management units, with urban areas being excluded from the
study using urban boundaries from the TIGER database (TIGER,
2015).

2.3 Historical OSM

There are several definitions made by OSM ODbL that need to
be clarified, namely,: objects, tags, and keys. The attributes of OSM

FIGURE 2
The map outlining the study region and the spatial distribution of forest-management types within the study region. The light gray part represents
non-forest regions. Forest management classes were mapped by Marsik et al. (2018).
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are called “tags”, and the major features stored in OSM are called
“keys”. An OSM “object”, e.g., a building, a road, or a parcel, is
composed of geographic location information and a set of “tags”.
Each object in the OSM must have at least one tag, but there is no
limit to the number of tags a specified object can have. The official
list of OSM tags is available on the map features wiki page: https://
wiki.OpenStreetMap.org/wiki/Map_Features. The tag taxonomy has
been agreed upon over years of experience and is still being updated,
which reflects a folksonomy approach based on a negotiation
process among OSM contributors (Ballatore and Mooney, 2015).
The “tags” can be reorganized, combined, and grouped in various
semantic ways to highlight the geospatial distribution of different
topics, and as such, they can be utilized in different research projects.

The full historical OSM database is available at https://planet.
osm.org. In this study, historical OSM was accessed through the
OSMAPI (https://wiki.OpenStreetMap.org/wiki/API), which allows
us to fetch, save, and analyze the raw data from OSM over time. In
our study area in 2013, there were 1,199 objects representing
buildings on the OSM in our study area, the number changed to
66,488 by October 2018. By 2018, there were more than
486 contributors who updated and edited the roads feature in the
study area, 230 contributors fixed the building features OSM and
262 contributors to amenities features.

2.4 OSM land-use classification semantics

In OSM the land-use tags are often marked with different
understandings of the land, e.g., for rangeland, it was marked as
“yellow field” or “farm” and even “grass”. The relationship between
OSM tags and labels was built based on the land-use classification
strategy with a framed dictionary (Table 1). To achieve this, we
converted OSM tags to five land-use classes: cropland/rangeland,
commercial/industrial, managed forest, residential areas and water
body. We then regrouped the OSM tags into those targeted classes
based on the framed dictionary (Table 1).

The OSM condensed land use definitions in this study are:

1) Cropland/rangeland—A land-use category, which is used to
produce crops or has the potential for sustainable grazing
(native grasses, grass-like vegetation, shrubs).

2) Commercial/Industrial—A land-use category consisting of
industrial, commercial, and institutional land, construction
sites, public administrative sites, railroad yards, cemeteries,
airports, golf courses, quarries, water control structures (Wear
and Greis, 2013).

3) Managed Forests—A land-use category that is covered with
forest. The categories of forest management are generally
consistent with the forest management type map produced by
the MANDIFORE group (Marsik et al., 2018). We also included
the areas that showed evidence of the natural regeneration of
trees and not currently developed for non-forest use.

4) Residential—A land-use category consisting of single- or multi-
family residential, apartment buildings, and small parks within
the urban and built-up areas.

5) Waterbody—Open water

2.5 Earth observation data

Several different Earth observation datasets were used in the
analysis, including.

1. We used Landsat data for 1/1/2013 and 8/1/2018, available on the
GEE API (Google Earth engine ID: LANDSAT/LC8_L1T_
ANNUAL_GREENEST_TOA). These Collection 2 Landsat
8 Operational Land Imager (OLI) data have a spatial
resolution of 30-m and are Top-of-atmosphere (TOA) and
Landsat 5 TOA reflectances (Chander et al., 2009).

2. We used global forest canopy height, version 2005 (Simard et al.,
2011): This dataset represents the canopy height at a global level
by incorporating the Geoscience Laser Altimeter System (GLAS)

TABLE 1 Crosswalk dictionary between natural and land-use classes and OSM labels.

This paper
land-use type

OSM labels

Key: Natural Key: Landuse Key: Amenities and places

Cropland/
Rangeland

Grassland, agricultural, or
USER_DEFINED

Farmland, farmyard, grass, greenfield,
greenhouse_horticulture, meadow, orchard, pasture,
plant_nursery, recreation_ground, vineyard, or
USER_DEFINED

Commercial/
Industrial

Commercial, retail, cemetery, depot, garages, religious,
Industrial, quarry, port, salt_pond, or USER_DEFINED

Bar, bbq, café, fast_food, food_court, restrurant,
college, kindergarten, archive, school, university,
boat_rental, car_rental, bus_station, parking, bank,
clinic, dentist, casino, cinema, nightclub, studio,
post_office, prison, or USER_DEFINED

Managed forests Wood, tree_row, scrub, or
USER_DEFINED

Forest, conservation, reservoir, or USER_DEFINED

Residential Residential, allotments, or USER_DEFINED House, apartment

Water body Water, wetland, bay, lake,
springs, or USER_DEFINED

Basin, pond, or USER_DEFINED

User-defined: Many land-use features are already on Map Features, but users are flexible in defining the features. https://taginfo.OpenStreetMap.org/.
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and ancillary data (Google Earth engine ID: NASA/JPL/global_
forest_canopy_height_2005)

3. Nighttime satellite imagery was used as proxies of mapping
human wellbeing and urban development (Sutton et al., 2009;
Li et al., 2017) (Google Earth engine ID: NOAA/VIIRS/DNB/
MONTHLY_V1/VCMSLCFG). VIIRS Stray Light Corrected
Nighttime Day/Night Band Composites Version 1 (Miller
et al., 2013): The dataset of nighttime has the global monthly
aggregated nightlight time data.

4. Land ownership is one of the key factors delineating land use
and forest management, especially under the currently
ongoing rapid urbanization and increasing rural
development, which may affect and alter the forest
management patterns. Landowners are classified as public
and private. There are six sub-types of public ownership,
which are federally protected, federal, state protected, state,
military, and local. Also, there are four sub-types of private
ownership: non-government organization, private, family,
and corporate. The ownership classification strategy is
made based on different management objectives, as well as
landowner skills, budgets, and interests. The Protected Area
Database for the United States (PAD-US) is the primary data
source to identify public ownership (USGS-PADUS-2.0).

2.6 Random Forest classification

We built a Random Forest (RF) classifier by incorporating
multiple remote sensing datasets as covariates, using GEE as the
mapping platform, and crowdsourcing-derived geotags as
training sample databases. We used OSM derived data as
training points to extract spectral statistics for use in the RF
classifier (Breiman, 2001). The efficiency and accuracy of the RF
classifier have been widely tested and recorded throughout
regional landscape mapping. The principle of RF is to apply a
bootstrapping aggregated sampling technique to build a series of
individual decision trees for the classifier. The major advantages
of the RF classifier are the capability of handling a large number
of training samples, its efficiency in dealing with the large
regional database, and its robustness to outliers and noise. To
remove the noise from the classification outputs, we used a 3 ×
3 cell majority filter for all land-use classes, except for
waterbodies for both the 2013 and 2018 images. All images
were resampled to 30 m spatial resolution using the nearest-
neighbor filter algorithm.

The total number of OSM-derived training samples are
3,150 and 3,870 for 2013 and 2018, respectively. We specified
two sets of 10-fold cross internal validations for the RF classifier
and assessed the individual contribution from each land-use type to
the overall accuracy of the land-use pattern maps. To optimize the
RF algorithm, we utilized 500 trees, a 70/30 split for training/
validation, and modified other parameters. These parameters
were carefully selected to balance model complexity and accuracy
and to avoid overfitting. Our results demonstrate the effectiveness of
the RF algorithm in accurately classifying land use from remote
sensing data. Furthermore, we present a novel approach for
generating training data using existing land use features, which
enhances the accuracy and efficiency of the classification process.

Overall, it highlights the potential of the RF algorithm for land use
classification in complex and diverse landscapes.

2.7 Forest patch analysis

First the forest patches, defined as groups of contiguous pixels of the
same management type separated from other groups by other
management types or non-forest pixels, were identified spatially, and
the size characteristics of each patch were determined for both 2013 and
2018, as follows: For each forest patch the forest management type
(ecological, passive, preservation or production) was recorded. To test
the land-use variations around each type of managed forest, a series of
spatial analyses were conducted. We created nine buffers at increasing
distances from the edge of the forest patches, from 500 m to 5,000 m at
an interval of 500 m. The reason to pick a buffer size ranging from
500 m to 5,000 m is based on the average patch size from the
management map (Figure 2; Table 2). In the study area, the overall
average management patch size is 26.6 ha, which leads to the
appropriate minimum buffer rings starting at around 360 m,
according to the methods in Defries et al. (2007). However, from
Table 2, as the size range of management patches is variable, we set nine
other increasing buffers to allow for an improved analysis of the
landscape. The land-use combinations of 2013 and 2018 of
cropland, residential areas, and commercial/industrial areas were
compared by plotting the proportion of each land-use type in the
different buffer distances. At larger scales of analysis, buffer overlap
could influence the independence of samples; however, after calculating
the maximum buffer overlap with other forested patches, which was
6.8% of the total study areas, we assume a minimal impact of buffer
overlap regionally.

3 Results

3.1 Land-use compositions and dynamics

Land use maps for 2013 (Figure 3) and 2018 (Figure 4) are given
here. Since the urban areas were masked, residential areas represent the
exurban and rural residential areas. There are significant differences
between the two study dates, despite their only being 5 years apart. The
proportion of the landscape in the residential area increased from 4.93%
to 8.87%. For the commercial/industrial class, an increase from 0.59% to
2.97% was found, and a similar trend was found with the cropland/
rangeland class with an increase of 6.22%–10.32% (Table 3).

TABLE 2 Management Patch size statistics of characteristics within the study
area.

Unit (ha) Min Max Mean Std

Total area 5.37 194,137.30 26.60 718.08

Ecological 5.37 2,683.23 19.37 92.03

Passive 5.37 7,700.88 22.48 95.95

Preservation 5.37 194,137.30 40.73 2,208.42

Production 5.37 12,992.22 41.54 275.10

Frontiers in Remote Sensing frontiersin.org07

Yang et al. 10.3389/frsen.2023.1197523

184

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1197523


FIGURE 3
Land-Use Composition of the study area in 2013. Because the urban areas were subtracted, the residential and commercial/industrial areas are
those located in the suburban and rural residential areas.

FIGURE 4
Land-Use Composition of the study area in 2018. Because the urban areas were subtracted, the residential and commercial/industrial areas are
those located in the suburban and rural residential areas.
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From Figure 5 and Table 3, we found a strong trend of
deforestation and rural residential/suburban development, which
increased by 80%. There was also a 66%increase in cropland area
and a 407% increase in commercial/industrial area in the study area
from 2013 to 2018.

3.2 Accuracy assessment

Building the RF classifier is the starting point of our landscape
analysis; the results of the accuracy of land-use classification for both
2013 and 2018 are shown in Table 4. The land-use classification out-
of-bag (OOB) overall accuracy was close to 97%, with corresponding
Kappa values of 0.97 for both 2013 and 2018. Considering that land-
use patterns of 2013 and 2018 were extracted using the same
classification method and original image collections, we assumed
that the classification accuracies of this land-use change dataset are
comparable.

At the class level, the precision, or comparison of the true and
false classifications, ranges from 94% to 99%. Overall, the RF
classification rules, when coupled with crowd-sourced land-use
training samples show a strong potential to classify land-use type
well. In land-use mosaics from 2013, it was shown that the most
complex land-use changes occur at cropland/rangeland and

residential areas. This reflects the existence of rural residential
areas as well as their continued development. The residential
regions and the commercial/industrial areas are the classes in the
2018 land-use mosaics that have the most confusion. This indicates
that it is difficult to differentiate between those two classes due to the
high similarity of spectral signals in remote sensing imagery.

3.3 Adjacent land-use development

The percentage coverage of the five land uses adjacent to andwithin
different buffers for each type of forest management approach from
2013 to 2018 is individually shown in Figures 3, 4 and is compared
across the buffered region. We set the distance zones surrounding
patches of each management from 500 m to 5,000 m with a 500 m
interval, as those distances will cover enough spatial information to
show the subtle land-use change at a landscape level (Sanchez Azofeifa,
1996; Carey et al., 2011). Adjacent land-uses surrounding each forest
management type were analyzed. The results gave us an indication of
the distribution of each land-use class immediately around different
managed forest patches.

For the landscapes in proximity to ecological forests, there is not
a strong spatial relationship between the ecologically managed forest
and the surrounding lands, although there is more residential land

TABLE 3 Land-Use Change of Residential, commercial/industrial, and cropland/rangeland from 2013 to 2018.

2013 2018

Land-use type Area (Ha) Area percentage (%) Area (Ha) Area percentage (%)

Cropland/rangeland 184,519.17 6.22 306,119.70 10.32

Commercial/Industrial 17,367.66 0.59 88,159.05 2.97

Residential 146,158.2 4.93 263,094.12 8.87

FIGURE 5
Land-Use Change of Residential, commercial/industrial, and cropland/rangeland from 2013 to 2018.
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near ecological forests and that cropland is more likely to be near
ecological forest management patches (Figure 6). The proportions of
cropland, commercial/industrial and residential land uses decrease
within 1,500 m and then are stable out to 5,000 m. For landscapes in
proximity to passively managed forests, the surrounding land uses
are quite stable surrounding the passive management forests, except
for the croplands.

In Figure 6, few spatial relationships between land uses and
management are found within 500 m of preservation forestry, which
fulfills the preservation management strategy of sustaining the forests.
From 2013 to 2018, cropland and residential area proportions increased
with increasing distance from the preservation forests. Among all four
types of management approaches, production forests have the strongest
spatial relationships with croplands (Figure 6). The proportion of the
croplands surrounding production forests reached a peak of 20% at a
distance of 1,000 m, and then decreased rapidly. When the distance
from production forests is about 3,500 m, the residential proportion did
not change from 2013 to 2018.

As evident in Figure 6, there tends to be a sharp increase in land-use
proportion among different types of land use adjacent to each
management forest patch (except for cropland in 4,000–5,000 m
proximity of production forests). In 2013, cropland land uses
showed the strongest spatial relationships with production forest,
followed by passively managed forest, ecological forest, and finally,
preservation forest. However, in 2018, the order changed significantly

with the strongest spatial relationships with production forests, followed
by ecological forest, and then passivelymanaged forest and preservation
forests. In 2013, the proportion of cropland surrounding production
forest patches increased from 3.3% to 8.6%. However, the trend in
2018 shows an exponential decrease with increasing distance,
particularly from 1,000 m to 3,500 m.

3.4 Land-use change in SEUS from 2013 to
2018

Land use transitions are important to map and understand
(Figure 7). Table 5 shows the different transitions possible across the
study area with the associated land change. Notably, the dominant land
transitions were identified into seven major categories: stability (no
change (stability), commercialization, afforestation, cultivation, and
rural residential and suburban growth. Table 5 also shows the land-
use conversion matrix used by the spatial allocation procedure by
determining the possible land-use transition sequences. Just four types
from the land-use patterns map were used in this analysis: cropland,
commercial/industrial, managed forest, and residential.

We created a land transition analysis by combining the OSM
derived land-use maps for 2013 and 2018 to produce the land-use
transition patterns over the study area with a 30 m resolution. This
regional land-use pattern analysis seeks to identify the dominant

TABLE 4 Out-Of-Bag (OOB) error matrices for five land-uses classes in 2013 and 2018 in the study area.

2013 Classified data

Class Cropland Commercial/
Industrial

Forests Residential Water Producer’s accuracy (%)

References Data Cropland 373 1 6 7 2 95.89

Commercial/
Industrial

2 447 0 2 1 98.89

Forests 12 3 1,377 5 0 98.57

Residential 7 5 17 657 0 95.77

Waterbody 0 0 2 9 215 95.13

User’s Accuracy (%) 94.67 98.03 98.22 96.62 98.62 Overall Accuracy: 97.43%

2018 Classified data

Class Cropland Commercial/
Industrial

Forests Residential Water Producer’s accuracy (%)

References Data Cropland 468 1 12 7 2 95.51

Commercial/
Industrial

2 539 1 25 2 94.73

Forests 18 2 1,377 9 2 97.80

Residential 0 4 1 792 3 99.00

Waterbody 0 2 3 6 592 98.18

User’s Accuracy (%) 95.90 98.36 98.78 94.40 98.50 Overall Accuracy: 97.36%

Kappa coefficients k) of 2013 and 2018 are K2013 = 0.97 and K2018 = 0.97, respectively.
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patterns of land use change. Across the study area, several major
change patterns are recognized, together comprising a majority of
suburban growth, commercialization, and cultivation.

4 Discussion

4.1 Land-use mapping with OSM as training
samples

OSM was incorporated into mapping land use and showed great
potential for justifying and monitoring land use at a regional scale.
The results identified the spatial land-use patterns and the variations
around each type of managed forest with buffers ranging from 500 m
to 5,000 m for 2013 and 2018 (Figures 3, 4). Over the 34,000 km2

study area, there has been a large amount of land-use conversion from
2013 to 2018 (Figure 7). Deforestation is a clear trend in the study
area, despite economically valuable managed forests.

The nightlight remotely sensed images do a relatively better job
representing and mapping human footprints (Li et al., 2017) when
compared to using only the spectral imagery alone. The results of
this study support the use of nightlight imagery when mapping land
use. For example, Yang et al., 2017 used a variety of physical features

from Earth observation datasets (i.e., forest canopy height, DEM,
and EVI) to map regional land use in the same study area with an
accuracy of 95% (internal validation) and 74% (external validation).

In this study, land-use classifiers’ training sample sets were
extracted from historical OSM and resulted in high internal
validation accuracy (97% for 2013 and 97% for 2018). OSM
provides different data collection mechanisms than the traditional
authoritative geographic information obtained from official or
governmental institutions, agencies, or Earth observations. The
results demonstrate that OSM and citizen science data have
potential for mapping regional human footprints (represented as
land use in this study). In this study, the training samples
extracted from OSM were randomly selected. The error matrices
are based on internal validation. Based on our results, the classification
methods presented in this study are recommended mainly for
mapping broad land-use classes. Further accuracy testing through
external validation requires a large amount of historical land-use
documentary data, which can be a project for further study.

The data quality of OSM and its public participatory geospatial
database has always been recognized as a major concern by researchers
(Antoniou and Skopeliti., 2015; Mobasheri et al., 2018). The
contribution of OSM mappers is often based on perceptions rather
than scientific measurements, which makes it complex to measure the

FIGURE 6
The percentage of different land use based on the distances from the nearest forest patches under different management types (ecological, passive,
preservation, and production forest).
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mapping quality and positional accuracy. However, there are some
strategies to overcome the credibility challenges of those participatory
mapping databases. Firstly, there are always “superusers” in VGI
mapping projects. Those “superusers” make tremendous
contributions by providing a large amount of near-real time
accurate information. In addition, the quality control of OSM itself
is also a multi-user environmental validation process. Based on its
“wiki” principle, the community of OSM mappers can act as quality
filters, which means the dataset is self-validated by the other
contributors’ numerous times. In this analysis, we applied this
strategy to the point of self-validation. Finally, because of the vast
amount of OSM data, mapping effects are mostly aggregated based on
the ground truth data provided by OSM mappers.

4.2 Proximity analysis

Due to the lack of precision in delineating boundaries that surround
various ecosystems, there is much that cannot be clearly understood
from the perspective of land management or the management of
natural resources (Duncker et al., 2012). Our results show that there
are similar trends in management for lands around ecological forests
and passively managed forest, i.e., no significant increase or decrease of
different land-use types in surrounding landscapes. We also found that
for passively and ecologically managed forests, as the distances of
specific land-use types from the nearest forest patches increase, the
variance of the proportion of that specific land use to the total land
becomes smaller, and finally levels off. Preservation forestry covers over

FIGURE 7
Land-use change derived from OSM from 2013 to 2018.

TABLE 5 Land-use changes in the study area and the associated land change are delineated. These categories include changes that may rarely or never occur (e.g.,
residential to managed forest or commercial/industrial or residential to croplands).

Land use in 2013 Land use in 2018

Cropland Commercial/Industrial Managed forest Residential

Cropland Stability Commercialization Afforestation Rural/Suburban Growth

Commercial/Industrial Cultivation Stability Afforestation Rural/Suburban Growth

Managed Forest Cultivation Commercialization Stability Rural/Suburban Growth

Residential Cultivation Commercialization Afforestation Stability
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thirty percent of the total forest in the study area (Marsik et al., 2018).
For surrounding land uses of production forests, we found patterns that
imply interactions between production forests and cropland in the
1,500 m buffer. Land policy may contribute to this phenomenon as
production forests, pasture, cropland, and citrus all belong to the same
tax code (i.e., Commercial Agriculture Uses) in Florida, which lowers
the property tax rate. There are several hypotheses to explain this
phenomenon: 1) the landscapes are built out over a distance greater
than 3,500 m; and 2) those areas belong to urban areas and are thus not
included in the analysis. Moreover, the State of Florida does not have a
minimum land area requirement for agricultural and timberland
classification, which increases the potential for cropland—timberland
two-way flows.

Residential developments also show a strong effect of land-use
transitions on the surrounding lands, such as forests transformed
into croplands or rangeland areas. As we found the increasing trend
on both residential and commercial/industrial lands, nearly 45.9% of
new residential lands in the study area were created from forests,
with most of the rest resulting from the conversion of agricultural
land. From 2013 to 2018, one of the most influential drivers of forest
area change was the expansion and contraction of agricultural land.
These patterns also point out how fast the rural residential areas are
being developed in the heavily forested study area, especially near
passive and production management forest patches (Figure 6).

The study area also experienced rapid population growth, based
on the gridded population of the world v4/population count, there
was a 170,130 increase from 2010 to 2020 (GPWv4). Most of the
time this led to deforestation (the transfer of forest lands to
developed lands). As the population increased, the potential need
for residential areas, roads, commercial and industrial sites
increased. The development of rural residential developments
significantly contributed to land-use dynamics. The increasing
rural residential areas show a strong signal of urbanization and
deforestation, as most newly developed residential areas are
developed on forested land. For the rural/suburban residential
areas surrounding ecological forests, preservation forests, and
passively managed forests, the trends of rural/suburban coverage
all increased from 2013 to 2018.

5 Conclusion

The land uses in SEUS have been heavily transformed according to
a variety of factors, such as population growth and economic growth.
The forest ecosystems in the SEUS have been largely influenced by these
land-use changes. The results of this study show that land-use patterns
in the vicinity of forest under different management strategies vary
substantially with the occurrences of forest patch isolation due to the
proximity of agricultural development, rural residential development,
and commercialization. Such land-use transitions alter the SEUS
landscapes and may affect ecosystem functions. We infer the land-
use information at the regional scales by using VGI from a diverse array
of stand-level studies and other ancillary information.

By developing a crowdsourcing-based land-use change mapping
framework over the SEUS wemeasured and calculated the proportion
of land area that was located within nine increasing distance buffers
from the nearest managed forest patches of any type of forest
management, and mapped the results reclassified by land-use

transitions. For lands surrounding preservation forests, we found
the effectiveness of preservation in maintaining the forest cover in the
first 500–1,000 m boundary buffers. However, rural residential
developments are changing the lands surrounding the preservation
areas. The lands surrounding production forestry, comprising
important spatial relationships with croplands, show the strongest
potential for land conversion between forests and croplands. For the
passively managed forest surrounding landscapes, the land-use
patterns represent a relatively neutral status because of the low
management intensity with little interaction with croplands, which
is the opposite for the production forest surroundings. For the lands
surrounding ecologically managed forests, there are the least variances
of land-use composition based on distances. This also supports the
idea that the major principle of ecological forestry is to maintain the
social-ecological functions.

Citizen science is contributing to land-change science, in ways
that increase the magnitude of observations far beyond those that
can be done by individual scientific projects. From a mapping land-
use perspective, citizen science can be used to extend the training
sample database, which is considered a huge challenge for large scale
landscape classification processes. The proposed strategies seek
contributions that demonstrate the application of citizen science
projects supporting human-environment related research by
complementing satellite observations and discussing novel
methods for the collection of land management data.

The challenge of the work is that the rapid growth of OSM only
started in 2013, and as such, the database has improved from both user
numbers and quality perspectives, across the study period. From 2013 to
2018 is a relatively short time, only 5 years, to make a significant
conclusion or assessment about any types of longer-term changes or
drivers. Despite this limitation due to the short time-duration of this
data source, however, this study shows a strong potential for mapping
land change and human footprints at the regional scale by using VGI
derived datasets as land-use indicators and proxies.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://doi.org/10.6084/m9.figshare.
11406612.v1.

Author contributions

Conceptualization: DY and C-SF Methodology and software: DY
Validation: C-SF Formal analysis: DY and C-SF Materials: DY
Writing—original draft preparation: DY Writing—review and
editing: DY, C-SF, HH, JS, MB Visualization: DY, C-SF, and MB
Supervision: JS, and MB Funding acquisition: DY led the
conceptualization of the research study and was primarily
responsible for developing the methodology and software used in
the study. DY wrote the initial draft of the manuscript and was heavily
involved in the writing and editing process throughout. DY was also
involved in visualization of the data. C-SF contributed to the
conceptualization of the study, led the validation of the results,
and provided overall supervision and guidance throughout the

Frontiers in Remote Sensing frontiersin.org13

Yang et al. 10.3389/frsen.2023.1197523

190

https://doi.org/10.6084/m9.figshare.11406612.v1
https://doi.org/10.6084/m9.figshare.11406612.v1
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1197523


research process. They were involved in writing and editing the
manuscript and securing funding for the research. HH and JS
contributed to the writing and editing of the manuscript. MB
contributed to the supervision of the research study, provided
overall guidance and leadership throughout the research process.
He also involved in writing and editing of the manuscript. All
authors contributed to the article and approved the submitted version.

Funding

The National Science Foundation (NSF #EF-1231860, and #EF-
1702835, NSF-2305683) for the generous support of this project.

Acknowledgments

We extend our deepest gratitude to the contributors of
OpenStreetMap, whose tireless efforts have provided invaluable
data for our geographical analyses. We also wish to express our

appreciation to Google Earth Engine for their innovative platform
that has significantly enhanced our research capabilities. Special
thanks are due to Peter Waylen and Greg Glass for their insightful
reviews and constructive feedback.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Antoniou, V., Costa Fonte, C., See, L., Estima, J., Arsanjani, J., Lupia, F., et al. (2016).
Investigating the feasibility of geo-tagged photographs as sources of land cover input
data. ISPRS Int. J. Geo-Information 5 (5), 64. doi:10.3390/ijgi5050064

Antoniou, V., and Skopeliti, A. (2015). Measures and indicators of vgi quality: An
overview. ISPRS Ann. Photogrammetry, Remote Sens. Spatial Inf. Sci. 2, 345–351. doi:10.
5194/isprsannals-ii-3-w5-345-2015

Ballatore, A., and Mooney, P. (2015). Conceptualising the geographic world: The
dimensions of negotiation in crowdsourced cartography. Int. J. Geogr. Inf. Sci. 29 (12),
2310–2327.

Becknell, J. M., Desai, A. R., Dietze, M. C., Schultz, C. A., Starr, G., Duffy, P. A., et al.
(2015). Assessing interactions among changing climate, management, and disturbance in
forests: A macrosystems approach. BioScience 65 (3), 263–274. doi:10.1093/biosci/biu234

Breiman, L. (2001). Random forests. Mach. Learn. 45 (1), 5–32. doi:10.1023/a:
1010933404324

Briassoulis, H. (2020). Analysis of land use change: Theoretical and modeling
approaches. 2nd edn. Edited by Scott Loveridge and Randall Jackson. WVU
Research Repository.

Carey, R. O., Migliaccio, K. W., Li, Y., Schaffer, B., Kiker, G. A., and Brown, M. T.
(2011). Land use disturbance indicators and water quality variability in the Biscayne
Bay Watershed, Florida. Ecol. Indic. 11 (5), 1093–1104. doi:10.1016/j.ecolind.2010.
12.009

Chander, G., Markham, B. L., and Helder, D. L. (2009). Summary of current
radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1
ALI sensors. Remote Sens. Environ. 113 (5), 893–903. doi:10.1016/j.rse.2009.
01.007

Comber, A. J. (2008). The separation of land cover from land use using data
primitives. J. Land Use Sci. 3 (4), 215–229.

DeFries, R., Hansen, A., Turner, B. L., Reid, R., and Liu, J. (2007). Land use change
around protected areas: Management to balance human needs and ecological function.
Ecol. Appl. 17 (4), 1031–1038. doi:10.1890/05-1111

Dickinson, J. L., Shirk, J., Bonter, D., Bonney, R., Crain, R. L., Martin, J., et al. (2012).
The current state of citizen science as a tool for ecological research and public
engagement. Front. Ecol. Environ. 10 (6), 291–297.

Duncker, P. S., Barreiro, S. M., Hengeveld, G. M., Lind, T., Mason, W. L., Ambrozy, S.,
et al. (2012). Classification of forest management approaches: A new conceptual
framework and its applicability to European forestry. Ecol. Soc. 17 (4).

Dunford, W., and Freemark, K. (2005). Matrix matters: Effects of surrounding land
uses on forest birds near ottawa, Canada. Landsc. Ecol. 20 (5), 497–511. doi:10.1007/
s10980-004-5650-5

Espírito-Santo, F. D., Gloor, M., Keller, M., Malhi, Y., Saatchi, S., Nelson, B., et al.
(2014). Size and frequency of natural forest disturbances and the Amazon forest carbon
balance. Nat. Commun. 5, 3434. doi:10.1038/ncomms4434

Estima, J., and Painho, M. (2013). “Exploratory analysis of openStreetMap for land
use classification,” in Paper presented at The Second ACM SIGSPATIAL International

Workshop on Crowdsourced and Volunteered Geographic Information,
GEOCROWD’13, Orlando, FL, United States, November 5–8, 39–46.

Fahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount
hypothesis. J. Biogeogr. 40 (9), 1649–1663. doi:10.1111/jbi.12130

Fischlin, A., Midgley, G. F., Price, J. T., Leemans, R., Gopal, B., Turley, C., et al. (2007).
Ecosystems, their properties, goods and services.

Forman, R. T. T. (2014). Land mosaics: The ecology of landscapes and regions 1995.
Island Press, 217.

Franklin, J. F., Norman Johnson, K., and Johnson, D. L. (2018). Ecological forest
management. Waveland Press.

Girres, J. F., and Touya, G. (2010). Quality assessment of the French OpenStreetMap
Dataset. Trans. GIS. 14 (4), 435–459.

Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography.
GeoJournal 69 (4), 211–221. doi:10.1007/s10708-007-9111-y

Goodchild, M. F., and Glennon, J. A. (2010). Crowdsourcing geographic information
for disaster response: A research frontier. Int. J. Digital Earth 3 (3), 231–241. doi:10.
1080/17538941003759255

Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N., et al.
(2017). Theoretical foundations of human decision-making in agent-based land use
models – a review. Environ. Model. Softw. 87, 39–48. doi:10.1016/j.envsoft.2016.10.008

Haklay, M. (2010). How good is volunteered geographical information? A
comparative study of OpenStreetMap and ordnance survey datasets. Environ. Plan.
B Plan. Des. 37 (4), 682–703. doi:10.1068/b35097

Haklay, M., and Weber, P. (2008). Openstreetmap: User-generated street maps. Ieee
Pervas Comput. 7 (4), 12–18. doi:10.1109/mprv.2008.80

Hansen, A. J., and Ruth, D. F. (2007). Ecological mechanisms linking protected areas
to surrounding lands. Ecol. Appl. 17 (4), 974–988. doi:10.1890/05-1098

Hawbaker, T. J., and Radeloff, V. C. (2004). Roads and landscape pattern in northern
Wisconsin based on a comparison of four road data sources. Conserv. Biol. 18 (5),
1233–1244. doi:10.1111/j.1523-1739.2004.00231.x

Heilman, G. E., Strittholt, J. R., Slosser, N. C., and Dellasala, D. A. (2002). Forest
fragmentation of the conterminous United States: Assessing forest intactness through
road density and spatial characteristics. AIBS Bull. 52 (5), 411–422. doi:10.1641/0006-
3568(2002)052[0411:ffotcu]2.0.co;2

Hurskainen, P., Adhikari, H., Siljander, M., Pellikka, P. K. E., and Hemp, A. (2019).
Auxiliary datasets improve accuracy of object-based land use/land cover classification in
heterogeneous savanna landscapes. Remote Sens. Environ. 233, 111354. doi:10.1016/j.
rse.2019.111354

Kramer, D. B., and Doran, P. J. (2010). Land conversion at the protected area’s edge.
Conserv. Lett. 3 (5), 349–358. doi:10.1111/j.1755-263x.2010.00122.x

Lambin, E. F., and Meyfroidt, P. (2011). Global land use change, economic
globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. 108 (9),
3465–3472. doi:10.1073/pnas.1100480108

Frontiers in Remote Sensing frontiersin.org14

Yang et al. 10.3389/frsen.2023.1197523

191

https://doi.org/10.3390/ijgi5050064
https://doi.org/10.5194/isprsannals-ii-3-w5-345-2015
https://doi.org/10.5194/isprsannals-ii-3-w5-345-2015
https://doi.org/10.1093/biosci/biu234
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1016/j.ecolind.2010.12.009
https://doi.org/10.1016/j.ecolind.2010.12.009
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1890/05-1111
https://doi.org/10.1007/s10980-004-5650-5
https://doi.org/10.1007/s10980-004-5650-5
https://doi.org/10.1038/ncomms4434
https://doi.org/10.1111/jbi.12130
https://doi.org/10.1007/s10708-007-9111-y
https://doi.org/10.1080/17538941003759255
https://doi.org/10.1080/17538941003759255
https://doi.org/10.1016/j.envsoft.2016.10.008
https://doi.org/10.1068/b35097
https://doi.org/10.1109/mprv.2008.80
https://doi.org/10.1890/05-1098
https://doi.org/10.1111/j.1523-1739.2004.00231.x
https://doi.org/10.1641/0006-3568(2002)052[0411:ffotcu]2.0.co;2
https://doi.org/10.1641/0006-3568(2002)052[0411:ffotcu]2.0.co;2
https://doi.org/10.1016/j.rse.2019.111354
https://doi.org/10.1016/j.rse.2019.111354
https://doi.org/10.1111/j.1755-263x.2010.00122.x
https://doi.org/10.1073/pnas.1100480108
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1197523


Lawler, J. J., Lewis, D. J., Nelson, E., Plantinga, A. J., Polasky, S., Withey, J. C., et al.
(2014). Projected land-use change impacts on ecosystem services in the United States.
Proc. Natl. Acad. Sci. 111 (20), 7492–7497. doi:10.1073/pnas.1405557111

Li, X., Elvidge, C., Zhou, Y., Cao, C., and Warner, T. (2017). Remote sensing of
night-time light. Int. J. Remote Sens. 38 (21), 5855–5859. doi:10.1080/01431161.2017.
1351784

Marsik, M., Staub, C. G., Kleindl, W. J., Hall, J. M., Fu, C. S., Yang, D., et al. (2018).
Regional-scale management maps for forested areas of the Southeastern
United States and the US Pacific Northwest. Sci. data 5, 180165. doi:10.1038/
sdata.2018.165

Miller, S. D., Straka, W., Mills, S. P., Elvidge, C. D., Lee, T. F., Solbrig, J., et al. (2013).
Illuminating the capabilities of the suomi national polar-orbiting partnership (NPP)
visible infrared imaging radiometer suite (VIIRS) day/night band. Remote Sens. 5 (12),
6717–6766. doi:10.3390/rs5126717

Mobasheri, A., Zipf, A., and Francis, L. (2018). OpenStreetMap data quality enrichment
through awareness raising and collective action tools—Experiences from a European project.
Geo-spatial Inf. Sci. 21 (3), 234–246. doi:10.1080/10095020.2018.1493817

Neis, P., and Zielstra, D. (2014). Recent developments and future trends in
volunteered geographic information research: The case of OpenStreetMap. Future
Internet 6 (1), 76–106. doi:10.3390/fi6010076

Neis, P., Zielstra, D., and Zipf, A. (2011). The street network evolution of
crowdsourced maps: OpenStreetMap in Germany 2007–2011. Future Internet 4
(1), 1–21.

Radeloff, V. C., Stewart, S. I., Hawbaker, T. J., Gimmi, U., Pidgeon, A. M., Flather, C.
H., et al. (2010). Housing growth in and near United States protected areas limits their
conservation value. Proc. Natl. Acad. Sci. 107 (2), 940–945. doi:10.1073/pnas.
0911131107

Reed, R. A., Johnson Barnard, J., and Baker, W. L. (1996). Contribution of roads to
forest fragmentation in the Rocky Mountains. Conserv. Biol. 10 (4), 1098–1106. doi:10.
1046/j.1523-1739.1996.10041098.x

Riitters, K. H.,Wickham, J. D., O’neill, R. V., Jones, K. B., Smith, E. R., Coulston, J.W., et al.
(2002). Fragmentation of continental United States forests. Ecosystems 5 (8), 0815–0822.

Sanchez-Azofeifa, G. A. (1996). Assessing land use/cover change in Costa Rica.
University of New Hampshire.

Schulte, L. A., Mladenoff, D. J., Crow, T. R., Merrick, L. C., and Cleland, D. T. (2007).
Homogenization of northern US Great Lakes forests due to land use. Landsc. Ecol. 22
(7), 1089–1103. doi:10.1007/s10980-007-9095-5

Simard, M., Pinto, N., Fisher, J. B., and Baccini, A. (2011). Mapping forest canopy
height globally with spaceborne lidar. J. Geophys. Res. Biogeosciences 116 (G4), G04021.
doi:10.1029/2011jg001708

Sohl, T., and Sayler, K. (2008). Using the FORE-SCE model to project land-cover
change in the southeastern United States. Ecol. Model. 219 (1-2), 49–65. doi:10.1016/j.
ecolmodel.2008.08.003

Southworth, J., and Muir, C. (2021). Specialty grand challenge: Remote sensing time
series analysis. Front. Remote Sens. 2. doi:10.3389/frsen.2021.770431

Sutton, P. C., Anderson, S. J., Elvidge, C. D., Tuttle, B. T., and Ghosh, T. (2009).
Paving the planet: Impervious surface as proxy measure of the human ecological
footprint. Prog. Phys. Geogr. 33 (4), 510–527.

Theobald, E. J., Ettinger, A. K., Burgess, H. K., DeBey, L. B., Schmidt, N. R., Froehlich,
H. E., et al. (2015). Global change and local solutions: Tapping the unrealized potential
of citizen science for biodiversity research. Biol. Conserv. 181, 236–244. doi:10.1016/j.
biocon.2014.10.021

TIGER (2015). Cartographic boundary – urban areas. prepared by the U.S. Census
Bureau. Available from https://www.census.gov/geo/maps-data/data/kml/kml_ua.html.

Turner, B. L. (1994). Local faces, global flows: The role of land use and land cover in
global environmental change. LandDegrad. Dev. 5 (2), 71–78. doi:10.1002/ldr.3400050204

Turner, M. G., Wear, D. N., and Flamm, R. O. (1996). Land ownership and land-cover
change in the southern Appalachian highlands and the Olympic Peninsula. Ecol. Appl. 6
(4), 1150–1172. doi:10.2307/2269599

Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., and
Mastura, S. S. (2002). Modeling the spatial dynamics of regional land use: The
CLUE-S model. Environ. Manag. 30 (3), 391–405. doi:10.1007/s00267-002-2630-x

Verburg, P. H., Van De Steeg, J., Veldkamp, A., and Willemen, L. (2009). From land
cover change to land function dynamics: A major challenge to improve land
characterization. J. Environ. Manag. 90 (3), 1327–1335. doi:10.1016/j.jenvman.2008.
08.005

Wassenaar, T., Gerber, P., Verburg, P. H., Rosales, M., Ibrahim, M., and Steinfeld, H.
(2007). Projecting land use changes in the Neotropics: The geography of pasture expansion
into forest. Glob. Environ. Change 17 (1), 86–104. doi:10.1016/j.gloenvcha.2006.03.007

Wear, D. N., and Greis, J. G. (2002). Southern forest resource assessment: Summary of
findings. J. For. 100 (7), 6–14.

Wear, D. N., and Greis, J. G. (2012). “The southern forest futures project: Summary
report,” in Gen. Tech. Rep. SRS-GTR-168 (Asheville, NC: USDA-Forest Service,
Southern Research Station), 168, 1–54.

Wear, D. N., and Greis, J. G. (2013). “The southern forest futures project: Technical
report,” in Gen. Tech. Rep. SRS-GTR-178 (Asheville, NC: USDA-Forest Service,
Southern Research Station), 178, 1–542.

Yang, D., Fu, C. S., Smith, A. C., and Yu, Q. (2017). Open land-use map: A regional
land-use mapping strategy for incorporating OpenStreetMap with Earth observations.
Geo-spatial Inf. Sci. 20 (3), 269–281. doi:10.1080/10095020.2017.1371385

Zielstra, D., and Hochmair, H. H. (2011). Digital street data: Free versus proprietary.
GIM Int. 25, 29–33.

Zuckerberg, B., and Porter, W. F. (2010). Thresholds in the long-term responses of
breeding birds to forest cover and fragmentation. Biol. Conserv. 143 (4), 952–962.
doi:10.1016/j.biocon.2010.01.004

Frontiers in Remote Sensing frontiersin.org15

Yang et al. 10.3389/frsen.2023.1197523

192

https://doi.org/10.1073/pnas.1405557111
https://doi.org/10.1080/01431161.2017.1351784
https://doi.org/10.1080/01431161.2017.1351784
https://doi.org/10.1038/sdata.2018.165
https://doi.org/10.1038/sdata.2018.165
https://doi.org/10.3390/rs5126717
https://doi.org/10.1080/10095020.2018.1493817
https://doi.org/10.3390/fi6010076
https://doi.org/10.1073/pnas.0911131107
https://doi.org/10.1073/pnas.0911131107
https://doi.org/10.1046/j.1523-1739.1996.10041098.x
https://doi.org/10.1046/j.1523-1739.1996.10041098.x
https://doi.org/10.1007/s10980-007-9095-5
https://doi.org/10.1029/2011jg001708
https://doi.org/10.1016/j.ecolmodel.2008.08.003
https://doi.org/10.1016/j.ecolmodel.2008.08.003
https://doi.org/10.3389/frsen.2021.770431
https://doi.org/10.1016/j.biocon.2014.10.021
https://doi.org/10.1016/j.biocon.2014.10.021
https://www.census.gov/geo/maps-data/data/kml/kml_ua.html
https://doi.org/10.1002/ldr.3400050204
https://doi.org/10.2307/2269599
https://doi.org/10.1007/s00267-002-2630-x
https://doi.org/10.1016/j.jenvman.2008.08.005
https://doi.org/10.1016/j.jenvman.2008.08.005
https://doi.org/10.1016/j.gloenvcha.2006.03.007
https://doi.org/10.1080/10095020.2017.1371385
https://doi.org/10.1016/j.biocon.2010.01.004
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1197523


Analysis of past and future urban
growth on a regional scale using
remote sensing and machine
learning

Andressa Garcia Fontana1*, Victor Fernandez Nascimento2,
Jean Pierre Ometto3 and Francisco Hélter Fernandes do Amaral4

1Graduate Program in Remote Sensing, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil,
2Engineering, Modelling, and Applied Social Sciences Center, Federal University of ABC (UFABC), Santo
André, Brazil, 3National Institute for Space Research, São José dos Campos, Brazil, 4Department of
Graduate Studies in Geography, Paulista State University Júlio de Mesquita Filho, Presidente Prudente,
Brazil

This research investigates Land Use and Land Cover (LULC) changes in the Porto
Alegre Metropolitan Region (RMPA). A 30-year historical analysis using Landsat
satellite imagery was made and used to develop LULC scenarios for the next
20 years using a Multilayer Perceptrons (MLP) model through an Artificial Neural
Network (ANN). These maps analyze the urban area’s expansion over the years and
project their potential development in the future. This research considered several
critical factors influencing urban growth, including shaded relief, slope, distances from
main roadways, railway stations, urban centers, and the state capital, Porto Alegre.
These spatial variables were incorporated into the model’s learning processes to
generate future urbanization scenarios. The LULC historical maps precision showed
excellent performancewith a Kappa index greater than 88% for the studied years. The
results indicate that the urbanization class witnessed an increase of 236.78 km2

between 1990 and 2020. Additionally, it was observed that the primary
concentration of urbanized areas since 1990 has predominantly occurred around
Porto Alegre and Canoas. Lastly, the future forecasts for LULC changes in 2030 and
2040 indicate that the urban area of the RMPA is projected to reach 1,137.48 km2 and
1,283.62 km2, respectively. In conclusion, based on the observed urban perimeter in
2020, future projections indicate that urban areas are expected to increase by more
than 443.29 km2 by 2040. The combination of remote sensing data and Geographic
Information System (GIS) enables themonitoring andmodeling themetropolitan area
expansion. The findings provide valuable insights for policymakers to develop more
informed and conscientious urban plans, aswell as enhancemanagement techniques
for urban development.

KEYWORDS

predicted LULC, ANN-CA, GEE, MOLUSCE, scenarios

1 Introduction

Changes in land use and land cover (LULC) are related to human activity, which tends to
reside in cities in search of jobs, educational opportunities and access to better health services.
Thus, due to economic growth, urbanization increases rapidly. Loss of natural areas and global
climate change are just a few examples of environmental problems caused by LULC changes
(Meraj et al., 2022). The transitions in built-up areas expansion could significantly impact the
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population’s quality of life (Ashaolu et al., 2019). Therefore, it is crucial
to conduct urban expansion simulations.

There are various models available to simulate future scenarios,
including regression models (Hu and Lo, 2007), cellular automata
(Chen et al., 2016), and Markov chain models (Arsanjani et al.,
2011), among others. The advancement of computational
technology has enabled the integration of machine learning
algorithms into studies involving cellular automata (CA) models.
Algorithms such as Artificial Neural Network (ANN) (Li and Yeh,
2002), Support Vector Machine (SVM) (Yang et al., 2008), and
Genetic Algorithm (GA) (Li et al., 2013) have been utilized to tackle
challenges associated with parameter optimization in CA models.
These methods optimize the model parameters to achieve the best
possible results, effectively addressing simulation challenges related
to multiple spatial variables.

However, there are different CA Models variants created to
simulate urban sprawl change, such as SLEUTH (Clarke et al., 1997),
the dynamic urban evolution model (Batty, 1997), the multicriteria
decision analysis with cellular automato (MCDA-CA) (Wu and
Webster, 2000), the multi-agent simulation model (MAS-CA)
(Ligtenberg et al., 2001), the Voronoi-CA model (Shi and Pang,
2000), and the Markov-CA model (Vaz et al., 2014). This study
conducted the urban sprawl simulation and the future LULC
scenarios for the Porto Alegre Metropolitan Region (RMPA)
using CA through the Modules of Land Use Change Evaluation
(MOLUSCE) plugin within the QGIS software.

With a user-friendly and intuitive interface, MOLUSCE
incorporates the Markovian-based probability matrix potential
transition logic and a dynamic simulation framework based on
Artificial Neural Networks (ANNs), Logistic Regression (LR), Multi-
Criteria Evaluation (MCE),Weights of Evidence (WoE) models, and
Multilayer Perceptrons (MLP) (Abbas et al., 2021). This study
utilized the MLP model, an ANN type with supervised learning.
They are commonly employed in pattern classification and tackling
complex problems using the error backpropagation algorithm due to
their training rules (Haykin, 2001).

Remote sensing combined with the Geographic Information
System (GIS) has tools well-suited to assess LULC change.
Therefore, understanding regional and temporal LULC changes
benefits scientists, environmentalists, lawmakers, and urban
planners (Guidigan et al., 2019). LULC transition models aim to
predict when and how often such changes will occur. These future
prediction models are widely used by researchers globally and are
highly valuable in understanding past and future LULC change
patterns (Perović et al., 2018). In recent years, spatial-temporal
forecasting models utilizing CA have been developed to predict
LULC change detection. The CA-ANN model, in particular, has
emerged as a reliable tool used by researchers to analyze LULC
changes (Alam et al., 2021). The CA model has been employed in
urban planning studies due to its ability to integrate spatial and
temporal elements of processes seamlessly. It is also utilized to
examine temporal land-use changes and predict future land use
(Saputra and Lee, 2019).

The RMPA is one of the largest urban concentrations in Brazil,
housing approximately 4.4 million inhabitants. It is considered a
significant area to understand the LULC’s historical changes, as it
has experienced substantial urban expansion in recent decades
(IBGE, 2020). Therefore, recognizing and assessing the

environmental impacts arising from these rapid changes is crucial
(Prenzel, 2004). Furthermore, scenario predictions that incorporate
the temporal evolution of the study area are also significant (Bhatta,
2010). Therefore, historical LULC changes from 1990 to 2020 were
conducted in the RMPA since such analyses have not yet been
performed for this metropolitan area. In addition, this study also
aims to predict the LULC for the years 2030 and 2040 using two
different scenarios.

2 Materials and methods

Assessing, observing, and analyzing a LULC change requires
substantial data. The availability of satellite data captured by various
satellite sensors proves advantageous in LULC studies (Mishra and
Rai, 2016). The remote sensing image processing and analysis
methods employed in this study include cloud and noise
removal, spectral indices generation, Random Forest (RF)
classifier parameter tuning, and the generation and accuracy
evaluation of LULC classification maps were conducted in the
Google Earth Engine (GEE) environment. Afterward, an artificial
neural network with a cellular automaton (ANN-CA) was employed
to model future LULC scenarios in the QGIS software. This
approach relied on space-time transition potential matrices of the
LULC classes and independent spatial variables. This study’s
methodological steps will be detailed in the following subsections
and are shown in the flowchart (Figure 1).

2.1 Study area

The Porto Alegre Metropolitan Region (RMPA) is located in the
Rio Grande do Sul state in Brazil (Figure 2). The RMPA was created
in 1973 by Federal Complementary Law 14/73, currently comprises
34 municipalities with 10,335 km2, and is Brazil’s fifth most
populous metropolitan region. The RMPA is a pole of attraction
and integration for political and socioeconomic dynamics.
Previously, this characteristic was primarily observed in Porto
Alegre and the most populous cities, but it has now extended to
the surrounding municipalities. The RMPA experiences significant
economic expansion as many individuals are drawn to the region by
employment opportunities. This flux of people has contributed to
the area’s robust economic growth within the state over the years
(Secretaria de Planejamento, 2020).

2.2 Dataset

In this study, satellite data from Landsat-5 (sensor: TM) for the
years 1990 and 2000, Landsat-7 (sensor: TM+) for the year 2010, and
Landsat-8 (sensor: OLI) for the year 2020 were chosen between June
and October to minimize visual obstruction caused by cloud cover.
These datasets were accessed automatically from the United States
Geological Survey (USGS) database within the GEE platform.

The independent spatial variables for the CA-ANN model for
the future scenarios in this study were constructed using the road,
railway network data, the Porto Alegre capital location, the other
municipality’s downtown locations, and a Digital Elevation Model
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(DEM). These spatial variables were integrated into the model to
capture and represent relevant geographical and transportation
features of the study area.

This study’s declivity (slope) and shaded relief data were derived
from the Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model at a 30 m spatial resolution. This data was
downloaded from the NASA Earth Data website (https://search.
earthdata.nasa.gov/) and accessed in June 2022. These data provide
information about the slope and the terrain shade, essential variables
for analyzing LULC changes in the study area. The vector layers of
roads, railway stations, and municipal downtown locations were
obtained from the OpenStreetMap project (https://www.
openstreetmap.org/), an independent mapping collaborative
project which provides freely accessible data.

This study calculated several Euclidian distance maps based on
the vector layers, including the distance to the road, railway
structures, the city’s downtown, and the capital Porto Alegre
(Figure 3). Calculating these distances provides valuable spatial
information and helps analyze the relationship between LULC
changes and their proximity to transportation infrastructure and
urban centers. According to Sajan et al. (2022), road and railway
stations significantly shape the LULC dynamic conditions. These
transportation infrastructure layers can influence LULC changes
and patterns in a given area. The roads and railroads can impact
accessibility, urban expansion, and the spatial distribution of
different land use categories. Therefore, considering their
influence is essential in understanding and predicting future
LULC dynamics.

FIGURE 1
Methodology flowchart.
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2.3 Pre-processing multitemporal satellite
data

Cloud masking was employed to remove both cloud coverage
and their corresponding shadows from each time series
collection. This technique eliminates all contaminated pixels
caused by cloudiness or no-data conditions, ensuring that only
clear and useable data is retained for further analysis (Langner
et al., 2018; Pimple et al., 2018). By eliminating the cloud’s
influence, the accuracy and reliability of subsequent analyses
and interpretations are significantly improved.

Next, the data from multiple sources for each time slot were
combined into specific data stacks using the median filter, a
common technique used in image processing to reduce noise and
preserve spatial data integrity. By applying it, the resulting data stacks
represent the median values of the input data, effectively decreasing the
outlier’s impact and enhancing the dataset’s overall quality.

For the supervised classification process, in addition to the
conventional bands (B2, B3, B4, and B5 for all the Landsat
family sensor collections), spectral indices such as the
Normalized Difference Vegetation Index (NDVI), Normalized
Difference Built-Up Index (NDBI), and Modified Normalized
Difference Water Index (MNDWI) were used.

These spectral indices provide additional information that helps
distinguish different LULC classes. The NDVI is commonly used to
assess vegetation density and health, with higher values indicating
denser and healthier vegetation Eq. 1. The NDBI highlights built-up
areas, with higher values indicating a higher proportion of built-up
surfaces Eq. 2. The MNDWI is sensitive to water bodies, with higher

values indicating the water presence Eq. 3. Although NDWI is
widely used to detect water bodies, MNDWI performs better
when the water body is mixed with vegetation (Xu, 2006).
Therefore, incorporating these indices into the classification
process allows a more LULC comprehensive analysis, capturing
essential characteristics related to vegetation, built-up areas, and
water bodies, which can improve the accuracy and effectiveness of
the classification results.

NDVI � NIR − RED( )
NIR + RED( ) (1)

NDBI � SWIR1 −NIR( )
SWIR1 +NIR( ) (2)

MNDWI � GREEN − SWIR1( )
GREEN + SWIR1( ) (3)

where red (RED), near-infrared (NIR), green (GREEN), and short-
wave infrared (SWIR1) are the satellite’s bands. These three spectral
indices were added as three bands to each image stack. Finally, the
new stacked image was then used in the RF classifier.

2.4 Machine learning algorithms

The LULC classes used in this study were Cropland, Built-up,
Grasslands, Water, Natural Forest, and Planted Forest. Approximately
300–400 polygonal samples were obtained for each class in the
classification process. The samples were divided into two sets: 70%
were randomly selected for model training, while the remaining 30%
were used to validate the LULC maps. These polygons were uniformly

FIGURE 2
Porto Alegre Metropolitan Region (RMPA) location.
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selected across the study area, with the assistance of high-resolutionGoogle
Earth images.

According to Breiman (2001), the RF classification algorithm is
based on an ensemble learning technique that combines multiple
independent decision trees into a single model. Each tree in the RF is
trained on a random dataset subset, where a data subsample is
randomly selected for training. The tree is constructed during the
process by recursively partitioning the dataset into smaller subsets
based on decision rules derived from the data’s features. Each node
corresponds to a question about the data, and each branch
represents a possible answer. This building tree process enables
the model to learn the relationship between the features of the data
and their respective classes. During the classification phase, each tree
is utilized to classify the image independently, and the final
classification is determined by aggregating the results of all the
trees and assigning the most common class to each pixel.

In the remote sensing image classification, two adjustable
parameters are crucial in the algorithm: the decision trees number
to be generated and the minimum number of nodes. These parameters
are considered “floating” because their values can be adjusted based on
the data-specific characteristics and the desired classification results.
Although, studies such as Pelletier et al. (2016) indicate that the change
in parameter values interferes little with the finalmodel outcome. In this
sense, the decision tree value was set as 50.

After generating the classification results, addressing local
noise, commonly referred to as the “salt and pepper” effect, in

the pixel-based classification is recommended. This can be achieved
by applying a smoothing process using a moving window of size
three on the classified image. The smoothing can be performed
iteratively in three iterations using the majority vote rule. Therefore,
this approach was conducted and helped reduce the impact of
isolated misclassifications and improve the overall accuracy of the
classification.

2.5 Accuracy assessment

As Huang et al. (2017) described, a contingency or confusion
matrix was created using 30% of the sample data reserved for validation
to assess the accuracy of the LULC classifications. The confusionmatrix
compares the predicted classes with the actual classes and
comprehensively assesses the classification performance. It consists
of cells representing the counts of true positives and negatives, false
positives and negatives. By analyzing the values in the matrix, various
accuracy metrics can be calculated, such as overall, producer’s, and
user’s accuracies and the Kappa index (K). This evaluation process helps
in understanding the quality and reliability of the classification results
and identifying areas of improvement if necessary.

A confusion matrix is an algorithm built into GEE, which
validates and evaluates the image classification accuracy. With
the confusion matrix, the K and overall accuracy (OA) are
calculated Eqs 4–6:

FIGURE 3
(A) altimetry; (B) slope; (C) shaded relief; (D) distance from Porto Alegre; (E) distance from railway stations; (F) distance from urban centers;
(G) distance from roads.
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OA � ∑n
i�1xii

N
× 100% (4)

PA � xii

x+i
x100% (5)

UA � xii

xi+
× 100% (6)

where N refers to the rows and columns number in the errormatrix, Xii
corresponds to the number of observations in row i and column i, xi+ is
the row i marginal total, and X + i equals the column i marginal total.

The User Accuracy (UA) for each class is assessed by the
proportion of pixels correctly associated with a given class
relative to the total number of classified pixels. Similarly,
Producer Accuracy (PA) is determined by the ratio of correctly
classified pixels to the total number of pixels in the reference data in
each LULC class. Proportional error reduction is determined by
comparing the errors of a classification class to the errors of a
completely random class. Typically, the magnitude ranges
from −1 to +1. The coherence level is considered adequate when
it is greater than + 0.5. The statistics used to evaluate the accuracy of
LULC maps are metrics established in the literature (Jensen and
Cowen, 1999; Congalton and Green, 2009).

The Kappa index is widely used for evaluating the LULC
classification’s accuracy. However, as mentioned in studies such
as Foody (2010), it has certain limitations and considerations that
should be considered when interpreting its results. It measures the
agreement between the observed classifications and the reference
data, considering the agreement that could occur by chance. It
considers the confusion matrix’s diagonal (agreement) and off-
diagonal (disagreement) elements. Usually, the K can be
influenced by class frequency distribution, sample size, and
confusion matrix structure. For example, if a particular class is
highly dominant or rare in the dataset, it may disproportionately
affect the results. Despite these limitations, the K is still widely used
as an indirect indicator of classification accuracy, providing a single
value that summarizes the agreement between the classifiedmap and
the reference data. However, interpreting it with other accuracy
measures and considering the dataset-specific characteristics and
classification process limitations is essential.

2.6 ANN-CA model

This study utilized theMOLUSCE plugin, which operates within
the QGIS 2.18.10 software, to develop future LULC scenarios for the
RMPA region in 2030 and 2040. The prospective model employed
the ANN-CA method, which offers several advantages, including its
ability to handle complex data, exhibit strong prediction
performance, and require minimal pre-processing of input data
(Abbas et al., 2021).

2.7 Correlation between geographical
variables in the CA-ANN

Pearson’s coefficient was estimated to evaluate the linear
correlation between the independent geographic variables,
LULC spatial-temporal changes conditioners. This coefficient

ranges from −1 to +1, where −1 indicates a perfect negative
correlation, +1 indicates a perfect positive correlation, and
0 indicates no linear correlation between the variables. After
calculating Pearson’s coefficient, it was found that the variables
with the highest correlation with each other include the distance
from stations and roads, urban centers and Porto Alegre, shaded
relief and distance from roads, distance from urban centers and
shaded relief.

2.8 Transition potential modeling

To correctly develop future scenarios, preparing the input layers
must demand special attention from the users since the input layers’
inconsistencies in geometry, pixel size, and projection affect the
results. Thus, all dependent and independent variables were set to
contain the exact spatial resolution of 30 m/pixel and
SIRGAS2000 Datum, 23 S UTM zone projection. Among the
simulation models, the ANN seeks to establish a sigmoid
function numpy. tanh, which is responsible for resizing the
intervals of the transition categories to (y 1,1) during the
configuration of the predictive scenarios (Rahman et al., 2017).

This model encompasses the complex dynamic relationships
logic, which has proven to be highly suitable for modeling temporal
transformations in land use as described in the works of Perović et al.
(2018), and six steps support its execution model, the first being the
loading of inputs comprising the LULC layers associated with the
RMPA physical-social characterization layers.

In the next step, the level of correlation between the first period
and the second period are quantified through the consistency values
present in the intersection between the independent variables, which
can be calculated through Pearson’s equation, Crammer’s
coefficient, or uncertainty of the joint information. In the third
step, the quantitative changes in the area of the use and cover classes
between 2000 and 2010 are stipulated, as well as their expansion or
retraction process, represented in km2.

In addition to generating a transition map that is responsible for
guiding the next step, focused on modeling the transition potential,
being the basis for applying the ANN, MLP, which operates the
transition model based on the collection of input variables, guided
by additional parameters provided by the user, aiming to optimize
the ANN training model to obtain the most reliable result regarding
the 2020 usage and coverage scenario, the trial and error process was
adopted in the parameter adjustments during the fourth step, getting
the following optimized parameters: Iteration rate: 1,000, Learning
rate: 0.001, Momentum: 0.03, Neighborhood: 10 px, Hidden layer:
11. The prediction for the 2020 usage and coverage scenario was
performed using the CA simulation stage (Hakim et al., 2019).

After generating the projection map for the year 2020, it was
compared to the observed LULC map generated by the Randon
Forest classifier in the GEE for the same year. This comparison
aimed to evaluate the ANN-CAmodel prediction performance, then
the validation assessment was employed to calculate the Histogram
Kappa (HisK) Eq. 7, Overall Kappa (OvK) Eq. 8, Location Kappa
(LocK) Eq. 9 metrics, and the percentage of correction Eqs 10, 11.
These metrics play a crucial role in determining the model’s
performance.
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HisK � iPmax i − iP E( )
1 − iP E( ) (7)

Where, HisK is the kappa histogram value for the specific class
“i”, iPmax i is the maximum observed proportion of agreement for
the specific class “i”, and iP(E) is the expected proportion of
agreement for the specific class “ i”.

OvK � P A( ) − P E( )
1 − P E( ) (8)

Where, OvK is the overall kappa coefficient, P(A) is the observed
proportion of agreement, and P(E) is the expected proportion of
agreement.

LocK � P A( ) − P E( )
Pmax − P E( ) (9)

Where, LocK is the kappa location coefficient, P(A) is the
observed proportion of agreement, P(E) is the expected
proportion of agreement, and Pmax is the maximum observed
proportion of agreement.

P A( ) � ∑
cPii

i�1( )
,� ∑

cPiTPTi

i�1( )
(10)

PMax � ∑− i � 1( ) ∧c min PiTPTi( )([ ] (11)

Where, Pii is the proportion of units correctly classified for the
specific class “i”, PiT is the proportion of units of class “i” observed
in the reference classification, PTi is the proportion of units of class
“i” observed in the evaluated classification, P(A) is the correction
percentage, “c” is the total number of classes, and PMax is the
maximum possible value of P(A), considering all classes.

Afterward, the spatial similarity and consistency between them
can be assessed by comparing the actual LULC map with the future
scenarios generated by the CA-ANN model. The LoK quantifies
their spatial similarity relationship, indicating how well they align in
spatial distribution. On the other hand, the OvK assesses the
simulation performance, considering both spatial and non-spatial
comparison aspects. Both cases range between 0 and 1, where values
closer to 1 indicate a higher agreement, whereas values closer to
0 show a lower agreement between the compared factors. The
procedures were performed iteratively, using the trial and error
method. Therefore, several calibrations were tested on the model
parameters until the desired accuracy was achieved.

After obtaining the desired accuracy in the validation stage, the
future LULC projection scenarios for 2030 and 2040 began the last
modeling stage. Initially, the value of “n” in the time transition module
was modified to 2 and 3 in the Input tab of the plugin. This adjustment
wasmade to generate predictions when the input was set as 2000 for the
initial year and 2010 as the final year. The ANN spatiotemporal model
transition was conditioned to be equivalent to 10 years, ensuring a
consistent 10-year interval between the predicted years.

2.9 Annual LULC rate change analysis

In order to measure the annual LULC change rate for the
scenarios, the magnitude of change between the years of interest
was calculated as the difference between the end year and the start

year, then divided by the product between the start year and the
period covered Eq. 12 (Muhammad et al., 2022).

ACR 0 /

0( ) � Fy − Iy
Iy × t

× 100 (12)

where, ACR corresponds to the LULC class annual dynamics rate. Iy
and Fy comprise the LULC class area volume quantifications for the
initial and final year, respectively, and t is the time interval.

3 Results and discussions

3.1 LULC’s classifications assessment

Through the “explain” function executed by the GEE cloud
platform, each variable relevance level used for the LULC
classification scenarios was identified. This function assigns
contribution values to the variables based on the classification
results, where higher values indicate greater importance (Yang
et al., 2008). The normalized indices obtained intermediate scores
for all four classification models performed, while a more dynamic
relevance behavior is found in the spectral bands.

The LULC classes used in this study were Cropland, Built-up,
Grasslands, Water, Natural Forest, and Planted Forest. The Random
Forest algorithm was used to classify the LULC features
corresponding to 1990, 2000, 2010, and 2020 years based on
Landsat data and spectral indices. Each class in square kilometers
(km2) for the RMPA is shown in Table 1, which provides a
comprehensive overview of the spatial distribution and LULC
changes over time, spatially illustrated in Figure 4. The results of
the multitemporal statistical analysis of the LULC spatial dynamics
in the RMPA showed that from 1990 to 2020, there was a linear
growth of urban area and cropland, as can be seen in Table 1 which
shows the area estimates and change statistics of LULC classes for
each year under study.

Kappa statistics, producer, consumer and global precision were
used to evaluate the LULC maps derived from the supervised
classification carried out in the GEE for the years 1990, 2000,
2010 and 2020, which reached an excellent average precision of
0.9. The highest overall accuracy and K were found in 1990, with
0.92 and 0.91, respectively. In 2000, 2010 and 2020, the overall
accuracy and K values were 0.90 and 0.88, 0.90 and 0.88, 0.88 and
0.86, respectively. These results are in agreement with those found
by Phan et al. (2020), who used the RF classifier to produce LULC
maps with “moderate” to “high” accuracy, estimating overall
accuracy levels between 0.84 and 0.89, using different satellite
data, normalized indices, and radar data. The results observed by
Talukdar et al. (2020) evaluate the classification potential of several
machine learning and deep learning algorithms RF, SVM, ANN,
Fuzzy Adaptive Resonance Theory-supervised predictive Mapping
(Fuzzy ARTMAP), spectral angle mapper (SAM) and Mahalanobis
Distance (MD), the results indicate that the RF algorithm estimated
the highest accuracy levels, with 0.89.

Therefore, the accuracy values estimated in our classification
for the RMPA can be considered excellent accordingly
(Congalton and Green, 2009). For the commission and
omission errors in 1990, the grassland class suffered the most
pixel mixing with other classes, mainly cropland, reaching 24%
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and 15%, respectively. The same was observed for 2000 and 2010,
with 28% and 17%, and 23% and 11%, consumer and producer
errors, respectively. However, for 2020, the classes that showed
the most pixel mixtures were natural and planted forests, with
consumer and producer errors of 23% and 24%.

That way, the LULC classifications were consistent with the field
reality. Some questions remained open, especially regarding the
more suitable number of samples used in the validation process. In

this study, the volume of samples presented in the confusion
matrixes comprised 30% of the total volume of the samples
collected, reaching from 300 to 400 polygons per class, which is
usually used in other studies such as in Loukika et al. (2021), Pech-
May et al. (2022). However, in other studies, much larger sample
volumes have been used, such as in Yu et al. (2018). Therefore, we
recommend that future studies test the accuracy values with
different sample volumes to generate LULC validation.

TABLE 1 LULC areas from 1990 to 2020 in km2 and annual change rate (ACR) in percentage.

LULC class 1990 2000 2010 2020 ACR (%)

km2 % km2 % km2 % km2 %

Built-up 603.55 5.84 650.08 6.29 742.46 7.18 840.33 8.12 0.94

Cropland 1802.76 17.43 2052.79 19.85 2160.08 20.88 2300.83 22.25 0.72

Water 244.85 2.37 266.83 2.58 261.20 2.53 246.26 2.38 0.02

Grasslands 3799.30 36.73 3937.83 38.07 3313.14 32.03 3134.24 30.30 −0.71

Natural forest 3708.05 35.85 3210.58 31.04 2992.98 28.94 2860.56 27.66 −0.99

Planted Forest 184.43 1.78 224.82 2.17 873.04 8.44 960.69 9.29 2.69

FIGURE 4
Relationship between the 1990–2020 LULC maps.
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3.2 LULC spatial analysis changes between
1990 and 2020

LULC maps for the years 1990, 2000, 2010, and 2020, derived
from Landsat TM/ETM+/OLI datasets and spectral NDVI, NDBI,
andMNDWI indices, served as a basis for assessing the LULC class’s
spatial dynamics in the RMPA. The variations and estimated percent
area are presented in Table 2. Based on these data, it can be observed
that the LULC feature corresponding to the built-up in the RMPA
has undergone steady expansion since 1990, with a 0.9% annual
increase rate.

The most significant built-up area expansion was found between
2000 and 2010, approximately 14.2%, followed by the decade
2010–2020, 13.1%, and 1990–2000, 7.7%. In the last 30 years,
from 1990 to 2020, the overall built-up area expansion was
greater than 39.2%. The cropland area showed the most
significant growth between 1990 and 2000, with a more than
13.8% increase. While in the two following decades, the area
volume increased by 5.2% and 6.5% for the periods 2000 to
2010 and 2010 to 2020, respectively. In general, the cropland
area showed an increase bigger than 27.6% from 1990 to
2020 and 0.7% annual rate.

In contrast, natural forests presented a linear decrease, which
was most apparent between 1990 and 2000, reaching more than
13.4% suppression, followed by the decade 2010–2020, and
2000–2010, 4.4% and 6.7%, respectively. The native forest overall
decrease in the RMPA from 1990 to 2020 was greater than 22.8%
and about a 1.0% annual decrease rate. Although a natural forest
area reduction has been observed over the decades, the suppression
process is still linear, driven by built-up and cropland expansion.
The grassland areas decreased significantly between 2000 and 2010,
equivalent to approximately 15.8%, followed by the
2010–2020 decade, with a 5.4% decrease. However, it showed a
considerable increase of more than 13.4% between 1990 and 2000.
Even though the entire period of 1990–2020 presented a 17.5%
grassland decrease and 0.7% annual decrease rate. Notably, the
grassland areas in the RMPA have been replaced by built-up,
cropland, and planted forest areas.

The water bodies are composed mainly of the Jacuí, Gravataí,
Caí, and Sinos rivers, and in smaller expression lakes, ponds, and
small dams. In this study, the water LULC class has not changed
much over the years, which may be related to the precipitation

volume in the reference years used to select the satellite images.
During 1990 and 2000, the area increased by approximately 8.9%.
However, from 2000 to 2010, there was a decrease greater than 2.1%;
between 2010 and 2020, this decrease is even more significant,
reaching more than 5.7%. In general, the water gain in the
RMPA from 1990 to 2020 was only 0.58%, representing only a
0.02% annual rate increase.

In this study, the LULC class called “planted forest”
indicated the spaces with Acacia, Eucalyptus, and Pinus forest
crops, which are economically important for the Rio Grande do
Sul state and Brazil’s national territory. The most significant
increase occurred between 2000 and 2010, when the planted
forest class more than doubled, followed by the 1990–2000 and
2010–2020 periods, with increases of 21.9% and 10.0%,
respectively. The overall increase in planted forest from
1990 to 2020 more than quadrupled, and the annual growth
rate was around 2.7%. The LULC spatial dynamic transition
evaluation between 1990 and 2020 revealed a remarkable
expansion in impervious surfaces and cropland to the
detriment of forest and grassland (Table 2).

It can be seen that grassland, natural forests, cropland, planted
forests, and water contributed 1.41%, 0.98%, 0.85%, 0.03%, and
0.02% to built-up class increase, respectively. The natural forest,
along with the grassland, were the ones that contributed the most to
the inter-class dynamics between 1990 and 2020. The natural forest
lost about 0.98% of its areas to built-up, 2.34% to cropland, while the
grassland areas received 4.34%, planted forest received 4.47%, and
water body 0.16%. The grassland areas gave up about 1.41% of its
areas to urban Infrastructure, 5.02% to cropland, 0.08% to water,
3.45% to natural forest, and 1.87% to planted forest.

If current trends continue, future LULC scenarios indicate that
built-up will continue to happen in areas as close as possible to Porto
Alegre and municipalities that offer more opportunities. This
population and development concentration is driven by
proximity to downtown, employment opportunities, and
socioeconomic considerations. However, it is essential to conduct
further analysis and consider other factors, such as infrastructure
capacity, environmental sustainability, and urban planning
strategies, to ensure these areas’ long-term viability and balanced
growth since the results showed a decreasing trend in the natural
landscape and an increase in built-up areas in the past and the
future.

TABLE 2 Temporal changes 1990–2020.

LULC class 1990–2000 2000–2010 2010–2020 1990–2020

km2 (%) km2 (%) km2 (%) km2 (%)

Built-up 46.53 7.71 92.38 14.21 97.87 13.18 236.79 39.23

Cropland 250.03 13.87 107.29 5.23 140.75 6.52 498.07 27.63

Water 21.98 8.98 −5.63 −2.11 −14.93 −5.72 1.41 0.58

Grasslands 138.54 3.65 −624.69 −15.86 −178.90 −5.40 −665.05 −17.50

Natural Forest −497.47 −13.42 −217.59 −6.78 −132.42 −4.42 −847.49 −22.86

Planted Forest 40.39 21.90 648.22 288.33 87.65 10.04 776.26 420.89
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3.3 Artificial neural network-basedmodeling
(ANN) in LULC change

The transition matrix is critical for monitoring and
understanding the LULC spatiotemporal dynamics. It can
represent the number of pixels changed from one category to
another. The matrix comprises rows and columns representing
the LULC classes at the beginning and end of the studied period.
The diagonal entries in the matrix are composed of each category
stability level, i.e., the number of pixels that remained in the same
category over the period studied. The off-diagonal entries represent
the transitions from one category to another (Muhammad et al.,
2022).

The transition matrix construction approach is especially suited
for situations with a lot of ambiguity or challenges in implementing
input data. From this process, an index is generated that ranks the
landscape from zero to one, producing a consistent result, where
values close to 1 in the diagonal entries represent the category
stability, while values close to 0 indicate that significant changes
during the period analyzed occurred (Sajan et al., 2022).

In the present study, the transition matrix’s applicability was
essential for analyzing changes in the RMPA landscape over time,
allowing the LULC changing pattern identification. The water and
natural forest were the most stable in the first period, with change
probabilities equivalent to 0.857 and 0.731, respectively. In contrast,
grasslands, cropland, and planted forests had their stability levels
reduced to 0.725, 0.660, and 0.468. It is worth mentioning that built-
up presented a stability level of 0.689, and in the cropland and
grassland, the main contributions were 0.047 and 0.027, respectively.
In the second period, water and built-up had the highest stability
levels, 0.835 and 0.824, respectively. The cropland, grassland,
natural, and planted forests had reduced levels of transition
stability, 0.647, 0.656, 0.656, and 0.631, respectively.

The classes that contributed the most to built-up remained
cropland, 0.035, and grassland, 0.031. In the last period, the
transition values for built-up and water were 0.846 and 0.810,
respectively. In contrast, the values for cropland, grassland, natural,
and planted forest were 0.687, 0.674, 0.665, and 0.419, respectively,
similar to the first and second periods. Finally, the LULC classes that
contributed the most to built-up were cropland, 0.038, and grassland,
0.029. During the study period, there was significant pressure on the
natural forest and grassland areas, which had part of their areas
absorbed by other LULC classes. The transition matrix between
1990 and 2000 shows this dynamic, with these being the classes
with the lowest stability, 0.579 and 0.564, respectively.

3.4 Forecasting and validation LULC 2020

Based on the LULC changes in historical data between 2000 and
2010, the CA-ANNmethod was used to project, in the first instance,
the 2020 LULC condition with a 10-year phase extension and one
iteration. Subsequently, the simulated 2020 LULC scenario was
compared to the actual 2020 LULC obtained from the supervised
classification using the RF algorithm (Figure 5) and Table 3. After
the simulated model accuracy validation, the same CA-ANN
framework was used and replicated to estimate the LULC
scenarios for 2030 and 2040, presented in Figure 6 and Table 4.

The estimated model accuracy measurement from the
comparison between the LULC simulation projected for
2020 and the actual LULC for 2020 presented the HisK, OvK,
and LoK of 0.80, 0.65, and 0.80, respectively, and 73.5% of
percentage correctness. These results validate the simulation
model’s suitability for predicting LULC future scenarios for the
RMPA. For example, Muhammad et al. (2022) also used the CA-
ANN approach in the MOLUSCE to analyze future spatiotemporal
changes for Linyi, China, in 2030, 2040, and 2050 and got a LocK of
0.97, an percent of correctness of 65.80%, and an OvK value of 0.48.
Another study for future LULC scenarios of 2030, 2040, and 2050 in
Guangdong Hong Kong Macau, China got a validation OvK of 0.76,
an percent of correctness of 96.25%, and LocK of 0.94 (Abbas et al.,
2021). While in Dehingia et al. (2022), the validation indices were:
HisK of 0.89, OvK of 0.61, and LocK of 0.69, with a 72.81% percent
of correctness to estimate the future condition of 2029 for the
Balikpapan City, Indonesia. In Gao et al. (2023), the future
LULC scenarios in the Greater Yellow River region obtained an
OvK of 0.94, HisK of 0.98, LocK of 0.95, and 96.42% percent of
correctness. Therefore, we can infer that our simulation validation
results are suitable for estimating the future LULC conditions for
2030 and 2040 in the RMPA.

FIGURE 5
Current and projected LULC maps for 2020.
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3.5 Land cover forecast in 2030 and 2040

The future scenario for 2030 and 2040 shows the cropland,
built-up, and planted forests as the main LULC expanding classes
(Table 5). The results indicate that by 2030, the cropland areas
will show an increase of more than 12.0% compared to the
2020 actual scenario, equivalent to a 1.2% annual rate

increase. For 2040, cropland areas are projected to still
increase, reaching more than 42.1% of the 2020 area,
indicating a 2.1% yearly growth rate and a 122.6% increase
compared to the 2030 scenario. In addition, for the 2030 to
2040 period, an annual 2.6% growth rate is projected. Similarly,
the model predicts a linear expansion for planted forest areas,
with a 15.1% expansion for 2030, a 1.5% annual rate, and a 33.9%
increase for 2040, reaching about 1.7% yearly growth concerning
2020. It is worth mentioning that planted forests will increase by
about 16.3% in 2040 compared to 2030, reflecting a 1.6% annual
growth rate between the years.

In turn, built-up areas will also increase in future scenarios,
reaching more than 35.3% in 2030, compared to 2020, reaching a
3.5% annual growth rate, the highest recorded for this time series.
Whereas in 2040, it will present a 52.7% increase indicating a yearly
expansion rate of 2.6%. It is worth noting that despite maintaining a
built-up growth trend in 2040, with a positive annual rate of 1.28%,
this increase was 12.8%, reaching a 63.6% smaller area advance than
that observed from 2020 to 2030.

Regarding the other LULC class’s prediction for 2030 and
2040, the most significant decrease occurred for the natural
forest, which in 2030 will present an area loss corresponding to
20.2% concerning 2020, reaching a 2.0% annual rate decrease.
While in 2040 a loss of natural forest equivalent to 33.9% is
estimated compared to the 2020 scenario, getting a 1.70% yearly
rate loss for the same period. Following the same trend, the
grassland will present a decrease of about 4.6% in its by the year
2030, concerning 2020, keeping a 0.4% annual rate, and for

TABLE 3 Actual and projected LULC for 2020.

LULC class Actual Projected Percent of correctness Kappa

km2 % km2 % Overall Histogram Location

Built-up 840.33 8.12 1032.70 9.98 73.50% 0.65 0.80 0.80

Cropland 2300.82 22.25 2039.72 19.72

Water 246.26 2.38 271.53 2.63

Grasslands 3134.24 30.30 3302.15 31.93

Natural Forest 2860.56 27.66 2837.83 27.44

Planted Forest 960.69 9.29 858.96 8.30

FIGURE 6
Predicted LULC maps for 2030 and 2040.

TABLE 4 Predicted area statistics in 2030 and 2040.

LULC class 2030 2040

km2 % km2 %

Built-up 1,137,484 11.00 1,283,620 12.41

Cropland 2,578,284 24.93 3,270,507 31.62

Water 249,729 2.41 236,851 2.29

Grasslands 2,990,294 28.91 2,375,133 22.96

Natural Forest 2,280,977 22.05 1,890,448 18.28

Planted Forest 1,106,151 10.69 1,286,359 12.44
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2040, a 24.2% reduction related to 2020, indicating a 1.2%
yearly loss.

For the water, an 1.41% area increase is forecast for
2030 concerning 2020, indicating a 0.14% annual gain. In
contrast, for 2040, a loss of 3.8% is estimated, reaching a 0.19%
yearly decrease. According to the future scenarios, the LULC
changes will adversely impact environmental and socioeconomic
structures, mainly with cropland and built-up areas, in contrast with
decreased vegetation and water. Similar trends are found in other
studies worldwide, such as in Muhammad et al. (2022), Padma et al.
(2022), Barwicka and Milecka (2022), Sajan et al. (2022), and Gao
et al. (2023). Therefore, indications that the LULC changes behavior
obtained for the RMPA follow a similar trend to those observed in
other regions around the globe.

Regarding the contribution of LULC in built-up areas for
future scenarios from 2030 to 2040 in the RMPA, there was a
variation of cultivated area, pasture and natural forest of 1.7%,
0.6% and 1.3% for built-up areas, respectively. In addition,
grassland was the class that contributed the most change,
reaching 6.1% for cropland, while the natural forest class
contributed 2.4% for planted forests increase. Therefore, this
study can help formulate a better land use management policy in
the Metropolitan Region of Porto Alegre. Furthermore, the study
demonstrates the ability of the CA-ANN model to develop future
LULC scenarios and understand the spatiotemporal changes. So,
combining satellite remote sensing data with GIS has generated
much interest due to concerns about the LULC dynamics
(Lambin et al., 2001).

4 Conclusion

This research aimed first to determine the spatiotemporal
dynamics present in LULC classes between 1990 and 2020 and
second to develop future LULC scenarios for 2030 and 2040 for
the Metropolitan Region of Porto Alegre (RMPA), located in the
Rio Grande do Sul state, Brazil. Therefore, the Random Forest
algorithm in the GEE cloud processing environment was used for
the first aim to classify LULC conditions for 1990, 2000, 2010,
and 2020 from Landsat, TM, ETM+, and OLI data, respectively,
reaching an excellent global accuracy of 0.92, 0.90, 0.90, 0.88 for
the years under study. Then, the LULC simulation was
successfully estimated and validated for 2020, and the CA-

ANN model was used to develop the 2030 and 2040 future
LULC scenarios in the RMPA in the second aim, reaching a
0.65 overall Kappa index, 0.80 histogram Kappa, 0.80 Location
Kappa and 73.50% percentage of correctness.

Thesethe findings in the validation statistics make it possible
to infer that the model demonstrates good effectiveness in
prospecting the LULC spatial conditions. The future scenarios
regarding LULC changes for 2030 and 2040 highlighted that
built-up, cropland and planted forests will be together the most
representative areas along the RMPA boundaries, reaching
46.6% and 56.4%in 2030 and 2040, respectively. The built-up
stands out as having the highest expansion rate in the area,
reaching 35.3% and 52.3% increase in 2030 and 2040,
respectively. In contrast, in the same period in 2030, natural
forests will lose the largest area, suffering an area decline of
20.26%, followed by the grassland that will lose about 4.6% of its
area in 2020.

In addition, by 2040, the natural forest loss is expected to be
approximately 33.9%, followed by the grassland loss of 24.2%
concerning 2020. Therefore, the present study highlights the
relevance of monitoring the past and developing future LULC
scenarios. Moreover, similar LULC pattern behaviors observed in
the RMPA were also found in other regions of the country and the
world, indicating that the methodology in this study could be
replicated in other metropolitan regions.

The results obtained through modeling and predicting
landscape patterns highlighted the need to consider physical
elements and factors such as development policies and
climatic conditions for a more comprehensive understanding
of the LULC transitional dynamics in future studies. Therefore, it
is suggested that future research incorporate a wide range of
factors and data to deepen the knowledge of the effects of these
elements on landscape patterns. Such more comprehensive
investigations will be crucial to informing land managers and
risk decision-makers, enabling the development of effective plans
to mitigate the climate change impact and promote more
sustainable use of the environment.

Understanding the built-up sprawl effect is essential to plan
and develop better cities. This study took into account significant
factors influencing urban sprawl. The variables used in the CA-
ANN model were critical determinants as they significantly
affected the LULC change mechanism. Based on the results, it
is understood that the factors used were shown to be very

TABLE 5 LULC temporal changes in 2020 and 2040.

LULC class 2020–2030 2020–2040 2030–2040

km2 % ACR (%) km2 % ACR (%) km2 % ACR (%)

Built-up 297.15 35.36 3.54 443.29 52.75 2.64 146.14 12.85 1.28

Cropland 277.46 12.06 1.21 969.68 42.14 2.11 692.22 26.85 2.68

Water 3.46 1.41 0.14 −9.41 −3.82 −0.19 −12.88 −5.16 −0.52

Grasslands −143.95 −4.59 −0.46 −759.11 −24.22 −1.21 −615.16 −20.57 −2.06

Natural Forest −579.58 −20.26 −2.03 −970.11 −33.91 −1.70 −390.53 −17.12 −1.71

Planted Forest 145.46 15.14 1.51 325.67 33.90 1.69 180.21 16.29 1.63
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influential in the way in which urban sprawl occurred and may
continue to occur.
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