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Editorial on the Research Topic

Integrative multi-modal, multi-omics analytics for the better
understanding of metabolic diseases
In the past few years, large-scale, high-throughput multi-omics experiments and

improved clinical measurements have led to the generation of a plethora of multi-modal

datasets related to various metabolic diseases (MetS), for example, type 1 diabetes (T1D),

obesity, non-alcoholic fatty liver disease (NAFLD), etc. Many integration strategies have

been discussed in the literature, such as early, intermediate, and late integration (1). The

process of early integration involves merging multiple omics information sources into a

unified matrix, whereas intermediate integration involves transforming the source datasets

into representations that are both common and specific to omics. Late integration consists

of the individual analysis of each omics dataset, followed by the combination of their

respective predictions to obtain a result (1). Figure 1 shows an example of late integration

described in the context of MetS.

This editorial summarizes the contributions to the Research Topic of Frontiers in

Endocrinology, “Integrative Multi-Modal, Multi-Omics Analytics for the Better

Understanding of Metabolic Diseases”, between November 2021 and July 2023. This

Research Topic aims to provide a platform for researchers in multi-omics and multi-

modal analysis of metabolic diseases to identify targets for therapy and diagnosis. A total of

10 original articles were selected for publication from the submissions received. A summary

of each manuscript is detailed below.

We have grouped the papers based on the different types of diseases they address,

starting with hyperlipidemia, which is characterized by elevated levels of lipids, for

example, cholesterol and triglycerides. The study performed by Zhai et al. investigated
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the effects of policosanol on the control of hyperlipidemia, gut

microbiome composition, and metabolic status using a C57BL/6

mouse model. Serum triglycerides, total cholesterol, and brown

adipose tissue weight were all shown to be dramatically reduced

after policosanol administration. Overall, policosanol demonstrated

to the potential to alter the makeup of the gut microbiota, speed up

fat breakdown, and differentiate thermogenesis-related

gene activity.

It has been noted that vitamin D also affects patients with

metabolic syndrome, and Amirkhizi et al. conducted a case-control

study to investigate the relationship between vitamin D deficiency

and adipokines, atherogenesis indicators, and metabolic syndrome

factors in 195 patients with metabolic syndrome. The study

demonstrated that patients with MetS and vitamin D insufficiency

(cases) had higher AIP and LAP than controls. Moreover, vitamin

D deficiency was correlated with some of the cardiometabolic risk

factors in patients with MetS.

T1D is characterized by multiple factors, i.e., genetics, lifestyle, and

metabolism. Clos-Garcia et al. investigated the gut microbiome and

blood metabolome in individuals with T1D and healthy controls. The

study stratified T1D cases based on albuminuria levels, identifying 51

species with and without albuminuria. Plasma metabolomics analysis

identified differences in steroidogenesis, glucose metabolism, and

circulating sphingolipids in subjects with T1D. Furthermore, the

analysis revealed reduced interactions between the gut microbiome

and plasma metabolome profiles, while polar metabolite, lipid, and

bacteriome compositions contributed to the variance in albuminuria

levels among T1D individuals. Zhang et al. analyzed the serum

metabolic profiles of children with T1D diabetes and healthy

controls and identified many differential metabolites, such as

carbohydrates, indoles, unsaturated fatty acids, amino acids, and

organic acids, consistently across pediatric patients.

The transcriptome and proteome also play a role in MetS, for

example, in patients with non-alcoholic steatohepatitis (NASH).

Pyo and Choi found that upregulated genes were associated with

inflammation, steatosis, apoptosis, and extracellular matrix

organization, while downregulated genes were associated with the
Frontiers in Endocrinology 026
response to metal ions and lipid and amino acid metabolism.

Functional enrichment analysis revealed amino acid metabolism

as the most significant hepatic perturbation in both human and

mouse NASH.

Wang et al. developed a new obesity measurement index for

metabolically associated fatty liver disease (MAFLD), which

includes traditional BMI. The results showed a strong correlation

between MAFLD, traditional BMI, and the new index.

Epithelial-mesenchymal transition (EMT) is a critical event in the

migration and invasion of endometriosis, involving immune and

stromal cells. Quan et al. investigated the potential use of EMT-based

classification for the precise diagnosis and treatment of peritoneal

endometriosis. A total of 76 peritoneal endometriosis samples were

classified into two clusters based on EMT hallmark genes. EMT scores

and abundances were compared, and a diagnostic model was

constructed based on 9 markers related to immune and stromal scores.

Pan et al. developed a targeted method for the accurate

quantification of 80 bile acids in gastric cancer patients with the

aim of developing diagnostics for the early screening of GC. The

panel of six bile acids (ratio), which included HCA, TLCA, NorCA,

DCA-3G, TLCA-3S, and HDCA/LCA, showed high accuracy for

the diagnosis of gastric cancer.

Yuan et al. investigated the causal relationship between rheumatoid

arthritis (RA) and atlantoaxial subluxation (AAS), identifying and

quantifying the potential involvement of C-reactive protein as a

mediator. The researchers utilized a genome-wide association study,

a two-sample Mendelian randomization (MR) analysis of genetically

predicted rheumatoid arthritis, and an AAS. The MR analysis revealed

a higher genetically predicted risk of rheumatoid arthritis and an

increased risk of AAS. There was no convincing evidence that

genetically predicted AAS affected the risk of rheumatoid arthritis.

Pirzada et al. used machine learning to discover potential

inhibitors of GSK3, a protein involved in the replication and

assembly of the nucleocapsid protein of SARS-CoV-2 and other

coronaviruses. They used a dataset of FDA-approved and

investigational pharmaceuticals from the ChEMBL database and a

variety of molecular descriptors to define the inhibitors. Based on
FIGURE 1

Graphical representation of the multi-modal integration to understand the mechanistic aspects of the metabolic disease.
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their predicted activity, selinexor and ruboxistaurin were identified

as the two most promising candidates. The study demonstrated that

this virtual high-throughput screening approach based on artificial

intelligence can accelerate drug discovery and identify novel targets.

In summary, this Research Topic presented multiple MetS-

related studies. Multi-omics and multi-modal datasets, such as

clinical data (Clos-Garcia et al.), transcriptomics (Pyo and Choi),

metabolomics (Clos-Garcia et al.), and gut microbiome datasets

(Clos-Garcia et al.), have been utilized to understand metabolic

diseases. Thus, the results of these studies improve the prospects for

future therapeutic and translational studies (2).
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Integrated Metagenomics and
Metabolomics to Reveal the Effects
of Policosanol on Modulating the Gut
Microbiota and Lipid Metabolism in
Hyperlipidemic C57BL/6 Mice
Zhenya Zhai1,2†, Jianping Liu1†, Kai-Min Niu1,2, Chong Lin1, Yue Tu1, Yichun Liu1,
Lichuang Cai1, Huiping Liu3* and Kexian Ouyang1*
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Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and
Poultry Production, Changsha, China, 3 Era Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China

The aim of the study was to investigate the regulatory effects of policosanol on
hyperlipidemia, gut microbiota and metabolic status in a C57BL/6 mouse model. A
total of 35 C57BL/6 mice were assigned to 3 groups, chow (n=12), high fat diet (HFD,
n=12) and HFD+policosanol (n=11), then treated for 18 weeks. Policosanol
supplementation significantly reduced serum triglycerides and total cholesterol, as well
as the weight of brown adipose tissue (BAT) (p<0.05), without affecting body weight in
HFD-fed mice (p>0.05). Combined 16S rRNA gene sequencing and untargeted
metabolomic analysis demonstrated that policosanol had regulatory effects on gut
microbiota and serum metabolism in mice. In obese mice, policosanol increased the
proportion of Bacteroides, decreased the proportion of Firmicutes, and increased the ratio
of Bacteroides to Firmicutes (p<0.05). Policosanol promoted lipolysis and thermogenesis
process, including tricarboxylic acid (TCA) cycle and pyruvate cycle, correlated with the
increasing level of Bacteroides, Parasutterella, and decreasing level of Lactobacillus and
Candidatus_Saccharimonas. Moreover, policosanol decreased fatty acid synthase (FAS)
in the iWAT of obese mice. Policosanol also increased peroxisome proliferators-activated
receptor-g (PPARg), uncoupling Protein-1 (UCP-1), peroxisome proliferator-activated
receptor gamma coactivator-1a (PGC-1a) and PR domain containing 16 (PRDM16) in
brown adipose tissue (BAT) obese mice (p<0.05). This study presents the new insight that
policosanol may inhibit the synthesis of fatty acids, and promote lipolysis, thermogenesis
related gene expression and regulate gut microbiota constituents, which provides
potential for policosanol as an antihyperlipidemia functional food additive and provide
new evidence for whole grain food to replace refined food.

Keywords: policosanol, gut microbiota, metabolomics, C57BL/6 mouse, antihyperlipidemia
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INTRODUCTION

With the gradual improvement of living standards of people in
most countries, obesity induced by high-fat, high-sugar and
refined diets is becoming a global problem (1). According to
the World Health Organization, the number of obese people in
the world nearly doubled between 1998 and 2008, with 9 million
obese adolescents in the world (2). According to the data of the
China Centers for Disease Control and Prevention, during 2013-
2014, approximately 14% of Chinese people were also suffering
from obesity (3). Hyperlipidemia, which mainly reflects the high
cholesterol, high triglyceride content and lipid metabolism
disorder in blood, is a major complication of obesity (4, 5).
Long-term hyperlipidemia can induce nonalcoholic fatty liver
and other diseases, which are harmful to human health.

The microbiome was found regulated by diets and has
essential roles on impacting obesity by influencing the caloric
absorption and energy expenditure (6). In germ-free mouse
model, the bacteria transplantation dramatically increased the
body weight and decreased the feed intake (7). However, a higher
proportion of Firmicutes relative to Bacteroidetes was found in
obese people and when obese people accepted a low-calorie diet
and lose weight, this phenomenon was reversed (8, 9).
Microbiome-metabolic axis plays important role in obesity
(10). The metabolites of intestinal microbiota, such as bile
acids, butyric acid, monosaccharide and vitamins, have been
found to promote or ameliorate obesity (11, 12). For example,
butyrate, a short-chain fatty acid produced by microbial
degradation of carbohydrates, was found to upregulate
downstream genes such as UCP1, PGC-1a and PRDM16
related to lipolysis and thermogenesis (13, 14). Secondary bile
acids, metabolites of gut microbiota from primary bile acids,
have been found to enhance the expression of downstream
lipolysis and thermogenesis genes by activating bile acid
receptors. There is growing consensus that the lipid
metabolism and energy expenditure of the host can be
regulated and improved by interfering the structure of
intestinal microbiota.

Policosanol is a kind of long-chain fatty acid alcohols (LFAs)
including octacosanol (C28H57OH, the most abundant
component), tetracosanol (C24H49OH), triacontanol
(C30H61OH) and tetratriacontanol (C34H69OH), that has been
considered a functional food with hypolipidemic, antiobesity,
antihypercholesterolemia, and antihypolipidemic activity and
has been used as a potential adjuvant drug for type 2 diabetes
mellitus in the past two decades (15). Policosanol exists widely in
rice bran, beeswax and other natural products (15). However,
compared with whole grain foods, policosanol in refined grains
or related foods is almost completely lost (16). Policosanol has
been proven to be absorbed easily, and metabolized by animals
and to exert activity on blood lipids. In a mouse model,
octacosanol can be absorbed after oral administration, the
plasma peak was reached in 30-60 min and existed in the body
for more than 3 hours. is mainly concentrated in the liver,
adipose tissue and digestive tract (17). Furthermore,
octacosanol, the main component of policosanol, has been
reported to reduce blood cholesterol levels, insulin resistance,
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and low-density lipoprotein cholesterol (LDL-C) levels after oral
administration in humans (18). Similarly, in children with
hypercholesterolemia, oral administration of policosanol can
significantly reduce the levels of TC, LDL and apolipoprotein B
(19). Furthermore, in a rat model and in Hep G2 cell models,
octacosanol has been found to inhibit cholesterol synthesis (20).
These studies provide clues that policosanol can regulate blood
lipid and cholesterol levels and is targeted mainly to the liver and
fat tissues, however, whether policosanol has a regulating effect
on gut microbiota and serum metabolism is still no clear.

To clarify this situation, we attempted to investigate the
regulatory effects of policosanol on hyperlipidemia, gut
microbiota and serum metabolic status in mice by integrated
microbiome-metabolomic methods, coupled with serum
biochemical and gene expression analyses in the present study.
MATERIALS AND METHODS

Ethics Statement
All the experimental design, procedures and experimental
operations in the present study were approved and in
accordance with the guidelines of the Committee of the
Institute of Subtropical Agriculture at the Chinese Academy of
Science (No. ISA-2020-18).

Preparation of Policosanol
Policosanol was prepared by a distillation method. Briefly, we
constructed a vacuum high-temperature distillation column. The
saponified crude alcohol used as raw material was added into the
material tank, high-temperature distillation was carried out in the
distillation column, and policosanol with different purities was
collected in different collectors. The Analyzing and Testing Center
of Guangzhou Institute of Chemistry, Chinese Academy of
Sciences, was entrusted to test the components of policosanol
(report number: YS160503-03). The policosanol used in this study
was composed of docosanol (C22H45OH, 2.48%), tetradecanol
(C24H49OH, 4.19%), hexacosanol (C26H53OH, 4.33%),
octacosanol (C28H57OH, 64.16%) and triacontanol (C30H61OH,
15.51%). Because policosanol is a waxy solid, it is necessary to use
a vehicle to improve its mixing uniformity in the diet. The vehicle
includes mainly cyclodextrin, isomaltooligosaccharide and Arabic
gum. The ratio of vehicle and policosanol was 1:9 (weight: weight).

Animals
A total of 35male C57BL/6 specific pathogen-free mice (3-4 weeks
of age) were purchased from STJ Laboratory Animal Co., Ltd.
(Hunan, China). All mice were housed in cages and raised under
the same controlled conditions (temperature 25 ± 2°C, light/dark
12 h:12 h, humidity of 60 ± 10%). After 1 week of adaptation, the
mice were randomly assigned to 4 groups with equally adjusted
initial body weights as follows: the chow group was fed a chow diet
containing vehicle (17.81 ± 0.16 kJ/g, n=12), the HFD group was
fed an high-fat diet containing vehicle (24.02 ± 0.09 kJ/g, n=12),
and (4) the HFD+policosanol group was fed HFD containing 0.5%
policosanol (23.97 ± 0.06 kJ/g, n=11). All the diets were
customized by Jiangsu Xietong Pharmaceutical Bio-Engineering
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Co., Ltd. The normal and HFD formulas are shown in Supporting
Information Tables S1, S2. All the mice were raised with free
access to feed and water and body weight and food intake of the
mice were measured once a week for 18 weeks.

Sample Preparation
At the end of this experiment, all the mice were fasted for 6 h,
and anesthesia was induced by intraperitoneal injection of 2%
pentobarbital sodium intraperitoneally injection (45 mg/kg body
weight). Then, blood samples were collected after enucleation of
the eyeball. Then, the inguinal white adipose tissue (iWAT),
epididymal white adipose tissue (eWAT) and brown adipose
tissue were separately collected and weighed, as described in our
previous study (12, 21). iWAT was completely separated from
the subcutaneous of the abdomen. Further open the abdominal
cavity and completely separate eWAT from around the
epididymis. Finally, the skin of the scapula was cut to
completely separate the brown fat. The iWAT samples were
placed into 4% paraformaldehyde and embedded in paraffin and
then subjected to hematoxylin and eosin (H&E) staining.
Adipocyte size was measured using VistarImage (Olympus,
Japan) following the instructions. The blood, adipose tissue
and cecal content samples for metabolomics analysis, qPCR or
16s rRNA were collected with centrifuges (germ-, RNase- and
DNase- free) tube, frozen in liquid nitrogen and stored at - 80 °C.

Lipid Parameters in Serum
The triglyceride (TG), total cholesterol (TC), high -density
lipoprotein cholesterol (HDL-C) and LDL-C in serum were
determined according to the instructions of the commercial kits
(Nanjing Jiancheng, Bioengineering Institute, Nanjing, China).

16S rRNA Gene Sequencing
Detailed sequencing methods were described in our previous
research (22) and performed in a commercial company
(Novogene, Beijing, China). Briefly, total DNA was extracted
from the cecum contents by using Qiangen QIAamp DNA Stool
Mini Kit according to the protocol. Then the V3-V4 region of the
bacterial 16S ribosomal RNA gene amplified by PCR, the
following primers (5’-3’) 180 were used: 341F CCTAYGG
GRBGCASCAG and 806R 181 GGACTACNNGGGTATC
TAAT. After the PCR, and the amplicons were electrophoresed
and extracted. The gene library was constructed by using the Ion
Plus Fragment Library Kit 48 rxns 188 (Thermo Scientific,
Waltham, MA, USA). Then the sequencing of genes was
performed on the Ion S5™XL platform to obtain the raw data.
The raw data were treated and measured to clean data. The clean
data were clustered with 97% identity to identify the operational
taxonomy units (OTUs).

Linear discriminant analysis (LDA) effect size (LEfSe) was
used to elucidate the differences in bacterial taxa, which were
described in our previously study (22). An LDA score ≥3 was
considered to be an important contributor to the model.
Spearman analysis was used to measure the correlation
between gut microbiota and adipose tissue weight or serum
metabolites using R software.
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Untargeted Metabolomics in Serum
Untargeted metabolomics was conducted using a commercial
service from Biotree (Shanghai, China). Briefly, a 50 mL serum
sample was mixed with 200 mL extracting solution (50%
methanol: 50% acetonitrile) and internal standards [L-leucine-
5,5,5-d3 (CAS:87828-86-2), trimethylamine-d9-N-oxidein (CAS:
1161070-49-0)] in a 1.5 mL centrifuge tube. The mixture was
sonicated in an ice-water bath for 10 min and placed at -40°C for
1 h. Then, the samples were centrifuged at 4°C and 12000 rpm
for 5 min, and the supernatant was subjected to liquid
chromatography-mass spectrometry (LC-MS).

The LC was performed using a Vanquish ultra-performance
liquid chromatography instrument (Thermo Fisher Scientific,
MA, US) with a Waters ACQUITY UPLC BEH Amide (2.1 mm
× 100 mm, 1.7 mm) chromatographic column to separate the
metabolites. A phase (ultrapure water containing 25 mmol/L
ammonium acetate and 25 mmoL/L ammonia) and B phase
(acetonitrile) were used for elution. The elution gradient is
shown in Supporting Information (Table S2). The column
temperature was 30°C, and the injection volume was 3 mL.

A QE HFX mass spectrometer was used to obtain MS/MS
spectra in information-dependent acquisition (IDA) mode under
the control of the acquisition software (Xcalibur, Thermo Fisher
Scientific). In this mode, the acquisition software continuously
evaluates the full scan MS spectrum. The ESI source conditions
were set as follows: sheath gas flow rate of 50 Arb, Aux gas flow
rate of 10 Arb, capillary temperature of 320°C, full MS resolution
of 60000, MS/MS resolution of 7500, collision energy of 10/30/60
in NCE mode, and spray voltage of 3.5 kV (positive) or -3.2
kV (negative).

The raw data were converted to an mzXML format, and R
software was used for peak detection, extraction alignment and
integration. The metabolites were annotated using an in-house
database. The peaks were normalized using internal standard.

Bioinformatic Analysis
To analyze the differences in gut microbiota and serum
metabolites in different groups, principal component analysis
(PCA), and orthogonal partial least squares discriminant analysis
(OPLS-DA) were performed and the over fitting of the model is
verified by cross-validation (permutation test) using SIMCA-P
(16.0.2, Sartorius Stedim Data Analytics AB, Umea, Sweden)
(23). Then, univariate statistical analysis was used to screen
metabolic markers with significant differences in accordance
with our previous study (24, 25). Briefly, based on OPLS-DA,
the variable importance in the projection (VIP)>1, the relative
abundance fold change of the metabolites of <0.5 or >2, and a p-
value <0.05 were defined as differences. Furthermore, the
significantly changed metabolite pathways were analyzed using
the KEGG database (Kyoto Encyclopedia of Genes
and Genomes).

RNA Extraction and Quantitative Real-
Time Polymerase Chain Reaction
The iWAT and BAT were homogenized and total mRNA was
extracted using column RNA extraction kits (Magen,
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Guangzhou, China, R4121). The total RNA concentration was
determined using a NanoDrop 2000C spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA), and the
mRNA was reverse transcribed to cDNA using cDNA
synthesis kits (CWBIO, Jiangsu, China, CW2582M).
Information on the primers is shown in Supporting
Information (Table S6) and synthesized (Sangon Biotech,
Shanghai, China). qPCR was performed in an Applied
Biosystems by Life Technologies QuantStudio 7 (Thermo
Fisher Scientific). The relative abundance of the genes was
normalized to GAPDH using the 2-DDCT method and the
relative expression level were shown as fold changes relative to
chow group.

Statistical Analysis
Data are expressed as the mean ± SEM. One-way ANOVA and
least significance difference (LSD) method as a suitable post-hoc
test was used to determine the differences among the groups by
using SPSS 20.0 (IBM, SPSS, USA) and a p-value of <0.05 was
considered statistically significant. GraphPad Prism 7 (GraphPad
Software Inc., San Diego, CA, USA) was used to generate
statistical plots.
RESULTS

Effects of Policosanol on Hyperlipidemia in
HFD-Fed Mice
C57BL/6 male mice aged 3-4 weeks were fed 0.5% policosanol in
a chow diet or HFD for 18 weeks. The data showed that the body
weight of HFD-fed was mice significantly higher than the body
weight of chow-fed mice (p<0.05). However, policosanol
treatment did not significantly affect changes in body weight,
or total energy intake in HFD-fed mice (p>0.05) (Figures 1A, B).
In serum, the TG and TC contents were both significantly
reduced in the HFD-fed mice (p<0.05, Figures 1C, D), while
decreased LDL-C content and increased HDL-C content were
observed in HFD-fed mice (p<0.05, Figures 1E, F) after
policosanol treatment.

Effects of Policosanol on Body Fat in
HFD-Fed Mice
The accumulation of adipose tissue in mice was evaluated.
Policosanol treatment showed no effect on eWAT weight
(p>0.05, Figure 2A), tended to reduce the weight of iWAT
(p=0.056, Figure 2B), and significantly decreased the BAT
weight (p<0.05) in the HFD-fed mice (Figure 2C). H&E
staining-based histological results for both groups showed that
policosanol reduced the iWAT adipocyte size (p<0.05,
Figures 2D, E).

Effect of Policosanol on Gut Bacterial
Communities in Mice
The16S rRNA gene sequencing data are shown in Figure 3. The
rarefaction and observed OTU results showed that the selective
sequences in clean data were sufficient to determine most of the
Frontiers in Endocrinology | www.frontiersin.org 411
bacterial species (Supporting Information Figures S1 A, B).
The petal diagram showed that there were 544 core OUTs found
in all the groups, while 57, 74 and 38 OTUs were detected in
chow, HFD and HFD+policosanol groups (Figures 3A and
S1C). Policosanol increased Bacteroides, decreased the
Firmicutes relative abundance, and increased the B/F ratio in
obese mice (p<0.05, Figures 3B, C). To better understand the
effect of policosanol on microbiota constituents, LEfse was
conducted (Figure 3D). The data showed that Bacteroidales
and Muribaculaceae belonging to Bacteroidota phylum were
the feature taxa in the chow fed mice. In HFD group,
Lactobacillaceae, Actinobacteria and Erysipelotrichales were the
feature taxa. In HFD+policosanol group, Akkermansiaceae
belonging to Verucomicrobiales , Bacteroidaceae and
Desulfovibrionia were the feature taxa. Based on this, a
spearman correlation analysis was conducted between
microbiota composition and adipose tissue weight. The data
showed that Lactobaci l lus , Dubosie l la , Candidatus :
Sarccharinonasm and Lachnospiaceae_UGG.006 showed
positive correlation with iWAT and BAT weight (R2>0.4),
while Alloprevotella , Parasutterella , Oscillibacter and
Faecalibacterium showed negative correlation (R2<-0.4).
Furthermore, compared to HFD group, policosanol was found
had lowering-effect on the relative abundance of Lactobacillus
and Candidatus:Sarccharinonasm compared to HFD group
(Figures 3F, G, p<0.05), while up-regulating effect on the
relative abundance of Bacteroides and Parasutterella (p<0.05,
Figures 3I, J). It is also found that, compared to HFD group,
policosanol treatment tend to increase the relative abundance of
Allpprevotella and Akkmermansia (0.05<P<0.1, Figures 3J, K).

Effects of Policosanol on Serum
Metabolites in HFD-Fed Mice Uncovered
by Untargeted Metabolomics
Untargeted metabolomics with both positive and negative
models was subsequently conducted to investigate the effects of
policosanol on influencing serum metabolite changes related to
lipid and energy metabolism. The PCA and OPLS-DA results
showed discriminately distinguished serum metabolites in HFD-
fed mice (Figures 4A, B). The permutation test showed that all
OPLS-DA models were reliable without overfitting (Figure 4C).
The volcano plot (Figure 4D) presented significantly changed
serum metabolites after treatment with policosanol. In HFD-fed
mice, we found that 483 metabolites were decreased and 359
metabolites were increased after policosanol treatment.

Effects of Policosanol on Changing the
Metabolic Pathways in HFD-Fed Mice
Based on the PCA, the relative abundance of metabolites between
HFD and HFD + policosanol mice were shown to be remarkably
different. Thus, relevant metabolic pathways were further
analyzed (Figure 5). In HFD-fed mice, policosanol was found
to regulate mainly the TCA cycle, butanoate metabolism, alanine,
aspartate and glutamate metabolism, pyruvate metabolism,
pantothenate and CoA biosynthesis and glycerophospholipid
metabolism pathways under the negative scan model, while the
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regulation related to glycerophospholipidmetabolism, arginine and
proline metabolism, and cysteine and methionine metabolism-
related pathways was determined under the positive the scan
model. Small molecule metabolites in mouse cecal contents were
also detected. The data showed that policosanol treatment mainly
affect the linoleic acidmetabolism, biosynthesis of unsaturated fatty
acids, propanoate metabolism and amino acid metabolism
(Supplementary Figure S2).

Effects of Policosanol on the Regulation of
Representative Metabolites in Chow- and
HFD-Fed Mice
Further, we combined OPLS-DA, t-test and serum content to
screen key small molecule metabolites that may be regulated by
policosanol. A total of 30 metabolites were primarily identified
(Figure 6) and all the significantly changed metabolites found in
this study were shown in Supporting Information Tables S5.

In HFD-fed mice, metabolites involved in nucleotides, amino
acids, fatty acids, and their intermediates that are associated with
Frontiers in Endocrinology | www.frontiersin.org 512
mitochondrial oxidation, such as 3−methyl−2−oxovaleric acid,
citraconic acid, trans−aconitic acid, and pyruvic acid, were
significantly enriched with policosanol treatment compared to
the control. Conversely, glycerophospholipid metabolism-related
metabolites such as 2,3−dihydroxybutanedioic acid, pantothenic
acid, L−carnitine, choline, phosphorylcholine, and trimethylamine
oxide (TMAO), were significantly downregulated. The data
showed that, policosanol significantly decreased the content of
lipids and lipid-like molecules (e.g., 12-HEPE and 12-HETE, the
derivates of eicosapentaenoic acid) and increased the content of
linoleic acid and ricinoleic acid (p<0.05, Supporting Information
Figure S3 and Supplementary Table S6) in the cecal content
of mice.

Correlation of Key Microbiota
Communities and Differential
Serum Metabolites
To better reveal how altered microbiota regulate host metabolic
processes in mice, correlation analysis of microbiome-
A B

C E FD

FIGURE 1 | Policosanol did not affect body weight, but showed the lipid lowering effect in the serum of mice. (A) Policosanol had no effect on the body weight of
obese mice for 18 weeks. (B) The total energy intake (per mice) of chow diet or HFD fed mice after 18 weeks. (C–F) Policosanol reduced serum TG, TC, LDL-C,
HDL-C in HFD induce obese mice for 18 weeks. Chow: The mice fed with chow diet (n=12), HFD: the mice fed with high fat diet (n=12), HFD+policosanol: The mice
fed with high fat diet containing 0.5% policosanol (n=11). TG, Total glyceride; TC, total cholesterol; LDL-C, low density lipoprotein cholesterol; HDLC, high density
lipoprotein cholesterol. Data were expressed as mean ± SEM. Differences of data in mice subjects were assessed by one-way ANOVA. For all pictures, columns
indicated with different letters (a- c) have significant difference, p < 0.05. ns, not significant.
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metabolomic studies were conducted in obese mice (Figure 7).
In HFD induced obese mice, Allobactulum is the feature taxa in
HFD + policosanol, was positively correlated with the
metabolites involved in energy metabolism, such as succinic
acid, trans-aconitic acid and citraconic acid. Bacteroides were
positively correlated with pyruvic acid and uridine (R2>0.4,
p<0.05) but negatively correlated with trigonelline,
phoshorycholine, pantothenic acid, L-cartnitine (R2<-0.4,
p<0.05). In contrast, Candidatus_Sacchanimonas and
Turicibacter, the feature communities in the HFD group, were
negatively correlated with uridine, trans-aconitic acid, succinic
acid, citraconic acid (R2<-0.4, p<0.05), while positively correlated
with choline, pantothenic acid and 2,3-dihydroxybutanedioic
acid (R2>0.4, p<0.05). Inductive information on the sources of
all small molecule metabolites is presented in Supporting
Information Table S7.

Effects of Policosanol on the Regulation of
Lipid Metabolism-Related mRNA
Expression in Adipose Tissue
In iWAT, policosanol treatment decreased the gene expression of
FAS, TNF-a and IL-6, while increased PPARg, PGC-1a and
UCP-1 in HFD-fed mice (p<0.05, Figures 8A–I). Similarly, in
BAT, policosanol showed no significant effect on FAS, ATGL,
HSL, (p>0.05), but upregulation of PPARg, UCP1, PGC-1 and
PRDM16 in obese mice after policosanol treatment (p<0.05,
Figures 8J–P).
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DISCUSSION

Obesity is a chronic metabolic disease that has been found to be
closely related to cardiovascular disease, diabetes and gut disease
since the early 20th century. To date, the causes of obesity are still
unclear, but controlling energy intake, increasing energy
consumption and promoting fat decomposition and oxidation
have been deemed to alleviate obesity (26). In general,
pharmacotherapy intervention, bariatric surgery treatment and
lifestyle intervention are mainly used to treat obesity (27).
However, these interventions can cause side effects such as
vitamin deficiency, hyperthyroidism, headache, vomiting and
hypoglycemia (28, 29). Among these interventions, lifestyle
interventions, including adjustment of dietary structure and
exercise, are considered safe ways to improve obesity. A large
amount of evidence has shown that policosanol improves
hypertriglyceridemia and hypercholesterolemia in humans and
animals and has the potential as a functional food to improve
obesity. For example, a double-blind experiment on volunteers
with prehypertension showed that orally taking 10 mg
policosanol tablets (containing 60-70% octacosanol) each day
can reduce TC and TG by 20% and 14%, respectively, and the
activity of cholesteryl ester transfer protein in the serum (30).
Policosanol (mainly containing 28% octacosanol, 21%
triacontanol, and 36% tetratriacontanol) also significantly
decreased the weight of iWAT and BAT (31). The present
study was conducted to investigate the effects of policosanol on
A B C

D E

FIGURE 2 | Policosanol reduced lipid accumulation in the iWAT and BAT. (A–C) The tissue weight of eWAT, iWAT and BAT. Chow: The mice fed with chow diet (n
= 12), HFD: the mice fed with high fat diet (n = 12), HFD + policosanol: The mice fed with high fat diet containing 0.5% policosanol (n = 11). (D) Representative H&E
staining picture of adipocyte size of iWAT. (E) Statistical plot of fat droplet area in scWAT, n = 5 mice/group. Differences of data in mice subjects were assessed by
one-way ANOVA. For all pictures, columns indicated with different letters (a-c) have significant difference, p < 0.05. ns, not significant.
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metabolism in vivo and to explore the potential mechanisms for
improving obesity. Our results showed that dietary
supplementation with 0.5% policosanol (containing
approximately 64% octacosanol) did not change the body
Frontiers in Endocrinology | www.frontiersin.org 714
weight or total energy intake of mice. This is consistent with a
previous study that showed that policosanol orally administered
for 6-12 months does not affect the body weight of Sprague-
Dawley rats (32, 33). Similarly, octacosanol, the main component
A B C

E

F G H

I J K

D

FIGURE 3 | Policosanol reshaped the gut microbiota in mice. (A) The Venn plot of OTUs. (B) Relative abundance of gut microbiota at phylum level. (C) The of
Bacteroides/Firmicutes ratio in the cecal contents of mice. (D) LEfse analysis between HFD and HFD+policosanol groups. (E) The correlation among microbiota and
adipose tissue weight. ** : | R2| > 0.5, *0.4 < | R2| < 0.5 (F–K) The key microbiota with significant difference at genus level. (C) mice fed with chow diet. (H) mice fed
with HFD. HP: mice fed with HFD+0.5% policosanol diet, n=8/mice per group. Differences of data in mice subjects were assessed by one-way ANOVA. For all
pictures, columns indicated with different letters have significant difference (a-c), p < 0.05. ns, not significant.
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A B
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FIGURE 4 | Policosanol affects the metabolites in mice. (A) The principal component analysis plot based on the metabolites matrix in the serum. (B) The orthogonal
partial least squares discrimination analysis (OPLS-DA) plot based on the metabolites matrix in the serum, (C) permutation test plot based on OPLS-DA methods.
(D) The volcano plot based on the changed metabolites the HFD group compared to the HFD+policosanol group.
A B

FIGURE 5 | Policosanol regulates the metabolic pathways in obese mice. (A) Enrichment analysis of KEGG pathways in NEG mode. (B) Enrichment analysis of
KEGG pathways in POS mode. NEG, negative scanning mode; POS, positive scanning mode.
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of policosanol, has no effect on mouse body weight after
treatment for 12 weeks (34). However, the present study found
that policosanol can effectively reduce the content of TG, TC,
LDL-C and increase HDL-C content in HFD-fed mice,
suggesting its potential to ameliorate hyperlipidemia.

The diversity, richness and structure of gut microbiota play an
important role in the regulation of host obesity, diabetes and
metabolic diseases. The individuals who were marked as overall
adiposity, were found with low bacterial richness compared to the
non-obese individuals (35). In the present study, we analyzed the
effects of policosanol on gut microbiota in obese mice. Policosanol
reduced the weight of iWAT, BAT but not eWAT. Then, the effect
of policosanol was further confirmed by histological analyses
showing reduced adipocyte size in iWAT. As expected, the gut
microbiota of mice fed with diet (containing 0.5% policosanol) for
18 weeks changed significantly and showed change manners in
obese mice. Policosanol increased Bacteroides/Firmicutes ratio
only in obese mice. In addition to the proportional changes of
Frontiers in Endocrinology | www.frontiersin.org 916
Bacteroidea and Firmicutes, the significant change of
Parasutterella and Canaidatus_Saccharimonas after policosanol
intervention was highly correlated with the weight change of
iWAT and BAT. Akkermansia and Alloprevotella tended to
recover to a level similar to that of the control group after
policosanol treatment. Researchers have found that the gut
microbiota can regulate the metabolic state and health of the
host through pathways such as energy metabolism regulation and
release of signaling molecules. According to the previous studies,
the balance between Bacteroides and Firmicutes is considered to be
the key factor affecting obesity (35). Furthermore, the altered
microbiota can regulate the metabolism of host by regulating the
changes of various metabolites. The proportion of Firmicutes and
Bacteroidetes increases, so that more plant derived polysaccharides
are decomposed into short fatty acids, which affects the
metabolism of carbohydrates and promotes the host’s calories
absorption and adipogenesis (6). Parasutterell can occupy a
specific niche in the intestine and affect the metabolism of
FIGURE 6 | Hierarchical clustering analysis of top the 30 metabolites in mice. Heat map of top the 30 metabolites in HFD and HFD +policosanol groups. The red
and blue indicate upregulation and downregulation, respectively.
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aromatic amino acids, bilirubin, succinate and bile acids in the
intestine, so as to regulate the metabolism of the host. Therefore,
Parasutterell is considered to be a core flora but has not been fully
studied in recent years (36). In the present study, a combined
metabolomics and microbiomics analysis was used to reveal the
correlation of metabolites and microbiota. Our results clearly
showed that policosanol could significantly influence
metabolism in HFD-fed mice. Policosanol significantly increased
metabolites associated with the TCA cycle, pyruvate metabolism,
glycolysis or gluconeogenesis, and pantothenate and CoA
metabolism and significantly inhibited the synthesis of
glycerophospholipids. Furthermore, our results clearly revealed
that Bacteroides, Allobaculum, Staphylococcus, and Parasutterella
were participated in succinic acid, pyruvic acid, and critraconic
acid regulation. In this study, the results also showed that
Akkmermansia tended to be increased in HFD + policosanol
Frontiers in Endocrinology | www.frontiersin.org 1017
group, but there was no high correlation in the regulation of
metabolites in serum and intestinal contents. Lack of
Akkmermansia is a key factor in inducing obesity and even
diabetes (37). However, studies have shown that compared with
living Akkmermansia, dead Akkmermansia can better regulate
host fat content, insulin resistance and hyperlipidemia by releasing
Amuc-1100 protein from cell membrane (38, 39).

Lipolysis and thermogenesis process in adipose tissue are
important factors regulating fat deposition in mammals. In this
study, Bacteroidetes, Firmicutes in phylum and Parasutterell and
Canaidatus_Saccharimonas in genus level showed high
correlation with iWAT and BAT weight and metabolites
contents correlated with TCA cycle. Fat in scWAT is more
easily metabolized than visceral WAT, which including eWAT
and the adipose tissue around liver and heart (40). Compared
with visceral WAT, scWAT is more likely to be mobilized,
FIGURE 7 | Correlation analysis of gut microbiota and serum metabolites in HFD and HFD+policosanol mice. Red and blue indicate positive and negative correlations,
respectively. *p < 0.05.
October 2021 | Volume 12 | Article 722055

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhai et al. Policosanol Regulates Microbiota and Metabolomics
A B C

E F

D

G H

I j K

M N

L

O P

FIGURE 8 | Policosanol activates AMPK and downstream gene expression related to fatty acid synthesis, inflammation, lipolysis and thermogenesis in adipose
tissue. (A–I) Relative mRNA expression in iWAT. (J–P) Relative mRNA expression in the BAT. Chow: The mice fed with chow diet (n=12), HFD: the mice fed with
high fat diet (n=12), HFD+policosanol: The mice fed with high fat diet containing 0.5% policosanol (n=11). Differences of data in mice subjects were assessed by
one-way ANOVA. For all pictures, columns indicated with different letters have significant difference, p < 0.05. ns, not significant.
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browned, hydrolyzed, oxidized and thermogenerated (41).
Therefore, we examined the gene expression associated with
lipogenesis and lipolysis in adipose tissue. In obese mice,
policosanol did not significantly change the expression of FAS
and HSL genes but remarkably increased ATGL gene expression
in iWAT. In addition to lipolysis related genes, the genes involved
in thermogenesis and adipose “browning” process such as PPARs,
UCP-1 and PRDM also play important roles in anti-obesity (14,
27). PPARs, including PPAR a and PPAR g, regulate the
metabolism of liver and adipose tissue, respectively. PPAR a in
the liver has the effect of decreasing the level of SREBP-1c,
promoting fat thermogenesis and alleviating nonalcoholic fatty
liver (42, 43). In addition, we found that PPAR g regulates fat
metabolism in adipose tissue, which was also elevated in scWAT.
PPARs are key proteins in thermogenesis. PRDM16 and PGC-1a
can combine with PPARs to drive the differentiation of brown
adipocytes and promote the expression of UCP-1 (12, 43). In this
study, in the HFD+policosanol group, we found that PGC-1a and
UCP-1 were increased in iWAT and BAT while PRDM16 was
only increased in BAT. These results suggest that in obese mice,
policosanol mainly plays a role by increasing the decomposition,
oxidation and thermogenesis of lipids.

Based on the findings of this research and predecessors, there
are still some limitations to be further studied in the regulation of
host metabolism by policosanol through intestinal microbiota.
How policosanol regulates intestinal microbiota and how it is
metabolized and utilized by intestinal microbiota still remains
unclear. In addition, whether the changes of small molecule
metabolites in host intestine and serum after treatment with
policosanol, such as the increase of polyunsaturated fatty acids
and the decrease of TMAO contents, are caused by the changes
of intestinal microbiota, which may need to be verified by sterile
mouse model. In the future, in-depth research on these aspects
may provide a new perspective for the promotion of whole grain
food or policosanol as a functional food additive.
CONCLUSION

In summary, our findings elucidated that policosanol reduces fat
accumulation in obese mice. Furthermore, we found that in
obese mice, the metabolites involved in TCA cycle and
thermogenesis were highly correlated with Firmicutes,
Bacteroidetes , and Candidatus:Sarccharinonasm , and
Parasutterella. These findings suggest that policosanol has the
Frontiers in Endocrinology | www.frontiersin.org 1219
potential to be applied as an antihyperlipidemia supplement to
improve well-being and health in humans.
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University of Science and Technology, Seoul, South Korea
Background: Despite the global prevalence of nonalcoholic fatty liver disease

(NAFLD), its pathophysiology remains unclear. In this study, we established

highly confident nonalcoholic steatohepatitis (NASH) gene signatures and

evaluated the pathological mechanisms underlying NASH through a

systematic meta-analysis of transcriptome and proteome datasets obtained

from NASH patients and mouse models.

Methods:We analyzed NASH transcriptome datasets from 539 patients and 99

mice. A whole-liver tissue proteome dataset was used to confirm the protein

level dysregulation of NASH signatures significant in both humans and mice.

Results: In total, 254 human and 1,917 mouse NASH gene signatures were

established. Up-regulated genes of 254 human signatures were associated

with inflammation, steatosis, apoptosis, and extracellular matrix organization,

whereas down-regulated genes were associated with response to metal ions

and lipid and amino acid metabolism. When different mouse models were

compared against humans, models with high fat and high fructose diet most

closely resembled the genetic features of human NAFLD. Cross-species

analysis revealed 66 genes that were concordantly dysregulated between

human and mouse NASH. Among these, 14 genes were further validated to

be dysregulated at the protein level. The resulting 14 genes included some of

the well-established NASH associated genes and a promising NASH drug

target. Functional enrichment analysis revealed that dysregulation of amino

acid metabolism was the most significant hepatic perturbation in both human

and mouse NASH.

Conclusions:We established themost comprehensive hepatic gene signatures

for NASH in humans and mice to date. To the best of our knowledge, this is the
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first study to collectively analyze the common signatures between human and

mouse NASH on a transcriptome–proteome scale.
KEYWORDS

nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, transcriptomics,
proteomics, cross-species analysis
Introduction

Nonalcoholic fatty liver disease (NAFLD), defined by the

presence of abnormal liver fat (steatosis in ≥ 5% of hepatocytes)

in the absence of secondary causes of fatty liver, is the most

common form of chronic liver disease worldwide (1). NAFLD

encompasses a spectrum of conditions, from the simple

nonalcoholic fatty liver (NAFL) to the more severe nonalcoholic

steatohepatitis (NASH), which is hallmarked by inflammation

and hepatocyte ballooning (1). The global prevalence of NAFLD is

rapidly increasing, concurrent to the global epidemics of obesity

and type 2 diabetes mellitus (T2DM) (2). It is estimated that 25%

and 5% of the general population have NAFLD and NASH,

respectively (2). Due to the high propensity of NASH to further

develop into cirrhosis and hepatocellular carcinoma (HCC),

NASH is becoming the leading cause of liver transplantation,

but approved therapies have not yet been developed (3).

The pathogenesis of NASH is a complex multi-etiological

process associated with genetic, epigenetic, metabolic, and

environmental factors (4). Two gene variants, patatin-like

phospholipase domain-containing protein 3 (PNPLA3) and

transmembrane 6 superfamily member 2 (TM6SF2), have been

validated to be strongly associated with NASH (4). Obesity and

insulin resistance are key pathogenic factors in NAFLD, and

T2DM is a well-established risk factor for the rapid progression

of NAFL to NASH, cirrhosis, or HCC (5). Recent studies revealed

an inverse correlation between diet quality and NAFLD

prevalence (6), and regular consumption of fructose promoted

hepatic de novo lipogenesis in a double-blind, randomized clinical

trial (7). Despite many efforts to understand the disease, the

complete pathophysiology of NASH remains unclear. Current

options for managing NAFLD include bariatric surgery or lifestyle

modification, such as exercise or diet control (1). These methods

have proven to be effective in resolving NASH or even mild

fibrosis, but are only applicable to a limited number of patients (1).

Thus, additional studies are urgently needed to understand the

pathogenesis of NASH for successful identification of therapeutic

NASH targets and the development of corresponding drugs.

Animal models, particularly those used to study human

diseases, offer valuable opportunities to researchers to

experimentally investigate the pathophysiology of diseases via
23
genetic or dietary interventions. NASH is regarded as a

metabolic syndrome, and various mouse diet models have been

developed to mimic human NASH. Although mouse models

cannot represent the full spectrum of human NASH due to the

genetic differences between the species, consistent dysregulation

patterns of orthologous genes or proteins across the species could

offer valuable insights into the disease pathogenesis. High-

throughput technologies, such as transcriptomics and

proteomics, are invaluable tools for providing a holistic view of

biological systems. Transcriptomics, with its high-resolution and

genome-wide capacity, has enabled researchers to query global

gene expression patterns and infer protein abundances from

mRNA abundances. Liquid chromatography-tandem mass

spectrometry-based proteomics can be used to directly measure

the abundance of proteins and identify post-translational

modifications. Combining these two approaches can better

depict biological dysregulations within cells or tissues (8).

Although several previous studies have individually reported

transcriptomic or proteomic changes in NASH, none of them

have collectively analyzed the common signatures between human

and mouse NASH on a transcriptome–proteome scale.

Therefore, in this study, we established comprehensive gene

signatures of human and mouse NASH and profiled significantly

aberrant genes to better understand the pathological mechanisms

underlying NASH. To this end, we performed a systematic meta-

analysis of publicly available transcriptome and proteome datasets

from liver tissues of patients with NASH and mouse models.
Methods

This meta-analysis was performed according to the PRISMA

(Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) guidelines (9). A detailed checklist is provided in the

Supplementary Materials.
Data sources and search strategies

A systematic dataset search was conducted up to March

2021. To obtain transcriptome study datasets, publicly available
frontiersin.org
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databases ArrayExpress (https://www.ebi.ac.uk/arrayexpress)

and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.

nih.gov/geo) were utilized. The following keywords were used to

search human NASH transcriptome datasets: “Homo sapiens,”

“RNA assay,” “Expression profiling,” “Nonalcoholic fatty liver

disease,” “Nonalcoholic steatohepatitis,” “NAFLD,” and

“NASH.” After removing duplicates, 9 datasets from

ArrayExpress and 78 datasets from GEO were identified. Two

additional datasets were identified through a reference search.

When searching mouse NASH model datasets, the following

keywords were used: “Mus musculus,” “RNA assay,”

“Expression profiling,” “Nonalcoholic fatty liver disease,”

“Nonalcoholic steatohepatitis,” “NAFLD,” and “NASH.” After

removing duplicates, 7 datasets from ArrayExpress and 187

datasets from GEO were identified.

Proteome study datasets were searched using the publicly

avai lab le ProteomeXchange database (ht tp : / /www.

proteomexchange.org). The keywords “NAFLD” or “NASH”

were first used to search the datasets, and the results were

subsequently filtered according to species. After removing

duplicates, 8 human datasets and 10 mouse model datasets

were identified.
Dataset selection process and
eligibility criteria

After systematic dataset identification, the datasets were

further screened and excluded according to the following

criteria. For human NASH studies, datasets were excluded

when they corresponded to: (a) in vitro/cell line studies; (b)

ambiguous disease classification; (c) studies involving other liver

diseases (such as hepatitis, cirrhosis or HCC); (d) unavailability

of raw data; (e) unclear sample annotation; and (f) total sample
Frontiers in Endocrinology 03
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size ≤ 15. For the NASH mouse model studies, datasets were

excluded when they corresponded to: (a) genetically intervened

mouse studies; (b) in vitro/cell line studies; (c) NASH irrelevant

model studies; (e) unavailability of raw data; (f) studies with

mouse strains other than C57BL/6; and (g) single-cell

transcriptome studies (Figure 1).

For human NASH proteome studies, datasets were excluded

when they corresponded to: (a) in vitro/cell line studies; (b)

studies with samples other than liver tissue (e.g., plasma); and (c)

enriched peptide studies. NASH mouse model proteome study

datasets were excluded when they corresponded to: (a)

genetically intervened mouse studies; (b) in vitro/cell line

studies; (c) studies with samples other than liver tissue; and

(d) enriched peptide studies (Supplementary Figure 1).
Transcriptome dataset processing

Nine human (GSE33814 (10), GSE37031 (11), GSE48452

(12), GSE49541 (13), GSE61260 (14), GSE63067 (15), GSE66676

(16), GSE126848 (17), E-MEXP-3291 (18)) and 10 murine

(GSE35961 (19), GSE43106 (20), GSE52748 (21), GSE93819

(22), GSE94593 (23), GSE119340 (24), GSE120977 (25),

GSE137449 (26), GSE145665 (27), GSE148849 (28))

transcriptome datasets were subjected to further analysis. The

raw data or processed data from each study were downloaded

from the respective data repositories. The analysis platform for

each dataset was heterogeneous and consisted of microarray and

RNA sequencing data from multiple vendors. Due to the

variability of platforms and discrepancies in sample handling

or disease assessment of each study cohort, each dataset was

analyzed separately. Affymetrix microarray raw data (.CEL files)

were downloaded, and gene expression values were processed

using Affymetrix Expression Console software (Affymetrix,
FIGURE 1

Flow diagram on the selection process of human and mouse NASH transcriptome datasets.
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Santa Clara, CA, USA) with robust multiarray averaging (RMA)

or microarray analysis suite 5.0 (MAS5) normalization.

Processed Illumina BeadChip data were downloaded from

NCBI GEO and probeset intensity normalization was

performed using the ACTB and GAPDH genes as internal

controls. In most cases, RNA sequencing read counts raw data

were provided by NCBI GEO or the authors who published the

studies. Normalization of the read counts and differentially

expressed gene (DEG) selection were performed as

downstream analyses if necessary. If raw counts were not

available, RAW data were retrieved from Sequence Read

Archive and further processed using the Galaxy platform.

Detailed information on the acquisition, processing,

normalization, and analysis method for each dataset is shown

in Supplementary Table 1.

DEGs from each transcriptome dataset were individually

selected as described by Pyo et al. (29). Briefly, after

normalization of each gene expression value, the fold change

and Benjamini–Hochberg adjusted p-value were calculated

between the normal and NASH groups. Up-regulated DEGs

were determined if the fold change (NASH/Normal) was greater

than 1.7 and p-value was lower than 0.05. Down-regulated DEGs

were determined if the fold change was lower than 0.7 and p-

value was lower than 0.05. In the case of GSE49541, the normal

group cohort was not available; hence, the fold change and p-

value were determined by comparing the advanced NAFLD

group with the mild NAFLD group. Although raw data were

not available for the study published by Dali-Youcef et al. (30), a

complete list of up-regulated and down-regulated DEGs was

available in the manuscript. The DEGs were extracted and used

for further analysis, affording a total of 10 human NASH

transcriptome datasets that were used in this study.
Proteome dataset processing

Raw data (.RAW files) of the NASH mouse model liver

proteome study PXD013423 (31) were downloaded from

ProteomeXchange. Proteome Discoverer 2.3 (Thermo Fisher

Scientific, Hanover Park, IL, USA) was used for the precursor

quantification and label-free quantitative analyses. The UniProt

mouse proteome reference (https://www.uniprot.org, March

2021 version) was used for MS2 peptide spectral matching.

The assignment of MS2 spectra was carried out using the

SEQUEST algorithm, and peptide hits were filtered at a

maximum of 1% FDR using the Percolator algorithm.

Carbamidomethylation of cysteine was set as static

modification, whereas methionine oxidation and N-terminal

acetylation were set as dynamic modifications. Full trypsin

specificity with up to two missed cleavage sites was applied.

Mass tolerance for precursor and fragment ions were set at 10

ppm and 0.02 Da, respectively.
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25
Differentially expressed proteins (DEPs) were determined

using the SEQUEST search parameters. Valid up-regulated

DEPs were determined when SEQUEST HT score ≥ 30,

protein coverage ≥ 20, and protein abundance of NASH/

control ≥ 1.7. Down-regulated DEPs were determined when

SEQUEST HT score ≥ 30, protein coverage ≥ 20, and protein

abundance of NASH/control ≤ 0.7.
Establishing key common human and
mouse hepatic NASH signatures

First, the selected up-regulated and down-regulated DEGs

from the 10 human NASH datasets were merged based on the

gene symbols. In this process, DEGs showing different

dysregulation pattern between studies were excluded. Then,

the frequency score (how many times a certain gene was listed

as a DEG among the 10 datasets) of each DEG was calculated.

Only the DEGs with frequency ≥ 3 constituted the human

NASH signature (described in Section 2.6). Next, to compare

the human NASH signature with that of mice, dysregulated

DEGs from 10 NASH mouse model datasets were merged as

described for the human datasets, and the frequency of each

DEG was calculated. DEGs with a frequency ≥ 4 comprised the

mouse NASH signature. Finally, NASH signatures of both

humans and mice were integrated using BioMart orthologous

gene annotation. Genes showing a consistent dysregulation

pattern between the two species constituted a common hepatic

NASH signature. To validate the NASH signatures at the protein

level, the UniProt accession numbers of selected DEPs from

PXD013423 were converted into gene symbols, and both profiles

were combined. The final common NASH signature comprised

the DEG frequency from human and mouse transcriptome

datasets and fold change values from a mouse proteome

dataset (Supplementary Data).
Degree of confidence of DEGs in
multiple transcriptome dataset
meta-analysis

The selection of DEGs from individual transcriptome

datasets involved a fold change cutoff and statistical

significance validation. Nevertheless, DEG lists from different

cohorts of the same disease showed significant discrepancies.

This may be due to heterogeneous patient groups (e.g.,

ethnicity), variability in disease diagnosis, assay platform

differences, technical bias, instrumental error, or inherent

limitations in statistical assumptions. Such problems can be

partly overcome by identifying consistent gene dysregulation

patterns across multiple independent cohort studies.

Furthermore, when analyzing multiple datasets, the DEG
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frequency score can be added as statistical dimension to evaluate

the confidence of the DEGs.

The previous transcriptome datasets of humans and mice

were used to evaluate the degree of confidence of the DEGs.

However, rather than selecting DEGs based on their fold changes

and p-values in individual datasets, genes were randomly selected

(number of DEGs and randomly selected genes (RSGs) was

matched for each dataset). Subsequently, RSGs were merged

based on the gene symbols, and the frequency score of each

gene was calculated. This process was bootstrapped 1,000 times,

and the results were recorded each time. Finally, the median value

of 1,000 times bootstrap resampling was calculated.

(Supplementary Figure 2). The degree of confidence of DEGs

per frequency score was calculated using the following formula:

Degree of Confidence = 100 −
Number of RSGs=Number of total RSGs
Number of DEGs=Number of total DEGs

� 100

DEGs with a degree of confidence ≤ 50 were classified as

“Not significant,” confidence between 100 and 50 were classified

as “Fair confident,” and confidence of 100 were classified as

“High confident” DEGs.
Gene Ontology biological process
enrichment analyses

Gene Ontology (GO) biological process (BP) enrichment

analysis was performed as described by Pyo et al. (28). Enriched

GO BP for corresponding DEGs was determined by comparing

the frequency of genes annotated by GO BP terms in a group of

DEGs with those in the entire set of genes in the human

reference list. The GO annotation files were downloaded from

the Gene Ontology Consortium webpage (http://www.

geneontology.org), and the March 2021 version of the GO BP

terms was used for the analysis. A 2 × 2 contingency table was

constructed to compare the frequency of DEGs annotated by the

GO BP terms, with the number of genes annotated by these

terms in the total 20,595 human gene reference. The 2 × 2

contingency table was analyzed for the calculation of p-values

using the X^2 test (frequency ≥ 5) or Fisher’s exact test

(frequency< 5).
Software and statistical analyses

Statistical analyses were performed using the GraphPad

Prism 8.0 software (GraphPad Software Inc., San Diego, CA,

USA). Filtration, classification, and integration of transcriptome

and proteome datasets were conducted using R software (version

4.0.3), specifically the packages included in “tidyverse”. The

transcriptome profile datasets were visualized in a heatmap

using the heatmap.2 function in “gplots” package, and the

Venn diagram was produced using the “VennDiagram”
Frontiers in Endocrinology 05
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package. The heatmap and volcano plot for the proteome

dataset were drawn using Proteome Discoverer 2.3.
Results

Description of included datasets

Details on the selection process of human and mouse NASH

transcriptome datasets can be found in the flow diagram

(Figure 1). A total of 10 human (539 patients) and 10 mouse

model (99 mice) studies were included in this study. All the 10

human NASH datasets have been published and represent

patients of multiple ethnicities. All included participants

underwent liver biopsy, and NAFLD was diagnosed

histologically (Table 1). The 10 NASH mouse model datasets

were also previously published, used the wild-type C57BL/6

strain, and comprised multiple dietary intervention methods

including a methionine- and choline-deficient diet with high-fat

diet (MCDHFD), high-fat diet (HFD), NASH-inducing diet

(ND), high-cholesterol high-cholate high-fat diet (CLD), high-

fat high-sugar diet (HFHSD), fat fructose cholesterol diet

(FFCD), choline-deficient L-amino acid-defined high-fat diet

(CDAHFD), and fast food diet (FFD) with varying degrees of

duration. Details of the diet composition and experimental

design are summarized in Table 2.
Hepatic gene signature of human NASH

First, to establish the hepatic gene signature of human

NASH, the selected up-regulated and down-regulated DEGs

from 10 individual NASH studies were merged based on the

gene symbols. Next, 535 DEGs showing heterogeneous

dysregulation patterns between the studies were excluded.

Consequently, a total of 7,070 (2,629 up-regulated and 4,441

down-regulated) DEGs was compiled. The frequency score for

each DEG was calculated. One or two overlapping DEGs were

regarded as statistically insignificant, and only DEGs with a

frequency ≥ 3 were considered as valid, resulting in 254 human

NASH gene signatures (Figure 2A). These genes were further

divided into “Fair confident” and “High confident” gene groups

according to the degree of confidence per each frequency score.

(Supplementary Figure 2A). Accordingly, 28 genes were

identified as dysregulated in human NASH with high

confidence (Supplementary Table 2).
Functional enrichment analysis on 254
human NASH signatures

To gain a holistic view of the biological processes associated

with the 254 human NASH signatures, GO BP enrichment
frontiersin.org
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analysis was performed. As a result, 125 up-regulated genes were

significantly associated with inflammation (GO:0007155;

0050900; 0006954; 0034097), steatosis (GO:0071396),

apoptosis (GO:1903034), and extracellular matrix (ECM)

organization (GO:0030198) (Figure 2B and Supplementary

Table 3). Not surprisingly, hepatic steatosis, inflammation, and

apoptosis are the three main histological hallmarks of NASH,

and the upregulation of ECM synthesis is a sign of NASH with

fibrosis. Thus, we concluded that the up-regulated signature of

human NASH fairly represents the overall histological features

of NASH. In the analysis of the 129 down-regulated signatures,

biological processes related to cellular response to metal ions

(GO:0071280; 0071276; 0071294), l ipid metabolism

(GO:0008202; 0006629), and amino acid metabolism

(GO:0009063; 1901605) were significantly enriched (Figure 2B

and Supplementary Table 4).
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Comparative analysis of gene expression
profiles of different NASH mouse models

Next, to establish the hepatic gene signature of mouse NASH,

up-regulated and down-regulated DEGs from 10 mouse model

studies were merged, and the frequency of each DEG was

calculated. For the mouse datasets, DEGs with a frequency ≥ 4

were statistically significant, resulting in 1,917 mouse NASH gene

signatures (Supplementary Figure 3). These genes were divided

into “Fair confident” and “High confident” genes as well

(Supplementary Figure 2B). Since NASH model studies

consisted of multiple dietary intervention methods of varying

durations, we first compared the gene expression profiles of

different dietary model studies. As expected, we observed

considerable disparities between different NASH models

(Figure 3). Two HFD models from independent studies
TABLE 1 Study characteristics of human NASH transcriptome datasets used in this study.

Study Country Patient group Disease
assessment

Platform Data availability

Starmann et al., 2012 (10) Germany Normal 13
Steatosis 19
NASH 12

Biopsy Illumina Human WG-6 v3.0
expression beadchip

GEO GSE33814

López-Vicario et al., 2014 (11) Spain Normal 7
NASH 8

Biopsy Affymetrix Human Genome
U133
Plus 2.0 Array

GEO GSE37031

Ahrens et al., 2013 (12) Germany Normal 14
Obese 27
Steatosis 14
NASH 18

Biopsy Affymetrix Human
Gene 1.1 ST Array

GEO GSE48452

Moylan et al., 2014 (13) USA Mild NAFLD 40
Advanced NAFLD 33

Biopsy Affymetrix Human
Genome U133
Plus 2.0 Array

GEO GSE49541

Horvath et al., 2014 (14) USA Normal 38
Obese 24
NAFLD 23
NASH 24

Biopsy Affymetrix Human
Gene 1.1 ST Array

GEO GSE61260

Frades et al., 2015 (15) Sweden Normal 7
Steatosis 2
NASH 9

Biopsy Affymetrix Human
Genome U133
Plus 2.0 Array

GEO GSE63067

Xanthakos et al., 2015 (16) USA Normal 34
Steatosis 26
Borderline NASH 5
NASH 2

Biopsy Affymetrix Human
Gene 1.0 ST Array

GEO GSE66676

Suppli et al., 2019 (17) Denmark Normal 14
Obese 12
NAFLD 15
NASH 16

US,
Biopsy

Illumina NextSeq 500 GEO GSE126848

Lake et al., 2015 (18) USA Normal 19
Steatosis 10
NASH 16

Biopsy Affymetrix Human
Gene 1.0 ST Array

ArrayExpress
E-MEXP-3291

Dali-Youcef et al., 2019 (30) France Normal 10
Obese 10
Steatosis 10
NASH 8

Biopsy Agilent Human
GE 8x60K

N/A
NASH, nonalcoholic steatohepatitis; NAFLD, nonalcoholic fatty liver disease; US, ultrasonography; N/A, not available.
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(GSE43106 and GSE145665) showed noticeable differences in the

DEG patterns, which may be attributed to the difference in dietary

intervention duration (3 weeks vs. 24 weeks) or slightly different

diet compositions (Table 2). However, two CDAHFD model

studies (GSE120977 and GSE137449) showed relatively similar

DEG patterns and were clustered together on the heatmap,

indicating that upon comparable dietary intervention methods,

correlative gene dysregulation patterns can be observed.
Comparative analysis of hepatic gene
signatures of human and mouse NASH

We coalesced the NASH signatures of humans and mice using

BioMart orthologous gene annotation. Combining the NASH

signatures of humans and mice yielded a pattern that is similar

to that observed by Teufel et al. (32). Profound differences were
Frontiers in Endocrinology 07
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observed between the two signatures. Amongst the 254 human

and 1,917 mouse NASH signatures, 66 genes were concordantly

dysregulated between the two species (Figure 4).While comparing

the NASH signatures, we prioritized genes that were significantly

dysregulated in humans to derive clinically relevant results.

Among the 28 “High confident” human NASH signatures, 8

genes were shown to be co-dysregulated inmice, whereas 20 genes

did not match or showed no statistical significance in the mouse

signature. In detail, CYP2C19 was excluded from the combined

signature because humans and mice have different isoform

variations. In mice, 10 genes (CDH23, CMYA5, EFHD1, ENO3,

GPR88, PI6K3, P4HA1, PDE11A, STMN2, and VIL1) showed no

evidence of dysregulation, and 7 genes (ABCB11, ACSL4, APOF,

FAT1, LEPR, SOCS2, and TMEM154) showed some evidence of

dysregulation, but were not statistically significant. Interestingly,

ME1 and TSPAN13 showed distinctively opposite dysregulation

patterns in the two species. (Supplementary Figure 4).
TABLE 2 Study characteristics of mouse NASH model transcriptome datasets used in this study.

Study Diet model Diet composition Group Platform Data availability

Kita et al., 2012 (19) MCDHFD,
8 weeks

Methionine- and choline-
deficient diet with 60% fat

Normal 4
NASH 4

Affymetrix
Mouse Genome
430 2.0 Array

GEO GSE35961

Kahle et al., 2013 (20) HFD,
3 weeks

15% calories from casein,
27% calories from starch,
maltose dextrin, cellulose
58% calories from soybean oil,
safflower oil

Normal 8
NASH 7

Affymetrix
Mouse Gene
1.0 ST Array

GEO GSE43106

Dorn et al., 2014 (21) ND,
12 weeks

15% pork lard,
15% beef tallow,
4% palmitic acid,
4% stearic acid,
0.2% cholesterol,
30% sucrose

Normal 4
NASH 4

Affymetrix
Mouse Gene
1.1 ST Array

GEO GSE52748

Kobori et al., 2017 (22) CLD,
12 weeks

60% calories from fat,
1.25% cholesterol,
0.5% sodium cholate

Normal 5
NASH 5

Affymetrix
Mouse Genome
430 2.0 Array

GEO GSE93819

Maradana et al., 2018 (23) HFHSD,
14 weeks

N/A Normal 3
NASH 3

Illumina
HiSeq 4000

GEO GSE94593

Xiong et al., 2019 (24) FFCD,
25 weeks

40% fat,
22% fructose,
2% cholesterol

Normal 3
NASH 3

Illumina
HiSeq 2500

GEO GSE119340

Min-DeBartolo et al., 2019 (25) CDAHFD,
12 weeks

L-amino acid diet with 45 kcal%fat
with 0.1% methionine
and no added choline

Normal 5
NASH 5

Illumina
HiSeq 4000

GEO GSE120977

Heintz et al., 2020 (26) CDAHFD,
8 weeks

18% protein,
62% fat,
20% carbohydrates,
0.1% methionine

Normal 4
NASH 4

Illumina
NovaSeq 6000

GEO GSE137449

Lu et al., 2020 (27) HFD,
24 weeks

60% fat,
20% carbohydrate,
20% protein

Normal 5
NASH 5

Illumina
HiSeq 4000

GEO GSE145665

Bates et al., 2020 (28) FFD,
21 weeks

17% kcal protein,
40% kcal fat,
43% kcal carbohydrate

Normal 8
NASH 10

Illumina
HiSeq 2500

GEO GSE148849
NASH, non-alcoholic steatohepatitis; MCDHFD, Methionine- and choline-deficient diet with high-fat diet; HFD, high-fat diet; ND, NASH-inducing diet; CLD, high-cholesterol high-cholate
high-fat diet; HFHSD, high-fat high-sugar diet; FFCD, fat fructose cholesterol diet; CDAHFD, choline-deficient L-amino acid defined high fat diet; FFD, fast food diet; N/A, not available.
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Key common NASH signatures and
protein level validation

A list of 66 genes co-dysregulated in human and mouse

NASH is provided in the Supplementary Data. Notably, the

gene corresponding to glycine-N-methyltransferase (GNMT)

was classified as a “High confident” gene in both the human

and mouse signatures. Subsequently, to validate the 66 NASH

signatures at the protein expression level, we performed a meta-

analysis of proteome studies of human and mouse NASH. A

systematic dataset search revealed one dataset, PXD013423, which

analyzed whole-liver proteome expressions from a mouse fed with

fructose palmitate cholesterol (FPC) diet (31). Using the

SEQUEST algorithm for MS2 level peptide spectral matching,

we identified 4,679 proteins with FDR ≤ 1%. A total of 617

proteins (232 up-regulated and 385 down-regulated) was selected

as the NASH DEPs (Supplementary Figure 5). Finally, when 66

genes were validated using the DEPs, 14 genes were confirmed to

be dysregulated at the protein level (Table 3). At the biological

process level, these 14 validated NASH signatures were strongly

associated with amino acid metabolism (Table 4). Particularly, six

enzymes involved in amino acid metabolism were significantly

down-regulated in both human andmouse NASH (Figure 5). This

dysregulation was more prominent in the mouse datasets, and

NAFLD progression-dependent down-regulation was observed in

human datasets.
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Discussion

Principal findings and corresponding
interpretations

In this study, we performed a systematic meta-analysis of

transcriptome studies of liver tissues from NASH patients and

mouse models. As a result, we constructed 254 human and 1,917

mouse NASH gene signatures. According to the GO BP

enrichment analysis, the up-regulated genes of the 254 human

NASH signatures were associated with inflammation, steatosis,

apoptosis, and ECM organization, which are the most significant

hepatic perturbations in the pathogenesis of NASH. Down-

regulated NASH signatures were associated with cellular

response to metal ions, lipid metabolism, and amino acid

metabolism. Interestingly, cellular responses to copper,

cadmium, and zinc ions were found to be the most

significantly enriched biological processes among the down-

regulated gene signatures. This result was due to the consistent

down-regulation of metallothionein genes– MT1E, MT1F,

MT1M, MT1X, and MT2A. Metallothionein is a family of

cysteine-rich, low molecular weight proteins with metal-

binding capacity, thus protecting the cells from metal toxicity

and oxidative stress (33). Its expression is believed to be

dependent on the cellular environment of stress and mineral

availability. Accordingly, accumulated evidence suggests a zinc
A B

FIGURE 2

Establishment of human NASH signature and functional enrichment analysis. (A) Individually selected DEGs from 10 human NASH datasets were
merged based on the gene symbols and the frequency score of each DEG was calculated. Total 254 genes (125 up-regulated and 129 down-
regulated) were consistently dysregulated in at least three datasets. DEGs with frequency scores of 3 and 4 were classified as “Fair confident”,
and frequency scores of 5 to 7 were classified as “High confident” genes. (B) GO BP enrichment analysis result for 254 human NASH signatures.
NASH, nonalcoholic steatohepatitis; GO BP, gene ontology biological process.
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and copper deficiency in the serum and/or hepatic tissue of

NAFLD patients (34, 35). Mechanistic studies using rats also

showed the causative role of zinc and copper deficiency in the

pathogenesis of NAFLD (35, 36). However, despite these reports,

metallothionein gene (mouse isoforms Mt1 and Mt2)

dysregulation was not statistically significant in our mouse

NASH signature. This may be explained by the fact that

almost all experimental NASH models supply the same

amounts of micronutrients (e.g., minerals) to both control and

NASH-inducing groups. Although the intake of individual

dietary minerals varies in clinical circumstances, mineral

intake in NASH mouse models is tightly controlled. To

confirm the effect of mineral deficiency and metallothionein

dysregulation in the pathogenesis of NASH, dietary models with
Frontiers in Endocrinology 09
30
varying amounts of minerals should be used (36). Although

mineral deficiencies may not be the primary cause of NAFLD,

our results and those of others strongly suggest that these

deficiencies are involved in the disease pathogenesis.

Mouse models are integral to the studies of NASH

pathogenesis, and many different dietary methods have been

developed. However, no single model has been established to

represent the full spectrum of human NASH, and each model

reflects different aspects of the disease. Since the transcriptome

profile is believed to represent the overall biological status of cells

or tissues, we hypothesized that a mouse model exhibiting the

most similar gene expression profile to the 254 human NASH

signatures would best represent the hepatic conditions of human

NASH. Upon comparison, models with FFCD and FFD showed
FIGURE 3

Heatmap of gene expression profiles of different NASH mouse models. DEGs from 10 mouse NASH datasets were merged based on the gene
symbols, and the fold change values of dysregulated genes were normalized. Gradient of red color represents high expression of genes,
whereas gradient of blue color represents low expression of genes in mouse NASH group. MCDHFD, methionine- and choline-deficient diet
with high-fat diet; HFD, high-fat diet; HFHSD, high-fat high-sugar diet; ND, NASH-inducing diet; FFD, fast food diet; CLD, high-cholesterol
high-cholate high-fat diet; FFCD, fat fructose cholesterol diet; CDAHFD, choline-deficient L-amino acid defined high fat diet.
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the strongest resemblance to the human NASH signature, each

reflecting 90 of the 254 genes. Im et al. recently carried out a

systematic literature review of 3,920 NAFLD mouse models and

concluded that dietary models with high fat and high fructose

most closely resembled the metabolic and histological features of

human NAFLD (37). This is in line with our results, considering

that FFCD and FFD both have large amounts of fat and fructose/

sucrose as the main diet composition. These two models were

followed by the models, CDAHFD-12 week (85 genes),

CDAHFD-8 week (73 genes), and MCDHFD (73 genes), in

terms of human NASH resemblance. Choline-deficient diet

models showed the highest mean liver histology scores in a
Frontiers in Endocrinology 10
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systematic review study, but had relatively poor metabolic

features compared to high-fat high-fructose diet models (37).

Taken together, these results indicate that our transcriptome

signature is in good correlation with the metabolic and

histological features of NASH. On the contrary, high-fat diets

with no added fructose exhibited the least gene expression

features of human NASH in our study, which also highlights

the importance of fructose in the pathogenesis of NASH.

Transcriptomics is a powerful tool that can measure

genome-scale mRNA expression levels with high accuracy, and

thus infer protein abundances within a biological system.

However, microarray or RNA-seq experimental results still
TABLE 3 List of 14 common NASH signatures validated at the protein expression level.

Gene symbol Gene title Dysregulation Human frequency
score (# out of 10)

Mouse frequency
score (# out of 10)

Mouse protein
fold change

AASS Alpha-aminoadipic semialdehyde synthase Down 4 4 0.41

AMDHD1 Amidohydrolase Domain
Containing 1

Down 4 5 0.56

ANXA2 Annexin A2 Up 3 8 3.55

CYP1A2 Cytochrome P450 Family 1
Subfamily A Member 2

Down 4 5 0.39

FABP4 Fatty Acid Binding Protein 4 Up 4 7 1.83

GCAT Glycine C-Acetyltransferase Down 3 4 0.35

GNMT Glycine N-Methyltransferase Down 6 7 0.12

GSN Gelsolin Up 3 6 1.76

HAL Histidine Ammonia-Lyase Down 3 8 0.24

KRT19 Keratin 19 Up 3 5 1.82

LGALS3 Galectin 3 Up 3 7 7.17

LUM Lumican Up 4 6 2.39

OAT Ornithine Aminotransferase Down 4 6 0.36

SDS Serine Dehydratase Down 4 4 0.34
#, number.
FIGURE 4

Key common hepatic signatures of human and mouse NASH. NASH signatures of humans and mice were coalesced using the BioMart
orthologous gene annotation. Amongst the 254 human and 1,917 mouse NASH signatures, 66 genes (boxed with bold lines) were concordantly
dysregulated between the two species.
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require follow-up validation. Hence, we performed a meta-

analysis of proteomic studies of human and mouse NASH,

and derived liver tissue DEPs from the FPC NASH mouse

model. When 66 common NASH signatures were validated

using the DEPs, 14 genes were confirmed as dysregulated at

the protein level. Among the 14 genes, those such as FABP4,

GNMT, and LUM are well-known to be associated with NASH

(38–40), and galectin-3 encoded by LGALS3 is currently being

tested as a therapeutic target in a phase 2b/3 clinical trial (41).

Inclusion of these prominent drug targets motivated us to

investigate other relatively less-studied genes.

Notably, among the 14 genes, down-regulation of AASS,

AMDHD1, GCAT, HAL, OAT, and SDS was associated with

amino acid metabolism in the GO BP enrichment analysis. In
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particular, histidine and threonine catabolic processes and a-
amino acid anabolic processes were prominently enriched.

Several previous studies have corroborated our findings. Lake

et al. performed metabolome analyses on liver tissues from

NAFLD patients and reported an increased level of lysine in

NASH patients (18). Alpha-aminoadipic semialdehyde synthase

encoded by AASS is involved in the first two steps of lysine

degradation via the saccharopine pathway within the

mitochondria, and down-regulation of AASS may lead to

elevated levels of lysine in the liver. Eriksen et al. assessed the

expression of urea cycle-related genes in NAFLD patients and

reported the down-regulation of hepatic genes governing

ureagenesis as well as impaired amino acid metabolism (42).

Down-regulation of hepatic a-amino acid metabolism was
FIGURE 5

Relative gene and protein expression values of down-regulated amino acid metabolism enzymes across human and mouse datasets. Blue boxes
indicate data from human transcriptome studies, green boxes indicate data from mouse transcriptome studies, and yellow boxes indicate data
from mouse proteome studies. Graphs show the mean values with SD. For every dataset, p-value< 0.05 for normal versus NASH group. AASS,
alpha-aminoadipic semialdehyde synthase; AMDHD1, amidohydrolase domain containing 1; GCAT, glycine C-acetyltransferase; HAL, histidine
ammonia-lyase; OAT, ornithine aminotransferase; SDS, serine dehydratase.
TABLE 4 GO BP enrichment analysis on 14 validated NASH signatures.

GO BP ID Enriched GO BP terms in DEGs p-value # of DEGs in GO BP # of genes in reference DEGs

GO:0019557 histidine catabolic process to glutamate
and formate

6.42E-06 2 4 AMDHD1, HAL

GO:0006567 threonine catabolic process 8.98E-06 2 5 GCAT, SDS

GO:1901607 alpha-amino acid biosynthetic process 1.22E-05 3 64 AASS, OAT, SDS
GO BP, gene ontology biological process; NASH, nonalcoholic steatohepatitis; DEGs, differentially expressed genes; #, number.
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manifested by higher blood concentration of a-amino nitrogen

levels in NAFLD patients (42). In our study, down-regulation of

AMDHD1 and HAL, which are involved in the catabolic

pathway of histidine to glutamate conversion, and down-

regulation of AASS, which also produces glutamate along the

saccharopine pathway, may be presumed to result in glutamate

level alteration in NASH. Accordingly, a metabonomic study by

Garcıá-Cañaveras et al. reported decreased levels of glutamate in

human NAFLD liver tissues (43). Glutamate plays a critical role

in hepatic amino acid metabolism, acting as a key intermediate

between the urea cycle and citric acid cycle, and it is a major

substrate for glutathione (GSH) synthesis (44). Decreased level

of glutamate in the liver can compromise the replenishment of

GSH and make the liver more susceptible to pathological

environment. In short, our results of gene dysregulation

analysis reflect the metabolic status of the NAFLD liver.

Interestingly, the down-regulation of amino acid metabolism

enzymes was associated with NAFLD progression in human

datasets. To the best of our knowledge, this is the first study to

report six significant enzymes responsible for the dysregulation

of amino acid metabolism in the pathogenesis of NASH.
Effect of the number of included
datasets in meta-analysis

In this study, we used 10 human transcriptome datasets to

establish NASH signatures. To determine whether the number of

included datasets affects the overall NASH signatures, we

randomly selected five human datasets (GSE37031, GSE49541,

GSE63067, GSE126848, MEXP-3291) and repeated the meta-

analysis. This time, the human NASH signatures consisted of

328 DEGs (DEGs with frequency ≥ 2). When 328 NASH

signatures were compared with the previous 254 NASH

signatures , 171 DEGs were found to be common

(Supplementary Figure 6). Interestingly, there were some

discrepancies between the two signatures. To explain this

discrepancy, we provide examples of two DEGs, ABCC4 and

AMDHD1, which were unique in each NASH signature. When

we analyzed the transcriptional profile for ABCC4 and AMDHD1

across the 10 human datasets, ABCC4 was upregulated in the

GSE126848 and MEXP-3291 datasets, whereas AMDHD1 was

downregulated in the GSE33814, GSE48452, GSE61260, and

GSE126848 datasets. Therefore, ABCC4 could be selected as

NASH signatures when only five datasets were used (DEGs with

frequency ≥ 2), but lacked statistical significance when all 10

datasets were used (DEGs with frequency ≥ 3). In contrast,

AMDHD1 was selected as a NASH signature when 10 datasets

were used, but the frequency score decreased to 1 when five

datasets were randomly selected (GSE33814, GSE48452, and

GSE61260 were not selected in this case). This result strongly

supports the importance of using a comprehensive dataset when
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performing a meta-analysis. In our study, at least six datasets were

required to obtain a threshold DEG frequency score of 3, but this

result may vary according to the characteristics of each included

dataset and the number of DEGs selected.
Comparison with other studies

We identified two studies that performed a large-scale

systematic meta-analysis of human NASH transcription

profiles and which they derived NASH gene signatures. The

study by Ryaboshapkina and Hammar performed meta-

analysis of seven microarray datasets and extracted 218 gene

signature that are affected during the NAFLD progression (45).

Jia and Zhai integrated six microarray datasets and established

96 significant DEGs between healthy people and NAFLD

patients, using the robust rank aggregation method (46). In

our study, we performed a comprehensive meta-analysis of 10

microarray and RNA sequencing datasets, and derived 254

statistically confident human NASH signatures. While

comparing our NASH signature with those of the other two

studies, we found five genes–FABP4, GNMT, IL32, TP53I3,

and VIL1–to be common (Supplementary Figure 7). However,

the overall signatures of each study were relatively different,

and 181 genes (37.1%) were unique to our study. The

differences in inclusion criteria during the dataset selection

process, number of included datasets, types of included assay

platforms, and different statistical approaches may all

contribute to the diversity of individual gene signatures.
Limitations

Our study had several inherent limitations. First, while

analyzing human transcriptome studies, disease progression

variables were not considered. Although all study participants

were diagnosed histologically, inter-observer variation exists in

NASH diagnosis, and each study used different patient

classifications. To minimize the effect of disparity on disease

assessment between study cohorts and to systematically compare

gene expression profiles from multifarious datasets, DEGs were

selected by comparing normal subjects and well-defined NASH

patient groups. Second, participant baseline characteristics and

clinical biochemical data analyses were not possible due to

limitations in data acquisition. Third, while combining human

and mouse NASH signatures, genes with no reported orthologs

and isoforms of genes that are unique to either species were

excluded during the process. Finally, protein-level validation of

NASH signatures was only performed using the mouse

proteome dataset. Datasets of the whole liver proteome from

NASH patients were not available, which strongly suggests a

need for further studies.
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Conclusions

We performed a meta-analysis of NASH transcriptome

datasets and established the most comprehensive 254 human

and 1,917 mouse NASH signatures to date. Based on

comparison of different dietary models with the human

NASH signature, our results add to the existing body of

literature suggesting that dietary models with high fat and

high fructose most closely resemble the genetic, metabolic, and

histological features of human NAFLD. Cross-species analysis

revealed 66 genes to be concordantly dysregulated between

human and mouse NASH. Among these, 14 genes were further

validated to be dysregulated at the protein level. The resulting

14 genes included some well-established NASH-associated

genes and a promising NASH drug target. Functional

enrichment analysis demonstrated that dysregulation of

amino acid metabolism was the most significant hepatic

perturbation in both human and mouse NASH. Moreover,

down-regulation of six amino acid metabolism enzymes, AASS,

AMDHD1, GCAT, HAL, OAT, and SDS, was associated with

NAFLD progression in humans. Further studies are needed to

unravel the link between dysregulation of hepatic amino acid

metabolism and NAFLD pathogenesis.
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Metabolomics study identified
bile acids as potential
biomarkers for gastric cancer:
A case control study

Chen Pan1,2,3†, Dawei Deng1,2,4†, Tianfu Wei1, Zeming Wu5,
Biao Zhang1, Qihang Yuan1, Guogang Liang1, Yanfeng Liu1*

and Peiyuan Yin2,6*

1Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China,
2Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University,
Dalian, China, 3Department of General Surgery, The First Affiliated Hospital of University of Science
and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and
Technology of China, Hefei, China, 4Department of Hepato-Biliary-Pancreas, Affiliated Hospital of
North Sichuan Medical College, Nanchong, China, 5iPhenome Biotechnology (Yun Pu Kang) Inc.,
Dalian, China, 6Institute of Integrative Medicine, Dalian Medical University, Dalian, China
Gastric cancer (GC) is a common lethal malignancy worldwide. Gastroscopy is

an effective screening technique for decreasing mortality. However, there are

still limited useful non-invasive markers for early detection of GC. Bile acids are

important molecules for the modulation of energy metabolism. With an in-

depth targeted method for accurate quantitation of 80 bile acids (BAs), we

aimed to find potential biomarkers for the early screening of GC. A cohort with

280 participants was enrolled, including 113 GC, 22 benign gastric lesions (BGL)

and 145 healthy controls. Potential markers were identified using a random

forest machine algorithm in the discovery cohort (n=180), then validated in an

internal validation cohort (n=78) and a group with 22 BGL. The results

represented significant alterations in the circulating BA pool between GC and

the controls. BAs also exhibited significant correlations with various clinical

traits. Then, we developed a diagnostic panel that comprised six BAs or ratios

for GC detection. The panel showed high accuracy for the diagnosis of GCwith

AUC of 1 (95%CI: 1.00-1.00) and 0.98 (95%CI: 0.93-1.00) in the discovery and

validation cohort, respectively. This 6-BAs panel was also able to identify early

GC with AUC of 1 (95%CI: 0.999-1.00) and 0.94 (95%CI: 0.83-1.00) in the

discovery and validation cohort, respectively. Meanwhile, this panel achieved a

good differential diagnosis between GC and BGL and the AUC was 0.873 (95%

CI: 0.812-0.934). The alternations of serum bile acids are characteristic

metabolic features of GC. Bile acids could be promising biomarkers for the

early diagnosis of GC.
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Introduction

Gastric cancer (GC) is a highly aggressive and fatal

malignancy with high mortality and accounts for the second

leading cause of cancer-related deaths worldwide (1, 2).

Pathological grading of GC plays an essential role in

determining patient prognosis (3, 4). Screening and early

diagnosis of GC are critical in the prevention and treatment of

GC. However, existing non-invasive tumor markers, such as

carcinoembryonic antigen (CEA), have low GC evaluation

efficiency, especially early gastric cancer (EGC) (5, 6).

Endoscopy is commonly utilized in the screening and diagnosis

of GC in clinical practice and has dramatically improved the

disease outcome. However, gastroscopy consumes tremendous

medical resources, and its cost-benefit remains debatable. Besides,

because of its invasiveness, gastroscopy causes great anxiety to the

subjects (7, 8). Therefore, current screening strategies only cover

high-risk individuals who are older than 40 years or those with a

prior history of gastropathy (9). There is an urgent need for

innovative biomarkers to screen high-risk populations who

require gastroscopy.

GC development has been associated with both genetic and

environmental factors. In addition, metabolites are the end

products of a complex interplay between intrinsic metabolism,

environmental exposure and genetic predisposition (10).

Occurrence of metabolic reprogramming in GC coupled with

variations in the metabolites facilitates understanding of tumor

biology. Previous metabolomic data showed that energy

metabolism, amino acid metabolism and lipid metabolism are

related to GC progression (11–13). Besides, GC with peritoneal

metastasis depends on unique metabolic features (14). Thus,

metabolomics, a new omics technique, provides a powerful tool

for GC understanding.

On the other hand, bile reflux has been shown to be an

independent risk factor for precancerous gastric lesions and GC

(15). Bile acids (BAs), an important component of bile, play a

significant role in regulating the digestive system and

homeostasis of intestinal flora. A previous study demonstrated

that BAs interact with the gut flora to influence human health

(16). The metabolism of BAs was significantly disrupted in

patients with Alzheimer’s disease (AD), which was associated
Abbreviations: AD, Alzheimer’s disease; AUC, area under the curve; BA, bile

acid; CEA, carcinoembryonic antigen; CI, credible intervals; DCA,

deoxycholic acid; DCA-3G, deoxycholic acid 3-glucuronide; ECG, early

gastric cancer; FDR, false discovery rate; GC, gastric cancer; HCA,

hyocholic acid; HCC, hepatocellular carcinoma; HDCA, hyodeoxycholic

acid; IHC, immunohistochemistry; LCA, lithocholic acid; NF-kB, nuclear

factor kB; NorCA, norcholic acid; OPLS-DA, orthogonal projections to latent

structures discriminant analysis; PKC, protein kinase C; QC, quality control;

ROC, receiver operating characteristic; SD, standard deviation; TLCA,

taurolithocholic acid; TLCA-3S, taurolithocholic acid 3-sulfate; XIC,

extracted ion chromatogram.
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with cognitive impairment (17). Increasing evidence has

indicated that BAs were involved in the occurrence and

development of gastrointestinal tumors. For instance,

deoxycholic acid (DCA) was shown to induce the expression

of hepatocyte inflammatory genes, whose long-term expression

was strongly associated with hepatocellular carcinoma (HCC)

(18). However, the relationship between BA metabolism

disorders and GC remains unclear.

Previous studies have shown that metabolites in blood or

urine have the potential to be GC biomarkers (14, 19). Since

quantification of the metabolites is the ultimate goal of

metabolomics (20), most of the studies had a relatively small

sample size and lacked a validation cohort, thus low

quantification power. Besides, most of the previous studies

utilized non-targeted metabolomic methods which had poor

data stability, repeatability and quantitative linear range, limiting

the clinical transformation of the outcome. This study used an

in-depth targeted method developed for accurate quantitation of

the BAs to analyze 280 blood samples from GC patients, benign

gastric lesions(BGL) and healthy controls. Our study aimed to

dissect the pathophysiologic interaction between BA metabolism

and GC to identify biomarkers for early diagnosis.
Materials and methods

Participants and criteria

Serum samples were collected from the GC patients, BGL

patients and healthy participants (Con) at the First Affiliated

Hospital of Dalian Medical University from May 2020 to

October 2021. The GC patients were pathologically diagnosed

by biopsy and divided into sub-groups based on the AJCC

staging system, 8th edition (21). The sub-groups included the

degree of differentiation, TNM stage as well as early or advanced

GC. Samples in the Con group were collected from healthy

participants during physical examination, and there was no

obvious abnormality as assessed by gastroscopy. The age and

gender ratio of the Con group were matched with the GC group.

We excluded patients in the GC who had other forms of cancer,

liver or renal insufficiency, severe cardiopulmonary diseases,

metabolic diseases, active bleeding, and other mental or

physical diseases. All 22 cases of BGL were confirmed by

pathological biopsy. It mainly included chronic atrophic

gastritis, adenomatous polyps, gastric ulcer and low grade

intraepithelial neoplasia. On the other hand, we excluded any

patients who had a history of gastrointestinal diseases, such as

acute or chronic gastritis, upper gastrointestinal ulcers, upper

gastrointestinal perforation, gastroesophageal reflux disease or

benign tumors in the Con group. All the participants signed

informed consent forms, and the study was approved by the

Ethics Committee of First Affiliated Hospital of Dalian

Medical University.
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Serum sample collection
and pretreatment

The GC patient serum samples under fasting were collected

on the first morning after admission. All the BGL and Con

samples were collected simultaneously and under the same

fasting conditions as the GC samples. The samples were then

stored at -80°C and thawed before pretreatment. At the

beginning of the pretreatment, we transferred 80 mL of serum

to 1 mL 96-well plate, then added 320 mL of mixed BA isotope

internal standard dissolved in acetonitrile: methanol (1:1, v:v), as

shown in Table S4. After 3 minutes of vortexing, the solution was

then centrifuged for 20 minutes. We transferred 260 mL of the

supernatant to another 96-well plate and then dried the

extraction by centrifugal vacuum concentration (Labconco

Corporation, USA). The remaining supernatant in all samples

was mixed and distributed at the same volume as those in quality

control (QC) samples (22–24). Before the BA-targeted

metabolomic analysis, the extraction was redissolved in 50%

methanol in water.
Metabolomic analysis

After injection of 2.5 mL of redissolved BA extraction, a total

of 63 BAs (Table S5) were target detected by a Shimadzu UPLC

(Shimadzu, Kyoto, Japan), coupled with a Sciex 5500+ triple

quadrupole (QQQ) mass spectrometer (AB Sciex, Singapore).

The BAs were separated on a C18-PFP column (ACE, UK, 3 mm,

2.1 × 50 mm). Phase A was composed of 2 mM ammonium

acetate in water, while phase B contained acetonitrile. The

chromatographic gradient was configured as follows: in 0

minutes, 83% phase A and 17% phase B; in 10 minutes, 70%

phase A and 30% phase B; in 13 minutes, 45% phase A and 55%

phase B; and in 14 and 17 minutes, 5% phase A and 95% phase B.

The last 5 minutes was used for column washing and

equilibration. We used 0.4 mL min-1 as the flow rate. The BAs

were ionized by a Turbo-V heated electrospray ionization source

and then detected by scheduled mult iple react ion

monitoring modes.
Date processing

The targeted BA annotation was based on the BA standards

(25, 26). We compared the primary and secondary mass

spectrometry data of the targeted BAs with the standards, as

previously described. We calculated quantitative data of each

sample by combining the standard curve and the area under the

curve (AUC) BA values. Finally, internal standards were used for

calibration. The above analyses were conducted with Analyst

and OS-MQ software (AB SCIEX, Singapore).
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Statistical analysis

The BAs with missing values of more than 50% were

excluded, and then we employed the K-nearest algorithm to

impute the missing values (27). The molar concentration of the

serum sample was calculated from the mass concentration and

molecular weight. In addition, SIMCA-P software (Umetrics,

Sweden) was used for orthogonal projections to latent structures

discriminant analysis (OPLS-DA) (28). Benjamini-Hochberg

false discovery rate (FDR) adjustment for Student’s t-test was

performed on the MetaboAnalyst website (29–31). In addition,

Random Forest and glmnet package were executed in R software

Version 4.0.5 (R Core Team, 2021) (32). The receiver operating

characteristic (ROC) curves (33), column diagrams, scatter plots

and heat-maps were drawn by GraphPad Prism 9.0 (GraphPad

Software Inc., USA). Besides, a biological network was generated

by Cytoscape 3.8.2 (Cytoscape Consortium, USA) (34, 35).
Results

Study design and characteristics of
BA metabolism

As shown in Figure 1, totally 180 participants were enrolled

in the discovery cohort, including 79 GC and 101 controls. Based

on the AJCC staging system, 8th edition, there were 32 patients

in stage I, 9 patients in stage II, 22 patients in stage III and 16

patients in stage IV (Figure 1). We defined cohort 1 as the

discovery set and used machine learning to conduct a diagnosis

model (Table S1). To verify the results, cohort 2 and cohort 3

were included. Cohort 2 was validation set, including 34GC and

44Con, to detect repeatability of the model (Table S2). Cohort 3

included 22 BGL for verifying the differential diagnosis effect of

the diagnostic model (Table S3). There was no significant

difference in age and gender ratio (male/female) among GC

and Con, whether in discovery set or validation set. Other related

clinical traits were shown in Table 1 by the form of mean ±

standard deviation (SD). Besides, we presented an extracted ion

chromatogram (XIC), which provided a visual representation of

the analyzed targeted BAs in the GC and Con groups as shown

in (Figure S1). Through univariate and multivariate analyses, we

obtained differentially expressed BAs between the GC and Con

groups. Notably, our analyses showed that there was no

significant difference between the two groups in clinical

features such as gender and age.

After screening out the BAs with excess missing values or

unstable detection, we obtained a total of 49 BAs. We then added

biologically significant ratios and total concentrations of sub-

classes to then BAs. By calculating the BAs (ratios or sub-classes)

with significant differences between the GC and Con groups, a

heat-map of 34 features was drawn (Figure 2A). Overall, patients
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in the GC group had higher total BA concentration compared

with the Con group. Interestingly, in the GC group, the levels of

some BA sub-classes of interest, including conjugated BAs,

unconjugated BAs, sulfate BAs, glucuronide BAs and HCAs

showed different degrees of increase (Figure 2B).
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Correlation analysis of the BAs and
clinical traits

To analyze the correlation among the serum BAs and clinical

traits in the patients with GC, we performed a Spearman
FIGURE 1

Global design and schematic representation of the study.
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correlation analysis. We selected eight clinical traits related to

GC, including Size, CEA or Stage, which represented the

pathological features of GC. We separately classified the BAs

strongly correlated with each clinical trait (Figure 3; Table S6).

These data indicated that the BAs have commendable reactivity

with clinical traits related to GC and could be characteristic

biomarkers for clinical diagnosis of GC.
Identification of diagnostic markers
for GC

Due to lack of effective screening tools and diagnostic

markers for GC, we used targeted quantitated BAs to

construct a diagnostic signature. LASSO regression analysis

based on glmnet R package was performed to screen BA

biomarkers that could be used for GC diagnosis. Six BAs

(ratio), including HCA, TLCA, NorCA, DCA-3G, TLCA-3S

and HDCA/LCA were obtained (Table 2).

The discovery set was used to construct the diagnostic panel.

The OPLS-DA score plot showed an obvious separation between

the GC group and the Con group (Figure 4A). To validate the

classification, we performed a permutation test (Figure 4B). The

results showed that the Y-axis intercept of R2 and Q2 was 0.212

and -0.428 (usually R2 and Q2 were less than 0.4 and 0,
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respectively), with a significant positive slope, which indicated

that the data in the discovery set was not overfitted and reliable.

Surprisingly, in the discovery set, the predictive ability of the GC

diagnostic panel based on the RF model was perfect, and its

sensitivity and specificity were 100%. Meanwhile, the AUC value

of the model was 1 (95%CI: 1.00-1.00) (Figure 4C). Thereafter,

we included another cohort as a validation set to evaluate the

diagnostic model. As shown in Figure 4D, there were significant

differences between the GC and the Con groups. Similarly, the

verification data was not overfitted (Figure 4E). In the validation

set, the predictive ability of the GC diagnostic panel was also

satisfactory. Its sensitivity and specificity were 94.1% and 100%,

respectively (Figure 4F). In addition, the AUC value of the

verification set model was 0.98 (95%CI: 0.93-1.00). Besides,

among all the GC and Con samples in the combined set, age

(60 years old as the boundary) and gender had no significant

effect on the predicted ability of the diagnostic panel (Figure S2).

In addition, there was no correlation between the predicted

ability of the diagnostic panel and whether GC was in an

advanced stage, nor with AJCC tumor stage (Figure S3). These

data showed that the diagnostic ability of the developed

diagnostic panel was free from tumor load, which makes it an

optimal diagnostic tool for the detection of GC.

The calculated model cut-off value in the discovery set was

applied to the validation set as shown in Figure 4G. Participants
TABLE 1 Patient characteristics for the discovery and internal validation cohorts.

Characteristics Discovery cohort (n = 180) Validation cohort (n = 78)

GC (n = 79) Con (n = 101) p-value GC (n = 34) Con (n = 44) p-value

Age (years) 63.19 ± 11.31 60.71 ± 11.92 0.21 63.65 ± 8.91 59.39 ± 12.67 0.99

Gender, male (%) 70.89 72.28 0.94 67.65 79.55 0.24

WBC (*10^9/L) 5.61 ± 1.5 6.00 ± 1.47 0.085 6.01 ± 1.69 6.11 ± 1.3 0.78

HGB (g/L) 124.14 ± 23.85 133.10 ± 41.50 0.091 121.29 ± 26.49 136.04 ± 40.97 0.074

Cre (mmol/L) 70.06 ± 17.22 70.97 ± 12.09 0.69 69.56 ± 23.79 73.52 ± 12.53 0.35

Urea (mmol/L) 12.02 ± 56.11 5.40 ± 1.14 0.25 5.65 ± 1.87 5.62 ± 1.56 0.94

Glucose (mmol/L) 5.49 ± 2.01 5.58 ± 1.41 0.72 5.24 ± 1.14 7.36 ± 13.11 0.35

ALT (U/L) 15.65 ± 10.4 23.24 ± 13.90 <0.001 14.91 ± 9.04 22.07 ± 12.97 0.0078

AST (U/L) 18.37 ± 7.63 21.94 ± 6.32 <0.001 17.12 ± 5.61 21.07 ± 6.06 0.0044

TBIL(mmol/L) 12.82 ± 5.58 16.02 ± 5.92 <0.001 11.33 ± 4.37 15.16 ± 6.34 0.004

DBIL(mmol/L) 3.6 ± 2.09 5.16 ± 5.03 0.012 3.48 ± 1.65 4.63 ± 2.07 0.011

TBA (mmol/L) 5.93 ± 5.83 — — 4.52 ± 2.43 — —

Cancer Stage

I 32 — — 15 — —

II 9 — — 1 — —

III 22 — — 12 — —

IV 16 — — 6 — —

CEA (ng/ml) 8.19 ± 18.69 — — 7.02 ± 22.75 — —

CA199 (U/mL) 54.25 ± 170.26 — — 154.19 ± 492.32 — —
fronti
Data are presented as mean ± SD. WBC, white blood cell; HGB, hemoglobin; Cre, creatinine; ALT, alanine transaminase; AST, glutamic oxaloacetic transaminase; TBIL, total bilirubin;
DBIL, direct bilirubin; TBA, total bile acid; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199.
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with a prediction probability of more than 0.64 were categorized

as GC; otherwise, they were classified as Con group. To visually

demonstrate the difference between the diagnostic panel and the

CEA, a scatter plot was created to distinguish GC from Con

(Figure 4H). It was not surprising to observe that CEA had

superior sensitivity in distinguishing GC from Con, but lacked

specificity. Together, the BA diagnostic panel showed promising

sensitivity and specificity in the diagnosis of GC.
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Identification of diagnostic markers
for EGC

Early diagnosis is crucial for the prognosis of GC. Here, we

constructed a diagnostic model for EGC. Our analysis showed that

there are obvious metabolic differences between the EGC group

and the Con group (Figure 5A). Likewise, the data of the discovery

set was not overfitted (Figure 5B). The Y-axis intercept of R2 and
A

B

FIGURE 2

Overview of Bile acids. Differential expression of BAs, BA ratios and total concentration of BA sub-classes between the GC and Con groups were
plotted as heat-map (A). In this plot, red represents a higher concentration, while blue represents a lower concentration. Concentrations of
eight kinds of BA sub-classes in the GC and Con group. For all figures, FDR-adjusted Q-value: *Q < 0.05; **Q < 0.01; ***Q < 0.001 (B).
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Q2 was 0.262 and -0.446, respectively, with a positive slope.

Similarly, the ROC curve was also surprisingly perfect, and its

sensitivity and specificity were 100% and 99%, respectively

(Figure 5C). Besides, the AUC value of this model was 1 (95%

CI: 0.999-1.00). In addition, the diagnostic model of the

verification set yielded better results, and the OPLS-DA clearly

separated the EGC group from the Con group (Figure 5D).

Moreover, the data from the verification set was still not

overfitted (Figures 5E, S4A). Unexpectedly, as shown in

Figure 5F, the prediction rate of ROC curve remained high

(Sensitivity=92.9%, Specificity=100%, 95%CI: 0.83-1.00,

AUC=0.94). As previously mentioned, we used the same

method to determine a cut-off value of 0.63, which

distinguished the EGC from the Con (Figures 5G, H).
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Identification of differential diagnostic
markers for GC and BGL

The differential diagnosis between BGL and GC can help

doctors to make a preliminary judgment, whether the disease is

benign or malignant, without relying on pathological

examination. Hence, we used 22 cases of BGL and 113 cases

of GC to further verify the differential diagnostic efficacy of 6-

BAs diagnostic panel. The results suggested that there were

significant metabolic differences between GC and BGL group

(Figure 6A). Meanwhile, this model did not perform a tendency

of overfit (Figure 6B). The AUC value of ROC plot was 0.873

(95%CI: 0.812-0.934), which sensitivity and specificity were

63.7% and 100% respectively (Figure 6C). Likewise, The
TABLE 2 Characteristics of differential expression of the six markers for GC detection identified in this study.

Biomarker P-value Q-value Log2 (Fold Change) AUC of ROC

HCA 9.38E-05 0.00048 0.81 0.65 (95% CI:0.58-0.71)

TLCA 4.64E-67 3.57E-65 1.32 0.99 (95% CI:0.97-1)

NorCA 1.34E-13 5.16E-12 0.81 0.79(95% CI:0.73-0.84)

DCA-3G 7.17E-12 1.84E-10 0.38 0.70 (95% CI:0.64-0.77)

TLCA-3S 0.0016 0.0056 0.67 0.60 (95% CI:0.53-0.67)

HDCA/LCA 0.0061 0.016 0.91 0.62 (95% CI:0.55-0.69)
FIGURE 3

Correlation network based on Spearman correlation analysis. It shows the correlation between BAs and clinical traits. Red lines represent
positive correlation, while blue lines represent negative correlation; the width of the line represents the correlation coefficient.
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OPLS-DA score plot of EGC and BGL group also suggested that

there were metabolic differences between BGL and the early

stage of gastric cancer (Figure 6D). This model also has not been

overfitted (Figures 6E, S4B). Finally, we found that for EGC, the

AUC value of the ROC curve was 0.823 (95%CI: 0.725-0.921).
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Its sensitivity decreased to 55.6%. However, the specificity

remains 100%. Obviously, unlike disease screening,

differential diagnosis paid more attention to specificity.

Therefore, 6-BAs diagnostic panel can also be used as a

marker for differential diagnosis.
A B

D E F

G H

C

FIGURE 4

The performance of BA biomarkers in distinguishing GC and Con group. The OPLS-DA score plot of the GC and Con groups in discovery set
(A). The permutation test result of the above OPLS-DA, which could verify whether the classification is overfitted (B). The ROC curve of 6-BAs
diagnostic panel between the GC and Con group, which was constructed using the discovery set (C). The OPLS-DA score plot of the GC and
Con groups in the validation set (D). The permutation test result of the above OPLS-DA. (E) The ROC curve of 6-BAs diagnostic panel between
the GC and Con group, which was constructed in discovery set and test in validation set (F). Predicted probability of the 6-BAs diagnostic panel
identified in the discovery set and applied to the validation set (G). Scatter plot for comparing the 6-BAs diagnostic panel and CEA. The CEA
concentration of the Con is randomly selected from the upper limit of the normal value and zero (H).
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Discussion

In this study, we profiled serum BAs of 280 GC patients,

BGL patients and healthy controls using targeted BA

metabolomics. Our data showed that the total serum BA pool

was significantly altered in the patients with GC. Moreover, these
Frontiers in Endocrinology 09
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differential BAs were associated with clinical traits. Besides, we

constructed a diagnostic panel using a machine learning

algorithm consisting of six BA molecules. The constructed

model demonstrated good diagnostic efficiency for BGL and

EGC. The metabolism of BAs can be considered as a crucial

indicator to the prevention and treatment of GC.
A B

D E F

G H

C

FIGURE 5

The performance of BA biomarkers in distinguishing early GC and Con group. (A): OPLS-DA score plot of early GC and Con groups in the
discovery set. (B): permutation test result of the above OPLS-DA. (C): ROC curve of 6-BAs diagnostic panel between early GC and Con group,
which was constructed in the discovery set. (D): OPLS-DA score plot of early GC and Con groups in the validation set. (E): permutation test
result of the above OPLS-DA. (F): ROC curve of 6-BAs diagnostic panel between early GC and Con group, which was constructed in the
discovery set and validation set. (G): Predicted probability of the 6-BAs diagnostic panel identified in the discovery set and applied to the
validation set. (H): Scatter plot for comparing the 6-BAs diagnostic panel and CEA.
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Recent studies have shown that BAs are important signal

molecules. In biological systems, BAs maintain glucose and lipid

metabolism homeostasis and energy expenditure by acting on

the receptors in peripheral tissues and organs, such as Farnesol X

receptor FXR and TGR-5 (36–38). BAs are mainly metabolized

through enterohepatic circulation and play a crucial role in

regulating the functions of digestive tract and intestinal

immunity (39). Besides, studies have shown that BAs are

important regulatory molecules in tumors. In HCC, BAs were

shown to directly incapacitate the plasma membrane, leading to

the activation of protein kinase C (PKC), which activated the

P38-MAPK pathway, resulting in increased activation of p53

and nuclear factor kB (NF-kB) which mediate cellular apoptosis

and inflammation (40). In this study, there were significant

metabolic changes in BAs in patients with GC. Increased

synthesis of hepatic BAs or reabsorption of intestinal BAs led

to an increased pool volume of the BAs. Improved BAs pool in

GC may be beneficial in disease development. Besides,

glucuronidated BAs and sulfated BAs were significantly

increased in GC (Figure 7). The pathophysiological role of the

BAs in GC remains unclear.
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Pathological characteristics such as tumor stage and grade

accurately reflects the degree of malignancy of cancers, and these

characteristics have a strong guiding significance for clinic (41).

However, these features can often only be accurately captured in

an invasive fashion. Markers which are easily obtained under a

noninvasive manner reflecting disease characteristics are

urgently needed. Correlation analysis showed that BAs were

closely related to T stage, N stage and grade, etc. Circulating BAs

can be used as indicators reflecting the characteristics of GC.

The ratio of upstream and downstream molecules in the

metabolic pathway can indirectly reveal the change of

corresponding catalytic enzyme activity. By comparing the

ratio of expression of adjacent metabolites, we demonstrated

that there was enhancement of the metabolic activity of both the

classical and alternative pathways in GC (42). Among these, the

classical pathway has been more emphasized (CA/CDCA).

However, there is a dramatic occurrence of metabolic

disorders in the alternative pathway. Increased LCA/CDCA in

GC indicated that intestinal flora enhances the catalytic activity

of primary BAs CDCA, resulting in increased cytotoxic LCA.

With the increased LCA uptake in the intestinal tract, there was
A B

D E F

C

FIGURE 6

The performance of BA biomarkers in distinguishing GC and BGL group. (A): OPLS-DA score plot of GC and BGL groups. (B): permutation test result
of the OPLS-DA result in (A, C): ROC curve of 6-BAs diagnostic panel between GC and BGL group. (D): OPLS-DA score plot of early GC (EGC) and
BGL groups. (E): permutation test result of the OPLS-DA result in (D, F): ROC curve of 6-BAs diagnostic panel between EGC and BGL group.
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increased activity of LCA-modifying enzymes in the liver

(GLCA/LCA, TLCA/LCA). CDCA, LCA, TLCA are

hydrophobic and cytotoxic, which lead to cell damage and

inflammation (43, 44).

In this study, the diagnostic model constructed by the 6

molecules and ratios in GC had good diagnostic performance,

even in EGC. The constructed panel had a high sensitivity and

specificity for screening high-risk GC populations. Moreover,

the diagnostic efficiency of the diagnostic model was

independent of tumor load, which is an important biomarker

for early cancer screening. Screening for early-stage cancer is the

most critical step in the improvement of the current GC status,

as these patients undergo less trauma, fewer complications and

better prognosis. Among the 6 molecules, TLCA expression was

the most differentially expressed metabolite, with an AUC of

0.99 (95% CI:0.97-1). TLCA was the strongest activator of TGR5
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among all the BAs and promoted the occurrence of liver cancer

by activating the TGR5 (45). Remodeling of energy metabolism

is a common feature in tumor metabolic reprogramming.

Hyocholic acid species (HCA and HDCA/LCA) play an

important role in regulating insulin sensitivity, glucose

homeostasis and energy expenditure (46).

The metabolism of BAs is mainly influenced by the catalysis

of liver and intestinal microbiota. However, different diseases

have been found to have specific features of BAs metabolism (42,

47). The diagnostic specificity can be enhanced by using multiple

molecular model. Compared with a single molecule, our model

is composed of six molecules and ratios which can reduce

molecular noise and increase the accuracy of diagnosis. These

6 BAs could make up for the lack of non-invasive markers for

GC screening and resolve the cost associated with endoscopy as a

screening tool for GC.
FIGURE 7

Overview of the BA metabolic dysregulation in GC. FDR-adjusted Q-value: *Q < 0.05.
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We used an in-depth metabolomics approach which

provided high-quality and information-rich BAs data in

patients with GC. Differential BAs, including many low-

abundant BAs, were annotated based on the BA standards.

Due to limited detection methods, data on the low-abundance

BAs remain scanty. Recent data has shown that some of these

BAs are closely related to human health. Besides, BAs play a key

role in regulating gastric mucosal homeostasis, which mediates

stomach upset. Thus, the newly reported BAs could serve as

screening markers. In addition, these molecules provide a new

tool in understanding the pathophysiology of GC.

Although our study had an important outcome, there is a

need to confirm the diagnostic value of those candidates in a

multi-center large sample cohort. In addition, the molecular

mechanism of BA metabolism disorder on the occurrence and

development of GC needs further evaluation in cell assays.
Conclusion

Taken together, our data demonstrated that the BAs

metabolism disorder is involved in GC development. Our

diagnostic model using 6 BAs or ratio provided promising

diagnostic efficiency for GC, which could perform early

screening of high-risk populations and promote early

diagnosis of GC.
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and drug analysis of peritoneal
endometriosis based on
epithelial-mesenchymal
transition classification
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Background: Epithelial-mesenchymal transition (EMT) is a complex event that

drives polar epithelial cells transform from adherent cells to motile

mesenchymal cells, in which are involved immune cells and stroma cells.

EMT plays crucial roles in migration and invasion of endometriosis. The

interaction of endometrial implants with the surrounding peritoneal micro-

environment probably affects the development of peritoneal endometriosis. To

date, very few studies have been carried out on peritoneal endometriosis sub-

type classification andmicro-environment analysis based on EMT. The purpose

of this study is to investigate the potential application of EMT-based

classification in precise diagnosis and treatment of peritoneal endometriosis.

Method: Based on EMT hallmark genes, 76 peritoneal endometriosis samples

were classified into two clusters by consistent cluster classification. EMT

scores, which calculated by Z score of 8 epithelial cell marker genes and 8

mesenchymal cell marker genes, were compared in two clusters. Then,

immune scores and the abundances of corresponding immune cells, stroma

scores and the abundances of corresponding stroma cells were analyzed by

the “xCell” package. Futhermore, a diagnostic model was constructed based on

9 diagnostic markers which related to immune score and stroma score by

Lasso-Logistic regression analysis. Finally, based on EMT classification, a total

of 8 targeted drugs against two clusters were screened out by drug

susceptibility analysis via “pRRophetic” package.

Results: Hallmark epithelial-mesenchymal transition was the mainly enriched

pathway of differentially expressed genes between peritoneal endometriosis

tissues and endometrium tissues. Compared with cluster 2, EMT score and the

abundances of most infiltrating stroma cell were significantly higher, while the

abundances of most infiltrating immune cells were dramatically less. The

diagnostic model could accurately distinguish cluster 1 from cluster 2.

Pathway analysis showed drug candidates targeting cluster 1 mainly act on

the IGF-1 signaling pathway, and drug candidates targeting cluster 2 mainly

block the EGFR signaling pathway.
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Conclusion: In peritoneal endometriosis, EMT was probably promoted by

stroma cell infiltration and inhibited by immune cell infiltration. Besides, our

study highlighted the potential uses of the EMT classification in the precise

diagnosis and treatment of peritoneal endometriosis.
KEYWORDS

epithelial-mesenchymal transition, peritoneal endometriosis, immune
micro-environment, diagnostic model, drug susceptibility analysis
Introduction

Endometriosis is characterized by the presence of normal

endometrium (like stroma and glands) abnormally invaded in

body parts other than the uterine cavity, which shares many

characteristics with malignant tumour (1) (2). Although ectopic

endometrial tissue can be implanted in any parts of body,

abdominal cavity is one of the most frequently locations that

endometriotic tissue implanted into, leading to peritoneal

endometriosis (1–4). Over the past decades, several systems

have been proposed for endometriosis classification. The most

widely accepted is American Society for Reproductive Medicine

(rASRM) classification and the updated Enzian classification

(Supplement to ASRM Classification) (5). However, the rASRM

score has limitations in deep infiltrating endometriosis description

and Enzian classification has not included peritoneal

endometriosis classification (6), which is greatly limiting

accurate diagnosis and treatment of peritoneal endometriosis.

Epithelial-mesenchymal transition (EMT) lead to the

increased motility via rearrangements of cellular contact

junctions, loss of cell adhesion, apicobasal polarity and

epithelial cell morphology, thus promoting lesion metastasis

(7, 8). In general, EMT of ectopic endometrial tissue is more

active than that of eutopic endometrial tissue, which may be

beneficial for migration and invasion of ectopic tissue (9). After

endometrium attaches to peritoneum, endometrial epithelial

cells also undergo EMT (10). Furthermore, the expressions of

EMT induced transcription factors that may trigger EMT were

significantly increased in deep endometriotic lesions than in

eutopic endometrium (11, 12). These indicate EMT is a factor

contributing to progression of endometriosis. Classification

based on EMT hallmarks has been widely used in diseases

sub-classify (13, 14), we supposed classification based on

EMT also has a potential to be used on peritoneal

endometriosis classification.

Immune micro-environment affects EMT (15, 16).

Peritoneal endometriosis is markedly characterized by

increased numbers of peritoneal macrophages and elevated

concentrations of pro-inflammatory chemokines, which
02
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associated with endometriosis-related pain and infertility (17,

18). Macrophages induced EMT in pancreatic cancer cells (19).

And inflammatory mediators in retrograde menstrual fluid

probably contribute to ectopic endometrial EMT in the

presence of peritoneal hypoxia (20). Besides, in superficial

peritoneal endometriosis, the migration and infiltration of

peritoneal endometriotic tissue were also associated with the

formation and differentiation of stroma cells, such as

myofibroblasts and smooth muscles (SM)-like cells (21). All

these made us curious about the differences in immune cell

infiltration and stroma cell infiltration of peritoneal

endometriosis classified based on EMT classification.

Here, we classified peritoneal endometriosis into two clusters

based on EMT hallmark genes by consistent cluster

classification, which is suitable for diseases classification from

the perspective of molecular (22, 23) Then, we compared the

immune micro-environment and stroma cells infiltration of two

clusters. What was more, based on EMT classification, we

established a diagnostic model and screened potential drugs

against different clusters. In conclusion, our study provided a

potential strategy for peritoneal endometriosis diagnosis

and treatment.
Methods and materials

Data collection

The RNA sequencing dataset of 76 peritoneal endometriosis

tissues and 37 endometrium tissues was fetched from

GSE141549. The clinical information all subjects was provided

in Supplementary Table 1. Another RNA sequencing dataset

that containing 11 peritoneal endometriosis tissues and 11

endometrium tissues was GSE5108. The single cell RNA-seq

dataset (ScRNA-Seq) of 8 peritoneal endometriosis tissues

was fetched from GSE179640. All the above datasets

were downloaded from GEO DataSet. EMT hallmark

genes were referred from the HALLMARK_EPITHELIAL_

MESENCHYMAL_TRANSITION gene set in Molecular
frontiersin.org
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Signatures Database v7.5.1 (https://www.gsea-msigdb.org/gsea/

msigdb/). The data of msigdb.v7.4.entrez.gmt was downloaded

from Gene Set Enrichment Analysis website (https://www.gsea-

msigdb.org/gsea/msigdb/).
Gene set enrichment analysis

In order to explore potential mechanisms of EMT in

peritoneal endometriosis, we performed gene set enrichment

analysis (GSEA) on GSE141549 and GSE5108. Firstly, logFc

values of all genes between peritoneal endometriosis tissues and

endometrium tissue genes were obtained by”limma” package.

Then, GSEA based on msigdb .v7 .4 . ent rez .gmt by

“clusterProfiler” package were performed (24). At last, the

results was visualized by gseaplot2 of the “enrichplot”

package (25).
Consistent cluster analysis based on EMT

To classify peritoneal endometriosis, we performed consistent

clustering analysis on GSE141549 based on the 200 EMT hallmark

genes by using the “ConsensusClusterPlus” package (26). Samples

were divided into two clusters according to the expression

characteristics of EMT hallmark genes.
Single cell RNA-seq data analysis

ScRNA-Seq analysis and visualization for GSE179640 were

performed with “Seurat” package (version 4.1.1) (27, 28). Briefly,

we removed low-quality cells with feature RNA< 500 or > 6000

and mitochondrial reads > 20%. Then, the top 2000 highly

variable genes were selected after the gene expression

normalization. After gene expression integration, cells were

clustered and two-dimensional visualization was performed

using uniform manifold approximation and projection

(UMAP). Clusters were annotated based on the average gene

expression of the following major cell types: fibroblasts

(COL1A1, COL3A1, COL1A2), macrophages/monocytes

(CD68, MS4A4A, MS4A7, CD14), endothelial cells (PECAM1,

VWF), epithelial cells (EPCAM), mesenchymal cells (VIM),

CD8+ T cells (PTPRC, CD2, CD3G, CD8A), CD4+ T cells

(PTPRC, CD2, CD3G, CD4), dendritic cells (DC) (IL3RA,

CLEC4C), mast cells (KIT, TPSB2, TPSAB1), natural killer

cells (NK) (NCAM1) and neutrophils (FCGR3A) (29–32).
EMT score calculation

To screen mesenchymal cell marker genes and epithelial

marker cell genes for EMT score of peritoneal endometriosis, we
Frontiers in Endocrinology 03
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firstly referenced 8 epithelial cell marker genes (CD24, CDH1,

DSP, EPCAM, FOLR1, KRTI8, KRT19 and OCLN) and 14

mesenchymal cell marker genes (ACTA2, CD44, CDH2, FN1,

ITGA5, MMP2, S100A4, SNAI2, TNC, TWIST1, VIM,WNT5A,

ZEB1 and ZEB2) of the CellMarker website (http://xteam.xbio.

top/CellMarker/). Then, we compared the expression of these

genes in epithelial cells cluster and mesenchymal cells cluster

(GSE179640). Finally, 8 epithelial genes and 8 mesenchymal

genes were selected for EMT score. EMT score was the sum of Z

scores of mesenchymal genes minus the sum of Z scores of

epithelial genes (33).
Calculation of immune score, stroma
score, abundances of immune cells and
stroma cells

“xCell” provides a novel method to infer immune and

stromal cell types, immune score and stroma score based on

genetic characteristics (34). Here, we used the “xCell”

package to analyze the relative abundance of immune cells and

stroma cells, immune score and stroma score in peritoneal

endometriosis samples.
Screening and functional enrichment
analysis of differentially expressed genes

In order to figure out the functional differences of the

differentially expressed genes (DEGs), the differential genes

between cluster 1 and cluster 2 were screened by using of the

“limma” package (adj. p. val< 0.05, |log FC| > 1) (35). Then, the

DEGs were analyzed by Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) through the

website (https://cn.string-db.org/). By setting FDR< 0.05, the

significant terms were selected and visualized with the “ggplot2”

package (36).
Weighted gene co-expression network
analysis

Weighted correlation network analysis (WGCNA) can be

used for finding clusters (modules) of highly correlated genes,

for summarizing such clusters using the module eigengene or an

intramodular hub gene (37). To identify immune score or

stroma score associated modules or genes, the “WGCNA”

package was used to construct the co-expression network

analysis of the mRNA expression matrix of DEGs. samples

were clustered according to pearson’s correlation analysis and

the outliers were removed. The soft thresholding parameter (b)
was selected when the scale free topology model fit > 0.85.

Afterward, the adjacency matrix was transformed into a
frontiersin.org
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topological overlap matrix (TOM) and genes were assigned to

different gene modules according to dissimilarity matrix (1-

TOM). Similar dynamic modules were merged when coefficient

of dissimilarity< 0.2. Pearson correlation analysis was performed

to identify the module with the strongest association with

immune score and stroma score. The module eigengenes

related to immune score or stroma score were selected with

gene significance (GS) > 0.55 and module membership (MM) >

0.85, respectively.
Lasso-logistics regression

We extracted expression matrix of immune score and

stroma score related genes from GSE141549. Then, 76 samples

in this expression matrix were randomly divided into training

dataset and test dataset in a ratio of 1:1. In the training dataset,

the Lasso-Logisitic regression analysis was performed based on

the classification information of cluster 1 and cluster 2 using the

“glmnet” package (38). The diagnostic markers were screen and

a diagnostic model was built. Furthermore, the diagnostic model

was validated in the test dataset. The ROC curves were plotted

using the “ROCR” package and AUC value was calculated (39).
Drug susceptibility analysis

The “pRRophetic” package was used to analyze the half

maximal inhibitory concentration (IC50) of 251 drugs (40).

Then, the drug candidates for cluster 1 or cluster 2 were

screened by setting the adj. p. val<0.05.
Statistics of data

All statistical analyses performed in our study were

conducted in R studio (version 4.1.2). Comparisons of mRNA

expression were analyzed by Wilcoxon test. All correlation analyses

were performed by Pearson correlation analysis using the “corrplot”

package (41). Differences were significant when P < 0.05.
Results

The classification based on the EMT
hallmark genes

Results of GSEA on deferences gene expression between

peritoneal endometriosis tissues and endometrium tissues of

both GSE141549 and GSE5108 showed that hallmark epithelial-

mesenchymal transition (EMT) was the mainly enriched

pathway (Figures 1A, B). In order to analysis peritoneal

endometriosis from the perspective of EMT, we performed
Frontiers in Endocrinology 04
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consistent clustering analysis on GSE141549 that containing

76 patients with peritoneal endometriosis based on the EMT

hallmark genes. Samples could be clearly divided into cluster 1

(n = 34) and cluster 2 (n = 42) (Figures 1C-E).
EMT score comparison between cluster 1
and cluster 2

In order to calculate the EMT score of peritoneal

endometriosis tissues, we performed ScRNA-Seq analysis on

GSE179640 for selecting marker genes of epithelial cells and

mesenchymal cells. The entire cell population was categorised

into 18 major cell clusters. All cell clusters were identified as 11

cell types, consist of fbroblasts cells, macrophages/monocytes,

endothelial cells, epithelial cells, other T cells, mesenchymal

cells, CD8+ T cells, DC, mast cells, NK/neutrophils and

unknown based on expression of markers (Figures 2A, B). We

compared the expression of 8 epithelial cell marker genes and 14

mesenchymal cell marker genes in both epithelial cells and

mesenchymal cells. Results showed the expression of 8

epithelial cell marker genes (CD24, CDH1, DSP, EPCAM,

FOLR1, KRTI8, KRT19 and OCLN) were significantly higher

in epithelial cells compared these with mesenchymal cell. And 8

mesenchymal cell marker genes (ACAT2, CD44, FN1, S1004A,

TNC, VIM, ZEB1 and ZEB2) were just the oppose (Figure 2C).

Hence, we selected these 16 genes as the marker genes for EMT

score. Then, EMT score of peritoneal endometriosis

(GSE141549) based on the Z score of these marker genes were

calculated. Results showed that EMT score of cluster 1 was

significantly higher than that of cluster 2 (p< 0.0001)

(Figure 2D). Results indicated EMT appears much more

robust in cluster 1 than that in cluster 2.
Screening and functional enrichment
analysis of the differential gene between
cluster 1 and cluster 2.

In order to explore the differences between cluster 1 and

cluster 2 comprehensively, we analyzed the DEGs between

cluster 1 and cluster 2. Results showed there were 95 up-

regulated genes and 57 down-regulated genes in cluster 1

compared with cluster 2 (Figures 3A, B). Pathway enrichment

indicated that the mainly enriched BP were Regulation of

midbrain dopaminergic neuron differentiation and Negative

regulation of smooth muscle cell matrix adhesion, the mainly

enriched MF were Chemokine activity and CCR chemokine

receptor binding, and the mainly CC were mainly Z disc, Stress

fiber and Dystrophin-associated glycoprotein complex

(Figure 3C). The mainly KEGG-enriched pathways were

Cytokine-cytokine receptor interaction, Chemokine signaling,

Toll-like receptor signaling pathway and NFkB signaling
frontiersin.org
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B

C D E

A

FIGURE 1

The classification of peritoneal endometriosis based on EMT. (A, B). GSEA analysis of the whole transcriptome of GSE141549 and GSE5108,
respectively. (C). EMT modification patterns identified with K-means clustering. (D). The cumulative distribution function (CDF) curve of the
clustering. (E). PCA plot of cluster1 and cluster2.
B

C D

A

FIGURE 2

EMT score marker genes selection and EMT score calculation. (A). Marker genes expression of 18 clusters were shown on bubble diagram. (B).
UMAP plots of 11 types of cells. Cells were colored for types. (C). The expression level of EMT score marker genes in CellMarker website. The
upper 8 genes were epithelial cell marker genes and the other 14 genes were mesenchymal cell marker genes. (D). EMT score of cluster 1 and
cluster 2. (p< 0.0001) (****p< 0.0001).
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pathway (Figure 3D). Results showed DEGs between cluster 1

and cluster 2 mainly in volved in chemokines signaling

pathways, including inflammatory chemokines pathways (Toll-

like receptors pathway and NF-kappa B pathway).
Screening of genes related to immune
score and stroma score

Given that the functional differences between cluster 1 and

cluster 2 were mainly enriched in chemotaxis and inflammatory

responses, we further analyzed the immune micro-environment.

The immune score of cluster 1 was significantly lower than that

of cluster 2 (p<0.01), while the stroma score was dramatically

higher than that of cluster 2 (p<0.0001) (Figure 4A).

Furthermore, we selected immune score related gene and

stroma score by WGCNA. Four modules were identified when

the Diss Thres was set as 0.2 after merging dynamic modules, as

shown in the clustering dendrograms (Figure 4B). The brown
Frontiers in Endocrinology 06
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module and turquoise module were associated with Immune

score and stroma score respectively (Figure 4C). Finally, 7

Immune score-related genes were set selected by setting

GS>0.55 and MM>0.85 (Figure 4D). Results showed that the

expression of all 7 Immune score-related genes in cluster 1 were

significantly lower than those in cluster 2 (p<0.0001)

(Figure 4E). All these 7 genes were significantly positively

correlated with Immune score (p<0.0001) (Figure 4F).

Similarly, 14 stroma score-related genes were selected and the

expression of these 14 genes in cluster 1 were remarkably higher

than those in cluster 2 (p<0.05) (Figures 4G, H). All 14-stroma

score-related genes were significantly positively correlated with

Immune score (p<0.05) (Figure 4I). In conclusion, the immune

cells infiltration of cluster 1 was significantly higher than that of

cluster 2, while the infiltration of stroma cells was remarkably

lower in cluster 2. We speculated that, in peritoneal

endometriosis lesions, high infiltration of immune cells

inhibited the progression of EMT, while high infiltration of

stroma cell contributes to EMT.
B

C D

A

FIGURE 3

Differential genes screening and functional enrichment analysis. (A, B). Heatmap of DEGs between cluster 1 and cluster 2. (B). Volcano plot of
DEGs between cluster 1 and cluster 2. (C). GO enrichment analysis of DEGs about BP, MF and CC. (D). KEGG-enriched analysis. (BP, biological
process. MF, molecular function).
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The abundances of immune cells and
stroma cells

Given the significant differences in immune score and

stroma score between the two clusters, we further analyzed the

abundances of immune cells and stroma cells. Results showed

that the abundances of 12 kinds of immune cells, namely DC

cells, iDC cells, Monocytes, Macrophages, M1 Macrophages, M2
Frontiers in Endocrinology 07
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Macrophages, Basophils, Th1 cells, Th2 cells, CD4+ Tem cells, B

cells and memory B cells,were significantly lower in cluster 1

than that of cluster 2 (p< 0.05) (Figure 5A). Correlation analysis

showed the abundances of above 12 kinds of immune cells were

almost remarkably positively correlated with the expression of

all 7 immune score-related genes (p< 0.05) (Figure 5B). This

indicated that immune cells in cluster 2 were more active than

those in cluster 1. And immune cells were positively regulated by
B C

D E F

G H

I

A

FIGURE 4

The screening of genes that related to Immune score and stroma score. (A). The immune score and stroma score of cluster and cluster 2. (B).
Cluster dendrogram of the co-expression network modules. (C). Correlations between the modules and immune scores, and correlations
between the modules and immune scores (p-values were shown). (D). Scatter plot analysis of the brown module. 7 Immune score-related
genes were screened out in the upper-right area where GS > 0.55 and MM > 0.85. (E). Comparison of the 7 immune score-related genes
between cluster 1 and cluster 2. (F). Correlation analysis between the 7 immune score-related genes. (G). Scatter plot analysis of the turquoise
module. 14 stroma score-related genes were screened out in the upper-right area where GS > 0.55 and MM > 0.85. (H). Comparison of the 14
stroma score-related genes between cluster 1 and cluster 2. (I). Correlation analysis between the 14 stroma score-related genes. (**p< 0.01;
****p< 0.0001; GS, gene significance. MM, module membership.).
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immune score-related genes. Additionally, the abundance of

Epithelial cells, Keratinocytes and Osteoblasts in cluster 1 were

significantly lower than those in cluster 2 (p<0.05) (Figure 5C)

and had significantly negative correlations with the stroma-

related genes (Figure 5D). While the abundances of

Fibroblasts, ly Endothelial cells, Myocytes, Chondrocytes and

Skeletal muscle cells were significantly higher in cluster 1 than

that of cluster 2 (p<0.05) (Figure 5C) had significantly positive

correlations with the whole stroma-related genes (Figure 5D). In

addition, abundances of Adipocytes and Smooth muscle cells

were also higher in cluster 1. The epithelial cell abundance of

cluster 1 was lower, which consistent with the EMT score

(Figure 2D). It was suggested that the increased abundance of

Fibroblasts, ly Endothelial cells, Skeletal muscle cells and

Smooth muscle cells probably contribute to EMT in

peritoneal endometriosis.
Construction of the diagnostic model

To construct a diagnostic model, diagnostic markers were

screened from immune score- related genes and stroma score-

related genes by lasso-logistic regression analysis in the training

dataset. The minimum binomial deviance was obtained when

log(l) was -5.773583, and 9 genes were selected as diagnostic

markers (Figure 6A). The coefficients of TMEM47 and FRZB

were larger than the other 7 genes (Figure 6B) (Supplementary

Table 2). A diagnostic model was constructed with the following

formula:
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cd score =o
n

i=1
(Coefficienti � Expressioni)

The ROC analysis showed that the AUC of the training

dataset was 0.955 when the cut-off value of the cd-score was

-36.070 (Figure 6C). Sample was classified as cluster 1 when the

cd-score was less than or equal to the cut-off value, otherwise

sample was classified as cluster 2. According to the cut-off of the

training dataset, the AUC of the test dataset was 0.862

(Figure 6D). Additionally, cd score was significantly negatively

correlated with EMT score in training dataset, test dataset and

entire dataset (Figure 6E-G). Therefore, the diagnostic model

constructed from these 9 genes and their coefficients had high

specificity and sensitivity.
Candidate drug screening

Based on the clusters classified by EMT hallmark genes, drug

susceptibility was analyzed. In the training dataset, the IC50 of

BMS-754807 and Lisitinib in cluster 1 was significantly lower

than that in cluster 2 (p<0.05), while the IC50 of Methotrexate,

Gefitinib, Veliparib, GW 4441756, CCT007093 and

Temozolomide in cluster 1 were remarkably higher in cluster

2 (p<0.0001) (Figure 7A). The drug susceptibility trends of all

candidate drugs in the test dataset were consistent with that in

the training dataset (Figure 7B). Then, we classified the dataset

into cluster 1 and cluster 2 by the diagnostic model we

established. Except for GW 441756, the susceptibility trends of

all candidate drugs in the test dataset predicted by the above
B

C D

A

FIGURE 5

The abundances of immune cells and stroma cells in cluste1 and cluster2. (A). Comparison of the immune cell abundances in cluster 1 and
cluster2. (B). Correlation of the immune cell abundances and the expression of immune-related genes. (C). The comparison of the stroma cells
abundances in cluster 1 and cluster2. (D). Correlation of the stroma cells abundances and the expression of stroma score-related genes.
(*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, no significance).
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diagnostic model were also consistent with the training dataset.

(Figure 7C). Results showed BMS-754807 and Lisitinib were

more sensitive for cluster 1, while Methotrexate, Gefitinib,

Veliparib, CCT007093 and Temozolomide were more sensitive

for cluster 2. It was suggested that the diagnostic classification

models we established can be used for drug screening.
Discussion

Over decades, endometriosis classified traditionally based on

lesion appearance, pelvic adhesions, or/and anatomic location of

disease (42), but none of the current classification systems

classify peritoneal endometriosis from molecular perspective.
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Here, we classified peritoneal endometriosis into two cluster

based on EMT hallmark genes and found EMT scores of cluster

1 was significantly higher than cluster 2. What was more, we also

found EMT in peritoneal endometriosis was related with both

immune cell infiltration and stroma cell infiltration. In addition,

based on immune score-related genes and stroma score-related

genes, we established a diagnostic model and screened candidate

drugs. Our study provided new ideas for classification, diagnosis

and treatment of peritoneal endometriosis.

EMT is involved in the process of endometriosis. The

migration and invasion abilities of endometrial stromal cells

enhanced by facilitated EMT, and conversely inhibited EMT-

related proteins reduced the volume and weight of endometriotic

lesions in mice model (43–45). In pathological and physiological
B

C D

E F G

A

FIGURE 6

Construction of the diagnostic model. (A) Diagnostic markers screening. (B) The coefficients of all diagnostic markers. (C) ROC of the diagnostic
model with the 14 diagnostic markers in the training dataset. (D) Validation of the diagnostic model in the test dataset. (E–G). The correlation
between cd score and EMT score in test dataset, training dataset and entire dataset, respectively. (AUC, Area Under Curve).
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EMT, both stroma cells and immune cells are involved (46–48).

Researches concerning stroma cell involve in EMT are not rare.

Adipocytes promote EMT progression by reducing epithelial cell

characteristics or inducing EMT-related phenotypes and thus

promote tumor invasiveness (49, 50). Ly endothelial cells

mediate the preferential migration of cells that undergoing

EMT to lymphatic vessels by secreted pro-inflammatory

cytokines (51). Chemokines promote pulmonary fibrosis by

promoting EMT (52). EMT induced tissue fibrosis, which

probably stimulate the production of fibroblasts in (53). Here

we found not only the stroma score but also the abundances of

most infiltrating stroma cells were significantly higher in cluster

1 than these in cluster 2, including fibroblasts, adipocytes, ly

endothelial cells, chondrocytes, skeletal muscle cells and smooth

muscle cells. We proposed that the infiltration of stroma cells

probably contribute to EMT in peritoneal endometriosis.

Besides, T and B cells, DC cells and tumor-associated

macrophages that present in the tumor micro-environment

induce EMT (54). Macrophages may induce pathological EMT

of epithelial cells in a denomyosis (55). EMT is strongly

associated with a highly immunosuppressive environment

(15). We found the immune score was significantly lower in

cluster 1 in than that in cluster 2, while the abundances of all

infiltrating immune cells were significantly higher in cluster 2

than that in cluster 1, particularly macrophages, DC cells, CD4

+T cells and B cells. Here, we proposed immune cell infiltration

possibly inhibited the EMT of peritoneal endometriosis,

especially macrophages, DC cells, CD4+T cells and B cells.

Therefore, EMT classification is meaningful for peritoneal

endometriosis accurate diagnosis and treatment.
Frontiers in Endocrinology 10
59
Additionally, stroma score- and immune score-related genes

possibably participate in stromal cells and immune cells

infiltration. Aoc3 is an endothelial adhesion molecule that

contributes to the extravasation of neutrophils, macrophages,

and lymphocytes to sites of inflammation (56). CASQ2 is a

calcium binding protein that stores calcium for muscle function

(57). FRZB is involved in the regulation of chondrocytes

development (58). MGP is a vitamin K-dependent protein,

which is synthesized in bone and many other mesenchymal

cells, which is also highly expressed by vascular smooth muscle

cells (VSMCs) and chondrocytes (59). CCL3 and CCL3L3 are

chemokines that produced by macrophage and monocyte

respectively (60, 61). Ifi30 is an IFN-g-inducible protein that is

involved in MHC class II-restricted antigen processing and

MHC class I-restricted cross-presentation pathways of

adaptive immunity (62). Therefore, it was suggested that these

genes regulate stroma cells and immune cellsinfiltration in

peritoneal endometrisis.

To date, drugs treatment for endometriosis are mainly based

on hormone regulation and inflammation inhibition, rarely

concerning EMT. Here, based on EMT classification, we

selected 2 candidate drugs for cluster 1 and 6 candidate drugs

for cluster 2. As for cluster 2 drugs, Methotrexate blocks tumor

cell proliferation mainly through the inhibition of dihydrofolate

reductase (DHFR), which is also an immunosuppression (63).

Gefitinib is a small molecule inhibitor of epidermal growth

factor receptor (EGFR) tyrosine kinase (64). Veliparib is an

inhibitor of PARP1 and PARP2 (65). GW 4441756 is a selective

TrkA (NTRK1) inhibitor. CCT007093 is an inhibitor of protein

phosphatase 1D (PPM1D Wip1) (66). Temozolomide reduces
B

C

A

FIGURE 7

The comparison of drug sensitivity between cluster 1 and cluster 2. (A). The comparison of drug sensitivity in training dataset. (B). The
comparison of drug sensitivity in test dataset. (C). The comparison of drug sensitivity in the predicted cluster 1 and cluster 2 in test dataset.
(*p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001).
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the proliferative activity of tumor cells (67). Pathway enrichment

analysis found that drugs for cluster 2 mainly acted on the EGFR

signaling pathway (Supplementary Figure 1). And restraining

EGFR pathway can inhibit EMT progression (68, 69). Among

drugs for cluster 1, BMS-754807 is a potent small molecule

inhibitor of IGF-1R/IR family kinases. Lisitinib is a dual

inhibitor of IGF-1 and insulin receptor (IR) (70). IGF-1 is

expressed in ectopic endometrial stroma cells (71). In addition,

IGF-1 concentration in peritoneal fluid of patients with

endometriosis are significantly higher than that of normal

controls (72, 73). On the other hand, the peritoneal

mesothelial cells with insufficient IGF-1R expression had lower

migration ability and higher adhesion ability (74). In addition,

inhibitors of IGF-1R hinder the growth of ectopic lesions and

reverses the pain behavior in mice model (71, 73). It was

indicated that inhibition of insulin-like growth factor pathway

was crucial for the treatment for cluster 1. Of course, drugs we

screened needed to be further validated.

In conclusion, we classified peritoneal endometriosis based

on EMT. Then, we constructed diagnostic models based on the

screened genes and performed drug screening. This will provide

a new strategy for the precise diagnosis and medicine of

peritoneal endometriosis.
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Multiomics signatures of
type 1 diabetes with and
without albuminuria

Marc Clos-Garcia1,2†, Tarunveer S. Ahluwalia3,4†,
Signe A. Winther3†, Peter Henriksen3, Mina Ali3, Yong Fan1,
Evelina Stankevic1, Liwei Lyu1, Josef K. Vogt1,5,
Torben Hansen1, Cristina Legido-Quigley3,
Peter Rossing3,6 and Oluf Pedersen1,7*

1Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical
Sciences, University of Copenhagen, Copenhagen, Denmark, 2LEITAT Technological Center,
Terrassa, Spain, 3Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark,
4The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen,
Denmark, 5Clinical Microbiomics, Copenhagen, Denmark, 6Department of Clinical Medicine,
University of Copenhagen, Copenhagen, Denmark, 7Center for Clinical Metabolic Research,
Gentofte University Hospital, Copenhagen, Denmark
Aims/hypothesis: To identify novel pathophysiological signatures of

longstanding type 1 diabetes (T1D) with and without albuminuria we

investigated the gut microbiome and blood metabolome in individuals with

T1D and healthy controls (HC). We also mapped the functional underpinnings

of the microbiome in relation to its metabolic role.

Methods: One hundred and sixty-one individuals with T1D and 50 HC were

recruited at the Steno Diabetes Center Copenhagen, Denmark. T1D cases were

stratified based on levels of albuminuria into normoalbuminuria, moderate and

severely increased albuminuria. Shotgun sequencing of bacterial and viral

microbiome in stool samples and circulating metabolites and lipids profiling

using mass spectroscopy in plasma of all participants were performed.

Functional mapping of microbiome into Gut Metabolic Modules (GMMs) was

done using EggNog and KEGG databases. Multiomics integration was

performed using MOFA tool.

Results: Measures of the gut bacterial beta diversity differed significantly

between T1D and HC, either with moderately or severely increased

albuminuria. Taxonomic analyses of the bacterial microbiota identified 51

species that differed in absolute abundance between T1D and HC (17 higher,

34 lower). Stratified on levels of albuminuria, 10 species were differentially

abundant for the moderately increased albuminuria group, 63 for the severely

increased albuminuria group while 25 were common and differentially abundant

both formoderately and severely increased albuminuria groups, when compared

to HC. Functional characterization of the bacteriome identified 23 differentially

enriched GMMs between T1D and HC, mostly involved in sugar and amino acid

metabolism. No differences in relation to albuminuria stratificationwas observed.

Twenty-five phages were differentially abundant between T1D and HC groups.
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Six of these varied with albuminuria status. Plasma metabolomics indicated

differences in the steroidogenesis and sugar metabolism and circulating

sphingolipids in T1D individuals. We identified association between sphingolipid

levels and Bacteroides sp. abundances. MOFA revealed reduced interactions

between gut microbiome and plasma metabolome profiles albeit polar

metabolite, lipids and bacteriome compositions contributed to the variance in

albuminuria levels among T1D individuals.

Conclusions: Individuals with T1D and progressive kidney disease stratified on

levels of albuminuria show distinct signatures in their gut microbiome and

blood metabolome.
KEYWORDS

multiomics, type 1 diabetes, albuminuria, metabolomics, microbiome,
lipidomics, phageome
1 Introduction

Chronic kidney disease (CKD) is a major health burden with

a prevalence of about 15% in the United States (1) with a record

global rise of 41.5% mortality rates among CKD reported during

the past 3 decades (2). Elevated albuminuria is strongly

associated with end stage renal disease, cardiovascular disease,

and death among CKD (3). Diabetes is the leading cause of end

stage kidney disease, and about one third of individuals with type

1 or type 2 diabetes develop CKD, also referred to as diabetic

nephropathy or diabetic kidney disease (2). Diabetic

nephropathy progression in type 1 diabetes can be clinically

characterized by stages of increasing albuminuria (a) moderately

increased albuminuria (previously called microalbuminuria)

(urinary albumin 30 to 300 mg/g creatinine), (b) severely

increased albuminuria (macroalbuminuria or proteinuria)

(>300 mg/g), (c) loss of renal function (glomerular filtration

rate), and (d) finally need for kidney replacement therapy.

The intestinal microbiome constantly interacts with its host,

constituting a dynamic balance and synergy, and thereby playing

a role in maintaining and complementing metabolic and

physiological functions (4). Studies in animal models of T1D

support the hypothesis that an altered gut microbiome may lead

to a “leaky” intestinal mucosal barrier, an imbalance in innate

and adaptive immune systems and eventually triggering various

chronic non-communicable diseases (5, 6). A low diversity of the

gut microbiome is associated with dysmetabolism and (7) a state

of dysbiosis is hypothesized to worsen the metabolic status of

individuals with T1D (8, 9). Furthermore, a pathophysiological

role of an imbalanced gut microbiota in diabetic nephropathy

has been suggested (6).
02
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A recent study has proposed a mechanism by which the gut

microbiota impacts host’s insulin resistance and albuminuria

development by upregulating G protein-coupled receptor 43

(GPR43) (10). Furthermore, the impact of the gut microbiota

upon host’s metabolic status is not limited to direct interaction

between organisms, but also through specific bacterial

metabolites. In this context, it is of interest that a role of

bacteria-derived phenyl sulfate has been reported to induce

albuminuria in experimental models of diabetes (11). As for

the plasma metabolome, few studies including our previous

work (12) have reported associations between albuminuria and

sphingomyelins, phosphatidylcholines (13) and unsaturated

fatty acids and phospholipids (13–16).

In this framework, we previously identified differences in the

gut bacteriome of T1D individuals stratified by albuminuria levels

using a 16S rRNA gene marker approach (12). However, due to the

modest taxa resolution provided by this method we failed to gain

deeper insights into the bacteriome and phageome at species level

and bacteriome functional potentials. The present study included

the same study participants (T1D and HC) (12) but with high-

resolution whole microbiome sequencing combined with

untargeted plasma lipidomics and polar metabolite profiling to

further investigate the single and multi-omics profiles, and their

functional relationship. Thus, the objectives of the current study

were: (i) to analyze both the taxonomical composition and

functional potential of the metagenomic communities in T1D

stratified by albuminuria levels, and in HC; (ii) to characterize the

untargeted plasma metabolome of T1D, stratified by albuminuria

levels; and (iii) to associate metabolome with metagenomic features,

to investigate pathophysiological multiomic signatures of

longstanding T1D with and without albuminuria.
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2 Results

2.1 Characteristics of study participants

The study comprised 161 T1D individuals (50 with

normoalbuminuria, 50 with moderately increased albuminuria

and 61 with severely increased albuminuria and 50 healthy

controls (HC). A study overview is given in Figure 1.

The study participants were aged 60 ± 11 years (mean ± SD),

42% being women. The mean diabetes duration was 42 ± 15

years with an eGFR of 75 ± 25 ml min−1 (1.73 m)−2 among

individuals with type 1 diabetes (T1D). Detailed clinical

characteristics of the study groups have been reported (12)

and are again presented in Supplementary Table 1.

T1D individuals with elevated albuminuria were treated with

anti-hypertensive and proton pump inhibitor drugs more

frequently than others (Supplementary Table 1). HbA1c, and

fasting plasma hs-CRP levels were expectedly higher and

hemoglobin, and fasting plasma concentrations of total

cholesterol and LDL cholesterol were lower in the T1D

individuals upon stratification for increasing albuminuria and

when compared to HC (Supplementary Table 1).
Frontiers in Endocrinology 03
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Serum creatinine was higher and corresponding eGFR levels

lower in moderate and severely increased albuminuria groups

compared to T1D with normoalbuminuria. The Bristol stool

scale score and estimated bowel movement frequency were

comparable in each T1D albuminuria group. The daily dietary

macronutrient intake differed significantly between the

albuminuria groups as described previously (12).
2.2 Community, taxa, and functional
modules of the gut bacterial microbiota

In total 9,229 genes were mapped for the gut bacteriome

using KEGG Orthology (KO) annotation. The gene richness

distribution (Supplementary Figure 1) and the alpha (or

intragroup) diversity (Supplementary Figure 2) were not

distinctive of the four study groups when using the rarefied

data (QMP count; Supplementary Figure 3; Supplementary

Table 2), except when using Shannon index (p = 0.02).

However, pairwise comparison showed lower diversity in

moderately and severely increased albuminuria groups

compared to controls when using Shannon (pmicro= 0.015 and
FIGURE 1

Study design and analytical overview. The study cohort comprised 50 healthy and 161 individuals with T1D, who stratified on albuminuria levels:
normo-albuminuria (n=50, albuminuria levels =<3.39 mg/mmol), moderately increased albuminuria (n=50, albuminuria levels =3.39–33.79 mg/
mmol) and severely increased albuminuria (n=61, albuminuria levels =≥33.90 mg/mmol). For each study participant 1) plasma samples were
collected to perform non-targeted metabolomics analysis, including both polar metabolites and lipids, and 2) faecal samples collected for
metagenomics analysis. For the metagenomic samples, differences between the clinical groups at both taxonomical and functional level were
assessed. Lipidomics data was clustered into highly correlated lipid clusters in order to reduce dimensionality. Finally, different omics data types
were integrated with the Multi Omics Factor Analysis (MOFA+) tool and metabolite origin screened to identify bacterial- and host-related
metabolites through Least Shrinkage Selector Operator (LASSO) regression models. QMP, Quantitative Microbial Profiles; GMM, Gut Metabolic
Modules.
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FIGURE 2

Differential bacterial abundance at metagenomic species (MGS) level, between T1D and healthy individuals. (A) Volcano plot showing difference in ab
individuals (n=161) and the healthy controls (n=50). X-axis indicates Cliff’s Delta effect size; Y-axis represents FDR-corrected (negative log) p–values.
towards increasing direction of effects (right). MGS circle color depicts the corresponding annotated phylum. Circle size corresponds to the number
Transparency of the circle corresponds to the average relative abundance in which each MGS is found within participants. (B) Significant contrasts in
with the bar length corresponding to Cliff’s Delta effect size: green for higher and red for lower MGS abundances within T1D individuals. (C) Differen
on levels of albuminuria. Individual distribution of the log10 transformed QMP counts (absolute abundance) is depicted for each MGS in violin and d
subgroup is depicted with a boxplot, indicating median value of the distribution with a horizontal line, first and third quartile with the limits of the wh
with vertical bars. Significance for pairwise comparison between different study groups is indicated with p-value. (D) Significant correlations between
counts) are depicted as a heat map. Positive correlations are shown in red and inverse correlations in blue.
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pmacro = 0.004), or Simpson (pmicro= 0.08 and pmacro= 0.02)

indices (Supplementary Figure 2).

The community bacteriome dispersion varied between T1D

and HC (padonis=0.001). These differences were mainly driven by

T1D individuals with moderately and severely increased

albuminuria groups (ppermanova = 0.006), respectively.

Furthermore, the T1D individuals were heterogeneously

dispersed on the PCoA plot (Jensen-Shannon divergence

index) compared to controls (Supplementary Figure 4). These

observations were consistent with the 16s rRNA gene marker

results previously reported by Winther et al. (12).

Shotgun sequencing al lowed us to annotate the

bacterial taxonomy to species level (Metagenomic species

or MGS). Taxonomical annotations are provided in

Supplementary Table 3.

We identified 51 bacterial metagenomic species (MGS,

hereafter called species) that were differentially abundant

between T1D and HC (Figures 2A, B; Supplementary Table 4)

where the absolute abundance of 17 species were higher while 34

were lower in T1D individuals. In general lower absolute

abundance of Short-Chain Fatty Acids (SCFA) producers such

as Veilonella rogosae (17), Faecalibacterium sp., Butyricicoccus

spp. Clostridiales sp. and Lachnospiraceae bacterium was

observed in T1D compared to HC. Clostridium spp., including

C. saccharolyticum, known for its saccharolytic activity in

addition to Eisenbergiella tayi, Hungatella hathewayi and

Ruthenibacterium lactatiformans were more abundant in T1D

(Figures 2C, D). Some of the bacterial taxa (MGS) differences

observed between overall T1D and HC individuals were also

observed between T1D individuals with moderate or severe

albuminuria and HC individuals (Figure 2C; Supplementary

Figures 5, 6). Supplementary Figure 7 provides an overview of

MGS absolute abundance within the T1D albuminuria

subgroups and MGS specific and common to moderate and

severely increased albuminuria groups, compared to HC.

Further shotgun sequencing of the metagenome facilitated

mapping of functional metabolic potential and anaerobic

fermentation capacity of the metagenome in form of Gut

Metabolic Modules (GMMs) curation that represent a cellular

enzymatic process defined by input and output metabolites. The

GMMs computed using the Omixer Reference Pathway Mapper

and KEGG Orthology (RPM) (18) differed in abundance

(Supplementary Table 5) in T1D group compared to HC using

univariate analyses (Supplementary Table 6; Supplementary

Figure 8). The T1D bacteriome was enriched for modules of

sugar degradation (most abundantly for ribose, fucose and

trehalose) and for modules of amino acid metabolism,

particularly for non-polar amino acids (alanine, glycine,

isoleucine, methionine, and tryptophan), followed by acidic

(lysine, cysteine, and histidine) and polar (threonine and

glutamine) amino acids (PFDR<0.10; Supplementary Figure 8;

Supplementary Table 6).
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2.3 Gut phageome and type 1 diabetes

We identified 502 highly abundant phages in our study

participants of which 25 were differentially enriched between T1D

and HC (Figure 3A). Interestingly, the relative abundance of six of

these differentially enriched phages (uvig_37554, uvig_280596,

uvig_296393, uvig_436746, uvig_514207, uvig_557689) changed

with increasing level of albuminuria (Figure 3B).

Furthermore, CLR-normalized phage abundances were

associated inversely with multiple clinical factors (adjusted

for age, sex, and diet) including T1D status (25 phages),

diabetes duration (20 phages), eGFR (21 phages) and plasma

creatinine (7 phages) levels (Supplementary Figure 9).

Hematocrit was found to be related to 17 phages overlapping

with hemoglobin and partly glycosylated hemoglobin. All these

associations were partly overlapping with T1D-associated

phages (Supplementary Figure 9). The distribution of the

samples derived from the bacteriome and the phageome

analyses were similar, as assessed by Procrustes analysis

(correlation = 0.67; Figure 3C).
2.4 Plasma metabolome and lipidome

2.4.1 Plasma polar metabolites
We examined the differential abundance of 398 (143 known

and 255 unannotated) plasma polar metabolites (Supplementary

Table 7) between i) T1D versus HC and, ii) albuminuria subgroups

within T1D, using univariate and multivariate approaches.

To identify a subset of T1D - linked metabolites, we used the

partial least squares-discriminant analysis (PLS-DA) approach

(multivariate) splitting the dataset into 70% training and 30%

validation sample subsets. Albeit we achieved a good separation

(R2: 91.8%) using five components, the reproducibility of the

model was limited (Q2: 25%; Supplementary Figure 10). Next,

we selected polar metabolites (n=132) with a VIP (Variable

Importance in Projection score) ≥ 1 in the PLS-DA analysis and

we generated a PCA plot that effectively differentiated between

T1D and HC groups, whereas the score did not provide any

differentiation between albuminuria groups. (Figure 4A).

We identified 58 polar metabolites that were differentially

abundant between T1D and HC (PFDR<10%; Figures 4B, C;

Supplementary Table 8) using the univariate approach. In T1D

individuals, the plasma concentration of 1,5-anhydrosorbitol

was significantly lower followed by cholesterol and butylated-

hydroxytoluene while several sugar derived metabolites like

lyxofuranose and beta-D-tagatopyranose were higher

(Figure 4B; Supplementary Table 8). Within the T1D group a

univariate comparison between moderately and severely

increased albuminuria groups revealed significantly

(PFDR<10%) lower levels of ribitol, benzeneacetic acid,

decanoic acid and 3-phenylpropanoic acid while higher levels
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FIGURE 3

Contrasted relative abundance of bacteriophages in T1D and healthy control individuals. (A) In the left panel, a volcano plot com
individuals. The X-axis represents Cliff’s Delta effect size while the Y-axis represents the association threshold for the comparison
(above the red dotted line) are annotated. Dot size is relative to the global prevalence of phage in the present study sample, whi
In the right panel, significantly contrasted phages are shown as bar plots corresponding to Cliff’s Delta effect sizes. Phages with s
red bars represent phages with significantly higher abundance in T1D. (B) Distribution of abundance of selected phages when co
albuminuria. For each phage, the CLR-transformed abundance distribution is represented in differently colored dots and boxplot
computed with Kruskal-Wallis test is included in each plot, as well as the pairwise comparisons between all study groups, perfor
composition of the phageome and the bacteriome, performed with Procrustes test. Principle coordinates analysis (PCoA) shows
bacteriome (circles) and phageome (triangles) based distance matrix. An arrow has been drawn connecting the same individuals.
Correlation and significance are indicated in the bottom right corner of the plot.
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FIGURE 4

Profiles of plasma polar metabolites and lipids in T1D and healthy control individuals. (A) Scores plot resulting from the partial least square discrimi
contribute highly (Variable influence on project (VIP) > 1) to a T1D signature. Colors depict clinical study groups and ellipses demarcate the spread
principal components (PC1 and PC2) is indicated on the respective X- and Y- axis. Global distribution of the participants from each clinical group i
analysis (volcano plot) depicting differential circulating polar metabolite abundances between healthy and T1D individuals. Significantly contrasted (
effects in direction of controls (right). (C) Functional metabolic pathway identification comparing T1D and healthy controls and depicting enriched
the human metabolome database (HMDB). Bars have been ordered and colored by the enrichment p-value score. (D) Univariate analysis (volcano
between healthy and T1D individuals. Significantly contrasted (FDR < 10%) lipid clusters are colored in red with increasing effects in direction of co
different T1D albuminuria groupings (compared to healthy controls) based on the number of carbon atoms (Y-axis) and the number of double bon
gradient heatmap suggests directionality of the association (negative to positive). Significant associations are indicated in each cell with the followin
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of 2,3-dihydroxybutanoic acid in the severely increased

albuminuria group (Supplementary Figure 11).

2.4.2 Functional enrichment of plasma polar
metabolites and metabolic pathways

The functional enrichment analyses of plasma polar

metabolites (T1D vs. HC) led to identification of several

enriched human metabolic pathways. The differentially

enriched pathways mainly comprised of steroidogenesis and

steroid biosynthesis, bile acid biosynthesis, pentose phosphate

pathway and several sugar metabolism pathways, such as

fructose and mannose degradation and galactose metabolism

(Figure 4C; Supplementary Table 9).

2.4.3 Plasma lipidomics
7,470 plasma lipids (476 known and 6,994 unannotated,

Supplementary Table 10) were clustered into 122 strongly

correlated lipid clusters ranging between 3 to 1,054 lipids per

cluster (Supplementary Tables 11, 12).

We identified 60 lipid clusters (PFDR<10%) differentially

abundant between T1D and HC (Supplementary Table 13). The

T1D lipidome was enriched in a set of lysophosphocholines

(LPCs) and unknown lipids containing 20 to 22 carbon atoms

(Figure 4D). Inversely, lipid clusters containing long chain

ceramides (40-44 carbon atoms) and sphingomyelins (30-41

carbon atoms) were highly abundant in HC compared to

T1D individuals.

Further, we analyzed the distribution of the annotated

lipidome stratified by albuminuria status within the T1D and

compared these to HC. Triglyceride (TG) lipid species with large

number of carbon atoms (>55 carbon atoms) were positively

associated with severely increased albuminuria, while

comparatively shorter TGs (40-55 carbon atoms) were inversely

associated to both normo-albuminuria and moderately increased

albuminuria groups (Figure 4E).
2.5 Multi-omics factor analysis based on
albuminuria levels

Multi-Omics Factor Analysis 2 (MOFA2) (19) tool allowed

us to integrate all data on gut microbiome, plasma metabolites

(metabolomics and lipidomics), and clinical biochemistry and,

by a process of factorization, identify which data type was the

most contributing to the individuals’ T1D phenotype (stratified

on albuminuria status).

From the factorization results, we observed that the

lipidomics dataset explained a major part of the factors

composition (~50% variance), followed by the polar

metabolites, bioclinical variables, and the functional bacterial

profiling (GMM) of the gut microbiome (~30% of factor’s

variance) (Figure 5A). Finally, analysis of the taxonomical

composition of the bacteriome (QMP) explained about 15% of
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the factors’ composition. Furthermore, we observed a rather

limited interaction between the plasma metabolome and the gut

microbiome data, as no factors were found that combined

effectively these two data types (Figure 5B). Instead, the

combination of biochemistry analysis and polar metabolites

(factors 2 and 3) differentiated well between T1D and HC

individuals. Thus, by splitting all the data combined into 15

factors we observed a trend by which T1D status (and partly

albuminuria levels) influenced the position of the individuals

along the generated principal components (Figure 5C).

Details on clinical and metabolomic components resulting in

Factors 2 and 3 have been presented in (Supplementary Figure 12).

2.5.1 Relationships between the gut
bacteriome and differential blood metabolome

Since metabolome composition explained the factors

composition better than the other data types, we assessed the

relationships of the gut bacteriome and the blood metabolome

(Figure 6). Overall, 30% of the metabolites were associated with

the bacteriome taxonomical profiling, while 40% to 50% of it was

related to the bacter iome via functional profi l ing

(Supplementary Figure 13)

All the differentially abundant polar metabolites in the T1D

individuals were associated to the bacterial abundances of

Faecalibacterium prausnitzii, Clostridium spps., Lachnospiraceae

spp. and Eisenbergiella tayi.

The lipidome composition was mostly associated with the

bacteriome functional profiling (GMMs). In addition, the

lipidome composition was associated to only a small subset of

specific bacterial and/or archaeal species, such as Akkermansia

muciniphila and Methanobrevibacter smithii.
3 Discussion

In the present study, applying deep metagenomic

sequencing-based functional annotation and multi-omics

factorization we identified multiple additional molecular

signatures for T1D in the gut microbiome and plasma

metabolome and lipidome both individually and when

combined, compared to our previous findings (12). Moreover,

we provide a gut phageome profile for T1D. While most

significant differences in the gut microbial abundance and

circulating metabolites and lipids were observed between T1D

and HC, both moderately and severely increased albuminuria

groups also evidenced significantly enriched bacteriome and

plasma metabolite levels when compared to HC. In functional

bacteriome analyses, we identified sugar, amino acid, and short

chain fatty acid (SCFA) metabolizing species differentially

enriched in T1D compared to HC, while no significant

differences in the functional nature of the bacteriome was

observed upon albuminuria stratification. The latter may

suggest that nephropathy development is a continuous
frontiersin.org

https://doi.org/10.3389/fendo.2022.1015557
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Clos-Garcia et al. 10.3389/fendo.2022.1015557
process, modifying both the microbiome and the metabolome in

a constant manner. Through multi-omics we report that

circulating lipids explained most of the phenotypic variance

for T1D (stratified for albuminuria) followed by polar

metabolites, clinical factors, and functional gut bacterial

profiling (GMM). Albeit a limited interaction between

circulating metabolome and gut microbiome was observed, a

combination of circulating polar metabolites and clinical risk

factors could best differentiate between T1D and HC individuals.

Deep shotgun sequencing of the microbiome allowed us to

annotate the bacterial taxonomy to species or strain level

(Metagenomic species or MGS) facilitating mapping of

functional metabolic potential and anaerobic fermentation

capacity of the metagenome in form of specie-function
Frontiers in Endocrinology 09
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relationship or Gut Metabolic Modules (GMMs) (18). The

absolute number of differentially abundant MGS were

relatively higher in the group of severely increased

albuminuria, followed by moderate and reduced in normo-

albuminuria groups within the T1D cases (Supplementary

Figure 7). Overall, a higher number of MGS seemed to occur

with a lower absolute abundance in the T1D group compared

to HC (Figure 2B). This is not surprising as most immune

disorders have been generally associated with a loss of gut

microbia l d ivers i ty , spec ifica l ly Akkermans ia and

Faecalibacterium, both potentially contributing to host

immune tolerance (20). We also report significantly lower

absolute abundance of Faecalibacterium in the T1D group

compared to HC.
A B

C

FIGURE 5

Multi-Omics Factor Analysis (MOFA). Results from multi-omics data integration after combining multiple data types: metagenomics data
(taxonomical and functional), plasma metabolomics data (polar metabolites and clustered lipids) and biochemistry data using the MOFA+ tool.
(A) Global explained variance for each of the data types (included in the integration step) has been represented as a bar chart. (B) Composition
of 15 individual factors generated with the proportion of explained variance by each of the data types, displayed as a white-to-blue gradient in
increasing order. (C) Distribution of the eigenvalues obtained for each of the factors for the combined dataset. Within each of those factors the
individual, eigenvalues are represented as dot plots. Different colors in the dot plot depict different clinical study groups: orange for healthy
controls, dark gray for T1D with normo-albuminuria, light gray for T1D with moderately increased albuminuria and black for T1D with severely
increased albuminuria. Each of the study groups are also labelled in the bottom horizontal axis.
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Alteration of the gut microbiota in T1D resulted in lower

SCFA production capabilities and increased saccharolytic

activity. SCFAs are carboxylic acids with aliphatic tails of 1-6

Carbon atoms, acetate (C2), propionate (C3) and butyrate (C4),

being most abundant produced by anerobic fermentation of

polysaccharides or dietary fibers. SCFAs are mainly produced by

Bacteroidetes (C2 and C3) and Firmicutes sp. (C4) further

promoting beneficial bacteria survival (21, 22). Dietary fiber

can upregulate carbohydrate metabolism enzymes, increasing
Frontiers in Endocrinology 10
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SCFAs that enhance intestinal epithelial barrier function

(particularly C4) reducing metabolic toxins and expression of

inflammatory molecules (23). The C4 SCFA is also deemed

important for hypoxia inducible factor 1 (HIF1) stability in

maintaining epithelial barrier through C4-based oxygen balance

and maintaining low oxygen concentrations in gut (21). A recent

study also reported that lower SCFAs were associated with

metabolic syndrome (22) and autoimmune disorders like

inflammatory bowel disease (21). The absolute abundance of
FIGURE 6

Differentially abundant circulating metabolites and microbiome origin and functionality assessment. Summary of the circulating metabolites and
lipids data integrated with gut microbiome origin and functionality in the T1D vs healthy controls comparison. The two heatmaps display
significantly contrasted (FDR < 10%) polar metabolites (left) and lipid clusters (right) between T1D and healthy individuals. Column 1 (red green of
each of the two heatmaps shows the Cliff’s Delta effect size for the clinical group comparison, ordered from higher to lower abundance in T1D
individuals and colored from red (higher) to green (lower) gradient depending on its relative abundance in T1D individuals. Column 2 (black-
white) shows the usefulness of the metabolite for discrimination between T1D and healthy individuals based on Area Under the Curve (AUC)
analyses. The black-to-white-to-black gradient for AUC depicts assessment ability with 50% being uninformative AUC, 0% being the limit for the
identification of healthy individuals and 100% being the limit for identification of T1D individuals. Column 3 (purple white) depicts relationship
between the metabolites and bacterial QMP counts (absolute MGS abundance). Cells are colored if there is any significant association with
metabolite levels (based on LASSO modelling) and the white-to-purple color gradient depicts the explained variance by the microbiome.
Column 4 (purple white) depicts the relationship between the circulating metabolites and functional abundance of GMMs. Cells are colored if
there is any significant association with metabolite levels (based on LASSO modelling) and the white-to-purple color gradient depicts the
explained variance by the microbiome metabolic potential (or functionality).
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the majority of Clostridiales sp. belonging to phylum Firmicutes

was significantly lower in the T1D in the current study. A

polysaccharide treatment induced increase in abundance of

SCFA producing Clostridiales sp. has been reported to lower

blood glucose levels, improve glucose tolerance and restore lipid

balance in a rat model of type 2 diabetes (24) further supporting

our findings and the relationship between lower bacterial

abundance, correspondingly lower bacteriome function and

T1D. The absolute abundance of R. lactatiformans, a lactate-

producing bacterium (25), was also higher in T1D partially

aligning with the elevated blood lactate levels recently reported

in T1D (26). In addition, the absolute abundance of Clostridium

Spp., which is known for its sugar degradation capabilities was

higher in the T1D group. Interestingly, abundance of H.

hathewayi, which is reported to be positively associated with

circulating taurine levels (27) was enriched in T1D. Given the

fact that taurine levels reduce hyperglycemia (28, 29), abundance

of H. hathewayi among T1D may explain the body’s

compensatory mechanism to counter hyperglycemia.

Functional classification of the T1D associating plasma

metabolites suggested pathways enriched for steroidogenesis,

bile acid biosynthesis and sugar metabolism. Additionally, the

T1D plasma lipidome profile associated with alterations in the

circulating sphingolipid (SL) levels, especially ceramides,

which were partially produced by the gut microbiota,

particularly Bacteroides sp. (Supplementary Table S14).

Sphingolipids are known for their bioactive role as secondary

messengers especially in metabolic disorders. Recently, it has

been demonstrated that gut bacterial sphingolipids may pass

the intestinal epithelium barrier, modifying the host’s

sphingolipid metabolism (30). Particularly, bacterial

sphingolipids inhibit the processing of the host’s own

sphingolipids, including ceramides, the lipid type most

altered in T1D. In the current study, lipids, especially long

chain sphingolipids (ceramides and sphingomyelins) were

multifold lower in T1D compared to HC, irrespective of the

albuminuria stratifications. Recent studies supporting our

findings observed associations between host circulating long

chain ceramides and reduced kidney function (13) and diabetic

kidney disease (14, 15) in T1D. We recently reported long

chain sphingomyelins, to be inversely associated with

albuminuria (especially severely increased albuminuria vs.

normoalbuminuria) in 669 individuals with T1D (13) which

were also observed in the DCCT/EDIC trial (15) but remained

inconclusive in the current study potentially due to limited

sample size. Animal studies have confirmed the role of

sphingolipids-derived ceramides in insulin resistance of liver

(31) while their pharmacological inhibition improved glucose

homeostasis (32). However, the mechanism by which

sphingolipids may influence albuminuria development is

unclear. Bacteria-derived sphingolipids have been reported to

act as ligands for G protein-coupled receptors (33), including

those found in the intestinal epithelium (34, 35). These results
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are compatible with the albuminuria-inducing gut microbiota

action hypothesis mediated through GPR43 upregulation (10).

The observed metabolomics profile was in accordance with

our previous study looking into the pathophysiology of diabetic

kidney disease (DKD) (36). In the present study we identified

several associations between plasma metabolites and

albuminuria in T1D. The main association was with polyols

where we showed that plasma concentrations of sorbitol and

ribitol both were higher in direct proportion to higher levels of

albuminuria. The same metabolites, pointing to a validation in

an independent cohort, applied to hydroxy butyrate 3,4-

dihydroxybutanoic acids which were associated with moderate

and severely increased albuminuria and have now replicated in

the present study. Most interestingly sorbitol 3,4-

dihydroxybutanoic and quininic acid were among the three

identified metabolites showing strong associations to the

abundance of bacterial species (Figure 2). However, the

outcome of the functional enrichment results of circulating

metabolites in T1D group can mainly be characterized as

alterations related to two metabolic functions: cholesterol

biosynthesis, and glucose metabolism.

The altered cholesterol levels resulted in a specific

enrichment of steroid hormones biosynthesis and related

metabolic pathways. Alterations of sexual hormone levels, with

link to reduced fertility and increased risk for cardiovascular

disease have been previously reported in T1D (20), which might

be related to our results and the specific steroid metabolic

alterations. For the glucose metabolism, the pentose phosphate

metabolic pathway was highly enriched in our dataset.

Interestingly, a protective role against chronic diabetes

complications, including diabetic nephropathy, has been

previously reported for this metabolic pathway (21, 22, 37).

Further factorization of multi-omics data in the current study

demonstrated that the circulating lipidome could explain most of

the (50%) T1D phenotypic variance followed by polar circulating

metabolites, functional bacterial profiles (GMM) and finally 15% by

taxonomical bacterial composition (QMP) (Figure 5). However, no

distinction based on level of albuminuria could be made. We

identified two distinct interactions that differentiated the T1D and

HC groups best. These factors (factor 2 and 3, Figure 5) comprised a

set of polar metabolites and bio-clinical markers. Interestingly the

most significant drivers within these clinical and metabolite features

were diabetes duration and a combination of sugar derivatives

(Supplementary Figure 12). However, only a limited interaction

between plasma metabolome and gut microbiome data was

evidenced. While investigating metabolome origins we found

polar metabolites that were associated with bacterial abundance

reflected in relevant GMMs enriched for amino acids metabolism.

Similarly, the lipidome was associated with bacterial function

through relationships between the lipidome composition and

abundance of GMMs involved in sugar degradation.

On this note, we need to consider the role of medication in

both the gut microbiome (38, 39) and the blood metabolome
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(40), especially considering the amount of time T1D individuals

have received medication (30 to 45 years since diabetes

diagnosis). We observed a strong influence of statins on

abundance of Clostridia and Ruminococcaceae spps., while the

abundance of remaining gut bacteria seemed less influenced by

the prescribed drug regimes.

Our study doesn’t come without limitations, the most

obvoius fact being this is a cross-sectional study, which limits

the evaluation of the gut microbiome's contribution to

albuminuria development. The findings reported here are

based on bioinformatics analysis of combined omics

technologies, which is a recent research field lacking

standardized protocols, hampering reproducibility. The same

holds for the metabolomics data analysis, which could only

annotate a modest fraction of the identified metabolites.

Moreover, identification of phages in the current study was

limited to annotations available in the Gut phage database (19).

Finally, the findings reported here are based on one specific

cohort. Considering that the microbiome and the metabolome

are also affected by a combination of environmental and

biological factors, a validation on a different cohort with

different environmental conditions would provide with more

robust results.

Gut microbiome composition is known to be modifiable by

several environmental factors, such as diet (41) or exercise (42)

and/or through fecal microbiota transplant (FMT). Since this

study demonstrates a relationship between the dysbiotic gut

microbiota and an altered plasma metabolome composition in

T1D cases with albuminuria, and if our findings are replicated in

independent studies, it might serve as a basis for future

microbiota-based interventions in T1D with albuminuria. Such

interventions might include diet modifications or prescription of

second-generation probiotics.
4 Materials and methods

4.1 Study design

A cross-sectional study conducted during 2016-2017

recruited 161 type 1 diabetes (T1D) individuals followed at the

Steno Diabetes Center Copenhagen (SDCC) outpatient clinic

and 50 non-diabetic age and gender matched healthy control

individuals (12). All participants were >18 years of age and type

1 diabetes was diagnosed according to the WHO-criteria.

Exclusion in the current study participation involved presence

of at least one of the following conditions, (a) non-diabetic

kidney disease; (b) renal failure (estimated glomerular filtration

rate or eGFR <15 ml min−1[1.73 m]−2), dialysis or kidney

transplantation; (c) change in renin–angiotensin–aldosterone

system (RAAS)-blocking treatment during the month prior to

study inclusion; (d) treatment with systemic antibiotics in the 3

months prior to recruitment; and (e) treatment with systemic
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immunosuppressive agents. Individuals with T1D were stratified

into three different albuminuria groups based on the highest

urine albumin/creatinine ratio (UACR) level measured on the

study visit or documented previously in two out of three

consecutive urine samples within past 1 year (as 24 h urine

albumin content in samples [UAER] or UACR). Basis

albuminuria groupings, 50 individuals had normoalbuminuria

(<3.39 mg/mmol corresponding to <30 mg/24 h or mg/g), 50

had moderately increased albuminuria (3.39–33.79 mg/mmol

corresponding to 30–299 mg/24 h or mg/g) and 60 had severely

increased albuminuria (≥33.90 mg/mmol corresponding to ≥300

mg/24 h or mg/g). There was no recorded history elevated

a lbuminur ia for par t i c ipants c las s ified as hav ing

normoalbuminuria. For the severely increased albuminuria

group, at least 30 individuals were selected based on

concurrent eGFR <60 ml min−1[1.73 m]−2. The study design

has been described in Supplementary Section (Figure 1, Supp

Text). The study was conducted in accordance with the

Declaration of Helsinki and approved by the Ethics

Committee of the Danish Capital Region (protocol H-

15018107). All participants gave written informed consent and

provided with self-collected fecal sample for posterior

metagenomics analysis (Figure 1).
4.2 Metagenomics

4.2.1 Sequencing
Sequencing and metagenomic species (MGS) generation was

performed as previously described (43). Quality control of raw

FASTQ files was performed using KneadData (v. 0.6.1) to

remove low-quality bases and reads derived from the host

genome as follows: Using Trimmomatic (v. 0.36), the reads

were quality trimmed by removing Nextera adapters, leading

and trailing bases with a Phred score below 20, and trailing bases

in which the Phred score over a window of size 4 drops below 20.

Trimmed reads shorter than 100 bases were discarded. Reads

that mapped to the human reference genome GRCh38 (with

Bowtie2 v. 0.2.3.2 using default settings) were discarded. Read

pairs in which both reads passed filtering were retained; these

were classified as high-quality non-host (HQNH) reads.

4.2.2 Metagenomic species generation
As reference gene catalogue, we used the Clinical

Microbiomics Human Gut 22M gene catalogue (22 459 186

genes), which was created from >5000 deep-sequenced human

gut specimens. For MGS abundance profiling, we used the

Clinical Microbiomics HGMGS v.2.3 set of 1273 MGS, which

has highly coherent abundance and base composition in a set of

1776 reference human gut samples (44).

HQNH reads were mapped to the gene catalogue using

Burrows-Wheeler Alignment (BWA) men (v. 0.7.16a) with

options to increase accuracy (-r 1 -D 0.3). PCR/optical
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duplicates were removed using samtools (v. 1.6). Each individual

read was considered mapped if the following criteria were met:

an alignment of ≥ 100 bases, ≥ 95% identity in this alignment,

and a mapping quality (MAPQ) ≥ 20. However, if a read failed to

align to the gene sequence with > 10 bases at either end, it was

considered unmapped. Reads meeting the alignment length and

identity criteria but not the MAPQ threshold were considered

multimapped. Reads failing the alignment length or identity

criteria were considered unmapped. Read pairs were classified

into one of three possible categories as follows:
Fron
1) Read pairs in which both individual reads were

considered unmapped.

2) Read pairs in which both individual reads were

multimapped, or were mapped to genes in different

MGSs, or one was multimapped and the other was

unmapped, were considered multimapped.

3) Read pairs in which both individual reads mapped to the

same gene; or in which one read mapped to a gene and

the other was unmapped, multimapped, or mapped to

another gene in the same MGS (see below); were

considered mapped. A gene counts table was created

with the number of mapped read pairs (for each gene),

unmapped read pairs, and multimapped read pairs.
For each MGS, the “core” genes were defined as the 100

genes specific for the MGS and with the highest correlation to

the mean and lowest absolute deviation from the mean. A MGS

counts table was created based on the total gene counts for the

100 core genes of each MGS. However, MGS was considered

detected only if read pairs were mapped to at least three of its 100

core genes; counts for MGSs that did not satisfy this criterion

were set to zero. The MGS counts table was normalized

according to effective gene length (accounting for read length)

and then normalized to sum to 100%, resulting in relative

abundance estimates of each MGS. Down-sampled (rarefied)

MGS abundance profiles were calculated by random sampling,

without replacement, from each sample in the MGS counts table.

Values with fewer than three counts after down-sampling were

set to zero, and the counts table was normalized according to

effective gene length and then normalized to sum 100%.

4.2.3 Computation of quantitative
microbial profiles

Faecal samples were subjected to bacterial cell counting with

flow cytometry. Aliquots of 0.08-0.15 g defrosted faeces were

diluted 2,118 times in staining buffer (1 mM EDTA (Sigma-

Aldrich), 0.01% Tween20 (Sigma-Aldrich), pH 7.2 DPBS (Lonza

BioWhittaker), 1% BSA (Sigma-Aldrich)). In order to remove

debris from the faecal solutions, samples were filtered using a

sterile syringe filter (pore size 5 mm (pluriSelect)). Next, 170 mL
of the bacterial cell suspension was stained with 20 mL DAPI
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(1mM in H2O, Sigma-Aldrich). The flow cytometry analysis of

the bacterial cells present in the suspension was performed using

a BD Fortessa LSRII flow cytometer (BD Biosciences).

Measurements were performed at a pre-set flow rate of 0.5 mL/
sec. Fluorescence events were monitored using the 440/40 nm,

575/26 nm, and 695/40 nm optical detectors, respectively.

Forward and sideways-scattered light was also collected. The

BD FACSDiva™ Software was used to gate and separate the

bacterial fluorescence events from the faecal sample background.

A threshold value of 900 was applied on the area of forward

scattered channel (FSC) and a threshold value of 200 was applied

on the area of sideways scattered (SSC) channel. Other flow

settings are listed in Supplementary Table 16.

Density plots of blue fluorescence (440/40 nm) versus FSC

allowed for distinction between the stained microbial cells and

instrument noise or sample background. Density plots of red

fluorescence (695/40 nm) versus FSC allowed for distinction

between the counting beads and other particles in the testing

solution, including bacteria, instrument noise or sample

background. The exact same gates and gating strategy were

applied for all samples in the form of a fixed template to allow

direct comparison between measured samples.

Bacterial cell counts were later used for quantitative

microbial profiling (QMP), as described elsewhere (45).

Briefly, data was rarefied to equal sampling depth and cell

counts used to compute the total abundance of each MGS.

4.2.4 Computation of gut metabolic modules
Emapper software (v. 1.0.3, HMM mode) was used to

compare each gene in the gene catalogue to the EggNOG (v.

4.5) orthologous groups database (http://eggnogdb.embl.de/),

resulting in annotations for 65% of genes. These genes were

then mapped from EggNOG to the Kyoto Encyclopedia of Genes

and Genomes (KEGG) orthology database (http://www.genome.

jp/kegg/kegg1.html) using MOCAT2 lookup tables (http://

mocat.embl.de/). The annotation of GMMs was performed in

R applying Omixer-RPM (http://www.raeslab.org/software/

gmms.html). The GMM counts are referring to GMM QMPs

based on MGS QMP counts. The GMM abundance table was

then transformed using the central log-ratio (CLR) to ensure

normality and assess its compositionality nature.

4.2.5 Computation of the phageome from
sequenced faecal DNA

Bulk sequence reads reads derived from sequencing of faecal

DNA were aligned against Gut Phageome Database (GPD) (46)

with BWA mem. Obtained phages were then quality-filtered,

retaining only the reads aligning to, at least, 75% of the phage

genome length. Phageome counts dataset was then rarefied to

the minimal reads and those phages not found in, at least, 10% of

the samples (n=21) were removed. This resulted in a total of 502

phages to be included in the final dataset. Phageome counts were
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then transformed with CLR approach to assess for

compositionality of the data.

4.2.6 Computation of differential microbiome
features

For the taxonomical analyses, the absolute MGS and/or

genus clustered counts were used, after transformation with

faecal cell counts. We used linear mixed models, adjusting for

age, sex, race, BMI, and dietary data to compute the significance.

Multiple testing correction as computed using the False

Discovery Rate (FDR) approach. Effect sizes for the differences

observe were computed using the Cliff’s Delta test. For the GMM

differential analyses, we used the same approach as for the MGSs

but using the abundances computations.
4.3 Analyses of the untargeted plasma
polar metabolites and lipids

4.3.1 Polar metabolites
The plasma samples were stored at −80 °C until analysis. The

polar metabolites were analyzed using two-dimensional gas

chromatography combined with time-of-flight mass spectrometry

(GC×GC-TOFMS, a LECO Pegasus 4D equipped with a

consumable-free thermal modulator from LECO Corp). The

method has previously been described in detail (36, 43, 47).

Specifically, 400 ml methanol and 10 ml internal standard mixture

(Heptadecanoic acid-d33, Valine-d8, Glutamic acid-d5 and succinic

acid-d4) were added to 30 ml of plasma samples. The samples were

vortex mixed and centrifuged for 5 min at 10,000 rpm and half of

the supernatant was evaporated to dryness. This was followed by

two-step derivatization usingmethoximation and trimethylsilylation

by first adding 25 ml methoxamine (45°C, 60min) and then 25 ml N-
trimethylsilyl-N-methyl trifluoroacetamide (45°C, 60 min). Finally,

a retention index standard mixture (n-alkanes) and an injection

standard (4,4′ -dibromooctafluorobiphenyl), both in 50 µl hexane,

were added to themixture. The calibration consisted of six points for

each quantified metabolite.

The columns were as follows: a phenyl methyl deactivated

retention gap (1.5 m × 0.53 mm i.d.) was connected to 10 m ×

0.18 mm Rtx-5MS (phase thickness 0.18 mm) and to 1.5 m ×

0.1 mmBPX-50 (phase thickness 0.1 mm). Helium was used as the

carrier gas at a constant pressure mode (40 psig). A 4-s separation

time was used in the second dimension. The temperature program

was as follows for the first-dimension column: 50°C (2 min), at 7°

C/min to 240°C and at 25°C/min to 300°C (3 min).

The second-dimension column temperature was 15°C

higher than the corresponding first-dimension column

throughout the program.

ChromaTOF 4.72 vendor software (LECO)was used for within-

sample data processing, and the Guineu software (43) was used for

alignment, normalization, and peak matching across samples. The

normalization was performed by correction with internal standards
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and specific target metabolites were additionally quantified using

external calibration curves. Compounds were identified by

comparison to in-house and NIST14 (48) library entries.

Of the 398 total polar metabolites, 143 of them were annotated

while the remaining 255 were unannotated. Normalized and log-

transformed data was firstly adjusted for individual eGFR

(accessible at eGFR Calculator | National Kidney Foundation).

The obtained data was then used for the subsequent analyses. We

used a combined univariate-multivariate approach to identify

relevant features for the discrimination of the T1D individuals

from the healthy controls as well as the different T1D subgroups

stratified on level of albuminuria. To do so, we used Principal

Component Analysis (PCA), Partial Least Squares Discriminant

Analysis (PLS-DA) and linear mixed models, with sex, age, BMI,

and dietary data as fixed effects. Cliff’s Delta effect size was used to

determine the difference in metabolite abundance between the two

compared groups. All obtained p-values were adjusted for multiple

testing with the false discovery (FDR) approach, considering 10%

FDR threshold as significant.

We then used the HumanMetabolome Database (HMDB) for

annotating polar metabolites enabling a functional enrichment

analysis with MetaboAnalyst tool (49). To do so, we uploaded a

dataset consisting the abundances of normalized, centered, and

scaled HMDB-annotated polar metabolites. Then, we selected the

metabolic pathway associated metabolite sets to compute the

differentially enriched metabolic pathways in study participants.
4.3.2 Plasma lipidomics
The plasma samples were stored at −80 °C until analysis. The

Folch procedure (50) was used for sample preparation with

minor modifications based on previously published methods at

Steno Diabetes Center Copenhagen (13, 51, 52). Briefly, plasma

samples were randomized and lipids were extracted from 10 mL
plasma using chloroform:methanol (2:1 v/v) following addition

of nine different internal standards (stable isotope labelled and

non-physiological lipid species). Samples were analyzed in

random order in positive electrospray ionization mode using

ultra-high-performance liquid chromatography-quadrupole

time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) from

Agilent Technologies (Santa Clara, CA, USA). The lipidomics

data were pre-processed with MZmine2 (53) in which lipids

were semi-quantified by normalizing the peak areas to internal

standards and corrected for batch effect. Missing values were

imputed with the k-nearest neighbour algorithm and all values

were log-2-transformed to achieve normal-distributed data.

For the analysis of lipidomics, we used the same approach as

outlined above for the polar metabolites. Of the 7,470 total lipids,

476 of them were annotated, while the remaining 6,994 were

unannotated. Following adjustment for individual eGFR value,

we used weighted gene co-expression network analysis

(WGCNA) to cluster all the strongly correlated lipids, in order

to reduce the dimensionality of the data. From the original 7,470
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lipids we obtained 122 clusters, ranging from 3 lipids to 1,054

lipids. Lipid clusters were annotated considering their lipid

content. If all the lipids in the cluster were unannotated, we

named the corresponding cluster as “unknown” followed by a

number. From here on in lipids cluster analyses, we followed the

same approach as described for the polar metabolites.

Individual annotated lipids were used to study the associations

between the clinical groups and the lipid specie types with

LipidomeR R-package, accessible at https://lipidomer.org/.

4.3.3 Metabolite origin assessment
To evaluate whether metabolome features could be related to

bacterial metabolism or to the host’s metabolism and/or lifestyle

factors, we used Least Absolute Shrinkage and Selection

Operator (LASSO) modeling. This approach allowed us to

identify whether the abundance of metabolome features (polar

metabolites, lipids and/or lipid clusters) was better predicted by

bioclinical data, QMP or GMM data and/or lifestyle.
4.4 Drug deconfounding of all data sets
in the present study

All the datasets used in this project were scrutinized for any

drug-associated features. To do so, we used the R package

metadeconfoundR (available at https://github.com/TillBirkner/

metadeconfoundR) (54), with its default parameters.
4.5 Data integration

4.5.1 Multi-omics factor analysis
The normalized datasets were used to investigate

interactions and potential signatures involving gut microbiome

and plasma metabolome profiles in T1D and its subgroups

stratified on albuminuria. Biochemistry data was also

combined after normalization (log transformation). Finally, we

combined QMP taxonomical counts, GMM CLR-transformed

dataset, polar metabolites, lipidomics clusters and biochemistry

data for the integration step. We used multi-omics factor

analysis (MOFA+) (24) with default parameters, to study the

interactions between different layers of data and the potential for

identifying combinations of features useful for predicting T1D

with varying levels of albuminuria.
4.6 Statistical analysis

All statistical analyses were performed in R software (https://

cran.r-project.org/), running version 4.1.0. Significance tests

results were corrected for multiple testing with False Discovery

Rate (FDR) approach and significance set at 10% FDR threshold.

Data visualization was done with ggplot2 R package. Specific
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details on the methodology regarding specific data types has

been reported in the corresponding section of the methods.
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framework for processing, visualizing, and analyzing mass spectrometry-based
molecular profile data. BMC Bioinf (2010) 11:395. doi: 10.1186/1471-2105-11-395

54. Forslund SK, Chakaroun R, Zimmermann-Kogadeeva M, Markó L, Aron-
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Genetically predicted C-reactive
protein mediates the association
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and atlantoaxial subluxation
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Medicine, Jiangnan University, Wuxi, Jiangsu, China, 6Department of Occupational Disease, Yibin Center
for Disease Control and Prevention, Yibin, Sichuan, China, 7Department of Anesthesiology, The Second
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Objective: Investigating the causal relationship between rheumatoid arthritis

(RA) and atlantoaxial subluxation (AAS) and identifying and quantifying the role

of C-reactive protein (CRP) as a potential mediator.

Methods: Using summary-level data from a genome-wide association study

(GWAS), a two-sample Mendelian randomization (MR) analysis of genetically

predicted rheumatoid arthritis (14,361 cases, and 43,923 controls) and AAS (141

cases, 227,388 controls) was performed. Furthermore, we used two-step MR to

quantitate the proportion of the effect of c-reactive protein-mediated RA

on AAS.

Results:MR analysis identified higher genetically predicted rheumatoid arthritis

(primary MR analysis odds ratio (OR) 0.61/SD increase, 95% confidence interval

(CI) 1.36-1.90) increased risk of AAS. There was no strong evidence that

genetically predicted AAS had an effect on rheumatoid arthritis risk (OR

1.001, 95% CI 0.97-1.03). The proportion of genetically predicted rheumatoid

arthritis mediated by C-reactive protein was 3.7% (95%CI 0.1%−7.3%).

Conclusion: In conclusion, our study identified a causal relationship between

RA and AAS, with a small proportion of the effect mediated by CRP, but a

majority of the effect of RA on AAS remains unclear. Further research is needed

on additional risk factors as potential mediators. In clinical practice, lesions of

the upper cervical spine in RA patients need to be given more attention.

KEYWORDS

Mendelian randomization, rheumatoid arthritis, C-reactive protein, atlantoaxial
subluxation, upper cervical instability
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Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory

immune system disease characterized by synovitis and

cartilage destruction, which mainly affects the synovial

membrane, tendon sheaths and synovial bursae of the joints

(1). It mainly manifests as clinical symptoms such as joint

pain, stiffness, swelling, deformity, and dysfunction (2). Its

global prevalence is approximately 1% and ranks 42nd among

disabling diseases worldwide (3). As the global population

ages, the prevalence continues to increase. Due to RA’s high

mortality and morbidity rates, patients’ quality of life is lower,

and the economic burden on society is greater. The National

Audit Office (NAO) reports that RA costs the UK

approximately £560 million a year in health care costs,

not including the cost of sick leave and work-related

disability (4).

The active segment of the cervical vertebra is the basic

functional unit of the cervical spine. It consists of two adjacent

cervical vertebrae and their attached soft tissues and is the

smallest functional unit of the cervical vertebra. Cervical

instability refers to excessive or abnormal cervical spine

movement that cannot maintain the normal position between

the vertebral bodies under physiological loads (5). Atlantoaxial

subluxation (AAS) in RA patients mostly involves the

atlantoaxial joint, which may be caused by head and neck

trauma, congenital diseases (bone dysplasia), autoimmune

diseases (rheumatoid arthritis), etc. However, the exact reason

is not yet clear. Observational studies have shown that upper

cervical instability occurs in 29.6% of RA patients, of which

atlantoaxial subluxation accounts for 24.6% (6). However,

epidemiological studies may suffer from measurement error,

uncontrolled confounding factors, and reverse causality.

Ultimately, the results may be subject to various biases.

Therefore, a design is needed to avoid or reduce some biases

further to demonstrate the causal relationship between RA

and AAS.

Moreover, potential pathways related to RA and AAS have

not been investigated. Previous studies have provided evidence

that C-reactive protein (CRP) is elevated in both RA and AAS (7,

8). Consequently, CRP might be a potential mediator between

RA and AAS.

Mendelian randomization (MR) is a potential causal inference

method that uses genetic variation as an instrumental variable to

obtain the effect of exposure factors on outcomes from

observational data (9). MR can reduce the effects of

nonmeasurement errors or confounding factors while avoiding

reverse causality through Mendelian inheritance laws (9).

Therefore, we aimed to (i) determine whether RA is causally

related to AAS and (ii) assess the extent to which CRP mediates

the effects of RA on AAS.
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Methods

Study design

The data used in our analysis were publicly available and were

approved by the institutional review committee in the respective

studies. Therefore, no further sanctions were needed. All

generated results are presented in the article and its supplements.

In this study, we explored the reciprocal causal relationship

between rheumatoid arthritis and atlantoaxial subluxation by

two-sample, bidirectional mendelian randomization. In our

study, single nucleotide polymorphisms (SNPs) were defined

as instrumental variables (IVs) (10).
GWAS summary data sources

The data used in our study were all publicly available, and

the participants in the GWAS were of European ancestry. The

genetic associations of RA were derived from a GWAS meta-

analysis by Ha and colleagues (11), which included 14,361 RA

case and 43,923 controls. All cases met the 1987 American

College of Rheumatology criteria or were diagnosed as RA by a

rheumatologist. ninety-one percent of individuals were

serologically positive for anti-CCP antibodies or rheumatoid

factor. Additional details are shown in Supplementary Table S1.

Data on AAS were drawn from the GWAS summary data

sources on the FennGenn consortium, which is available at

https://www.finngen.fi/en (AAS including 141 cases and

227,388 participants) (12). Individuals with ICD codes [ICD-

10 M43.3 “Recurrent atlantoaxial subluxation with myelopathy”

and ICD-10 M43.4 “Other recurrent atlantoaxial subluxation”]

were characterized as AAS cases.

Summary statistics on CRP levels were obtained from a

published GWAS meta-analysis that included 78 studies of

European ancestry, with the largest sample size thus far

(sample size = 204,402) (13). The study design, such as

sample collection, quality control procedures, and imputation

methods, were described in the original publication. Additional

details are shown in Supplementary Table S2. All GWAS data

are from different consortia or organizations, and thus there is

no sample overlap.
Instrumental variable selection and
data harmonization

We included SNPs that were genome-wide significant

(P < 5 × 10−8). If there were no significant genome-wide SNPs

as IVs, SNPs with less than a genome-wide significance level

(P < 5 × 10-6) were used as candidate IVs. Then, these SNPs were
frontiersin.org
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clustered based on linkage disequilibrium (window size = 10,000

kb and r2 < 0.001). Estimated levels of linkage disequilibrium

from the 1000 Genomes Project based on European samples

(14). If a particular exposed SNP was not present in the outcome

dataset, proxy SNPs were used by LD tagging. Palindromic and

ambiguous SNPs were excluded from IVs for Mendelian

randomization analysis (15). The F statistic was calculated by

the variance explained by SNPs for each exposure, i.e.

[(N – K – 1)/K]/[R2/(1 – R2)], where K is the number of

genetic variants, N is the sample size. We removed weak

instrumental variables (F-statistics < 10) (16, 17).
Statistical analysis

We performed MR analysis using R software (version 4.2.0,

http://www.r-project.org) and the “Two-Sample MR” package

(version 0.5.6) (18). MR-Pleiotropy RESidual Sum and Outlier

(MR-PRESSO) and robust adjusted profile score (MR.RAPS)

were performed using the R packages “MRPRESSO” and

“MR.raps”, respectively. Calculation of statistical power for

Mendelian randomization was performed using mRnd (https://

cnsgenomics.shinyapps.io/mRnd/). And we applied a

PhenoScanner search to assess all known phenotypes related

to the considered genetic instruments in our analyses.
Primary analysis

Figure 1 shows a schematic summary of the analysis. We

conducted a two-sample bidirectional MR to evaluate the mutual
Frontiers in Endocrinology 03
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causality between RA and AAS (Figure 1A), which was

designated as the total effect.

Inverse variance weighting (IVW) uses meta-analysis to

combine the Wald ratios of causal effects for each SNP (15,

19). Then, MR-Egger (20) and weighted-median (21) methods

were used as a complement to IVW. Different methods adapted

to different validity assumptions were applied to obtain MR

estimates. The application of IVW is based on the premise that

all SNPs are valid instrumental variables. Therefore, this method

can obtain accurate estimation results. MR-Egger assesses

directional pleiotropy for instrumental variables, where the

intercept can be interpreted as an estimate of the average

pleiotropy of genetic variation. The weighted median has the

advantage of maintaining higher precision (smaller standard

deviation) compared to the MR-Egger analysis. In the presence

of horizontal pleiotropy, the weighted median provides a

consistent estimate even if 50% of the genetic variants are

invalid IVs (22).
Mediation analysis

We further performed a mediation analysis using a two-step

MR design to explore whether CRP mediates the causal pathway

from RA to AAS outcome (Figure 1B). The overall effect can be

decomposed into an indirect effect (through mediators) and a

direct effect (without mediators) effect (23). The total effect of

RA on AAS was decomposed into 1) direct effects of RA on AAS

(c’ in Figure 1B) and 2) indirect effects mediated by RA through

the mediator (a × b in Figure 1B). We calculated the percentage

mediated by the mediating effect by dividing the indirect effect
A
Rheumatoid 

arthritis

Atlantoaxial subluxation

(AAS)

c

d

B

Rheumatoid 

arthritis

C-Reactive protein

a b

c'

Atlantoaxial subluxation

(AAS)

FIGURE 1

Diagrams illustrating associations examined in this study. (A) The total effect between rheumatoid arthritis(RA) and atlantoaxial subluxation(AAS).
c is the total effect using genetically predicted RA as exposure and AAS as outcome. d is the total effect using genetically predicted AAS as
exposure and RA as outcome. (B) The total effect was decomposed into: (i) indirect effect using a two-step approach (where a is the total effect
of RA on CRP, and b is the effect of CRP on AAS) and the product method (a× b) and (ii) direct effect (c′ = c– a × b). Proportion mediated was
the indirect effect divided by the total effect.
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by the total effect. Meanwhile, 95% confidence intervals were

calculated with the delta method (24).
Sensitivity analysis

The causal direction of each extracted SNP to exposure and

outcome was tested by using MR Steiger filtering (25). This

method calculates the variance explained in exposure and

results from the instrumental SNPs and tests whether the

variance in the results is less than the exposure. “TRUE” MR

Steiger results indicate causality in the expected direction,

while “FALSE” results indicate causality in the opposite

direction. We excluded SNPs with ‘FALSE’ results, indicating

that it showed evidence of a major effect on the outcome rather

than exposure.

Heterogeneity between SNPs was assessed using Cochran’s

Q statistic and funnel plots (26, 27). Horizontal pleiotropy was

detected using the MR-Egger intercept (20) method and the MR-

PRESSO (28) method. If outliers were detected, they were

removed, and we re-evaluated the MR causal estimates. If

heterogeneity remained high after removal, the stability of the

results was assessed using a random effects model, which is less

susceptible to weaker SNP exposure associations. Finally, leave-

one-out analysis was used to validate the effect of each SNP on

the overall causal estimates.
Results

Association of RA with AAS

After removing palindromic and ambiguous SNPs, SNPs

without proxy and SNPs with wrong causal directions identified

by MR Steiger filtering, there were 80 SNPs in RA and 4 SNPs in

AAS as instrumental variables (Supplementary Tables S3, S4).

Since AAS did not reach the level of gene-wide significance for

SNPs, SNPs with less than genome-wide significance (P < 5 × 10-

6) were used as instrumental variables. The variance explained by

and the F-statistic for SNPs instrumenting RA exposure were

5.8% and 45, respectively. Our study provides 100% power to

detect the causal effect of RA on AAS risk.

IVW, MR-Egger, and weighted median regression were used

to estimate the causal relationship between genetically predicted

RA and AAS (Figures 2, 3). Across all three MR methods, there

was broad and consistent support for the positive association of

RA with AAS (IVW odds ratio [OR] per SD increase in RA =

1.61 [95% CI, 1.36-1.90], P < 0.0001; MR-Egger OR per SD

increase in RA = 1.66 [95% CI, 1.30-2.13], P < 0.001; weighted

median OR per SD increase in RA = 1.80 [95% CI, 1.39-2.34],

P < 0.0001). However, the results of our MR analysis showed no

reverse causality for genetically predicted RA on AAS (i.e., no

causality for genetically predicted AAS on RA.). The OR was
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1.001 [95% CI, 0.97-1.03; p = 0.87] by using the IVW method.

The results are shown in Figure 3.
Association of RA with CRP

We extracted a total of 52 genome-wide significant SNPs as

instrumental variables after removing palindromic and

ambiguous SNPs, SNPs without proxies, and SNPs in the

wrong causal direction identified by MR Steiger filtering

(Supplementary Table S5). The variance explained by and F-

statistic for SNPs instrumenting RA exposure were 3.3% and

39, respectively.

According to the IVW, MR–Egger and weighted median

methods, genetically predicted RA was found to be positively

associated with CRP risk (IVWmethod, OR, 1.02; [95% CI, 1.01-

1.03], P<0.0001; MR-Egger method, OR, 1.04; [95% CI, 1.02-

1.05], P<0.0001; weighted median method, OR, 1.03; [95% CI,

1.02-1.04], P<0.0001). The results are shown in Figure 3.
Association of CRP with AAS

Genetic instruments for CRP explained 1.3% of its variance,

with an F-statistic of 54. As shown in Supplementary Table S6,

we presented all genetic instruments associated with CRP at the

genome-wide significance level (P < 5 x 10-8). As shown in

Figure 3, genetically predicted CRP was significantly positively

correlated with AAS [OR=2.38, 95% CI, 1.03-5.51; P=0.04] by

using the IVW method. The estimation directions of these three

methods , IVW, MR-Egger and weigh ted median ,

were consistent.
Proportion of the association between
RA and AAS mediated by CRP

We analyzed CRP as a mediator of the pathway from RA to

AAS. We found that RA was associated with increased CRP,

which in turn was associated with an increased risk of AAS. As

shown in Figure 4, our study showed that CRP accounted for

3.7% of the increased risk of AAS associated with RA

(proportion mediated: 3.7%; 95% CI = 0.1%−7.3%).
Sensitivity analysis

Several sensitivity analyses were used to examine and correct for

the presence of pleiotropy in causal estimates. Cochran’s Q-test and

funnel plot showed no evidence of heterogeneity and asymmetry

between these SNPs in the causal relationship between these SNPs

(Supplementary Table S7 and Supplementary Figure S1). In our

study, the MR-Egger intercept showed weak evidence of pleiotropy
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FIGURE 2

Forest plot to visualize causal effect of each single SNP on total AAS risk.
FIGURE 3

Forest plot to visualize the causal effects of CRP with RA and AAS.
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at the directional level of the RA instrument (OR=0.996; 95% CI,

0.994-0.998; P=0.0001)), although no other MR-Egger intercepts

did (Supplementary Table S7). We did not detect potential

horizontal pleiotropy by using the MR-PRESSO global test

(Supplementary Table S7). The effect of each SNP on the overall

causal estimates was verified by leave-one-out analysis

(Supplementary Figure S2). After removing each SNP, we

systematically performed the MR analysis again for the remaining

SNPs. The results remained consistent, indicating that all SNPs

were calculated to make the causal relationship significant.
Discussion

Recent studies (6, 29, 30) have examined the relationship

between RA and AAS. However, the current evidence is limited

to observational studies, and the results may be influenced by

confounding factors. Our study aimed to illustrate the causal

effects between RA and AAS. We used MR analysis to investigate

the association between RA and AAS based on existing GWAS

and to demonstrate whether the causal relationship between

them is mediated through CRP. Our results suggested that

genetically predicted RA was associated with an increased risk

of AAS (61% increased risk of AAS for every 1 SD increase in

RA), and 3.7% of this effect was mediated through CRP.

To date, we are the first to investigate the causal relationship

between RA and the risk of instability in the upper cervical spine by

MRmethods, while also demonstrating CRP as their mediator. Our

findings are consistent with previous findings from traditional

observational designs. Yurube et al. (31) showed that atlantoaxial

instability occurred in 43.6% of RA patients, with atlantoaxial

subluxation being the most common (at least 32.1%) through a

prospective follow-up study of RA patients with no initial cervical

involvement for at least 5 years. Similarly, in a retrospective study of

240 RA patients, Kotecki et al. (32) showed that the incidence of

cervical spine involvement in RA patients was 75%, the most

common lesion was anterior atlantoaxial subluxation

(approximately 58%), and C-reactive protein levels increased (OR,

19.0; 95% CI, 7.0–32.0; P = 0.016). However, both studies were of
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observational design. First, they had low response rates between the

two groups, and second, their results were more influenced by

reverse causality or other potential mixed effects than MR analyses.

Atlantoaxial instability refers to the structural changes and

dysfunction of the atlanto-occipital joint and atlantoaxial joint

between the atlas, the axis and the base of the skull due to various

reasons (e.g., deformity, trauma, degeneration, tumor and

infection), which lead to excessive or abnormal activity or

abnormal position under physiological load. Atlantoaxial joint

instability and dislocation are rare in normal adults and are

mostly secondary to trauma and disease. Cervical instability can

be further divided into atlantoaxial subluxation (AAS), vertical

subluxation (VS) and subaxial subluxation (SAS). AAS is the most

common, followed by VS, and SAS is less common (6). VS usually

occurs after AAS. VS is considered a serious condition in RA

patients because it can lead to sudden death (33). Synovitis is the

initial link of rheumatoid arthritis, and it is also the basic

pathological change. The characteristics of multiple synovial sacs

of the atlantoaxial joint provide conditions for its involvement. At

the same time, synovial tissue macrophages produce tumor

necrosis factor to promote the inflammatory response of the

atlantoaxial joint (34). Sorimachi et al. (35) have suggested that

synovitis invades the atlantoaxial joint in three stages. First, the

medial and lateral atlantoaxial joints are invaded, the joint capsule

is destroyed, and the joint capsule is swollen and exuded; then, the

synovium begins to proliferate, and the ligaments are edematous

and destroyed, after which finally, it erodes hyaline cartilage and

penetrates into subchondral bone to produce bone tissue

destruction. In addition, the stability of the atlantoaxial joint

mainly depends on the maintenance of the transverse ligament

and other ligaments, which are characterized by high stiffness and

insufficient willfulness. Another characteristic product of RA is

pannus, which not only blocks the bone from obtaining nutrition

through the synovium but also grows to the cartilage surface in the

joint cavity, produces adhesions, and locally releases more

inflammatory factors, proteolytic enzymes, etc. (36). When

inflammation involves the transverse ligament, it not only

destroys the fibrous structure and relaxes the ligament but also

erodes the odontoid process and causes erosion and rupture near
Rheumatoid 

arthritis

C-Reactive protein

Indirect effect 3.7%(95%CI, 0.1%-7.3%)

Atlantoaxial subluxation

(AAS)

FIGURE 4

Schematic diagram of the CRP mediation effect.
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the attachment point, which finally leads to the instability of the

atlantoaxial joint (37).

CRP, a member of the pentraxin family of proteins, consists of

five 23 kDa subunits that can be increased 1,000-fold ormore during

infection, inflammation and tissue damage. Although hepatocytes

are the main source of CRP, other cells, such as monocytes and

lymphocytes, also produce CRP (38). Fang et al. (39) suggested that

synovial tissue from RA patients also produces CRP. Therefore, one

of the reasons for the increased CRP concentrations in synovial fluid

and serum CRP levels in RA patients may be the local production of

CRP in inflammatory synovial tissue (40). On the one hand, the

interaction of CRP with Fcg receptor I and FcgRIIA promotes the

production of proinflammatory cytokines, leading to an

amplification loop of the inflammatory response; on the other

hand, CRP initiates bone destruction by inducing the receptor

activator of nuclear factor-kB ligand protein and directly

stimulating osteoclast generation, thus causing a vicious cycle

between inflammation and bone destruction in RA (41).

Therefore, CRP contributes to atlantoaxial joint instability by

mediating synovial inflammation and bone destruction in RA.

Our findings also suggest that RA may increase the risk of

atlantoaxial subluxation through other important mediators.

Zhang et al. (6) showed that low hemoglobin levels may be

associated with atlantoaxial instability in RA. This may be

because low hemoglobin levels are partly a chronic

inflammatory manifestation of the disease and are thought to

be associated with joint damage in RA (42), thus showing a

correlation with cervical instability. In addition, CD5+ B cells in

RA patients can produce IgG with the help of T lymphocytes,

and rheumatoid factor and IgG form immune complexes

deposited in the synovium, which are blocked during the

clearance process, resulting in bone destruction and fusion.

This study has several limitations. First, our analysis was

performed using the European population, which limits its

prevalence (43). Second, the smaller number of cases in AAS

is in the GWAS dataset of AAS, and it is hoped that larger

GWAS data will be available for validation in the future. Third,

even if we took steps to identify and eliminate outlier variants,

we cannot exclude the possibility that horizontal pleiotropy

influenced our results. Fourth, we used summary-level

statistics in our study, not individual-level data. Therefore, we

cannot further explore causal links between subgroups such as

females and males. Fifth, our study demonstrates that genetic

prediction of rheumatoid arthritis mediated by C-reactive

protein is 3.7%, which is very low. Thus, more studies are

needed to quantify other mediators.
Conclusion

In conclusion, our study identified a causal relationship

between RA and atlantoaxial subluxation, with a small

proportion of the effect mediated by CRP, but a majority of
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the effect of RA on atlantoaxial subluxation remains unclear.

Further research is needed on additional risk factors as potential

mediators. In clinical practice, lesions of the upper cervical spine

in RA patients need to be given more attention.
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Untargeted metabolomics
reveals gender- and age-
independent metabolic
changes of type 1 diabetes
in Chinese children

Jianwei Zhang1,2†, Wei Wu1†, Ke Huang1, Guanping Dong1,
Xuefeng Chen1, Cuifang Xu1, Yan Ni1* and Junfen Fu1*

1Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine,
National Clinical Research Center for Child Health, Hangzhou, China, 2Department of Paediatrics,
Shaoxing Women and Children Hospital, Shaoxing, China
Introduction: Type 1 diabetes (T1D) is a chronic condition associated with

multiple complications that substantially affect both the quality of life and the

life-span of children. Untargeted Metabolomics has provided new insights into

disease pathogenesis and risk assessment.

Methods: In this study, we characterized the serum metabolic profiles of 76

children with T1D and 65 gender- and age-matched healthy controls using gas

chromatography coupled with timeof-flight mass spectrometry. In parallel, we

comprehensively evaluated the clinical phenome of T1D patients, including

routine blood and urine tests, and concentrations of cytokines, hormones,

proteins, and trace elements.

Results: A total of 70 differential metabolites covering 11 metabolic pathways

associated with T1D were identified, which were mainly carbohydrates, indoles,

unsaturated fatty acids, amino acids, and organic acids. Subgroup analysis revealed

that the metabolic changes were consistent among pediatric patients at different

ages or gender but were closely associated with the duration of the disease.

Discussion: Carbohydrate metabolism, unsaturated fatty acid biosynthesis, and

gut microbial metabolism were identified as distinct metabolic features of

pediatric T1D. These metabolic changes were also associated with T1D, which

may provide important insights into the pathogenesis of the complications

associated with diabetes.
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Introduction

Type 1 diabetes mellitus (T1D), a chronic disease caused by

destruction of pancreatic cells and decreased insulin secretion, is

accompanied by various complications, and has serious effects

on the quality of life and life span (1). According to the newly

released Diabetes Atlas from the International Diabetes

Federation in 2021, a total of 1,211,900 children and

adolescents world-wide had T1D (2) and China is ranked 4th

globally for the number of children with T1D (www.

diabetesatlas.org).

Recent increases in the incidence of T1D in children and

adolescents highlight the importance of environmental factors in

disease development. Metabolomic analysis serves as an excellent

approach to explore the integrated response of an organism

toward environmental changes. Previous metabolomic studies

have demonstrated the crucial role of metabolic profiling in

discovering biomarker discovery that are predictive of disease

incidence and development and potentially its pathogenesis (3–8).

For example, Balderas et al. compared the urine and serum

metabolome of 34 children with diabetes and 15 non-diabetic

controls and discovered that children with T1D had altered bile

acid profiles (9). Bile acids are absorbed during enterohepatic

circulation, and thus alterations in bile acid profiles may reflect the

T1D-associated changes in the gut microbiome. Changes in lipids

that play a role in cellular signaling and metabolism in the body

during progression to T1D were also noted by several lipidomic

studies (5, 9–16). Suvitaival et al. (17) concluded that levels of

triacylglycerols, phosphatidylcholines, sphingomyelins, and

ceramides were reduced in the plasma of TID children before

diagnosis. However, most of the previous metabolomics studies

have focused on specific varieties of candidate metabolites, thus

failing to effectively provide a complete understanding of the

metabolic pathogenesis in TID. Furthermore, these studies have

been conducted predominantly inWestern populations (18). Data

from Asian populations are sparse and limited mainly to cross-

sectional studies (19, 20). It is well known that T1D in children

and adolescents is affected by age and gender. However, current

studies have not stratified the metabolomics spectrum of the

disease from the perspective of age and gender.

In the present study, we applied an untargeted metabolomics

approach to measure the metabolic profiles of pediatric patients

with T1D in the Chinese population, as compared to their

healthy controls. The untargeted metabolomics approach was

performed using gas chromatography coupled with time-of-

flight mass spectrometry (GC-TOFMS). In parallel, we

comprehensively evaluated the changes of clinical biomarkers

of patients with T1D, including metabolic biomarkers from

blood biochemistry, inflammatory cytokines, antibodies,

immunoglobulins, and trace elements. This study aims to

investigate the metabolic phenome of pediatric T1D and its

association with the duration of the disease, and validate the
Frontiers in Endocrinology 02
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consistency of metabolic changes among male and female

patients or at different ages.
Materials and methods

Study subjects

The study was approved by the Institutional Review Board of

The Children’s Hospital of Zhejiang University, School of Medicine

(Approval Number: 2016-JRB-018). Written informed consent was

obtained from the guardians of all recruited children, and the study

was performed in accordance with the principles of the Declaration

of Helsinki. A total of 141 participants including 76 T1D patients

and 65 healthy controls were enrolled in this study (Table 1).

Patients were diagnosed with T1D during their stay at the

Children’s Hospital of Zhejiang University School of Medicine

and were enrolled in the study between 2016 and 2020. The

median duration of the disease since diagnosis was 12 months

(range: 1–72 months) and based on this, T1D patients were divided

into short-term group (<3 months), mid-term group (3–12

months), and long-term group (>12 months), respectively. T1D

was diagnosed based on clinical and biochemical features,

specifically elevated blood glucose at presentation (a random

measurement of > 11.1 mmol/l and/or fasting blood glucose level

of > 7.1 mmol/l), and classical symptoms of diabetes. Furthermore,

all patients met at least one of the following criteria: 1) diabetic

ketoacidosis (DKA); 2) presence of T1D-associated antibodies

(glutamic acid decarboxylase, islet antigen 2, islet cell, or insulin

autoantibodies); and/or 3) on-going requirement for insulin

therapy. Healthy control refers to the group of children who

visited the hospital for routine physical examination, had no

disease state, and were enrolled on a voluntary basis.
Clinical measurements

The medical records and routine laboratory biochemistry data

of the participants were summarized in Table 2. Serum lipid profiles

(i.e., total cholesterol, HDL-cholesterol, LDL-cholesterol, and

triacylglycerols), total protein, apolipoprotein A1, apolipoprotein

B, lipoprotein A, carboxyhemoglobin, high-sensitivity C-reactive

protein, albumin, globulin, glycated hemoglobin (HbA1C), insulin-

like growth factor 1 (IGF-1), insulin-like growth factor-binding

protein 3, alanine aminotransferase (ALT), alkaline phosphatase

(ALP), aspartate aminotransferase (AST), lactate dehydrogenase

(LDH), total bilirubin, direct bilirubin, and indirect bilirubin were

measured. Human inflammatory cytokine multiple ELISA kit was

used to quantitatively measure cytokine levels including interferon-

gamma (IFN-g), interleukin (IL)-10, IL-2, IL-4, IL-6, and tumor

necrosis factor-alpha (TNF-a). Multiple monoclonal antibodies

that recognize a common cell-surface antigen are combined to
frontiersin.org

http://www.diabetesatlas.org
http://www.diabetesatlas.org
https://doi.org/10.3389/fendo.2022.1037289
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2022.1037289
form clusters of differentiation. The clusters are numbered

sequentially with respect to when they were discovered and

defined. The cell-surface reactivity of monoclonal antibodies to

each CD antigen was detected by flow cytometry.
Metabolomics

Blood samples were collected after fasting overnight for

at least 8 hours and centrifuged to obtain serum prior to

storage in -80°C freezer. The untargeted metabolomics

profiling of serum samples was performed on a GC-TOFMS

system (Pegasus BT, Leco Corp., St. Joseph, MO, USA) equipped

with an Agilent 7890B gas chromatograph and a Gerstel

multipurpose sampler with dual heads (Gerstel, Muehlheim,

Germany). The procedure was performed as described in a

previously published paper with minor modifications (21).

Briefly, each aliquot of 50 µL serum sample was mixed with 10

µL of internal standard, to which 175 µL of pre-chilled

methanol/chloroform (v/v=3/1) was added for metabolite

extraction. After centrifugation at 13,500 rpm for 20 min at 4°

C (Microfuge 20R, Beckman Coulter, Inc., Indianapolis, IN,

USA), the supernatant was carefully transferred to an

autosampler vial. The samples in autosampler vials were then

evaporated briefly to remove chloroform using a CentriVap

vacuum concentrator (Labconco, Kansas City, MO, USA), and

further lyophilized with a FreeZone freeze dryer equipped with a

stopping tray dryer (Labconco, Kansas City, MO, USA). The

sample derivatization was performed by a robotic multipurpose

sampler with dual heads (Gerstel, Muehlheim, Germany).

Specifically, the dried sample was derivatized with 50 µL of

methoxyamine (20 mg/mL in pyridine) at 37.5°C for 2 hr.,

followed by incubation at 37.5°C for 1 hr after the addition of 50

µL of MSTFA (1% TMCS) containing FAMEs as retention
Frontiers in Endocrinology 03
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indices. Separation and sample derivatization were performed

as parallel operations. A Rxi-5 ms capillary column (30 m × 250

µm i.d., 0.25 µm film thickness; Restek corporation, Bellefonte,

PA, USA) was used for metabolite separation. The temperature

was initially held at 80°C for 2 min, then ramped up to 300°C at

the rate of 12°C/min, held for 4.5 min, then further ramped up to

320°C at the rate of 40°C/min, and finally, held for 1 min.

Helium was used as the carrier gas at a constant flow rate of 1.0

mL/min. The temperature of the injector and the transfer

interface were both set to 270°C and the injection volume was

0.5 µL in spitless mode. Measurements were made using electron

impact ionization (70 eV) in the full scan mode (m/z 50–500).

Instrument optimization was performed as needed.
Metabolite annotation

Metabolite annotation was performed by comparing the

retention indices and mass spectral data with those previously

generated from reference standards in the in-house library (22).

The reference chemicals were commercially purchased from

Sigma-Aldrich (St. Louis, MO, USA), Santa Cruz (Dallas, TX,

USA), and Nu-Chek Prep (Elysian, MN, USA). Commercial

libraries such as NIST library 2017 and LECO/Fiehn

Metabolomics library for GC-TOFMS were used for cross-

validation analysis. The direct relationship of two adjacent

metabolites from the known metabolic relation network

(KEGG) was used to indicate the alteration of specific

metabolic enzyme, thereby providing complementary

biological information for metabolite interactions. Metabolites

were annotated in the serum samples with those of pure

chemical standards. Metabolites that did not pass our QC

criteria (CV>20%) were removed from further statistical

analysis, as the purpose of this project was to provide data for

a further validation study, rather than making a simple

biomarker discovery. Missing values were initially imputed

using QRILC method reported in our previous work (23).
Data analysis

The medical records and the routine laboratory

biochemistry data were statistically analyzed using R packages

ver. 4.0.2. The details of statistical methods applied in this study,

R functions and packages were summarized in Supplementary

Table 1. Specifically, normally distributed variables were

analyzed using student t-test and presented as mean ±

standard deviation (SD), while non-normally distributed

variables were performed by non-parametric Mann-Whitney

U test and presented as medians and interquartile range (25th–

75th percentiles). The raw metabolomic data generated by GC-

TOFMS were processed using ADAP software (24). To reduce

bias caused by the high blood glucose levels in diabetic patients,
TABLE 1 Baseline characteristics of the study participants.

Name T1D (n=76) Control (n=65) p

Age (in months) 109.2 ± 47.07 110.9 ± 41.33 0.1325

Gender

Male 29 (44.6%) 31 (47.7%)

Female 47 (55.4%) 34 (52.3%)

Height, cm 132.1 ± 24.93 131.3 ± 20.75 0.09

Weight, kg 30.0 ± 13.76 29.4 ± 11.58 0.20

BMI, kg/m2 16.4 ± 2.69 16.3 ± 1.90 0.14

Duration (in months) 16.7 ± 18.9 — —

Normally distributed variables were analyzed using student t-test and presented as
mean ± standard deviation (SD), while non-normally distributed variables were
performed by non-parametric Mann-Whitney U test and presented as medians and
interquartile range (25th–75th percentiles). T1D, type 1 diabetes; BMI, body
mass index.
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glucose was excluded from the final data set. The metabolome

data were further standardized before statistical modeling.

Unsupervised principal component analysis (PCA) was used to

evaluate the natural clustering between patients with T1D and
Frontiers in Endocrinology 04
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their healthy controls. Each dot represented an individual

subject and color-coded based on their grouping. To overcome

the complexity of biological samples, a widely-used supervised

orthogonal partial least square discriminant analysis (OPLS-DA)
TABLE 2 Characteristics of clinical measurements.

Name HC Median (reference range) T1D (Median ± SD) Median FC

TSH (uIU/ml) 2.645 (0.35–4.94) 2 ± 1.12 2 0.636

Potassium (mmol/L) 4.5 (3.5–5.5) 4 ± 0.35 4 0.842

Sodium (mmol/L) 140 (135–145) 138 ± 4.94 138 0.987

Glucose (mmol/L) 4.85 (3.6–6.1) 12 ± 5.79 12 2.515

Total Bile Acids (µmol/L) 6.0 (0.0–12.0) 5 ± 22.19 5 0.783

Uric acid (µmol/L) 256 (155–357) 220 ± 90.1 220 0.859

25(OH)D (ng/ml) 88.75 (27.5–150.0) 48 ± 19.31 48 0.544

Hemoglobin (g/L) 140 (120–160) 133 ± 11.68 133 0.951

PLT (109/L) 250 (100–400) 291 ± 82.44 291 1.163

WBC (109/L) 8.0 (4.0–12.0) 7 ± 4.07 7 0.865

Insulin (µg/L) 12.45 (1.9–23) 4 ± 23.88 4 0.321

HOMA-IR (%) 2 ± 14.38 2

ALT (U/L) <50 13 ± 10.05 13

Urea (µmol/L) 4.11 (1.79–6.43) 5 ± 1.7 5 1.128

Cholesterol (mmol/L) 4.35 (3.00–5.70) 4 ± 1.83 4 0.961

CKMB <25 23 ± 13.36 23

Creatinine (µmol/L) 46 (15–77) 58 ± 14.44 58 1.261

GGT (U/L) 32.5 (8–57) 12 ± 3.4 12 0.369

TC (mmol/L) <1.70 1 ± 7.08 1

HDLC (mmol/L) >1.04 1 ± 0.4 1

LDLC (mmol/L) <3.37 2 ± 1.03 2

HbA1c (%) 5.4 (4.5–6.3) 8 ± 2.86 8 1.463

HsCRP (mg/L) 4 (0–8) 4 ± 6.36 4 1

b2-MG (mg/L) 0.15 (0.00–0.30) 0 ± 2.45 0 0.715

C3 (g/L) 1 (0.50–1.50) 1 ± 0.26 1 1

C4 (g/L) 0.25 (0.10–0.40) 0 ± 0.1 0 0.8

IgG (g/L) 10.2 (6.36–14.04) 11 ± 2.42 11 1.058

IgM (g/L) 0.75 (0.29–1.21) 1 ± 0.48 1 1.44

Urinary Creatinine (mmol/L) 11275 (2550–20000) 4781 ± 3491.06 4781 0.424

Uridine triphosphate (mg) <100.0 12 ± 270.56 12

Urine a1-microglobulin (mg/L) <12.00 7 ± 13.63 7

FC is the fold change ratios by calculating the median value of each clinical marker in the T1D group vs. the reference range. HC, healthy control; T1D, type 1 diabetes; FC, fold change;
TSH, thyroid stimulating hormone; PLT, total platelet count; WBC, white blood cell count; HOMA-IR, homeostatic model assessment for assessing insulin resistance; ALT, alanine
transaminase; CKMB, creatinine kinase myocardial band; GGT, gamma-glutamyl transferase; TC, total count; HDLC, high density lipoprotein cholesterol; LDLC, low density
lipoprotein cholesterol; Hb1Ac, hemoglobin A1c; HsCRP, high-sensitivity C-reactive protein; b2-MG, Beta-2 microglobulin; C3, complement component 3; C4, complement
component 4; IgG, immunoglobulin G; IgM, immunoglobulin M.
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model was applied to capture the differential metabolites

between the two groups. The OPLS-DA model was

constructed using 1/7-fold cross-validation. Metabolic pathway

enrichment analysis was done using the hypergeometric

algorithm deployed in MetaboAnalyst (25). The significance of

the metabolic pathways associated with T1D was determined by

the cutoff p-value of 0.10. All the p values were adjusted by

Benjamini & Hochberg method. Spearman correlation analysis

was used to evaluate the correlation between each differential

metabolite and disease duration.
Results

Clinical characteristics and metabolic
profiles of T1D patients

The basic demographic information of the participants is

summarized in Table 1. No significant differences were observed

in gender, age, and BMI between patients with T1D and healthy

controls. Serum lipid profiles are summarized in Table 2. The

mass spectrometry-based metabolomics study detected 282

circulating metabolites that were present across all the study

samples, with a low median process variability among QC

samples (<20%). A total of 51 metabolite-metabolite ratios

were also calculated according to their metabolic reactions.

The identified serum metabolome covered over 60 biochemical

pathways of human metabolism and included a wide range of

metabolite classes such as amino acids, organic acids, fatty acids,

alcohols and sugar derivatives, lipids, nucleotides, indoles, and

phenols. The OPLS-DA scores plot depicts the distinct metabolic

profiles associated with T1D patients versus healthy controls

(Figure 1A). A total of 70 differential metabolites and 14

metabolite ratios were obtained between T1D patients and

healthy controls with FDR-corrected p value (p < 0.01).

Carbohydrates and organic acids altered apparently, and the

most significantly altered metabolites were 1,5-anhydrosorbitol,

a-lactose, indole acetic acid, arachidic acid, and so forth. The

majority of these metabolites were significant after age- and/or

gender adjusted (Supplemental Table 2). Based on these

differential metabolites, the metabolic enrichment analysis

indicated that 11 pathways were significantly perturbed in

T1D patients as compared to controls (Figure 1B), including

glucose metabolism, glutathione metabolism, arginine and

proline metabolism, branched chain amino acid (BCAA)

metabolism, etc. Among these, galactose metabolism was the

most significantly altered metabolic pathway associated with

T1D, and specifically increased a-lactose, sorbitol, myoinositol,

sucrose, glycerol, and reduced d-mannose and d-galactose were

identified in this study. Additionally, we examined the clinical

characteristics of T1D patients, including blood biochemistry,

complete blood count (CBC), cytokines, hormones, proteins,

trace elements, and urine tests. An integrative view of both
Frontiers in Endocrinology 05
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clinical characteristics and metabolic changes of T1D patients is

illustrated in Figure 1C. Clinical markers that were different

included elevated levels of urine transferrin, IgE, IL-4, tartrate

resistant acid phosphatase (TRAcP-5b), adenosine deaminase

(ADA), and glucose levels, as well as reduced levels of urine

creatinine, IGF-1, adrenocorticotropic hormone (ACTH), IFN-r,

eosinophils, insulin, and r-glutamyl-transferase (GGT).
Association of age and gender factors
with circulating metabolome

Although age- matched controls were used in this study, age

was believed to be a confounding factor of host metabolism that

deserves thorough investigation, particularly for children. The

OPLS regression model revealed that metabolic profile variations

correlated closely with the age of T1D patients (Figure 2A,

r = 0.98, p = 1.96e-50). The patients were then further

stratified into three different subgroups according to their age:

young (1–84 months), middle (85–120 months), and old (121–

185 months). The baseline characteristics of patients in these

three subgroups are shown in Table 1. The metabolic profile of

patients in each subgroup was compared with age-matched

healthy controls, and each comparison consistently showed an

apparent separation between the two groups according to the

OPLS-DA score plot (Figures 2B–D). The heatmap of z-score

values derived from each comparison (FDR-corrected p value <

0.01) showed the relative expressions of differential metabolites

among patients and healthy controls, and indicated whether

specific metabolic changes were consistent across different age

groups (Figure 2E). For example, 1,5-anhydrosorbitol and

indoleacetic acid were significantly reduced in T1D patients of

all different ages (Figures 2F, G).

Similarly, we also examined the impact of gender on

metabolism. The OPLS-DA model with information on the

gender of the participants did not show any obvious internal

variations among patients with T1D or healthy controls

(Figure 3A). Moreover, to eliminate the influence of gender,

OPLS-DA model was applied to compare the metabolic

variations between male and female T1D patients (29 and 49,

respectively) and healthy controls (31 and 34, respectively),

separately (Figures 3B, C). The differential metabolites, 1,5-

anhydrosorbitol and indoleacetic acid, were significantly

reduced in both male and female patients with T1D

(Figures 3D, E). The enrichment pathway analysis based on

male and female differential metabolites further validated that

most of differential metabolic pathways were consistent in both

male and female patients. However, we found that four pathways

namely, (i) phenylalanine, tyrosine and tryptophan biosynthesis,

(ii) pentose phosphate pathway, (iii) purine metabolism, and (iv)

glyoxylate and dicarboxylate metabolism, could be affected by

the gender (Figure 3F).
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Association of disease duration with
circulating metabolome

To determine whether there is an association of disease

duration and serum metabolome, the orthogonal partial least

squares regression (PLSR) analysis was performed (Figure 4A).

This analysis depicted an obvious linearity between phenome

and disease duration of T1D patients. The patients were further

divided into three major clusters: initial progression from disease

onset (short, 1–6 months), moderate phase (medium, 7–18

months), and advanced phase (long, 1.5-6 years). As shown in

Figure 4B, the metabolic profiles of the three subgroups were

clearly separated according to the score plot of PLS-DA model.

The heat map indicated a significant Spearman’s correlation

between metabolites belonging to nine chemical classes and

disease duration (Figure 4C). Of them, 1,5-anhydrosorbitol,

pyruvic acid, and adenine had the strongest positive

correlations with disease duration.
Frontiers in Endocrinology 06
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Discussion

The pathogenesis of diabetes in children is complicated due to

the frequent occurrence of future complications. Insulinopenia and

hyperglycemia, characteristics of the T1D milieu, profoundly alter

metabolic homeostasis. Altered metabolites affected by the variable

insulin and glycemic levels may theoretically increase the risk of

long-term complications. While diabetes is primarily characterized

by hyperglycemia, other nutrient metabolic pathways like amino

acid and tricarboxylic acid cycle (TCA) are also profoundly

perturbed. However, a comprehensive metabolic signature for

T1D, especially in Chinese children, was not previously

established. Hence, we performed a serum metabolomics study

of Chinese children with T1D. Utilizing both multivariate and

univariate statistical analyses, a unique metabolic pattern was

observed to be related to T1D. This included 70 differently

expressed metabolites that were associated with 11 specific

altered metabolic pathways. These metabolic changes were also
A B

C

FIGURE 1

Phenome and metabolome analysis of T1D patients. (A) OPLS-DA score plot of patients with T1D and healthy controls (each green dot
represents a healthy subject while each red dot denotes a T1D patient). (B) Metabolic enrichment pathway analysis using MetaboAnalyst.
(C) Circle plot of phenome and metabolome fold changes (T1D versus healthy controls). Each dot was color-coded based on their chemical
classes or clinical diagnostic purpose.
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investigated by sub-dividing the patients based on different ages

and gender. In addition, an integrative analysis of clinical features

and metabolic profiles was performed, which provided us a

comprehensive view of pediatric T1D. An interesting finding was

that a group of differential metabolites were closely associated with

the time elapsed since diagnosis of the disease, which might

provide important insights into the pathogenesis of the

complications associated with diabetes.

Dysregulated carbohydrate metabolism was an obvious

metabolic feature of T1D observed in this study. Particularly,

galactose metabolism was the most significantly altered metabolic

pathway associated with T1D (Figure 1B). This alteration remained

significant across different ages and in both genders of T1D patients

compared to healthy controls, but it was similar between young and

old participants (Figure 2G), or between male and female

counterparts (Figure 3F). We also observed that glutathione,

arginine, and BCAA metabolism were significantly altered

between the T1D and control groups. In normal physiological

conditions, glutathione has antioxidative and free radical-

scavenging roles, thereby maintaining the metabolism and

homeostasis of cells (26, 27). Metabolic disorder of the

glutathione pathway increases oxidative stress, which may

damage kidneys and blood vessels, and cause neurodegeneration.
Frontiers in Endocrinology 07
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Arginine is the precursor for oxide synthesis, which can be

converted to vasodilating factors in the body. On one hand,

arginine can stimulate insulin secretion, but on the other hand,

arginine produces NO, which is involved in response to oxidative

stress in organisms, and participates in glutathione metabolism.

Disorders of arginine metabolism may affect endothelial cell

function, leading to insulin resistance and disturbances in

metabolism and hemodynamics (28). BCAAs include leucine,

isoleucine, and valine, which are essential amino acids that

provide energy to the body (29). Disordered BCAA metabolites

can block insulin signaling and disturb lipid metabolism, resulting

in insulin resistance and excessive lipid accumulation, respectively

(30). BCAA metabolism disorder is a biomarker of cardiovascular

metabolic diseases (31).

Among the differential carbohydrates, 1,5-anhydroglucitol

(1,5-AG) was the most significant marker that was consistently

lower in T1D patients, regardless of gender or age. Serum 1,5-AG

has been considered a potential marker of short-term glycemic

control and can be used for T1D diagnosis or the screening of

high-risk patients. Moreover, it was found to be less influenced by

diet or physical activity as compared to point glycemic markers

(32). Thus, 1,5-AG can be an effective supplementary marker to

hemoglobin A1c. Low plasma levels of 1,5-AG are associated with
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FIGURE 2

Association analysis between age and serum metabolome. (A) Scatter plot of OPLS-DA PC1 scores and ages of patients. (B–D) OPLS-DA score
plot of patients with T1D and healthy controls at different ages, B:(1-84 months), C:(85-120months), and D:(121-185months). (E, F) Box plots
showing the concentration of selected metabolites at different ages. (G) Heatmap of z-score values for differential metabolites between patients
with T1D and healthy controls at different ages.
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decreased pancreatic b-cell function (33). Sorbitol takes part in the
polyol pathway through the reduction of intracellular glucose to

sorbitol. The polyol pathway gets activated when excess glucose is

present within the cells and thus, a hyperglycemic state might

accelerate intracellular accumulation of sorbitol. Furthermore,

excessive sorbitol in the cells has been associated with a pro-

oxidative environment, which is known to increase diabetes-

related complications (34, 35). Renal tubular reabsorption of

1,5-AG is inhibited when there is excess glucose in the plasma.

Studies have found that 1,5-AG levels decrease in patients with

diabetes and this decrease is related to kidney damage owing to

high blood glucose levels (36).

We found that compared with the healthy group, TCA cycle

metabolites (pyruvate, fumarate, malate, and linoleic acid) were

significantly increased in the T1D group. Higher concentrations

of pyruvate appear to be necessary for anaplerosis (37). The

increased linoleic acid might be related to the insulin resistance

in patients with T1D. The increase of fatty acids can lead to the
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slowing down of the tricarboxylic acid cycle e.g., the

accumulation of fumarate and malate, which can block the

oxidation of glucose. Some studies have considered that high

physiological levels of exogenous insulin and hyperglycemia

could be responsible for insulin resistance in T1D patients

(38, 39).

In the present study, indoleacetic acid was significantly

reduced in the diabetic group, suggesting that T1D was

associated with the metabolism of indole and its derivatives.

Dietary tryptophan can be metabolized into IAA by gut

microbiota through the indole-3-acetamide pathway under the

catalysis of tryptophan monooxygenase and indole-3-acetamide

hydrolase (40). Recent work has demonstrated that gut

microbiota is an essential modulator of T1D susceptibility and

the reduced IAA levels were associated with intestinal mucosal

barrier integrity impairment (41). Dysfunction of the intestinal

mucosal barrier can increase intestinal permeability and trigger

an immunological response, contributing to the development of
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FIGURE 3

Association analysis between gender and serum metabolome. (A) OPLS-DA score plot of patients with T1D and healthy controls labeled with
information on gender of the participants. (B, C) OPLS-DA score plot of patients with T1D and healthy controls for males and females. (D, E)
Box plots showing the concentration of representative metabolites across different groups. (F) Metabolic enrichment pathway analysis for
different group comparisons.
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various autoimmune diseases, Including T1D (42). Indole acetic

acid is also involved in the metabolism of purines, and this

metabolic cycle is closely related to the pathogenesis of

diabetic nephropathy.

We also found that adenine, 1,5-AG, and pyruvate correlated

strongly and positively with the course of the disease. Clinically,

accumulation of adenine in the blood results in insoluble crystal (2,

8-dihydroxyadenine) precipitates in the renal tubules and

obstruction of tubular flow, which initiates renal injury (43, 44).

A similar disease phenotype can be induced in rodents by adenine-

feeding (45, 46). Adenine feeding-induced chronic kidney disease in

rodents is characterized by elevated plasma concentrations of urea

and creatinine, proteinuria, interstitial fibrosis, extensive tubular

dilation, degeneration of the proximal tubular epithelium with loss

of the brush border and inflammatory cell infiltration (47, 48).

In summary, metabolomics is a powerful tool for

investigation of the nature-nurture relationships involved in

the development of pediatric diabetes. Overall, in this study,

carbohydrate metabolism, unsaturated fatty acid biosynthesis,

and gut microbial metabolism were identified as distinct

metabolic features of pediatric T1D. These metabolic changes

were also associated with T1D, which may provide important

insights into the pathogenesis of the complications associated
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with diabetes. The limitation of this study is the lack of fecal

samples for the analysis of gut microbiome to confirm the role of

microbial metabolites in T1D, e.g., IAA metabolism. Further

studies are needed to explore the complex relationship between

gut microbiome and metabolism in the pathogenesis of T1D. In

the future, larger studies are needed to determine whether these

metabolic markers can add to the prediction of long-term T1D.
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FIGURE 4

Association analysis between disease duration and serum metabolome. (A) Scatter plot of OPLS PC1 scores and disease duration. (B) PLS-DA
score plot of T1D patients with different disease durations. (C) Heatmap of Spearman’s correlation between differential metabolites and disease
durations. The metabolite was assigned to each metabolite class (plotted with different color).
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13. Oresǐč M, Simell S, Sysi-Aho M, Näntö-Salonen K, Seppänen-Laakso T,
Parikka V, et al. Dysregulation of lipid and amino acid metabolism precedes islet
autoimmunity in children who later progress to type 1 diabetes. J Exp Med (2008)
205:2975–84. doi: 10.1084/jem.20081800

14. Johnson RK, Vanderlinden L, DeFelice BC, Kechris K, Uusitalo U, Fiehn O,
et al. Metabolite-related dietary patterns and the development of islet
autoimmunity. Sci Rep (2019) 9:14819. doi: 10.1038/s41598-019-51251-4

15. Sorensen CM, Ding J, Zhang Q, Alquier T, Zhao R, Mueller PW, et al.
Perturbations in the lipid profile of individuals with newly diagnosed type 1
diabetes mellitus: lipidomics analysis of a diabetes antibody standardization
program sample subset. Clin Biochem (2010) 43:948–56. doi: 10.1016/
j.clinbiochem.2010.04.075

16. Overgaard AJ, Weir JM, Jayawardana K, Mortensen HB, Pociot F, Meikle PJ.
Plasma lipid species at type 1 diabetes onset predict residual beta-cell function after
6 months. Metabolomics (2018) 14:158. doi: 10.1007/s11306-018-1456-3

17. Suvitaival T. Lipidomic abnormalities during the pathogenesis of type 1
diabetes: a quantitative review. Curr Diabetes Rep (2020) 20:46. doi: 10.1007/
s11892-020-01326-8
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2022.1037289/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2022.1037289/full#supplementary-material
https://doi.org/10.1016/S0140-6736(18)31320-5
https://diabetesatlas.org/atlas/tenth-edition/
https://diabetesatlas.org/atlas/tenth-edition/
https://doi.org/10.2337/db19-0756
https://doi.org/10.1007/s00125-019-04980-0
https://doi.org/10.1007/s00125-019-04980-0
https://doi.org/10.1007/s00125-020-05107-6
https://doi.org/10.1371/journal.pcbi.1002257
https://doi.org/10.1900/RDS.2012.9.236
https://doi.org/10.1210/jc.2015-4133
https://doi.org/10.1002/elps.201300062
https://doi.org/10.2337/db10-1652
https://doi.org/10.3390/biom9010033
https://doi.org/10.2337/db13-0215
https://doi.org/10.1084/jem.20081800
https://doi.org/10.1038/s41598-019-51251-4
https://doi.org/10.1016/j.clinbiochem.2010.04.075
https://doi.org/10.1016/j.clinbiochem.2010.04.075
https://doi.org/10.1007/s11306-018-1456-3
https://doi.org/10.1007/s11892-020-01326-8
https://doi.org/10.1007/s11892-020-01326-8
https://doi.org/10.3389/fendo.2022.1037289
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2022.1037289
18. Wu F, Liang P. Application of metabolomics in various types of diabetes.
Diabetes Metab Syndr Obes (2022) 15:2051–9. doi: 10.2147/DMSO.S370158

19. Xu F, Tavintharan S, Sum CF, Woon K, Lim SC, Ong CN. Metabolic
signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based
metabolomics. J Clin Endocrinol Metab (2013) 98:E1060–1065. doi: 10.1210/
jc.2012-4132

20. Tillin T, Hughes AD, Wang Q, Würtz P, Ala-Korpela M, Sattar N, et al.
Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of
ethnicity, amino acids and diabetes in a south Asian and European cohort from the
SABRE (Southall and Brent REvisited) study. Diabetologia (2015) 58:968–79. doi:
10.1007/s00125-015-3517-8

21. Zhou K, Xie G, Wang J, Zhao A, Liu J, Su M, et al. Metabonomics reveals
metabolite changes in biliary atresia infants. J Proteome Res (2015) 14:2569–74. doi:
10.1021/acs.jproteome.5b00125

22. Ni Y, Su M, Qiu Y, Jia W, Du X. ADAP-GC 3.0: Improved peak detection and
deconvolution of Co-eluting metabolites from GC/TOF-MS data for metabolomics
studies. Anal Chem (2016) 88:8802–11. doi: 10.1021/acs.analchem.6b02222

23. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, et al.
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional
insights. Nucleic Acids Res (2021) 49:W388–96. doi: 10.1093/nar/gkab382

24. Ni Y, Qiu Y, Jiang W, Suttlemyre K, Su M, Zhang W, et al. ADAP-GC 2.0:
Deconvolution of coeluting metabolites from GC/TOF-MS data for metabolomics
studies. Anal Chem (2012) 84:6619–29. doi: 10.1021/ac300898h

25. Wei R, Wang J, Su M, Jia E, Chen S, Chen T, et al. Missing value imputation
approach for mass spectrometry-based metabolomics data. Sci Rep (2018) 8:663.
doi: 10.1038/s41598-017-19120-0

26. Song J, Kang SM, Lee WT, Park KA, Lee KM, Lee JE. Glutathione protects
brain endothelial cells from hydrogen peroxide-induced oxidative stress by
increasing Nrf2 expression. Exp Neurobiol (2014) 23:93–103. doi: 10.5607/
en.2014.23.1.93

27. Xiao Z, La Fontaine S, Bush AI, Wedd AG. Molecular mechanisms of
glutaredoxin enzymes: Versatile hubs for thiol–disulfide exchange between protein
thiols and glutathione. J Mol Biol (2019) 431:158–77. doi: 10.1016/j.jmb.2018.12.006

28. Cleland SJ, Petrie JR, Small M, Elliott HL, Connell JMC. Insulin action is
associated with endothelial function in hypertension and type 2 diabetes.
Hypertension (2000) 35:507–11. doi: 10.1161/01.HYP.35.1.507

29. Grajeda-Iglesias C, Aviram M. Specific amino acids affect cardiovascular
diseases and atherogenesis via protection against macrophage foam cell formation:
Review article. Rambam Maimonides Med J (2018) 9:e0022. doi: 10.5041/
RMMJ.10337

30. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A
branched-chain amino acid-related metabolic signature that differentiates obese
and lean humans and contributes to insulin resistance. Cell Metab (2009) 9:311–26.
doi: 10.1016/j.cmet.2009.02.002

31. Bhattacharya S, Granger CB, Craig D, Haynes C, Bain J, Stevens RD, et al.
Validation of the association between a branched chain amino acid metabolite profile
and extremes of coronary artery disease in patients referred for cardiac catheterization.
Atherosclerosis (2014) 232:191–6. doi: 10.1016/j.atherosclerosis.2013.10.036

32. Yamanouchi T, Akanuma H, Nakamura T, Akaoka I, Akanuma Y.
Reduction of plasma 1,5-anhydroglucitol (1-deoxyglucose) concentration in
diabetic patients. Diabetologia (1988) 31:41–5. doi: 10.1007/BF00279131
Frontiers in Endocrinology 11
98
33. Shen Y, Si Y, Lu J, Ma X, Zhang L, Mo Y, et al. Association between 1,5-
anhydroglucitol and acute c peptide response to arginine among patients with type
2 diabetes. J Diabetes Res (2020) 2020:4243053. doi: 10.1155/2020/4243053

34. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy:
Attractive, elusive, and resilient. Exp Diabetes Res (2007) 2007:61038. doi: 10.1155/
2007/61038

35. Srivastava SK, Ramana KV, Bhatnagar A. Role of aldose reductase and
oxidative damage in diabetes and the consequent potential for therapeutic options.
Endocrine Rev (2005) 26:380–92. doi: 10.1210/er.2004-0028

36. Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, et al.
Metabolic footprint of diabetes: A multiplatform metabolomics study in an
epidemiological setting. PloS One (2010) 5:e13953. doi: 10.1371/journal.pone.0013953

37. Gibala MJ, MacLean DA, Graham TE, Saltin B. Tricarboxylic acid cycle
intermediate pool size and estimated cycle flux in human muscle during exercise.
Am J Physiology-Endocrinology Metab (1998) 275:E235–42. doi: 10.1152/
ajpendo.1998.275.2.E235

38. Yki-Jarvinen H, Helve E, Koivisto VA. Hyperglycemia decreases glucose
uptake in type I diabetes. Diabetes (1987) 36:5. doi: 10.2337/diab.36.8.892

39. Yki-Järvinen H, Mott D, Young AA, Stone K, Bogardus C. Regulation of
glycogen synthase and phosphorylase activities by glucose and insulin in human
skeletal muscle. J Clin Invest. (1987) 80:95–100. doi: 10.1172/JCI113069

40. Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism:
Endogenous and dietary routes to ah receptor activation.Drug Metab Dispos (2015)
43:1522–35. doi: 10.1124/dmd.115.064246

41. Dong F, Hao F, Murray IA, Smith PB, Koo I, Tindall AM, et al. Intestinal
microbiota-derived tryptophan metabolites are predictive of ah receptor activity.
Gut Microbes (2020) 12:1–24. doi: 10.1080/19490976.2020.1788899

42. Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability.
Gut (2006) 55:1512–20. doi: 10.1136/gut.2005.085373

43. Kaartinen K, Hemmilä U, Salmela K, Räisänen-Sokolowski A, Kouri T,
Mäkelä S. Adenine phosphoribosyltransferase deficiency as a rare cause of renal
allograft dysfunction. J Am Soc Nephrol (2014) 25:671–4. doi: 10.1681/
ASN.2013090960

44. Nasr SH, Sethi S, Cornell LD, Milliner DS, Boelkins M, Broviac J, et al.
Crystalline nephropathy due to 2,8-dihydroxyadeninuria: an under-recognized
cause of irreversible renal failure. Nephrol Dialysis Transplant (2010) 25:1909–15.
doi: 10.1093/ndt/gfp711

45. Rahman A, Yamazaki D, Sufiun A, Kitada K, Hitomi H, Nakano D, et al. A
novel approach to adenine-induced chronic kidney disease associated anemia in
rodents. PloS One (2018) 13:e0192531. doi: 10.1371/journal.pone.0192531

46. Fong D, Ullah MM, Lal JG, Abdelkader A, Ow CPC, Hilliard LM, et al.
Renal cellular hypoxia in adenine-induced chronic kidney disease. Clin Exp
Pharmacol Physiol (2016) 43:896–905. doi: 10.1111/1440-1681.12621

47. Santana AC, Degaspari S, Catanozi S, Dellê H, de Sá Lima L, Silva C,
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Introduction: Vitamin D deficiency is one of the most common nutritional

disorders in most countries of the world. The present study was designed and

implemented with the aim of investigating the relationship between vitamin D

deficiency and the level of adipokines, atherogenesis indicators and factors related

to metabolic syndrome.

Methods: This case-control study was done on 195 patients with metabolic

syndrome aged 20-50 y who attended the health centers in Zabol County,

northeast Iran, between April 2021 and January 2022. Anthropometric and

biochemical parameters were measured for all subjects with standard methods.

To determine serum 25(OH)D levels, we used enzymatic linked immunosorbent

assay (ELISA) kits. Atherogenic index of plasma (AIP) was calculated as log (TG/

HDL-c). The visceral adiposity index (VAI) and the lipid accumulation product (LAP)

were estimated according to standard formulas.

Results and Discussion: Participants in the case group had lower serum levels of

25(OH)D compared to controls (19.8 ± 6.2 ng/ml vs. 41.2 ± 9.7ng/ml, P<0.001). We

found that the mean serum levels of fasting blood sugar (P=0.023) and TG

(P=0.008) as well as HOMA-IR (P=0.023) were significantly higher in the cases

compared to controls. Also, patients with MetS and vitamin D insufficiency (cases)

had higher AIP (P=0.040) and LAP (P=0.012) than controls. Furthermore, serum 25

(OH)D levels showed significant inverse correlations with serum RBP-4 and a

positive correlation with serum omentin-1 concentrations. The results of the

present study showed that vitamin D deficiency correlated with some of the

cardiometabolic risk factors among the patients with MetS.
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Introduction

Several studies have shown a rise in the percentage of overweight

and obese adults in recent decades. According to the world health

organization (WHO) reports, 39% of adults aged 18 years and over

were overweight in 2016, and 13% were obese. Also, it has been

reported that 39 million children under the age of 5 were overweight

or obese in 2020 (1).

Adults, teenagers, and children are all affected by the issue (2–4).

Numerous systemic illnesses, such as metabolic syndrome (MetS),

type 2 diabetic mellitus (T2DM), atherosclerosis, cardiovascular

problems, and cancers, are caused on by obesity (5). Currently, the

prevalence of T2DM is rising, and by 2040, it has been estimated that

over than 642 million persons (10% of the population) will have this

disease. People who have low levels of serum 25-hydroxyvitamin D3

[25(OH) D3] have a considerably greater risk of developing T2DM

and MetS (6, 7). Vitamin D deficiency have been linked to a higher

odds ratio of MetS and T2DM, according to some of cohort studies (8,

9). It has been reported that vitamin D receptor (VDR) changes

involved in the pathogenesis of some chronic disorders such as

diabetes (10), autoimmune diseases (11), nonalcoholic liver disease

(12), cardiovascular disease(CVD) (13), and cancer (14).

Individuals with risk factors for CVD frequently have low serum

25(OH)D3 concentration. It has been reported that there was a

significant inverse association between serum levels of 25(OH)D3

and some cardiometabolic risk factors such as fasting blood sugar

(FBS), hemoglobin A1c (HbA1c), total cholesterol (TC), triglyceride

(TG), body mass index (BMI), waist circumference (WC), and

atherogenic indices (Castelli Risk Index I (CRI I), Castelli Risk

Index II (CRI II), and Atherogenic index of plasma (AIP) (15).

Obesity, especially central obesity, is one of the most important risk

factors for T2DM, which causes insulin resistance and inflammation

due to the increase of fat tissue in the body, which also increases the risk

of CVD (16). The mechanisms involved in the relationship between

obesity, adipose tissue dysfunction and MetS have not yet been

precisely identified (17). It has been reported in some pervious

research that adipose tissue metabolic alterations, such as

dysregulated adipokine production, may mediate the association

between various obesity phenotypes and vulnerability to some

chronic disorders such as MetS (18). Adipokines have long been

recognized as significant hunger and satiety moderators as well as

critical regulators of energy homeostasis, inflammation, immunological

function, blood pressure, vascular function, insulin levels, and glucose

and lipid metabolism (19).

In recent years, some studies have shown that there is a bidirectional

relationship between vitamin D and obesity (20, 21). In obese people, due

to the higher fat mass, high amounts of vitamin D are trapped in fat

tissues, and therefore, these people may need higher amounts of vitamin

D. On the other hand, some findings have revealed that vitamin D

supplementation may have a positive effect on obesity prevention and

treatment (22, 23). In addition, some researchers have suggested that

some effects of vitamin D deficiency in the etiology of obesity and T2DM

are exerted through disturbances in the concentration of adipokines such

as leptin and adiponectin (22, 24).

Therefore, considering the importance of vitamin D in the

prevention and treatment of metabolic syndrome and the existence

of conflicting evidence regarding the effective mechanisms in the results
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observed in previous studies, the present study designed to investigate

the relationship between vitamin D deficiency with adipokines and

atherogenic indices in patients with metabolic syndrome.
Material and methods

Study participants

This case-control study was done on 195 patients with Mets aged

20-50 y who attended the health centers in Zabol County, southeast

Iran, between April 2021 and January 2022. Serum omentin-1 levels

as a key variable obtained from Zorlu et al. study (25), was used to

estimate the sample size. Considering the study power of 80%, a type I

error of 5%, and ratio of controls to cases as 2, we required 65 cases

and 130 controls for this study.

Cases were MetS patients with vitamin D insufficiency and controls

were MetS patients with optimal vitamin D status. Controls were

frequency-matched with cases on age ( ± 2 years), sex, and BMI ( ±

1 kg/m2) and were selected from patients visiting the same health

centers. Vitamin D insufficiency was defined, according to the previous

studies and Endocrine Society clinical practice guidelines (26, 27), as

serum 25(OH)D levels < 30 ng/ml and those who had serum 25(OH)D

levels ≥ 30 ng/ml were considered sufficient.

MetS was diagnosed based on the National Cholesterol Education

Program-Adult Treatment Panel III (NCEP-ATP III) consensus (28)

as the presence of at least three of the following criteria: (1) a waist

circumference (WC) > 102 cm in males and > 88 cm in females, (2) a

fasting blood sugar (FBS) ≥ 100 mg/dl, (3) a high serum triglyceride

(≥150 mg/dl), (4) a low serum HDL-c (< 40 mg/dl in males and < 50

mg/dl in females), (5) a high blood pressure (SBP ≥ 130 mmHg or

DBP ≥ 80 mmHg).

In this study, individuals with a prior history of cardiovascular

diseases, endocrine disorders such as diabetes and hypo-/

hyperthyroidism, cancer, renal or liver dysfunction were excluded.

The individuals were also excluded if taking antioxidant supplements

like selenium, carotenoids, and vitamins E and C, as well as any

medications known to induce metabolic or hormonal changes such as

estrogens, corticosteroid drugs and lipid-lowering medications within

three months before enrollment the study. Following a specific diet,

using fish oil supplement and taking anti-inflammatory medications

in the past three months were among the exclusion criteria as well.

Eligible individuals, including 65 cases and 130 controls were

recruited for the study.

All study participants signed an informed consent form after

explaining the aims and the study methodology. The study protocol

was approved by the Ethics Committee of Zabol University of Medical

Sciences (Approval code: IR.ZBMU.REC.1399.156).
Assessment of anthropometric variables,
blood pressure and physical activity

Anthropometric parameters were measured for all subjects.

Height was measured without shoes in an upright position using a

fixed non-stretchable tape with a precision of 0.1 cm. Weight was

measured on light clothing by a Seca scale to the nearest 0.1 kg. Body
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mass index (BMI) was calculated as weight (kg) divided by squared

height (m2). Finally, the waist circumference (WC) was measured

between the lower rib margin and the iliac crest at the end of a normal

expiration. A bioelectrical impedance analysis (BIA) system (InBody

S10, JMW140, Korea) was applied to measure the percentage of body

fat mass (%FM) and visceral fat level (%VF).

Blood pressure was measured in a sitting position, after a 15-min

rest, using a mercury sphygmomanometer twice with 5-min intervals.

The mean of two measurements was considered as the final systolic

(SBP) and diastolic (DBP) blood pressure.

To evaluate the physical activity levels of the participants, we

applied a short form of International physical activity questionnaire

(IPAQ) and then classified into 3 categories of “low,” “moderate,” and

“vigorous” activity according to the IPAQ scoring guideline (29).
Laboratory measurements

Blood samples were collected from all patients after almost 12 h of

overnight fasting and centrifuged at 3500 rpm for 10 min to separate

the sera. Then, the separated sera were immediately distributed in

aliquots and stored at -70○C until analysis.

Fasting blood sugar (FBS) as well as serum levels of total cholesterol

(TC), high-density lipoprotein cholesterol (HDL-c), and low-density

lipoprotein cholesterol (LDL-c) were determined using the standard

enzymatic-colorimetric method on an automatic biochemical Hitachi

717 analyzer (Hitachi, Boehringer Mannheim, Japan) through

commercial kits (Pars-Azmoon Co., Tehran, Iran) with inter- and

intra-assay coefficient variances (CVs) of lower than 5%. Non-HDL-

cholesterol was calculated as the TCminus HDL-c. Serum insulin levels

were determined based on the radioimmunoassay method using the

commercial kit (Immunotech, Prague, Czech Republic), which is

sensitive to 0.5 mU/ml variations in serum levels of insulin and its

intra- and inter-assay coefficients of variation were 3.8% and 6.2%,

respectively. Insulin resistance was estimated with the homeostasis

model assessment method (HOMA-IR) using the suggested equation of

Matthews et al. (30): HOMA-IR= [fasting insulin (U/l) × fasting

glucose (mg/dl)]/405.

Atherogenic index of plasma (AIP) was calculated as log (TG/

HDL-c) (31). The visceral adiposity index (VAI) and the lipid

accumulation product (LAP) were estimated according to suggested

formulas for each gender as follows:

Males :  VAI ¼   WC= 39:68 + 1:88 ñ BMIð Þ½ � ñ 
TG=1:03ð Þ ñ  1:31=HDL-cð Þ

(32)

Females :  VAI ¼   WC= 36:58 + 1:89 ñ BMIð Þ½ � ñ 
TG=0:81ð Þ ñ  1:52=HDL-cð Þ

Males :  LAP ¼   WC  cmð Þ -65½ � ñ  TG  mmol=lð Þ½ �
(33)

Females :  LAP ¼   WC  cmð Þ -58½ � ñ  TG  mmol=lð Þ½ �
To determine serum 25(OH)D levels, we used enzymatic linked

immunosorbent assay (ELISA) kits (DIAsource Immunoassays SA,
Frontiers in Endocrinology 03101
Louvain-laNeuve, Belgium) according to the manufacturer’s

instructions. Serum levels of omentin-1, chemerin, vaspin, and

retinol binding protein 4 (RBP-4) were measured using the Human

ELISA kits (Shanghai Crystal Day Biotech Co., Ltd.) according to the

manufacturer’s instructions. The intra- and inter-assay CV of

adipokines was lower than 4.7% and 7.8%, respectively.
Statistical analysis

The results were presented as mean ± standard deviation for

normally distributed continuous data and frequency (percent) for

categorical data. The non-normally distributed data were expressed as

the median and interquartile range (IQR). General characteristics

were compared between cases and controls using an independent

samples t-test and Pearson chi-squared test, as appropriate. In

addition, between-groups differences in normally and non-normally

distributed cardiometabolic parameters and adipokines were

investigated using independent samples t-test and non-parametric

Mann–Whitney U-test, where appropriate. To examine the

association between serum levels of 25(OH)D with adipokines and

cardiometabolic parameters, multiple linear regression was applied by

adjusting for age, sex, smoking, physical activity level, and BMI. Data

were analyzed using IBM SPSS version 25 (IBM Corp., Armonk, NY,

USA) and statistical significance was considered as a p-value< 0.05.
Results

Characteristics of cases and controls

The study participants consisted of 195 patients with MetS (65

cases and 130 controls). The mean age of cases and controls was

38.0 ± 5.5 and 37.5 ± 5.6 y, respectively that was non-significant.

Totally, 34% of patients participating in this study were male and

66% were female. No significant differences were found between

cases and controls with respect to age, BMI, WC, fat mass, and

visceral fat (Table 1) (P>0.05). In addition, the distribution of

participants with regard to sex, smoking status, PAL, and

education level was not significantly different between the study

groups (P>0.05). As shown in Table 1, participants in the case

group had lower serum levels of 25(OH)D compared to controls

(19.8 ± 6.2 ng/ml vs. 41.2 ± 9.7ng/ml, P<0.001).
Cardiometabolic parameters in cases
and controls

Table 2 shows the differences in the cardiometabolic parameters

between the cases and controls.

The mean serum levels of FBS (P=0.023) and TG (P=0.008) as

well as HOMA-IR (P=0.023) were significantly higher in the cases

compared to controls. Furthermore, patients with MetS and vitamin

D insufficiency (cases) had higher AIP (P=0.040) and LAP (P=0.012)

than controls, whereas, there were no significant differences in serum

levels of insulin, TC, LDL-c, HDL-c, and non-HDL as well as VAI,

SBP, and DBP.
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TABLE 2 Comparison of cardiometabolic parameters between cases and controls.

Variables Cases (n=65) Controls (n=130) P-value†

FBS (mg/dL) 106.1 ± 13.6 101.9 ± 11.1 0.023

Insulin (μU/mL) 18.1 ± 5.8 16.8 ± 5.2 0.116

HOMA-IR 4.8 ± 2.1 4.2 ± 1.5 0.032

TG (mg/dL) 190.0 ± 27.7 180.0 ± 23.1 0.008

TC (mg/dL) 197.5 ± 23.1 191.8 ± 23.9 0.113

LDL-c (mg/dL) 137.3 ± 27.2 132.5 ± 23.4 0.201

HDL-c (mg/dL) 46.7 ± 5.8 47.1 ± 6.4 0.719

non-HDLC 150.8 ± 23.3 144.8 ± 24.3 0.101

AIP 0.61 ± 0.08 0.58 ± 0.08 0.040

LAP 78.25 ± 21.4 69.79 ± 22.20 0.012

VAI 0.99 ± 0.08 0.97 ± 0.09 0.239

SBP (mmHg) 127.2 ± 3.8 126.5 ± 4.1 0.304

DBP (mmHg) 83.7 ± 3.2 82.9 ± 2.7 0.083
F
rontiers in Endocrinology
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FBS, fasting blood sugar; HOMA-IR, homeostasis model assessment of insulin resistance; TG, triglyceride; TC, total cholesterol; LDL-c, low-density lipoprotein cholesterol; HDL-c, high-density
lipoprotein cholesterol; AIP, atherogenic index of plasma; LAP, lipid accumulation product; VAI, visceral adiposity index; SBP, systolic blood pressure; DBP, diastolic blood pressure.
Values are reported as mean ± standard deviation.
P-values<0.05 were considered significant.
†Independent samples t-test.
TABLE 1 General characteristics of cases and controls.

Variables Cases (n=65) Controls (n=130) P-value

Male, n (%) 21 (32.3) 45 (34.6) 0.748†

Age (years) 38.0 ± 5.5 37.5 ± 5.6 0.556‡

Weight (kg) 89.7 ± 11.6 90.5 ± 12.1 0.673‡

BMI (kg/m2) 32.0 ± 2.1 31.6 ± 1.9 0.289‡

WC (cm) 96.7 ± 8.0 94.7 ± 9.4 0.141‡

Fat mass (%) 44.3 ± 7.2 42.8 ± 7.3 0.185‡

Visceral fat (%) 13.2 ± 4.1 12.8 ± 4.0 0.534‡

PAL, n (%)

Low 47 (72.3) 90 (69.2)

0.904†Moderate 15 (23.1) 33 (25.4)

Vigorous 3 (4.9) 7 (5.4)

Smokers, n (%) 14 (21.5) 31 (23.8) 0.718†

Education level, n (%)

Primary school 24 (36.9) 49 (37.7)

0.776†Secondary & high school 26 (40.0) 46 (35.4)

Diploma & university 15 (23.1) 35 (26.9)

25(OH)D (ng/ml) 19.8 ± 6.2 41.2 ± 9.7 <0.001‡
n

BMI, body mass index; WC, waist circumference; PAL, physical activity level.
Values are reported as mean ± standard deviation for continuous variables and number (%) for categorical variables.
P-values<0.05 were considered significant.
†Pearson chi-square test.
‡Independent samples t-test.
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Serum adipokines in cases and controls

The comparisons of the serum levels of adipokines between the

cases and controls are shown in Figure 1. The mean serum levels of

omentin-1 were significantly higher (P=0.007) and serum levels of

RBP-4 (P=0.007) were significantly lower in the cases compared to

controls. However, we failed to find any significant difference in mean

serum levels of vaspin and chemerin between the two groups.
Association of serum vitamin D with serum
adipokines and cardiometabolic parameters

The results of multiple linear regression models, which

investigated the associations between serum 25(OH)D levels with

serum adipokines and cardiometabolic parameters are reported in

Table 3. Serum 25(OH)D levels showed significant inverse

correlations with serum RBP-4 (b=-0.305, P<0.001), FBS (b=-0.189,
P=0.007), insulin (b=-0.170, P=0.017), HOMA-IR (b=-0.206,
P=0.004), TG (b=-0.431, P<0.001) as well as AIP (b=-0.360,
P<0.001) and LAP (b=-0.281, P<0.001) after adjustment for

potential confounders including age, sex, PAL, and BMI. There

were significant positive correlations between serum 25(OH)D

levels and serum levels of omentin-1 (b=0.197, P=0.007). When
Frontiers in Endocrinology 05103
regression analyses were performed by adjustment for potential

confounders, serum 25(OH)D levels did not show any significant

correlations with serum chemerin, vaspin, TC, LDL-c, HDL-c, non-

HDL, SBP, DBP as well as VAI.
Discussion

The results of the present study were showed that participants

with MetS and vitamin D insufficiency had higher levels of some risk

factors for CVD. Also, we found an inverse association between

serum levels of 25(OH)D and some CVD related biomarkers.

Vitamin D insufficiency is currently a major global health issue

due to its high incidence (34). According to the results of a meta-

analysis study, the prevalence of vitamin D deficiency in the Iranian

population is 56% (64% in women and 44% in men) (35). Given that

the majority of body cells have vitamin D receptors and para/

autocrine vitamin D metabolic activity, vitamin D effects extend

beyond the regulation of bone tissue (36, 37). The potential

therapeutic benefits of vitamin D3 can be obtained by keeping

vitamin levels in adults in the range of 30-80 ng/mL (75-200 nm/

L), according to expert recommendations that published in 2018 (38).

We found that the serum levels of FBS, TG and HOMAIR in the

participants with vitamin D deficiency were significantly higher than
FIGURE 1

Comparison of serum levels of adipokines between cases and controls. Data are shown as median (interquartile range). P-values obtained from Mann–
Whitney U test. P-values < 0.05 were considered significant.
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control group. Also, we found a significant inverse association

between 25(OH)D levels with serum levels of FBS, TG and

HOMAIR. In line with our findings, Schmitt et al. were reported

that in postmenopausal women, vitamin D deficiency was correlated

with higher prevalence of MetS, as well as hypertriglyceridemia (39).

In other study, Lee et al. found that lower serum levels of 25(OH)D

was associated with higher waist circumference, TG and insulin

resistance (40). Likewise, Zhu and Heil reported that 25(OH)D

levels were inadequate in 50% of the study population, formed by

residents of Shanghai, China, aged 19–70 years and were associated

with the presence of MetS, and they found that higher serum levels of

vitamin D was associated with lower LDL and total cholesterol

concentration (41). Increasing evidence points to a strong

association between vitamin D insufficiency and a decrease in

insulin secretion in both people and animal models (42). Numerous

studies have suggested that reduced levels of vitamin D disrupt insulin

sensitivity, beta-cell function, or both to cause the onset of T2DM and

insulin resistance (43–46). On the other hand, some studies evaluated

the effect of vitamin D supplementation in people suffering from

vitamin D deficiency and its effect on factors related to metabolic

syndrome. In research that was conducted among the Asian women

with insulin resistance and baseline 25(OH)D levels below 20 ng/mL,

it has been reported that vitamin D supplementation with dose of

4,000 IU led to a significant improvement in the insulin sensitivity

(47). Also, in a systematic review and meta-analysis study on 19
Frontiers in Endocrinology 06104
randomized controlled trials (RCT), it has been reported that

compared with the control group, the short-term vitamin D

supplementation group had a significant reduction in HbA1c,

insulin resistance, and insulin concentration (48). The mechanisms

of vitamin D reducing the risk of T2D include, improved insulin

sensitivity, and reduced insulin resistance (49–51). It has also been

shown that vitamin D reduces inflammation as one of the main

factors involved in the pathogenesis of T2DM due the dysfunction in

the insulin sensitivity and pancreatic beta-cell function (52–54).

In the present study, we found that participants in the vitamin D

deficiency group had higher AIP and LAP than control group. Wang

et al. in a population-based study on 1475 participants showed that

serum 25(OH)D concentration was inversely correlated with TG,

LDL-C and AIP (55). In other study, Mahmoodi et al. in a case control

study among the participants with T2DM found that all of the

atherogenic indices including AIP, CRII, and Atherogenic

Coefficient (AC) significantly reduced with improved serum

vitamin D status (56). It has been reported in several studies that

vitamin D deficiency increase risk of dyslipidemia (57, 58). According

to results from the Karhapää et al. investigation, in middle-aged

Finnish men, serum 25(OH)D levels are inversely related to TC, TG,

and LDL-C (59). The results of a cross-sectional study on the Danish

population showed that a 10-unit increase in vitamin D concentration

was associated with a significant decrease in the level of dyslipidemia-

related factors (60). AIP value, which is obtained by applying a
TABLE 3 Multiple linear regression analysis for the association between serum 25(OH)D concentrations with adipokines and cardiometabolic
parameters (n=195).

Model B S.E. b P-value†

Omentin-1 (ng/mL) 1.028 0.376 0.197 0.007

Chemerin (ng/mL) 0.433 0.341 0.094 0.205

Vaspin (ng/mL) 0.010 0.006 0.118 0.110

RBP-4 (ng/mL) -0.476 0.110 -0.305 <0.001

FBS (mg/dL) -0.172 0.063 -0.189 0.007

Insulin (μU/mL) -0.071 0.030 -0.176 0.017

HOMA-IR -0.027 0.009 -0.206 0.004

TG (mg/dL) -0.811 0.125 -0.431 <0.001

TC (mg/dL) -0.188 0.130 -0.106 0.150

LDL-c (mg/dL) -0.158 0.136 -0.085 0.248

HDL-c (mg/dL) -0.037 0.033 -0.081 0.266

non-HDLC -0.225 0.132 -0.125 0.089

AIP -0.003 0.001 -0.360 <0.001

LAP -0.468 0.109 -0.281 <0.001

VAI -0.002 0.001 -0.116 0.115

SBP (mmHg) -0.033 0.022 -0.110 0.134

DBP (mmHg) -0.019 0.016 -0.089 0.223
fro
RBP-4, retinol binding protein 4; FBS, fasting blood sugar; HOMA-IR, homeostasis model assessment of insulin resistance; TG, triglyceride; TC, total cholesterol; LDL-c, low-density lipoprotein
cholesterol; HDL-c, high-density lipoprotein cholesterol; AIP, atherogenic index of plasma; LAP, lipid accumulation product; VAI, visceral adiposity index; SBP, systolic blood pressure; DBP, diastolic
blood pressure; B, unstandardized coefficient; S.E., standard error.
†Adjusted for age, sex, smoking, physical activity level, and BMI.
P-values<0.05 were considered significant.
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logarithmic transformation to the result of dividing the plasma TG

value by the plasma HDL value, has recently been discovered to be a

reliable indicator of the risk of atherosclerosis and CVD (61). In our

study, AIP value in the case group was 0.61 ± 0.08 and in control

group was 0.58 ± 0.08, which was significantly different. It has been

reported in some previous studies that AIP value between 0.1–0.24

shows medium cardiac risk (62). Wu et al. were reported that AIP was

an independent predictor of CAD (63). Compared to LDL-C or TC,

AIP has been found to be a more helpful indicator of atherogenicity

and CVD risk (64). Because vitamin D signaling reduces the

expression of TNF-alpha, IL-6, IL-1, and IL-8 in isolated blood

monocytes, it may have an impact on the pathogenesis of

atherosclerosis (65, 66). By increasing nuclear factor kappa B (NF-

kB) activation, vitamin D insufficiency was found to hasten the

development of coronary artery disease in pigs, thereby

demonstrating the anti-inflammatory properties of vitamin D (67).

A characteristic of the development of atherosclerosis is the creation

of foam cells originating from macrophages (68). It has been reported

in previous studies that vitamin D can decrease cholesterol

accumulation in macrophages and LDL uptake in Atheromas (69).

Additionally, it alters the expression of tissue factor and

thrombomodulin in monocytes, which has an impact on platelet

aggregation and thrombogenic activity (70). In the Nakagawa et al.

study, 1,25(OH)2D decreased matrix metalloproteinase (MMP)-2

and MMP-9 expression in cell culture, potentially avoiding plaque

instability, luminal rupture, and thrombosis (71). Furthermore, 1,25

(OH)2D inhibited foam cell production in macrophages isolated from

patients with hypertension, diabetes, and obesity (72).

We also found that serum 25(OH)D levels showed significant

inverse correlations with serum RBP-4 and positive correlation with

omentin-1. In line with our findings, Dikker et al. found that omentin

concentration had a positive correlation with vitamin D levels among

the postmenopausal women (73). Also, Nazar et al. in another case

control study found a linear correlation between vitamin D status and

omentin-1 levels and also reported that vitamin D and omentin-1

deficiency maybe increase the risk of coronary artery disease (74). In

contrast with these findings, Zorlu et al. in a cross-sectional study

among the 77 female volunteers were reported that Omentin levels

correlated significantly and negatively with the vitamin D (25).

Omentin-1 is a 34-kDa, anti-inflammatory, circulating adipocytokine,

has been considered to have a significant role in endothelial

dysfunction, atherosclerosis and myocardial remodeling (75). It has

been reported that omentin-1 exert its anti-inflammatory effects by

suppressing some of the cytokines cascades and factors such as TNF-

alpha. Also, omentin-1 induce the production of activated B cells in

endothelial cells via nuclear factor kappa-light-chain. Moreover, the

protein kinase (5’AMP) that activated by Omentin-1 can suppress the

expression of vascular adhesion molecule E-selectin (74). Many

researchers found that the serum levels of RBP-4 are associated with

risk of metabolic syndrome (76, 77). Jialal and cols. reported that serum

RBP-4 concentration would be independent predictors of CVD in

diabetes (78).

Based on our knowledge, the present study is the first study that

evaluated the association between vitamin D status with several

cardiometabolic factors among the patients with MetS. The current
Frontiers in Endocrinology 07105
study had several strengths, including the evaluation of several

biochemical factors related to the risk of cardiovascular diseases,

strong methodology and controlling the covariates between case and

control. However, there were some limitations in the present study

that should be considered in interpreting the results. Firstly, because

of the study design, the cause-and-effect association will not be

possible. Second, although the sample size in this study is 195,

some potential associations between vitamin D and individual

biomarkers of MetS might have not surfaced. Higher sample size

might have discovered some additional relationships between vitamin

D and markers of MetS.
Conclusion

The results of the present study showed that participants with

vitamin D deficiency had higher concentration of some MetS and

CVD related biomarkers. Also, we found a significant association

between 25(OH)D status and some of the adipokines and atherogenic

indices in patients with MetS. Given the widespread vitamin D

deficiency among the Iranian participants specially women, it has

been suggested that fortification of some staple foods such as

vegetable oils or cereals and dairy products with this vitamin can be

appropriate therapeutic strategies to improve the vitamin D status in

society. More studies with a higher sample size, especially clinical

trials with strong methodology, are needed to re-evaluate the effect of

vitamin D supplementation on the factors investigated in this study.
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Atherogenic index of plasma: Novel predictive biomarker for cardiovascular illnesses.
Arch Med Res (2019) 50:285–94. doi: 10.1016/j.arcmed.2019.08.009

65. Kassi E, Adamopoulos C, Basdra EK, Papavassiliou AG. Role of vitamin d in
atherosclerosis. Circulation (2013) 128:2517–31. doi: 10.1161/CIRCULATIONAHA.
113.002654

66. Shrivastava AK, Singh HV, Raizada A, Singh SK. C-reactive protein, inflammation
and coronary heart disease. Egyptian Heart J (2015) 67:89–97. doi: 10.1016/
j.ehj.2014.11.005

67. Chen S, Swier VJ, Boosani CS, Radwan MM, Agrawal DK. Vitamin d deficiency
accelerates coronary artery disease progression in swine. Arteriosclerosis thrombosis Vasc
Biol (2016) 36:1651–9. doi: 10.1161/ATVBAHA.116.307586

68. Sharma G, She Z-G, Valenta DT, Stallcup WB, Smith JW. Scavenger receptor-
mediated targeting of macrophage foam cells in atherosclerotic plaque using
oligonucleotide-functionalized nanoparticles. Nano Life (2010) 1:207–14. doi: 10.1142/
S1793984410000183

69. Yin K, You Y, Swier V, Tang L, Radwan MM, Pandya AN, et al. Vitamin d protects
against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in
hypercholesterolemic swine. Arteriosclerosis thrombosis Vasc Biol (2015) 35:2432–42. doi:
10.1161/ATVBAHA.115.306132

70. Koyama T, Shibakura M, Ohsawa M, Kamiyama R, Hirosawa S. Anticoagulant
effects of 1a, 25-dihydroxyvitamin D3 on human myelogenous leukemia cells and
monocytes. Blood J Am Soc Hematol (1998) 92:160–7.

71. Nakagawa K, Sasaki Y, Kato S, Kubodera N, Okano T. 22-Oxa-1a, 25-
dihydroxyvitamin d 3 inhibits metastasis and angiogenesis in lung cancer.
Carcinogenesis (2005) 26:1044–54. doi: 10.1093/carcin/bgi049

72. Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B, et al. 1, 25 (OH) 2 vitamin d
inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients
with type 2 diabetes mellitus. Circulation (2009) 120:687–98. doi: 10.1161/
CIRCULATIONAHA.109.856070

73. Dikker O, Bekpinar S, Ozdemirler G, Uysal M, Vardar M, Atar S, et al. Evaluation
of the relation between omentin-1 and vitamin d in postmenopausal women with or
without osteoporosis. Exp Clin Endocrinol Diabetes (2018) 126:316–20. doi: 10.1055/s-
0043-120110

74. Nazar S, Zehra S, Azhar A. Association of single nucleotide missence
polymorphism Val109Asp of omentin-1 gene and coronary artery disease in Pakistani
population: Multicenter study. Pakistan J Med Sci (2017) 33:1128-1133. doi: 10.12669/
pjms.335.13110

75. Du Y, Ji Q, Cai L, Huang F, Lai Y, Liu Y, et al. Association between omentin-1
expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc
Diabetol (2016) 15:1–9. doi: 10.1186/s12933-016-0406-5

76. Park SE, Lee NS, Park JW, Rhee E-J, Lee W-Y, Oh K-W, et al. Association of
urinary RBP4 with insulin resistance, inflammation, and microalbuminuria. Eur J
Endocrinol (2014) 171:443–9. doi: 10.1530/EJE-14-0247

77. Wang L, Song J, Wang C, Lin P, Liang K, Sun Y, et al. Circulating levels of
betatrophin and irisin are not associated with pancreatic b-cell function in previously
diagnosed type 2 diabetes mellitus patients. J Diabetes Res (2016) 2016:261-273. doi:
10.1155/2016/2616539

78. Jialal I, Adams-Huet B, Duong F, Smith G. Relationship between retinol-binding
protein-4/adiponectin and leptin/adiponectin ratios with insulin resistance and
inflammation. Metab Syndrome Related Disord (2014) 12:227–30. doi: 10.1089/
met.2014.0013
frontiersin.org

https://doi.org/10.7570/jomes.2018.27.4.223
https://doi.org/10.1017/S0007114509992017
https://doi.org/10.1097/MD.0000000000014970
https://doi.org/10.1111/j.1464-5491.2012.03672.x
https://doi.org/10.3945/ajcn.112.050013
https://doi.org/10.1111/dme.12893
https://doi.org/10.1155/2012/634195
https://doi.org/10.1007/s11892-012-0358-4
https://doi.org/10.1016/j.diabres.2015.01.036
https://doi.org/10.1371/journal.pone.0165157
https://doi.org/10.1186/s12902-022-01043-1
https://doi.org/10.1080/03007995.2018.1552849
https://doi.org/10.1186/s12199-019-0841-5
https://doi.org/10.1186/s12199-019-0841-5
https://doi.org/10.1111/j.1365-2796.2010.02279.x
https://doi.org/10.1159/000341277
https://doi.org/10.1097/MD.0000000000003866
https://doi.org/10.1186/s12944-018-0828-z
https://doi.org/10.1016/j.arcmed.2019.08.009
https://doi.org/10.1161/CIRCULATIONAHA.113.002654
https://doi.org/10.1161/CIRCULATIONAHA.113.002654
https://doi.org/10.1016/j.ehj.2014.11.005
https://doi.org/10.1016/j.ehj.2014.11.005
https://doi.org/10.1161/ATVBAHA.116.307586
https://doi.org/10.1142/S1793984410000183
https://doi.org/10.1142/S1793984410000183
https://doi.org/10.1161/ATVBAHA.115.306132
https://doi.org/10.1093/carcin/bgi049
https://doi.org/10.1161/CIRCULATIONAHA.109.856070
https://doi.org/10.1161/CIRCULATIONAHA.109.856070
https://doi.org/10.1055/s-0043-120110
https://doi.org/10.1055/s-0043-120110
https://doi.org/10.12669/pjms.335.13110
https://doi.org/10.12669/pjms.335.13110
https://doi.org/10.1186/s12933-016-0406-5
https://doi.org/10.1530/EJE-14-0247
https://doi.org/10.1155/2016/2616539
https://doi.org/10.1089/met.2014.0013
https://doi.org/10.1089/met.2014.0013
https://doi.org/10.3389/fendo.2023.1080138
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Prasoon Agarwal,
National Bioinformatics Infrastructure
Sweden, Sweden

REVIEWED BY

SubbaRao V. Madhunapantula,
JSS Academy of Higher Education and
Research, India
Houcemeddine Othman,
University of the Witwatersrand,
South Africa
Shaimaa Hamza,
Kazan Federal University, Russia

*CORRESPONDENCE

Sangdun Choi

sangdunchoi@ajou.ac.kr

SPECIALTY SECTION

This article was submitted to
Systems Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 30 October 2022
ACCEPTED 20 February 2023

PUBLISHED 06 March 2023

CITATION

Pirzada RH, Ahmad B, Qayyum N and
Choi S (2023) Modeling structure–activity
relationships with machine learning to
identify GSK3-targeted small molecules as
potential COVID-19 therapeutics.
Front. Endocrinol. 14:1084327.
doi: 10.3389/fendo.2023.1084327

COPYRIGHT

© 2023 Pirzada, Ahmad, Qayyum and Choi.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 March 2023

DOI 10.3389/fendo.2023.1084327
Modeling structure–activity
relationships with machine
learning to identify GSK3-
targeted small molecules as
potential COVID-19 therapeutics

Rameez Hassan Pirzada1,2, Bilal Ahmad1, Naila Qayyum1

and Sangdun Choi1,2*

1Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
2S&K Therapeutics, Ajou University Campus Plaza, Suwon, Republic of Korea
Coronaviruses induce severe upper respiratory tract infections, which can spread

to the lungs. The nucleocapsid protein (N protein) plays an important role in

genome replication, transcription, and virion assembly in SARS-CoV-2, the virus

causing COVID-19, and in other coronaviruses. Glycogen synthase kinase 3

(GSK3) activation phosphorylates the viral N protein. To combat COVID-19 and

future coronavirus outbreaks, interference with the dependence of N protein on

GSK3 may be a viable strategy. Toward this end, this study aimed to construct

robust machine learning models to identify GSK3 inhibitors from Food and Drug

Administration–approved and investigational drug libraries using the quantitative

structure–activity relationship approach. A non-redundant dataset consisting of

495 and 3070 compounds for GSK3a and GSK3b, respectively, was acquired

from the ChEMBL database. Twelve sets of molecular descriptors were used to

define these inhibitors, and machine learning algorithms were selected using the

LazyPredict package. Histogram-based gradient boosting and light gradient

boosting machine algorithms were used to develop predictive models that

were evaluated based on the root mean square error and R-squared value.

Finally, the top two drugs (selinexor and ruboxistaurin) were selected for

molecular dynamics simulation based on the highest predicted activity

(negative log of the half-maximal inhibitory concentration, pIC50 value) to

further investigate the structural stability of the protein-ligand complexes. This

artificial intelligence-based virtual high-throughput screening approach is an

effective strategy for accelerating drug discovery and finding novel

pharmacological targets while reducing the cost and time.
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1 Introduction

Coronaviruses are a family of enveloped viruses known for their

ability to infect humans, typically leading to respiratory illnesses (1,

2). To address the current epidemic of the novel coronavirus SARS-

CoV-2 causing COVID-19, numerous approaches for virus

identification and infection prevention and treatment are required.

In this context, high-throughput screening has been performed to

identify bioactive compounds that inhibit SARS-CoV-2 replication

in tissue culture models (3–6). However, the mode of action and

clinical efficacy of these candidates remain to be fully characterized,

and additional targets need to be identified to further combat new

and emerging SARS-CoV-2 variants. Among other structural and

non-structural SARS-CoV-2 proteins, the nucleocapsid (N) protein

is an essential RNA-binding protein that plays a crucial role in viral

replication, transcription, and assembly (7–11). Inhibiting SARS-

CoV-2 transcription will be a crucial objective, along with

strengthening the immune response to the virus and reducing

cytokine release syndrome linked to severe cases of COVID-19.

Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase

signaling protein that plays a crucial role in a variety of biological

processes, and its aberrant activity has been associated with diabetes,

inflammation, and neurodegenerative and psychiatric disorders (12–

15). GSK3 has two structurally identical isoforms (a and b), which are
97% similar in their catalytic domains but differs in their N and C (16–

18). Both of these isoforms shows 98% of sequence identity (19). GSK3

(a and b) are required for the phosphorylation of SARS-CoV-2 N

protein, and its inhibition blocks SARS-CoV-2–mediated infection in

human lung epithelial tissues (16). In addition, knockout of GSK3a
and GSK3b validates that it is vital for N phosphorylation (16).

Inhibition of GSK3 can increase adaptive T cell and innate natural

killer responses of CD8+T cellswhile also inhibiting SARS-CoV-2 viral

replication (20). Moreover, GSK3 phosphorylates N proteins within

the arginine-serine (RS) region of the JHM strain of mouse hepatitis

virus (JHMV) and SARS-CoV, which caused the outbreak of severe

acute respiratory syndrome in 2002–2004 (9, 10, 21, 22).

Phosphorylation of the JHMV N protein is necessary for the

recruitment of the ATP-dependent RNA helicase DDX1 for the

transcription of long sub-genetic RNAs (10). The N protein from

infectious bronchitis virus (IBV) and SARS-CoV interact directly with

GSK3, and its knockdown was shown to disrupt the replication of IBV

in the Vero cell line (23, 24). Moreover, GSK3 inactivators inhibit the

coronavirus proteaseMpro (or 3C-like protease), which cleaves SARS-

CoV-2–encoded polyproteins (pp1a and pp1ab) required for viral

replication and transcription. Additionally, GSK3b was also identified

to control the autophagy pathway as it involves in the regulation of

transcription factor EB (TFEB) nuclear expression mediated via

mechanistic target of rapamycin complex 1 (mTORC1) dependent

manner (25, 26). It also modulates TFEB through the signaling

pathways of protein kinase C (PKC) and eukaryotic translation

initiation factor 4A-3 (eIF4A3) (27, 28). Furthermore, GSK3b-
induced phosphorylation of TFEB leads to its cytoplasmic retention

and contributes to the blockage of the lysosomal-mediated autophagy

pathway (29, 30). Autophagy plays a critical role in the degradation of

dysfunctional cytoplasmic organelles and infectious pathogens,
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whereas defective autophagy has been observed in SARS-CoV-2

pathogenesis (31, 32). An interplay between viral infection and

autophagy directs towards the development of an effective

therapeutic approach for COVID-19 (31, 33). Therefore, it is

reasonable to propose that inhibition of GSK3 using small-molecule

inhibitors would effectively block SARS-CoV-2 replication as found for

SARS-CoV-1.

Quantitative structure–activity relationship (QSAR) approaches

are increasingly being applied to aid in the preclinical development of

small-molecule drugs. QSAR models help predict the physicochemical

properties, biological activity, toxicity, chemical reactivity, and

metabolism of chemical compounds (34–36). The main goal of

QSAR analysis is to link a set of predictor variables (X) to the

response variable (Y). Techniques for linking X and Y and molecular

descriptors have received substantial research attention. In this context,

a key strategy in drug discovery is the development ofmachine learning

(ML) techniques to estimate drug-target interactions. QSAR

approaches employ a variety of linear and non-linear ML algorithms

to produce predictivemodels for ligand binding to a biological receptor.

The term “QSAR” refers to regressionmodels that establish quantitative

relationships betweenmolecules’ chemical structures and their physical,

chemical, or biological characteristics. ML techniques such as gradient

boosting, support vectormachines, partial least squares, artificial neural

networks, or linear regression use a set ofmolecular descriptors as input

data to predict chemical features.

We attempted to develop ML-based QSAR models that could

identify GSK3 inhibitors using the bioactivity data available in the

ChEMBL and PubChem databases. ML models were developed

using two algorithms, histogram-based gradient boosting (HGBM),

and light gradient boost machine (LGBM), to prospectively identify

GSK3 inhibitors from the Food and Drug Administration (FDA)–

approved drug library. The rationale behind selecting GSK3 as a

drug target is that most of the anti-viral therapies are primarily

designed to target the viral structure which however is frequently

associated with drawbacks such as drug resistance as a consequence

of viral mutation (37, 38). Here drug-oriented machine learning-

based repurposing approach was adopted based on the

physicochemical and pharmacological properties of both active

and inactive GSK3 inhibitors to build a model that can identify

already approved drugs against the selected target (GSK3).

Furthermore, this drug discovery strategy is highly efficient, saves

time, and cost and proves to be a prospective approach towards

finding already approved drugs against SARS-CoV-2 (39). Finally,

molecular dynamics (MD) simulation was performed to further

investigate the structural stability of the protein-ligand complexes.
2 Materials and methods

2.1 Data compilation and curation

The GSK3a (Target ID: CHEMBL2850) and GSK3b (Target ID:
CHEMBL262) datasets used in this study were extracted from the

ChEMBL database to generate ML models (40). These datasets are

composed of a diverse set of molecules that have been
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experimentally validated for their inhibitory activity against GSK3.

A schematic illustration of the ML-based QSAR and structural

dynamics workflow used in this study is shown in Figure 1. Initially,

the total number of collected compounds with various bioactivity

units, including IC50, Ki, EC50, and KD, were collected for GSK3a
and GSK3b, consisting of 587 and 3637 molecules, respectively. The

dataset was cleaned and preprocessed by applying the following

filters: first, compounds with undefined activity were discarded;
Frontiers in Endocrinology 03110
second, compounds containing salt or mixtures, along with

overlapping compounds, were removed. Furthermore, in this

study, the subset of bioactivity data obtained with IC50 as a unit

was investigated for both GSK3a and GSK3b, consisting of 495 and
3070 unique bioactive compounds, respectively. As the objective of

this study was to develop classification models of biologically active

compounds, the activity dataset was divided into active and inactive

compounds with IC50 thresholds of<1 and >10 mM, respectively,
FIGURE 1

Machine learning (ML)–based quantitative structure–activity relationship (QSAR) and structural dynamics analysis workflow. HGBM, histogram-based
gradient boosting ML model; LGBM, light gradient boosting ML model.
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whereas compounds with intermediate activity levels were not

considered. The selected compounds were filtered based on

Lipinski’s rule of five (RO5). Finally, after pre-and post-

processing, two sets of non-redundant and curated compounds

for GSK3 (a, b) were used for further investigation: 1885 active

compounds and 1679 inactive compounds. All of the collected

compounds were randomly segregated into a training set to

generate the QSAR classification model and a test set to validate

the model quality with a ratio of 80:20.
2.2 Molecular descriptors

A molecular descriptor is a mathematical (quantitative/or

qualitative) representation of a molecule that is encoded with

various sources of chemical information, which is converted and

coded to deal with the biological, chemical, and pharmacological

features of different small molecules that are used for model

construction (41, 42). To develop robust non-linear binary QSAR

classification models with better performance, various descriptors

such as electronic, topological, geometrical, and spatial descriptors

were computed for each molecule in the dataset. We used PaDEL-

Descriptor software for molecular descriptor calculation based on a

Python code to calculate 12 sets of molecular descriptors, as shown

in Table 1 (43). The descriptors belong to nine different types: CDK

fingerprint, CDK extended, CDK graph only, Klekota-Roth,

AtomPairs 2D, MACCS, E-state, PubChem, and Substructure.

These descriptor types can be further divided into two versions:

binary and count versions. In this context, the descriptors Klekota-

Roth, AtomPairs 2D, and Substructure belong to both versions and

provide a detailed description of the substructural components of

the studied molecules. The remaining descriptors (n = 9) belong to
Frontiers in Endocrinology 04111
the binary version. We also computed Lipinski’s RO5 molecular

descriptors to be used as classification parameters for the

identification of drug-like molecules.
2.3 Data filtering

Molecularfingerprints with redundant or constant variableswere

discarded to remove any inherent biases that could negatively impact

the resulting model. Not all molecular descriptors are required to

represent the features of inhibitors and non-inhibitors.Moreover, the

model learns the biases in the data and continues to amplify them,

which could lead to overfitting. A selection criterion is required to

discard irrelevant descriptors that can measure the relevance of a

specific descriptor to the output of any classifier (44). In this context,

the VarianceThreshold class from Scikit-learn was implemented to

remove the low-variance features with a threshold value higher than

0.1, and the remaining features were used for further analysis.
2.4 Data splitting and test selection

Following data filtering, the GSK3 (a, b) datasets were split

using the Kennard–Stone algorithm, which separated the entire

dataset into internal and external sets with a ratio of 80% and 20%,

respectively. The internal datasets were used for training the ML

model, and its capability to extrapolate to unknown molecules was

simulated by analysis against the external dataset. Finally, the

training set was used to estimate the performance of the model

using a five-fold cross-validation scheme. The correlation plots for

the experimental versus predicted pIC50 values for GSK3 inhibition

in the training and test sets are shown in Figure 2.
TABLE 1 Calculated using the PaDEL-descriptor, 12 sets of fingerprint descriptors.

Fingerprint Abbreviation Number
(bits)

Fingerprint Pattern Type Description

CDK FP 1024 Hash fingerprints Fingerprint of length 1024

CDK extended ExtendedFP 1024 Hash fingerprints Adds fingerprint information about ring features.

CDK graph only GraphOnlyFP 1024 Hash fingerprints A distinct approach that considers connectivity and ignores bond
order

MACCS MaccsFP 166 Structural features Chemical characteristics represented in binary using MACCS keys

Substructure Substructure 307 Structural features SMARTS patterns for functional groups are present.

Substructure
count

nSubstructure 307 Structural features count SMARTS patterns counted for functional groups

2D atom pairs
Count

nAP2DC 780 Structural features count Atom pair count at different topological distances

2D atom pairs AP2D 780 Structural features Atom pair presence at different topological distances

PubChem PubChemFP 881 Structural features Binary representation of the PubChem-defined substructures

Klekota–Roth KRFP 4860 Structural features Existence of chemical substructures

Klekota–Roth
Count

nKRFP 4860 Structural features count Substructure count for chemicals

E-state EstateFP 79 Structural features Types of atoms with respect to electrotopology
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Additionally, the effectiveness of the ML model was evaluated

using 20 compounds that were identified as inhibitors of this target

in numerous previous studies (45–47). The model performance

measures and the activity threshold for this external dataset were

compared with the experimental IC50 values, as shown in the

Supplementary Tables S1, S2.
2.5 ML-based QSAR classification

The QSAR classification model can represent molecular

descriptors as a relationship between the dependent variable

(IC50) and independent variables (molecular descriptors), each

demonstrating the category of the corresponding sample (GSK3

inhibitory activity). In structure–activity relationships, the

association between the corresponding datasets is complex and

non-linear; thus, a QSAR modeling–based approach was used

because it has previously shown outstanding performance in this

regard (48). In this context, ML algorithms can cluster instances or

observations present in data into classes. A variety of ML algorithms

have been employed to construct QSAR classification models from

dataset activity labels and molecular descriptors. For example,

support vector machines, naïve Bayes classifiers, neural networks,

rule-based classifiers, and decision trees are various ML-based

techniques used to elucidate the classification problem. In this

study, the LazyPredict package was employed using a Python

script for model selection, which generates a variety of ML

algorithms and authenticates the best-performing algorithm, as

shown in Supplementary Table S3 (49). The top models were

selected based on the R-squared and root mean squared error

(RMSE) values to train our regression model to precisely predict
Frontiers in Endocrinology 05112
the activity of GSK3 inhibitors. These ML algorithms were

implemented using Python software. Subsequently, to determine

the optimal values, hyperparameter tuning of the selected models

was performed using GridSearchCV implemented in Scikit-learn.

The list of the best parameters selected for hyperparameter tuning is

presented in Table 2.
2.6 Statistical assessment for model
validation/performance

Model validation is a crucial step to ensure that a fitted model

can accurately predict responses to unknown data. We used two

statistical parameters, the Pearson correlation coefficient (r) and

RMSE, to assess the performance of the QSAR models. The Pearson

correlation coefficient is a common statistic used to describe the

strength of the relationship between two variables of interest, which

ranges from –1 to +1, with negative values denoting a negative

correlation between two variables and positive values indicating a

positive correlation. The relative error of the prediction model is

frequently examined using the RMSE.

The Y-scrambling test, external validation, and 10-fold cross-

validation were used to confirm the predictive capacity of the QSAR

model. The 10-fold cross-validation method does not use the entire

dataset to create a predictive model. As an alternative, it separates

the data into training and testing datasets, enabling the model to be

tested on the testing dataset using the training dataset as a basis. By

repeating the 10-fold validation, the average accuracy was used to

examine the performance of the prediction model. To further assess

the performance and prediction accuracy of the model on external/

benchmarking datasets, mean absolute percentage error (MAPE)
A B

FIGURE 2

Correlation plots of experimental vs. predicted pIC50 values for GSK3 inhibition to the training and test set. (A) Histogram-based gradient boosting
(HGBM) model. (B) Light gradient boosted machine (LGBM) model.
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was evaluated, a smaller value indicates better model performance.

 MAPE =
1
N o

N

K=1

jXk − X̂ k  j
Xk

 �   100%

Xk is the actual value, X̂k is the predicted value of the model, |Xk

−X̂k | represents the absolute error, and N is the number of

incidence data points.
2.7 Docking and MD simulation

The selected FDA-approved and natural product compounds

were selected based on the predicted IC50 values produced by our

QSARmodel and docked to the active-site of GSK3 using a protocol

described in our previous report (50). From the top 10 docked

conformations the best pose was selected based on the MOE

docking score (S), protein-ligand interaction fingerprint (PLIF)

calculation, including hydrogen and ionic interactions. These

selected best poses of selinexor, ruboxistaurin alongwith GSK3

apo and PF-04802367 (PDB ID: 5K5N) were subjected to MD

simulation (200 ns) using GROMACS. Furthermore, the dynamic

behavior and stability of each system was validated. The detailed

methodology adopted here can be found in our previous study (50).
2.8 Binding free energy calculations

Molecular mechanics Poisson–Boltzmann surface area

(MMPBSA) method was used to measure the binding free energy

between GSK3 and ligand complexes. The Poisson-Boltzmann

equation was used to determine the effects of the solvent’s polar

and nonpolar components on the free energy.

DGbind=Gcomplex − (Greceptor + Gligand)

DGbind=DEMM   +  DDGsol − TDS

In the above equation, DGbind represents binding free energy,

DEMM is the intermolecular energy difference, DDGsol shows the
difference in solvation energy, whereas T and DS stands for absolute
temperature and change in entropy. The study was performed using

the gmx_MMPBSA (51). Frames were extracted throughout the
Frontiers in Endocrinology 06113
trajectory with an interval of 30-frames. The detailed protocol is

described in our previous study (52).
3 Results and discussion

The computational workflow for elucidating the underlying

basis of the bioactivity of GSK3 is summarized in Figure 1. To

gain a deeper understanding of the dataset, a standard chemical

space analysis was performed on the investigated compounds. The

preprocessed dataset was utilized to create predictive classification

and regression models using the HGBM and LGBM models after

rigorous data curation. Subsequently, hyperparameter optimization

was performed to determine the optimal parameter configuration of

the model. The best-performing model was used to evaluate the

predictive capability after training the selected algorithms to gain

biological insight. Finally, MD simulations were performed on

selected FDA-approved drugs based on the pIC50 value to further

assess the structural dynamics and stability of the protein–

drug complexes.
3.1 Exploratory chemical space analysis of
GSK3 inhibitors

A set of 3,565 compounds tested against GSK3 (a, b) were

extracted from public databases. This dataset included seven

bioassay formats characterized using the BioAssays Ontology

number (53). However, 95% of the dataset was linked to the same

bioassay (BAO_0000357) connected to the single-protein affinity

format, which could infer the homogeneity of the dataset.

Chemical space analysis of GSK3 inhibitors was explored using

Lipinski’s RO5 descriptors to gain an understanding of structure–

activity relationships. Chemical space analysis can provide

considerable understanding of the general characteristics of

compounds that define their inhibitory activity. Exploratory data

analysis was performed using RO5 descriptors, including the

number of hydrogen bond acceptors (nHBAcc), number of

hydrogen bond donors (nHBDon), molecular weight (MW), and

octanol/water partition coefficient (LogP). The MW of a chemical

compound is often used to compute its size, as it facilitates the

analysis and prediction of the appropriate size of a drug, which is

critical for its transport across a lipid membrane (54). Molecular

hydrophobicity (lipophilicity) is usually computed as LogP, which is

an important estimator of chemical membrane penetration and

permeability (55). Moreover, nHBDon and nHBAcc were

computed to estimate the hydrogen bond-forming capacity of a

chemical compound.

Initially, the analysis was carried out by visualizing the

distribution of active and inactive compounds as determined by

the scatter plot of MW vs. LogP, followed by a comparative analysis

of active and inactive compounds as a function of Lipinski’s RO5

descriptors (56).

Figure 3 shows the chemical space distribution of the training

set in a scatter plot of the MW versus the logarithm of the LogP. The

MW and LogP of the active and inactive compounds showed almost
TABLE 2 The best parameters of machine learning algorithms following
parameter adjustment using GridSearchCV.

Machine learning
methods

Tuning
parameter

Model perfor-
mance R2

HGBM n_estimators: 800
random_state: 100
learning_rate: 0.1
subsample: 1.0

0.72

LGBM n_estimators: 100
max_depth: 9
learning_rate: 0.1
gamma: 0.1

0.70
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identical distributions, with the majority of the compounds having

an MW falling between approximately 200 and 600 Da and a LogP

falling between 0 and 7. Most oral drugs are more likely to have

optimal physicochemical and absorption, distribution, metabolism,

and excretion properties between 1 and 4 (57, 58), which is also

evident in Figure 3. Furthermore, Figure 3 shows that MW and

ALogP cannot be used to discriminate between active and inactive

compounds because of their shared chemical space.

Figure 4A illustrates the total distribution of the compounds. As

can be inferred from the median values in the box plot, active

compounds tended to have a slightly higher MW of approximately

380 Da than that inactive compounds, which was approximately

350 Da. Similarly, inactive compounds had LogP values of

approximately 3.8, which was higher than that of active

compounds approximately 3.5 (Figure 4B). The distribution of

nHBAcc, as deduced from the median, shows that the active

compounds have a higher number of hydrogen bond acceptors (n

≈ 7) than inactive compounds (n ≈ 5) (Figure 4C). However, no

significant differences were observed between the active and inactive

compounds for nHBDon (Figure 4D). Therefore, it is difficult to

predict the activity of inhibitors using simple molecular descriptors.
3.2 Model construction for the prediction
of GSK3 kinase inhibitors using
ensemble boosting

After the molecular descriptor calculation (Table 1), the

LazyPredict package was used to acquire robust ML models, as

described in Section 2.5. The best-performing models, HGBM and

LGBM, with an R-squared value of 0.53 and 0.52 were used for

model construction to better target the GSK3 kinase protein.The

performance of the model was evaluated using the R-squared and

RMSE metrics, as shown in Supplementary Table S3. Boosting

algorithms (HGBM and LGBM) are a type of ensemble learning

technique that gradually add tree models to fix the prediction error

that already exists in the ensemble (59). To evaluate the

performance of our ML models, an external test set using 20

known GSK3 inhibitors was used (45–47, 60). Because these

external test set compounds were not considered when creating

the models, the resulting performance showed the ability of the ML

models to precisely predict the inhibitory activity of already known

GSK-3 kinase inhibitors, as shown in Supplementary Tables S1 and

S2. The performance of the predictive ML model can also be seen in

the correlation plot between predicted values vs. experimental

values, as shown in Figure 5. Additionally, the overlapping GSK3

a, and b compounds in the benchmarking dataset of already known

inhibitors are shown on Figure 6. The model evaluation metrics,

MAPE was used to validate the prediction accuracy in

benchmarking datasets (Figure 7). Both the HGBM and LGBM

showed relatively good mean absolute percentage error scores of

19.1% and 22.6%, respectively, which represents the percentage

difference between the predicted and experimental values. In

addition to it, we compared the predictive performance of our

QSAR model with another dataset (Supplementary Table S4). The

data shows that compounds with higher activity in our model was
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comparable to the reported model (60).The results in Table 2

indicate that both models exhibited good overall prediction

accuracy; however, HGBM was the more accurate model.

This QSAR-based model was then used to predict the inhibitory

activity of FDA-approved drugs against GSK3 kinase. Each

compound was assigned a pIC50 value; higher values indicate that

the drug is effective at lower concentrations against GSK3 kinase

and therefore will show lower systemic toxicity (61).

The top 10 FDA-approved drugs based on pIC50 values from

both the HGBM and LGBM models are presented in Tables 3, 4.

The drugs with the best-predicted pIC50 values produced by our

model were selinexor and ruboxistaurin hydrochloride.

Selinexor is an FDA-approved drug for the treatment of multiple

myeloma that binds to and inhibits exportin-1 (XPO) and is being

evaluated against SARS-CoV-2 in a phase-2 clinical trial

(NCT04349098) (62). XPO-1 protein plays an important role in

the export of RNA transcripts and nuclear proteins having leucine-

rich nuclear export signals (NES) (47, 60–62). However, blocking

XPO-1 with its selective inhibitors causes the nuclear accumulation

of transcription factor EB (TFEB) and results in autophagy

enhancement in human cells and model organisms (33). Because

of this, it has been demonstrated that selinexor inhibits the spread of

SARS-CoV-2 by preventing the movement of nuclear proteins into

the cytoplasm (63, 64). Similar phenomena have been observedwhen

GSK3 is inhibited; this causes translocation of TFEB into the nucleus,

where it controls the transcription of around 400 genes involved in

autophagy, which eliminates the invading viruses like SARS-CoV-2

(65–67). The current study indicates additional, mechanisms

through which selinexor could prevent SARS-CoV-2 replication,

such as by preventing the phosphorylation of the virally encoded N

protein. In addition to the drug’s effect on autophagy (16, 20).
FIGURE 3

Chemical space of the training set. The molecular weight (MW) on
the X-axis and the logarithm of the octanol/water partition
coefficient (LogP) on the Y-axis serve as the parameters for the
chemical space. Red and green spots, respectively, represent active
and inactive substances.
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Ruboxistaurin is an investigational drug that targets protein

kinase C beta for the treatment of diabetic retinopathy. Protein

kinase C (PKC) is a serine/threonine protein kinase that has been

identified to modulate autophagy (68). Autophagy is an innate

immune response to kill and degrade invading viruses (69). In this

context, one such mechanism is the activation of PKC-a/d induced
by GSK3b inhibition which leads to the phosphorylation repression

of TFEB and its nuclear localization and activation of autophagy

pathways (30, 70). The nuclear localization of TFEB induced by

PKC-a/d occurs viaGSK3b in mTORC1-independent manner (30).

Additionally, an orally active PKC inhibitor ruboxistaurin proves to

be active against SARS-CoV-2 as it inhibits NETosis, and has passed

phase 3 for other indications (71). Previous studies have also shown

that ruboxistaurin was active against GSK3a and GSK3b with IC50

values of 695.9 nM and 97.3 nM, respectively (60). This data

indicates that ruboxistaurin inhibits both PKC and GSK3 which

supports our QSAR model prediction.

In conclusion, the top predicted medications (selinexor,

ruboxistaurin) by our model also correlate with the data that

revealed their effectiveness against SARS-CoV-2 as shown above,

and GSK3 inhibition seems to play a significant part in the activity of

these drugs. Furthermore, the drugs with the highest predicted IC50
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including selinexor and ruboxistaurin indicate that the molecular

fingerprints of these compounds exist in the compounds used to

develop the training set of GSK3 inhibitors. In addition, we validate

the performance of our MLmodel from a structural viewpoint, these

two drugs were subjected to MD simulation.
3.3 Atomic-level characterization and
binding free energy calculations

Characterization of the protein-ligand complex is essential for

predicting selective GSK3b inhibitors. The top two FDA-approved

drugs (selinexor and ruboxistaurin) were selected for molecular

dynamics (MD) simulation based on the highest predicted activity

[according to the negative log of the half-maximal inhibitory

concentration (pIC50) value] to further investigate the structural

stability of the protein-ligand complexes. The three-dimensional

structure (PDB ID: 5K5N) of GSK3b was retrieved from the Protein

DataBank and used to generate multiple docking poses to select the

best conformer for the MD simulation.

All GSK3-apo, PF-04802367 and ligand-bound complexes were

docked and subjected to MD simulations in an aqueous
A B

DC

FIGURE 4

Drug-likeness evaluation. Box plot of GSK3 inhibitors using Lipinski’s rule of five descriptors. (A) molecular weight (B) logP (C) hydrogen bond
acceptors and (D) hydrogen bond donors.
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environment for 200 nano second (ns) to discern conformational

variations and dynamic stability. The dynamic nature of the GSK3b
protein and the test drugs (selinexor, ruboxistaurin, and PF-

04802367) was explored separately using MD simulation

trajectories. To explore the average displacement of the atoms,

the root mean squared deviation (RMSD) of the complexes was

evaluated and contrasted with the RMSD of the GSK3-apo and PF-

04802367 (control) bound structures, as shown in Figure 8A. The

GSK3b–ruboxistaurin complex showed a stable trajectory with

slight variations throughout the simulation, as the RMSD value

ranged from 0 to 2.4 Å. However, from 100 ns to 150 ns, the RMSD

showed an incremental deviation from 2.5 to 2.7 Å before attaining

the final trajectory of 2.4 Å. In the GSK3–selinexor complex, a

similar RMSD trajectory profile was observed from 0 to 2.1, and
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from 50 to 150 ns, with an incremental deviation (2 to 2.4 Å) before

reaching 2.1. The RMSD plots for GSK3–PF-04802367 (control

drug) showed a steady incremental deviation with the trajectory

originating from 0 to 2.8 Å, along with some acceptable variations

during different time intervals. The RMSD profile of the apo

structure showed a pattern similar to that of GSK3b in complexes

with PF-04802367 and ruboxistaurin. However, acceptable

deviations were observed in complexes with selinexor compared

with those of the apo-form. These findings suggest that after a few

conformational changes, the protein-ligand complex achieved a

stable conformation during the simulations.

Additionally, to analyze the protein flexibility in the ligand-

bound complexes, root mean square fluctuation (RMSF) values

were calculated, as shown in Figure 8B. The RMSF of the residues

measures the residue-level structural fluctuation of a specific

segment of the protein that deviates from its mean structure,

which often occurs upon ligand binding. The variations observed

for each residue represent the degree of flexibility they attained. The

ATP-binding site of GSK3b is present at the interface of the N and

C termini and consists of Pro136, Leu132, Asp133, Tyr134, and

Val135; however, the hydrophobic side chain of Arg141 forms

another segment of the pocket (72). In the case of the GSK3b–apo
structure, no significant fluctuations occurred in the binding site

residues such as Pro136 (0.733 Å), Asp133 (0.633 Å), Tyr134 (0.637

Å), Leu132 (0.806 Å), and Val135 (0.87 Å). In the GSK3–

PF04802367 complex, the RMSF values of residues Pro136 (0.614

Å), Leu132 (0.681 Å), Tyr134 (0.584 Å), Val135 (0.547 Å), and

Arg141 (0.77 Å) were lower than those found for the apo structure.

Similarly, in the GSK3b–selinexor complex, all active-site residues

fluctuated less than in the apo structure, particularly residues

Pro136 (0.64 Å), Leu132 (0.715 Å), Asp133 (0.593 Å), Tyr134

(0.589 Å), Val135 (0.698 Å), and Arg141 (0.797 Å). The fluctuation

patterns of residues Asp133 (0.609 Å) and Tyr134 (0.622 Å) in the

GSK3–ruboxistaurin complex were similar to those of the apo

structure; however, slightly higher fluctuations were observed for
A B

FIGURE 5

Correlation plots of experimental vs. predicted pIC50 values for GSK3 inhibition to the benchmarking dataset. (A) Histogram-based gradient boosting
(HGBM) model. (B) Light gradient boosted machine (LGBM) model.
FIGURE 6

Venn diagrams visualizing the overlap of known GSK3 (a, b)
inhibitors retrieved from the ChEMBL database. In total
benchmarking dataset has 20 compounds out of which 8 are
specific to GSK3b, 11 are to both GSK3 (a,/b) and 1 is to GSKa
specific.
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FIGURE 7

Comparison of mean absolute percentage error of the external test set. (A) HGBM and (B) LGBM in the context of prediction accuracy.
TABLE 3 GSK3 inhibition activity prediction by HGBM.

Investigational and FDA Drugs PubChem ID pIC50

1 Selinexor 71481097 9.4125746

2 Raltegravir potassium 23668479 9.175947616

3 Dasabuvir 56640146 9.001651838

4 Kuvan (sapropterin) 135409471 8.848548463

5 Deferiprone 2972 8.171706964

6 Propylthiouracil 657298 8.399683851

7 Trelagliptin 15983988 8.202770399

8 Urapidil 5639 7.831437785

9 Ruboxistaurin 9870785 7.419813853

10 Methylcobalamin 10898559 6.098851787
F
rontiers in Endocrinology
 10117
 fr
pIC50 is the negative log of the IC50.
Histogram-based gradient boosting machine learning (HGBM).
TABLE 4 GSK3 inhibition activity prediction by LGBM.

Investigational and FDA Drugs PubChem ID pIC50

1 Ruboxistaurin 9870785 7.448867965

2 Methylcobalamin 10898559 7.229432941

3 Cefpirome 5479539 7.050002608

4 Allopurinol 135401907 7.030920707

5 Simeprevir 24873435 7.007010834

6 Neratinib 9915743 7.000923602

7 Selinexor 71481097 6.96201482

8 Lafutidine 5282136 6.882663164

9 Enoxacin 3229 6.831823482

10 Cefodizime 5361871 6.828905555
pIC50 is the negative log of the IC50.
Light gradient boosting machine learning algorithm (LGBM).
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residues Pro136 (0.938 Å) and Arg141 (0.959 Å). The GSK3–ligand

interaction reduced the overall fluctuations of the protein; the

RMSF value of the selected FDA drugs (selinexor and

ruboxistaurin) was similar to that of the control drug PF-04802367.

To further characterize the compactness of the protein in the

binding of the ligand at the ATP site of GSK3, the radius of gyration

(Rg) was determined, as shown in Figure 8C. The impact of ligand

binding on the Rg of the GSK3b protein was calculated and

compared with that of the apo-GSK3b protein structure. The Rg

of the apo and ligand-bound complexes remained between 21.5 and

21.7 Å, which indicated their compactness and sustained stability.

To analyze the formation of hydrogen bonds throughout the

MD simulation, the gmx hbond program from the GROMACS

package was used. As shown in Figure 8D, the average hydrogen

bond for the control (PF-04802367) was about 1.5; however, an

increase in the number of hydrogen bonds from 1.5 to 3.9 was

observed. On the other hand, the average hydrogen bond for

selinexor and ruboxistaurin was about 1.3 and 1.6. However,

during the early steps (0 to 66 ns) of MD simulation, a low

number of hydrogen bonds was observed in selinexor, which was

about 0.6. Overall, the hydrogen bond formation remains intact

throughout the simulations, indicating that the ligands were present

in the binding pocket throughout the process.

The MM-PBSA technique was used to calculate binding free

energy to measure the strength of receptor-ligand binding. The
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change in binding free energy upon binding of ruboxistaurin,

selinexor, and PF-04802367 (control) with GSK3 receptors is

shown in Figure 9. Here, GSK3-drugs (ruboxistaurin, selinexor)

displayed acceptable binding free energy, which is comparable with

a positive control (PF-04802367). The cumulative binding energy

(Gbinding) of selinexor and ruboxistaurin is -8509.006 56.335 kcal/

mol and -8491.473 57.039 kcal/mol, whereas PF-04802367 is

-8681.320 58.8627 kcal/mol. However, the total binding energy of

PF-04802367 is slightly higher but comparable with that of

selinexor and ruboxistaurin, which clearly reflects the robustness

of our ML model in predicting the drug candidates that could bind

tightly to GSK3.
4 Conclusion

The COVID-19 pandemic caused by the new coronavirus,

SARS-CoV-2, poses a serious threat to the global health system.

We employed ML-based predictive modeling to identify FDA-

approved and clinical candidate drugs inhibiting GSK3, as this

kinase plays a critical role in the phosphorylation of the SARS-CoV-

2 N protein that is required for viral replication (16, 20).

Furthermore, among the FDA-approved compound libraries,

leads with good pIC50 values were subjected to MD simulations

to investigate protein–drug interactions in a dynamic environment.
A B

DC

FIGURE 8

Atomic level characterization. Molecular docking simulation results on apo-GSK3b and complexes of GSK3b with PF04802367, selinexor, and
ruboxistaurin. (A) Root mean square deviation (RMSD) of the apo-form of GSK3b and the complexes; (B) root mean square fluctuations (RMSFs) of
the apo-form of GSK3b and the complexes; (C) the radius of gyration (Rg) of the apo-form of GSK3b and the complexes; (D) Number of hydrogen
bonds in the three complexes; PF-04802367, selinexor and ruboxistaurin. (ns:nanoseconds).
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Recently, one of the identified drugs, selinexor, was also found to be

effective against SARS-CoV-2. It is currently in the clinical trial

recruitment phase (NCT04534725) for COVID-19 treatment.

We anticipate that the current research, which combines data

curation from relevant databases with ML-based predictive

algorithms to identify possible therapeutic candidates for COVID-

19, could complement ongoing antiviral research efforts. These

artificial intelligence–based pipelines may help in the design of

preclinical laboratory studies, future clinical trials, and drug

discovery. These approaches may also help to improve our

understanding of other diseases and related biological phenomena.

COVID-19 and potential future outbreaks of coronaviruses may be

treatable because of the interference with the conserved dependence

of the N protein on GSK3 and its potential role in the regulation

of autophagy.
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Objectives: Obesity measurement indexes have certain screening value for

metabolic diseases. To investigate associations between metabolic associated

fatty liver disease (MAFLD) and obesity measurement indexes, including

traditional indexes (BMI, WC, WHtR) and new indexes (ABSI, BRI, VAI, LAP), and

assess their screening ability.

Methods: 12,658 subjects aged 18-75 at the Health Center of a Class III Grade A

Hospital were included, who were divided into MAFLD and non-MAFLD groups.

Spearman’s rank correlation was used to study the correlation between MAFLD

and obesity measurement indexes. Receiver operating characteristic (ROC)

curves were used to calculate the area under the curve (AUC) to evaluate their

screening accuracy.

Results: MAFLD had strong correlation with traditional BMI and new index LAP.

ROC analysis showed that BMI had the highest AUC (0.89), followed by LAP

(0.87). Stratification by BMI, LAP had the highest AUC (0.90) for MAFLD in

population without obesity (BMI< 23kg/m2), and its optimal cutoff value was

20.75, with a sensitivity and specificity of 85.9% and 79.0%, respectively.

Conclusions:We proposed a two-step screening strategy for MAFLD, combining

BMI and LAP, and defined a high-risk population for MAFLD as follows: 1) BMI ≥

23 kg/m2; and 2) BMI< 23 kg/m2 and LAP ≥ 20.75.

KEYWORDS

MAFLD, obesity measurement index, body mass index, lipid accumulation product,
screening ability, screening strategy
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common

liver disease, with a worldwide prevalence of 25%. NAFLD is

estimated to affect approximately 173-310 million (12.5-22.4%)

people in China. The prevalence of NAFLD in China has

increased from 17% (2003) to 22.4% (2012), which is comparable

to that in the US (24.13%), Europe (23.71%) and Japan (25%)

according to the latest global burden of liver disease data in 2019. In

general, NAFLD has become the primary cause of liver disease

burden in many countries and regions (1). NAFLD is a term used to

describe metabolic dysfunction associated with liver disease and is

closely related to genetic susceptibility, insulin resistance, type 2

diabetes (T2DM), metabolic syndrome (MetS), cardiovascular

disease and so on. NAFLD can lead to death from not only liver

diseases such as liver cirrhosis and hepatic carcinoma but also

cardiovascular disease and extrahepatic malignant carcinoma,

which seriously threatens human health and places a very large

economic burden on society (2). Given that metabolic dysfunction

better represents the heterogeneity of NAFLD. In early 2020, a panel

of international experts from many countries and regions and the

Asian-Pacific Association for the study of the Liver (APASL)

proposed renaming NAFLD to metabolic associated fatty liver

disease (MAFLD) and developed new diagnostic criteria for

MAFLD. The criteria are based on evidence of hepatic steatosis,

in addition to one of the following three criteria, namely,

overweight/obesity, presence of T2DM, or evidence of metabolic

dysregulation (3–5).

Human morphologic or obesity measurement indexes can

reflect the degree of obesity and have certain screening value for

metabolic diseases (6–9). In addition to body mass index (BMI),

there are many other obesity measurement indexes, including

traditional indexes such as waist circumference (WC), waist-hip

ratio (WHR) and waist-to-height ratio (WHtR), as well as new

indexes that have emerged in recent years, such as a body shape

index (ABSI), body roundness index (BRI), visceral fat index (VAI)

and lipid accumulation product (LAP) (10–13). In recent years, a

small number of studies have explored the correlation between

obesity measurement indexes and NAFLD, demonstrating the

screening value of the new obesity measurement indexes for

NAFLD (14, 15). However, since the concept of MAFLD was

proposed in 2020, there have been few studies on the correlation

between the obesity measurement index and MAFLD. The

screening value of these indexes for MAFLD is unclear and
Abbreviations: MAFLD, metabolic associated fatty liver disease; NAFLD, non-

alcoholic fatty liver disease; T2DM, type 2 diabetes mellitus; BMI, body mass

index; WC, waist circumference; WHtR, waist-to-height ratio; ABSI, a body

shape index; BRI, body roundness index; VAI, visceral fat index; LAP, lipid

accumulation product; SBP, systolic blood pressure; DBP, diastolic blood

pressure; tCHO, total cholesterol; LDL-C, low-density lipoprotein cholesterol;

HDL-C, high-density lipoprotein cholesterol; TGs, triglycerides; FPG, fasting

plasma glucose; HOMA-IR, homeostasis model assessment of insulin resistance

index; hs-CRP, high-sensitivity C-reactive protein; ROC, receiver operating

characteristics curve; AUC, area under the ROC.
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deserves further exploration. Therefore, this study mainly utilized

adult health examination big data from the Physical Examination

and Health Center of Class III Grade A Hospital in a city in

northeast China to explore the correlation between the above

obesity measurement indexes and MAFLD and to compare the

screening abilities of these indexes for MAFLD.
2 Methods

2.1 Study design and subjects

This study was a retrospective study. Physical examination data

derived from the International Physical Examination and Health

Center of a Class III Grade A Hospital (Class III Grade A hospitals

represent thehighest level of classification inmainlandChina.They are

capable of providing high-level medical and health services, and they

also undertake higher education and scientific research tasks within

their local region and surrounding areas) in a city in northeast China

from January to December 2021 were collected. The inclusion criteria

were as follows: 1) adults aged 18-75 years and 2) subjects whose

physical examination included general physical examination,

laboratory tests and abdominal ultrasound. General physical

examination included height, weight, waist circumference (WC),

systolic blood pressure (SBP) and diastolic blood pressure (DBP).

Laboratory tests included total cholesterol (tCHO), low-density

lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol

(HDL-C), triglycerides (TGs) and fasting plasma glucose (FPG). The

exclusion criteria were as follows: 1) patients with a history of liver

surgery, liver cirrhosis, liver congestion, liver parasitosis, polycystic

liver, portal system diseases, unclear nature of occupying lesions of the

liver and other serious diseases of gallbladder, bile duct and pancreas;

2) subjects whose liver ultrasound diagnosis conclusion was not clear;

3) subjects who had incomplete physical examination data or error

data; and 4) subjects who could not be accurately diagnosed with

MAFLDaccording to existing physical examination data due to lack of

homeostasismodel assessmentof insulin resistance index (HOMA-IR)

and high-sensitivity C-reactive protein (hs-CRP), which were not

routinely carried out in the Health Center. According to the

inclusion and exclusion criteria listed above, a total of 12,658

subjects were included in this study (Supplementary Material_Flow

Chart). The subjects were divided into a group with MAFLD and a

group without MAFLD. MAFLD was diagnosed according to APASL

clinical practice guidelines for the diagnosis and management of

MAFLD as described as below (5). Written consent from subjects

was waived because their data were retrospectively and anonymously

extracted from the electronic information system of the hospital. This

study was approved by the ethics committee of the Second Affiliated

Hospital of Harbin Medical University (KY2022-058).
2.2 MAFLD diagnostic criteria

The diagnosis of MAFLD was based on the detection of liver

steatosis by ultrasound together with the presence of at least one of

three criteria that includes overweight/obesity, T2DM and clinical
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evidence of metabolic dysfunction (3–5). Overweight/obesity is

defined as BMI ≥23 kg/m2 by Asian standards; T2DM is defined

according to widely accepted international criteria; evidence of

metabolic dysfunction includes the presence of at least two

metabolic risk abnormalities: 1) WC ≥90/80 cm in Asian males and

females; 2) SBP/DBP ≥130/85 mmHg or specific drug treatment; 3)

TGs≥1.7 mmol/L or specific drug treatment; 4) HDL-C<1.0 mmol/L

for males and<1.3 mmol/L for females or specific drug treatment; 5)

prediabetes (i.e., fasting glucose level 5.6-6.9 mmol/L, or 2-hour

postload glucose levels 7.8-11.0 mmol/L or HbA1c 5.6-6.4%; 6)

HOMA-IR ≥2.5; 7) hs-CRP >2 mg/L. Since HOMA-IR and hs-CRP

were not routinely carried out in theHealth Center, 543 subjects could

not be accurately diagnosed with MAFLD according to existing

physical examination data and were excluded from the analysis.
2.3 Physical examination data collection

The physical examination records of adults aged 18-75 years

who underwent physical examination in the Health Center of a

Class III Grade A Hospital in a city in northeast China from January

to December 2021 were reviewed through the electronic

information system of the Health Center. Basic information,

general physical examination, laboratory tests and abdominal

ultrasound data were collected. The basic information included

sex and age; the general physical examination included height,

weight, WC, SBP and DBP; and the laboratory tests included tCHO,

LDL-C, HDL-C, TGs and FPG. Different obesity measurement

indexes, including BMI, WHtR, ABSI, BRI, VAI and LAP, were

calculated using the following formulas:

BMI(kg=m2) = Weight(kg)=Height2(m2) (1)

WHtR = WC (cm)=Height (cm) (2)

ABSI = WC (m)=½BMI (kg=m2)2=3 � Height (m)1=2� (3)

BRI = 364:2� 365:5� ½1 − (WC (m)=2p)2=(0:5

� Height (m))2�1=2 (4)

LAP (male) = ½WC (cm) − 65� � TG (mmol=L), LAP (female)

= ½WC (cm) − 58� � TG (mmol=L) (5)

VAI (male) = ½WC (cm)=½39:68 + 1:88� BMI (kg=m2)��
�½TG (mmol=L)=1:03� � ½1:31=HDL − C (mmol=L)�,
VAI (female) = ½WC (cm)=½36:58+1:89� BMI (kg=m2)��
�½TG (mmol=L)=0:81� � ½1:52=HDL − C (mmol=L)�

(6)
2.4 General physical examination

Weight and height were measured by an ultrasonic height and

weight measuring instrument (SG-1000SC, Beijing Chioy Medical
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Technology Co., LTD) with the examinee wearing light clothing

and no shoes. WC was measured around the abdomen with a soft

tape parallel to the floor halfway between the lower rib and the iliac

crest when the examinee relaxed and exhaled normally. Blood

pressure was measured using an automatic medical electronic

sphygmomanometer (ABP-1000, Beijing Chioy Medical

Technology Co., LTD) after the examinee rested quietly for at

least 5 minutes, and the values of SBP/DBP were recorded.
2.5 Laboratory tests

All physical examinees fasted at least 8 hours, and blood

samples were collected by the registered nurse in the Health

Center. All blood samples were tested by the department of

clinical laboratory in the hospital. tCHO, LDL-C, HDL-C, TGs

and FPG were detected by an auto biochemical analyzer (Roche

MODULAR ISE900, Switzerland).
2.6 Ultrasound assessment of fatty liver

All physical examinees fasted at least 8 hours. Ultrasound

examination was performed using an ultrasonography instrument

(Siemens 2000, Germany) equipped with a curved array transducer

probe (4-8 MHz). The ultrasound measurements were conducted

by an accredited sonographer. Fatty liver was assessed according to

the echogenicity of the liver parenchyma, the visibility of the

vascular structure and the clarification of the diaphragm.
2.7 Statistical analysis

In this study, we included all individuals who met the inclusion

and exclusion criteria during 2021. We used PASS (version 11.0.7)

to calculate the statistical power of our analyses. The sample size of

6911 MAFLD subjects and 5747 non-MAFLD subjects in this study

achieve 100% statistical power to detect AUCs between 0.70 and

0.90 using a two-sided z-test at the significance level of 0.05.

Statistical analyses were conducted using SPSS (version 19.0).

Measurement data were analyzed by Kolmogorov−Smirnov

normality tests; data that presented a nonnormal distribution are

expressed as the median (lower quartile to upper quartile) [M (P25-

P75)], and the Mann−Whitney U test was used for comparisons

between groups. Count data are expressed as the frequency (rate) [n

(%)], and the c2 test was used for comparisons between groups. After

sex stratification, Spearman’s rank correlation was used to assess the

correlation between MAFLD and traditional and new obesity

measurement indexes separately. Correlation coefficients (r) of 0.8-

1.0, 0.6-0.8, 0.4-0.6, 0.2-0.4 and<0.2weredefined as very strong, strong,

moderate, weak, and very weak correlation or no correlation,

respectively. Receiver operating characteristic (ROC) curves were

used to calculate the area under the curve (AUC) and 95%

confidence interval (95% CI). The Z test was used to test the

statistical significance of the AUCs for each index, and the optimal

cutoff value and its corresponding sensitivity and specificity were
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determined according to Youden’s index. All reported p values were

two-tailed, and the level of statistical significance was set at 0.05.
3 Results

3.1 Characteristics of study subjects and
prevalence of MAFLD

A total of 12,658 subjects, including 5952males and 6706 females,

were included in this study. Overall, the prevalence of MAFLD was

54.48% (6911/12658). The prevalence of MAFLD in males was

significantly higher than that in females (71.93% vs. 39.22%)

(p<0.001). The prevalence of MAFLD in females gradually increased

withage, but theprevalenceofMAFLDinmaleswas thehighest among

individuals between 50 and 59 years old. Although the prevalence of

MAFLD in males declined slightly after 60 years of age, the overall

prevalence of MAFLD was 70% or higher in both males and females

after 60 years of age (as shown in Figure 1). The clinical characteristics

of the subjects are shown in Table 1. The clinical values (SBP, DBP,

tCHO,LDL-C,TGsandFPG)of the subjectswithMAFLDwerehigher

than those in individuals withoutMAFLD, butHDL-C in theMAFLD

group was lower than that in the non-MAFLD group (p<0.001).

Obesity measurement indexes (WC, WHtR, BMI, BRI, VAI, LAP) in

the MAFLD group were higher than those in the non-MAFLD group

(p<0.001), but ABSI showed no significant difference between the two

groups (p=0.40).
3.2 The prevalence of MAFLD according
to quartiles of different obesity
measurement indexes

Seven obesity measurement indexes, including BMI, WC, WHtR,

ABSI, BRI, VAI and LAP, were grouped according to their quartiles,

and theprevalenceofMAFLDin thequartiles of these indexes is shown

in Table 2. The prevalence of MAFLD both in males and females
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increased linearly with quartile increases in BMI, WC, WHtR, BRI,

VAI and LAP.However, the prevalence ofMAFLD inmales decreased

linearly from Q1 to Q3 and leveled off from Q3 to Q4 as the ABSI

quartile area increased, and the prevalence of MAFLD in females had

no linear increasing or decreasing trend as the ABSI quartile increased

(as shown in Figure 2).
3.3 Correlation analysis between MAFLD
and different obesity measurement indexes

Spearman’s rank correlation analysis showed that there was a very

negative weak correlation in males (r=-0.17, p<0.001) and no

correlation in females (p>0.05) between ABSI and MAFLD. There

was a positive correlation between the other six indexes and MAFLD.

Overall, MAFLD had a strong correlation with the traditional index

BMI and the new index LAP (r>0.6) and had a moderate correlation

with the traditional index WC, WHtR, the new index VAI and BRI

(0.4<r<0.6). After stratifying by sex, the correlation coefficients

between the other six indexes and MAFLD were as follows, ranked

from high to low: BMI (0.54) >LAP (0.48) >WHtR (0.43) >WC (0.42)

>VAI (0.39) >BRI (0.36) inmales andBMI (0.66) >LAP (0.65) >WHtR

(0.60) >WC(0.59) >BRI (0.57)>VAI (0.54) in females. In summary, in

males, there was a moderate correlation between BMI, WHtR, WC,

LAP and MAFLD (0.4<r<0.6) and a weak correlation between VAI,

BRI and MAFLD (r<0.4). In females, there was a strong correlation

between BMI and LAP and MAFLD (r>0.6) and a moderate

correlation between WHtR, WC, VAI, and BRI and MAFLD

(0.4<r<0.6) (Supplementary Material).
3.4 Comparison of the screening
ability of different obesity measurement
indexes for MAFLD

ROC curves of seven obesity measurement indexes to

distinguish MAFLD were drawn (as shown in Figure 3), and their
FIGURE 1

The prevalence of MAFLD in different sex and age groups.
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TABLE 2 Prevalence of MAFLD according to quartiles of seven obesity measurement indexes.

Group Quartile
Traditional Indexes New Indexes

BMI WC WHtR ABSI BRI VAI LAP

Total Q1 6.33% 9.68% 8.86% 58.11% 17.77% 20.21% 9.11%

(n=12658) Q2 43.67% 46.11% 48.51% 51.46% 49.10% 44.45% 44.55%

Q3 76.16% 72.35% 72.76% 53.23% 68.17% 67.93% 73.71%

Q4 92.20% 89.61% 86.35% 57.38% 82.05% 85.07% 91.02%

Male Q1 32.24% 38.31% 45.46% 85.76% 47.17% 45.50% 37.86%

(n=5952) Q2 72.75% 62.21% 74.34% 72.55% 71.16% 68.36% 70.39%

Q3 86.31% 79.23% 83.12% 65.92% 80.37% 82.10% 85.45%

Q4 95.92% 93.07% 92.26% 65.49% 88.82% 91.25% 93.95%

Female Q1 2.59% 1.22% 2.81% 49.14% 4.49% 7.65% 2.03%

(n=6706) Q2 15.55% 13.08% 24.45% 34.26% 24.99% 24.26% 19.20%

Q3 53.95% 50.31% 50.61% 34.69% 51.24% 49.56% 53.07%

Q4 84.49% 76.93% 77.28% 44.02% 76.13% 75.10% 82.58%
F
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BMI, body mass index; WC, waist circumference; WHtR, waist-height-ratio; ABSI, a body shape index; BRI, body roundness index; VAI, visceral adiposity indicators; LAP, lipid accumulation
product. Quartiles, Q1, p0-p25; Q2, p25-p50; Q3, p50-p75; Q4, p75-p100. n refers to the total number of each group.
TABLE 1 Basic characteristics of study subjects.

Variables Total (n=12658) non-MAFLD (n=5747) MAFLD (n=6911) Z/c2 p

Demographic data characteristics

Male (%) 5952 (47.02%) 1671 (28.07%) 4281 (71.93%)
1360.772 <0.001

Female (%) 6706 (52.98%) 4076 (60.78%) 2630 (39.22%)

Age (years) 46 (37-57) 41 (34-51) 50 (40-59) -30.26 <0.001

Clinical data characteristics

SBP (mmHg) 123 (112-137) 116 (107-127) 130 (119-143) -44.42 <0.001

DBP (mmHg) 77 (69-85) 72 (65-79) 81 (74-89) -45.27 <0.001

t-CHO (mmol/L) 4.88 (4.29-5.53) 4.70 (4.18-5.32) 5.05 (4.43-5.70) -18.937 <0.001

LDL-C (mmol/L) 2.97 (2.47-3.52) 2.83 (2.35-3.34) 3.11 (2.58-3.65) -18.361 <0.001

HDL-C (mmol/L) 1.26 (1.07-1.50) 1.43 (1.22-1.65) 1.15 (1.00-1.33) -49.016 <0.001

TGs (mmol/L) 1.32 (0.90-1.99) 0.96 (0.72-1.32) 1.74 (1.24-2.44) -57.835 <0.001

FPG (mmol/L) 5.18 (4.84-5.64) 4.99 (4.72-5.31) 5.37 (5.00-5.97) -38.93 <0.001

Obesity measurement indexes

BMI (kg/m2) 24.39 (21.94-26.84) 21.80 (20.09-23.66) 26.28 (24.54-28.40) -75.363 <0.001

WC (cm) 83 (77-90) 77 (70-83) 87 (83-94) -65.882 <0.001

WHtR 0.491 (0.459-0.523) 0.458 (0.429-0.486) 0.512 (0.490-0.546) -67.277 <0.001

ABSI 0.076 (0.072-0.079) 0.075 (0.073-0.079) 0.076 (0.720-0.080) -0.841 0.40

BRI 4.12 (3.74-4.53) 3.80 (3.49-4.17) 4.36 (4.04-4.77) -54.564 <0.001

VAI 1.61 (1.00-2.61) 1.10 (0.77-1.63) 2.19 (1.47-3.39) -56.138 <0.001

LAP 28.65 (15.66-49.59) 15.64 (9.74-25.08) 43.56 (28.92-66.24) -71.529 <0.001
MAFLD, metabolic associated fatty liver disease; non-MAFLD, without metabolic associated fatty liver disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; tCHO, total
cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TGs, triglycerides; FPG, fasting plasma glucose; BMI, body mass index; WC, waist
circumference; WHtR, waist-height-ratio; ABSI, a body shape index; BRI, body roundness index; VAI, visceral adiposity indicators; LAP, lipid accumulation product. Data were expressed in form
of Median (upper and lower quartile) [M(P25~P75)] or Frequency (rate) [n (%)]. n refers to the total number of each group.
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AUCs were calculated (as shown in Table 3). After stratification by

sex, the AUCs of the seven obesity measurement indexes were

ranked from high to low as follows: BMI (0.84) >LAP (0.81)

>WHtR (0.78) >WC (0.77) >VAI (0.75) >BRI (0.73) >ABSI (0.59)

in males and BMI (0.89) >LAP (0.88) >WHtR (0.86) >WC (0.84)

>BRI (0.83) >VAI (0.82) >ABSI (0.50) in females. Among the seven

indexes, ABSI had the lowest accuracy for MAFLD (AUC 0.59 for

males and 0.50 for females). The AUCs of the other six indexes were

all higher than 0.7, which had certain accuracy and certain

predictive or screening value for MAFLD. Overall, except for

ABSI, the accuracy of the other six indexes for screening MAFLD

in females was higher than that in males. The traditional BMI had

the best screening ability for MAFLD, with the highest accuracy

(AUC 0.84 for males and 0.89 for females), and the optimal cutoff

value was 24.74 kg/m2 in males and 23.04 kg/m2 in females. The

new index LAP had better accuracy (AUC 0.81 for males and 0.88

for females), with an optimal cutoff value of 30.85 in males and

20.79 in females. Compared with BMI, the AUC of the other six

indexes was statistically significant (p<0.001). However, there was

no statistically significant difference between LAP and BMI in

females (p=0.14) (Supplementary Material).
3.5 Comparison of the screening
ability of different obesity measurement
indexes for MAFLD in populations
with or without obesity

To compare the screening ability of different obesity

measurement indexes for MAFLD in populations with or without

obesity, ROC analysis was stratified by BMI. BMI was grouped

according to ≥ 23 kg/m2 and< 23 kg/m2, defined as obesity and non-
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obesity, respectively, by Asian standards. The proportion of subjects

without obesity in this study was 34% (4304/12658). The prevalence

of MAFLD in subjects without obesity was 10.87%. ROC curve

analysis (Figure 4) showed that the AUCs of the seven obesity

measurement indexes for MAFLD in subjects without obesity were

ranked from high to low as follows: LAP (0.90) >VAI (0.88) >WHtR

(0.80) >BRI (0.764) >BMI (0.761) >WC (0.76) >ABSI (0.64) (as

shown in Table 4). In addition to ABSI, the AUCs of the other six

indexes were all higher than 0.7, which had certain accuracy and

certain predictive or screening value for MAFLD in populations

without obesity. However, the new index LAP had the highest AUC

of 0.90 (0.886-0.905); the optimal cutoff value was 20.75, and the

sensitivity and specificity were 85.9% and 79.0%, respectively. The

AUC of LAP was significantly better than those of the other indexes

in predicting MAFLD in populations without obesity (p<0.01).
4 Discussion

At present, large-scale epidemiological studies on MAFLD are

lacking, but NAFLD can be referred. A recent study based on a

comprehensive search of the literature from 1999 to 2018

revealed an alarming national prevalence of NAFLD in China

(29.6%). NAFLD prevalence is parallel with urbanization and

industrialization. During the past two decades, the burden of

NAFLD has increased substantially with the rapid development of

economy and radical modifications in lifestyle in China. According

to the statistics from the World Bank, the relative increases of

national gross domestic product (GDP) per capita were in line with

the pooled annual prevalence of NAFLD. This suggested that the

epidemic of NAFLD is associated with its economic growth (16).

But it’s worth noting that NAFLD or MAFLD is a heterogeneous
FIGURE 2

The prevalence trends of MAFLD according to quartiles of seven obesity measurement indexes. BMI was used as a reference standard. BMI, body
mass index; WC, waist circumference; WHtR, waist-height-ratio; ABSI, a body shape index; BRI, body roundness index; VAI, visceral adiposity
indicators; LAP, lipid accumulation product.
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disease, its epidemiology also relates to sex, age, race, genetic

variations, mild to moderate alcohol consumption, obesity,

metabolism, lifestyle and educational level (17). With uneven

economic development, different regional cultures and diverse

lifestyles among the different provinces in China, the

epidemiology of NAFLD or MAFLD has shown remarkable

regional differences. A recent meta-analysis showed that the

incidence of NAFLD is higher in northern China (35.78%) and

lower in southeastern China (21.52%). Among provinces in

northern China, Heilongjiang has the highest incidence, with up

to 50.48% (18). This study was carried out in Harbin of

Heilongjiang Province. The prevalence of MAFLD in the healthy

physical examination population was 54.48% in this study, which

was consistent with previous literature reports. The prevalence of

MAFLD in Heilongjiang was significantly higher than the average

prevalence in China. On the one hand, northeast China is located in

a cold region with a long winter, and a cold climate has a great

impact on lifestyle; thus, local residents tend to eat a high-calorie

diet and exercise less. On the other hand, the subjects included in

this study were a healthy physical examination population who

generally have good economic conditions. The high prevalence of

MAFLD should be taken seriously. It is important to have an

accurate, effective, convenient and low-cost method for screening

MAFLD. Therefore, this study explored the correlations between

seven obesity measurement indexes and MAFLD and compared

their screening accuracy for MAFLD. The seven obesity

measurement indexes used in this study included three traditional

indexes (BMI, WC, WHtR) and four new indexes (ABSI, BRI,

VAI, LAP).
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Both ABSI and BRI are new indexes to describe human body

shape, which are calculated based on traditional indexes such as

WC and BMI. Since body shape seems to be an important risk

factor for premature death in the general population, Krakauer first

proposed and established ABSI based on BMI and WC, which was

initially used to predict the risk of death (19). A study published in

2016 showed that ABSI had a stronger association with total,

cardiovascular and cancer mortality (20). In recent years, some

researchers have also studied the correlation between ABSI and

metabolic diseases. A recent study in 2021 showed that ABSI was

significantly associated with cardio-ankle vascular index (CAVI)

and the presence of MetS in the middle-aged population and helped

to identify individuals with MetS and increased CAVI. ABSI could

serve to identify individuals with MetS and increased arterial

stiffness (21). After the concept of MAFLD was proposed in 2020,

a research team from Sun Yat-sen University in China was the first

to study the screening ability of anthropometric indexes for

MAFLD, including BMI, WC, WHtR, ABSI, and BRI (22). Their

study showed that the AUC of different indexes screening for

MAFLD in males were as follows in descending order: BMI (0.81)

>WC (0.79) >WHtR (0.77) =BRI (0.77) >ABSI (0.55). The AUCs of

the different indexes above for female MAFLD patients was

generally consistent with those of male MAFLD patients, but the

AUC values were slightly lower than those of male MAFLD

patients. Our study also included the above five indexes, and the

AUC of each index indicating its screening ability for MAFLD was

as follows in descending order: BMI (0.89) >WHtR (0.85) >WC

(0.84) >BRI (0.78) >ABSI (0.50). Our study was generally consistent

with theirs. Both our study and their study showed that the
FIGURE 3

ROC of seven obesity measurement indexes for screening MAFLD. BMI was used as a reference standard. BMI, body mass index; WC, waist
circumference; WHtR, waist-height-ratio; ABSI, a body shape index; BRI, body roundness index; VAI, visceral adiposity indicators; LAP, lipid
accumulation product. AUC, area under the curve.
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traditional indexes BMI, WC and WHtR had a certain screening

ability for MAFLD, and BMI exhibited the best ability. The new

index BRI also had a certain accuracy for screening MAFLD, with

an AUC higher than 0.7, but ABSI had poor screening ability for

MAFLD. Neither ABSI nor BRI exceeded the ability of the

traditional BMI.

The new index ABSI and BRI based on morphologic

measurements did not exceed the traditional index for screening

MAFLD. Therefore, in addition to the above indexes, our study

added two new indexes, LAP and VAI, which take into account

both the external morphologic index and internal lipid metabolism-

related index in the calculation. Theoretically, LAP and VAI could

better reflect the degree of accumulation of body or visceral fat.

Several researchers have studied the correlation between VAI and

LAP and metabolic diseases, such as MetS, prediabetes and diabetes,

metabolic-related cardiovascular disease, and polycystic ovary

syndrome (23–28). As mentioned above, ABSI will not be
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described again due to its poor accuracy for screening MAFLD.

Therefore, this section will mainly discuss the correlation between

MAFLD and the other six indexes and compare their screening

performance for MAFLD. Overall, our study showed that MAFLD

had a strong correlation with the traditional index BMI and the new

index LAP (r>0.6) and had a moderate correlation with the

traditional indexes WC and WHtR and the new indexes VAI and

BRI (0.4<r<0.6). ROC curve analysis showed that compared with

BMI, the AUC of the other six indexes was statistically significant

(p<0.001), but there was no statistically significant difference

between LAP and BMI in females (p=0.14). ROC curve analysis

showed that BMI had the highest AUC for MAFLD (0.84 in males

and 0.89 in females), and LAP had a better AUC for MAFLD (0.81

in males and 0.88 in females) than the other indexes. The latest

study in 2021 analyzed the correlation between NAFLD and various

indexes, including lipid metabolism-related index, LAP, BMI, etc.,

according to the old diagnostic criteria of NAFLD and found that
TABLE 3 ROC analysis of seven obesity measurement indexes for screening MAFLD.

Group AUC (95% CI) Optimal cutoff points Sensitivity% Specificity% Youden’s index

Total (n=12658)

BMI 0.89 (0.883-0.894) 23.62 86.8 74.8 0.62

WC 0.84 (0.832-0.845) 82 76.6 74.4 0.51

WHtR 0.85 (0.839-0.852) 0.48 80.2 73.5 0.54

ABSI 0.50 (0.495-0.513) 0.08 6.4 94.8 0.01

BRI 0.78 (0.774-0.788) 4.04 74.9 67.5 0.42

VAI 0.79 (0.782-0.796) 1.46 75.4 69.0 0.44

LAP 0.87 (0.863-0.874) 25.75 81.3 76.4 0.58

Male (n=5952)

BMI 0.84 (0.835-0.853) 24.74 79.0 72.7 0.52

WC 0.77 (0.758-0.780) 86 81.0 59.2 0.40

WHtR 0.78 (0.765-0.786) 0.49 75.7 65.1 0.41

ABSI 0.59 (0.578-0.603) 0.07 36.0 81.9 0.18

BRI 0.73 (0.721-0.744) 3.99 73.8 60.6 0.34

VAI 0.75 (0.740-0.762) 1.59 69.5 68.5 0.38

LAP 0.81 (0.798-0.818) 30.85 76.1 70.6 0.47

Female (n=6706)

BMI 0.89 (0.881-0.897) 23.04 87.5 75.9 0.63

WC 0.84 (0.835-0.853) 76 89.2 64.7 0.54

WHtR 0.86 (0.847-0.864) 0.46 88.3 66.4 0.55

ABSI 0.50 (0.492-0.516) 0.08 4.9 96.7 0.02

BRI 0.83 (0.827-0.845) 4.11 80.3 71.8 0.52

VAI 0.82 (0.807-0.826) 1.46 77.9 71.6 0.49

LAP 0.88 (0.874-0.890) 20.79 86.1 74.2 0.60
BMI, body mass index; WC, waist circumference; WHtR, waist-height-ratio; ABSI, a body shape index; BRI, body roundness index; VAI, visceral adiposity indicators; LAP, lipid accumulation
product. AUC, area under the curve; 95% CI, 95% confidence interval; Youden’s index=Sensitivity+Specificity-1. n refers to the total number of each group.
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lipid metabolism-related index and LAP had better screening ability

for NAFLD than BMI; the AUCs of LAP and BMI were 0.8659 and

0.8577, respectively (p<0.05) (15). In contrast to the study above,

our study found that the accuracy of LAP for screening MAFLD did

not exceed that of BMI according to the new diagnostic criteria for

MAFLD. Stratified by sex, the accuracy of LAP and BMI for

screening MALFD in females was similar, but LAP did not exceed

BMI. In our study, we found that the accuracy of BMI and LAP for
Frontiers in Endocrinology 09130
screening MAFLD was higher in females than in males. We

believe that this fundamental difference may be attributed to the

more complex risk factors for MAFLD present in males. One factor

that should not be overlooked is that men typically have a higher

alcohol consumption than women. This difference in lifestyle habits

may play a crucial role in the observed discrepancy between the

sexes regarding the effectiveness of BMI and LAP for

MAFLD screening.
FIGURE 4

ROC analysis of seven obesity measurement indexes for screening MAFLD in populations with or without obesity.
TABLE 4 ROC analysis of seven obesity measurement indexes for screening MAFLD in populations with or without obesity.

Group AUC (95% CI) Optimal cutoff points Sensitivity% Specificity% Youden’s index

BMI≥23 (n=8354)

BMI 0.75 (0.738-0.757) 25.39 95.7 15.4 0.37

WC 0.69 (0.689-0.709) 86 65.0 64.4 0.29

WHtR 0.70 (0.693-0.712) 0.49 71.5 57.7 0.29

ABSI 0.53 (0.514-0.536) 0.07 52.5 51.9 0.04

BRI 0.64 (0.628-0.649) 4.11 71.4 48.3 0.20

VAI 0.72 (0.705-0.725) 1.75 63.6 68.7 0.32

LAP 0.76 (0.753-0.772) 30.75 72.2 66.8 0.39

BMI<23 (n=4304)

BMI 0.76 (0.748-0.774) 21.13 82.1 59.9 0.42

WC 0.76 (0.746-0.772) 76 76.5 64.3 0.41

WHtR 0.80 (0.785-0.809) 0.45 82.3 64.8 0.47

ABSI 0.64 (0.625-0.654) 0.07 81.2 43.9 0.25

BRI 0.76 (0.751-0.776) 3.90 69.4 71.6 0.41

VAI 0.88 (0.866-0.886) 1.74 81.4 83.6 0.65

LAP 0.90 (0.886-0.904) 20.75 85.9 79.0 0.65
BMI, body mass index; WC, waist circumference; WHtR, waist-height-ratio; ABSI, a body shape index; BRI, body roundness index; VAI, visceral adiposity indicators; LAP, lipid accumulation
product; AUC, area under the curve, 95% CI, 95% confidence interval; Youden’s index=Sensitivity+Specificity-1; n refers to the total number of each group.
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It is worth noting that most MAFLD patients have co-existing

overweight/obesity status; however, MAFLD is common in

populations without obesity, especially in Asia. Due to the

different criteria used to define obesity in different countries and

regions, according to different literature reports, the prevalence of

MAFLD in populations without obesity is as high as 5-45% (29–31).

This study showed that the prevalence of MAFLD in population

without obesity was 10.87%. At meantime, compared with BMI

(AUC 0.76), LAP and VAI had excellent screening accuracy for

MAFLD in populations without obesity, LAP had a slightly higher

AUC than VAI (0.90 vs. 0.88, p< 0.05).

This study showed that among the entire population, traditional

BMI had the highest screening accuracy for MAFLD with an AUC

of 0.89, which was better than LAP (0.87) and VAI (0.79). In fact,

stratified by BMI, LAP (AUC 0.76) and VAI (AUC 0.72) did not

demonstrate significantly better screening accuracy for overweight

or obese populations (BMI ≥ 23 kg/m2) compared to BMI (AUC

0.75). Considering the simplicity and convenience of BMI

measurement, which does not require additional laboratory tests,

BMI should be preferentially considered for the general population.

Strictly speaking, LAP and VAI can certainly be used as well.

Additionally, in the non-obese population (BMI< 23 kg/m2), both

LAP (AUC 0.90) and VAI (AUC 0.88) showed significantly

improved screening ability compared to BMI (AUC 0.76).

Therefore, in the general population, the first step is to use BMI

for screening, as its effectiveness is superior to LAP and VAI. In the

overweight or obese population, further screening using LAP or

VAI may yield better results. While LAP and VAI had excellent

screening accuracy for MAFLD in non-obese populations, LAP had

a slightly higher AUC than VAI (0.90 vs. 0.88, p<0.05) and required

fewer variables for calculation (WC and TG) compared to VAI

(WC, TGs, height, weight, and HDL-C), making LAP a more

convenient and cost-effective option. Therefore, LAP could serve

as an accurate, efficient, convenient, and low-cost screening index

for MAFLD in non-obese populations. To sum up, for the general

population, the first step is to calculate BMI. Individuals with

overweight or obesity (BMI ≥23 kg/m2) should be directly

classified as high-risk for MAFLD. The second step is to calculate

LAP for those without obesity (BMI< 23 kg/m2), and those with

LAP ≥ 20.75 should also be considered high-risk for MAFLD.

Currently, there is no consensus on universal screening methods

for MAFLD, despite the significant health burden it poses. European

guidelines support screening for MAFLD in high-risk patients with

obesityormetabolic syndrome,while theAmericanAssociation for the

Study of Liver Disease (AASLD) questions the utility of routine

screening for MAFLD in these high-risk individuals due to the lack

of cost-effective tests and established effective pharmacologic

treatments (32). However, new guidelines from the Asian-Pacific

Association for the Study of the Liver (APASL) have been developed

for the diagnosis andmanagement ofMAFLD, asmentioned earlier in

ourmanuscript (5). The guideline base the diagnosis ofMAFLDon the

detection of fatty liver in conjunction with at least one of three criteria:

overweight/obesity, T2DM, or clinical evidence of metabolic

dysfunction (including waist circumference, blood pressure, blood
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lipids, blood glucose, HOMA-IR, hS-CRP, etc.). Fatty liver can be

confirmed through various methods, such as ultrasound, transient

elastography, regular MRI scanners applying magnetic resonance

proton density fat fraction (MR-PDFF), magnetic resonance

spectroscopy (MRS), liver biopsy, or serum biomarkers. However,

this screening strategy forMAFLD is both time-consuming and costly,

making it unsuitable for widespread implementation in the

general population.

This study offers a non-invasive, cost-effective, and easily

accessible method for screening high-risk populations for

MAFLD with good sensitivity and specificity. This approach

provides both patients with MAFLD and healthcare professionals

with a convenient and persuasive tool for predicting MAFLD risk,

and has significant implications for promoting individual

stratification management in the realm of health economics. In

conclusion, our research contributes to the existing knowledge on

obesity measurement indexes and provides guidance for MAFLD

screening. By proposing a method that is accurate, efficient, and

cost-effective, we aim to support healthcare professionals and

patients in identifying high-risk individuals for MAFLD more

effectively. We believe our study has the potential to improve

both individualized management and overall public health

outcomes in the context of MAFLD.

The advantage of this study is that it is the first study to evaluate

the correlation between obesity measurement indexes and MAFLD

and compare their screening ability for MAFLD by using a healthy

physical examination population in northeast China since the

concept of MAFLD was proposed. As many as seven indexes,

covering traditional and new indexes, were included. In addition,

this study defined a population at high risk for MAFLD in a simple

way and proposed a new screening strategy for MAFLD. Of course,

there are also shortcomings in this study: 1) The design of this study

is cross-sectional, which results in some limitations regarding

causal inference; 2) The subjects of this study were mostly

healthy people who underwent physical examination and could not

represent the general population; 3) The determination of the cut-off

value of different obesity measurement indexes may be affected by the

study subjects and different regions, so it needs to be further verified

in the multi-center study; 4) The research center did not carry out

HOMA-IR and hs-CRP tests, and some subjects could not be

diagnosed as MAFLD according to existing evidence and were

excluded; 5) Whether obesity measurement indexes are related to

the severity of MAFLD also deserves further investigation. The

shortcomings will be further improved in future research.
5 Conclusion

In conclusion, regarding screening for MAFLD in the whole

population, the traditional index BMI had the highest accuracy,

followed by the new index LAP. However, when screening for

MAFLD in populations without obesity (BMI< 23 kg/m2), LAP had

the highest accuracy, and the optimal cutoff value was 20.75, with a

sensitivity and specificity of 85.9% and 79.0%, respectively.
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Therefore, we proposed a two-step screening strategy for MAFLD,

combining BMI and LAP, and defined a high-risk population for

MAFLD as follows: 1) BMI ≥ 23 kg/m2; and 2) BMI< 23 kg/m2 and

LAP ≥ 20.75 (as shown in Figure 5).
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