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Editorial on the Research Topic

Big Data analytics to advance stroke and cerebrovascular disease: a tool

to bridge translational and clinical research

Big Data analysis has the potential to enhance the high through put processing required

to better phenotype patient outcomes post treatment, select potential therapeutic targets,

and refine biomarker selection for risk assessment and disease monitoring (1). With data

registries, more advanced imaging, data storage tools, and more detailed electronic clinical

documentation, robust analysis can be conducted with large datasets with very granular

individual patient level data (1–3). Analysis of large datasets requires special considerations

to ensure that the significant associations or findings are clinically meaningful and without

bias (1).

Use of a Big Data approach can aid in the discovery of pertinent biomarkers for

diagnosis and assessment of stroke risk. Wu et al., used regression modeling to determine

which factors were associated with patients with brain infarction detected on magnetic

resonance imaging (MRI) in a cohort of 1.4 million patients living in China, demonstrating

that there were geographic, sex-related, and metabolic disease risk factors for having

infarction detected on brain MRI. Efficacy of anticoagulant type was compared by Lee

et al., demonstrating a lower risk of stroke and bleeding complications associated with

non-oral vitamin K antagonists. Liao et al. conducted a study including over 5 million

patients to confirm the increased risk of stroke in association with markers of insulin

resistance. Shu et al. demonstrated that altitude has an increased risk of the development

of ischemic changes on MRI and an inverse relationship with risk of clinical events of

acute stroke. Yang W.-X. et al. studied the efficacy of several machine learning models

to predict genetic stroke risk (LASSO, artificial neural network, random forest, and

support vector machine - recursive feature elimination model), showing that there are

limitations to using these approaches as their models were limited in their accuracy

and specificity. Another approach that can be useful are Mendelian randomization

models. Ma et al. were able to demonstrate that genetic variants previously demonstrated
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to be associated with elevated homocysteine levels were not

associated with an increased risk of intracranial aneurysm detection

by using several Mendelian randomization models. Zhou et al.

were able to use random forest models to better predict risk

of subarachnoid hemorrhage in patients with middle cerebral

artery aneurysms. Combining imaging and clinical variables can

improve patient phenotyping. Guo et al. investigated machine

learning models as a diagnostic tool to diagnosis stroke by

automation. For example, Li Y. et al. demonstrated that CT imaging

features and markers of small vessel disease are predictive of the

presence of >10 cerebral microbleeds on MRI. More research is

needed before Big Data analysis such as artificial intelligence and

machine learning can be more ubiquitously applied to clinical care

(2–6).

Having practical models that allow for quick assessment of

risk for hemorrhagic conversion and risk factors for hemorrhagic

conversion have the potential to help with stratifying risk of

revascularization therapies such as thrombolysis as there are

still risks even after special considerations for eligibility for

thrombolysis are made based on clinical factors such as duration of

symptoms (7, 8), medications, imaging, and clinical comorbidities

within 4.5 h window and in the extended time window per the

American Heart Association Guidelines on acute ischemic stroke

management (8). Ren et al. used modeling and area under the curve

receiver operation characteristic curve analysis to develop a score

for predicting risk of hemorrhagic conversion with thrombolysis

with an area under the curve value of 0.82. Yang M. et al. created

a nomogram that predicts stroke risk with thrombolysis using a

combination of imaging, clinical, and blood biomarkers. Risk of

ischemic hemorrhagic conversion associated with thrombolysis is

further reviewed by Shao et al..

Machine learning can also be used to parse areas of cerebral

hypoperfusion and areas of normal cerebral perfusion, which is

information that has been useful in thrombectomy clinical trials

and was incorporated into clinical guidelines for patient selection

for thrombectomy (8) Machine learning has been investigated

for its diagnostic utility. Lin X. et al. demonstrated that early

patient characteristics available within the first 24 h of hospital

admission can be predictive of early outcomes post thrombectomy.

They were able to fine tune those predictions using different

models such as a the SHapley Additive exPlanations approach

(Lin X. et al.). Modeling can also be useful in investigations on

posterior circulation infarction such as basilar artery occlusion.

Zhao C. et al. confirmed that risk factors such as atrial fibrillation

increase risk of recurrent stroke but do not influence basilar

artery thrombectomy outcomes. While, Lin S. et al. developed

a nomogram to help predict in which patient’s with basilar

artery occlusion recanalization would be futile. Zeng et al., also

looked at futility, but they focused on thrombectomy outcomes

in the anterior circulation using a combination of machine

learning models combined with the stacking method. Currently,

the American Heart Association only endorses volumetric analysis

for thrombectomy patients in the extended 24 h window (8).

However, several large core endovascular trials have subsequently

demonstrated that even patients with large cores may still have

some benefit from thrombectomy (9–11). More research is needed

to optimize prediction tools for patient selection for thrombolysis

and thrombectomy.

Cost of stroke care is projected to be over $90 billion dollars

by 2035 (1, 12). Part of those costs are attributed to extra

healthcare costs related to stroke associated morbidity (1, 12).

Determining who is at risk of medical complications after a stroke

and tailoring a post stroke recovery plan could be quite impactful

(1). Ji et al. used modeling to develop a risk score to predict the

risk of being diagnosed with a deep vein thrombosis in patients

that were hospitalized with an intracerebral hemorrhage, and

optimized their score using external cohort validation. Comparison

ofmachine learningmodels can demonstrate whichmodel provides

the best sensitivity and specificity to predict the clinical outcome

of interest. For example, Zheng et al. compared several machine

learning models to determine which model would be most

specific and sensitive for predicting which patients admitted with

an intracerebral hemorrhage would have a post stroke course

complicated by the development of pneumonia, showing that

the Gaussian naïve Bayes and logistic regression models both

performed well depending on whether the internal or external

validation cohorts were used. Feng et al. demonstrated similar

proteins were elevated during thrombotic events (acute myocardial

infarction and acute ischemic stroke), identifying markers of

inflammation. In a study including over 100,000 intracerebral

hemorrhage patients, Zhao J. et al. combined regression analysis

with causal mediation analysis to determine driving factors behind

sex-related outcomes, showing the hemorrhage location and

clinical severity were the strongest driving factors of mortality and

morbidity. Gu et al. demonstrated that mortality rates are higher

in critically ill patients with intracerebral hemorrhage and low

calcium levels. Others have used Big Data analytic approaches to

study length of stay, healthcare utilization, and healthcare costs

(3). Currently, there are no widely accepted models for predicting

morbidity and mortality for clinical purposes.

Big Data analysis has been studied to provide prediction

models to improve management and coordination of post-acute

care. Resource utilization post stroke and needs can vary in

patients after hospital discharge, and best practices for managing

stroke recovery can change over time (13). Prediction models

can be used to determine which patient characteristics are the

most associated with likelihood of hospital re-admission within

30 days (Chen Y.-C. et al.), which can used to better allocate

resources and services for patients. Chen Y.-C. et al. compared

multiple models and assessed the sensitivity and specificity of

machine learning models to select the best machine learning model

that predicted readmission within 30 days of hospital discharge.

Yarfi et al. propose using mixed methods models and qualitative

analysis to assess post stroke rehabilitation outcomes. Boutros et al.

demonstrated that depression was associated with recurrent stroke

and mortality 1 year after stroke. Another model that can be useful

in analyzing clinical trial data is Bayesian Network Meta-analysis.

Li Z. et al. evaluated several approaches for addressing post stroke

cognitive dysfunction, and found that transmagnetic stimulation

and acupuncture could be helpful. Chen R. et al. demonstrated

that machine learning can be used to differentiate responses to

transcranial magnetic stimulation between patient’s during the

post stroke recovery phase by using unsupervised hierarchical

clustering, which could have utility in tracking post stroke recovery.

In addition, several studies have used a Big Data approach for

assessing quality of life indices (3).
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Big Data analytics is a rapidly evolving field and there are

important considerations and pauses that should be factored

into data interpretation and application. It is important to be

aware of biases that by be present in datasets as a result of

patient recruitment (1–6). Even within large datasets, there may

be unknown missing confounders. It is important to consider

validation of results in different datasets (1–6).

Author contributions

AS: Writing – original draft, Writing – review & editing. HI:

Writing – review & editing. SS: Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. AS receives

funding from National Institute of Aging of the National Institute

of Health 3U54AG065141-04S1.

Acknowledgments

We would like to acknowledge Andrew Bustamante for his

assistance with literature review.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Simpkins AN, Janowski M, Oz HS, Roberts J, Bix G, Doré S, et al. Biomarker
application for precision medicine in stroke. Transl Stroke Res. (2020) 11:615–
27. doi: 10.1007/s12975-019-00762-3

2. Liu Y, Luo Y, Naidech AM. Big data in stroke: how to use big data
to make the next management decision. Neurotherapeutics. (2023) 20:744–
57. doi: 10.1007/s13311-023-01358-4

3. Olaiya MT, Sodhi-Berry N, Dalli LL, Bam K, Thrift AG, Katzenellenbogen
JM, et al. The allure of big data to improve stroke outcomes: review of current
literature. Curr Neurol Neurosci Rep. (2022) 22:151–60. doi: 10.1007/s11910-022-0
1180-z

4. Chavva IR, Crawford AL, Mazurek MH, Yuen MM, Prabhat AM, Payabvash S,
et al. Deep learning applications for acute stroke management. Ann Neurol. (2022)
92:574–87. doi: 10.1002/ana.26435

5. Nenning KH, Langs G. Machine learning in neuroimaging: from research to
clinical practice. Radiologie. (2022) 62:1–10. doi: 10.1007/s00117-022-01051-1

6. Dipietro L, Gonzalez-Mego P, Ramos-Estebanez C, Zukowski LH, Mikkilineni R,
Rushmore RJ, et al. The evolution of Big Data in neuroscience and neurology. J Big
Data. (2023) 10:116. doi: 10.1186/s40537-023-00751-2

7. Simpkins AN, Tahsili-Fahadan P, Buchwald N, De Prey J, Farooqui A, Mugge
LA, et al. Adapting clinical practice of thrombolysis for acute ischemic stroke
beyond 4.5 hours: a review of the literature. J Stroke Cerebrovasc Dis. (2021)
30:106059. doi: 10.1016/j.jstrokecerebrovasdis.2021.106059

8. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K,
et al. Guidelines for the early management of patients with acute ischemic stroke: 2019
update to the 2018 guidelines for the early management of acute ischemic stroke: a
guideline for healthcare professionals from the american heart association/american
stroke association. Stroke. (2019) 50:e344–418. doi: 10.1161/STR.0000000000000211

9. Derraz I, Moulin S, Gory B, Kyheng M, Arquizan C, Costalat V,
et al. Endovascular thrombectomy outcomes with and without intravenous
thrombolysis for large ischemic cores identified with CT or MRI. Radiology. (2023)
309:e230440. doi: 10.1148/radiol.230440

10. Sarraj A, Hassan AE, AbrahamMG, Ortega-Gutierrez S, Kasner SE, Hussain MS,
et al. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med.
(2023) 388:1259–71. doi: 10.1056/NEJMoa2214403

11. Huo X, Ma G, Tong X, Zhang X, Pan Y, Nguyen TN, et al. Trial of endovascular
therapy for acute ischemic stroke with large infarct. N Engl J Med. (2023) 388:1272–83.
doi: 10.1056/NEJMoa2213379

12. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng
S, et al. Heart disease and stroke statistics-2018 update: a report from the american
heart association. Circulation. (2018) 137:e67–e492. doi: 10.1161/CIR.00000000000
00573

13. Olasoji EB, Uhm DK, Awosika OO, Doré S, Geis C, Simpkins AN.
Trends in outpatient rehabilitation use for stroke survivors. J Neurol Sci. (2022)
442:120383. doi: 10.1016/j.jns.2022.120383

Frontiers inNeurology 03 frontiersin.org8

https://doi.org/10.3389/fneur.2023.1347654
https://doi.org/10.1007/s12975-019-00762-3
https://doi.org/10.1007/s13311-023-01358-4
https://doi.org/10.1007/s11910-022-01180-z
https://doi.org/10.1002/ana.26435
https://doi.org/10.1007/s00117-022-01051-1
https://doi.org/10.1186/s40537-023-00751-2
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106059
https://doi.org/10.1161/STR.0000000000000211
https://doi.org/10.1148/radiol.230440
https://doi.org/10.1056/NEJMoa2214403
https://doi.org/10.1056/NEJMoa2213379
https://doi.org/10.1161/CIR.0000000000000573
https://doi.org/10.1016/j.jns.2022.120383
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


ORIGINAL RESEARCH
published: 07 April 2022

doi: 10.3389/fneur.2022.833952

Frontiers in Neurology | www.frontiersin.org 1 April 2022 | Volume 13 | Article 833952

Edited by:

Hari Kishan Reddy Indupuru,

University of Texas Health Science

Center at Houston, United States

Reviewed by:

Marialuisa Zedde,

IRCCS Local Health Authority of

Reggio Emilia, Italy

Julia Ferrari,

Krankenhaus der Barmherzigen

Brüder Wien, Austria

*Correspondence:

Hongying Ma

wangwf2004@163.com

Yongqiu Li

yongqiuli@126.com

Specialty section:

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

Received: 12 December 2021

Accepted: 08 March 2022

Published: 07 April 2022

Citation:

Li Y, Gao H, Zhang D, Gao X, Lu L,

Liu C, Li Q, Miao C, Ma H and Li Y

(2022) Clinical Prediction Model for

Screening Acute Ischemic Stroke

Patients With More Than 10 Cerebral

Microbleeds.

Front. Neurol. 13:833952.

doi: 10.3389/fneur.2022.833952

Clinical Prediction Model for
Screening Acute Ischemic Stroke
Patients With More Than 10 Cerebral
Microbleeds
Yifan Li 1, Haifeng Gao 2, Dongsen Zhang 2, Xuan Gao 2, Lin Lu 2, Chunqin Liu 2, Qian Li 2,

Chunzhi Miao 2, Hongying Ma 2* and Yongqiu Li 2*

1Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China, 2Department of Neurology,

Tangshan Gongren Hospital, Tangshan, China

Background: Hemorrhagic transformation is one of the most serious complications in

intravenous thrombolysis. Studies show that the existence of more than 10 cerebral

microbleeds is strongly associated with hemorrhagic transformation. The current

study attempts to develop and validate a clinical prediction model of more than 10

cerebral microbleeds.

Methods: We reviewed the computed tomography markers of cerebral small vessel

diseases and the basic clinical information of acute ischemic stroke patients who

were investigated using susceptibility weighted imaging from 2018 to 2021. A clinical

prediction model of more than 10 cerebral microbleeds was established. Discrimination,

calibration, and the net benefit of the model were assessed. Finally, a validation was

conducted to evaluate the accuracy and stability of the model.

Results: The multivariate logistic regression model showed hypertension, and some

computed tomography markers (leukoaraiosis, lacunar infarctions, brain atrophy) were

independent risk factors of more than 10 cerebral microbleeds. These risk factors were

used for establishing the clinical prediction model. The area under the receiver operating

characteristic curve (AUC) was 0.894 (95% CI: 0.870–0.919); Hosmer–Lemeshow

chi-squared test yielded χ
2 = 3.946 (P = 0.862). The clinical decision cure of the model

was higher than the two extreme lines. The simplified score of the model ranged from 0 to

12. The model in the internal and external validation cohort also had good discrimination

(AUC 0.902, 95% CI: 0.868–0.937; AUC 0.914, 95% CI: 0.882–0.945) and calibration

(P = 0.157, 0.247), and patients gained a net benefit from the model.

Conclusions: We developed and validated a simple scoring tool for acute ischemic

stroke patients with more than 10 cerebral microbleeds; this tool may be beneficial

for paradigm decision regarding intravenous recombinant tissue plasminogen activator

therapy of acute ischemic stroke.

Keywords: cerebral microbleeds, prediction model, cerebral small vessel disease, intravenous thrombolysis,

hemorrhagic transformation
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INTRODUCTION

Cerebral microbleeds (CMBs) are small, round, or oval
hypointense lesions found on susceptibility-weighted imaging
(SWI) as subclinical hemosiderin deposits due to hemorrhage
from microvascular lesions (1). The prevalence rate of cerebral
microbleeds ranges from 15 to 71% (2, 3) in patients with acute
ischemic stroke (AIS) and 50-80% in patients with hemorrhagic
stroke (4). Symptomatic intracranial hemorrhage (sICH) caused
by thrombolytic therapy is associated with CMB, and a
heavier burden of CMB imparts a higher risk of hemorrhagic
transformation (HT) (5–7). A CMB burden of more than 10 on
baseline neuroimaging before intravenous thrombolytic therapy
was independently associated with symptomatic hemorrhagic
transformation, which ranges from 28.6 to 46.9% (8–11).
Schlemm et al. also found that intravenous thrombolysis was
associated with higher mortality in patients with >10 CMBs (8).

sICH is a severe therapeutic complication that greatly
impedes functional recovery and increases mortality (12). sICH
is observed in approximately 5% of patients treated with
intravenous thrombolysis (13). Thus, early prediction of sICH
before thrombolytic therapy is extremely necessary for guiding
precise treatment paradigm decisions. In the event of acute
cerebral infarction, thrombolytic therapy should be performed as
soon as possible, except in patients with contraindications. SWI
(14) is the preferred deterministic diagnostic technique for CMB,
but it is not possible to conduct SWI before thrombolysis (15), as
this would lead to a delay in the short time frame during which
treatments should be initiated, thus violating the “time is brain”
principle; furthermore, this cannot be performed in primary
hospitals. Computed tomography (CT) scans must be completed
before thrombolytic therapy for patients with AIS and can also
reveal imaging manifestations of some cerebral small vessel
disease (CSVD) such as leukoaraiosis, brain atrophy, lacunar
infarctions, and recent small infarctions (16). As a CSVDmarker,
CMBs are related to the CSVD burden, which may be indicated
by the number of CMBs. However, the relationship between the
number of CMBs and CT markers of CSVD is unknown.

The purpose of this study was to develop and validate a
practical and easily implemented operating clinical prediction
model (CPM) to predict the probability of the presence of >10
CMBs on the basis of easily collected information such as CT
markers of CSVD and past medical history.

MATERIALS AND METHODS

Participants
This study was conducted at the Tangshan Gongren Hospital and
Tangshan Nanhu’ Hospital. Patients with AIS who underwent
SWI and head CT scans during hospitalization from January
2018 to December 2021 were recruited. The inclusion criteria
were AIS without intravenous thrombolytic therapy and patient
age of ≥18 years. The exclusion criteria were as follows:
(1) coagulation disorders; (2) arteriovenous malformation; (3)
moyamoya disease; (4) previous intracerebral hemorrhage and
subarachnoid hemorrhage; (5) cerebral trauma; (6) infarct size
greater than 2/3 of the territory of the middle cerebral artery

supply; (7) previous history of anticoagulant therapy; (8) heart,
liver, or kidney failure; or (9) active internal bleeding.

Demographic information (including sex and age),
self-reported history of disease (such as hypertension,
stroke, and diabetes), and unhealthy lifestyle factors were
noted retrospectively.

This study was approved by the Ethics Committee of
Tangshan Gongren Hospital (Approval Number: GRYY-LL-
KJ2021-K93).

Imaging Examination
All patients underwent a brain magnetic resonance imaging
(MRI) scan (Philips Achieva 1.5T) with a 12-channel head coil
and a brain CT scanning of the brain with a 64-detector row
(Siemens Germany). Scanning sequences included bothMRI and
SWI sequences.

Imaging Assessment
CMBs (17) present as small, rounded or circular, well-
circumscribed, hypointense parenchymal lesions as large as
2–10mm in size on the SWI. Participants were divided
into two groups according to the number of CMBs: 0-10
and >10.

Imaging manifestations of CSVD on CT scanning were
determined as follows. Leukoaraiosis was evaluated according
to the Blennow scale (18) (scores ranged from 0 to 3). The
global scale of cortical atrophy (19) was used to assess the
degree of brain atrophy based on a five-point scale (0 =

“none,” 1 = “mild,” 2 = “moderate,” and 3 = “severe”).
We defined lacunar infarctions as round or ovoid hypodense
lesions of 3-20mm diameter in the basal ganglia, deep white
matter, cerebellum, or pons on the CT scan. Lacunar infarctions
were scored as follows: 0, no lacunar lesion; 1, 1–5 lacunar
infarctions; 2, 5–10 lacunar infarctions; and 3, >10 lacunar
infarctions (12).

The images were interpreted cooperatively by
three neurologists who were blinded regarding
the relationship of CT scan characteristics, CMBs
on SWI, and clinical information. The three
neurologists consisted of one neuroimagist and two
neurologist clinicians.

Statistical Analysis
In the development and validation cohorts, we compared
data between patients with 0–10 and >10 CMBs. Continuous
variables are presented as means and standard deviations.
Between-group comparisons were performed using Student’s t-
test if data were normally distributed and the Mann–Whitney
test if data were not normally distributed. Categorical variables
are presented as numbers and frequencies. We compared
categorical variables between groups with the χ² test or Fisher’s
exact test.

In the development cohort, univariate logistic regression was
used to examine the relationship between a single covariate, such
as CT scan characteristics and other clinical information, and
the existence of >10 CMBs as indicated by SWI. Multivariate
logistic regression was used to investigate independent risk
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factors using all risk factors selected. Independent risk
factors were applied to construct the CPM for >10 CMBs,
based on coefficients and odds ratios with 95% confidence
intervals (CIs).

The clinical predictor efficiency of the CPM was evaluated
by the following steps. First, we assessed discrimination using
Harrell’s C statistic, which was equivalent to the area under
the receiver operator characteristic (ROC) curve (AUC). An
AUC of 0.5 indicates no discrimination, whereas an AUC of
1.0 indicates perfect discrimination. Second, calibration was
carried out to evaluate the accuracy of the model. The goodness-
of-fit based on the Hosmer–Lemeshow chi-squared test of
the CPM was performed for assessing the fit of the model.
A P-value ≥ 0.05 was determined to show goodness-of-fit.
Third, decision curve analysis (DCA) was generated on the
basis of the multivariate prediction model using R software
(version 4.0.3) and was used to evaluate the net benefit of
the model.

P-values were two-sided, and values of <0.05 were
considered statistically significant. All data were analyzed
using SPSS software (version 22.0, IBM company, New
York, USA).

RESULTS

Characteristics of the Development and
Validation Cohorts
In total, 1,776 patients with AIS underwent head CT and SWI,
123 of whom were excluded, leaving 1,653 patients enrolled in
the study. Among them, 836 patients from Tangshan Workers’
Hospital were selected as the development cohort from January
2018 to December 2019 and 396 patients were selected as the
internal validation cohort from January 2020 to December 2020.
Four hundred and twenty one patients from Nanhu’ Hospital
were enrolled for the external validation cohort from October
2020 to December 2021 (Figure 1). Of the included patients,
483 exhibited >10 CMBs, accounting for 31.58, 25.00, and
28.50% of patients in the development, internal and external
cohorts, respectively. Characteristics of the development and
validation cohorts are shown in Table 1. There were statistically
significant differences between the 0–10 CMB and >10 CMB
groups in terms of age, history of hypertension, leukoaraiosis,
brain atrophy, and lacunar infarction. The proportion of patients
with stroke history in the >10 CMB group was higher than that
in the 0–10 CMB group (P = 0.035 in the internal validation

FIGURE 1 | Flow chart of the study.
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TABLE 1 | Characteristics in development cohort and validation cohort.

Variable Development cohort [n (%)] Internal validation cohort [n (%)] External validation cohort [n (%)]

0-10CMBs >10 CMBs P-value 0-10CMBs >10 CMBs P-value 0-10CMBs >10 CMBs P-value

[572 (68.42)] [264 (31.58)] [297 (75.00)] [99 (25.00)] [301 (71.50)] [120 (28.50)]

Age (X ± s) 59.99 ± 10.68 63.89 ± 10.48 <0.001 60.61 ± 10.97 64.10 ± 9.81 0.005 61.23 ± 12.82 62.26 ± 10.85 0.445

Male [n (%)] 384 (67.13) 184 (69.70) 0.369 186 (62.63) 69 (69.70) 0.204 181 (60.13) 84 (70.00) 0.058

Medical history

Diabetes [n (%)] 101 (17.65) 56 (21.21) 0.479 80 (26.94) 20 (20.20) 0.183 84 (27.91) 25 (20.83) 0.127

Hypertension [n (%)] 378 (66.08) 214 (81.44) <0.001 184 (61.95) 88 (88.89) <0.001 181 (60.13) 103 (85.83) <0.001

Drinking [n (%)] 138 (24.13) 81 (30.68) 0.061 73 (24.58) 28 (28.28) 0.558 47 (15.61) 26 (21.67) 0.140

Coronary heart disease [n (%)] 129 (22.55) 30 (11.36) 0.954 50 (16.84) 16 (16.16) 0.876 45 (14.95) 26 (21.67) 0.104

Stroke [n (%)] 155 (27.10) 95 (35.98) 0.083 68 (22.90) 35 (35.35) 0.035 78 (25.91) 42 (35.00) 0.072

Characteristics of CT

Leukoaraiosis <0.001 <0.001 <0.001

0–1 score [n (%)] 503 (89.94) 101 (38.26) 255 (85.86) 26 (26.26) 233 (77.41) 18 (15.00)

2 score [n (%)] 55 (9.62) 89 (33.71) 39 (13.13) 50 (50.50) 62 (20.60) 60 (50.00)

3 score [n (%)] 14 (2.45) 74 (28.03) 3 (1.01) 23 (23.23) 6 (1.99) 42 (35.00)

Brain atrophy <0.001 <0.001 <0.001

0–1 score [n (%)] 477 (83.39) 60 (22.73) 228 (76.77) 19 (19.19) 194 (64.45) 22 (18.33)

2 score [n (%)] 53 (9.27) 56 (21.21) 46 (15.49) 27 (27.27) 64 (21.26) 29 (24.17)

3 score [n (%)] 42 (7.34) 148 (56.06) 23 (7.74) 53 (53.54) 43 (14.29) 69 (57.50)

Lacunar infarction <0.001 <0.001 <0.001

0–1 score [n (%)] 401 (70.10) 66 (25,00) 228 (76.77) 20 (20.20) 231 (76.74) 32 (26.67)

2 score [n (%)] 122 (21.33) 101 (38.26) 52 (17.51) 23 (23.23) 51 (16.94) 23 (19.17)

3 score [n (%)] 49 (8.57) 97 (36.74) 17 (7.74) 56 (56.57) 19 (6.31) 65 (54.17)
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TABLE 2 | Univariate analysis of risk factors for more than 10 CMBs.

Variable Subgroup B S.E Wald/χ2 Univariate analysis

OR 95%CI P-value

Age 0.036 0.007 22.977 1.036 1.021–1.051 <0.001

Male 0.145 0.161 0.805 1.156 0.843–1.585 0.369

Diabetes 0.134 0.190 0.502 1.144 0.789–1.659 0.479

Hypertension 0.787 0.180 19.069 2.197 1.543–3.127 <0.001

Drinking 0.311 0.166 3.509 1.338 0.986–1.888 0.061

Coronary heart disease −0.047 0.186 0.064 0.954 0.662–1.374 0.800

Stroke 0.279 0.161 3.004 1.322 0.964–1.814 0.083

Leukoaraiosis 183.823 <0.001

0–1 score 1.000

2 score 2.108 0.203 107.634 8.231 5.527–12.257 <0.001

3 score 3.280 0.311 111.020 26.587 14.443-48.943 <0.001

Brain atrophy 239.549 <0.001

0–1 score 1.000

2 score 2.797 0.233 88.913 9.000 5.700–14.210 <0.001

3 score 3.305 0.223 220.633 27.257 17.622–42.159 <0.001

Lacunar infarction 144.484 <0.001

0–1 score 1.000

2 score 1.625 0.189 74.103 5.080 3.509–7.354 <0.001

3 score 2.477 0.220 126.567 11.904 7.732–18.326 <0.001

TABLE 3 | Multiariable logistic regression analysis.

Variable Coefficients S.E Wald P-value OR 95%CI

Age −0.011 0.010 1.107 0.293 0.989 0.970 1.009

Hypertension 0.589 0.246 5.723 0.017 1.802 1.112 2.919

Leukoaraiosis

0–1 score 44.450 0.000

2 score 1.090 0.264 17.074 0.000 2.975 1.774 4.990

3 score 2.251 0.364 38.244 0.000 9.489 4.652 19.376

Brain atrophy

0–1 score 118.612 0.000

2 score 1.303 0.275 22.446 0.000 3.681 2.147 6.311

3 score 2.696 0.248 117.812 0.000 14.823 9.109 24.120

Lacunar infarction

0–1 score 23.425 0.000

2 score 0.866 0.243 12.743 0.000 2.377 1.478 3.824

3 score 1.311 0.291 20.306 0.000 3.712 2.098 6.566

Constant −2.554 0.652 15.368 0.000 0.079 - -

cohort), but there were no differences between the development
and external validation cohorts.

CPM Development
Univariate risk factors for the presence of >10 CMBs are
summarized in Table 2; having >10 CMBs was associated with
age, hypertension, leukoaraiosis, brain atrophy, and lacunar
infarctions and was closely related to the severity of leukoaraiosis,
brain atrophy, and lacunar infarction. In contrast, sex, diabetes,
alcohol consumption, coronary heart disease, and stroke

were independent of >10 CMBs. Multivariate analyses were
performed using the risk factors determined in the univariate
analysis, such as age, hypertension, leukoaraiosis, brain atrophy,
and lacunar infarction. Hypertension, leukoaraiosis, brain
atrophy, and lacunar infarction were revealed as significant
independent factors for >10 CMBs, whereas age was not an
independent factor. The multivariate logistic regression model
was established as follows (see Table 3):

Logit P = −2.554 + 0.589 × (hypertension) + 1.090 × (2
score, leukoaraiosis) + 2.251 × (3 score, leukoaraiosis) + 1.303

Frontiers in Neurology | www.frontiersin.org 5 April 2022 | Volume 13 | Article 83395213

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Clinical Prediction Model of CMBs

× (2 score, brain atrophy) + 2.696 × (3 score, brain atrophy)
+ 0.866 × (2 score, lacunar infarction) + 1.311 × (3 score,
lacunar infarction).

Risk factor scoring was as follows: hypertension, yes = 1 and
no = 0; leukoaraiosis, 0–1 = 0, 2 = 1, and 3 = 2; brain atrophy,
0–1= 0, 2= 1, and 3= 2; and lacunar infarction, 0–1= 0, 2= 1,
and 3= 2.

Simplified CPM Score
A simple scoring method was developed by assigning the
independent risk factors a value expressed as a whole number.
The value was obtained using coefficients as indicated in
Table 3. The coefficients of leukoaraiosis, brain atrophy, and
lacunar infarction were divided by the smallest coefficient
of hypertension (0.589), the quotients and the divisor were
converted into whole numbers according to the principle of
rounding-up, and they were assigned values of corresponding
independent risk factors. Assignment of independent risk factors
in the model was as follows: hypertension was assigned as 1,
a leukoaraiosis scale of 2 as 2, a leukoaraiosis scale of 3 as 4,
moderate brain atrophy as 2, severe brain atrophy as 5, 2 lacunar
infarctions as 1, and 3 lacunar infarctions as 2. The total scores
ranged from 0 to 12, as summarized in Table 4.

CPM Assessment
Based on the multi-factor analysis, the prediction accuracy of the
CPM was 84.3%; as this was more than 80%, this implied that the
CPM score could be used for clinical practice. The AUC of the
CPM was 0.894 (95%CI, 0.870–0.919); as this was larger than 0.5,
this indicated the CPM has good discrimination (Figure 2A).

The χ
2 value was 3.946 (P= 0.862) in the Hosmer–Lemeshow

chi-squared test to assess the fit of the model. Calibration scatter
plots are presented in Figure 2B. According to the scatter plot,
values did not significantly deviate from the reference line,
suggesting good discrimination and accuracy.

TABLE 4 | Simplified CPM.

Variable in CPM Score

Hypertension

NO 0

YES 1

Leukoaraiosis

0–1 score 0

2 score 2

3 score 4

Brain atrophy

0–1 score 0

2 score 2

3 score 5

Lacunar infarction 0–1score0

0–1 score 0

2 score 1

3 score 2

We used DCA to evaluate the clinical practicability of the
CPM. The DCA of the CPM was higher than the two extreme
lines, indicating that the CPM manifests practical clinical value
(Figure 2C).

CPM Internal and External Validation
The prediction accuracy of the internal and external validation
were 85.1 and 87.1%. The AUC of the internal and external
validation, which indicates discrimination ability, were 0.902
(95% CI, 0.868–0.937) and 0.914(95% CI, 0.882–0.945); the ROC
curves were shown in Figures 3A, 4A. The CPM still achieved
good discrimination in the internal and external validation.

The χ
2 value in the Hosmer–Lemeshow test of the internal

and external validation group was 7.992 (P = 0.157), and 7.878
(P = 0.247), as displayed in Figures 3B, 4B. The P-values were
>0.05, indicating that the predicted observation values showed
good consistency with the actual observation values. Accordingly,
the use of the CPM accurately predicted individual outcomes
when applied to the internal and external validation.

The DCA of the internal and external validation was also
higher than the two extreme lines, indicating that the CPM has
practical clinical value and can be beneficial in patients, as shown
in Figures 3C, 4C.

CPM Prediction Capability
All 836 subjects from the development cohort were enrolled
into the predictive model scoring system for clinical analysis.
According to the ROC curve, the cut-off point for the
discrimination of >10 CMBs was 5, with a sensitivity and
a specificity of 72.73 and 90.73%, respectively. The accuracy,
positive predictive value, and negative predictive value of the
CPM were 85.41, 78.36, and 87.82%, respectively. The sensitivity
and specificity of CPMwere 63.64 and 92.26%, respectively in the
internal validation, 80.67 and 84.49% in the external validation
(see Table 5).

DISCUSSION

Currently, thrombolysis is one of the most effective treatments
for AIS. sICH is the most terrible and unpredictable
complication of thrombolysis. To date, there is no accurate
and practicable method to predict the probability of hemorrhagic
transformation. The current study, through univariate analysis
and multivariate logistic regression analysis, found that history
of hypertension and CSVD manifestations of CT (leukoaraiosis,
lacunar infarction, brain atrophy) were independent risk factors
of >10 CMBs in the brain parenchyma. A CPM for >10 CMBs
was established according to the independent risk factors.
The clinical efficacy of the CPM was exhibited through good
discrimination, accuracy, and clinical practicability; therefore,
patients can benefit from the application of the CPM. The
simplified score of the CPM ranged from 0 to 12, with a
cut-off value of 5 for discrimination of >10 CMBs. Through
the validation, it was verified that the CPM had good clinical
predictive ability and stability. Accordingly, the CPM can
accurately and effectively predict the probability of >10 CMBs,
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FIGURE 2 | Discrimination, Calibration, clinical practicability of CPM were exhibited. (A) AUC of ROC, which indicated discrimination ability of the CPM; (B) Calibration

scatter plots, which assessed calibration of the CPM; (C) DCA, which evaluated clinical practicability of the CPM.

thus providing an easy and practical screening tool for physicians
to make clinical decisions.

CMBs are one type of imaging characteristic of CSVD (20).
Neuroimaging manifestations on MRI of CSVD include (1)
recent subcortical small infarct: a small (<20mm) subcortical
infarction with T1-weighted hypointensity and T2-weighted and
FLAIR image hyperintensity and identified by hyperintensity
on diffusion weighted imaging (DWI); (2) lacunar infarction of
presumed vascular origin: a cerebrospinal fluid-filled cavity (3–
15mm) surrounded by a hyperintense rim on FLAIR images
and with a signal similar to cerebrospinal fluid on all sequences;
(3) white matter hyperintensities (WMH) (21) of presumed
vascular origin: white matter lesions commonly distributed in
the deep brain parenchyma or periventricle with hyperintensities
on T2-weighted and FLAIR imaging and hypointensities on
T1-weighted imaging; (4) enlarged perivascular space (EPVS)
(22, 23): small, round or linear (parallel to vessels) space (<3mm)
with cerebrospinal fluid-like signal on all MRI sequences without
a hyperintense rim on T2-weighted or FLAIR imaging; (5)

CMB (24): small (2–10mm) hypointensity on SWI but no
corresponding signal on other conventional MR imaging; and (6)
brain atrophy: local or entire cortex. As a necessary examination
for patients with AIS before thrombolysis, a CT scan also
reveals some CSVD imaging features such as leukoaraiosis,
brain atrophy, lacunar infarction, and recent small infarction.
It has been suggested that standardized visual rating scales of
leukoaraiosis, lacunar infarction, and brain atrophy display good
agreement between CT and MRI (25); accordingly, the burden of
CSVD can be speculated using CT scan results.

CMBs often present in the area of the basal ganglia and pons,
where intracerebral hemorrhage of presumed hypertensive origin
typically occur (26); another location of CMBs is the subcortical
region, often resulting from cerebral amyloid angiopathy (27–
29). The main pathological mechanisms of CMB are considered
to be hypertensive microangiopathy (lipohyalinosis and fibrinoid
necrosis) and cerebral amyloid angiopathy (30); this causes
destruction of the vessel wall, microaneurysm formation, and
blood-brain barrier damage (31). These findings are consistent
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FIGURE 3 | The internal validation: (A) AUC of the internal validation; (B) calibration scatter plots of the internal validation. (C) DCA of the internal validation.

with the vascular pathological changes of sICH (32, 33).
Moreover, CMB (34) is considered to be an early warning signal
of intracerebral hemorrhage. In addition, clinical vascular events
can occur when CMBs burden reaches a certain degree (35), and
it has been reported that >10 CMBs can accurately predict sICH
risk (36).

In recent years, it was reported that CSVD is a dynamic,
whole-brain disorder (37); these types of CSVD often coexist
when the disease is advanced. First, CSVD effects on the
whole brain interstitial fluid produce subtle changes in normal
white matter (38), leading to white matter hyperintensity
formation (39). Next, WMHs progress, leading to secondary
cortical thinning, after which acute small subcortical infarcts
might appear. Finally, these cause WMH, lacunar infarctions,
microbleeds, secondary cortical thinning, and worsening of long
tract degeneration (40), thus leading to a heavier burden of
CSVD and higher possibility of coexisting CMBs (41). In the
present study, 26.80% of participants manifested the coexistence

of leukoaraiosis, lacunar infarction, cerebral atrophy, and CMBs.
The burden of CSVD revealed on the CT scan may indicate the
number of CMBs.

All types of CSVD presenting in neuroimages correlate with
each other in disease pathogenesis (42). Furthermore, CMBs
and leukoaraiosis may have the same risk factors, such as
hypertension (43). Poels et al. (44) confirmed that the presence
of lacunar infarction and leukoaraiosis were associated with
microbleeds in the deep brain parenchyma. Additionally, some
investigations (45, 46) demonstrated that leukoaraiosis is a strong
predictor of cerebral microbleeds. Brain atrophy frequently
occurs together with WMH in elderly patients (47). Some studies
demonstrated that increased hyperintensities in the deep brain
parenchyma or periventricle accelerate brain atrophy (48). In
addition, Yamada et al. (49) found that high-grade leukoaraiosis
was a significant independent predictor for CMBs and that
leukoaraiosis grade was strongly associated with the number
of CMBs. However, there was no report on the relationship
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FIGURE 4 | The external validation: (A) AUC of the external validation; (B) calibration scatter plots of the external validation. (C) DCA of the external validation.

between CMB burden and CSVD total load, especially the CSVD
manifestation of CT. In the current study, CT scan markers
of CSVD were graded. We found a significant correlation
of >10 CMBs with leukoaraiosis grade, brain atrophy, and
lacunar infarction; this relationship was more obvious when
the grade leukoaraiosis was ≥2, brain atrophy ≥2, and lacunar
infarction ≥2.

Previous studies have shown that CMB was associated with
age, hypertension (45), diabetes (50), coronary heart disease,
history of stroke (51), smoking, and alcohol consumption
(52). Age and hypertension were the strongest risk factors for
CMBs. The detection rate of CMBs increased with age and was
extremely low in young patients, 6.5% in patients aged 45–
50 years, and 35.7% in patients aged ≥80 years (44, 53). The
incidence of CMBs tends to increase with aging, and the risk of
developing CMBs increases by 3% for each additional year of
age (40). However, Benedictus et al. found that after adjusting
for the interference of risk factors, there was no significant
correlation between CMBs and age (54). In the current study,

the mean age of the >10 CMB group was higher than that
of the <10 CMB group, and the difference was statistically
significant in univariate analysis; however, age was not an
independent risk factor in the multivariate logistic regression
analysis. The relationship between the number of CMBs and age
needs to be explored further. Hypertension results in continued
damage to smooth muscle cells and arteriolar injury; long-
term hypertension can cause abnormalities in arterioles, such
as arteriolosclerosis, lipohyalinosis, fibrinoid necrosis, and blood
extravasation, leading to lacunar infarction, WMH, CMBs, and
cerebral hemorrhage (47). CMBs and hypertensive intracerebral
hemorrhage are often located similarly at the basal ganglia,
pons, and cerebellum, indicating a common pathogenesis. It
is well known that in addition to intracerebral hemorrhage,
hypertension is an important risk factor in the development of
CMB (55).

It takes a relatively short time for neurologists to evaluate
CT scans and consult the hypertension history of the patient.
By interpreting CT scans and inquiring about the medical
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TABLE 5 | CPM prediction capability of the development cohort, the internal and

external validation.

0–10CMBs >10 CMBs

Development cohort

0–5 score 519 (62.08%) 72 (8.61%)

6–12 score 53 (6.34%) 192 (22.97%)

Internal validation

0–5 score 274 (69.19%) 36 (9.09%)

6–12 score 23 (5.81%) 63 (15.91%)

External validation

0–5 score 255 (60.57%) 23 (5.46%)

6–12 score 47 (11.16%) 96 (22.81%)

history, neurologists can quickly evaluate patients with AIS.
When the CPM sum score is more than to 5, the patients
will be more likely to have >10 CMBs. In the case of AIS,
the CPM may be a useful tool to assess the likelihood of
the presence of >10 CMBs and provide a more accurate
prediction of hemorrhagic transformation to guide thrombolytic
therapy (56).

Limitations
The CPM needs to be further validated externally in more
medical institutions at different levels to verify the repeatability
and universality of the model. Although hypertension is a
recognized risk factor for CMBs, this study did not consider
the grade and duration of hypertension. Furthermore,
previous antiplatelet therapy and antiplatelet duration
may affect CMB burden, but this was not discussed in
this study. Maria et al. (2) found that the distribution of
CMBs was significantly associated with sICH. Conversely,
some studies found no significant correlation between the
location of cerebral microbleeds and sICH (7). Therefore,
the CMB anatomical distribution was not considered
in the establishment of CPM. However, the relationship
between CMB distribution and sICH remains to be
further studied.

Conclusions
We established a simple, easily implemented operating scoring
scale.When the CPM sum score is more than 5, the patient will be
more likely to have >10 CMBs. Neurologists can quickly screen
patients at high risk of hemorrhagic transformation without the
use of MRI, guiding thrombolysis treatment and reducing the
occurrence of sICH after intravenous thrombolytic therapy.
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Background: Machine learning algorithms for predicting 30-day stroke readmission are

rarely discussed. The aims of this study were to identify significant predictors of 30-day

readmission after stroke and to compare prediction accuracy and area under the receiver

operating characteristic (AUROC) curve in five models: artificial neural network (ANN), K

nearest neighbor (KNN), random forest (RF), support vector machine (SVM), naive Bayes

classifier (NBC), and Cox regression (COX) models.

Methods: The subjects of this prospective cohort study were 1,476 patients with

a history of admission for stroke to one of six hospitals between March, 2014, and

September, 2019. A training dataset (n = 1,033) was used for model development,

and a testing dataset (n = 443) was used for internal validation. Another 167 patients

with stroke recruited from October, to December, 2019, were enrolled in the dataset

for external validation. A feature importance analysis was also performed to identify the

significance of the selected input variables.

Results: For predicting 30-day readmission after stroke, the ANNmodel had significantly

(P < 0.001) higher performance indices compared to the other models. According to

the ANN model results, the best predictor of 30-day readmission was PAC followed by

nasogastric tube insertion and stroke type (P < 0.05). Using a machine learning ANN

model to obtain an accurate estimate of 30-day readmission for stroke and to identify

risk factors may improve the precision and efficacy of management for these patients.
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Conclusion: Using a machine-learning ANN model to obtain an accurate estimate of

30-day readmission for stroke and to identify risk factors may improve the precision and

efficacy of management for these patients. For stroke patients who are candidates for

PAC rehabilitation, these predictors have practical applications in educating patients in

the expected course of recovery and health outcomes.

Keywords: 30-day readmission, artificial neural network, feature importance analysis, post-acute care, stroke

INTRODUCTION

Globally, stroke is not only the second leading cause of death,
but also the disease with the second largest healthcare burden
as estimated in disability-adjusted life-years (1). Previous studies

have estimated that as many as 21% of stroke patients are
readmitted within 30 days and have found that unplanned
Medicare readmission in 2004 estimated in excess of $17

billion in costs (2–4). Furthermore, the mortality rate for 30-
day readmission after stroke is more than 2.5 times greater
than index admissions and highest among those readmitted for
recurrent stroke (2). Additionally, one current study found that
∼25.4% of the venous thromboembolism (VTE)-related hospital
readmissions occurred within the first 30 days of discharge and
they also estimated the mean cost for a hospital readmission
with a primary diagnosis of VTE was $18,681; for readmissions
with a primary diagnosis of deep vein thrombosis and pulmonary
embolism, mean costs were $14,719 and $23,305, respectively (5).
Reducing readmission rates among hospitals has become a goal of
national healthcare reform.

This prospective study evaluated the use of machine learning
algorithms for predicting 30-day readmission after stroke,
univariate analysis and feature importance analysis. This study
presented a novel opportunity to evaluate the use of post-
acute care (PAC) history, demographic characteristics, clinical
characteristics, and functional status outcomes as predictors
of 30-day readmission in patients with stroke. The results of
this study could be used to improve precision and efficacy in
managing these patients. These results not only validate the use of
similar prediction models for clinical practice in other countries,
they also indicate that both PAC and analysis of functional
status outcomes should be routinely be integrated in the care for
stroke patients.

Although prior works to stratify risk of stroke outcomes
have utilized basic statistical models, such as logistic regression
been proposed recently, models for predicting readmission
have had three major shortcomings. Firstly, recently proposed
machine learning models have shown superior area under the
receiver operating characteristic (AUROC) curve compared
to conventional regression models in predicting 30-day
readmission (range: 0.729–0.834 vs. 0.714–0.828, respectively)
(6–8). Secondly, proposed forecasting models require use of
health insurance claims data, which would not be available
in a real-time clinical setting (9). Thirdly, previous studies
predicted the risk of readmission do not comprehensively
consider baseline patient characteristics, including post-acute
care (PAC) history, demographic characteristics, comorbidities,

and functional status score (10–12). However, literature on their
use for predicting 30-day readmission for stroke is relatively
sparse. The current studies regarding to 30-day readmission for
patients with cerebrovascular diseases by using machine learning
are summarized in Table 1 (6–9, 13–15).

To reduce 30-day readmission after stroke and subsequent
mortality, identifying factors that predict readmission is crucial.
Determining the risk factors for 30-day readmission may be
useful for developing policies for preventing readmission after
stroke. Therefore, the aims of this study were to compare
forecasting accuracy in the artificial neural network (ANN),
K nearest neighbor (KNN), random forest (RF), support
vector machine (SVM), naive Bayes classifier (NBC) and
Cox regression (COX) models and to explore significant
predictors of readmission within 30 days after stroke.
The key contributions of this study can be summarized
as follows:

• Advances in artificial intelligence have been applied in clinical
practice. However, machine learning algorithms have not
been used to predict 30-day readmission for patients with
stroke mainly because of the high complexity of prediction
algorithms relative to diagnostic algorithms.

• The proposed machine learning algorithms exhibit strong
potential for use in predicting readmission within 30 days
after stroke.

• A feature importance analysis was also performed to
determine the significance of the selected input variables.

MATERIALS AND METHODS

Study Design and Patients
The subjects of this prospective cohort study were 1,476 patients
with a record of an ICD-9-CM (433.01, 433.10, 433.11, 433.21,
433.31, 433.81, 433.91, 434.00, 434.01, 434.11, 434.91 and 436
for ischemic stroke; 430 and 431 for hemorrhagic stroke), ICD-
10 (I60–I62 were used to identify hemorrhagic stroke; I63 was
used for ischemic stroke), and a history of admission to the
PAC ward at one of four hospitals (three regional hospitals
and one district hospital) or to a traditional non-PAC ward at
one of two medical centers in south Taiwan between March,
2014, and September, 2019. The enrollment criteria were patients
hospitalized for their first-ever stroke who were examined within
30 days with computed tomography (CT) or magnetic resonance
imaging (MRI) and a Modified Rankin Scale (MRS) score of
2 to 4. Scores for the MRS range from 0 to 6, and a high
MRS score indicates a high severity of disability. Patients were
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TABLE 1 | The studies in predicting 30-day readmission for patients by using machine learning.

Authors

(country)

No. of subjects Deep learning algorithms Major findings

Lineback et al.

(USA) (6)

2,855 patients with stroke 1. Logistic regression (LR)

2. Naïve Bayes (NB)

3. Support vector machines (SVM)

4. Random forests (RF)

5. Gradient boosting machines (GBM)

6. Extreme gradient boosting (XGBoost)

Advanced machine learning (ML) methods along with natural language

processing (NLP) features out performed logistic regression for all-cause

readmission [areas under the curve (AUC), 0.64 vs. 0.58; P < 0.001] and

stroke readmission prediction (AUC, 0.62 vs. 0.52; P < 0.001)

Darabi et al.

(USA) (7)

3,184 patients with

ischemic stroke

1. Logistic regression (LR)

2. Random forest (RF)

3. Gradient boosting machine (GBM)

4. Extreme gradient boosting (XGBoost)

5. Support vector machines (SVM)

1. GBM provided the highest AUC (0.68), specificity (0.95), and positive

predictive value (PPV) (0.33) when compared to the other models

2. In terms of AUC, specificity, and PPV, the LR had poor performance

compared to XGBoost and GBM models

Xu et al.

(China) (8)

6,070 patients with

ischemic stroke

1. Extreme gradient boosting (XGBoost)

2. Logistic regression (LR)

The AUC values of the XGboost model and logistic model for predicting

readmission were 0.782 (0.729–0.834) and 0.771

(0.714–0.828), respectively

Sarajlic et al.

(Sweden) (9)

149,447 patients with acute

myocardial infarction

1. Random forests (RF)

2. k-nearest neighbor (k-NN)

3. Naive Bayes Classifier (NBC)

4. Gradient Boosted Trees (XGBoost)

5. Logistic regression (LR)

The full logistic regression model with 25 predictors had a C-index of 0.67

as compared with the best-performing ML model (Random Forest) with only

10 predictors and a C-index of 0.73

Sharma et al.

(Canada) (13)

9,845 patients with heart

failure

1. Extreme gradient boosting (XGBoost)

2. Gradient boosting machine (GBM)

3. AdaBoost

4. CatBoost

5. Light gradient boosting machine

6. Support vector machines (SVM)

7. Gaussian naïve Bayes (GNB)

8. Random forest (RF)

9. L1 logistic regression

1. The boosted tree-based ML algorithms had the highest AUC with

XGBoost compared to the L1 logistic regression (0.685 vs. 0.591) in

predicting 30-day readmission

2. Calibration plots for XGBoost showed that predicted readmission was

aligned with observed risks and that low predicted risks were associated

with fewer actual outcomes highlighting higher negative predicted values

at lower predicted risks

Wang et al.

(USA) (14)

47,498 eligible heart failure

with reduced ejection

fraction patients

1. Logistic regression (LR)

2. Random forest (RF)

3. Extreme gradient boosting (XGBoost)

1. The best AUCs of deep learning (DL) models without a buffer window in

predicting heart failure hospitalizations and worsening heart failure events

in the total patient cohort were 0.977 and 0.972, respectively

2. The best AUCs in predicting 30-day readmission in all adult patients were

0.597 and 0.614, respectively

3. For all outcomes assessed, the DL approach outperformed traditional

machine learning (ML) models

Amritphale et al.

(USA) (15)

16,745 patients with carotid

artery stenting

1. Logistic regression (LR)

2. Support vector machine (SVM)

3. Deep neural network (DNN)

4. Random forest (RF)

5. Decision tree (DT)

1. The artificial intelligence machine learning DNN prediction model has a

C-statistic value of 0.79 in predicting the patients who might have all-

cause unplanned readmission within 30 days of the index carotid artery

stenting discharge

2. The DNN model showed a significant higher receiver operating

characteristic (ROC; 0.802 vs. 0.680, 0.670, 0.607, and 0.586,

respectively) and precision-recall (0.383 vs. 0.140, 0.140, 0.380, and

0.269, respectively) than the LR, SVM, RF, and DT in predicting 30-day

readmission among patients with carotid artery stenting

excluded if PAC beds were unavailable at the participating
hospitals or if they had been transferred to PAC wards at other
hospitals. In this scale, absence of symptoms is scored as 0.
No significant disability, slight disability moderate disability
moderately severe disability, and severe disability is scored as
1, 2, 3, 4 and 5, respectively (16). Another 167 stroke patients
were recruited from October to December, 2019 (Figure 1).
Figure 2 also depicts the conceptual framework of the proposed
method for predicting readmission within 30 days after stroke.
The study protocol was approved by the institutional review
board at Kaohsiung Medical University Hospital (KMUH-IRB-
20140308), and written informed consent was obtained from
each participant.

Instruments and Potential Predictors
Functional disability was measured using the 10-item Barthel
Index (BI) (17). The BI measures functional disability in terms
of inability to perform certain daily life activities (e.g., dressing,
performing self-care, and walking up and down stairs). A BI
score of 10 indicates complete independence. In stroke patients
who had dysphagia, functional oral intake was assessed with the
Functional Oral Intake Scale (FOIS) (18), in which swallowing
function is classified on a scale from 1 (nil by mouth) to 7 (total
oral diet without restriction). Cognitive status was quantitatively
assessed with the Mini-mental State Examination (MMSE) (19).
The MMSE includes tests for orientation, memory, attention,
calculation, language, and construction functions where higher
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FIGURE 1 | Flowchart of the study.

FIGURE 2 | Conceptual framework of the proposed method for predicting readmission within 30 days after stroke.
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scores indicate better functional status (total score range, 0–
30). The Instrumental Activities of Daily Living (IADL) scale is
most useful for assessing current function and improvement or
deterioration in function over time (20). When the IADL scale
is administered in women, all eight domains for function are
scored. In men, the domains of food preparation, housekeeping,
and laundering are not scored. The EuroQoL Quality of Life
Scale (EQ-5D-3L) measures the total health state of the subject
based on a self-assessment of 5 items: mobility, self-care, usual
activities, pain or discomfort, and anxiety or depression (21).
Each EQ-5D-3L item is scored as 1 (no problem), 2 (some
problem), or 3 (extreme problem). The 14-item Berg Balance
Scale (BBS) is used to measure functional balance (22). Each item
is rated from 0 (poor) to 4 (good), and the maximum score is 56.
The Chinese versions of all instruments used in this study have
been validated and used extensively in both clinical practice and
research (17, 23).

A research assistant collected the following data from medical
records after index discharge: PAC program (PAC group or
non-PAC group), patient attributes (age, gender, education, and
BMI), clinical attributes [stroke type, NG tube, Foley catheter,
hypertension, diabetes mellitus (DM), hyperlipidemia, atrial
fibrillation, previous stroke, acute care LOS, and rehabilitation
ward LOS]. In multivariate analysis, the potential predictors
were the independent variables, and 30-day readmission was the
dependent variable.

Machine Learning Algorithms
Machine learning algorithms are effective tools for identifying
and classifying readmission within 30 days after discharge in
patients with stroke. Previous studies have successfully used
machine learning to classify stroke according to characteristics
such as cardiac source and gait in various scenarios (24, 25). In
the present study, machine learning algorithms used to predict
30-day readmission in patients with stroke included ANN, KNN,
RF, SVM, NBC and COX models.

Statistical Analysis
The unit of analysis in this study was the individual patient with
stroke. Statistical analysis was performed in the following steps.
In the first step, the statistical significance of continuous variables
was tested by one-way analysis of variance, and that of categorical
variables was tested by Fisher exact analysis. Univariate analyses
were performed to identify significant predictors (P < 0.05).
In the second step, data for the study cohort of 1,476 subjects
were randomly divided into two datasets: a training dataset
containing data for 1,033 subjects (70%), which was used for
model development, and a testing dataset containing data for
443 subjects (30%), which was used for internal validation.
A validation dataset containing data for another 167 patients
enrolled after September, 2019, was used for external validation.
To identify the optimal hyper-parameters for the machine
learning algorithms, we applied Bayesian optimization using
the expected improvement as the acquisition function (26). To
perform the hyperband method of optimization and to test
different combinations of hyper-parameters, we used Optuna

TABLE 2 | Baseline characteristics of the study population (N = 1,476).

Variables Mean ± SD or N (%)*

Post-acute care

No 193 (13.1)

Yes 1,283 (86.9)

Patient attributes

Age (years) 65.5 ± 13.0

Gender

Female 554 (37.5)

Male 922 (62.5)

Education (years) 8.9 ± 2.1

Body mass index (kg/m2) 24.0 ± 2.6

Clinical attributes

Stroke type

Ischemic 1,224 (82.9)

Hemorrhagic 252 (17.1)

Nasogastric tube

No 1,187 (80.4)

Yes 289 (19.6)

Foley catheter

No 1,342 (90.9)

Yes 134 (9.1)

Hypertension

No 449 (30.4)

Yes 1,027 (69.6)

Diabetes mellitus

No 906 (61.4)

Yes 570 (38.6)

Hyperlipidemia

No 967 (65.5)

Yes 509 (34.5)

Atrial fibrillation

No 1,354 (91.7)

Yes 122 (8.3)

Previous stroke

No 1,250 (84.7)

Yes 226 (15.3)

Acute care length of stay (days) 15.2 ± 9.0

Rehabilitation length of stay (days) 44.9 ± 21.2

Readmission in 30 days

No 1,356 (91.9)

Yes 120 (8.1)

Functional status scores before rehabilitation

BI score 39.0 ± 23.7

FOIS score 5.5 ± 2.1

EQ5D score 10.4 ± 1.9

IADL score 1.2 ± 1.1

BBS score 15.6 ± 15.8

MMSE score 19.4 ± 8.9

*Data are frequencies (percentages), as indicated, for categorical variables and mean ±

standard deviation for continuous variables of baseline characteristics.

SD, standard deviation; BI, Barthel Index; FOIS, Functional Oral Intake Scale; EQ-5D,

EuroQoL Quality of Life Scale; IADL, Instrumental activities of Daily Living Scale; BBS,

Berg Balance Scale; MMSE, Mini-Mental State Examination.
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version 2.10.0 (27). A total of 1,000 trials were conducted, and
the parameters with the greatest area under the receiver operating
characteristic curve were saved. Additionally, since data used
for model fitting tended to overestimate model performance
on unseen subjects, we coupled 10-fold cross-validation (28)
with the logistic loss metric to measure the generalizability
of the model to unseen subjects during model selection. A
total of six machine-learning classifiers were constructed in the
training dataset and tested in the validating dataset. A confusion
matrix is used to describe and visualize the performance of
the machine learning algorithm classifier and also to provide
insight on what the model misclassifies. In the present study,
the performance of the machine learning algorithms for the best
classification task was evaluated in terms of confusion matrix-
based performance measuring metrics including sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), and accuracy. In order to evaluate and select
the most accurate machine learning algorithms, we used a
confusion matrix and calculated the percentage of sensitivity,
specificity, and accuracy of each forecasting model. In addition,
the performance of the machine learning algorithms in the
present study was also evaluated by the receiver operating
characteristic (ROC) curve and the area under the ROC curve
(AUROC). The independent variables fitted to the forecasting
models were significant predictors of 30-day readmission, and
the dependent variable was 30-day readmission. After model
training, model outputs were collected for each testing dataset.
In the third step, bootstrapping, a machine learning technique,
which involves taking random samples from the dataset with
re-selection of 1,000 resamples was used to compare different
machine learning algorithms employing the performance indices
and the 95% confidence intervals. We used paired t-test to
identify performance indices that significantly differed between
the two models.

In the fourth and final step, feature selection method was
calculated by using an algorithm to obtain an importance
score for each potential predictor in the dataset (29). Feature
importance analysis provides information about how each
feature contributes to model prediction accuracy. The final
weight of each feature is calculated by averaging the decrease in
model accuracy after random permutation of the feature values
within a testing set. Permutation of an important feature should
decrease the score whereas permutation of a feature that is not
very important to model prediction accuracy should increase the
score. To obtain robust results with our small dataset, the train-
test split was performed with a repeated stratified K fold cross
validation. This technique has two advantages: first, it is model-
agnostic; second, it can be performed repeatedly with different
feature permutations. All statistical analyses were performed
using the STATISTICA 13.0 software package (StatSoft, Inc.,
Tulsa, OK, USA). All statistical tests were two-sided; a P-value
< 0.05 was considered statistically significant.

RESULTS

Study Characteristics
Table 1 shows that 1,283 patients (86.9%) joined the per-
diem PAC program and the remaining patients selected the

TABLE 3 | Univariate analysis of selected risk factors for 30-day readmission in

patients with stroke (N = 1,476).

Variables Statistics P-value*

Post-acute care (yes vs. no) 52.074 <0.001

Patient attributes

Age (years) 7.890 0.005

Gender (female vs. male) 23.657 <0.001

Education (years) 10.870 <0.001

Body mass index (kg/m2) 7.944 0.005

Clinical attributes

Stroke type (ischemic vs. hemorrhagic) 32.053 <0.001

Nasogastric tube (yes vs. no) 49.361 <0.001

Foley catheter (yes vs. no) 5.590 0.018

Hypertension (yes vs. no) 4.564 0.033

Diabetes mellitus (yes vs. no) 7.324 0.007

Hyperlipidemia (yes vs. no) 5.777 0.016

Atrial fibrillation (yes vs. no) 6.114 0.013

Previous stroke (yes vs. no) 6.899 0.009

Acute care length of stay, days 30.008 <0.001

Rehabilitation length of stay, days 26.508 <0.001

Functional status score before rehabilitation

BI score 37.494 <0.001

FOIS score 26.508 <0.001

EQ5D score 16.712 <0.001

IADL score 22.726 <0.001

BBS score 14.903 <0.001

MMSE score 34.665 <0.001

*One-way analysis of variance and Fisher exact analysis were performed to assess for

associations between the variables and 30-day readmission.

BI, Barthel Index; FOIS, Functional Oral Intake Scale; EQ-5D, EuroQoL Quality of Life

Scale; IADL, Instrumental Activities of Daily Living Scale; BBS, Berg Balance Scale; MMSE,

Mini-Mental State Examination.

fee-for-service non-PAC program. The patients with stroke had
a mean age of 65.5 years (standard deviation, SD 13.0 years), and
most (62.5%) patients were male. During the study period, 120
patients with stroke were readmitted within 30 days. In univariate
analysis, PAC program, age, gender, education, body mass index
(BMI), stroke type, nasogastric (NG) tube, Foley, hypertension,
diabetes mellitus (DM), hyperlipidemia, atrial fibrillation,
previous stroke, acute care length of stay (LOS), rehabilitation
LOS and functional status score before rehabilitation were
significantly associated with 30-day readmission (P < 0.05).
These significant predictors were included in the forecasting
models (Table 2).

Comparison of Forecasting Models
Significant predictors of 30-day readmission did not significantly
differ between the training and testing datasets; therefore,
samples were compared between the training and testing datasets
to increase reliability of the validation results (Table 3). We
used grid search to find the best hyperparameters for the neural
networks. We searched for the following hyperparameters: the
number of hidden layers (in the range of 1–6), the number of
hidden neurons in each layer (in the range of 1–512), activation
functions (“relu,” “logistic sigmoid”), and learning rate (in the

Frontiers in Neurology | www.frontiersin.org 6 July 2022 | Volume 13 | Article 87549126

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chen et al. Predicting 30-Day Readmission for Stroke

range of 0.01–0.001). We used adam optimizer, constant learning
rate, and the regularization rate of alpha= 0.01. The SVMmodel
was configured with linear kernel, and regularization parameter
C= 1.0. The RFmodel is an ensemble learningmethod combined
of multiple decision tree predictors that are trained based on
random data samples and feature subsets. We configured the
RF algorithm with two trees in the forest. Hyperparameter
optimization was then performed to improve the performance of
the compact model, and the machine learning algorithms with
the greatest AUROC values in 1,000 trials were obtained. Table 4
lists the final hyperparameter settings. The data in Table 5

indicate that the ANNmodel compared to KNN, RF, SVM, NBC,
and COX models had significantly (P < 0.001) higher sensitivity,

TABLE 4 | Hyper-parameters and final settings in all machine learning algorithms.

Algorithms Hyper-parameters Settings

Artificial neural network (ANN) Hidden layers 6

Hidden neuron 512-256-128-64-32-1

Learning rate* 0.001

K nearest neighbor (KNN) Neighbors 5

Support vector machine (SVM) Cpenalty 1.0

Gamma 1/[n_features * X.var()]

Naive Bayes classifier (NBC) Alpha 1.0

Random forest (RF) Estimators 100

Splitmin 2

leafmin 1

Cox regression (COX) – –

*Optimizer algorithm using Adam.

specificity, PPV, NPV, accuracy, and AUC values. Similar results
also were shown in dataset for testing simultaneously. The
receiver operating characteristic (ROC) curve results in Figure 3

show that the ANN model had significantly higher ROC values
compared to other forecasting models (P < 0.001).

Significant Predictors in the ANN Model
Figure 4 shows the feature importance analysis results for the
ANN model. The VSR value for predicting 30-day readmission
in stroke patients was highest for PAC (permutation importance
= 0.761) followed by NG tube (0.552), stroke type (0.448),
BI score before rehabilitation (0.423), IADL score before
rehabilitation (0.418), MMSE score before rehabilitation (0.409),
BBS score before rehabilitation (0.408), FOIS score before
rehabilitation (0.404), EQ5D score before rehabilitation (0.401),
and others.

Sensitivity Analysis
Next, the validating dataset of 167 subjects was used to compare
the predictive accuracy of the models. Table 6 also compares the
performance indices obtained in external validation of the ANN,
KNN, RF, SVM, NBC and COX models. For predicting 30-day
readmission, the ANN model consistently achieved significantly
higher performance indices (P < 0.001).

DISCUSSION

Accuracy in predicting 30-day readmission in patients with
stroke was compared among five forecasting models. For
a given set of clinical inputs, the ANN model clearly had
superior forecasting accuracy compared to the other four.
Notably, our prospective study collected longitudinal data

TABLE 5 | Comparison of 1,000 pairs of forecasting models for predicting 30-day readmission in patients with stroke (N = 1,476).

Model Sensitivity Specificity PPV NPV Accuracy AUC

Training dataset (n = 1,033)

ANN (95% CI) 0.73 (0.65, 0.82) 0.98 (0.96, 0.99) 0.88 (0.84, 0.92) 0.77 (0.70, 0.84) 0.92 (0.89, 0.95) 0.94 (0.91,0.97)

KNN (95% CI) 0.59 (0.50, 0.68) 0.86 (0.82, 0.90) 0.56 (0.47, 0.65) 0.64 (0.56, 0.72) 0.83 (0.78, 0.88) 0.76 (0.68, 0.84)

RF (95% CI) 0.70 (0.64, 0.76) 0.92 (0.87, 0.97) 0.79 (0.75, 0.83) 0.71 (0.64, 0.78) 0.88 (0.84, 0.92) 0.85 (0.80, 0.90)

SVM (95% CI) 0.49 (0.39, 0.59) 0.96 (0.93, 0.99) 0.76 (0.68, 0.84) 0.62 (0.54, 0.70) 0.89 (0.85, 0.93) 0.74 (0.66, 0.82)

NBC (95% CI) 0.48 (0.38, 0.59) 0.96 (0.93, 0.99) 0.50 (0.40, 0.60) 0.69 (0.61, 0.77) 0.81 (0.75, 0.87) 0.73 (0.65, 0.81)

COX (95% CI) 0.51 (0.42, 0.61) 0.97 (0.95, 0.99) 0.77 (0.69, 0.85) 0.71 (0.63, 0.79) 0.85 (0.80, 0.90) 0.88 (0.83, 0.93)

P-value* <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Testing dataset (n = 443)

ANN (95% CI) 0.70 (0.62, 0.78) 0.97 (0.95, 0.99) 0.89 (0.85, 0.93) 0.82 (0.76, 0.88) 0.93 (0.90, 0.96) 0.89 (0.85, 0.93)

KNN (95% CI) 0.53 (0.44, 0.62) 0.88 (0.84, 0.92) 0.60 (0.51, 0.69) 0.71 (0.63, 0.79) 0.71 (0.63, 0.79) 0.81 (0.75, 0.87)

RF (95% CI) 0.69 (0.62, 0.76) 0.94 (0.92, 0.96) 0.85 (0.82, 0.88) 0.79 (0.76, 0.82) 0.88 (0.84, 0.92) 0.87 (0.83, 0.91)

SVM (95% CI) 0.53 (0.44, 0.62) 0.93 (0.90, 0.96) 0.75 (0.67, 0.82) 0.78 (0.71, 0.85) 0.82 (0.73, 0.89) 0.80 (0.74, 0.86)

NBC (95% CI) 0.50 (0.40, 0.60) 0.93 (0.90, 0.96) 0.63 (0.54, 0.72) 0.79 (0.72, 0.86) 0.83 (0.76, 0.90) 0.84 (0.78, 0.90)

COX (95% CI) 0.54 (0.45, 0.64) 0.96 (0.94, 0.98) 0.88 (0.83, 0.93) 0.61 (0.53, 0.69) 0.87 (0.82, 0.92) 0.87 (0.82, 0.92)

P-value* <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

ANN, artificial neural network; KNN, K nearest neighbor; RF, random forest; SVM, support vector machine; NBC, naive Bayes classifier; COX, Cox regression; PPV, positive predictive

value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.

*The P-value is the statistical significance of the forecasting models and performance indices calculated using a Chi-squared test.
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FIGURE 3 | Performance indices of forecasting models used to predict 30-day readmission in patients with stroke when using (A) training dataset, (B) testing dataset.

The box plot shows the median (centers) and interquartile range (borders). In analyses of accuracy and AUROC, the ANN model had significantly higher values

compared to other forecasting models (P < 0.001). AUROC, area under the receiver operating characteristics; ANN, artificial neural network.

from six different medical institutions, which provided
a real-world depiction of current treatment for patients
with stroke. In contrast, previous works have used data

from a single medical center (10–13). Moreover, using
registry data obtained from six hospitals mitigated the
potential for referral bias or bias caused by analyzing
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FIGURE 4 | A permutation importance analysis of artificial neural network model in predicting 30-day readmission in patients with stroke. BI, Barthel Index; IADL,

Instrumental Activities of Daily Living; MMSE, Mini-Mental State Examination; BBS, Berg Balance Scale; FOIS, Functional Oral Intake Scale; EQ-5D, EuroQoL Quality

of Life Scale.

TABLE 6 | Comparative performance indices of forecasting models when using 167 new validating datasets to predict 30-day readmission in patients with stroke.

Models Sensitivity Specificity PPV NPV Accuracy AUC

ANN (95% CI) 0.74 (0.66, 0.82) 0.97 (0.95, 0.99) 0.89 (0.85, 0.94) 0.87 (0.82, 0.92) 0.93 (0.90, 0.96) 0.94 (0.91, 0.97)

KNN (95% CI) 0.50 (0.40, 0.49) 0.87 (0.83, 0.91) 0.61 (0.52, 0.70) 0.70 (0.62, 0.78) 0.80 (0.74, 0.86) 0.83 (0.78, 0.88)

RF (95% CI) 0.70 (0.66, 0.74) 0.95 (0.91, 0.98) 0.84 (0.80, 0.88) 0.85 (0.81, 0.89) 0.90 (0.87, 0.93) 0.90 (0.86, 0.94)

SVM (95% CI) 0.51 (0.41, 0.61) 0.96 (0.94, 0.98) 0.76 (0.69, 0.83) 0.79 (0.72, 0.87) 0.88 (0.84, 0.92) 0.81 (0.76, 0.86)

NBC (95% CI) 0.50 (0.40, 0.60) 0.93 (0.90, 0.96) 0.61 (0.52, 0.70) 0.80 (0.73, 0.87) 0.84 (0.79, 0.89) 0.80 (0.75, 0.85)

COX (95% CI) 0.58 (0.49, 0.67) 0.92 (0.89, 0.95) 0.84 (0.78, 0.90) 0.69 (0.61, 0.77) 0.88 (0.84, 0.92) 0.88 (0.84, 0.92)

P-value* <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

ANN, artificial neural network; KNN, K nearest neighbor; RF, random forest; SVM, support vector machine; NBC, naive Bayes classifier; COX, Cox regression; PPV, positive predictive

value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.

*The P-value is the statistical significance of the forecasting models and the performance indices calculated using a Chi-squared test.

the practices of a single physician or a single institution
(30, 31).

Recent works have demonstrated the superior performance of
machine learning-based models for predicting stroke outcomes
(24, 25). One advantage of using an ANN model is that it
enables appropriate and accurate processing of inputs that are
incomplete or inputs that introduce noise (9, 32). Another
advantage of ANN models, whether linear or non-linear, is
their good performance in/effectiveness for analyzing large-
scale medical databases constructed using data that are highly
correlated but not normally distributed. The high robustness
of the ANN model has been demonstrated in many clinical
applications, particularly predicting prognosis in various diseases
(32). In performance comparisons of the five models in this
study, expanding the number of potential predictors apparently
improved the performance of the ANN model in systematic
analysis of outcome in various diseases.

Our current results indicate that ANN models can use
clinical outcome data for predicting 30-day readmission after

stroke. Prospective prediction performance and cross-validation
performance were adequate when subjects were familiar with the
task and when information from the previous test session was
made available. However, larger scale studies are still needed to
validate this approach.

A permutation importance analyses of the weights of
significant predictors of 30-day readmission for stroke revealed
that the best predictor was PAC. This finding is consistent with
earlier reports that, in comparisons of independent predictors,
PAC is the best predictor of stroke outcome, including overall
treatment cost, functional status after stroke, and duration of
hospital stay before transfer to rehabilitative ward (30, 33). In
a quasi-experimental study of stroke patients, Wang et al. (30)
investigated the longitudinal impact of PAC on functional status.
The authors concluded that multidisciplinary rehabilitative PAC
delivered on a per-diem basis substantially improved functional
status compared to standard rehabilitation. Another study
performed in a nationwide stroke cohort compared mortality
and numerous functional domains between a PAC group and
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TABLE 7 | Reported associations between post-acute care (PAC) for stroke and 30-day readmission.

Authors (country) No. of subjects Mean age Data source Findings

Present study (Taiwan) 1,476 65.5 Prospective cohort study from six hospitals Post-acute care (PAC) program was the best

predictor of 30-day readmission

Kim et al. (U.S.) (39) 51,863 80.4 Medicare provider analysis and review files Using Instrumental Variable analysis to control for

endogeneity bias, an increase in institutional PAC

use was associated with a decrease in 30-day

readmission rate by 0.19 percentage points

Kosar et al. (U.S.) (40) 2,044,231 80.2 Medicare provider analysis and review

database

In most rural counties, 30-day readmission rates

were 0.3 (95% CI, −0.6 to −0.1) percentage points

lower in a non-PAC group compared to a PAC group

Raman et al. (U.S.) (41) 1,613 74.4 State inpatient database, California Clinical predictors of 30-day readmission included

comorbidities (e.g., liver disease, hypertension) and

discharge to a PAC facility

Li et al. (U.S.) (42) 7,851,430 65∼100 Medicare beneficiaries An increase in quarterly PAC use was significantly (P

< 0.001) associated with a decrease in 30-day

risk-standardized readmission rates for acute

myocardial infarction, heart failure, and hip/femur

fracture

Ramchand et al. (U.S.) (43) 4,850 53.1 National readmissions database It showed that discharge to inpatient postacute care

facility (adjusted odds ratio 1.61, 95% CI 1.07–2.41)

was significantly associated with a higher likelihood

of 30-day readmission after discharge

Hsieh et al. (Taiwan) (44) 6,839 69.4 National Health Insurance claims datasets The 30-day readmission rates were 15.5% for the

PAC group vs. 30.4% in the non-PAC group

a well-matched non-PAC group (34). The PAC group had
significantly lower 90-day hospital readmissions and stroke-
related readmissions compared to the non-PAC group.

Dennis et al. (35) reported that, compared to nasogastric
feeding, percutaneous endoscopic gastrostomy was associated
with higher risk of death or poorer outcomes at 6 months
after stroke. However, Ho et al. (36) noted that prolonged (i.e.,
longer than 2 weeks) nasogastric tube feeding was significantly
associated with pneumonia and mortality. In the current
study, NG tube insertion before rehabilitation was significantly
associated with 30-day readmission (P < 0.001). During the
study period, no patient with stroke required NG tube insertion
after rehabilitation.

Compared to other stroke types, hemorrhagic stroke is
reportedly associated with higher severity and with higher overall
mortality in the first 3 months after stroke (37, 38). The current
study further revealed that hemorrhagic stroke has a higher
30-day readmission rate for ischemic stroke.

This prospective observational cohort study of patients
with stroke in Taiwan analyzed data from patients treated
at six healthcare institutions. The predictive accuracy of
the ANN model developed in this study outperformed
the other four models in identifying predictors of 30-
day readmission. Three implications of this study are
noted. First, the proposed ANN model may be useful for
guiding the clinical care of patients with stroke. Second,
healthcare administrators and managers at medical institutions
should facilitate prompt and appropriate PAC for patients
with stroke. Third, the Taiwan National Health Insurance
Administration should include PAC in its guidelines for clinical

treatment of stroke in order to achieve a broad nationwide
improvement in care for these patients. However, further
studies are needed to confirm the clinical relevance of the
proposed ANN model in terms of its efficacy in predicting
prognosis and optimizing medical management for patients
with stoke.

For further validation of the significant association observed
between PAC and 30-day readmission for stroke, Table 7

compares six relevant studies performed in the United States or
Taiwan (39–44). The six studies shared the following features:
(1) a relatively large sample size, (2) a mean age of 65
years or more, (3) use of statewide or national datasets, and,
most importantly, (4) investigation of 30-day readmission in
patients with stroke. As in these previous works, out study
demonstrated a significantly lower 30-day stroke readmission
rate in a multidisciplinary PAC group compared to a non-PAC
group (P < 0.001).

This study has several limitations inherent in a large database
analysis. First, the validity of the comparisons in the study
is limited by the exclusion of complications associated with
stroke rehabilitation outcomes. Second, the analysis was limited
to 30-day readmission, which reduces the subset of patients
with stroke in which the ANN model is clinically applicable.
Third, imbalance between positive and negative outcomes,
i.e., class imbalance, is a common problem in analysis of
medical data and has not been satisfactorily addressed (45,
46). Further studies are needed to investigate the use of
ensemble algorithm for solving the class imbalance problem.
Additionally, whether the timing or duration of the stroke
treatment is a relevant prognostic predictor of readmission
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deserves further study. Nevertheless, the results can still be
considered valid given the robustness and statistical significance
of the results.

CONCLUSIONS

Based on the comparison results in this study, we conclude that
the ANN model is superior to the other forecasting models
in terms of accuracy in predicting 30-day readmission for
stroke after a hospital discharge. The ANN model outperformed
the other models in terms of both accuracy and AUROC
curve. Using a machine-learning ANN model to obtain an
accurate estimate of 30-day readmission for stroke and to
identify risk factors may improve the precision and efficacy
of management for these patients. Predictors of stroke can
be discussed when educating PAC candidates in the expected
course of recovery and health outcomes. Although the practical
applicability of database studies such as this have been
convincingly demonstrated in the literature, future studies can
expand the range of clinical variables included in the analysis,
which could obtain additional results and potentially improve
prediction accuracy. Such data could be vital for developing,
promoting, and improving health policies for treating patients
with stroke.
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Predicting the rupture status of
small middle cerebral artery
aneurysms using random forest
modeling
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Xiufen Jia1, Hao Wang1, Bing Zhao3, Jinjin Liu1,

Yunjun Yang1*† and Yongchun Chen1*†

1Department of Radiology, The First A�liated Hospital of Wenzhou Medical University, Wenzhou,

China, 2Department of Radiology, Wenzhou Central Hospital, Wenzhou, China, 3Department of

Neurosurgery, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China

Objective: Small intracranial aneurysms are increasingly being detected;

however, a prediction model for their rupture is rare. Random forest modeling

was used to predict the rupture status of small middle cerebral artery (MCA)

aneurysms with morphological features.

Methods: From January 2009 to June 2020, we retrospectively reviewed

patients with small MCA aneurysms (<7mm). The aneurysms were randomly

split into training (70%) and internal validation (30%) cohorts. Additional

independent datasets were used for the external validation of 78 small

MCA aneurysms from another four hospitals. Aneurysm morphology was

determined using computed tomography angiography (CTA). Prediction

models were developed using the random forest and multivariate

logistic regression.

Results: A total of 426 consecutive patients with 454 small MCA aneurysms

(<7mm) were included. A multivariate logistic regression analysis showed that

size ratio (SR), aspect ratio (AR), and daughter dome were associated with

aneurysm rupture, whereas aneurysm angle and multiplicity were inversely

associated with aneurysm rupture. The areas under the receiver operating

characteristic (ROC) curves (AUCs) of random forest models using the five

independent risk factors in the training, internal validation, and external

validation cohorts were 0.922, 0.889, and 0.92, respectively. The random forest

model outperformed the logistic regression model (p = 0.048). A nomogram

was developed to assess the rupture of small MCA aneurysms.

Conclusion: Random forest modeling is a good tool for evaluating the rupture

status of small MCA aneurysms and may be considered for the management

of small aneurysms.
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middle cerebral artery, rupture, random forest, small aneurysm, morphology
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Introduction

Unruptured aneurysms have been increasingly detected

with the development of computed tomography angiography

(CTA) and magnetic resonance angiography (1–3). The

majority of incidentally detected aneurysms are small (<7mm)

(4, 5). Unruptured small aneurysms are often considered

stable and are recommended for conservative treatment with

imaging surveillance (6–8). However, recent reports have

found that the proportion of small aneurysms in patients

with subarachnoid hemorrhage (SAH) was considerable; 75%

of ruptured aneurysms were <7mm (9). To avoid the

consequences of SAH, an increasing number of novel preventive

treatments have been applied for small unruptured aneurysms

(10, 11). All these contradictions make the treatment of patients

with unruptured small aneurysms controversial. Therefore,

a novel methodology is necessary to construct a rupture

prediction model for small aneurysms to facilitate clinical

decisions. Recently, machine learning (ML) has been used to

classify aneurysm rupture (12–14). It could not only detect

important relationships of the risk factors for aneurysm rupture

but could also be simply and rapidly applied to make predictions

(12–14). Random forest, an important ML tool for prediction

and risk analysis, has been widely used because of its good

performance and relatively high accuracy (14–16). Xia et al.

(17) showed that the random forest model achieved good

performance in predicting the clinical outcome after rupture

of anterior communicating artery aneurysms with areas under

the receiver operating characteristic (ROC) curve (AUC) of

0.90 in the internal test and 0.84 in the external test. Lv et al.

(18) found that a user-friendly nomogram incorporating clinical

factors and scoring systems could be convenient for predicting

mortality and facilitating physician decision-making. Aneurysm

morphologies, such as size, size ratio (SR), aspect ratio (AR),

and irregular shape have been reported as significant risk factors

for aneurysm rupture (12, 19–21). However, the application of

ML for predicting the rupture of small aneurysms in specific

locations has not been reported.

This study aimed to develop a random forest model to

predict the rupture status of small middle cerebral artery (MCA)

aneurysms. In addition, we developed an easy and visualized

nomogram to facilitate clinical application.

Materials and methods

Patient selection

This study was approved by our institutional ethics

committee, which waived the requirement for written informed

Abbreviations: MCA, middle cerebral artery; CTA, computed tomography

angiography; AUC, areas under receiver operating characteristic curve;

SAH, subarachnoid hemorrhages; ML, machine learning.

consent. Between January 2009 and June 2020, 426 consecutive

patients with 454 small MCA aneurysms detected using CTA

in a hospital were enrolled in this study. The MCA aneurysms

with a diameter < 7mm were defined as small. A ruptured

aneurysm is defined as a plain CT scan or cerebrospinal

fluid examination showing SAH that is confirmed by CTA,

digital subtraction angiography, or surgery (21). The exclusion

criteria were as follows: patients with fusiform aneurysms,

poor CTA image quality, aneurysms with a size ≥ 7mm,

aneurysms combined with other cerebrovascular diseases (such

as, Moyamoya disease or arteriovenous malformations), and

multiple aneurysms with failure to determine the responsible

aneurysm. The flowchart of the study is shown in Figure 1.

All aneurysms were randomly divided into the training and

validation cohorts (n = 7:3). Additional independent datasets

were used for external validation from four other hospitals

(B, C, D, and E): hospital B (from September 2019 to

March 2020), hospital C (from January 2017 to October

2019), hospital D (from January 2018 to June 2021), and

hospital E (from January 2018 to June 2021). A total of 78

small MCA aneurysms were included in the final external

validation cohort.

CTA image acquisition

In hospital A, the CTA images were acquired using

three CT scanners, including a 320-detector row CT scanner

(Aquilion ONE, Toshiba Medical Systems, Japan) with a

0.5mm section thickness, a 512 × 512 matrix size, a 0.5mm

reconstruction interval, a 100 kV tube voltage, and a 300

mAs tube current; a 64-channel multidetector CT scanner

(Lightspeed VCT 64 General Electric Medical Systems,

Milwaukee, WI, USA) with a 0.625mm section thickness, a

matrix size of 512 × 512, a 0.625mm reconstruction interval,

a 100 kV tube voltage, and a 500 mAs tube current; and a

16-channel multidetector CT scanner (Lightspeed pro16;

General Electric Medical Systems, Milwaukee, Wisconsin,

USA) with a 1.25mm section thickness, a matrix size

of 512 × 512, a 1.25mm reconstruction interval, a 120

kV tube voltage, and a 300 mAs tube current. The CTA

imaging protocol has been described in detail previously

(22). The details of the CTA image scanning in the

other four hospitals are described in Supplemental Digital

Content 1.

Morphological parameters definition

Morphological parameters of the aneurysm, such as

aneurysm size, aneurysm height, perpendicular height, neck size,

width, vessel size, aneurysm angle, vessel angle, and flow angle,

were measured using a CTA image reconstruction workstation

(Version 4.6; GE Medical Systems). The measurement of
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FIGURE 1

The flowchart of this study.

aneurysm morphological parameters has been described in

previous studies and is shown in Figure 2 (23). The aneurysm

had the largest cross-sectional diameter. The aneurysm height

was the greatest distance between the center of the aneurysm

neck and the aneurysm dome. Vessel size was defined as

the mean of all arteries’ vessel diameters compared with the

aneurysm. The diameter of a specific artery was determined

by averaging the diameter of the cross-section of the vessel

next to the aneurysm neck (D1) and the diameter of the

cross-section at a 1.5 × D1 distance from the aneurysm neck.

The bottleneck ratio was defined as the ratio of aneurysm

width to neck size. The AR is the ratio of the perpendicular

height to the neck size. The SR is the ratio of aneurysm

height to vessel size. The aneurysm angle was the angle formed

between the plane of the aneurysm neck and the vector of

the aneurysm height. The flow angle was defined as the angle

between the aneurysm height line and the vector of blood

flow in the parent artery. The vessel angle was defined as

the angle between the aneurysm neckline and the blood flow

vector. The daughter dome had an irregular protrusion of the

aneurysm wall.

Feature selection and model
development

Primary data from hospital A were randomly assigned to the

training group (70%, n= 317) and the internal validation group

(30%, n = 137). Feature selection in the training group was

performed using univariate and multivariate logistic analyses.

The hyperparameters of the random forest model were obtained

by a 5-fold cross-validation. The n_estimators, max_depth,

and min_samples_split values were 6, 6, and 12, respectively.

The performance of the random forest model was evaluated

using the AUC, sensitivity, specificity, and overall accuracy.

The performance of the model was tested using training and

validation cohorts. A nomogram was constructed based on

multivariate logistic analysis.

Statistical analysis

The chi-squared test was used for categorical variables.

Student’s t-test or the Mann–Whitney U-test was used for
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FIGURE 2

Measurements of aneurysm morphological parameters.

continuous variables between the two groups, and an ANOVA

test was used for continuous variables between the three groups.

Continuous variables were expressed as mean ± standard

deviation (SD), and categorical variables were expressed as

frequency (percentage). The DeLong test and the Bonferroni

correction were used to compare the AUCs of these models.

All statistical analyses were performed using R 3.5.1, Python

3.5.6, and SPSS 23.0 (IBMCorp, Armonk, New, USA). Statistical

significance was defined as a two-tailed p-value of <0.05.

Results

Baseline characteristics

In total, 426 patients with 454 small MCA aneurysms

were enrolled in this study. A total of 294 patients with 317

small MCA aneurysms were randomly included in the training

cohort, and 132 patients with 137 small MCA aneurysms were

randomly selected in the internal validation cohort. Therefore,

78 patients with 78 small MCA aneurysms were included

for external validation. Supplemental Digital Content 2

shows the baseline characteristics of the training and

internal and external validation cohorts. Only the age was

significantly different between the training and external

validation cohorts. In the training cohort, 166 patients (56.5%)

were women. The median age of the patients was 58.2 ±

12.1 years (range, 20–88 years). There were 164 ruptured

and 153 unruptured aneurysms. Patients in the ruptured

group were younger (55.4 vs. 61.8 years) and had a lower

percentage of hypertension (56.2 vs. 71.8%) than those in

the unruptured group. The distribution of patients who

smoked (20.5 vs. 20.6%) was similar between the two groups

(Supplemental Digital Content 3).
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TABLE 1 The univariate analysis of morphological features of small middle cerebral artery (MCA) aneurysms in the training cohort.

Variable Sample Unruptured (n= 153) Ruptured (n= 164) P-value

Multi aneurysms (%) 110 76 (49.67%) 34 (20.73%) <0.001

Irregular (%) 82 21 (13.73%) 61 (37.20%) <0.001

Daughter dome (%) 40 6 (3.92%) 34 (20.73%) <0.001

Aneurysm location (%) 0.185

M1 125 65 (42.48%) 60 (36.59%)

Mbif 180 80 (52.29%) 100 (60.98%)

Mdist 12 8 (5.23%) 4 (2.44%)

Projection in axial (%) 0.306

Anterior 169 76 (49.67%) 93 (56.71%)

Posterior 55 26 (16.99%) 29 (17.68%)

Neutral 93 51 (33.33%) 42 (25.61%)

Projection in coronal (%) 0.801

Superior 105 51 (33.33%) 54 (32.93%)

Inferior 101 51 (33.33%) 50 (30.49%)

Neutral 111 51 (33.33%) 60 (36.59%)

Vessel size (mm) 317 2.41± 0.58 2.28± 0.49 0.06

Size (mm) 317 4.06± 1.34 4.75± 1.20 <0.001

Aneurysm height (mm) 317 2.67± 1.24 3.68± 1.18 <0.001

Perpendicular height (mm) 317 2.34± 1.09 3.10± 1.07 <0.001

Width (mm) 317 3.22± 1.22 3.53± 0.99 0.001

Neck size (mm) 317 3.49± 1.08 3.21± 0.80 0.01

AR 317 0.69± 0.32 1.01± 0.42 <0.001

SR 317 1.17± 0.70 1.73± 0.82 <0.001

Bottleneck ratio 317 0.93± 0.25 1.14± 0.36 <0.001

Height width ratio 317 0.73± 0.21 0.89± 0.27 <0.001

Aneurysm angle (◦) 317 71.42± 16.61 65.87± 16.53 0.004

Vessel angle (◦) 317 49.29± 25.22 53.97± 26.18 0.106

Flow angle (◦) 317 135.63± 26.98 135.63± 29.81 0.797

Parent daughter angle (◦) 317 87.43± 29.64 79.66± 23.17 0.005

M1, proximal segment of middle cerebral artery; Mbif, main middle cerebral artery bifurcation; Mdist, distal middle cerebral artery; AR, aspect ratio; and SR, size ratio.

Morphologic characteristics between
ruptured and unruptured small MCA
aneurysms

The details of the small MCA aneurysms in the training

cohort are presented in Table 1. A univariate logistic analysis

revealed that 14 morphological parameters were significantly

different between the ruptured and unruptured groups. The

results of the multivariate logistic regression analysis are

shown in Table 2. The independently significant discriminants

were SR [odds ratio (OR) 1.774, 95% CI: 1.006–3.127;

p= 0.047], AR (OR 7.667, 95% CI: 2.697–21.795; p < 0.001),

aneurysm angle (OR 0.980, 95% CI: 0.964–0.997; p = 0.020),

daughter dome (OR 4.307, 95% CI: 1.630–11.379; p= 0.003),

and multi aneurysms (OR 0.243, 95% CI: 0.137–0.433;

p < 0.001).

TABLE 2 The multivariate analysis of morphological features of small

middle cerebral artery aneurysms in the training cohort.

Variables OR 95% CI P-value

SR 1.774 1.006–3.127 0.047

AR 7.667 2.697–21.795 <0.001

Aneurysm angle 0.980 0.964–0.997 0.020

Daughter dome 4.307 1.630–11.379 0.003

Multi aneurysms 0.243 0.137–0.433 <0.001

OR, odds ratio; CI, confidence interval; AR, aspect ratio; and SR, size ratio.

Performances of random forest models

The random forest model used five attributes for rupture

prediction: SR, AR, aneurysm angle, daughter dome, and
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FIGURE 3

(A–C) Receiver operating characteristic (ROC) curves of the random forest and logistic regression models in training, internal, and external

validation cohort. (D) The performance of the random forest and logistic regression models to predict the rupture of small middle cerebral

artery (MCA) aneurysms. AUC, area under the receiver operating curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity;

PPV, positive predictive value; and NPV, negative predictive value.

multiple aneurysms. Figure 3 shows the prediction performance

of the random forest model. The AUCs of the random

forest models in the training, internal validation, and external

validation cohorts were 0.922 (95% CI, 0.899–0.945), 0.889 (95%

CI, 0.842–0.934), and 0.92 (95% CI, 0.865–0.962), respectively.

The random forest model outperformed the logistic regression

model (p = 0.048). The calibration curve of the random

forest model for the probability of ruptured small MCA

aneurysms demonstrated better agreement between prediction

and observation than that of the logistic regression model

(Supplemental Digital Content 4).

Nomogram for predicting rupture risk of
small MCA aneurysms

A logistic regression model that incorporated the above five

attributes was also developed and presented as a nomogram

(Figure 4). The logistic regression model had satisfactory

discrimination ability, with an AUC of 0.825 (95% CI, 0.785–

0.862), 0.797 (95% CI, 0.732–0.857), and 0.805 (95% CI, 0.723–

0.882) in the training, internal validation, and external validation

cohorts, respectively (Figure 3).

Discussion

In this study, we found that the SR, AR, and daughter dome

were associated with aneurysm rupture, whereas aneurysm angle

and multiplicity were inversely associated with small MCA

aneurysm rupture. The ML method has excellent performance

in quantitative individual risk assessments for small MCA

aneurysms and may aid in choosing optimal management.

Aneurysm morphology has been reported to be associated

with aneurysm rupture (20, 24). Previous studies have shown

that SR and AR are consistently associated with aneurysm

ruptures (23, 25). A larger SR may increase the area of low
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FIGURE 4

A nomogram for predicting small middle cerebral artery aneurysm rupture. The nomogram incorporated five attributes: SR, multi aneurysms,

daughter dome, AR, and aneurysm angle. To use the nomogram, read the scoring points from the “Point” reference line in line with the variable,

add the points from all the variables, and find the predicted probability of rupture risk at the bottom “Risk” line. AR, aspect ratio; SR, size ratio.

aneurysmal wall shear stress and result in more complex

flow patterns within the aneurysm (26). These changes may

lead to ruptured aneurysms (26). With the increase in AR,

the velocity of blood flow in aneurysms slows down, and

this hemodynamic change is associated with a higher rupture

risk for aneurysms (24). These findings were consistent with

those of our studies, which showed that aneurysms with

larger SR or AR were more common in ruptured small

MCA aneurysms. Another important risk factor for ruptured

aneurysms in our study was the presence of a daughter dome.

The development of the aneurysm dome may be due to the

increased intra-aneurysmal pressure, which increases the risk

of aneurysm rupture (23). Moreover, multiple aneurysms are

more commonly observed in unruptured small aneurysms (27).

We found that aneurysm multiplicity was inversely associated

with small MCA aneurysms. Our findings are supported by the

current results (28). Therefore, there is a lower risk of small

MCA aneurysm rupture in patients with multiple aneurysms

than in those with aneurysms in other locations.

In this study, we developed a model to predict the rupture

of small MCA aneurysms using five attributes (SR, multiple

aneurysms, daughter dome, AR, and aneurysm angle) based

on a large dataset. Previous studies have attempted to build a

scoring system based on clinical and morphological risk factors

to predict the risk of aneurysm rupture. The PHASES score

system (29), which was developed from the natural course of

unruptured intracranial aneurysms, includes a history of SAH,

hypertension status, age, aneurysm size, aneurysm location,

and geographical region. Lin et al. (30) analyzed 638 MCA

aneurysms and constructed a morphological risk-score model.

However, there are distinctive pathophysiological presentations

and clinical treatments for large and small intracranial
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aneurysms (10, 31, 32). Varble et al. (27) developed a model for

small aneurysm rupture with an AUC of 0.84 in the training

cohort by using the multivariate logistic regression. Apart from

location-specific and size-specific intracranial aneurysms, we

investigated the use of ML algorithms to assess morphological

risk factors for the rupture instability of small MCA intracranial

aneurysms and found that the performance of the random forest

model was significantly better than that of the logistic regression

model. Compared with traditional statistical methods, the ML

algorithm-generated model has higher accuracy for aneurysm

rupture risk prediction (33) and has become a tool of growing

importance in aneurysm detection and stratification (34, 35).

Recently, a convolutional neural network was applied to classify

the unstable status of 272 patients with small intracranial

aneurysms, and this model achieved a sensitivity of 78.76%,

a specificity of 72.15%, and an AUC of 0.755 (36). The most

important aspect of our study is that we verified our models

using internal and external validation datasets, which further

verified the robustness and generalizability of the results. We

constructed a nomogram based on a logistic regression model

and a model visualization figure. The logistic regression model

achieved good prediction performance, and the calibration

curves of the nomogram demonstrated good agreement between

the predicted small MCA aneurysm rupture risk and the actual

small MCA aneurysm status.

Limitations

Although large-scale small MCA aneurysms were analyzed

in this study, there are several limitations. First, this was

a retrospective study, and selection bias was inevitable.

Unruptured aneurysms were incidentally found in hospitalized

patients who were generally older and had a history of

hypertension. Second, only the morphological features of

aneurysms were analyzed in this study; other risk factors, such

as hemodynamics, wall enhancement, and genetics, were not

included. Third, morphological changes in aneurysms after

rupture were not considered in our study. The model predicted

only the current rupture status of the aneurysm rather than the

future aneurysm risk. Further longitudinal studies are needed to

identify whether this model can be used to predict the rupture

risk of small aneurysms.

Conclusion

In summary, we developed a random forest model based on

a large number of small MCA aneurysms from multiple centers.

The model achieved good prediction performance in both the

training and validation cohorts and significantly outperformed

the conventional logistic regression model. Moreover, we

constructed an easy-to-use nomogram tool for practical

applications. Our findings may aid in individualized decision-

making for patients with unruptured intracranial aneurysms.
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Qingwu Yang1*
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Mianyang, China, 4Huaian Medical District of Jingling Hospital, Medical School of Nanjing University,
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Introduction: According to the literature on anterior circulation, comorbid

atrial fibrillation (AF) is not associated with a worse functional outcome, lower

reperfusion rates, or higher rates of intracranial hemorrhage after mechanical

thrombectomy (MT) compared to intravenous thrombolysis (IVT) or treatment

with supportive care. However, data are limited for the e�ect of comorbid AF

on procedural and clinical outcomes of acute basilar artery occlusion (ABAO)

after MT. This study aimed to investigate the e�ect of atrial fibrillation on

outcomes after MT and long-term ischemic recurrence in patients with ABAO.

Methods: We performed a registered study of the Endovascular Treatment

for Acute Basilar Artery Occlusion Study (BASILAR, which is registered in the

Chinese Clinical Trial Registry, http://www.chictr.org.cn; ChiCTR1800014759)

from January 2014 to May 2019, which included 647 patients who underwent

MT for ABAO, 136 of whom had comorbid AF. Prospectively defined baseline

characteristics, procedural outcomes, and clinical outcomes were reported

and compared.

Results: On multivariate analysis, AF predicted a shorter

puncture-to-recanalization time, higher first-pass e�ect rate, and

lower incidence of angioplasty and/or stenting (p < 0.01). AF had

no e�ect on intracranial hemorrhage incidence [adjusted odds

ratio (aOR), 1.093; 95% confidence interval (CI), 0.451–2.652], 90-

day functional outcomes (adjusted common odds ratio, 0.915; 95%
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CI, 0.588–1.424), or mortality (aOR, 0.851; 95% CI, 0.491–1.475) after MT. The

main findings were robust in the subgroup and 1-year follow-up analyses.

Comorbid AF was the remaining predictor of ischemic recurrence (aOR, 4.076;

95% CI, 1.137–14.612).

Conclusions: The study revealed no significant di�erence in the safety

and e�cacy of MT for ABAO regardless of whether patients had comorbid

AF. However, a higher proportion of patients with AF experienced ischemic

recurrence within 1 year after MT.

KEYWORDS

acute basilar artery occlusion, atrial fibrillation, mechanical thrombectomy, ischemic

recurrence, recurrence

Introduction

Stroke remained the second leading cause of death

worldwide in 2019 and is associated with the highest

disability-adjusted life years lost to any disease in China (1, 2).

Atrial fibrillation (AF) is an important contributor to ischemic

stroke. The proportion of cardioembolic stroke in China (about

10%) remains lower than in high-income countries (about 30%)

(3), which is apparently due to the underdiagnosis of AF.

Considering the aging population and the high proportion of

undertreated patients in clinical practice, AF has remained an

important and common risk factor for acute ischemic stroke for

a long time (4).

Large registry studies (Canada, 2013; Japan, 2005;

Austria, 2004) and a retrospective study (America, 2011)

have demonstrated that comorbid AF is an independent

predictor of poor functional outcomes and increased mortality

after an ischemic stroke after intravenous thrombolysis (IVT)

(5–8), and one study (Turkey, 2016) has demonstrated that

AF-associated acute ischemic stroke is related to a higher risk

of unfavorable functional outcomes and a higher proportion

of complications after mechanical thrombectomy (MT) (9).

However, a recent retrospective (America, 2021) analysis

showed that MT influences the effects of AF in ischemic stroke

(10). Remarkably, these data were mainly from patients with

either an anterior circulation stroke or unselected stroke, and

studies of posterior circulation stroke have not been reported.

We speculate whether comorbid AF would have different

effects on patients with acute basilar artery occlusion (ABAO)

after MT, based on factors such as blood supply territory,

heterogeneity of ischemic tolerance, and high variation in

clinical manifestation as well as the presence of potentially

rich collateral circulation, which might exert an impact on the

neurological outcome (11, 12).

Additionally, AF remains a common high-risk condition

for recurrent ischemic stroke. Anticoagulation is generally

recommended in patients with AF and stroke or transient

ischemic attack. Perioperative antithrombotic therapies are

also associated with the risk of intracranial hemorrhage and

recurrent ischemic events (13). Although we have observed

this phenomenon in long-term follow-ups of patients, studies

on real-world data emphasizing the characteristics, clinical

outcomes, and ischemic recurrence of ABAO with AF are rare.

We, therefore, aimed to identify the relevant treatment

profiles of MT in the Endovascular Treatment for Acute Basilar

Artery Occlusion Study (BASILAR) registry; demonstrate

differences in procedural efficiency, functional outcomes, and

complications in patients who had AF and underwent MT for

ABAO; and explore the potential risk factors for long-term

ischemic recurrence.

Materials and methods

Study design and population

Patient data were drawn from the BASILAR registry,

which was registered with the Chinese Clinical Trial Registry

(http://www.chictr.org.cn; ChiCTR1800014759). Briefly, this

nationwide, multicenter, prospective, investigator-initiated

registry study was designed to investigate the efficacy and safety

of endovascular treatment in patients with ABAO. For the

present analysis, among 829 patients in the full registry cohort,

we included 647 patients who underwent MT for ABAO at 45

comprehensive stroke sites between January 2014 andMay 2019.

Among the 647 patients, 136 had AF and 511 did not have AF.

Only patients with available information on AF status before

the stroke episode or during the hospital stay were included and

followed up for 1 year. Further details of the BASILAR registry

have been published previously (14).

Acute basilar artery occlusion was confirmed using

computed tomographic angiography, magnetic resonance

angiography, or digital subtraction angiography within 24 h

of the estimated occlusion time. AF was diagnosed at the

discretion of appropriately trained personnel at each site,
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usually based on the detection of different findings from routine

electrocardiogram monitoring and 24-h Holter recording, per

the current standard practice (15). Patients were, regardless of

AF pattern or burden, divided into the AF group if they had

a known or new diagnosis of AF or the non-AF group (16).

Neurological deficit was quantified using the National Institutes

of Health Stroke Scale (NIHSS) to assess stroke functional

severity (17). Ischemic changes were quantified using the

posterior circulation Alberta Stroke Program Early Computed

Tomography Score (pc-ASPECTS, range 0–10, with scores

of ≥8 being correlated with a favorable outcome) (18). The

presumed stroke causative mechanism was assessed based on

the Trial of ORG 10,172 in Acute Stroke Treatment (TOAST)

classification (19).

Mechanical thrombectomy

Patient selection for MT was left to the discretion of each

operator or his/her consultation and discussion with patient

representatives, and this was performed independent of the

present study. The frontline thrombectomy approach used was

based on the operator’s preference and included a stent retriever

or, in a few cases, thromboaspiration, balloon angioplasty,

stenting, or a combination of these approaches. The procedural

outcome of MT was assessed using the modified thrombolysis in

cerebral infarction (mTICI) scale (20). Successful recanalization

was defined as an mTICI score of 2b or 3 at the end of the

procedure, as confirmed by imaging core laboratory results

according to individual angiography data. The first-pass effect

(FPE), defined as achieving complete recanalization after a single

thrombectomy device, was used without rescue therapy (21).

Procedural notes were reviewed for technological complications,

such as the type of arterial perforation, dissection, embolization

in a new territory, vasospasm, and vascular rupture during the

interventional procedures.

Follow-up and outcome measures

Clinical outcomes were assessed using modified Rankin

Scale (mRS) scores by trained stroke neurologists at each site,

during an outpatient visit, at 90 days (± 2 weeks), and at 12

months (± 4 weeks) after treatment either in the outpatient

clinic or via telephone interviews if patients were unable to visit

the outpatient clinic. Due to the incomplete follow-up data of

stroke recurrence within 90 days, we obtained recurrence data

from 90 days to 1 year.

Outcome measures at the 90-day follow-up were as follows:

(1) the primary outcome was a shift in the mRS score [ordinal,

adjusted common odds ratio (acOR), per point increase], which

was estimated using ordinal logistic regression analysis (shift

analysis). ThemRS assesses the level of disability ranked between

0 and 6, with 0–3 indicating moderate functional outcome,

4–5 indicating an increased level of disability, and 6 indicating

death (22). (2) Moderate functional outcome defined as an mRS

score of 0–3 was also evaluated in the sensitivity analysis. (3)

Symptomatic intracranial hemorrhage (sICH) within 48 h after

MT was assessed using the Heidelberg Bleeding Classification

(23). (4) Lastly, all-cause mortality was evaluated.

Outcome measures at the 1-year follow-up were as follows:

(1) proportions of long-term moderate functional outcomes,

(2) all-cause mortality, and (3) 1-year ischemic recurrence,

defined as a composite of recurrent stroke, transient ischemic

attack, and symptomatic systemic embolism. Although our

definition of recurrent ischemic stroke was not identical

to that in published literatures, it followed the definition

used in cardiological practice, which corresponds to an acute

focal neurologic deficit, presumably due to ischemia that

either resulted in clinical symptoms lasting ≥ 24 h or was

associated with evidence of relevant infarction on cerebral

imaging (24).

Statistical analysis

Univariate comparisons of prospectively defined

baseline characteristics, treatment profiles, and clinical

outcomes between patients presenting with and without

AF were summarized using the Mann–Whitney U

test for independent numerical variables (all of which

followed a non-normal distribution) or ordinally scaled

variables, and the Pearson χ
2 test or Fisher exact test for

categorical variables.

To investigate whether the AF status was an independent

predictor of the treatment profiles, a logistic regression

model was used to assess the categorical outcomes [e.g., FPE

and use of percutaneous transluminal angioplasty and/or

stenting (PTA/PTAS)], and a linear regression model was

used to evaluate continuous outcomes (e.g., procedure

time), with adjustment of the following confounders: age

(continuous), sex (categorical), diabetes mellitus (DM,

categorical), dyslipidemia (categorical), the admission NIHSS

score (continuous), admission pc-ASPECTS (continuous),

location of ABAO (categorical; contrast type: comparator;

indicator: distal third segment), intravenous thrombolysis (IVT,

categorical), and time from symptom onset to vessel puncture

(OTP, continuous).

Predictors were identified using two models for clinical

outcomes and ischemic recurrence: (1) for the interventional

model, the association of comorbid AF with all of the previously

listed outcome measures was assessed using multivariable

ordinal and binary logistic regression analyses adjusted for

the following confounders: age, DM, the admission NIHSS

score, admission pc-ASPECTS, location of the occlusion, IVT,

time from groin puncture to vessel recanalization (PTR,
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TABLE 1 Baseline characteristics and treatment profiles according to AF status.

Outcome Available of

n= 647

AF (n= 136)

Median (IQR)/N

(%)

No-AF (n= 511)

Median

(IQR)/N (%)

p-value

Baseline characteristics

Age (years) 647 73 (65–78) 63 (55–70) <0.001

Sex (female) 647 63 (46.3) 101 (19.8) <0.001

Maximum deficit from onset 647 78 (57.4) 192 (37.6) <0.001

Admission NIHSS 647 30 (22–34) 25 (16–32) 0.001

Admission pc–ASPECTS 643 8 (7–10) 8 (7–9) 0.082

Hypertension 647 92 (67.6) 359 (70.3) 0.556

DM 647 27 (19.9) 122 (23.9) 0.322

Dyslipidemia 452 33 (37.5) 189 (51.9) 0.015

Previous TIA/AIS 647 25 (18.4) 120 (23.5) 0.249

CHD 647 48 (35.3) 57 (11.2) <0.001

VHD 647 16 (11.8) 2 (0.4) <0.001

INR 557 1.06 (1.00–1.15) 1.02 (0.96–1.09) <0.001

Medication history

Antiplatelet 644 34 (25.0) 135 (26.6) 0.794

Anticoagulation 643 12 (9.0) 1 (0.2) <0.001

Statin 644 20 (14.7) 74 (14.6) 0.967

Stroke causative mechanism 647 <0.001

LAA 3 (2.2) 415 (81.2)

CE 130 (95.6) 43 (8.4)

Others† 3 (2.2) 53 (10.4)

Location of ABAO 647 <0.001

Distal third 104 (76.5) 118 (23.1)

Middle third 17 (12.5) 178 (34.8)

Proximal third 7 (5.1) 100 (19.6)

VA–V4‡ 8 (5.9) 115 (22.5)

Treatment profiles

IVT§ 647 25 (18.4) 94 (18.4) 0.997

OTP (min) 644 315 (221–462) 329 (220–501) 0.277

PTR (min) 644 91 (60.5–128) 109 (75–155) 0.001

PTA/PTAS 647 16 (11.8) 289 (56.6) <0.001

Type of mechanical

thrombectomy

0.012

Stent retriever 482 113(23.4%) 369 (76.6%)

Aspiration 20 4(20%) 16(80%)

PTA/PTAS 66 4 (3.1%) 62 (96.9%)

Intra–arterial medication

and/or mechanical

fragmentation

75 61(81.3%) 14(18.7%)

Combination of mechanical

thrombectomy

422 55(40.4%) 367(71.8%) <0.001

mTICI≥ 2b 647 111 (81.6) 411 (80.4) 0.85

First pass effect 291 36 (41.9) 51 (24.9) 0.004

Craniectomy/Craniopuncture 647 6 (4.4) 8 (1.6) 0.09

Technological complications 646 19 (14.0) 49 (9.6) 0.141

(Continued)
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TABLE 1 Continued

Outcome Available of

n= 647

AF (n= 136)

Median (IQR)/N

(%)

No-AF (n= 511)

Median

(IQR)/N (%)

p-value

Complications • 2 Arterial Perforation

• 2 Dissection

• 8 Distal Embolization

• 5 Vasospasm

• 2 Vascular Rupture

• 5 Arterial Perforation

• 8 Dissection

• 19

Distal Embolization

• 13 Vasospasm

• 4 Vascular Rupture

AF, atrial fibrillation; IOR, interquartile rage; N, number; NIHSS, National Institutes of Health Stroke Scale; pc-ASPECTS, posterior circulation-Alberta Stroke Program Early Computed

Tomography Score; DM, Diabetes mellitus; TIA/AIS, transient ischemic attack/Acute ischemic stroke; CHD, coronary heart disease; VHD, valvular heart disease; INR, International

Normalized Ratio; LAA, large artery atherosclerosis; CE, cardioembolism; ABAO, acute basilar artery occlusion; VA-V4, Vertebral artery-V4; IVT, intravenous thrombolysis; OTP, time

from symptoms onset to vessel puncture; PTR, time from groin puncture to vessel recanalization; PTA/PTAS, percutaneous transluminal angioplasty and/or stenting; mTICI, modified

Thrombolysis in Cerebral Infarction; FPE, first pass effect.

†The definition of the distal vertebral artery (VA-V4 segment) occlusion included in this study referred to V4 segment occlusion of isolated vertebral artery.

‡The definition of others included small-vessel occlusion,stroke of other determined etiology, and undetermined etiology.

§The definition of IVT is administration of intravenous alteplase within 4.5 h or intravenous urokinase within 6 h of the estimated time of ABAO.

continuous), and an mTICI score of 0–2a vs. a TICI score

of 2b−3 (categorical). (2) To address the issue of ischemic

recurrence, we added potential risk factors such as age, systolic

blood pressure (continuous), glycated hemoglobin A1c level

(continuous), and cigarette smoking (categorical) to the risk

factor model.

Subgroup analyses were also performed to investigate

the consistency of the AF conclusions of the primary

analysis among different subpopulations based on various

dichotomizations of baseline characteristics of patients with

MT. Given center-to-center variability in patient demographics

that may have introduced bias into the comparison of

outcomes between cohorts, we sought to determine whether

this variability affected the conclusions by including the

treating centers [categorical, contrast type: comparator;

indicator: largest center (n = 69)] as a variable in the

multivariate analysis.

All analyses were based on the intention-to-treat

principle. The rationale for the aforementioned models

was the combination of prespecified variables of outcome

following MT and some baseline variables (p < 0.05) in

univariate testing (14). The enter method of logistic regression

analysis was used in the multivariate analysis. The rates

of missingness for key baseline variables and outcomes

in this study were low [e.g., admission pc-ASPECTS and

anticoagulation, 4/647 (0.6%); PTR, 3/647 (0.5%); sICH,

11/647 (1.7%); loss to follow-up at 1-year, 32/647 (4.9%)];

missing values for select key variables were analyzed with

complete cases. All statistical significance values were set

at p < 0.05, and all p-values were two-sided. All statistical

analyses were performed using SPSS version 26.0 (IBM Corp.,

Armonk, NY).

Results

Baseline characteristics

Of the 647 patients [74.7%male, median age 64 years (range,

56–73)], 136 patients who had comorbid AF were more likely

to be older and female, had vascular and valvular heart disease,

and lower rates of dyslipidemia (p < 0.05) than the 511 patients

without AF. The data also showed that patients with comorbid

AF had a higher incidence of a maximum neurological deficit

from the onset and more severe symptoms on admission than

the 511 patients without AF, and the occlusion tended to occur

in the distal basilar artery. A non-significantly shorter OTP and

a significantly shorter PTR were found in the AF cohort than in

the non-AF cohort (shown in Table 1).

Treatment profiles

Although there was a shorter OTP, shorter PTR, and lesser

use of PTA/PTAS in the AF cohort than in the non-AF cohort,

MT was similarly effective in both cohorts, with the achievement

of an mTICI score of ≥ 2b in 81.6% and 80.4% of patients,

respectively (p= 0.850). The proportion of FPE in the AF cohort

was higher than that in the non-AF cohort (41.9% vs. 24.9%,

p= 0.004) (shown in Table 1).

To better determine whether AF status was an independent

predictor of treatment profiles, we performed multivariate

analyses adjusted for age, sex, DM, dyslipidemia, the admission

NIHSS score, admission pc-ASPECTS, location of ABAO, IVT,

and OTP. Multivariate linear regression analysis showed that

comorbid AF was significantly associated with shorter PTR
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FIGURE 1

Results of multivariate regression analyses of predictors of procedure time. (A) maneuver-pass count, (B) and first-pass e�ect, (C) the

coe�cients and adjusted ORs and their estimates are shown, with error bars representing 95% CIs. Significant estimates (p < 0.05) are

highlighted in red. AF, atrial fibrillation; DM, diabetes mellitus; NIHSS, National Institutes of Health Stroke Scale; pc-ASPECTS, posterior circulation

Alberta Stroke Program Early Computed Tomography Score; VA-V4, vertebral artery-V4 segment; IVT, intravenous thrombolysis; OTP, time from

symptom onset to vessel puncture; PTA/PTAS, percutaneous transluminal angioplasty and/or stenting; OR, odds ratio; CI, confidence interval.

(adjusted coefficient, −2.257; 95% CI, −19.442 to 14.929; p

= 0.796) (shown in Figure 1A). In addition, comorbid AF

was significantly associated with a less use of PTA/PTAS

[adjusted odds ratio (aOR), 0.192; 95% CI, 0.091–0.406; p

< 0.001] (shown in Figure 1B) but not with FPE (aOR,

0.565; 95% CI, 0.249–1.284; p = 0.173) (shown in Figure 1C).

Other predictors of treatment profiles are presented in

Figure 1.
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TABLE 2 90-day and 1-year follow-up outcomes of AF on univariate and multivariate analysis.

Outcome Available of

n= 647

AF (n= 136)

Md (IQR)/N

(%)

No-AF

(n= 511)

Md

(IQR)/N (%)

p-value cOR (95% CI) p-value aOR* (95% CI) p-value

90-day follow-up

mRS 647 5 (2–6) 5 (2–6) 0.902 0.978 (0.692–1.382) 0.899 0.915

(0.588–1.424)†

0.694

mRS 0-3 647 48 (35.3) 159 (31.1) 0.409 1.208 (0.811–1.799) 0.354 1.093 (0.608–1.965) 0.765

Mortality 647 65 (47.8) 234 (45.8) 0.749 1.084 (0.742–1.583) 0.677 0.851 (0.491–1.475) 0.565

sICH (Heidelberg

definition)

636 11 (8.2) 34 (6.8) 0.699 1.231 (0.606–2.499) 0.565 1.093 (0.451–2.652) 0.844

1-year follow-up

mRS 0-3 615 43 (32.3) 176 (36.5) 0.372 0.831 (0.552–1.249) 0.373 0.908 (0.504–1.636) 0.747

Mortality 615 79 (59.4) 257 (53.3) 0.213 1.281 (0.868–1.891) 0.213 1.216 (0.697–2.123) 0.491

Ischemic recurrence

(beyond 90 days)

316‡ 12 (17.6) 20 (8.1) 0.020 2.443 (1.128–5.292) 0.024 4.076

(1.137–14.612)§

0.031

AF, atrial fibrillation; Md, median; IOR, interquartile rage; N, number; cOR, crude odds ratio; CI, confidence interval; aOR, adjusted odds ratio. mRS, modified Rankin Scale; sICH, Symptomatic intracranial hemorrhage.
*Adjusted estimates of effect were calculated using multiple regression taking the following variables into account: age, DM, admission nihss, admission pc-ASPECTS, Location of ABAO, IVT, PTR, mTICI.

†The adjusted common odds ratio was estimated from an ordinal logistic regression model and indicates the odds of improvement of 1 point on the mRS, with a common odds ratio greater than 1 indicating AF better.

‡The number of ischemic recurrences in AF and No-AF cohort was 68 and 248 respectively. Because of the incomplete follow-up data of ischemic recurrence within 90 days, there were only 316 cases remained after excluding 299 deaths within 90 days

and 32 cases who were lost to follow-up at 1 year. The number of ischemic recurrences in AF and No-AF cohort was 68 and 248 respectively.

§Adjusting for AF, age, SBP, HbA1c, cigarette.
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FIGURE 2

Distribution of modified Rankin scale scores at 90 days in patients with MT. The distribution shows that there was no statistically significant

di�erence in moderate outcomes and mortality between the AF and non-AF cohorts. AF, atrial fibrillation; MT, mechanical thrombectomy.

Ninety-day follow-up outcomes

All patients completed 90 days of follow-up. The univariate

analysis showed that the AF cohort had similar efficacy outcomes

to the non-AF cohort. The median [interquartile range (IQR)]

values of the mRS score in the AF and non-AF cohorts

were both 5 (2–6) (p = 0.902) in the univariate analysis

(shown in Table 2). Likewise, the proportions of patients with

moderate outcomes (35.3 and 31.1%, respectively; p = 0.409)

and death (47.8 and 45.8%, respectively; p = 0.749) were

comparable (shown in Figure 2). After adjustments were made

in the interventional model, we observed an acOR for any

improvement in the distribution of the mRS score (acOR, 0.915;

95% CI, 0.588–1.424, p = 0.694), favoring neither the AF nor

the non-AF cohort. There were no significant differences in the

moderate functional outcome (aOR, 1.093; 95% CI, 0.608–1.965,

p = 0.765), mortality (aOR, 0.851; 95% CI, 0.491–1.475, p

= 0.565), or sICH (aOR, 1.093; 95% CI, 0.451–2.652, p =

0.844) between the cohorts (shown in Table 2). After additionally

adjusting the model for the treating centers, the main results

showed no difference (acOR, 0.898; 95% CI, 0.563–1.433, p =

0.653) (reference: the largest center). Predictors associated with

the improvement of themRS score according to the shift analysis

in patients with MT (n = 647) included age, DM, the admission

NIHSS score, admission pc-ASPECTS, PTR, and anmTICI score

of≥ 2b, and age was no longer a predictor of functional outcome

in the AF cohort (n= 136) (shown in Table 3).

In almost all subgroups, including those based on age,

sex, the admission NIHSS, admission pc-ASPECTS, location of

ABAO, IVT, OTP, FPE, and geographic regions (to avoid bias

of centric maldistribution: categorical, Eastern China [largest

region] vs. other regions), subgroup analyses showed that no

more information was extracted, but the remaining consistency

of the primary analysis showed that comorbid AF did not affect

the shift in the distribution of the mRS score; however, AF with

moderate to severe ischemic change (admission pc-ASPECTS,

−7) approached significance for increasing the odds of worse

outcomes (acOR, 0.452; 95% CI, 0.191–1.071, p= 0.071) (shown

in Figure 3).

One-year follow-up outcomes

Of the 647 patients, 615 (95%) completed the 1-year

follow-up visits and evaluations. No significant differences

were found in moderate functional outcome (aOR, 0.908;

95% CI, 0.504–1.636, p = 0.747) or mortality between the

AF and non-AF cohorts at 1 year (shown in Table 2). When
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TABLE 3 Multivariate analysis for predictors of improvement in 90-day mRS in the full cohort and in the AF cohort.

Variable Full cohort (n= 647) AF cohort (n= 136)

ccOR (95%CI) p-value acOR (95%CI) p value ccOR (95%CI) p value acOR (95%CI) p value

age 1.019 (1.007–1.031) 0.002 1.019 (1.005–1.033) 0.007 1.04 (1.008–1.073) 0.013 1.003 (0.968–1.039) 0.864

DM 1.887 (1.329–2.68) <0.001 1.783 (1.214–2.617) 0.003 5.123 (1.948–13.472) 0.001 5.909 (2.056–16.982) 0.001

AF 0.978 (0.692–1.382) 0.899 0.915 (0.588–1.424) 0.694 NA NA

Admission NIHSS 1.096 (1.079–1.114) <0.001 1.095 (1.077–1.114) <0.001 1.118 (1.078–1.16) <0.001 1.102 (1.059–1.147) <0.001

Admission pc-ASPECTS 0.642 (0.583–0.707) <0.001 0.69 (0.622–0.765) <0.001 0.597 (0.48–0.743) <0.001 0.755 (0.591–0.965) 0.025

Location

Distal third* Ref Ref Ref Ref

Middle third 1.229 (0.865–1.746) 0.250 1.194 (0.784–1.819) 0.409 0.901 (0.352–2.308) 0.828 0.850 (0.295–2.450) 0.763

Proximal third 1.262 (0.827–1.927) 0.280 1.069 (0.654–1.747) 0.791 0.707 (0.178–2.815) 0.623 0.283 (0.058–1.389) 0.120

VA-V4 1.291 (0.862–1.934) 0.216 1.223 (0.765–1.960) 0.402 0.721 (0.197–2.644) 0.622 0.852 (0.204–3.549) 0.826

IVT 0.946 (0.658–1.36) 0.763 0.916 (0.618–1.358) 0.663 1.451 (0.639–3.298) 0.374 1.768 (0.708–4.417) 0.223

PTR 1.006 (1.004–1.009) <0.001 1.007 (1.004–1.01) <0.001 1.015 (1.008–1.022) <0.001 1.015 (1.006–1.023) 0.001

mTICI≥2b 0.157 (0.099–0.25) <0.001 0.174 (0.106–0.286) <0.001 0.114 (0.036–0.358) <0.001 0.252 (0.074–0.858) 0.027

mRS, modified Rankin Scale; AF, atrial fibrillation; ccOR, crude common odds ratio; acOR, adjusted common odds ratio; DM, Diabetes mellitus; NIHSS, National Institutes of Health

Stroke Scale; pc-ASPECTS, posterior circulation-Alberta Stroke Program Early Computed Tomography Score; VA-V4, Vertebral artery-V4; IVT, intravenous thrombolysis; PTR, time

from groin puncture to vessel recanalization; mTICI, modified Thrombolysis in Cerebral Infarction.

*Distal third of the basilar artery was taken as a reference.

adjusting for age, hypertension, DM, and cigarette smoking, we

found that only ischemic recurrence was associated with long-

term functional outcomes (aOR, 0.412; 95% CI, 0.193–0.876,

p= 0.021).

During this follow-up period, only 316 cases remained after

excluding 299 deaths within 90 days and 32 patients who

were lost to follow-up at 1 year. Of these, 32 (10.1%) patients

experienced ischemic recurrence, including 12 (17.6%) with

AF and 20 (8.1%) without AF (shown in Table 2). Univariate

comparisons of patients according to ischemic recurrence are

presented in Table 4. The proportion of AF (37.5% vs. 19.7%,

p = 0.024) and median age (72 vs. 63 years, p = 0.001) were

significantly different between the AF and non-AF cohorts,

and both comorbid AF and older age were associated with

ischemic recurrence. However, after adjusting for baseline age

and risk factors, we found that older age was not significantly

associated with recurrence (aOR, 1.049; 95% CI, 0.991–1.111,

p = 0.096). Among the risk factors, comorbid AF was the

remaining predictor of ischemic recurrence (aOR, 4.076; 95%

CI, 1.137–14.612, p= 0.031).

Discussion

Contrary to the observations of increased hemorrhage rates

and worse functional outcomes in patients with AF-associated

stroke who underwent supportive care and/or IVT during the

pre-endovascular era, when MT was not yet widely available

(5–7), comorbid AF was associated with faster procedural

time and increased rates of first-pass success without the

increased risk of intracranial hemorrhage or worse functional

outcomes for anterior circulation ischemic stroke treated with

MT. However, whether these associations exist in posterior

circulation ischemic stroke remains unclear.

Here, we found no significant difference in the safety and

efficacy of MT for ABAO, regardless of whether patients had

comorbid AF. Moreover, patients with AF had a higher rate of

ischemic recurrence within 1 year after MT.

Despite a higher admission NIHSS score or pc-ASPECTS

and a higher incidence of a maximum neurological deficit

from the onset, there were not much worse functional

outcomes for ABAO treated with MT. Surprisingly,

patients with AF were more likely to have an intracranial

hemorrhage, but we found that comorbid AF did not

increase the rate of intracranial hemorrhage in patients

undergoing MT, which is consistent with the results of the

abovementioned studies on anterior circulation ischemic

stroke. This is contrary to the common viewpoint in the

pre-endovascular era that AF was a predictor of intracranial

hemorrhage (25).

Specifically, in our study, the high odds of ischemic

recurrence between the AF and non-AF cohorts were 17.6

and 8.1%, respectively (p = 0.020). In the univariate and

multivariate analyses, AF status was significantly associated

with recurrence. A previous study showed that medication

for secondary prevention was insufficiently administered to

eligible patients (26). Another study showed that anticoagulants

could reduce the risks of ischemic stroke events in patients

with ischemic stroke and AF (27). According to a review of

stroke in China, only 30% of patients with ischemic stroke
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FIGURE 3

Subgroup analyses of the e�ect of AF on functional outcome. The forest plot shows that the di�erences in the improvement of 1 point on the

mRS at 90 days, analyzed with the ordinal logistic regression analysis, favored neither patients with AF nor patients without AF across all

prespecified subgroups; however, AF with moderate to severe ischemic change (admission pc-ASPECTS, 0–7) approached significance for

increasing the odds of worse outcomes. The thresholds for the baseline NIHSS score and baseline pc-ASPECTS were chosen at the median, and

the thresholds for age were chosen at the 75th percentile. Regions were categorized into five regions: Eastern, Central, Southern, Southwestern,

and Northeastern China. AF, atrial fibrillation; CI, confidence interval; NIHSS, National Institutes of Health Stroke Scale; pc-ASPECTS, posterior

circulation Alberta Stroke Program Early Computed Tomography Score; ABAO, acute basilar artery occlusion; VA-V4, vertebral artery-V4

segment; IVT, intravenous thrombolysis; FPE, first-pass e�ect.

and AF received oral anticoagulants at discharge, and 10%

received oral anticoagulants 1 year after stroke (2). Aside

from the concern over bleeding risk among patients, the poor

chronic disease management by both doctors and patients,

inconvenient monitoring of vitamin K antagonists, ineffective

warfarin dosing, and high costs might have also contributed to

the unsatisfactory maintenance of medication for 1 year. This

suggests that some developing countries or countries with a

serious aging population should pay greater attention to the

quality of AF management and secondary prevention of AF-

associated stroke to prevent more serious clinical outcomes

caused by recurrence.

The strengths of our study include leveraging real-

world data from a large multicenter database with > 600

thrombectomies for ABAO, which is a rare intracerebral

vascular disease. Moreover, to our knowledge, this

is the first report on comorbid AF as a predictor of

ischemic recurrence, and our findings stressed the
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TABLE 4 Univariate and multivariate analysis of the demographics and risk factors in the cohort of ischemic recurrence (n = 316).

Variables Recurrence (n= 32)

Md (IQR)/N (%)

No recurrence (n

= 284)

Md (IQR)/N (%)

p-value cOR (95% CI) p-value aOR* (95% CI) p-value

Age (years) 72 (60–79) 63 (54–71) 0.001 1.052 (1.015–1.089) 0.005 1.049 (0.991–1.111) 0.096

AF 12 (37.5) 56 (19.7) 0.020 2.443 (1.128–5.292) 0.024 4.076

(1.137–14.612)

0.031

SBP (mmHg) 148 (134–161) 148 (130–162) 0.700 1.004 (0.989–1.02) 0.578 1.014 (0.993–1.036) 0.184

HbA1c (%) 5.6 (5.4–6.2) 5.9 (5.5–6.6) 0.176 0.652 (0.343–1.238) 0.191 0.707 (0.368–1.358) 0.298

Cigarette 13 (40.6) 102 (35.9) 0.600 1.221 (0.579–2.574) 0.600 1.346 (0.413–4.379) 0.622

Md, median; IOR, interquartile rage; N, number; cOR, crude odds ratio; aOR, adjusted odds ratio; AF, atrial fibrillation; SBP, systolic blood pressure.

*Adjusting for AF, age, SBP, HbA1c, cigarette.

importance of managing secondary prevention in

relation to AF.

However, certain limitations should be considered. First,

our study has all the inherent limitations of a non-randomized

study. The reasons for clinicians to select a specific treatment

option are more complex than can be met by the scope of

a prospective observational study. Multivariable analyses can

never adjust completely for systematic differences between AF

and non-AF cohorts. Second, due to the rare occurrence of

basilar artery occlusion, there was a large difference in the

number of patients enrolled between the AF and non-AF

cohorts. Nevertheless, there was an adequate number of cases to

perform a statistical analysis and obtain a credible result. Third,

due to the poor compliance of patients, we did not have available

data on the anticoagulant strategies or detailed information on

the dosages of anticoagulants after discharge. Therefore, we were

not able to analyze ischemic recurrence simultaneously. Despite

these limitations, our findings still constitute one of the best

available data for ischemic stroke in patients with ABAO and

comorbid AF.

Conclusions

Our findings revealed no significant difference in the safety

and efficacy of MT for ABAO, regardless of whether patients

had comorbid AF. However, patients with AF had a higher

rate of ischemic recurrence within 1 year after MT. Reducing

the recurrence rate of stroke by providing ongoing secondary

prevention measures may be the crucial strategy to improve

long-term outcomes for patients with ABAO.
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Background: Acute myocardial infarction (AMI) is one of the major causes

of mortality and disability worldwide, and ischemic stroke (IS) is a serious

complication after AMI. In particular, patients with ST-segment–elevation

myocardial infarction (STEMI) are more susceptible to IS. However, the

interrelationship between the two disease mechanisms is not clear. Using

bioinformatics tools, we investigated genes commonly expressed in patients

with STEMI and IS to explore the relationship between these diseases, with

the aim of uncovering the underlying biomarkers and therapeutic targets for

STEMI-associated IS.

Methods: Di�erentially expressed genes (DEGs) related to STEMI and IS were

identified through bioinformatics analysis of the Gene Expression Omnibus

(GEO) datasets GSE60993 and GSE16561, respectively. Thereafter, we assessed

protein-protein interaction networks, gene ontology term annotations, and

pathway enrichment for DEGs using various prediction and network analysis

methods. The predicted miRNAs targeting the co-expressed STEMI- and IS-

related DEGs were also evaluated.

Results: We identified 210 and 29 DEGs in GSE60993 and GSE16561,

respectively. CD8A, TLR2, TLR4, S100A12, and TREM1 were associated

with STEMI, while the hubgenes, IL7R, CCR7, FCGR3B, CD79A, and ITK

were implicated in IS. In addition, binding of the transcripts of the

co-expressedDEGsMMP9, ARG1, CA4, CRISPLD2, S100A12, andGZMK to their

corresponding predicted miRNAs, especially miR-654-5p, may be associated

with STEMI-related IS.

Conclusions: STEMI and IS are related and MMP9, ARG1, CA4, CRISPLD2,

S100A12, and GZMK genes may be underlying biomarkers involved in

STEMI-related IS.
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Introduction

Acute myocardial infarction (AMI) is a leading cause of

disability and mortality worldwide, and ischemic stroke (IS) is

a serious complication after AMI (1). Complex IS can cause

significant pain and financial burden to patients, and the rate of

mortality is two times higher in comparison with patients only

experiencing AMI (1, 2). Pathophysiological mechanisms and

common risk factors, including age, hypertension, and diabetes

mellitus, are similar in cardiovascular and cerebrovascular

diseases (3). The incidence of post-AMI strokes can be improved

by providing more therapies for vascular risk factors, including

treatments for diabetes mellitus and hypertension, lipid-

lowering treatments, and reperfusion with PCI (4). Compared

with other types of AMI, patients with ST-segment–elevation

myocardial infarction (STEMI) have a more increased risk of IS

(5–7). Guptill’s group also showed that there was a relative long-

term risk of IS in patients with STEMI treated with percutaneous

coronary intervention (PCI) (8). Whereas there have been few

studies of the prevalence and clinical outcomes associated with

acute IS in patients with AMI, and existing studies have had

small sample sizes and reported contrasting results (9–12). To

better diagnose and treat IS after AMI, new biomarkers and

therapeutic targets need to be identified. Bioinformatics analysis

has been widely employed in exploring novel biomarkers for

neurological disease (13) and cardiovascular disease (14). In

this study, we identified co-expressed differentially expressed

genes (co-DEGs) in STEMI and IS transcription data from

GEO to clarify the molecular mechanisms and pathophysiology

of STEMI-related DEGs (STEMI-DEGs) and IS-related DEGs

(IS-DEGs). Moreover, we predicted microRNAs (miRNAs)

specific for patients with STEMI prone to IS, which may serve

as underlying biomarkers or therapeutic targets for STEMI-IS.

Methods

Materials and methods

Microarray data “Series Matrix File(s)” for GSE60993,

GSE16561, and GSE60319 were downloaded from GEO

(https://www.ncbi.nlm.nih.gov/geo/) and were generated using

GPL6884, GPL6883, and GPL19071 (15). GSE60993 contains

data from blood samples from 26 patients with acute coronary

syndrome (7 patients with STEMI, 10 patients with non-

STEMI, and 9 patients with unstable angina) and 7 normal

controls. GSE16561 includes blood samples from 39 patients

with IS and 24 healthy controls. The STEMI group and normal

controls in GSE60993 and the IS group and healthy controls

in GSE16561 were selected to explore potential biomarkers.

A miRNA expression profile, GSE60319 (40 patients with IS

and 10 controls), was then used for subsequent miRNA-mRNA

network analysis.

DEG analysis

Before identifying DEGs, we performed boxplot analysis to

evaluate the expression level of samples in each dataset and

then used the normalize BetweenArrays function in the “limma”

package of R to exclude batch effect. The criteria for selecting

DEGs were |log2FC|>1.0 and false discovery rate (FDR) < 0.05;

the criteria for differentially expressed miRNAs (DE-miRNAs)

were |log2FC| > 2.5 and P-value < 0.05 to identify more

important DE-miRNAs. The inverse of the total gene number

(0.0006035) was less than the lowest P-value (0.0009911013) in

GSE60319; hence, the adjusted P-values were unreliable. Probes

matching multiple genes were removed. Volcanoplots and

heatmaps were applied to visualize the DEGs in the downloaded

datasets. A Venn diagram was constructed to show co-DEGs for

STEMI and IS using Funrich (http://funrich.org/).

Interaction networks and functional
analysis

DAVID (https://david.ncifcrf.gov/) was applied to perform

Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses of

STEMI- and IS-DEGs (16). KEGG pathways and GO

biological function terms with a P-value < 0.05 were

considered to be significantly enriched, and annotation

visualization, as well as integrated discovery, was supplemented

using REACTOME with the following criteria: P-value

< 0.05 and count ≥ 5 (v77; http://www.reactome.

org) (17). We used Cytoscape (v3.8.2; http://cytoscape.

org/) to visualize the protein-protein interaction (PPI)

networks and node degrees constructed by STRING (v11.5;

http://string-db.org) (18), with the criterion confidence

score >0.4.

In addition, AmiGO (v2.0; http://amigo.geneontology.

org/amigo/) was employed to further verify the accuracy of

the identified co-DEGs and annotate biological functions

(19). TargetScan (v7.2; http://www.targetscan.org/vert_72/)

(20), mirWalk (http://mirwalk.umm.uni-heidelberg.de/) (21),

and mirDIP (http://ophid.utoronto.ca/mirDIP/) (22) were

applied to predict miRNAs targeting co-DEGs. GO and KEGG

enrichment analyses based on the selected miRNAs were

conducted using Diana-miRPath (v3.0; http://www.microrna.

gr/miRPa) (23).

Identification of co-DEGs related to
nervous or cardiovascular diseases

The Comparative Toxicogenomics Database (http://ctdbase.

org/) was employed to identify novel relationships between
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FIGURE 1

Volcano plots of mRNA and miRNA expression in GEO datasets. (A) The volcano plot of GSE-STEMI (GSE60993). (B) The volcano plot of GSE-IS

(GSE16561). (C) The volcano plot of mi-GSE-IS (GSE60319).

co-DEGs and cardiovascular diseases or nervous system diseases

by calculating prediction scores (24).

Results

DEGs in STEMI and IS

After checking the quality of the data

(Supplementary Figure 1), we identified 210 DEGs (172

upregulated and 38 downregulated) in GSE60993 and 29

DEGs (12 upregulated and 17 downregulated) in GSE16561

(Figures 1A,B, Supplementary Table 1). Expression heatmaps

of STEMI-DEGs associated with immune and inflammatory

responses and receptor activity are shown in Figures 2A–C.

Figures 2D–F show the gene expression values of IS-DEGs

related to immune response, inflammatory response, and

protein binding.

Analysis of PPI network, functional GO
terms and pathway enrichment analyses

We identified 139 and 21 nodes from the PPI networks for

the STEMI- and IS-DEGs, respectively (Figures 3A,B). The hub

nodes, including CD8a molecule (CD8A, degree = 38), toll-

like receptor 2 (TLR2, degree = 29), toll-like receptor 4 (TLR4,

degree = 29), S100 calcium-binding protein A12 (S100A12,

degree= 21), and triggering receptor expressed on myeloid cells

1 (TREM1, degree = 18), were considered to be hubgenes in

the STEMI network. However, in the IS network, the hubgenes,

interleukin 7 receptor (IL7R, degree= 9), C-C motif chemokine

receptor 7 (CCR7, degree= 8), Fc fragment of IgG receptor IIIb

(FCGR3B, degree = 6), CD79a molecule (CD79A, degree = 6),

and IL2 inducible T cell kinase (ITK, degree = 6) had relatively

higher degrees.

We used the DAVID database to conduct GO and

KEGG analysis. As shown in Figures 4A,B, the top five GO

biological process (BP) terms associated with STEMI-DEGs

were respiratory burst (p-value: 7.14E-08), immune response

(p-value: 3.01E-07), innate immune response (p-value:

4.05E-07), inflammatory response (p-value: 9.80E-06), and

defense response to bacterium (p-value: 3.67E-04). The

significantly enriched cellular component (CC) terms were

an anchored component of membrane (p-value: 7.96E-06),

plasma membrane (p-value: 1.09E-04), NADPH oxidase

complex (p-value: 1.46E-04), an integral component of

membrane (p-value: 1.60E-04), and membrane (p-value:

9.50E-04). The following terms were found to be enriched

in molecular function (MF):receptor activity (p-value: 3.84E-

06), phosphatidylinositol-3,4-bisphosphate binding (p-value:

6.55E-05), superoxide-generating NADPH oxidase activator

activity (p-value: 7.88E-05), protein heterodimerization activity

(p-value: 0.003), and RAGE receptor binding (p-value: 0.004).

With respect to IS-DEGs, BP terms associated with immune

response (p-value: 2.83E-05), B cell proliferation (p-value:

0.001), adaptive immune response (p-value: 0.001), response

to lipopolysaccharide (p-value: 0.002), and inflammatory

response (p-value:0.002) were significantly enriched. For CC,

the significant enrichment was observed for the extracellular

region (p-value: 0.001), the external side of plasma membrane

(p-value: 0.003), B cell receptor complex (p-value: 0.004), the

intrinsic component of the plasma membrane (p-value: 0.038),

and the plasma membrane (p-value: 0.039). For MF, protein

binding was enriched (p-value: 0.049). The results of KEGG

pathway analysis are shown in Figure 4C. STEMI-DEGs were
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FIGURE 2

Visualization of STEMI- and IS-DEGs expression with heatmaps. (A–C) STEMI-DEGs related to immune response, inflammatory response, and

receptor activity. (D–F) IS-DEGs related to immune response, inflammatory response, and protein binding. Red: high expression, blue: low

expression.

mainly enriched in pathways, including hematopoietic cell

lineage (p-value: 4.38E-05), leishmaniasis (p-value: 0.001),

primary immunodeficiency (p-value: 0.006), complement and

coagulation cascades (p-value: 0.007), and malaria (p-value:

0.017). There were no significant KEGG pathways enriched

for IS-DEGs. Some additional associations were detected

when using the REACTOME database to conduct GO term

enrichment analysis (Figure 4D).

Six co-DEGs were observed, namely, matrix

metallopeptidase 9 (MMP9), arginase 1 (ARG1), carbonic
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FIGURE 3

PPI networks and the Venn diagram. (A) PPI network for STEMI-DEGs. Blue, the greater degree; green, the lower degree (B) PPI network for

IS-DEGs. Red, the greater degree; yellow, the lower degree. (C) The Venn diagram showing co-DEGs specific to STEMI-related IS.

anhydrase 4 (CA4), the cysteine-rich secretory protein LCCL

domain containing 2 (CRISPLD2), S100 calcium-binding

protein A12 (S100A12), and granzyme K (GZMK) (Figure 3C,

Supplementary Table 1). The AmiGO database was employed

to further verify the accuracy of the identified co-DEGs and

annotate their biological functions (Table 1). The analysis of
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FIGURE 4

GO functional and pathway analysis. (A) GO functional analysis of STEMI-DEGs. (B) GO functional analysis of IS-DEGs. (C) KEGG pathway

analysis of STEMI-related DEGs. (D) REACTOME pathway analysis of STEMI- and IS-related DEGs. Dot sizes represent counts of enriched DEGs,

and dot colors represent negative log10 (P) values. Red: higher expression, blue: lower expression.

the Comparative Toxicogenomics Database illustrated that

co-DEGs were associated with several nervous system and

cardiovascular diseases (Figure 5).

Identification of miRNAs targeting
co-DEGs and functional and pathway
enrichment analysis

The TargetScan, mirDIP, miRWalk, and DIANA

bioinformatic tools were applied to identify the top five miRNAs

targeting each co-DEG for STEMI-related IS (Table 2). In

addition, we used the GSE60319 dataset to identify DE-miRNAs

in IS and determine the overlap between predicted miRNAs

and DE-miRNAs (Figures 1C, 6). (GSE60319: hsa-miR-654-5p,

log2FC=−2.67, p-value: 0.033).

Discussion

IS is a potential complication of AMI and poses a significant

threat to patients (1). Patients with STEMI were found to be

more susceptible to having a stroke than the general population

(6). The most common confirmed stroke type in patients with

STEMI treated with PCI is IS (8). The knowledge gained from

identifying genes specifically expressed in STEMI-related IS and

the relationships between them may be used to improve the

outcomes of patients with STEMI. In this study, we detected

that genes involved in the inflammatory and immune response,

receptor activity, and protein binding were remarkably related

to the maintenance of STEMI and IS occurrence.

Several hub genes regulating the nervous system were

observed among the STEMI-DEGs through the analysis of the

Comparative Toxicogenomics Database. For example, MMP9,

also known as gelatinase B, was found to be an important factor

in the occurrence of cardiovascular and nervous system diseases.

The Chen’s group illustrated that MMP-9 was upregulated

in serum exosomes from patients with STEMI, making it a

potential biomarker for diagnosis of STEMI (25). Moreover,

a higher level of local MMP-9 was observed to be associated

with poorer outcomes for patients with STEMI (26). To explore

association between MMP-9 and the risk of IS, the Nie’s group

examined polymorphism of the MMP-9 gene between 400

healthy controls and 396 patients with IS, and found that
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TABLE 1 GO terms of co-expressed genes specific for STEMI-related ischemic stroke.

Gene/product GO class (direct) Evidence Evidence with Reference

MMP9 Response to hypoxia IEP PMID:17289933

Regulation of neuroinflammatory response TAS PMID:25049354

Negative regulation of glial cell proliferation IMP ZFIN:ZDB-FISH-210714-2 PMID:32034934

Positive regulation of angiogenesis ISO RGD:621320 MGI:MGI:4417868

Heart development ISO RGD:621320 MGI:MGI:4417868

Positive regulation of vascular associated smooth muscle

cell proliferation

IMP PMID:18667463

Extracellular matrix organization IBA PANTHER:PTN001303987 PMID:21873635

Positive regulation of apoptotic process IEA UniProtKB:P41245 GO_REF:0000107

ARG1 Immune system process IEA UniProtKB-KW:KW-0391 MGI:MGI:1354194

Cellular response to transforming growth factor beta

stimulus

IEA UniProtKB:P07824 GO_REF:0000107

Neuronal cell body IEA UniProtKB:P07824 GO_REF:0000107

Neuron projection IEA UniProtKB:P07824 GO_REF:0000107

Negative regulation of T cell proliferation IDA PMID:16709924

Cellular response to lipopolysaccharide IEA UniProtKB:P07824 GO_REF:0000107

Extracellular space IDA PMID:16709924

Cellular response to interleukin-4 IEA UniProtKB:P07824 GO_REF:0000107

CA4 Neuronal cell body ISS UniProtKB:P15205 GO_REF:0000024

Extracellular exosome IDA PMID:15326289

Protein binding IPI UniProtKB:Q9Y6R1 PMID:15563508

Integral component of membrane IEA UniProtKB-KW:KW-0812 ZFIN:ZDB-PUB-020723-1

Regulation of pH IMP PMID:16571594

CRISPLD2 Transport vesicle IDA GO_REF:0000054

Extracellular matrix organization IEA UniProtKB:Q8BZQ2 GO_REF:0000107

Heparin binding IEA UniProtKB:Q8BZQ2 GO_REF:0000107

Embryonic viscerocranium morphogenesis IMP ZFIN:ZDB-MRPHLNO-130131-3 PMID:26297922

S100A12 RAGE receptor binding IPI UniProtKB:Q15109 PMID:15033494

Positive regulation of I-kappaB kinase/NF-kappaB

signaling

IDA PMID:15033494

Calcium-dependent protein binding IBA PANTHER:PTN007521293 PMID:21873635

Inflammatory response IEA UniProtKB-KW:KW-0395 GO_REF:0000043

Positive regulation of MAP kinase activity TAS PMID:18443896

GZMK Extracellular region IEA UniProtKB-SubCell:SL-0243 GO_REF:0000044

Protein binding IPI UniProtKB:P55061 PMID:32296183

the MMP-9-1562T allele was associated with an increased risk

of IS (27). Another hub gene, ARG1, has been found to be

continuously upregulated in patients with acute IS (28, 29).

Endocytosis of STAT6/ARG1 can reduce inflammation and

improve the outcome of stroke by regulating the phenotypes

of macrophages/microglia (30). ARG1 was also observed to

be significantly upregulated in patients with AMI and may

be used to diagnose AMI (31). Carbonic anhydrase enzymes,

which are expressed in mouse and human hearts, are associated

with the prognosis of cardiac hypertrophy (32, 33). Although

previous studies have illustrated that CA II is the only CA

present in the brain, another study observed that CA4 was

also located in the mouse brain and may be related to the

blood-brain barrier (34). Research into nervous system diseases

has identified CA4 as a novel therapeutic target for anxiety

disorder and posttraumatic stress disorder (35). The hub gene

S100A12 has been shown to have a regulatory role in carotid

plaque instability and the occurrence of major cardiovascular

events in patients with stable coronary artery disease (36).

Furthermore, S100A12 could more accurately diagnose patients
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FIGURE 5

Association of co-DEGs with nervous system and cardiovascular diseases. *indicates direct evidence of involvement in this disease.

with STEMI than other identified biomarkers, and the levels

of S100A12 were negatively correlated with the prognosis of

IS (37, 38).

Additionally, previous studies have shown that post-

treatment with sevoflurane may prevent myocardial

ischemia/reperfusion damage through the upregulation of

miR-145 and downregulation of GZMK expression (39).

Moreover, GZMK was detected to play a significant role in

regulating transendothelial cell exudation for central nervous

system parenchymal immune surveillance, and it may be an

underlying therapeutic target for age-related immune system

dysfunction (40, 41). The hub gene CRISPLD2 has been

previously found to be a GC and developmental regulatory gene

and encodes a mesenchymal protein secreted in the lungs and

other organs (42, 43). However, its role in cardiovascular and

cerebrovascular diseases is unclear. A recent study has observed

that it may be involved in cardiac ischemia/reperfusion injury

(44). In addition, CRISPLD2 was found to be associated with

several neurodegenerative diseases, but the specific mechanism

is not certain (45). Hence, the identities of these hub genes

indicate that there may be a potential association between

nervous system and cardiovascular disease and that this

association may be due to the same pathogenic genes.

It has been widely accepted that miRNA can be used

as a biomarker and gene therapy for several diseases. We

identified the overlap between predicted miRNAs and

DE-miRNAs specific to patients with IS. In particular, hsa-

miR-654-5p may be underlying biomarkers of STEMI-related

IS. Previous studies have demonstrated that hsa-miR-654-

5p is a biomarker of atherosclerosis with an area under

the curve (AUC) score of 0.7308 (46). Atherosclerosis is a

common pathogenic mechanism of STEMI and IS; hence,

hsa-miR-654-5p may be a common therapeutic target. In

clinical, the co-DEGs and hsa-miR-654-5p may be served

as biomarkers to diagnose IS after patients underwent

STEMI. And these co-DEGs may be beneficial to further

explore the potential pathophysiological mechanisms

between STEMI and IS. Moreover, the co-DEGs may also

play an important role in detection of STEMI in patients

with IS.
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TABLE 2 GO functional and KEGG pathway analysis of the predicted miRNAs targeting co-DEGs.

Genes Predicted

miRNAs

Category Term miRNAs P value

ARG1 hsa-miR-1202 KEGG Hippo signaling pathway 5 1.66E-04

hsa-miR-340-5p TGF-beta signaling pathway 4 2.36E-04

hsa-miR-3692-3p Phosphatidylinositol signaling system 5 0.017

hsa-miR-1264 TNF signaling pathway 4 0.017

hsa-miR-4766-5p ErbB signaling pathway 5 0.039

GO Ion binding 5 1.92E-84

Neurotrophin TRK receptor signaling pathway 5 7.91E-19

Epidermal growth factor receptor signaling pathway 5 1.04E-10

Toll-like receptor signaling pathway 5 3.35E-08

Fibroblast growth factor receptor signaling pathway 5 1.75E-05

MMP9 hsa-miR-483-3p KEGG Fatty acid biosynthesis 3 5.96E-25

hsa-miR-149-5p Hippo signaling pathway 4 1.28E-06

hsa-miR-1224-3p TGF-beta signaling pathway 4 1.86E-05

hsa-miR-1306-5p mRNA surveillance pathway 4 0.010

hsa-miR-6749-3p Circadian rhythm 3 0.038

GO Response to stress 4 1.78E-08

Platelet degranulation 4 8.94E-07

Transforming growth factor-beta receptor signaling pathway 4 0.002

Thyroid hormone receptor binding 3 0.013

Cellular response to hypoxia 4 0.013

CA4 hsa-miR-3912-5p KEGG Glycosphingolipid biosynthesis - ganglio series 4 1.22E-12

hsa-miR-204-3p Thyroid hormone synthesis 5 0.035

hsa-miR-4747-5p GO Ion binding 5 9.94E-25

hsa-miR-7851-3p Gene expression 5 4.05E-12

hsa-miR-671-5p Neurotrophin TRK receptor signaling pathway 5 3.29E-09

Synaptic transmission 5 1.35E-05

Epidermal growth factor receptor signaling pathway 5 3.56E-04

CRISPLD2 hsa-miR-1207-5p KEGG Cell adhesion molecules (CAMs) 5 5.03E-05

hsa-miR-635 Adherens junction 5 0.003

hsa-miR-634 Axon guidance 5 0.003

hsa-miR-654-5p Lysine degradation 5 0.011

hsa-miR-378a-5p Morphine addiction 5 0.015

GO Neurotrophin TRK receptor signaling pathway 5 1.96E-09

Response to stress 5 4.40E-04

Phosphatidylinositol-mediated signaling 5 0.004

Toll-like receptor signaling pathway 5 0.004

Regulation of transcription from RNA polymerase II promoter in

response to hypoxia

3 0.037

S100A12 hsa-miR-5787 KEGG Vasopressin-regulated water reabsorption 5 7.70E-06

hsa-miR-6133 Circadian rhythm 4 0.003

hsa-miR-6861-5p TGF-beta signaling pathway 5 0.007

hsa-miR-5589-5p Fatty acid elongation 3 0.012

hsa-miR-5004-5p Cytokine-cytokine receptor interaction 4 0.038

GO Neurotrophin TRK receptor signaling pathway 5 4.89E-06

Blood coagulation 5 0.005

Water-soluble vitamin metabolic process 4 0.031

Apoptotic signaling pathway 5 0.041

Immune system process 5 0.041

(Continued)
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TABLE 2 Continued

Genes Predicted

miRNAs

Category Term miRNAs P value

GZMK hsa-miR-558 KEGG TGF-beta signaling pathway 4 3.24E-05

hsa-miR-300 Adherens junction 5 3.24E-05

hsa-miR-4793-3p Arrhythmogenic right ventricular cardiomyopathy (ARVC) 4 0.009

hsa-miR-6088 Axon guidance 4 0.029

hsa-miR-6741-5p Insulin signaling pathway 5 0.036

GO Protein binding transcription factor activity 5 1.26E-13

Phosphatidylinositol-mediated signaling 5 3.99E-10

Fibroblast growth factor receptor signaling pathway 5 1.74E-08

Nervous system development 5 8.69E-04

Epithelial to mesenchymal transition 5 0.011

FIGURE 6

Heatmaps of the expression of DE-miRNAs. (A) The heatmap of upregulated IS-specific DE-miRNAs. (B) The heatmap of downregulated

IS-specific DE-miRNAs.
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This study is the first data mining to identify co-DEGs

between STEMI and IS. Our results give a reasonable

speculation for the pathophysiological mechanisms of

STEMI-related IS. Our study does have serval limitations.

First, our work is a microarray analysis based on different

datasets. Hence, the different pieces of clinical information

of detected samples in two datasets may have a certain

influence on our study. Additionally, validation should

be conducted by PCR or Elisa to verify these markers.

However, the technique of models for STEMI and IS

was immature in vivo and in vitro. In the future, the

larger clinical studies are needed to verify our results to

some extent.

Conclusions

Based on our analyses, the hubgenes CD8A, TLR2, TLR4,

S100A12, and TREM1may be associated with STEMI, and IL7R,

CCR7, FCGR3B, CD79A, and ITK may be related to IS. In

addition,MMP9, ARG1, CA4, CRISPLD2, S100A12, and GZMK

were found to be associated with STEMI-related IS. Lastly,

the miRNAs targeting each co-DEG may serve as biomarkers

or targets for treatment of STEMI-related IS, especially

miR-654-5p.
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Background and purpose: Futile recanalization occurs when the endovascular

thrombectomy (EVT) is a technical success but fails to achieve a favorable

outcome. This study aimed to use machine learning (ML) algorithms to

develop a pre-EVT model and a post-EVT model to predict the risk of futile

recanalization and to provide meaningful insights to assess the prognostic

factors associated with futile recanalization.

Methods: Consecutive acute ischemic stroke patients with large vessel

occlusion (LVO) undergoing EVT at the National Advanced Stroke Center

of Nanjing First Hospital (China) between April 2017 and May 2021 were

analyzed. The baseline characteristics and peri-interventional characteristics

were assessed using four ML algorithms. The predictive performance was

evaluated by the area under curve (AUC) of receiver operating characteristic

and calibration curve. In addition, the SHapley Additive exPlanations (SHAP)

approach and partial dependence plot were introduced to understand the

relative importance and the influence of a single feature.

Results: A total of 312 patients were included in this study. Of the four

ML models that include baseline characteristics, the “Early” XGBoost had a

better performance {AUC, 0.790 [95% confidence intervals (CI), 0.677–0.903];

Brier, 0.191}. Subsequent inclusion of peri-interventional characteristics into

the “Early” XGBoost showed that the “Late” XGBoost performed better [AUC,

0.910 (95% CI, 0.837–0.984); Brier, 0.123]. NIHSS after 24h, age, groin to

recanalization, and the number of passages were the critical prognostic factors

associated with futile recanalization, and the SHAP approach shows that NIHSS

after 24h ranks first in relative importance.

Conclusions: The “Early” XGBoost and the “Late” XGBoost allowed us

to predict futile recanalization before and after EVT accurately. Our study
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suggests that including peri-interventional characteristics may lead to

superior predictive performance compared to a model based on baseline

characteristics only. In addition, NIHSS after 24h was the most important

prognostic factor for futile recanalization.
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Introduction

Endovascular thrombectomy (EVT) is standard-of-care in

patients with large vessel occlusion (LVO) stroke of the anterior

circulation according to the latest international guidelines (1).

Its benefit and safety have been repeatedly underlined in a

series of randomized clinical trials (RCTs) (2). The therapeutic

target of EVT is to achieve recanalization to improve long-term

functional outcomes. However, futile recanalization considered

a poor long-term function outcome despite adequate vessel

recanalization, remains a common phenomenon. Previous

studies showed that the incidence of futile recanalization

among LVO patients ranged from 47 to 67%, and these futile

recanalization cases may occur due to poor microvascular

compromise, poor collateral circulation, technology difference,

and cerebral blood flow regulation (3–7). Patients with futile

recanalization undergoing EVT may suffer reperfusion injury

and consume resources and time, so early prediction of futile

recanalization is critical.

Many predictors associated with futile recanalization in

LVO patients undergoing EVT have been reported. Baseline

clinical characteristics such as advanced age, female gender, and

severe neurological deficits, have been reported to be correlated

with futile recanalization (3, 8). Neuroimaging characteristics

such as baseline Alberta Stroke Program Early Computed

Tomography Score (ASPECTS), poor collateral circulation,

and final infarction volume, have also been suggested as

important factors (3–5). There are also peri-interventional

characteristics such as general anesthesia and delayed puncture

to reperfusion (9). However, all the predictors are based on

traditional statistical algorithms and even if all those predictors

are taken into account, it should be emphasized that they

are not efficient in perfectly predicting futile recanalization in

LVO patients. Therefore, to improve individual stroke care,

it is crucial to establish a reliable and data-driven model

that integrates information from various sources (clinical,

neuroimaging, peri-interventional characteristics) to accurately

predict futile recanalization in LVO patients and differentiate

between them based on whether they will or will not benefit

from EVT. Unfortunately, no reliable models are designed

to predict futile recanalization in stroke patients subjected

to EVT.

Machine learning (ML) can analyze kinds of characteristics

and leverage the integrated predictive value of these

characteristics. Moreover, the ML approach can detect

non-linear relationships in clinical data and uncover new

patterns from existing information. Indeed, ML algorithms have

already been proven to help predict functional outcomes after

endovascular treatment in ischemic stroke patients (10), classify

stroke mechanisms (11), and detect early infarction from

non-contrast-enhanced CT (12). Notably, these sophisticated

computer algorithms have gained significant interest in the

widespread use of electronic health record systems and the

accessibility of data from patients.

Here, we aimed to evaluate the prognostic factors associated

with futile recanalization using ML algorithms and develop

a pre-EVT model (the “Early” model) and a post-EVT

model (the “Late” model) to effectively predict the risk of

futile recanalization, and more importantly, to improve stroke

emergency care and provide patients’ relatives with reliable

information about the prognosis.

Materials and methods

Study design and population

Consecutive acute ischemic stroke (AIS) patients receiving

EVT at the National Advanced Stroke Center of Nanjing First

Hospital (China) between April 2017 and May 2021 were

included in the study. All patients had a clinically confirmed

diagnosis of AIS with LVO of the anterior circulation and

underwent EVT according to the standard of care using stent-

retrievers and/or aspiration catheters at the Department of

Neurology at Nanjing First Hospital. Patients were selected

if they fulfilled the following criteria: (1) age 18 years or

older; (2) LVO in the anterior circulation, including the

internal carotid artery (ICA), M1/M2 segment of the middle

cerebral artery (MCA); (3) successful recanalization [defined

as modified Thrombolysis In Cerebral Infarction (mTICI)

scale grades 2b or 3]; (4) premorbid modified Rankin

Scale (mRS) score ≤ 2; (5) known National Institutes of

Health Stroke Scale (NIHSS), ASPECTS, and mRS score at

90 days; (6) time from onset to puncture ≤ 6 or 6–24 h
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with evidence of perfusion mismatch. Patients who missed

more than one data were to be excluded. The flowchart

is summarized in Supplementary Figure S1. We dichotomized

eligible patients with mTICI ≥ 2b into two groups utilizing

the 90-day mRS score, which included the futile recanalization

(90-day mRS of 3–6) and meaningful recanalization (90-

day mRS of 0–2). The 90-day mRS scores were assessed

via telephone-based interview or outpatient visit 3 months

after onset. The scientific use of the data was approved by

the Ethics Committee of Nanjing First Hospital (document

number: KY20130424-01) and all patients provided written

informed consent.

Data collection and definitions

Demographics and clinical characteristics were recorded on

admission. We also collected data on treatment information and

complication. More details of the definition can be found in the

Supplementary methods.

Feature selection and model
development

To assess the accumulative predictive power of clinical,

neuroimaging, and peri-interventional characteristics, we built

two ML models to predict futile recanalization risk: The

first “Early” model was based on baseline clinical and

neuroimaging characteristics at admission. The second “Late”

model was developed via all variables from the “Early” model

+ peri-interventional characteristics. For model development,

the original dataset was randomly stratified into training

and test sets per 8:2, which meant that the proportion

of patients with futile recanalization in the two sets was

consistent with the original dataset. Then, the least absolute

shrinkage and selection operator (LASSO) regression, a sparse

method, was performed to select the important features in

the training set. Furthermore, all features determined by

LASSO were introduced into the four ML models to assess

futile recanalization risk. This included logistic regression

with L2 regularization (LR with L2), random forest classifier

(RFC), support vector machine (SVM), and extreme gradient

boosting (XGBoost). To avoid overfitting, we utilized a grid

search algorithm with 10-fold cross-validation to fine-tune the

optimal hyperparameters (Supplementary Tables S1A, S1B) in

the training set. A separate test set was used to assess the

models’ generalization performance. In addition, all continuous

variables were standardized using Z-score normalization.

The algorithms involved above were performed in Python

3.7 using Scikit-learn version 0.24.1 and XGboost version

1.2.1 libraries.

Model evaluation and interpretation

We focused on discrimination and calibration to evaluate

the performance of the “Early” and the “Late” model. The

discrimination was mirrored using the area under the receiver

operating characteristic curve (AUC), and the Delong test (13)

was applied to describe the statistical difference of AUC. In

addition, the following metrics: sensitivity, specificity, positive

predictive value, negative predictive value, and accuracy, were

also calculated accordingly. Calibration ability was assessed

by the Brier score, which calculated the difference between

real-world and model-predicted index outcomes. A lower

score indicated better calibration. Furthermore, the incremental

benefit of ML model calibration was compared using the null

model Brier score (14).

To better understand the predictive process of the

ML model, we applied the model-agnostic interpretability

techniques, including the feature importance and partial

dependence plot (PDP) (15). The feature importance was

performed by the Shapley Additive exPlanations (SHAP)

algorithm (16). This sorting process is based on the mean

of absolute SHAP values for all individuals. PDP was

introduced to help understand how a single feature influences

futile recanalization. These interpretability techniques were

implemented in Python using SHAP version 0.39.0 and PDPbox

version 0.2.0.

Statistical analyses

All analyses were conducted using SPSS version 25.0.

Initially, missing values were supplemented per the multiple

imputation method. Then continuous variables were tested

for normality. Notably, premorbid mRS and NIHSS scores on

admission were regarded as continuous variables in all analyses

for increasing the model’s efficiency. All variables were shown

with descriptive statistics. Univariate analyses were performed

using the Student t-test or Mann-WhitneyU-test for continuous

variables, when appropriate. And Fisher’s exact test or theχ2 test

were applied for categorical variables.

Results

General condition

Out of 569 patients, 312 patients were eligible. Overall,

179 developed futile recanalization. As shown in Table 1A,

those who developed futile recanalization were more likely

to be older {median age: 75 [interquartile range (IQR), 67–

81] vs. 66 [IQR, 60–76]} and suffered from more severe

strokes [median NIHSS score on admission: 16 (IQR, 12–20)

vs. 11 (IQR, 8–16)] compared with patients with meaningful
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TABLE 1A Demographics and clinical characteristics.

Total

(n = 312)

Meaningful recanalization

(n = 133, 42.6%)

Futile recanalization

(n = 179, 57.4%)

p-value

Baseline characteristics

Age, years, median (IQR) 72.00 (63.25–79.00) 66 (60–76) 75 (67–81) <0.001

Male sex, n (%) 186 (59.6) 89 (66.9) 97 (54.2) 0.023

BMI, kg/m2 , median (IQR) 23.88 (21.48–26.67) 24.22 (22.04–26.70) 23.66 (21.22–26.12) 0.167

Education, years, n (%) 0.280

0–6 174 (55.8) 67 (50.4) 107 (59.8)

6–9 67 (21.5) 29 (21.8) 38 (21.2)

9–12 42 (13.5) 22 (16.5) 20 (11.2)

>12 29 (9.3) 15 (11.3) 14 (7.8)

Premorbid mRS (IQR) 0 (0–0) 0 (0–0) 0 (0–0) <0.001

NIHSS on admission, median (IQR) 14 (11–18) 11 (8–16) 16 (12–20) <0.001

Baseline SBP, mmHg, mean (SD) 138.02 (23.24) 137.36 (23.36) 138.51 (23.21) 0.665

Baseline DBP, mmHg, mean (SD) 84.02 (15.01) 83.09 (14.44) 84.70 (15.42) 0.348

Risk factors of vessels

Hypertension, n (%) 236 (75.6) 95 (71.4) 141 (78.8) 0.135

Diabetes mellitus, n (%) 101 (32.4) 39 (29.3) 62 (34.6) 0.321

Dyslipidemia, n (%) 76 (24.4) 35 (26.3) 41 (22.9) 0.488

Coronary artery disease, n (%) 62 (19.9) 25 (18.8) 37 (20.7) 0.682

Atrial fibrillation, n (%) 99 (31.7) 37 (27.8) 62 (34.6) 0.201

Previous ischemic stroke/TIA, n (%) 67 (21.5) 24 (18) 43 (24) 0.204

Previous hemorrhagic stroke, n (%) 4 (1.3) 0 (0) 4 (2.2) 0.139

Smoking, n (%) 0.002

Never smoker 191 (61.2) 67 (50.4) 124 (69.3)

Former smoker 23 (7.4) 11 (8.3) 12 (6.7)

Current smoker 98 (31.4) 55 (41.4) 43 (24)

Drinking, n (%) <0.001

Never drinker 224 (71.8) 85 (63.9) 139 (77.7)

Former drinker 15 (4.8) 3 (2.3) 12 (6.7)

Current drinker 73 (23.4) 45 (33.8) 28 (15.6)

Radiological baseline characteristics

ASPECTS on admission, median (IQR) 5 (4–7) 5 (4–7) 5 (4–7) 0.083

Cause of stroke, n (%)

LAA 121 (38.8) 58 (43.6) 63 (35.2) 0.131

CE 158 (50.6) 58 (43.6) 100 (55.9) 0.032

SAO 4 (1.3) 3 (2.3) 1 (0.6) 0.316

SOC 8 (2.6) 7 (5.3) 1 (0.6) 0.012

SUC 21 (6.7) 7 (5.3) 14 (7.8) 0.372

Vascular occlusion site, n (%)

ICA 97 (31.1) 39 (29.3) 58 (32.4) 0.561

MCAM1 194 (62.2) 84 (63.2) 110 (61.5) 0.759

MCAM2 21 (6.7) 10 (7.5) 11 (6.1) 0.632

Side of occlusion, n (%)

Left 147 (47.1) 64 (48.1) 83 (46.4) 0.759

Right 151 (48.4) 63 (47.4) 88 (49.2) 0.754

Both side 14 (4.5) 6 (4.5) 8 (4.5) 0.986

(Continued)
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TABLE 1A Continued

Total

(n = 312)

Meaningful recanalization

(n = 133, 42.6%)

Futile recanalization

(n = 179, 57.4%)

p-value

Medication use history

Previous antiplatelet, n (%) 43 (13.8) 17 (12.8) 26 (14.5) 0.659

Previous anticoagulation, n (%) 26 (8.3) 10 (7.5) 16 (8.9) 0.654

Previous statin, n (%) 29 (9.3) 14 (10.5) 15 (8.4) 0.518

IQR, interquartile range; SD, standard deviation; BMI, body mass index; mRS, modified Ranking Scale; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP,

diastolic blood pressure; TIA, transient ischemic attacks; ASPECTS, Alberta Stroke Program Early CT Score; LAA, large artery atherosclerosis; CE, cardioembolism; SAO, small artery

occlusion; SOC, stroke of other determined cause; SUC, stroke of undetermined cause; ICA, internal carotid artery; MCA, middle cerebral artery.

TABLE 1B Treatment information and complication.

Total

(n = 312)

Meaningful

recanalization

(n = 133, 42.6%)

Futile

recanalization

(n = 179, 57.4%)

p-value

Treatment information

Intravenous thrombolysis, n (%) 138 (44.2) 63 (47.4) 75 (41.9) 0.336

Number of passages, n (%) 2 (1–3) 1 (1–2) 2 (1–3) <0.001

Onset to emergency, min, median (IQR) 150.00 (60.50–287.50) 150 (60–295) 145 (65–278) 0.894

Onset to image, min, median (IQR) 194.00 (120.75–331.50) 215 (120–347) 190 (123–320) 0.420

Onset to groin, min, median (IQR) 259.00 (185.00–406.75) 270 (185–420) 251 (185–380) 0.444

Onset to recanalization, min, median (IQR) 342.50 (249.25–474.00) 340 (240–510) 344 (259–460) 0.926

Groin to recanalization, min, median (IQR) 64.50 (49.00–89.00) 56 (43–75) 72 (53–95) <0.001

Later than 6 h from onset to puncture, n(%) 93 (29.8) 45 (33.8) 48 (26.8) 0.180

Later than 8 h from onset to puncture, n(%) 55 (17.6) 25 (18.8) 30 (16.8) 0.640

mTICI score, n (%) 0.387

2b 126 (40.4) 50 (37.6) 76 (42.5)

3 186 (59.6) 83 (62.4) 103 (57.5)

NIHSS after 24 h 12 (6–17) 5 (3–10) 16 (12–21) <0.001

Post-treatment blood pressure variability

SBP

SD, median (IQR) 11.54 (7.42–16.91) 11.06 (7.54–16.36) 11.89 (7.33–17.24) 0.351

CV, median (IQR) 0.09 (0.06–0.13) 0.09 (0.06–0.12) 0.09 (0.06–0.13) 0.591

DBP

SD, median (IQR) 8.48 (5.63–11.21) 8.73 (5.59–11.61) 8.17 (5.79–11.15) 0.809

CV, median (IQR) 0.11 (0.08–0.15) 0.11 (0.08–0.15) 0.11 (0.08–0.14) 0.932

Complications

Brain edema, n (%) 14 (4.5) 0 (0) 14 (7.8) 0.001

END, n (%) 39 (12.5) 5 (3.8) 34 (19) <0.001

sICH, n (%) 9 (2.9) 0 (0) 9 (5) 0.012

IQR, interquartile range; mTICI, modified Thrombolysis in Cerebral Infarction; SBP, systolic blood pressure; DBP, diastolic blood pressure; SD, standard deviation; CV, coefficient of

variation; NIHSS, National Institutes of Health Stroke Scale; END, early neurological deterioration; sICH, symptomatic intracranial hemorrhage.

recanalization. Furthermore, as seen in Table 1B participants

with futile recanalization spent more time in the procedure

of groin to recanalization [median of 72min (IQR, 53–95) vs.

56min (IQR, 43–75)] and had greater postprocedural NIHSS

after 24 h [median of 16 (IQR, 12–21) vs. 5 (IQR, 3–10)].

Furthermore, all characteristics were well-balanced between the

training and test sets (Supplementary Tables S2A, S2B).

“Early” models

The details of the model’s performance on the

training set are shown in Supplementary Figure S2 and

Supplementary Table S3A. In terms of discriminatory

ability, there were no significant differences in AUCs

in all the “Early” ML models, AUCs ranged from 0.738
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FIGURE 1

(A) The receiver operating characteristic curve and (B) the calibration curve of the “Early” machine learning models on the testing set. (C,D)

Feature importance ranking based on Shapley Additive exPlanations (SHAP) values in “Early” XGBoost. AUC, area under the curve; LR with L2,

logistic regression with L2 regularization; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme gradient boost. NIHSS,

National Institutes of Health Stroke Scale.

TABLE 2A Scores of each “Early” model on the test set.

Model AUC (95% CI) Sensitivity Specificity PPV NPV Accuracy Brier score

LR with L2 0.784 (0.671–0.898) 0.806 0.593 0.725 0.696 0.714 0.194

RFC 0.799 (0.686–0.913) 0.722 0.704 0.765 0.655 0.714 0.191

SVM 0.738 (0.606–0.870) 0.750 0.704 0.771 0.679 0.730 0.195

XGBoost 0.790 (0.677–0.903) 0.556 0.889 0.870 0.600 0.698 0.191

AUC, the area under the receiver operating characteristic curve; CI, confidence intervals; PPV: positive predictive value; NPV, negative predictive value; LR with L2, logistic regression with

L2 regularization; RFC, random forest classifier; SVM, support vector machine; XGBoost, extreme gradient boosting.

to 0.799 on the test set. Nevertheless, when considering

the calibration, the overall performance of the XGBoost

model was better than other ML models revealed by

a smaller Brier score. For the sake of simplicity, we

only considered the XGBoost as a prediction model. A

summary of the results is given in Figure 1, Table 2A, and

Supplementary Table S4A.

Next, the visual interpretation of the “Early” model

(XGBoost) was provided. Sorted by the mean absolute

SHAP value, the rank of feature importance in descending

order was as follows: age, NIHSS score on admission, and

smoking. A dot in Figure 1C represents an individual.

Red indicates the larger distribution of SHAP values,

while blue indicates smaller. The high SHAP values of

age and NIHSS reveal positive contributions to futile

recanalization, whereas smoking was negative. Additionally,

PDP shows the impact of each feature on the predicted risk

(Supplementary Figure S3). For the age feature, although the

impact appears to be a little fluctuating, on average, the impact

increases drastically with age from 63 to 71 years. And it

remains stable at other ages. For the NIHSS score between

6 and 22, on average, the higher the NIHSS, the larger the

risk. And then, the impact remains constant after NIHSS

of 22.
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TABLE 2B Scores of each “Late” model on the test set.

Model AUC (95% CI) Sensitivity Specificity PPV NPV Accuracy Brier score

LR with L2 0.905 (0.834–0.976) 0.889 0.704 0.800 0.826 0.810 0.129

RFC 0.905 (0.829–0.981) 0.917 0.815 0.868 0.880 0.873 0.159

SVM 0.882 (0.801–0.962) 0.889 0.630 0.762 0.810 0.778 0.141

XGBoost 0.910 (0.837–0.984) 0.861 0.815 0.861 0.815 0.841 0.123

AUC, the area under the receiver operating characteristic curve; CI, confidence intervals; PPV: positive predictive value; NPV, negative predictive value; LR with L2, logistic regression with

L2 regularization; RFC, random forest classifier; SVM, support vector machine; XGBoost, extreme gradient boosting.

FIGURE 2

(A) The receiver operating characteristic curve and (B) the calibration curve of the “Late” machine learning models on the testing set. (C,D)

Feature importance ranking based on Shapley Additive exPlanations (SHAP) values in “Late” XGBoost. AUC, area under the curve; LR with L2,

logistic regression with L2 regularization; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme gradient boost. NIHSS,

National Institutes of Health Stroke Scale.

“Late” models

The details of the model’s performance on the

training set are provided in Supplementary Figure S4 and

Supplementary Table S3B. In the testing step, all “Late” model

also scored a similar AUC since the statistical insignificant

differences of AUCs were found {AUC of 0.910 [95% confidence

intervals (CI), 0.837–0.984] for XGBoost vs. 0.905 [95% CI,

0.834–0.976] for LR, 0.905 [95% CI, 0.829–0.981] for RFC and

0.882 [95% CI, 0.801–0.962] for SVM}. And homoplastically,

the overall performance of the XGBoost model outperformed

other ML models with the consideration of the smaller Brier

score (0.123 for XGBoost vs. 0.129 for LR, 0.159 for RFC, and

0.141 for SVM). A summary of the results is given in Figure 2,

Table 2B, and Supplementary Table S4B.

Next, the visual interpretation of the optimal “Late” model

(XGBoost) was provided. Figure 2C shows that NIHSS after 24 h,

age, groin to recanalization, and the number of passages were the

four important features. And the high SHAP values of these four

features revealed positive contributions to futile recanalization.

Furthermore, from the PDP, we can see that for NIHSS after

24 h (Figure 3A), the increase in NIHSS score (3–22) is positively

related to futile recanalization and remains stable whenNIHSS is

over 22. For the age feature (Figure 3B), on average, the increase

in age (63–71) is positively related to futile recanalization, which

performs similarly to the “Early” model but with less fluctuation.
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FIGURE 3

Partial dependence plots (PDP) of “Late” XGBoost model features. (A) NIHSS after 24 hours, (B) age, (C) groin to recanalization, and (D) the

number of passages. The shaded blue region shows the magnitude of the confidence interval, and the Y-axis represents the change in the

predicted outcome. NIHSS, National Institutes of Health Stroke Scale.

For the groin to recanalization feature (Figure 3C), on average,

it (46–105) was positively related to futile recanalization, and

then the impact remains constant after groin to recanalization

of 105min. For the number of passages feature (Figure 3D), the

impact increased gradually with the number from one to three

and remained stable when the number was over three.

Comparison of models

We compared the performance of the “Early” and “Late”

models (Figure 4; Supplementary Figure S5). All “Late” models

substantially outperformed “Early” models on both the training

and testing set.

Discussion

In the present study, we derived and validated a series of

ML models with the capacity to predict futile recanalization

in LVO patients undergoing EVT. The XGBoost algorithm has

optimal predictive performance in both the “Early” model and

the “Late” model. As a result, we generated highly reliable futile

recanalization risk estimates and made predictions at two points

(pre- and post-EVT) in the care continuum with the explicit

goal of improving stroke emergency care. In addition, results

in our study suggest that the inclusion of peri-interventional

characteristics may lead to superior predictive performance

compared to a model based on baseline characteristics

only. Although several pieces of literature have reported

many prognostic factors associated with futile recanalization,

none integrated those factors for building predictive models.

Considering the hazards of futile recanalization, such models

are important.

Using “Early” XGBoost may offer neurologists effective

support in patient selection for EVT therapy. According to

the HERMES meta-analysis, “the number needed to treat with

endovascular thrombectomy to reduce disability by at least

one level on Mrs for one patient was 2.6” if the clinical

trial criteria were used (2). In real-world practice, however, a

higher number would be needed given the potential benefit

for a portion of patients. Hence, patient selection criteria for

EVT tend to be more liberal, often accompanied by disastrous

futile recanalization. Reliable pre-EVT prognostic tools can

facilitate the process of patient selection by generating an

accurate prediction of futile recanalization. However, it must
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FIGURE 4

The comparison of the receiver operating characteristic curve of “Early” machine learning models and “Late” machine learning models on the

test set. LR with L2, logistic regression with L2 regularization; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme

gradient boost.

be admitted that although the “Early” XGBoost constructed in

our study achieved an AUC of 0.790, this model needs further

improvement due to the existence of the “smoking paradox.”

On the other hand, the “Late” XGBoost with the inclusion

of peri-interventional characteristics outperformed the “Early”

XGBoost by amargin of 12.0% for AUC. The accurate prediction

provided reliable and objective prognostic after EVT and, in

turn, can aid in the counseling of patients and their relatives.

There are two points to emphasize, with the expectation

that the “Early” XGBoost and the “Late” XGBoost can be

integrated into real-world practice. On the one hand, because

of the irreplaceability of clinical judgment, the proposed

use for the “Early” XGBoost and the “Late” XGBoost is

to serve as adjuncts, rather than surrogates, to clinical

judgment to facilitate evidence-based, prediction-driven, and

personalized decision-making in the clinical workflow of LVO

patients. On the other hand, this study represents only one

component in the development of robust and reliable tools

for the risk screening of futile recanalization in LVO patients.

Further implementation, impact, and validation studies are

essential if those models are going to be integrated into the

clinical workflow.
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In addition to clinical applications, results in our study

can provide meaningful insights to reveal diverse and new

predictors. The SHAP algorithm and PDP have discovered

several predictors of futile recanalization. SHAP algorithm can

provide feature importance scores from XGBoost, and explain

the logic behind predictions; PDPwas used to show themarginal

effect of a single feature. When XGBoost integrated information

from baseline clinical and radiological characteristics before

EVT, the SHAP algorithm demonstrated that—in the present

study—patients presenting with greater age and with severe

neurological deficit on admission had higher rates of futile

recanalization. Nevertheless, this of course does not suggest

that EVT is not indicated in patients with a higher baseline

NIHSS. It is essential to consider the results of a meta-

analysis of five randomized trials, which provides evidence

of no differential benefit from endovascular treatment across

the entire NIHSS severity range (2). Although it might be

surprising at first glance, current smoking was associated with

decreased risk of futile recanalization in the present study.

The so-called “smoking paradox” phenomenon has appeared

in patients undergoing intravenous thrombolysis and EVT (17,

18). One assumption was that the negative relation between

current smoking and futile recanalization was related to an

age effect (19). Indeed, current smokers were younger than

former smokers or never smokers in the present study (p

< 0.001) (Supplementary Table S5). However, such a result

must not be misinterpreted that the effect of smoking is

beneficial due to the observational study design. Surprisingly,

the ML algorithm did not select ASPECTS on admission as

one of the predictors for futile recanalization. Such a result

can be explained by the firm, linear, negative correlation

between ASPECTS and NIHSS on admission and the higher

univariate performance of the latter as compared with the

former for predicting futile recanalization (20). Unfortunately,

pre-treatment collateral status was not incorporated in the

model building process due to its unavailability in the dataset.

Previous studies have shown the positive effect of good collateral

status on clinical outcomes after EVT (21, 22). Such results

can be explained by the fact that more robust collateral flow

can compensate for the brain areas with restricted blood flow

and subsequently increase the recanalization and reperfusion

rates (23). However, these studies did not consider the degree

of revascularization achieved. According to a study published

in the Stroke journal (23), reperfusion success is associated

with good collateral status, which indicates that the effect

of collateral status on clinical outcome is possibly indirect.

In addition, patients in the present study who received

EVT and recanalization achieved an mTICI score of >2a,

which means that those patients are likely to have good

collateral status.

Subsequent inclusion of peri-interventional characteristics

into the XGBoost demonstrated that NIHSS after 24 h, age,

groin to recanalization, and the number of passages were

the key predictors for futile recanalization. As shown in the

PDP, in the age group between 63 and 71, there was an

abrupt rise of futile recanalization by around 20% independent

of other patient characteristics, while it remains stable at

other ages. Although age is known to be prominent for

the efficacy of EVT (3, 4), the observed drastic change

in the probability of futile recanalization has not been

described before. Interestingly, the “late” XGBoost with peri-

interventional characteristics shows that NIHSS assessed at

24 h replaced NIHSS on admission and became the strongest

predictor of futile recanalization. Indeed, as demonstrated

by previous studies, NIHSS after 24 h is strongly associated

with long-term functional outcomes and is a great potential

early surrogate clinical endpoint for clinical trials (10, 24).

For the groin to recanalization feature (Figure 2C), on

average, the increase in the groin to recanalization (46–

105min) is positively related to futile recanalization. Such

results are in line with those from previous studies which

flagged a time dependency to clinic outcome of LVO stroke

treated with EVT (25, 26). Also, the likelihood of futile

recanalization got sequentially higher as the number of

passages increased. Although the technical expertise of the

operator is important, the increased number of passages may

be due to some uncontrollable factors such as increased

clot fragmentation with distal embolization or accumulated

endothelial damage (27). In addition, the impact of the

groin to recanalization and the number of passages on futile

recanalization supports the conclusion of previous studies that

an angiographic recanalization does not necessarily lead to

functional independence if it was achieved at the expense of

longer procedural times (28).

The present study has some limitations. Firstly, the patients

included in the present study were selected from a single-center,

retrospective data set, leading to selection bias. For example,

older age patients are more likely to be excluded from EVT.

Indeed, such selection bias is inherent in any prediction model.

Secondly, the definition of successful reperfusion itself should be

challenged as it is assessed on the final angiogram. Because our

study design was retrospective, we could not reliably confirm

which patients went on to develop spontaneous re-occlusion

or recanalization at 24–48 h. However, this phenomenon is

only present in a small percentage of patients. Thirdly, other

significant data sources, such as angiographic characteristics, are

likely to add extra predictive value. We did not include these

in our study because such data were unavailable and may be

a logistical challenge when applied, especially in the primary

stroke centers.

Conclusions

The “Early” XGBoost and the “Late” XGBoost allowed

us to accurately predict futile recanalization in LVO patients
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before and after EVT. Our study suggests that the inclusion

of peri-interventional characteristics may lead to superior

predictive performance compared to a model based on

baseline characteristics only. In addition, NIHSS after

24 h was the most important prognostic factor for futile

recanalization. Although our results represent only one step

in developing screening tools for futile recanalization, they

can provide meaningful insights to reveal diverse and new

prognostic factors.
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Background: Conventional and complementary treatments are often used

in rehabilitation for persons with stroke. The conventional treatment makes

use of medications, physiotherapy, occupational, speech, and diet therapies,

while the complementary treatment makes use of homeopathy, naturopathy,

massage, and acupuncture. The structure, process, and outcomes of stroke

rehabilitation using conventional or complementary treatments have not been

empirically investigated in Ghana.

Aims: This study aims to investigate the structure, process, and outcomes

of stroke rehabilitation at the Korle Bu Teaching Hospital (KBTH) in Accra

and Kwayisi Christian Herbal Clinic (KCHC) in Nankese-Ayisaa, Ghana, and to

explore the experiences of persons with stroke.

Methods: This study involves a mixed methods approach. This study will

utilize three study designs, namely, cross-sectional, hospital-based cohort,

and qualitative exploratory study designs. The objectives of the study will

be achieved using three phases, namely, phase one will recruit health

professionals and gather information on the structure and process of stroke

rehabilitation at a conventional and complementary hospital using adapted

questionnaires; phase two will determine the outcomes of stroke patients

attending a conventional and complementary hospital facility at baseline,

2-, 3-, and 6-month follow-up using outcome measures based on the

International Classification of Functioning, Disability and Health (ICF) model;

and phase three will explore the experiences of stroke patients who use

complementary or conventional treatment using an interview guide.

Data analysis: IBM SPSS Statistics Version 27 will be used to analyze the data

using descriptive and inferential statistics. Repeated measures of ANOVA will

be used to determine the di�erences between variables at baseline, 2-, 3-, and

6-month post-stroke. The qualitative data will be transcribed and entered into

Atlas Ti version 9.0. The data will be coded and analyzed using thematic areas

that will be generated from the codes.

Conclusion: The study protocol will provide a comprehensive overview

of the structure, process, and outcomes of stroke rehabilitation in Ghana,
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incorporating both conventional and complementary treatment and

rehabilitation into the stroke recovery journey. It will also inform clinical

practice, with new insights on the experiences of stroke patients based on

their choice of rehabilitation pathway.

KEYWORDS

stroke, outcomes, conventional, complementary, rehabilitation, structure, processes

and Ghana

Introduction

Stroke rehabilitation is aimed at reducing the disability-

related impact of stroke on individuals, enabling them to achieve

independence, social integration, a better quality of life, and

self-actualization (1). The importance of rehabilitation medicine

in the attainment of optimal functioning after an injury or

disease cannot be overemphasized (2). According to the World

Health Organization, rehabilitation aims to enable persons with

functional limitations to improve and maintain their optimal

functional levels through the provision of tools to help attain

independence (3).

Conventional medicine involves healthcare practices

through which healthcare professionals treat symptoms and

diseases in a medically supervised setting using therapy,

drugs, radiation, and/or surgery (4). Complementary medicine

involves healthcare practices that are not part of a country’s

conventional health practices and are not fully integrated

into the dominant healthcare system, but are used along

with mainstream healthcare (4, 5). Complementary medicine

involves a health system that uses non-mainstream approaches

together with conventional medicine in healthcare practice

(4, 5). Conventional and complementary medicine treatments

are often used in rehabilitation for stroke patients (6–10).

The usage of complementary medicine and rehabilitation

has a high prevalence in the treatment of stroke in Korea

(54%) and India (67%) (11), as well as in developed countries

such as the United States, Australia, France, and Canada,

with its usage ranging from 42 to 70% (12). In Africa,

complementary medicine and rehabilitation is widely used

in most countries, and sometimes, it is the only source of

primary healthcare (13–15); about 70% of the population in

Ghana utilize complementary medicine and rehabilitation in

one way or the other (16). Complementary medicine refers

to a broad set of healthcare practices that are not part of

the mainstream medical care in a country and are not fully

integrated into the dominant healthcare system (17–19). It

involves the use of non-mainstream approaches of healthcare

such as chiropractic, acupuncture, homeopathy, herbal therapy,

dietary, and psychological interventions (20, 21) together with

conventional medicine (7, 22). Conventional medicine is the

use of evidence-based treatments that are safe and effective,

with rigorously tested procedures used as clinical practice

guidelines (23). The focus of conventional medicine is more

often on the treatment of existing ailments within the context

of a specific scientific framework. Rehabilitation is a major part

of conventional medicine treatment, forming a major part of

patient care (24).

The structure, process, and outcomes (SPO) framework

initially developed to assess the quality of healthcare has

recently been used to examine outcomes related to differences

in structure and process of rehabilitation and their association

with outcomes post-stroke (8, 25, 26). The SPO framework

will be utilized in this study in addition to the International

Classification of Function, Disability and Health (27) to

conceptualize outcomes post-stroke which include impairments,

activity limitations, and participation restrictions of stroke

patients utilizing conventional or complementary medicine and

rehabilitation in Ghana.

By undergoing a specific stroke rehabilitation pathway,

stroke patients can achieve their best possible functional

independence, which ultimately improves their quality of life

(7). Good outcomes after stroke have been seen in patients

undergoing rehabilitation in the conventional setting (9, 28–

32). Stroke outcomes have also been shown to be better

in cases managed at the stroke units with multidisciplinary

care (33). In the Ghanaian context, the coordination of

stroke care after discharge from acute care is fragmented

(34), with further rehabilitation after acute care poorly

addressed due to accessibility of care issues such as inadequate

medical facilities and financial constraints (34, 35). For this

reason, some patients and/or their caregivers choose to use

rehabilitation in a complementary or conventional setting as

a treatment for stroke based on availability in the community

and acceptability to their health beliefs or religious faith

(7, 36), and sometimes as a substitute for the absence of

conventional rehabilitation (7, 37). However, there is a paucity

of information on the outcomes of stroke patients who use

complementary medicine and rehabilitation in Ghana. In an era

where complementary healthcare services are being introduced

gradually to mainstream healthcare (16, 38, 39), it is important

to investigate and document the structure, processes, and

outcomes of complementary medicine and rehabilitation in a

resource-constraint environment (40). At present, there are few
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studies on the outcomes of stroke patients who use conventional

medicine and rehabilitation (41) and none on complementary

medicine and rehabilitation in Ghana. Published literature has

focused more on conventional medicine and rehabilitation,

with less or no literature existing on complementary medicine

and rehabilitation. This study will fill the gap by providing

information on structure, process, and outcomes of stroke

rehabilitation in a conventional and complementary hospital

setting in Accra and Nankese-Ayisaa, Ghana.

The purpose of this study is to comprehensively describe

the structure and processes of stroke rehabilitation to investigate

the outcomes of stroke patients who utilize conventional or

complementary medicine and rehabilitation. It is hoped that

the findings can pave the way for more studies assessing the

association between structure, process and outcomes of stroke

rehabilitation in low-resource settings.

Objectives

The study will be guided by the following objectives:

1. To determine the structure of stroke rehabilitation using

conventional and complementary medicine at KBTH in

Accra and KCHC in Nankese-Ayisaa, Ghana.

2. To determine the processes of stroke rehabilitation using

conventional and complementary medicine at KBTH in

Accra and KCHC in Nankese-Ayisaa, Ghana.

3. To determine the outcomes of participants in relation to

their impairments, activity limitations, and participation

restrictions at baseline, 2-, 3-, and 6-month follow-up at

KBTH in Accra and KCHC in Nankese-Ayisaa, Ghana.

4. To explore the experiences of stroke patients about

the process and outcomes of their rehabilitation at a

conventional or complementary rehabilitation after 6 months

of rehabilitation at KBTH in Accra and KCHC in Nankese-

Ayisaa, Ghana.

Methods

Study design

This study will adopt a triangulation, mixed-method

approach with quantitative and qualitative methods (42). The

quantitative part will involve a cross-sectional and hospital-

based cohort study of health professionals and stroke patients,

respectively, while the qualitative part of the study will be a

descriptive exploratory study of stroke patients in a conventional

and complementary hospital in Accra and Nankese-Ayisaa,

Ghana. The study will be carried out in three phases. The

data will be collected at the stroke unit and physiotherapy

department, KBTH, and the outpatient department and

physiotherapy department, KCHC. A hospital-based cross-

sectional study will be conducted from November 2021 to April

2022 on health professionals to gather information about their

numbers and availability of equipment for rehabilitation at the

hospital and the compliance with the agency for healthcare

policy and research (AHCPR) using adapted questionnaires.

The cohort study will assess outcomes of stroke patients using

outcome measures at baseline, 2-, 3-, and 6-month follow-up

from December 2021 to April 2023. The baseline measurement

will be within a month after the start of stroke treatment.

The qualitative exploratory design will be used to explore the

experiences of stroke patients regarding their rehabilitation

process and outcomes in a conventional or complementary

rehabilitation setting from June 2022 to August 2022.

Participants and setting

The study population will comprise all health professionals

involved in stroke care at the study sites and all stroke patients

at KBTH and KCHC during the study period fulfilling the

inclusion criteria.

Inclusion criteria for health professional
participants

Eligible participants should:

i. be health professionals at the study sites,

ii. be involved in stroke rehabilitation, and

iii. consent to participate in the study.

Exclusion criteria for health professional
participants

Participants will be excluded from the study if they:

i. are students,

ii. are intern professionals, and

iii. do not consent to participate in the study.

Inclusion criteria for stroke patient
participants

Eligible participants should:

i. be aged 18 years and above,

ii. be clinically diagnosed with stroke using clinical signs and

CT scan or MRI confirmation,

iii. be those within a month after starting rehabilitation,

iv. have a modified Rankin score (MRS) of <4,

v. willing to come for follow-up assessment at 2-, 3-, and

6-month post-recruitment into the study, and

vi. speak either English, Ga or Twi (Ghanaian local languages).
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Exclusion criteria for stroke patient
participants

Participants will be excluded from the study if they:

i. have other neurological conditions such as previous head

injury or spinal cord injuries, dementia, and seizures;

ii. have psychological or mental instability;

iii. have the inability to communicate verbally and

comprehensively as a result of global aphasia;

iv. have stroke-like symptoms due to subdural hematoma,

brain tumor, encephalitis, or head trauma; and

v. the patient or family do not provide informed consent.

Phase one of the study will be carried out at the stroke

unit and physiotherapy department, KBTH and the out-patient

department and physiotherapy department, KCHC; phases two

and three will be carried out at the physiotherapy department

of the two facilities. The KBTH is the premier and largest

teaching hospital, located in the Greater Accra region of Ghana,

with a population of 5.4 million (43). The Accra metropolis,

in the Greater Accra region, has a population of 1,665,086

spread across 60 square kilometers, consisting of both urban

and peri-urban areas (44). The KBTH is a 2,000-bed capacity

referral hospital in the southern part of Ghana, with a stroke

unit incorporating multidisciplinary professionals for stroke

management (45).

The KCHC is a herbal clinic located in Nankese-Ayisaa,

in the Eastern region of Ghana, which has a population

of 2.9 million (43). Nankese-Ayisaa is part of the Suhum

Municipality, ∼60 km from Accra, the national capital. Suhum

Municipality has a population of 90,358 spread across 359 square

kilometers, consisting of both urban and rural areas (44). The

hospital uses complementary medicine (herbal medicine) and

nutritional supplements in the treatment of stroke patients. They

also undertake outpatient rehabilitation services using massage

therapy, herbs, exercise therapy, and dietary counseling. The

facility focuses on stroke care using herbal preparations and food

supplements under the standards set by the Traditional Medical

Practice Council in Ghana (16).

Recruitment

All health professionals involved in stroke care at the study

sites who sign the consent form will be recruited for the

study. The estimated average monthly population of new stroke

patients at the physiotherapy department of KBTH and KCHC is

20 and 10, respectively, during the 2021 mid-year performance

review (46, 47). A power calculation at 80% power, 5% level of

significance, and 95% confidence interval was used to determine

the number of participants to be recruited. Assuming a 70

and 50% recovery rate for patients using conventional and

complementary treatment, respectively, a 10% non-response

rate and with standard approximations for loss to follow-up,

a sample size of 200 is estimated. Therefore, a total of 100

participants will be recruited at each study site to retain statistical

power. All eligible participants will be consecutively enrolled in

the study. The study will be carried out over a window period of

18 months.

A sample size of up to 20 participants will be selected

purposively, with 10 at each study site for the qualitative

study. “Information power” meaning the amount of relevant

information needed for the study will determine the number of

participants for the study (48). The selection will be done based

on the age and gender of the participants.

Data collection

The study will adhere to the ethical guidelines of the

Declaration of Helsinki in 2013 (World Medical Association

Declaration of Helsinki) (49). All study participants will

be informed about the purpose and objectives of the study

and asked to sign an informed consent form prior to

participation. The right of participants to safeguard their

anonymity and integrity will be respected. All participants

will be adequately informed of the aims, methods, consent to

participation, potential risk/benefits, voluntary participation,

privacy/confidentiality, compensation, declaration of conflict

of interest. Signing the informed consent is necessary

for recruitment.

Data collection instruments

The data collection will involve three phases, namely,

structure and process of care, outcomes post-stroke, and

experiences with rehabilitation process and outcomes. The

questionnaires for the quantitative study will be validated

and tested for reliability by administering them to health

professionals at the physiotherapy department of Komfo

Anokye Teaching Hospital (KATH) and the outpatient

department of Amen Scientific Herbal Hospital (ASHH) in

Kumasi in a pilot study. The interview guide for the qualitative

study will also be piloted on stroke patients at KATH and ASHH

to determine whether it answers the research questions for the

study and the time it will take to administer the interviews. The

KATH and ASHH have similar characteristics as the study sites

for the study in terms of structure and population required for

the study.

Phase 1: Structure and process of care

An adapted questionnaire redesigned by Rhoda (8) based

on the taxonomy developed by Hoenig et al. (50) will be

used to collect data on the structure of stroke rehabilitation.

The questionnaire consists of four main domains. Domain
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TABLE 1 Summary of outcome measures and respective

methodology.

Outcome Measurement

method

Time points

(months)

Improvement of voluntary

movement of the limbs and basic

mobility

STREAM Baseline, 2-, 3- and

6-months post-stroke

Gait and balance TS test Baseline, 2-, 3- and

6-months post-stroke

Walking ability TUG test Baseline, 2-, 3- and

6-months post-stroke

Cognitive function MoCA test Baseline, 2-, 3- and

6-months post-stroke

Walking speed 10 MW test Baseline, 2-, 3- and

6-months post-stroke

Reintegration in terms of ADLs,

social and recreational activities

and interactions with others

RNLI Baseline, 2-, 3- and

6-months post-stroke

Quality of life HRQOLISP Baseline, 2-, 3- and

6-months post-stroke

one consists of socio-demographic information of professionals

such as age, gender, highest qualification, year of qualification;

domain two consists of information on professional expertise

such as the availability of professionals and the interventions

used; domain three consists of capacity building of professionals

such as attendance of continuous professional education,

presence of team meetings, and use of outcome measures; and

domain four consists of rehabilitation equipment available at

the facility.

An adapted questionnaire will be used to measure the

process of care for stroke patients by compliance with the

agency for healthcare policy and research (AHCPR) and

clinical guidelines for post-stroke rehabilitation (26). The

questionnaire uses a Likert scale to gather information relating

to multidisciplinary team coordination, baseline assessment of

patients, monitoring and evaluating progress, and management

of impairments and functional limitations of patients.

Phase 2: Outcomes of rehabilitation

Table 1 shows the outcome measures, their assessment

methods, and assessment time points. Primary and secondary

outcome measures will be assessed in each participant at

different time points (baseline, 2-, 3-, and 6-month post-

stroke). The primary outcome will be the improvement

of voluntary movement of the limbs and basic mobility.

The secondary outcome measures will be improvements in

stroke-specific functional and quality-of-life measures based

on the impairments, activity limitations, and participation

restrictions: Montreal Cognitive Assessment Scale (MoCA),

Stroke Rehabilitation Assessment Movement (STREAM), Time

Up and Go (TUG) test, 10-meter walk (10 MW) test, Tinetti

Scale (TS), Reintegration to Normal Living Index (RNLI), and

Health Related Quality of Life for Stroke Patients (HRQOLSP).

The instruments have been used in sub-Saharan Africa with

good reliability measures (51–57).

Phase 3: Experiences of participants

An interview guide will be developed by the authors

from the literature. The guide will gather information on the

experiences of stroke patients on the process and outcomes of

their rehabilitation.

Data collection procedure

Phase 1: Structure and process of care

The study will commence after permission from authorities

at the study sites has been granted and the necessary ethical

clearances are given. Standardized training in all aspects of

the study instruments will be provided to research assistants

for 1 week on how to administer the instruments and score

the participants. The first author will attend one of the

clinical meetings for health professionals at the study sites.

The purpose and objective of the study will be explained to

them, and they will be invited to participate in the study

by completing the questionnaires after signing a consent

form. The adapted questionnaires will be administered to

the health professionals after the clinical meeting and follow-

up meeting with them. Weekly reminders and periodic visits

will be conducted at the sites to increase the response rate

of the questionnaires. An online generated version of the

questionnaires will also be sent for participants who prefer that.

The questionnaires will take about 15min to complete and are

available in English.

Phase 2: Outcomes of rehabilitation

The records unit of the study sites will be approached

for the list of stroke patients and the contacts of those

receiving care or attending physiotherapy at the facility. The

patients will be contacted and the purpose of the study will

be explained to them and their caregivers. An appointment

will be set up for screening, and participants meeting the

inclusion criteria are invited to participate in the study. Those

who agree will be recruited into the study, after signing a

consent. In addition, the first author will approach patients

who report for physiotherapy services for recruitment into

the study. The research assistants will administer the bio-

demographic questionnaire first, followed by the stroke levity

scale, to assess the severity of stroke (41), then the other

self-reported questionnaires such as RNLI and HRQOLSP at
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baseline, and finally the observer-rated questionnaires such as

STREAM, TS, and MoCA. Once the observer-rated instruments

are completed, the first author will continue to conduct objective

assessments such as the TUG and 10 MW tests.

The TUG will be performed with patients seated on a chair

with arm rest and a measured distance of 3m from the chair.

The time taken for the patient to stand up from the chair

and walk toward the 3-m mark and turn back and sit on the

chair will be recorded. The participant may use the arms of

the chair to stand up or sit down and walk as fast and safe

as possible. The participant can wear their regular footwear,

may use any gait aid or assistive device that they normally

use during ambulation, but may not be assisted by another

person. There is no time limit. They may stop and rest (but

not sit down) if they need to. The time for two trials will

be recorded.

The 10 MW test is performed by recording the time

patients walk without assistance for a distance of 10m. The

time is recorded for intermediate 6m to allow for 2m of

acceleration and deceleration. The use of assistive devices or

physical assistance is allowed, but should be kept consistent

and be documented. The documentation will include normal

and fast walking speed. The time for three trials will be

recorded, and the average will be calculated for normal and

fast speed. Once the researcher and assistants have finished

collecting the baseline data, the participants will be informed

that they would be contacted for an appointment for the

2-, 3-, and 6-month follow-up assessments. The follow-up

assessments will be done by the same researcher or assistant

who had conducted the baseline assessments within a window

period of 7 working days either before or after the actual

date. The estimated duration for all the assessments will be

1 h. The questionnaires will be available in either English,

Twi or Ga and will be administered in the language the

participant prefers.

Phase 3: Experiences of participants

The first author will advertise phase 3 of the study to

eligible participants who have completed 6 months of stroke

rehabilitation at either the conventional or the complementary

facility. The purpose and objectives of the study will be explained

to the participants. Participants who agree to be part of the

study will have either a written consent or an audio consent

taken; permission will also be taken to record the interviews. The

first author will administer a one-on-one audio interview with

participants using an interview guide in a quiet venue, chosen

by the participant, either in their homes or at the clinic. The

first author will take notes during the interview, which will last

for a maximum of 40min. The interview guide will be available

in either English, Ga or Twi and will be administered in the

language the participant prefers.

Translation of the questionnaires

The outcome measures are available in English and will

be translated from English to Twi and Ga (Ghanaian local

languages) by a team of translators, with experience in

questionnaire translation from the University of Ghana and

Kwame Nkrumah University of Science and Technology. The

translated questionnaires will be back translated into the

original language (English) by another translator. All the

translators will not be associated with the study, and the

back translators will be independent of the first translators.

Modifications and changes will be done taking into account

the local context where needed (58) after agreement with

the translators. The content of the translated items will be

checked to see if it remained the same irrespective of the

translation process.

Data analysis

Quantitative data

The data will be captured and stored in an encrypted

Microsoft Excel file. Following data collection, the data will be

cleaned and checked for accuracy. The data will be transferred

into Statistical Package for the Social Sciences (SPSS) version

27 and analyzed using both descriptive and inferential statistics.

Frequencies of socio-demographic and outcome variables will

be determined. The frequencies will relate to data collected at

baseline, 2-, 3-, and 6-month post-stroke. The frequencies will

be presented in the form of means and standard deviations or

medians and interquartile ranges depending on the distribution

of the dataset. The Kolmogorov–Smirnov test will be used

to assess the normality of the data. For participants who are

unable to perform any of the items on the scales at baseline

and at follow-up visits, a value of 0 will be assigned to them,

because this score correctly reflects the subjects’ inability to

perform any of the items. A repeated measure ANOVA will

be conducted on all outcome measures with time (pre-post) as

within-subject variables and between-subject variables at each

study sites. Comparisons will be made with the entire sample as

well within each subgroup classified by scores on the stroke levity

scale (mild, moderate, severe). Comparisons among all of the

measures will be made for the 4-time intervals, namely, baseline,

2-, 3-, and 6-month assessments. An independent t-test will be

used to compare the differences in age, gender, improvement

of voluntary movement of the limbs, basic mobility, gait and

balance, walking ability, cognitive function, walking speed,

quality of life, and reintegration (activities of daily living,

social, recreational activities, and interactions with others). To

compare the changes at each site while adjusting the effect

of confounding variables, the covariance analysis model or

the relative change analysis will be used. Questionnaire scores

between baseline, 2-, 3-, and 6-month post-stroke assessments
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will be compared using a generalized linear model. In all

cases where differences occurred between baseline, 2-, 3-,

and 6-month post-stroke assessments, post-hoc analyses with

Bonferroni’s adjustments for multiple comparisons will be done.

For missing data imputation, the last value carried forward

(LVCF) method will be used. A p-value of <0.05 will be

considered statistically significant.

Qualitative data

The data collected will be analyzed using Atlas Ti version

9.0. The interviews in Ga and Twi will be translated into

English and checked by an independent translator to make

sure all the interviews are correctly translated until consensus

in the final translation is agreed on. The interviews together

with the translated one and the field notes will be transcribed

into text (English). The text will be entered into Atlas Ti

version 9.0 and analyzed using thematic analysis. The analysis

will be performed by reading the text for familiarization

with the data, establishing meaningful patterns, generating

initial codes, searching for themes among the generated

codes, reviewing the themes, defining and naming the themes,

and producing the final report. Data from field notes will

also be used for the analysis to enhance the results. The

themes and sub-themes that will emerge from the data will

be supported with verbatim quotes from the participants’

transcribed data.

Trustworthiness of qualitative data

The credibility of the research will be ensured by

explaining to the participants that participation in this study is

completely voluntary, and they can choose not to participate

in this research. The researcher will gather the required

information from the participants during the interview process

using additional probes. The credibility of the research will

also be ensured by keeping a reflexive journal where the

researcher’s assumptions, thoughts, and ideas about the Research

Topic and the disclosures of the participants during the

interview process will be noted. Member validation will

be done to ensure that the participants’ experiences about

stroke rehabilitation will be accurately represented in the

data gathered. The transcribed data will be given to the

participants to review during the data analysis and to provide

feedback to ensure that their transcribed interviews were

accurately recorded and the themes generated are meaningful

to them. Transferability and dependability of the study

will be ensured by giving detailed information about this

study, as documented in the comprehensive methodology,

and by keeping field notes using a reflexive journal. Lastly,

conformability will be obtained through an audit trail of the

procedures done.

Discussion

This study protocol offers an investigation of the structure,

process, and outcomes of stroke patients in two different

contexts 6 months post-stroke The research questions that this

study aims to address are as follows:

1. The structure, processes, and outcomes of care for stroke

patients using either conventional or complementary

rehabilitation in Accra and Nankese-Ayisaa, Ghana.

2. The experiences of stroke patients about the process and

outcomes of their rehabilitation at a conventional or

complementary facility after 6 months of rehabilitation in

Accra and Nankese-Ayisaa, Ghana.

Ghana has a vibrant pluralistic healthcare system made

up of both mainstream biomedical (conventional) and

complementary (herbal) health systems, which are all involved

in stroke care and rehabilitation (59). In many rural and

semi-urban areas in Ghana, most patients with stroke tend to

use complementary medicine treatment either exclusively or in

parallel with conventional medicine (40, 60) for varied reasons

ranging from faith and cultural congruence to accessibility, cost,

and belief that these approaches are safe (40, 61, 62).

Some stroke patients and their family members believe

stroke is a spiritual illness caused by evil spirits or witches

and as such the need to resort to herbal and faith healing

clinics after discharge from conventional hospitals (36, 40,

62–64). Some of these reasons have led to the patronage of

complementary rehabilitation among stroke patients in addition

to conventional rehabilitation in Ghana (40, 62). In an era

where complementary healthcare services are being introduced

gradually to mainstream healthcare (16, 38), it is important to

investigate and document the structure, processes, and outcomes

of both conventional and complementary medicine treatment in

a resource-constraint environment (40).

The study will provide information on the structure and

process of stroke rehabilitation in a conventional and a

complementary setting and explore the experiences of stroke

patients who attend rehabilitation in two different settings. The

study will also determine the outcomes of stroke rehabilitation

in a conventional and complementary rehabilitation setting in

Ghana after a 6-month follow-up. This study will inform clinical

practice for stroke rehabilitation in Ghana and may improve

stroke management.

In conclusion, the results will provide a comprehensive

overview and insight into stroke rehabilitation in Ghana

in terms of structure and process and outcomes of care,

incorporating both conventional and complementary treatment

and rehabilitation into stroke survivors’ recovery journey. It

will bring out the clinical and research implications of the

different pathways of the current overview of the structure,

process, and outcomes of stroke rehabilitation in Ghana by
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gathering data from both health professionals and persons

with stroke.
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Novel machine learning models
to predict pneumonia events in
supratentorial intracerebral
hemorrhage populations: An
analysis of the Risa-MIS-ICH

study

Yan Zheng1,2, Yuan-Xiang Lin1,2,3,4, Qiu He1,2,

Ling-Yun Zhuo1,2, Wei Huang1,2, Zhu-Yu Gao1,2,

Ren-Long Chen1,2, Ming-Pei Zhao1,2, Ze-Feng Xie5, Ke Ma6,

Wen-Hua Fang1,2,3,4, Deng-Liang Wang1,2,3,4, Jian-Cai Chen5,

De-Zhi Kang1,2,3,4,6* and Fu-Xin Lin1,2,3,4,6*

1Department of Neurosurgery, Neurosurgery Research Institute, The First A�liated Hospital, Fujian

Medical University, Fuzhou, China, 2Department of Neurosurgery, Binhai Branch of National

Regional Medical Center, The First A�liated Hospital, Fujian Medical University, Fuzhou, China,
3Fujian Institute for Brain Disorders and Brain Science, The First A�liated Hospital, Fujian Medical

University, Fuzhou, China, 4Fujian Provincial Clinical Research Center for Neurological Diseases, The

First A�liated Hospital, Fujian Medical University, Fuzhou, China, 5Department of Neurosurgery, Anxi

County Hospital, Quanzhou, China, 6Clinical Research and Translation Center, The First A�liated

Hospital, Fujian Medical University, Fuzhou, China

Background: Stroke-associated pneumonia (SAP) contributes to highmortality

rates in spontaneous intracerebral hemorrhage (sICH) populations. Accurate

prediction and early intervention of SAP are associated with prognosis. None of

the previously developed predictive scoring systems are widely accepted. We

aimed to derive and validate novel supervised machine learning (ML) models

to predict SAP events in supratentorial sICH populations.

Methods: The data of eligible supratentorial sICH individuals were extracted

from the Risa-MIS-ICH database and split into training, internal validation,

and external validation datasets. The primary outcome was SAP during

hospitalization. Univariate and multivariate analyses were used for variable

filtering, and logistic regression (LR), Gaussian naïve Bayes (GNB), random

forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), extreme

gradient boosting (XGB), and ensemble soft votingmodel (ESVM)were adopted

for ML model derivations. The accuracy, sensitivity, specificity, and area under

the curve (AUC) were adopted to evaluate the predictive value of each model

with internal/cross-/external validations.

Results: A total of 468 individuals with sICH were included in this work.

Six independent variables [nasogastric feeding, airway support, unconscious

onset, surgery for external ventricular drainage (EVD), larger sICH volume,

and intensive care unit (ICU) stay] for SAP were identified and selected for
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ML prediction model derivations and validations. The internal and cross-

validations revealed the superior and robust performance of the GNB model

with the highest AUC value (0.861, 95% CI: 0.793–0.930), while the LR model

had the highest AUC value (0.867, 95% CI: 0.812–0.923) in external validation.

The ESVM method combining the other six methods had moderate but robust

abilities in both cross-validation and external validation and achieved an AUC

of 0.843 (95% CI: 0.784–0.902) in external validation.

Conclusion: The MLmodels could e�ectively predict SAP in sICH populations,

and our novel ensemble model demonstrated reliable robust performance

outcomes despite the populational and algorithmic di�erences. This attempt

indicated that ML application may benefit in the early identification of SAP.

KEYWORDS

pneumonia, predict, machine learning, ensemble model, intracerebral hemorrhage,

stroke

Introduction

Stroke-associated pneumonia (SAP) is the most common

infectious complication in spontaneous intracerebral

hemorrhage (sICH) individuals, with an estimated incidence

of 15–25% in overall stroke populations (1–3). SAP is usually

adversely associated with increased mortality, prolonged

hospital stays, and poor prognosis (3–5). The current large

phase III clinical trials have not found the benefits of routine

antibiotic prevention for general stroke individuals (6, 7).

Therefore, the accurate prediction and early intervention of SAP

might contribute to improving the prognosis. Thus, a reliable

model is needed for predicting and monitoring potential SAP, so

that exact prophylactic interventions or therapeutic antibiotics

can be tailored promptly.

In recent decades, a few studies have indicated several

independent risk factors for SAP, including older age (5, 8–13),

male sex (8, 9, 13, 14), severe stroke (4, 5, 8–16), intubation

(4, 15), nasogastric feeding or dysphagia (4, 8, 16), and deeper

location and larger volume of sICH (4, 11, 15). Some of these

variables were included in several predictive scoring systems for

SAP risk stratifications, such as the A2DS2 and PNA scores in

Germany (9, 12), and the AIS/ICH-APS scores in China (10, 11),

and the ISAN score in the UK (13). However, most scoring

systems are designed for acute ischemic stroke (AIS) populations

(9, 10, 12, 13), and none of the SAP prediction scoring systems

are widely accepted in routine clinical practice.

At present, prediction models based on machine learning

(ML) have been applied to predict the occurrence and

prognosis of various diseases, which greatly promoted diagnostic

performance and facilitated more responsive health systems

(17–19). In clinical applications, ML algorithms are applied for

risk stratification and prognosis prediction of disease and guide

clinicians to apply corresponding measures timely. Compared

to traditional scoring systems, ML models show smarter, more

accurate, more timely, and more convenient characteristics (18–

21). While there is currently no ML model for SAP forecasting.

Thus, we aim to derive and validate novel supervised ML

models to predict SAP events in supratentorial sICHpopulations

and expect to develop a superior and automatic tool for

clinical practice.

Materials and methods

Study design and participants

The data for this analysis were obtained from the

retrospective database of the Risk Stratification and Minimally

Invasive Surgery in Acute Intracerebral Hemorrhage Patients

(Risa-MIS-ICH) study (Clinical Trials Identifier: NCT03862729,

https://www.clinicaltrials.gov), which was a multicenter

ambispective cohort study. Two centers were involved in the

retrospective cohort for this work, including the First Affiliated

Hospital, Fujian Medical University (FAHFMU, Fuzhou,

Fujian), and Anxi County Hospital (ACH, Quanzhou, Fujian).

The FAHFMU subcohort (from January 2015 to July 2020) was

for the variable filtrations and model derivations/validations.

The ACH subcohort (from June 2019 to April 2021) was

introduced into this work for external validation. The study

protocol followed the principles of the Declaration of Helsinki

and was approved by the ethics committee of FAHFMU (GN:

MRCTA, ECFAH of FUM [2018]082) and documented in each

center. No informed consent was required for the retrospective

cohort. This work was reported in accordance with the

Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) statement (22).

The inclusion and exclusion criteria of the participants are

shown as follows:
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Inclusion criteria:

• Diagnosed with spontaneous sICH by computed

tomography (CT)/CT angiography (CTA) scan, and

the interval time from onset to recorded CT/CTA scan

≤ 48 h;

• Glasgow Coma Scale (GCS) score > 5 and no cerebral

herniation at admission;

• Onset age ≥ 18 years.

Exclusion criteria:

• With any intracranial etiology of supratentorial

hemorrhage of arteriovenous malformation (AVM),

arterial aneurysm, hemorrhagic cerebral tumor stroke,

hemorrhagic infarction, coagulation disorders, or any other

potential organic lesions indicating nonspontaneous sICH;

• Occurrence of infratentorial hemorrhage;

• Evidence of pregnancy, or pre-stroke life expectancy <

3 months.

Additional criteria for SAP prediction model

derivations/validations in this work:

• Interval time from onset to admission ≤ 24 h;

• Hospital stay ≥ 48 h;

• Receiving no mechanical ventilation or ventilation time ≤

24 h before SAP events;

• Underwent recent pulmonary infectious disease or received

any antibiotic therapy≤ 4 weeks;

• Critical data loss about SAP in the laboratory, imaging, or

other important clinical information.

According to the present guideline, the diagnosis of sICH

participants required radiologic records and exclusion of

other organic lesions causing hemorrhage. Only supratentorial

sICH participants were enrolled in the Risa-MIS-ICH study,

and the participants with the cerebral herniation or low

GCS scores usually indicated poor prognosis, which was

excluded from the study scope. The exclusion of the juvenile

and the pregnant population is for ethical consideration.

Furthermore, for the unbiased diagnosis of SAP and the

precise analysis, the strict additional criteria had to exclude

short-term hospitalization, infection associated with mechanical

ventilation, and undefined participants.

The screening process of this work is presented in Figure 1A.

Variable extractions and primary
outcomes

Relevant information about participants were retrieved

from the electronic medical record (EMR) systems from each

neurological research center. The electronic data capture

(EDC, http://61.154.9.209:8090/, RealData Corporation,

Ningbo, Zhejiang, China) system was employed for database

establishment and data collection. The trained professional

clinical research coordinators (CRCs) were commissioned for

data entry and follow-up. The Risa-MIS-ICH database included

665 variables and involved information on demographics, pre-

stroke comorbidities, onset details, imaging features, laboratory

results, complications during hospitalizations, interventions,

discharge status, and follow-up information. The collation

of the database was performed by professional statisticians,

and data analysis was carried out after passing the third-party

quality control.

The primary outcome of the current analysis was the

occurrence of SAP events during hospitalization, and SAP

was defined as a pneumonia not incubating during hospital

admission and occurring ≥ 48 h after admission in acute stroke

populations. Referring to the diagnostic criteria for hospital-

acquired pneumonia (HAP), the diagnostic criteria for SAP were

as follows (23, 24): the presence of a new or progressive infiltrate

in a chest X-ray or CT scan, plus at least two of the following

clinical manifestations: (1) fever (T > 38◦C) or hypothermia

(T < 36◦C), (2) leukocytosis [white blood cell (WBC) count

> 10 × 109/L] or leukopenia (WBC count < 4 × 109/L),

and (3) nursing-recorded purulent airway secretion. Ventilator-

acquired pneumonia (VAP), defined as a pneumonia event after

ventilation time > 24 h, was excluded from this work.

Statistical analysis and variable filtration

All statistical analyses were performed using the SPSS

software (version 22.0, IBM Corporation, Armonk, NY, USA)

and Python (version 3.8.3, Anaconda Distribution, Austin,

TX, USA). The current work mainly used the development

environment of Jupyter Notebook (version 6.0.3) and invoked

the key packaged libraries of NumPy (version 1.18.5), Pandas

(version 1.1.5), Scikit-learn (version 0.24.2), SciPy (version

1.5.0), Matplotlib (version 3.4.3), and Lifelines (version 0.26.4).

The continuous variables and categorical variables are presented

as the mean and standard deviation (SD) or median and

interquartile range (IQR) and quantities and percentages.

The screening of variables was performed in the FAHFMU

subcohort. As shown in Figure 1B, the study variables were

initially screened by univariate analyses. The independent

sample Student’s t-test was used for normally distributed data,

the Mann-Whitney U test was used for nonnormally distributed

data, and the chi-square test or Fisher’s exact test was used

for categorical data. All tests in this work were two-sided, and

P < 0.05 was considered statistically significant. To prevent

overfitting, the least absolute shrinkage and selection operator

(LASSO) regression was used in multivariate analysis and

further performed after univariate analyses. Each continuous

variable was standardized before performing LASSO regression
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FIGURE 1

Flowchart of the current work. (A) Participant enrollment in the retrospective cohort of the Risa-MIS-ICH study; (B) Data flow from the FAHFMU

subcohort; (C) The prediction model derivations and internal/cross-/external validations for SAP events. sICH, supratentorial intracerebral

hemorrhage; ML, machine learning; LASSO, least absolute shrinkage and selection operator; SAP, stroke-associated pneumonia.

to improve generalizability. LASSO regression selects the

optimal penalty value via the internally installed k-fold cross-

validation module (k = 3) and recursively removes the least

important variables by vanishing coefficients. Through the

above steps, the independent significant variables had nonzero

coefficients in LASSO regression and were selected as candidate

variables for ML model derivations.

Survival analysis was additionally performed in this work,

in which all-cause death after stroke onset was defined as the

observed indicator. The survival time was defined as the time

interval from stroke onset to all-cause death or follow-up. The

survival curves were plotted using the Kaplan–Meier method,

and survival rates were compared using the log-rank test.

Model derivations and validations

The flow diagram of the model derivations and validations

is presented in Figure 1C. The FAHFMU subcohort was

randomly split into the training and validation datasets

(7:3), which were used for the model derivations and

the internal validation, respectively. The model derivations

were performed on the candidate variables by six common

basic ML algorithms and one additional ensemble model,

of which these six well-established algorithms represented

various ML frames and are widely accepted at present

(19). The ML models were invoked with mature Python

packages, including logistic regression (LR), Gaussian naïve

Bayes (GNB), random forest (RF), K-nearest neighbor (KNN),

support vector machine (SVM), extreme gradient boosting

(XGB), and ensemble soft voting model (ESVM). None of

these models was uncertain about demonstrating the optimal

performance beforehand. In the training process, six basic

ML algorithms were independently fitted with the candidate

variables and virtual SAP classifications from the training

dataset, and model hyperparameters were optimized with

the grid-search algorithm to promote model performance. In

detail, the grid-search algorithms tune optimal parameters
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by internally evaluating model performance repeatedly via

the nested k-fold cross-validation module (k = 3 in this

work). Before the above steps, ML prediction models with

different characteristics were generated, and these processes

were termed supervised ML. To improve the robustness of ML

models, the additional ESVM was derived by incorporating

the aforementioned six algorithms. The ESVM is simply

a voting system on the weighted classified outputs of

the six basic algorithms, and these processes were termed

soft voting.

After model derivations, the validation dataset was

automatically inputted into the seven models to obtain the

predicted classifications in the internal validation. Receiver

operating characteristic (ROC) curves were plotted, and the

metrics of accuracy, sensitivity, specificity, and area under

the curve (AUC) along with 95% CIs were calculated to

evaluate the disease discrimination ability of each model.

Further supplementary internal evaluation with advanced

robustness was performed with n-repeated k-fold cross-

validation (n = 3 and k = 5 in this work). This method

repartitions the FAHFMU subcohort into k nonoverlapping

folds, where the k-1 folds are used for the model derivations and

the other fold is used for validation. After n repetitions,

n × k combinations are finally generated for robust

validation (25).

Furthermore, this work also introduced the external

subcohort, which was not involved in variable filtrations

and model derivations. In this process, the entire FAHFMU

subcohort was considered the training dataset to retrain the

predictionmodels, and the external subcohort was introduced as

the exclusive validation dataset. The technical avenue of training

and evaluating the models remained the same as above.

Results

Participants and characteristics

From January 2015 to April 2021, a total of 909

participants were included in the retrospective cohort of

the Risa-MIS-ICH study, and 441 of these individuals were

excluded due to ventilation > 24 h, ineligible time window,

or incomplete data. Finally, 468 individuals (nFAHFMU =

324, nACH = 144) were included in this work. The overall

average age was 60.44 (±12.51) years, and 308 (65.8%) of the

individuals were male sex. SAP events during hospitalizations

occurred in 135 (28.8%) [nFAHFMU = 97 (29.9%), nACH
= 38 (26.4%)] individuals. The demographic characteristics,

clinical manifestations, imaging features, laboratory tests, and

prognostic indicators in the FAHFMU and external subcohorts

are summarized in Tables 1, 2, respectively. Differences in

the analyzed variables between the two centers are shown in

Supplementary Table 1.

Variable filtration and importance

According to previous literature and clinical experience

(3–5, 8–16), 70 variables related to the study were retained

for subsequent analyses. Twenty-five variables were identified

as potential predictive factors for SAP by univariate analysis

and further LASSO regression was performed (Tables 1, 2).

LASSO regression showed that nasogastric feeding (coefficient

= 0.14687), airway support (coefficient= 0.09609), unconscious

onset (coefficient = 0.05304), surgery for external ventricular

drainage (EVD, coefficient = 0.01923), larger sICH volume

(estimated with the ABC/2 formula in imaging, coefficient =

0.00625), and intensive care unit (ICU) stay (coefficient =

0.00586) were considered independent influencing factors of

SAP (Figures 2, 3).

Model performance

The ROC curves of the seven models built on the

internal validation set were shown in Figure 4A. Among the

seven models, GNB demonstrated the optimal efficiency to

predict SAP with the highest AUC value (0.861, 95% CI:

0.793–0.930), while the ESVM presented the highest accuracy

(0.837, 95% CI: 0.764–0.910) and specificity (0.917, 95% CI:

0.862–0.971). The XGB was the most sensitive, with the

highest value (0.692, 95% CI: 0.601–0.784) (Table 3A). The

decision curve analyses were performed on both training

and validation datasets with seven models, as shown in

Supplementary Figure 1. The learning curves presented the

evolutions of models with different characteristics and are

illustrated in Supplementary Figure 2.

Three repeated five-fold cross-validation were established,

and a total of 15 combinations were generated from three

splits and five-folds. The AUC values of different models from

combinations are summarized and presented as heatmaps in

Supplementary Figure 3, and all quantified metrics are listed

in Supplementary Table 2. In most random states, the ESVM

(frequency = 9/15) and XGB (frequency = 8/15) models

remained the optimal models in terms of accuracy and

sensitivity, respectively. Unlike the results in internal validation,

the LR (frequency = 6/15) and RF (frequency = 10/15)

models most often had the highest AUC and specificity values,

respectively, with robustness.

External validation

The metrics and ROC curves of each model in external

validation are shown in Table 3B and Figure 4B. The LR was

superior in AUC value (0.867, 95% CI: 0.812–0.923) in the

external validation. While GNB had the highest accuracy (0.833,
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TABLE 1 Baseline characteristics.

Variables FAHFMU subcohort External subcohort

Without SAP With SAP P-value Without SAP With SAP P-value

(n = 227) (n = 97) (n = 106) (n = 38)

Age (years) 58.6 (±11.8) 60.0 (±12.6) 0.370 62.7 (±12.7) 66.0± (13.5) 0.182

Sex

Male (n) 155 (68.3%) 69 (71.1%) 0.694 59 (55.7%) 25 (65.8%) 0.339

Female (n) 72 (31.7%) 28 (28.9%) 47 (44.3%) 13 (34.2%)

Pre-stroke history

Hypertension (n) 163 (71.8%) 74 (76.3%) 0.416 65 (61.3%) 27 (71.7%) 0.329

Diabetes mellitus (n) 29 (12.8%) 13 (13.4%) 1.000 4 (3.8%) 3 (7.9%) 0.381

Heart disease (n) 8 (3.5%) 4 (4.1%) 1.000 2 (1.9%) 2 (5.3%) 0.284

Smoking (n) 59 (26.0%) 24 (24.7%) 0.890 - - -

Alcohol abuse (n) 59 (26.0%) 23 (23.7%) 0.679 - - -

Previous surgery (n) 48 (21.1%) 19 (19.6%) 0.768 2 (1.9%) 4 (10.5%) 0.042

Onset form

Neurological dysfunction (n) 201 (88.5%) 72 (74.2%) 0.002 91 (85.8%) 31 (81.6%) 0.600

Unconsciousness (n) 54 (23.8%) 71 (73.2%) <0.001 27 (25.5%) 27 (71.1%) <0.001

Epileptic attack (n) 4 (1.8%) 4 (4.1%) 0.246 2 (1.9%) 0 1.000

Headache (n) 71 (31.3%) 24 (24.7%) 0.287 91 (85.8%) 21 (55.3%) <0.001

Others (n) 93 (41.0%) 39 (40.2%) 0.903 94 (88.7%) 29 (76.3%) 0.105

Interval time from onset to admission (h) 12.0 (7.0, 24.0) 10.0 (6.5, 16.0) 0.022 3.0 (2.0, 8.3) 3.0 (2.0, 4.5) 0.103

Admission examination

Temperature (◦C) 36.5 (36.5, 36.8) 36.7 (36.5, 36.9) 0.115 36.6 (36.5, 36.8) 36.6 (36.5, 36.7) 0.667

Heart rate (min−1) 77 (±14) 83 (±17) 0.002 81 (±12) 84 (±14) 0.237

Respiratory rate (min−1) 20(19, 20) 20(19, 21) 0.008 20 (20, 20) 20 (20, 20) 0.998

Systolic BP (mmHg) 158 (±24) 162 (±25) 0.145 170 (±24) 174 (±27) 0.473

Dilated BP (mmHg) 93 (±15) 92 (±14) 0.610 100 (±15) 101.8 (±16) 0.453

Admission GCS Score

15 (n) 106 (46.7%) 12 (12.4%) <0.001 80 (75.5%) 10 (26.3%) <0.001

13–14 (n) 77 (33.9%) 33 (34.0%) 8 (7.5%) 5 (13.2%)

9–12 (n) 31 (13.7%) 19 (19.6%) 14 (13.2%) 15 (39.5%)

5–8 (n) 13 (5.7%) 33 (34.0%) 4 (3.8%) 8 (21.1%)

Hospital costs (thousand CNY)* 17.0 (12.5, 25.8) 49.7 (34.4, 91.0) <0.001 7.7 (6.5, 10.8) 25.1 (14.6, 35.7) <0.001

Hospital stay (d)* 15 (11, 20) 17 (13, 24) 0.003 14 (12, 15) 23 (15, 29) <0.001

Discharge status*

Home/nursing or rehabilitation (n) 96 (42.3%) 46 (47.6%) 0.463 97 (91.5%) 29 (76.3%) 0.022

Care withdrawal or hospital death (n) 131 (57.7%) 51 (52.6%) 9 (8.5%) 9 (23.7%)

Mortality (since onset)*

Survival ≥ 1 year (n) 168 (74.0%) 63 (64.9%) 0.009 77 (72.6%) 20 (52.6%) 0.013

3 Months−1 year (n) 4 (1.8%) 6 (6.2%) 2 (1.9%) 2 (5.3%)

<3 Months (n) 7 (3.1%) 10 (10.3%) 1 (0.9%) 4 (10.5%)

Loss of follow-up (n) 48 (21.1%) 18 (18.6%) 26 (24.5%) 12 (31.6%)

*These prognostic variables were not included in further multivariate analysis and model derivations/validations.

SAP, stroke-associated pneumonia; BP, blood pressure; GCS, Glasgow Coma Scale; CNY, Chinese yuan.

95% CI: 0.772–0.894) and sensitivity (0.553, 95% CI: 0.471–

0.634), the RF was the most specific (0.962, 95% CI: 0.931–

0.993). There was no single algorithm with dominant ability and

robustness in the external validation. It is worth mentioning

that the ESVM had moderate but robust abilities and achieved

AUC, accuracy, sensitivity, and specificity values of 0.843 (95%
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TABLE 2 Variables of laboratory results, imaging features, and early clinical interventions.

Variables FAHFMU subcohort External subcohort

Without SAP With SAP P-value Without SAP With SAP P-value

(n = 227) (n = 97) (n = 106) (n = 38)

RBC (1012 L−1) 4.66 (4.30, 4.94) 4.59 (4.15, 4.87) 0.097 4.66 (4.29, 5.08) 4.64 (4.30, 5.11) 0.928

Hemoglobin (g·L−1) 142.2 (±14.2) 140.2 (±15.3) 0.278 139.9 (±17.2) 137.9 (±20.2) 0.553

Hematocrit 0.41 (±0.04) 0.41 (±0.04) 0.681 0.42 (±0.05) 0.41 (±0.05) 0.335

WBC (109 L−1)* 8.52 (6.61, 10.64) 10.17 (7.54, 13.01) <0.001 8.27 (6.62, 10.83) 9.95 (7.77, 12.28) 0.014

Neutrophil (109 L−1) 6.46 (4.42, 8.72) 8.46 (5.49, 11.61) <0.001 5.86 (4.41, 8.45) 7.49 (5.03, 10.38) 0.016

Lymphocyte (109 L−1) 1.29 (0.86, 1.66) 1.04 (0.70, 1.39) 0.001 1.37 (0.99, 1.82) 1.46 (0.99, 1.90) 0.724

Platelet (109 L−1) 217.4 (±62.3) 214.8 (±63.3) 0.897 235.1 (±62.4) 221.2 (±55.7) 0.227

PT (s) 11.1 (10.8, 11.7) 11.1 (10.6, 11.9) 0.925 11.3 (10.9, 11.8) 11.4 (10.9, 12.2) 0.307

PT-INR 0.97 (0.94, 1.02) 0.97 (0.93, 1.04) 0.554 0.98 (0.94, 1.03) 0.99 (0.94, 1.07) 0.294

APTT (s) 25.0 (22.2, 27.9) 24.1 (21.8, 27.2) 0.200 25.3 (23.9, 27.1) 24.8 (23.2, 26.8) 0.385

Fibrinogen (g·L−1) 2.64 (2.23, 3.04) 2.69 (2.30, 3.13) 0.677 2.62 (2.20, 3.12) 2.68 (2.35, 3.18) 0.607

Serum creatinine (µmol·L−1) 67.0 (54.0, 78.3) 66.0 (54.7, 78.2) 0.769 66.0 (57.0, 82.0) 71.5 (58.8, 95.0) 0.098

Serum urea nitrogen (mmol·L−1) 5.02 (4.13, 5.94) 5.15 (4.27, 6.59) 0.259 4.85 (4.00, 5.83) 5.10 (4.28, 6.85) 0.276

Serum sodium (mmol·L−1) 139.5 (±3.9) 139.9 (±4.6) 0.486 138.7 (±3.5) 138.1 (±3.1) 0.386

Serum potassium (mmol·L−1) 3.80 (±0.42) 3.84 (±0.47) 0.474 3.88 (±0.53) 3.92 (±0.61) 0.723

Serum calcium (mmol·L−1) 2.28 (±0.54) 2.20 (±0.13) 0.158 2.36 (±0.12) 2.36 (±0.15) 0.802

Serum chloride (mmol·L−1) 102.0 (99.0, 105.0) 102.6 (99.0, 105.0) 0.743 100.6 (97.8, 102.5) 99.4 (96.3, 101.4) 0.058

sICH volume (cc) 8.7 (3.9, 17.2) 22.5 (9.4, 37.9) <0.001 6.8 (3.5, 13.4) 21.7 (6.3, 40.4) <0.001

Lobar Involvement (n)* 38 (16.7%) 25 (25.8%) 0.067 23 (21.7%) 12 (31.6%) 0.271

Frontal lobe (n) 17 (7.5%) 14 (14.4%) 0.063 8 (7.5%) 5 (13.2%) 0.328

Parietal lobe (n) 15 (6.6%) 13 (13.4%) 0.054 10 (9.4%) 4 (10.5%) 1.000

Temporal lobe (n) 17 (7.5%) 14 (14.4%) 0.063 10 (9.4%) 9 (23.47%) 0.047

Occipital lobe (n) 7 (3.1%) 3 (3.1%) 1.000 5 (4.7%) 2 (5.3%) 1.000

Deep Involvement (n)* 204 (89.9%) 87 (89.7%) 1.000 87 (82.1%) 31 (81.6%) 1.000

Basal ganglia (n) 174 (76.7%) 74 (76.3%) 1.000 66 (62.3%) 29 (76.3%) 0.162

Thalamus (n) 56 (24.7%) 33 (34.0%) 0.103 33 (31.1%) 11 (28.9%) 0.841

Corona radiata (n) 5 (2.2%) 4 (4.1%) 0.552 6 (5.7%) 6 (15.8%) 0.082

Insular lobe (n) 4 (1.8%) 1 (1.0%) 1.000 9 (8.5%) 6 (15.8%) 0.223

Intraventricular involvement (n)* 60 (26.4%) 47 (48.5%) <0.001 37 (34.9%) 15 (39.5%) 0.695

Unilateral ventricle (n) 26 (11.5%) 13 (13.4%) <0.001 21 (19.8%) 7 (18.4%) 0.227

Bilateral ventricles (n) 33 (14.5%) 33 (34.0%) 15 (14.2%) 8 (21.1%)

Third ventricle (n) 29 (12.8%) 26 (26.8%) 0.003 17 (16.0%) 10 (26.3%) 0.224

Fourth ventricle (n) 24 (10.6%) 22 (22.7%) 0.006 14 (13.2%) 7 (18.4%) 0.593

Subarachnoid involvement (n) 7 (3.1%) 8 (8.2%) 0.050 3 (2.8%) 1 (2.6%) 1.000

ICU Stay (n) 14 (6.2%) 39 (40.2%) <0.001 0 8 (21.1%) <0.001

Nasogastric feeding (n) 59 (26.0%) 84 (86.6%) <0.001 11 (10.4%) 24 (63.2%) <0.001

Airway support

None (n) 215 (94.7%) 48 (49.5%) <0.001 105 (99.1%) 30 (78.9%) <0.001

Endotracheal Intubation≤ 24 h or Naso-/oropharyngeal airway (n) 2 (0.9%) 13 (13.4%) 0 4 (10.5%)

Endotracheal intubation > 24 h or tracheotomy (n) 10 (4.4%) 36 (37.1%) 1 (0.9%) 4 (10.5%)

Surgery* 18 (7.9%) 50 (51.5%) <0.001 14 (13.2%) 22 (57.9%) <0.001

Only sICH evacuation (n) 11 (4.8%) 20 (20.6%) <0.001 0 4 (10.5%) 0.004

Only endoscopic sICH evacuation (n) 1 (0.4%) 1 (1.0%) 0.510 0 0 -

Only sICH catheter evacuation (n) 0 2 (2.1%) 0.089 9 (8.5%) 7 (18.4%) 0.089

Only EVD approach (n) 4 (1.8%) 15 (15.5%) <0.001 3 (2.8%) 9 (23.7%) <0.001

Ensemble approaches (n) 2 (0.9%) 12 (12.4%) <0.001 2 (1.9%) 2 (5.3%) 0.573

*These prognostic variables were not included in further multivariate analysis and model derivations/validations.

RBC, red blood cell; WBC, white blood cell; PT, prothrombin time; INR, international normalized ratio; APTT, activated partial thromboplastin time; sICH, supratentorial intracerebral

hemorrhage; ICU, intensive care unit; EVD, external ventricular drainage.
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FIGURE 2

Importance ranking of six independent variables selected by LASSO regression: (1) nasogastric feeding, (2) airway support, (3) unconscious

onset, (4) surgery for EVD, (5) larger sICH volume, and (6) ICU stay. EVD, external ventricular drainage; ICU, intensive care unit.

CI: 0.784–0.902), 0.812 (95% CI: 0.749–0.876), 0.447 (95% CI:

0.366–0.529), and 0.943 (95% CI: 0.906–0.981), respectively, in

the external validation. The decision curves for predicting SAP

on both FAHFMU and external subcohorts with seven models

are illustrated in Supplementary Figure 1.

Outcome and survival analysis

In both the FAHFMU and external subcohorts, participants

with SAP suffered from significantly higher hospital costs and

prolonged hospital stays (both P < 0.001). Three hundred sixty-

four (77.8%) of all eligible 468 participants were followed for

survival, and 83 (25.3%) of them had experienced SAP during

hospitalization. The mean survival times of participants in the

two groups were 44.95 ± 2.78 (95% CI: 39.50–50.40) and 55.77

± 1.26 (95% CI: 53.30–58.25) months, respectively. The median

survival times were not available because mortality was < 50%.

The 3-month and 1-year survival rates after onset were 86.9

and 78.3% in SAP participants and 96.7 and 94.2% in non-SAP

participants. The Kaplan-Meier curves are plotted in Figure 5.

There was a significant difference in survival times between the

two groups (log-rank χ
2 = 20.34, P < 0.001).

Discussion

It is critical to identify individuals at high risk for SAP and

to further tailor timely prophylactic interventions or therapeutic

antibiotics. However, for now, the early prediction of SAP

in sICH populations is challenging due to the lack of widely

accepted prediction tools, which are important for modern

precision medicine and evidence-based medicine (EBM) in

this field. Thus, we aimed to derive more effective and

automatic sICH-SAP prediction tools in this work. The novel

ML prediction models were derived and validated as an attempt

to combine artificial intelligence (AI) medical engineering and

clinical practice in this field. The major findings were as follows.

(1) The incidence rate of sICH-SAP was close to 30%, and

the sICH-SAP events significantly contributed to prolonged

hospital stays, increased hospital costs, and higher mortality.

(2) Six independent predictors for sICH-SAP were identified—

nasogastric feeding, airway support, unconscious onset, surgery

for EVD, larger sICH volume, and ICU stay. (3) ML prediction

models were successfully derived and showed good disease

discrimination ability. (4) There was no certain single algorithm

with the dominant ability and robustness in cross- and external

validations, while the ESVM was considered averaged in

metrics and better in robustness in different populations after

multiple validations.

Various predictors for SAP were identified in prior literature

(4, 5, 8–16). This work screened for independent variables

for sICH-SAP events by using univariate and multivariate

analyses in the FAHFMU subcohort. Nasogastric feeding, airway

support, and unconscious onset were identified as strongly

associated risk predictors, which overlapped with the results

of previous studies (4, 8–16). Nasogastric feeding and airway

support measurement were recognized as SAP predictors, which
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FIGURE 3

Multivariate analysis and variable filtrations with LASSO regression. The tuning parameter (λ) was selected for the minimized MSE in the LASSO

model using 10-fold cross-validation. Features with nonzero coe�cients were selected while the previous λ value was applied. (A) The MSE was

plotted vs. log λ. An optimal λ value of 0.02477 was chosen via the minimum criteria and presented as a black vertical dashed line. (B) LASSO

coe�cient profiles of the features. Each colored line represents the coe�cient of each feature, and six of them were selected as independent

variables when λ equals 0.02477. MSE, mean-square error.

might bring about secretion disturbances in nasal/oral/tracheal

cavities, decreased air filtrations, and even aspiration events

(4, 8, 15, 16). These early interventions were secondary to

the manifestation of unconsciousness. Previous studies mainly

included the ranked variable of the GCS score and rarely

adopted the onset manifestations (4, 10, 11, 14–16). In this

work, the admission GCS score and unconscious onset were

simultaneously introduced into the analyses, and the categorical

variable of unconscious onset was independently significant for

sICH-SAP. The predictors of larger sICH volume and ICU stay

were also reported in previous studies (4, 11, 15) and contributed

the least to predicting SAP in this work. The larger sICH volume

is a primary factor influencing stroke severity, and ICU stay

was a comprehensive intervention secondary to stroke severity
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FIGURE 4

ROC curves for SAP on the (A) internal and (B) external validation datasets. A greater AUC value indicated a higher predictive ability of the

models. ROC, receiver operating characteristic; AUC, area under the curve.

and resulted in infectious environments. These aforementioned

predictors are usually uncontrollable for actively preventing SAP

in clinical practice. However, there were still novel findings in

the subgroup analysis that only the surgery for EVD was a

significant independent predictor (P < 0.001 in FAHFMU/P =

0.001 in external subcohorts) of all surgical approaches in this

work, while EVD was only previously reported as a univariate

factor for overall infections (4). On the other hand, the surgery

for sICH catheter evacuation did not significantly contribute

to SAP events in any univariate analyses (both P = 0.089 in

FAHFMU/external subcohorts), which was in accordance with

the undifferentiated non-neurologic infections in theMISTIE III

trial (26). This suggests that we should continuously focus on the

stratification of surgical approaches in the prospective cohort of

the Risa-MIS-ICH study for convincing evidence.

To date, apart from the ICH-APS score, none of the

SAP prediction models is widely available in clinical practice

(8–13). The validation dataset for the ICH-APS score was

obtained from the Chinese National Stroke Registry (CNSR)

with an AUC value of 0.74 (95% CI: 0.72–0.75). Both our

optimal ML prediction models [internal validation: 0.861

(95% CI: 0.793–0.930); 0.867 (95% CI: 0.812–0.923)] and

robust ESVM classifiers [internal validation: 0.830 (95%

CI: 0.756–0.904); external validation: 0.843 (95% CI: 0.784–

0.902)] achieved higher AUC values, indicating greater

predictive ability.

Li et al. (26) developed ML models to predict SAP

events in Chinese AIS populations, which presented better

performance with the highest AUC value of 0.843 (95% CI:

0.803–0.882) than other AIS-SAP prediction scores (0.835

for A2DS2, 0.786 for PNA, 0.785 for AIS-APS, and 0.78

for ISAN scores). According to metrics from the literature

and this work (27–32), the ML prediction models for SAP

showed better performance metrics than traditional scoring

systems in both sICH and AIS populations. However, due

to incomplete variable collections, horizontal comparisons of

different prediction models on the same validation dataset

were not possible. Despite the defects, the prediction models

usually performed better in internal validation than in external

validation due to the intrinsic consistency of original datasets

and populational heterogeneity, and the comparisons on their

respective original validation datasets usually explained the

significance (33).

The published research mainly focused on the mutually

separated algorithms. Notably, only the optimal algorithm

was mentioned in those articles, although ensemble ML

models were reported as successful classifiers with greater

performance outcomes in the literature (31, 32). The six basic

algorithms used in this work have different characteristics

as SAP predictors. RF and LR could identify non-SAP

participants better, while XGB could identify SAP participants

better. We noted that the predictive ability of one single
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TABLE 3 Performance metrics of the ML models in the FAHFMU validation dataset and external subcohort.

AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

(A) Internal validation

LR 0.838 (0.765, 0.911) 0.827 (0.752, 0.901) 0.615 (0.519, 0.712) 0.903 (0.844, 0.961)

GNB 0.861 (0.793, 0.930) 0.816 (0.740, 0.893) 0.615 (0.519, 0.712) 0.889 (0.827, 0.951)

RF 0.837 (0.763, 0.910) 0.816 (0.740, 0.893) 0.462 (0.363, 0.560) 0.944 (0.899, 0.990)

KNN 0.807 (0.729, 0.885) 0.786 (0.704, 0.867) 0.500 (0.401, 0.599) 0.889 (0.827, 0.951)

SVM 0.770 (0.687, 0.854) 0.786 (0.704, 0.867) 0.500 (0.401, 0.599) 0.889 (0.827, 0.951)

XGB 0.839 (0.766, 0.912) 0.827 (0.752, 0.901) 0.692 (0.601, 0.784) 0.875 (0.810, 0.940)

ESVM 0.830 (0.756, 0.904) 0.837 (0.764, 0.910) 0.615 (0.519, 0.712) 0.917 (0.862, 0.971)

(B) External validation

LR 0.867 (0.812, 0.923) 0.812 (0.749, 0.876) 0.447 (0.366, 0.529) 0.943 (0.906, 0.981)

GNB 0.856 (0.798, 0.913) 0.833 (0.772, 0.894) 0.553 (0.471, 0.634) 0.934 (0.893, 0.975)

RF 0.844 (0.784, 0.903) 0.806 (0.741, 0.870) 0.368 (0.290, 0.447) 0.962 (0.931, 0.993)

KNN 0.734 (0.662, 0.806) 0.778 (0.710, 0.846) 0.395 (0.315, 0.475) 0.915 (0.870, 0.961)

SVM 0.730 (0.658, 0.803) 0.778 (0.710, 0.846) 0.395 (0.315, 0.475) 0.915 (0.870, 0.961)

XGB 0.856 (0.799, 0.913) 0.792 (0.725, 0.858) 0.421 (0.340, 0.502) 0.925 (0.881, 0.968)

ESVM 0.843 (0.784, 0.902) 0.812 (0.749, 0.876) 0.447 (0.366, 0.529) 0.943 (0.906, 0.981)

AUC, area under the curve; LR, logistic regression; GNB, Gaussian naïve Bayes; RF, random forest; KNN, K-nearest neighbor; SVM, support vector machine; XGB, extreme gradient

boosting; ESVM, ensemble soft voting model.

FIGURE 5

Kaplan–Meier curves of participants with/without SAP over 1-year follow-up. The colored area represents the 95% confidence intervals of the

survival rates.
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algorithm was uncertain due to the inconsistent ML algorithmic

performance outcomes among the internal/cross-/external

validations, and the indeterminacy probably restricted

the aforehand model selection and implementation in

clinical practice. Therefore, a general and robust model is

required for stable predictive ability. Based on the principle

of soft voting, we additionally derived ESVM classifier

incorporating six basic ML algorithms, which was moderate

but surprisingly robust in each metric. Notwithstanding

that the occupied machine sources of the ESVM equals the

summation of the six basic algorithms, this disadvantage

could be ignored by timed training and then pro re

nata invoking.

Our current work explored the ML for SAP prediction

in sICH individuals. During hospitalization, the clinicians

could collect the predictive variables and input these

variables into an ML model for a predictive suggestion, so

that appropriate precautions and interventions would be

timely tailored. While the present ML models are semi-

automatic and required manual variable input for now. In

the coming decades, the internally installed sophisticated

algorithms in the EMR system would ceaselessly learn

and then calculate the prediction for high-risk individuals

in the prospect via dynamically evaluating the keyed-in

clinical manifestations from clinicians, the resulting values

from the laboratory information system (LIS), and the

captured data from the picture archiving and communication

system (PACS) (29, 34). The ML application may greatly

improve the work efficiency of clinicians and the accuracy of

judgment results.

We have strengths that deserve comments. An external

subcohort and multiple forms of validation were introduced

in this work. Therefore, there was populational and

algorithmic robustness of convincing results. Based on the

aforementioned circumstances, we derived novel ensemble

models for generalizability, which showed moderate but robust

predictive abilities in different populations and were fit for real-

world practice. However, there are limitations that should be

acknowledged in this work. First, the observational retrospective

design might introduce unmanageable bias. Uncontrollable

baseline characteristics in the observational study might

confound SAP risks and further model derivations/validations.

Second, some important variables were missing due to the

retrospective collection of data in this work. The National

Institute of Health Stroke Scale (NIHSS) score, uniform CT

scan parameters, scanning timing, and other unrecorded

details were unreachable in the retrospective cohort of the

Risa-MIS-ICH study and resulted in the inability to perform

horizontal comparisons with external models in this work.

Third, not all variables were balanced across the centers,

which may bias the results. Although we obtained consistent

results based on these imbalanced variables, the influence

of the heterogeneity still should not be underestimated.

Fourth, there are defects in the deep analyses for SAP.

The subgroup analyses on pneumonia severity, radiological

features, or pathogenic agents were all absent. A simple

overall SAP analysis might be rather rough for complex

and heterogenetic pulmonary infections. Future studies

on our prospective cohort should continue to resolve the

aforementioned problems.

Conclusions

In this work, the authors derived SAP prediction models

with ML algorithms in supratentorial sICH populations from

multiple centers and performedmultiple validations for effective

and robust confirmations. The ensemble model was a novel

application in this work and showed robust performance

outcomes in different populations. Our attempt indicated that

ML application may benefit in the early identification of SAP.
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Background and purpose: Futile recanalization occurs in a significant

proportion of patients with basilar artery occlusion (BAO) after

endovascular thrombectomy (EVT). Therefore, our goal was to develop

a visualized nomogram model to early identify patients with BAO

who would be at high risk of futile recanalization, more importantly,

to aid neurologists in selecting the most appropriate candidates

for EVT.

Methods: Patients with BAO with EVT and the Thrombolysis in Cerebral

Infarction score of ≥2b were included in the National Advanced Stroke Center

of Nanjing First Hospital (China) from October 2016 to June 2021. The

exclusion criteria were lacking the 3-month Modified Rankin Scale (mRS),

age < 18 years, the premorbid mRS score >2, and unavailable baseline

CT imaging. Potential predictors were selected for the construction of the

nomogram model and the predictive and calibration capabilities of the model

were assessed.

Results: A total of 84 patients with BAO were finally enrolled in this

study, and patients with futile recanalization accounted for 50.0% (42). The

area under the curve (AUC) of the nomogram model was 0.866 (95%

CI, 0.786–0.946). The mean squared error, an indicator of the calibration

ability of our prediction model, was 0.025. A web-based nomogram

model for broader and easier access by clinicians is available online

at https://trend.shinyapps.io/DynNomapp/.

Conclusion: We constructed a visualized nomogram model to

accurately and online predict the risk of futile recanalization for patients

Frontiers inNeurology 01 frontiersin.org

104

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.968037
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.968037&domain=pdf&date_stamp=2022-08-26
mailto:675236684@qq.com
mailto:zoujianjun100@126.com
mailto:zhaozhihong51818@hotmail.com
https://doi.org/10.3389/fneur.2022.968037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.968037/full
https://trend.shinyapps.io/DynNomapp/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lin et al. 10.3389/fneur.2022.968037

with BAO, as well as assist in the selection of appropriate candidates

for EVT.
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basilar artery occlusion, futile recanalization, endovascular thrombectomy,

nomogrammodel, predictive model

Introduction

Basilar artery occlusion (BAO) strokes represent only 1%

of all the ischemic strokes, but are devastating for patients (1).

The American Heart Association/American Stroke Association

guidelines indicated that endovascular thrombectomy (EVT)

should be considered reasonable for carefully selected patients

with BAO stroke (2). The therapeutic goal of EVT is to achieve

endovascular recanalization to improve long-term functional

outcomes. However, a substantial proportion of patients

experience successful reperfusion, but fail to achieve favorable

outcomes, defined as “futile recanalization.” Recently, several

studies of literature have reported that futile recanalization

occurred in more than half of the BAO (3–5). Prior studies

in patients suffering from large vessel occlusion with anterior

circulation stroke have demonstrated that futile recanalization

depends on patient-specific factors, as well as procedural

considerations, such as age, the admission National Institutes

of Health Stroke Scale (NIHSS), and the number of stent

retriever passes (6–9). However, those factors remain elusive

in BAO.

Nomogram is a reliable and visual statistical instrument

that has the ability to develop a continuous scoring system

by incorporating different data. By creating an intuitive

graph, a nomogram derives the risk probability of a clinical

event and divides the patients into two different groups.

Although the ATTENTION trial demonstrated a significant

effect among patients with BAO with the baseline NIHSS

≥ 10 undergoing EVT, the efficacy of stroke thrombectomy

is largely determined by patient selection (10). Therefore,

a nomogram model to predict futile recanalization that

aimed to inform decision support in selecting patients

with BAO for EVT is important. However, there are

no reliable nomogram models developed with this target

in mind.

Here, we aimed to identify the predictors of futile

recanalization in patients with BAO and to develop

a visualized nomogram aimed to assist clinicians in

evaluating the risk of futile recanalization in this

population, and more importantly, providing individualized

information in selecting the most appropriate candidates

for EVT.

Materials and methods

Study population

We retrospectively collected all the patients who received

BAO in the National Advanced Stroke Center of Nanjing First

Hospital (China) from October 2016 to June 2021. Patients were

included if they underwent EVT and had the Thrombolysis in

Cerebral Infarction (TICI) score of≥ 2b. Patients were excluded

from the study in the case of lack of the 3-month Modified

Rankin Scale (mRS), age < 18 years, the premorbid mRS score

> 2, and unavailable baseline CT imaging.

The present research was approved by the Ethics Committee

of Nanjing First Hospital (document number: KY20130424-01)

and informed consent was obtained for each participant.

Patient clinical and radiological variables

Related clinical and radiological variables were routinely

recorded for individual patients. Demographic data included

age, sex, body mass index (BMI), and years of education. Risk

factors of vessels included hypertension, diabetes, dyslipidemia,

coronary artery disease, and previous stroke history. Laboratory

data included fasting blood glucose (FBG), systolic blood

pressure (SBP), diastolic blood pressure (DBP), platelet count,

and lipid testing indicators. Ischemic stroke etiology was

classified by the Trial of ORG 10172 in Acute Stroke Treatment

(TOAST) criteria (11).

The extent of early infarct was measured by the

posterior circulation Acute Stroke Prognosis Early CT

Score (pc-ASPECTS) with CT or MRI, which was assessed

by two independent neurologists. Measurements from

the diagnostic modality provided scores ranging from 0

to 10, with the higher scores representing smaller early

ischemic changes.

We recorded blood pressure data at 1, 3, 6, 12, and

24 h after EVT. Then, the SD and coefficient of variation

(CV) of systolic and diastolic blood pressures were

calculated using data from these five time points. In

addition, we have collected the following five points: onset

to emergency (OTE), onset to image (OTI), onset to puncture
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(OTP), onset to recanalization (OTR), and puncture to

recanalization (PTR).

Patient outcome

We divided eligible patients with the mTICI ≥ 2b into

two groups using the 90-day mRS score, which included

futile recanalization (the 90-day mRS of 3–6) and meaningful

recanalization groups (the 90-day mRS of 0–2). The 90-day mRS

was collected by telephone interview or outpatient 3 months 90

days after onset.

Statistical analysis

The Shapiro–Wilk test was carried out to test the normality

of continuous variables. Normally distributed continuous

variables were presented by their mean and SD, while non-

normally distributed continuous variables were presented by

their median and interquartile range (IQR). TheMann–Whitney

U-test and t-test were used for the comparison of normally

distributed continuous variables with non-normally distributed

continuous variables, respectively. Categorical data were tested

using the Pearson’s chi-squared test or Fisher’s exact test,

expressed as the percentages of events. Factors with more than

10% missing data were excluded and mean imputation was used

with low missing data. All the tests were two-sided and p-values

<0.05 were considered to be statistically significant.

Development and assessment of the
models

Variables with a value of p < 0.05 in the univariate analysis

were re-entered into the multivariate logistic regression model

in a backward stepwise method. Also, the odds ratio and 95%

CI were presented for potential predictors incorporated in the

multivariate logistic regression models. Finally, the selected

potential predictors were used to construct the nomogram

model. Each variable in the nomogram was given a weighted

score, which was then summed to create a total score and

finally converted to individual risk of futile recanalization by

the function between the total score and the probability of the

outcome. The “rms” package with R software was used to build

a conventional nomogram model.

The area under the receiver operating characteristic curves

(AUCs) were used to assess the model’s predictive ability

and to determine the thresholds that separate the meaningful

recanalization and futile recanalization groups. The Youden

index (sensitivity + specificity −1) was calculated for different

FIGURE 1

Flowchart of patient inclusion and exclusion criteria.
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TABLE 1A Demographics and clinical characteristics.

Total Meaningful recanalization Futile recanalization p-value

(n = 84) (n = 42) (n = 42)

Baseline characteristics

Age, years, mean (SD) 65.87 (12.04) 64.40 (13.10) 67.33 (10.84) 0.268

Male sex, n (%) 68 (81.0) 32 (76.2) 36 (85.7) 0.266

BMI, kg/m2 , mean (SD) 24.67 (3.49) 24.48 (3.74) 24.85 (3.26) 0.631

Education, years, n (%) 0.863

0–6 38 (45.2) 19 (45.2) 19 (45.2)

6–9 17 (20.2) 11 (26.2) 6 (14.3)

9–12 18 (21.4) 7 (16.7) 11 (26.2)

>12 11 (13.1) 5 (11.9) 6 (14.3)

Premorbid mRS (IQR) 0 (0–0) 0 (0–0) 0 (0–0) 0.081

NIHSS on admission, median (IQR) 16.00 (8.00–29.75) 11.50 (5.00–18.25) 25.00 (16.00–35.00) < 0.001

Baseline SBP, mmHg, mean (SD) 140.89 (24.42) 142.93 (23.87) 138.86 (25.08) 0.448

Baseline DBP, mmHg, mean (SD) 82.67 (15.35) 82.43 (15.69) 82.90 (15.18) 0.888

Platelet count, 109/L, mean (SD) 200.19 (55.089) 204.52 (58.94) 195.86 (51.30) 0.474

FBG, mmol/L, median (IQR) 6.62 (5.60–8.29) 6.63 (5.46–7.73) 6.62 (5.76–8.67) 0.408

TC, mmol/L, median (IQR) 4.73 (3.90–5.42) 4.74 (4.05–5.33) 4.71 (3.74–5.85) 0.865

TG, mmol/L, median (IQR) 1.17 (0.81–1.85) 1.19 (0.84–1.76) 1.05 (0.79–1.97) 0.668

HDL, mmol/L, median (IQR) 1.07 (0.86–1.25) 1.11 (0.83–1.29) 1.06 (0.86–1.20) 0.806

LDL, mmol/L, median (IQR) 3.05 (2.43–3.44) 3.09 (2.54–3.44) 2.85 (2.28–3.44) 0.393

Risk factors of vessels

Hypertension, n (%) 65 (77.4) 32 (76.2) 33 (78.6) 0.794

Diabetes mellitus, n (%) 27 (32.1) 14 (33.3) 13 (31.0) 0.815

Dyslipidemia, n (%) 35 (41.7) 17 (40.5) 18 (42.9) 0.825

Coronary artery disease, n (%) 11 (13.1) 6 (14.3) 5 (11.9) 0.746

Atrial fibrillation, n (%) 20 (23.8) 10 (23.8) 10 (23.8) 1.000

Previous stroke, n (%) 21 (25.0) 5 (11.9) 16 (38.1) 0.006

Smoking, n (%) 0.952

Never smoker 34 (40.5) 18 (42.9) 16 (38.1)

Former smoker 10 (11.9) 5 (11.9) 5 (11.9)

Current smoker 40 (47.6) 19 (45.2) 21 (50.0)

Drinking, n (%) 0.239

Never drinker 52 (61.9) 24 (57.1) 28 (66.7)

Former drinker 3 (3.6) 3 (7.1) 0 (0.0)

Current drinker 29 (34.5) 15 (35.7) 14 (33.3)

Radiological baseline characteristics

Pc-ASPECTS on admission, median (IQR) 8.5 (7.0–10.0) 9.0 (8.0–10.0) 7.5 (6.0–9.0) <0.001

Cause of stroke, n (%)

LAA 61 (72.6) 32 (76.2) 29 (69.0) 0.463

CE 16 (19.0) 5 (11.9) 11 (26.2) 0.095

SAO 1 (1.2) 1 (2.4) 0 (0.0) 1.000

SOC 3 (3.6) 2 (4.8) 1 (2.4) 1.000

SUC 3 (3.6) 2 (4.8) 1 (2.4) 1.000

Vascular occlusion site, n (%)

Vertebral artery 36 (42.9) 15 (35.7) 21 (50.0) 0.186

Basilar artery 48 (57.1) 27 (64.3) 21 (50.0) 0.186

Medication use history

Previous antiplatelet, n (%) 7 (8.3) 4 (9.5) 3 (7.1) 1.000

Previous anticoagulation, n (%) 5 (6.0) 3 (7.1) 2 (4.8) 1.000

Previous statin, n (%) 5 (6.0) 1 (2.4) 4 (9.5) 0.360

IQR, interquartile range; SD, standard deviation; BMI, body mass index; mRS, modified Ranking Scale; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP,

diastolic blood pressure; Pc-ASPECTS, posterior circulation Acute Stroke Prognosis Early CT Score; LAA, large artery atherosclerosis; CE, cardioembolism; SAO, small artery occlusion;

SOC, stroke of other determined cause; SUC, stroke of undetermined cause.
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vs. thresholds, and the score at the greatest Youden index

was used as the cutoff value. Based on the greatest Youden

index, sensitivity and specificity were calculated. We assessed

calibration through calibration plots and mean absolute error. A

calibration plot was generated with 1,000 bootstrap resampling

for depicting the correlation between the actual unfavorable

outcome and the predicted probability of an unfavorable

outcome. The “DynNom” package with R software was used

to build dynamic nomogram models for the prediction of an

unfavorable outcome in patients with BAO at 3 months on the

Internet (12). The above data analysis was implemented with

SPSS version 25.0 (IBMCorporation, Armonk, New York, USA)

and R statistical software version 4.1.0.

Results

Study population

Of the 107 patients with BAO who were admitted to our

institution and underwent EVT first registered, 23 patients were

not included in the study population. The specific process of

exclusion for 23 patients was shown in Figure 1 and a total of 84

patients were eventually included in the study population. Futile

recanalization was observed in 42 (50.0%) patients at 3 months.

The clinical and radiological characteristics of the whole

cohort (n= 84), the meaningful recanalization cohorts (n= 42),

and futile recanalization (n = 42) cohorts are given in Table 1A.

The median age of the study population included was 65.87

(SD = 12.04) years and 68 (81.0%) patients were men. The

median NIHSS score on admission, the pc-ASPECTS, and the

premorbid mRS were 16.00 (IQR, 8.00–29.75), 8.5 (IQR, 7.0–

10.0), and 0 (IQR, 0–0), respectively. A history of the previous

stroke was observed in 21 of the 84 patients (25.0%).

Patients’ treatment information and complication are

shown in Table 1B. In the whole cohort, thirty-two patients

(38.1%) received intravenous thrombolysis. Twenty-two of

the 84 patients (26.2%) achieved the TICI score of 2b

and the remaining 62 patients (73.8%) achieved the TICI

score of 3. The median number of passages in the study

population was 1 (IQR, 1–2) and symptomatic intracranial

TABLE 1B Treatment information and complications.

Total Meaningful recanalization Futile p-value

(n = 84) (n = 42) (n = 42)

Treatment information

Intravenous thrombolysis, n (%) 32 (38.1) 18 (42.9) 14 (33.3) 0.369

Number of passages, n (%) 1 (1–2) 1 (1–2) 1 (1–2) 0.444

Onset to emergency, min, median (IQR) 180.00 (105.00–325.00) 207.50 (83.75–336.25) 177.50 (112.50–316.25) 0.816

Onset to image, min, median (IQR) 271.00 (160.25–380.00) 287.50 (157.50–407.25) 228.00 (163.25–369.25) 0.447

Onset to groin, min, median (IQR) 328.00 (230.00–458.75) 335.00 (229.00–535.75) 281.50 (230.00–413.50) 0.310

Onset to recanalization, min, median (IQR) 402.50 (309.75–542.75) 424.00 (330.25–613.25) 381.00 (297.50–520.25) 0.398

Groin to recanalization, min, median (IQR) 78.00 (57.75–105.75) 76.00 (60.00–102.75) 80.00 (55.00–115.00) 0.458

mTICI score, n (%) 0.620

2b 22 (26.2) 12 (28.6) 10 (23.8)

3 62 (73.8) 30 (71.4) 32 (76.2)

Post-treatment blood pressure variability

SBP

SD, median (IQR) 13.12 (8.59–18.54) 11.62 (7.60–19.01) 13.89 (9.92–17.52) 0.269

CV, median (IQR) 9.87 (6.76–14.03) 9.00 (6.14–15.44) 10.70 (7.55–12.66) 0.262

DBP

SD, median (IQR) 7.55 (5.19–11.60) 6.86 (5.01–10.07) 8.52 (5.50–12.98) 0.222

CV, median (IQR) 10.35 (6.49–16.13) 9.57 (6.16–12.46) 11.83 (6.79–16.84) 0.222

Complications

sICH, n (%) 6 (7.1) 0 (0) 6 (14.3) 0.026

Death in hospital 9 (10.7) 0 (0) 9 (21.4) 0.002

Respiratory infections, n (%) 59 (70.2) 28 (47.5) 31 (73.8) 0.474

Secondary epilepsy, n (%) 1 (1.2) 0 (0) 1 (2.4) 1.000

Gastrointestinal bleeding, n (%) 3 (3.6) 0 (0) 3 (7.1) 0.241

IQR, interquartile range; mTICI, modified Thrombolysis in Cerebral Infarction; SBP, systolic blood pressure; DBP, diastolic blood pressure; SD, standard deviation; CV, coefficient of

variation; sICH, symptomatic intracranial hemorrhage.
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hemorrhage (sICH) was observed in 6 (7.1%) patients from the

entire cohort.

Univariate and multivariate analyses

In the univariate logistic analysis, the NIHSS on admission

(P < 0.001), previous stroke (P = 0.006), and the pc-ASPECTS

(P < 0.001) were found to be significantly associated with futile

recanalization (Tables 1A,B).

The multivariate logistic regression analysis identified

previous stroke (OR, 4.421; 95% CI, 1.112–17.587), the NIHSS

on admission (OR, 1.111; 95% CI, 1.051–1.174), and the pc-

ASPECTS (OR, 0.519; 95% CI, 0.352–0.767) as prognostic

factors of an unfavorable outcome at 3 months (Table 2). The

logistic regression model resulted: Log [p(x)/1–p(x)]= 3.1062+

(1.4865 × Previous stroke) + (0.1052 × NIHSS on admission)

+ (−0.6549 × pc-ASPECTS); where p(x) was the probability of

futile recanalization. Patients with previous stroke, the higher

NIHSS on admission, and the lower pc-ASPECTS were more

likely to experience futile recanalization.

Development and assessment of
nomogram model

A prognostic nomogram was established for futile

recanalization before EVT by integrating independent

significant risk factors based on the multivariate logistic

regression, which is shown in Figure 2. In addition, we

established a dynamic web-based nomogram for broader

and easier access by clinicians and researchers, which is

available online at https://trend.shinyapps.io/DynNomapp/.

Clinicians and researchers can input the individual variables

of patients on the web page to obtain the risk of futile

recanalization effortlessly.

As shown in Figure 3A, the predictive performance was

observed in the prognostic nomogram (AUC, 0.866; 95% CI,

0.786–0.946), which demonstrated the superior discriminatory

ability of our model. The maximum Youden index was 0.507

with 81% sensitivity and 81% specificity. In addition, the points

of the calibration plot for the probability of futile recanalization

for patients with BAO are close to the 45◦ line, suggesting

a positive correlation between predictions by nomogram and

TABLE 2 The multivariate logistic regression analysis.

Variable OR 95% CI P

Previous stroke 4.42 1.11–17.59 0.035

NIHSS on admission 1.11 1.05–1.17 <0.001

Pc_ASPECTS 0.52 0.35–0.77 0.001

actual observations (Figure 3B). The mean squared error of the

prognostic model was 0.025, also showing a strong level of

calibration performance of the nomogram model we built.

Discussion

In the present study, we developed a visualized nomogram

for the evaluation of futile recanalization in patients with BAO.

We found that previous stroke, the NIHSS on admission, and the

pc-ASPECTS are potential predictors of futile recanalization via

EVT in patients with BAO. Therefore, our nomogram model to

quantify the risk of futile recanalization could aid in identifying

risk factors, as well as a prediction for futile recanalization

after EVT.

A major strength of our study is that our prediction

model demonstrated favorable predictive (AUC, 0.866; 95%

CI, 0.786–0.946) and calibration capabilities (mean squared

error = 0.025). Besides, in a previous study of a scoring

scale for the prediction of futile recanalization of the posterior

circulation (13), its predictors included the pons-midbrain index

and bilateral thalamic infarction on diffusion-weighted imaging.

These are difficult variables to obtain and are not widely used

in clinical practice, especially in primary care, which limits the

clinical dissemination of this scoring scale. In contrast, the three

variables of our model are easily accessible and the visualized

model is readily available for use. In addition, we provided

an example to facilitate clinicians and researchers to better

understand the utility of our web-based nomogram. If a patient

had a history of stroke, the initial NIHSS score of 18, and the

pc-ASPECTS of 8, as shown in Figure 4, the web page would

calculate a 3-month nullification risk recanalization of 0.777

(95% CI, 0.505–0.922), which considered as a high-risk patient

because the predicted probability is greater than the threshold

of our model (0.507). When the “Graphical Summary” button

was clicked, the site would display a graph of the predicted

probabilities and their 95% CIs, and as we click on the “Model

Summary” button, the site would provide information on the

specific parameters of our model.

Although the baseline variables we included in the study at

the outset were those of demographics, clinical characteristics,

and treatment information, it so happened that all the variables

that were eventually included in the model were preoperative.

Thus, our model can be used preoperatively as a clinical

decision support tool to assist physicians in deciding whether

to perform EVT. Specifically, a patient may have undergone a

successful thrombectomy with no improvement in prognosis,

which results in a waste of medical resources and money. In

addition, ineffective treatment will increase pain and discomfort

at the end of patients’ life, reducing the quality of patient survival

and delaying palliative care. Therefore, futile recanalization does

not confer actual benefit to the patient. In patients predicted

by our model to be at high risk of futile recanalization,
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FIGURE 2

The prognostic nomogram of futile recanalization. Pc-ASPECTS, posterior circulation Acute Stroke Prognosis Early CT Score.

FIGURE 3

The receiver operating characteristic curve (ROC) of the nomogram (A) and the calibration plot of the nomogram (B).

physicians may need to consider the need for EVT in the

context of the individual patient’s situation. For primary care

hospitals, in particular, consideration should be given to whether

patients should be advised to be transferred to undergo

EVT. Furthermore, in addition to constructing a traditional

nomogram model, the dynamic nomogram was also developed

on a web page to facilitate accessibility for clinicians. Certainly,

we need to emphasize that our nomogram model is only part of
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FIGURE 4

The example diagram of the visualized nomogram model.

the decision system for EVT in patients with BAO. Our model

can only assist the physician, who has to decide on the specific

treatment modality, taking into account the individual patient’s

situation and his own experience.

In the present study, the rate of “futile recanalization”

after EVT was up to 50% (42 out of 84 patients), which

was similar to previous studies of successful recanalization

in patients with BAO (13, 14). Several predictors of futile

recanalization in patients with BAO undergoing EVT have been

established in our study. The multivariate logistic regression

analyses demonstrated that previous stroke was associated with

a higher likelihood of futile recanalization, supposedly due to

their greater age (15) and preexisting disabilities (16). Therefore,

the overall potential for neurological rehabilitation was low. The

present study indicates that a previous stroke was a predictor of

poor clinical outcomes despite successful reperfusion, namely,

was associated with the effectiveness of EVT. Although systemic

thrombolysis was not effective in patients with the previous

medium to large stroke, data on the effectiveness of EVT in

patients with BAO with a previous stroke are lacking (17).

EVT is a safe and effective procedure for patients with BAO

with the previous stroke that remains to be better studied in

future studies.

Generally, age and the NIHSS were recognized to be a

predictor of prognosis in BAO stroke (3, 18). As shown

in Table 2, the higher NIHSS on admission was significantly

associated with a higher rate of futile recanalization in the

present study. Such results are easy to understand because the

NIHSS is a standardized stroke scale to quantify the degree of

neurological deficit. The potential for neurological rehabilitation

of the elderly was comparably lower compared with younger

persons because of the preexisting cognitive and/or physical

disabilities, and a higher rate of serious complications during

hospitalization (19–21). It is of surprise that age was not

independently associated with futile recanalization. This might

be due to the differences in patient characteristics and a

selection bias during treatment decisions. Although our findings

challenge the data of the Endovascular Stroke Treatment

(ENDOSTROKE) registry (3), they are in line with the results

of Son et al. (14). It should be pointed out that age is a factor that

physicians need to consider carefully when making decisions.

Our analysis also shows that the pc-ASPECTS was

an independent predictor of futile recanalization. The pc-

ASPECTS, first proposed by Puetz et al. (22), has been validated

for grading irreversible ischemic in the posterior circulation

and is often used to select patients with BAO who would

most likely benefit from EVT, thus helping to improve clinical

prognosis in patients with BAO. Several studies have reported

that the pc-ASPECT score ≥ 8 on the initial image increases

the benefit of EVT (23–25). Nevertheless, there are different

views on the treatment threshold. A recent study conducted

by Sang et al. (26) provided evidence for the efficiency of EVT

with the pc-ASPECTS ≥ 5. The present study bypasses the use

of the statistical expedient of the artificial cutoff at the non-

categorical by introducing a linear equation to calculate the

coefficient of the ASPECTS score and drafting a concise chart

to aid decision-making for EVT.

There are several limitations to our study. First, although

our study collected a certain number of variables at different

points in time, some possible risk factors are missing associated

with adverse outcomes in patients with BAO, such as posterior

circulation collateral status and the pons-midbrain index.

Frontiers inNeurology 08 frontiersin.org

111

https://doi.org/10.3389/fneur.2022.968037
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lin et al. 10.3389/fneur.2022.968037

However, these variables are not widely used in the clinical

setting and are not readily available. Second, patients with

BAO were all collected from the same hospital; therefore, our

model suffered from a lack of external validation and the

generalizability performance of the model still needs to be tested

on patients from other institutions. In addition, as with other

retrospective studies, our study has the drawback of selection

bias such as patient exclusion due to missing data. So, we

provided as much detail as possible about the patient’s baseline

information to facilitate further use or comparison of our model

by other institutions or researchers. Third, the dichotomy of the

mRS scores ignores the differences between the mRS scores 3, 4,

5, and 6; thus, this approach may not reflect subtle differences in

functional outcomes of patients.

Conclusion

This study demonstrated that the construction of

our dynamic and visualized nomogram model could be

applied preoperatively and online to accurately predict

the risk of futile recanalization in patients with BAO

and, thus, assist in the selection of clinical treatment

modalities. In the future, subsequent multicenter studies

will be more beneficial to the utility of our model in the

clinical setting.
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Background: Hemorrhagic transformation (HT) is the most serious

complication of ischemic stroke patients after intravenous thrombolysis

and leads to a poor clinical prognosis. This study aimed to determine the

independent predictors associated with HT in stroke patients with intravenous

thrombolysis and to establish and validate a nomogram that combines with

predictors to predict the probability of HT after intravenous thrombolysis in

patients with ischemic stroke.

Method: This study enrolled ischemic stroke patients with intravenous

thrombolysis from December 2016 to June 2022. All the patients were

divided into training and validation cohorts. The nomogram was composed

of the significant predictors for HT in the training cohort as obtained by the

multivariate logistic regression analysis. The area under the receiver operating

characteristic curve was used to assess the discriminative performance of the

nomogram. The calibration performance of the nomogram was assessed by

the Hosmer–Lemeshow goodness-of-fit test and calibration plots. Decision

curve analysis was used to test the clinical validity of the nomogram.

Results: A total of 394 patients with intravenous thrombolysis were enrolled in

the study. In the training cohort (n= 257), 45 patients had HT after intravenous

thrombolysis. Multivariate logistic regression analysis demonstrated early

infarct signs (OR, 7.954; 95% CI, 3.553-17.803; P < 0.001), NIHSS scores

(OR, 1.110; 95% CI, 1.054-1.168; P < 0.001), uric acid (OR, 0.993; 95%

CI, 0.989–0.997; P = 0.001), and albumin-to-globulin ratio (OR, 0.109;

95% CI, 0.023–0.508; P = 0.005) were independent predictors for HT and

constructed the nomogram. In the training and validation cohorts, the AUC

of the nomogram was 0.859 and 0.839, respectively. The Hosmer–Lemeshow

goodness-of-fit test and calibration plot showed good concordance between

predicted and observed probability in the training and validation cohorts.

Decision curve analysis indicated that the nomogram was significantly useful

for predicting HT in the training and further confirmed in the validation cohort.
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Conclusion: This study proposes a novel and practical nomogram based on

early infarct signs, NIHSS scores, uric acid, and albumin-to-globulin ratio that

can well predict the probability of HT after intravenous thrombolysis in patients

with ischemic stroke.

KEYWORDS

ischemic stroke, intravenous thrombolysis, nomogram, hemorrhagic transformation,

predictors

Introduction

Ischemic stroke is the main cause of long-term disability and

mortality worldwide (1, 2). Currently, intravenous thrombolysis

with alteplase is the preferred method for patients with ischemic

stroke within 4.5 h after onset (3). Hemorrhagic transformation

(HT), especially symptomatic intracranial hemorrhage (SICH),

is the most serious complication of intravenous thrombolysis

that could lead to an increased probability of early neurological

deterioration, severe disability, and death (4, 5). Therefore,

assessing the risk of HT after intravenous thrombolysis

in patients with ischemic stroke may help to improve

clinical outcomes.

In recent years, several predictive scores have been reported

to predict the risk of HT after intravenous thrombolysis,

including the HAT score based on NIHSS score, glucose level,

extent of hypodensity, and history of diabetes (6), SPAN-100

score based on age and NIHSS score (7), SENDA score based on

age, early infarct signs, hyperdense cerebral artery sign, NIHSS

score, and glucose level (8), and STARTING-SICH nomogram

based on systolic blood pressure, hyperdense artery sign, current

infarction sign, glucose, onset-to-treatment time, age, NIHSS

scores, oral anticoagulant or aspirin or aspirin plus clopidogrel

(9). Most of these studies were mainly focused on SICH after

intravenous thrombolysis in Western patients with ischemic

stroke. Yet, both symptomatic and asymptomatic intracerebral

hemorrhage could lead to poor clinical outcomes (10, 11). In

addition, previous studies reported that Asian patients with

ischemic stroke have a higher risk of HT after intravenous

thrombolysis compared with Western patients (12, 13). Several

prognostic scores or nomograms for Asian stroke patients have

been proposed to predict the risk of HT after intravenous

thrombolysis in the past few years (14–16), but the effect of

baseline neuroimaging or laboratory variables on HT after

intravenous thrombolysis in these studies has been ignored.

And nomograms may have better predictive performance than

prognostic scores (9).

The nomogram is a graphical statistical tool that can

assess and calculate the probability of a special clinical

outcome for patients by using a continuous score, which has

been used as a predictive method in stroke in recent years

(9, 17). Therefore, the current study aimed to determine the

independent predictors associated with HT in stroke patients

with intravenous thrombolysis and to establish and validate

a nomogram that combines neuroimaging and laboratory

variables to predict the probability of HT after intravenous

thrombolysis in patients with ischemic stroke.

Materials and methods

Study design and data source

This retrospective cohort study was conducted in

accordance with the Declaration of Helsinki and approved

by the Ethics Committee of the Second Xiangya Hospital

of Central South University. The review board waived

written informed consent due to the retrospective nature of

the study.

In this study, we continuously enrolled patients diagnosed

with ischemic stroke from December 2016 to June 2022 at

the Second Xiangya Hospital of Central South University.

Inclusion patients satisfied the criteria as follows: (1) age ≥

18 years; (2) ischemic stroke was diagnosed with persistent

neurological impairment and without any type of intracranial

hemorrhage on non-contrast computed tomography (NCCT);

(3) onset-to-treatment time <4.5 h; (4) patients received

rt-PA intravenous thrombolysis; (5) diagnosis of with or

without hemorrhagic transformation (HT) confirmed by

non-contrast computed tomography (NCCT) or magnetic

resonance imaging (MRI) within 22–36 h after rt-PA treatment.

Patients who met the following criteria were excluded: (1)

diagnosis of stroke mimics; (2) treatment with intra-arterial

thrombolysis or endovascular thrombectomy after intravenous

thrombolysis; (3) lack of complete data on all variables. All

enrolled patients were divided into the training cohort and

validation cohort based on the patients’ years of diagnosis.

The training cohort enrolled patients from December 2016

to December 2020. The validation cohort enrolled patients

from January 2021 to June 2022. To avoid exposing patients’

privacy, their identities were removed from the whole dataset

before analysis.
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Clinical data collection

Baseline characteristics include demographic data

(including age and gender), clinical data (including the

history of hypertension, atrial fibrillation, diabetes mellitus,

hyperlipidemia, previous stroke, smoking, drinking, and current

use of anticoagulants or antiplatelet agents), early infarct signs

on computed tomography (CT), onset-to-treatment time

(OTT), National Institutes of Health Stroke Scale (NIHSS)

scores, systolic/diastolic blood pressure, and laboratory data

[blood glucose level, white blood cell (WBC) counts, neutrophil-

to-lymphocyte ratio (NLR), platelet, prothrombin time (PT),

activated partial thromboplastin time (APTT), fibrinogen, uric

acid, albumin-to-globulin ratio (AGR), triglycerides, high-

density lipoprotein (HDL), and low-density lipoprotein (LDL)]

were collected for patients at admission. The hemorrhagic

transformation (HT) was defined as any type of intracranial

hemorrhage that was detected on follow-up CT or magnetic

resonance imaging (MRI) within 22–36 h after intravenous

thrombolysis, according to the criteria of the European

Cooperative Acute Stroke Study II (18). All images were judged

by two experienced neurologists blinded to the clinical data and

final diagnosis.

Statistical analysis

Continuous variables were described as mean ± SD or

median (interquartile range, IQR), and categorical variables

were expressed as frequency (percentage). The Student t-test or

non-parametric Mann-Whitney U test was used for continuous

variables, and the Chi-square test or Fisher’s exact test was

used for categorical variables. Variables with a P-value of <0.05

in the univariate analysis were included in the multivariate

logistic regression analysis. Collinearity between each variable

was assessed by the tolerance (<0.2 being considered significant)

and variation inflation factors (>5 being considered significant).

Finally, the odds ratio (OR) and 95% confidence interval (CI)

of each variable were calculated by the multivariate logistic

regression analysis.

A novel nomogram was used to establish the prediction

model, which is based on the significant predictors of HT

by the multivariate logistic regression analysis with the

forward-section method. The area under the receiver operating

characteristic curve (AUC–ROC) was used to assess the

discriminative performance of the nomogram in the training

cohort and validation cohort. The calibration performance of

the nomogram in the training cohort and validation cohort

was tested by using the Hosmer–Lemeshow goodness-of-fit

test and a calibration plot with bootstraps of 1,000 resample,

which described the concordance between the predicted and

observed probabilities.

Decision curve analysis (DCA), a method for assessing the

utility of prediction models, was further used to estimate the

clinical validity of the nomogram in the training and validation

cohorts. A detailed description of DCA was previously reported

(19). Statistical analysis was performed using the statistical

software IBM SPSS (version 26.0) and STATA (version 15.1). The

significance level was set at a two-tailed P < 0.05.

Results

The flow chart of patient selection is shown in Figure 1.

A total of 469 patients with ischemic stroke received rt-PA

intravenous thrombolysis treatment. Patients treated with intra-

arterial thrombolysis (n = 16) or endovascular thrombectomy

(n = 32) and lack of complete data (n = 27) were excluded.

Finally, 394 patients were included in the study and divided into

the training cohort (n = 257) and validation cohort (n = 137)

for further analysis. The median age of all patients was 65 (55–

73) and 143 (36.3%) patients were female. Detailed information

about the baseline characteristics of all patients is exhibited in

Table 1. No significant differences in variables were observed

between the training cohort and the validation cohort.

As shown in Table 2, 45 (17.5%) were post-thrombolysis

HT in the training cohort. The univariate analysis revealed

that atrial fibrillation, early infarct signs, current use of

antiplatelet agents, NIHSS scores, NLR, PT, fibrinogen, uric

acid, and AGR were related to HT (P < 0.05). No significant

statistical collinearity was observed among the nine variables

(Supplementary Table 1). After multivariate logistic regression

analysis, the early infarct signs (OR, 7.954; 95%CI, 3.553–17.803;

P < 0.001), NIHSS scores (OR, 1.110; 95% CI, 1.054–1.168; P <

0.001), uric acid (OR, 0.993; 95% CI, 0.989–0.997; P = 0.001),

and AGR (OR, 0.109; 95% CI, 0.023–0.508; P = 0.005) were

independent predictors for HT after intravenous thrombolysis

in patients with ischemic stroke. In the validation cohort, we

found significant differences in the early infarct signs, NIHSS

scores, uric acid, and AGR between the HT and non-HT groups

(Supplementary Table 2).

All independent predictors for HT after intravenous

thrombolysis were used to construct the novel nomogram

(Figure 2). The nomogram consisted of the preliminary value

of predictors, preliminary score range (0–11), total score,

and probability of HT. Drawing a line downward from the

preliminary value to the corresponding preliminary score, and

then summed all the preliminary scores to obtain a total score.

Finally, the percentage corresponding to the total score was the

individual probability of HT after intravenous thrombolysis.

The AUC-ROC was used to evaluate the discriminative

ability of the nomogram, which demonstrated a moderate

predictive power in the training cohort (AUC, 0.859; 95% CI,

0.798–0.920) (Figure 3A) and validation cohort (AUC, 0.839;

95% CI, 0.727–0.951) (Figure 3B). The Hosmer–Lemeshow
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FIGURE 1

Flow chart of patient inclusion.

goodness-of-fit test showed good concordance between

predicted and observed probability for the training cohort (χ2

= 6.213, df = 8, P = 0.623) and the validation cohort (χ2 =

9.668, df = 8, P = 0.289). The calibration plot also revealed

significant predictive accuracy of the nomogram to predict HT

after intravenous thrombolysis in the training (Figure 4A) and

validation cohorts (Figure 4B).

The DCA demonstrated that the novel nomogram had a

greater net benefit to predict HT than “treat all” or “treat none”

strategies when the threshold probabilities ranged between 5.0%

to 80.0% in the training cohort (Figure 5A) and between 3.0%

and 60.0% in the validation cohort (Figure 5B), which indicated

the good clinical validity of the nomogram in the training and

validation cohorts.

Discussion

In this retrospective single-center study, we presented

and validated a practical nomogram based on four predictors

including early infarct signs, NIHSS scores, uric acid, and

albumin-to-globulin ratio (AGR), which is considered

a reliable visual scoring system for predicting HT after

intravenous thrombolysis in patients with ischemic stroke. All

of these predictors are easily and quickly obtainable before

or during treatment. The overall predictive performance of

the nomogram was well in the training cohort (AUC-ROC,

0.859) and validation cohort (AUC-ROC, 0.839), which can

help neurologists identify ischemic stroke patients who have a

higher risk of developing HT after intravenous thrombolysis.

Our nomogram has an excellent calibration capability due to

the predicted risk for HT being close to the actual risk both

in the training cohort, and further confirmed in the validation

cohort. Finally, the decision curve analysis (DCA), a special

tool to evaluate the clinical application value of a nomogram,

suggested that our nomogram was very useful for predicting

post-thrombolysis HT in clinical practice.

To identify the probability of post-thrombolysis HT in

patients with ischemic stroke, several prediction models have

been established in recent years (6–9). Consistent with these

previous studies, it was found that NIHSS scores and early

infarct signs were conventional predictors for HT in patients

who were undergoing rt-PA intravenous thrombolysis. Uric

acid, one of the most important endogenous antioxidants, is the

final product of purine metabolism that plays a neuroprotective

role by scavenging free radicals, inhibiting neuroinflammatory

cascades, and reducing the blood-brain barrier permeability

(20–22). Previous studies indicated that a lower uric acid

level was independently associated with a high risk of HT

after intravenous thrombolysis (23, 24). Our study also found

that lower uric acid could increase the risk of HT after

intravenous thrombolysis.
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TABLE 1 Comparison of baseline characteristics between the training cohort and validation cohort.

Variable All patients (n = 394) Training cohort (n = 257) Validation cohort (n = 137) P-value

Demographic data

Age (years), median (IQR) 65 (55–73) 66 (55–74) 64 (55–73) 0.281

Female, n (%) 143 (36.3) 93 (36.2) 50 (36.5) 0.951

Vascular risk factors, n (%)

Hypertension 265 (67.3) 176 (68.5) 89 (65.0) 0.478

Atrial fibrillation 120 (30.5) 74 (28.8) 46 (33.6) 0.326

Diabetes mellitus 95 (24.1) 62 (24.1) 33 (24.1) 0.993

Hyperlipidemia 32 (8.1) 22 (8.6) 10 (7.3) 0.663

Previous stroke 56 (14.2) 38 (14.8) 18 (13.1) 0.656

History of smoking 157 (39.8) 102 (39.7) 55 (40.1) 0.930

History of drinking 69 (17.5) 39 (15.2) 30 (21.9) 0.095

Antiplatelet agents 28 (7.1) 19 (7.4) 9 (6.6) 0.762

Anticoagulants 63 (16.0) 40 (15.6) 23 (16.8) 0.752

Baseline data

OTT (min), median (IQR) 179 (134–227) 180 (140–234) 171 (130–215) 0.074

Early infarct signs, n (%) 103 (26.1) 67 (26.1) 36 (26.3) 0.964

NIHSS scores, median (IQR) 6 (3–13) 6 (3–13) 5.5 (3–13) 0.292

SBP (mmHg), mean± SD 154± 25 156± 25 152± 25 0.156

DBP (mmHg), mean± SD 88± 15 88± 15 87± 16 0.396

Laboratory data [median (IQR)]

Blood glucose level (mg/dL) 129.6 (111.6–158.4) 131.4 (111.6–162.0) 127.8 (109.8–151.2) 0.234

WBC (*109/L) 7.76 (6.43–9.78) 7.83 (6.43–9.89) 7.63 (6.36–9.26) 0.411

NLR 3.48 (2.16–5.80) 3.64 (2.19–6.40) 3.20 (2.13–4.93) 0.199

Platelet (*109/L) 210 (174–249) 210 (174–254) 210 (174.5–246.5) 0.924

PT (s) 12.9 (12.3–13.5) 12.9 (12.3–13.4) 12.9 (12.3–13.5) 0.984

APTT (s) 34.0 (31.7–36.5) 33.8 (31.6–36.1) 34.5 (31.9–36.9) 0.218

Fibrinogen (g/L) 3.31 (2.81–3.78) 3.34 (2.84–3.79) 3.21 (2.78–3.73) 0.247

Uric acid (µmol/L) 331.0 (275.6–388.6) 328.8 (275.9–383.5) 336.4 (274.2–400.5) 0.317

AGR, median (IQR) 1.50 (1.34–1.65) 1.49 (1.32–1.63) 1.52 (1.36–1.74) 0.181

Triglycerides (mmol/l) 1.51 (1.06–1.92) 1.52 (1.03–1.91) 1.49 (1.06–1.94) 0.750

HDL (mmol/l) 1.14 (0.96–1.32) 1.13 (0.96–1.32) 1.14 (0.96–1.31) 0.814

LDL (mmol/l) 2.85 (2.25–3.33) 2.89 (2.25–3.35) 2.83 (2.25–3.31) 0.463

OTT, onset-to-treatment time; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell; NLR, neutrophil-

to-lymphocyte ratio; PT, prothrombin time; APTT, activated partial thromboplastin time; AGR, albumin-to-globulin ratio; HDL, high-density lipoprotein; LDL, low-density lipoprotein;

IQR, interquartile range; SD, standard deviation. *Stands for× in the mathematical notation.

Notably, our study ascertained that AGR might be a

protective factor for post-thrombolysis HT in patients with

ischemic stroke. Few previous studies have reported this

conclusion. Serum albumin is a multifunctional protein that

is synthesized in the liver. Albumin has been shown to

have antioxidant, anti-inflammation, and anti-apoptosis in

endothelial cells effects (25). Previous studies have shown that

the decrease in albumin level or increase in globulin level

might be associated with post-thrombolysis HT in ischemic

stroke patients (26, 27). Our study also showed that serum

AGR (P < 0.001) was related to post-thrombolysis HT in

univariate analysis. After multivariate analysis, the AGR was

an independent predictor for post-thrombolysis HT, which had

not been reported in previous studies. We speculated that the

possible mechanism of post-thrombolysis HT is the result of

the combined influence of albumin and globulin. Lower AGR

indicates the decrease in serum albumin or the increase in

globulin, which is significantly associated with the increased

occurrence of HT after intravenous thrombolysis.

Yet we failed to find the relationship between atrial

fibrillation and post-thrombolysis HT in contrast to previous

studies (14, 15, 28). In the present study, the difference in

atrial fibrillation was statistically significant in univariate

analysis. After multivariable adjustment, no significant
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TABLE 2 Baseline characteristics and logistic regression analysis between the HT group and non-HT group in the training cohort.

Variable HT (n = 45) Non-HT(n = 212) Univariate analysis Multivariate analysis

OR (95%CI) P-value OR (95%CI) P-value

Demographic data

Age 69 (59–76) 66(55–73) 1.022 (0.995–1.049) 0.109

Female 21 (46.7) 72 (34.0) 0.588 (0.307–1.127) 0.110

Vascular risk factors

Hypertension 32 (71.1) 144 (67.9) 1.162 (0.574–2.355) 0.676

Atrial fibrillation 22 (48.9) 52 (24.5) 2.943 (1.517–5.711) 0.001 NA 0.073

Diabetes mellitus 11 (24.4) 51 (24.1) 1.021 (0.483–2.161) 0.956

Hyperlipidemia 3 (6.7) 19 (9.0) 0.726 (0.205–2.564) 0.618

Previous stroke 7 (15.6) 31 (14.6) 1.076 (0.441–2.623) 0.873

History of smoking 16 (35.6) 86 (40.6) 0.808 (0.414–1.578) 0.533

History of drinking 7 (15.6) 32 (15.1) 1.036 (0.426–2.522) 0.938

Antiplatelet agents 7 (15.6) 12 (5.7) 3.070 (1.136–8.301) 0.027 NA 0.294

Anticoagulants 9 (20.0) 28 (15.1) 1.406 (0.618–3.198) 0.416

Baseline data

OTT 182 (130–242) 180(140–230) 1.002 (0.997–1.006) 0.523

Early infarct signs 28 (62.2) 39 (18.4) 7.306 (3.644–14.648) <0.001 7.954 (3.553–17.803) <0.001

NIHSS scores 14 (11–18) 6(3–10) 1.122 (1.070–1.176) <0.001 1.110 (1.054–1.168) <0.001

SBP 159± 22 155± 26 1.007 (0.994–1.019) 0.309

DBP 89± 14 88± 15 1.004 (0.982–1.025) 0.741

Laboratory data

Blood glucose level 142.2 (120.6–181.8) 129.6(111.6–159.7) 1.003 (0.999–1.008) 0.162

WBC 8.47 (6.50–10.50) 7.72(6.43–9.75) 1.042 (0.957–1.135) 0.342

NLR 5.44 (2.99–9.46) 3.36(2.16–5.53) 1.057 (1.000–1.117) 0.048 NA 0.886

Platelet 197 (164–235) 212.5(177.0–255.7) 0.997 (0.991–1.002) 0.199

PT 13.5 (12.7–14.5) 12.8(12.3–13.2) 1.215 (1.002–1.473) 0.048 NA 0.408

APTT 33.4 (30.2–37.9) 33.8(31.7–36.0) 1.039 (0.991–1.090) 0.116

Fibrinogen 3.49 (2.90–4.32) 3.32(2.81–3.75) 1.577 (1.125–2.208) 0.008 NA 0.587

Uric acid 379.0 (202.8–371.1) 333.8(289.2–383.9) 0.994 (0.990–0.998) 0.002 0.993 (0.989–0.997) 0.001

AGR 1.37 (1.14–1.61) 1.51(1.36–1.64) 0.088 (0.022–0.344) <0.001 0.109 (0.023–0.508) 0.005

Triglycerides 1.21 (0.85–1.62) 1.55(1.07–1.97) 0.731 (0.498–1.073) 0.109

HDL 1.09 (0.95–1.31) 1.15(0.96–1.32) 0.369 (0.108–1.256) 0.111

LDL 2.67 (1.85–3.21) 2.89(2.31–3.38) 0.737 (0.510–1.065) 0.104

HT, hemorrhagic transformation; OTT, onset-to-treatment time; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white

blood cell; NLR, neutrophil-to-lymphocyte ratio; PT, prothrombin time; APTT, activated partial thromboplastin time; AGR, albumin-to-globulin ratio; HDL, high-density lipoprotein;

LDL, low-density lipoprotein; IQR, interquartile range; SD, standard deviation; NA, not available. The bold values means P < 0.05.

statistical difference was observed between HT and atrial

fibrillation. We also failed to find the relationship between

blood glucose and post-thrombolysis HT in contrast to

previous studies (6, 8, 14, 15). In addition, previous clinical

studies reported that higher fibrinogen level was significantly

related to the occurrence of post-thrombolysis HT in acute

ischemic stroke (29, 30). In our study, fibrinogen was a risk

factor for HT after intravenous thrombolysis. However, the

relationship between fibrinogen and HT did not exist after

adjusting for confounding factors. Therefore, atrial fibrillation,

blood glucose, and fibrinogen were not included in our

final nomogram.

There are several limitations to our study that should be

considered. First, it was a single-center retrospective cohort

study with a small sample size. We only include variables

showing a P-value <0.05 in the univariate analysis as candidates

for the multivariate regression analysis to improve the statistical

power of our results. Second, this nomogram was not validated

in external cohorts. Therefore, the multicenter prospective

study should be established to validate the applicability of
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FIGURE 2

Nomogram for predicting HT after intravenous thrombolysis. The nomogram consists of four predictors, each of which is given a preliminary

score (0 – 11). The total scores were obtained by summing all the preliminary scores of each of the four predictors. The estimated probability of

hemorrhagic transformation was obtained from the nomogram according to the total score. For example, a patient with an early infarct sign,

baseline NIHSS scores of 10, a uric acid level of 295 µmol/L, and an albumin-to-globulin ratio of 1.05 would have a total of 15.7 scores. The

probability of HT after intravenous thrombolysis was approximately 70% for the patient. NIHSS, National Institute of Health Stroke Scale; HT,

hemorrhagic transformation; CT, computed tomography.

FIGURE 3

The ROC curve of the nomogram for predicting HT in the training cohort (A) and the validation cohort (B). The AUC value is 0.859 in the training

cohort and 0.839 in the validation cohort. HT, hemorrhagic transformation; ROC, receiver operating characteristic; AUC, the area under curve.
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FIGURE 4

Calibration plot for predicting HT after intravenous thrombolysis in the training cohort (A) and the validation cohort (B).

FIGURE 5

Decision curve analysis (DCA) of the nomogram predicting HT after intravenous thrombolysis in the training cohort (A) and the validation cohort

(B). The x-axis demonstrates the threshold probability. The y-axis indicates the net benefit. The black line displays all patients are negative and

have no treatment, the net benefit is zero. The dotted line means all patients who accept intravenous thrombolysis will develop HT. The green

line indicates the net benefit of the nomogram.

our nomogram before applying it in clinical practice. Third,

although we controlled for many variables in establishing our

predictionmodel, we cannot rule out some unmeasured baseline

variables (including microbleed, glycosylated hemoglobin,

homocysteine, and so on) that may influence the development

of HT after intravenous thrombolysis. Future prospective studies

should further evaluate whether combining with other variables

can help to enhance the accuracy of our nomogram prediction.

In addition, another limitation is that the uric acid and albumin

to globulin ratio could not be obtained before intravenous

thrombolysis in some stroke centers, which may limit the

application of the nomogram before intravenous thrombolysis

in these centers. Due to the narrow time window for the

treatment of ischemic stroke, the emergency green channel has

been widely opened in many countries to ensure that patients

with ischemic stroke can receive intravenous thrombolysis

quickly and benefit from it. According to the Chinese guideline,

all patients with ischemic stroke should receive NCCT, blood

glucose, and laboratory tests including uric acid and albumin

to globulin ratio before intravenous thrombolysis. With the

establishment of the green channel, uric acid and albumin to

globulin ratio can be obtained before intravenous thrombolysis
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in most stroke centers in our country. Therefore, the nomogram

may have good clinical application in our country. However,

clinicians in other countries cannot use our nomogram to

assess the risk of post-thrombolysis HT in patients with acute

ischemic stroke without obtaining the availability of laboratory

test results before intravenous thrombolysis. But it could help

clinicians assess the probability of HT in patients who are

receiving intravenous thrombolysis. For patients with a high risk

of post-thrombolysis HT by the evaluation of our nomogram,

clinicians may consider using a lower concentration of alteplase

or discontinuing intravenous thrombolysis to improve the safety

of intravenous thrombolysis.

Conclusions

Our study proposes a novel and practical nomogram based

on early infarct signs, NIHSS scores, uric acid, and albumin-

to-globulin ratio that can well predict the probability of

HT after intravenous thrombolysis in patients with ischemic

stroke. The calibration and discrimination of the nomogram

were verified in internal validation. This nomogram can be

useful for predicting the probability of HT after intravenous

thrombolysis, and help clinicians assess whether to continue

intravenous thrombolysis in patients with a high risk of HT.

However, further studies are needed to confirm the validity of

the nomogram.
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Sex-related di�erences in
spontaneous intracerebral
hemorrhage outcomes: A
prognostic study based on
111,112 medical records
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and Xiaoyu Wang1*

1Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China, 2West

China School of Public Health, Sichuan University, Chengdu, China, 3Institute of Hospital

Management, West China Hospital, Sichuan University, Chengdu, China

Objective: To identify sex-related di�erences in the outcome of hospitalized

patients with spontaneous intracerebral hemorrhage (SICH), and to identify

potential causal pathways between sex and SICH outcome.

Methods: A total of 111,112 medical records of in-hospital patients with SICH

were collected. Data- and expert-driven techniques were applied, such as a

multivariate logistic regression model and causal mediation analysis. These

analyses were used to determine the confounders and mediators, estimate

the true e�ect of sex on the SICH outcome, and estimate the average causal

mediation e�ect for each mediator.

Results: (1) Failure (disability or death) rates in women with SICH were

significantly lower than in men with SICH. On the day of discharge, the odds

ratio (OR) of failure between women and men was 0.9137 [95% confidence

interval (CI), 0.8879–0.9402], while the odds ratio at 90 days post-discharge

was 0.9353 (95% confidence interval, 0.9121–0.9591). (2) The sex-related

di�erence in SICH outcome decreased with increasing age and disappeared

after 75 years. (3) Deep coma, brainstem hemorrhage, and an infratentorial

hemorrhage volume of >10ml accounted for 62.76% (p < 0.001), 33.46%

(p < 0.001), and 11.56% (p< 0.001) of the overall e�ect on the day of discharge,

and for 52.28% (p < 0.001), 27.65% (p < 0.001), and 10.86% (p < 0.001) of the

overall e�ect at the 90-day post-discharge.

Conclusion: Men have a higher failure risk thanwomen, whichmay be partially

mediated by a higher risk for deep coma, brainstem hemorrhage, and an

infratentorial hemorrhage volume of >10ml. Future work should explore the

biological mechanisms underlying this di�erence.
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Introduction

Sex differences in nervous system disease outcomes

have received increasing attention, such as recent work in

patients with stroke and cerebral amyloid angiopathy (1).

However, the effects of sex-related differences in outcomes of

spontaneous intracerebral hemorrhage (SICH) remain unclear;

this knowledge could facilitate an understanding of the

mechanisms underlying SICH and the development of new

treatment and prevention approaches (2–5). Only a few studies

have explored the effect of sex on SICH prognosis, and these

have yielded inconsistent findings (3, 6–9). Such inconsistencies

could be explained by limitations, such as small sample sizes and

the presence of confounding bias (2, 7, 10–13). Furthermore,

the causal pathways underlying sex-related outcomes remain

unknown. These gaps in knowledge impede the development

of preclinical research models and therapies for SICH; further

studies with larger sample sizes and more causal considerations

are thus necessary. To this aim, the present study used the largest

number of in-hospital medical records to date (i.e., 111,000) to

investigate the effect of sex on SICH outcomes. Moreover, we put

forward some possible causal pathways between sex and SICH,

which could be further examined in future research.

Materials and methods

Study design and participants

This study is a retrospective cross-sectional study of

consecutive patients referred to the governmental hospital in

the Sichuan province. Data- and expert-driven techniques were

applied, including a multivariate logistic regression model and

causal mediation analysis.

The data were collected from the database of the

Comprehensive Data Collection and Decision Support System

for health statistics of Sichuan Province, which has a jurisdiction

area of 485,000 km2 and a population of about 83 million.

This database was constructed by the Sichuan government on 1

January 2017 and includes information about all SICH hospital

admissions to date, including medical records from all general

hospitals and community hospitals in Sichuan. The database

contains clinical data, such as demographic characteristics,

diagnoses, comorbidity, treatment, and the medical record

home page.

Patients were identified by the International Classification

of Diseases, Tenth Revision, Clinical Modification, and only the

patients with nontraumatic intracerebral hemorrhage (I61) were

included in the study. To avoid measuring the effect of other

secondary causes of hemorrhage, such as aneurysm, vascular

malformations, and coagulopathy, patients with an intracranial

tumor, aneurysm, or other vascular malformation presumed to

be the cause of the hemorrhage and patients with hemorrhagic

conversion of acute brain infarction and secondary ICH were

excluded, even though they were in the I61 group.

Detailed information on patient demographics (age, sex, and

ethnicity), brain imaging, stroke severity, diagnosis, treatment,

complications, comorbidities, instant discharge outcome, and

90-day outcome was collected. Brain imaging included location

[lobar (predominantly cortical or subcortical white matter),

depth (predominantly basal ganglia, internal capsule, or

periventricular white matter), cerebellum, brainstem, and

ventricle]. The time hospitalized variable was the hospitalization

history of patients prior to the current SICH hospitalization.

Stroke severity was described as severe coma, moderate coma,

and minor coma, according to the Glasgow Coma Scale

(GCS; sober, GCS score = 15; shallow coma, GCS score =

12–14; mediate coma, GCS score = 9–11; and deep coma,

GCS score ≤8). Complications and comorbidities included

hypertension, diabetes, and infections. The SICH outcome was

dichotomized as “success” or “failure.” A successful outcomewas

defined as a score of 2 or more on the Glasgow Outcome Scale

(GOS), and failure was defined as discharge to a hospice or a

GOS score of 1. The SICH outcome was measured two times,

one time on the day of discharge and the other at 90 days post-

discharge. The first outcome was obtained from the database,

and the second one was verified through the Ministry of Civil

Affairs through personal identification numbers.

Furthermore, since the unstructured variables (such as

diagnosis) in this study were all in sentence forms, we carried

out natural language processing to transform them into a

structured form for further analysis. We first pre-processed

the unstructured data, including word segmentation and the

removal of stop words. Then, the Tagged Document in the

Gensim package was used to wrap the input sentence and change

it to the input sample format required by Doc2vec. After that, we

loaded theDoc2vecmodel with a window size of three and began

model training. Finally, the unstructured data were transformed

into numeric codes.

Standard protocol approvals,
registrations, and patient consent

The study was approved by the West China Hospital’s

institutional review board, and informed consent was obtained

from all participants.

Statistical analysis

To explore the sex differences in SICH outcomes, two types

of variables (i.e., confounders and mediators) needed to be

fully considered. Confounders can cause spurious associations

that conceal the true effect of sex on SICH outcomes and

were therefore adjusted before the analysis. On the other hand,
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mediators form part of the causal pathway between sex and

SICH outcome. Given that there might be multiple causal

pathways and corresponding mediators, we assessed the extent

to which the effect of sex on the SICH outcomes was mediated

through a particular pathway and mediator. Therefore, the

statistical analysis was carried out in the following three steps:

1) Determination of confounders and mediators using the

mixture-driven method.

By definition, both confounders and mediators are

correlated to the exposure and outcome, but they differ in

that confounders are not part of the causal pathway and

mediators are. Given this distinction, we used a mixture of

data- and expert-driven methods to identify the confounders

and mediators. Specifically, the data-driven method included

association analysis to first select candidate variables that were

correlated with both sex and SICH outcomes. Then, for every

candidate variable, three experienced neurologists were asked to

decide whether it was a confounder or mediator according to the

current research and their clinical experience. As a result, sets of

confounders and mediators were defined for further analysis.

2) The control of confounders using a multivariate logistic

regression model.

This study built two multivariate logistic regression models

that contained two observation time points—the day of

discharge and 90 days after discharge. Other than sex, all

confounders were included in the regression models to control

for confounding bias.

3) Pathway exploration using causal mediation analysis.

After determining the effect of sex on the SICH outcome,

we examined the underlying causal pathway(s) between sex

and SICH outcome that could explain the observed effect from

a mechanical point of view. However, identifying the precise

mechanisms underlying this association was beyond the scope

of this study because the biological and pathological data were

unavailable. That said, using a causal mediation analysis, we

were able to at least provide some clues to pathway construction.

The goal of the causal mediation analysis was to assess the direct

and indirect effects of sex on SICH outcomes and estimate the

average causal mediation effect for each mediator. After this,

each mediator was ranked by its corresponding average causal

mediation effect such that their relative importance could be

established. This relative importance points to the most likely

causal pathways between sex and SICH outcome, which provides

a platform for future research.

In addition, we identified variables that were unevenly

distributed across the sexes and may be associated with clinical

outcomes. Using correlation analysis and expert consultation,

confounding factors and mediating variables were defined. The

influence of confounding factors on the association between

sex and outcome variables was corrected by using multivariate

regression analysis, which ensured that this imbalance would not

affect the results.

All analyses were performed in R 3.5.0, using R packages

{stats} (4, 14) and {mediation} (9), which were downloaded from

the Comprehensive R Archive Network at http://cran.r-project.

org/ and installed in advance. The default significance level (α)

was 0.05 unless otherwise specified.

Results

From 1 January 2017 to 30 June 2019, a total of 117,227

patients with SICH were screened and 111,112 met the inclusion

criteria [68,326 (58.3%) women and 42,786 (41.7%) men].

Table 1 shows the explanations for each variable.

The crude e�ect of sex on SICH
prognosis

As shown in Table 2, on both the day of discharge and the

90-day post-discharge, female patients had a lower failure risk

than male patients. Furthermore, this phenomenon was found

for all age groups overall as well as the age subgroups of 40–54,

55–64, and 65–74 years.

Determination of confounders and
mediators

The data-driven method for the determination of

confounders and mediators included a correlation analysis

between candidate variables and sex groups, a univariate

logistic regression analysis that examined the effect of

each candidate variable on the SICH outcome on the day

of discharge, and a univariate logistic regression analysis

that examined the effect of each candidate variable on

the SICH outcome at the 90-day post-discharge time

point. The correlation analysis revealed that the age

group (χ2 = 663.97, ν = 4; p < 0.001), number of in-

hospital stays (χ2 = 214.41, ν = 1; p < 0.001), operation

(χ2 = 28.23, ν = 1; p < 0.001), infection (χ2 = 99.06, ν =

1; p < 0.001), deep coma (χ2 = 35.17, ν = 1; p < 0.001),

location (χ2 = 311.80, ν = 4; p < 0.001), supratentorial

hemorrhage volume of >30ml (χ2 = 27.38, ν = 1; p < 0.001),

and infratentorial hemorrhage volume of >10ml

(χ2 = 28.99, ν = 1; p < 0.001) were significantly correlated

with sex. Tables 3, 4 summarize the results of the univariate

logistic regression models, which revealed that these above-

mentioned variables were significantly associated with the
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TABLE 1 Explanations for each variable.

Variable label Value Male (N = 68,326) Female (N = 42,786) χ
2

P

Age group (40, 54) 15,986 (23.40%) 8,570 (20.03%) 663.97 <0.001

(55, 64) 15,216 (22.27%) 8,417 (19.67%)

(65, 74) 21,412 (31.34%) 13,460 (31.46%)

(75, 84) 12,806 (18.74%) 9,501 (22.21%)

>84 2,906 (4.25%) 2,838 (6.63%)

Ethnicity Han 66,958 (98.00%) 42,022 (98.21%) 6.44 0.011

Non-han 1,368 (2.00%) 764 (1.79%)

Times of in-hospital <2 67,153 (98.28%) 42,493 (99.32%) 214.41 <0.001

≥2 1,173 (1.72%) 293 (0.68%)

Deep Coma No 60,865 (89.08%) 38,594 (90.20%) 35.17 <0.001

Yes 7,461 (10.92%) 4,192 (9.80%)

Location Deep 45,188 (66.14%) 28,626 (66.91%) 311.80 <0.001

Lobar 11,877 (17.38%) 7,588 (17.73%)

Brainstem 5,731 (8.39%) 2,482 (5.80%)

Cerebellum 3,584 (5.24%) 2,731 (6.38%)

Ventricle 1,946 (2.85%) 1,359 (3.18%)

Infratentorial <10 58,980 (97.55%) 36,981 (98.07%) 28.99 <0.001

≥10 1,484 (2.45%) 727 (1.93%)

Hypertension No 52,304 (76.55%) 34,185 (79.90%) 170.67 <0.001

Yes 16,022 (23.45%) 8,601 (20.10%)

Diabetes No 68,114 (99.69%) 42,599 (99.56%) 11.47 <0.001

Yes 212 (0.31%) 187 (0.44%)

Operation No 59,067 (86.45%) 37,462 (87.56%) 28.23 <0.001

Yes 9,259 (13.55%) 5,324 (12.44%)

Infection No 44,723 (65.46%) 29,245 (68.35%) 99.06 <0.001

Yes 23,603 (34.54%) 13,541 (31.65%)

SICH outcome both on the day of discharge and at the 90-day

post-discharge time point. After discussions with experienced

neurologists, the age group, number of in-hospital stays,

operation, and infection were defined as confounders, and deep

coma, location, supratentorial hemorrhage volume of >30ml,

and infratentorial hemorrhage volume of >10ml were defined

as mediators. These determinations are described in more detail

in the Discussion section.

The e�ect of sex on SICH outcomes after
confounder adjustment

In the next step, we added confounders as covariates

into the logistic regression model of sex on SICH outcome.

As shown in Table 5, female patients had lower risks of

failure both on the day of discharge and at 90-day post-

discharge than did male patients [day of discharge: odds ratio

(OR) = 0.91, 95% confidence interval (CI), 0.89–0.94; and

90-day post-discharge: odds ratio = 0.94, 95% confidence

interval, 0.91–0.96].

The causal mediation analysis for direct
e�ect of sex on SICH prognosis

After estimating the overall effects of sex on SICH

outcomes on the day of discharge and the 90-day post-

discharge, we performed a causal mediation analysis.

This analysis allowed us to further decompose the overall

effect into direct and indirect effects, and to estimate the

average causal mediation effect for each mediator. As shown

in Figure 1, the causal mediation analysis results were

highly consistent, regardless of whether SICH outcome

was measured on the day of discharge or at the 90-day

post-discharge. Deep coma was the most likely mediator

in the relationship between sex and SICH outcome, and

accounted for ∼50–60% of the effect of sex on SICH outcome.

Brainstem hemorrhage was another mediator deserving of

attention, with an average mediation effect of 20–30%. In

addition, an infratentorial hemorrhage volume of >10ml

contributed ∼10% to the effect of sex on the SICH outcome,

and this could be examined further in future mechanical

pathway studies.
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TABLE 2 The univariate estimation of sexual e�ect on prognosis outcomes.

Prognosis outcome Stratification Regression

coefficients

SE OR 95% CI for OR

The instant discharge

outcome (1. Success;

2. Failure)

All age groups −0.0783 0.0145 0.9247 (0.8988, 0.9513)

(40, 54) −0.2330 0.0330 0.7922 (0.7425, 0.8451)

(55, 64) −0.2527 0.0337 0.7767 (0.7271, 0.8297)

(65, 74) −0.0530 0.0260 0.9484 (0.9013, 0.9980)

(75, 84) 0.0125 0.0304 1.0126 (0.9540, 1.0747)

>84 0.0420 0.0558 1.0429 (0.9349, 1.1634)

The 90-day post discharge

outcome (1. Success;

2. Failure)

All age groups −0.0663 0.0127 0.9359 (0.9128, 0.9594)

(40,54) −0.1425 0.0279 0.8672 (0.8210, 0.9159)

(55, 64) −0.1420 0.0284 0.8676 (0.8206, 0.9173)

(65, 74) −0.0541 0.0228 0.9473 (0.9059, 0.9906)

(75, 84) –0.0113 0.0277 0.9888 (0.9365, 1.0439)

>84 0.0168 0.0532 1.0169 (0.9162, 1.1287)

The bold values indicate the group that female patients had a lower failure risk than male patients.

TABLE 3 The e�ect of each candidate variable on the spontaneous intracerebral hemorrhage (SICH) outcome on the day of discharge.

Variables Estimated coefficients SE t-value P

Age group 0.1200 0.0060 20.08 <0.001

Ethnicity –0.0338 0.0515 –0.66 0.512

Times of in hospital 0.3513 0.0569 6.17 <0.001

Deep Coma 3.3687 0.0277 121.70 <0.001

Location

Deep —* —* —* —*

Lobar 0.2381 0.0256 9.32 <0.001

Brainstem 0.9696 0.0241 40.31 <0.001

Cerebellum 0.1360 0.0307 4.42 <0.001

Ventricle 0.4300 0.0390 11.02 <0.001

Supratentorial 0.7974 0.0183 43.62 <0.001

Infratentorial 1.9367 0.0461 41.99 <0.001

Hypertension 0.0253 0.0168 1.50 0.133

Diabetes 0.0495 0.1157 0.43 0.669

Operation 0.0755 0.0205 3.69 <0.001

Infection 0.2199 0.0146 15.04 <0.001

*Comparison group.

Discussion

This study calculated the effect of sex on SICH outcomes

using the largest sample of real-world data to date, which

guarantees representativeness and statistical power (15). Our

results revealed that female patients had better prognostic

outcomes than male patients. Moreover, this prognostic

difference between the sexes attenuates with increasing age.

Namely, for patients aged ≥75 years, there was no protective

effect of the female sex. Causal mediation analysis revealed that

the association between sex and SICH outcomes was probably

mediated by the male frequency of deep coma, brainstem

hemorrhage, and an infratentorial intracerebral hemorrhage

volume of >10 ml.

Deep coma was found to play a key role in the relationship

between sex and SICH outcomes. We found that patients
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TABLE 4 The e�ect of each candidate variable on the SICH outcome at the 90-day post-discharge.

Variables Estimated coefficients SE t-value P

Age group 0.0455 0.0053 8.64 <0.001

Ethnicity –0.0569 0.0454 –1.25 0.210

Times of in-hospital 0.1412 0.0534 2.64 0.00819

Deep Coma 2.7824 0.0297 93.67 <0.001

Location

Deep —* —* —* —*

Lobar 0.1887 0.0227 8.31 <0.001

Brainstem 0.6648 0.0234 28.43 <0.001

Cerebellum 0.0545 0.0271 2.01 0.044

Ventricle 0.3116 0.0359 8.68 <0.001

Supratentorial 0.7591 0.0174 43.73 <0.001

Infratentorial 1.6604 0.0501 33.10 <0.001

Hypertension 0.0006 0.0149 0.04 0.966

Diabetes 0.0913 0.1023 0.89 0.373

Operation 0.2492 0.0180 13.85 <0.001

Infection 0.2056 0.013 15.79 <0.001

*Comparison group.

TABLE 5 The multivariate estimation of sex on the SICH outcome.

Variables The day of discharge The 90-day post-discharge

OR 95% CI OR 95% CI

Sex 0.9137 (0.8879, 0.9402) 0.9353 (0.9121, 0.9591)

Age group 1.1272 (1.1138, 1.1407) 1.0516 (1.0405, 1.0628)

Times of in-hospital 1.4002 (1.2519, 1.5660) 1.1565 (1.0412, 1.2846)

Operation 1.0671 (1.0234, 1.1125) 1.2433 (1.1986, 1.2898)

Infection 1.2050 (1.1699, 1.2412) 1.1719 (1.1413, 1.2033)

with brainstem hemorrhage or an infratentorial intracerebral

hemorrhage volume of >10ml frequently suffered from a deep

coma. The brainstem reticular formation has been considered

essential for wakefulness, which can explain why deep coma

is more commonly a result of brainstem hemorrhage than

of hemorrhage in other brain areas (16–18). Additionally,

given the narrow confines of the posterior fossa, a hernia

can appear quickly in cerebellar hemorrhage with obstructive

hydrocephalus (19). Consequently, significant infratentorial

intracerebral hematoma could cause a deep coma through the

hernia. Brainstem and cerebellum hemorrhage usually take place

in small non-branching perforating arteries that have a diameter

of 50–200µm (20), which branch directly from larger arteries.

According to a study, microatheroma is likely to form in these

small arteries due to endothelial injury (20). Hence, endothelium

injury could explain the sex-related difference in SICHprognosis

found in the current study.

It is complicated to determine sex-related differences in

endothelium injury, for which there are several potential

biological pathways. One plausible explanation for the sex-

related protection effect in SICH is that women’s female

gonadal hormones affect the endothelium. The endothelium-

protective effects of estrogen could occur through various

pathways, such as regulation of MAPK/PI3K/AKT signaling

pathways, a decrease in prostaglandin E2 and cyclooxygenase 2

to reduce the inflammatory response, and modulation of nitric

oxide synthase to reduce oxidative stress (21–24). Furthermore,

the alteration of hormone levels during menopause has been

associated with the incidence and outcomes of ischemic stroke

and SICH. Although more than half of the female patients in

the present study were postmenopausal, we cannot determine

whether female gonadal hormones (especially estrogen) caused

the sex-related differences in SICH prognosis. Nonetheless,

we suspect that female gonadal hormones militate to some

extent. Specifically, we found that the effects of sex on

prognosis attenuated with increasing age. Moreover, the age-

stratified analysis revealed that the sex-related difference in

SICH prognosis was limited to patients younger than 75
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FIGURE 1

(A) Causal mediation analysis for sex association with spontaneous intracerebral hemorrhage (SICH) outcome on the day of discharge. (B)

Causal mediation analysis for sex association with SICH outcome at the 90-day post-discharge. PM, proportion mediated.

years, and this tendency is in accordance with an endothelium

protective effect of estrogen. Animal experiments have revealed

that the administration of estrogen and progesterone improves

ICH outcomes. However, hormone replacement therapy has

been reported to make limited contributions to prognosis.

Various aspects of animal experiments and clinical trials

could account for the conflicting results, such as duration

of exposure, dose, and administration route (24). With a

limited understanding of female gonadal hormones, it is

difficult to successfully perform hormone replacement therapy.

Additionally, Gibson found that both short-term and long-

term estrogen deficiency reduces the expression of estrogen

receptors (25). This suggests that SICH in male patients

could be improved through drugs that interact with estrogen

receptors. Thus, future studies should investigate how female

gonadal hormones protect the function of the endothelium,

as well as the consequence of hormones in the pathogenesis

and prognosis of SICH. The present findings could therefore

assist the development of more effective therapies for patients

with SICH. Additionally, our results hold significance for the

prevention and prognosis prediction of ICH in both men

and women and could support the formulation of community

health policies.

Strengths and limitations

This study has several strengths. First, our study included

data from the largest sample size, which ensured statistical

representativeness. Then, we used causal inference to explore the

effects of sex on SICH prognosis, and adjusted for confounders

to reduce bias, which revealed a widespread effect of sex on the

SICH outcome. Finally, we proposed possible mediators for the

relationship between sex and SICH prognosis, as well as the

corresponding pathways, based on what is known in the field

of neurology.

This study has some limitations that should be noted. First,

we did not examine the effect of intracerebral hemorrhage

expansion, even though this is an essential factor for the

prognosis of SICH. The heterogeneity of the SICH expansion

measurement method obstructed an analysis of the effects

of hematoma expansion. However, results not reported here

showed that the estimated effects of sex on SICH outcomes were

robust when ICH expansion was included in the model. Second,

we proposed some possible mediators in the relationship

between sex and SICH outcomes, but clear insights on this have

yet to be obtained and some questions remain. For example,

how do these mediators perform in the pathway? Do they act

independently or jointly? Are there interaction effects? Future

studies should address these questions and this, together with

our results, could shed light on sex-related biological pathways

in SICH.

Conclusion

We found thatmale patients had a higher risk of a poor SICH

prognosis than female patients, and this was partially associated
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with deep coma, brainstem hemorrhage, and an infratentorial

hemorrhage volume of >10ml. It is necessary to further explore

the biological mechanisms underlying the sex-related differences

in SICH prognosis, which could facilitate the development of

individual-based treatment.
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Comparative e�cacy of 5
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for adults with post-stroke
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Bayesian network analysis based
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trials
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Chengcheng Zhang1 and Yuejuan Zhang1*

1Department of Nursing, The First A�liated Hospital of Hunan University of Chinese Medicine,

Changsha, China, 2School of Nursing, Hunan University of Chinese Medicine, Changsha, China

Background: As a common sequela after stroke, cognitive impairment

negatively impacts patients’ activities of daily living and overall rehabilitation.

Non-pharmacological therapies have recently drawn widespread attention for

their potential in improving cognitive function. However, the optimal choice

of non-pharmacological therapies for post-stroke cognitive impairment

(PSCI) is still unclear. Hence, in this study, we compared and ranked 5

non-pharmacological therapies for PSCI with a Bayesian Network Meta-

analysis (NMA), to o�er a foundation for clinical treatment decision-making.

Methods: PubMed, EMBASE, Web of Science, Cochrane Central Register of

Controlled Trials, Chinese Biomedical Medicine, China National Knowledge

Infrastructure, Wangfang Database, and China Science and Technology

Journal Database were searched from database inception to December 31,

2021, to collect Randomized Controlled Trials for PSCI. All of the studies

were assessed (according to Cochrane Handbook for Systematic Reviews)

and then data were extracted by two researchers separately. Pairwise meta-

analysis for direct comparisonswas performed using Revman. NMAof Bayesian

hierarchical model was performed by WinBUGS and ADDIS. STATA was used

to construct network evidence plots and funnel plots.

Results: A total of 55 trials (53 Two-arm trials and 2 Three-arm trials)

with 3,092 individuals were included in this study. In the pair-wise meta-

analysis, Transcranial Magnetic Stimulation (TMS), Virtual Reality Exposure

Therapy (VR), Computer-assisted cognitive rehabilitation (CA), Transcranial

Direct Current Stimulation (tDCS), and Acupuncture were superior to

normal cognition training in terms of MoCA, MMSE, and BI outcomes.

Bayesian NMA showed that the MoCA outcome ranked Acupuncture

(84.7%) as the best therapy and TMS (79.7%) as the second. The MMSE

outcome ranked TMS (76.1%) as the best therapy and Acupuncture as

the second (72.1%). For BI outcome, TMS (89.1%) ranked the best.
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Conclusions: TMS and Acupuncture had a better e�ect on improving cognitive

function in post-stroke patients according to our Bayesian NMA. However, this

conclusion still needs to be confirmed with large sample size and high-quality

randomized controlled trials.

Registration: https://inplasy.com (No. INPLASY202260036).

KEYWORDS

cognitive function, stroke, post-stroke cognitive impairment (PSCI),

non-pharmacological therapies, network meta-analysis (NMA)

Introduction

Post-stroke cognitive impairment (PSCI) is a common

comorbidity of stroke, and the prevalence of it varies

enormously across studies (17.6–83%), depending on the time of

assessment, the study environment, the demographic variables,

and the numerous cognitive tests and cut-offs that were utilized

(1). PSCI is defined as a clinical syndrome characterized by

any sort of cognitive neurodegeneration after stroke, ranging

from mild impairment to a more severe form: post-stroke

dementia (2, 3). Disruptions in advanced brain functions such

as attention, language, memory, executive, and visuospatial

function are the most common symptoms of PSCI, which not

only have a negative impact on patients’ activities of daily living

and overall rehabilitation (4–6) but also linked closely to a

higher risk of recurrent ischemic stroke (7) and a lower 5-year

survival rate (2). In addition, the ongoing care and support needs

required by PSCI patients are closely related to the increased

physical and psychological burden of family caregivers (8) and

the medical and economic burden on society (9). To sum up,

PSCI has become a major public health concern that has to be

addressed promptly as the great burden of stroke continues to

climb (10, 11).

Currently, pharmaceutical interventions such as

Acetylcholinesterase inhibitors, memantine, galantamine,

etc., which are mainly approved for use in Alzheimer’s disease

have shown some clinical benefits in vascular dementia (12, 13).

Unfortunately, a recent study revealed that little evidence

demonstrates they helped symptoms or slowed dementia

progression down in PSCI patients (14). On the contrary,

Abbreviations: PSCI, Post-stroke cognitive impairment; TMS, Transcranial

Magnetic Stimulation; tDCS, Transcranial Direct Current Stimulation;

CA, Computer-assisted cognitive rehabilitation; VR, Virtual Reality

Exposure Therapy; NOR, Normal rehabilitation; MMSE, Mini-Mental

State Examination; MoCA, Montreal Cognitive Assessment Scale; NMA,

Network Meta-analysis; RCTs, Randomized Controlled Trials; MD, Mean

Di�erences; CI, Confidence Interval; PSRF, Potential Size Reduction

Factor; SUCRA, Surface Under The Cumulative Ranking Area; DIC,

Deviance Information Criterion.

side effects and adverse reactions such as gastrointestinal

issues (diarrhea or constipation), headaches, dizziness,

and so on, do exist in pharmaceutical interventions (15).

Therefore, non-pharmacological therapies such as Transcranial

Magnetic Stimulation (TMS) (16), Transcranial Direct

Current Stimulation (tDCS) (17), Computer-assisted cognitive

rehabilitation (CA) (18), Virtual Reality Exposure Therapy (VR)

(19), and Acupuncture (20), which have been found have a

positive impact on cognitive function of PSCI patients in several

systematic review and meta-analysis, have gradually aroused

people’s attention (21).

However, due to a lack of manpower and resources, most

studies to date have only compared individual therapy to

traditional cognition training or, at most, two therapies. Direct

comparisons provide little useful information for determining

which therapy is more appropriate for PSCI patients. It is

obvious that a deeper exploration to assess the relative value

between different interventions will be greatly helpful for

medical decisions and the rehabilitation of PSCI patients.

Network meta-analysis is an extension of pairwise meta-analysis

that allows data from multiple clinical trials evaluating at least

two treatments to be pooled. The incorporation of both direct

and indirect information strengthens inferences about each

treatment’s relative efficacy (22, 23).

Therefore, in the present study, we included 55 RCTs

and used Bayesian Network Meta-analysis (NMA) to assess

and rank the efficacy of the 5 different alternative strategies

listed above, in order to find the best treatment plan for

PSCI patients and to provide an evidence-based foundation for

clinical treatments decision-making.

Materials and methods

This study followed the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA)

extension statement for Network Meta-Analyses

(Supplementary Material), and the study protocol

has been registered on the INPLASY (Registration

number: INPLASY202260036).
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Search strategy

Four English databases (EMBASE,Web of Science, PubMed,

Cochrane Central Register of Controlled Trials) and four

Chinese databases [China National Knowledge Infrastructure

(CNKI), Wangfang Database, China Science and Technology

Journal Database, and Chinese Biomedical Medicine (CBM)]

were comprehensive searched systematically. MeSH terms,

subject words, and keywords such as “Stroke,” “Cerebrovascular

Accident,” “Brain Ischemia,” “Cognition Disorders,” “Cognitive

Impairment,” “Cognitive Dysfunction,” “Transcranial Magnetic

Stimulation,” “Transcranial Direct Current Stimulation,”

“Transcranial Direct Current Stimulation,” “Virtual Reality,”

“Computer-assisted rehabilitation,” and “Randomized

controlled trial” were retrieved to identify potentially eligible

studies. The retrieval time was specified from the database’s

inception to December 31, 2021, and the languages were limited

to English and Chinese. We also looked through the references

in the included literature to see if there were any other research

that fit the criteria. Supplementary Table 1 contains a list of the

comprehensive search strategies.

Eligibility and exclusion criteria

The following criteria were used to select literature:

(1) Study design: randomized controlled trials (RCTs); (2)

χ̄change = χ̄post-treatment − χ̄change (1)

SDchange =

√

(SDbaseline)
2
+ (SDpost-treatment)

2
− 2× r × SDbaseline × SDpost-treatment (2)

Participants: Adults, regardless of nationality, ethnicity, sex,

age, or educational background, who have experienced an

ischemic or hemorrhagic stroke recently or in the past, and

whose diagnosis was made in accordance with well-defined

or globally accepted diagnostic criteria. (3) Intervention and

control measures: The experimental group underwent non-

pharmaceutical treatments such as acupuncture, VR, TMS,

tDCS, or CA. The interventions of the control group consisted

of normal rehabilitation (NOR), which is a catch-all term for

traditional rehabilitation mixed with cognitive training. Other

therapies indicated above but distinct from those used in the

intervention group are also included. (4) Outcome indicators:

Both the Mini-Mental State Examination (MMSE) and the

Montreal Cognitive Assessment Scale (MoCA), which have been

used extensively to measure cognitive function, were utilized as

the principal measures of cognitive performance. Lower MMSE

and MoCA scores are indicative of impaired cognitive function.

The Barthel Index (BI) was utilized to evaluate functional

independence in activity of daily living as a secondary outcome

indicator. A lower BI score suggests a reduced capacity for

daily life.

Literature that met the following characteristics was

excluded: (1) Studies in which the manner of intervention or

control is unclear, or in which drugs that may treat cognitive

impairment are used in combination. (2) Studies in which the

intervention combined two or more of the aforementioned non-

pharmacological therapies in a single intervention. (3) Studies

with insufficient data on the results that could not be gathered.

(4) Repeated studies, clinical protocols, case reports, animal

studies, reviewed articles, and non-randomized controlled trials.

(5) The language of studies is not English or Chinese.

Data extraction

Data were retrieved from the publications by two researchers

who reviewed them separately. A standard form table

constructed by Microsoft Excel 2019 which includes publication

information (authors, publish date), demographic data (gender,

age, sample size, the duration of disease), intervention measures,

the course of treatment, and outcomes (MOCA, MMSE, BI)

was used to manage the data. Due to the possibility of variation

in baseline conditions for MoCA, MMSE, and BI among

studies, the outcome data finally included in the analysis was

approximated using the following formula, as suggested by the

Cochrane Handbook for Systematic Reviews of Interventions

(version 5.1). And r, the correlation coefficient, has a value of 0.5

in this case.

Quality assessment

Studies were evaluated for quality using a technique to

identify and quantify the potential for bias, as detailed in the

Cochrane Handbook for Systematic Reviews of Interventions.

Two researchers independently examined each other’s work after

data extraction and quality evaluation, while a third researcher

dealt with any differences of opinion.

Statistical analysis

Revman (version 5.4, Cochrane Collaboration, Oxford, UK)

was used to conduct pairwise meta-analyses for the purpose of

making side-by-side comparisons. I-square (I2) and P-values

for the test of heterogeneity were used to determine the degree

of heterogeneity between the results. To be more precise, we

used fixed-effects models when I2 < 50% and p > 0.1, and we

used random-effects models otherwise. As ways to measure the
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effects, the mean differences (MD) and 95% confidence interval

(CI) were calculated.

WinBUGS (version 1.4.3) and the Aggregate Data Drug

Information System (ADDIS, version 1.16.5) were used for

the Bayesian framework network meta-analysis. Markov chain

Monte Carlo (MCMC) was used to calculate the model with

the following parameters: four chains, 50,000 sample iterations,

20,000 burns, and a lean interval of 10. For the purpose of

evaluating the model’s convergence, the potential size reduction

factor (PSRF) was employed. Convergence of a model is better

when the PSRF is closer to 1. Considering the anticipated

heterogeneity, a random-effects model was used to synthesize

study effect sizes. The combined results were presented as MD

and 95% CI. If the 95% CI of MD did not contain 0, then the

MD was regarded to suggest a statistically significant difference.

To provide a probability ranking to the various interventions

of each outcome, the surface under the cumulative ranking

area (SUCRA) was calculated. The SUCRA values might be

anything from 0 to 100%, with larger values suggesting more

effectiveness. Further, publication bias and small study effects

for each outcome in the included RCTs were evaluated using

comparison-adjusted funnel plots generated in STATA software

(version 5.2).

Distributional comparisons of clinical data were used to

test the transitivity assumption (age, sample size, publication

year, etc.), which could be modifiers of treatment efficacy.

Heterogeneity was assessed with common tau2 statistics and

predictive intervals, and sensitivity analysis was used to

detect potential studies that increase heterogeneity significantly.

We used a node-splitting model for the analysis of the

inconsistency test, and the results suggest no statistically

significant difference between direct and indirect comparisons

when p < 0.05. What is more, a loop-specific inconsistency

test was performed, in which the 95% CI included zero,

indicating good consistency between direct and indirect

evidence. Furthermore, determining whether or not two models

(consistent and inconsistent) are well-fit was done using the

deviance information criterion (DIC).

Results

Literature selection

From those 8 databases, we were able to compile a total

of 3,567 articles that met our criteria. Once duplicates were

taken out, there were still 2,087 articles. Two independent

reviewers then screened the titles and abstracts, excluding

1,902 papers that did not meet the inclusion criteria (non-

randomized controlled trials, animal studies, case reports,

reviews, procedures, and studies that were manifestly

irrelevant). By reviewing the remaining articles’ entire

texts, we were able to weed out another 130 that did not

FIGURE 1

Flow diagram of eligible studies selection process. CBM,

Chinese Biomedical Literature Service System; CNKI, China

National Knowledge Infrastructure; WanFang, WanFang

Knowledge Service platform; VIP, Chinese Scientific Journals

Database; n, number of publications.

meet our inclusion criterion, including 26 Non-RCTs, 56

unrelated interventions, 31 unrelated outcomes, 8 Non-

post-stroke participants, 6 data duplication, and 3 data

missing. Finally, 55 published RCTs were included in

this NMA. Figure 1 shows a thorough flowchart of the

article-screening procedure.

Study characteristics

Fifty-five articles met the criteria for inclusion; 53 were

randomized controlled trials (RCTs) with two arms and 2

were RCTs with three arms. There were a total of 3,092

patients included in the sample (1,496 in the control group

and 1,596 in the treatment group). These studies were from

China (45), Portugal (4), Korea (3), Russia (1), Australia

(2), and Italy (1) and were published from 2008 to 2021.

There were 3 studies that only provided the overall gender

ratio, 3 studies that did not give patient age, and 2 studies

that did not report treatment courses. There was a wide

range in length of therapy, from 2 weeks to 12 weeks.

There were 33 studies that reported MOCA results, 35 that

provided MMSE results, and 23 that reported BI results.

Supplementary Table 2 provides a comprehensive summary of

relevant research.
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FIGURE 2

Quality assessment of selected studies by the Cochrane risk of bias tool. (A) Risk of bias graph: review authors’ judgments about each risk of bias

item presented as percentages across all included studies. (B) Risk of bias summary: review authors’ judgments about each risk of bias item for

each included study.

Quality evaluation

For Random sequence generation, 24 studies reporting the

use of a random number table and 14 studies reporting the

use of network programming tools were assigned a low risk

of bias, and 17 studies not reporting how randomization was

performed were assigned an unclear risk of bias. For Allocation

concealment, there were 9 studies that met the criteria and were

assigned a low risk of bias. For the Blinding of participants

and personnel, 2 trials mentioned single blindness and were

assigned a low risk of bias, other 21 studies in which intervention

measures involving VR and CA were assigned a high risk of

bias due to the inability to be blinded. For the Blinding of

outcome assessment, 12 trials were assigned a low risk of bias.

For Incomplete outcome data, all studies were assigned a low

risk of bias as no studies reported severe cases dropped. For

Selective reporting, 5 trials that mentioned the study protocol

were assigned a low risk of bias. For Other bias, 11 trials

that reported disclosure of conflict of interest were assigned a

low risk of bias. Figure 2 depicts the summary risk of bias for

selected studies.

Pairwise meta-analysis

Following the synthesis of studies that had the same

treatments and outcomes, we carried out eight direct pairwise

meta-analyses to compare the MOCA score, 9 to compare the

MMSE score, and 6 to compare the BI score, respectively, which

can be summarily seen in Table 1. As for the MOCA outcome,

TMS (MD = 3.42, 95% CI: 1.86–4.98), tDCS (MD = 2.89, 95%

CI: 1.15–4.63), VR (MD = 0.95, 95% CI: 0.09–1.81), CA (MD

= 2.17, 95% CI: 0.74–3.60) and Acupuncture (MD = 3.70, 95%

CI: 1.51–5.89) were more efficient than NOR. However, there

was no statistical difference in efficacy between Acupuncture and

CA, tDCS and CA. For MMSE score, TMS (MD = 2.27, 95%

CI: 0.18–4.36), tDCS (MD = 1.37, 95% CI: 0.13–2.61), VR (MD

= 1.68, 95% CI: 0.49, 2.87) and Acupuncture (MD = 2.31, 95%

CI: 0.65–3.97) were more efficient than NOR. However, there

was no statistical difference in efficacy between CA and NOR,

ACU and CA, tDCS and CA, TMS and CA, VR and ACU. For

BI score, TMS (MD = 11.22, 95% CI: 2.53–19.90), tDCS (MD

= 10.46, 95% CI: 8.29–12.64), VR (MD = 5.52, 95% CI: 4.24–

6.80), CA (MD = 5.44, 95% CI: 2.78, 8.11) and Acupuncture

(MD= 9.86, 95% CI: 6.22–13.50) were more efficient than NOR.

However, there was no statistical difference in efficacy between

VR and Acupuncture. The detailed forest plots of the pairwise

meta-analysis results are shown in Supplementary Figures 1–3.

Network meta-analysis

Network meta-analyses in the consistency model were

conducted in the Bayesian framework to assess the efficacy

of MOCA, MMSE, and BI, respectively. As shown in

Supplementary Table 3, for each outcome, the PSRF value was
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TABLE 1 Pairwise meta-analysis.

Comparison MD (95% CI) Number of patients Number of studies Heterogeneity test

I2 (%) P-value

MOCA

TMS - NOR 3.42 (1.86, 4.98) 572 8 92 <0.0001

tDCS - NOR 2.89 (1.15, 4.63) 212 4 93 <0.0001

VR - NOR 0.95 (0.09, 1.81) 221 6 23 0.26

CA - NOR 2.17 (0.74, 3.60) 569 8 85 <0.0001

ACU - NOR 3.70 (1.51, 5.89) 709 7 94 <0.0001

ACU - CA 0.06 (−2.28, 2.4) 103 1 – –

tDCS - CA 0.83 (−1.17, 2.83) 64 1 – –

MMSE

TMS - NOR 2.27 (0.18, 4.36) 341 5 93 <0.0001

tDCS - NOR 1.37 (0.13, 2.61) 107 2 0 0.44

VR - NOR 1.68 (0.49, 2.87) 403 8 75 0.0003

CA - NOR 0.73 (−1.81, 3.26) 339 5 89 <0.0001

ACU - NOR 2.31 (0.65, 3.97) 1,382 15 97 <0.0001

ACU - CA 0.22 (−1.50, 1.94) 103 1 – –

tDCS - CA −0.17 (−2.07, 1.73) 64 1 – –

TMS - CA −0.70 (−2.64, 1.24) 20 1 – –

VR - ACU 0.41 (−1.24, 2.06) 68 1 – –

BI

TMS - NOR 11.22 (2.53, 19.90) 260 3 95 <0.0001

tDCS - NOR 10.46 (8.29, 12.64) 195 4 48 0.12

VR - NOR 5.52 (4.24, 6.80) 274 6 0 0.69

CA - NOR 5.44 (2.78, 8.11) 238 4 41 0.17

ACU - NOR 9.86 (6.22, 13.50) 563 7 87 <0.0001

VR - ACU 1.94 (−0.57, 4.45) 68 1 – –

TMS, Transcranial Magnetic Stimulation; VR, Virtual Reality Exposure Therapy; CA, Computer-assisted cognitive rehabilitation; tDCS, Transcranial Direct Current Stimulation; Acu,

Acupuncture; NOR, Normal rehabilitation (including conventional rehabilitation and routine cognition training). Bold values means p < 0.05.

FIGURE 3

Network meta-analysis diagrams of eligible comparisons. (A) MOCA, (B) MMSE, (C) BI. Width of the lines is proportional to the number of trial.

Size of every circle is proportional to the number of randomly assigned participants (sample size). TMS, Transcranial Magnetic Stimulation; VR,

Virtual Reality Exposure Therapy; CA, Computer-assisted cognitive rehabilitation; tDCS, Transcranial Direct Current Stimulation; Acu,

Acupuncture; NOR, Normal rehabilitation (including conventional rehabilitation and routine cognition training).
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FIGURE 4

Network meta-analysis of head-to-head comparisons. (A) MOCA, (B) MMSE, (C) BI. Data are MD (95% CI) in the column-defining treatment

compared with the row-defining treatment. Significant results are highlighted in red and bold. TMS, Transcranial Magnetic Stimulation; VR,

Virtual Reality Exposure Therapy; CA, Computer-assisted cognitive rehabilitation; tDCS, Transcranial Direct Current Stimulation; Acu,

Acupuncture; NOR, Normal rehabilitation.

FIGURE 5

Cumulative probability ranking curve of di�erent interventions. (A) MOCA, (B) MMSE, (C) BI. The vertical axis represents cumulative probabilities,

while the horizontal axis represents ranks. TMS, Transcranial Magnetic Stimulation; VR, Virtual Reality Exposure Therapy; CA, Computer-assisted

cognitive rehabilitation; tDCS, Transcranial Direct Current Stimulation; Acu, Acupuncture; NOR, Normal treatment (including conventional

rehabilitation and routine cognition training).

equal to 1, indicating that the model had converged and that the

findings were relatively stable.

As shown in network diagrams (Figure 3A), MoCA data

were available from 33 studies that included 2,316 patients,

of whom 1,102 in the NOR group, 293 in TMS, 109 in

VR, 318 in CA, 138 in tDCS, and 356 in Acupuncture.

The pooled MOCA data indicated that TMS (MD = 3.46,

95% CI: 2.01–4.84), tDCS (MD = 2.94, 95% CI: 1.19–

4.63), CA (MD = 2.28, 95% CI: 0.94–3.61) and Acupuncture

(MD = 3.66, 95% CI: 2.16–5.17) were more beneficial in

patients compared with that of NOR. In addition, TMS

and Acupuncture are better than VR when comparing the

efficacy of the various therapies (Figure 4A). Based on the

pooled data, the best therapies for MOCA were ranked

as follows: Acupuncture, TMS, tDCS, CA, VR, and NOR

(Figure 5A). The best SUCRA value for Acupuncture was

84.7%, which was close to that of TMS with a value of 79.7%

(Supplementary Table 4).
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FIGURE 6

Comparison-adjusted funnel plots. (A) MOCA, (B) MMSE, (C) BI. Labels: A, NOR(Normal rehabilitation); B, TMS (Transcranial Direct Current

Stimulation); C, VR (Virtual Reality Exposure Therapy); D, CA (Computer-assisted cognitive rehabilitation); E, tDCS (Transcranial Direct Current

Stimulation); F, Acupuncture.

In terms of MMSE, 35 studies with 2,573 patients were

included in the network meta-analysis, of whom 1,191 were

in the NOR group, 180 in TMS, 202 in VR, 216 in CA, 93

in tDCS, and 691 in Acupuncture (Figure 3B). The pooled

data demonstrated a significant improvement for TMS (MD

= 2.54, 95% CI: 0.08–4.91) and Acupuncture (MD = 2.28,

95% CI: 0.81–3.78) compared with that of NOR. Besides,

significant differences were not observed between the other

pairwise comparisons (Figure 4B). The best therapies for MMSE

were ranked as TMS, Acupuncture, VR, tDCS, CA, and NOR

(Figure 5B). And the best SUCRA value of TMS was 76.1%,

which was close to that of Acupuncture with a SUCRA value of

72.1% (Supplementary Table 4).

For the outcome of BI, 23 studies with 1,496 patients were

included in the network meta-analysis, of whom 726 were in

the NOR group, 130 in TMS, 136 in VR, 119 in CA, 105 in

tDCS, and 280 in Acupuncture (Figure 3C). The pooled data

of all the 5 therapies demonstrated a significant improvement

compared with that of NOR.However, when it comes to pairwise

comparisons, no significant differences were found between the

5 therapies (Figure 4C). Despite this, SUCRA was performed,

demonstrating that the best therapies for BI ranked as TMS,

tDCS, Acupuncture, VR, CA, and NOR (Figure 5C). And the

best SUCRA value of TMS was 89.1%, which was far higher than

that of the others (Supplementary Table 4).

Safety assessment

Adverse effects were reported only in 7 of the 55 included

randomized controlled trials (Supplementary Table 5). The

adverse effects reported were mild, such as dizziness and

headache during TMS, itching, tingling and burning at the site

of tDCS, and scalp hematoma after acupuncture. And there are

no adverse effects reported in VR and CA.

Publication bias

Comparison-adjusted funnel plots and Egger’s test were

performed to evaluate publication bias and small-study effects

forMoCA,MMSE, and BI, respectively. Both theMMSE (Egger’s

test p = 0.064) and BI (Egger’s test p = 0.533) comparison-

adjusted funnel plots were rather symmetric, indicating that

little publication bias likely occurred (Figures 6B,C). However,

the MoCA (Egger’s test p = 0.025) funnel plot was not well

symmetrical and suggested a publication bias (Figure 6A).

Transitivity, heterogeneity, and
inconsistency assessment

Variables about patients known to affect how well a therapy

works, such as age, percentage of male participants, sample size,

publication year, percentage of ischemic stroke, education years,

time post-stroke, course of treatment, and baseline indicators,

were evaluated and visualized using box plots to assessed the

transitivity assumption. As shown in Supplementary Figure 4,

these characteristics across comparisons were relatively similar.

The results of the test for inconsistency derived from the

node-splitting model indicated that there was no significant

difference in any of the comparisons across any of the outcomes,

with the exception of the comparison of NOR vs. VR in BI

(Supplementary Table 6). Similarly, when looking at the loop-

specific inconsistency test, every loop included a value of 0,

suggesting that no major contradiction was observed, with

the exception of the NOR-VR-Acupuncture comparison in BI

(Supplementary Figure 5). We then examined the goodness of

fit between the inconsistency model and the consistency model

to ensure there was no inconsistency at the treatment level.

The DIC of the consistency model was 173.57 for MOCA,

188.21 for MMSE, and 227.48 for BI, which was similar

Frontiers inNeurology 08 frontiersin.org

141

https://doi.org/10.3389/fneur.2022.977518
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2022.977518

to the DIC of the inconsistency model (174.11, 188.45, and

227.70, respectively), suggesting no evidence of inconsistency

was found in the network. Low heterogeneity was found across

most comparisons for all three outcomes, as measured by the

prediction interval (Supplementary Figure 6). For comparisons

with high heterogeneity, sensitivity analyses were performed and

no studies that significantly increase heterogeneity was found

(Supplementary Figures 7–9).

GRADE evaluation on the quality of
evidence

According to GRADE, the quality of the evidence is in the

range of very low and moderate. In terms of TMS vs. ACU, the

quality was moderate for MoCA, low for MMSE and BI. As for

TMS vs. tDCS, the quality was low for BI. The details are shown

in Supplementary Table 7.

Discussion

According to the “Global Stroke Fact Sheet 2022” (10)

published by the World Stroke Organization (WSO), reporting

that stroke remains the second leading cause of death and

the third leading cause of death and disability combined

in the world. Although the development of effective acute

treatments has resulted in global trends showing improvement

in stroke outcomes (24), PSCI remains highly prevalent (25,

26) and associated closely with disability, dependency, and

morbidity (6, 27), posing a major burden to patients, caregivers,

and health care systems (8, 9). Thus, viable treatments are

needed critically to help slow or stop the progression of

PSCI. Unfortunately, there is no pharmacological treatment

approved for PSCI, and prospective pharmaceutical medicines

have yet to show significant efficacy in decreasing or preventing

cognitive deterioration following a stroke (13, 28). Non-

pharmacological interventions such as TMS, tDCS, VR, CA,

and Acupuncture (16–20) have shown promise in several

studies. However, there is continued uncertainty on the benefits

due to methodological limitations that exist in most meta-

analyses above, such as the unclear definition of PSCI, mixing

of controlled groups, and combination of interventions in

different groups. Besides, neither do we know whether there

is a difference in efficacy among the non-pharmacological

interventions mentioned above.

In this study, we conducted a Bayesian statistics NMA of

5 potential non-pharmacological therapies for PSCI patients.

By comparing and ranking the treatments’ curative effects on

various outcomes, we were able to identify the treatment strategy

that was most widely regarded as effective. In order to make

the results more reliable, the participants in eligibility studies

were limited to PSCI patients, the control interventions were

limited to conventional rehabilitation combined with cognition

training, and the 5 non-pharmacological interventions should

not be applied in combination. Finally, two important findings

have been obtained. Firstly, compared with the NOR, all five

therapies had positive effects on some outcomes more or

less. Secondly, TMS and Acupuncture are superior to NOR

in all outcome indicators, with TMS being by far the most

effective method for the improvement of MMSE and BI,

and improvements in MoCA are most strongly associated

with Acupuncture.

For the treatment of cerebral dysfunction brought on by

a variety of disorders, TMS has shown to be an effective,

painless, and non-invasive method of activating or modulating

cortical targets in the central nervous system (CNS) (29,

30). Motor weakness, aphasia, and dysphagia have all been

shown to improve with TMS treatment in clinical studies for

individuals recovering from a stroke (31, 32). Furthermore, it

has been recommended as “level A evidence” to use in the

neurorehabilitation after motor stroke by the evidence-based

guidelines (33). Evidence from the animal study suggests that

the neuroprotective and pro-cognitive effects of TMS may

exert by enhancing neurogenesis and activating BDNF/TrkB

signaling pathway. A prospective pilot study conducted recently

demonstrate that the scores of several cognitive evaluations

increased after completion of the TMS session (34), which is

similar to the results of pooled data in our study. However, it

is worth noting that the stimulus parameters for TMS of the

studies included in our network meta-analysis were not entirely

consistent and subgroup analyses were not performed due to the

limited literature, which may affect the reliability of the results

to some extent.

Acupuncture, a well-known alternative treatment of

traditional Chinese medicine with advantages of safety,

reliability, and easy operation have been broadly applied to

post-stroke patients. The positive effectiveness and safety of

acupuncture in PSCI have been evaluated in a meta-analysis

conducted recently (20). Studies in rats demonstrate that

the improvement of the cognitive function performed by

acupuncture may be associated with suppression of NF-κB-p53

activation and oxidative stress (35). Although acupuncture

has been applied widely and a large number of articles have

been published, just as the large number of articles related to

acupuncture included in our network meta-analysis. However,

we found that acupuncture ranked first only in terms of the

probability of improving MoCA scores, with a tiny advantage

compared with TMS. This may be related to the slow onset of

acupuncture, and the evaluation time points of most studies

included in our network meta-analysis in this study were at 4

weeks. In addition, the data from different types of acupuncture

were pooled in the study, which may skew the results to some

extent. However, more in-depth comparative studies are needed

to verify this.

As shown in our study, tDCS and CA were effective

only in improving MoCA scores but had no significant effect

in improving MMSE, which may be related to the different
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characteristics between MoCA and MMSE scales. Studies have

shown that compared with MMSE, MoCA is more sensitive

to recognizing mild cognitive impairment, while MMSE is

more suitable for the diagnosis of moderate to severe cognitive

impairment (36, 37). In other words, MoCA is more likely to

identify mild changes in cognitive function. This also implies, to

some extent, that CA and tDCS are less effective in improving

cognitive function in PSCI patients.

Furthermore, we were surprised to find that VR did

little in improving MoCA and MMSE scores. Virtual reality

(VR), a relatively new practical technology developed in the

20th century, allows for the seamless integration of training

tasks into a simulated environment (such as a home, sports

training facility, or social setting). This creates a more realistic,

intuitive, and interactive feedback environment (38–40). Which

is regarded as a conducive way of improving the neuroplasticity

of the brain (41). However, the effectiveness of VR in improving

global cognitive function in PSCI patients remains uncertain,

just as demonstrated by several meta-analyses (41, 42). This may

be related to the fact that current VR rehabilitation content is

more focused on various immersive games that require more

physical mobilization to cooperate. Additional factors, such

as specific rehabilitation content of VR and the estimation

of different dimensions of cognitive function should be taken

into consideration in future studies, to get a more reliable and

instructive result.

Limitations

Our research has a number of drawbacks. First, the majority

of the research included was conducted in China, which

may have introduced bias and made the overall findings less

compelling. Second, several of the RCTs included in the present

study contained samples with < 30 people in each group,

which raises concerns about the robustness of the findings.

Fortunately, our network meta-analysis did not reveal any

glaring inconsistencies or heterogeneities. Third, the study did

not evaluate the scores of various dimensions of cognitive

function, which may underestimate the effectiveness of some

interventions. Finally, some baseline data related closely to

cognitive function, such as volume and location of cerebral

infarction, were not fully collected, which may reduce the

credibility of the results. Fortunately, other important baseline

data such as age, years of education, course of duration, etc.,

were collected and compared, and no significant differences

were found.

Conclusion

The results of this study provide some evidence that the 5

included therapies have positive effects for cognitive function

on certain outcomes more or less. TMS may be the preferred

therapy for improving MMSE and BI of PSCI patients, while

acupuncture may be the preferred therapy in MOCA. CA and

tDCS are also beneficial with less effective. The effects of VR are

still waiting for more research to confirm.
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Predicting futile recanalization,
malignant cerebral edema, and
cerebral herniation using
intelligible ensemble machine
learning following mechanical
thrombectomy for acute
ischemic stroke

Weixiong Zeng1†, Wei Li2†, Kaibin Huang3, Zhenzhou Lin3,

Hui Dai4,5, Zilong He1, Renyi Liu1, Zhaodong Zeng1,

Genggeng Qin1*, Weiguo Chen1* and Yongming Wu3*

1Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China,
2Department of Neurology, The Second Hospital of Jilin University, Changchun, China,
3Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China,
4Hospital O�ce, Ganzhou People’s Hospital, Ganzhou, China, 5Hospital O�ce, Ganzhou

Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China

Purpose: To establish an ensemblemachine learning (ML) model for predicting

the risk of futile recanalization, malignant cerebral edema (MCE), and cerebral

herniation (CH) in patients with acute ischemic stroke (AIS) who underwent

mechanical thrombectomy (MT) and recanalization.

Methods: This prospective study included 110 patients with premorbid mRS

≤ 2 who met the inclusion criteria. Futile recanalization was defined as a 90-

day modified Rankin Scale score >2. Clinical and imaging data were used to

construct five ML models that were fused into a logistic regression algorithm

using the stacking method (LR-Stacking). We added the Shapley Additive

Explanation method to display crucial factors and explain the decision process

of models for each patient. Prediction performances were compared using

area under the receiver operating characteristic curve (AUC), F1-score, and

decision curve analysis (DCA).

Results: A total of 61 patients (55.5%) experienced futile recanalization, and 34

(30.9%) and 22 (20.0%) patients developedMCE andCH, respectively. In test set,

the AUCs for the LR-Stacking model were 0.949, 0.885, and 0.904 for the three

outcomes mentioned above. The F1-scores were 0.882, 0.895, and 0.909,

respectively. The DCA showed that the LR-Stacking model provided more net

benefits for predicting MCE and CH. The most important factors were the

hypodensity volume and proportion in the corresponding vascular supply area.
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Conclusion: Using the ensemble MLmodel to analyze the clinical and imaging

data of AIS patients with successful recanalization at admission and within 24h

after MT allowed for accurately predicting the risks of futile recanalization,

MCE, and CH.

KEYWORDS

acute ischemic stroke, machine learning, futile recanalization, malignant cerebral

edema, cerebral herniation

Introduction

Stroke is a leading cause of mortality and disability

worldwide. The global deaths caused by ischemic stroke

increased by 60.68% over 30 years, from 2,049,670 in 1990

to 3,293,400 in 2019 (1). Acute ischemic stroke (AIS)

is characterized by a sudden reduction or cessation of

blood flow in a brain artery that results in ischemia and

hypoxia of the brain tissue in the corresponding blood

supply area. According to current international guidelines and

related research, endovascular mechanical thrombectomy (MT)

combined with recombinant tissue-type plasminogen activator

(rt-PA) thrombolysis is the standard treatment in patients with

AIS due to occlusion of the proximal anterior intracranial

region, while MT is one of the most important forms of

endovascular treatment (EVT) for large vessel occlusion (2–4).

However, despite recent improvements in MT procedure,

futile recanalization, defined as a 90-day modified Rankin

Scale (mRS-90) score >2 after adequate vessel recanalization,

remains a serious clinical problem (5). The incidence of futile

recanalization after MT is approximately 49–67% (5). The

primary risk factors for patients with AIS include large infarct

volume, poor collateral circulation, and high National Institutes

of Health Stroke Scale (NIHSS) score (6–8). While the mRS

and NIHSS scores are among the methods used to evaluate

AIS functional outcomes, few studies have focused on the

functional outcomes and potentially lethal complications in

patients with AIS who have undergone an MT and for whom

recanalization was achieved. Although computed tomography-

angiography and magnetic resonance imaging (MRI) can be

used to accurately evaluate the entire ischemic lesion (core and

penumbra), non-contrast computed Tomography (NCCT) is

common for patients with AIS after MT, due to its widespread

availability, low cost, and rapid scanning speed (9).

Malignant cerebral edema (MCE) and cerebral herniation

(CH) are relatively common and serious complications that

lead to rapid deterioration of patient’s condition, coma, poor

prognosis, or even death. Therefore, being able to rapidly

recognize which patients are at high risk for futile recanalization

and potentially lethal complications after an MT can help

clinicians make individualized treatment decisions.

The machine learning (ML) method can accurately process

complex nonlinear relationships among a large number of

variables, which is difficult to accomplish with traditional

statistical models (10, 11). This technology has been applied to

predict the outcomes of patients with AIS; however, a drawback

of complex ML algorithms is its interpretability has limitations,

which are commonly referred to as black-box models for

clinicians. Previous researchers have attempted to solve this

problem using simple ML algorithms, but more complex and

improved models, such as the support vector machine (SVM),

deep neural network, and ensemble ML algorithms, which

may perform better in stroke-related tasks have not been fully

utilized (12, 13). In addition, few studies have focused on

the ability of applied complex ML methods to predict the

occurrence of malignant complications in patients who undergo

MT and recanalization.

Therefore, in this study, ensemble ML models were

constructed to predict futile recanalization, MCE, and CH in

patients with AIS treated with MT and in whom successful

recanalization was achieved. The model we constructed

can accurately identify and display the high-risk factors of

each patient.

Methods

Study population

We recruited 110 patients with confirmed AIS and large

vessel anterior circulation occlusion who underwent MT and

in whom successful recanalization was achieved, modified

Thrombolysis in Cerebral Infarction (mTICI) score 2b-3, in

the Department of Neurology at Nanfang Hospital between

June 2016 and November 2019. All the included patients had

a unilateral internal carotid or middle cerebral artery (M1,

M2) occlusion that was confirmed using digital subtraction

angiography. A femoral artery puncture was performed within

6 h of stroke onset unless the ischemic and infarction

areas were mismatched found by imaging evaluation (CTP

and MRA) and MT was deemed necessary; the puncture

could be performed within 6–24 h. The patients underwent

an NCCT examination within 24 h after the MT. Figure 1
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FIGURE 1

The inclusion and exclusion criteria.

shows the inclusion and exclusion criteria. The decision to

perform MT and administer rt-PA was made individually for

each patient through a consensus of therapeutic neurologists

and neurointerventionalists and by following national and

international guidelines (3). The exclusion criteria were as

follows: (1) age >80 years; (2) premorbid mRS >2; (3) history

or evidence of cerebral hemorrhage, subarachnoid hemorrhage,

venous malformations, or brain aneurysms or tumors; (4) high

risk of bleeding, such as platelet count <100 × 109/L, active

bleeding, trauma, or surgery within 2 months before the onset

of stroke; (5) mental abnormalities before stroke that affected

neurological function assessments; (6) comorbid hematological

conditions, malignant tumors, severe heart, lung, liver, renal

failure, or life expectancy of <1 year.

Image acquisition and feature extraction

Using the NCCT scan that was acquired for each patient

with AIS, we calculated the volume (mm3) and maximum area

(mm2) of the hypo- and hyperdense lesions on the picture

archiving and communication systemworkstation using manual

segmentation and automatic measurement tools. All the images

were independently studied by two experienced neurologists

who were blinded to the clinical characteristics. Differences

of opinion were resolved through discussion. The proportion

of hypodense lesions in the responsible vascular supply area

was categorized into one of the following four levels: 0: no

hypodense lesions; 1: proportion <1/3; 2: proportion between

1/3 and 2/3; 3: proportion >2/3. The proportion of hyperdense

lesions in the responsible vascular supply area was categorized

into one of the following four levels: 0: no hyperdense lesions;

1: scattered punctate hyperdensity lesions were observed; 2:

fused hyperdensity, but the area was <1/3 of the corresponding

vascular supply area, with or without a space-occupying effect;

3: fused hyperdensity and area >1/3 of the corresponding

vascular supply area, with or without a space-occupying effect

(14, 15). We also observed hyperdensity in the subarachnoid

space and calculated the Alberta Stroke Program Early CT Score

(ASPECTS) based on the NCCT images that were acquired at

admission and within 24 h after the MT (16).

Clinical assessments and outcomes

Baseline demographic and clinical characteristics (sex, age,

smoking, NIHSS score, Glasgow Coma Scale (GCS) score,

blood pressure, and blood sugar on admission), history of

cardiovascular diseases (hypertension, hyperlipidemia, coronary

heart disease, atrial fibrillation, and diabetes), time from stroke

onset to femoral artery puncture, and thrombolytic therapy

were each considered in the present study. The feature set also
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included interventional surgical-related characteristics (time

interval from stroke onset to vascular recanalization, duration

of surgery, thrombolysis or not, and times of embolectomy), and

blood testing results before and after MT (D-dimer, fibrinogen,

leukocytes, neutrophils, and lymphocytes).

The mRS-90 is used to indicate a patient’s functional

outcome; therefore, meaningful recanalization was defined in

this study as mRS-90 of 0–2, and futile recanalization was

defined as mRS-90 of 3–6. We used the same feature set to

predict the risk of MCE and CH. MCE was defined as meeting

the following two criteria: (1) an increase in the NIHSS score

≥4 or an increase of the consciousness evaluation part of the

NIHSS score ≥1; (2) the range of the hypodense lesions was

>50% of the supply area of the middle cerebral artery, and it

was accompanied by signs of local brain edema, such as lateral

ventricle compression, disappearance of the sulcus, midline

displacement of the septum pellucidum, or a pineal layer>5mm

with basal cistern occlusion (17). CH was defined as meeting

the following two criteria: (1) one or more of the following

clinical symptoms occur the presence of vomiting: decreased

consciousness, or mydriasis with the disappearance of the light

reflex; (2) CT- orMRI-confirmed brain tissue displacement (18).

Model development

A dataset was constructed, which included baseline

demographic and clinical characteristics, clinical information

before and after interventional surgery, and brain NCCT

features after MT. To preprocess the data, the missing dataset

values were filled by averages calculated based on the complete

dataset, and the dataset was randomly divided into a training set

and a test set at a ratio of 7:3. We normalized the quantitative

data to a 0–1 range to accelerate and improve model training.

When the level of each indicator varies greatly, the role of the

indicator with high value in the comprehensive analysis will

be highlighted, and the role of the indicator with a low-value

level will be relatively weakened. Data standardization can

effectively prevent gradient explosion and overfitting (19, 20).

The multiclassification data were processed using one-hot

encoding. To solve the problem of the unbalanced sample size

of the patients with MCE and CH, we used the upsampling

method, synthetic minority oversampling technique (SMOTE),

to balance the training dataset (21). The SMOTE algorithm is

implemented by imblearn package in Python 3.7.4.

In the present study, five commonML algorithms, including

SVM, random forest classifier (RFC), extreme gradient boosting

(XGBoost), k-nearest neighbor (KNN), and gradient-boosting

machine (GBM), were developed and validated using the

scikit-learn and XGBoost packages in Python 3.7.4 to predict

futile recanalization, MCE, and CH in the patients with AIS.

Ten-fold cross-validation was used for model derivation and

internal validation. The grid search algorithm was used during

the training process for each model to optimize model’s

hyperparameters on the training set as the standard of the area

under the receiver operating characteristic curve (AUC).

We used the five basic ML models as base learners

and developed a stacking ensemble model using the logistic

regression (LR-Stacking) algorithm as the meta-learner. The

model development pipeline is shown in Figure 2 and the

detailed process for constructing the LR-Stacking model is

shown in Supplementary Figure 1.

Model evaluation

The AUC, sensitivity, specificity, accuracy, and F1-score of

the five basicMLmodels and LR-Stackingmodel were calculated

in the test set, and used to assess the performance of the

models. The superiority of the ensemble ML algorithm over the

conventional statistical method was evaluated by comparing the

performance of the ensemble ML models and LR model. The

AUCs of the models were compared using the Delong test in

MedCalc 19.0.7 (MedCalc Software Ltd., Ostend, Belgium).

The Shapley Additive Explanations (SHAP) local

explanatory technique explained the optimal model by

calculating each feature’s contribution to the predictive

results individually and globally (22, 23). According to this

model interpretation method, the feature importance of each

prediction task can be observed, and the basis of the prediction

results obtained by the model for each patient.

Statistical analysis

Univariate analyses were performed using the Mann–

Whitney U test for continuous variables and the chi-squared

test for categorical variables. All the tests were two-sided, and

statistical significance was set at P < 0.05. Statistical analyses

were performed using SPSS version 25.0 (IBM Corp., Armonk,

NY, USA) and R Studio 4.0.3 (R Foundation for Statistical

Computing, Vienna, Austria).

Results

Study population

A total of 110 patients with AIS (average age, 58.16 ±

12.57 years; 78 males and 32 females) were included in this

study. Among them, 61 (55.5%) patients experienced futile

recanalization, 34 (30.9%) developed MCE, and 22 (20.0%)

developed CH. The dataset was randomly divided into a training

set (n = 77, 70%) and a test set (n = 33, 30%). In the training

set, there were 44 (57.1%) patients with futile recanalization, 24

(31.2%) withMCE, and 15 (19.5%) with CH. In the test set, there
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FIGURE 2

The model development pipeline. First, data were randomly divided into training and test sets without duplication. Next, using the training set,

the five basic ML algorithms were internally trained, and their predictive ability was validated by applying a 10-fold cross-validation and

hyperparameter optimization using the grid search method. Subsequently, the basic ML models were integrated into the LR-Stacking model,

and the optimal model was evaluated in test set.
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TABLE 1 Summary of the important characteristics comparing AIS patients with futile recanalization vs. meaningful recanalization.

mRS-90 ≤ 2 (Mean-sd/IQR/N) mRS-90 > 2 (Mean-sd/IQR/N) All (Mean-sd/IQR/N) p-value

Patients 49 (44.5%) 61 (55.5%) 110

Age 56.04± 13.08 59.87± 11.98 58.16± 12.57 0.144

NIHSS at admission 11.73 (2–23) 15.62 (3–28) 13.89 (2–28) 0.059

GCS at admission 12.67 (6–15) 10.94 (3–15) 11.71 (3–15) 0.021*

DBP 79.29± 16.07 80.95± 12.25 80.21± 14.04 0.284

Blood glucose at admission 6.44 (5.62–8.55) 7.21 (6.50–8.82) 7.11 (6.11–8.69) 0.168

TOAST-LAA 19 23 42 0.354

Hyperdensity proportion <0.001*

0 32 23 55

1 12 5 17

2 5 17 22

3 0 16 16

Hyperdensity volume 0 (0–1.43) 2.90 (0–13.19) 0.20 (0–4.55) <0.001*

ASPECTS after embolectomy 9.43 (7–10) 8.38 (4–10) 8.85 (4–10) 0.029*

Hyperdensity in subarachnoid 11 27 38 0.017*

Hyperdensity in anyposition 23 43 66 0.012*

Maximum slice area of hyperdensity 0 (0–95.48) 260.98 (0–1097.02) 15.26 (0–430.41) <0.001*

Hypodensity proportion <0.001*

1 40 14 54

2 4 16 20

3 5 31 36

Hypodensity proportion > 2/3 5 31 36 <0.001*

Hypodensity proportion > 1/3 9 47 56 <0.001*

Hypodensity volume 15.16 (5.21–31.98) 97.81 (34.43–177.63) 39.79 (12.67–127.83) <0.001*

D-dimer after embolectomy 1.31 (0.78–2.57) 3.18 (1.48–6.86) 2.25 (1.02–5.52) 0.004*

mRS-90, 90-day modified Rankin Scale; NCCT, non-contrast computed tomography; ASPECTS, alberta stroke program early CT score.
*Significant difference between the two groups (p < 0.05).

were 17 (51.5%) patients with futile recanalization, 10 (30.3%)

withMCE, and 7 (21.2%) with CH. ForMCE, SMOTE algorithm

generated 29 cases in the training set, including 19 MCE and

10 non-MCE. For CH, SMOTE algorithm generated 47 cases

with CH in the training set. The demographic data including the

generated data are shown in Supplementary Tables 1–3.

Table 1 displays several significant differences in

characteristics across the two groups of meaningful

recanalization and futile recanalization. The patients with

futile recanalization had lower GCS scores at admission, higher

D-dimer levels after undergoing embolectomy, lower ASPECTS

within 24 h after embolectomy, and greater prevalence of

hyperdensity in subarachnoid than meaningful recanalization.

The complete characteristic distribution differences among

the three groups are shown in Supplementary Tables 4–6.

The patients with MCE were older, and they had lower GCS

scores and ASPECTS at admission, higher D-dimer, WBC, and

neutrophil levels, and a higher frequency of the large artery

atherosclerosis (LAA) TOAST classification than non-MCE

patients. The patients with CH had a shorter interval from onset

to puncture, lower ASPECTS at admission, and higher D-dimer,

WBC, and neutrophil levels than non-CH. Furthermore, the

patients with AIS and either futile recanalization, MCE, or CH

had broad hyper- and hypodense lesions, and they generally

accounted for a large proportion of the responsible vascular

supply area.

Model performance

Each basic ML algorithm performed well in the binary

category classification of mRS-90, MCE, and CH. The AUC,

sensitivity, specificity, accuracy, and F1-score of each model

using the independent test set are presented in Table 2.

Figures 3–5 show the receiver operating characteristic curve

(ROC), decision curve analysis (DCA), and feature importance

of each basic ML and LR-Stacking model for the three

classification tasks. The optimal basic ML models (KNN,

RFC, and RFC) predicting futile recanalization, MCE, and

CH had AUCs of 0.927, 0.883, and 0.940, respectively,
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TABLE 2 The AUC, sensitivity, specificity, accuracy, and F1-score comparisons.

AUC Sensitivity Specificity Accuracy F1-score

mRS-90

SVM 0.882 (0.751, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.879

RFC 0.897 (0.782, 1.000) 0.882 (0.64, 0.99) 0.813 (0.544, 0.960) 0.849 (0.681, 0.949) 0.857

XGBoost 0.879 (0.734, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.882

KNN 0.927 (0.828, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.879

GBM 0.875 (0.747, 1.000) 0.882 (0.64, 0.99) 0.813 (0.544, 0.960) 0.849 (0.681, 0.949) 0.848

LR-stacking 0.949 (0.882, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.882

MCE

SVM 0.826 (0.628, 1.000) 0.700 (0.348, 0.933) 0.826 (0.612, 0.951) 0.788 (0.611, 0.910) 0.756

RFC 0.883 (0.725, 1.000) 0.900 (0.555, 0.998) 0.870 (0.664, 0.972) 0.879 (0.718, 0.966) 0.864

XGBoost 0.867 (0.690, 1.000) 0.800 (0.444, 0.975) 0.913 (0.720, 0.989) 0.879 (0.718, 0.966) 0.856

KNN 0.857 (0.714, 0.999) 0.800 (0.444, 0.975) 0.870 (0.664, 0.972) 0.849 (0.681, 0.949) 0.825

GBM 0.848 (0.671, 1.000) 0.500 (0.187, 0.813) 0.870 (0.664, 0.972) 0.758 (0.577, 0.889) 0.694

LR-stacking 0.885 (0.738, 1.000) 0.900 (0.555, 0.998) 0.913 (0.720, 0.989) 0.909 (0.757, 0.981) 0.895

CH

SVM 0.890 (0.756, 1.000) 0.571 (0.184, 0.901) 0.962 (0.804, 0.999) 0.879 (0.718, 0.966) 0.796

RFC 0.940 (0.851, 1.000) 0.714 (0.290, 0.963) 0.962 (0.804, 0.999) 0.909 (0.757, 0.981) 0.856

XGBoost 0.857 (0.654, 1.000) 0.571 (0.184, 0.901) 0.923 (0.749, 0.991) 0.849 (0.681, 0.949) 0.761

KNN 0.915 (0.827, 1.000) 0.857 (0.421, 0.996) 0.885 (0.699, 0.976) 0.879 (0.718, 0.966) 0.835

GBM 0.890 (0.760, 1.000) 0.714 (0.290, 0.963) 0.885 (0.699, 0.976) 0.849 (0.681, 0.949) 0.784

LR-Stacking 0.904 (0.715, 1.000) 0.857 (0.421, 0.996) 0.962 (0.804, 0.999) 0.939 (0.798, 0.993) 0.909

AUC, area under the receiver operating characteristic curve; mRS-90, 90-day modified rankin scale; MCE, malignant cerebral edema; CH, cerebral herniation; SVM, support vector

machine; RFC, random forest classifier; XGBoost, extreme gradient boosting; KNN, k-nearest neighbor; GBM, gradient-boosting machine; LR, logistics regression.

sensitivities of 88.2, 90.0, and 71.4%, respectively, specificities

of 87.5, 87.0, and 96.2%, respectively, accuracies of 87.9, 87.9,

and 90.9%, respectively, and F1-scores of 0.879, 0.864, and

0.856, respectively.

For predicting the futile recanalization, MCE, and CH,

the LR-Stacking models had AUCs of 0.949, 0.885, and 0.904,

respectively, sensitivities of 88.2, 90.0, and 85.7%, respectively,

specificities of 87.5, 91.3, and 96.2%, respectively, accuracies of

87.9, 90.9, and 93.9%, respectively, and F1-scores of 0.882, 0.895,

and 0.909, respectively. Compared with the optimal basic ML

models for predicting futile recanalization andMCE, the Delong

test showed that the AUC of the LR-Stacking model improved

by 0.022 (p = 0.457) and 0.002 (p = 0.927), respectively. For

predicting CH, the AUC of the LR-Stacking model decreased

by 0.036 (p = 0.635) compared with that of the RFC model.

Moreover, the LR-Stacking models performed better than all

five basic ML models in terms of their sensitivity, specificity,

accuracy, and especially F1-score.

Under the same conditions, for predicting futile

recanalization, MCE, and CH, the LR models had AUCs

of 0.908, 0.852, and 0.929, respectively. Comparing the

performance of the ensembleMLmethod against the generalized

statistical method for predicting futile recanalization and MCE

demonstrated that the AUC of the LR-Stacking model improved

by 0.041 (p = 0.324) and 0.032 (p = 0.395), respectively. For

predicting CH, the AUC of the LR-Stacking model decreased by

0.025 (p= 0.739). Similarly, the LR models show a similar trend

to the basic ML models in that their accuracy, F1-score, and

other statistical are lower than those of the LR-Stacking models.

The model comparison results are shown in Table 3.

DCA demonstrated that if the threshold probability in the

clinical decision was >20%, the ML models provided a greater

benefit than the treat-all models. For classifying MCE and CH,

the overall net benefit of the LR-Stacking model was greater

than that of the other ML models. For example, at the 40% risk

cutoff, the net benefits from the LR-Stacking model were 23 and

16%, respectively, which are equivalent to performing clinical

interventions for 23 MCE patients and 16 CH patients per 100

patients without any of the interventions being unnecessary and

21 (MCE) and 25 (CH) fewer unnecessary interventions with no

increase in the number of clinically significant missed MCE and

CH diagnoses.

Feature importance analysis

For predicting the outcomes of the patients with AIS, the LR-

Stackingmodel indicated that themost important characteristics

were the hypodensity volume and proportion of the responsible
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FIGURE 3

The results from the ML models and contributions of various features to predicting futile recanalization. (A) The ROC curve of five ML models

and LR-Stacking model. (B) The net benefit of the various models. (C) The features are listed in descending order according to the contributions

from the LR-Stacking model. (D) The e�ects of the features on prediction. The colors indicate the value of each feature, from high (red) to low

(blue). The horizontal location shows whether the e�ect of the value leads to a prediction of futile recanalization. Each point is a SHAP value of a

feature for a case.

vascular supply area, NIHSS score at admission, and maximum

layer area of hyperdensity. For predicting MCE and CH, the LR-

Stackingmodel primarily classified patients by their hypodensity

volume. The SHAP values for all the basic MLmodels are shown

in Supplementary Figures 2–4.

We displayed the LR-Stacking models’ decision-making

processes for two patients from the test set. The models’

prediction processes for themRS-90,MCE, and CH are shown in

Figure 6. Case #1 (Figure 6A) was a patient who had an mRS-90

of 5, indicating futile recanalization; this patient developedMCE

and CH. Case #2 (Figure 6B) was a patient who had an mRS-90

of 2, indicating meaningful recanalization; this patient did not

develop MCE or CH. We found that the LR-Stacking models

output the classification results for case #1 primarily based

on the hypodensity volume; however, the other features that

supported a futile recanalization prediction were different from

those for case #2. The LR-stacking model incorrectly classified

case #2 as having an mRS-90 >2, primarily due to the high

hypodensity proportion in the responsible vascular supply. The

LR-Stacking model also determined that MCE and CH would

not occur in case #2 due to the TOAST being classified as LAA

and the presence of a relatively small hypodense volume.

Discussion

The present study demonstrated that the predictive models

based on clinical and NCCT- characteristics and ensemble

ML algorithm allows to accurately predict the risk of futile

recanalization, MCE, and CH in patients with AIS who

were treated with MT and for whom successful endovascular

recanalization was achieved. In terms of overall prediction

performance, the ensemble MLmethod in predicting these three

adverse events is better than that of the basic ML models and

generalized statistical method. We added SHAP algorithm to

show the top features and how they impact the models’ output.

The results of SHAP analysis showed that hypodensity volume

and proportion of the responsible vascular supply area, NIHSS

Frontiers inNeurology 08 frontiersin.org

153

https://doi.org/10.3389/fneur.2022.982783
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zeng et al. 10.3389/fneur.2022.982783

FIGURE 4

The results of the ML models and the contributions of various features to predicting MCE. (A) The ROC curve of five ML models and LR-Stacking

model. (B) The net benefit of the various models. (C) The importance of the features for the LR-Stacking model. (D) The e�ects of the features

on the predictions of the LR-Stacking model.

at admission, and maximum slice area of hyperdensity was the

top-5 predictors for predicting futile recanalization. Meanwhile,

hypodensity volume and proportion, TOAST-LAAwere the top-

3 predictors for predicting MCE, and hypodensity volume and

proportion, and smoking history were the top-3predictors for

predicting CH.

Most studies demonstrated that ML can be used as an

auxiliary means of clinical evaluation to predict the functional

outcomes after EVT of AIS patients (24–26). However, most

of the research cohorts were AIS patients with anterior

circulation infarction, regardless of the efficacy of EVT, and only

their mRS-90 was concerned. Despite complete endovascular

recanalization, a significant percentage of patients with AIS do

not achieve a good clinical outcome (5). The characteristics

of the present study are that it focused on patients with AIS

who underwentMT and completely recanalization (mTICI score

2b-3), and three adverse outcomes including mRS-90, MCE,

and CH were predicted. Moreover, the prediction models could

display the specific decision-making process of each patient,

which indicated that it may have the potential for clinical

application. It means that the models can identify the patients

with a high risk of adverse outcomes as early as possible and help

doctors to be alert and take the high-risk factors suggested by the

model as the target of personalized intervention.

According to the results, we can easily observe that the

performance of the ensemble ML models was better than

the basic ML models and the generalized LR models in the

prediction of futile recanalization and MCE. Early identification

of high-risk patients with MCE or CH is of great significance

in treatment decisions. Prediction models require excellent

sensitivity and net benefits due to the severe consequences of

misclassifying MCE and CH. Although the AUC of LR-Stacking

model was lower than that of RFC, we chose the LR-Stacking

model as the final prediction model for evaluating the risk of CH

after considering additional scores, particularly the F1-score and

DCA results.

The more complex and accurate the ML model, the worse

its interpretability. The primary obstacle to the application and

popularization of AI prediction models in the clinical setting is

the difficulty clinicians experience understanding, trusting, and
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FIGURE 5

The results of the ML models and contributions of various features to predicting CH. (A) The ROC curve of five ML models and LR-Stacking

model. (B) The net benefit of the various models. (C) The importance of the features for the LR-Stacking model. (D) The e�ects of the features

on the predictions of the LR-Stacking model.

using ML model prediction results and applying them to each

patient. Although someML algorithms have embedded modules

of feature importance, they are still insufficient to support

clinical applications. Therefore, we added SHAP algorithm

to visualize the decision-making process of the ML models.

According to the analysis results, we can easily observe that

clinically severe AIS has a high probability of producing

adverse outcomes according to the severity and extent of the

initial ischemia. However, although hypodensity volume and

proportion showed a strong correlation with the three adverse

events, it should be emphasized that they alone were not enough

to reliably complete the prediction tasks. A pooled analysis of 7

randomized multicenter trials on EVT demonstrated that only

12% of the treatment benefit according to mRS-90 could be

explained by the follow-up infarct volume, which is not a valid

proxy for estimating treatment effect in phase II and III trials

of AIS (27). On this point, the basic ML algorithms in this

study could integrate hypodensity volume and proportion and

other meaningful predictors of adverse outcomes because it is

good at finding and processing complex relationships between

numerous input variables to make more accurate predictions

(28). After that, by integrating the advantages of five basic ML

algorithms, the optimal models were constructed.

Several studies have shown that a large infarct volume is

associated with worse functional outcomes for patients with

AIS, indicating that the infarct volume is an independent

predictor of functional outcomes for these patients (29–31).

Furthermore, multiple factors, including clinical and imaging

features and MT-related information, may affect whether

futile recanalization occurs. Analyzing these factors will help

clinicians make individualized decisions about the necessity

of an MT for their patients. Hypertension, LAA, older age,

hyperglycemia, and lower GCS scores at admission support the

model to predict poor functional prognosis. Hypertension and

age over 70 may increase the risk of futile recanalization (32–

34). Hyperglycemia is related to larger infarct volumes and
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TABLE 3 The AUC, sensitivity, specificity, accuracy, and F1-score comparisons of generalized LR and LR-Stacking method.

AUC Sensitivity Specificity Accuracy F1-score p-value

mRS-90

LR 0.908 (0.7914, 1.0000) 0.882 (0.6356, 0.9854) 0.875 (0.6165, 0.9845) 0.879 (0.7180, 0.9660) 0.879 0.324

LR-stacking 0.949 (0.882, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.882

MCE

LR 0.852 (0.6551, 1.0000) 0.900 (0.5550, 0.9975) 0.870 (0.6641, 0.9722) 0.879 (0.7180, 0.9660) 0.864 0.395

LR-stacking 0.885 (0.738, 1.000) 0.900 (0.555, 0.998) 0.913 (0.720, 0.989) 0.909 (0.757, 0.981) 0.895

CH

LR 0.929 (0.8263, 1.0000) 0.714 (0.2904, 0.9633) 0.923 (0.7487, 0.9905) 0.879 (0.7180, 0.9660) 0.819 0.739

LR-stacking 0.904 (0.715, 1.000) 0.857 (0.421, 0.996) 0.962 (0.804, 0.999) 0.939 (0.798, 0.993) 0.909

The AUCs of three groups of models were compared by Delong test.

AUC, area under the receiver operating characteristic curve; mRS-90, 90-day modified Rankin Scale; MCE, malignant cerebral edema; CH, cerebral herniation; LR, logistics regression.

reduced salvage of perfusion-diffusion mismatch tissue (35).

On the other hand, hyperglycemia may cause a larger increase

in the infarct volume leading to a worse clinical outcome

despite complete recanalization (36). Functional outcomes of

AIS patients after MT were similar among different TOAST

subtypes, but it is still unknown whether the subtype has

an impact on the patients with complete recanalization (37).

Some studies also suggested that the functional outcomes of

patients with LAA were worse than other TOAST criteria, which

may be related to inflammation and metabolic response (38,

39). Moreover, previous studies have shown that for patients

with AIS, large infarct volume, poor collateral circulation,

and high NIHSS score are significant predictors of functional

outcomes and indicators of the severity of the neurological

injury (6–8). However, unlike in other studies, our results

show that the symptom onset time and interval from puncture

to recanalization did not play a particularly strong role in

predicting futile recanalization (12, 40).

The infarct volume can be used to predict MCE by

measuring it on early MRI scans accurately; however, MRI

scans may not be readily available to patients with AIS (41).

In contrast, hypodensity is easily available and measurable in

CT. Although it may be a variable combination of infarction

and edema, hypodensity is also closely correlated with the

mRS-90, potentially lethal MCE, and CH (41–43). The SHAP

values for the LR-Stacking models indicate that the NCCT-

based infarct volume is an important risk factor for predicting

MCE and CH. Interestingly, the model considered that the

history of smoke is a protective factor against MCE and

CH after MT, which was contrary to our common sense

and some previous research. Smoking severely affects the

cerebrovascular reserve and induces intracranial atherosclerotic

changes, and it may impair cerebrovascular reactivity and lead

to poor collateral circulation (44, 45). However, a meta-analysis

based on 45,826 AIS patients showed a similar result that

smoking was a protective factor against MCE (46). According

to a relevant study, the activation of endogenous cannabinoid

system may play a significant role in the neuroprotective

effect of nicotine (47). It may be due to nicotine promoting

the release of endocannabinoids, resulting in hypothermia,

which inhibits the inflammatory response and alleviates cerebral

edema (48, 49). Despite the SHAP values for other features

being much lower than the infarct volumes, it cannot be

assumed that other features are not essential or useful. In

addition, we found that the patients with CH had shorter

groin puncture time in this cohort, but there was no statistical

difference in groin puncture time between the cohorts of futile

recanalization and non-futile recanalization. We think it is

caused by the small sample size of data because there was

no special treatment performed for this group of patients

before MT. This feature also did not play a significant role

in our ML models. As the base learners of the LR-Stacking

model, the great performances of the SVM, RFC, and KNN

algorithms are facilitated by the interactions among multiple

features. Overall, the NCCT-based cerebral infarct volume

was the most stable and robust predictor in each basic

ML model.

Our study had some limitations. First, this was a

single-center study with a small sample size, and the

constructed models need further external validation.

Second, the low MCE and CH proportions may have

affected the statistical power of the study; therefore, we

applied SMOTE to the data segmentation and model

training to reduce the influence of the unbalanced

data. Finally, this study did not distinguish between the

ischemic core and penumbra, and their impact on ML

is unknown.

Conclusion

This study demonstrates that comprehensive analysis

of clinical and NCCT characteristics using ML algorithms

allowed for the accurate prediction of clinical outcomes
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FIGURE 6

The force plot for the LR-Stacking model decision process for evaluating the risk of futile recanalization, MCE, and CH in two patients with AIS in

the test set. (A) A patient with mRS-90 of 5, indicating futile recanalization and developed MCE and CH. (B) A patient with mRS-90 of 2,

indicating meaningful recanalization and did not develop MCE or CH. Each feature provides a SHAP value for the base value of the model. The

final prediction value, f(x), is obtained using to the weight of the features and the model processing. When f(x) > 0, the model determines that

the case is positive; otherwise, it is considered negative.

and malignant complications following MT for patients

with AIS. We designed interpretable LR-stacking models

constructed using five basic ML algorithms and used them

as final prediction models. The hypodensity volume and

proportion in the responsible vascular supply area were the

most important imaging predictors, and the NIHSS score

at admission was the most important clinical predictor of

futile recanalization, whereas the hypodensity volume was the

most important predictor of both MCE and CH. We utilized

SHAP technology to show the ensemble model evaluation
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process for each case, which enabled us to promptly determine

the individual risk factors for adverse outcomes and design

corresponding clinical interventions to improve the prognosis

and reduce the risk of malignant complications in the patients

with AIS.
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Hyperhomocysteinemia and
intracranial aneurysm: A
mendelian randomization study
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Objective: To investigate the link between genetic variants associated with

plasma homocysteine levels and risk of intracranial aneurysm (IA) using two-

sample Mendelian randomization.

Methods: We used single-nucleotide polymorphisms associated with human

plasma homocysteine levels as instrumental variables for the primary analysis

in a genome-wide association study of 44,147 subjects of European ancestry.

Summary-level statistics were obtained for 79,429 individuals, including 7,495

IA cases and 71,934 controls. To enhance validity, five di�erent Mendelian

randomization methods (MR-Egger, weighted median, inverse variance

weighted, simple mode, and weighted mode) were used for the analyses.

Results: The inverse variance weighted analysis method produced P-values

of 0.398 for aneurysmal subarachnoid hemorrhage [odds ratio (OR): 1.104;

95% confidence interval (CI): 0.878–1.387], 0.246 for IA (OR: 1.124; 95% CI:

0.923–1.368), and 0.644 for unruptured IA (OR: 1.126; 95% CI: 0.682–1.858).

TheMR-Egger analysis showed no association between IAs and homocysteine,

with all P > 0.05.

Conclusion: Using gene-related instrumental variables, the Mendelian

randomization analyses demonstrated a lack of an association between plasma

homocysteine levels and IAs or aneurysmal subarachnoid hemorrhage.

KEYWORDS

Mendelian randomization, intracranial aneurysm, hyperhomocysteinemia, causality,

cerebrovascular disease

Introduction

Intracranial aneurysm (IA) is confined, pathological dilatations of the walls of

intracranial arteries that are at risk of rupture. About 85% of spontaneous subarachnoid

hemorrhage (SAH) is due to ruptured IA (1). The incidence of IA was reported to be

about 3.2% in a worldwide study with a mean age of 50 years (2). Aneurysmal SAH

(aSAH) often has a poor prognosis, with high disability and mortality rates (3, 4).

However, the etiopathology of IAs remains unclear.
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Hyperhomocysteinemia has been widely reported to be

associated with the development of cerebrovascular disease (5–

8). Excessive homocysteine levels lead to inflammation of the

vessel wall, atherosclerotic plaque formation, endothelial cell

damage, smooth muscle cell proliferation, and altered oxidative

stress response (9–11). These pathological changes play a critical

role in the formation and rupture of IAs (12, 13). We, therefore,

speculated that the formation and rupture of IAs may be

associated with homocysteine.

Recent studies have shown an association between IAs and

hyperhomocysteinemia in the Chinese Han population (14,

15). In 2011, a study reported that hyperhomocysteinemia in

a rat model accelerated IA formation (16). However, it has

been reported that homocysteine is not associated with the

IAs in other races (17). Therefore, the association between IA

formation and homocysteine remains unresolved.

Mendelian randomization (MR) is the use of genetic

variation in non-experimental data to estimate the causal link

between exposure and outcome, and it can reduce the impact of

behavioral, social, psychological, and other factors (18). And in

recent years, many MR studies have emerged to provide clinical

evidence (19–21). This proves that MR is a reliable research

method to solve some problems. Using recently published

summary data for plasma homocysteine levels and summary

data for IA in a genome-wide association study (GWAS), we

aimed to analyze the causal connection between homocysteine

and IA using two-sample MR.

Materials and methods

Genetic instruments and data sources

We used single-nucleotide polymorphisms (SNPs)

associated with human plasma homocysteine levels as

instrumental variables (IVs) for the primary analysis in a GWAS

of 44,147 subjects of European ancestry (22).

We extracted SNPs associated with IA from a large GWAS

involving 7,495 IA cases and 71,934 controls (23). The MR

analysis was performed on three summary datasets from this

GWAS. The three pooled datasets were GWAS of IA (ruptured,

unruptured, and unknown rupture status) (n= 7,495), UIA-only

(n= 2,070), and aSAH-only (n= 5,140) vs. controls (n= 71,934)

in individuals of European ancestry.

The following steps were applied to select the best IVs

to guarantee the accuracy and validity of the inferences on

the causal relationship between the risk of IA and plasma

homocysteine. The first step was to select SNPs with thresholds

of significant association with the plasma homocysteine levels

as IVs. A set of genome-wide statistically significant (P < 5 ×

10−8) SNPs were used as IVs. Second, linkage disequilibrium

(LD) must not exist between the selected IVs, because it can lead

to interpretation bias. Among the selected SNPs, we performed

a clumping step (clumping distance= 10,000 kb, R2 < 0.001) to

reduce the LD during our MR analysis. Third, guaranteeing that

the impact of SNPs on outcome and exposure is related to only

one allele during MR analysis is an important condition, and in

accordance, SNPs with a palindromic structure were removed.

Standard protocol approval, registration,
and patient consent

All the data used in thisMR analysis were based on summary

data publicly available from the GWASs. Ethical approval and

participant consent were not needed as they were previously

obtained for each of the original GWASs.

The assumptions of MR

To investigate the causal impact of the plasma homocysteine

on IA, genetic variation was used as an IV in MR. To serve as

an IV, the following criteria must be met: the variation must

be related to the plasma homocysteine; it must not be related

to any confounding factor related to the plasma homocysteine

or IA; it must not affect the outcome, except possibly through

association with exposure (24). The F-statistic, whose formula is

F =
R2 (n−k−1)
k (1−R2)

, is commonly used to evaluate the strength of

the correlation between exposure and IVs. Here, n represents

the number of samples in the GWAS related to exposure, k

represents the number of IVs, and R2 is the extent to which

IVs explain exposure. When the F-statistic is <10, we usually

consider the IVs as weak, which may bias the results somewhat.

Statistical analysis

We used the inverse variance weighted (IVW), MR-Egger,

weighted median, simple mode, and weighted mode methods to

evaluate the causal link between IAs and plasma homocysteine.

The IVW method is characterized by an analysis that does not

take into account the presence of an intercept term and uses

the inverse of the outcome variance (quadratic of the standard

error) as a weight to provide a comprehensive estimate of the

impact of the plasma homocysteine on the incidence of IA.

Ensuring these SNPs are not pleiotropic when using the IVW

method is important, otherwise, the results will be highly biased.

The MR-Egger method can provide causal estimates that are

unaffected by breaches of standard IV assumptions and can

detect whether standard IV assumptions are violated (25). The

weighted median method combines information from various

hereditary variations into a solitary causal gauge, and that gauge

is predictable even when half of the IVs are null (26).

To test whether horizontal pleiotropy was present among

the included SNPs, we performed MR-Egger regression. To
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examine for a potentially strong impact of an SNP and

whether causal effect estimates were reliable, a leave-one-

out analysis was performed. In addition, Cochran’s Q-statistic

was applied to examine whether heterogeneity was present

among the selected SNPs. We calculated MR power through

a web-based tool (https://shiny.cnsgenomics.com/mRnd/) (27).

The statistical power under each odds ratio (OR) value was

calculated by combining the proportion of cases with IA

GWAS, the variance jointly explained by the instrumental

variable single nucleotide polymorphisms (SNPs), and the

sample size together (Supplementary Table 1). For the primary

analysis using serum homocysteine, a relative difference of

21.2% was detected with 80% power (OR: 1.212/0.795) and

an alpha value of 5% (Supplementary Table 1). The MR

analyses were performed utilizing the TwoSampleMR package

for R (version 4.1.2).

Results

First, we screened 18 SNPs as IVs (genome-wide statistical

significance threshold, P < 5 × 10−8) from a GWAS of

plasma homocysteine levels (22). After the removal of SNPs

with LD, 13 SNPs remained as IVs (P < 5 × 10–8)

(rs7422339, rs12134663, rs957140, rs12921383, and rs2851391

were removed). When homocysteine was analyzed against

IAs and aneurysmal subarachnoid hemorrhage, two SNPs

(rs838133 and rs548987) were found to be absent in the

IA and aneurysmal subarachnoid hemorrhage datasets, and

when homocysteine was analyzed with unruptured aneurysms,

four SNPs (rs838133, rs548987, rs234709, and rs1801133) were

absent in the unruptured aneurysm dataset. None of these SNPs

have a proxy SNP. The SNPs we used and their association with

IAs are shown in Table 1.

TheMR-Egger regression indicated no horizontal pleiotropy

in the analysis of the relationship between homocysteine and

aneurysms (P = 0. 622 for IA, P = 0. 491 for aSAH,

P = 0. 975 for UIA). Furthermore, there were no weak

instrumental variables (F-statistic: 100.340 for IA and aSAH,

and 47.203 for UIA [all >10]). The Chochran’s Q-statistics

showed no significant heterogeneity (P = 0.849 for IA, P =

0.943 for aSAH, P = 0.998 for UIA). The limited number of

SNPs included prevented examination of horizontal pleiotropy

and heterogeneity.

The results of all MR analyses showed no association

between IAs and homocysteine, with all P > 0.05

(Figure 1). The results of the IVW analysis for aSAH

[OR: 1.104; 95% confidence interval (CI): 0.878–1.387,

P = 0.398], IA (OR: 1.124; 95% CI: 0.923–1.368,

P = 0.246), and UIA (OR: 1.126; 95% CI: 0.682–

1.858, P = 0.644) showed no association between IAs

and homocysteine. T
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FIGURE 1

Mendelian randomization analyses of plasma homocysteine levels and the risk of IA. CI, confidence interval; IVW, inverse variance weighted; OR,

odds ratio; SAH, subarachnoid hemorrhage; SNP, single-nucleotide polymorphism; UIA, unruptured intracranial aneurysm.

Discussion

This MR study provides evidence that IAs are not associated

with homocysteine in Europeans. To our knowledge, this is the

first MR study on the association between plasma homocysteine

levels and IAs.

Based on the data from the Global Burden of

Disease Study 2019 (https://www.healthdata.org), stroke

is the second leading cause of disability and mortality

worldwide (28). Hyperhomocysteinemia has long been

recognized as an independent risk factor for stroke (29).

Hyperhomocysteinemia is common in the Chinese population

(30). Hyperhomocysteinemia can lead to elevated inflammatory

factors in blood vessels, damage to the vascular endothelium,

and proliferation of vascular smooth muscle cells (31, 32). High

homocysteine has been reported to promote atherosclerosis

and increase the risk of ischemic strokes (11, 33, 34). Because

mechanisms such as inflammation are involved in the

formation and rupture of IAs, pathological changes caused

by homocysteine may contribute to their formation and

rupture. Xu et al. found accelerated IA formation in rats with

methionine diet-induced hyperhomocysteinemia (16). Another

study showed that methionine-induced hyperhomocysteinemia

from excessive methionine intake promotes aneurysmal

rupture in orchiectomized rats (35). However, such studies are

lacking in humans, and therefore, the relationship between

homocysteine and IAs has remained unknown. While some

observational studies have reported that IAs are associated

with hyperhomocysteinemia in the Chinese population,

there is no evidence of a causal link (14, 15). In a Brazilian

case-control study, IAs were reported to occur independently

of hyperhomocysteinemia, and another study reported that

hyperhomocysteinemia is not associated with abdominal aortic

aneurysms (17, 36). Thus, the association between IAs and

homocysteine remains questionable.

Elevated levels of serum homocysteine mainly cause a

decrease in the antithrombotic effect of the vessel wall,

increasing the risk of stroke (37). In contrast, aneurysm

formation and rupture are mainly considered to be related to

damage to the vessel wall and the release of inflammatory factors,

and may not be related to the level of homocysteine. Serum

levels of homocysteine can be elevated by nutritional deficiencies

of folic acid, vitamin B6, and vitamin B12 in the diet. Dietary

effects have not been considered in most studies of intracranial

aneurysms and homocysteine. Elevated homocysteine levels

may also be the result of a ruptured aneurysm; therefore, large

prospective studies are still needed to confirm the relationship

between aneurysms and homocysteine.

The fundamental benefit of this MR analysis is that

estimates of the causal effect of MR were not affected by
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confounding factors or reverse causal associations found in

traditional epidemiological studies. Therefore, compared with

observational studies, our current findings may be more

reliable. Yet, several limitations remain. First, Genotypic

variants in enzymes associated with blood homocysteine

levels increase the risk of unprovoked pulmonary embolism

(38). Due to the differences in genetic characteristics among

different populations, our results may only apply to European

populations because all participants in the GWAS were of

European origin. Second, not all SNPs were examined, as some

were removed because of LD (and no proxy SNPs were found),

which may have impacted the results.

At the genetic level, the present MR study suggests that there

is no causal relationship between hyperhomocysteinemia and

IA or IA rupture. However, further studies are needed to more

comprehensively assess the relationship between homocysteine

and IAs.
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5Meinian Public Health Institute, Peking University Health Science Center, Beijing, China, 6School of
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Background: Few studies have explored the prevalence and risk factors of

brain infarcts (BI) detected by magnetic resonance imaging (MRI) in China. The

purpose was to evaluate the prevalence and risk factors of brain infarcts (BI)

detected by magnetic resonance imaging (MRI) in 1.4 million Chinese adults.

Methods: This was a multicenter cross-sectional study conducted on

1,431,527 participants aged ≥18 years (mean age: 46.4 years) who underwent

MRI scans in health examinations from 28 provinces of China in 2018.

MRI-defined BI was defined as focal parenchymal lesions≥3mm. Multivariable

logistic regression analyses were performed to evaluate risk factors associated

with MRI-defined BI.

Results: The age- and sex-standardized prevalence of MRI-defined BI, lacunar

and non-lacunar infarcts were 5.79% (5.75–5.83%), 4.56% (4.52–4.60%),

and 1.23% (1.21–1.25%), respectively. The sex-standardized prevalence of

MRI-defined BI ranged from 0.46% among those aged 18–29 years to 37.33%

among those aged ≥80 years. Men (6.30%) had a higher age-standardized

prevalence of MRI-defined BI than women (5.28%). The highest age- and

sex-standardized prevalence of MRI-defined BI was observed in the Northwest

(8.34%) and Northeast (8.02%) regions, while the lowest prevalence was

observed in the Southwest (4.02%). A higher risk of MRI-defined BI was

associated with being male [odd ratio (OR) 1.17, 95% CI 1.15–1.19], older age

(OR per 10-year increments 2.33, 2.31–2.35), overweight (1.12, 1.10–1.14)

or obesity (1.18, 1.16–1.21), hypertension (1.80, 1.77–1.83), diabetes (1.24,

1.21–1.26), and dyslipidemia (1.07, 1.05–1.08).

Conclusion: MRI-defined BI is highly prevalent in China, even among young

adults. MRI-defined BI was associated with being male, older age, living in the

northern region, and metabolic conditions.
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Introduction

China currently carries the world’s largest burden of stroke,

which has become a major public health challenge (1, 2).

However, overt stroke, easily recognized clinically, represents

only the tip of the iceberg. In contrast, silent brain infarcts

(SBI) are often ignored and represent the larger below the

surface of the water (3). With the development of brain-

imaging techniques, brain abnormalities are commonly found

using brain magnetic resonance imaging (MRI) (4, 5). The

prevalence of MRI-defined BI exceeds, by far, the prevalence of

symptomatic stroke (6). Although the majority of MRI-defined

BI were covert without clinical stroke symptoms (7), they are

highly valuable in predicting subsequent risk of symptomatic

stroke, dementia, and mortality (8, 9). However, few studies

regarding the epidemiology of MRI-defined BI have been

conducted in China, and previous studies were limited by

small sample sizes or certain geographic regions only (7, 10).

Meanwhile, the association among age, hypertension, and MRI-

defined BI has been widely accepted, but the association between

obesity, dyslipidemia, andMRI-defined BI remains unclear (10).

The total number of people undergoing routine health

examinations in China reached 575 million in 2018, accounting

for 42% of the total population of China (11). It would be of

great interest to explore the epidemiology of MRI-defined BI for

early prevention and control of stroke and dementia. Therefore,

we conducted this study to investigate the prevalence and risk

factors of MRI-defined BI among 1.4 million participants who

underwent MRI scans.

Methods

Study design and participants

The study was a nationwide, multicentric, population-based

study using data from the Meinian Onehealth Healthcare,

which is a largest health screening organization covering

nearly all provinces on Chinese mainland. Descriptions of the

database have been reported previously (12, 13). Each health

screening center provides annual routine health examinations

to its members. A unified standard examination protocol

was established in each center. In fact, most of the health

examinations in the health screening centers were paid for by

companies or group and provided to employees free of charge as

a kind of welfare. Whether to do a brain MRI scan or not was

determined by the company or group, not based on their pre-

clinical or clinical symptoms or other risk factors. We extracted

participants who had MRI scans from the whole database. From

Abbreviations: ANOVA, analysis of variance; BMI, body mass index; BI,

brain infarcts; CI, confidence interval; MRI, magnetic resonance imaging;

OR, odds ratio; SBI, silent brain infarcts; SD, standard deviation.

January 1, 2018 to December 31, 2018, a total of 1,442,518

participants without contraindications to MRI underwent a

brain MRI. For those who attended more than two health

examinations, only the most recent checkup data were included.

We excluded participants <18 years of age, and those with

missing data on age, sex, and health screening center, leaving

1,440,738 participants for analysis. For the stability of the results,

we further excluded data from newly opened 71 health screening

centers (<500 participants for a brain MRI). A total of 1,431,527

participants (725,261 men and 706,266 women) aged ≥18 years

from 254 health screening centers in 161 cities in 28 provinces

of China were included in the final analysis.

The study was approved by the Peking University

Institutional Review Board with a waiver of informed consent

(IRB00001052-19077). Identifiable data of participants were

removed and only unidentifiable data was used for the study.

Assessment of MRI-defined brain infarcts

Each participant underwent MRI scans in adherence to a

standardized scan protocol. The MRI scans were performed by

a certified imaging technician at each health screening center.

All brain scans were performed on a 1- or 1.5-T MRI scanner

(more than 85% of MRI scanners in health screening centers are

1.5-T scanners), which comprised at least T1 weighted images,

T2 weighted images, and proton density or fluid attenuated

inversion recovery (FLAIR) sequences. MRI images were read

by one experienced radiologist and confirmed by another

experienced radiologist in each health screening center, and any

disagreements were solved by consensus through discussion.

These radiologists were blinded to clinical and demographic

data. Infarcts on MRI scans were defined as an area of abnormal

signal intensity in a vascular distribution that lacked mass effect

with a size ≥3mm (7, 14). Lacunar infarcts were distinguished

from Virchow-Robin spaces based on their irregular shape,

non-vascular appearance, and presence of a hyperintense rim.

According to the criteria of the standards for reporting vascular

changes on neuroimaging (STRIVE) (4), lacunar infarcts were

defined as focal lesions of <15–20mm in diameter in the

territory of penetrating arteries, located in subcortical areas

with the same signal characteristics as cerebrospinal fluid on

all MRI-sequences, and other infarcts were considered as non-

lacunar infarcts. All participants were categorized as having or

not having at least 1 infarct. MRI-defined BI included lacunar

infarcts and non-lacunar infarcts.

Assessment of covariates

Face-to-face interviews were conducted by trained health

professionals to collect information on the demographic

characteristics and medical history of each participant. Body
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weight, height, and blood pressure were measured for all

participants using standard methods. Overnight fasting blood

samples for each participant were used to measure glucose and

lipid levels.

We divided the mainland of China into seven geographic

regions: northeast China, north China, northwest China, central

China, east China, south China, and southwest China, which

were divided based on the geographical divisions of China.

Geographical variations in 12 leading risk factors related to

cardiovascular disease (15) and in stroke burden in China have

been reported previously (1).

Body mass index (BMI) was calculated as body weight (kg)

divided by the square of height (m). Overweight (BMI ≥24.0

and≤27.9 kg/m2) and obesity (BMI≥28.0 kg/m2) were defined

according to the BMI classification for Chinese adults (16).

Hypertension was defined as systolic blood pressure ≥140mm

Hg, or diastolic pressure ≥90mm Hg, having a history of

hypertension or use of blood pressure lowering medications.

Diabetes was determined by a fasting level of plasma glucose

≥7.0 mmol/L, having a history of diabetes, or use of antidiabetic

medications. According to 2016 Chinese guidelines for the

management of dyslipidemia in adults, dyslipidemia was

defined as having any of the following: triglyceride level

≥2.3 mmol/L, total cholesterol level ≥6.2 mmol/L, high-

density lipoprotein cholesterol level <1.0 mmol/L, low-density

lipoprotein cholesterol level ≥4.1 mmol/L, having a history of

dyslipidemia, or use of lipid-regulating medications.

Statistical analysis

The characteristics of study participants were presented as

mean [standard deviation (SD)] for continuous variables, and

percentages for categorical variables. The statistical significance

of differences was performed using analysis of variance

(ANOVA) for continuous variables and the Chi-square test

for categorical variables. The prevalence and 95% confidence

intervals (CI) standardized by age and sex were calculated

among different sub-groups of characteristics, using the 2010

National Population Census as the standard population. The

age-standardized prevalence was calculated by sex and the

sex-standardized prevalence was also calculated by age group.

Choropleth maps were produced using R software (version 3.6)

to visually examine geographical variations in the prevalence of

MRI-defined BI. The data illustrated in the maps were age-and

sex-standardized prevalence with 95%CIs. Multivariable logistic

regression analyses were conducted to investigate risk factors for

MRI-defined BI adjusted for age, sex, geographical region, BMI,

hypertension, diabetes, and dyslipidemia in the models.

All statistical analyses were performed using R version 3.6

(http://www.r-project.org/) and SAS version 9.4 (SAS Institute,

Cary, NC). Statistical significance was defined as two-sided

P-values <0.05.

Data availability

The data supporting the findings of this study are available

from the corresponding author upon reasonable request.

Results

Characteristics of study participants

A total of 1,431,527 participants were included in the study.

The characteristics of the study participants are shown in

Table 1. The mean age of study participants was 46.4 (SD 12.4)

years; approximately three-quarters (75.2%) were aged between

30 and 59 years and 50.7% (n = 725,261) were men. Nearly half

of the participants (49.2%) had overweight or obesity, and 26.3,

7.0, 36.8% of the study participants had hypertension, diabetes,

and dyslipidemia, respectively. Participants withMRI-defined BI

were more likely to be older, male and had a higher prevalence of

overweight or obesity, hypertension, diabetes, and dyslipidemia

compared to those without MRI-defined BI (all P < 0.05).

Among participants with MRI-defined BI, the prevalence of

hypertension, diabetes, and dyslipidemia were 54.8, 15.2, and

43.0%, respectively. The prevalence of hypertension, diabetes,

and dyslipidemia among participants with MRI-defined BI was

significantly greater in men than in women (P < 0.001; Table 1).

Prevalence of MRI-defined brain infarcts

Of the 1,431,527 study participants, 100,245 (7.00%; 95% CI:

6.96–7.05%) were identified as having an MRI-defined BI. The

mean age of participants withMRI-defined BI was 58.7 (SD 10.4)

years and was similar among men and women: 58.7 (SD 10.6)

years in men and 58.7 (SD 10.2) years in women. The crude

prevalence of lacunar infarcts was 5.57% (n = 79,724, 95% CI:

5.53–5.61%) and non-lacunar infarcts was 1.43% (n = 20,521,

95% CI: 1.41–1.45%). The age- and sex-standardized prevalence

of MRI-defined BI, lacunar infarcts, and non-lacunar infarcts

were 5.79% (95% CI: 5.75–5.83%), 4.56% (95% CI: 4.52–4.60%),

and 1.23% (95% CI: 1.21–1.25%), respectively (Table 2).

The sex-standardized prevalence of MRI-defined BI was

positively associated with age, ranging from 0.46% in 18–29

years and 0.98% in 30–39 years to 30.30% in 70–79 years and

37.33% for those ≥80 years. A particularly marked increase was

noted among those 60 years or older (Table 2). The increasing

trend with age was significant for both lacunar infarcts

and non-lacunar infarcts. Men (6.30%; 95% CI: 6.24–6.37%)

had a significantly greater age-standardized prevalence of

MRI-defined BI than women (5.28%; 95% CI: 5.21–5.34%;

P < 0.001), and the age-specific prevalence of MRI-defined BI

was significantly higher among men than women across all age

groups (Table 2).
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TABLE 1 Characteristics of study participants by MRI-defined brain infarct statusa.

Characteristics Overall Without brain infarcts Participants with MRI-defined brain infarcts

All MRI-defined

brain infarcts

Lacunar infarcts Non-lacunar

infarcts

N 1,431,527 (100) 1,331,282 (93.0) 100,245 (7.0) 79,724 (5.6) 20,521 (1.4)

Sex

Men 725,261 (50.7) 669,065 (50.3) 56,196 (56.1) 44,260 (55.5) 11,936 (58.2)

Women 706,266 (49.3) 662,217 (49.7) 44,049 (43.9) 35,464 (44.5) 8585 (41.8)

Age (years), mean± SD 46.4± 12.4 45.5± 12.1 58.7± 10.4 58.2± 10.4 60.5± 10.0

Age group

18–29 135,597 (9.5) 134,969 (10.1) 628 (0.6) 567 (0.7) 61 (0.3)

30–39 315,480 (22.0) 312,379 (23.5) 3,101 (3.1) 2,699 (3.4) 402 (2.0)

40–49 381,901 (26.7) 368,880 (27.7) 13,021 (13.0) 10,992 (13.8) 2,029 (9.9)

50–59 380,033 (26.5) 344,435 (25.9) 35,598 (35.5) 28,890 (36.2) 6,708 (32.7)

60–69 174,489 (12.2) 140,480 (10.6) 34,009 (33.9) 26,194 (32.9) 7,815 (38.1)

70–79 37,092 (2.6) 25,823 (1.9) 11,269 (11.2) 8,430 (10.6) 2,839 (13.8)

≥80 6,935 (0.5) 4,316 (0.3) 2,619 (2.6) 1,952 (2.4) 667 (3.3)

Geographical region

Northeast 134,747 (9.4) 118,844 (8.9) 15,903 (15.9) 14,390 (18.0) 1,513 (7.4)

North China 117,393 (8.2) 107,176 (8.1) 10,217 (10.2) 6,106 (7.7) 4,111 (20.0)

Northwest 138,009 (9.6) 124,440 (9.3) 13,569 (13.5) 11,968 (15.0) 1,601 (7.8)

East China 448,345 (31.3) 423,178 (31.8) 25,167 (25.1) 19,779 (24.8) 5,388 (26.3)

Central China 263,787 (18.4) 243,430 (18.3) 20,357 (20.3) 14,897 (18.7) 5,460 (26.6)

South China 140,240 (9.8) 133,618 (10.0) 6,622 (6.6) 5,736 (7.2) 886 (4.3)

Southwest 189,006 (13.2) 180,596 (13.6) 8,410 (8.4) 6,848 (8.6) 1,562 (7.6)

BMI (kg/m²)

<18.5 37,852 (2.6) 36,609 (2.7) 1,243 (1.2) 984 (1.2) 259 (1.3)

18.5–23.9 563,638 (39.4) 532,211 (40.0) 31,427 (31.4) 25,478 (32.0) 5,949 (29.0)

24.0–27.9 506,269 (35.4) 463,599 (34.8) 42,670 (42.6) 33,868 (42.5) 8,802 (42.9)

≥28.0 198,202 (13.8) 179,957 (13.5) 18,245 (18.2) 14,130 (17.7) 4,115 (20.1)

Hypertension

No 985,368 (68.8) 944,291 (70.9) 41,077 (41.0) 34,071 (42.7) 7,006 (34.1)

Yes 375,836 (26.3) 320,887 (24.1) 54,949 (54.8) 42,331 (53.1) 12,618 (61.5)

Diabetes

No 1,278,540 (89.3) 1,196,503 (89.9) 82,037 (81.8) 65,731 (82.4) 16,306 (79.5)

Yes 100,698 (7.0) 85,448 (6.4) 15,250 (15.2) 11,697 (14.7) 3,553 (17.3)

Dyslipidemia

No 857,214 (59.9) 802,817 (60.3) 54,397 (54.3) 43,071 (54.0) 11,326 (55.2)

Yes 526,230 (36.8) 483,075 (36.3) 43,155 (43.0) 34,557 (43.3) 8,598 (41.9)

BMI, body mass index; MRI, magnetic resonance imaging; SD, standard deviation.
aData were presented as N (%) or mean ± SD, and all P < 0.001. There were 125,566 (8.8%), 70,323 (4.9%), 52,289 (3.7%), and 48,083 (3.4%) missing values for body mass index,

hypertension, diabetes, and dyslipidemia, respectively.

The age- and sex-standardized prevalence of MRI-defined

BI, lacunar infarcts and non-lacunar infarcts in seven major

geographic regions are shown in Figure 1, depicting geographic

variations in BI. In the seven geographic regions, the highest

standardized prevalence of MRI-defined BI was observed

in the Northwest (8.34%, 95% CI: 8.17–8.51%); followed

by the Northeast (8.02%, 95% CI: 7.87–8.18%), and the

lowest prevalence was observed in the Southwest (4.02%, 95%

CI: 3.92–4.13%). The highest standardized prevalence of

lacunar infarcts was also found in the Northwest (7.33%, 95%

CI: 7.18–7.50%); followed by the Northeast (7.23%, 95%

CI: 7.08–7.38%), and the lowest prevalence was observed

in the Southwest (3.28%, 95% CI: 3.19–3.38%). The highest

standardized prevalence of non-lacunar infarcts was observed in
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TABLE 2 The age- and sex-standardized prevalence of brain infarcts in the Chinese health examination population in 2018.

Characteristics Participants with MRI-defined brain infarcts Participants with lacunar infarcts Participants with non-lacunar infarcts

Total

(N = 100,245)

Men

(N = 56,196)

Women

(N = 44,049)

Total

(N = 79,724)

Men

(N = 44,260)

Women

(N = 35,464)

Total

(N = 20,521)

Men

(N = 11,936)

Women

(N = 8,585)

Total 5.79 (5.75–5.83) 6.30 (6.24–6.37) 5.28 (5.21–5.34) 4.56 (4.52–4.60) 4.93 (4.88–4.99) 4.19 (4.13–4.24) 1.23 (1.21–1.25) 1.37 (1.34–1.40) 1.09 (1.06–1.12)

Age group

18–29 0.46 (0.43–0.50) 0.51 (0.45–0.56) 0.42 (0.37–0.47) 0.42 (0.39–0.46) 0.46 (0.41–0.51) 0.38 (0.33–0.43) 0.05 (0.03–0.06) 0.05 (0.03–0.07) 0.04 (0.03–0.06)

30–39 0.98 (0.95–1.02) 1.06 (1.01–1.11) 0.90 (0.86–0.95) 0.85 (0.82–0.89) 0.91 (0.87–0.96) 0.79 (0.75–0.84) 0.13 (0.12–0.14) 0.14 (0.13–0.16) 0.11 (0.09–0.13)

40–49 3.40 (3.35–3.46) 3.91 (3.82–4.00) 2.88 (2.81–2.96) 2.87 (2.82–2.93) 3.24 (3.16–3.32) 2.50 (2.43–2.57) 0.53 (0.51–0.55) 0.67 (0.64–0.71) 0.38 (0.36–0.41)

50–59 9.39 (9.29–9.49) 10.62 (10.47–10.77) 8.13 (8.00–8.25) 7.62 (7.53–7.71) 8.54 (8.41–8.67) 6.67 (6.55–6.79) 1.77 (1.73–1.81) 2.08 (2.01–2.14) 1.46 (1.40–1.51)

60–69 19.52 (19.31–19.73) 21.12 (20.82–21.43) 17.87 (17.59–18.15) 15.03 (14.85–15.21) 16.07 (15.81–16.34) 13.96 (13.71–14.21) 4.49 (4.39–4.59) 5.05 (4.90–5.20) 3.91 (3.78–4.05)

70–79 30.30 (29.74–30.87) 31.47 (30.70–32.26) 29.09 (28.29–29.91) 22.68 (22.19–23.17) 23.41 (22.75–24.09) 21.92 (21.22–22.63) 7.62 (7.35–7.91) 8.06 (7.67–8.46) 7.17 (6.78–7.59)

≥80 37.33 (35.87–38.84) 39.05 (37.22–40.95) 35.56 (33.29–37.95) 27.71 (26.45–29.01) 29.46 (27.87–31.11) 25.91 (23.97–27.96) 9.62 (8.89–10.41) 9.60 (8.70–10.56) 9.65 (8.49–10.93)

Geographical region

Northeast 8.02 (7.87–8.18) 8.80 (8.58–9.03) 7.23 (7.02–7.45) 7.23 (7.08–7.38) 7.90 (7.69–8.11) 6.55 (6.35–6.76) 0.79 (0.74–0.84) 0.91 (0.84–0.98) 0.68 (0.61–0.75)

North China 6.57 (6.42–6.73) 7.47 (7.24–7.70) 5.68 (5.46–5.90) 3.94 (3.82–4.06) 4.58 (4.41–4.77) 3.30 (3.14–3.47) 2.63 (2.53–2.73) 2.88 (2.75–3.02) 2.38 (2.24–2.53)

Northwest 8.34 (8.17–8.51) 8.59 (8.37–8.82) 8.09 (7.84–8.35) 7.33 (7.18–7.50) 7.43 (7.22–7.64) 7.25 (7.01–7.49) 1.00 (0.94–1.07) 1.16 (1.08–1.25) 0.84 (0.76–0.93)

East China 4.63 (4.56–4.70) 4.89 (4.79–4.99) 4.36 (4.26–4.47) 3.58 (3.52–3.65) 3.77 (3.69–3.86) 3.39 (3.30–3.48) 1.05 (1.01–1.08) 1.12 (1.07–1.17) 0.97 (0.92–1.03)

Central China 6.47 (6.36–6.58) 7.24 (7.10–7.40) 5.69 (5.54–5.85) 4.72 (4.63–4.82) 5.26 (5.13–5.39) 4.19 (4.06–4.33) 1.74 (1.69–1.80) 1.99 (1.91–2.07) 1.50 (1.42–1.58)

South China 4.49 (4.35–4.63) 5.17 (4.97–5.37) 3.83 (3.64–4.03) 3.88 (3.75–4.01) 4.49 (4.31–4.68) 3.28 (3.11–3.46) 0.61 (0.56–0.67) 0.68 (0.60–0.75) 0.55 (0.48–0.64)

Southwest 4.02 (3.92–4.13) 4.35 (4.22–4.49) 3.69 (3.54–3.84) 3.28 (3.19–3.38) 3.51 (3.39–3.64) 3.05 (2.91–3.19) 0.74 (0.70–0.79) 0.84 (0.78–0.91) 0.64 (0.58–0.70)

Body mass index (kg/m²)

<18.5 4.71 (4.43–5.00) 4.88 (4.48–5.29) 4.55 (4.17–4.96) 3.69 (3.44–3.95) 3.66 (3.32–4.02) 3.72 (3.37–4.09) 1.02 (0.89–1.16) 1.22 (1.02–1.43) 0.83 (0.67–1.02)

18.5–23.9 5.25 (5.18–5.33) 5.66 (5.56–5.76) 4.86 (4.75–4.96) 4.18 (4.12–4.25) 4.49 (4.40–4.58) 3.88 (3.80–3.97) 1.07 (1.04–1.11) 1.17 (1.13–1.22) 0.97 (0.92–1.02)

24.0–27.9 6.18 (6.10–6.26) 6.60 (6.50–6.70) 5.77 (5.65–5.89) 4.88 (4.81–4.95) 5.17 (5.08–5.26) 4.59 (4.48–4.70) 1.30 (1.27–1.34) 1.43 (1.38–1.48) 1.18 (1.12–1.23)

≥28.0 6.93 (6.80–7.07) 7.48 (7.30–7.67) 6.38 (6.18–6.58) 5.34 (5.22–5.46) 5.77 (5.61–5.93) 4.90 (4.72–5.08) 1.60 (1.53–1.66) 1.71 (1.63–1.80) 1.48 (1.39–1.58)

Hypertension

No 4.63 (4.56–4.71) 4.98 (4.89–5.08) 4.30 (4.19–4.40) 3.74 (3.68–3.80) 3.98 (3.90–4.06) 3.51 (3.41–3.60) 0.89 (0.86–0.93) 1.00 (0.96–1.05) 0.79 (0.74–0.84)

Yes 7.69 (7.57–7.80) 8.16 (8.04–8.27) 7.22 (7.02–7.43) 5.96 (5.86–6.06) 6.30 (6.20–6.41) 5.61 (5.44–5.80) 1.73 (1.68–1.79) 1.86 (1.80–1.91) 1.61 (1.51–1.71)

Diabetes

No 5.64 (5.59–5.69) 6.09 (6.03–6.16) 5.18 (5.11–5.25) 4.46 (4.41–4.50) 4.79 (4.73–4.85) 4.12 (4.06–4.19) 1.18 (1.16–1.21) 1.30 (1.27–1.33) 1.06 (1.03–1.10)

Yes 7.92 (7.53–8.32) 8.07 (7.75–8.41) 7.78 (7.08–8.56) 6.25 (5.87–6.64) 6.21 (5.92–6.52) 6.30 (5.61–7.07) 1.67 (1.58–1.78) 1.86 (1.73–2.02) 1.48 (1.37–1.66)

Dyslipidemia

No 5.56 (5.51–5.62) 6.07 (6.00–6.15) 5.06 (4.98–5.14) 4.36 (4.31–4.41) 4.73 (4.66–4.80) 3.99 (3.92–4.06) 1.21 (1.18–1.23) 1.35 (1.31–1.38) 1.07 (1.03–1.11)

Yes 6.20 (6.12–6.27) 6.64 (6.53–6.75) 5.76 (5.65–5.87) 4.92 (4.85–4.99) 5.24 (5.15–5.34) 4.60 (4.50–4.70) 1.28 (1.24–1.31) 1.39 (1.35–1.44) 1.16 (1.11–1.21)

Data are represented as percentage (95% confidence interval). The age- and sex-standardized prevalence of brain infarcts was calculated based on Chinese Census 2010.
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FIGURE 1

Age-and sex-standardized prevalence of brain infarcts among 28 provinces in China by geographical regions. The statistical data mentioned

here do not include Heilongjiang, Ningxia, Tibet, Hong Kong, Macao and Taiwan.

the North (2.63%, 95% CI: 2.53–2.73%); followed by the Central

region (1.74%, 95% CI: 1.69–1.80%); and the lowest prevalence

was observed in the South (0.61%, 95% CI: 0.56–0.67%).

Multivariable analysis results

In the multivariable-adjusted analysis, men (OR, 1.17;

95% CI, 1.15–1.19), older age (OR per 10 year increment

2.33; 95% CI, 2.31–2.35), overweight (OR, 1.12; 95%

CI, 1.10–1.14) or obesity (OR, 1.18; 95% CI, 1.16–1.21),

hypertension (OR, 1.80; 95% CI, 1.77–1.83), diabetes (OR,

1.24; 95% CI, 1.21–1.26), and dyslipidemia (OR, 1.07; 95%

CI, 1.05–1.08) were all significantly associated with higher

risk of MRI-defined BI (P < 0.05; Table 3). The associations

were also significant for both lacunar infarcts and non-lacunar

infarcts, respectively.
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TABLE 3 Multivariable adjusted odds ratios of MRI-defined brain infarcts in the Chinese health examination population in 2018.

Characteristics MRI-defined brain infarcts Lacunar infarcts Non-lacunar infarcts

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Age (10-year increments) 2.52 (2.50–2.53) 2.33 (2.31–2.35) 2.33 (2.32–2.35) 2.18 (2.16–2.20) 2.48 (2.45–2.51) 2.30 (2.27–2.34)

Sex

Women 1.00 1.00 1.00 1.00 1.00 1.00

Men 1.26 (1.24–1.28) 1.17 (1.15–1.19) 1.22 (1.20–1.23) 1.13 (1.11–1.15) 1.32 (1.28–1.36) 1.25 (1.21–1.29)

Geographical region

Southwest 1.00 1.00 1.00 1.00 1.00 1.00

Northeast 2.49 (2.42–2.56) 2.38 (2.31–2.46) 2.75 (2.67–2.84) 2.63 (2.54–2.72) 1.09 (1.01–1.17) 1.06 (0.97–1.15)

North China 1.76 (1.70–1.82) 1.87 (1.80–1.94) 1.22 (1.17–1.26) 1.11 (1.06–1.16) 3.77 (3.55–4.00) 4.85 (4.53–5.20)

Northwest 2.67 (2.59–2.75) 2.81 (2.71–2.91) 2.82 (2.73–2.91) 2.99 (2.88–3.10) 1.47 (1.37–1.58) 1.37 (1.26–1.49)

East China 1.21 (1.18–1.24) 1.22 (1.18–1.26) 1.16 (1.12–1.19) 1.16 (1.12–1.19) 1.39 (1.31–1.47) 1.46 (1.37–1.56)

Central China 1.74 (1.69–1.79) 1.93 (1.87–1.99) 1.51 (1.46–1.56) 1.66 (1.60–1.72) 2.39 (2.25–2.53) 2.70 (2.52–2.88)

South China 1.17 (1.13–1.21) 1.30 (1.25–1.35) 1.25 (1.20–1.29) 1.35 (1.29–1.40) 0.84 (0.77–0.91) 1.01 (0.92–1.11)

Body mass index (kg/m²)

<24 1.00 1.00 1.00 1.00 1.00 1.00

24.0–27.9 1.28 (1.26–1.30) 1.12 (1.10–1.14) 1.25 (1.23–1.27) 1.11 (1.09–1.13) 1.36 (1.32–1.41) 1.15 (1.11–1.20)

≥28.0 1.52 (1.49–1.55) 1.18 (1.16–1.21) 1.43 (1.40–1.46) 1.15 (1.12–1.18) 1.75 (1.68–1.83) 1.29 (1.23–1.35)

Hypertension

No 1.00 1.00 1.00 1.00 1.00 1.00

Yes 1.91 (1.88–1.94) 1.80 (1.77–1.83) 1.77 (1.74–1.79) 1.67 (1.64–1.70) 2.24 (2.17–2.31) 2.07 (2.00–2.14)

Diabetes

No 1.00 1.00 1.00 1.00 1.00 1.00

Yes 1.39 (1.36–1.42) 1.24 (1.21–1.26) 1.32 (1.29–1.35) 1.20 (1.17–1.23) 1.48 (1.43–1.55) 1.27 (1.21–1.32)

Dyslipidemia

No 1.00 1.00 1.00 1.00 1.00 1.00

Yes 1.21 (1.19–1.23) 1.07 (1.05–1.08) 1.22 (1.20–1.24) 1.07 (1.05–1.09) 1.14 (1.11–1.18) 1.07 (1.04–1.11)

Model 1 adjusted for age (10 year increments) and sex.

Model 2 adjusted for all co-variables listed in the table. ORs of 1.00 indicate reference values.

Discussion

Among this population of 1.4 million participants for

health examinations across China, we found that the age- and

sex-standardized frequency of MRI-defined BI was 5.79% (95%

CI, 5.75–5.83%) in 2018, and the majority of these infarcts

was lacunar infarcts. We observed that the sex-standardized

frequency of MRI-defined BI is strongly associated with

increasing age. Sex differences and geographical variations in

the frequency of MRI-defined BI were also observed in our

study with greater frequency in men and in northern regions.

Overweight/obesity, hypertension, diabetes, and dyslipidemia

were significantly positively associated with the risk of

MRI-defined BI. To the best of our knowledge, this study is

the largest investigation of the distribution and risk factors

of BI detected by MRI. Our findings provide solid evidence

of a substantial burden of MRI-defined BI in the health

examination population.

Previous studies have reported the prevalence of BI with a

wide range globally (7, 10, 17). A systematic review of 27 studies

showed that the prevalence of BI in most studies ranged from

10 to 20% (10). The sample size of these studies ranged from

219 to 3,397, with the mean age ranging from 49 to 79 years

(10). Most of the studies (20 of 27 studies) were conducted

among participants over 60 years of age. In the Rotterdam Scan

Study of 1,077 community residents (mean age of 72 years),

Vermeer et al. (6) observed that 217 (20%) participants had

SBI. In a survey of 994 Korean adults (mean 49.0 years of

age) who underwent routine health examinations, SBI lesions

were observed in 58 (5.84%) participants (18). The age- and

sex-standardized prevalence of MRI-defined BI in our study

(5.79%) was lower than most previous studies, largely due to

relatively healthy health examination participants in our study

(mean age of 46.4 years).

Although the reported prevalence of BI varies widely in

previous studies, the prevalence is significantly higher among
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older individuals, which is consistent with findings from our

study (7, 10). The SBI prevalence in the Rotterdam Scan Study

increased from 8% in the 60–64 age group to 35% among those

≥80 years (6). In the study based on health examination data

from Korean adults, Lee et al. (18) observed no SBI among

those aged 20–39 years, however, SBI prevalence increased to

1.7% among those aged 40–49 years and to 43.8% in those

aged 70–79 years. MRI-defined BI is considered a common

radiological finding among the older population. However, in

our study with a large sample size and a wide range in age,

a proportion of MRI-defined BI was detected even among the

younger population (prevalence of MRI-defined BI was 0.46%

in 18–29 years, 0.98% in 30–39 years and 3.40% in 40–49 years).

Previous epidemiological studies have shown a rising trend of

overt stroke among younger age groups in recent years, which

may drive morbidity and mortality among young and middle-

age groups, posing a substantial burden to health-care systems

and the economy due to the long-lasting consequences (19).

As an early predictor of overt stroke, covert MRI-defined BI

should not be neglected, especially among young adults. More

effective guidelines and policies are needed to prevent and

manage clinically unrecognized BI (7).

Our study suggests the significant association of

hypertension, diabetes, and other metabolic disorders with

BI. Apart from age, hypertension has been widely accepted as

a risk factor for BI (10). Previous studies have suggested that

hypertension plays an important role in the pathogenesis of BI

(10). A meta-analysis found a significant association between

diabetes and the risk of MRI-defined BI (7), which is consistent

with our findings. However, the association between being

overweight or obese with a risk of BI has been controversial

with inconsistent results reported in previous studies (10).

These inconsistencies might be due to the limitations of BMI

for defining overweight or obesity, which does not distinguish

between fat and lean mass (20, 21). Inconsistent findings have

also been reported for the association between dyslipidemia

(total cholesterol, high-density lipoproteins, low-density

lipoproteins, and triglycerides) and BI (7, 10). Chauhan et al.

(7) have concluded that a higher risk of MRI-defined BI was

significantly associated with higher triglyceride levels but no

association was observed with cholesterol levels. Triglyceride

levels have been associated with inflammatory markers,

blood-brain barrier dysfunction, β-amyloid synthesis, and the

promotion of β-amyloid delivery to the brain, which could

contribute to the pathogenesis of the cerebrovascular disease

(22–24). In two large French population-based studies, no

association between cholesterol levels and MRI markers of

cerebral small vessel disease, white matter hyperintensity

volume, and lacunes was found (24). In contrast to these

previous studies limited by small sample sizes, our study with a

substantially large sample size had the statistical power to detect

associations between MRI-defined BI and metabolic risk factors

including among different sub-groups.

Our study showed geographical variation in the

epidemiology of MRI-defined BI in China, with the highest

prevalence of BI observed in the northern and central regions,

which is consistent with a nationally representative study of

stroke burden (25). Geographical variations in BI burden may

be related to differences in risk factors for BI across these

regions. As our study observed that hypertension, diabetes, and

obesity were associated with a higher risk of MRI-defined BI,

we also observed that the highest prevalence of hypertension,

diabetes, and obesity were reported in the northern compared

to other regions (26–28). Geographical variations in BI burden

might be partly attributable to location-associated lifestyle

and genetic background (7, 29). Finally, lower socioeconomic

status and poor access to health care services have been

associated with a higher risk of cerebrovascular disease (30),

and differences in socioeconomic status between these regions

might have contributed to geographical variations in BI burden.

Geographical variations in BI imply that specific geographical

regions should prioritize the allocation of healthcare resources.

It is crucial to track spatial trends in the BI burden to reduce

geographical disparities in BI. The finding that geographical

distribution differed between lacunar and non-lacunar brain

infarcts could be explained by differences in distinct etiology

and risk factors between lacunar and non-lacunar brain infarcts

(23, 31, 32), which warrants further investigation.

This study has several strengths. First, our study was the

largest survey to date to assess the burden of MRI-defined

BI and provided sufficient power to examine the prevalence

of MRI-defined BI in a wide variety of subgroups. Second,

the wide range in age of participants in our study allowed

us to evaluate the burden of MRI-defined BI in the younger

adults, which was not feasible in previous studies that primarily

focused on older participants. Finally, to the best of our

knowledge, our study was the first investigation to evaluate the

geographical variation of MRI-defined BI nationwide, which

provides vital information for allocating healthcare resources

from a multilevel geographical perspective to reduce the burden

of MRI-defined BI.

Our study had several potential limitations. First, we did

not systematically collect information about the education level,

income level, smoking status, alcohol consumption, diet, or

physical activity of health examination participants. This limited

our ability to explore these potential risk factors in association

with MRI-defined BI. Second, data on the history of clinically

defined stroke or stroke symptoms were not collected in our

study, thus we did not distinguish between SBI and clinical

stroke in the study. Previous studies have shown that the vast

majority ofMRI-defined BI were SBI, especially in the preventive

health examination population (7, 10, 17). Third, because the

MRI scan is relatively expensive, the socioeconomic status of our

population may have left out the group whose socioeconomic

status is relatively low. Furthermore, the participants who

received health examinations in our study cannot represent the
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overall Chinese population due to available data from real-world

health screening practices.

In conclusion, the study indicates that MRI-defined BI

is highly prevalent among the health examination population

in China and that MRI-defined BI is also prevalent among

younger adults. The prevalence is higher among men than

women and in the northern and central regions of the country.

Overweight/obesity, hypertension, diabetes, and dyslipidemia

are preventable risk factors for MRI-defined BI. Public health

strategies that consider sex and geographic disparities are needed

to develop BI prevention strategies in China.
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In the treatment of ischemic stroke, timely and e�cient recanalization

of occluded brain arteries can successfully salvage the ischemic brain.

Thrombolysis is the first-line treatment for ischemic stroke. Machine learning

models have the potential to select patients who could benefit the

most from thrombolysis. In this study, we identified 29 related previous

machine learning models, reviewed the models on the accuracy and

feasibility, and proposed corresponding improvements. Regarding accuracy,

lack of long-term outcome, treatment option consideration, and advanced

radiological features were found in many previous studies in terms of

model conceptualization. Regarding interpretability, most of the previous

models chose restrictive models for high interpretability and did not mention

processing time consideration. In the future, model conceptualization could

be improved based on comprehensive neurological domain knowledge and

feasibility needs to be achieved by elaborate computer science algorithms to

increase the interpretability of flexible algorithms and shorten the processing

time of the pipeline interpreting medical images.

KEYWORDS

acute ischemic stroke, neuroimaging, machine learning, thrombolysis, clinical

decision support tool, penumbra, translational medicine

1. Introduction

Stroke is the most common neurological disease (1) which can be defined as an acute

central nervous system injury with an abrupt onset. Stroke is the third leading cause of

death and chronic disability globally (1). As a leading cause of adult disability, up to 74%

of stroke survivors are dependent on activities of daily living (2), which causes a huge

burden to society, both in finance and human resources. Among different types of stroke,

ischemic stroke is the most common, accounting for 87% compared to hemorrhagic
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stroke (3). The etiology of ischemic stroke is the obstruction

of cerebral arteries due to multiple reasons, which could be

classified as five subtypes according to the Trial of Org 10172

in Acute Stroke Treatment (TOAST) criteria (4). Because of the

TOASTmechanisms, the decreased blood perfusion to the brain

leads to ischemic stroke.

In the treatment of ischemic stroke, timely and efficient

recanalization of occluded brain arteries can successfully

salvage ischemic brain (5). An intravenous (IV) injection of

recombinant tissue plasminogen activator(rtPA)—also called

alteplase—is the first-line treatment for ischemic stroke (6). For

patients with acute ischemic stroke, a prompt treatment with

thrombolytic drugs could restore blood flow before major brain

damage has occurred and greatly improve short-term and long-

term recovery after stroke (7), as a result largely reducing the

burden stroke brings to the society.

In most cases, IV thrombolysis therapy is subject to

the latest guidelines. The guidelines are drawn up based on

large quantities of clinical evidence, therefore, the proposed

eligibility and dosage consideration for thrombolysis treatment

should normally be safe and efficient for most of the

patients. However, in real clinical practice, still, several patients

present unpredictable outcomes after the IV thrombolysis

treatment, including symptomatic hemorrhage (13% among

patients receiving rtPA) (8) and failed recanalization (37%

among patients receiving rtPA) (9), suggesting that a more

accurate patient-tailored clinical decision support tool based on

guidelines to improve IV thrombolysis safety and efficiency is

needed.

The literature on machine learning models to assist in

stroke thrombolysis has yet to be systematically synthesized and

assessed for accuracy and feasibility. Most of the existing reviews

have focused on the accuracy of clinical outcome prediction

models for patients with acute ischemic stroke, albeit not focused

on thrombolysis specifically (10). Some reviews focusing on

thrombolysis did not analyze the feasibility of these models in

hyperacute clinical stroke settings (11).

To address this gap, we reviewed the literature on the

accuracy and feasibility of machine learning models to assist in

stroke thrombolysis. This review aims to address the following

research questions: (1) What criteria should a machine learning

model meet in order to be accurate and feasible in real clinical

practice? (2) Have previous machine learning models met these

criteria? (3) What improvements could be proposed to increase

the accuracy and feasibility of previous models?

2. Search methods and results

PubMed, Embase, and Scopus (inception to July 2022)

were searched to identify studies developing machine

learning models to assist in deciding the personalized

safety and efficiency of thrombolysis therapy. We used Medical

Subject Headings (MeSH) terms in multiple combinations,

including stroke thrombolysis/machine learning and stroke

thrombolysis/prediction model, to retrieve papers. The search

was limited to human studies with English restrictions applied.

The inclusion and exclusion criteria of each study were reviewed.

We excluded studies where: (1) The full paper was not available.

(2) The paper presented review findings instead of original

research. (3) Participants enrolled did not receive thrombolysis

therapy. (4) The objective was to infer the association between

thrombolysis clinical outcome and biomarkers rather than

predict the outcome accurately. (5) The prediction model can

only be applied to patients with a specific subtype of ischemic

stroke. In the end, we retrieved 29 representative research papers

(Figure 1). The detailed information of the representative papers

is presented in Supplementary Table 1.

3. Feasibility and accuracy

Machine learning models are computer algorithms

developed to imitate the human learning process. The training

of machine learning models consists of a phase where models

improve their accuracy by discovering patterns and associations

within huge datasets. This training principle allows machine

learning models to generate satisfactory results, especially in

evidence-based practices, such asmedicine. Given the fact that in

real clinical practice, thrombolysis therapy respecting guideline

has a relatively low percentage of successful recanalization, some

experienced clinicians might decide the eligibility and dosage

for certain patients based on their own clinical experiences (12).

According to Dr. Patrick D. Lyden’s review article: The decision

to use thrombolytic therapy is—among the most difficult

treatment decisions in medicine, given the risks involved and

the compressed time frame available (13). Machine learning

models with high accuracy and feasibility have the potential

to acquire clinical experience from real world large datasets

of patients undergoing thrombolysis and assist in improving

the safety and efficiency of IV thrombolysis therapy. Figure 2

provides a blueprint of the criteria a machine learning model

should meet in order to be accurate and feasible in assisting

thrombolysis therapy.

In the thrombolysis setting, a model is conceptualized

in order to (1) predict risks and benefits, which can be

considered respectively as poststroke symptomatic intracerebral

hemorrhage and long-term outcome, as well as (2) select patients

with stroke who could benefit the most from thrombolysis

therapy in high accuracy. The accuracy of a machine learning

model largely depends on appropriate model conceptualization.

The widely accepted formal definition of machine learning as

stated by field pioneer Mitchell (14): A computer program is

said to learn from experience E with respect to some class

of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E.
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FIGURE 1

Selection of studies. The five exclusion criteria were explained in detail in Section 2.

When conceptualizing a machine learning model, a clinical

data scientist generally answers two questions: what the goal

of the machine learning model is (clinical goal definition)

and what clinical variables capture the experience required

to achieve the goal (clinical feature selection). In some

cases, if raw clinical features are not able to capture the
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FIGURE 2

Blueprint of the criteria a machine learning model should meet in order to be accurate and feasible in assisting thrombolysis therapy. In terms of

accuracy, a model should be able to predict risks and benefits and select target patients who could benefit the most from thrombolysis therapy

with high accuracy. The accuracy of the model largely depends on the conceptualization, which consists of reasonable clinical goal definition,

optimal clinical input selection, and appropriate feature engineering if necessary. In terms of feasibility, in order to pass the clinical validation, a

model should have high interpretability; in order not to delay the door-to-needle time, the model needs to calculate the output in a short time.

semantics that the human brain understands from the dataset,

such as some radiological features representing penumbra

and proximal/distal arterial occlusion information, feature

engineering is required to create/extract features using domain

knowledge. Feature Engineering can use data mining techniques

to preserve these semantics and help machine learning

algorithms to understand data and determine patterns that can

improve the performance of machine learning algorithms.

Besides accuracy, feasibility is also an important, however

often ignored, factor to consider when developing clinical

machine learning models. We here identify two factors that

will hinder the implementation of models in the thrombolysis

setting: the interpretability and processing time of the model.

The interpretability of the algorithm is critical since all clinical

decision support tools must go through clinical trials to be

approved by the local authority before being used in real clinical

practice. The interpretability of the algorithm allows telling

which predictors the algorithm leverages as important factors to

be considered when predicting the clinical outcome or deciding

the thrombolysis eligibility. These predictors then need to be

confirmed related to the clinical outcome of patients going

through thrombolysis by previous clinical trials or following

clinical trials in case the algorithm generates new features during

training. Furthermore, given the fact that human nervous tissue

is rapidly lost as stroke progress and longer thrombolytic door-

to-needle time is associated with higher mortality (15), the

processing time of a thrombolytic clinical decision support tool

should be measured and the tool should be able to produce the

outcome shortly so as not to delay the treatment.

In the following sections, we are going to analyze previous

studies based on these criteria and propose improvements to

increase the accuracy and feasibility of previous models.

4. Clinical goal definition

In a thrombolysis setting, a model is conceptualized in

order to (1) predict risks and benefits, as well as (2) select

patients with stroke who could benefit most from thrombolysis

therapy in high accuracy. Previous studies achieved the goal by

developing an efficiency and safety prediction model. Among

all the literature reviewed, 11 developed models with the

objective to assess thrombolysis efficiency and 16 developed

models with the objective to assess thrombolysis safety. Only
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two assessed both efficiency and safety. The clinical outputs

of models predicting safety are all poststroke symptomatic

intracerebral hemorrhage (16–33) while the clinical outputs of

models predicting efficiency vary: the most common is the

3-month modified Rankin Scale(mRS) (25, 34–38). Huang et

al. (39) used an even longer 6-month mRS. Saposnik et al.

(22) leveraged a composite 3-month outcome of mRS, National

Institutes of Health Stroke Scale (NIHSS), and Barthel index

and Glasgow Outcome Scale score. Some models provided both

predictions on early clinical outcomes and a long-term 3-month

mRS (40, 41). A recent model in 2021 (42) predicted the final

infarct volumes for patients after thrombolysis therapy. Zhu

et al. (43) only predicted 1-h NIHSS after thrombolysis. The

early outcome advantage of thrombolysis does not necessarily

persist during long-term follow-up. To provide a comprehensive

thrombolysis efficiency assessment, both early and long-term

outcome predictions are required.

Most of the models were built on a data cohort where all

patients received thrombolysis therapy with standard dosage,

ignoring the impact of treatment options on the outcome.

Only five of the previous studies took treatment options into

consideration: they achieved the patient selection by introducing

the treatment option into the input features (thrombolysis

or placebo, using standard or low dosage): by predicting

favorable/non-favorable outcome for each patient, the machine

learning model could give insights into what is expected to

the patient under certain treatment option, as a result helping

a clinician to decide the safety and efficiency of thrombolysis

therapy for the patient: Kent et al. (34, 36), Sung et al. (25), and

Tang et al. (40) developed a model to predict expected outcome

for patients with placebo treatment vs. thrombolysis treatment.

A study from Taiwan in 2020 (30) forecasted the poststroke

SICH and 3-month mortality for patients receiving standard

thrombolytic dosage vs. lower thrombolytic dosage.

By defining the objective of the machine learning model

as foreseeing what is expected of the patient under certain

treatment options, previous studies considered treatment

options as an input. Together with all the other clinical variables,

treatment option was processed by the machine learning

classification algorithm as predictors of patients’ outcome.

However, a treatment option in a real clinical situation is a

decision made by neurologists based on the patient’s clinical

profile, financial condition, and a clear understanding of the

current evidence (44). Therefore, treatment options should be

statistically correlated with all the other clinical variables in the

input data, which will influence the prediction and inference

ability of machine learning models. On the one hand, machine

learning models become unstable in the presence of high feature

correlations (45): for linear models, multicollinearity can yield

solutions numerically unstable; for tree-based models which

are good at detecting interactions between different features,

highly correlated features can mask these interactions. Besides,

high correlation can lead to unreliable inference conclusions.

For example, the result of the study from Taiwan in 2020

(30) showed a high correlation between aging and a lower

dosage of thrombolysis. Meanwhile, the model also inferred that

patients who received a lower dosage had a higher mortality

rate in a 3-month follow-up. The inference conclusion is not

reliable due to the unclear cause of the higher mortality rate

during 3-month follow-up: given the high correlation between

two input variables: the aging and the lower dosage, we are

not certain whether the age or the lower dosage results in

the higher mortality rate. We propose that before constructing

the outcome prediction model, an inference machine learning

model to statistically test if the treatment option is correlated

with certain clinical features is necessary. If a high correlation

is found, the treatment option should be excluded from the

input variable set and the inference model could also help

to summarize the treatment option making experience from

the large dataset and infer the important clinical factors to be

considered when deciding thrombolysis eligibility and dosage.

If a high correlation is not found in the dataset, the treatment

option could be maintained as an input.

Another point to be noted is that previous studies did not

include thrombectomy following thrombolysis as a treatment

option. Since 2015, randomized clinical trials have demonstrated

that mechanical thrombectomy improves functional outcomes

in patients with stroke over intravenous thrombolysis alone

(46). The latest European thrombolysis guidelines published

in 2021 also suggested that further clinical trials are needed

to inform clinical decision-making with regard to the use of

thrombolysis before thrombectomy in patients with large vessel

occlusion (47). The emergence of mechanical thrombectomy

raises interest in thrombolytic strategies for ischemic stroke in

the thrombectomy era. To be eligible in real clinical situations

in the future, a machine learning based thrombolysis therapy

decision support tool needs to stay tuned to this thrombectomy

trend.

5. Clinical feature selection

Selecting significant input variables, in other words, feature

selection is an important prerequisite for machine learning

model construction. Feature selection is the process of choosing

an optimal subset of features that best captures the human

experience required to achieve the clinical goal of the machine

learning model, among all the available features in the patient’s

clinical profile. Feature selection serves to decrease the number

of input variables to both reduce the computational cost of

modeling and avoid overfitting. Previous studies performed

feature selection with a combination of clinical and statistical

judgment: initially selected clinical features were identified by

neurologists with clinical expertise or based on related studies,

feature engineering was then adopted by some studies to

transform raw data (we will explore feature engineering in
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details in the Section 6); stepwise model building (19, 25, 27,

29, 34, 39), univariate analysis (17, 20, 28, 30, 33, 38, 43, 48),

multivariable analysis using logistic regression (16, 21, 24, 26,

31, 32), plots displaying the pattern of predictors, and outcome

(21), and Least Absolute Shrinkage and Selection Operator

(LASSO) (25, 40), was performed to further select statistically

significant features among initially selected features and new

features generated in feature engineering.

Figure 3 summarizes the prevalence of initially selected

clinical features identified by neurologists with clinical expertise

or based on related studies, respectively, in models assessing

thrombolysis safety and thrombolysis efficiency. Age, Baseline

NIHSS, Systolic blood pressure (SBP), Diabetes, and Glucose

were the five most commonly used predictors to predict safety

while Age, Baseline NIHSS, Gender, Diabetes, and Onset time

were the five most commonly used predictors to predict

efficiency.

We noticed that only a moderate number (8 in models

assessing safety and 5 in models assessing efficiency) of studies

included radiological features [computerized tomography (CT)

scan, magnetic resonance imaging (MRI) sequences] as model

predictors. The lack of inclusion of radiological features might

lead to a risk ofmodel overfitting due to the valuable information

radiological features provide regarding thrombolysis safety and

efficiency (49, 50). For example, the research published in 2020

(30) developed a machine learning model predicting SICH

and mortality at 3 months without any medical image based

information. The cohort used to train the deep learning neural

network model consists of 331 patients, a moderate sample size

given the relatively large number of parameters in the neural

network, while the model predicts the outcomes with a high

Area under the Receiver Operating Characteristic curves (AUC)

of 0.974. Given the massive information, the medical images

contain regarding the thrombolysis outcome prediction (51),

a model without any medical image input will normally fail

to predict outcome accurately due to an incomplete patient’s

clinical profile and the high performance of the model in this

research might be due to overfitting.

6. Feature engineering

In some cases, if raw clinical features are not able to

capture the semantics that the human brain understands from

the dataset, such as some radiological features representing

penumbra and proximal/distal arterial occlusion information,

feature engineering is required to create/extract features using

domain knowledge.

Bentley et al. (24) leveraged a rather simple feature

engineering technique for example: CT scan radiological

characteristics, blood sugar, age, and baseline NIHSS are both

important factors to predict the risk of SICH after thrombolysis

(52). However, these separate input variables might not be able

to capture the way we humans understand how these factors

influence SICH. As a result, Bentley et al. (24) included a

new variable SEDAN score synthesized by all the independent

variables above. SEDAN score is a prediction rule for assessment

of the risk of SICH (53) and can be considered as a result

of feature engineering on CT scan radiological characteristics,

blood sugar, age, and baseline NIHSS.

When we reviewed past related studies, we found that most

of the previous models did not pay much attention to feature

engineering. There is either no feature engineering (16, 22, 23,

26, 29, 30, 32, 37–39, 41–43, 48), or simple feature engineering

by calculating clinical assessment scores based on past studies

(18, 24, 31, 34), creating interaction terms (21, 25, 34, 36),

creating dummy variables using different cutoff points (17, 19,

20, 33, 35), visual detection of radiological features (17–20, 24,

27, 28, 35). Tang et al. (40) performed an advanced radiological

feature engineering by first dividing the brain into six gray

matter regions plus a white matter area and then calculating

the mismatch ratio between diffusion lesion and perfusion

lesion in each of these seven brain areas. The newly generated

mismatch features based on diffusion-weighted imaging (DWI)

and perfusion-weighted imaging (PWI) represent penumbra

information. We suggest that the division of the brain, especially

the white matter area, could be more detailed given the fact that

the infarct topography in different white matter regions could

have significantly different influences on the outcome (54).

The fast progression of computer vision in recent years

allows computers to better understand medical images and

sometimes to extract radiological features that humans cannot

see. There have already been large quantities of studies

investigating the relationship between traditional clinical data

and thrombolysis outcomes. Because of computer technology

limitations, in the past, we could not extract advanced

radiological features from medical images and there are limited

studies in this field. Advanced radiological features which cannot

be easily identified by human eyes can possibly offer critical

information related to penumbra and, therefore, contribute

immensely to early thrombolytic strategies (55). Further efforts

need to be made to perform feature engineering on medical

images by applying computer vision techniques to extract

advanced radiological features.

We would like to propose a new penumbra related

radiological feature based on a modified clinical-diffusion

mismatch principle. The conventional clinical-diffusion

mismatch (CDM) has been proposed as an easier alternative

to the perfusion-diffusion mismatch (PDM) for selecting

patients with salvageable ischemic tissue (56). It is based on the

assumption that patients with severe clinical deficits, but with

relatively small lesion volumes on DWI, are likely to have an

ischemic penumbra (57). However, besides the infarct volume,

the infarct topography can also influence the initial ischemic

stroke severity dramatically. For example, according to the

research by Ona WU in 2015 (54), injury to certain important
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FIGURE 3

Prevalence of initially selected clinical features identified by neurologists with clinical expertise or based on related studies as predictors,

respectively, in models assessing thrombolysis safety and thrombolysis e�ciency. NIHSS, National Institutes of Health Stroke Scale; SBP, systolic

blood pressure; DBP, diastolic blood pressure; CT, computed tomography; LDL-c, Low-density-lipoprotein cholesterol; BMI, body mass index;

Hb A1C, hemoglobin A1c; MRI, magnetic resonance imaging; mRS, modified Rankin Scale.

functional areas, in particular motor pathways and white matter

tracts, insula and putamen are associated with more severe

initial symptoms and higher baseline NIHSS scores. If the

lesion occupies these important functional areas, the patient

can still present a rather high baseline NIHSS score without

a large infarct core or a penumbra. Therefore, we propose a

modified clinical-diffusion mismatch approach to better assess

the penumbra: our solution will first quantify the infarct core

volume in each brain functional and structural region based on

Harvard-Oxford cortical and subcortical structural atlases and

JHU DTI-based white-matter atlases from FSL software (58),

then learn the weight of DWI infarct core volume of each brain

region in the mismatch model through the machine learning

algorithm that we designed. Furthermore, we propose that

quantification of infarct core volume in each vascular territory

could also be included as a radiological feature. Previous studies
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have demonstrated that if the DWI infarct lesion is found in

a wide range in one large artery territory, it is very likely that

the thrombus evoking the stroke is located in the large artery

and endovascular treatment instead of thrombolysis is highly

recommended since rtPA can hardly resolve a large thrombus

(47). This vascular territory related radiological feature might

contain critical information for outcome prediction for patients

undergoing thrombolysis before thrombectomy.

In recent years, an increasing number of studies have

investigated the impact of clot composition on the efficiency

of thrombolysis.The clot/thrombus are highly heterogenous

and vary in composition and organization. Fibrin-rich clots

might have increased stiffness and decreased deformability

compared with red blood cell-rich clots, therefore, correlating

to less favorable clinical outcomes (59). The composition of

a clot depends on multiple factors, including but not limited

to time (60), primary sites of clot formation (61), and level

of plasma Von Willebrand factor (VWF) (62). Currently,

imaging evidence of clot characteristics was limited, including

hyperdense middle cerebral artery sign on CT and blooming

artifact on susceptibility weighted imaging (SWI) (60). The

interaction term between biomarkers, clot characteristics, and

imaging manifestation could be generated. We believe machine

learning has the potential in inferring more hidden associations

and interactions between these clot composition related

features, thus providing new insights into the management of

thrombolytic treatment.

A detailed illustration of our proposed feature engineering

can be found in Figure 4.

7. Model algorithm development

Model algorithm development is a process where we

leverage computer science and statistics to design an algorithm

that is able to achieve the predefined clinical goal using a training

dataset. Of the many algorithms used by previous thrombolysis

outcome prediction studies, some are more flexible, others are

more restrictive. The more estimated parameters the model

algorithm depends on, the more flexible the model is considered

to be. The algorithms used by previous studies, from the most

restrictive to the most flexible, were risk score (16, 17, 19–

23, 33, 35), nomogram (27, 31, 32, 37–39), logistic regression

(25, 26, 28, 29, 34, 36, 40, 43, 48), tree-based machine learning

models (18, 29, 43, 48), support-vector machine (SVM) (18, 24,

29), and deep learning neural network (29, 30, 41, 42, 48).

In fact, when developing a machine learning algorithm,

there is usually a trade-off between flexibility and interpretability

(63): Inflexible algorithms have a restrictive ability to estimate

the boundaries between different outcome classes, therefore,

producing the predicted outcome with lower accuracy. But

Inflexible algorithms are often easy to be interpreted. On the

other hand, flexible algorithms generate more accurate predicted

outcomes but suffer from low interpretability. Most of the

previous models have a preference for restrictive models (risk

score, nomogram, logistic regression, and tree-based machine

learning models) for high interpretability. Regarding the flexible

algorithms, there are two common ways to increase the

interpretability: (1) A reactive approach to calculate individual

predictor importance using the SHapley Additive exPlanations

(SHAP) framework proposed by Lundberg and Lee (64). (2)

A proactive approach to increasing model prediction accuracy

by boosting interpretability, where a very popular example is

the attention mechanism introduced in 2014 (65) to allow the

deep learning neural network decoder to leverage the most

relevant parts of the input vectors in a flexible manner. The

latter approach is recommended however requires efforts in

developing new algorithms. In order to further improve the

performance of models, future studies could stay tuned to the

new findings in the machine learning field and try to develop

new algorithms whichmaintain interpretability while improving

prediction accuracy compared with current machine learning

algorithms.

8. Processing time consideration

The processing time of a thrombolytic clinical decision

support tool covers three parts: time for automatic data

preparation, time for automatic feature engineering, and time

for machine learning algorithm running. Automatic data

preparation is quite mature nowadays in the industry with

the emergence of Data Engineering and can be easily and fast

done through well-written Structured Query Language (SQL)

script and Big Data frameworks such as MapReduce (66). A

machine learning algorithm requires a long time to be trained

in Developing Pipeline if the dataset is big. However, obtaining

an outcome using a well-trained algorithm usually requires

seconds. More attention needs to be paid to the processing time

of feature engineering to extract advanced radiological features

from medical images.

As we reviewed past studies, we found that only nine past

studies mentioned the processing time consideration, (16, 19,

20, 22, 33–37): they chose clinical input easy to obtain in the

emergency situation. However, neither of these nine studies

included advanced radiological features from medical images

due to the difficulty to calculate these features in emergencies.

We noticed that in previous studies, the radiological

features, such as penumbra and infarct core volume from DWI

and PWI (40), ASPECT scores from CT (18), and SICH-

prognostic SEDAN/HAT scores (24), were extracted manually

using traditional pipeline in open-source software. Using the

traditional pipeline to interpret medical images is accurate

but slow. Recent computer vision studies designed some deep

learning based pipelines to automatically interpret medical

images. These deep learning pipelines are able to achieve
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FIGURE 4

Schema of new model algorithm based on the improvements that we proposed summarized in Table 1. The fast pipeline to calculate advanced

radiological features in FE was published in our previous research (68). Penumbra related features are calculated based on clinical-di�usion

mismatch: P = 1(
∑

i
wivi < α)1(NIHSS > β) where i is the index of brain region a�ected by ischemic lesion; vi is the lesion volume in region i; wi

is the contribution of region i to the initial ischemic stroke severity provided by previous studies (54);
∑

i
wivi is a weighted lesion volume

corrected by anatomic correlates of admission stroke severity: in cases when lesion occupies important functional area such as Internal

Capsule, wi will increase the value of weighted lesion volume and avoid the false clinical-di�usion mismatch. NIHSS is the initial ischemic stroke

severity score; α and β need to be tuned during machine learning training process. P is the product of two indicator functions. Vascular territory

related features are lesion volume, respectively, in anterior cerebral artery (ACA) territory, middle cerebral artery (MCA) territory, posterior

cerebral artery (PCA) territory, and basilar artery (BA) territory.

an acceptable similarity with the traditional pipeline while

greatly shortening the processing time (67). Regarding the

feature engineering that we proposed in Figure 4, we have

also developed deep learning based fast-processing pipeline to

calculate the lesion volume in each brain structural region

and vascular territory (68). Our study has been published in

the Proceedings of the 2021 IEEE International Conference on

Bioinformatics and Biomedicine. Our pipeline takes diffusion

sequences of raw MRI images in Digital imaging and

communications in medicine (DICOM) format as input: DWI

and its associated apparent diffusion coefficient (ADC), and

can calculate the lesion volume in each brain structural region

and vascular territory much faster than baseline pipeline in

average 138 s on a normal PC CPU with processor 2.6

GHz Intel Core i5 and memory 8 Go 1,600 MHz DDR3. In

terms of dice score, our study is able to achieve on average

80.3% similarity with the baseline pipeline. In the future, more

efforts could be made to shorten the radiological pipeline

processing time.

9. Discussion and conclusion

Previous personalized predictive models employed in the

decision-making of thrombolysis basically stay in the research

stage and have a long way to go before being applied in

real clinical practice. In Table 1, we made a summary of

previous studies in terms of the five criteria a machine learning

model should meet in order to be accurate and feasible

in assisting thrombolysis therapy (Figure 2), as well as the

corresponding proposed improvements. In Figure 4, we also

provide a schema illustrating the new model algorithm based on

the improvements we proposed.

The accuracy of a machine learning model largely depends

on appropriate model conceptualization, requiring a reasonable

definition of the clinical goal, clinical input, and feature

engineering based on comprehensive neurological domain

knowledge summarized from past clinical trials. Efficiency and

safety assessment are both required to better select patients

who could benefit the most from thrombolysis. Poststroke
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TABLE 1 Summary of previous studies in terms of the five criteria a machine learning model should meet in order to be accurate and feasible in assisting thrombolysis therapy (Figure 2), as well as the

corresponding proposed improvements.

Reasonable clinical goal

definition

Optimal clinical input

selection

Feature engineering Model with high

interpretability

Model with short processing

time

Previous researches (1) Only 2 studies assessed both

efficiency and safety; (2) The clinical

outputs of models predicting safety are

all poststroke symptomatic intracerebral

hemorrhage while the clinical outputs of

models predicting efficiency vary; (3)

Only five of previous researches took

treatment option into consideration by

introducing the treatment option into

the input features (thrombolysis or

placebo, using standard or low dosage)

Feature selection was performed with a

combination of clinical and statistical

judgement, only a moderate number

(eight in models assessing safety and five

in models assessing efficiency) of

researches included radiological features

(CT scan, MRI sequences) as model

predictors

Most of previous models did not pay

much attention to feature engineering.

There is either no feature engineering,

or simple feature engineering by

calculating clinical assessment score,

creating interaction terms, creating

dummy variables, visual detection of

radiological features

Most of previous models have a

preference for restrictive models (risk

score, nomogram, logistic regression

and tree-based machine learning

models) for the high interpretability

Only nine past studies mentioned the

processing time consideration: they

chose clinical input easy to obtain in the

emergency situation. Neither of these

nine studies included advanced

radiological features from medical

images due to the difficulty to calculate

these features in emergency

Proposed

improvements

(1) A model assisting in thrombolysis

therapy needs to assess both efficiency

and safety; (2) To provide

comprehensive thrombolysis efficiency

assessment, both early and long-term

outcome prediction are required; (3)

Before constructing the outcome

prediction model, an inference machine

learning model to statistically test if

treatment option is correlated with

certain clinical features is necessary,

thrombectomy following thrombolysis

needs to be considered as a treatment

option as well

Inclusion of radiological features are

needed. The lack of inclusion of

radiological features might lead to a risk

of model overfitting due to the valuable

information radiological features

provide regarding to thrombolysis safety

and efficiency

Advanced radiologial features

representing penumbra and

proximal/distal arterial occlusion

information could be computed using

computer vision. Interaction term

between biomarkers, clot characteristics,

and imaging manifestation could be

generated to represent clot composition

Flexible algorithms have higher

accuracy. A proactive approach could be

adopted to increase flexible model

prediction accuracy by boosting

interpretability

Deep learning based pipelines could be

used to automatically interpret medical

images to obtain advanced radiological

features in a short time
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symptomatic intracerebral hemorrhage is an appropriate

indicator for thrombolysis safety. To provide a comprehensive

thrombolysis efficiency assessment, both early and long-term

outcome predictions are required. Given the possible high

correlation between treatment option and clinical profile, an

inferencemachine learningmodel to statistically test if treatment

option is correlated with certain clinical features is necessary

before constructing the outcome prediction model. The possible

treatment options are placebo, thrombolysis with a low dosage,

thrombolysis with standard dosage, and thrombolysis followed

by thrombectomy. The lack of advanced radiological features

representing penumbra and proximal/distal arterial occlusion

information are commonly found in previous studies. In recent

years, with an increasing number of studies investigating the

impact of clot composition on the efficiency of thrombolysis,

the interaction term between biomarkers, clot characteristics,

and imaging manifestation could be generated to represent clot

composition.

The feasibility of a machine learning model, on the other

hand, needs to be achieved by elaborate computer science

algorithms to increase the interpretability of flexible algorithms

and shorten the processing time of the pipeline interpreting

medical images. Previous models tend to adopt a passive

way in terms of feasibility: they chose restrictive models with

low accuracy for high interpretability and avoided advanced

radiological features due to the difficulty to calculate them

in an emergency. Recent advancements in computer science

would allow future models to achieve feasibility while not

compromising accuracy.

In summary, an accurate and feasible machine learning

model in assisting thrombolysis therapy should be both clinical-

evidence orientated and algorithm orientated, thus requiring

interdisciplinary collaboration between neurologists, who could

provide comprehensive domain knowledge, and computer

scientists, who could improve the performance of current

algorithms.
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A novel risk score to predict
deep vein thrombosis after
spontaneous intracerebral
hemorrhage

Ruijun Ji1,2,3,4,5, Linlin Wang1, Xinyu Liu1, Yanfang Liu1,2,

Dandan Wang1,2, Wenjuan Wang1,2, Runhua Zhang1,2,

Ruixuan Jiang1,2, Jiaokun Jia1,2, Hao Feng1,2, Zeyu Ding1,2,

Yi Ju1,2, Jingjing Lu1,2, Gaifen Liu1,2, Yongjun Wang1,2,3,4,5,

Xingquan Zhao1,2,3,4,5* and Beijing Registration of Intracerebral

Hemorrhage investigators

1Department of Neurology, Tiantan Hospital, Capital Medical University, Beijing, China, 2China

National Clinical Research Center for Neurological Diseases, Beijing, China, 3Center of Stroke,

Beijing Institute for Brain Disorders, Beijing, China, 4Beijing Key Laboratory of Translational Medicine

for Cerebrovascular Disease, Beijing, China, 5Beijing Key Laboratory of Brain Function

Reconstruction, Beijing, China

Background and purpose: Studies showed that patients with hemorrhagic

stroke are at a higher risk of developing deep vein thrombosis (DVT) than

those with ischemic stroke. We aimed to develop a risk score (intracerebral

hemorrhage-associated deep vein thrombosis score, ICH-DVT) for predicting

in-hospital DVT after ICH.

Methods: The ICH-DVT was developed based on the Beijing Registration of

Intracerebral Hemorrhage, in which eligible patients were randomly divided

into derivation (60%) and internal validation cohorts (40%). External validation

was performed using the iMCAS study (In-hospital Medical Complication

after Acute Stroke). Independent predictors of in-hospital DVT after ICH

were obtained using multivariable logistic regression, and β-coe�cients

were used to generate a scoring system of the ICH-DVT. The area under

the receiver operating characteristic curve (AUROC) and the Hosmer–

Lemeshow goodness-of-fit test were used to assess model discrimination and

calibration, respectively.

Results: The overall in-hospital DVT after ICH was 6.3%, 6.0%, and 5.7%

in the derivation (n = 1,309), internal validation (n = 655), and external

validation (n = 314) cohorts, respectively. A 31-point ICH-DVT was developed

from the set of independent predictors including age, hematoma volume,

subarachnoid extension, pneumonia, gastrointestinal bleeding, and length of

hospitalization. The ICH-DVT showed good discrimination (AUROC) in the

derivation (0.81; 95%CI = 0.79–0.83), internal validation (0.83, 95%CI = 0.80–

0.86), and external validation (0.88; 95%CI = 0.84–0.92) cohorts. The ICH-DVT

was well calibrated (Hosmer–Lemeshow test) in the derivation (P = 0.53),

internal validation (P = 0.38), and external validation (P = 0.06) cohorts.
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Conclusion: The ICH-DVT is a valid grading scale for predicting in-hospital

DVT after ICH. Further studies on the e�ect of the ICH-DVT on clinical

outcomes after ICH are warranted.

KEYWORDS

intracerebral hemorrhage, deep vein thrombosis, risk model, discrimination,

calibration

Introduction

Spontaneous intracerebral hemorrhage (ICH) accounts for

approximately 15% to 20% of all strokes and is one of the leading

causes of mortality and morbidity worldwide (1, 2). Despite

advances in medical knowledge, the treatment of ICH remains

strictly supportive with not many evidence-based interventions

currently available (3, 4).

Venous thromboembolism (VTE) is a common and

potentially life-threatening complication after stroke (5). VTE

includes deep vein thrombosis (DVT) and pulmonary embolism

(PE). The former is the most prevalent presentation, and

the latter is the most severe form of VTE (6). Studies

have indicated that patients with hemorrhagic stroke are at

significantly higher risk of DVT than those with ischemic

stroke (7–10). DVT prophylaxis might be a potential target

to improve clinical outcomes after ICH. In addition, the

optimal approach for DVT prophylaxis in an ICH patient is a

challenge of balancing the reduction in the incidence of DVT

and pulmonary embolus (PE) without risking an increase in

catastrophic hemorrhages.

Several risk factors for DVT after stroke have been identified,

such as age (11–15), gender (11–13, 16), race (11, 12, 17),

heart failure (8), atrial fibrillation (7, 18), hemiparesis (13–

15), immobility (13, 19), disorder of consciousness (8), stroke

severity (7, 14), stroke subtypes (7, 13, 15), infections (20–22),

hematoma volume (14), and length of hospital stay (7, 22, 23).

However, no reliable scoring system is currently available to

predict in-hospital DVT after ICH in routine clinical practice

or clinical trials. An effective risk stratification model for in-

hospital DVT after ICH would be helpful to identify high-

risk patients and implement tailored preventive strategies. In

addition, for clinical trials, it could be used in nonrandomized

studies to control for case-mix variation and in controlled

studies as a selection criterion.

In the study, we aimed to derivate and validate a

clinical score (intracerebral hemorrhage-associated deep vein

thrombosis score, ICH-DVT score) for predicting in-hospital

DVT after ICH following the TRIPOD (Transparent Reporting

of a multivariable prediction model for Individual Prognosis Or

Diagnosis) guideline (24).

Methods

Derivation and validation cohorts

The derivation and internal validation cohorts were derived

from the Beijing Registration of Intracerebral Hemorrhage,

which was a multicenter, prospective, and observational cohort

study. Thirteen hospitals in Beijing area participated in the

study. To be eligible for the study, subjects had to meet the

following criteria: (1) age 18 years or older; (2) hospitalized with

a primary diagnosis of spontaneous ICH confirmed by brain

CT or MRI; (3) time from stroke onset to hospital admission

of <24 h; and (4) written informed consent from patients or

their legal representatives. The study protocol was approved

by the Institutional Review Board (IRB) of the Beijing Tiantan

Hospital (KY2014-023-02). The eligible patients were randomly

divided into derivation cohort (60%) and internal validation

cohort (40%).

The external validation cohort was based on the iMCAS

study (In-hospital Medical Complication after Acute Stroke)

(7), which is a prospective registry of stroke patients admitted

to Beijing Tiantan Hospital from January 2014 to December

2016. To be eligible for the iMCAS, subjects had to meet the

following criteria: (1) age 18 years or older; (2) hospitalized with

a primary diagnosis of AIS, ICH, or SAH confirmed by brain

CT or MRI; (3) time from stroke onset to hospital admission

of <7 days; and (4) written informed consent from patients

or their legal representatives. The iMCAS was approved by the

Ethics Committee of Beijing Tiantan Hospital. For this study,

only patients with ICH were included.

Data collection and definition of variables

Standardized electronic case report forms were used for

data collection in both the Beijing Registration of Intracerebral

Hemorrhage and iMCAS. For the study, the following candidate

variables were included and analyzed: (1) demographics;

(2) time from onset to hospital; (3) stroke risk factors;

(4) pre-admission antithrombotic medications; (5) pre-stroke

modified Rankin scale (mRS) score (this information is
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obtained from patients or their legal representatives); (6)

National Institutes of Health Stroke Scale (NIHSS) score

and Glasgow Coma Scale (GCS) score on admission; (7)

admission systolic and diastolic blood pressure (mmHg);

(8) admission laboratory tests; (9) neuroimaging variables:

intracerebral hemorrhage volume (measured using the ABC/2

method), hematoma location (supratentorial or infratentorial

ICH), intraventricular extension (presence or absence), and

subarachnoid extension (presence or absence); (10) etiology

diagnosis (primary or secondary ICH); (11) ambulation within

48 h after admission; (12) DVT prophylaxis within 48 h after

admission [intermittent pneumatic compression (ICP) vs.

anticoagulation (unfractionated heparin, low-molecular-weight

heparin, or non-vitamin K antagonist oral anticoagulants)]; (13)

surgical treatment (craniotomy evacuation, minimally invasive

surgical therapy, or brain ventricle puncture and drainage); (14)

withdrawal of medical care; (15) in-hospital pneumonia after

ICH; (16) in-hospital gastrointestinal bleeding (GIB) after ICH;

and (17) length of hospital stay (LOS).

Diagnosis of in-hospital DVT after ICH

In this study, in-hospital DVT was diagnosed by the treating

physicians based on clinical manifestations, such as swelling,

pitting edema, redness, tenderness, and presence of collateral

superficial veins, and D-dimer and verified by sequential

compression Doppler ultrasound. Only DVT that developed

after hospital admission was counted.

Statistical analysis

Categorical variables were expressed as proportions.

Continuous variables were expressed as mean and standard

deviation (SD) or median and interquartile range (IQR).

Chi-square or Fisher’s exact test was used to compare

categorical variables between groups, and Mann–Whitney test

or independent t-test was employed to compare continuous

variables between groups.

Model building was performed exclusively in the derivation

cohort. In univariate analysis, Mann–Whitney test was

employed to compare continuous variables and Chi-square

test was used to compare categorical variables. A multivariable

logistic regression with stepwise backward was performed to

determine independent predictors of in-hospital DVT after

ICH. Candidate variables were those with biologically plausible

link to DVT after ICH on the basis of prior publication and

those associated with in-hospital DVT after ICH in univariate

analysis (P < 0.1). The tolerance and variance inflation

factor (VIF) were calculated to test collinearity between the

predictors of final multivariable model. The β-coefficients

of predictors from the final model were used to generate a

scoring system of the ICH-DVT. To derive an integer value

for each predictor, the β-coefficients were multiplied by 4

and were rounded to the closest integer. The resulting ICH-

DVT was validated by assessing model discrimination and

calibration. Discrimination was assessed by calculating the area

under the receiver operating characteristic curve (AUROC).

Meanwhile, sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) were calculated

at the maximum Youden index. Calibration was assessed by

plotting the observed vs. predicted risk according to 10 deciles

of the predicted risk. In addition, the Hosmer–Lemeshow

goodness-of-fit test was performed and the Snell R-square and

Nagelkerke R-square were calculated.

All tests were two-tailed, and statistical significance was

determined at an α level of 0.05. Statistical analysis was

performed using SAS 9.1 (SAS Institute, Cary, NC, USA), SPSS

21.0 (SPSS Inc., Chicago, IL, USA), and MedCalc 12.3 software

(MedCalc R©, Belgium).

Results

Baseline characteristics

The baseline characteristics of the derivation and validation

cohorts are listed in Table 1. From December 2014 to September

2016, a total of 1,964 patients were enrolled in the Beijing

Registration of Intracerebral Hemorrhage. The mean age was

56.8 ± 14.4, and 67.6% were male. The median time from onset

to hospital was 4.0 hours (IQR: 1.90–11.1). Themedian GCS and

NIHSS score on admission was 14 (IQR: 8–15) and 11 (IQR:

3–21), respectively. The median LOS was 16 days (IQR: 8–22).

A total of 122 (6.2%) patients were diagnosed with in-hospital

DVT after ICH. The eligible patients were randomly divided

into derivation cohort (60%, n = 1,309) and internal validation

cohort (40%, n = 655), which were well matched with regard to

baseline characteristics and an overall rate of in-hospital DVT

after ICH (Table 1).

A total of 314 patients with ICH in the iMCASwere included

for external validation. The mean age was 54.7 ± 14.2, and

70.4% were male. The median time from onset to hospital was

3 days (IQR: 1–4 days). The median NIHSS and GCS scores on

admission were 4 (IQR: 1–10) and 15 (IQR: 14–15), respectively.

The median LOS was 14 days (IQR: 12–18). A total of 18

(5.7%) patients were diagnosed with in-hospital DVT after ICH

(Table 1).

Predictors of in-hospital DVT after ICH

The results of univariate analysis for predictors of in-

hospital DVT after ICH in the derivation cohort are given

in Supplementary Table 1, and the multivariable predictors are

Frontiers inNeurology 03 frontiersin.org

191

https://doi.org/10.3389/fneur.2022.930500
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ji et al. 10.3389/fneur.2022.930500

TABLE 1 Baseline characteristics.

Overall cohort

(n = 1,964)

Derivation

cohort

(n = 1,309)

Internal validation

cohort (n = 655)

P1 value External

validation cohort

(n = 314)

Demographics

Age, y, median (IQR) 56.8± 14.4 56.8± 14.6 56.9± 13.9 0.19 54.7+ 14.2

Gender (male), n (%) 1,327 (67.6) 866 (67.7) 441 (67.3) 0.87 221 (70.4)

Onset to hospital (hours), median (IQR) 4.0 (1.90–11.0) 4.0 (1.92–11.0) 3.9 (1.97–11.0) 0.76 78 (24–96)

Risk factors, n (%)

Hypertension 1,367 (69.6) 908 (69.4) 459 (70.1) 0.75 208 (66.9)

Diabetes mellitus 289 (14.7) 196 (15.0) 93 (14.2) 0.65 41 (13.1)

Dyslipidemia 184 (9.4) 109 (8.3) 75 (11.5) 0.03 36 (11.5)

Atrial fibrillation 30 (1.5) 20 (1.5) 10 (1.5) 0.99 10 (3.2)

History of stroke/TIA 309 (15.7) 208 (15.9) 101 (15.4) 0.79 48 (15.3)

Myocardial infarction 38 (1.9) 20 (1.5) 18 (2.7) 0.06 26 (8.3)

Heart failure 8 (0.4) 6 (0.5) 2 (0.3) 0.62 3 (1.0)

Current smoker 628 (32.0) 403 (30.8) 225 (34.4) 0.11 120 (38.2)

Alcohol consumption 716 (36.5) 470 (35.9) 246 (37.6) 0.47 166 (52)

Pre-admission anticoagulation, n (%) 21 (1.1) 14 (1.1) 7 (1.1) 0.99 5 (1.6)

Pre-admission antiplatelet, n (%) 277 (14.1) 181 (13.8) 96 (14.7) 0.62 25 (7.9)

Pre-stroke mRS score, median (IQR) 0 (0–0) 0 (0–0) 0 (0–0) 0.36 0 (0–0)

Admission NIHSS score, median (IQR) 11 (3–21) 11 (3–21) 11 (4–21) 0.89 4 (1–10)

Admission GCS score, median (IQR) 14 (8–15) 14 (8–15) 14 (9–15) 0.26 15 (14–15)

Admission dysphagia, n (%) 666 (33.9) 441 (33.7) 225 (34.4) 0.77 24 (7.6)

Admission SBP (mm Hg), median (IQR) 165 (147–186) 164 (146–186) 167 (150–187) 0.10 158 (140–171)

Admission DBP (mm Hg), median (IQR) 96 (82–109) 95 (81–108) 98 (84–110) 0.10 93 (83–104)

Admission WBC, 109/L, median (IQR) 9.79 (7.35–13.0) 9.68 (7.29–12.9) 10.0 (7.56–13.0) 0.26 8.83 (7.34–11.0)

Admission glucose (mmol/L), median (IQR) 7.31 (6.08–9.20) 7.26 (6.05–9.10) 7.49 (6.13–9.40) 0.20 5.04 (4.37–6.07)

Admission creatinine (µmol/L), median (IQR) 63.4 (52.7–77.0) 63.1 (52.3–76.6) 63.9 (53.8–77.0) 0.17 61.7 (52.1–72.1)

Hematoma location 0.91

Supratentorial ICH, n (%) 1,752 (89.2) 1,167 (89.2) 585 (89.3) 282 (89.8)

Infratentorial ICH, n (%) 212 (10.8) 142 (10.8) 70 (10.7) 32 (10.2)

Hematoma volume (cm3), median (IQR) 15.8 (6.0–38.6) 15.5 (5.9–37.0) 16.7 (6.6–40.0) 0.20 15 (10–30)

Intraventricular extension, n (%) 655 (33.4) 430 (32.8) 225 (34.4) 0.51 109 (34.7)

Subarachnoid extension, n (%) 264 (13.4) 182 (13.9) 82 (12.5) 0.39 30 (9.6)

Etiology diagnosis, n (%) 0.86

Primary ICH 1,785(90.9) 1,193 (91.1) 592 (90.4) 277 (88.2)

Secondary ICH 159 (8.1) 103 (7.3) 56 (8.5) 34 (10.8)

Primary IVH 20 (1.0) 13 (1.0) 7 (1.1) . . .

Ambulatory within 48 h after admission, n (%) 467 (23.8) 318 (24.3) 149 (22.7) 0.47 . . .

DVT prophylaxis within 48 h after admission

ICP 96 (4.9) 69 (5.3) 27 (4.1) 0.32 112 (35.7)

Anticoagulation 5 (0.3) 4 (0.2) 1 (0.8) 0.46 . . .

Withdrawal of medical care, n (%) 139 (7.1) 99 (7.6) 40 (6.1) 0.24 21 (6.7)

Surgical treatment, n (%) 366 (18.6) 251 (19.2) 115 (17.6) 0.39 43 (13.7)

Length of hospital stay, median (IQR) 16 (8–22) 16 (9–22) 16 (8–22) 0.99 14 (12–18)

In-hospital pneumonia, n (%) 575 (29.3) 390 (29.8) 185 (28.2) 0.49 59 (18.8)

In-hospital GIB, n (%) 194 (9.9) 128 (9.8) 66 (10.1) 0.87 20 (6.4)

In-hospital DVT, n (%) 122 (6.2) 83 (6.3) 39 (6.0) 0.73 18 (5.7)

IQR, interquartile range; TIA, transient ischemic attack; mRS, modified Rankin scale; NIHSS, National Institutes of Health Stroke Scale score; GCS, Glasgow Coma Scale; SBP, systolic

blood pressure; DBP, diastolic blood pressure; WBC, white cell count; ICH, intracerebral hemorrhage; IVH, intraventricular hemorrhage; ICP, intermittent pneumatic compression; GIB,

gastrointestinal bleeding; DVT, deep vein thrombosis.
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TABLE 2 Multivariable predictors of in-hospital DVT after ICH in the derivation cohort (n = 1,309).

Variables β-coefficients SE adjusted OR* 95% CI P

Model intercept −4.913

Age (1-year increase) 0.025 0.007 1.03 1.01–1.04 <0.001

Hematoma volume (1-ml increase) 0.006 0.003 1.01 1.00–1.01 0.01

Subarachnoid extension (yes) 0.874 0.238 2.39 1.3503.82 <0.001

Occurrence of pneumonia (yes) 1.034 0.223 2.81 1.82–4.36 <0.001

Occurrence of GIB (yes) 0.748 0.253 2.11 1.29–3.47 0.003

Length of hospitalization (1-day increase) 0.018 0.004 1.02 1.00–1.03 <0.001

*Multivariable logistic regression adjusted for demographics, time from onset to hospital, stroke risk factors, pre-admission antithrombotic medications, pre-stroke dependence, admission

NIHSS and GCS scores, blood pressure, blood glucose, hematoma volume, location, intraventricular and subarachnoid extension, etiology, ambulation within 48h after admission, DVT

prophylaxis within 48 hours after admission, surgical treatment, withdrawal of medical care, in-hospital medical complications, and length of hospital stay.

DVT, deep vein thrombosis; ICH, intracerebral hemorrhage; SE, standard error; OR, odds ratio; CI, confidence interval; NIHSS, National Institutes of Health Stroke Scale; GCS, Glasgow

Coma Scale; GIB, gastrointestinal bleeding.

listed in Table 2. Age (P < 0.001), hematoma volume (P =

0.01), subarachnoid extension (P < 0.001), pneumonia (P <

0.001), gastrointestinal bleeding (P = 0.003), and length of

hospitalization (P < 0.001) were significantly associated with

in-hospital DVT after ICH. The tolerance of covariates in the

final model ranged between 0.81 and 0.98, and the VIF ranged

between 1.02 and 1.23.

Derivation of the ICH-DVT

The β-coefficients of predictors of the final multivariable

model were used to generate a scoring system of the ICH-DVT.

To derive an integer value for each predictor, the β-coefficients

were multiplied by 4 and were rounded to the closest integer.

The scoring system of the ICH-DVT is shown in Figure 1. The

risk categories were assigned in six-point increments, and the

magnitude of the score had predictive implication. The risk

of in-hospital DVT after ICH increased steadily with a higher

ICH-DVT score (Figure 2). Due to that, it is hard to clarify

whether patients with a longer length of stay are more likely

to develop DVT or whether occurrence of DVT leads to a

longer hospitalization. We established a risk model without LOS

(Supplementary Table 3).

Internal validation of the ICH-DVT

The predictive performance (AUROC) of the ICH-DVT in

the derivation (n = 1,309) and internal validation cohorts (n =

655) was 0.81 (95%CI = 0.79–0.83) and 0.83 (95%CI = 0.80–

0.86), respectively (Table 2). The predicted and observed risks of

in-hospital DVT after ICH were in close agreement according

to 10 deciles of predicted risk in the derivation and internal

validation cohorts (Supplementary Figure 1). The Hosmer–

Lemeshow test was not significant in derivation (P = 0.53),

internal validation (P = 0.38), and overall (P = 0.61) cohorts.

The Snell R-square and Nagelkerke R-square of the Hosmer–

Lemeshow goodness-of-fit test in the internal validation cohort

were 0.08 and 0.22, respectively (Supplementary Table 2).

External validation of the ICH-DVT

In the external validation cohort (n = 314), the ICH-

DVT showed good discrimination with an AUROC of 0.88

(95%CI = 0.84–0.92) (Table 2). The plot of observed vs.

predicted risk of in-hospital DVT after ICH showed a high

correlation between the observed and predicted risks in

the external validation cohort (Supplementary Figure 1). The

Hosmer–Lemeshow test was not significant (P = 0.06). The

Snell R-square and Nagelkerke R-square of the Hosmer–

Lemeshow goodness-of-fit test were 0.11 and 0.32, respectively

(Supplementary Table 2).

Discussion

In the study, we aimed to derive and validate a risk score

for predicting in-hospital DVT after ICH. Age, hematoma

volume, subarachnoid extension, pneumonia, GIB, and length

of hospitalization were predictive of in-hospital DVT after ICH.

A 31-point ICH-DVT score was developed from the set of

independent predictors, which showed good discrimination and

calibration in the derivation, internal validation, and external

validation cohorts.

Several risk factors have been identified for in-hospital

DVT after stroke. Consistent with these studies, we found that

in-hospital DVT after ICH was significantly associated with

age, hematoma volume, subarachnoid extension, pneumonia,

GIB, and length of hospitalization. Previous studies showed

that pneumonia was significantly associated with in-hospital

DVT after stroke (20, 21). Similar results were verified in
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FIGURE 1

Scoring system of intracerebral hemorrhage-associated deep vein thrombosis score (the ICH-DVT score).

both ischemic and hemorrhagic stroke (21). Patients with GIB

are at increased risk of developing venous thromboembolism

(25). In addition, a study showed an increased risk of

thromboembolic events in patients whose anticoagulation

was stopped after hospitalization for index GIB (26). Organ

crosstalk is an emerging, interesting, and clinically relevant

field. Currently, little is known about the pathophysiological

mechanisms of medical complications crosstalk after acute

stroke. A study indicated that pneumonia might play an

important role in the development of several non-pneumonia

medical complications (including DVT) after acute stroke (21).

There would be a sequential response involving activation of the

coagulation cascade, platelet plug formation, and upregulation

of endogenous defense mechanisms after hemorrhagic stroke

(27–29). Similarly, we speculated that activation of endogenous

coagulation system might play an important role in the

association between GIB and risk of in-hospital DVT after ICH.

Further studies to clarify the molecular mechanisms underlying

the interrelationship between pneumonia, GIB, and DVT after

ICH are warranted.
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FIGURE 2

Proportion of in-hospital DVT after ICH according to the ICH-DVT score in the derivation, internal validation, and external validation cohorts.

The risk categories were assigned in six-point increments. The potential risk of in-hospital DVT after ICH increased steadily with a higher

ICH-DVT score.

When assessing model discrimination, the ICH-DVT

showed good predictive performance with regard to in-hospital

DVT after ICH in the derivation, internal validation, and

external validation cohorts (Table 3). In addition, the ICH-DVT

score was well calibrated in the derivation, internal validation,

and external validation cohorts (Supplementary Table 2). It was

noteworthy that the ICH-DVT score had higher NPV than

PPV for in-hospital DVT after ICH (Table 3), which meant

that lower values more consistently predict patients without in-

hospital DVT than higher values that predict those developing

in-hospital DVT after ICH. Development of future models

might benefit from attempts to make them more balanced in

this regard.

DVT prophylaxis after ICH is highly recommended by

clinical guidelines from different countries (3, 4, 30, 31). A study

showed that the median time from onset to diagnosis of DVT

after ICH was 7 days (IQR = 4–9) (7). Therefore, the first

week after onset might be a critical time window for preventing

DVT after ICH. According to the AHA/ASA guidelines for

ICH management, patients with ICH should have intermittent

pneumatic compression for the prevention of VTE beginning

the day of hospital admission (Class I; Level of Evidence

A). After documentation of cessation of bleeding, low-dose

subcutaneous low-molecular-weight heparin or unfractionated

heparin may be considered for the prevention of VTE in

patients with a lack of mobility after 1–4 days from onset

(Class IIb; Level of Evidence B) (3). There can be difficulty in

balancing the increased risk of further intracranial hemorrhage

vs. the benefit of starting anticoagulation to prevent VTE in

daily clinical practice. The ICH-DVT score could be helpful

to identify high-risk patients of developing in-hospital DVT

after ICH, which would be useful for implementing tailored

preventive strategies. In addition, for clinical trials, ICH-DVT

could be used in nonrandomized studies to control for case-

mix variation and in controlled studies as a selection criterion.

Randomized controlled trials on efficacy of DVT prophylaxis

and ICH outcomes with stratification of patients’ potential risk

are warranted. Clinical trials conducted in this way would allow

clarifying more accurately which prevention strategies will work

in which risk stratification patients.

Clinical practice of DVT prophylaxis after stroke is

considerably variable and practitioner dependent (32). We

recommended R–P–R (risk–prevention–reassessment) model to

prevent in-hospital DVT after ICH. The R–P–R model could be

summarized in three steps: Step 1 (risk): to stratify potential risk

of developing DVT by using the ICH-DVT; Step 2 (prevention):

to apply tailed preventive strategies based on a potential risk of

in-hospital DVT and hemorrhagic events. Therapeutic decision

(pharmacologic vs. mechanical prophylaxis) could be based

on an individual benefit–risk ratio assessment. Pharmacologic

agents are the preferred agents for prophylaxis as they reduce

VTE more effectively than mechanical prophylaxis (33, 34).
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TABLE 3 Discrimination of ICH-DVT with regard to in-hospital DVT after ICH.

AUROC 95% CI P value& Youden index Cutoff Sensitivity Specificity PPV NPV

In the derivation cohort (n= 1,309) 0.81 0.79–0.83 <0.0001 0.463 16 0.711 0.733 0.153 0.974

In the internal validation cohort (n= 655) 0.83 0.80–0.86 <0.0001 0.537 16 0.795 0.742 0.163 0.983

In the overall cohort (n= 1,964) 0.82 0.80–0.83 <0.0001 0.474 16 0.738 0.736 0.156 0.977

In the external validation cohort (n= 314) 0.88 0.84–0.92 <0.0001 0.688 16 0.944 0.743 0.183 0.995

DVT, deep vein thrombosis; ICH, intracerebral hemorrhage; AUROC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV,

negative predictive value.

Mechanical prophylaxis should be reserved for those patients

who have an absolute bleeding risk or a relative bleeding risk

where the risk of bleeding outweighs the risk of developing VTE.

Step 3 (reassessment): to reassess the status of VTE parodically

(e.g., each 3three days) or when the patient’s condition changes

(e.g., recurrence of stroke or occurrence of pneumonia, etc.)

and feedback to modify DVT prevention strategies. With the

R–P–R model, we look forward to improving ICH outcome by

preventing DVT individually, effectively, and economically.

To the best of our knowledge, we are the first to derive and

validate a risk score for predicting in-hospital DVT after ICH.

The ICH-DVT score is unique in that it was derived from a

large, multicenter, and prospective ICH cohort, which included

consecutive patients of ICH, was outside of clinical trials, and

was more reflective of real-world clinical practice. However, our

study had some limitations that deserve comment. First, we only

have information on new-onset DVT during hospitalization

without documentation of the exact date of in-hospital DVT

after ICH. Our data allow no conclusion as to whether patients

with a longer length of stay per se aremore likely to develop DVT

or whether occurrence of DVT leads to a longer hospitalization.

Second, the study included only hospitalized stroke patients

and those patients died in emergency department, shortly after

admission, or treated in outpatient clinics were not included.

Third, the ICH-DVT needs to be further validated in additional

populations and larger samples.

Conclusion

The ICH-DVT is a valid grading scale for predicting in-

hospital DVT after ICH. Further studies on the effect of the

ICH-DVT on clinical outcomes after ICH are warranted.

Research in context

Evidence before this study

We did a systematic review of studies of prognostic model

of spontaneous intracerebral hemorrhage published in OVID

MEDLINE (from January 1, 1990, to December 31, 2020)

using a comprehensive search strategy, limited to humans,

combining terms for intracerebral hemorrhage (“intracerebral

hemorrhage/,” “intracranial hemorrhages/,” “cerebral

hemorrhage/,” “intracranial hemorrhage, hypertensive/,”

and other text words) with key words suggesting deep vein

thrombosis (DVT), venous thromboembolism (VTE), or

pulmonary embolism (PE) prediction (“risk models,” “score,”

“equation,” “predictive model”), with no language restriction.

Despite advances in medical knowledge, the treatment

of ICH remains strictly supportive with not many evidence-

based interventions currently available. Medical and surgical

treatments, such as blood pressure control, hematoma

evacuation, hemostatic therapy, and neuroprotection, have not

shown a definite benefit in improving ICH functional outcome.

Venous thromboembolism (VTE) is a common and

potentially life-threatening complication after stroke. VTE

includes deep vein thrombosis (DVT) and pulmonary embolism

(PE). The former is the most prevalent presentation, and the

latter is the most severe form of VTE. Studies have indicated that

patients with hemorrhagic stroke are at significantly higher risk

of DVT than those with ischemic stroke. DVT prophylaxismight

be a potential target to improve clinical outcomes after ICH.

Currently, no reliable scoring system is available to predict

in-hospital DVT after ICH in routine clinical practice or clinical

trials. An effective risk stratification model for in-hospital

DVT after ICH would be helpful to identify high-risk patients

and implement tailored preventive strategies. In addition, for

clinical trials, it could be used in nonrandomized studies to

control for case-mix variation and in controlled studies as a

selection criterion.

Added value of this study

To the best of our knowledge, we are the first to derive

and validate a risk score for predicting in-hospital DVT after

ICH. It was found that age (P < 0.001), hematoma volume

(P = 0.01), subarachnoid extension (P < 0.001), pneumonia

(P < 0.001), gastrointestinal bleeding (P = 0.003), and length

of hospitalization (P < 0.001) were significantly associated

with in-hospital DVT after ICH. A 31-point ICH-DVT score

was developed from the set of independent predictors. The

ICH-DVT showed good discrimination and calibration in
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the derivation (n = 1,309), internal validation (n = 655),

and external validation (n = 315) cohorts. The predictive

performance (AUROC) of the ICH-DVT in the derivation,

internal validation, and external validation cohorts was 0.81

(95% CI = 0.79–0.83), 0.83 (95% CI = 0.80–0.86), and 0.88

(95% CI = 0.84–0.92). The Hosmer–Lemeshow test was not

significant in derivation (P = 0.53), internal validation (P =

0.38), and external validation (P = 0.06) cohorts.

Implications of all the available evidence

The ICH-DVT is a valid grading scale for predicting in-

hospital DVT after ICH. The ICH-DVT score could be helpful

to identify high-risk patients of developing in-hospital DVT

after ICH, which would be useful for implementing tailored

preventive strategies. In addition, for clinical trials, ICH-DVT

could be used in nonrandomized studies to control for case-mix

variation and in controlled studies as a selection criterion.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and

approved by Institutional Review Board (IRB) of the Beijing

Tiantan Hospital (KY2014-023-02). The patients/participants

provided their written informed consent to participate in

this study.

Author contributions

RJi and XZ: conception and design. XZ: administrative

support. Beijing Registration of Intracerebral Hemorrhage

investigators: provision of study materials or patients and

collection and assembly of data. RZ, GL, and RJia: data analysis

and interpretation. All authors: manuscript writing and final

approval of manuscript.

Funding

This study was sponsored by the Capital Health

Research and Development of Special (2011-2004-

03) and Beijing Municipal Science and Technology

Commission (Z131107002213009). This study was partially

supported by the Nova Program of Beijing Science and

Technology Commission (2008B30), National Natural

Science Foundation of China (81471208 and 81641162),

Beijing High-Level Healthy Human Resource Project

(014-3-033), and Shandong Province Key Innovation

Project (2019JZZY020901).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fneur.2022.930500/full#supplementary-material

References

1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway
CW, Carson AP, et al. Heart disease and stroke statistics-2020 update:
a report from the American heart association. Circulation. (2020)
141:e139–596. doi: 10.1161/CIR.0000000000000746

2. Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, et al. Prevalence,
incidence, and mortality of stroke in china: results from a nationwide
population-based survey of 480 687 adults. Circulation. (2017) 135:759–
71. doi: 10.1161/CIRCULATIONAHA.116.025250

3. Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok
BR, Cushman M, et al. Guidelines for the management of spontaneous

intracerebral hemorrhage: A guideline for healthcare professionals from the
american heart association/american stroke association. Stroke. (2015) 46:2032–
60. doi: 10.1161/STR.0000000000000069

4. Steiner T, Al-Shahi Salman R, Beer R, Christensen H, Cordonnier
C, Csiba L, et al. European stroke organisation (eso) guidelines for the
management of spontaneous intracerebral hemorrhage. Int J Stroke. (2014) 9:840–
55. doi: 10.1111/ijs.12309

5. Di Nisio M, van Es N, Buller HR. Deep vein thrombosis and
pulmonary embolism. Lancet. (2016) 388:3060–73. doi: 10.1016/S0140-6736(16)3
0514-1

Frontiers inNeurology 09 frontiersin.org

197

https://doi.org/10.3389/fneur.2022.930500
https://www.frontiersin.org/articles/10.3389/fneur.2022.930500/full#supplementary-material
https://doi.org/10.1161/CIR.0000000000000746
https://doi.org/10.1161/CIRCULATIONAHA.116.025250
https://doi.org/10.1161/STR.0000000000000069
https://doi.org/10.1111/ijs.12309
https://doi.org/10.1016/S0140-6736(16)30514-1
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ji et al. 10.3389/fneur.2022.930500

6. Kumar S, Selim MH, Caplan LR. Medical complications after stroke. Lancet
Neurol. (2010) 9:105–18. doi: 10.1016/S1474-4422(09)70266-2

7. Ji R, Li G, Zhang R, Hou H, Zhao X, Wang Y. Higher risk of deep vein
thrombosis after hemorrhagic stroke than after acute ischemic stroke. J Vasc Nurs.
(2019) 37:18–27. doi: 10.1016/j.jvn.2018.10.006

8. Stecker M, Michel K, Antaky K, Cherian S, Koyfmann F. Risk factors for
dvt/pe in patients with stroke and intracranial hemorrhage. Open Neurol J. (2014)
8:1–6. doi: 10.2174/1874205X01408010001

9. Skaf E, Stein PD, Beemath A, Sanchez J, Bustamante MA, Olson RE. Venous
thromboembolism in patients with ischemic and hemorrhagic stroke. Am J
Cardiol. (2005) 96:1731–3. doi: 10.1016/j.amjcard.2005.07.097

10. Tan SS, Venketasubramanian N, Ong PL, Lim TC. Early deep vein
thrombosis: Incidence in Asian stroke patients. Ann Acad Med Singap.
(2007) 36:815–20.

11. Al-Khaled M, Matthis C, Eggers J. Predictors of in-hospital mortality and
the risk of symptomatic intracerebral hemorrhage after thrombolytic therapy
with recombinant tissue plasminogen activator in acute ischemic stroke. J Stroke
Cerebrovasc Dis. (2014) 23:7–11. doi: 10.1016/j.jstrokecerebrovasdis.2012.04.004

12. Heit JA. Epidemiology of venous thromboembolism. Nat Rev Cardiol. (2015)
12:464–74. doi: 10.1038/nrcardio.2015.83

13. Liu LP, Zheng HG, Wang DZ, Wang YL, Hussain M, Sun HX, et al. Risk
assessment of deep-vein thrombosis after acute stroke: a prospective study using
clinical factors. CNS Neurosci Ther. (2014) 20:403–10. doi: 10.1111/cns.12227

14. Ogata T, Yasaka M, Wakugawa Y, Inoue T, Ibayashi S, Okada Y. Deep
venous thrombosis after acute intracerebral hemorrhage. J Neurol Sci. (2008)
272:83–6. doi: 10.1016/j.jns.2008.04.032

15. Rinaldo L, Brown DA, Bhargav AG, Rusheen AE, Naylor RM, Gilder HE,
et al. Venous thromboembolic events in patients undergoing craniotomy for
tumor resection: Incidence, predictors, and review of literature. J Neurosurg. (2019)
132:10–21. doi: 10.3171/2018.7.JNS181175

16. Naess IA, Christiansen SC, Romundstad P, Cannegieter SC,
Rosendaal FR, Hammerstrom J. Incidence and mortality of venous
thrombosis: a population-based study. J Thromb Haemost. (2007)
5:692–9. doi: 10.1111/j.1538-7836.2007.02450.x

17. Zakai NA, McClure LA, Judd SE, Safford MM, Folsom
AR, Lutsey PL, et al. Racial and regional differences in venous
thromboembolism in the united states in 3 cohorts. Circulation. (2014)
129:1502–9. doi: 10.1161/CIRCULATIONAHA.113.006472

18. Noel P, Gregoire F, Capon A, Lehert P. Atrial fibrillation as a risk factor for
deep venous thrombosis and pulmonary emboli in stroke patients. Stroke. (1991)
22:760–2. doi: 10.1161/01.STR.22.6.760

19. Rinde LB, Smabrekke B, Mathiesen EB, Lochen ML, Njolstad I,
Hald EM, et al. Ischemic stroke and risk of venous thromboembolism
in the general population: The Tromso study. J Am Heart Assoc. (2016)
5:e004311. doi: 10.1161/JAHA.116.004311

20. Melmed KR, Boehme A, Ironside N, Murthy S, Park S, Agarwal S, et al.
Respiratory and blood stream infections are associated with subsequent venous
thromboembolism after primary intracerebral hemorrhage. Neurocrit Care. (2021)
34:85–91. doi: 10.1007/s12028-020-00974-8

21. Ji R, Wang D, Shen H, Pan Y, Liu G, Wang P, et al. Interrelationship
among common medical complications after acute stroke: Pneumonia plays

an important role. Stroke. (2013) 44:3436–44. doi: 10.1161/STROKEAHA.113.
001931

22. Kshettry VR, Rosenbaum BP, Seicean A, Kelly ML, Schiltz NK, Weil RJ.
Incidence and risk factors associated with in-hospital venous thromboembolism
after aneurysmal subarachnoid hemorrhage. J Clin Neurosci. (2014) 21:282–
6. doi: 10.1016/j.jocn.2013.07.003

23. Zeng Z, Hu Z, Zhang J. Venous thromboembolism prevention during
the acute phase of intracerebral hemorrhage. J Neurol Sci. (2015) 358:3–
8. doi: 10.1016/j.jns.2015.08.026

24. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (tripod): The
tripod statement. BMJ. (2015) 350:g7594. doi: 10.1136/bmj.g7594

25. Malhotra N, Chande N. Venous thromboprophylaxis in gastrointestinal
bleeding. Can J Gastroenterol Hepatol. (2015) 29:145–8. doi: 10.1155/2015/525623

26. Sengupta N, Feuerstein JD, Patwardhan VR, Tapper EB, Ketwaroo GA,
Thaker AM, et al. The risks of thromboembolism vs. Recurrent gastrointestinal
bleeding after interruption of systemic anticoagulation in hospitalized inpatients
with gastrointestinal bleeding: a prospective study. Am J Gastroenterol. (2015)
110:328–35. doi: 10.1038/ajg.2014.398

27. Keep RF, Xi G, Hua Y, Xiang J. Clot formation, vascular repair and hematoma
resolution after ich, a coordinating role for thrombin?Acta Neurochir Suppl. (2011)
111:71–5. doi: 10.1007/978-3-7091-0693-8_12

28. Ebihara T, Kinoshita K, Utagawa A, Sakurai A, Furukawa M,
Kitahata Y, et al. Changes in coagulative and fibrinolytic activities in
patients with intracranial hemorrhage. Acta Neurochir Suppl. (2006)
96:69–73. doi: 10.1007/3-211-30714-1_17

29. Miao W, Zhao K, Deng W, Teng J. Coagulation factor hyperfunction after
subarachnoid hemorrhage induces deep venous thrombosis. World Neurosurg.
(2018) 110:e46–52. doi: 10.1016/j.wneu.2017.09.200

30. Lansberg MG, O’Donnell MJ, Khatri P, Lang ES, Nguyen-Huynh MN,
Schwartz NE, et al. Antithrombotic and thrombolytic therapy for ischemic stroke:
Antithrombotic therapy and prevention of thrombosis, 9th ed: American college
of chest physicians evidence-based clinical practice guidelines. Chest. (2012)
141:e601S−36S. doi: 10.1378/chest.11-2302

31. Ageno W, Agnelli G, Checchia G, Cimminiello C, Paciaroni M,
Palareti G, et al. Prevention of venous thromboembolism in immobilized
neurological patients: Guidelines of the Italian society for haemostasis and
thrombosis (siset). Thromb Res. (2009) 124:e26–31. doi: 10.1016/j.thromres.2009.
06.032

32. Douds GL, Hellkamp AS, Olson DM, Fonarow GC, Smith EE, Schwamm
LH, et al. Venous thromboembolism in the get with the guidelines-stroke
acute ischemic stroke population: Incidence and patterns of prophylaxis. J
Stroke Cerebrovasc Dis. (2014) 23:123–9. doi: 10.1016/j.jstrokecerebrovasdis.2012.
10.018

33. Khan NR, Patel PG, Sharpe JP, Lee SL, Sorenson J. Chemical
venous thromboembolism prophylaxis in neurosurgical patients: an
updated systematic review and meta-analysis. J Neurosurg. (2018)
129:906–15. doi: 10.3171/2017.2.JNS162040

34. Ianosi B, Gaasch M, Rass V, Huber L, Hackl W, Kofler M, et al.
Early thrombosis prophylaxis with enoxaparin is not associated with hematoma
expansion in patients with spontaneous intracerebral hemorrhage. Eur J Neurol.
(2019) 26:333–41. doi: 10.1111/ene.13830

Frontiers inNeurology 10 frontiersin.org

198

https://doi.org/10.3389/fneur.2022.930500
https://doi.org/10.1016/S1474-4422(09)70266-2
https://doi.org/10.1016/j.jvn.2018.10.006
https://doi.org/10.2174/1874205X01408010001
https://doi.org/10.1016/j.amjcard.2005.07.097
https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.04.004
https://doi.org/10.1038/nrcardio.2015.83
https://doi.org/10.1111/cns.12227
https://doi.org/10.1016/j.jns.2008.04.032
https://doi.org/10.3171/2018.7.JNS181175
https://doi.org/10.1111/j.1538-7836.2007.02450.x
https://doi.org/10.1161/CIRCULATIONAHA.113.006472
https://doi.org/10.1161/01.STR.22.6.760
https://doi.org/10.1161/JAHA.116.004311
https://doi.org/10.1007/s12028-020-00974-8
https://doi.org/10.1161/STROKEAHA.113.001931
https://doi.org/10.1016/j.jocn.2013.07.003
https://doi.org/10.1016/j.jns.2015.08.026
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.1155/2015/525623
https://doi.org/10.1038/ajg.2014.398
https://doi.org/10.1007/978-3-7091-0693-8_12
https://doi.org/10.1007/3-211-30714-1_17
https://doi.org/10.1016/j.wneu.2017.09.200
https://doi.org/10.1378/chest.11-2302
https://doi.org/10.1016/j.thromres.2009.06.032
https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.10.018
https://doi.org/10.3171/2017.2.JNS162040
https://doi.org/10.1111/ene.13830
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 31 October 2022

DOI 10.3389/fneur.2022.952843

OPEN ACCESS

EDITED BY

Hari Kishan Reddy Indupuru,

University of Texas Health Science

Center at Houston, United States

REVIEWED BY

Xiaoying Wang,

Tulane University, United States

Wen-Jun Tu,

Chinese Academy of Medical Sciences

and Peking Union Medical

College, China

Leonard Yeo,

National University Health

System, Singapore

*CORRESPONDENCE

Qin Yang

xyqh200@126.com

Libo Zhao

2267254102@qq.com

Xiaosong Song

282329211@qq.com

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

RECEIVED 25 May 2022

ACCEPTED 03 October 2022

PUBLISHED 31 October 2022

CITATION

Ren Y, He Z, Du X, Liu J, Zhou L, Bai X,

Chen Y, Wu B, Song X, Zhao L and

Yang Q (2022) The SON2A2 score: A

novel grading scale for predicting

hemorrhage and outcomes after

thrombolysis.

Front. Neurol. 13:952843.

doi: 10.3389/fneur.2022.952843

COPYRIGHT

© 2022 Ren, He, Du, Liu, Zhou, Bai,

Chen, Wu, Song, Zhao and Yang. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

The SON2A2 score: A novel
grading scale for predicting
hemorrhage and outcomes after
thrombolysis
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Xue Bai5, Yue Chen5, Bowen Wu5, Xiaosong Song6*,

Libo Zhao3,4* and Qin Yang5*

1Department of Neurology, Nanchong Central Hospital, Sichuan, China, 2Health Manage Center,

The Second A�liated Hospital of Chongqing Medical University, Chongqing, China, 3Department of

Neurology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China,
4Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China, 5Department

of Neurology, The First A�liated Hospital of Chongqing Medical University, Chongqing, China,
6Department of Neurology, The Ninth People’s Hospital of Chongqing, Chongqing, China

Objectives: This study aimed to develop a score including novel putative

predictors for predicting the risk of sICH and outcomes after thrombolytic

therapy with intravenous (IV) recombinant tissue-type plasminogen activator

(r-tPA) in acute ischemic stroke patients.

Methods: All patients with acute ischemic stroke treated with IV r-tPA at

three university-based hospitals in Chongqing, China, from 2014 to 2019

were retrospectively studied. Potential risk factors associated with sICH

(NINDS criteria) were determined with multivariate logistic regression, and

we developed our score according to the magnitude of logistic regression

coe�cients. The score was validated in another independent cohort. Area

under the receiver operating characteristic curve (AUC-ROC) was used to

assess the performance of the score. Calibration was evaluated using the

Hosmer–Lemeshow goodness-of-fit method.

Results: The SON2A2 score (0 to 8 points) consisted of history of smoking

(no = 1, yes = 0, β = 0.81), onset-to-needle time (≥3.5 = 1,<3.5=0, β = 0.74),

NIH Stroke Scale on admission (>10 = 2, ≤10 = 0, β = 1.22), neutrophil

percentage (≥80.0% = 1, <80% = 0, β = 0.81), ASPECT score (≤11 = 2, >11

= 0, β = 1.30), and age (>65 years = 1, ≤65 years = 0, β = 0.89). The SON2A2
score was strongly associated with sICH (OR 1.98; 95%CI 1.675–2.34) and poor

outcomes (OR 1.89; 95%CI 1.68–2.13). AUC-ROC in the derivation cohort was

0.82 (95%CI 0.77–0.86). Similar results were obtained in the validation cohort.

The Hosmer–Lemeshow test revealed that predicted and observed event rates

in derivation and validation cohorts were very close.

Conclusion: The SON2A2 score is a simple, e�cient, quick, and

easy-to-perform scale for predicting the risk of sICH and outcome after

intravenous r-tPA thrombolysis within 4.5 h in patients with ischemic stroke,

and risk assessment using this test has the potential for early and personalized

management of this disease in high-risk patients.

KEYWORDS

ischemic stroke, symptomatic intracranial hemorrhage, thrombolytic therapy, risk

score, retrospective cohort study
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Introduction

From 2013 to 2019, the prevalence of stroke in China

increased significantly from 2.28–2.58% (1), posing a serious

challenge to the public health, and a broad-based nationwide

strategy in stroke prevention, screening, and consulting as

well as effective intervention is urgently needed. Intravenous

thrombolysis within 4.5 h of symptom onset with recombinant

tissue-type plasminogen activator (r-tPA) has been proven to be

the most effective evidence-based medical treatment for acute

ischemic stroke patients (2). Nevertheless, not all individuals

benefit from the thrombolytic therapy, due to narrow

therapeutic windows and severe treatment complications. What

clinicians and patients’ dependents fear most of r-tPA treatment

is thrombolysis-related symptomatic intracranial hemorrhage

(sICH). The reported frequencies of sICH differ between trials

according to the definition selected (3, 4). Post-thrombolytic

sICH, a life-threatening intracerebral hemorrhage, alters the

outcomes of acute ischemic stroke patients, resulting in a high

in-hospital mortality and disability at discharge (5). Therefore,

stratification of the risk of sICHmight facilitate patient selection

for thrombolytic therapy.

Increasing evidence showed that baseline factors and

individual variables played a predominant role in affecting the

risk of post-thrombolytic sICH (5–11). These include baseline

National Institutes of Health Stroke Scale (NIHSS) score (6–11),

ethnicity (6), gender (6, 9), age (6–11), high blood pressure

(6, 10), high baseline serum glucose (6–8, 10, 11), and onset-

to-treatment time (OTT) (10, 11), all of which are immediately

available at emergency department. Based on the above factors,

several scales including GRASPS scores (6), HAT (7), SEDAN

(8), THRIVE (9), SITS-SICH (10), DRAGON (11), and other

particular scores, in which each variable was ascribed according

to its weight in the nomogram (12), had been proposed

for predicting the risk of sICH following thrombolysis. The

predictive performance of these risk scores has been externally

validated and compared, and they appear to have fairly good

predictive power (13). However, none of them has been

extensively used in clinical practice for some reasons.

Alberta Stroke Program Early CT score is a generally

accepted predictor for both functional outcomes and

symptomatic hemorrhage in AIS patients, which has never

been incorporated into score systems. It was found that in

patients with an extended time window, the incidence of

sICH was similar among NCCT ASPECT score, CTP, and

MRI-guided endovascular treatment population (14). It may

Abbreviations: AIS, acute ischemic stroke; AUC-ROC, area under the

receiver operating characteristic curve; ASPECTS, Alberta Stroke Program

Early CT score; mRS, modified Rankin Scale; NIHSS, NIH Stroke

Scale; OTT, onset-to-treatment time; r-tPA, recombinant issue-type

plasminogen activator; sICH, symptomatic intracranial hemorrhage.

indicate that ASPECT score is associated with ischemic

penumbra and collateral status (15). Moreover, ASPECT score

can be immediately obtained by prethrombolysis noncontrast

CT, which is less time-consuming and cost-effective. Therefore,

we included ASPECT score as a putative predictor into the

score system.

In this study, we aimed to develop and validate a simple

and reliable scoring tool for predicting the risk of sICH and

outcomes in AIS patients with IVT in Chinese population, which

may help certain patients receiving IVT avoid fatal thrombolytic

complications. We present the SON2A2 score, derived from

our multi-center cohorts for acute AIS patients treated with

IV r-tPA.

Methods

Derivation cohort

All patients with acute ischemic stroke treated with IV

r-tPA from June 2014 to June 2019 at the First Affiliated

Hospital of Chongqing Medical University, Chongqing, China,

the Second Affiliated Hospital of ChongqingMedical University,

Chongqing, China, and the Yongchuan Hospital of Chongqing

Medical University, Chongqing, China, were included in this

study. The inclusion criteria were as follows: (1) All patients had

tomeet the diagnostic criteria of acute ischemic stroke according

to Guidelines in China 2018; (2) R-tPA was administrated at

the standard dose (0.9 mg/kg of body weight) within 4.5 h after

the onset of symptoms; (3) cerebral CT scans were performed

at admission and within 24 h after thrombolysis or whenever

ICH was suspected; and (4) all patients had to be hospitalized

more than 3 days [almost all sICHs occurred within 36 h after

thrombolysis (16)] or diagnosed as sICH. Patients with bridging

therapy (IVT followed by endovascular treatment) were not

included in our population. The exclusion criteria were as

follows: (1) patients with incomplete data; (2) patients with

brainstem and cerebellum stroke (the accuracy of the ASPECT

score may be influenced by the structure of basalis skull); (3)

patients receiving incomplete pre-calculated doses of r-tPA; and

(4) patients with severe concomitant diseases, such as severe

heart, liver, or kidney diseases or systemic diseases. A research

flowchart is demonstrated in Figure 1.

Construction of scoring system

Baseline demographics, vascular risk factors, medical

history, stroke type, baseline NIHSS score, OTT, laboratory

parameters, and radiologic data of the eligible patients were

obtained by reviewing electronic medical records. The ASPECT

score based on noncontrast CT before treatment was reviewed

by two independent neuroradiologists without any knowledge of
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FIGURE 1

Flowchart of our study.

patients, and inter-rater reliability was tested by Spearman’s rank

correlation coefficient; any dispute was resolved by negotiation.

Functional outcome at discharge was evaluated using mRS.

Good short-term outcome was defined as mRS score 0 to 2,

and poor short-term outcome was defined as mRS score 3 to

6. Eligible patients were dichotomized into two groups, namely,

the non-sICH and sICH group, according to the NINDS criteria.

Independent risk factors were considered to be predictors of

sICH, and point values assigned to predictors were based on

their magnitude of regression coefficients by rounding off to the

nearest integer value. For each patient, the total risk score was

calculated as the sum of points assigned to the predictors.

Internal cross-validation with bootstrap
and external validation

After the SON2A2 score system was established, internal

cross-validation of the regression model between parameters

of the SON2A2 score and short-term outcome was performed

based on 1,000 bootstrap replicates. External validation was

performed in an independent cohort of 160 patients receiving

thrombolysis from the Ninth People’s Hospital of Chongqing,

Chongqing, China (2014–2019). All the patients in the

validation cohort met the same inclusion and exclusion criteria

of the derivation cohort.

Statistics

We performed descriptive statistics for all available baseline

variables including patients with or without sICH. Normally

distributed continuous variables were presented as the mean

± SD, and continuous variables with abnormal distribution

were presented as the median (IQR). Categorical variables

were presented as percentages. Differences between sICH

and non-sICH groups were compared using Student’s t-test

or Mann–Whitney U test for continuous variables and
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TABLE 1 Demographics and baseline characteristics of patients with

and without sICH in the derivation cohort.

Characteristics Non-sICH sICH P

n = 488 n = 68

Age, median, IQR (years) 71 (63, 77) 74 (69, 80) 0.001

Sex, Male,% 287, 58.8% 26, 38.2% 0.010

OTT, hour, median, IQR (hours) 2.5 (2, 3) 2.9 (2, 3.5) 0.035

NISHSS, median, IQR 10 (5, 16) 17 (14, 20) 0.000

Hypertension,% 254, 52.0% 44, 64.7% 0.050

Diabetes,% 96, 19.7% 13, 19.1% 0.914

Atrial fibrillation,% 118, 24.2% 28, 41.2% 0.030

Stroke history,% 90, 18.4% 8, 11.8% 0.176

Statin,% 86, 17.6% 11, 16.2% 0.768

Antithrombotic drugs,% 103, 21.1% 18, 31.0% 0.315

smoking,% 183, 37.5% 11, 16.2% 0.010

Drinking,% 147, 30.1% 13, 19.1% 0.060

Leukocyte, median, IQR (109/L) 7.66 (6.31, 8.9) 7.85 (6.23, 9.76) 0.457

Neutrophil percentage, M± SD 68.83± 12.50 72.63± 13.06 0.009

Hb, median, IQR(g/L) 136 (126, 145) 133 (124, 141) 0.039

PLT, median, IQR(109/L) 188 (150, 222) 174 (135, 198) 0.014

PT, median, IQR(s) 12.7 (11.7, 13.5) 13.1 (12.4, 14.1) 0.005

APTT, median, IQR(s) 30.3 (26.1, 34.5) 32 (28.4, 35.0) 0.060

INR, median, IQR 1.02 (0.96, 1.10) 1.05 (0.98, 1.12) 0.116

Fibrinogen, median, IQR(g/L) 2.94 (2.50, 3.42) 2.80 (2.26, 3.38) 0.199

ASPECTS, median, IQR 13 (12, 14) 12 (10, 13) 0.000

mRS, median, IQR 2 (0, 4) 5 (4, 6) 0.000

SD, Standard Deviation; IQR, Interquartile Range; ASPECTS, Alberta Stroke Program

Early CT score; PT, Prothrombin Time; APTT, Activated Partial Thromboplastin Time;

INR, International Normalized Ratio; mRS, modified Rankin Scale.

Pearson’s χ
2 tests or the Fisher’s exact test for categorical

variables, as appropriate. Continuous data were divided into

two categories using receiver operating characteristic curve

(ROC) combined with clinical practicality. Univariate logistic

regression was used to identify risk factors for sICH, and

variables associated with sICH at the P ≤ 0.10 level in the

univariate analysis were incorporated as potential predictive

factors into the multivariate logistic regression model. In this

analysis, independent risk factors for sICH were determined

by a backward regression procedure. Confounding factors were

excluded in the backward regression procedure. This process is

presented in Supplementary Table.

We stratified the total risk scores into the following four

tiers according to the predicted probability: low, moderate,

high, and extremely high risk. Then, binary logistic regression

was conducted to test the efficiency of the SON2A2 score in

predicting short-term outcomes. The discrimination capacity

of the risk score was assessed by area under the receiver

operating characteristic curve (AUC-ROC), and calibration

was evaluated using the Hosmer–Lemeshow goodness-of-fit

TABLE 2 Demographics and baseline characteristics of patients with

and without sICH in the validation cohort.

Characteristics Non-sICH sICH P

n = 146 n = 14

Age, median, IQR (years) 72 (65, 79) 76 (66, 79) 0.921

Sex, Male, % 77, 52.7% 5, 35.8% 0.233

OTT, hour, median, M± SD (hours) 2.91± 0.98 3.31± 1.35 0.161

NISHSS, median, IQR 10 (6, 16) 19 (15, 20) 0.000

Hypertension, % 90, 61.6% 11, 78.6% 0.210

Diabetes, % 28, 19.2% 3, 21.4% 0.839

Atrial fibrillation, % 29, 19.9% 3, 21.4% 0.889

Stroke history, % 20, 13.7% 6, 42.9% 0.005

Statin, % 11, 7.5% 3, 21.4% 0.079

Antithrombotic drugs, % 13, 8.9% 4, 28.6% 0.315

smoking, % 55, 37.7% 5, 35.7% 0.940

Drinking, % 41, 28.1% 3, 21.4% 0.594

Leukocyte, median, IQR (109/L) 6.79 (5.64, 8.17) 6.92 (5.15, 8.81) 0.738

Neutrophil percentage, M± SD 69.89± 11.12 68.65± 21.96 0.837

Hb, median, IQR (g/L) 134 (126, 145) 133 (124, 141) 0.331

PLT, median, IQR (109/L) 178 (147, 228) 143 (100, 175) 0.003

PT, median, M± SD (s) 11.3± 0.8 11.5± 0.8 0.394

APTT, median, IQR (s) 25.7 (23.9, 28.0) 26.6 (24.6, 29.0) 0.221

INR, median, IQR 0.98 (0.92, 1.09) 1.04 (0.93, 1.18) 0.481

Fibrinogen, median, IQR (g/L) 2.74 (2.40, 3.05) 2.53 (2.26, 3.03) 0.197

ASPECTS, median, IQR 13 (13, 14) 11 (10, 12) 0.000

mRS, median, IQR 0 (1, 4) 5 (4, 5) 0.000

SD, Standard Deviation; IQR, Interquartile Range; ASPECTS, Alberta Stroke Program

Early CT score; PT, Prothrombin Time; APTT, Activated Partial Thromboplastin Time;

INR, International Normalized Ratio; mRS, modified Rankin Scale.

method. Statistically significant differences were set at P <

0.05. All analyses were performed using SPSS statistical software

version 24.0 for Windows.

Results

A total of 883 acute ischemic stroke patients treated with

IV r-tPA met the inclusion criteria, and 167 patients were

eventually excluded for not meeting the predetermined study

criteria. Finally, 716 patients (395 males, 55.2%) were eligible

for analysis. Prevalence of sICH was 10.3% (95%CI 8.3–12.3%)

according to the NINDS criteria (91 of 883). The overall median

age was 72 years (IQR, 63–78 years), the median baseline NIHSS

score was 11 (IQR, 5-17), and the median time from symptom

onset to therapy was 2.5 h (IQR, 2.0–3.2 h). The median mRS

at discharge was 2 (IQR, 1-4). The inter-rater reliability was

0.82, indicating high inter-rater consistency and reliability. The

detailed baseline characteristics of the patients in the derivation

and validation cohorts are presented in Tables 1, 2, respectively.

Frontiers inNeurology 04 frontiersin.org

202

https://doi.org/10.3389/fneur.2022.952843
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ren et al. 10.3389/fneur.2022.952843

TABLE 3 SON2A2 score (0–8) for predicting the risk of symptomatic

intracranial hemorrhage after IV r-tPA and the final regression model.

Predictors Category Points Regression coefficients P

Smoking Yes 0 Reference -

No 1 0.81 0.03

Onset–to–needle

time (hours)

<3.5 0 Reference –

≧3.5 1 0.74 0.03

NIHSS score ≦11 0 Reference –

>11 2 1.22 <0.01

Neutrophil

percentage

<80% 0 Reference –

≧80% 1 0.81 <0.01

Age (years) ≦65 0 Reference –

>65 1 0.89 0.03

ASPECT score >11 0 Reference –

≦11 2 1.30 <0.01

Compared with the counterparts, patients with sICH in the

derivation cohort tended to be older (74 vs. 71, P < 0.01),

were more likely to have a longer time delay from stroke

attacks (2.9 vs. 2.5, P < 0.05) and a higher NIHSS score (17

vs. 10, P < 0.01), as well as were inclined to have a poorer

ASPECT score (12 vs. 13, P < 0.01). Additionally, patients with

an elevated neutrophil percentage, prolonged PT, and reduced

blood platelet count were more frequent to progressing to

sICH (72.63% vs. 68.83%, P < 0.01, 13.1 vs. 12.7, P < 0.01,

and 174 vs. 188, P < 0.05, respectively). The risk of sICH

according to gender, medical comorbidities, and medication use

is illustrated in Table 1. In univariate logistic regression, sex,

age, hypertension, atrial fibrillation, smoking history, drinking

history, OTT, NIHSS, ASPECTS, neutrophil percentage, PT,

and blood platelet count showed an association with sICH.

After adjusting for confounding variables, age, smoking history,

baseline NIHSS, OTT, neutrophil percentage, and ASPECTS

independently predicted sICH in multiple logistic regression.

Regression coefficients and point value assigned to predictors are

illustrated in Table 3.

The SON2A2 score, calculated as the sum of each predictor’s

scores, ranged from 0 to 8. A strong association between

SON2A2 score and sICH was shown in a binary logistic

regression procedure in the derivation, validation, and the

entire population (OR 1.98; 95% CI, 1.67–2.34, P < 0.01;

OR 2.63; 95% CI, 1.67–4.13, P < 0.01; OR 2.07; 95% CI,

1.77–2.43, P < 0.01, respectively). Prediction probability for

sICH per increasing point in the above three cohorts is shown

in Figure 2. The median SON2A2 score was 3, and the best

threshold for the SON2A2 score to diagnose sICH was 3.5

with a positive likelihood ratio of 2.46. Moreover, our risk

scores strongly correlated with poor short-term outcomes in

the entire population (OR 1.89; 95% CI 1.62–2.10, P < 0.01).

The proportion of patients with good and poor outcomes

for each SON2A2 point is illustrated in Figures 3, 4. Based

on the prediction probability, the SON2A2 score was divided

into four levels, which are 0–1, 2–4, 5–6, and 7–8 for low

(1.7%), moderate (7.4%), high (26.9%), and extremely high risk

(62.7%), respectively.

Discrimination power of the score evaluated by AUC-ROC

was similar in the derivation cohort, the internal cross-validation

cohort, and the external validation cohort (AUC 0.82, 95%CI

0.77–0.86, P < 0.01, vs. 0.82, 95%CI 0.77–0.87, P < 0.01, and

0.88, 95%CI 0.80-0.96, P < 0.01). ROC curve of the derivation

cohort is presented in Figure 4. The Hosmer–Lemeshow test

revealed that predicted and observed event rates in the

derivation and validation cohorts were very close (χ2 = 4.6,

df= 5, P = 0.47 vs. χ
2 = 0.61, df = 5, P = 0.99), indicating

that the model was well calibrated.

Discussion

In this study, we identified independent risk factors for

sICH and on this basis we developed and validated a risk

score for predicting sICH and outcomes after thrombolysis. The

SON2A2 score comprised history of smoking, ASPECTS, onset-

to-therapy time, baseline NIHSS score, neutrophil percentage,

and age. All of these factors are part of routine assessments

for r-tPA treatment candidates, which can be easily and rapidly

determined at emergency departments. And this study was the

first one to include ASPECTS as a predictor to develop a risk

score. For bedside practicality, we also converted continuous

variables into categorical variables and obtained cutoff values

for each variable, making the score easy-to-perform. The AUC-

ROCof 0.82 indicates the score has good discriminatory capacity

to predict sICH. Our score also has good calibration, which

implies the predicted incidence of sICH is consistent with

that of the observed incidence. Moreover, the SON2A2 score

strongly correlated with discharge mRS, signifying it has good

predictability of short-term functional outcomes. Similar results

of external validation support the generalization of the score. If

confirmed in prospective studies, it is expected to be widely used

in clinical practice.

Apart from an elevated percentage of neutrophils and

history of smoking, the remaining components of the SON2A2

score had been reported to be independent risk factors for sICH

(5–11). In a previous study, Gautier and his coworkers found

pharmacological depletion of polymorphonuclear neutrophils

reduced the risk of ICH, in parallel with a decrease in endothelial

dysfunction in cerebral blood vessels (17). Moreover, Maestrini

et al. reported higher neutrophil counts independently related to

sICH and worse outcome (18). Unfortunately, no similar results

were obtained in our study. However, a weak correlation was

found between neutrophil percentage and sICH in univariate
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FIGURE 2

Risk of sICH per SON2A2 score point.

analysis (crude OR 1.03; 95%CI 1.00–1.05, P < 0.05). We

subsequently dichotomized neutrophil percentage into more

than and equal to 80% and <80%, and then, we found a

high neutrophil percentage independently predicted sICH after

adjusting confounders (adjusted OR 2.25; 95% CI 1.24–4.09, P

< 0.05). Smoking is a recognized risk factor for ischemic stroke.

To be intriguing, in our study history of smoking was found

to be a protective factor for sICH. Coincidentally, smoking was

independently associated with recanalization and reperfusion,

indicating that thrombolytic therapy acts more effectively in

smokers (19). This may be explained by smoking associated

with increased plasma levels of carbon monoxide and episodic

hypoxia, which could lead to ischemic preconditioning and may

trigger adaptive cellular responses to ischemia (20).

High blood pressure and high blood glucose at admission

before treatment had been confirmed to be associated with

sICH and included in several risk scores as predictors (6–10).

As a matter of fact, these studies only focused on the initial

value at admission without longitudinal evaluation of blood

pressure and blood glucose levels. As is well known, blood

glucose and blood pressure may fluctuate dramatically over

time and are probably merely a stress reaction after stroke

(21, 22). For the absence of standard guidelines, clinicians may

manage blood glucose and blood pressure at different levels at

their discretion, which may modify the effect of blood pressure

and hyperglycemia on outcomes after thrombolysis. It may

prestroke glycemic variability and early-stage blood pressure

variability, be associated with hemorrhagic transformation and

worse outcomes (23, 24), and not necessarily be glucose and

blood pressure at admission, in patients receiving intravenous

thrombolysis. Hence, we think it is controversial to incorporate

these two factors to develop a risk score, and more relevant

studies are needed to clarify this issue. This also reminds us that

blood glucose, blood pressure levels, and other indicators can

be continuously monitored in the following research to obtain

optimal cutoffs.

Stroke outcomes have improved in the past decade, caused

by the improvements in in-hospital stroke care. According to a

big data study from Singapore (25), there has been a decreasing

incidence of AIS in Asia, but the rate of thrombolysis in Asian

patients is still much lower than that in developed countries

(26, 27) (9.5% in China vs. 11.7–18.2% in the USA). Due to poor

or low r-tPA reperfusion rate and because patients receiving

thrombolytic therapy have a higher ICH rate and consequently

worse outcomes compared with the counterparts, it is necessary

to identify patients who are more likely to develop sICH after

thrombolysis. The SON2A2 score is strongly associated with

sICH and poor outcomes; hence, we suppose our score system
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FIGURE 3

Proportion of patients with good and poor outcomes for each SON2A2 point.

could facilitate patients selection. We classified the risk of sICH

after thrombolysis into four levels, namely, low with SON2A2

score 0–1, moderate with SON2A2 score 2–4, high with SON2A2

score 5–6, and extremely high with SON2A2 score 7–8. The rate

of sICH increased 37-fold and 8.5-fold, respectively, in patients

with extremely high risk (62.9%), compared with those with low

risk (1.7%) and moderate risk (7.4%). Therefore, we think it

might not be rational to perform thrombolysis therapy among

patients with extremely high risk of sICH. As for whether to

withhold thrombolysis in patients with high risk (26.9%) of

sICH, an assessment of potential net benefit to the patients

is required.

According to the established score systems, for developing

a clinical risk score for predicting the risk of post-thrombolytic

sICH, any combinations of the following aspects of predictors

could be used: (1) demographic characteristics; (2) medical

history; (3) baseline neurological examination; (4) laboratory

findings; (5) neuroradiologic features; and (6) specific therapy.

To our knowledge, the more aspects a score covers, the higher

accuracy and precision it may have. Compared with three

aspects in GRASPS (6) and HAT (7) scores and four aspects

in SEDAN (8) and SITS-SICH risk scores (10), our SON2A2

score comprises five aspects. This may be one of the possible

reasons why our risk score has a higher AUC-ROC over other

four scores (0.82 vs. 0.71, 0.72, 0.77, and 0.70, respectively).

Without practice application and head-to-head comparison, we

cannot say our scores have a better performance than other

established scores. We have to declare that we do not propose

withholding r-tPA treatment for patients at high risk of sICH

according to the SON2A2 score before prospective evidence is

available. However, clinicians could quantify risks based on our

score and tell patients and their relatives what potential risks

may involve in thrombolytic treatment. For patients at high

risk of hemorrhagic transformation, more positive and effective

medical care measures, such as longer stay in stroke unit, more

frequent assessments of neurological deficit, and shorter CT scan

intervals, should be taken.

This study has limitations attributed to its retrospective

nature. All of our data came from teaching hospitals, and the

number of patients experiencing ICH, especially sICH, was

relatively small.We only included patients for whom all required

elements were available, and 18.9% patients were excluded for

not meeting the predetermined study criteria. These can only

be addressed in a prospective study. Stratification of continuous

variables and conversion of correlation coefficients to score

point values, although convenient to clinical applications,
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FIGURE 4

ROC curves of the derivation cohort.

are likely to cause a loss of information and decrease

model accuracy.

Conclusion

In conclusion, the SON2A2 score is easy to perform and

time-saving, is well calibrated and validated, and has good

predictive ability for the risk of sICH and outcomes in patients

with ischemic stroke treated with IVT, providing clinicians,

patients, and relatives an understanding of the risks involved in

the current treatment.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Author contributions

QY, XS, LZha, ZH, XD, and YR participated in the

conception and design of the study. JL, LZho, XB, YC, and BW

performed the data collection and analysis. YR wrote the first

draft of the manuscript. All authors contributed to the study

conception and design, commented on previous versions of the

manuscript, and read and approved the final manuscript.

Funding

This work was supported by grants from the National

Natural Science Foundation of China (Grant nos.

82171456 and 81971229) and the Project of Science

and Technology Strategic Cooperation between City and

University (22SXQT0046).

Acknowledgments

We thank all investigators who contributed to this article.

We also give thanks to all patients enrolled in this study.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fneur.2022.952843/full#supplementary-material

References

1. Tu W-J, Hua Y, Yan F, Bian H, Yang Y, Lou M, et al. Prevalence of stroke
in China, 2013–2019: A population-based study. In: The Lancet Regional Health
- Western Pacific. (2022) doi: 10.1016/j.lanwpc.2022.100550

2. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC,
Becker K, et al. 2018 Guidelines for the early management of patients with
acute ischemic stroke: a guideline for Healthcare Professionals From the
American Heart Association/American Stroke Association. Stroke. (2018) 49:e46–
e110. doi: 10.1161/STR.0000000000000158

3. Kvistad CE, Næss H, Helleberg BH, Idicula T, Hagberg G, Nordby
LM, et al. Tenecteplase vs. alteplase for the management of acute ischaemic
stroke in Norway (NOR-TEST 2, part A) : a phase 3, randomised, open-
label, blinded endpoint, non-inferiority trial. Lancet Neurol. (2022) 21:511–9.
doi: 10.1016/s1474-4422(22) 00124-7

4. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al.
Effect of treatment delay, age, and stroke severity on the effects of intravenous
thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of

Frontiers inNeurology 08 frontiersin.org

206

https://doi.org/10.3389/fneur.2022.952843
https://www.frontiersin.org/articles/10.3389/fneur.2022.952843/full#supplementary-material
https://doi.org/10.1016/j.lanwpc.2022.100550
https://doi.org/10.1161/STR.0000000000000158
https://doi.org/10.1016/s1474-4422(22)
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ren et al. 10.3389/fneur.2022.952843

individual patient data from randomised trials. Lancet. (2014) 384:1929–35.
doi: 10.1016/S0140-6736(14) 60584-5

5. Tong X, George MG, Yang Q, Gillespie C. Predictors of in-hospital death
and symptomatic intracranial hemorrhage in patients with acute ischemic stroke
treated with thrombolytic therapy: Paul Coverdell Acute Stroke Registry 2008-
2012. Int J Stroke. (2014) 9:728–34. doi: 10.1111/ijs.12155

6. Menon BK, Saver JL, Prabhakaran S, Reeves M, Liang L, Olson DM,
et al. Risk score for intracranial hemorrhage in patients with acute ischemic
stroke treated with intravenous tissue-type plasminogen activator. Stroke. (2012)
43:2293–9. doi: 10.1161/STROKEAHA.112.660415

7. Lou M, Safdar A, Mehdiratta M, Kumar S, Schlaug G, Caplan L, et al.
The HAT Score: a simple grading scale for predicting hemorrhage after
thrombolysis. Neurology. (2008) 71:1417–23. doi: 10.1212/01.wnl.0000330297.583
34.dd

8. Strbian D, Engelter S, Michel P, Meretoja A, Sekoranja L, Ahlhelm
FJ, et al. Symptomatic intracranial hemorrhage after stroke thrombolysis:
the SEDAN score. Ann Neurol. (2012) 71:634–41. doi: 10.1002/ana.
23546

9. Flint AC, Faigeles BS, Cullen SP, Kamel H, Rao VA, Gupta R, et al. THRIVE
score predicts ischemic stroke outcomes and thrombolytic hemorrhage risk in
VISTA. Stroke. (2013) 44:3365–9. doi: 10.1161/STROKEAHA.113.002794

10. Mazya M, Egido JA, Ford GA, Lees KR, Mikulik R, Toni D, et al.
Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke
treated with intravenous alteplase: safe Implementation of Treatments in Stroke
(SITS) symptomatic intracerebral hemorrhage risk score. Stroke. (2012) 43:1524–
31. doi: 10.1161/STROKEAHA.111.644815

11. Bruno A, Switzer JA. Predicting outcome of IV thrombolysis-treated
ischemic stroke patients: the DRAGON score. Neurology. (2012) 79:486–
7. doi: 10.1212/01.wnl.0000418553.72494.02

12. Yeo LLL, Chien SC, Lin JR, Liow CW, Lee JD, Peng TI, et al.
Derivation and validation of a scoring system for intravenous tissue plasminogen
activator use in asian patients. J Stroke Cerebrovasc Dis. (2017) 26:1695–
703. doi: 10.1016/j.jstrokecerebrovasdis.2017.03.033

13. Sung SF, Lin HJ, Chen CH. Response to letter by Siegler and Martin-
Schild regarding article, “Comparison of risk-scoring systems in predicting
symptomatic intracerebral hemorrhage after intravenous thrombolysis”. Stroke.
(2013) 44:e98. doi: 10.1161/STROKEAHA.113.002205

14. Nguyen TN, Abdalkader M, Nagel S, Qureshi MM, Ribo M,
Caparros F, et al. Noncontrast computed tomography vs computed
tomography perfusion or magnetic resonance imaging selection in late
presentation of stroke with large-vessel occlusion. JAMA Neurol. (2022)
79:22–31. doi: 10.1001/jamaneurol.2021.4082

15. Voleti S, Vidovich J, Corcoran B, Zhang B, Khandwala V, Mistry EA,
et al. Correlation of Alberta stroke program early computed tomography score
with computed tomography perfusion core in large vessel occlusion in delayed

time windows. Stroke. (2021) 52:498–504. doi: 10.1161/STROKEAHA.120.03
0353

16. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al.
Thrombolysis with alteplase 3 to 45 hours after acute ischemic stroke. N Engl J
Med. (2008) 359:1317–29. doi: 10.1056/NEJMoa0804656

17. Gautier S, Ouk T, Petrault O, Caron J, Bordet R. Neutrophils contribute to
intracerebral haemorrhages after treatment with recombinant tissue plasminogen
activator following cerebral ischaemia. Br J Pharmacol. (2009) 156:673–
9. doi: 10.1111/j.1476-5381.2009.00068.x

18. Maestrini I, Strbian D, Gautier S, Haapaniemi E, Moulin S, Sairanen T, et al.
Higher neutrophil counts before thrombolysis for cerebral ischemia predict worse
outcomes. Neurology. (2015) 85:1408–16. doi: 10.1212/WNL.0000000000002029

19. Kurmann R, Engelter ST, Michel P, Luft AR, Wegener S, Branscheidt
M, et al. Impact of smoking on clinical outcome and recanalization after
intravenous thrombolysis for stroke: multicenter cohort study. Stroke. (2018)
49:1170–5. doi: 10.1161/STROKEAHA.117.017976

20. Middleton ET, Morice AH. Breath carbon monoxide as an indication of
smoking habit. Chest. (2000) 117:758–63. doi: 10.1378/chest.117.3.758

21. Tziomalos K, Dimitriou P, Bouziana SD, SpanouM, Kostaki S, Angelopoulou
SM, et al. Stress hyperglycemia and acute ischemic stroke in-hospital outcome.
Metabolism. (2017) 67:99–105. doi: 10.1016/j.metabol.2016.11.011

22. Kvistad CE, Oygarden H, Logallo N, Thomassen L, Waje-Andreassen U,
Moen G, et al. A stress-related explanation to the increased blood pressure and
its course following ischemic stroke. Vasc Health Risk Manag. (2016) 12:435–
42. doi: 10.2147/VHRM.S109032

23. Lee SH, Jang MU, Kim Y, Park SY, Kim C, Kim YJ, et al. High glycemic
albumin representing prestroke glycemic variability is associated with hemorrhagic
transformation in patients receiving intravenous thrombolysis. Sci Rep. (2022)
12:615. doi: 10.1038/s41598-021-04716-4

24. Wang X, Minhas JS, Moullaali TJ, Di Tanna GL, Lindley RI, Chen X,
et al. Associations of early systolic blood pressure control and outcome after
thrombolysis-eligible acute ischemic stroke: results from the ENCHANTED study.
Stroke. (2022) 53:779–87. doi: 10.1161/STROKEAHA.121.034580

25. Tan BYQ, Tan JTC, Cheah D, Zheng H, Pek PP, De Silva DA, et al. Long-term
trends in ischemic stroke incidence and risk factors: perspectives from an Asian
stroke registry. J Stroke. (2020) 22:396–9. doi: 10.5853/jos.2020.00878

26. Tu WJ, Chao BH, Ma L, Yan F, Cao L, Qiu H, et al. Case-fatality,
disability and recurrence rates after first-ever stroke: A study from bigdata
observatory platform for stroke of China. Brain Res Bull. (2021) 175:130–
5. doi: 10.1016/j.brainresbull.2021.07.020

27. Otite FO, Saini V, Sur NB, Patel S, Sharma R, Akano EO, et al.
Ten-year trend in age, sex, and racial disparity in tPA (Alteplase) and
Thrombectomy use following stroke in the United States. Stroke. (2021) 52:2562–
70. doi: 10.1161/STROKEAHA.120.032132

Frontiers inNeurology 09 frontiersin.org

207

https://doi.org/10.3389/fneur.2022.952843
https://doi.org/10.1016/S0140-6736(14)
https://doi.org/10.1111/ijs.12155
https://doi.org/10.1161/STROKEAHA.112.660415
https://doi.org/10.1212/01.wnl.0000330297.58334.dd
https://doi.org/10.1002/ana.23546
https://doi.org/10.1161/STROKEAHA.113.002794
https://doi.org/10.1161/STROKEAHA.111.644815
https://doi.org/10.1212/01.wnl.0000418553.72494.02
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.03.033
https://doi.org/10.1161/STROKEAHA.113.002205
https://doi.org/10.1001/jamaneurol.2021.4082
https://doi.org/10.1161/STROKEAHA.120.030353
https://doi.org/10.1056/NEJMoa0804656
https://doi.org/10.1111/j.1476-5381.2009.00068.x
https://doi.org/10.1212/WNL.0000000000002029
https://doi.org/10.1161/STROKEAHA.117.017976
https://doi.org/10.1378/chest.117.3.758
https://doi.org/10.1016/j.metabol.2016.11.011
https://doi.org/10.2147/VHRM.S109032
https://doi.org/10.1038/s41598-021-04716-4
https://doi.org/10.1161/STROKEAHA.121.034580
https://doi.org/10.5853/jos.2020.00878
https://doi.org/10.1016/j.brainresbull.2021.07.020
https://doi.org/10.1161/STROKEAHA.120.032132
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 04 November 2022

DOI 10.3389/fneur.2022.889090

OPEN ACCESS

EDITED BY

Hari Kishan Reddy Indupuru,

University of Texas Health Science

Center at Houston, United States

REVIEWED BY

Qian Du,

GNS Healthcare, United States

Hui Zhou,

Nanjing University of Science and

Technology, China

Arvind Bambhroliya,

University of Texas Health Science

Center at Houston, United States

*CORRESPONDENCE

Wei Li

liwei2@sztu.edu.cn

Yu Luo

duolan@hotmail.com

Yan Kang

kangyan@sztu.edu.cn

SPECIALTY SECTION

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

RECEIVED 03 March 2022

ACCEPTED 25 August 2022

PUBLISHED 04 November 2022

CITATION

Guo Y, Yang Y, Cao F, Liu Y, Li W,

Yang C, Feng M, Luo Y, Cheng L, Li Q,

Zeng X, Miao X, Li L, Qiu W and Kang Y

(2022) Radiomics features of DSC-PWI

in time dimension may provide a new

chance to identify ischemic stroke.

Front. Neurol. 13:889090.

doi: 10.3389/fneur.2022.889090

COPYRIGHT

© 2022 Guo, Yang, Cao, Liu, Li, Yang,

Feng, Luo, Cheng, Li, Zeng, Miao, Li,

Qiu and Kang. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Radiomics features of DSC-PWI
in time dimension may provide a
new chance to identify ischemic
stroke

Yingwei Guo1,2, Yingjian Yang1,2, Fengqiu Cao1, Yang Liu2,

Wei Li2*, Chaoran Yang1, Mengting Feng1, Yu Luo3*,

Lei Cheng4, Qiang Li5, Xueqiang Zeng2, Xiaoqiang Miao2,
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Ischemic stroke has become a severe disease endangering human life.

However, few studies have analyzed the radiomics features that are of great

clinical significance for the diagnosis, treatment, and prognosis of patients

with ischemic stroke. Due to su�cient cerebral blood flow information

in dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI)

images, this study aims to find the critical features hidden in DSC-PWI

images to characterize hypoperfusion areas (HA) and normal areas (NA). This

study retrospectively analyzed 80 DSC-PWI data of 56 patients with ischemic

stroke from 2013 to 2016. For exploring features in HA and NA,13 feature

sets (Fmethod) were obtained from di�erent feature selection algorithms.

Furthermore, these 13 Fmethod were validated in identifying HA and NA and

distinguishing the proportion of ischemic lesions in brain tissue. In identifying

HA and NA, the composite score (CS) of the 13 Fmethod ranged from 0.624 to

0.925. FLasso in the 13 Fmethod achieved the best performance with mAcc of

0.958, mPre of 0.96, mAuc of 0.982, mF1 of 0.959, and mRecall of 0.96. As to

classifying the proportion of the ischemic region, the best CS was 0.786, with

Acc of 0.888 and Pre of 0.863. The classification ability was relatively stable

when the reference threshold (RT) was <0.25. Otherwise, when RT was >0.25,

the performance will gradually decrease as its increases. These results showed

that radiomics features extracted from the Lasso algorithms could accurately

reflect cerebral blood flow changes and classify HA and NA. Besides, In the

event of ischemic stroke, the ability of radiomics features to distinguish the

proportion of ischemic areas needs to be improved. Further research should

be conducted on feature engineering, model optimization, and the universality

of the algorithms in the future.
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ischemic stroke, hypoperfusion area, radiomics, feature selection, DSC-PWI
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Introduction

Ischemic stroke is a significant cause of death worldwide

and has a heavy toll on death and disability (1). Therefore,

the warning symptoms, clinical features, and prognostic

evaluation around stroke have always been the subject of

clinical and scientific research. Research shows that the initiating

presentation of ischemic stroke is the occlusion of a blood vessel

that impairs blood flow to a certain degree, leading to infarction

of brain tissue in the part of the brain supplied by that blood

vessel (2, 3). That means the state of cerebral blood flow has

become a significant factor for the early warning and status

assessment of stroke, and the early detection of abnormal blood

flow is of great significance for timely treatment and excellent

prognosis of patients.

To identify the presence of reduced regional blood flow,

studies and physicians have combined diverse modalities of

images with various analysis methods to detect abnormal states

and identify hypoperfusion areas (HA) that may cause a stroke.

In most imaging modes, perfusion images, such as dynamic

susceptibility contrast perfusion-weighted imaging (DSC-PWI)

and computed tomography perfusion (CTP), play a vital role in

stroke analytics in clinical practice and trials due to their ability

to evaluate cerebral blood flow state. When the contrast agent

arrives at the ill-perfused tissue of the brain, the signal intensity

values barely change since there is no or less propagation of

the contrast agent to the damaged tissue (4). Thus, the time

to the maximum tissue residual function (Tmax) obtained from

DSC-PWI, a highly commonly used parameter, has been used

in clinical trials to identify the HA (5, 6). Generally, the region

recognized from the condition Tmax >6s is defined as HA

(7). In addition, other single-modality images except for DSC-

PWI, or in combination with it, can also provide much medical

information on ischemic stroke. A study (8) shows that the

mismatch between DSC-PWI and diffusion-weighted imaging

(DWI) has been used to estimate the ischemic penumbra and

provides a valuable tool in the clinical treatment of stroke,

which helps guide the selection of the clinical therapeutic

plan. Lu et al. (9) evaluated the volume of the ischemic

penumbra using susceptibility-weighted imaging and mapping

(SWIM) of patients with asymmetrical prominent cortical veins.

Wang et al. (10) discussed the value of susceptibility-weighted

imaging (SWI) in evaluating the ischemic penumbra of patients

with acute cerebral ischemic stroke. Bhattacharjee et al. (11)

verified that the quantitative assessment of the penumbra using

the SWI-DWI mismatch ratio performs equivalently to the

ASL, PWI-DWI mismatch ratio. Furthermore, continuously

developed artificial intelligence models can interpret and

analyze the manifestations of stroke (12–14). Although many

previous studies have been committed to evaluating the HA

from multimodal imaging manners, multidimensional analysis

methods, and advanced artificial intelligence technology, there

are few methods to analyze the image features themselves to

discover the association between the image features and cerebral

blood flow state.

Radiomics is an emerging methodology that quantifies high-

dimensional features from imaging data and has been used

to investigate tumor heterogeneity (15, 16) and for clinical

decision support systems to improve treatment decision-making

and accelerate advancements toward precision medicine in

cancer (14, 17–21). Recently, only a tiny minority of studies

have investigated the role of radiomics in identifying ischemic

stroke lesions (22), evaluating prognostic biomarkers based

on the penumbra (23), and predicting functional outcomes

(24). However, these studies combined medical images with

clinical text information to perform the above tasks but

ignored the features themselves. Currently, few studies have

explored the association between imaging characteristics in the

temporal dimension of DSC-PWI and blood flow status in

ischemic stroke. However, with abundant and distinct blood

flow information in DSC-PWI data, it is possible to extract these

features to explain the blood flow state.

As for classification tasks, machine learning models and

neural networks have been widely used for a long time. However,

each method has its rules and algorithms to perform tasks.

For example, Logistic Regression (LR) (25–27) quantifies the

coefficients of variables to predict a logit transformation of the

probability of the presence of the event. Support VectorMachine

(SVM) (28) learns an optimal hyperplane that separates the

classes as widely as possible. SVM can also perform nonlinear

classification using the “kernel” to map to higher dimensional

feature space (29). Random Forest (RF) is created based on

decision trees (DT). Their methods resemble human reasoning

by representing hypotheses as sequential if-then. The AdaBoost

algorithm (Ada) (30) corrects the misclassifications made by

weak classifiers, and it is less susceptible to overfitting than most

learning algorithms. Gradient Boosting Decision Tree (GBDT)

adapts the boosting algorithm, and it uses the error rate of

the previous iteration weak learner to update the weight of

the training set (31). Besides, the k-nearest neighbor (KNN)

is a non-parametric classification method that forms the k

neighborhood for features (32). The Naive Bayes classifier (NB)

is a simple probabilistic classifier based on Bayes’s theorem under

solid independence between components (33). In addition to

numerous machine learning models, neural networks, such

as Multilayer Perceptrons (MLP) and Convolutional Neural

Networks (CNN) (34–36), are commonly used to perform

classification tasks. Generally, a single model is usually selected

for task execution in the current classification tasks. However,

as there are more or fewer differences between the algorithms

of different models, the comprehensive evaluation of the results

throughmultiple models will increase credibility. Thus, if we can

verify the performance of the image features of DSC-PWI data

in identifying ischemic stroke through models with different
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TABLE 1 Summary of patient information and the scanning parameters of DSC-PWI images.

Information of patients Scanning parameters of DSC-PWI images

Numbers of patients 56 TE/TR 32 ms/1,590 ms

Datasets (sets) 80 Matrix 256× 256

Number of female patients (%) 15 (26.79%) FOV 230× 230 mm2

Age (Mean± Std) 71± 11 Thickness 5 mm

HA in Left (%) 26 (32.5%) Number of measurements 50

HA in right (%) 28 (35%) Spacing between slices 6.5 mm

HA in both (%) 26 (32.5%) Pixel bandwidth 1,347 Hz/pixel

Volume of HA (Mean± Std, ml) 95.58± 75.23 Number of slices 20

NHISS (Mean± Std) 9.225± 7.135

preferences, it will undoubtedly improve the validation accuracy

and enhance the persuasiveness.

The purpose of this papermainly consists of two aspects. The

first is to discover the image features hidden in DSC-PWI data

that can accurately distinguish normal tissues from abnormal

tissues. The second is to explore the changes in the classification

task when the proportion of abnormal tissues is different.

Materials and methods

Detailed materials and methods are introduced in the

following. The procedures in this study include making HA

and normal area (NA), computing radiomics features, selecting

excellent features, and evaluating radiomics feature sets.

Materials

This retrospective study was approved by the Institutional

Review Boards of Shanghai Fourth People’s Hospital Affiliated

with Tongji University School of Medicine and exempted from

informed consent. The datasets in our study were collected

by the neurology department of Shanghai Fourth People’s

Hospital Affiliated to Tongji University School of Medicine,

China, from 2013 to 2016. In total, 80 DSC-PWI images of

56 patients with ischemic stroke were retrospectively reviewed

and included. All patients were imaged within 24 h of symptom

onset, and 22 patients were screened at least twice during pre

and post treatment. Of all the patients, 26 patients presented

with ischemic lesions in the left hemisphere, 28 in the right, and

26 in both. At least two experienced clinicians determined these

diagnoses. The DSC-PWI image for each patient was scanned

on a 1.5T MR scanner (Siemens, Germany), and Table 1 shows

the details.

Methods

Figure 1 shows the flowchart of the proposed method in

this study, including preprocessing datasets and making ROIs,

computing radiomics features, selecting outstanding features,

and evaluating radiomics feature sets. The following is a detailed

description of the process.

Preprocessing DSC-PWI images and making
regions of interest (ROIs)

Preprocessing the datasets is intended to reduce noise

and position deviation impacts. Firstly, we corrected DSC-

PWI datasets for potential patient motion by registering

all the volumes in the time series with the multiplicative

intrinsic component optimization algorithm (37, 38). Then, we

performed a data smoothing filtering to decrease the noise

interference while preserving signal accuracy. In detail, the triple

moving average filter was selected to smooth the data voxel-

by-voxel with a 1 × 3 filtering kernel. In the DSC-PWI data,

the intensity of each pixel in the time dimension forms a time-

intensity sequence I(t) with noise generated from the equipment

and other factors, while the smoothed I(t) decreased this trouble.

In addition, the necessary condition for comparative analysis

of HA and NA is to detect both locations accurately. In this

study, we used a fully automated Rapid Processing of Perfusion

and Diffusion (RAPID) software (iSchemaView, CA, USA) (39)

to segment the HA in the brain, and the segment condition was

Tmax > 6 s. In contrast with HA, we determined the healthy area

in the symmetrical region of HA as NA. Therefore, 80 ROIs for

HA and NA were generated from the DSC-PWI datasets.

Calculating radiomics features

Radiomics refers to the high-throughput extraction and

analysis of many advanced and quantitative imaging features

from medical images such as computed tomography (CT),

positron emission computed tomography (PET), or magnetic
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FIGURE 1

The flowchart of the proposed method in this study. (A) Shows the process of preprocessing images and making ROIs of HA and NA, wherein

the red area is HA and the green is NA. (B–D) Show the process of computing radiomics features, outstanding feature selection, and evaluating

the performance of feature sets.

resonance imaging (MRI). This study innovatively applied

the Radiomics technology to DSC-PWI images to obtain the

image features on the time dimension in each NA and HA.

In detail, the DSC-PWI datasets are the four-dimensional

(4D) images composed of N three-dimensional (3D) images

with the size of S×H×W. Wherein N is the total number

of the 3D images in the time dimension, and S, H, and W

represent the slice numbers, height, and width of the 3D image,

respectively. By decomposing the 4D data into N (50 in this

study) single 3D images, the radiomics features for each 3D

image can be computed separately. Then, a total of 65,800

radiomics features (50 3D images ×1316 features) can be

calculated from each DSC-PWI data. These radiomics features

were divided into nine groups: (1) Shape-based (Shape, 14

features × 50 = 700 features), (2) First Order Statistics (First-

order, 18 features × 50 = 900 features), (3) Gray Level Co-

occurrence Matrix (GLCM, 24 features × 50 = 1,200 features),

(4) Gray Level Run Length Matrix (GLRLM, 16 features × 50

= 800 features), (5) Gray Level Size Zone Matrix (GLSZM,

16 features × 50 = 800 features), (6) Neighboring Gray Tone

Difference Matrix (NGTDM, 5 features×50 = 250 features),

(7) Gray Level Dependence Matrix (GLDM, 14 features × 50
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= 700 features), (8) Log-sigma (Log-sigma, 465 features× 50

= 23250 features), (9) Wavelet-based (Wavelet, 744 features ×

50 = 37,200 features). Feature calculations were automatically

performed using the PyRadiomics package implemented in

Python (40, 41). In this study, the definition of each radiomics

feature was combined with the name of the radiomics feature

itself and the time value of the 3D image connected by the

underline, wherein n is the time value corresponding to the

3D image, n ∈ [0,49]. Each 3D image in DSC-PWI data can

be defined as S(n), where n is the time value of the 3D image

and ranges from 0 to 49. For example, “log-sigma-1-0-mm-

3D_firstorder_Skewness_17” represents the radiomics feature

“log-sigma-1-0-mm-3D_firstorder_Skewness” of S(3), which is

the fourth 3D image in DSC-PWI data, and the feature belongs

to the Log-sigma group. In this study, the p-value of each

radiomics feature was obtained from the T-test operation, and

their statistics (mean, std, minimum, median, and maximum)

can be calculated by the Origin 2021 software.

Selecting outstanding radiomics features

Selecting significant features

T-test analysis was performed to reduce the feature

dimensionality while retaining significant features to the

greatest extent. By the T-test analysis, the significant features

between NA and HA can be extracted. Before the T-test

analysis, a normalization operation was performed according

to Equation (1). Finally, 19857 significant features with p-

values lower than 0.05 remained to complete subsequent feature

selection processing.

F∗i = (Fi − Fi)/ (Fimax − Fimin) (1)

Wherein Fi is the ith feature in all the 65,800 radiomics

features, the variables Fi, Fimax, and Fimin are the mean,

maximum, and minimum of Fi, respectively.

Selecting multiple feature sets from diverse methods

One purpose of feature selection was to find the most

compelling feature representing the target variable; the other

was to compress feature space. This study used multiple

feature selection methods based on diversity principles to

select outstanding features from the 19,857 significant features.

The feature selection methods contained four types: the

methods based on theoretical Information [FI, including

Conditional Mutual Information Maximization (CMIM),

Joint Mutual Information (JMI), Mutual Information Feature

Selection (MIFS), Mutual Information Maximization (MIM),

and Minimal Redundancy Maximum Relevance (MRMR)],

based on similarity features [SIF, including Fisher-score

(Fisher), Lap-score (Lap), and (ReliefF)], based on the

statistical features [STF, including F-score (FS), T-score

(TS)], and based on sparse learning and steaming [SSL,

including multi-cluster feature selection (MCFS), Alpha-

investing (Alpha), the least absolute shrinkage and selection

operator (Lasso)]. The above methods were introduced in

reference (42–47), described in Table 2, and implemented

in Python 3.6.

During the implementation of each method, except that

Lasso selects features with coefficients more prominent than

0.02 to control the number of features within the set max

feature-length 20, the others obtained the features whose score

exceeded 0.9 and the total number was <20. To distinguish

between features obtained from the 13 method, the features

extracted from them were regarded as feature set Fmethod,

wherein the “method” represents the name of the technique

(CMIM, JMI, MIFS, MIM, MRMR, Fisher, Lap, ReliefF,

MCFS, Alpha, Lasso, FS, TS). Besides, the features obtained

from techniques in the same type were regarded as Ftype,

the “type” was the category to which the method belongs,

type∈{FI, SIF, STF, SSL}, and all the selected features were

named Fall.

Performance evaluation of the selected
features

This study evaluated the feature sets in two aspects,

including the performance of identifying HA from

NA on multiple models and the classification ability

to determine the proportion of stroke regions in the

brain hemispheres.

Evaluating the performance of classifying HA from NA

We applied ten commonly used supervised machine

learning models to identify HA and NA by learning each

feature set Fmethod. The machine learning models included

support vector machines (SVM), decision tree (DT), Adaboost

classifier (Ada), neural network (NN), random forest (RF),

k nearest neighbors (KNN), logistic regression (LR), linear

discriminant analysis (DA), gradient boosting classifier (GBDT),

and GaussianNB (NB) (seen in Table 3). By training the

ten models with the 13 Fmethod, 130 (13 × 10) classifiers

were created. These classifiers were defined by combining the

learning machine model and the feature selection method.

For example, the CSVM_MIM represents the classifier fitted

by SVM and feature sets FMIM , while CSVM_SIF means

the classifier generated from SVM and all the feature

sets FSIF .

The precision (Pre), accuracy(Acc), the area under the curve

score (Auc), F1-score (F1), and Recall are the five commonly

used indexes to evaluate classifiers (48). Generally, the higher

the index value is, the more predictive the model is. Therefore,

we applied these indexes to calculate each feature set’s composite

score (CS) to evaluate the ability of the feature set to classify HA

from NA. We designed CS as the result of the coefficient times

the mean score of the five indexes on the ten learning models.
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TABLE 2 Descriptions of the 13 feature selection methods used in this study.

Type Method Description Equation

FI MIM Evaluating features by the

correlation between features

and classes measured by the

mutual information

MIM(fi) = I(fi;C)

MIFS/MRMR Evaluating features by the

correlation between features

and classes, and redundancy

among features

MIFS(fi) = I(fi;C)− β
∑

sj∈S

I(fi; fS)

MRMR(fi) = I(fi;C)−
1
S

∑

sj∈S

I(fi; fS)

JMI/CMIM Evaluating features by the

correlation between features

and classes, and redundancy

among features measured by

the conditional mutual

information

JMI(fi) = I(fi;C)−
1
|S|

∑

sj∈S

[I(fi;C)− I(fi;C|fS)]

CMIM(fi) = min
fs∈S

I(fi;C|fs)

SIF Fisher/Lap Comparing features with their

ratios of the variance between

classes and the variance

within classes

Fisher(k) =
R
(k)
B

R
(k)
w

LS(fi) =

∑

ab

(fra−frb)
2Wij

Var(fr )

ReliefF Comparing features with the

correlation between features

and classes computed from

the ability of features to

distinguish between close

samples

ReliefF(fi ,R1,R2) =
|R1(A)−R2(A)|
max(A)−min(A)

STF FS obtaining feature score with

the ability to distinguish

positive class and negative

class computed by the average

of both classes

FS(i) =
(f i

(+)
−f i)

2
+(f i

(−)
−f i)

2

1
n+−1

n+
∑

k=1
(fk,i

(+)
−f i

(+)
)
2
+

1
n−−1

n−
∑

k=1
(fk,i

(−)
−f i

(−)
)
2

TS Computing feature score with

the average and variance of

features

TS(i) =
(f i

(+)
−f i

(−)
)

1
n+−1

n+
∑

k=1
(fk,i

(+)
−f i

(+)
)
2
+

1
n−−1

n−
∑

k=1
(fk,i

(−)
−f i

(−)
)
2

SSL MCFS Combing cluster with feature

coefficients of combinatorial

classes to compute feature

score

MCFS(i) = max
k
|fk,i|

Alpha Evaluating features by

dynamically adjusting the

threshold on the error

reduction to obtain selection

results

E(Ni)/E(Mi) < α1/(1− α1)

Lasso Using L1 regularization to

make the weight of some

learned features 0, to achieve

the purpose of sparse and

feature selection

Lasso(
∧

β ) =

arg min







n
∑

i=1

(

yi − β0 −

p
∑

j=1
βjx

∗
ij

)2

+ λ

p
∑

j=0
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∣βj

∣
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TABLE 3 Descriptions of 10 models in this study.

No. Model Definition in python 3.6

1 SVM sklearn.svm.SVC(kernel=‘rbf ’,probability=True)

2 DT sklearn.tree. DecisionTreeClassifier()

3 Ada sklearn.ensemble.AdaBoostClassifier()

4 NN sklearn.neural_network. MLPClassifier (hidden_layer_sizeS= (400, 100), alpha=0.01, max_iter=10000)

5 RF sklearn.ensemble.RandomForestClassifier(n_estimatorS = 200)

6 KNN sklearn.neighbors. sklearn.neighbors()

7 LR sklearn.linear_model.logisticRegressionCV(max_iter=100000, solver=“liblinear”)

8 DA sklearn.discriminant_analysis.()

9 GBDT sklearn.ensemble.GradientBoostingClassifier()

10 NB sklearn.naive_bayes. GaussianNB()

The coefficient was the average score of the five indexes on the

models of all features obtained by methods in the same category

[seen in Equation (2)].

CS(Fmethod) = Htype
1

KM

∑

k,m

index(k, model(m, Fmethod)) (2)

Htype =
1

KM

∑

k,m

index(k, model(m, Ftype)) (3)

Wherein K and M are the total numbers of indexes and

learning models, respectively, K = 5, M = 10, and k∈{Pre, Acc,

Auc, F1, Recall}, m∈{SVM, DT, Ada, NN, RF, KNN, LR, DA,

GBDT, NB}; index (k, model(m, Fmethod)) represents the kth

index of themthmodel fitted by Fmethod; Htype is the coefficient

of the Fmethod, and type is the category to which the method

belongs, type∈{FI, SIF, STF, SSL}.

We used the 13 Fmethod to perform tenfold cross-validation

on the ten learning models for computing the Pre, Acc,

Auc, F1, and Recall. During the tenfold cross-validation, the

StratifiedKFold function imported from sklearn package was

used to ensure the same proportion of NA and HA samples in

the training and test sets. Besides, the CSmeasured according to

Equations (2)–(3) were subsequently used to determine the top

six feature sets Ftop6.

Verifying the ability to identify the degree of stroke in

the brain tissue

Since the feature sets are obtained entirely on pure

ischemic and normal tissue, the appearance of these

features is worth studying when the tissue is impure,

in the case of the region containing both normal and

abnormal tissue. Therefore, this study further explored

the relationship between the proportion of abnormal

tissue in the brain and the representation of radiomics

feature sets.

To expand the datasets, we split the brain into left and right

sides and merged the data from both sides for an adequate

analysis. Then, 160 samples can be generated from 80 images.

First, for the process of verifying, we segmented the brain into

left and right by split function in python 3.6. Secondly, the

features in Ftop6of the middle S slices in the two sides of brain

tissue were computed by Radiomics technology; S was 3, 4,

and 5 in this study. Specifically, we extracted the Ftop6from the

middle three, four, and five layers from DSC-PWI data. And

then, the labels, representing whether the volume proportion

of the ischemic region in these S slices of brain tissue was

beyond the set reference threshold (RT), were made according

to the results of the Rapid software. The label was 1 when the

volume proportion of the ischemic region in the S slices was

more than RT and 0 in the opposite situation. In this study, the

RT was a sliding variable that came from the set starting at 0,

ending at 0.39, and spaced at 0.01, RT∈{0, 001, 0.02, . . . , 039}.

Therefore, Ftop6in each S were configured with 40 label groups,

and each one in these 120 (40×3) combinations was regarded as

FRT_S. Then, for each FRT_S, the best feature selection method

concluded above was used to extract matched features with

labels from the corresponding Ftop6, and the extracted results

were defined as F’RT_S. Finally, tenfold cross-validation was

performed on the ten models introduced in section 2.2.4 (A)

with the F’RT_S. As RT gradually increases from 0 to 0.39,

the proportion of ischemic area in the middle S slices will

grow. Therefore, the test in this step could verify the ability

to recognize the presence of stroke in differentiated degrees of

ischemia. In this section, we also got the five indexes to evaluate

the performance of F’RT_S on each model.

Results

Results are provided in three parts, including extracted

significant radiomics features, selected outstanding features, and
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the performance of the selected feature sets. The details are

shown in the following.

Extracted significant radiomics features

Of all the 65,800 features computed by radiomics

technology, in 19857 (30.2%) significant features were

extracted with the T-test operation. Figures 2A,B show the

p-value distribution of each radiomics feature group, and

Table 4 illustrates their statistics. Features in the Shape of the

nine radiomics groups were insignificant. However, the Wavelet

and Log-sigma had the most salient features of 11,612 and

5,551, and their p-values ranged from 0.0092 ± 0.013 (mean ±

std) and 0.01 ± 0.0138, respectively. The NGTDM group had

minor significant features of 139, with p-values of 0.0090 ±

0.0107. The significant features in GLCM, First-order, GLRLM,

GLSZM, GLRLM, and GLDM were from 419 to 619, with

p-values of nearly 0.006 ± 0.011. Combining Figures 2A,B,

it can be seen that among all feature groups, the p-values of

significant features in the eight radiomics feature groups can

reach 0.05 at most. In addition, with the increasing number of

significant features, the distribution range of them will decrease.

That is, the distribution of the p-values excluding outliers will

become more concentrated.

Selected outstanding features

With the 13 feature selection methods, 128 outstanding

features were selected and renamed by combining the letter F

and serial number (see Appendix A in Supplementary material).

As an analysis result, the 128 features included 70 Wavelet

features, 2 GLDM features, 16 GLCM features, 12 First-order

features, and 28 Log-sigma features (seen in Figures 2C,D).

In addition, we computed four attributes between the label

and each feature, including the coefficient of determination (R

squared) based on the Pearson coefficient, p-value, Gain, and

Gain ratio. The following were details described according to

every single method.

In the methods based on FI (seen in Table 5), 64 excellent

features with p-values = 0.009 ± 0.014, R squared = 0.090

± 0.067, Gain = 0.077 ± 0.05 and Gain ratio=0.112 ±

0.072 were chosen, wherein CMIM, MM, JMI selected 20

features, respectively; MRMR and MIFS selected 18 features,

respectively. Besides, the features in the five feature sets were

highly repeatable.

The methods in SIF selected 18 features (seen in Table 5).

The attributes of them were R squared = 0.4 ± 0.232, p-values

= 0.004 ± 0.012, Gain =0.293 ± 0.171, and Gain ratio=0.423

± 0.247, respectively. Of these 18 features, only four came from

the FFisher , while FLap and FReliefF contributed 6 and 16 features.

The features in these sets had the lower p-values and the higher

R squared, Gain, and Gain ratios.

In the methods based on STF (seen in Table 5), 11 features

were obtained. These 11 features all belong to the FTS, and FFS

included only 6 of them. In addition, the R squared, Gain and

Gain ratio ranged from 0.582 ± 0.018, 0.43 ± 0.064, and 0.621

± 0.093, respectively. And the p-values of them were <0.0001.

Besides, FFS and FTS got similar results on the four attributes,

among which the index value of FFS was slightly higher than that

of FTS.

In the methods based on SSL (seen in Table 5), there were

47 selected features. The features in the three feature sets were

scattered and independent. FMCFS screened out 20 features

independent of FLasso and FAlpha, while FLasso and FAlpha shared

a few members in common. The 47 features configured with R

squared= 0.179± 0.148, p-values= 0.006± 0.011, Gain= 0.13

± 0.101, and Gain ratio=0.188± 0.146.

Performance of feature sets

In this study, we evaluated the 13 feature sets in two aspects.

One was to identify HA and NA, and the other was to determine

the proportion of ischemic lesions in brain tissue.

The performance of identifying HA and NA

Based on the tenfold cross-validation results on the ten

models, we calculated the five indexes of the five Ftype and

128 selected features Fall on the ten models and then got their

Htype. Figure 3 shows their performance in detail. According to

the mean of five indexes (mAcc, mAuc, mPre, mF1, mRecall),

SSL got the best score of mAcc = 0.952, mPre = 0.964,

mAuc = 0.980, mF1 = 0.953 and mRecall= 0.948, while

FI got the lowest score of mAcc = 0.82, mPre = 0.817,

mAuc = 0.888, mF1 = 0.831 and mRecall = 0.874. Besides,

SIF and STF got similar scores, and SIF was slightly better

than STF. The results also showed that the performances

of Fall were lower than that of FSSL, but generally better

than other feature sets, which means that although the total

features achieved good performance, it was still slightly inferior

to the combination of the best feature sets. In addition,

the coefficients Htype of Ftype were computed according to

Equation (3). As a result, FSSL obtained the highest coefficient

of 0.959, and the coefficient values of Fall, FSIF , FSTF , and

FFI decreased successively, which were 0.944, 0.932, 0.931,

and 0.846.

Figure 4 shows the tenfold cross-validation scores of 13

feature sets on the ten models. For the 13 feature sets, the

mAcc, mPre, mAuc, mF1, and mRecall were 0.849, 0.851,

0.893, 00853, and 0.872, respectively. And the CS of them

were from 0.624 to 0.925. In general, the performance of a

single feature set was consistent with the result of the Ftypeto
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FIGURE 2

The information on significant features and 128 outstanding features. (A,B) Show the counts and p-values of significant features in each

radiomics feature group; (C,D) show the time values of the 128 selected features and their counts in each radiomics feature group. The orange

box in (B) indicates the distribution range of 25–75% p-values; The long horizontal line ’—’ above the box indicates 1.5 times the interquartile

range value (1.5 IQR), and the discrete points above the short horizontal line are abnormal points.

which it belongs. Similar to statistics by types of features,

the feature sets in FSSL performed better than those in the

other Ftype, and sets in FFI got a result that left much for

improvement. Specifically, using CS as a reference (seen in

Figure 4F), the best one was FLasso(CS = 0.925) in the FSSL,

and FAlpha got a comparable CS of 0.904. In particular, FLasso
achieved an Auc of 1 on multiple models. In contrast, FMRMR,

FMRMR, and FMIFS in FFI performed relatively poorly. The

other feature sets scored differently, ranging from 0.70 to 0.874.

In general, the top six feature sets Ftop6with the highest CS

were FLasso, FAlpha, FFS, FFisher , FTS, and FReliefF , including

41 features. Besides, the Lasso algorithm became the best

method for subsequent feature selection processing based on

the highest CS.

The ability to identify the proportion of
ischemic stroke

In the 120 FRT_S formed by the Ftop6 of the three S slices

under 40 RT, positive samples (label=1) indicated that ischemic

stroke volume greater than RT differed. Figure 5A shows the

distribution of positive samples in each S with different RT

values. In each case, positive samples decreased gradually as RT

values increased. In general, the ratio of positive samples in 160

patients ranged from 15 to 61.25% in S = 3, 17.5–61.88% in S =

4, and 11.88–63.13% in S = 5. When RT was in the range of 0–

0.04, the proportion between positive and negative samples was

>1:1; when RT was in 0.05–0.1, the proportion was about 2:3;

when RT was in 0.11–0.25, the proportion was nearly 1:3, and

when RT was >0.25, the proportion was <0.3.
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TABLE 4 The statistics of significant Radiomincs features groups.

Feature Group Number of features Mean (p-value) Std (p-value) Minimum (p-value) Median

(p-value)

Maximum

(p-value)

First-order 555 0.0050 0.0105 <0.0001 0.0002 0.0497

GLCM 619 0.0060 0.0114 <0.0001 0.0002 0.0499

GLDM 419 0.0060 0.0104 <0.0001 0.0007 0.0497

GLRLM 436 0.0068 0.0118 <0.0001 0.0009 0.0498

GLSZM 526 0.0066 0.0104 <0.0001 0.0009 0.0496

Log-sigma 5551 0.0100 0.0138 <0.0001 0.0027 0.0500

NGTDM 139 0.0090 0.0107 <0.0001 0.0063 0.0449

Wavelet 11612 0.0092 0.0130 <0.0001 0.0022 0.0500

TABLE 5 The counts of features and four attributes of 13 Fmethod .

Type Method Counts of Features R squared p_value Gain Gain ratio

FI CMIM 20 0.11± 0.657 0.004± 0.011 0.089± 0.048 0.129± 0.069

MIM 20 0.116± 0.074 0.008± 0.015 0.102± 0.065 0.147± 0.093

JMI 20 0.077± 0.073 0.014± 0.016 0.058± 0.036 0.083± 0.051

MRMR 18 0.064± 0.039 0.009± 0.01 0.062± 0.032 0.089± 0.047

MIFS 18 0.078± 0.044 0.006± 0.009 0.066± 0.032 0.095± 0.046

SIF Fisher 4 0.603± 0.004 <0.0001 0.474± 0.009 0.684± 0.013

ReliefF 12 0.538± 0.065 <0.0001 0.389± 0.078 0.561± 0.112

LS 6 0.124± 0.190 0.013± 0.018 0.102± 0.142 0.147± 0.204

STF FS 7 0.592± 0.015 <0.0001 0.464± 0.022 0.670± 0.032

TS 11 0.582± 0.018 <0.0001 0.430± 0.064 0.621± 0.093

SSL Alpha 11 0.199± 0.167 0.006± 0.014 0.145± 0.115 0.209± 0.166

Lasso 16 0.280± 0.146 <0.0001 0.197± 0.106 0.284± 0.152

MCFS 20 0.087± 0.062 0.011± 0.012 0.069± 0.036 0.1± 0.052

Subsequently, with RT from 0 to 0.39 and S from 3 to 5,

we selected outstanding features F
′

RT_S by the Lasso algorithm.

As a result, there were slight differences between the features

in 140 F
′

RT_S. There were 20 features in F
′

RT_3, 18 in F’RT_4,

and 21 in F’RT_5, and most of these features came from FLasso

and FAlpha (seen in Appendix A in Supplementary material).

Figures 5B–D show the detailed features. We got the five indexes

on the ten models by performing the tenfold cross-validation

with the selected F
′

RT_S. As Figures 6–8 show, whatever the S

value was, with the increase of RT, the Acc of the ten models

showed a gradual growth trend; Pre and Auc represented a state

of steady first and then slow decline nearly at RT∈[0.24, 0.3],

while F1 and Recall gradually decreased. Among them, themAcc

ranged from 0.6 to 0.875 in F
′

RT_3, 0.531 to 0.856 in F
′

RT_4, 0.644

to 0.881 in F
′

RT_5; the mAuc ranged from 0.523 to 0.892, 0.533

to 0.893, 0.497 to 0.935; and the mPre ranged 0 to 0.888, from 0

to 0.856, 0 to 0.917; the mF1 ranged from 0 to 0.85, 0 to 0.845,

0 to 0.844, and mRecall from 0 to 0.87, from 0 to 0.896, 0 to

0.874, respectively. Furthermore, the CS of F
′

RT_S stayed stable

and then dropped rapidly. And the CS ranged from 0.759 to

0.341 in F
′

RT_3, from 0.78 to 0.437 in F
′

RT_4, and from 0.786 to

0.28 in F
′

RT_5. According to Figure 9, the drop point was at the

stage when RT was >0.25, and that of S = 3 was later than that

of S= 4 and 5.

Discussion

An ischemic stroke is a vascular event characterized by

reducing regional blood flow. Few studies explored the changes

among DSC-PWI images in the time dimension, although the

parameter Tmax obtained from them was commonly used to

discriminate HA and NA. Some studies (49–51) have shown

that the time-intensity curve of HA in the DSC-PWI images

of patients with ischemic stroke has a much smaller brightness

decrease than the curve of NA (seen in Figure 10). Therefore, the

data of DSC-PWI in the time dimension are correlated with the

blood flow state of brain tissues to a certain extent. This study
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FIGURE 3

The performance of each Ftypeand Fallon the ten models. (A–E) Show the five indexes (Acc, Pre, Auc, F1, Recall) of Ftypeand Fall, and (F) show the

coe�cients Htypeof them.

successfully extracted multi-level feature selection processing

and the radiomics features distinguishing HA and NA from

DSC-PWI. Of all the methods, the FLasso reached the best CS of

0.925, and the five indexes were mAcc of 0.958, mPre of 0.96,

mAuc of 0.982, mF1 of 0.959, and mRecall of 0.96. Besides,

we effectively verified the ability of these features to evaluate

the ischemic area ratio in the brain. According to the results,

with the increase of the proportion of ischemic tissue, the mAcc

increased, while Pre stabilized and then decreased. And the best

Pre and Acc can reach 0.888 and 0.863. In general, the radiomics

features of 3D images in the time dimension of DSC-PWI have

an optimistic ability to distinguish normal brain tissue from

abnormal brain tissue and indicate the proportion of ischemic

tissue in brain tissue.

This study used 13 feature selection methods with different

preferences to obtain outstanding features. As a result, there

were 128 excellent features selected from the original 65,800

radiomics features. Their time values are mainly concentrated at

the initial moment (0–3), the stage through which the contrast

agent passes (17–22), and a few features located at the end of

the reaction (time >30) (seen in Figure 2C). The results indicate

that the initial intensity of the tissue, as well as the amount

of intensity change, and the time producing the change, are

essential to distinguish between normal and abnormal tissues.

Besides, the features of Shape, GLRLM, GLSZM, and NGTDM

were missing in the 128 selected features (seen in Figure 2D).

This means that the shape, gray of neighboring voxels, and

length in the number of pixels with the same gray make

little contribution to characterizing the changing of blood flow,

and features in the other groups are significant. Among 13

feature sets, FLasso and FAlpha in FSSL achieved the best CS

of 0.925 and 0.904, while FFI performed worst, and FSIF and

FSTFperformed in the middle (seen in Figure 4). From the four

attributes (p-value, R squared, Gain, and Gain ratio), the p-

value of FFI is more significant than the others. In contrast,

the R squared, Gain, and the Gain ratio are less than the

others, suggesting that the effect of features extracted by FI

may not be ideal. In addition, the feature selection methods

(CMIMI, JMI, MIFS, MIM, and MRMR) in the FI mainly

select features based on the conditions of information entropy,

redundancy, and similarity between radiomics features to obtain

feature sets. Among the 65,800 original radiomics features,
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FIGURE 4

The performance of 13 feature sets on the ten models. (A–E) Show the five index (Acc, Pre, Auc, F1, Recall) results, and (F) shows the

corresponding CS.

there may be a large number of features that meet the above

screening conditions. However, in this study, the number of

selected features of the feature selection method is limited to

10. Although this study ranks features according to their scores,

the selected features may not be complete, resulting in the

unsatisfactory performance of FFI . This can be further improved

and verified in subsequent experiments. Different from FI, other

feature selection methods in SIF, STF, and SSL selected features

through the linear relationship, contributions, and statistical

scores between features and sample categories. When sorting

features with scores, excellent features will be selected first, so it

is reasonable that they got a relatively higher performance than

FI. In detail, For the feature sets in FSIF , the attributes of FLS have

less correlation and information than the others, and they got a

matching result that the CS of FFisher and FReliefF are better than

FLap. FFS and FTS in FSTF got similar attributes and achieved

the closer CS of 0.874 and 0.865. For feature sets in FSSL,

although FLasso and FAlpha obtained a minor R squared, Gain

and Gain ratio than feature sets in FSTFand FSIF , they achieved

the best performance. For the long term, Lasso has been used to

select excellent features and has been validated in the fields of

classification (52–54), prediction (55, 56), and survival analysis

(57, 58). In this study, Lasso got the best feature set FLasso

to prove its competence in screening features. Thus, although

the lower p-value, higher correlation, information gain, and

information gain ratio can achieve a better classification result

to a certain extent, they cannot be used as complex indicators

to evaluate their effectiveness. The 13 Fmethod are a great deal

of diversity, and these selected features are highly significant.

No matter what selection method is used, they can obtain

the characteristics of DSC-PWI from the aspects of intensity

variation, drop time of intensity, initial state, and recovery state.

Furthermore, this study analyzed the classification ability

of radiomics features in different proportions of ischemic

lesions. With the increase of RT, the region of ischemic tissue

increases, and the difference between features whose RT is above

the set threshold and those of the opposite class decreases.

When RT was <0.25, regardless of S = 3, 4, or 5, the Acc

and Pre can reach >0.8. However, when RT was >0.25, the

performance will decrease with the increase of RT. On the

one hand, the decline of these two indexes may be due to

the imbalance in the proportion of positive and negative
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FIGURE 5

The information of samples and F
′

RT_S. (A) Shows the distribution of positive samples with ranging S and RT and the features in F
′

RT_S, and (B–D)

show the selected features under di�erent RT values when S = 3, 4, and 5 respectively, wherein blue indicates that the corresponding features

are selected.

samples when RT reaches 0.25. If sufficient data are available,

in-depth reason analysis can be performed in the future.

Nevertheless, these results demonstrate that the radiomics

features can effectively distinguish normal tissue from ischemic

tissue, provide support for the differentiation of volume

proportion of ischemic lesions and provide information for

clinical guidance.

In addition, ten models with different principles were used

to verify the performance of selected features. The ten models

included regression models (LR, NB), nonlinear classifiers

(SVM, DT, RF), linear classifiers (KNN, DA), ensemble models

(Ada, GBDT), and neural networks (NN). According to the

classification results of these models, the classification effect

of selected features can be verified comprehensively. Figures 4,

6–8 show little difference in the performance of the same

feature set in different models. Still, there is a significant

difference in the performance of different feature sets in the

same model, and SVM, LR, NN, RF, and DA performed better

than the others. For the classification of HA and NA, SVM

performed best in almost all feature sets, with an mAUC

of 0.929. In particular, the Auc, Pre, Acc, F1, and Recall

of CSVM_Lasso were all >0.987. Using a nonlinear kernel

’RBF’ in SVM, the nonlinear relationship between the selected

radiomics features and the target (stroke tissue or not) can be
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FIGURE 6

The five indexes of F
′

RT_S with S = 3 on the ten models, wherein the dark purple lines represent the mean indexes (mAcc, mPre, mAuc, mF1,

mRecall), and the other colors represent the performance of the ten models.

FIGURE 7

The five indexes of F
′

RT_S with S = 4 on the ten models, wherein the dark purple lines represent the mean indexes (mAcc, mPre, mAuc, mF1,

mRecall), and the other colors represent the performance of the ten models.

found, thus obtaining accurate classification results. Besides,

DA, RF, NB, LR, and NN also achieved satisfactory results.

Regarding identifying the proportion of ischemic stroke, DA

and SVM also performed better than the other models in

all three situations, RT_2, RT_3, and RT_3. Although the

performance of different models on the same feature set and
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FIGURE 8

The five indexes of F
′

RT_S with S = 5 on the ten models, wherein the dark purple lines represent the mean indexes (mAcc, mPre, mAuc, mF1,

mRecall), and the other colors represent the performance of the ten models.

FIGURE 9

The box plots of the five index under the three situation (S = 3–5). (A–E) The box plots of mACC, mPre, mAuc, mF1, and mRecall in the three

situations, respectively. (F) The relationship between CS and RT at varying S.
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FIGURE 10

The di�erence of HA and NA in the DSC-PWI image. (A) The ROIs of HA and NA in the DSC-PWI image, the HA is shown in red and the NA is

shown in green. (B) The mean time-intensity curve I(t) of HA and NA, the black represents the mean I(t) of HA, and the orange is that of NA.

the same situation had good consistency, SVM was a better

choice in both evaluation tasks, classifying HA and NA and

identifying the proportion of ischemic stroke. Besides, we used

CS computed by the mean indexes (mAcc, mPre, mAuc, mF1,

and mRecall) of the ten models as the benchmark for the

evaluation to reasonably analyze their performance. Depending

on the diversity features, the 13 Fmethod acquired different

CS ranging from 0.624 to 0.925, F
′

RT_3, F
′

RT_4, and F
′

RT_5
got CS in [0.34,0.76], [0.40, 0.78] and [0.28,0.78], respectively.

On the one hand, the strong robustness and applicability of

the Lasso algorithm can be proved by the fact that, although

the features extracted by the algorithm were slightly different

under different RT values, the extracted features generally

achieved stable performance. On the other hand, the selected

radiomics features at different slices have little influence

on the classification results, but the proportion of ischemic

tissue does.

There are some limitations to this study. First, the size

of the datasets is relatively small, and all data come from a

single hospital, which may lead to biased results and a lack

of generalizability. To address the limitation, we segmented

hypoperfusion areas (HA) from DSC-PWI images and defined

normal tissue in the symmetrical areas of HA as NA in making

ROIs. This way, one group of HA and NA can be generated

from one DSC-PWI image. This way, the double samples (160)

can be obtained from 80 DSC-PWI images, and the positive

and negative sample sizes are equal. The expanded balanced

samples can help extract accurate features, and the sample

imbalance can be reduced when classifying NA and HA. Besides,

when evaluating the performance of the selected features in

section Performance evaluation of the selected features, the

tenfold cross-validation was performed to reduce the influence

of sample size. The composite scores (CS) were computed to

obtain reliable results. Second, the feature selection methods,

optimal features, and learning models can be further optimized.

This paper uses various existing learning models to verify the

classification performance. Although the results have shown

some features such as FLasso and FAlpha had achieved excellent

performance, the further optimization of the models, such as

deep learning and transferred learning, can be regarded as one

of the future works. The ischemia area ratio classification needs

to be further improved. The results in this study do not mean

that the models can be used alone for stroke treatment decision-

making. Instead, it should be considered a support tool for stroke

treatment guidance. We will validate our improved method’s

performance with more data before applying it to clinical trials

in future work.

Conclusions

This study used prominent radiomics features extracted

from 3D images in the DSC-PWI time series to explore their

ability to classify HA and NA and recognize the proportion

of ischemic lesions in brain tissue. The 13 Fmethod achieved

the CS ranging from 0.624 to 0.925 in distinguishing HA

from NA. The FLasso in the 13 Fmethod performed best

with mAcc of 0.958, mPre of 0.96, mAuc of 0.982, mF1 of

0.959, and mRecall of 0.96. Besides, the 120 F
′

RT_S reached

the best CS of 0.786 in identifying the proportion of the
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ischemic region, and the best Acc and Pre reached 0.888

and 0.863, respectively. In general, the combination of various

radiomics features accurately reflected the varying degrees of

changes in cerebral blood flow in the initial state, the contrast

agent response stage, and the recovery stage. For classifying

the proportion of ischemic areas, the classification effect is

relatively stable when RT is <0.25. Otherwise, when RT was

>0.25, the accuracy will gradually decrease as its increases.

Further future research should be conducted on excellent

feature extraction, feature combination, model optimization,

and comprehensive verification.
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One-year recurrence of stroke
and death in Lebanese survivors
of first-ever stroke:
Time-to-Event analysis

Celina F. Boutros 1*, Walaa Khazaal2†, Maram Taliani2†,

Najwane Said Sadier2,3, Pascale Salameh4,5,6 and

Hassan Hosseini1,4,7

1Institut Mondor de Recherche Biomédicale (IMRB)-INSERM U955, Ecole Doctorale Science de la

Vie et de la Santé, Université Paris-Est Créteil, Paris, France, 2Faculty of Medical Sciences,

Neuroscience Research Center, Lebanese University, Hadath, Lebanon, 3College of Health Sciences,

Abu Dhabi University, Abu Dhabi, United Arab Emirates, 4Institut National de Santé Publique,

Epidémiologie Clinique et Toxicologie (INSPECT-LB), Beirut, Lebanon, 5Faculty of Pharmacy,

Lebanese University, Hadath, Lebanon, 6University of Nicosia Medical School, Nicosia, Cyprus,
7Hôpital Henri Mondor, AP-HP, Créteil, France

Background: To date, despite the application of secondary prevention

worldwide, first-ever stroke survivors remain at imminent risk of stroke

recurrence and death in the short and long term. The present study aimed

to assess the cumulative risk rates and identify baseline di�erences and stroke

characteristics of Lebanese survivors.

Methods: A prospective longitudinal study was conducted among survivors

≥18 years old who were followed-up for 15 months through a face-to-face

interview. Kaplan–Meier method was used to calculate the cumulative rates of

stroke mortality and recurrence. Cox-regression univariate and multivariable

analyses were performed to identify the predictors of both outcomes.

Results: Among 150 subjects (mean age 74 ± 12 years; 58.7% men vs. 44.3%

women; 95.3% with ischemic stroke vs. 4.3% with intracerebral hemorrhage),

high cumulative risk rates of stroke recurrence (25%) and death (21%) were

highlighted, especially in the acute phase. Survival rates were lesser in patients

with stroke recurrence compared to those without recurrence (Log rank

test p < 0.001). Older age was the main predictor for both outcomes

(p < 0.02). Large artery atherosclerosis was predominant in patients with

stroke recurrence and death compared to small vessel occlusion (p < 0.02).

Higher mental component summary scores of quality of life were inversely

associated with stroke recurrence (p < 0.01). Lebanese survivors exhibited the

highest percentages of depression and anxiety; elevated Hospital Anxiety and

Depression Scale (HADS) scores were seen in those with stroke recurrence and

those who died (≥80% with mean HADS scores ≥8). Lower Mini-Mental State

Examination scores at the acute phase increased the risk of both outcomes

by 10% (p < 0.03). Three out of 13 mortalities (23.1%) were presented with

early epileptic seizures (p = 0.012). High educational level was the protective

factor against stroke recurrence (p = 0.019). Administration of intravenous

thrombolysis decreased the risk of both outcomes by 10% (p > 0.05).
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Conclusion: Higher rates of stroke recurrence and death were observed in

the first year following a stroke in Lebanon. Various factors were identified as

significant determinants. Thus, health care providers and o�cials in Lebanon

can use these findings to implement e�ective preventive strategies to best

address the management of these factors to reduce the stroke burden and

improve the short and long-term prognosis of stroke survivors.

KEYWORDS

stroke, recurrence, death, cumulative risk rate, Lebanon, survivors, factors, burden

Introduction

Stroke is a cerebrovascular disorder characterized by the

sudden onset of symptoms and clinical signs caused by the

disruption of blood supply to parts of the brain (1). It is a major

health concern and is considered one of the most devastating

neurological diseases worldwide (2). In Lebanon, as in several

countries, stroke is one of the leading causes of death and

morbidity (3, 4). Fifteen million people worldwide suffer from

stroke annually, of which five million die, and another five

million are left permanently disabled, placing a burden on the

family and community (5). Normal life for the majority of stroke

survivors is disrupted and they experience major disabilities

affecting their physical and psychological wellbeing, resulting in

long-term invalidity or death.

Stroke recurrence is highly prevalent in survivors and is

one of the main functional outcomes in the short and long-

term post-first-ever stroke (6). A recent global systematic review

by Lin et al. including 37 studies conducted over the last

10 years, including 1,075,014 stroke patients, has shown an

increasing pooled stroke recurrence rate ranging from 7.7% at

Abbreviations: HTN, Hypertension; DM, Diabetes Mellitus; AF, Atrial

Fibrillation; MENA, Middle East and North Africa; STROBE, Strengthening

the Reporting of Observational studies in Epidemiology; ICD-10,

International Classification of Diseases-10; QVSFS, Questionnaire for

Verifying Stroke-Free Status; NIHSS, National Institutes of Health Stroke

Scale; ADL, Activities of Daily Living; mRS, modified Rankin Scale; Quality

of life, QoL, SF12, Short form Health Survey 12; PF, physical functioning;

RP, role limitations due to physical problems; BP, bodily pain; GH,

general health; VT, vitality; SF, Social Functioning; RE, role limitations due

to emotional problems; MH, Mental health; PCS, Physical Component

Summary; MCS, Mental Component Summary; US, United States; SPSS,

Statistical Package for the Social Sciences software; MMSE, Mini-Mental

State Examination; HADS, Hospital Anxiety and Depression Scale; SSRS,

Social Support Rating Scale; FSS, Fatigue Severity Scale; MAS, Modified

Ashworth Scale; DN4, Douleur Neuropathique4; VAS, Visual Analogue

Scale; SD, StandardDeviation; AHR, AdjustedHazard Ratio; CI, confidence

interval; DL, Dyslipidemia; MI, Myocardial infarction; CVD, cardiovascular

diseases; UHR, Unadjusted Hazard Ratio; UK, United Kingdom.

3 months, 9.5% at 6 months, 10.4% at 1 year to 39.7% at 12

years after the initial stroke (7). Neurological deficit caused by

a recurrent stroke is more severe than the initial stroke, with

a high percentage of prolonged disability and death. Hence,

secondary prevention after the first stroke is crucial to reduce

stroke recurrence and mortality (8).

The cause of stroke recurrence and mortality is

multifactorial (8, 9). Various international papers have

identified modifiable and non-modifiable risk factors, including

age (10, 11), gender (12, 13), vascular events like hypertension

(HTN) (14), hyperlipidemia and atherosclerotic cardiovascular

diseases (15), diabetes mellitus (DM) (16), atrial fibrillation

(AF) (17), previous history of cerebrovascular events and

stroke subtypes (18), lifestyle factors like smoking habits

(19), alcohol consumption (4), use of contraceptive pills,

obesity and physical inactivity (18, 20, 21), and psychological

complications post-first stroke (22, 23). It is imperative and

necessary to identify the patients who are at high risk of stroke

recurrence and mortality and who may benefit from a close

and regular assessment and rapid implementation of preventive

treatments (24).

Although the Global Burden of the Disease tends to provide

regular worldwide data regarding stroke burden (25), there

is still uncertainty in stroke estimates in low to middle-

income countries without national-based health surveillance

systems. In recent years, extensive data were published on stroke

recurrence and fatality determinants worldwide but there is

a scarcity of related studies from the Middle East and North

Africa (MENA) region (26–30). However, the burden of stroke

in low and middle-income countries, including Lebanon, is

higher than in high-income countries and is still rising (31,

32). Stroke types, risk factors, knowledge, and adherence to

medication were addressed in various Lebanese papers (2, 3, 33–

35) but there are no research studies yet which investigate

the recurrence of stroke and death after first-ever stroke.

The purpose of this study was to measure the cumulative

risk rates of stroke recurrence and death in a time-to-event

survival analysis at 3, 6, and 12 months post-first-ever stroke

and to identify their determinants among Lebanese first-ever

stroke survivors.
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Methods

We followed The Strengthening the Reporting of

Observational studies in Epidemiology (STROBE) guidelines

for a proper reporting of this work (36).

Study design and population

An epidemiological observational multicenter prospective

longitudinal study was conducted in five private and five public

medical centers within two big governorates of Lebanon: Mount

Lebanon and Beirut. The study period lasted 15 months, from

February 2018 until May 2019. Approval of the protocol from

ethics committees of all participating centers was granted before

initiating any study procedure while abiding by the World

Medical Association Declaration of Helsinki in 2013 (37).

The participants included first-ever ischemic or

hemorrhagic stroke survivors who were admitted to the

hospitals between February andMay 2018. The inclusion criteria

were as follows: (1) age ≥18 years, (2) Lebanese nationality,

(3) having experienced first-ever stroke, well-identified by the

following codes of the International Classification of Diseases-

10 (ICD-10) (I60-I64) (38): cerebrovascular accident, stroke,

ischemic stroke, hemorrhagic stroke, intracerebral hemorrhage

or embolic/cerebral vascular thrombosis, and (4) a diagnosis

confirmed clinically and through brain imaging. The exclusion

criteria were the following: (1) admission for a recurrent stroke

or transient ischemic accident or (2) a medical history of

neurological and cognitive disorders. The participants (or their

legal representatives) provided written informed consent to be

enrolled in the study.

Sample size

Expected sample size was calculated using the Epi-Info

7 program estimating 116 participants, depending on the

stroke prevalence of 3.9% obtained by Jurjus et al. (39). After

accounting for missing data and lost follow-up data, a total of

150 subjects were included in the study.

Study procedures

Written consent from the eligible participants was

gathered through an interview conducted by three well-trained

investigators. Afterward, the participants were followed up for

data collection at 3-, 6-, and 12-months post-stroke.

Clinical information was collected through a data collection

form. It included the following: (1) age, gender, place of

residence, marital status, number of kids, age of subject’s

custodian, level of education of the subject and his/her

custodian, employment status, number of household members,

number of rooms and type of health insurance, (2) lifestyle

(eating habits, smoking, practice of physical activity, alcohol

and other substances consumption, social support), (3) health

indicators (anthropometric indices, family/medical/surgical

history, comorbidities, treatment taken by subjects), (4) the

disease and its severity (types/subtypes/location/symptoms,

length of hospital stay, severity of disease, degree of disability,

evaluation of the quality of life (QoL) and (5) the stroke

consequences (neuropsychiatric disorders, cognitive disorders,

hyperglycemia, fatigue, post-stroke pain, falls, pressure ulcers,

pulmonary and urinary infections, deep vein thrombosis,

pulmonary embolism, seizures, recurrence of stroke, and death).

Definitions

The initial Stroke or “Jalta Dimaghia,” the Arabic synonym,

is the most familiar and most specific term for the disease

in Lebanon. According to the World Health Organization,

“it is a clinical syndrome consisting of rapidly developing

clinical signs of focal (or global in case of coma) disturbance

of cerebral function lasting more than 24 h or leading to

death with no apparent cause other than that from a

vascular origin” (40). Ischemic stroke was classified using

the Trial of Org 10172 in the Acute Stroke Treatment

(TOAST) criteria, which is divided into five subtypes: (1) large-

artery atherosclerosis (LAA), (2) cardioembolism, (CE) (3)

small-vessel occlusion (SVO), (4) stroke of other determined

etiology (OE), and (5) stroke of undetermined etiology

(UE) (41).

Stroke recurrence was the main outcome, which was

defined the same criteria as that of the initial stroke. Both

ischemic and hemorrhagic stroke recurrences were recorded.

Only recurrences that occurred 21 days after the initial event

was considered (12). Mortality was defined as death from

any cause within 12 months after the first-ever stroke onset.

If a patient died within the year of follow-up, the cause

of death was researched in the hospital or primary care

medical records.

To determine the initial stroke characteristics, the

Questionnaire for Verifying Stroke-Free Status (QVSFS)

was used. This questionnaire was used to investigate if the

subjects ever had the following stroke symptoms: sudden

painless weakness on one side of the body, sudden numbness

or a dead feeling on one side of the body, sudden painless

loss of vision in one or both eyes, sudden loss of one-half of

vision, sudden loss of the ability to understand what people

are saying; and sudden loss of the ability to express ideas

verbally or in writing (42). Stroke severity was measured by

the National Institutes of Health Stroke Scale (NIHSS), which

identifies the level of consciousness, vision (demonstrated by

horizontal eye movements and visual field), facial palsy, motor
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function extremities, ataxia, sensations, speech dysarthria,

or aphasia, and attention to multiple types of stimuli. The

scale is divided into 2 levels: <21: non-severe stroke, ≥21:

severe stroke; however, a NIHSS cutoff score ≤5 predicts a

favorable outcome among survivors during the follow-up

periods (43, 44). [Cronbach’s alpha of (r) = 0.942]. We utilized

the validated Arabic translation of NIHSS (45). Disability

and dependence in Activities of Daily Living (ADL) were

measured by the modified Rankin Scale (mRS), which is the

most commonly used scale, with mild disability (independence)

graded 0–2 and moderate to severe disability graded ≥3 (46)

[Cronbach’s alpha of (r) = 0.946]. The QoL was assessed by

the short form (SF12), which consisted of 12 items including

eight scales: physical functioning (PF), role limitations due to

physical problems (RP), bodily pain (BP), general health (GH),

vitality (VT), social functioning (SF), role limitations due to

emotional problems (RE), and perceived mental health (MH),

and was divided into two summary scores [physical (PCS) and

mental component summaries (MCS)]. They demonstrated

the mental and physical functions and overall health-related

QoL. PCS and MCS were computed through the scores 12

questions and ranged from 0 (lowest level of health) to 100

(highest level of health) with a cut-off of 50 for PCS and 42 for

MCS. The scoring was calculated using the United States (US)

norm-based scoring algorithm in the Statistical Package for the

Social Sciences software (SPSS) (47, 48). The Arabic version

of the SF-12 was used (49). A recent study by Haddad et al.

was conducted for the validation of the Arabic version among

Lebanese adults (50). The cognitive function was evaluated

by the Mini-Mental State of Examination (MMSE), with a

total score of 30 points where the cut-off point was set at 24,

and a higher score defines a normal cognitive function (51).

It has been classified into three levels: 24–30 = no cognitive

impairment; 18–23 = mild cognitive impairment; and 0–17

= severe cognitive impairment (52) [Cronbach’s alpha of

(r) = 0.882]. Previous research has validated the use of the

Arabic version of MMSE among the Lebanese population

(53). The severity of psychological disorders, such as anxiety

and depression, was assessed using the Hospital Anxiety and

Depression Scale (HADS), which was divided into two scales of

seven elements: a scale for depression and a scale for anxiety.

Scores ranged from 0 to 7 = normal, 8 to 10 = borderline,

11 to 21 = abnormal (54), [Cronbach’s alpha of (r) = 0.906],

the Arabic validated version was utilized in this study (55). In

addition, other scales and scores were utilized, such as the Social

Support Rating Scale (SSRS) (56), the Fatigue Severity Scale

(FSS) (57), the Modified Ashworth Scale (MAS)(58), “Douleur

Neuropathique4” (DN4) questionnaire (59), and the Visual

Analog Scale (VAS) (60).

Data processing and analysis

Continuous variables were presented as means ± Standard

Deviation (SD) and categorical variables as numbers and

percentages. A Survival (Time-to-Event) Analysis was utilized,

and the Kaplan–Meier method was used to obtain the

cumulative risk rates of stroke recurrence and any cause

of death at 3-, 6-, and 12-month follow-up. Univariate

and multivariable cox proportional hazards regressions were

analyzed to determine the predictors of stroke recurrence and

death depending on the time of the event occurrence. The

explanatory variables were first tested individually against the

dependent variable for the presence of a significant association.

Variables for which no significant association was found were

removed from the model. Regression analyses were then

performed. In the multivariable logistic regression model, we

included variables reported in the literature to be associated

with 1-year stroke recurrence and death post-stroke considering

them as potential confounders, such as age, gender, educational

level, and stroke severity, in addition to the variables that

showed a significant association at p ≤ 0.05 across any category

in the univariate analysis. The logistic regression models

were examined for the goodness of fit. Deviance values were

calculated to analyze how well the model fitted each case. In all

cases, it was concluded that the model fit was adequate, and the

experimental removal of outliers did not violate the model. The

strength of association was interpreted using the adjusted hazard

ratio (AHR) with a 95% confidence interval (CI). Statistical

significance was set at p ≤ 0.05. All these analyses were carried

out using the SPSS software, version 25 (SPSSTM Inc., Chicago,

IL USA).

Ethical considerations

The study protocol was reviewed and approved by the

ethics committees and directors of the participating hospitals

(NEUR-2018-001, HDF-1152). Ethical clearance was obtained

through a formal letter granted in line with the World Medical

Association Declaration of Helsinki in 2013 (37). Written

consent was obtained from the subjects after explaining all

details of the study. Participants were also informed that there

will be no risks or direct benefits from their collaboration

with this study. The participation was completely voluntary

and enrolled subjects retained the right to withdraw at

any time throughout the study. In addition, to maintain

confidentiality, all data were coded in the questionnaire,

and the materials will be discarded once the legal retention

period expired.
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FIGURE 1

Flow diagram of the steps followed to obtain the sample of the study.

Results

Baseline characteristics

The study population consisted of 150 participants admitted

to 10 medical centers in Mount Lebanon and Beirut between

February and May 2018. A total of 117 subjects completed the

whole follow-up period (3-, 6-, and 12-month), 32 died and one

was lost to follow-up at 12 months post-stroke (Figure 1).

Baseline characteristics for all patients, no stroke

recurrence/no death groups, and stroke recurrence/death

groups are shown in Table 1. The participants had a mean age of

73.69 ± 12.11 years. The population included 88 men (58.7%)

and 62 women (44.3%). Stroke recurrence and death were

high in subjects with old age (51.4 and 59.4%, respectively),

with low educational level (91.4 and 84.4%, respectively), with

no employment post-stroke (94.3 and 100%, respectively),

and in subjects with a sedentary duration of ≥12 h (58.3 and

83.3%, respectively).

Stroke characteristics and their severity

The median interval between the onset of stroke symptoms

to admission was 2 h (ranging from 0 to 48 h) for all subjects

(mean of 3.43 ± 5.94 h). In addition, the median duration of

hospital stay was 7 days (ranging from 2 to 45 days) (mean of

9.69± 8.35 days) for all subjects.

A total of 95.3% of subjects suffered from ischemic stroke

compared to 4.7% who suffered from intracerebral hemorrhagic

stroke (Figure 2). No subarachnoid hemorrhage was found in

the present study. Ischemic stroke cases were categorized into 3

subtypes: LAA (58, 45.7%), CE (6, 4.7%), and SVO (63, 42%).

A total of 46.7 and 40% of cases involved the left and right

hemispheres, respectively. A majority (70.7%) of subjects were

not able to express themselves verbally or in writing at the time

of stroke and 70% experienced unilateral weakness.

Stroke severity was estimated as a percentage of NIHSS

categories at every follow-up. At 3-month post-stroke, 16.8% of

subjects were found to have a severe stroke (NIHSS score ≥ 21).
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TABLE 1 Baseline characteristics of the study population.

Baseline characteristics Overall N (%)

or Mean

(±SD)

No stroke

recurrence N

(%) or Mean

(±SD)

Stroke

recurrence N

(%) or Mean

(±SD)

No death N

(%) or Mean

(±SD)

Death N (%)

or Mean

(±SD)

Gender

Male 88 (58.7) 64 (55.7) 24 (68.6) 71 (60.2) 17 (53.1)

Female 62 (41.3) 51 (44.3) 11 (31.4) 47 (39.8) 15 (46.9)

Mean age 73.69 (±12.11) 72.56 (±12.17) 77.42 (±11.28) 72.05 (±11.37) 79.77 (±12.98)

Age group

30–39 years 1 (0.7) 1 (0.9) 0 (0.0) 0 (0.0) 1 (3.1)

40–49 years 7 (4.7) 6 (5.2) 1 (2.9) 7 (5.9) 0 (0.0)

50–59 years 15 (10.0) 11 (9.6) 4 (11.4) 13 (11.0) 2 (6.3)

60–69 years 30 (20.0) 26 (22.6) 4 (11.4) 28 (23.7) 2 (6.3)

70–79 years 43 (28.7) 35 (30.4) 8 (22.9) 35 (29.7) 8 (25.0)

80–89 years 47 (31.3) 31 (27.0) 16 (45.7) 34 (28.8) 13 (40.6)

90–99 years 7 (4.7) 5 (4.3) 2 (5.7) 1 (0.8) 6 (18.8)

Marital status

Single/widowed/divorced 33 (22.0) 29 (25.2) 4 (11.4) 29 (24.6) 4 (12.5)

Married 117 (78.0) 86 (74.8) 31 (88.6) 89 (75.4) 28 (87.5)

Area

Urban 140 (93.3) 106 (92.2) 34 (97.1) 108 (91.5) 32 (99)

Rural 10 (6.7) 9 (7.8) 1 (2.9) 10 (8.5) 0 (0.0)

Household members

Living alone 5 (12.5) 2 (1.9) 3 (12.5) 4 (3.4) 1 (10.0)

Living with family members 123 (96.1) 102 (98.1) 21 (87.5) 114 (96.6) 9 (90.0)

Presence of a caregiver

No 98 (65.3) 79 (68.7) 19 (54.3) 79 (66.9) 19 (59.4)

Yes 52 (34.7) 36 (31.3) 16 (45.7) 39 (33.1) 13 (40.6)

Educational level

Illiterate/primary or complementary

education

104 (69.3) 72 (62.6) 32 (91.4) 77 (65.3) 27 (84.4)

Secondary or University education 46 (30.7) 43 (37.4) 3 (8.6) 41 (34.7) 5 (15.6)

Professional status post-stroke

Person without any profession/retired 101 (67.3) 76 (66.1) 25 (71.4) 75 (63.6) 26 (81.3)

Unemployed 30 (20.0) 22 (19.1) 8 (22.9) 24 (20.3) 6 (18.8)

Employed 19 (12.7) 17 (14.8) 2 (5.7) 19 (16.1) 0 (0.0)

Comorbidities

AF 47 (31.3) 37 (32.2) 10 (28.6) 39 (33.1) 8 (25.0)

MI 29 (19.3) 21 (18.3) 8 (22.9) 21 (17.8) 8 (25.0)

HTN 116 (77.3) 90 (78.3) 26 (74.3) 90 (76.3) 26 (81.3)

Other CVD* 20 (13.3) 17 (14.8) 3 (8.6) 16 (13.6) 4 (12.5)

DM 60 (40.0) 50 (43.5) 10 (28.6) 50 (42.4) 10 (31.3)

DL 78 (52.0) 61 (53.0) 17 (48.6) 62 (52.5) 16 (50.0)

Social Security

No 25 (16.7) 18 (15.7) 7 (20.0) 19 (16.1) 6 (18.8)

Yes 125 (83.3) 97 (84.3) 28 (80.0) 99 (83.9) 26 (81.3)

BMI

Normal (BMI ≤ 25) 53 (41.1) 40 (38.8) 13 (50.0) 48 (41.0) 5 (41.7)

(Continued)
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TABLE 1 (Continued)

Baseline characteristics Overall N (%)

or Mean

(±SD)

No stroke

recurrence N

(%) or Mean

(±SD)

Stroke

recurrence N

(%) or Mean

(±SD)

No death N

(%) or Mean

(±SD)

Death N (%)

or Mean

(±SD)

Overweight (26 ≤ BMI ≤ 30) 46 (35.7) 40 (38.8) 6 (23.1) 41 (35.0) 5 (41.7)

Obesity (31 ≤ BMI ≤ 40) 28 (21.7) 21 (20.4) 7 (26.9) 26 (22.2) 2 (16.7)

Morbid obesity (BMI ≥ 41) 2 (1.6) 2 (1.6) 0 (0.0) 2 (1.7) 0 (0.0)

Mediterranean diet

No 20 (16.0) 16 (15.5) 4 (18.2) 19 (16.1) 1 (14.3)

Yes 105 (84.0) 87 (84.5) 18 (81.8) 99 (83.9) 6 (85.7)

Smoking status

Never smoker 60 (40.5) 45 (39.5) 15 (44.1) 44 (37.3) 16 (53.3)

Former smoker 35 (23.6) 28 (24.6) 7 (20.6) 32 (27.1) 3 (10.0)

Current smoker 53 (35.8) 41 (36.0) 12 (35.3) 42 (35.6) 11 (36.7)

Physical activity practice

No daily practice for ≥30min 32 (69.6) 24 (64.9) 8 (88.9) 30 (68.2) 2 (99)

Daily practice for ≥ 30min 14 (30.4) 13 (35.1) 1 (11.1) 14 (31.8) 0 (0.0)

Sedentary duration

1–6 h/day 35 (28.0) 32 (31.7) 3 (12.5) 34 (30.1) 1 (8.3)

7–11 h/day 42 (33.6) 35 (34.7) 7 (29.2) 41 (36.3) 1 (8.3)

≥12 h/day 48 (38.4) 34 (33.7) 14 (58.3) 38 (33.6) 10 (83.3)

Family history of CVD and neurological diseases

No 21 (17.2) 17 (16.8) 4 (19.0) 19 (17.1) 2 (18.2)

Yes 101 (82.8) 84 (83.2) 17 (81.0) 92 (82.9) 9 (81.8)

Family history of stroke

No 46 (52.3) 37 (49.3) 9 (69.2) 41 (51.9) 5 (55.6)

Yes 42 (47.7) 38 (50.7) 4 (30.8) 38 (48.1) 4 (44.4)

N, Frequency; %, Percentage; SD, Standard Deviation; AF, Atrial Fibrillation; MI, Myocardial Infarction; HTN, Hypertension; CVD, Cardiovascular Diseases; DM, Diabetes Mellitus; DL,

Dyslipidemia; BMI, Body Mass Index.

*Other CVD: coronary artery disease, cardiomyopathy, arrhythmia, chronic heart failure, and thoracic aortic aneurysm.

FIGURE 2

The percentage of stroke types and subtypes according to

TOAST classification.

Regarding the degree of disability, a significant proportion of

subjects (18%) died (mRS = 6) 3 months post-stroke, whereas,

16% were bedridden (mRS = 5). These percentages decreased

from 9.8 and 9.3% (mRS = 5), to 1.6 and 0.8% (mRS = 6)

respectively, in the 6- and 12-month follow-ups. The QoL scores

are summed up in Table 2, showing decreased PCS and MCS

components of QoL (means between 28 and 40) at 3-, 6-, and

12-month follow-up periods. These levels were less than the

theoretical averages (cut-off of 50 for PCS and 42 for MCS). At

index admission, 47 (31.3%) subjects were already on antiplatelet

and anticoagulation agents. At index discharge, these drugs were

prescribed to 141 (94%) subjects.

Risk rates of stroke recurrence and death

Figure 3 shows a high probability of stroke recurrence

and death in the first 3 months post-stroke and a significant

reduction in these consequences 6 to 12 months (p < 0.001)

post-stroke. A total of 38 recurrent strokes occurred during

the study period, 22 (14.7%) during 3 months post-stroke, nine

(7.3%) from 3 to 6 months post-stroke, and seven (5.9%) from 6

to 12 months post-stroke. Additionally, a total of 32 mortalities

were reported, 27 (18%) in the 3 months, three (2.4%) in the
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TABLE 2 The quality of life measured by the SF-12 (short form health

survey).

Short form health 3 months 6 months 12 months

survey (SF-12) Mean (±SD) Mean (±SD) Mean (±SD)

Physical component summary (PCS)

General Health (GH) 4.35 (±0.80) 3.78 (±0.97) 3.42 (±1.17)

Physical Functioning

(PF)

2.64 (±0.99) 3.22 (±1.29) 3.72 (±1.65)

Role limitations due to

physical health (RP)

2.27 (±0.61) 2.50 (±0.81) 2.82 (±0.96)

Bodily Pain (BP) 3.66 (±1.26) 2.94 (±1.24) 2.37 (±1.34)

PCS 28.96 (±7.31) 34.92 (±9.21) 39.49 (±11.30)

Mental component summary (MCS)

Vitality (VT) 4.58 (±1.29) 4.15 (±1.37) 3.70 (±1.55)

Social Functioning (SF) 2.22 (±0.89) 2.49 (±1.10) 3.03 (±1.43)

Role limitations due to

emotional health (RE)

2.32 (±0.66) 2.50 (±0.81) 2.84 (±0.96)

Mental health (MH) 7.25 (±1.11) 7.10 (±1.23) 7.02 (±1.50)

MCS 32.65 (±9.41) 35.17(±10.44) 40.12 (±12.85)

PCS, Physical Component Summary; MCS, Mental Component Summary; SD,

Standard Deviation.

FIGURE 3

Risk rates of stroke recurrence (A) and any-cause of death (B) at

3, 6, and 12 month post-stroke. *p-value < 0.001.

3–6 months, and two (1.7%) in the 6–12 months following

the first stroke. The reported causes of death were as follows:

recurrent stroke (n = 18, 56.3%), brain herniation (n = 5,

15.6%), myocardial infarction (n= 3, 9.4%), complications post-

stroke (n = 3, 9.4%), ARDS post-stroke (n = 1, 3.1%), and

pulmonary embolism (n= 1, 3.1%).

Figure 4 represents the Kaplan–Meier curves of cumulative

risk rates over 1 year of follow-up. Cumulative recurrence risk

rates among first-ever stroke survivors increased from 15% at

the 3 months to 22% at 6 months and 25% at 12 months follow-

up. A similar trend was observed for the cumulative any-cause

of death risk, which increased from 18% at 3 months to 20% at 6

months to 21% at 12months post-stroke. The difference between

patients with and without 1-year stroke recurrence is shown in

Figure 5. The survival rates decreased in patients with stroke

recurrence compared to those without recurrence (log rank test

p <0.001).

Predictors of outcomes: Stroke
recurrence and any-cause of death

Univariate andMultivariable analyses were performed using

Cox proportional unadjusted (UHR) and adjusted hazard

ratios (AHR).

One-year stroke recurrence predictors

Tables 3, 4 show the UHR of stroke recurrence according to

the baseline characteristics, in-hospital course, and post-stroke

consequences. Adjusted hazard risks of stroke recurrence are

presented in Table 5.

The baseline factors associated positively with stroke

recurrence were the older age with a mean of 77 ± 11

years [p = 0.016, UHR = 1.042, 95% CI (1.008–1.077)],

and the sedentary duration of ≥12 h [p = 0.032, UHR =

3.926, 95% CI (1.128–13.667)]. Whereas, living with family

members was negatively associated with stroke recurrence [p

= 0.038, UHR = 0.277, 95% CI (0.083–0.930)], and a high

educational level was the independent protective factor against

stroke recurrence [p= 0.019, AHR = 0.164, 95% CI (0.036–

0.745)].

Regarding hospital course, survivors with stroke recurrence

had a longer duration of hospital stay than those without stroke

recurrence (12.89± 11.16 days vs. 8.72± 7.07 days, respectively)

[p = 0.004, UHR = 1.041, 95% CI (1.012–1.070)]. Moreover,

subjects with SVO had 60% lower risk of stroke recurrence

than those with LAA [p = 0.019, UHR = 0.4, 95% CI (0.186–

0.861)].

Regarding post-stroke consequences, we studied the severity

of the stroke, QoL, and functional, mental, neurological, and

cognitive outcomes post-stroke. The stroke recurrence was

positively associated with severe stroke (NIHSS ≥ 21) at 6-

month post-stroke [p = 0.011, UHR = 3.777, 95% CI (1.359–

10.498)]. Moreover, higher PCS and MCS scores of QoL at

3, 6, and 12 months post-stroke were inversely related to

stroke recurrence; however, after adjusting for age and other

explanatory factors, the mental dimensions and higher MCS

scores at 3- and 6-month follow-up had strong independent
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FIGURE 4

Cumulative risk rates of stroke recurrence (A) and any-cause of death (B) at 3, 6, and 12 month post-stroke.

opposite relations with stroke recurrence [p = 0.008, AHR =

0.927, 95% CI (0.876–0.980); p = 0.004, AHR = 0.904, 95%

CI (0.843–0.969), respectively]. Similarly, elevatedMMSE scores

had a significant adjusted low risk of stroke recurrence [p =

0.033, AHR= 0.908, 95% CI (0.831–0.992)]. On the other hand,

elevated HADS scores for anxiety and depression had a 1-fold

increase of the stroke recurrence risk, especially, depression at 6

months post-stroke presented a significant adjusted higher risk

[p= 0.002, AHR= 1.176, 95% CI (1.060–1.305)].

Furthermore, concerning the functional outcome and post-

stroke complications, the high disability degree at 3-, 6-, and

12-months post-stroke predicted a 1-year stroke recurrence,

with the largest risk in the acute phase at 3 months. Higher

mRS at 3 months post-stroke increased two times the stroke

recurrence risk [p < 0.001, UHR = 2.243, 95% CI (1.643–

3.062); p < 0.001]. The following factors affecting the functional

outcome were all found as risk factors for 1-year stroke

recurrence: fatigue at 3-, 6-, and 12-month post-stroke [p

= 0.025, UHR = 1.676, 95% CI (1.068–2.632); p = 0.006,

UHR = 1.746, 95% CI = (1.175–2.593); p = 0.041, UHR =

1.337, 95% CI (1.012–1.765), respectively], joint contractures

at 6-month post-stroke [p = 0.009, UHR = 3.556, 95%

CI (1.378–9.179)], falls at least one time at 3-month post-

stroke [p = 0.015, UHR = 2.701, 95% CI (1.213–6.014)],

pressure ulcers (level ≥ 1) at 3- and 12-month post-stroke

[p = 0.016, UHR = 2.635, 95% CI (1.196–5.806); p = 0.047,

UHR = 2.701, 95% CI (1.013–7.204), respectively], confirmed

pneumonia at 3-month post-stroke [p = 0.025, UHR = 2.543,
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FIGURE 5

Kaplan Meier estimates of 1-year probability of survival after a first-ever stroke among subjects with and without stroke recurrence. Log rank test

P < 0.001.

95% CI (1.123–5.758)], and confirmed urinary tract infections

at 6-month post-stroke [p = 0.013, UHR = 3.068, 95%

CI (1.270–7.411)].

One-year any-cause of death predictors

The univariate analysis is tabulated in Tables 6, 7. Table 8

summarizes the multivariable analysis.

The death rate increased within the first year of stroke with

the advanced age (mean of 80 ± 13 years) [p = 0.040, AHR

= 1.039, 95% CI (1.002–1.078)]. Patients who died within the

first year post-stroke had a longer duration of hospital stay at

index stroke (mean of 13.78 ± 9.67) [p = 0.018, AHR = 1.037,

95% CI (1.006–1.069)], and 71.4% (20/28) were affected by LAA

ischemic stroke vs. 21.4% with SVO [p = 0.003, UHR = 0.249,

95% CI (0.100–0.621)].

Regarding the post-stroke course, various factors were

significant. Higher PCS and MCS of QoL scores were inversely

associated with the 1-year mortality post-stroke [p = 0.044,

UHR = 0.740, 95% CI (0.0552–0.992), p = 0.012, UHR =

0.837, 95% CI (0.729–0.961), respectively]. Furthermore, higher

MMSE scores at 3months post-stroke were negatively associated

with the 1-year mortality [p = 0.034, AHR = 0.866, 95% CI

= (0.758–0.989)], whereas elevated scores of mRS for disability

and HADS for depression 3-month post-stroke were positively

associated with mortality within the first year post-stroke. Death

cumulative risk rate had a 3-fold increase among subjects with

high disability than those without [p= 0.039, UHR = 3.568,

95% CI = (1.067–11.926)]. As for the depression that occurred

3 months post-stroke, a higher HADS score was independently

associated with a higher risk of 1-year death post-stroke [p =

0.029, AHR= 1.302, 95% CI= (1.027–1.650)].

Subjects with confirmed pneumonia 3-month post-stroke

significantly had an increased risk of death 1-year death post-

stroke [p= 0.005, UHR= 4.848, 95% CI (1.629–14.430)].

Moreover, after adjusting for age and other explanatory

factors, the risk of death in the first year following initial stroke

was independently associated with epileptic seizures at 3-month

post-stroke [p = 0.012, AHR = 7.313, 95% CI (1.538–34.768)]

and with recurrent stroke at 3- month post-stroke [p = 0.001,

AHR= 3.557, 95% CI (1.679–7.537)].

Discussion

The current study is the only hospital-based study in

Lebanon that provides data on long-term stroke recurrence

and death rates over 1 year of follow-up post-first-ever stroke

and to identify the associated risk factors. High rates of stroke

recurrence (25%) and death (21.3%) in the first year post-

stroke were highlighted in our population. Older age was the

main predictor of both these outcomes. Subjects with stroke

recurrence and death were more likely to have a poor QoL with

low scores of MCS and PCS, moderate to severe disability and

motor deficit, and severe cognitive impairment, associated with

high levels of anxiety and depression. Early recurrent stroke

and epileptic seizures were the main independent predictors of

1-year mortality following a stroke.
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TABLE 3 The association of baseline characteristics with 1-year stroke recurrence using cox proportional hazard regression univariate analysis.

Baseline characteristics Overall N (%)

or Mean

(±SD)

No stroke

recurrence N

(%) or Mean

(±SD)

Stroke

recurrence N

(%) or Mean

(±SD)

Unadjusted

HR (95%CI)

p-value

Age 73.69 (±12.11) 72.56 (±12.17) 77.42 (±11.28) 1.043 (1.009–1.078) 0.013

Gender, female 62 (41.3) 51 (44.3) 11 (31.4) 0.698 (0.342–1.424) 0.323

Marital status, married 117 (78.0) 86 (74.8) 31 (88.6) 2.417 (0.853–6.848) 0.097

Secondary or university

education

46 (30.7) 43 (37.4) 3 (8.6) 0.181 (0.055–0.590) 0.005

Stop work after stroke

Person without any profession 101 (67.3) 76 (66.1) 25 (71.4) Ref

Unemployed 30 (20.0) 22 (19.1) 8 (22.9) 0.929 (0.419–2.061) 0.857

Employed 19 (12.7) 17 (14.8) 2 (5.7) 0.345 (0.082–1.458) 0.148

Presence of a guardian 52 (34.7) 36 (31.3) 16 (45.7) 1.6 (0.823–3.113) 0.166

Living with family members 123 (96.1) 102 (98.1) 21 (87.5) 0.277 (0.083–0.930) 0.038

Smoking status

Non-smoker 60 (40.5) 45 (39.5) 15 (44.1) Ref

Ex-smoker 35 (23.6) 28 (24.6) 7 (20.6) 0.630 (0.257–1.546) 0.313

Current smoker 53 (35.8) 41 (36.0) 12 (35.3) 0.801 (0.375–1.712) 0.567

Daily PA practice for ≥30 min 14 (30.4) 13 (35.1) 1 (11.1) 0.259 (0.032–2.074) 0.203

Sedentary lifestyle

1–6 h/day 35 (28.0) 32 (31.7) 3 (12.5) Ref

7–11 h/day 42 (33.6) 35 (34.7) 7 (29.2) 1.979 (0.512–7.652) 0.323

≥12 h/day 48 (38.4) 34 (33.7) 14 (58.3) 3.926

(1.128–13.667)

0.032

Moderate level of social support

(23 ≤ SSRS ≤ 44)

95 (73.1) 79 (74.5) 16 (66.7) 0.768 (0.328–1.794) 0.541

Mediterranean diet 105 (84.0) 87 (84.5) 18 (81.8) 0.889 (0.301–2.627) 0.832

History of AF 26 (17.3) 21 (18.3) 5 (14.3) 0.832 (0.400–1.733) 0.623

History of MI 6 (4.0) 5 (4.3) 1 (2.9) 1.469 (0.667–3.234) 0.340

History of CVD* 20 (13.3) 17 (14.8) 3 (8.6) 0.576 (0.176–1.881) 0.361

History of HTN 113 (75.3) 88 (76.5) 25 (71.4) 0.855 (0.401–1.826) 0.686

History of DM 59 (39.3) 49 (42.6) 10 (28.6) 0.553 (0.266–1.153) 0.114

History of DL 74 (49.3) 57 (49.6) 17 (48.6) 0.789 (0.406–1.531) 0.483

Family history of stroke 42 (47.7) 38 (50.7) 4 (30.8) 0.470 (0.145–1.527) 0.209

N, Frequency; %, Percentage; SD, Standard Deviation; HR, Hazard Ratio; CI, Confidence Interval; Ref, Reference; SSRS, Social Support Rating Scale; AF, Atrial Fibrillation; MI, Myocardial

Infarction; HTN, Hypertension; CVD, Cardiovascular Diseases; DM, Diabetes Mellitus; DL, Dyslipidemia.

*CVD, coronary artery disease, cardiomyopathy, arrhythmia, chronic heart failure, and thoracic aortic aneurysm. The bold values indicate significant p-values ≤ 0.05.

The cumulative risk rate of stroke recurrence over 1-year

of follow-up was 25%, exceeding the 10–20% rates reported in

previous studies in different countries, including Japan (61, 62),

China (63), Spain (64, 65), U.S. (66–68), U.K. (12), Turkey (69),

and Iran (27). This can be explained first by inappropriate re-

education and poor knowledge in patients regarding post-stroke

healthy habits for survival and improving overall lifestyle to

ensure a better QoL and functional outcome. A recent study

by Khalil H. et al., 2020 conducted a community-based survey

targeting Lebanese adults aged 50 years and above to assess

their stroke-related knowledge and concluded that there is a

lack of adequate stroke-related knowledge among Lebanese

older people (3). Higher levels of education were a significant

predictor of better knowledge (3, 70); Almost 69.3% (104/150)

of our study population had a low level of education, of whom

32 had experienced a stroke recurrence (32/35, 91.4%). Second,

genetic makeup may be a possible reason for high stroke

recurrence. Stroke prevalence in Lebanon may be higher than

in other developing countries in the region (34) and population

aging in Lebanon is higher than in any other Arab country (71,
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TABLE 4 The association of stroke in-hospital course and complications post-stroke with 1-year stroke recurrence using Cox Proportional Hazard

regression univariate analysis.

Stroke characteristics Overall N (%) or

mean (±SD)

No stroke

recurrence N (%)

or mean (±SD)

Stroke recurrence

N (%) or mean

(±SD)

Unadjusted HR

(95%CI)

p-value

Symptoms during the initial stroke

Duration between onset of symptoms

and the arrival at the hospital

3.43 (±5.94) 3.62 (±6.39) 2.8 (±4.16) 0.974 (0.908–1.046) 0.474

Sudden painless weakness on one side of

the body

105 (70.0) 80 (69.6) 25 (71.4) 1.166 (0.560–2.428) 0.681

Sudden numbness on one side of the

body

47 (31.3) 38 (33.0) 9 (25.7) 0.661 (0.310–1.410) 0.284

Sudden painless loss of vision in one or

both eyes

23 (15.3) 17 (14.8) 6 (17.1) 1.074 (0.446–2.587) 0.874

Sudden loss of one half of the vision 16 (10.7) 13 (11.3) 3 (8.6) 0.704 (0.216–2.299) 0.561

Sudden loss of the ability to understand

what people are saying

74 (49.3) 56 (48.7) 18 (51.4) 1.110 (0.572–2.154) 0.758

Sudden loss of the ability to express

verbally or in writing

106 (70.7) 77 (67.0) 29 (82.9) 2.160 (0.897–5.203) 0.086

Administration of Intravenous

thrombolysis

9 (6.8) 7 (6.8) 2 (6.9) 0.997 (0.237–4.184) 0.996

Duration of hospital stay 9.69 (±8.35) 8.72 (±7.07) 12.89 (±11.16) 1.041 (1.012–1.070) 0.004

ICU stay 63 (42.0) 51 (44.3) 12 (34.3) 0.823 (0.410–1.654) 0.585

Type of stroke

Intracerebral hemorrhage 7 (4.7) 6 (5.2) 1 (2.9) Ref

Ischemic stroke 143 (95.3) 109 (94.8) 34 (97.1) 1.468 (0.201–10.727) 0.705

TOAST classification

LAA 58 (45.7) 39 (40.2) 19 (63.3) Ref

CE 6 (4.7) 5 (5.2) 1 (3.3) 0.465 (0.062–3.478) 0.456

SVO 63 (49.6) 53 (54.6) 10 (33.3) 0.4 (0.186–0.861) 0.019

OE 0 (0.0) 0 (0.0) 0 (0.0)

UE 0 (0.0) 0 (0.0) 0 (0.0)

Right hemisphere 60 (40.0) 44 (38.3) 16 (45.7) Ref

Left hemisphere 70 (46.7) 53 (46.1) 17 (48.6) 0.866 (0.437–1.714) 0.679

Bilateral hemisphere 10 (6.7) 8 (7.0) 2 (5.7) 0.708 (0.163–3.080) 0.645

Treatment post-stroke

Use of lipid lowering drug 106 (70.7) 79 (68.7) 27 (77.1) 1.317 (0.598–2.898) 0.494

Use of anti-hypertensive drug 116 (77.3) 90 (78.3) 27 (77.1) 0.983 (0.446–2.164) 0.966

Use of hypoglycemic drug 61 (40.7) 51 (44.3) 10 (28.6) 0.535 (0.257–1.114) 0.095

Use of Antiplatelet agent or

Anticoagulant

141 (94.0) 106 (92.2) 35 (99) 22.019 (0.042–11641.17) 0.334

Use of cardiac treatment 66 (44.0) 50 (43.5) 17 (48.6) 1.302 (0.671–2.526) 0.436

NIHSS at 3 months

<21 104 (83.2) 87 (85.3) 17 (73.9) Ref

≥21 21 (16.8) 15 (14.7) 6 (26.1) 1.732 (0.683–4.393) 0.248

NIHSS at 6 months

<21 109 (73.7) 95 (94.1) 14 (73.7) Ref

≥21 11 (9.2) 6 (5.9) 5 (26.3) 3.777 (1.359–10.498) 0.0.11

(Continued)
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TABLE 4 (Continued)

Stroke characteristics Overall N (%) or

mean (±SD)

No stroke

recurrence N (%)

or mean (±SD)

Stroke recurrence

N (%) or mean

(±SD)

Unadjusted HR

(95%CI)

p-value

NIHSS at 12 months

<21 109 (94.0) 94 (94.9) 15 (88.2) Ref

≥21 7 (6.0) 5 (5.1) 2 (11.8) 2.266 (0.518–9.913) 0.277

Quality of life at 3 months

PCS 28.96 (±7.31) 29.70 (±7.64) 25.68 (±4.35) 0.915 (0.844–0.991) 0.029

MCS 32.65 (±9.41) 34.13 (±8.96) 26.09 (±8.67) 0.904 (0.856–0.956) <0.001

Quality of life at 6 months

PCS 34.92 (±9.21) 35.61 (±9.23) 31.22 (±8.35) 0.949 (0.896–1.006) 0.077

MCS 35.17 (±10.44) 36.56 (±10.11) 27.79 (±9.22) 0.920 (0.874–0.969) 0.002

Quality of life at 12 months

PCS 39.49 (±11.30) 40.43 (±11.00) 33.71 (±11.76) 0.949 (0.903–0.997) 0.039

MCS 40.12 (±12.85) 41.30 (±12.06) 32.88 (±15.42) 0.953 (0.916–0.993) 0.021

Anxiety score post-stroke

HADS-A at 3 months 8.20 (±3.90) 7.82 (±3.95) 9.95 (±3.18) 1.132 (1.012–1.265) 0.030

HADS-A at 6 months 7.98 (±4.12) 7.64 (±4.21) 9.79 (±3.65) 1.111 (0.997–1.238) 0.056

HADS-A at 12 months 6.46 (±4.75) 6.17 (±4.62) 8.40 (±5.32) 1.085 (0.980–1.201) 0.117

Depression score post-stroke

HADS-D at 3 months 12.15 (±5.31) 11.35 (±5.12) 15.86 (±4.63) 1.166 (1.066–1.276) 0.001

HADS-D at 6 months 11.42 (±5.32) 10.72 (±5.09) 15.11 (±5.10) 1.163 (1.058–1.280) 0.002

HADS-D at 12 months 9.57 (±6.78) 8.94 (±6.35) 13.80 (±8.20) 1.103 (1.020–1.193) 0.014

Cognitive impairment post-stroke

MMSE at 3 months 16.29 (±7.95) 17.18 (±7.78) 12.23 (±7.62) 0.938 (0.889–0.988) 0.016

MMSE at 6 months 20.68 (±8.07) 21.90 (±7.14) 14.16 (±9.70) 0.919 (0.876–0.963) <0.001

MMSE at 12 months 23.26 (±7.93) 24.30 (±6.81) 17.12 (±11.01) 0.925 (0.882–0.969) 0.001

Disability degree post-stroke

mRS score at 3 months 3.53 (±1.74) 3.21 (±1.714) 4.57 (±1.399) 2.243 (1.643–3.062) <0.001

mRS score at 6 months 2.50 (±1.52) 2.25 (±1.374) 3.64 (±1.677) 1.688 (1.269–2.245) <0.001

mRS score at 12 months 2.16 (±1.55) 1.96 (±1.414) 3.21 (±1.813) 1.518 (1.155–1.994) 0.003

Fatigue post-stroke

FSS at 3 months 5.64 (±1.33) 5.51 (±1.38) 6.27 (±0.82) 1.676 (1.068–2.632) 0.025

FSS at 6 months 4.90 (±1.44) 4.73 (±1.45) 5.81 (±1.07) 1.746 (1.175–2.593) 0.006

FSS at 12 months 3.64 (±2.01) 3.49 (±1.93) 4.67 (±2.23) 1.337 (1.012–1.765) 0.041

Pain level post-stroke

Moderate to severe pain at 3 months 75 (61.5) 58 (57.4) 17 (81.0) 2.754 (0.927–8.186) 0.068

Moderate to severe pain at 6 months 57 (48.3) 46 (45.5) 11 (64.7) 1.990 (0.736–5.380) 0.175

Moderate to severe pain at 12 months 31 (27.2) 24 (24.2) 7 (46.7) 2.445 (0.886–6.742) 0.084

Neuropathic pain score post-stroke

DN4≥ 4 at 3 months 31 (25.2) 22 (22.0) 9 (39.1) 2.029 (0.878–4.690) 0.098

DN4≥ 4 at 6 months 19 (16.0) 16 (16.0) 3 (15.8) 0.947 (0.276–3.250) 0.931

DN4≥ 4 at 12 months 10 (8.7) 8 (8.1) 2 (12.5) 1.552 (0.353–6.828) 0.561

Headache post-stroke (no/yes)

Headache at 3 months 45 (36.9) 35 (35.4) 10 (43.5) 1.329 (0.583–3.030) 0.499

Headache at 6 months 33 (28.0) 28 (28.3) 5 (26.3) 0.884 (0.318–2.454) 0.812

Headache at 12 months 17 (14.7) 14 (14.3) 3 (16.7) 1.116 (0.323–3.853) 0.863

(Continued)
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TABLE 4 (Continued)

Stroke characteristics Overall N (%) or

mean (±SD)

No stroke

recurrence N (%)

or mean (±SD)

Stroke recurrence

N (%) or mean

(±SD)

Unadjusted HR

(95%CI)

p-value

Limb pain (no/yes)

Limb pain at 3 months 40 (32.8) 30 (30.3) 10 (43.5) 1.643 (0.720–3.747) 0.238

Limb pain at 6 months 40 (32.8) 30 (30.3) 10 (43.5) 1.643 (0.720–3.747) 0.238

Limb pain at 12 months 20 (17.2) 15 (15.3) 5 (27.8) 1.874 (0.668–5.257) 0.233

Spasticity score post-stroke

MAS ≥ 3 at 3 months 26 (20.3) 20 (19.4) 6 (24.0) 1.175 (0.469–2.942) 0.731

MAS ≥ 3 at 6 months 21 (17.1) 17 (16.7) 4 (19.0) 1.092 (0.367–3.246) 0.874

MAS ≥ 3 at 12 months 13 (11.3) 12 (12.2) 1 (5.9) 0.487 (0.065–3.675) 0.486

Joint contractures post-stroke (no/yes)

Joint contractures at 3 months 45 (36.9) 33 (33.0) 12 (54.5) 2.171 (0.938–5.026) 0.070

Joint contractures at 6 months 38 (32.2) 27 (27.0) 11 (61.1) 3.556 (1.378–9.179) 0.009

Joint contractures at 12 months 20 (17.4) 17 (17.2) 3 (18.8) 1.106 (0.315–3.880) 0.875

Falls at least one time post-stroke

At 3 months 49 (37.7) 34 (32.4) 15 (60.0) 2.701 (1.213–6.014) 0.015

At 6 months 22 (18.3) 16 (15.8) 6 (31.6) 2.066 (0.785–5.437) 0.142

At 12 months 9 (7.6) 8 (8.0) 1 (5.6) 0.744 (0.099–5.595) 0.774

Pressure ulcers post-stroke (level ≥1)

Pressure ulcers at 3 months 45 (34.6) 31 (29.5) 14 (56.0) 2.635 (1.196–5.806) 0.016

Pressure ulcers at 6 months 33 (27.3) 24 (23.8) 9 (45.0) 2.224 (0.921–5.368) 0.076

Pressure ulcers at 12 months 19 (16.1) 13 (13.0) 6 (33.3) 2.701 (1.013–7.204) 0.047

Confirmed pneumonia at 3 months

post-stroke

27 (20.8) 18 (17.1) 9 (36.0) 2.543 (1.123–5.758) 0.025

Confirmed UTI at 3 months post-stroke 36 (27.5) 28 (26.4) 8 (32.0) 1.188 (0.512–2.753) 0.688

Confirmed UTI at 6 months post-stroke 22 (18.0) 14 (13.9) 8 (38.1) 3.068 (1.270–7.411) 0.013

Confirmed UTI at 12 months

post-stroke

7 (5.9) 6 (6.0) 1 (5.6) 0.890 (0.118–6.685) 0.909

Epileptic seizures at 3 months

post-stroke

8 (6.1) 5 (4.7) 3 (12.0) 2.079 (0.622–6.951) 0.234

Epileptic seizures at 6 months

post-stroke

9 (7.4) 7 (6.9) 2 (9.5) 1.312 (0.306–5.635) 0.715

Confirmed DVT at 3 months

post-stroke

15 (11.5) 10 (9.4) 5 (20.0) 2.125 (0.797–5.664) 0.132

Confirmed DVT at 6 months

post-stroke

5 (4.1) 4 (4.0) 1 (4.8) 1.120 (0.150–8.348) 0.912

N, Frequency; %, Percentage; SD, Standard Deviation; HR, Hazard Ratio; CI, Confidence Interval; Ref, Reference; ICU, Intensive Care Unit; TOAST, Trial of ORG 10172 in Acute

Stroke Treatment; LAA, Large Artery Atherosclerosis; CE, Cardioembolism; SVO, Small-Vessel Occlusion; OE, Other determined Etiology; UE, Undetermined Etiology; NIHSS,

National Institutes of Health Stroke Scale; PCS, Physical Component Summary; MCS, Mental Component Summary; HADS-A/HADS-D, Hospital Anxiety and Depression Scale –

Anxiety/Depression; MMSE, Mini-Mental State Examination; mRS, modified Rankin Scale; FSS, Fatigue Severity Scale; DN4, “Douleur Neuropathique “4 questionnaire; MAS, Modified

Ashworth Scale; UTI, Urinary Tract Infections; DVT, Deep Vein Thrombosis. The bold values indicate significant p-values ≤ 0.05.

72). Third, for the background behind this higher recurrence

rate, increased vascular risk factors such as HTN, AF, DM, and

DL (32, 73, 74) were remarkable in this study but were not

statistically significant. The highest rate of recurrence found in

this study was in the early stage, which is relatively comparable

with the reported rates by previous literature (27, 75–78). Age

and stroke severity at the time of the index stroke are important

determinants of stroke recurrence and are associated with early

and long term prognosis (27).

Regarding mortality post-stroke, the cumulative risk rate of

all-cause of mortality was 21.3% at 1-year of follow-up, which

was similar to the results of the study by Abdo et al. in Lebanon

in 2019 (79). Various studies worldwide have assessed the long-

term post-stroke mortality rate. A cumulative risk rate of death
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TABLE 5 Independent predictors of 1-year stroke recurrence using

cox proportional hazard regression multivariable analysis.

Variables AHR (95%CI) p-value

Education level, secondary or university education 0.164 (0.036–0.745) 0.019

MCS at 3 months 0.927 (0.876–0.980) 0.008

MCS at 6 months 0.904 (0.843–0.969) 0.004

MMSE at 6 months 0.908 (0.831–0.992) 0.033

Depression at 6 months post-stroke 1.176 (1.060–1.305) 0.002

AHR, Adjusted Hazard Ratio; CI, Confidence Interval; MCS, Mental Component

Summary; MMSE, Mini-Mental State Examination. All these multivariable analyses

included all variables and confounding factors that had a value of p ≤ 0.05 in the

univariate analysis. The method of selection of the variables which has been chosen here

is the backward stepwise method.

of 40.8% 1-year post-stroke was reported in East Africa (80),

with rates of 34.5% in Iran (81), 26.9% in Saudi Arabia (82), 15%

in China (76), 28% in Brazil (78), 16% in the US (77), 22% to 29%

in the UK (83), and 29.4% in Czech Republic (84). Compared

with these rates from different countries, the mortality rate over

1-year post-stroke in Lebanon was less than the rate obtained in

East Africa, Iran, Saudi Arabia, Brazil, the U.K., and the Czech

Republic, but a little greater than those obtained in China and

the U.S. Among Middle Eastern countries, Lebanon represents

the lowest 1-year fatality rate following a stroke, which might

be because of the difference in patient characteristics or the

health-care system.

Most of the 32 deaths observed in the follow-up period were

caused by cardiac or neurovascular complications. However,

recurrence of stroke was responsible for 56% of these deaths in

our study, 41% in the 3 months, 9% during the 3 to 6 months,

and 6% at 12 months post first-ever stroke, where the possible

reason is older age (72% were ≥80 years old). Similar to other

results (79, 85–88), stroke recurrence increases the risk of death

four times among stroke survivors.

Several factors are known to influence short- and long-term

stroke recurrence and mortality.

Age was found as the main predictor of recurrence and

death (64, 89). In our population, we found a significantly

higher risk of 1-year stroke recurrence and 1-year mortality with

advanced age. Elderly individuals were more likely to have a

more severe stroke and increased comorbidities, especially HTN,

which was found to be higher in those with stroke recurrence

but this difference was not statistically significant and could be

attributable to the low sample size.

Men were more exposed to stroke recurrence than women

(68.6 vs. 31.4%, respectively); however, this difference was

statistically significant neither for stroke recurrence nor for

death post-stroke. Several studies from U.S., Europe, and China

showed similar outcomes for the sexes (68, 90–92).

Similarly, there was no significant association between

comorbidities, such as HTN, DM, AF, and dyslipidemia, and

stroke recurrence and death within the first year post-stroke.

This may be due to the fact that the majority of the patients were

on the lipid-lowering and antithrombotic drugs after the stroke;

hence, the non-modifiable risk factors were controlled. Saade

et al. in 2021, conducted a study to evaluate the adherence to

medication in secondary prevention post-stroke and found that

83% of stroke patients were adherent to their medications (35).

The risk of stroke recurrence in subjects with prolonged

sitting hours (≥12 h) was four times higher than in those with

shorter sitting hours, thus indicating that physical inactivity

increases the risk of stroke relapse (93, 94).Most stroke survivors

are engaged in physical inactivity and sedentary behavior,

due to many barriers including depression, low motivation,

poor to moderate social support, and physical impairment

(95). The American Heart Association and the American

Stroke Association recommend the following: at least 30min of

moderate-intensity physical exercise (i.e., gait, upper extremity

function, balance, muscle strength, motor skills, efficiency in

self-care, occupational, and leisure-time activities), sufficient to

break a sweat or raise heart rate, one to three times a week

(93, 95, 96).

Inversely, a higher educational level was a strong

independent protective factor against stroke recurrence.

Individuals with a higher level of education were 18% less

likely to have a secondary stroke over 1 year after the initial

stroke. Previous findings suggested that educational level is an

important predictor of long-term prognosis of stroke (97, 98).

This group of participants understands and has the knowledge of

stroke outcome and recurrence risk factors, as well as secondary

preventive habits including practicing physical activity,

and adopting a healthy lifestyle after stroke i.e., decreased

consumption of alcohol and salt and increased consumption of

fruits and vegetables, compliance to medications, and relevant

rehabilitation process (97, 99).

Living with family members was found to have a significant

negative association with 1-year stroke recurrence, which was

consistent with previous studies (98, 100). The important step

in the continuum of care for stroke survivors is receiving care

from family members while living at home (101, 102).

Interestingly, our study highlighted the significant

relationships between ischemic stroke subtypes and the

cumulative risk rates of stroke recurrence and death, which

showed a predominance of LAA stroke subtype in patients with

1-year stroke recurrence and 1-year all-cause of death compared

to SVO. We found that almost 63% of patients with stroke

recurrence and 71% of deceased patients were affected by LAA

at index stroke. One-year mortality and 1-year stroke recurrence

were the lowest for SVO stroke. This major difference was also

reported by Kolmos et al. in a newly published systematic

review comprising 26 studies conducted between 1997 and 2019

worldwide with similar inclusion criteria (103). Pre-existing

conditions, specifically vascular risk factors, including HTN,

DL, DM, and AF, in LAA patients with stroke recurrence and
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TABLE 6 The association of baseline characteristics with 1-year any-cause of death post-stroke using cox proportional hazard regression univariate

analysis.

Baseline characteristics Overall N (%)

or Mean

(±SD)

No death N

(%) Or Mean

(±SD)

Death N (%)

Or Mean

(±SD)

Unadjusted

HR (95%CI)

p-value

Age 73.69 (±12.11) 72.05 (±11.37) 79.77 (±12.98) 1.021 (1.021–1.098) 0.002

Female gender 62 (41.3) 47 (39.8) 15 (46.9) 1.303 (0.651–2.610) 0.455

Marital status, Married 117 (78.0) 89 (75.4) 28 (87.5) 2.077 (0.728–5.921) 0.172

Education level, secondary or university education 46 (30.7) 41 (34.7) 5 (15.6) 0.400 (0.154–1.039) 0.060

Professional status

Person without any profession/retired 101 (67.3) 75 (63.6) 26 (81.3) Ref

Unemployed 30 (20.0) 24 (20.3) 6 (18.8) 0.714 (0.294–1.736) 0.458

Social security 125 (83.3) 99 (83.9) 26 (81.3) 0.878 (0.361–2.133) 0.774

Presence of a guardian 52 (34.7) 39 (33.1) 13 (40.6) 1.263 (0.624–2.558) 0.516

Household members

Living alone 5 (3.9) 4 (3.4) 1 (10.0) Ref

Living with family members 123 (96.1) 114 (96.6) 9 (90.0) 0.379 (0.048–2.990) 0.357

Mediterranean diet 105 (84.0) 99 (83.9) 6 (85.7) 1.128 (0.136–9.367) 0.912

Smoking status

Non-smoker 60 (40.5) 44 (37.3) 16 (53.3) Ref

Ex-smoker 35 (23.6) 32 (27.1) 3 (10.0) 0.306 (0.089–1.050) 0.060

Current smoker 53 (35.8) 42 (35.6) 11 (36.7) 0.822 (0.382–1.772) 0.618

Sedentary lifestyle

1–6 h/day 35 (28.0) 34 (30.1) 1 (8.3) Ref

7–11 h/day 42 (33.6) 41 (36.3) 1 (8.3) 0.827

(0.052–13.218)

0.893

≥12 h/day 48 (38.4) 38 (33.6) 10 (83.3) 7.768

(0.994–60.693)

0.051

Moderate level of social support (23≤ SSRS ≤ 44) 95 (73.1) 86 (72.9) 9 (75.0) 1.108 (0.300–4.095) 0.877

Comorbidities

History of AF 26 (17.3) 21 (17.8) 5 (15.6) 0.703 (0.316–1.564) 0.388

History of MI 6 (4.0) 4 (3.4) 2 (6.3) 1.562 (0.702–3.477) 0.275

History of DL 74 (49.3) 58 (49.2) 16 (50.0) 0.895 (0.448–1.790) 0.755

History of CVD* 20 (13.3) 16 (13.6) 4 (12.5) 0.913 (0.320–2.604) 0.865

History of HTN 113 (75.3) 88 (74.6) 25 (78.1) 1.302 (0.536–3.162) 0.561

History of DM 60 (40.0) 50 (42.4) 10 (31.3) 0.683 (0.323–1.442) 0.317

Family history of CVD 101 (82.8) 92 (82.9) 9 (81.8) 0.961 (0.208–4.449) 0.960

Family history of stroke 42 (47.7) 38 (48.1) 4 (44.4) 0.880 (0.236–3.277) 0.849

N, Frequency; %, Percentage; SD, Standard Deviation; HR, Hazard Ratio; CI, Confidence Interval; Ref, Reference; SSRS, Social Support Rating Scale; AF, Atrial Fibrillation; MI, Myocardial

Infarction; HTN, Hypertension; CVD, Cardiovascular Diseases; DM, Diabetes Mellitus; DL, Dyslipidemia.

* CVD: coronary artery disease, cardiomyopathy, arrhythmia, chronic heart failure, and thoracic aortic aneurysm. The bold values indicate significant p-values ≤ 0.05.

death were higher than those with SVO stroke in our study and

previous studies (103, 104). A study in Egypt showed that SVO

was significantly higher among patients with late recurrence

(1 year after stroke or more), while LAA was significantly higher

among those with early recurrence (within 1 year) of stroke (6).

Although we did not find any statistical significance in the

effectiveness of intravenous thrombolysis as a first line treatment

in the reduction of stroke recurrence and mortality as per the

stroke index in our study, a higher survival rate and a lesser

stroke relapse within 1 year were observed in patients who were

treated with intravenous thrombolysis. Only nine LAA patients

received intravenous thrombolysis, of whom 7 patients aged

between 45 and 78 years survived for 1-year post-stroke and

were free of stroke recurrence. This finding shed the light on the

efficacy of intravenous thrombolysis on post-stroke prognosis

(105, 106). Previous studies suggested that the main barrier

against receiving intravenous thrombolysis in Lebanon and

other developing countries was delayed in-hospital presentation
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TABLE 7 The association of stroke in-hospital course and complications post-stroke with 1-year any-cause of death post-stroke using cox

proportional hazard regression univariate analysis.

Stroke characteristics Overall N (%)

or mean

(±SD)

No death N

(%) or mean

(±SD)

Death N (%)

or mean

(±SD)

Unadjusted

HR (95%CI)

p-value

Symptoms during the initial stroke

Duration between onset of symptoms and the

arrival to the hospital

3.43 (±5.94) 3.76 (±6.64) 2.20 (±1.06) 0.933 (0.833–1.045) 0.231

Sudden painless weakness on one side of the

body

105 (70.0) 78 (66.1) 27 (84.4) 2.504 (0.964–6.503) 0.059

Sudden numbness on one side of the body 47 (31.3) 42 (35.6) 5 (15.6) 0.376 (0.145 –

1.016)

0.055

Sudden painless loss of vision in one or both

eyes

23 (15.3) 19 (16.1) 4 (12.5) 0.777 (0.272–2.214) 0.636

Sudden loss of one half of the vision 16 (10.7) 14 (11.9) 2 (6.3) 0.519 (0.124–2.170) 0.368

Sudden loss of the ability to understand what

people are saying

74 (49.3) 55 (46.6) 19 (59.4) 1.519 (0.750–3.075) 0.246

Sudden loss of the ability to express verbally

or in writing

106 (70.7) 81 (68.6) 25 (78.1) 1.536 (0.664–3.551) 0.316

Administration of intravenous thrombolysis 9 (6.8) 7 (6.7) 2 (6.9) 0.993 (0.236– 4.177) 0.993

Duration of hospital stay 9.69 (±8.35) 8.58 (±7.63) 13.78 (±9.67) 1.045 (1.016–1.074) 0.002

ICU STAY 63 (42.0) 45 (38.1) 18 (56.3) 1.973 (0.981–3.967) 0.057

Type of stroke

Intracerebral hemorrhage 7 (4.7) 5 (4.2) 2 (6.3) Ref

Ischemic stroke 143 (95.3) 113 (95.8) 30 (93.8) 1.648 (0.394–6.901) 0.494

TOAST classification

LAA 58 (45.7) 38 (38.4) 20 (71.4) Ref

CE 6 (4.7) 4 (4.0) 2 (7.1) 0.991 (0.231–4.241) 0.990

SVO 63 (49.6) 57 (57.6) 6 (21.4) 0.249 (0.100–0.621) 0.003

OE 0 (0.0) 0 (0.0) 0 (0.0)

UE 0 (0.0) 0 (0.0) 0 (0.0)

Location of stroke

Right hemisphere 60 (40.0) 46 (39.0) 14 (43.8) Ref

Left hemisphere 70 (46.7) 55 (46.6) 15 (46.9) 0.916 (0.442–1.897) 0.812

Bilateral hemisphere 10 (6.7) 8 (6.8) 2 (6.3) 0.864 (0.196–3.804) 0.847

Cerebellum 9 (6.0) 8 (6.8) 1 (3.1) 0.456 (0.060–3.469) 0.448

Treatment post-stroke

Use of lipid lowering drug 106 (70.7) 83 (70.3) 23 (71.9) 1.029 (0.476–2.224) 0.942

Use of antihypertensive drug 116 (77.3) 91 (77.1) 26 (81.3) 1.052 (0.455–2.432) 0.906

Use of hypoglycemic drug 61 (40.7) 51 (43.2) 10 (31.3) 0.662 (0.313–1.399) 0.280

Use of antiplatelet agent or anticoagulant 141 (94.0) 111 (94.1) 30 (93.8) 0.848 (0.203–3.549) 0.821

Use of cardiac treatment 66 (44.0) 49 (41.5) 18 (56.3) 1.755 (0.873–3.530) 0.114

Stroke severity post-stroke

NIHSS at 3 months 10.74 (±8.57) 10.43 (±8.32) 15 (±12.04) 1.052 (0.975–1.135) 0.189

NIHSS at 6 months 7.32 (±7.46) 7.19 (±7.32) 15 (±15.56) 1.107 (0.951–1.290) 0.190

Quality of life at 3 months post-stroke

PCS 28.96 (±7.31) 29.31 (±7.36) 23.02 (±1.61) 0.740 (0.552–0.992) 0.044

MCS 32.65 (±9.41) 33.26 (±9.21) 22.40 (±6.70) 0.837 (0.729–0.961) 0.012

(Continued)

Frontiers inNeurology 17 frontiersin.org

243

https://doi.org/10.3389/fneur.2022.973200
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Boutros et al. 10.3389/fneur.2022.973200

TABLE 7 (Continued)

Stroke characteristics Overall N (%)

or mean

(±SD)

No death N

(%) or mean

(±SD)

Death N (%)

or mean

(±SD)

Unadjusted

HR (95%CI)

p-value

Quality of life at 6 months post-stroke

PCS 34.92 (±9.21) 35.11 (±9.16) 23.44 (±0.80) 0.646 (0.402–1.037) 0.070

MCS 35.17 (±10.44) 35.30 (±10.43) 27.49 (±11.92) 0.921 (0.786–1.081) 0.314

Cognitive function post-stroke

MMSE at 3 months 16.29 (±7.95) 16.64 (±7.90) 8 (±3.39) 0.866 (0.758–0.989) 0.034

MMSE at 6 months 20.67 (±8.07) 20.97 (±7.79) 3 (±4.24) 0.738 (0.528–1.032) 0.076

Anxiety and depression post-stroke

HADS-A at 3 months 8.20 (±3.90) 8.08 (±3.91) 11 (±2.55) 1.219 (0.950–1.564) 0.120

HADS-A at 6 months 7.98 (±4.19) 7.97 (±4.22) 8.50 (±2.12) 1.029 (0.741–1.428) 0.865

HADS-D at 3 months 12.15 (±5.31) 11.91 (±5.19) 18 (±5.20) 1.308 (1.028–1.663) 0.029

HADS-D at 6 months 11.42 (±5.32) 11.31 (±5.29) 17.50 (±4.95) 1.304 (0.908–1.873) 0.150

Disability post-stroke (mRS at 3 months) 2.98 (±1.43) 2.92 (±1.42) 4.60 (±0.55) 3.568

(1.067–11.926)

0.039

Spasticity at 3 months (MAS ≥3) 26 (20.3) 24 (20.3) 2 (20.0) 0.961 (0.204–4.528) 0.960

Joint contractures at 3 months 45 (36.9) 42 (36.2) 3 (50.0) 1.719 (0.347–8.516) 0.507

Falls at least 1 time at 3 months 49 (37.7) 44 (37.3) 5 (41.7) 1.188 (0.377–3.743) 0.769

Confirmed pneumonia at 3 months

post-stroke

27 (20.8) 20 (17.1) 7 (53.8) 4.848

(1.629–14.430)

0.005

Confirmed UTI at 3 months post-stroke 36 (27.5) 32 (27.1) 4 (30.8) 1.162 (0.358–3.772) 0.803

Epileptic seizures at 3 months post-stroke 8 (6.1) 5 (4.2) 3 (23.1) 4.769

(1.311–17.345)

0.018

Confirmed DVT at 3 months post-stroke 15 (11.5) 12 (10.2) 3 (23.1) 2.475 (0.681–8.999) 0.169

Recurrent stroke at 3 months 22 (14.7) 9 (7.6) 13 (40.6) 4.885 (2.398–9.954) <0.001

N, Frequency; %, Percentage; SD, Standard Deviation; HR, Hazard Ratio; CI, Confidence Interval; Ref, Reference; ICU, Intensive Care Unit; TOAST, Trial of ORG 10172 in Acute

Stroke Treatment; LAA, Large Artery Atherosclerosis; CE, Cardioembolism; SVO, Small-Vessel Occlusion; OE, Other determined Etiology; UE, Undetermined Etiology; NIHSS, National

Institutes of Health Stroke Scale; PCS, Physical Component Summary; MCS, Mental Component Summary; MMSE, Mini-Mental State Examination; HADS-A/HADS-D, Hospital Anxiety

and Depression Scale – Anxiety/Depression; Mrs, modified Rankin Scale; MAS, Modified Ashworth Scale; UTI, Urinary Tract Infections; DVT, Deep Vein Thrombosis. The bold values

indicate significant p-values ≤ 0.05.

TABLE 8 Independent predictors of 1-year any-cause of death using

cox proportional hazard regression multivariable analysis.

Variables AHR (95%CI) p-value

Age 1.039 (1.002–1.078) 0.040

Length of hospital stay 1.037 (1.006–1.069) 0.018

Depression at 3 months post-stroke 1.302 (1.027–1.650) 0.029

Recurrent stroke at 3 months post-stroke 3.557 (1.679–7.537) 0.001

MMSE at 3 months 0.866 (0.758–0.989) 0.034

Epileptic seizures at 3 months post-stroke 7.313 (1.538–34.768] 0.012

AHR, Adjusted Hazard Ratio; CI, Confidence Interval; MMSE, Mini-Mental State

Examination. All these multivariable analyzes included all variables and confounding

factors that had a value of p ≤ 0.05 in the univariate analysis. The method of selection

of the variables which has been chosen here is the backward stepwise method.

to recombinant tissue plasminogen activator administration

(107, 108). A standardized stroke protocol is lacking in Lebanese

hospitals and should be implemented (109).

The patients with stroke recurrence or mortality within 1

year post-stroke had prolonged hospital stay at stroke index

(initial stroke occurrence) more than those without stroke

recurrence or mortality, which was statistically significant in our

study (110). Ween et al., in 2000, studied the impact of early

recovery rates after stroke on the functional outcome prediction

among stroke survivors and found that the length of hospital

stay was significantly prolonged in patients with a poor outcome,

thus helping us to estimate the stroke prognosis and guide them

for efficient rehabilitation programs (111).

Stroke survivors’ health-related QoL is one of the important

outcomes of rehabilitation. Stroke has a major impact on

the QoL of survivors even among those who have no or

minimal post-stroke disability (112). Although the outcomes of

most patients with minor symptoms, defined by a low NIHSS

score, are favorable, the incidence of permanent stroke-related

sequelae, recurrent stroke, or medical complications of stroke

is still possible (113). Most stroke survivors perceive their
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QoL as low compared to their pre-stroke status (114). Several

factors such as functional status, ADL, anxiety, depression,

neurological and cognitive functions, and environmental and

other personal factors have been reported to predict the QoL

in stroke survivors, which can worsen the long-term prognosis

(115–120). In low resource countries (121, 122), such as Lebanon

(108, 123, 124), additional factors like health costs, employment

status, and emotional disorders have been reported to influence

the stroke survivors’ QoL.

The present study findings showed low scores of PCS and

MCS components of QoL in all subject; however, the scores were

lower in survivors with stroke recurrence and those who died

over 1 year of follow-up, especially in the early stage.

The MCS of the QoL (SF, MH, RE, and VT) was found

as an independent determinant of stroke recurrence. Hence,

percentages of anxiety and depression post-stroke, measured by

HADS, were 51.2, 48.3, 36.5%, and 77.2, 74.2, and 56.5% at 3-,

6-, and 12-month post-stroke, respectively. A systematic review

conducted by Rafsten et al., in 2018, revealed an overall pooled

prevalence of post-stroke anxiety disorders of 29.3% during the

first year (125).While the present study has shown a high level of

post-stroke anxiety among Lebanese survivors compared to the

rate in the aforementioned review.

On the other hand, reviews by Ayerbe et al. and Hacket

et al., revealed a cumulative rate of post-stroke depression of

33% (126, 127). Furthermore, a systematic review conducted in

the MENA region by Kaadan and Larson, included 34 studies

with the lowest rates reported in Saudi Arabia (17%), and Iran

(18%), whereas, higher rates are reported in Algeria (56.1%),

Jordan (64%), and Morocco (73.2%) (128). Lebanese survivors

showed the highest rate of post-stroke depression, which is

close to the rate in Moroccan people. This could be due to

the general poor QoL following stroke among the Lebanese

population, lack of proper care, rehabilitation services, and

additional training for healthcare professionals on the symptoms

of depression. Another possible explanation could be the use

of different methods of assessment (123). There is evidence

of a strong relationship between the common psychological

disorders post-stroke, anxiety and depression, and the stroke

recurrence and death over 1 year following stroke (22, 129–

131). Elevated HADS scores for anxiety and depression (80–90%

with mean HADS scores ≥8) were seen in subjects with stroke

recurrence and death.

Other studies have shown that cognitive impairment

after stroke increases the risk of long-term stroke recurrence

and shortens long-time survival, especially in the acute

phase (90, 132, 133). Almost half (53.7%) of the Lebanese

stroke survivors complained of severe cognitive impairment

(MMSE ≤ 17) in the early stage post-stroke (3 months

post-stroke), 28.3% at 6 months, and 18.8% at 12 months post-

stroke. Higher MMSE scores were inversely associated

with stroke recurrence and death. Furthermore, after

adjusting for age and other explanatory factors, Higher

MMSE score found to strong protective factor predictor for

both outcomes.

Subjects with stroke recurrence were positively associated

with an occurrence of a severe stroke 6 months post-stroke and

with moderate to severe disability and high mRS scores (85

and 100% with mean mRS scores >3, respectively), which are

consistent with previous study results (80, 134, 135). Subjects

with motor deficits, such as fatigue (mean FSS scores > 4), joint

contractures (61.1%), falls (60%) and pressure ulcers (33–56%)

had a greater risk of stroke recurrence as the risk increased by

two to three times in them. The control of motor movement

in executing ADL is the main problem after stroke and is

one of the factors contributing to a low survival’ QoL (136).

A Swedish study, conducted in 2014 among 35,000 stroke

patients (81% with first-ever stroke), followed up at 3 and 12

months, found a 16% decline among survivors, from a level

of independence in ADL to a level of dependence in ADL

(137). On the contrary, despite the motor deficits mentioned

previously that were mainly in the acute phase, our findings

reported a slight improvement of themotor function and level of

independence from 3 to 12 months of follow-up. These findings

are in agreement with the findings of a review by Wondergem

et al. conducted in 2017 that included 28 studies (138), and those

of Langhorne et al. conducted in 2011 (139).

Pulmonary infections at 3 months post-stroke were

positively associated with stroke recurrence and death over 1

year of follow-up. Almost one-third of subjects with stroke

recurrence and half of the subjects who died post-stroke

presented with early pulmonary infections. In addition, urinary

tract infections at 6 months post-stroke were significantly higher

in subjects with stroke recurrence (38.1%). It was found that

the majority of these subjects (70–80%) had a severe stroke

(NIHSS ≥ 21) and increased disability with high mRS scores

(mRS ≥ 3), which were similar to the results of previous studies

(110, 140). Stroke may affect the immunological status and level

of independence of survivors; thus, severe stroke patients are

prone to infections leading to post-stroke readmissions because

of recurrent aspiration pneumonia and urinary catheterizations.

This condition causes an increase in disability, immobility, and

elevated inflammatory markers that contribute to atherogenesis

and thrombosis, leading to long-term sequelae, recurrent stroke,

and subsequent death (110, 140–145).

Finally, epileptic seizures at 3 months post-stroke (8/131,

6.1%) were reported in one-fifth of subjects who died (3/13,

23.1%) over 1 year of follow-up, including two subjects who

died after 4–5 months and one subject at 11 months post-

stroke. Stroke recurrence was the primary cause of death

among the three subjects. When adjusting for age, stroke

severity, and recurrence of stroke, epileptic seizures remained

associated with mortality post-stroke. The risk of mortality in

the first year post-initial stroke was 7-fold higher in subjects
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with seizures than those without seizures at 3 months post-

stroke. Seizures were linked with severe cognitive impairment

and with moderate to severe disability post-stroke (60%). The

AHR in the current study is higher than the reported HR

in previous studies (146–148). This could be explained by

the smaller number of patients with epileptic seizures in this

study which could have negatively affected the precision of

results. Further large cohort studies are needed to confirm

our findings.

Strengths and limitations

This study has several limitations. First, the small sample

size recruited following the previous study considering a low

prevalence of stroke in Lebanon of 3.9% according to other

countries (39). Second, participating hospitals were limited to

the regions of Beirut and Mount Lebanon, even though subjects

came from all governorates, they were not representative of

the overall population of Lebanon. Third, other recurrence

correlates, such as carotid artery sclerosis, imaging findings, and

medication adherence may need to be studied to provide more

insight into the process of recurrence and death. Therefore,

this study could function as a preliminary study for stroke

recurrence and death post-stroke and their predictive factors

among Lebanese survivors.

However, the prospective multicenter longitudinal study

design that was conducted may have decreased recall and

selection bias. In addition, we used standardized validated

reliable international measuring instruments, and the study was

performed by highly qualified and well-trained investigators

face-to-face with the subjects, which may have lowered

the degree of bias usually resulting from self-completed

questionnaires. Furthermore, we used the Arabic-validated

version of the measuring instruments, which could have

prevented information bias. Nevertheless, future studies with

larger sample sizes are required to confirm the current

study results.

Conclusion

Stroke recurrence and death were commonly found in

the first year post-stroke, with the largest rates recorded in

the acute phase. The risk of stroke recurrence in Lebanon

is higher compared to those in western and other eastern

countries. A large number of the patients died or had

recurrent events due to poor functional, neurological, cognitive,

and mental prognosis. Lower cognitive scores, and greater

neuropsychological, disability, and severity scales were positively

associated with both these outcomes among the Lebanese

population. Therefore, the primary public goal is to reduce

stroke complications. Implementing effective therapies for

secondary prevention is necessary in the acute phase (stroke unit

management, thrombolytic, and other reperfusion therapies), as

well as rehabilitation and long-term follow-up efforts are needed

in order to cope with the burden of stroke in people who have

developed or survived a stroke.

Data availability statement

The datasets presented in this article are not readily available

because of ethical and privacy restrictions. Requests to access the

datasets should be directed to CB, celinaboutros@gmail.com.

Ethics statement

The studies involving human participants were reviewed

and approved by the Ethics Committees and directors of the

participating hospitals (NEUR-2018-001, HDF-1152). Ethical

clearance was obtained through a formal letter granted in line

with the World Medical Association Declaration of Helsinki in

2013. The patients/participants provided their written informed

consent to participate in this study.

Author contributions

HH, PS, and CB contributed to the conception and design

of the study. CB, WK, and MT organized the database. CB

performed the statistical analysis and wrote the first draft and

the sections of the manuscript. All authors contributed to

manuscript revision, read, and approved the submitted version.

Funding

The authors declare that this study received funding

from Association Robert Debré pour la Recherche Médicale

(ARDRM). The funder was not involved in the study design,

collection, analysis, interpretation of data, the writing of this

article or the decision to submit it for publication.

Acknowledgments

We would like to acknowledge Professor Youssef Fares for

his support and cooperation in facilitating the access and the

communication with some participating hospitals. We would

also thank the patients and caregivers whose contribution made

this study possible.

Frontiers inNeurology 20 frontiersin.org

246

https://doi.org/10.3389/fneur.2022.973200
mailto:celinaboutros@gmail.com
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Boutros et al. 10.3389/fneur.2022.973200

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fneur.2022.973200/full#supplementary-material

References

1. Rahayu LP, Sudrajat DA, Nurdina G, Agustina EN, Putri TARK. The risk
factor of recurrence stroke among stroke and transient ischemic attack patients
in Indonesia. KnE Life Sci. (2019) 87–97. doi: 10.18502/kls.v4i13.5229

2. Bou Ali I, Farah R, Zeidan RK, Chahine MN, Al Sayed G, Asmar R, et al.
Stroke symptoms impact on mental and physical health: a Lebanese population
based study. Rev Neurol. (2021) 177:124–31. doi: 10.1016/j.neurol.2020.03.026

3. Khalil HM, Lahoud N. Knowledge of stroke warning signs, risk factors, and
response to stroke among Lebanese older adults in Beirut. J Stroke Cerebrovasc Dis.
(2020) 29:104716. doi: 10.1016/j.jstrokecerebrovasdis.2020.104716

4. Han J, Mao W, Ni J, Wu Y, Liu J, Bai L, et al. Rate and determinants of
recurrence at 1 year and 5 years after stroke in a low-income population in Rural
China. Front Neurol. (2020) 11:2. doi: 10.3389/fneur.2020.00002

5. WHO. Stroke, Cerebrovascular Accident (2021). Available online at: https://
www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html
(accessed February 25, 2021).

6. Elnady HM, Mohammed GF, Elhewag HK, Mohamed MK, Borai A. Risk
factors for early and late recurrent ischemic strokes. Egypt J Neuro Psychiatry
Neurosurg. (2020) 56:56. doi: 10.1186/s41983-020-00190-3

7. Lin B, Zhang Z, Mei Y, Wang C, Xu H, Liu L, et al. Cumulative risk of stroke
recurrence over the last 10 years: a systematic review andmeta-analysis.Neurol Sci.
(2021) 42:61–71. doi: 10.1007/s10072-020-04797-5

8. Zhuo Y,Wu J, Qu Y, YuH, Huang X, Zee B, et al. Clinical risk factors associated
with recurrence of ischemic stroke within two years: a cohort study. Medicine.
(2020) 99:1–6. doi: 10.1097/MD.0000000000020830

9. Hillen T, Coshall C, Tilling K, Rudd AG, McGovern R, Wolfe
CDA. Cause of stroke recurrence is multifactorial. Stroke. (2003)
34:1457–63. doi: 10.1161/01.STR.0000072985.24967.7F

10. Khanevski AN, Bjerkreim AT, Novotny V, Naess H, Thomassen L, Logallo
N, et al. Recurrent ischemic stroke: incidence, predictors, and impact on mortality.
Acta Neurol Scand. (2019) 140:3–8. doi: 10.1111/ane.13093

11. Xia X, YueW, Chao B, Li M, Cao L, Wang L, et al. Prevalence and risk factors
of stroke in the elderly in Northern China: data from the National Stroke Screening
Survey. J Neurol. (2019) 266:1449–58. doi: 10.1007/s00415-019-09281-5

12. Flach C, Muruet W, Wolfe CDA, Bhalla A, Douiri A. Risk and secondary
prevention of stroke recurrence: a population-base cohort study. Stroke. (2020)
51:2435–44. doi: 10.1161/STROKEAHA.120.028992

13. Chen CY, Weng WC, Wu CL, Huang WY. Association between gender
and stoke recurrence in ischemic stroke patients with high-grade carotid artery
stenosis. J Clin Neurosci. (2019) 67:62–7. doi: 10.1016/j.jocn.2019.06.021

14. Zonneveld TP, Richard E, Vergouwen MD, Nederkoorn PJ, de Haan R,
Roos YB, et al. Blood pressure-lowering treatment for preventing recurrent
stroke, major vascular events, and dementia in patients with a history of
stroke or transient ischaemic attack. Cochrane Database Syst Rev. (2018)
7:Cd007858. doi: 10.1002/14651858.CD007858.pub2

15. Yagita Y. Cholesterol and inflammation in stroke recurrence. J Atheroscler
Thromb. (2019) 26:406–7. doi: 10.5551/jat.ED107

16. Lau LH, Lew J, Borschmann K, Thijs V, Ekinci EI. Prevalence of diabetes
and its effects on stroke outcomes: a meta-analysis and literature review. J Diabetes
Investig. (2019) 10:780–92. doi: 10.1111/jdi.12932

17. Tanaka K, Koga M, Lee KJ, Kim BJ, Park EL, Lee J, et al. Atrial fibrillation-
associated ischemic stroke patients with prior anticoagulation have higher risk for
recurrent stroke. Stroke. (2020) 51:1150–7. doi: 10.1161/STROKEAHA.119.027275

18. Chin YY, Sakinah H, Aryati A, Hassan BM. Prevalence, risk factors and
secondary prevention of stroke recurrence in eight countries from south, east and
southeast asia: a scoping review.Med J Malaysia. (2018) 73:90–9.

19. Chen J, Li S, Zheng K, Wang H, Xie Y, Xu P, et al. Impact
of smoking status on stroke recurrence. J Am Heart Assoc. (2019)
8:e011696. doi: 10.1161/JAHA.118.011696

20. Oza R, Rundell K, Garcellano M. Recurrent ischemic stroke: strategies for
prevention. Am Fam Phys. (2017) 96:436–40.

21. Kumral E, Erdogan CE, Ari A, Bayam FE, Saruhan G. Association of obesity
with recurrent stroke and cardiovascular events. Rev Neurol. (2021) 177:414–
21. doi: 10.1016/j.neurol.2020.06.019

22. Cai W, Mueller C, Li YJ, ShenWD, Stewart R. Post stroke depression and risk
of stroke recurrence and mortality: a systematic review and meta-analysis. Ageing
Res Rev. (2019) 50:102–9. doi: 10.1016/j.arr.2019.01.013

23. McCurley JL, Funes CJ, Zale EL, Lin A, JacoboM, Jacobs JM, et al. Preventing
chronic emotional distress in stroke survivors and their informal caregivers.
Neurocrit Care. (2019) 30:581–9. doi: 10.1007/s12028-018-0641-6

24. Arsava EM, Kim GM, Oliveira-Filho J, Gungor L, Noh HJ, Lordelo Mde
J, et al. Prediction of early recurrence after acute ischemic stroke. JAMA Neurol.
(2016) 73:396–401. doi: 10.1001/jamaneurol.2015.4949

25. GBD. Global, regional, and national age-sex-specific mortality for 282
causes of death in 195 countries and territories, 1980-2017: a systematic analysis
for the Global Burden of Disease Study 2017. Lancet. (2018) 392:1736–88.
doi: 10.1016/S0140-6736(18)32203-7

26. El-Gohary TM, Alshenqiti AM, Ibrahim SR, Khaled OA, Ali ARH, Ahmed
MS. Risk factors and types of recurrent stroke: a Saudi hospital based study. J Phys
Ther Sci. (2019) 31:743–6. doi: 10.1589/jpts.31.743

27. Salehi M, Amiri A, Thrift AG, Kapral MK, Sposato L, Behrouz R, et al. Five-
year recurrence rate and the predictors following stroke in the mashhad stroke
incidence study: a population-based cohort study of stroke in the middle east.
Neuroepidemiology. (2018) 50:18–22. doi: 10.1159/000485509

28. Amiri A, Kapral MK, Thrift AG, Sposato LA, Saber H, Behrouz R, et al. The
incidence and characteristics of stroke in urban-dwelling Iranian women. J Stroke
Cerebrovasc Dis. (2018) 27:547–54. doi: 10.1016/j.jstrokecerebrovasdis.2017.09.050

29. Kumral E, Gulluoglu H, Alakbarova N, Karaman B, Deveci EE,
Bayramov A, et al. Association of leukoaraiosis with stroke recurrence
within 5 years after initial stroke. J Stroke Cerebrovasc Dis. (2015) 24:573–
82. doi: 10.1016/j.jstrokecerebrovasdis.2014.10.002

30. Deleu D, Hamad AA, Kamram S, El Siddig A, Al Hail H,
Hamdy SMK. Ethnic variations in risk factor profile, pattern and
recurrence of non-cardioembolic ischemic stroke. Arch Med Res. (2006)
37:655–62. doi: 10.1016/j.arcmed.2006.01.001

31. Pandian JD, Kalkonde Y, Sebastian IA, Felix C, Urimubenshi G, Bosch J.
Stroke systems of care in low-income and middle-income countries: challenges
and opportunities. Lancet. (2020) 396:1443–51. doi: 10.1016/S0140-6736(20)
31374-X

Frontiers inNeurology 21 frontiersin.org

247

https://doi.org/10.3389/fneur.2022.973200
https://www.frontiersin.org/articles/10.3389/fneur.2022.973200/full#supplementary-material
https://doi.org/10.18502/kls.v4i13.5229
https://doi.org/10.1016/j.neurol.2020.03.026
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104716
https://doi.org/10.3389/fneur.2020.00002
https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html
https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html
https://doi.org/10.1186/s41983-020-00190-3
https://doi.org/10.1007/s10072-020-04797-5
https://doi.org/10.1097/MD.0000000000020830
https://doi.org/10.1161/01.STR.0000072985.24967.7F
https://doi.org/10.1111/ane.13093
https://doi.org/10.1007/s00415-019-09281-5
https://doi.org/10.1161/STROKEAHA.120.028992
https://doi.org/10.1016/j.jocn.2019.06.021
https://doi.org/10.1002/14651858.CD007858.pub2
https://doi.org/10.5551/jat.ED107
https://doi.org/10.1111/jdi.12932
https://doi.org/10.1161/STROKEAHA.119.027275
https://doi.org/10.1161/JAHA.118.011696
https://doi.org/10.1016/j.neurol.2020.06.019
https://doi.org/10.1016/j.arr.2019.01.013
https://doi.org/10.1007/s12028-018-0641-6
https://doi.org/10.1001/jamaneurol.2015.4949
https://doi.org/10.1016/S0140-6736(18)32203-7
https://doi.org/10.1589/jpts.31.743
https://doi.org/10.1159/000485509
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.050
https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.10.002
https://doi.org/10.1016/j.arcmed.2006.01.001
https://doi.org/10.1016/S0140-6736(20)31374-X
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Boutros et al. 10.3389/fneur.2022.973200

32. Farah R, Zeidan RK, Chahine MN, Asmar R, Chahine R, Salameh P, et al.
Prevalence of stroke symptoms among stroke-free residents: first national data
from Lebanon. Int J Stroke. (2015) 10(Suppl. A100):83–8. doi: 10.1111/ijs.12563

33. Salameh P, Farah R, Hallit S, Zeidan RK, Chahine MN, Asmar R, et al.
Self-reported history of stroke and long-term living conditions near air pollution
sources: results of a national epidemiological study in Lebanon. Environ Monit
Assess. (2018) 190:153. doi: 10.1007/s10661-018-6545-2

34. Lahoud N, Salameh P, Saleh N, Hosseini H. Prevalence of Lebanese stroke
survivors: a comparative pilot study. J Epidemiol Glob Health. (2016) 6:169–
76. doi: 10.1016/j.jegh.2015.10.001

35. Saade S, Kobeissy R, Sandakli S, Malaeb D, Lahoud N, Hallit S, et al.
Medication adherence for secondary stroke prevention and its barriers among
lebanese survivors: a cross-sectional study. Clini Epidemiol Global Health. (2021)
9:338–46. doi: 10.1016/j.cegh.2020.10.007

36. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC,
Vandenbroucke JP. The Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) Statement: guidelines for reporting
observational studies. Int J Surg. (2014) 12:1495–9. doi: 10.1016/j.ijsu.2014.
07.013

37. WHO.World Medical Association Declaration of Helsinki: ethical principles
for medical research involving human subjects. JAMA. (2013) 310:2191–
4. doi: 10.1001/jama.2013.281053

38. WHO. International Statistical Classification of Diseases and Related Health
Problems 10th Revision (ICD-10) Version for 2010. (2010). Available from: https://
icd.who.int/browse10/2010/en#!/G46.3 (accessed September 22, 2017).

39. Jurjus AR, Tohme RA, Ephrem G, Hussein IA, Jurjus R. Incidence and
prevalence of circulatory diseases in Lebanon: a physician’s inquiry. Ethn Dis.
(2009) 19:1.

40. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras
A, et al. An updated definition of stroke for the 21st century: a statement
for healthcare professionals from the American Heart Association/American
Stroke Association. Stroke. (2013) 44:2064–89. doi: 10.1161/STR.0b013e3182
96aeca

41. Adams HP Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL,
et al. Classification of subtype of acute ischemic stroke. Definitions for use in a
multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment.
Stroke. (1993) 24:35–41. doi: 10.1161/01.STR.24.1.35

42. Fitzpatrick AL, Ngo QV, Ly KA, Ton TG, Longstreth WT Jr, Vo TT, et al.
Symptoms and risk factors for stroke in a community-based observational sample
in Viet Nam. J Epidemiol Glob Health. (2012) 2:155–63. doi: 10.1016/j.jegh.2012.
06.001

43. Alotaibi SST, Alzahrani AKJ, Al Nasserullah LZ, Nasser BAA, Mohammad N,
Alhusayni LTA, et al. An overview on stroke diagnosis & management approach.
Arch Pharm Pract. (2020) 11:61.

44. Lyden P, Brott T, Tilley B, Welch KM, Mascha EJ, Levine S, et al. Improved
reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study
Group. Stroke. (1994) 25:2220–6. doi: 10.1161/01.STR.25.11.2220

45. Hussein HM, Abdel Moneim A, Emara T, Abd-Elhamid YA, Salem
HH, Abd-Allah F, et al. Arabic cross cultural adaptation and validation of
the National Institutes of Health Stroke Scale. J Neurol Sci. (2015) 357:152–
6. doi: 10.1016/j.jns.2015.07.022

46. Lee SY, Kim DY, Sohn MK, Lee J, Lee S-G, Shin Y-I, et al. Determining the
cut-off score for the Modified Barthel Index and the Modified Rankin Scale for
assessment of functional independence and residual disability after stroke. PLoS
ONE. (2020) 15:e0226324. doi: 10.1371/journal.pone.0226324

47. Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey:
construction of scales and preliminary tests of reliability and validity. Med Care.
(1996) 34:220–33. doi: 10.1097/00005650-199603000-00003

48. Ware J, Kosinski M, Keller S. SF-12: How to Score the SF-12 Physical and
Mental Health Summary Scales. Boston, MA: The Health Institute, New England
Medical Center (1998).

49. Al-Shehri AH, Taha AZ, Bahnassy AA, Salah M. Health-related
quality of life in type 2 diabetic patients. Ann Saudi Med. (2008)
28:352–60. doi: 10.5144/0256-4947.2008.352

50. Haddad C, Sacre H, Obeid S, Salameh P, Hallit S. Validation of the Arabic
version of the “12-item short-form health survey” (SF-12) in a sample of Lebanese
adults. Arch Public Health. (2021) 79:56. doi: 10.1186/s13690-021-00579-3

51. Duan J, Lv Y-B, Gao X, Zhou J-H, Kraus VB, Zeng Y, et al.
Association of cognitive impairment and elderly mortality: differences
between two cohorts ascertained 6-years apart in China. BMC Geriatr. (2020)
20:29. doi: 10.1186/s12877-020-1424-4

52. Tombaugh TN, McIntyre NJ. The mini-mental state
examination: a comprehensive review. J Am Geriatr Soc. (1992)
40:922–35. doi: 10.1111/j.1532-5415.1992.tb01992.x

53. El-Hayeck R, Baddoura R, Wehbé A, Bassil N, Koussa S, Abou Khaled K,
et al. An arabic version of the mini-mental state examination for the lebanese
population: reliability, validity, and normative data. J Alzheimers Dis. (2019)
71:525–40. doi: 10.3233/JAD-181232

54. Christensen AV, Dixon JK, Juel K, Ekholm O, Rasmussen TB, Borregaard B,
et al. Psychometric properties of the Danish Hospital Anxiety and Depression Scale
in patients with cardiac disease: results from the DenHeart survey.Health Qual Life
Outcomes. (2020) 18:9. doi: 10.1186/s12955-019-1264-0

55. Al Aseri ZA, Suriya MO, Hassan HA, Hasan M, Sheikh SA, Al Tamimi A,
et al. Reliability and validity of the Hospital Anxiety and Depression Scale in an
emergency department in Saudi Arabia: a cross-sectional observational study. BMC
Emerg Med. (2015) 15:28. doi: 10.1186/s12873-015-0051-4

56. Xiao J, Huang B, Shen H, Liu X, Zhang J, Zhong Y, et al. Association between
social support and health-related quality of life among Chinese seafarers: a cross-
sectional study. PLoSONE. (2017) 12:e0187275. doi: 10.1371/journal.pone.0187275

57. Rosti-Otajärvi E, Hämäläinen P, Wiksten A, Hakkarainen T, Ruutiainen J.
Validity and reliability of the fatigue severity scale in finnish multiple sclerosis
patients. Brain Behav. (2017) 7:e00743. doi: 10.1002/brb3.743

58. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale
of muscle spasticity. Phys Ther. (1987) 67:206–7. doi: 10.1093/ptj/67.2.206

59. Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, et al.
Comparison of pain syndromes associated with nervous or somatic lesions and
development of a new neuropathic pain diagnostic questionnaire (DN4). Pain.
(2005) 114:29–36. doi: 10.1016/j.pain.2004.12.010

60. Valko PO, Bassetti CL, Bloch KE, Held U, Baumann CR. Validation
of the fatigue severity scale in a Swiss cohort. Sleep. (2008) 31:1601–
7. doi: 10.1093/sleep/31.11.1601

61. Kono Y, Yamada S, Kamisaka K, Araki A, Fujioka Y, Yasui K, et al. Recurrence
risk after noncardioembolic mild ischemic stroke in a Japanese population.
Cerebrovasc Dis. (2011) 31:365–72. doi: 10.1159/000323233

62. Takashima N, Arima H, Kita Y, Fujii T. Two-year recurrence after
first-ever stroke in a general population of 1.4 million Japanese Patients-
The Shiga Stroke and Heart Attack Registry Study. Circ J. (2020) 84:943–
8. doi: 10.1253/circj.CJ-20-0024

63. Wang G, Jing J, Pan Y, Meng X, Zhao X, Liu L, et al. Does all single infarction
have lower risk of stroke recurrence than multiple infarctions in minor stroke?
BMC Neurol. (2019) 19:7. doi: 10.1186/s12883-018-1215-0

64. Modrego PJ, Mainar R, Turull L. Recurrence and survival after first-ever
stroke in the area of Bajo Aragon, Spain. A prospective cohort study. J Neurol Sci.
(2004) 224:49–55. doi: 10.1016/j.jns.2004.06.002

65. Roquer J, Rodríguez-Campello A, Cuadrado-Godia E, Vivanco-Hidalgo
RM, Jiménez-Conde J, Perich X, et al. Acute brain MRI–DWI patterns
and stroke recurrence after mild-moderate stroke. J Neurol. (2010) 257:947–
53. doi: 10.1007/s00415-009-5443-5

66. Sozener CB, Lisabeth LD, Shafie-Khorassani F, Kim S, Zahuranec DB, Brown
DL, et al. Trends in stroke recurrence in mexican americans and non-hispanic
whites. Stroke. (2020) 51:2428–34. doi: 10.1161/STROKEAHA.120.029376

67. Allen NB, Holford TR, Bracken MB, Goldstein LB, Howard G, Wang
Y, et al. Geographic variation in one-year recurrent ischemic stroke rates for
elderly Medicare beneficiaries in the USA. Neuroepidemiology. (2010) 34:123–
9. doi: 10.1159/000274804

68. Lambert C, Chaudhary D, Olulana O, Shahjouei S, Avula V, Li J,
et al. Sex disparity in long-term stroke recurrence and mortality in a
rural population in the United States. Ther Adv Neurol Disord. (2020)
13:1756286420971895. doi: 10.1177/1756286420971895

69. Kumral E, Evyapan D, Gökçay F, Karaman B, Orman M. Association of
baseline dyslipidemia with stroke recurrence within five-years after ischemic
stroke. Int J Stroke. (2014) 9(Suppl. A100):119–26. doi: 10.1111/ijs.12341

70. Soto-Cámara R, González-Bernal JJ, González-Santos J, Aguilar-Parra JM,
Trigueros R, López-Liria R. Knowledge on Signs and Risk Factors in Stroke
Patients. J Clin Med. (2020) 9:1–14. doi: 10.3390/jcm9082557

71. Abdulrahim S, Ajrouch KJ, Antonucci TC. Aging in Lebanon: challenges and
opportunities. Gerontologist. (2015) 55:511–8. doi: 10.1093/geront/gnu095

72. UN.World Population Prospects - Population Division. New York, NY: United
Nations (2019).

73. Zablith N, Diaconu K, Naja F, El Koussa M, Loffreda G, Bou-
Orm I, et al. Dynamics of non-communicable disease prevention,

Frontiers inNeurology 22 frontiersin.org

248

https://doi.org/10.3389/fneur.2022.973200
https://doi.org/10.1111/ijs.12563
https://doi.org/10.1007/s10661-018-6545-2
https://doi.org/10.1016/j.jegh.2015.10.001
https://doi.org/10.1016/j.cegh.2020.10.007
https://doi.org/10.1016/j.ijsu.2014.07.013
https://doi.org/10.1001/jama.2013.281053
https://icd.who.int/browse10/2010/en#!/G46.3
https://icd.who.int/browse10/2010/en#!/G46.3
https://doi.org/10.1161/STR.0b013e318296aeca
https://doi.org/10.1161/01.STR.24.1.35
https://doi.org/10.1016/j.jegh.2012.06.001
https://doi.org/10.1161/01.STR.25.11.2220
https://doi.org/10.1016/j.jns.2015.07.022
https://doi.org/10.1371/journal.pone.0226324
https://doi.org/10.1097/00005650-199603000-00003
https://doi.org/10.5144/0256-4947.2008.352
https://doi.org/10.1186/s13690-021-00579-3
https://doi.org/10.1186/s12877-020-1424-4
https://doi.org/10.1111/j.1532-5415.1992.tb01992.x
https://doi.org/10.3233/JAD-181232
https://doi.org/10.1186/s12955-019-1264-0
https://doi.org/10.1186/s12873-015-0051-4
https://doi.org/10.1371/journal.pone.0187275
https://doi.org/10.1002/brb3.743
https://doi.org/10.1093/ptj/67.2.206
https://doi.org/10.1016/j.pain.2004.12.010
https://doi.org/10.1093/sleep/31.11.1601
https://doi.org/10.1159/000323233
https://doi.org/10.1253/circj.CJ-20-0024
https://doi.org/10.1186/s12883-018-1215-0
https://doi.org/10.1016/j.jns.2004.06.002
https://doi.org/10.1007/s00415-009-5443-5
https://doi.org/10.1161/STROKEAHA.120.029376
https://doi.org/10.1159/000274804
https://doi.org/10.1177/1756286420971895
https://doi.org/10.1111/ijs.12341
https://doi.org/10.3390/jcm9082557
https://doi.org/10.1093/geront/gnu095
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Boutros et al. 10.3389/fneur.2022.973200

diagnosis and control in Lebanon, a fragile setting. Confl Health. (2021)
15:4. doi: 10.1186/s13031-020-00337-2

74. Mansour Z, Said R, Dbaibo H, Mrad P, Torossian L, Rady A,
et al. Non-communicable diseases in Lebanon: results from World
Health Organization STEPS survey 2017. Public Health. (2020)
187:120–6. doi: 10.1016/j.puhe.2020.08.014

75. Daneshfard B, Izadi S, Shariat A, Toudaji MA, Beyzavi Z, Niknam L.
Epidemiology of stroke in Shiraz, Iran. Iran J Neurol. (2015) 14:158–63.

76. Chen Y, Wright N, Guo Y, Turnbull I, Kartsonaki C, Yang
L, et al. Mortality and recurrent vascular events after first incident
stroke: a 9-year community-based study of 0.5 million Chinese adults.
Lancet Global Health. (2020) 8:e580–e90. doi: 10.1016/S2214-109X(20)
30069-3

77. Hartmann A, Rundek T, Mast H, Paik MC. Boden–Albala B, Mohr JP,
et al. Mortality and causes of death after first ischemic stroke. Neurology. (2001)
57:2000. doi: 10.1212/WNL.57.11.2000

78. Cabral NL, Muller M, Franco SC, Longo A, Moro C, Nagel V, et al.
Three-year survival and recurrence after first-ever stroke: the Joinville
stroke registry. BMC Neurol. (2015) 15:70. doi: 10.1186/s12883-015-
0317-1

79. Abdo R, Abboud H, Salameh P, El Hajj T, Hosseini H. Mortality
and predictors of death poststroke: data from a multicenter prospective
cohort of Lebanese Stroke Patients. J Stroke Cerebrovasc Dis. (2019) 28:859–
68. doi: 10.1016/j.jstrokecerebrovasdis.2018.11.033

80. Tessua KK, Munseri P, Matuja SS. Outcomes within a
year following first ever stroke in Tanzania. PLoS ONE. (2021)
16:e0246492. doi: 10.1371/journal.pone.0246492

81. Novbakht H, Shamshirgaran SM, Sarbakhsh P, Savadi-Oskouei D, Yazdchi
MM, Ghorbani Z. Predictors of long-term mortality after first-ever stroke. J Educ
Health Promot. (2020) 9:45. doi: 10.4103/jehp.jehp_8_19

82. Almekhlafi MA. Trends in one-year mortality for stroke in a tertiary
academic center in Saudi Arabia: a 5-year retrospective analysis. Ann Saudi Med.
(2016) 36:197–202. doi: 10.5144/0256-4947.2016.197

83. Gulliford MC, Charlton J, Rudd A, Wolfe CD, Toschke AM. Declining
1-year case-fatality of stroke and increasing coverage of vascular risk
management: population-based cohort study. J Neurol Neurosurg Psychiatry.
(2010) 81:416. doi: 10.1136/jnnp.2009.193136

84. Bryndziar T, Matyskova D, Sedova P, Belaskova S, Zvolsky M, Bednarik
J, et al. Predictors of short- and long-term mortality in ischemic stroke:
a community-based study in Brno, Czech Republic. Cerebrovasc Dis.
(2021). doi: 10.1159/000519937

85. Lekoubou A, Nkoke C, Dzudie A, Kengne AP. Recurrent stroke
and early mortality in an urban medical unit in cameroon. J Stroke
Cerebrovasc Dis. (2017) 26:1689–94. doi: 10.1016/j.jstrokecerebrovasdis.2017.
03.031

86. Mohan KM, Wolfe CD, Rudd AG, Heuschmann PU, Kolominsky-Rabas PL,
Grieve AP. Risk and cumulative risk of stroke recurrence: a systematic review
and meta-analysis. Stroke. (2011) 42:1489–94. doi: 10.1161/STROKEAHA.110.
602615

87. Wang T-A, Wu T-H, Pan S-L, Chen H-H, Chiu SY-H. Impacts of treatments
on recurrence and 28-year survival of ischemic stroke patients. Sci Rep. (2021)
11:15258. doi: 10.1038/s41598-021-94757-6

88. Singh RJ, Chen S, Ganesh A, Hill MD. Long-term neurological,
vascular, and mortality outcomes after stroke. Int J Stroke. (2018) 13:787–
96. doi: 10.1177/1747493018798526

89. Soriano-Tárraga C, Giralt-Steinhauer E, Mola-Caminal M, Ois A, Rodríguez-
Campello A, Cuadrado-Godia E, et al. Biological Age is a predictor of mortality in
ischemic stroke. Sci Rep. (2018) 8:4148. doi: 10.1038/s41598-018-22579-0

90. Appelros P, Nydevik I, Viitanen M. Poor outcome after first-ever stroke.
Stroke. (2003) 34:122–6. doi: 10.1161/01.STR.0000047852.05842.3C

91. Di Carlo A, Lamassa M, Baldereschi M, Pracucci G, Basile
AM, Wolfe CD, et al. Sex differences in the clinical presentation,
resource use, and 3-month outcome of acute stroke in Europe: data
from a multicenter multinational hospital-based registry. Stroke. (2003)
34:1114–9. doi: 10.1161/01.STR.0000068410.07397.D7

92. Yu C, An Z, Zhao W, Wang W, Gao C, Liu S, et al. Sex differences in stroke
subtypes, severity, risk factors, and outcomes among elderly patients with acute
ischemic stroke. Front Aging Neurosci. (2015) 7:174. doi: 10.3389/fnagi.2015.00174

93. Butler EN, Evenson KR. Prevalence of physical activity and sedentary
behavior among stroke survivors in the United States. Top Stroke Rehabil. (2014)
21:246–55. doi: 10.1310/tsr2103-246

94. Hou L, Li M, Wang J, Li Y, Zheng Q, Zhang L, et al. Association between
physical exercise and stroke recurrence among first-ever ischemic stroke survivors.
Sci Rep. (2021) 11:13372. doi: 10.1038/s41598-021-92736-5

95. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA,
Johnson CM, et al. Physical activity and exercise recommendations
for stroke survivors: a statement for healthcare professionals from the
American Heart Association/American Stroke Association. Stroke. (2014)
45:2532–53. doi: 10.1161/STR.0000000000000022

96. Furie KL, Kasner SE, Adams RJ, Albers GW, Bush RL, Fagan SC, et al.
Guidelines for the prevention of stroke in patients with stroke or transient ischemic
attack. Stroke. (2011) 42:227–76. doi: 10.1161/STR.0b013e3181f7d043

97. Che B, Shen S, Zhu Z, Wang A, Xu T, Peng Y, et al. Education
level and long-term mortality, recurrent stroke, and cardiovascular
events in patients with ischemic stroke. J Am Heart Assoc. (2020)
9:e016671. doi: 10.1161/JAHA.120.016671

98. Pennlert J, Asplund K, Glader EL, Norrving B, Eriksson M.
Socioeconomic status and the risk of stroke recurrence: persisting gaps
observed in a Nationwide Swedish Study 2001 to 2012. Stroke. (2017)
48:1518–23. doi: 10.1161/STROKEAHA.116.015643

99. Hiraga A. Perception of recurrent stroke risk among stroke survivors.
Neuroepidemiology. (2011) 37:88–9. doi: 10.1159/000330354

100. Tsivgoulis G, Safouris A, Kim D-E, Alexandrov AV. Recent advances
in primary and secondary prevention of atherosclerotic stroke. J Stroke. (2018)
20:145–66. doi: 10.5853/jos.2018.00773

101. Kucukyazici B, Verter V, Nadeau L, Mayo NE. Improving post-stroke
health outcomes: can facilitated care help? Health Policy. (2009) 93:180–
7. doi: 10.1016/j.healthpol.2009.07.010

102. Intamas U, Rawiworrakul T, Amnatsatsue K, Nanthamongkolchai S, Palmer
MH. Care of stroke survivors in community: a case study of rural Thai community.
J Health Res. (2021) 35:77–87. doi: 10.1108/JHR-07-2019-0172

103. Kolmos M, Christoffersen L, Kruuse C. Recurrent ischemic stroke - a
systematic review and meta-analysis. J Stroke Cerebrovasc Dis. (2021) 30:835–
43. doi: 10.1016/j.jstrokecerebrovasdis.2021.105935

104. Saber H, Thrift AG, Kapral MK, Shoamanesh A, Amiri A, Farzadfard
MT, et al. Incidence, recurrence, and long-term survival of ischemic stroke
subtypes: a population-based study in the Middle East. Int J Stroke. (2017) 12:835–
43. doi: 10.1177/1747493016684843

105. Robinson T, Zaheer Z, Mistri AK. Thrombolysis in acute ischaemic stroke:
an update. Ther Adv Chronic Dis. (2011) 2:119–31. doi: 10.1177/2040622310394032

106. Muruet W, Rudd A, Wolfe CDA, Douiri A. Long-term survival
after intravenous thrombolysis for ischemic stroke: a propensity
score-matched cohort with up to 10-year follow-up. Stroke. (2018)
49:607–13. doi: 10.1161/STROKEAHA.117.019889

107. El Sayed MJ, El Zahran T, Tamim H. Acute stroke care and thrombolytic
therapy use in a tertiary care center in Lebanon. Emerg Med Int. (2014)
2014:438737. doi: 10.1155/2014/438737

108. Abdo R, Hosseini H, Salameh P, Abboud H. Acute ischemic stroke
management in Lebanon: obstacles and solutions. Funct Neurol. (2019) 34:167–76.

109. Fonarow GC, Smith EE, Saver JL, Reeves MJ, Hernandez
AF, Peterson ED, et al. Improving door-to-needle times in acute
ischemic stroke: the design and rationale for the American Heart
Association/American Stroke Association’s Target: Stroke initiative. Stroke.
(2011) 42:2983–9. doi: 10.1161/STROKEAHA.111.621342

110. Abreu P, Magalhães R, Baptista D, Azevedo E, Silva MC, Correia
M. Readmissions and mortality during the first year after stroke-
data from a population-based incidence study. Front Neurol. (2020)
11:636. doi: 10.3389/fneur.2020.00636

111. Ween JE, Mernoff ST, Alexander MP. Recovery rates after stroke and
their impact on outcome prediction. Neurorehabil Neural Repair. (2000) 14:229–
35. doi: 10.1177/154596830001400309

112. Lai SM, Studenski S, Duncan PW, Perera S. Persisting consequences
of stroke measured by the Stroke Impact Scale. Stroke. (2002) 33:1840–
4. doi: 10.1161/01.STR.0000019289.15440.F2

113. Smith EE, Fonarow GC, Reeves MJ, Cox M, Olson DM,
Hernandez AF, et al. Outcomes in mild or rapidly improving stroke
not treated with intravenous recombinant tissue-type plasminogen
activator: findings from Get With The Guidelines-Stroke. Stroke. (2011)
42:3110–5. doi: 10.1161/STROKEAHA.111.613208

114. Palmcrantz S,Widén Holmqvist L, Sommerfeld DK. Young individuals with
stroke: a cross sectional study of long-term disability associated with self-rated
global health. BMC Neurol. (2014) 14:20. doi: 10.1186/1471-2377-14-20

Frontiers inNeurology 23 frontiersin.org

249

https://doi.org/10.3389/fneur.2022.973200
https://doi.org/10.1186/s13031-020-00337-2
https://doi.org/10.1016/j.puhe.2020.08.014
https://doi.org/10.1016/S2214-109X(20)30069-3
https://doi.org/10.1212/WNL.57.11.2000
https://doi.org/10.1186/s12883-015-0317-1
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.11.033
https://doi.org/10.1371/journal.pone.0246492
https://doi.org/10.4103/jehp.jehp_8_19
https://doi.org/10.5144/0256-4947.2016.197
https://doi.org/10.1136/jnnp.2009.193136
https://doi.org/10.1159/000519937
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.03.031
https://doi.org/10.1161/STROKEAHA.110.602615
https://doi.org/10.1038/s41598-021-94757-6
https://doi.org/10.1177/1747493018798526
https://doi.org/10.1038/s41598-018-22579-0
https://doi.org/10.1161/01.STR.0000047852.05842.3C
https://doi.org/10.1161/01.STR.0000068410.07397.D7
https://doi.org/10.3389/fnagi.2015.00174
https://doi.org/10.1310/tsr2103-246
https://doi.org/10.1038/s41598-021-92736-5
https://doi.org/10.1161/STR.0000000000000022
https://doi.org/10.1161/STR.0b013e3181f7d043
https://doi.org/10.1161/JAHA.120.016671
https://doi.org/10.1161/STROKEAHA.116.015643
https://doi.org/10.1159/000330354
https://doi.org/10.5853/jos.2018.00773
https://doi.org/10.1016/j.healthpol.2009.07.010
https://doi.org/10.1108/JHR-07-2019-0172
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105935
https://doi.org/10.1177/1747493016684843
https://doi.org/10.1177/2040622310394032
https://doi.org/10.1161/STROKEAHA.117.019889
https://doi.org/10.1155/2014/438737
https://doi.org/10.1161/STROKEAHA.111.621342
https://doi.org/10.3389/fneur.2020.00636
https://doi.org/10.1177/154596830001400309
https://doi.org/10.1161/01.STR.0000019289.15440.F2
https://doi.org/10.1161/STROKEAHA.111.613208
https://doi.org/10.1186/1471-2377-14-20
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Boutros et al. 10.3389/fneur.2022.973200

115. Kwon S, Park JH, Kim WS, Han K, Lee Y, Paik NJ. Health-related quality
of life and related factors in stroke survivors: Data from Korea National Health
and Nutrition Examination Survey (KNHANES) 2008 to 2014. PLoS ONE. (2018)
13:e0195713. doi: 10.1371/journal.pone.0195713

116. Abubakar SA, Isezuo SA. Health related quality of life of stroke survivors:
experience of a stroke unit. Int J Biomed Sci. (2012) 8:183–7.

117. Zhu W, Jiang Y. Determinants of quality of life in
patients with hemorrhagic stroke: a path analysis. Medicine. (2019)
98:e13928. doi: 10.1097/MD.0000000000013928

118. Chen CM, Tsai CC, Chung CY, Chen CL, Wu KP, Chen HC.
Potential predictors for health-related quality of life in stroke patients
undergoing inpatient rehabilitation. Health Qual Life Outcomes. (2015)
13:118. doi: 10.1186/s12955-015-0314-5

119. Gurcay E, Bal A, Cakci A. Health-related quality of life in first-ever stroke
patients. Ann Saudi Med. (2009) 29:36–40. doi: 10.4103/0256-4947.51814

120. Kim K, Kim YM, Kim EK. Correlation between the activities of daily living
of stroke patients in a community setting and their quality of life. J Phys Ther Sci.
(2014) 26:417–9. doi: 10.1589/jpts.26.417

121. Oni OD, Aina OF, Ojini FI, Olisah VO. Quality of life and associated factors
among poststroke clinic attendees at a University Teaching Hospital in Nigeria.
Niger Med J. (2016) 57:290–8. doi: 10.4103/0300-1652.190602

122. Khalid W, Rozi S, Ali TS, Azam I, Mullen MT, Illyas S,
et al. Quality of life after stroke in Pakistan. BMC Neurol. (2016)
16:250. doi: 10.1186/s12883-016-0774-1

123. Khazaal W, Taliani M, Boutros C, Abou-Abbas L, Hosseini H, Salameh
P, et al. Psychological complications at 3 months following stroke: prevalence
and correlates among stroke survivors in Lebanon. Front Psychol. (2021)
12:663267. doi: 10.3389/fpsyg.2021.663267

124. Abdo RR, Abboud HM, Salameh PG, Jomaa NA, Rizk RG, Hosseini
HH. Direct medical cost of hospitalization for acute stroke in Lebanon: a
prospective incidence-based multicenter cost-of-illness study. Inquiry. (2018)
55:46958018792975. doi: 10.1177/0046958018792975

125. Rafsten L, Danielsson A, Sunnerhagen KS. Anxiety after stroke:
a systematic review and meta-analysis. J Rehabil Med. (2018) 50:769–
78. doi: 10.2340/16501977-2384

126. Ayerbe L, Ayis S, Wolfe CD, Rudd AG. Natural history, predictors
and outcomes of depression after stroke: systematic review and meta-
analysis. Br J Psychiatry. (2013) 202:14–21. doi: 10.1192/bjp.bp.111.
107664

127. Hackett ML, Pickles K. Part I: frequency of depression after stroke: an
updated systematic review and meta-analysis of observational studies. Int J Stroke.
(2014) 9:1017–25. doi: 10.1111/ijs.12357

128. Kaadan MI, Larson MJ. Management of post-stroke depression in the
Middle East and North Africa: too little is known. J Neurol Sci. (2017) 378:220–
4. doi: 10.1016/j.jns.2017.05.026

129. Bartoli F, Di Brita C, Crocamo C, Clerici M, Carrà G. Early post-stroke
depression and mortality: meta-analysis and meta-regression. Front Psychiatry.
(2018) 9:530. doi: 10.3389/fpsyt.2018.00530

130. Zhang S, Xu M, Liu ZJ, Feng J, Ma Y. Neuropsychiatric issues after
stroke: clinical significance and therapeutic implications.World J Psychiatry. (2020)
10:125–38. doi: 10.5498/wjp.v10.i6.125

131. Bartoli F, Lillia N, Lax A, Crocamo C, Mantero V, Carrà G, et al. Depression
after stroke and risk of mortality: a systematic review and meta-analysis. Stroke Res
Treat. (2013) 2013:862978. doi: 10.1155/2013/862978

132. Sun JH, Tan L, Yu JT. Post-stroke cognitive impairment:
epidemiology, mechanisms and management. Ann Transl Med. (2014) 2:80.
doi: 10.3978/j.issn.2305-5839.2014.08.05

133. Melkas S, Jokinen H, Hietanen M, Erkinjuntti T. Poststroke
cognitive impairment and dementia: prevalence, diagnosis, and treatment.
Degener Neurol Neuromuscul Dis. (2014) 4:21–7. doi: 10.2147/DNND.
S37353

134. Mar J, Masjuan J, Oliva-Moreno J, Gonzalez-Rojas N, Becerra V, Casado
MÁ, et al. Outcomes measured by mortality rates, quality of life and degree of
autonomy in the first year in stroke units in Spain. Health Qual Life Outcomes.
(2015) 13:36. doi: 10.1186/s12955-015-0230-8

135. Zhang J, Zhu P, Liu B, Yao Q, Yan K, Zheng Q, et al. Time
to recurrence after first-ever ischaemic stroke within 3 years and its risk
factors in Chinese population: a prospective cohort study. BMJ Open. (2019)
9:e032087. doi: 10.1136/bmjopen-2019-032087

136. Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, et al.
Rehabilitation of motor function after stroke: a multiple systematic review focused
on techniques to stimulate upper extremity recovery. Front Hum Neurosci. (2016)
10:442. doi: 10.3389/fnhum.2016.00442

137. Ullberg T, Zia E, Petersson J, Norrving B. Changes in functional outcome
over the first year after stroke: an observational study from the Swedish stroke
register. Stroke. (2015) 46:389–94. doi: 10.1161/STROKEAHA.114.006538

138. Wondergem R, Pisters MF, Wouters EJ, Olthof N, de Bie RA, Visser-
Meily JM, et al. The course of activities in daily living: who is at risk for
decline after first ever stroke? Cerebrovasc Dis. (2017) 43:1–8. doi: 10.1159/0004
51034

139. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. (2011)
377:1693–702. doi: 10.1016/S0140-6736(11)60325-5

140. BjerkreimAT, Thomassen L, Brøgger J,Waje-Andreassen U, NæssH. Causes
and predictors for hospital readmission after ischemic stroke. J Stroke Cerebrovasc
Dis. (2015) 24:2095–101. doi: 10.1016/j.jstrokecerebrovasdis.2015.05.019

141. Klehmet J, Harms H, Richter M, Prass K, Volk HD, Dirnagl U, et al.
Stroke-induced immunodepression and post-stroke infections: Lessons from the
preventive antibacterial therapy in stroke trial. Neuroscience. (2009) 158:1184–
93. doi: 10.1016/j.neuroscience.2008.07.044

142. Li SJ, Hu HQ, Wang XL, Cao BZ. Correlation between post-stroke
pneumonia and outcome in patients with acute brain infarction. Zhonghua Yi Xue
Za Zhi. (2016) 96:2796–801. doi: 10.3760/cma.j.issn.0376-2491.2016.35.007

143. Liu Z, Lin W, Lu Q, Wang J, Liu P, Lin X, et al. Risk factors affecting the
1-year outcomes of minor ischemic stroke: results from Xi’an stroke registry study
of China. BMC Neurol. (2020) 20:379. doi: 10.1186/s12883-020-01954-3

144. Kumar S, Selim MH, Caplan LR. Medical complications after stroke. Lancet
Neurol. (2010) 9:105–18. doi: 10.1016/S1474-4422(09)70266-2

145. Santos Samary C, Pelosi P, Leme Silva P, Rieken Macedo Rocco P.
Immunomodulation after ischemic stroke: potential mechanisms and implications
for therapy. Critical Care. (2016) 20:391. doi: 10.1186/s13054-016-1573-1

146. Reuck J. Seizures and epilepsy in stroke patients: an updated review. Int J
Res Stud Med Health Sci. (2020) 5:39–45. doi: 10.22259/ijrsmhs.0512008

147. Burneo JG, Fang J, Saposnik G. Network ftIotRotCS. Impact of seizures on
morbidity and mortality after stroke: a Canadian multi-centre cohort study. Eur J
Neurol. (2010) 17:52–8. doi: 10.1111/j.1468-1331.2009.02739.x

148. Castro-Apolo R, Huang JF, Vinan-Vega M, Tatum WO. Outcome and
predictive factors in post-stroke seizures: a retrospective case-control study.
Seizure. (2018) 62:11–6. doi: 10.1016/j.seizure.2018.09.007

Frontiers inNeurology 24 frontiersin.org

250

https://doi.org/10.3389/fneur.2022.973200
https://doi.org/10.1371/journal.pone.0195713
https://doi.org/10.1097/MD.0000000000013928
https://doi.org/10.1186/s12955-015-0314-5
https://doi.org/10.4103/0256-4947.51814
https://doi.org/10.1589/jpts.26.417
https://doi.org/10.4103/0300-1652.190602
https://doi.org/10.1186/s12883-016-0774-1
https://doi.org/10.3389/fpsyg.2021.663267
https://doi.org/10.1177/0046958018792975
https://doi.org/10.2340/16501977-2384
https://doi.org/10.1192/bjp.bp.111.107664
https://doi.org/10.1111/ijs.12357
https://doi.org/10.1016/j.jns.2017.05.026
https://doi.org/10.3389/fpsyt.2018.00530
https://doi.org/10.5498/wjp.v10.i6.125
https://doi.org/10.1155/2013/862978
https://doi.org/10.3978/j.issn.2305-5839.2014.08.05
https://doi.org/10.2147/DNND.S37353
https://doi.org/10.1186/s12955-015-0230-8
https://doi.org/10.1136/bmjopen-2019-032087
https://doi.org/10.3389/fnhum.2016.00442
https://doi.org/10.1161/STROKEAHA.114.006538
https://doi.org/10.1159/000451034
https://doi.org/10.1016/S0140-6736(11)60325-5
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.05.019
https://doi.org/10.1016/j.neuroscience.2008.07.044
https://doi.org/10.3760/cma.j.issn.0376-2491.2016.35.007
https://doi.org/10.1186/s12883-020-01954-3
https://doi.org/10.1016/S1474-4422(09)70266-2
https://doi.org/10.1186/s13054-016-1573-1
https://doi.org/10.22259/ijrsmhs.0512008
https://doi.org/10.1111/j.1468-1331.2009.02739.x
https://doi.org/10.1016/j.seizure.2018.09.007
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 05 December 2022

DOI 10.3389/fneur.2022.1014346

OPEN ACCESS

EDITED BY

Hari Kishan Reddy Indupuru,

University of Texas Health Science

Center at Houston, United States

REVIEWED BY

Anwar P. P. Abdul Majeed,

Xi’an Jiaotong-Liverpool

University, China

Haoyue Zhang,

University of California, Los Angeles,

United States

Ren Shenghan,

Xidian University, China

*CORRESPONDENCE

Chong-Ge You

youchg@lzu.edu.cn

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

RECEIVED 08 August 2022

ACCEPTED 09 November 2022

PUBLISHED 05 December 2022

CITATION

Yang W-X, Wang F-F, Pan Y-Y, Xie J-Q,

Lu M-H and You C-G (2022)

Comparison of ischemic stroke

diagnosis models based on machine

learning. Front. Neurol. 13:1014346.

doi: 10.3389/fneur.2022.1014346

COPYRIGHT

© 2022 Yang, Wang, Pan, Xie, Lu and

You. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Comparison of ischemic stroke
diagnosis models based on
machine learning

Wan-Xia Yang1†, Fang-Fang Wang1†, Yun-Yan Pan1,

Jian-Qin Xie2, Ming-Hua Lu1 and Chong-Ge You1*
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Background: The incidence, prevalence, and mortality of ischemic stroke (IS)

continue to rise, resulting in a serious global disease burden. The prediction

models have a great value in the early prediction and diagnosis of IS.

Methods: The R software was used to screen the di�erentially expressed

genes (DEGs) of IS and control samples in the datasets GSE16561, GSE58294,

and GSE37587 and analyze DEGs for enrichment analysis. The feature genes

of IS were obtained by several machine learning algorithms, including the

least absolute shrinkage and selector operation (LASSO) logistic regression,

the support vector machine-recursive feature elimination (SVM-RFE), and the

Random Forest (RF). The IS diagnostic models were constructed based on

transcriptomics by machine learning and artificial neural network (ANN).

Results: A total of 69 DEGs, mainly involved in immune and inflammatory

responses, were identified. The pathways enriched in the IS group were

complement and coagulation cascades, lysosome, PPAR signaling pathway,

regulation of autophagy, and toll-like receptor signaling pathway. The feature

genes selected by LASSO, SVM-RFE, and RF were 17, 10, and 12, respectively.

The area under the curve (AUC) of the LASSO model in the training dataset,

GSE22255, and GSE195442 was 0.969, 0.890, and 1.000. The AUC of the

SVM-RFE model was 0.957, 0.805, and 1.000, respectively. The AUC of the

RF model was 0.947, 0.935, and 1.000, respectively. The models have good

sensitivity, specificity, and accuracy. The AUC of the LASSO+ANN, SVM-

RFE+ANN, and RF+ANN models was 1.000, 0.995, and 0.997, respectively,

in the training dataset. However, the AUC of LASSO+ANN, SVM-RFE+ANN,

and RF+ANN models was 0.688, 0.605, and 0.619, respectively, in the

GSE22255 dataset. The AUC of the LASSO+ANN and RF+ANN models was

0.740 and 0.630, respectively, in the GSE195442 dataset. In the training

dataset, the sensitivity, specificity, and accuracy of the LASSO+ANN model

were 1.000, 1.000, and 1.000, respectively; of the SVM-RFE+ANN model

were 0.946, 0.982, and 0.964, respectively; and of the RF+ANN model were

0.964, 1.000, and 0.982, respectively. In the test datasets, the sensitivity

was very satisfactory; however, the specificity and accuracy were not good.
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Conclusion: The LASSO, SVM-RFE, and RF models have good prediction

abilities. However, the ANN model is e�cient at classifying positive samples

and is unsuitable at classifying negative samples.

KEYWORDS

ischemic stroke, machine learning, artificial neural network, diagnostic model,

transcriptomics

Introduction

The Global Burden of Diseases, Injuries, and Risk Factors

Study (GBD) showed that there were 12.2 million incident cases

of stroke, 101 million prevalent cases of stroke, and 6.55 million

deaths from stroke in 2019 (1). Globally, the incidence and

mortality of stroke are on the rise, and stroke remains the second

leading cause of death (2). Especially in China, cerebrovascular

disease is the first cause of death, and the lifetime risk of stroke

in the Chinese population ranks first in the world (3). In 2019,

there were 3.94 million new stroke cases, 2.19 million deaths

from stroke, and 28.76million prevalent cases of stroke, of which

ischemic stroke (IS) accounted for 84.1% in China (4).

The etiology and pathogenesis of IS are not fully understood.

According to epidemiological investigations, IS may be

associated with hypertension, high BMI, hyperglycemia,

environmental particulate matter pollution, and smoking (1, 5).

As modern medicine tends to be individualized, prevention and

treatment strategies based on patient genetic information have

always been ideal treatment methods for medical practitioners.

Studies (6) have found that genetic factors also play a very

important role in the occurrence of IS. At present, more and

more studies believe that the occurrence and poor prognosis of

IS are related to the abnormal expression of genes (7). However,

multiple genes are often involved in the occurrence of IS. This

inspired us to explore diagnostic and prognostic methods for IS

by using multiple disease-specific genes.

At present, there are some limitations to the IS diagnostic

techniques commonly used in clinical practice. The diagnosis

of IS mainly relies on typical clinical symptoms and brain

imaging (8), while approximately 50% of early IS diagnoses

lack specificity in imaging (9). In addition, most patients are

irreversible by the time the diagnosis is confirmed, resulting

in a poor prognosis. Although scholars have done a great deal

Abbreviations: IS, ischemic stroke; GEO, Gene Expression Omnibus;

DEGs, di�erentially expressed genes; LASSO, least absolute shrinkage

and selection operator; SVM-RFE, support vector machine-recursive

feature elimination; RF, Random Forest; ANN, artificial neural network;

GO, Gene Ontology; BP, biological processes; CC, cellular components;

MF, molecular functions; GSEA, gene set enrichment analysis; AUC, area

under the curve; ROC, receiver operating characteristic.

of work in finding biomarkers for IS diagnosis or prognosis,

few biomarkers are available in clinical practice (10). Existing

predictive models are mostly based on demographic data and

clinical parameters, whichmay have a high risk of bias and fail to

make reliable clinical decisions (11). Machine learning research

is developing rapidly and has become one of the important

topics in the field of artificial intelligence. At present, machine

learning has become a research hotspot in the field of medical

and health data mining (12). Machine learning algorithms such

as the least absolute shrinkage and selector operation (LASSO),

support vector machine-recursive feature elimination (SVM-

RFE), Random Forest (RF), and the neural network have been

proven to be of great value in diagnosing stroke (13–15).

In this study, we screened differentially expressed genes

(DEGs) between IS and control samples in the Gene Expression

Omnibus (GEO) database; used LASSO, SVM-RFE, and RF to

screen out IS feature genes; and constructed a disease diagnosis

model of IS to evaluate the performance of different models on

predicting IS.

Methods

Microarray data and processing

The expression profile data and corresponding platform

annotation information of microarray datasets, such as

GSE16561, GSE58294, GSE37587, GSE22255, and GSE195442,

were downloaded from the GEO database (https://www.ncbi.

nlm.nih.gov/geo/). GSE16561, GSE58294, and GSE37587 were

integrated as training datasets, and GSE22255 and GSE195442

were used as test datasets, as shown in Table 1. The R software

(version 4.1.0) was used to transform the probe names of

GSE16561, GSE58294, GSE37587, GSE22255, and GSE195442

matrix data into gene names. After the integration of the

GSE16561, GSE58294, and GSE37587 datasets, the data were

normalized by log2 transformation for data with large values

and averaging for repeated probes. The “sva” package was used

to calibrate batch effects. The principal component analysis

(PCA) diagram before and after calibration was drawn using

the ggplot2 package. Since there are 47 control samples and

176 IS samples in the integrated training dataset, there is a class
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TABLE 1 Ischemic stroke datasets from the GEO database.

Group Dataset Reference Data type Platform Stroke Control

Training dataset GSE16561 Barr (17) Microarray GPL6883 39 24

Training dataset GSE58294 Stamova (18) Microarray GPL570 69 23

Training dataset GSE37587 Barr (19) Microarray GPL6883 68 0

Test dataset GSE22255 Krug (20) Microarray GPL570 20 20

Test dataset GSE195442 Yang (21) Microarray GPL31275 10 10

imbalance. We used the SMOTE algorithm (16) to adjust for

class imbalance. The R software “UBL” package was used.

Screening for di�erentially expressed
genes (DEGs)

The “limma” package was used to screen DEGs of the

integrative data of GSE16561, GSE58294, and GSE37587.

The screening criteria were set as |log2FC| > 0.6 and the

adjusted P-value was <0.05. The heatmap and volcano plot

of DEGs were drawn using the “pheatmap” and “ggplot2”

packages, respectively.

Enrichment analysis

To understand the functions of DEGs, we used the R

software “clusterProfiler” package to conduct a Gene Ontology

(GO) enrichment analysis and a Gene Set Enrichment Analysis

(GSEA) on DEGs. An adjusted P-value of <0.05 was considered

statistically significant. GO enrichment analysis includes a

biological process (BP), a cellular component (CC), and a

molecular function (MF).

Feature selection and model evaluation

To screen out the feature genes of IS, the R was used to

perform machine learning analysis on DEGs. The “glmnet”

package was used to construct the LASSO model with penalty

parameter tuning conducted by ten-fold cross-validation. The

response type was set as binomial, and the alpha was set as 1.

We selected the feature genes with the minimum error. Besides,

the “e1071” package was used to establish the SVM-RFE model

to screen out the genes with the minimum cross-validation

error. k = 10 was the setting for the k-fold cross-validation,

and the parameter of halving above was identified as 50. The

“randomForest” package was used to establish the RF model.

The RFmodel was established to find out the number of random

forest trees with the minimum error. We selected 272 trees

as the parameter of the random forest model. The “pROC”

software package was used to draw the receiver operating

characteristic (ROC) curve to validate the accuracy of the model.

The dimensionality importance value of the RF model was

obtained using the decreasing accuracy method (Gini coefficient

method). The performance of prediction models generated by

machine learning classifiers was assessed using classification

sensitivity, specificity, and the area under the curve (AUC).

Construction and validation of the ANN
model

To build and evaluate the performance of the artificial neural

network (ANN) model, we performed gene scoring for feature

genes, and the scoring rule was set as follows: if the expression

of upregulated genes was greater than the median value, the

score was 1; otherwise, the score was 0. If the expression of

downregulated genes was greater than the median value, the

score was 0; otherwise, the score was 1. The R software package

“neuralnet” was used to construct the ANN model of feature

genes according to the gene score. We set the hidden layer

of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models

as 1. The number of neurons in the hidden layers of the

LASSO+ANN, SVM-RFE+ANN, and RF+ANNmodels was set

as 8, 5, and 6, respectively. The activation function “logistic” was

used. The IS disease classification model was constructed using

the obtained gene weight information.

Results

Batch calibration and SMOTE algorithm

The GSE16561, GSE58294, and GSE37587 datasets were

integrated. To reduce the differences between batches, batch

calibration was performed on the two datasets, and PCA was

used to verify the effect of data calibration (Figures 1A,B). The

class distribution in the integrated dataset is not equal, which is

prone to class imbalance. Training classification algorithms with

imbalanced data provide inefficient prediction models, which

may perform poor classification on a smaller number of samples.

Hence, we used SMOTE to fix class imbalance (Figures 1C,D).
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FIGURE 1

PCA diagram. (A) PCA diagram of GSE16561, GSE58294, and GSE37587 datasets before calibration. (B) PCA diagram of GSE16561, GSE58294,

and GSE37587 datasets after calibration. (C) PCA diagram of class distribution before SMOTE. (D) PCA diagram of class distribution after SMOTE.

Di�erential gene analysis

To identify the DEGs from IS and control

samples, we conducted a Bayesian test on the training

dataset and obtained a total of 69 DEGs, of which

46 were upregulated and 23 were downregulated

(Figures 2A,B).

Function and pathway enrichment
analysis

The R software was used to perform enrichment analysis

on 69 DEGs, as shown in Figure 3. DEGs were mainly enriched

in the immune response and the inflammatory response.

The biological process involved immune response-regulating

signaling, negative regulation of cytokine production, and

negative regulation of immune response. The cellular

component mainly focused on some granule lumens and

granule membranes. The molecular function analysis showed

that most of the genes were involved in immune receptor

activity, serine-type peptidase activity, serine hydrolase activity,

pattern recognition receptor activity, and cytokine receptor

activity (Figure 3A).

The GSEA analysis indicated that the most enriched

pathways in the control group were allograft rejection, antigen

processing and presentation, primary immunodeficiency,

ribosome, and spliceosome (Figure 3B). In contrast,

complement and coagulation cascades, lysosome, PPAR

signaling pathway, regulation of autophagy, and toll-like

receptor (TLR) signaling pathway were enriched in the IS group

(Figure 3C).
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FIGURE 2

The DEGs between ischemic stroke and control group in the GSE16561, GSE58294, and GSE37587 datasets. (A) Heatmap of DEGs. The red and

blue represent the significantly upregulated and downregulated DEGs. (B) Volcano plot of DEGs. These genes consist of 46 upregulated genes

and 23 downregulated genes. The screening criteria were set as |log2FC|> 0.6 and adjusted P- value of < 0.05.

FIGURE 3

Function enrichment analysis. (A) GO enrichment analysis of DEGs. The size of the circle indicates the number of genes. The screening criterion

was set as adjusted P < 0.05. (B,C) Enrichment plots from GSEA analysis in the control group and IS group.
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FIGURE 4

Screening for feature genes. (A) Identification of the optimal penalization coe�cient lambda (λ) in the LASSO model. (B) Cross-validation for

tuning parameter selection in the LASSO model. (C,D) A plot of genes selection via SVM-RFE algorithm. (E) The influence of the number of

decision trees on the error rate. The x-axis represents the number of decision trees, and the y-axis indicates the error rate. (F) Results of the Gini

coe�cient method in RF model. The x-axis indicates the genetic variable, and the y-axis represents the importance index.

TABLE 2 Feature genes screened by machine learning algorithms.

Algorithms Genes

LASSO CPD, CLEC4D, CD163, CD19, ANKRD22, CD79B,

HIST1H4D, HIST1H4H, TIMM8A, CLIC3, HTRA1,

MAOA, LY96, PRSS33, FCGR3B, METTL7B, FOLR3

SVM-RFE CLEC4D, ZNF439, PGLYRP1, HECW2, FAIM3,

ANKRD22, CD79A, EVL, LY96, CD72

RF ID3, EVL, FLT3LG, CPD, CD163, S100A12, SRPK1,

KCNJ15, SLC22A4, ARG1, HECW2, CD19

Screening for feature genes via machine
learning

We used R software to performmachine learning analysis on

69 DEGs. The feature genes selected by LASSO (Figures 4A,B)

and SVM-RFE (Figures 4C,D) were 17 and 10, respectively. The

number of random forest trees with the minimum error of the

RF model was 272 (Figure 4E). The 12 genes with an importance

value>3 were selected as disease-specific genes (Figure 4F). The

feature genes screened by the algorithms are shown in Table 2.

E�ectiveness of machine learning models

To evaluate the prediction performance of the machine

learning model, we first constructed the model by LASSO,

SVM-RFE, and RF. In the training dataset and GSE22255 and

GSE195442 test datasets, the AUC of the LASSO model was

0.969, 0.890, and 1.000, respectively (Figures 5A–C); the AUC

of the SVM-RFE model was 0.957, 0.805, 1.000 (Figures 5D–F),

respectively, and the AUC of the RF model was 0.947, 0.935,

1.000 (Figures 5G–I), respectively. In addition, the models have

good sensitivity and specificity (Table 3).

To further evaluate the prediction performance of the

combination of machine learning algorithms, we constructed

and validated the LASSO+SVM-RFE and SVM-RFE+RF

models. The AUC, sensitivity, and specificity of the

LASSO+SVM-RFE and SVM-RFE+RF models were also

satisfactory, as shown in Table 3.

Construction and validation of the ANN
model

To evaluate the prediction performance of the ANN

model, we constructed and validated ANN models for feature
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FIGURE 5

Model accuracy evaluation. (A–C) The ROC curves for using LASSO to estimate accuracy in training, GSE22255, and GSE195442 datasets. (D–F)

The ROC curves for using SVM-RFE to estimate accuracy in training, GSE22255, and GSE195442 datasets. (G–I) The ROC curves for using RF to

estimate accuracy in training, GSE22255, and GSE195442 datasets.

genes screened by LASSO, SVM-RFE, and RF, respectively.

The visualization of the LASSO+ANN, SVM-RFE+ANN, and

RF+ANN models is shown in Figures 6A,E,H. The AUC of

LASSO+ANN, SVM-RFE+ANN, and RF+ANN models in

the training dataset was 1.000, 0.995, and 0.997, respectively

(Figures 6B,F,I). The AUC of LASSO+ANN, SVM-RFE+ANN,

and RF+ANN in the GSE22255 dataset was 0.688, 0.605, and

0.619, respectively (Figures 6C,G,J). The AUC of LASSO+ANN

and RF+ANN in the GSE195442 dataset was 0.740 and 0.630,

respectively (Figures 6D,K).

In the training dataset, the sensitivity, specificity, and

accuracy of the LASSO+ANN model were 1.000, 1.000, and

1.000, respectively; of the SVM-RFE+ANN model were 0.946,

0.982, and 0.964, respectively; and of the RF+ANN model were

0.964, 1.000, and 0.982, respectively. In the test datasets, the

sensitivity (true positive rate) was very satisfactory; however,

the specificity (true negative rate) and accuracy were not good.

This shows that the ANN model is very efficient at classifying

positive samples and is unsuitable at classifying negative samples

(Table 3).

Discussion

In this study, the 69 DEGs identified weremainly involved in

the immune response and inflammatory response. Inflammation

is one of the initial responses of the immune system to a

stimulus. Studies have shown that the immune system plays

a very important role in the acute and chronic stages of

ischemic damage and in the long-term sequelae of stroke (22).
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TABLE 3 Comparison of ischemic stroke diagnosis models based on machine learning.

Models Datasets AUC Sensitivity Specificity Accuracy

LASSO Train 0.969 (0.942–0.989) 0.929 0.946 0.938

GSE22255 0.890 (0.768–0.975) 0.850 0.850 0.850

GSE195442 1.000 (1.000–1.000) 1.000 1.000 1.000

SVM-RFE Train 0.957 (0.930–0.979) 0.857 0.946 0.902

GSE22255 0.805 (0.650–0.922) 0.950 0.550 0.750

GSE195442 1.000 (1.000–1.000) 1.000 1.000 1.000

RF Train 0.947 (0.907–0.980) 0.893 0.982 0.938

GSE22255 0.935 (0.855–0.988) 0.817 0.883 0.850

GSE195442 1.000 (1.000–1.000) 1.000 1.000 1.000

LASSO+SVM-RFE Train 0.898 (0.853–0.934) 0.777 0.866 0.822

GSE22255 0.692 (0.522–0.840) 0.617 0.683 0.650

GSE195442 0.920 (0.730–1.000) 1.000 0.900 0.950

SVM-RFE+RF Train 0.899 (0.854–0.939) 0.777 0.973 0.875

GSE22255 0.647 (0.473–0.820) 0.850 0.500 0.675

GSE195442 0.850 (0.640–1.000) 0.800 0.900 0.850

LASSO+ANN Train 1.000 (0.999–1.000) 1.000 1.000 1.000

GSE22255 0.688 (0.510–0.845) 0.850 0.500 0.675

GSE195442 0.740 (0.490–0.950) 0.800 0.500 0.650

SVM-RFE+ANN Train 0.995 (0.988–0.999) 0.946 0.982 0.964

GSE22255 0.605 (0.420–0.771) 0.700 0.400 0.550

RF+ANN Train 0.997 (0.991–1.000) 0.964 1.000 0.982

GSE22255 0.619 (0.429–0.787) 0.750 0.450 0.600

GSE195442 0.630 (0.360–0.860) 0.700 0.400 0.550

The pathways enriched in the IS group were complement

and coagulation cascades, lysosome, PPAR signaling pathway,

regulation of autophagy, and TLR signaling pathway. A

sudden interruption of IS blood flow can lead to vascular

endothelial changes, local retention of blood cells, platelet-

leukocyte adhesion, and activation of the coagulation cascade,

whereas thrombin induces the expression of adhesion molecules

on endothelial cells, disrupts endothelial barrier function,

and activates complement C3 and C5 (23). TLR, as part of

the innate immune system, plays an important role in the

immune response of IS (24). After the occurrence of hypoxic-

ischemic events, part of the TLRs present in the endothelial

cell membranes is involved in endothelial dysfunction and

plays an indispensable role in the activation of inflammatory

cascades (25). The autophagy-lysosomal pathway participates

in the clearance of aberrant cellular components to maintain

protein homeostasis and normal cellular function. Evidence

indicated that the impairment of this pathway during cerebral

ischemia led to ischemia-induced neuronal necrosis and

apoptosis (26).

Stroke is the second leading cause of disability and death

worldwide. Currently, there are no effective treatments to

improve stroke survival and quality of life. Early diagnosis and

intervention of IS play an essential role in reducing deaths.

A great deal of effort has been put into post-IS management,

and there are many methods that play a role in assessing

unfavorable post-IS outcomes, such as real-time biosignaling

(27), quantitative electroencephalography (qEEG) (28),

and electromyography (29). Noninvasive qEEG has good

discriminative power in the quantitative evaluation of

neurological outcomes after stroke compared with known

demographic, clinical, and radiographic prognostic markers.

Electromyography (EMG) is also considered a potential

predictive tool for post-stroke gait and rehabilitation

management because it is sensitive to neuromuscular changes

induced by IS. Myoelectric biomarkers will help detect gait

changes in stroke-impaired patients and determine post-stroke

rehabilitation. There are also many methods that can assist

in the diagnosis of IS. The imaging biomarker of carotid

plaque can also be used to predict stroke risk (30). To date,

most studies examining stroke have used MRI or CT images,

which can be difficult to diagnose in advance. Studies have

found that electrocardiography (31) and echocardiography

(32) can also predict IS risk. Although electrocardiography

and echocardiography are noninvasive and low-cost diagnostic

methods, their low sensitivity can easily lead to misdiagnosis.

Therefore, it is necessary to develop a highly sensitive and

accurate method for the early diagnosis of IS.
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FIGURE 6

Development and validation of ANN models. (A,E,H) Visualization of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models. (B–D) ROC

analysis for model prediction of the LASSO+ANN in the training, GSE22255, and GSE195442 datasets. (F,G) ROC analysis for model prediction of

the SVM-RFE+ANN in the training, GSE22255, and GSE195442 datasets. (I–K) ROC analysis for model prediction of the RF+ANN model in the

training, GSE22255, and GSE195442 datasets.
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This study aimed to construct prediction models of IS

based on transcriptomics using machine learning methods.

Overall, among the eight models, the LASSO, SVM-RFE, and

RF performed best with the highest values in performance

(AUC, sensitivity, specificity) in the training dataset and test

datasets, followed by LASSO+SVM-RFE and SVM-RFE+RF,

the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models

performed worst. It demonstrated that the LASSO, SVM-RFE,

and RF models could be used independently to predict the risk

of IS.

At present, many IS risk prediction models have been

established. In 2021, a case-control study in China developed

a LASSO model to better identify IS. The prediction model

showed good discrimination, with an AUC of 0.916 for the

LASSO method using 14 features (33). In this study, the LASSO,

SVM-RFE, and RF models performed well, and the AUC value

reachedmore than 90%. The sensitivity, specificity, and accuracy

of LASSO, SVM-RFE, and RF models were still very satisfactory

in the test datasets. This indicated that the LASSO, SVM-

RFE, and RF diagnostic models have diagnostic robustness and

potential utility in detecting IS.

A radiomics study identified the selection of the

LASSO combined with the SVM as the optimal method

for differentiating gliosarcoma and glioblastoma (34). This

result suggested that models constructed by combining

several machine learning algorithms may result in better

prediction ability than a single algorithm. Therefore,

we constructed and validated the LASSO+SVM-RFE

and SVM-RFE+RF models of IS. Although the AUC,

sensitivity, and specificity of LASSO+SVM-RFE and

LASSO+RF models were still very satisfactory, they

were still slightly inferior to LASSO, SVM-RFE, and

RF models. This result was the opposite of what

was expected.

The neural network of deep learning enables the models

to scale exponentially with the growing quantity and

dimensionality of data, which makes deep learning particularly

useful for solving complex problems (35). The growing

popularity of deep learning in healthcare has accelerated

research into its utility in the complex biology of cancer (36).

A study found that ANN is the most suitable diagnostic model

based on machine learning in skin cutaneous melanoma (37). In

this study, to evaluate the prediction performance of the ANN

model, we constructed and validated ANN models for feature

genes screened by LASSO, SVM-RFE, and RF, respectively. The

sensitivity value, that is, the true positive rate, reachedmore than

70% in the test dataset. However, the specificity value reached

<50% in the test dataset. This showed that the ANN model

is efficient at classifying positive samples and is unsuitable at

classifying negative samples. This study obtained the predictive

ability of each model by constructing and comparing the

multiple models of IS, which provided a new method for the

early diagnosis and prediction of IS.

This study also had some limitations. First, due to the lack of

clinical data on IS in the GEO database, the clinical features of

IS were not included in the diagnostic models. In addition, the

insufficient sample size of IS in the GEO database may affect the

diagnostic effect of the IS model.

Conclusion

In this study, we constructed and validated the LASSO,

SVM-RFE, RF, and ANN disease classification models. The

AUC, sensitivity, and specificity indicated that the LASSO,

SVM-RFE, and RF models performed well for IS diagnosis and

prediction. However, the ANN model is efficient at classifying

positive samples and is unsuitable at classifying negative

samples. Nevertheless, large-scale and multiple-center studies

will be needed to verify our findings.
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Triglyceride-glucose index and
the incidence of stroke: A
meta-analysis of cohort studies

Canlin Liao, Haixiong Xu, Tao Jin, Ke Xu, Zhennan Xu,

Lingzhen Zhu and Mingfa Liu*

Department of Neurosurgery, Shantou Central Hospital, Shantou, Guangdong, China

Background: Insulin resistance (IR) is involved in the pathogenesis of

atherosclerosis. As a new indicator, the triglyceride-glucose (TyG) index has

greater operability for the evaluation of insulin resistance. Previous studies have

shown inconsistent results in evaluating the association between the TyG index

and stroke incidence in people without stroke at baseline. Therefore, this study

aimed to systematically assess this association through a meta-analysis.

Methods: Cohort studies with the multivariate-adjusted hazard ratio (HR)

association between the TyG index and stroke were obtained by searching

the PubMed, Cochrane Library, and EMBASE databases before 16 December

2021. We pooled the adjusted HR along with 95% CI using a random-

e�ects model. The primary outcome was stroke including ischemic and

hemorrhagic stroke. We conducted subgroup analyses stratified by study

design, ethnicity, characteristics of participants, weight of studies, and length

of follow-up duration. Review Manager 5.3 and Stata 17 were used to perform

the meta-analysis.

Results: Eight cohort studies with 5,804,215 participants were included. The

results showed that participantswith the highest TyG index category at baseline

compared to those with the lowest TyG index category were independently

associated with a higher risk of stroke (HR: 1.26, 95% CI: 1.24–1.29, I2 = 0%, P

< 0.001). This finding was consistent with the results of the meta-analysis with

the TyG index analyzed as a continuous variable (HR per each-unit increment of

the TyG index: 1.13, 95% CI 1.09–1.18, I2 = 0%, P < 0.001). Subgroup analysis

had no significant e�ects (for subgroup analysis, all P > 0.05). No significant

heterogeneity was observed among the included cohort studies.

Conclusion: A higher TyG index may be independently associated with

a higher risk of stroke in individuals without stroke at baseline. The

aforementioned findings need to be verified by a large-scale prospective

cohort study to further clarify the underlying pathophysiological mechanism

between the TyG index and stroke.
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triglyceride-glucose index, insulin resistance, stroke, meta-analysis

triglyceride-glucose index, meta-analysis
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1. Introduction

Stroke is one of the most devastating diseases in the world.

Globally, it is the second leading cause of the increase in years

of life lost (1). In addition, the increasingly youthful trend of

stroke deserves our great attention (2). Ischemic stroke is the

result of blood circulation disorders in the cerebral blood vessels

caused by occlusion of the large cerebral arteries, which occurs

more commonly in the middle cerebral artery (3) or cerebral

small vessel disease (4). Previous studies have demonstrated that

insulin resistance plays an important role in the pathogenesis of

ischemic stroke (5).

The hyperinsulinemic–euglycemic clamp test (HIEC) is

the gold standard for assessing insulin resistance. Due to the

complexity of the test process, the extensive time required, and

the high cost, its clinical application is very limited (6). The

homeostasis model assessment of insulin resistance (HOMA-

IR) index is not very convenient and economical in clinical

application, although it is the most accessible indicator for

evaluating insulin resistance in clinical practice (7).

As a novel surrogate indicator of insulin resistance, the

triglyceride-glucose (TyG) index, derived from the fasting

triglyceride and glucose levels, is convenient and quick to obtain,

economical, and reliable (8). The TyG index can be calculated

as follows: ln [triglyceride level (mg/dL) ×fasting blood glucose

level (mg/dL)/2] (9, 10). Studies have confirmed that the TyG

index is significantly correlated with both HIEC and HOMA-IR

(11). Therefore, the TyG index can be used as an easily accessible

and operational index of insulin resistance.

Observational studies have revealed a relationship between

a high TyG index and stroke in their populations. However,

most of them were cross-sectional studies (12, 13). Recently,

as an increasing number of cohort studies on stroke and the

TyG index have been published, we have found inconsistent

results (14–17). Therefore, our study aimed to summarize the

association between the baseline TyG index and stroke incidence

in patients without stroke at baseline.

2. Methods

This meta-analysis was based on the Preferred Reporting

Items for Systematic Reviews and Meta-Analysis (18) (http://

www.prisma-statement.org/) and Cochrane Handbook (19, 20).

Electronic databases including PubMed, the Cochrane Library

(CENTRAL), and EMBASE were searched for relevant studies

and literature.

2.1. Study selection

Studies adhering to all the following criteria were included:

(1) Participants were adults with no stroke at baseline; (2) cohort

studies were published as full-length articles in English; (3) the

TyG index was measured at baseline; (4) the outcome included

the occurrence of a stroke or ischemic stroke; (5) risk factors

adjusted for potential confounders were reported; and (6) hazard

ratios (HRs) were reported. In contrast, studies were excluded

from the meta-analysis if they met at least one of the following

criteria: (1) participants were <18 years of age; (2) the studies

were not cohort studies; (3) there was no reporting of stroke;

(4) there was no measurement of the TyG index; (5) reported

data were based on univariate analysis rather than multivariate

analysis; and (6) HRs were not reported.

Two researchers (CL and KX) used the PICOS principles

to search for related literature and independently evaluated the

literature. Disputes were resolved after a discussion with a third

researcher (LZ).

2.2. Data extraction

Two researchers (CL and KX) independently extracted data

from the articles. The extracted content included the names of

the authors, publication year, study design, country, participant

characteristics, average age, proportion of male participants,

proportion of patients with diabetes, TyG index analysis, follow-

up duration, and result validation. After data extraction, the two

researchers exchanged data for verification.

2.3. Literature search

The PubMed, Cochrane Library (CENTRAL), and

EMBASE databases were searched using a combination of

the following terms: (1) “triglyceride and glucose index”

OR “triglyceride-glucose index ∗” OR “TyG index” OR

“triglyceride glucose index” OR “triacylglycerol glucose

index”; (2) “stroke” OR “Cerebrovascular Accident” OR

“Cerebrovascular Accidents” OR “CVA” OR CVAs; OR

“Apoplexy” OR “Brain Vascular Accident” OR “Brain Vascular

Accidents” (Supplementary Table S1). Reference lists of original

and review articles that are related were manually searched

for potentially eligible studies. The final literature search was

conducted on 16 December 2021.

2.3. Literature screening

The search results obtained from the PubMed, Cochrane

Library (CENTRAL), and EMBASE databases were exported to

Endnote X9, whose function of “duplicate finder” was used to

identify and remove repetitive literature. Literature screening

was divided into two stages. First, we conducted a preliminary

screening based on the titles and abstracts of the literature to

obtain possibly eligible, eligibility-unknown, and clearly eligible
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FIGURE 1

Flowchart of the databases search and study identification.

literature. For literature that might be eligible and those whose

eligibility was unknown, their full-length texts were obtained

and further selected according to the inclusion and exclusion

criteria, thus obtaining eligible studies. Titles, abstracts, and

full-length texts were selected by two researchers (ZX and LZ),

strictly and independently, based on the inclusion and exclusion

criteria. When the screening results were inconsistent, the two

researchers discussed and negotiated with each other to reach

a consensus. If the negotiation failed, we consulted a third

researcher (TJ) and adopted his opinion.

2.3.1. Quality evaluation

The Newcastle–Ottawa Scale (20) was used to evaluate

the quality of each study according to the selection of the

study groups, comparability of the groups, and ascertainment

of the outcome of interest. The scale ranges from 1 to 9, and

studies with test results of more than six are classified as high

quality. The assessment was performed independently by two

researchers (LZ and ZX). Any disagreement between researchers

was resolved by consensus. If the negotiation failed, we consulted

a third researcher (TJ) and adopted his opinion.

2.3.2. Data analyses

Hazard ratios and their corresponding 95% confidence

intervals (CIs) were used as a general measure of the association

between the TyG index and stroke in people who had no stroke

at the baseline examination. For the study that analyzed the

TyG index as a categorical variable, the HRs of the incidence of

stroke in participants with the highest TyG index level compared

to those with the lowest TyG index level were extracted. For
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studies where the TyG index was analyzed as a continuous

variable, the HRs of stroke incidence were extracted for each-

unit increment of the TyG index. The Cochran Q-test and I2

estimation were used to assess the heterogeneity of the included

cohort studies (21). If I2 was <50%, it was considered that

there was no significant heterogeneity. In addition, a random-

effect model was used to synthesize HRs data, as this model

was considered a more general method that could incorporate

potential heterogeneity into the study (19). Furthermore,

sensitivity analyses, excluding one individual study at a time,

were conducted to test the stability of the results (22). Predefined

subgroup analyses were also performed to evaluate the impact

of study characteristics, including study design, participant

characteristics, participant ethnicity, weight of studies, and

follow-up duration on the association between the TyG index

and stroke incidence. All studies included adjusted variables.

The baseline TyG index was analyzed as categorical variables

The median, quartile, or quintile was used to divide the research

participants into a higher TyG index group and a lower TyG

index group. After adjusting for variables, the HRs and 95%

CIs of stroke or ischemic stroke were calculated in the higher

TyG index group during the follow-up period, with the lowest

TyG index group as a reference. Potential publication bias

was assessed by visual inspection of the funnel plot symmetry.

Review Manager (version 5.3; Cochrane Collaboration, Oxford,

UK) and Stata 17 (Stata Corp., College Station, Texas, USA) were

used to perform the statistical analyses.

3. Results

3.1. Process and results of the literature
screening

The search strategy retrieved 129 articles through PubMed,

Cochrane Library (CENTRAL), and EMBASE databases

(Figure 1). A total of 114 articles were obtained after excluding

15 duplications. Eight studies comprising 5,804,215 participants

were included in the meta-analysis after further evaluation

of the abstract and full-length text twice, according to the

inclusion criteria.

3.2. Study characteristics and quality
evaluation

3.2.1. Study characteristics

The characteristics of the eight cohort studies (14–

17), included the name of the author(s), publication year,

study design, country, participant characteristics, number of

participants, average age of participant, proportion of men,

proportion of patients with diabetes, TyG index analysis,

follow-up duration, result verification, outcome reported, and

adjusted variables (Table 1). Overall, eight cohort studies with

5,804,215 participants were included. Four out of the eight were

prospective cohort studies (16, 17, 25, 26), and the remaining

four were retrospective cohort studies (14, 15, 23, 26). The

research participants of four studies were participants without

stroke in the community (14, 16, 23, 24), while those of the

other studies were outpatients or inpatients in hospitals (15,

17, 25, 26). The studies were performed in China (14–16, 24–

26), South Korea (23), and Spain (17). These studies were

published from 2016 to 2021, where patients at baseline were

followed up for time ranging from post-intervention to 11.02

years. Five studies (14, 16, 17, 23, 24) were followed for more

than 5 years and three studies (15, 25, 26) for less than 5

years. The two articles produced by the Kailuan study provided

different variables, with one for categorical (16) and the other for

continuous (24).

3.2.2. Quality evaluation

Eight studies included in this meta-analysis were cohort

studies. The Newcastle–Ottawa Scale (20) was used to evaluate

their quality, and the results showed that three studies scored

seven points and the other five studies scored nine points. All

included cohort studies were judged high quality (Table 2).

3.2.3. Results of the meta-analysis of the
cohort studies

Using a random-effects model, the pooled results of seven

cohort studies (14–17, 23, 25–27) showed that compared to

participants with the lowest TyG index category at baseline,

those with the highest TyG index category had a significantly

increased incidence of stroke during the follow-up (HR: 1.26,

95% CI: 1.24–1.29, I2 = 0%, P < 0.001; Figure 2A). This finding

was consistent with the TyG index analyzed as a continuous

variable (four studies, HR per each-unit increment of the TyG

index: 1.13, 95% CI 1.09–1.18, I2 = 0%, P < 0.001; Figure 2B).

Subgroup analyses showed a consistent association between the

prospective studies (HR: 1.33, 95% CI: 1.22–1.45, I2 = 0%, P

< 0.001; Figure 3A) and retrospective studies (HR: 1.26, 95%

CI: 1.23–1.29, I2 = 0%, P < 0.001; Figure 3A); the community

population (HR: 1.26, 95% CI: 1.24–1.29, I2 = 0%, P < 0.001;

Figure 3B) and outpatient or inpatient populations (HR: 1.76,

95% CI: 1.19–2.60, I2 = 0%, P= 0.005; Figure 3B); Chinese (HR:

1.33, 95% CI: 1.22–1.44, I2 = 0%, P < 0.001; Figure 3C), non-

Chinese participants (HR: 1.26, 95% CI: 1.23–1.29, I2 = 0%, P <

0.001; Figure 3C); higher weight (HR: 1.26, 95% CI: 1.23–1.29,

I2 = 4%, P < 0.001; Figure 3D) and lower weight (HR: 1.43,

95% CI: 1.10–1.86, I2 = 0%, P = 0.008; Figure 3D); follow-up

duration more than 5 years (HR: 1.26, 95% CI: 1.24–1.29, I2 =

0%, P < 0.001; Figure 3E) and less than 5 years (HR: 1.86, 95%

CI: 1.09–3.19, I2 = 0%, P = 0.02; Figure 3E). The leave-one-out

analysis showed similar results (Supplementary Figure S1).
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TABLE 1 Characteristics of the included cohort studies.

Study Year DesignCountryCharacteristics of
participants

Number
of

participants

Mean age
(Years)

Male
(%)

Proportion
of DM

TyG index
analysis

Follow-
up
duration
(years)

Outcome
validation

Outcomes
reported

Variables
adjusted

Sanchez-Inigo et al.

(17)

2016 PC Spain First-time attendee

outpatients to an internal

medicine department without

ASCVDs

5,014 54.4 61.2 5.2 Q5:Q1 8.8 ICD-10 stroke (157) Age, sex, BMI, smoking,

alcohol intake, lifestyle

pattern, HTN, T2DM,

antiplatelet, therapy,

HDL-C, and LDL-C

Li et al. (14) 2019 RC China Participants aged over 60

years without stroke who

participated in a routine

health check-up program

6,078 70.5 53.1 11.8 Q4: Q1 5.5 ICD-10 stroke (234) Age, sex, living, alone,

current, smoker, alcohol,

consumption, exercise,

BMI, SBP, HDL-C,

LDLC, and T2DM

Mao et al. (25) 2019 PC China patients diagnosed with

NSTE-ACS without stroke

791 62.5 67.4 32.6 M2:M1 1 Clinical

evaluation

Stroke (5) Age, sex, metabolic

syndrome, LDL-C,

HDL-C, SYNTAX score,

CRP, basal insulin,

sulfonylurea, metformin,

α-glucosidase inhibitor,

ACEI/ARB, beta-blocker,

and PCI/CABG.

Hong et al. (23) 2020 RC Korea Community population

without stroke

5,593,134 53.0 50.5 3.7 Q4:Q1 8.2 ICD-10 Stroke (89,120) Age, sex, smoking,

alcohol, consumption,

regular physical activity,

low socioeconomic,

status, BMI, HTN, and

TC

Wang et al. (16) 2020 RC China consecutive patients with

diabetes who underwent

coronary angiography for

ACS

3,428 66.3 55.9 100 T3:T1 3 Clinical

evaluation

non-fatal stroke

(46)

Age, male, smoker,

previous MI, previous

CABG, BMI, AMI, LVEF,

left main disease,

multi-vessel disease,

HbA1c, hs-CRP, statin,

insulin

Zhao et al. (27) 2020 RC China patients with NSTE-ACS, who

received elective PCI without

diabetes

1,576 59.7 73.7 0 M2:M1 2 Clinical

evaluation

non-fatal

ischemic stroke

(27)

Age, gender, smoking

history, hypertension,

dyslipidemia, previous

history of MI, PCI,

stroke and PAD, eGFR,

LVEF, LM disease,

three-vessel disease,

SYNTAX score, number

of stents, statins at

discharge and

ACEI/ARB at discharge

ACEI/ARB

(Continued)
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TABLE 1 (Continued)

Study Year DesignCountryCharacteristics of
participants

Number
of

participants

Mean age
(Years)

Male
(%)

Proportion
of DM

TyG
index
analysis

Follow-
up
duration
(years)

Outcome
validation

Outcomes
reported

Variables
adjusted

Wang et al. (16) 2021 PC China Community population

without stroke

97,653 51.67 79.62 2.93 Q4:Q1 11.02 Clinical

evaluation

Stroke (5122)

ischemic stroke

(4277)

Age, gender, level of

education, income,

smoking, alcohol abuse,

physical activity, BMI,

SBP, DBP, history of MI,

dyslipidemia, HDL-C,

LDL-C, Hs-CRP,

antidiabetic drugs,

lipid-lowering drugs,

HTN, DM,

antihypertensive drugs

Liu et al. (24) 2021 PC China Community population

without stroke

96,541 51.19 79.61 9.06 Q4:Q1 10.33 Clinical

evaluation

Stroke (5083)

ischemic stroke

(4266)

Ischemic stroke

(677)

Hemorrhagic

stroke (1024)

Age, gender, current

smoking status, current

drinking status, physical

activity, education, BMI,

hypertension, diabetes,

HDL-C, LDL-C,

Hs-CRP, lipid-lowering

medication, antidiabetic

medication, and

antihypertensive

medication. Age, gender;

marital status, income,

education level,

smoking, alcohol

drinking, physical

activity, family history of

stroke, SBP, DBP, resting

heart rate, BMI, WC, TC,

HDL-C and LDL-C.

TyG, triglyceride–glucose index; PC, prospective cohort; RC, retrospective cohort; Q5:Q1, the 5th quintile vs. the 1st quintile; Q4:Q1, the 4th quartile vs. the 1st quartile; T3:T1, the 3rd tertile vs. the 1st tertile; M2:M1, the 2nd median vs. the 1st median;

T2DM, type 2 diabetes mellitus; ICD-10, International Classification of Diseases, tenth edition; PAD, peripheral artery disease; HTN, hypertension; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; BMI, body

mass index; WC, wrist circumference; eGFR, estimated glomerular filtrating rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; hs-CRP: high-sensitivity C-reactive protein; CABG, coronary artery bypass grafting; PCI,

percutaneous transluminal coronary intervention; AMI, acute myocardial infarction; MI, myocardial infarction; LVEF, left ventricular ejection fraction.
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TABLE 2 Details of quality evaluation via the Newcastle–Ottawa Scale.

Study (Publication Year) Selection of cohorts Comparability of cohorts Outcome of cohorts Total

a b c d e f g h i

Sanchez-Inigo et al. (17) 1 1 1 1 1 1 1 1 1 9

Li et al. (14) 1 1 1 1 1 1 1 1 1 9

Hong et al. (23) 1 1 1 1 1 1 1 1 1 9

Mao et al. (25) 1 1 1 1 1 1 1 0 0 7

Wang et al. (16) 1 1 1 1 1 1 1 0 0 7

Wang et al. (16) 1 1 1 1 1 1 1 1 1 9

Zhao et al. (15) 1 1 1 1 1 1 1 0 0 7

Liu et al. (24) 1 1 1 1 1 1 1 1 1 9

a. Representativeness of the exposed cohort. b. Selection of the non-exposed cohort. c. Ascertainment of exposure. d. Demonstration that outcome of interest was not present at start of

study. e. Comparability of cohorts on the basis of the design or analysis (adjusted for age and gender). f. Comparability of cohorts on the basis of the design or analysis (adjusted for any

other factor). g. Assessment of outcome. h. Was follow-up long enough for outcomes to occur (>5 years). i. Adequacy of follow-up of cohorts (>5 years). The scale ranges from one to nine

in total, and judge studies above six as high-quality cohort studies.

FIGURE 2

Forest plots for the meta-analysis of the association between the TyG index and the risk of stroke. (A) Meta-analysis with the TyG index analyzed

as a categorical variable. (B) Meta-analysis with the TyG index analyzed as a continuous variable.

3.2.4. Publication bias

Funnel plots were drawn using stroke as an outcome

indicator to observe publication bias in the eight cohort studies.

Funnel plots were symmetric on visual inspection, suggesting a

low risk of publication bias (Figure 4). As only eight studies (14–

17, 23–26) were included, <10 studies were required, and the

Egger regression test could not be performed in this study (28).

4. Discussion

This meta-analysis of cohort studies showed that a higher

TyG index at baseline was independently associated with an

increased incidence of stroke regardless of whether the TyG

index was analyzed as a categorical or continuous variable.

Moreover, consistent results were obtained in subgroup analysis

according to the study design, ethnicity, characteristics of

participants, weight of studies, and length of follow-up duration.

These results suggest that a higher TyG index may be an

independent predictor of increased stroke incidence in the

general adult population without stroke at baseline.

Our meta-analysis has some advantages and is included

below. First, only cohort studies were included; thus, potential

recall bias associated with the cross-sectional design was

avoided. In addition, in order to have a more accurate

statistical description and significance for cohort studies, we
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FIGURE 3

Subgroup analysis for the Meta-analysis of association between the TyG index and the risk of stroke. (A) Subgroup analysis according to study

design. (B) Subgroup analysis according to characteristics of participants. (C) Subgroup analysis according to the ethnicity of the population. (D)

Subgroup analysis according to the weight of studies. (E) Subgroup analysis according to the length of follow-up duration.
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FIGURE 4

Funnel plot for the publication bias underlying the metaanalysis

of the associtation between TyG index and stroke.

included only studies with multivariate-adjusted HR, which

not only avoids potential confounding biases but also provides

an independent association between the TyG index and

stroke. Moreover, all the included studies are high-quality

cohort studies with large numbers of participants. Otherwise,

sensitivity and subgroup analyses were performed for all

included studies to ensure the robustness of the results.

Finally, all the I2 in the meta-analysis were lower than

in previous studies, and no significant heterogeneity was

observed among the included cohort studies. Our meta-analysis

demonstrated the association between the TyG index and

the increased incidence of stroke which indicates underlying

pathophysiological mechanisms between insulin resistance and

stroke exists. Insulin resistance not only enhances the adhesion,

activation, and aggregation of platelets, but it also causes

hemodynamic disturbances, all of which are conducive to

the occurrence of ischemic stroke (5). In addition, it can

cause an imbalance in glucose metabolism, leading to chronic

hyperglycemia. This, in turn, triggers oxidative stress and

inflammation, leading to cell damage and atherosclerotic plaque

formation (29).

The TyG index, as a result of triglycerides and fasting blood

glucose, has been recognized as a simple and reliable surrogate

indicator of insulin resistance (30). In clinical applications,

it is economical to measure blood triglycerides and fasting

blood glucose, and the TyG index can be obtained through

simple calculations. A previous study proved that the TyG

index has high sensitivity and specificity in detecting insulin

resistance (10), and it is superior to HOMA-IR (31). Moreover,

compared with HOMA-IR, the TyG index, which does not

require measurement of insulin levels, can be conveniently

and economically used for all patients and healthy people

and is also suitable for large-scale screening of insulin

resistance. However, further studies are needed to conduct

whether the TyG index could be added to stroke prediction

tools such as the Framingham Stroke Risk Profile (32) and

measure the critical value of the TyG index in the general

adult population.

When the results of the meta-analysis are interpreted,

some limitations should be observed. First, in the subgroup

analysis, only the study design, participant characteristics,

participant ethnicity, weight of studies, and follow-up duration

were analyzed. More research is needed to determine whether

other research characteristics will affect the results, such as

sex, diabetes status, and concurrent medications used. Third,

among the studies we eventually included, there were six

Chinese studies and only two non-Chinese studies, one from

Asia and the other from Europe. Data from other countries

such as the United States, Australia, and Africa are still scarce,

thus, a more detailed ethnic subgroup analysis should be

conducted. Fourth, owing to the limitations of the research

data, hemorrhagic stroke cannot be evaluated in a systematic

manner. Fifth, although the cohort studies included were all

adjusted for in the multivariate analysis, the influence of

unadjusted participating factors in the cohort studies could not

be ruled out based on the HR of the study and the association

between the TyG index and the incidence of stroke. Similarly,

we do not know whether the data before the multivariate

adjustment had an impact on the study. Finally, even though

we conducted a subgroup analysis, we found a significant

effect after excluding two larger studies (16, 23), which had

a combined weight of 99.4% and had a major influence on

the meta-analysis.

5. Conclusion

A higher TyG index may be independently associated

with a higher risk of stroke in individuals without stroke at

baseline. The aforementioned findings need to be verified by

a large-scale prospective cohort study to further clarify the

underlying pathophysiological mechanism between the TyG

index and stroke.
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College, Hangzhou, Zhejiang, China

Background and purpose: There was little evidence to study the relationship

between hypocalcemia and mortality among critically ill patients with

intracerebral hemorrhage (ICH) aged≥16 years. This study aimed to determine

the potential association between hypocalcemia and in-hospital and ICU

mortality in patients with ICH in the United States.

Methods: We analyzed 1,954 patients with ICH from the e-Intensive Care

Unit Collaborative ResearchDatabase and divided them into hypocalcemia and

non-hypocalcemia groups. Hypocalcemia was defined as albumin-adjusted

total calcium below 8.4 mg/dl. The primary and secondary outcomes were

hospital and ICUmortality, respectively. We performedmultivariable regression

and subgroup analyses to evaluate the association of hypocalcemia with

hospital and ICU mortality. Cumulative survival rate analysis was performed

using Kaplan–Meier curves with log-rank statistics.

Results: We enrolled 1,954 patients with ICH who had been hospitalized

in ICU for >24h and were older than 16 years (average age, 61.8 years;

men, 56.7%). We noted that 373 (19%) hospital mortality occurred, including

235 (12%) ICU mortality. In this sample, 195 patients had hypocalcemia.

Multivariable logistic regression analyses showed that hypocalcemia was

associated with a 67% increased risk of in-hospital and a 72% increased risk

of ICU mortality. This association was consistent across subgroup analyses.
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Conclusions: Hypocalcemia was associated with a high risk of hospital

and ICU mortality among critically ill patients with ICH. Future prospective,

randomized, controlled studies are needed to confirm our results.

KEYWORDS

hypocalcemia, mortality, intracerebral hemorrhage, intensive care unit, hospital

1. Introduction

Intracerebral hemorrhage (ICH) is a life-changing event for

patients and their families, and it is a potentially life-threatening

medical emergency in hospitalized, critically ill patients (1).

ICH has multiple pathophysiological etiologies and is associated

with high morbidity and mortality rates (2, 3). However, early

identification, accurate diagnosis, and aggressive treatment can

improve the chances of recovery in patients with ICH.

Many factors play an important role in biological

processes, and calcium (Ca) is such a nutrient for the

human body (4). It plays an important role in blood

coagulation, blood pressure regulation, platelet function,

muscle contraction, hormone regulation, and enzyme

activation. Ca plays an essential role in brain injury

following ICH by affecting coagulation, regulating blood

pressure, and other mechanisms (5, 6). Hypocalcemia is

common in pediatric patients and critically ill adults (7–9).

It appears to promote coagulopathy and increase blood

pressure (10, 11).

Several studies have demonstrated that hypocalcemia

is strongly associated to hematoma expansion and worse

short-and long-term outcomes in patients with ICH (12–

14). Based on these findings, hypocalcemia may be a

potential prognostic factor during hospitalization in critically

ill patients with ICH; however, studies in this area are

lacking. Therefore, we conducted a retrospective cohort

study to investigate the association between hypocalcemia

and in-hospital and ICU mortalities in critically ill patients

with ICH.

Abbreviations: ICH, intracerebral hemorrhage; ICU, intensive care unit;

eICU-CRD, e-Intensive Care Unit Collaborative Research Database;

SOFA, sequential organ failure assessment; BMI, body mass index; Ca,

calcium; DBP, diastolic blood pressure; SBP, systolic blood pressure; PLT,

platelet; WBC, white blood cell; Hb, hemoglobin; GTP, glutamic pyruvic

transaminase; PT, prothrombin time; Cr, creatinine; INR, international

normalized ratio; BUN, blood urea nitrogen; Mg, magnesium; GLU,

glucose; DM, diabetes mellitus.

2. Methods

2.1. Data source

All data were drawn from the e-Intensive Care Unit

Collaborative Research Database (eICU-CRD), a large

multicenter ICU database that includes data on more than

200,000 patients admitted to the ICU at 208 United States

hospitals in 2014 and 2015 (15). All data were stored and

retrieved electronically and provided by Philips Healthcare

in collaboration with the MIT Computational Physiology

Laboratory (15). All data were anonymized prior to our analysis

using the eICU protocol. Eicu-crd.mit.edu is the web address

of this database. The use of this database was approved by

PhysioNet review boards. One of the authors (Wenyan Zhao)

gained access and was responsible for downloading the data

(certification number: 42608104).

2.2. Study population

All patients diagnosed with ICH upon ICU admission

were included in this study. The diagnoses of ICH include

hemorrhagic stroke, subarachnoid hemorrhage, and

intraventricular hemorrhage. The following exclusion criteria

were used: (1) age <16 years, (2) total Ca and albumin data

missing from 12 h before to 24 h after ICU admission, (3)

missing in-hospital death data, and (4) ICU stay ≤24 h. A

flowchart of the study is depicted in Figure 1.

2.3. Study variables

In this study, hypocalcemia was the exposure variable. The

primary and secondary outcomes of our study were in-hospital

and ICU mortalities, respectively. All patients were divided into

hypocalcemia and non-hypocalcemia groups. Hypocalcemia

was defined as an albumin-adjusted total Ca level below 8.4

mg/dl. The albumin-adjusted total Ca level was calculated based

on the following formula: albumin-adjusted total Ca (mg/dl) =

total Ca (mg/dl)+ 0.8× [4-measured albumin (g/dl)] (16). Total

Ca and albumin were first measured from 12 h before to 24 h
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FIGURE 1

Flow chart of participants.

after ICU admission. Hospital and ICU stay durations were also

calculated in this study.

2.4. Other variables

Further, we also collected additional data from the eICU-

CRD. Sex, age, ethnicity, and region were acquired from

the patient and apache patient result tables. Physiological

variables, including diastolic blood pressure (DBP), systolic

blood pressure (SBP), and body mass index (BMI), were

obtained from the Apache Aps Var table. The laboratory indices

were platelet (PLT), white blood cell (WBC) count, hemoglobin

(Hb), glutamic pyruvic transaminase (GPT), prothrombin time

(PT), creatinine (Cr), international normalized ratio (INR),

blood urea nitrogen (BUN), magnesium (Mg), glucose (GLU),

and lactate. Comorbidities, including coronary artery disease,

hypertension, atrial fibrillation, diabetes, and congestive heart

failure, were extracted from the APACHE IV score. Patients

with ICH, including those diagnosed with hemorrhagic stroke,

subarachnoid hemorrhage, and intraventricular hemorrhage,

were extracted from the diagnosis table. The severity of ICU

admission was evaluated by using the sequential organ failure

assessment (SOFA) score. The causes of ICH include traumatic

and spontaneous hemorrhage. The information on the use of

vasopressor and sedatives on the first day was gathered from

Treatment table. All covariates were collected on the first day

of ICU admission.

2.5. Statistical analysis

Categorical variables were analyzed using percentages,

whereas continuous variables were expressed using the means

(standard deviation, SD). Firstly, this study used linear

regression models and chi-square tests to compare the patients’
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baseline characteristics and outcomes in different groups.

Secondly, we calculated three multivariable logistic regression

models simultaneously as follows: model 1, not adjusted; model

2, adjusted for sex, age, and race/ethnicity; model 3, adjusted

for model 1+ region, causes of ICH, BMI, SBP, WBC, PLT,

Hb, GPT, INR, PT, GLU, BUN, Cr, Mg, lactate, SOFA score,

first-day vasopressor, first-day sedative, atrial fibrillation, and

congestive heart failure. The covariates selected for adjustment

were based on the fact that the addition of covariates to the

model changed the regression coefficient by at least 10%. 95%

confidence interval (CI) and odds ratios (OR) were estimated

for all the models. Thirdly, we performed stratified analyses

and interactions in the light of age, sex, region, causes of

ICH, SOFA score, histories of hypertension, diabetes, and BMI.

Finally, Kaplan–Meier curves were constructed for primary and

secondary outcomes.

To confirm the robustness of our results, we quantified

unmeasured confounders of hypocalcemia and ICU mortality

by calculating E-values (17), because unmeasured confounders

may affect the observed correlation between hypocalcemia and

mortality. The E-value allows estimation of the required validity

of a confounder.

All tests were two-sided, and P < 0.05 was considered

statistically significant. All analyses were performed using the

R statistical software package (http://www.R-project.org, The R

Foundation for Statistical Computing, Vienna, Austria) and Free

Statistics software versions 1.5 (18).

3. Results

3.1. Patient selection

The selection process for the study population was depicted

in Figure 1. Firstly, we excluded patients aged ≤16 years (n

= 200). Secondly, we excluded patients without total Ca (n =

379) or albumin (n = 1,682) data. Thirdly, we excluded patients

without hospital death data (n = 33). Fourthly, we excluded

patients with an ICU stay time ≤24 h (n = 514). Finally, a total

of 1,954 eligible patients were enrolled in the analyses.

3.2. Baseline characteristics

The selected patients’ characteristics were shown in Table 1.

Based on the albumin-adjusted total Ca levels, we divided all

patients into the hypocalcemia and non-hypocalcemia group.

The average age was 61.82 years (men: 56.76%). Among 709

patients with traumatic and 1,245 patients with spontaneous

ICH, 108 and 87 patients developed hypocalcemia, respectively.

Patients with traumatic ICH had a higher incidence of

hypocalcemia. Compared with patients without hypocalcemia,

those with hypocalcemia had a higher WBC count, GPT, and

SOFA score and lower BMI, SBP, PLT, INR, PT, and BUN. In

addition, the hypocalcemia group had a lower proportion of

patients with histories of chronic disease such as hypertension,

diabetes, chronic pulmonary disease, atrial fibrillation, stroke,

coronary artery disease, and congestive heart failure. However,

there were no differences in age, region, DBP, Hb, Mg, or GLU

between the two groups.

3.3. The outcomes

The primary and secondary outcomes of our study were

shown in Table 2. In-hospital mortality was 28.72% in the

hypocalcemia group and 18.02% in the non-hypocalcemia

group, and the difference was statistically significant (P< 0.001).

The ICUmortality in the hypocalcemia group was 21.03%, while

it was 11.03% in the non-hypocalcemia group (P < 0.001).

The patients with hypocalcemia had higher in-hospital and ICU

mortality than those without hypocalcemia. In the hypocalcemia

group, the total length of the hospital stay and ICU stay were

13.33 and 7.91 days, respectively, which were longer than that in

the non-hypocalcemia group.

3.4. Association of hypocalcemia with
in-hospital and ICU mortalities

Hypocalcemia was associated to an increased risk for in-

hospital and ICU mortalities in patients with ICH, as shown in

Table 3. In the model 1, ICH patients with hypocalcemia had an

83% increased risk of in-hospital mortality (OR= 1.83, 95% CI:

1.31–2.56, P= 0.004) and a 115% increased risk of ICUmortality

(OR = 2.15, 95% CI: 1.48–3.13, P < 0.001). Compared to

patients without hypocalcemia, the risk of in-hospital mortality

in patients with hypocalcemia increased by 67% (OR = 1.67,

95% CI: 1.09–2.56, P = 0.018) in the model 3, and the risk of

ICU mortality in patients with hypocalcemia increased by 72%

(OR= 1.72, 95% CI: 1.06–2.77, P = 0.027).

3.5. Subgroup analysis

The stratification and interaction analyses of the association

between hypocalcemia and in-hospital and ICUmortalities were

depicted in Figures 2, 3. Subgroup analysis results were in

concordance with those of the multivariable logistic regression

analysis. The results of the interaction analysis revealed that

there were no significant interactions in the subgroups of age,

sex, region, causes of ICH, SOFA score, histories of hypertension

and diabetes, and BMI.
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TABLE 1 Characteristics of study participants.

Characteristics Albumin-adjusted total calcium, mg/dl P-value

Total Non-hypocalcemia
≥8.4

Hypocalcemia
<8.4

N 1,954 1,759 195

Age, years 61.82 (17.17) 63.11 (16.66) 50.25 (17.47) <0.010

Gender, N (%)

Male 1,108 (56.76) 990 (56.31) 118 (60.82) 0.229

Race/ethnicity, N (%)

Caucasian 1,424 (72.88) 1,278 (72.65) 146 (74.87) <0.001

African American 225 (11.51) 211 (12.00) 14 (7.18)

Hispanic 104 (5.32) 96 (5.46) 8 (4.10)

Asian 56 (2.87) 49 (2.79) 7 (3.59)

Native American 12 (0.61) 6 (0.34) 6 (3.08)

Other/unknown 133 (6.81) 119 (6.77) 14 (7.18)

Region, N (%)

Midwest 654 (33.47) 582 (33.09) 72 (36.92) 0.037

South 463 (23.69) 420 (23.88) 43 (22.05)

West 535 (27.38) 484 (27.52) 51 (26.15)

Northeast 169 (8.65) 145 (8.24) 24 (12.31)

Missing 133 (6.81) 128 (7.28) 5 (2.56)

Causes of ICH, N (%)

Trauma 709 (36.28) 601 (34.17) 108 (55.38) <0.001

Spontaneous 1,245 (63.72) 1,158 (65.83) 87 (44.62) <0.001

SOFA score 4.99 (3.36) 4.81 (3.32) 6.62 (3.29) <0.001

Physical examination

BMI, kg/m2 27.89 (6.76) 28.05 (6.86) 26.43 (5.55) 0.002

SBP, mmHg 131.45 (16.40) 132.02 (16.50) 126.44 (14.63) <0.001

DBP, mmHg 70.21 (11.28) 70.17 (11.26) 70.49 (11.46) 0.716

Laboratory data

WBC count,×103/µl 11.64 (8.78) 11.47 ( 9.10) 13.17 (4.60) 0.011

Hb, g/ml 12.62 (2.14) 12.64 (2.16) 12.46 (2.00) 0.249

PLT,×103/µl 211.53 (77.69) 212.75 (78.65) 200.43 (67.47) 0.037

GPT, U/L 39.55 (72.18) 37.54 (69.29) 57.48 (92.36) <0.001

BUN, mg/dl 18.98 (13.75) 19.48 (14.06) 14.48 (9.36) <0.001

Creatinine, mg/dl 1.17 (1.19) 1.18 (1.18) 1.10 (1.27) 0.371

Magnesium, mg/dl 1.89 (0.30) 1.90 (0.30) 1.85 (0.27) 0.058

Glucose, mg/dl 145.15 (51.61) 145.20 (52.39) 144.69 (44.12) 0.896

Lactate, mmol/L 2.57 (1.95) 2.54 (2.01) 2.77 (1.60) 0.314

INR 1.19 (0.38) 1.19 (0.39) 1.13 (0.20) 0.024

Prothrombin time, s 14.15 (3.85) 14.22 (3.99) 13.48 (2.19) 0.016

First day vasopressor, N (%) 111 (5.68) 92 (5.23) 19 (9.74) 0.01

(Continued)
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TABLE 1 (Continued)

Characteristics Albumin-adjusted total calcium, mg/dl P-value

Total Non-hypocalcemia
≥8.4

Hypocalcemia
<8.4

First day sedative, N (%) 338 (17.30) 284 (16.15) 54 (27.69) <0.001

Comorbidities

Hypertension, N (%) 1,024 (52.41) 963 (54.75) 61 (31.28) <0.001

Coronary artery disease, N (%) 163 (8.34) 156 (8.87) 7 (3.59) 0.011

Atrial fibrillation, N (%) 206 (10.54) 204 (11.60) 2 (1.03) <0.001

Congestive heart failure, N (%) 134 (6.86) 130 (7.39) 4 (2.05) 0.005

Diabetes, N (%) 394 (20.16) 378 (21.49) 16 (8.21) <0.001

Chronic pulmonary disease, N (%) 114 (5.83) 110 (6.25) 4 (2.05) 0.018

Stroke, N (%) 263 (13.46) 251 (14.27) 12 (6.15) 0.002

Continuous variables were presented as mean (SD), calculated by linear regression model. Categorical variables were presented as numbers (%), calculated by chi-square test.

SD, standard deviation; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell; PLT, platelet; INR, international normalized ratio; SOFA,

Sequential Organ Failure Assessment; GPT, glutamic-pyruvic transaminase; BUN, blood urea nitrogen.

TABLE 2 The outcomes of patients in hypocalcemia and non-hypocalcemia group.

Albumin-corrected total calcium, mg/dl

Total Non-hypocalcemia Hypocalcemia P-value

≥8.4 <8.4

N 1,954 1,759 195

In-hospital mortality, N (%) 373 (19.09) 317 (18.02) 56 (28.72) <0.001

ICU mortality, N (%) 235 (12.03) 194 (11.03) 41 (21.03) <0.001

Hospital stay time, dy 11.13 (15.02) 10.89 (15.03) 13.33 (14.72) 0.031

ICU stay time, dy 6.16 (7.41) 5.97 (7.37) 7.91 (7.61) <0.001

Continuous variables were presented as mean (SD), categorical variables were presented as numbers (%).

ICU, intensive care unit.

3.6. Kaplan–Meier survival curve

Patients in the hypocalcemia group had a significantly lower

survival rate than those without hypocalcemia within 30 days of

hospital stay (P= 0.016) and 30 days of ICU stay (P= 0.036), as

shown in Figure 4.

3.7. Sensitivity analyses

To test the robustness of the main results, we calculated E-

values to assess the effect of unmeasured confounding factors.

The correlation between hypocalcemia and the risk of ICU

mortality was found to be robust, unless the OR of the risk of

ICU mortality of an unmeasured confounder was >2.83.

In addition, we performed a sensitivity analysis using

data from our own hospital. Patients who were diagnosed

with hemorrhagic stroke, subarachnoid hemorrhage, and

intraventricular hemorrhage transfered to ICU in our institute

were screened retrospectively. A total of 244 patients aged

16–70 years admitted to our institute from January 2010

to October 2022 were analyzed. We attached the results to

the Supplementary Tables 1–3 and Supplementary Figure 1. The

results of the multivariable logistic regression analysis in the

cohort of our institute were in concordance with those in the

cohort of eICU-CRD (Supplementary Table 3).

4. Discussion

In this retrospective cohort study, we examined the

association between hypocalcemia and in-hospital and ICU

mortalities in critically ill patients with ICH. We included

1,954 confirmed patients with ICH and divided them into

hypocalcemia and non-hypocalcemia groups according
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FIGURE 2

Association between hypocalcemia and hospital mortality according to subgroup. Analyses were adjusted for gender, age, region, race, BMI,

systolic blood pressure, diastolic blood pressure, white blood cell count, hemoglobin, platelet, glutamic-pyruvic transaminase, INR, prothrombin

time, blood urea nitrogen, creatinine, magnesium, glucose, lactate, SOFA, trauma, first day vasopressor, first day sedative, hypertention, coronary

artery disease, atrial fibrillation, congestive heart failure, diabetes, chronic pulmonary disease, and stroke.

to albumin-adjusted total Ca levels. Adjusted for major

confounders, our results suggested that hypocalcemia patients

with ICH at ICU admission have an increased risk of in-

hospital and ICU mortalities. In patients with hypocalcemia,

we observed a 67% increased risk of in-hospital mortality

and a 72% increased risk of ICU mortality compared to those

without hypocalcemia.

In recent years, studies had found that hematoma expansion

in patients with spontaneous ICH is related to the serum Ca

level at admission (19). A single-center retrospective cohort

study from Japan included 273 patients with non-traumatic ICH

divided into quartiles based on admission serum Ca levels. After

adjusting for other variables, they found that patients in the low

serum calcium levels had significantly larger hematoma volumes

(18ml), when compared with that in the higher serum Ca

levels group (P = 0.025) (20). Another prospective cohort study

analyzed 2,103 patients with primary ICH (12). They reported

that patients with hypocalcemia had a higher baseline hematoma

volume than patients without hypocalcemia. In a subgroup of

1,309 patients, a higher blood Ca concentration was associated
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FIGURE 3

Association between hypocalcemia and ICU mortality according to subgroup. Analyses were adjusted for gender, age, region, race, BMI, mean

systolic, mean diastolic, white blood cell count, hemoglobin, platelet, glutamic-pyruvic transaminase, INR, prothrombin time, blood urea

nitrogen, creatinine, magnesium, glucose, lactate, SOFA, trauma, first day vasopressor, first day sedative, hypertention, coronary artery disease,

atrial fibrillation, congestive heart failure, diabetes, chronic pulmonary disease, and stroke.

to a decreased risk of ICH expansion (OR = 0.55; 95% CI,

0.35–0.86; P = 0.01). According to another study, low ionized

Ca levels were associated with a poor prognosis following

early hematoma expansion in 111 patients with hypertensive

ICH (21).

The causal relationship and precise mechanism between

hypocalcemia and mortality are unclear. According to previous

studies, the mechanism might be as follows: Firstly, Ca plays

a crucial role in the coagulation cascade (22). Therefore,

hypocalcemia patients with ICHmay have impaired hemostasis,

promoting ICH progression, and increasing the risk of

mortality. Secondly, serum Ca levels are correlated with

PLT function and several steps of PLT aggregation (23, 24).

Hypocalcemia may be accompanied by PLT dysfunction and

a poor prognosis. Thirdly, activation of the systemic immune

response after ICH leads to PTH-vitamin D axis dysfunction,

low serum Ca levels, or hypocalcemia (25). Hypocalcemia is

common in patients requiring ICU admission and is associated

to increased mortality (26). The specific mechanism requires

further research.
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FIGURE 4

Kaplan–Meier analysis for (A) hospital mortality and (B) ICU mortality in hypocalcemia and non-hypocalcemia group.

TABLE 3 Association of hypocalcemia with mortality in critically ill

patients with ICH.

OR (95%CI), P-value

Model 1 Model 2 Model 3

In-hospital mortality

Non-

hypocalcemia

Ref Ref Ref

Hypocalcemia 1.83 (1.31, 2.56) 2.17 (1.52,3.08) 1.67 (1.09, 2.56)

0.004 <0.001 0.018

ICU mortality

Non-

hypocalcemia

Ref Ref Ref

Hypocalcemia 2.15 (1.48, 3.13) 2.23 (1.50, 3.31) 1.72 (1.06, 2.77)

<0.001 <0.001 0.027

Model 1: no covariates were adjusted.

Model 2: adjusted for age, gender, race/ethnicity.

Model 3: adjusted for: age, gender, race/ethnicity, region, causes of ICH, bodymass index,

systolic blood pressure, white blood cell count, hemoglobin, platelet, glutamic-pyruvic

transaminase, international normalized ratio, prothrombin time, blood urea nitrogen,

creatinine, magnesium, glucose, lactate, sequential organ failure assessment score, first

day vasopressor, first day sedative, atrial fibrillation, congestive heart failure.

OR, odds ratio; 95%CI, 95% confidence interval; ICU, intensive care units.

Subgroup analyses based on the causes of ICH revealed that

traumatic ICH patients with hypocalcemia had a 147% elevated

risk of ICUmortality (OR= 2.47, 95% CI: 1.07–5.69, P= 0.034).

Vinas-Rios et al. (27) conducted an ambispective comparative

case-control study and suggested that traumatic hypocalcemia

patients with ICH had an increased risk of mortality (OR =

5.2; 95% CI: 4.48–6.032). Our results were consistent with their

findings. Patients with traumatic ICH have a higher incidence

of hypocalcemia. The mechanism may be as follows: in patients

with traumatic ICH, the decrease in serum Ca is related

to bonding with the complex Calcium/calmodulin-dependent

protein kinases II and lactic acid (28, 29). Transmembrane Ca

input after traumatic cell membrane deformation leads to acute

elevation of intracellular Ca levels, which can cause neurological

disorders, along with death (30).

Subgroup analyses also revealed that hypocalcemia patients

with diabetes had a significantly increased risk of ICU mortality

compared to those without hypocalcemia. ICH is a subtype

of stroke associated to higher mortality (31), particularly

in the population with diabetes mellitus (DM) (32). The

pathophysiological processes underlying ICH-induced brain

damage are highly influenced by the presence of DM (33). DM

promotes massive blood-brain barrier destruction after ICH by

affecting pericytes, endothelial cells, and tight junction proteins,

leading to vasogenic edema and hematoma expansion (34–36).

Future studies should aim to provide a better understanding

of pathophysiological changes in patients with ICH and DM.

These patients deserve more attention, and it is important to

develop an appropriate treatment strategy for patients with ICH

and DM.

In this study, we also found that ICH complicated by

hypocalcemia was not correlated with the underlying disease

but was correlated with the severity of the condition since

patients with ICH, complicated by hypocalcemia, had higher

SOFA scores. Previous studies have clarified that for organs other

than the liver, the SOFA score of each organ has a significant
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correlation with in-hospital mortality during the patient’s ICU

period (37, 38); in particular, the neurological score has the

greatest impact on prognosis (38). This is consistent with the

conclusions of our study.

The present study has several strengths. Firstly, this was

the first study based on the association between hypocalcemia

and hospital mortality in patients with ICH using multicenter

ICU data from the United States. Secondly, a relatively large

sample was used in this study; therefore, subgroup analysis

could be conducted. The results were stable in each subgroup,

and no interactions were found. However, this study also has

several limitations. First, our analyses are retrospective and

based on observational studies; therefore, they cannot establish a

causal association between hypocalcemia and hospital mortality

in patients with ICH. Second, although the E-value analysis

suggested that certain confounding factors were unlikely to

effect the risk of ICU mortality, the possibility of confounding

effects of incomplete adjustment for some ICH risk factors

such as hematoma volume, ICH score and oral anticoagulation

cannot be excluded. Third, since the cohort participants

were ICU patients, our conclusions may not generalize to

other populations.

5. Conclusions

In this multicenter cohort, we found that hypocalcemia

was associated with an elevated risk of in-hospital and

ICU mortalities in critically ill patients with ICH. Further

randomized clinical trials and prospective studies are needed to

validate our findings.
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Association of hypocalcemia with hospital mortality in critically ill

patients with ICH.
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Introduction: Non-vitamin K antagonist oral anticoagulants (NOACs) has been the

drug of choice for preventing ischemic stroke in patients with atrial fibrillation (AF)

since 2014. Many studies based on claim data revealed that NOACs had comparable

e�ect to warfarin in preventing ischemic stroke with fewer hemorrhagic side e�ects.

We analyzed the di�erence in clinical outcomes according to the drugs in patients

with AF based on the clinical data warehouse (CDW).

Methods: Weextracted data of patientswith AF fromour hospital’s CDWand obtained

clinical information including test results. All claim data of the patients were extracted

from National Health Insurance Service, and dataset was constructed by combining it

with CDW data. Separately, another dataset was constructed with patients who could

obtain su�cient clinical information from the CDW. The patients were divided NOAC

and warfarin groups. The occurrence of ischemic stroke, intracranial hemorrhage,

gastrointestinal bleeding, and death were confirmed as clinical outcome. The factors

influencing the risk of clinical outcomes were analyzed.

Results: The patients who were diagnosed AF between 2009 and 2020 were included

in the dataset construction. In the combined dataset, 858 patients were treated

with warfarin, 2,343 patients were treated with NOACs. After the diagnosis of AF,

the incidence of ischemic stroke during follow-up was 199 (23.2%) in the warfarin

group, 209 (8.9%) in the NOAC group. Intracranial hemorrhage occurred in 70 patients

(8.2%) among the warfarin group, 61 (2.6%) of the NOAC group. Gastrointestinal

bleeding occurred in 69 patients (8.0%) in the warfarin group, 78 patients (3.3%) in the

NOAC group. NOAC’s hazard ratio (HR) of ischemic stroke was 0.479 (95% CI 0.39–

0.589, p < 0.0001), HR of intracranial hemorrhage was 0.453 (95% CI 0.31–0.664, p

< 0.0001), and HR of gastrointestinal bleeding was 0.579 (95% CI 0.406–0.824, p =

0.0024). In the dataset constructed using only CDW, the NOAC group also had a lower

risk of ischemic stroke and intracranial hemorrhage than warfarin group.

Conclusions: In this CDW based study, NOACs are more e�ective and safer than

warfarin in patients with AF even with long-term follow-up. NOACs should be used

to prevent ischemic stroke in patients with AF

KEYWORDS

atrial fibrillation, NOAC, warfarin, ischemic stroke, intracranial hemorrhage, gastrointestinal

bleeding
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Introduction

Atrial fibrillation is the most dangerous comorbidity of ischemic

stroke as it causes more than five-fold increase in the risk of

developing ischemic stroke compared to individuals without atrial

fibrillation (1). The prevalence of atrial fibrillation is ∼1–1.6% (2),

and it increases to ∼8.15% in patients at least 80 years of age (3).

In Asian countries where the elderly population is growing rapidly,

the prevalence is also increasing rapidly (3, 4). Furthermore, atrial

fibrillation occurs in ∼15–20% of patients with ischemic stroke (5).

Approximately 36–40% of patients with ischemic stroke aged ≥80

years have atrial fibrillation (6, 7). Therefore, medical treatment to

prevent ischemic stroke in patients with atrial fibrillation is essential

to reduce the incidence of ischemic stroke.

In the past, warfarin, a vitamin K antagonist, was the only

anticoagulant treatment used to prevent ischemic stroke secondary to

atrial fibrillation. However, achieving the target blood concentration

of warfarin that provides anticoagulant effects is challenging and

may result in hemorrhagic side effects that are more common in

Asians (8, 9). Several randomized controlled trials (RCTs) have

reported that new non-vitamin K oral anticoagulants (NOACs) have

similar efficacy in ischemic stroke prevention and fewer side effects

(including bleeding) than warfarin (10–13). As NOACs were first

recommended in 2014, the current guidelines suggest that they be

used as an anticoagulant in patients with atrial fibrillation instead of

warfarin unless contraindications to NOACs exist (14).

Several studies based on claim data comparing the effectiveness

and safety of NOACs to those of warfarin have reported similar

results as the previous RCTs (15, 16). However, since these studies

were conducted not long after NOAC was recommended, the long-

term follow-up results were unknown. Claim data studies have

the advantage of analyzing several individuals based on big data;

however, they cannot accurately reflect patient test results or clinical

information such as weight, alcohol intake, and smoking status.

As hospital electronic medical records (EMR) contain such data,

clinical studies have been conducted using EMR. EMR-based studies

are designed similarly to cohort studies and can include long-

term follow-up data (17). In addition, although retrospective, the

data can be analyzed without selection bias. However, some EMR-

based studies are limited to a single institution. In this study,

dataset combining our hospital’s EMR-based clinical data warehouse

(CDW) and claim data including the whole medical record was also

constructed in order to compensate for the disadvantages of using

data from a single institution. This study aimed to compare and

analyze the risk of developing ischemic stroke and hemorrhagic side

effects during long-term follow-up in patients with atrial fibrillation

treated with warfarin to those of patients treated with NOACs.

Methods

Data source and study population

Data were extracted from the CDW that was established using

the medical records of the National Health Insurance Service Ilsan

Hospital. All data used in this study were dated between 2009 and

2020. Patients aged≥20 years who were diagnosed with International

Classification of Diseases 10th revision (ICD-10) code 148 (atrial

fibrillation) as a principal diagnosis or a first secondary diagnosis who

had been treated more than once were included in this study. Patients

with rheumatic mitral valve diseases (ICD-10 code I05) and those

who underwent heart valve surgery (ICD-10 code Z95.2-4), which

is not included in the indications of NOACs, were excluded from

the study.

The CDW+C data was constructed by combining patient data

extracted from the CDW with whole claim data. To investigate

the occurrences of ischemic stroke or hemorrhagic side effects

after a diagnosis of atrial fibrillation, patients diagnosed with atrial

fibrillation prior to 2009 (when the CDW was established) were

excluded. As the medication administration records were available

within the claim data, patients whose anticoagulant medication

was changed during the follow-up period were excluded from this

analysis. The patients with no anticoagulant were excluded. The

follow-up period was from the time of diagnosis of atrial fibrillation

to December 31, 2020.

The CDW-O data were constructed by selecting patients

with sufficient clinical information. Patients with no available

data regarding medications and those who were administered

anticoagulant medications for <30 days were excluded from the

study. The patients who were administered antiplatelet medication

only were excluded. Patients diagnosed with concomitant atrial

fibrillation and ischemic stroke were excluded from the analysis.

Patients who were initially administered warfarin but whose

medication changed to NOACs during their treatment period were

identified. The follow-up period was from the time of diagnosis of

atrial fibrillation to December 31, 2021.

Patients were divided into the warfarin group and the

NOAC group based on the administered medication. Common

comorbidities of atrial fibrillation and cardiovascular disease, such as

hypertension (HTN), diabetes mellitus (DM), dyslipidemia, chronic

kidney disease (CKD), peripheral arterial occlusive disease, liver

disease, heart failure, and previous myocardial infarctions, were

identified prior to the diagnosis of atrial fibrillation using ICD-

10 codes of claim data (Supplementary Table 1). Blood test results

and blood pressure measurements within 1 year before and after

the diagnosis of atrial fibrillation were extracted from the CDW

data, and HTN, DM, dyslipidemia, CKD, and liver disease were

identified based on these data. HTN was defined as systolic blood

pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg.

Blood pressure was checked at the closest time point within 1

year from the diagnosis of atrial fibrillation. An HbA1c of 6.5%

or higher was used to diagnose DM. Dyslipidemia was diagnosed

as a low-density lipoprotein ≥140 mg/dL. CKD was defined

as an estimated glomerular filtration rate (eGFR) <60 mL/min.

Liver disease was diagnosed as aspartate aminotransferase, alanine

aminotransferase, and alkaline phosphatase >120. The CHA2DS2-

VASc and HAS-BLED scores were calculated using the patient data

(Supplementary Tables 2, 3). This study was conducted in accordance

with the Declaration of Helsinki (as revised in 2013) and approved

by the Institutional Review Board of the National Health Insurance

Service Ilsan Hospital (NHIMC 2021-07-022). The need for written

informed consent was waived as patient identification data were

removed from the database used.

Study outcomes

Four outcome variables were investigated: ischemic stroke,

intracranial hemorrhage, gastrointestinal bleeding (GI bleeding), and

Frontiers inNeurology 02 frontiersin.org
285

https://doi.org/10.3389/fneur.2023.1058781
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lee et al. 10.3389/fneur.2023.1058781

death. In the CDW+C data, the occurrence of the outcome variables

was identified using the corresponding operational definitions and

death was determined (Supplementary Table 1). In the CDW-O data,

brain magnetic resonance imaging data indicating an ischemic stroke

and intracranial hemorrhage were used additionally to identify

patients with outcomes was determined.

Statistical analysis

The analysis period was from the first diagnosis of atrial

fibrillation to the occurrence of the outcome variable or the

end of the observation period. Continuous data, such as age

and blood test results, are presented as mean and standard

deviation. Data such as the frequency of comorbidities and the

incidence of outcome variables are presented as percentages. We

calculated crude incidence as the event numbers by 100 person-

years (percentage/years). A chi-square test was conducted to compare

and analyze the frequencies of the comorbidities, and a t-test was

used to compare continuous variables such as age, CHA2DS2-

VASc score, andHAS-BLED score. A time-dependent Cox-regression

analysis was performed using observed items collected at 95%

confidence intervals (CIs) as independent variables to calculate the

hazard ratios (HRs) of the occurrence of outcome variables in the

warfarin and NOAC groups. Cox proportional regression analysis

was performed by including the same independent variables for all

outcome variables as a multivariate model. First, it was analyzed by

including all comorbidities along with age and sex. Second, when the

CHADS2VASC2 score was included, the components of heart failure,

HTN, DM, stroke, thromboembolism, and vascular disease were

excluded from independent variables. Third, when the HASBLED

score was included, the components; HTN, Renal disease, Liver

disease, stroke, and prior bleeding were excluded from independent

variables. Schoenfeld residuals to check the proportional hazards

assumption. For the outcome variable ICH that did not satisfy

the proportional hazards assumption, time dependent covariate was

added and analyzed. The incidence of each outcome was estimated by

use of the Kaplan–Meier estimator. Comparisons between warfarin

and NOAC groups were made using a log-rank test. Statistical

significance was set at p < 0.05 and was two-sided. All statistical

analyses were performed using SAS 9.4 (SAS Institute Inc., San

Francisco, CA, USA) and R software (version 4.2.0 R Core Team, R

Foundation for Statistical Computing, Vienna, Austria).

Results

A total of 7,774 patients with atrial fibrillation treated more than

once from 2009 to 2020 were identified in the CDW. Ninety-eight

(1.26%) patients with valvular disease were excluded from the study.

Of the 7,676 patients whose data were extracted from the CDW, 1,159

FIGURE 1

The process of extracting patients with atrial fibrillation from the clinical data warehouse (CDW), combining them with claim data, and selecting study

subjects (CDW+C data).
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TABLE 1 Clinical characteristics and outcomes of patient groups divided according to medications.

CDW−O dataset CDW+C dataset

Warfarin % NOAC % P-value Warfarin % NOAC % P-value

n 788 1754 858 2343

Male 429 54.4% 876 49.9% 0.039 453 52.8% 1186 50.6% 0.2748

Age 72.7± 10.4 74.3± 10.0 <0.0001 70.55± 12.43 73.44± 10.52 <0.0001

<65 153 19.4% 275 15.7% <0.0001 247 28.8% 437 18.7% <0.0001

65∼74 253 32.1% 525 29.9% 253 29.5% 684 29.2%

75∼ 382 48.5% 954 54.4% 358 41.7% 1222 52.2%

Comorbidities

Cancer 45 5.7% 126 7.2% 0.172 67 7.8% 243 10.4% 0.0299

Previous ischemic stroke 123 15.6% 158 9.0% <0.0001 282 32.9% 454 19.4% <0.0001

Previous intracranial hemorrhage 20 2.5% 38 2.2% 0.567 13 1.5% 32 1.4% 0.7505

Hypertension 552 70.1% 1107 63.1% 0.001 658 76.7% 1750 74.7% 0.2458

Diabetes Mellitus 254 32.2% 415 23.7% <0.0001 325 37.9% 814 34.7% 0.1006

Dyslipidemia 82 10.4% 211 12.0% 0.254 438 51.0% 1261 53.8% 0.1641

Previous Ischemic heart disease 21 2.7% 50 2.9% 0.798 252 29.4% 638 27.2% 0.2321

Heart failure 157 19.9% 219 12.5% <0.0001 91 10.6% 162 6.9% 0.0006

Chronic kidney disease 228 28.9% 284 16.2% <0.0001 111 12.9% 88 3.8% <0.0001

ESRD 30 3.8% 5 0.3% <0.0001 65 7.6% 10 0.4% <0.0001

Peripheral arterial occlusive disease 28 3.6% 49 2.8% 0.317 94 11.0% 320 13.7% 0.0436

Liver failure 61 7.7% 119 6.8% 0.403 78 9.1% 173 7.4% 0.1115

Previous pulmonary thromboembolism 14 1.8% 30 1.7% 0.906 12 1.4% 54 2.3% 0.11

Previous deep vein thrombosis 17 2.2% 21 1.2% 0.077 13 1.5% 26 1.1% 0.3543

Previous systemic thromboembolism 1 0.1% 4 0.2% 0.684 13 1.5% 18 0.8% 0.056

Previous upper GI bleeding 34 4.3% 58 3.3% 0.251 47 5.5% 79 3.4% 0.0066

Previous other GI bleeding 3 0.4% 14 0.8% 0.299 6 0.7% 16 0.7% 0.9603

Previous any bleeding 54 6.9% 143 8.2% 0.263 47 5.5% 172 7.3% 0.0644

CHADS2VASC2 score 3.37± 1.61 3.15± 1.55 0.001 3.59± 1.84 3.59± 1.7 <0.0001

HASBLED score 2.60± 1.20 2.26± 1.12 <0.0001 1.87± 0.97 1.83± 0.85 0.0025

(Continued)
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TABLE 1 (Continued)

CDW−O dataset CDW+C dataset

Warfarin % NOAC % P-value Warfarin % NOAC % P-value

Outcome event

Ischemic stroke 68 8.6% 60 3.4% <0.0001 199 23.2% 209 8.9% <0.0001

Intracranial hemorrhage 25 3.2% 19 1.1% <0.0001 70 8.2% 61 2.6% <0.0001

Gastrointestinal bleeding 55 7.0% 83 4.7% 0.023 69 8.0% 78 3.3% <0.0001

All-Cause death 134 17.0% 130 7.4% <0.0001 439 51.2% 433 18.5% <0.0001

BMI (kg/m∗m) (n= 1787) 24.30± 3.53 n= 443 24.54± 3.80 n= 850 0.272

Laboratory data∗

Hb (n= 1926) 13.04± 2.33 n= 481 13.20± 2.09 n= 880 0.187

Platelet (n= 1926) 209.6± 74.1 n= 481 216.1± 70.8 n= 880 0.108

PT (INR) (n= 1824) 1.67± 1.16 n= 596 1.14± 0.47 n= 742 <0.0001

NT-pro BNP (n= 791) 8529± 10564 n= 185 4774± 6726 n= 380 <0.0001

D-dimer (n= 323) 3.78± 5.08 n= 66 2.85± 3.90 n= 204 0.117

free T4 (n= 1120) 1.36± 0.80 n= 271 1.36± 0.74 n= 506 0.951

TSH (n= 1136) 2.36± 3.64 n= 278 2.37± 5.00 n= 511 0.984

BUN (n= 1927) 22.3± 15.6 n= 480 19.9± 11.0 n= 888 <0.0001

Creatinine (n= 1928) 1.36± 1.42 n= 480 0.95± 0.47 n= 888 <0.0001

eGFR (CKD-EPI) (n= 1928) 65.6± 27.7 n= 480 72.7± 21.2 n= 888 <0.0001

AST (GOT) (n= 1789) 44.3± 70.8 n= 454 43.9± 102.0 n= 808 0.951

ALT (GPT) (n= 1789) 32.6± 55.4 n= 454 33.3± 58.9 n= 808 0.848

ALP (n= 550) 74.4± 31.0 n= 190 101.4± 104.5 n= 242 0.001

Cholesterol (n= 966) 151.2± 40.5 n= 275 159.2± 40.7 n= 431 0.012

HDL-Cholesterol (n= 881) 39.8± 13.9 n= 251 46.0± 13.2 n= 400 <0.0001

LDL-Cholesterol (n= 651) 91.1± 33.4 n= 195 97.6± 30.0 n= 294 0.026

Triglyceride (n= 909) 106.0± 65.2 n= 261 106.7± 54.1 n= 406 0.894

HbA1c (n= 788) 6.59± 1.50 n= 230 6.24± 1.1 n= 370 0.001

Glucose, AC (n= 906) 138.8± 64.3 n= 297 138.8± 64.3 n= 358 0.324

NOAC, non-vitamin K antagonist oral anticoagulant; GI, gastrointestinal; ESRD, end-stage renal disease; PAOD, peripheral arterial occlusive disease; BMI, body mass index; Hb, hemoglobin; PT, prothrombin time; INR, international normalized ratio; NT-pro BNP,

N-terminal pro-brain natriuretic peptide; TSH, thyroid stimulating hormone; BUN, blood urea nitrogen; GFR, glomerular filtration rate; CKD-EPI, chronic kidney disease epidemiology collaboration; AST, aspartate amino-transferase; ALT, alanine aminotransferase; ALP,

alkaline phosphatase; HDL, high density lipoprotein; LDL, low density lipoprotein. ∗ n, number of patients with available data.
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TABLE 2 Hazards for ischemic stroke, intracranial hemorrhage, GI bleeding and all cause death (CDW+C data).

Ischemic stroke Intracranial hemorrhage

unadjusted HR (95% CI) P-value Adjusted HR (95% CI) P-value unadjusted HR (95% CI) P-value Adjusted HR (95% CI) P-value

Warfarin 1 1 1 1

NOAC 0.467 (0.384–0.568) <0.0001 0.479 (0.39–0.589) <0.0001 0.452 (0.319–0.639) <0.0001 0.453 (0.31–0.664) <0.0001

<65 1 1 1 1

65∼74 0.99 (0.762–1.287) 0.9415 0.997 (0.755–1.397) 0.9853 1.554 (0.983–2.457) 0.0593 1.833 (1.105–3.039) 0.0189

75∼ 1.257 (0.983–1.608) 0.0679 1.248 (0.943–1.65) 0.1207 1.365 (0.855–2.179) 0.1926 1.574 (0.919–2.697) 0.0985

CHADS2VASC2 score 1.089 (1.03–1.151) 0.0028 1.096 (0.997–1.205) 0.0582 1.209 (1.095–1.336) 0.0002 ∗

HASBLED score 1.022 (0.92–1.136) 0.6817 ∗ 1.363 (1.133–1.64) 0.001 1.139 (0.901–1.438) 0.2765

GI bleeding All cause death

Warfarin 1 1 1 1

NOAC 0.573 (0.413–0.795) 0.0009 0.579 (0.406–0.824) 0.0024 0.501 (0.438–0.573) <0.0001 0.502 (0.435–0.58) <0.0001

<65 1 1 1 1

65∼74 1.49 (0.883–2.514) 0.1348 1.46 (0.844–2.523) 0.1759 2.328 (1.762–3.076) <0.0001 2.549 (1.912–3.399) <0.0001

75∼ 3.083 (1.917–4.96) <0.0001 3.045 (1.799–5.153) <0.0001 7.096 (5.504–9.15) <0.0001 7.746 (5.902–10.166) <0.0001

CKD 2.691 (1.597–4.533) 0.0002 1.287 (0.596–2.782) 0.5209 3.191 (2.61–3.902) <0.0001 1.546 (1.168–2.046) 0.0023

CHADS2VASC2 score 1.3 (1.181–1.43) <0.0001 0.994 (0.841–1.176) 0.9469 1.418 (1.363–1.475) <0.0001 1.09 (1.019–1.165) 0.0123

HASBLED score 1.691 (1.421–2.012) <0.0001 1.572 (1.256–1.968) <0.0001 1.586 (1.476–1.704) <0.0001 1.145 (1.034–1.268) 0.0091

NOAC, non-vitamin K antagonist oral anticoagulant; HR, hazard ratio; CI, confidence intervals; GI, gastrointestinal; CKD, chronic kidney disease. Adjusted for age, sex and comorbidities. ∗not included as an adjustment variable.
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FIGURE 2

The process of extracting patients with atrial fibrillation from the clinical data warehouse (CDW) and selecting subjects for the analysis (CDW-O data).

(15.10%) who were treated for atrial fibrillation at least once before

2009 were excluded. Patients whose medication was changed during

the follow-up period were also excluded. Patients who did not receive

anticoagulants were excluded. Of the 3,201 (41.7%) patients included

in the analysis of CDW+C data, 858 (26.8%) were administered

warfarin and 2,343 (73.2%) were administered NOACs (Figure 1).

The proportion of patients ≥75 years old was 1,222 (52.2%) in the

NOAC group, which was higher than that of the warfarin group

(p < 0.0001). The rates of previous ischemic stroke, heart failure, and

CKD were significantly higher in the warfarin group. The incidence

of ischemic stroke, intracranial hemorrhage, GI bleeding, and death

were all significantly lower in the NOAC group than in the warfarin

group (p< 0.0001) (Table 1). The risks of ischemic stroke (HR: 0.479;

95%CI: 0.39–0.589, p< 0.0001), intracranial hemorrhage (HR: 0.453;

95% CI: 0.31–0.664, p < 0.0001), GI bleeding (HR: 0.579; 95% CI:

0.406–0.824), and all-cause death (HR: 0.502; 95% CI: 0.435–0.58)

were lower in the NOAC group than in the warfarin group (Table 2).

Of the 7,676 patients, 2,542 (33.12%) had sufficient clinical data

and were included in the analysis of CDW-O data. The warfarin

group included 788 (31.00%) patients and the NOAC group included

1,754 (69.00%) patients (Figure 2). As in the CDW+C data, the mean

age of the warfarin group was significantly lower than that of the

NOAC group (p < 0.0001). A total of 153 (19.4%) of patients in

the warfarin group were <65 years of age, which was significantly

lower than that of the NOAC group (15.7%) (p < 0.0001). As

in the CDW+C data, the rates of previous ischemic stroke, heart

failure, and CKD, and additionally HTN and DM were significantly

higher in the warfarin group than in the NOAC group. The mean

CHA2DS2-VASc (p = 0.001) and HAS-BLED (p < 0.0001) scores

were significantly higher in the warfarin group than in the NOAC

group. In the warfarin group, the mean international normalized

ratio (INR) was 1.67, the mean eGFR was 65.6 mL/min, and the mean

HbA1c was 6.59%. The INR of the warfarin group were statistically

greater than those in the NOAC group due to drug effect (p <

0.0001). Regarding the higher comorbidities of DM and CKD, HbA1c

in the warfarin group was higher and eGFR in the warfarin group

was lower than those in the NOAC group significantly (p= 0.001,

p < 0.0001). Themedian follow-up periodwas 2.3 years (interquartile

range 0.8-4.9 years) in warfarin group and 2.4 years (interquartile

range 1.2-4.2 years) in the NOAC group. The outcome events were

identified at a lower rate than the CDW+C data, except for GI

bleeding. All outcome events occurred significantly lower in the

NOAC group than in the warfarin group, as in the CDW+C data

(Table 1). The incidence of ischemic stroke, intracranial hemorrhage

and GI bleeding was 2.75, 1.01, and 2.22/100 person-years in the

warfarin group and 1.14, 0.36, and 1.57/100 person-years in the
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TABLE 3 Hazards for ischemic stroke intracranial hemorrhage, GI bleeding and cardiovascular death (CDW-O data).

Ischemic stroke Intracranial hemorrhage

Unadjusted HR (95% CI) P-value Adjusted HR (95% CI) P-value unadjusted HR (95% CI) P-value Adjusted HR (95% CI) P-value

Warfarin 1 1 1 1

NOAC 0.401 (0.284–0.568) <0.0001 0.399 (0.282–0.565) <0.0001 0.380 (0.212–0.684) 0.001 0.430 (0.236–0.785) 0.006

<65 1 1 1 1

65∼74 1.654 (1.293–2.117) <0.0001 1.505 (0.860–2.635) 0.152 2.228 (1.543–3.216) <0.0001 0.666 (0.299–1.481) 0.319

75∼ 2.017 (1.6–2.544) <0.0001 2.037 (1.191–3.483) 0.009 1.925 (1.329–2.786) 0.0005 0.608 (0.270–1.368) 0.229

CKD 1.371 (0.901–2.086) 0.14 0.985 (0.625–1.551) 0.947 2.947 (1.614–5.379) <0.0001 2.258 (1.214–4.199) 0.01

CHADS2VASC2 score 1.145 (1.028–1.276) 0.014 0.997 (0.849–1.170) 0.97 1.188 (0.992–1.424) 0.062 1.236 (0.975–1.567) 0.08

HASBLED score 1.288 (1.111–1.493) 0.001 1.223 (1.055–1.419) 0.008 1.335 (1.043–1.709) 0.022 1.330 (1.004–1.763) 0.047

GI bleeding All cause death

Warfarin 1 1 1 1

NOAC 0.788 (0.564–1.102) 0.164 0.787 (0.555–1.117) 0.18 0.655 (0.506–0.848) 0.001 0.671 (0.515–0.873) 0.003

<65 1 1 1 1

65∼74 1.654 (1.293–2.117) <0.0001 1.370 (0.720–2.607) 0.337 1.717 (0.966–3.052) 0.065 1.557 (0.873–2.779) 0.134

75∼ 2.017 (1.6–2.544) <0.0001 3.357 (1.858–6.065) <0.0001 5.281 (3.119–8.941) <0.0001 4.479 (2.627–7.638) <0.0001

CKD 2.142 (1.498–3.061) <0.0001 1.612 (1.119–2.322) 0.01 3.055 (2.388–3.907) <0.0001 2.070 (1.600–2.677) <0.0001

CHADS2VASC2 score 1.336 (1.208–1.477) <0.0001 1.097 (0.949–1.268) 0.21 1.337 (1.238–1.443) <0.0001 1.106 (0.995–1.229) 0.062

HASBLED score 1.423 (1.237–1.635) <0.0001 1.260 (1.079–1.470) 0.003 1.432 (1.294–1.585) <0.0001 1.249 (1.101–1.416) 0.001

NOAC, non-vitamin K antagonist oral anticoagulant ; HR, hazard ratio; CI, confidence intervals; GI, gastrointestinal; CKD, chronic kidney disease. Adjusted for age, sex and comorbidities.
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FIGURE 3

The incidence of each outcome was estimated using the Kaplan–Meier estimator. Comparisons between groups were made using a log-rank test (A)

Ischemic stroke, (B) Intracranial hemorrhage, (C) Gastrointestinal bleeding, and (D) Death.

NOAC group, respectively. The mortality was 5.42/100 person-years

in the warfarin group and 2.47/100 person-years in the NOAC group.

The NOAC group had lower risks of ischemic stroke (HR: 0.399; 95%

CI: 0.282–0.565), intracranial hemorrhage (HR: 0.430; 95%CI: 0.236–

0.785), and death (HR: 0.671; 95% CI: 0.515–0.873) than the warfarin

group (Table 3). The Kaplan-Meier survival curve demonstrated a

significant higher cumulative incidence of stroke and death in the

warfarin group (Figure 3).

Discussion

In this study, two datasets (CDW+C and CDW-O) were

constructed by using CDW and claim data to identify clinical

outcomes. The results of each dataset in this study were similar.

Patients administered NOACs had a lower risk of ischemic

stroke, intracranial hemorrhage, and death than those administered

warfarin. The risk of GI bleeding was not statistically lower in the

NOAC group than in the warfarin group in the CDW-O data but was

statistically lower in the CDW+C data. CKD was shown to increase

the risk of intracranial hemorrhage, GI bleeding, and death in the

CDW-O data. CKD is a major risk factor for cardiovascular disease

and death and increases the bleeding risk (18). However, patients

with CKD may have been identified more accurately in the CDW-

O data than in the CDW+C data, which may have contributed to

these results. The HAS-BLED score was associated with the risk of

developing GI bleeding in both datasets.

The findings of this study are consistent with those of previous

studies. The first study comparing and analyzing ischemic stroke,

intracranial hemorrhage, and all-cause death between warfarin

and NOACs based on claim data in Korea found that patients

administered NOACs had a similar risk of developing ischemic

stroke as patients administered warfarin, and the cause of intracranial

hemorrhage and all-cause death was lower in the NOAC group (15).

A follow-up study reported that patients administered NOACs have

a lower risk of ischemic stroke and GI bleeding than those who were

administered warfarin (19).

In this study, more clinical outcomes were identified in the

CDW+C data than in the CDW-O data. Ischemic stroke occurred

in 8.6% of patients in the warfarin group and 3.4% of patients in

the NOAC group in the CDW-O data and in 23.2% of patients in

the warfarin group and 8.9% of patients in the NOAC group in
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the CDW+C data. Although these differences are significant, the

ratio of ischemic stroke in the two groups is similar in each dataset.

Intracranial hemorrhage occurred in 3.2% of patients in the warfarin

group and 1.1% of patients in the NOAC group in the CDW-O data

and in 8.2% of patients in the warfarin group and 2.6% of patients

in the NOAC group in the CDW+C data, which was a similar ratio

between the two groups in each dataset. GI bleeding occurred in 7.1%

of patients in the warfarin group and 5.1% of patients in the NOAC

group in the CDW-O analysis and in 8.0% of patients in the warfarin

group and 3.3% of patients in the NOAC group in the CDW+C data.

These values were similar between the two datasets.

In previous claim data studies, the annual incidence of ischemic

stroke was ∼1.5% in both the warfarin and NOAC groups during a

2-year follow-up period and 2.96% in the warfarin group and 2.07–

2.36% in the NOAC group in a subsequent follow-up study (15, 19).

The median follow-up period of in these past studies were 0.8 years,

but we followed a longer period, median 2.3–2.4 years, in this study.

The incidence of ischemic stroke in our study was lower than that

of previous study, and the difference was confirmed to be greater in

the warfarin group. The CDW-O data does not reflect the medical

records of patients treated at other hospitals. However, since the

occurrence of stroke was determined based on magnetic resonance

imaging results, the definition of stroke in this analysis may be more

accurate than the occurrence of stroke based on the operational

definition. The incidence of ischemic stroke in previous studies may

have been overestimated if based on the operational definition of

the claim data, whereas the incidence in this study may have been

underestimated as data from other hospitals was not available in the

CDW-O data.

In the CDW+C data, the follow-up period of the NOAC group

was a maximum of 4 years and 6 months, and ischemic stroke

occurred in 8.9% of patients, which was consistent with the incidence

of ischemic stroke reported in a previous study (19). This may be

because the studies used the same operational definition for ischemic

stroke. The incidence of ischemic stroke is higher in the warfarin

group in this study as the follow-up period of the warfarin group

is longer than that of the NOAC group. The warfarin group had a

maximum follow-up period of 12 years, and ischemic stroke occurred

in 23.2% of patients. As the annual incidence rate of ischemic stroke

in the warfarin group has been reported as 2.61%, the incidence

rate in this study should not be considered to be high. In addition,

after chronic warfarin use, the INR deviates from the treatment

target range, which may increase the incidence of ischemic stroke.

Among our study subjects, the number of patients whose INR was

adjusted within the target range was 141 (23.7%), and 182 (30.5%)

including the subtherapeutic range (INR > 1.7). Although the risk

of ischemic stroke was higher in patients whose INR was not within

the target range, statistical significance could not be confirmed due

to the small number of patients. As the incidences of GI bleeding

were based on the same operational definitions in the CDW-O and

CDW+C data in this study, the differences in the results of the

analyses may be because the CDW+C data included the treatment

history of the patients treated at other hospitals and a longer

follow-up period.

In this study, the warfarin group had more comorbidities than

the NOAC group. In the CDW-O data, HTN and DMwere identified

at a higher rate in the warfarin group than in the NOAC group,

but in the CDW+C data, there was no difference in the rate of

HTN and DM between the two groups. Since many patients were

treated in primary care institutions for HTN and DM, discrepancies

may have occurred in the CDW+O data, which is based on the

EMR of referral hospital. In the CDW+C data, which combines the

treatment history of all medical institutions, there was no difference

in the rate of HTN and DM as comorbidities, and it is thought to be

close to the actual clinical data. Old ischemic stroke was confirmed

about 1.7 times more in the warfarin group than the NOAC group

in both CDW-O and CDW+C data. However, old ischemic stroke

was not a significant predictor of ischemic stroke after diagnosis of

atrial fibrillation. Among the comorbidities, dyslipidemia and CKD

showed the largest difference between the CDW+C and CDW-

O datasets. Since dyslipidemia drugs are frequently prescribed in

primary care clinics other than in our hospital, from where CDW

data were extracted, dyslipidemia can be accurately identified at

a higher rate in CDW+C data. CKD was more frequent in the

CDW-O data than in the CDW+C data. The rate of CKD in

the CDW-O data may be more accurate as it was based on the

results of blood tests. Patients with stage 3 CKD may have been

difficult to identify using claim data. A claim data study conducted

in other Asian countries reported that CKD occurred in 20–29%

of patients, which is similar to the results of the CDW-O data in

this study (20).

This study has several limitations. First, although the patients’

clinical information was obtained from the CDW, several patients

had missing information. The patients’ test results were used

to account for the missing comorbidity data. Second, the

NOAC group could not be analyzed further based on the four

different medications due to a small patient population. Larger

multi-center studies should be conducted. Last, a selection

bias cannot be ruled out in this study as the patients were

from a single institution in one country, which may have

resulted in a higher incidence of clinical outcomes. Future

studies with similar follow-up periods should be conducted using

claim data.

Conclusion

In conclusion, this study combined data from the CDW

with claim data, resulting in more accurate clinical findings.

The findings indicated that NOACs are more effective than

warfarin for the prevention of ischemic stroke and reduction

of hemorrhagic side effects in patients with atrial fibrillation

at long-term follow-up. Patients with atrial fibrillation

should be treated with NOACs to reduce the incidence of

ischemic stroke.
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Cerebral small-vessel disease at
high altitude: A comparison of
patients from plateau and plain

Junlong Shu1,2‡, Wen Fei3‡, Jing Zhang1†, Fan Li1, Yu Hao3,

Zhijie Ding3, Tseyang3, Drolma3, Shiyong Ji3, Weiwei Zhao3,

Yaxiong Hu3, Wei Sun1, Yining Huang1,2, Yuhua Zhao3* and

Wei Zhang1,2*

1Department of Neurology, Peking University First Hospital, Beijing, China, 2Beijing Key Laboratory of

Neurovascular Disease Discovery, Beijing, China, 3Department of Neurology, People’s Hospital of Tibet

Autonomous Region, Lhasa, China

Background and purpose: Cerebral small-vessel disease (CSVD) is prevalent

worldwide and one of the major causes of stroke and dementia. For patients with

CSVD at high altitude, a special environmental status, limited information is known

about their clinical phenotype and specific neuroimaging change. We investigated

the clinical and neuroimaging features of patients residing at high altitude by

comparing with those in the plain, trying to explore the impact of high altitude

environment on CSVD.

Methods: Two cohorts of CSVD patients from the Tibet Autonomous Region

and Beijing were recruited retrospectively. In addition to the collection of clinical

diagnoses, demographic information and traditional vascular risk factors, the

presence, location, and severity of lacunes and white matter hyperintensities

were assessed by manual counting and using age-related white matter changes

(ARWMC) rating scale. Di�erences between the two groups and influence of

long-term residing in the plateau were analyzed.

Results: A total of 169 patients in Tibet (high altitude) and 310 patients in Beijing

(low altitude) were enrolled. Fewer patients in high altitude group were found with

acute cerebrovascular events and concomitant traditional vascular risk factors.

The median (quartiles) ARWMC score was 10 (4, 15) in high altitude group and

6 (3, 12) in low altitude group. Less lacunes were detected in high altitude group

[0 (0, 4)] than in low altitude group [2 (0, 5)]. In both groups, most lesions located in

the subcortical (especially frontal) and basal ganglia regions. Logistic regressions

showed that age, hypertension, family history of stroke, and plateau resident were

independently associated with severe white matter hyperintensities, while plateau

resident was negatively correlated with lacunes.

Conclusion: Patients of CSVD residing at high altitude showedmore severe WMH

but less acute cerebrovascular events and lacunes in neuroimaging, comparing to

patients residing at low altitude. Our findings suggest potential biphasic e�ect of

high altitude on the occurrence and progression of CSVD.

KEYWORDS

cerebral small-vessel disease, white matter hyperintensity, plateau, plain, stroke, lacune

of presumed vascular origin
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Introduction

Cerebral small-vessel disease (CSVD) is one of the most

prevalent syndromes worldwide which was thought contributing

to ∼25% of strokes and 45% of dementia cases (1). Various

pathophysiological changes such as hypoxic-ischemic injury (2, 3),

breakdown of the blood–brain barrier (4), loss of autoregulation

(2), activation of the innate immune system (3), and protein

elimination failure (5) have been found to be involved in the

development of disease, which lead to landmark neuroimaging

changes such as white matter hyperintensity (WMH), lacune of

presumed vascular origin and microbleed. Age and hypertension

are the most recognized risk factors of CSVD. Other traditional

vascular risk factors, such as cigarette smoking, diabetes mellitus,

dyslipidemia, obstructive sleep apnea, and chronic kidney disease,

have been fully studied although the conclusions were controversial

(1). Environmental factors such as the hypobaric hypoxia at high

altitude have been reported to have an effect on CSVD (6, 7), but it

has been rarely investigated.

It is estimated that over 500 million humans (6.58% of the

total population) live above 1,500m (8). As altitude increases, the

amount of gas molecules in the air decreases, resulting in a drop

in barometric pressure and partial pressure of oxygen. People who

ascend to high altitude and exposed to hypobaric hypoxia will

suffer a significant decrease of arterial and tissue partial pressure

of oxygen in the brain (9). A series of physiological responses

will be triggered. In acute phase, cerebral blood flow increases

firstly and an increase in vascular permeability may occur, due

to hypoxia-induced endothelial dysfunction, which could lead to

headache and even cerebral edema in unacclimatised individuals

(10, 11). During chronic hypoxia, cerebral blood flow returns

toward the baseline level gradually, and oxygen delivery to brain

will be compensated by other adaptation including an increase in

hemoglobin concentration, hematocrit, red blood cell count and

vascular density, resulting in an increase in tissue partial pressure

of oxygen of the brain at an equal atmospheric partial pressure

of oxygen, as suggested by animal experiments (11). The changed

hematological and hemodynamic state after chronic exposure to

hypoxia has been considered to play a role in the occurrence

of CSVD, especially on WMH and lacunar infarction, which are

closely related to endothelial dysfunction and oxygen supply (3, 4).

However, the limited research data mainly focus on the association

between high altitude exposure and the occurrence, subtype or

outcome of stroke (12–16), while the other changes due to small

vessel impairment are rarely involved (17). To explore the impact

of chronic high altitude exposure on CSVD, we conduct the study

comparing clinical and neuroimaging difference of CSVD between

patients from the plain and the plateau.

Methods

Study design and population

Two cohorts of CSVD patients were retrospectively recruited

from Peking University First Hospital (altitude between 0–50m)

and the People’s Hospital of Tibet Autonomous Region (altitude

between 3,000–5,000m) in China.We searched themedical records

in the database of the Inpatient Department of Neurology and

selected eligible patients as our study population. Patients in Beijing

were recruited between 2013–2019 from the neurology ward of

Peking University First Hospital, while patients in Tibet were

recruited between 2017–2019 from the neurology ward of the

People’s Hospital of Tibet Autonomous Region. All studies were

performed with approval from the Ethics Committee of Peking

University (IRB00001052-17018) and the Tibet Autonomous

Region (ME-TBHP-19-37). Informed consents were obtained from

all patients.

Inclusion criteria

According to the International Classification of Diseases 10th

Revision, patients diagnosed with cerebrovascular disease (code

I61–I69) were included if the following criteria were met.

First, the patients have received head magnetic resonance

imaging (MRI) examination and the images of MRI showed more

than 1 characteristic neuroimaging changes of CSVD, including

recent small subcortical infarcts, lacunes of presumed vascular

origin, WMH of presumed vascular origin, enlarged perivascular

space, and cerebral microbleeds, following the definition of

STandards for Reporting Vascular changes on neuroimaging

(STRIVE) (18).

Second, the patients have not been found with noteworthy

stenosis of large vessels (defined as a stenosis more than 50%)

or vascular malformation after adequate vascular assessments

(including carotid ultrasound or computed tomography

angiography for the extracranial arteries and transcranial Doppler

sonography, magnetic resonance angiography, or computed

tomography angiography for the intracranial arteries).

Third, the patients have resided locally for more than 10 years.

Exclusion criteria

Patients who lacked information of head MRI or vascular

assessments, or complicated by other diseases including atrial

fibrillation, hemopathy, inflammatory demyelinating disease,

tumor, or leukodystrophy which can cause similar neuroimaging

changes other than CSVD, were excluded. Besides, patients who

resided in Beijing for more than 10 years but had a history of

tourism or residence in plateau were also excluded.

Clinical data collection

Clinical diagnosis, demographic information, and common

vascular risk factors, including hypertension, diabetes,

dyslipidemia, coronary heart disease, and smoking, were collected

from medical records. The clinical diagnoses were categorized

into four clinical conditions when summarized: transient ischemic

attack (TIA) or ischemic stroke, cerebral hemorrhage, vascular

cognitive impairment or vascular parkinsonism, and CSVD with

non-specific symptoms (such as dizziness, headache, numbness,

depression, insomnia, etc.). Serum homocysteine concentrations

Frontiers inNeurology 02 frontiersin.org296

https://doi.org/10.3389/fneur.2023.1086476
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Shu et al. 10.3389/fneur.2023.1086476

were documented and were defined as hyperhomocysteinemia

when more than 15 µmol/L. A family history of stroke was

identified as positive when either of the patient’s parents had

suffered from hemorrhage or ischemic stroke.

Neuroimaging evaluation

All patients included have received a head MRI scan. Basic

scanning sequences included T1-weighted imaging, T2-weighted

fluid-attenuated inversion recovery imaging, and diffusion

weighted imaging. It is noteworthy that about half of the patients

in Beijing lack T2-weighted images because of setting of the scan

protocol. Besides, gradient-recalled echo or susceptibility-weighted

imaging was performed in most patients in Beijing, but only in a

few patients in Tibet. MRI data in Beijing were acquired on two

scanners (SIGNA EXCITE 1.5T; General Electric Medical Systems,

Milwaukee, WI, USA; Achieva 3.0T; Philips Medical Systems,

Netherlands) with a slice thickness of 6.0mm. MRI data in Tibet

were acquired on a 3.0T scanner (Magnetom Verio; Siemens

Healthcare, Erlangen, Germany) with a slice thickness of 6.0mm.

Two independent raters (JZ, WF), blinded to the patients’

clinical information or outcomes, evaluated the MRI data. Due

to the difference in the scanning sequence of the head MR

images provided by the two hospitals, only lacunes and WMH

were evaluated. Lacunes were detected according to the definition

in the consensus of STRIVE (18), with the different anatomical

regions documented and classified into frontal, parieto-occipital,

temporal, basal ganglia, brainstem, and cerebellum. The age-

related white matter changes (ARWMC) rating scale (19) was

used to evaluate the presence and severity of WMH, in which

the white matter lesions were scored 0, 1, 2, and 3 in different

brain regions, including the frontal, parieto-occipital, temporal,

infratentorial/cerebellum, and basal ganglia regions, and a sum of

all regional scores called ARWMC Score (ranges from 0 to 30) was

adopted to show the load of WMH in the whole brain. Evaluations

were performed in the picture archiving and communication

system of each hospital. Unified training was initially conducted

via video conference by a senior neurologist (JLS) with more than 5

years’ experience in neuroimaging. Consensus was achieved after

training and before formal evaluation. The intraclass correlation

coefficient of intra-rater reliability was 0.95 [95% confidence

interval (CI), 0.92–0.98] and the inter-rater reliability was 0.90 (95%

CI, 0.86–0.92).

Statistical analysis

Statistical analyses were performed using statistical software

(Statistical Package for Social Sciences, version 24.0; IBM SPSS

Statistics, Armonk, NY, USA). Data are presented as frequency,

mean ± standard deviation, or median (quartiles), depending on

the nature of the data. The χ
2 test and the Fisher’s exact test

were used to test for differences in the listed risk factors and the

presence and anatomic distribution of lacunes or WMH between

the two groups. The student’s t-test was used to compare age, while

the Mann–Whitney U-test was used to test the disparity of the

ARWMC score and the lacune count, between the two groups.

Binary logistic regression was performed to determine the impact

of various risk factors on severe WMH and occurrence of lacunes

(including age, sex, hypertension, diabetes, coronary heart disease,

cigarette smoking, hyperhomocysteinemia, dyslipidemia, family

history of stroke, and residing in the plateau) using the forward

stepwise regression method based on the maximum likelihood

estimation to screen the independent variables. For all analyses, p

< 0.05 was considered statistically significant.

Results

Clinical and neuroimaging information of
study population

A total of 2,978 patients in Beijing and 478 patients in Tibet

who were diagnosed with cerebrovascular disease were included in

our screening. Finally, 310 patients (10.4%) in Beijing (low altitude

group) and 169 patients (35.4%) in Tibet (high altitude group) were

enrolled in the two cohorts (Figures 1, 2). The average age was 63

± 12 years old, and 300 (62.6%) were male. The proportion of

traditional vascular risk factors are shown in Table 1. A total of

457 (95.4%) patients were found with WMH, and 303 (63.3%) had

been detected to have lacunes. The median ARWMC score was 7

(interquartile range, 4–13), while the median count of lacunes was

2 (interquartile range, 0–4).

The anatomical distributions of different neuroimaging change

are shown in Table 2. WMH tended to appear in subcortical areas,

especially the frontal and parieto-occipital regions, and was found

in the basal ganglia in more than half of the patients (Figure 3).

Lacunes were most often found in the basal ganglia, followed by

the frontal lobe (Figure 4).

Comparison of high and low altitude
groups

The clinical and neuroimaging characters of two groups are

also shown in Table 1. More than half of the patients in low

altitude group were diagnosed with TIA or ischemic stroke (65.2%),

followed by CSVD found with non-specific symptoms (21.9%),

while 143 of the 169 patients (84.6%) in high altitude group were

CSVD found with non-specific symptoms and only 10.1% of the

patients had TIA or stroke. The low altitude group had a higher

proportion of male patients (67.4 vs. 53.8%, p = 0.003), and also

a higher proportion of traditional vascular risk factors, such as

hypertension (83.2 vs. 52.1%, p< 0.001), diabetes (30 vs. 12.4%, p<

0.001), cigarette (44.2 vs. 24.9%, p < 0.001), etc. In neuroimaging,

patients in high altitude group hadmore severeWMH than patients

in low altitude group [ARWMC score 10 (4, 15) vs. 6 (3, 12); p

< 0.001], although nearly all patients in both groups were found

to have WMH (97.6 vs. 94.2%, p = 0.086). On the contrary, the

detection of lacune in patients of high altitude group was fewer than

in patients of low altitude groups (46.2 vs. 72.6%), with significant

difference (p < 0.001). Detailed ordinal distributions of ARWMC

score and lacune count in the two groups are shown in Figures 5, 6,
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FIGURE 1

Flowchart of patient recruitment in Beijing. CSVD, cerebral small-vessel disease.

FIGURE 2

Flowchart of patient recruitment in Tibet. CSVD, cerebral small-vessel disease.
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TABLE 1 Clinical and neuroimaging information of study population.

All
(n = 479)

Low altitude
(n = 310)

High altitude
(n = 169)

p-value

Clinical condition

TIA/ischemic stroke (%) 219 (45.7) 202 (65.2) 17 (10.1)

<0.001
Cerebral hemorrhage (%) 36 (7.5) 36 (11.6) 0

VCI or VP (%) 13 (2.7) 4 (1.3) 9 (5.3)

CSVD found with non-specific symptoms (%) 211 (44.1) 68 (21.9) 143 (84.6)

Age, mean± SD 63± 12 63.1± 11.7 62.1± 13.9 0.389

Male, n (%) 300 (62.6) 209 (67.4) 91 (53.8) 0.003

Hypertension, n (%) 346 (72.2) 258 (83.2) 88 (52.1) <0.001

Diabetes, n (%) 114 (23.8) 93 (30) 21 (12.4) <0.001

Coronary heart disease, n (%) 58 (12.1) 45 (14.5) 13 (7.7) 0.029

Dyslipidemia, n (%) 214 (44.7) 184 (59.4) 30 (17.8) <0.001

Hyperhomocysteinemia, n (%) 129 (27.5) 100 (32.3) 29 (18.2) 0.001

Cigarette, n (%) 179 (37.4) 137 (44.2) 42 (24.9) <0.001

Family history of stroke, n (%) 103 (21.5) 100 (32.3) 3 (1.8%) <0.001

White matter hyperintensity, n (%) 457 (95.4) 292 (94.2) 165 (97.6) 0.086

ARWMC score, median (quartiles) 7 (4, 13) 6 (3, 12) 10 (4, 15) <0.001

Presence of lacune, n (%) 303 (63.3) 225 (72.6) 78 (46.2) <0.001

Lacune count, median (quartiles) 2 (0, 4) 2 (0, 5) 0 (0, 4) <0.001

TIA, transient ischemic attack; VCI, vascular cognitive impairment; VP, vascular parkinsonism; CSVD, cerebral small-vessel disease; SD, standard deviation; ARWMC, age related white

matter change.

showing the tendency of more severe WMH and less lacunes in

high altitude group.

For the anatomical distribution, patients in high altitude group

shared a similar mode with patients in low altitude group in

distribution of WMH and lacune. Subcortical area and basal

ganglia were the main susceptible areas of WMH and lacune.

Comparing with patients in low altitude group, patients in high

altitude group were more likely to have WMH in basal ganglia

(73.4 vs. 43.9%, p < 0.001) and lacune in cerebellum (18.9 vs. 3.2%,

p < 0.001; Table 2).

Impact of multiple risk factors on severe
WMH and lacune

According to the median ARWMC score of all patients,

an ARWMC score >7 was identified as severe WMH. Logistic

regression analysis showed that age, hypertension, family history of

stroke, and residing in the plateau were independently associated

with severe WMH (Table 3). Patients residing in the plateau were

four times more likely to suffer from severe WMH compared

with patients residing in the plain [odds ratio (OR), 4.083;

95% CI, 2.496–6.680; p < 0.001]. Meanwhile, logistic regression

analysis using the occurrence of lacune as a dependent variable

demonstrated that age, hypertension, cigarette smoking, and

hyperhomocysteinemia were independent-related factors, while

residing in the plateau was negatively correlated with occurrence

of lacune (OR, 0.430; 95% CI, 0.276–0.670; p < 0.001; Table 4).

Discussion

China encompasses a vast area of high altitude with four

plateaus, among which the Qinghai –Tibet plateau is the highest

plateau of earth and sometimes called “the roof of the world.”

Approximately 80 million people live above 2,500m in China,

among whom nearly 3.7 million living around 4,000m in

Tibet. Previous studies have reported increased cerebral blood

flow and blood–brain barrier damage in individuals following

ascent to high altitudes, which may result in vasogenic edema

and microhemorrhages (20), and indicate a higher risk of

cerebrovascular disease. As an important part of cerebrovascular

disease, CSVD can not only cause stroke, but also lead to many

other chronic symptoms such as cognitive decline and gait disorder,

increasing the risk of disability and hospitalization. Viewing from

the constitution of cerebrovascular disease in our study, the

ratio of CSVD seem to be much higher in high altitude area

(35.4 vs. 10.4%) than low altitude area. Many factors could be

associated with this disparity, such as the selective admission of

inpatients, insufficient in-hospital assessment, restriction of CSVD

in inclusion criteria of the study. However, we noted that in

the screening, 478 of 2,978 (16.1%) patients with cerebrovascular

disease in the low altitude group find no neuroimaging change

of CSVD in MRI, while there was only one of 478 patients in

the high-altitude group. It indicates the tendency that CSVD

might be more prevalent in high altitude area, although no

conclusion can be drawn due to the selection bias and further

epidemiological investigation is needed. Anyway, the relatively

high proportion of CSVD reflects the actual status of inpatients

Frontiers inNeurology 05 frontiersin.org299

https://doi.org/10.3389/fneur.2023.1086476
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Shu et al. 10.3389/fneur.2023.1086476

TABLE 2 Distribution of white matter hyperintensity and lacune in study population.

All
(n = 479)

Low altitude
(n = 310)

High altitude
(n = 169)

p-value

White matter hyperintensity

Subcortical (frontal), n (%) 444 (92.7) 281 (90.6) 163 (96.4) 0.020

Subcortical (parieto-occipital), n (%) 359 (74.9) 225 (72.6) 134 (79.3) 0.105

Subcortical (temporal), n (%) 220 (45.9) 143 (46.1) 77 (45.6) 0.905

Basal ganglia, n (%) 260 (54.3) 136 (43.9) 124 (73.4) <0.001

Infratentorial/cerebellum, n (%) 80 (16.7) 59 (19.0) 21 (12.4) 0.064

Presence of lacune

Frontal lobe, n (%) 171 (35.7) 139 (44.8) 32 (18.9) <0.001

Parieto-occipital lobe, n (%) 64 (13.4) 48 (15.5) 16 (9.5) 0.064

Temporal lobe, n (%) 71 (14.8) 66 (21.3) 5 (3.0) <0.001

Basal ganglia, n (%) 238 (49.7) 172 (55.5) 66 (39.1) 0.001

Brainstem, n (%) 78 (16.3) 57 (18.4) 21 (12.4) 0.091

Cerebellum, n (%) 42 (8.8) 10 (3.2) 32 (18.9) <0.001

FIGURE 3

Distribution of white matter hyperintensity in di�erent anatomical regions.

in high altitude area, and more attentions are deserved for

this population.

In this study, we chose the inpatients as study population, in

which we could obtain more sufficient clinical and neuroimaging

information compared with the outpatient and community

residents. Strict criteria were used to select the patients of CSVD.

We excluded other diseases that may cause similar neuroimaging

changes, especially the large vessel stenosis and atrial fibrillation, to

reduce the possible confounding in the mechanism or evaluation

and get two cohorts of pure CSVD patients relatively. Local

residence is necessary to keep the basic difference between the two

groups. Since themobility of patients in Beijing is much higher than

that in Tibet, we set the long-term limit of 10 years that was easy for

patients to report and excluded the one who had history of tourism

or residence in plateau when screening patients for low altitude

groups, to ensure the patients enrolled in each group residing at

same altitude all the year round.

There are significant differences in the proportions of

traditional vascular risk factors between the two groups, especially

hypertension, which has been confirmed as the most important

risk factor for CSVD other than age (1). Fewer patients were

found to have traditional vascular risk factors in high altitude

group. Because of the study design, it is arbitrary to conclude

that people residing at high altitude have a lower prevalence of

traditional risk factors than those residing at low altitude. On the

contrary, a systematic review have reported a 2% increase in the
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FIGURE 4

Distribution of lacune in di�erent anatomical regions.

FIGURE 5

Ordinal distribution of age-related white matter change (ARWMC) Scores for cerebral small-vessel disease patients. The severity of white matter

hyperintensity was evaluated using ARWMC rating scale. The distribution of scores in each group is shown by accumulating bar charts. There is a

significant shift to left in the plateau group, suggest patients in the plateau group tend to have more severe white matter hyperintensity.

prevalence of hypertension in Tibetans with every 100m increase

in altitude (21). Two hypotheses we considered may explain the

difference. First, other non-traditional vascular risk factors were

introduced, such as the hypobaric hypoxia, low temperature or

unique dietary habit at high altitude and ambient particulate matter

pollution at low altitude. A part of patients in high altitude group

may be affected only by these non-traditional vascular risk factors,

which reduced the impact of traditional vascular risk factors on

CSVD competitively, resulting in a lower proportion than those in

low altitude group. Second, selective bias may exist. It is possible

that patient of CSVD who had hypertension or other traditional

risk factors in high altitude area were more prone to severe

stenosis of large vessels than those in low altitude area, whose data

were not collected for our analysis. If it happened, it would lead

to a reduction in proportion of traditional vascular risk factors

in the final high altitude group. Further research and analysis

are needed.

More severeWMH and less lacunes were found in high altitude

group. Further logistic regression analysis showed that patients of

CSVD residing in plateau had about three times risk increase for

suffering from severe WMH and more than 50% risk decrease

for lacune after adjusting for potential confounding factors such

as age, hypertension, cigarette, compared with those residing in

plain. Chronic hypoxia at high altitude seems to have affected

CSVD in opposite directions. For one thing, hypoxia may cause

and aggravate white matter damage, as suggested in previous

research about obstructive sleep apnea (22) and chronic obstructive

pulmonary disease (23), which could also keep the patients in a

state of hypoxia for a long time. In these conditions, sympathetic

activation, altered cerebral blood flow and velocity, and endothelial
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FIGURE 6

Ordinal distribution of Lacune count for cerebral small-vessel disease patients. The distribution of lacune count in each group is shown by

accumulating bar charts. There is a significant shift to right in the plateau group, suggest patients in the plateau group tend to have less lacunes

compared with patients in the plain group.

TABLE 3 Logistic regression analysis for risk factors associated with

severe WMH (ARWMC Score >7).

Risk
factors

B SD OR 95%CI p-value

Age 0.046 0.009 1.047 1.029–1.066 <0.001

Hypertension 0.619 0.248 1.857 1.142–3.020 0.013

Family history

of stroke

1.050 0.262 2.857 1.711–4.770 <0.001

Resided in

plateau

1.407 0.251 4.083 2.496–6.680 <0.001

B, beta; SD, standard deviation; OR, odds ratio; CI, confidence interval.

TABLE 4 Logistic regression analysis for risk factors associated with

lacune.

Risk factors B SD OR 95%CI p-value

Age 0.028 0.009 1.028 1.010–1.046 0.002

Hypertension 0.675 0.243 1.964 1.219–3.164 0.006

Cigarette 0.787 0.231 2.196 1.396–3.453 0.001

Hyperhomocysteinemia 0.548 0.253 1.730 1.055–2.838 0.030

Resided in plateau −0.844 0.226 0.430 0.276–0.670 <0.001

B, beta; SD, standard deviation; OR, odds ratio; CI, confidence interval.

dysfunction were reported contributing to small-vessel damage and

formation of WMH (22–25). However, there was no comparable

study about chronic hypoxia patients residing at high altitude

before us.

On the other hand, chronic hypoxia seems to be a protective

factor of lacune. As a neuroimaging marker of CSVD, lacune marks

the healed stage of a small deep brain necrosis (18). The cause of

most lacunes is presumed to be small subcortical infarcts or so-

called lacunar infarction, although some might be the result of

small deep hemorrhages. Fewer patients with lacunes were found

in high altitude group in contrast to the more severe WMH. It

means that patients of CSVD residing in Tibet might suffer from

less lacunar infarctions, or milder even if it happened, which halted

the formation of lacune, and indicate a potential protective effect

on lacune or lacunar infarction from chronic hypoxia. Selective

bias may have a great impact. Most of the patients included in

low altitude group had an acute cerebrovascular event, while the

most in high altitude group showed only non-specific symptoms.

As this is a comparative study based on patients in a single hospital,

there is a possibility that some patients with acute ischemic events

in Tibet and some patients with only non-specific symptoms in

Beijing were not included in the study if they were not admitted

to the hospitals we chose, resulting a reduction in the ratio of

lacune and stroke in patients at high altitude. However, similar

finding was reported in study on subtypes of ischemic stroke at

high altitude, with a lower proportion of small-vessel occlusion in

patients from Tibet than in those from the plain (3.0 vs. 23.7%;

p < 0.001) (13). A probable explanation for this phenomenon is

the hypoxic acclimation. When humans are continuously exposed

to hypoxia, compensatory mechanisms will developed to maintain

the oxygen supply, including erythrocytosis, angiogenesis, capillary

remodeling and improved ventilatory response (11, 26), which

may enhance the brain’s resistance to hypoxic-ischemic injury. In

studies about stroke and chronic high altitude exposure, Ortiz-

Prado E. and colleagues found that prolonged residing at high

altitude will reduce the risk of developing stroke and is associated

with lower stroke-related mortality (12, 26). This protective effect

is stronger if the altitudes range from 2,000 to 3,500m while

residing above 3,500m may be associated with an increased risk

of developing stroke. It is consistent with the high stroke incidence

reported in the epidemiological data of Tibet (13), as most of its

cities or towns are located above 3,500m. However, in this study,

we found that this protection seems to be effective for lacunar

infarction still, even when the patients reside at a very high altitude

(Tibet). Angiogenesis or capillary remodeling in the brain may

be the key reasons. Because when a small vessel approaches to

occlusion, the newborn or remodeling capillary around it can

provide a good compensate for its supply area, but it may be

invalid when large vessels are occluded due to blood stasis or
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thrombogenesis caused by the significantly high hematocrit and

polycythemia at a very high attitude. More studies about the

prevalence of CSVD at different elevations may be helpful.

The anatomical distribution of neuroimaging makers of CSVD

is also an important consideration. In both groups, WMHs

were mainly distributed in the subcortical regions dominated

with frontal white matter, followed by the basal ganglia region,

while the lacunes were mainly distributed in the basal ganglia,

followed by the frontal cortex and subcortical area, which was

more consistent with arteriolosclerosis type of CSVD other than

cerebral amyloid angiopathy (27) or cerebral autosomal dominant

arteriopathy (28, 29). Patients of CSVD in high altitude group

had a higher proportion of WMH in basal ganglia than those

in low altitude group, reflecting a more extensive white matter

destruction. The relatively sparse distribution of small vessels and

the high tissue oxygen demand are proposed to contribute to the

distribution pattern of CSVD lesions (3). In patients residing in

the plateau, the additional chronic hypoxic conditions make this

distribution pattern more prominent, especially WMH in the basal

ganglia, which suggests a more severe small vessel involvement

(30). Besides, patients residing in plateau were detected to have

more lacunes in cerebellum but fewer in temporal region. Poor

hypoxic acclimation in cerebrum and angiogenesis around bilateral

posterior cerebral arteries might explain this discovery barely, as

found in moyamoya disease or syndrome (31). What is more,

genetic or ethnic disparities may also make a difference. In

the previous study, we found a certain difference in the spatial

distribution of lesions between patients of CSVD in China and

Germany (32). Yakushi and colleagues also reported a different

anatomical distribution of cerebral microbleeds between Eastern

and Western populations (33). Further research is needed to verify

the correlation and explore detailed mechanism.

Limitations

Limitations exist in this study. First, as it was a hospital-based

comparative study with a limited sample size, our findings may

not be generalizable to the whole population that resides in the

plateau or the plain. Second, the neuroimaging evaluations of

each group were completed separately by two independent raters

because of image transmission and privacy protection restrictions,

which might have an impact on the reliability of neuroimaging

evaluation. Nevertheless, unified training and reliability analysis

were performed before the formal evaluation. Third, because of the

lack of gradient-recalled echo or susceptibility-weighted sequence

imaging in the plateau group, we were unable to assess the impact

of high altitude environment on cerebral microbleeds, which is

another key neuroimaging marker of CSVD.

Conclusions

In this comparative study of CSVD patients at different

altitudes, we have found that patients residing at high altitude

have suffered from less acute cerebrovascular events, owned a

lower proportion of traditional vascular risk factors and shown

more severe WMH but less lacunes in neuroimaging, comparing

to patients residing at low altitude. Hypobaric hypoxia at high

altitude seems to have multiple effects on the occurrence and

progression of CSVD, which represent as an aggravating factor

in white matter impairment but a potential protective factor in

lacunar infarction. Further studies are required to understand the

prevalence of CSVD at different elevations and confirm the effect

of chronic high altitude exposure on the incidence and outcome

of CSVD.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed and

approved by the Ethics Committee of Peking University and

the Ethics Committee of the Tibet Autonomous Region. The

patients/participants provided their written informed consent to

participate in this study.

Author contributions

JS was involved in the data collection in Beijing, guided

the neuroimaging evaluation, statistical analysis, interpreted the

results, and drafted the manuscript. WF was responsible for data

collection in Tibet and involved in the imaging evaluation, results

interpretation, and important intellectual content. JZ participated

in the data collection and imaging evaluation in Beijing. FL

contributed to the data collection in Beijing. YHa, ZD, T, D,

SJ, WZhao, and YHu contributed to the data collection in

Tibet. WS, YHua, WZhang, and YZ were involved in design of

the study, supervised the data collection process, the analysis

and interpretation of the data, and revised the manuscript for

intellectual content. All authors contributed to the article and

approved the submitted version.

Funding

This research was funded by the Natural Science

Funds for Cluster Tibet Aid in Tibet Autonomous Region

(Grant No. XZ2017ZR-ZY020), Study on Risk Factors

and Heredity of Intracranial Small Vessel Disease at High

Altitude (Grant No. XZ202001zy009G), and the ULM-

PUHSC Joint Institute for Translational and Clinical Research

(Grant No. PKU2017ZC001-5).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers inNeurology 09 frontiersin.org303

https://doi.org/10.3389/fneur.2023.1086476
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Shu et al. 10.3389/fneur.2023.1086476

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH,
Meschia JF. CNS small vessel disease: a clinical review. Neurology. (2019) 92:1146–
56. doi: 10.1212/WNL.0000000000007654

2. Pantoni L. Cerebral small vessel disease: from pathogenesis and
clinical characteristics to therapeutic challenges. Lancet Neurol. (2010)
9:689–701. doi: 10.1016/S1474-4422(10)70104-6

3. Sosa SM, Smith KJ. Understanding a role for hypoxia in lesion formation and
location in the deep and periventricular white matter in small vessel disease and
multiple sclerosis. Clin Sci. (2017) 131:2503–24. doi: 10.1042/CS20170981

4. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral
small vessel disease: insights from neuroimaging. Lancet Neurol. (2013) 12:483–
97. doi: 10.1016/S1474-4422(13)70060-7

5. Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO. Review: cerebral
amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein
elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on
therapy. Neuropathol Appl Neurobiol. (2013) 39:593–611. doi: 10.1111/nan.12042

6. Hellmann-Regen J, Hinkelmann K, Regen F, McGuire SA, Antonio S. White
matter hyperintensities on MRI in high-altitude U-2 pilots. Neurology. (2013) 81:729–
35. doi: 10.1212/WNL.0b013e3182a1ab12

7. McGuire SA, Sherman PM, Wijtenburg SA, Rowland LM, Grogan PM, Sladky
JH, et al. White matter hyperintensities and hypobaric exposure. Ann Neurol. (2014)
76:719–26. doi: 10.1002/ana.24264

8. Tremblay JC, Ainslie PN. Global and country-level estimates of
human population at high altitude. Proc Natl Acad Sci U S A. (2021)
118:1–3. doi: 10.1073/pnas.2102463118

9. Ortiz-Prado E, Dunn JF, Vasconez J, Castillo D, Viscor G. Partial pressure of
oxygen in the human body: a general review. Am J Blood Res. (2019) 9:1–14.

10. Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. Eur Respir Rev.
(2017) 26:1–14. doi: 10.1183/16000617.0096-2016

11. Ortiz-Prado E, Natah S, Srinivasan S, Dunn JF. A method for measuring brain
partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute
and chronic hypoxia on brain tissue PO2. J Neurosci Methods. (2010) 193:217–
25. doi: 10.1016/j.jneumeth.2010.08.019

12. Ortiz-Prado E, Espinosa PS, Borrero A, Cordovez SP, Vasconez JE, Barreto-
Grimales A, et al. Stroke-related mortality at different altitudes: a 17-year
nationwide population-based analysis from Ecuador. Front Physiol. (2021) 12:1–
14. doi: 10.3389/fphys.2021.733928

13. Lu Y, Zhuoga C, Jin H, Zhu F, Zhao Y, Ding Z, et al. Characteristics
of acute ischemic stroke in hospitalized patients in Tibet: a retrospective
comparative study. BMC Neurol. (2020) 20:1–8. doi: 10.1186/s12883-020-
01957-0

14. Zhang S, Liu D, Gesang DZ, Lv M. Characteristics of cerebral stroke
in the Tibet autonomous region of China. Med Sci Monit. (2020) 26:1–
8. doi: 10.12659/MSM.919221

15. Xu G, Ma M, Liu X, Hankey GJ. Is there a stroke belt in China and why? Stroke.
(2013) 44:1775–83. doi: 10.1161/STROKEAHA.113.001238

16. Fang J, Zhuo-Ga C, Zhao Y, Kong F, Si Y, Liu M, et al. Characteristics
of stroke in tibet autonomous region in China: a hospital-based
study of acute stroke. Eur Neurol. (2011) 66:151–8. doi: 10.1159/0003
30558

17. Jin H, Ding Z, Lian S, Zhao Y, He S, Zhou L, et al. Prevalence and risk
factors of white matter lesions in Tibetan patients without acute stroke. Stroke. (2020)
51:149–53. doi: 10.1161/STROKEAHA.119.027115

18. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R,
et al. Neuroimaging standards for research into small vessel disease and its
contribution to ageing and neurodegeneration. Lancet Neurol. (2013) 12:822–
38. doi: 10.1016/S1474-4422(13)70124-8

19. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, et al. A
new rating scale for age-related white matter changes applicable toMRI and CT. Stroke.
(2001) 32:1318–22. doi: 10.1161/01.STR.32.6.1318

20. Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high
altitudes. Lancet Neurol. (2009) 8:175–91. doi: 10.1016/S1474-4422(09)70014-6

21. Mingji C, Onakpoya IJ, Perera R,Ward AM, Heneghan CJ. Relationship between
altitude and the prevalence of hypertension in Tibet: a systematic review.Heart. (2015)
101:1054–60. doi: 10.1136/heartjnl-2014-307158

22. Kim H, Yun C-H, Thomas RJ, Lee SH, Seo HS, Cho ER, et al. Obstructive sleep
apnea as a risk factor for cerebral white matter change in a middle-aged and older
general population. Sleep. (2013) 36:709–15. doi: 10.5665/sleep.2632

23. Lahousse L, Tiemeier H, Ikram MA, Brusselle GG. Chronic obstructive
pulmonary disease and cerebrovascular disease: a comprehensive review. Respir Med.
(2015) 109:1371–80. doi: 10.1016/j.rmed.2015.07.014

24. Lanfranchi P, Somers VK. Obstructive sleep apnea and vascular disease. Respir
Res. (2001) 2:315–9. doi: 10.1186/rr79

25. Kato M, Roberts-Thomson P, Phillips BG, Haynes WG, Winnicki M,
Accurso V, et al. Impairment of endothelium-dependent vasodilation of resistance
vessels in patients with obstructive sleep apnea. Circulation. (2000) 102:2607–
10. doi: 10.1161/01.CIR.102.21.2607

26. Ortiz-Prado E, Cordovez SP, Vasconez E, Viscor G, Roderick P. Chronic high-
altitude exposure and the epidemiology of ischaemic stroke: a systematic review. BMJ
Open. (2022) 12:1–10. doi: 10.1136/bmjopen-2021-051777

27. Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, et al.
Emerging concepts in sporadic cerebral amyloid angiopathy. Brain. (2017) 140:1829–
50. doi: 10.1093/brain/awx047

28. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser M-G. Cadasil.
Lancet Neurol. (2009) 8:643–53. doi: 10.1016/S1474-4422(09)70127-9

29. Bersano A, Bedini G, Markus HS, Vitali P, Colli-Tibaldi E, Taroni F, et al. The role
of clinical and neuroimaging features in the diagnosis of CADASIL. J Neurol. (2018)
265:2934–43. doi: 10.1007/s00415-018-9072-8

30. Shu J, Huang Y, Li F, Sun W. Risk factors for cerebral microbleeds in
patients with cerebrovascular diseases. Chinese Gen Pract. (2019) 22:2793–2797.
doi: 10.12114/j.issn.1007-9572.2019.00.099

31. Scott RM, Smith ER.Moyamoya disease andmoyamoya syndrome.NEngl JMed.
(2009) 360:1226–37. doi: 10.1056/NEJMra0804622

32. Shu J, Neugebauer H, Li F, Lulé D, Müller H-P, Zhang J, et al.
Clinical and neuroimaging disparity between Chinese and German patients
with cerebral small vessel disease: a comparative study. Sci Rep. (2019)
9:20015. doi: 10.1038/s41598-019-55899-w

33. Yakushiji Y, Wilson D, Ambler G, Charidimou A, Beiser A, van Buchem MA,
et al. Distribution of cerebral microbleeds in the East and West. Neurology. (2019)
92:e1086 LP-e1097. doi: 10.1212/WNL.0000000000007039

Frontiers inNeurology 10 frontiersin.org304

https://doi.org/10.3389/fneur.2023.1086476
https://doi.org/10.1212/WNL.0000000000007654
https://doi.org/10.1016/S1474-4422(10)70104-6
https://doi.org/10.1042/CS20170981
https://doi.org/10.1016/S1474-4422(13)70060-7
https://doi.org/10.1111/nan.12042
https://doi.org/10.1212/WNL.0b013e3182a1ab12
https://doi.org/10.1002/ana.24264
https://doi.org/10.1073/pnas.2102463118
https://doi.org/10.1183/16000617.0096-2016
https://doi.org/10.1016/j.jneumeth.2010.08.019
https://doi.org/10.3389/fphys.2021.733928
https://doi.org/10.1186/s12883-020-01957-0
https://doi.org/10.12659/MSM.919221
https://doi.org/10.1161/STROKEAHA.113.001238
https://doi.org/10.1159/000330558
https://doi.org/10.1161/STROKEAHA.119.027115
https://doi.org/10.1016/S1474-4422(13)70124-8
https://doi.org/10.1161/01.STR.32.6.1318
https://doi.org/10.1016/S1474-4422(09)70014-6
https://doi.org/10.1136/heartjnl-2014-307158
https://doi.org/10.5665/sleep.2632
https://doi.org/10.1016/j.rmed.2015.07.014
https://doi.org/10.1186/rr79
https://doi.org/10.1161/01.CIR.102.21.2607
https://doi.org/10.1136/bmjopen-2021-051777
https://doi.org/10.1093/brain/awx047
https://doi.org/10.1016/S1474-4422(09)70127-9
https://doi.org/10.1007/s00415-018-9072-8
https://doi.org/10.12114/j.issn.1007-9572.2019.00.099
https://doi.org/10.1056/NEJMra0804622
https://doi.org/10.1038/s41598-019-55899-w
https://doi.org/10.1212/WNL.0000000000007039
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 06 July 2023

DOI 10.3389/fneur.2023.1063408

OPEN ACCESS

EDITED BY

Hari Kishan Reddy Indupuru,

University of Texas Health Science Center at

Houston, United States

REVIEWED BY

Yafeng Li,

The Fifth Hospital of Shanxi Medical

University, China

Arvind Bambhroliya,

University of Texas Health Science Center at

Houston, United States

Nabila Brihmat,

Kessler Foundation, United States

*CORRESPONDENCE

Michael E. Sughrue

sughruevs@gmail.com

RECEIVED 07 October 2022

ACCEPTED 13 June 2023

PUBLISHED 06 July 2023

CITATION

Chen R, Dadario NB, Cook B, Sun L, Wang X,

Li Y, Hu X, Zhang X and Sughrue ME (2023)

Connectomic insight into unique stroke patient

recovery after rTMS treatment.

Front. Neurol. 14:1063408.

doi: 10.3389/fneur.2023.1063408

COPYRIGHT

© 2023 Chen, Dadario, Cook, Sun, Wang, Li,

Hu, Zhang and Sughrue. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Connectomic insight into unique
stroke patient recovery after rTMS
treatment

Rong Chen1, Nicholas B. Dadario2, Brennan Cook2, Lichun Sun1,
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Technology Company Limited, Shenzhen, China, 4International Joint Research Center on Precision
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An improved understanding of the neuroplastic potential of the brain has allowed

advancements in neuromodulatory treatments for acute stroke patients. However,

there remains a poor understanding of individual di�erences in treatment-induced

recovery. Individualized information on connectivity disturbances may help

predict di�erences in treatment response and recovery phenotypes. We studied

the medical data of 22 ischemic stroke patients who received MRI scans and

started repetitive transcranial magnetic stimulation (rTMS) treatment on the same

day. The functional and motor outcomes were assessed at admission day, 1 day

after treatment, 30 days after treatment, and 90 days after treatment using four

validated standardized stroke outcome scales. Each patient underwent detailed

baseline connectivity analyses to identify structural and functional connectivity

disturbances. An unsupervised machine learning (ML) agglomerative hierarchical

clustering method was utilized to group patients according to outcomes

at four-time points to identify individual phenotypes in recovery trajectory.

Di�erences in connectivity features were examined between individual clusters.

Patients were a median age of 64, 50% female, and had a median hospital

length of stay of 9.5 days. A significant improvement between all time points was

demonstrated post treatment in three of four validated stroke scales utilized. ML-

based analyses identified distinct clusters representing unique patient trajectories

for each scale. Quantitative di�erences were found to exist in structural and

functional connectivity analyses of the motor network and subcortical structures

between individual clusters which could explain these unique trajectories on the

Barthel Index (BI) scale but not on other stroke scales. This study demonstrates

for the first time the feasibility of using individualized connectivity analyses in

di�erentiating unique phenotypes in rTMS treatment responses and recovery.

This personalized connectomic approach may be utilized in the future to better

understand patient recovery trajectories with neuromodulatory treatment.

KEYWORDS

rTMS, connectomic, DTI, fMRI, networks, stroke, motor

1. Introduction

Stroke has remained a leading cause of death worldwide which has increased

in both incidence and prevalence over recent decades (1, 2). Of the patients who

survive, few make a complete recovery and most patients are left with significant

disability (3). Despite this, many patients remain highly open to rigorous recovery

treatments and training services to improve the quality of life and integration back

into society (4, 5), and as such, neurological rehabilitation treatments to facilitate

functional recovery after stroke have remained a key priority in stroke research (1).

Frontiers inNeurology 01 frontiersin.org305

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1063408
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1063408&domain=pdf&date_stamp=2023-07-06
mailto:sughruevs@gmail.com
https://doi.org/10.3389/fneur.2023.1063408
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1063408/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chen et al. 10.3389/fneur.2023.1063408

In particular, an improved understanding of the neuroplastic

potential of the human brain connectome has facilitated increased

use of non-invasive neuromodulatory treatments for stroke

patients (1, 6–11).

Non-invasive neuromodulatory treatment, delivered through

transcranial magnetic stimulation (TMS), is a recognized and safe

treatment that works primarily through modulating cortical and

corticospinal excitability across the human cerebrum. While a

number of studies in the literature have suggested clear benefits of

this therapy in regard to post-stroke functional recovery (7, 12, 13),

these benefits have also been contested in recent large scale studies

suggesting limited improvements (1, 14). Notably, differences in

outcomes across controlled trials may be related to differences in

the recovery scale utilized (15, 16), the specific neuromodulatory

protocols and targets selected (17, 18), and importantly, unique

inter-individual differences in patient physiology (19). Nonetheless,

a poor understanding of the variable responses to TMS treatments

has disbarred the effective application and recommendation of this

safe treatment for stroke patients in larger clinical and research

settings (1), and thus requires further study.

It has become clear that human physiological and

pathophysiological functioning can be best understood in the

context of underlying neural connections across the human brain

connectome (8, 20, 21). More recently, these connections can

now be rigorously analyzed with the recent advancements in

neuroimaging capabilities and high-throughput approaches (22).

Similar to what has been seen in a number of other neurological

disorders (20, 23), connectomic analyses have revealed that stroke

disrupts structural and functional neural connections both near

and spatially distant from the lesion site (24, 25), and these

disruptions are highly related to functional outcomes (19, 26).

This has caused some to suggest the need for a connectomic-based

approach to stroke treatments and analyses (27).

It is also important to consider that stroke patient recovery

varies significantly between individuals (19). A connectome-

based TMS approach that considers individual connectivity

disturbances post-craniotomy can facilitate effective improvements

in motor and speech deficits for individual brain tumor patients

(11). Therefore, it is reasonable to hypothesize that similar

patient-specific connectomic analyses may offer additional novel

information to understand and predict individual recovery from

stroke (19). Utilization of this information may help track the

patient recovery course following acute stroke, which could assist in

physician decisions regarding treatment parameters and regimens

by stratifying patients into different TMS treatment recovery

groups (9, 11).

In this pilot study, we attempted to examine how patients

could be grouped into specific clusters according to their

clinical treatment phenotypes, and how connectomic information

may provide additional important insight into understanding

these phenotypes.

2. Methods

2.1. Participants

The study was completed with the first affiliated hospital of

Hainan medical university ethics committee approval. Twenty-two

patients with acute strokes provided informed consent to the use of

rTMS treatment from 2020 to 2021.

Inclusion criteria included: ① being between the ages of

18 and 90; ② having the first and unilateral onset within 1

week; ③ being able to cooperate with physical examination,

scoring, and treatment; ④ met the diagnostic criteria of the

2018 China guidelines for the diagnosis and treatment of acute

ischemic stroke, as confirmed by cranial CT or MRI; and

⑤ were diagnosed with infarct lesions in the cerebral hemisphere.

Exclusion criteria included: ① hemorrhage stroke and progressive

stroke; ② intravenous thrombolysis or vascular interventional

therapy; ③ metal or foreign matter in the body; and ④ other

important organ failure, intracranial hypertension symptoms, or

malignant tumor.

2.2. Functional outcome assessment

Appropriate demographic data and relevant medical history

were collected from each patient. Patient functional status scores

were assessed according to: (1) National Institutes of Health Stroke

Scale (NIHSS), which is an 11-item neurological examination

stroke scale used to evaluate the effect of acute cerebral infarction

on the levels of consciousness, language, neglect, visual-field

loss, extraocular movement, facial palsy, motor strength, ataxia,

dysarthria, and sensory loss. The total scores range from 0 to

42, with higher scores indicating greater severity. (2) Fugl-Meyer

Assessment (FMA) is a 5-domain and 155-item scale to assess

motor functioning, balance, sensation, and joint functioning in

patients with post-stroke hemiplegia at all ages. Each item is scored

by a 3-point ordinal scale, with lower scores indicating greater

severity. (3) Barthel Index (BI), which is a 10-item scale describing

the activities of daily living (ADL) and mobility, and includes 10

personal activities: feeding, personal toileting, bathing, dressing

and undressing, getting on and off a toilet, controlling bladder,

controlling bowel, moving from wheelchair to bed and returning,

walking on a level surface (or propelling a wheelchair if unable to

walk), and ascending and descending stairs. Total scores are 100,

with lower scores indicating greater dependency. (4) Wolf Motor

Function Test (WMFT) includes 15 task performances to measure

the upper extremity function after stroke. The total score is 75 with

a higher score indicating stronger ability to complete the upper

limb tasks (28–31). Each patient’s scores were assessed at four-

time points in order to obtain long-term data: (1) at admission

day, (2) 1 day after treatment, (3) 30 days after treatment, and (4)

90 days after treatment. All the personally identifiable information

has been removed. There were no adverse and unanticipated

events reported.

2.3. Image acquisition

Imaging acquisition was performed within after 48–72 h after

the functional outcome assessment and was performed on a Philips

3T Achieva MRI scanner. Diffusion-weighted imaging (DWI) was

acquired with: 2 × 2 × 2 mm3 voxels, field of view (FOV) =

256mm, matrix = 128 × 128 mm2, slice thickness = 2.0mm, one
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non-zero b-value of 1,000, 40 directions, gap = 0.0mm. Resting-

state functional MRI (rs-fMRI) was acquired as a T2-star EPI

sequence, with 3 × 3 × 3-mm3 voxels, 128 volumes/run, TE =

27ms, TR = 2.8 s, FOV = 256mm, flip angle = 90◦. The sequence

time is 230 s. The patient was requested to close their eyes without

thinking or any movement during the scan.

2.4. rTMS treatment

rTMS treatment was performed the day after imaging

acquisition. rTMS was delivered daily, and the patients were

treated twice a day for 5 days, a total of 10 times throughout the

hospital stay.

The rTMS was performed with a TMS stimulator (YINGCHI

Technology, China) using a flat circular coil for accurately targeted

stimulation. The coil were placed tangentially to the scalp with

the handle posterior at 45◦ from the mid-line. In order to record

surface electromyography (EMG), electrodes were placed on the

abductor pollicis brevis (AFB) on the unaffected side. Resting

motor threshold (RMT) is defined as the minimum intensity

required eliciting at least five out of 10 MEPs that are >50 µV in a

relaxed target muscle. The coil positioning was guided throughout

a positioning cap with pre-defined brain regions.

Patients were randomly divided into three intervention groups

using an automated random lot drawing technique. Based

on randomization, patients received different TMS treatments

as described in Table 2. The three treatment options were

selected based on previous rTMS evidence-based guidelines that

recommended that low-frequency or high-frequency TMS could

be used as a Class A or B recommendation for the treatment of

post-stroke motor dysfunction in the acute (subacute) stage (32).

While less stated in previous guidelines, intermittent theta burst

stimulation (iTBS) has also been shown to provide benefits in this

context with sustained benefits for at least 3 months and therefore

was also utilized in our study (33, 34). Information on the TMS

protocol used in the current study is presented in Table 1.

2.5. MRI image processing

All MRI scans were processed using Infinitome software

(produced by Omniscient Neurotechnology), which has

been described previously (23, 35). Diffusion tractography

preprocessing includes standard processing steps (36), which

include motion correction, elimination of excess movement,

gradient distortion correction, eddy correction, and constrained

spherical deconvolution-based deterministic tractography. An

individualized, parcellated brain connectome was then created

according to the Human Connectome Project (37) parcellation

scheme, and structural connectivity is measured between each

parcel pair. Resting-state fMRI image preprocessing steps include

similar steps as outlined above in addition to the removal of high

variance confounds according to the CompCor method and the

regression of motion confounds out of the image and spatial

smoothing (38).

2.6. Statistical analyses

Analyses were completed using R 4.1.3 (R Foundation for

statistical computing).

Data were analyzed for mean or median for continuous

variables and as frequency or percentages for categorical data.

Continuous variables were assessed for normality with the Shapiro–

Wilk’s test and homogeneity of variance with the F-test of

variance and then subsequently compared with unpaired t-tests

or Wilcoxon rank-sum tests (with Bonferroni correction for

multiple comparisons) and univariate linear regression analysis

as appropriate. Categorical variables were assessed with chi-

squared tests with Yate’s continuity correction or Fisher’s exact

tests as appropriate. Paired subjects at different time points [(1) at

admission day, (2) 1 day after treatment, (3) 30 days after treatment,

and (4) 90 days after treatment] were assessed using the non-

parametric Friedman’s test for all four scales. The effect size for

possible differences was measured with Kendall’s W and Dunn’s

pairwise post hoc analyses.

2.7. Structural and functional connectivity
analyses

After completing tractography-based individual patient

connectomes, structural and functional connections between

parcels in the motor network were assessed.

Possible structural connectivity disturbances in the cortical-

spinal tracts (CSTs), cortical–subcortical projection fibers, and

subcortical connections were assessed according to their structural

integrity on a 3-point scale (0 = intact, 1 = visible injured, and

2 = absent) as well as the lesion proximity to these structures

(0 = not adjacent, 1 = adjacent (<1 cm), and 2 = inside the

fibers). These structural connectivity analyses were completed by

two independent reviewers (YZ and MES) similar to what has been

completed by others (39).

Functional connectivity disturbances within themotor network

were assessed by identifying individual “anomaly” parcels, referring

to regions functioning outside of the normal range compared

to 200 healthy adults. The source of the data is from healthy

subjects of similar but not age-matched adults from the publicly

available OpenNeuro (https://openneuro.org/) and SchizConnect

(http://schizconnect.org) datasets as previously discussed by our

team (35, 40). The personalized atlas created in previous steps

was registered to the T1 image and localized to the gray matter

regions. Although the entire human connectome according to

the atlas published by the Human Connectome Project authors

demonstrates a total of 360 cortical parcellations (37) as well

as an additional 19 subcortical structures (35), we sought to

focus on the motor network and subcortical regions alone.

Therefore, in the current study, the average BOLD time series

from parcellations confined to the motor network and subcortical

structures were extracted, including a total of 45 regions (see the

details of 45 regions in Supplementary Table 1). In order to create

individual functional connectivity anomaly matrices that identify

outliers (“anomalies”), a tangent space connectivity matrix was

performed to determine the range of each functional connectivity
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TABLE 1 TMS protocols.

TMS
protocol

Motor
threshold

Stimulation
frequency
(Hz)

Trains Pulses/
train

Intervals
between
trains (s)

Total
pulses

Duration
(Min)

Side Target N = 22

iTBS 80% 5Hz burst

frequency, 3

pulses/burst at

50Hz pulses

frequency

20 30 8 600 3 Ipsilesional M1 5 (23%)

High-

frequency

90% 10Hz 100 10 10 1,000 18 Ipsilesional M1 10 (45%)

Low-frequency 90% 1Hz 100 10 2 1,000 20 Contralesional M1 7 (32%)

pair in the matrix and create an individual raw functional

connectivity matrix. Then, anomaly matrices were created by

identifying abnormally connected parcels defined as a 3-sigma

outlier for that correlation compared to the normative connectivity

matrix. Connections that were 3-SD above the normative mean

were labeled “hyperconnected,” within 3-SD labeled “normal

connectivity,” and 3-SD below the mean “hypoconnected” (23).

Furthermore, the highest variance 1/3 of pairs were excluded to

further reduce the false discovery rate. This was based on the

hypothesis that since these areas had the highest inter-subject

variance in a normal cohort, these areas may be more prone to

false discovery and therefore should be excluded, as previously

elucidated elsewhere (23, 41).

2.8. Hierarchical clustering

An unsupervised machine learning algorithm was utilized to

group patients into similar, unique clusters according to their

recovery profile and treatment response. Namely, an agglomerative

hierarchical clustering method was utilized which groups objects

into clusters based on their similar characteristics in a “bottom

up” approach (42, 43). Each node (object) represents a cluster, and

then clusters are subsequently merged based on their dis(similarity)

until the optimal number of clusters K is obtained. Information

about (dis)similarity between clusters is calculated using the

pairwise Euclidean distances between every pair of clusters in a

data matrix. The optimal number of clusters K based on this

distance information is then determined according to the Silhouette

method. In brief, a Silhouette coefficient, which presents a metric to

calculate the goodness of a clustering technique, is obtained and

ranges between −1 and 1, with higher scores representing more

coherent clusters. Mathematically, it models the difference between

cluster separation and cohesion in order to identify the optimal

quality of clustering according to a specific number of clusters

generated (44).

The individual features utilized in the algorithm included

the individual stroke scale scores at four-time points (pre-TMS

at baseline and 1-day, 30-day, and 90-day post-TMS). These

values were chosen for the current clustering analysis in order

to identify individual phenotypes in recovery trajectory (45),

rather than identifying clinical presentation phenotypes first and

then subsequently assessing their relevance to treatment responses

(46). Importantly, we completed this clustering technique for

each individual scale separately. This was done secondary to the

observation that combining elements from each scale into the same

analysis on this relatively small cohort with heterogenous data

resulted in poor statistical fitting consisting of clustering into more

than 14 groups of 1–2 patients per cluster.

3. Results

The 22 patients included in the study were of a median (IQR)

age of 64 (56, 68) years, and split equally of male (n = 11) and

female (n = 11) patients. All patients suffered from a stroke, and

the median (IQR) hospitalization duration was 9.5 (9, 11) days. The

stroke most occurred in the right hemisphere (n = 15, 68%). The

average baseline score on the NIHSS scale was 11.1, on FMA 16.5,

on BI 8.9, and on WFMT 11.8. These data are presented in Table 2.

The rTMS treatment targeted the primary motor cortex (M1)

in all patients. The targets were at equal proportions of the right

(n = 11) and left hemispheres (n = 11), although varied based

on the frequency of rTMS targeting ipsilateral or contralateral to

the lesion varied further by rTMS protocol (Table 3). Decisions

on which hemisphere rTMS was delivered to relative to the lesion

site were made by two independent stroke neurologists based

on radiographic findings at patient presentation. The treatment

intensity was most commonly of high frequency (n= 10, 45%). The

type of TMS protocol was not associated with scores at any time

point on the NIHSS, BI, orWFMT scales (p> 0.05 each). However,

the use of iTBS was associated with lower scores on the FMA scale

at 1-day (p= 0.03) and 30-day (p= 0.02) post-stroke.

3.1. Functional assessment outcomes

Functional outcomes were examined between four

standardized stroke scales between four-time points (baseline

pre-TMS and 1-day, 30-day, 90-day post-TMS). A significant

improvement between all time-points was demonstrated according

to the NIHSS (Kendall’s W = 0.51, large), FMA (Kendall’s W =

0.59, large), and WFMT (Kendall’s W = 0.02, small) scales (each

p < 0.0001). The change in the BI scale was non-significant (p =

0.67). Mean values at each time point are presented in Figure 1.

Post hoc testing demonstrated significant differences between the

time points of baseline before TMS and 1-day (p = 0.001) as well

as 30-day post-TMS (p < 0.0001) on the NIHSS scale; significant
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Lesion side

Left 7 (32%) 1 (25%) 1 (33%) 3 (38%) 2 (50%) 0 (0%) 0 (0%) >0.9 6 (33%) 1 (25%) >0.9 0 (0%) 3 (60%) 1 (17%) 2 (67%) 1 (17%) 0.3 5 (31%) 2 (33%) >0.9

Right 15 (68%) 3 (75%) 2 (67%) 5 (62%) 2 (50%) 2 (100%) 1 (100%) 12 (67%) 3 (75%) 2 (100%) 2 (40%) 5 (83%) 1 (33%) 5 (83%) 11 (69%) 4 (67%)

Gender

Female 11 (50%) 3 (75%) 1 (33%) 4 (50%) 2 (50%) 0 (0%) 1 (100%) 0.6 8 (44%) 3 (75%) 0.6 2 (100%) 2 (40%) 2 (33%) 2 (67%) 3 (50%) 0.7 7 (44%) 4 (67%) 0.6

Male 11 (50%) 1 (25%) 2 (67%) 4 (50%) 2 (50%) 2 (100%) 0 (0%) 10 (56%) 1 (25%) 0 (0%) 3 (60%) 4 (67%) 1 (33%) 3 (50%) 9 (56%) 2 (33%)

Patient age 64 (56,

68)

58 (55,

62)

49 (48,

59)

64 (62,

66)

64 (55,

72)

78 (77,

80)

67 (67,

67)

0.2 64 (56,

67)

69 (64,

72)

0.2 57 (55,

59)

66 (65,

68)

69 (52,

74)

64 (61,

65)

60 (56,

66)

0.8 64 (58,

67)

62 (54,

70)

>0.9

Hospitalization (days) 9.50

(9.00,

10.75)

10.00

(9.00,

11.25)

9.00

(8.50,

9.00)

10.00

(8.75,

10.00)

11.50

(10.75,

12.00)

8.50

(8.25,

8.75)

8.00

(8.00,

8.00)

0.073 9.00

(9.00,

10.00)

10.50

(9.50,

11.25)

0.5 11.50

(11.25,

11.75)

9.00

(9.00,

9.00)

9.00

(8.00,

10.75)

12.00

(10.50,

12.00)

9.50

(9.00,

10.00)

0.2 9.00

(8.75,

10.00)

11.50

(10.25,

12.00)

0.045

History of cerebrovascular disease

No 22 (100%) 4 (100%) 3 (100%) 8 (100%) 4 (100%) 2 (100%) 1 (100%) 18 (100%) 4 (100%) 2 (100%) 5 (100%) 6 (100%) 3 (100%) 6 (100%) 16 (100%) 6 (100%)

Hypertension 12 (55%) 2 (50%) 1 (33%) 5 (62%) 3 (75%) 1 (50%) 0 (0%) 0.9 10 (56%) 2 (50%) >0.9 0 (0%) 4 (80%) 3 (50%) 1 (33%) 4 (67%) 0.4 9 (56%) 3 (50%) >0.9

Diabetes 9 (41%) 1 (25%) 2 (67%) 4 (50%) 1 (25%) 1 (50%) 0 (0%) 0.9 8 (44%) 1 (25%) 0.6 0 (0%) 4 (80%) 2 (33%) 0 (0%) 3 (50%) 0.2 8 (50%) 1 (17%) 0.3

Coronary Heart

Disease

2 (9.1%) 1 (25%) 0 (0%) 1 (12%) 0 (0%) 0 (0%) 0 (0%) >0.9 2 (11%) 0 (0%) >0.9 0 (0%) 1 (20%) 0 (0%) 1 (33%) 0 (0%) 0.4 2 (12%) 0 (0%) >0.9

Hyperlipidemia 9 (41%) 0 (0%) 2 (67%) 5 (62%) 1 (25%) 1 (50%) 0 (0%) 0.3 8 (44%) 1 (25%) 0.6 0 (0%) 4 (80%) 2 (33%) 0 (0%) 3 (50%) 0.2 8 (50%) 1 (17%) 0.3

TMS protocol

High freq 10 (45%) 2 (50%) 0 (0%) 4 (50%) 2 (50%) 1 (50%) 1 (100%) 0.7 7 (39%) 3 (75%) 0.3 0 (0%) 2 (40%) 3 (50%) 1 (33%) 4 (67%) 0.5 7 (44%) 3 (50%) 0.7

iTBS 5 (23%) 2 (50%) 1 (33%) 1 (12%) 1 (25%) 0 (0%) 0 (0%) 4 (22%) 1 (25%) 2 (100%) 0 (0%) 1 (17%) 1 (33%) 1 (17%) 3 (19%) 2 (33%)

Low freq 7 (32%) 0 (0%) 2 (67%) 3 (38%) 1 (25%) 1 (50%) 0 (0%) 7 (39%) 0 (0%) 0 (0%) 3 (60%) 2 (33%) 1 (33%) 1 (17%) 6 (38%) 1 (17%)

TMS side

Contralateral 10 (45%) 2 (50%) 2 (67%) 4 (50%) 1 (25%) 1 (50%) 0 (0%) >0.9 10 (56%) 0 (0%) 0.1 1 (50%) 3 (60%) 2 (33%) 2 (67%) 2 (33%) 0.9 9 (56%) 1 (17%) 0.2

Ipsilateral 12 (55%) 2 (50%) 1 (33%) 4 (50%) 3 (75%) 1 (50%) 1 (100%) 8 (44%) 4 (100%) 1 (50%) 2 (40%) 4 (67%) 1 (33%) 4 (67%) 7 (44%) 5 (83%)

an (%); median (IQR).
bFisher’s exact test; Kruskal–Wallis rank-sum test.
cFisher’s exact test; Wilcoxon rank-sum test.
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TABLE 3 Patient demographics by TMS protocol.

Characteristic High frequency, N = 10 iTBS, N = 5 Low frequency, N = 7 p-value

Lesion side

Left 4 (40%) 1 (20%) 2 (29%) 0.9

Right 6 (60%) 4 (80%) 5 (71%)

Gender

Female 5 (50%) 4 (80%) 2 (29%) 0.3

Male 5 (50%) 1 (20%) 5 (71%)

Age 66 (64, 70) 53 (52, 58) 65 (56, 68) 0.035

Hospitalization duration (days) 9.00 (9.00, 10.00) 11.00 (10.00, 12.00) 9.00 (8.50, 11.00) 0.3

History of cerebrovascular disease

No 10 (100%) 5 (100%) 7 (100%)

History of hypertension 8 (80%) 0 (0%) 4 (57%) 0.020

History of diabetes 6 (60%) 1 (20%) 2 (29%) 0.3

History of coronary heart disease 2 (20%) 0 (0%) 0 (0%) 0.5

History of hyperlipidemia 6 (60%) 1 (20%) 2 (29%) 0.3

TMS side

Contralateral 3 (30%) 1 (20%) 6 (86%) 0.041

Ipsilateral 7 (70%) 4 (80%) 1 (14%)

differences between the time points of baseline before TMS and

30-day (p= 0.001) as well as 90-day post-TMS (p < 0.001) and also

between 1-day post-TMS, 30-day post-TMS (p= 0.02), and 90-day

(p < 0.001) post-TMS on the FMA scale; significant differences

between the time points of baseline before TMS and 1-day (p =

0.006), 30-day post-TMS (p < 0.0001), and 90-day post-TMS (p <

0.0001) as well as between 1-day post-TMS and 90-day post-TMS

(p= 0.002).

3.2. Connectivity outcomes

Structural and functional connectivities were measured based

on individualized connectomic analyses. A case example is

presented in Figure 2. These outcomes were addressed below in the

next section based on clustering analyses.

3.3. Cluster analysis based on standardized
stroke scales

Cluster analyses based on total scores at four-time points

revealed unique clusters, suggesting the presence of different types

of patient recovery trajectories in this cohort. These ML-based

clustering analyses were completed for each standardized stroke

scale (Figure 3). According to the optimal number of unique

clusters by the silhouette coefficient, six unique patient trajectories

existed for the NIHSS scale, two for the FMA scale, five for the

BI scale, and two for the WFMT scale. The silhouette coefficients

for each of these scales were 0.59 (NIHSS), 0.52 (FMA), 0.57 (BI),

and 0.57 (WFMT). A table comparing patient demographics in the

total study sample and by individual clusters is presented in Table 2.

There were no significant differences between individual clusters

according to individual patient demographics alone except a higher

length of hospital duration for cluster 2 compared to cluster 1 on

the WFMT scale.

Further inspection of the recovery trajectory profile of each

of these scales reveals some important trends. Most importantly,

despite some similarities between clusters for each scale (e.g., high-

or low-functional status prior to TMS and at the final 90-day time

point following TMS), individual clusters varied significantly in

terms of whether or not they experienced transient 1- and 30-day

declines. These trends in trajectories can be seen in Figure 3. As

an example, visually clusters 1 and 4 had similar baseline stroke

impairment and 1-day post-TMS scores on the NIHSS scale, but

cluster 1 then went on to improve 30 days and 90 days later,

while cluster 4 remained the same. Interestingly, while there were

no significant differences on the BI scale overall for the cohort,

ML-based analyses were able to highlight those patients who did

respond (e.g., cluster 3), and how other groups who had similar

initial scores to these patients then go on to decline (e.g., clusters

1 and 5).

3.4. Connectivity di�erences between
individual clusters

After ML-based analyses were able to identify individual stroke

recovery trajectories according to each scale, we next sought to

examine differences in structural and functional connectivities
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FIGURE 1

Changes in functional outcomes after rTMS treatment. Patient functional status scores for each scale (NIHSS, FMA, BI, and WMFT) were assessed at

four-time points: baseline at presentation, 1-day after rTMS, 30 days after rTMS, and 90 days after rTMS. Top lines connect each time point. *p < 0.05,
**p < 0.001, and ***p < 0.0001.

between these trajectories. Although some observable trends

were noted between clusters on the NIHSS, FMA, and WFMT

scales in structural and functional connectivity elements, these

visual trends did not reach statistical significance (p > 0.05).

However, a number of significant differences in structural and

functional connectivity changes were identified between clusters

on the BI scale. Importantly, these differences prominently

differed for the patients who did improve on this scale compared

to other clusters. Given our ML-based analyses identified

individual trajectories according to each scale regardless of

how the overall cohort responded on that specific scale, we

focus on connectivity differences for the BI scale below in

further detail.

We provide a heatmap of these connectivity differences for each

scale and related clusters in Figure 4 as well as expanded results in

the Supplementary material.

3.4.1. Functional connectivity di�erences
between BI clusters

The number of functional connectivity 3-sigma outliers

(“anomalies”) between clusters was investigated for both

cortical and subcortical connections and the total number of

hypoconnected and hyperconnected anomalies.

When investigating specific individual cortical parcels, a

number of significant motor regions differed between clusters.
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FIGURE 2

Case example. (A) Patient with right-sided stroke presented significant left upper and lower extremity motor deficits. (B) Structural tractography

revealed the lesion was directly inside the CST and cortical–subcortical projection fibers and an appreciable visual decrease in the integrity of the

right CST fibers was identified (represented by yellow arrows). Subcortical fibers were relatively intact from the lesion. (C) Functional connectivity

revealed a number of hyperconnected (red) and hypoconnected (blue) cortical and subcortical regions compared to the normative functional

connectivity of healthy adults. As detailed in the methods, the highest variance 1/3 of pairs were excluded to further reduce the false-discovery rate

given these areas may be prone to false discovery due to inter-individual variability in normal subjects. These areas are represented as black in the

connectivity matrix. White boxes represent areas within the normative distribution compared to healthy subjects.

FIGURE 3

Unique stroke recovery trajectories. Di�erent groups are presented according to cluster analyses using outcomes on the four standardized stroke

scales at four-time points. Patient functional status scores were assessed according to: (1) National Institutes of Health Stroke Scale (NIHSS) (top

left), (2) Barthel Index (BI) (top right), (3) Fugl-Meyer Assessment (FMA) (bottom left), and (4) Wolf Motor Function Test (WMFT) (bottom right). Each

patient score was assessed at four-time points in order to obtain long-term data: (1) at presentation, (2) 1-day after treatment, (3) 30-days after

treatment, and (4) 90-days after treatment. While our sample included n = 22, individual clusters contained occasional overlapping lines in patients

with the same scores. On the NIHSS panel, two patients in cluster 3 had the same score. On the BI panel, two patients in cluster 5 had the same

score. On the WMFT, two patients in cluster 1 had the same score.
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FIGURE 4

Dysfunctional connectivity between patient clusters. Connectivity anomalies are demonstrated on a heat map between patients according to

clustering analyses for the (1) National Institutes of Health Stroke Scale (NIHSS) (top left), (2) Barthel Index (BI) (top right), (3) Fugl-Meyer Assessment

(FMA) (bottom left), and (4) Wolf Motor Function Test (WMFT) (bottom right). Hyperconnected parcels are demonstrated in red, with a higher mean

number of hyperconnections in dark red and a lower mean number of hyperconnections in light red. Hypoconnected parcels are demonstrated in

blue, with a higher mean number of hypoconnections in dark blue and a lower mean number of hypoconnections in light blue. Each brain region,

ipsilateral or contralateral to the stroke site, is labeled on the y-axis. Individual patient clusters are on the x-axis. These outcomes are further

demonstrated in the Supplementary material.

Individual groups differed in the mean number of ipsilateral

hyperconnected supplementary and cingulate eye field (SCEF)

areas of the pre-supplementary motor area (cluster 3 = 0.7

anomalies, cluster 1= 1 anomaly, no anomalies for other clusters; p

= 0.04). Although, these differences were not statistically significant

between individual clusters on post hoc analyses but rather just for

all groups together. Similar overall differences were found for SCEF

on the ipsilateral side for hypoconnections, where only cluster 1

demonstrated an anomaly (p = 0.04). Post hoc testing revealed

that these ipsilateral hypoconnections were significantly different

between group 1 with all other clusters, including clusters 2 (p =

0.02), 3 (p = 0.02), 4 (p = 0.04), and 5 (p = 0.04). Differences

were also present for the number of hypoconnections with area

24dd contralateral to the lesion side (p = 0.02), although post hoc

analyses revealed differences between individual groups did not

reach statistical significance (p > 0.05).
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When examining subcortical structures, differences mostly

existed between groups for subcortical connections which were

hypoconnected rather than hyperconnected, specifically with the

pallidum, caudate, and thalamus. Significant differences were found

for the number of hypoconnections with the contralateral pallidum

(cluster 1= 1.0 anomaly, 2= 1.0, 3= 0, 4= 3.0, 5= 0.7; p= 0.02).

Post hoc analyses revealed clusters 3 and 4 significantly differed the

most (p= 0.007). Significant differences were found for the number

of hypoconnections with the contralateral thalamus (cluster 1 =

3.5 anomalies, 2 = 1.0, 3 = 0, 4 = 0.3, 5 = 1.0; p = 0.02). Post

hoc analyses revealed that clusters 1 and 3 significantly differed the

most (p= 0.05). Significant differences were found for the number

of hypoconnections with the ipsilateral caudate (cluster 1 = 0.5

anomalies, 2 = 0.4, 3 = 0, 4 = 2.7, 5 = 0.5; p = 0.02). Post hoc

analyses revealed that clusters 3 and 4 significantly differed themost

(p= 0.02).

The mean number of contralateral cortical parcels which were

hypoconnected differed between clusters (cluster 1= 12 anomalies,

2 = 4.4, 3 = 3.8, 4 = 10, 5 = 4.2; p = 0.05). The mean number of

hypoconnected ipsilateral cortical parcels between clusters followed

a similar trend but did not reach statistical significance (cluster 1=

19 anomalies, 2= 6.6, 3= 4.0, 4= 9.0, 5= 5.3; p= 0.09).

Differences between other individual parcellations are

demonstrated in Figure 4 and in the Supplementary material which

did not reach statistical significance.

3.4.2. Structural connectivity di�erences between
BI clusters

Differences in the visual appearance and lesion proximity of

different clusters were examined given the importance of white

matter integrity in post-stroke outcomes and treatment responses

(47–49). When examining the proximity of the lesion to white

matter fibers on DTI, there was a significant difference between

groups for cortical–subcortical projection fibers (p= 0.03), but not

for subcortical fibers (p= 0.71) or the CST (p= 0.68). For cortical–

subcortical projection fibers, proximity was significantly different

between clusters (p = 0.033). Proximity was not a predictor of

90-day BI score alone (p > 0.05). Similarly, when examining the

disruption of white matter fibers on DTI, there was a significant

difference between groups regarding the visual integrity of cortical–

subcortical projection fibers (p = 0.04), but not for subcortical

fibers (p = 0.52) or the CST (p = 0.38). For cortical–subcortical

projection fibers, visual integrity was significantly different between

clusters (p = 0.047). Visual integrity was not a predictor of 90-day

BI score alone (p > 0.05).

4. Discussion

Despite a clear understanding that stroke patients vary

significantly in regard to their recovery trajectory, there remains a

poor understanding of how to gain further insight into this process

during motor recovery treatment. Many scales which assess patient

functional outcomes (motor, sensory, and cognitive) have been

developed to predict individual stroke recovery in order to guide

treatment decisions; however, these scales remain heterogenous

and there is little consensus on their clinical value across the field

(50). In this study, a novel approach was taken to identify different

recovery phenotypes following rTMS treatment for acute stroke

patients and specifically with unique insight from personalized

connectomic information. Namely, a reverse approach was taken

which clustered patients with machine learning analyses according

to baseline and post-rTMS functional scores on validated stroke

scales, rather than just grouping patients according to clinical

presentation characteristics alone (45). While we found significant

improvements in functional recovery for patients from baseline up

to 90-day post-rTMS treatment across our entire sample, evidence

was found for clusters of specific patients with distinct recovery

trajectories. Furthermore, these treatment response phenotypes

could partially be differentiated according to their unique structural

and functional connectivity disruptions in the motor network

despite all suffering from “similar” acute strokes.

In many controlled trials, stroke patients are largely treated

as if they have the same underlying problem, despite it being

known that there are unique neurobiological differences between

patients (19). Thus, it is unsurprising to find that there have

been many conflicting results in functional outcomes for similar

stroke treatments, such as TMS, across different trials (1, 14).

What is interesting in the current study is that despite not being

a largely powered study, a number of quantitative differences

were found existing in structural and functional connectivity

between individuals and this information could differentiate

unique phenotypes in rTMS treatment responses and recovery

on a standardized stroke scale. Thus, functional and structural

connectivity analyses may allow for additional assistance in

determining the prognosis of the patient as well as for trial designs

in more appreciable ways at the single subject level than many

other predicting tools which do not account for neurobiological

differences between individuals (51).

Spontaneous stroke recovery in functional ability, such as

motor functions, has been reiteratively demonstrated to be

dependent on underlying brain network damage and the network’s

capacity for functional re-organization (19, 24–26). Based on

our study, different phenotypes according to the Barthel scale

varied in their total number of abnormal functional connections

to cortical parcellations. The connectivity of these parcellations

in the sensorimotor network has been well-described previously

(52, 53) and are well-known regions involved in motor functioning

(54). In particular, the mean total of hypoconnected parcels

contralateral to the lesion side differed between specific trajectories.

Similar results have been found in previous study with less

anatomic specificity (55, 56), although early identification of the

specific contralateral hypoconnected sensorimotor connections

which can be normalized with neuromodulatory treatments is

important for facilitating clinical improvements in the functional

activity and motor impairments (48). Furthermore, significant

abnormalities included dysfunctional connectivity of ipsilateral

pre-supplementary motor (pre-SMA) areas, ipsilateral caudate

connections, and contralateral pallidum connections. As an

example, patients in Barthel clusters 1 and 2 were similar in

their lower long-term 90-day scores but differed in their trajectory

such that cluster 1 had a transient improvement at 30 days

before declining in function. Simultaneously, cluster 1 had a
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greater number of hypoconnected ipsilateral connections to the

supplementary and cingulate eye field (SCEF) of the pre-SMA.

SCEF is amotor planning and initiation area believed to be a likely a

major point of informational outflow from higher-order networks

into the motor system due to shared network affiliation (57), and

damage to its connections may be a major cause of problems with

the initiation of goal-directed behaviors, such as in SMA syndrome

(58–60). Another example can be seen with clusters 3 and 4 which

had similar low Barthel starting points but varied in their long-

term scores (high vs. low). Cluster 4 had high functional scores at

90 days, and also had a greater number of abnormally decreased

connections with the ipsilateral caudate and contralateral pallidum

compared to cluster 4. Damage to each of these structures has

been extensively correlated with a variety of functional deficits (48,

61), and therefore, identifying these functional connections may

provide important connectomic features to model stroke severity

and recovery moving forward.

In addition to the insight provided by functional connectivity,

structural connectivity analyses have also been suggested to provide

additional information to better understand stroke recovery (19,

62, 63). In the current study, individual clusters on the Barthel

scale were significantly different in regard to their projection

fiber integrity. Projection fibers are white matter connections that

link cortical and subcortical structures and facilitate a variety

of motor and non-motor functions. Although stroke studies

incorporating structural connectivity analyses focus on the CST

and its connections in the motor network (64), projection fibers

are also extensively damaged in stroke patients and are important

in understanding post-stroke deficits despite not being extensively

studied to date (47). In our sample, the integrity of these fibers

alone was not predictor of post-TMS scores; although this is

not entirely surprising given, these connectomic elements are

just one important structure that likely contributes to overall

function and recovery ability. Tools may be created which can

model the severity of white matter integrity of projection fibers

in addition to the CST and other white matter connections

(e.g., commissural fibers) to better understand motor impairment

(47), but additional studies should also examine their non-motor

correlates post-stroke. By mapping this lesion topography to white

matter connections, structural anatomic correlates can be identified

for overall stroke severity and post-stroke outcomes which may aid

in decisions for early rehabilitation strategies tailored to specific

patients but also perhaps for individual symptoms in future

studies (11, 48, 65).

An increase in the number of studies has attempted

to incorporate structural–functional analyses to predict motor

recovery following stroke. These studies have mainly focused

on the CST in relation to predicting motor impairment with

variable outcomes (66–69), and have also suggested the volume

of the acute lesion (70) may be less important to motor recovery

compared to the actual lesion location (71) and integrity of specific

underlying white matter bundles (19, 72). These observations

highlight one of the main benefits of our analyses, namely

the utilization of an anatomically fine surface-based, multi-

modal parcellation scheme published by the Human Connectome

Project. Parcel-guided analyses may improve our ability to

better analyze underlying pathophysiological mechanisms and

communicate more anatomically fine results between studies for

hypothesis generation (18). Furthermore, parcel-guided treatments

can provide us a step forward to more accurate therapeutic

targeting (9–11, 73). The efficacy of rTMS treatment is highly

dependent on the target location, which can be incorrectly

estimated with standard craniometric measurements that often

underestimate the localization of underlying structures that often

only havemillimeter differences across the human scalp (74).While

parcel-guided TMS was not utilized in the current study, and rather

only to analyze and report our data, this study provides an example

of the feasibility and importance of such specific analyses which

should be examined further in future study for the clinical relevance

of such analyses.

The current study sought to use machine learning to identify

unique patient trajectories following acute stroke and then to

examine how connectivity information may provide additional

insight into these differences. While accomplishing this goal in

this current study, it is important to note that the current study

did not attempt to examine the intricacies and mechanisms of

TMS treatment or associated patient responses. It is well-known

that differences in TMS parameters may affect patient responses

(75, 76), but this was not examined in the current study and

instead, our results may at most in this context point to the need

to identify precise anatomic neuromodulatory targets, but not the

efficacy in targeting these regions. Furthermore, an obvious point

brought out by our analyses is how stroke patients may have

unique recovery trajectories but also that these trajectories may

vary between different scales such that a select group of patients

“responding” on one scale may or may not be a responder on

a different scale. Although not the focus of study in the current

work a large body of research has also attempted to look at

these differences which presents an important area of research

moving forwards which connectomics may also provide valuable

information (77). Nonetheless, our results instead highlight the

ability of ML-based analyses to identify and highlight trajectories

irrespective of a responder or non-responder status, and then how

connectomic features can differentiate some of these patients, as

seen with the Barthel Index.

Our study included a small sample size of patients from a

single institution. Thus, while individualized connectivity analyses

produced a large amount of data for each single patient, these

biases could have influenced our statistical analyses and therefore

although connectivity differences may have existed between

clusters on other scales, these differences may not have been

identified in the current dataset. Ourmethods utilized a unique way

to investigate functional connectivity analyses using connectivity

“anomalies.” Given small changes in functional connectivity can be

difficult and too vague to interpret, our use of 3-sigma anomalies

provides a novel way to highlight likely meaningful changes in

a patients connectome in response to pathology or intervention;

however, our structural connectivity-based analyses relied on the

visual inspection of DTI as other have completed (39) and therefore

may have been subject to additional bias. Structural connectivity

provides a meaningful way to examine major differences in

a patient’s white matter bundles and identify gross patterns

between individuals, but when examined alone without additional

information these data should not be over-interpreted. In light
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of these limitations, future studies with larger datasets and

additional statistical power should look to examine individual scale

subcomponents with greater statistical certainty as it relates to

precise connectivity features (65). This is an important area of

future research as we transition toward a period where technology

now exists for highly specialized targeting according to individual

deficits (9, 11, 73).

Despite having limited power, a number of quantitative

differences in structural and functional connectivity were identified

which could differentiate unique patient recovery trajectories

on a standardized stroke scale and provide insight into their

treatment response. A larger sample size may have allowed us to

more confidently identify more specific individual parcellations

for each cluster and among varying scales. Instead, the current

results demonstrate the value of including additional connectomic

information on individual patients that may have unique

pathophysiological profiles despite similar injuries in order to

appropriately guide clinical decision-making and understand

treatment capabilities moving forward.

5. Conclusion

This study demonstrates the ability to identify unique patient

rTMS recovery trajectories between patients and how functional

and structural connectivity features can provide additional

information in this context. Additional personalized connectivity

analyses may allow for an improved understanding of the

patient’s disease burden or estimate their trajectory and capability

for neuromodulatory treatments and therefore represents an

important area for future study in larger prospective studies.
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