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TOX21 CHALLENGE TO BUILD PREDICTIVE 
MODELS OF NUCLEAR RECEPTOR AND STRESS 
RESPONSE PATHWAYS AS MEDIATED BY EXPOSURE 
TO ENVIRONMENTAL TOXICANTS AND DRUGS

The Tox21 robot screens the Tox21 10K library of environmental chemicals against a panel of in vitro 
assays in quantitative high throughput screening (qHTS) format generating millions of robust data 
points that can be applied to build computational models for toxicity prediction. This picture shows the 
robot arm holding a 1536-well assay plate for screening. Examples of chemical structures are displayed 
in the background.
Image by Palladian Partners, Inc

Topic Editors: 
Ruili Huang, National Center for Advancing Translational Sciences, National  
Institutes of Health, USA
Menghang Xia, National Center for Advancing Translational Sciences, National  
Institutes of Health, USA

Tens of thousands of chemicals are released into the environment every day. High-throughput 
screening (HTS) has offered a more efficient and cost-effective alternative to traditional toxicity 
tests that can profile these chemicals for potential adverse effects with the aim to prioritize a 
manageable number for more in depth testing and to provide clues to mechanism of toxicity. 
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The Tox21 program, a collaboration between the National Institute of Environmental Health 
Sciences (NIEHS)/National Toxicology Program (NTP), the U.S. Environmental Protection 
Agency’s (EPA) National Center for Computational Toxicology (NCCT), the National Institutes 
of Health (NIH) National Center for Advancing Translational Sciences (NCATS), and the U.S. 
Food and Drug Administration (FDA), has generated quantitative high-throughput screening 
(qHTS) data on a library of 10K compounds, including environmental chemicals and drugs, 
against a panel of nuclear receptor and stress response pathway assays during its production 
phase (phase II). The Tox21 Challenge, a worldwide modeling competition, was launched that 
asks a “crowd” of researchers to use these data to elucidate the extent to which the interference of 
biochemical and cellular pathways by compounds can be inferred from chemical structure data. 
In the Challenge participants were asked to model twelve assays related to nuclear receptor and 
stress response pathways using the data generated against the Tox21 10K compound library as 
the training set. The computational models built within this Challenge are expected to improve 
the community’s ability to prioritize novel chemicals with respect to potential concern to human 
health. This research topic presents the resulting computational models with good predictive 
performance from this Challenge.
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Editorial on the Research Topic

Tox21 Challenge to Build PredictiveModels of Nuclear Receptor and Stress Response Pathways

As Mediated by Exposure to Environmental Toxicants and Drugs

Tens of thousands of chemicals are released into the environment every year. High-throughput
screening (HTS) has offered a more efficient and cost-effective alternative to traditional toxicity
tests to profile these chemicals for potential adverse effects with the aim to prioritize a
manageable number for in depth testing and to provide clues to their mechanisms of toxicity.
The Tox21 program (NRC, 2007; Collins et al., 2008; Kavlock et al., 2009; Tice et al., 2013), a
collaboration among the National Institute of Environmental Health Sciences (NIEHS)/National
Toxicology Program (NTP), the U.S. Environmental Protection Agency’s (EPA)National Center for
Computational Toxicology (NCCT), the National Institutes of Health (NIH) National Center for
Advancing Translational Sciences (NCATS), and the U.S. Food and Drug Administration (FDA),
has generated quantitative high-throughput screening (qHTS) data (>50 million data points)
on a library of 10K compounds, including environmental chemicals and drugs, against a panel
of nuclear receptor and stress response pathway assays during its production phase (phase II)
(Huang et al., 2016). A worldwide modeling competition, the Tox21 Data Challenge, was launched
that asked a crowd of researchers to use these data as the training set to elucidate the extent to
which the interference of biochemical and cellular pathways by compounds can be inferred from
chemical structure data. This E-book comprises articles describing computational models with
good predictive performance that resulted from this challenge (Huang et al.).

Machine learning methods have been widely used by the computational modeling community
for the prediction of biological activity induced by small molecules. The Tox21 Data Challenge
provides the unique opportunity to compare the predictive abilities of different computational
methods for biological activity, specifically, those related to toxicity. The Challenge participants
employed a wide range of chemical descriptors and/or fingerprints for small molecule
representation, and machine learning algorithms for modeling.

Models employed the deep learning algorithm showed the best predictive performance. Deep
Learning, as a field of machine learning, has gained popularity in the recent years, having been

5

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org/Environmental_Science/editorialboard
http://www.frontiersin.org/Environmental_Science/editorialboard
http://www.frontiersin.org/Environmental_Science/editorialboard
http://www.frontiersin.org/Environmental_Science/editorialboard
https://doi.org/10.3389/fenvs.2017.00003
http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2017.00003&domain=pdf&date_stamp=2017-01-25
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:huangru@mail.nih.gov
mailto:mxia@mail.nih.gov
https://doi.org/10.3389/fenvs.2017.00003
http://journal.frontiersin.org/article/10.3389/fenvs.2017.00003/full
http://loop.frontiersin.org/people/124113/overview
http://loop.frontiersin.org/people/154867/overview
http://journal.frontiersin.org/researchtopic/2954/tox21-challenge-to-build-predictive-models-of-nuclear-receptor-and-stress-response-pathways-as-media
https://doi.org/10.3389/fenvs.2015.00085


Huang and Xia Tox21 Challenge

widely applied in the fields such as signal and information
processing, speech recognition, as well as physics and life
sciences. Deep Learning has also been applied to predict the
outcome of biological assays. Mayr and coauthors, were the
first to apply Deep Learning to computational toxicity (Mayr
et al.). Deep Learning enabled them to construct a hierarchy
of chemical features that combines the best of the features
to ensembles, resulting in models that outperformed most
other computational methods. Other than the high performance
but computationally intensive Deep Learning method, simple
traditional machine learning methods also attained success in
predicting a number of assay activities. Abdelaziz and coauthors
developed consensus models with methods implemented within
the OCHEM (http://www.ochem.eu) web-based platform using
10 different descriptor sets and the associative neural networks
(ASNN) algorithm (Abdelaziz et al.). These consensus models
achieved the best overall balanced accuracy across all assays and
top performance in the ATAD5 and mitochondrial membrane
potential disruption assays. Their stratified bagging contributed
models, and the selection of consensus models, were optimized
to achieve the best balanced accuracy. Barta employed the
ensemble approach for model development, combining various
fingerprinting tools with different machine learning techniques,
and applied assorted feature selection methods (Barta). Barta
found that multi-tree ensemble methods, such as Random
Forests and Extra Trees, produce reliable predictions and are
insensitive to dimensionality extremes. These models achieved
the best performance in predicting compound activities against
AR, aromatase, and p53. Random Forest was also the method
of choice for Uesawa, who produced the best performing
ER-LBD model, calculated multiple descriptors and applied
Random Forest for descriptor selection and model generation
(Uesawa).

Other articles described models that employed classic
machine learning algorithms, such as Random Forest, Support
Vector Machine (SVM), k Nearest Neighbor (kNN), and
Naïve Bayes (Drwal et al.), with different combinations of
molecular descriptors, each with their own spin on the specific
implementation of these methods for model construction.
Capuzzi and coauthors found that their models built with Deep
Neural Networks performed better than those developed with
simple machine learning algorithms and that dataset balancing
had a detrimental effect on prediction accuracy (Capuzzi et al.).
Stefaniak evaluated combinations of various attribute selection
methods and machine learning algorithms and determined
that combining the Best First method for attribute selection
with the Rotation Forest/ADTree classifier produced the best
models (Stefaniak). Koutsoukas and coauthors utilized circular
molecular fingerprints combined with Random Forest and SVM

(Koutsoukas et al.). Ribay and coauthors also applied the
biological response profile of chemicals from public data sources
toward model construction, and found significant improvement
in model performance compared to models built with chemical
structure information alone (Ribay et al.).

Other than the Deep Learning techniques, there is no
clear indication of which machine learning algorithm and/or
molecular descriptor, or a specific combination of the two, has

significant advantage over the others. Specific implementation
of the methods and application of the optimal methods to
the most fitting dataset seem to make the most difference.
Common strategies employed by the best performing models
show that consensus modeling and the diversity of descriptors
tend to improve the predictive performance of models. The
top performing models reached prediction accuracies close to
the level of experimental errors (Huang et al.), demonstrating
the feasibility of applying these models as screening tools for
chemical prioritization.

The articles from this e-book present a groundbreaking
direction for toxicological related testing and are intended
to help improve the understanding of how chemicals could
disrupt biological pathways and result in toxicity. Specifically,
the computational models generated from this Challenge can be
applied to predict the potential of those environmental chemicals
with limited information to disrupt nuclear receptor and cellular
stress response pathways. The computational models built within
this Challenge are expected to improve the community’s ability
to prioritize novel chemicals with respect to potential concern
to human health. The best performing models are currently
being made publicly accessible to the scientific community
(Abdelaziz et al.; Mayr et al.) to help facilitate chemical risk
assessment.
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Tens of thousands of chemicals with poorly understood biological properties are released

into the environment each day. High-throughput screening (HTS) is potentially a more

efficient and cost-effective alternative to traditional toxicity tests. Using HTS, one can

profile chemicals for potential adverse effects and prioritize a manageable number for

more in-depth testing. Importantly, it can provide clues to mechanism of toxicity. The

Tox21 program has generated>50million quantitative high-throughput screening (qHTS)

data points. A library of several thousands of compounds, including environmental

chemicals and drugs, is screened against a panel of nuclear receptor (NR) and stress

response (SR) pathway assays. The National Center for Advancing Translational Sciences

(NCATS) has organized an international data challenge in order to “crowd-source” data

and build predictive toxicity models. This Challenge asks a “crowd” of researchers to

use these data to elucidate the extent to which the interference of biochemical and

cellular pathways by compounds can be inferred from chemical structure data. The

data generated against the Tox21 library served as the training set for this modeling

Challenge. The competition attracted participants from 18 different countries to develop

computational models aimed at better predicting chemical toxicity. The winning models

from nearly 400 model submissions all achieved >80% accuracy. Several models

exceeded 90% accuracy, which was measured by area under the receiver operating

characteristic curve (AUC-ROC). Combining the winning models with the knowledge

already gained from Tox21 screening data are expected to improve the community’s

ability to prioritize novel chemicals with respect to potential human health concern.

Keywords: Tox21, HTS, nuclear receptor, stress response, predictive model, QSAR, in vitro assay
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INTRODUCTION

Humans are exposed to many different chemicals during the
course of their lifetimes through various sources including food,
household cleaning products, andmedicines. In some cases, these
chemicals can be toxic. In fact, more than 30% of promising
pharmaceuticals have failed in human clinical trials because they
were found to be toxic despite promising pre-clinical studies
in animal models (Kola and Landis, 2004). Creating rapid and
efficient methods for assessing chemical toxicity has the potential
to improve how scientists evaluate environmental chemicals,
develop new medicines, and even foster decisions made by
regulatory agencies on whether or not these chemicals should
be made available. More than 80,000 chemical compounds are
registered for use in the U.S., and for 95% of them, there is no data
on human exposure to inform society about their effects on health
(Judson et al., 2009). The use of in silico approaches, such as
quantitative structure-activity relationship (QSAR) models that
infer biological activity from chemical structure similarity, is a
viable alternative to fill in the gap where experimental data is
lacking (Muster et al., 2008; Vedani and Smiesko, 2009). These
models could be applied to all the chemicals of environmental
concern and obtain an estimate on their toxicity potential in a
matter of hours of computational time. Chemicals estimated to
have a high potential for toxicity, which would be a much smaller
number, could be prioritized for experimental evaluation and
validation. In addition, thesemodels could also identify structural
features of a chemical that are responsible for its toxic activity,
which could serve as structural alerts for toxicity (Sanderson and
Earnshaw, 1991; Saiakhov and Klopman, 2008). Combining these
computational models with existing experimental data will make
chemical prioritization more time and cost efficient.

The U.S. Tox21 program (NRC, 2007; Collins et al.,
2008; Kavlock et al., 2009; Tice et al., 2013), a collaboration
between the National Institute of Environmental Health
Sciences (NIEHS)/National Toxicology Program (NTP), the U.S.
Environmental Protection Agency’s (EPA) National Center for
Computational Toxicology (NCCT), the National Institutes of
Health (NIH) National Center for Advancing Translational
Sciences (NCATS), and the U.S. Food and Drug Administration
(FDA), is aimed at developing better toxicity assessment
methods. The goal is to quickly and efficiently test whether
certain chemicals have the potential to disrupt processes in the
human body that may lead to adverse health effects. The Tox21
consortium leverages its partners’ resources and expertise to
predict more effectively how a collection of ∼10,000 compounds
(referred to as Tox21 10K library) composed of environmental
chemicals and approved drugs will affect human health and
the environment. The Tox21 10K library has been tested in a
quantitative high-throughput screening (qHTS) format against
a panel of nuclear receptor (NR) (Huang et al., 2011, 2014;
Hsu et al., 2014; Chen et al., 2015) and stress response (SR)
pathway assays (Attene-Ramos et al., 2015; Nishihara et al., 2016),
producing over 50million data points to date (PubChem, 2013b).
These data can serve as a knowledge-base to correlate chemical
structures to their biological activities to develop QSAR models.
To encourage the mining and usage of these data now publicly

TABLE 1 | Tox21 assays used in subchallenges.

Assay ID Assay PubChem

AID

NR-AhR Aryl hydrocarbon receptor 743122

NR-Aromatase Aromatase 743139

NR-AR Androgen receptor, full length 743040

NR-AR-LBD Androgen receptor, LBD 743053

NR-ER Estrogen receptor alpha, full length 743079

NR-ER-LBD Estrogen receptor alpha, LBD 743077

NR-PPAR-gamma Peroxisome proliferator-activated receptor

gamma

743140

SR-ARE Nuclear factor (erythroid-derived 2)-like

2/antioxidant responsive element

743219

SR-ATAD5 ATAD5 720516

SR-HSE Heat shock factor response element 743228

SR-MMP Mitochondrial membrane potential 720637

SR-p53 p53 720552

available, NCATS launched the Tox21 Data Challenge 20141, the
goal of which was to “crowdsource” data analysis by independent
researchers to reveal how well they can predict compounds’
interference in cellular and biochemical pathways resulting in
potential toxicity by using only chemical structure data. The
Challenge’s computational models could become part of the
decision-making tools for government agencies in determining
which environmental chemicals and drugs are of the greatest
potential concern to human health.

Here, we describe the Challenge and provide an overall
summary of the results. Data from 12 assays were selected based
on data quality and public interests for this Challenge (Table 1).
The Challenge was divided into subchallenges. In subchallenges
1–12, participants were asked to model compound activity for
each one of the 12 assays. In subchallenges 13 and 14, participants
were asked to model all NR pathway assays (NR Panel Challenge)
and all SR pathway assays (SR Panel Challenge). In the final
subchallenge, 15 (Grand Challenge), participants were asked to
build models for all 12 assays. The Tox21 10K dataset was used
for model training. Data generated on part of the LOPAC1280

(Library of Pharmacologically Active Compounds) collection was
used for testing. For final model evaluation and scoring, a new set
of compounds provided by the EPA, for which no experimental
data were available at the time of the Challenge, was screened
against the 12 assays. This new set of data together with the
rest of the LOPAC data was used to evaluate the final model
submissions. The Challenge was launched on July 16, 2014 and
closed for scoring on November 14, 2014. Participants were
encouraged to enter the competition as teams. One winning
team with the best predictive model was selected for each
subchallenge, and the winners were announced on January 26,
2015. One hundred and twenty five participants representing 18
different countries registered for the Challenge (Figure 1). Three
hundred and seventy eight model submissions from 40 teams
were received for final evaluation (Figure 1).

1https://tripod.nih.gov/tox21/challenge/
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FIGURE 1 | Worldwide challenge participation. (A) Distribution of individuals registered for the challenge. (B) Distribution of teams that submitted models for final

evaluation.

METHODS

The qHTS data generated on the Tox21 10K compound
collection are publicly available (PubChem, 2013a,b). The 12

assays were selected based on data quality, active rate, and
toxicological relevance for the Tox21 Challenge and their

PubChem assay IDs (AIDs) are listed in Table 1. All of the

compounds in the Tox21 10K collection went through analytical
quality control (QC) to test for their purity and identity. The

samples that failed QC were excluded from the training set for
the Challenge. Based on the concentration response data, each

compound in each assay was assigned one of three possible

activity outcomes: active, inactive, and inconclusive (Huang
et al., 2014; Attene-Ramos et al., 2015). The compounds that
showed inconclusive activity in all 12 assays were filtered out,
thus leaving 8043 samples for the training set. The LOPAC1280

collection (Sigma-Aldrich) contained 1280 compounds, 688 of

which overlapped with the Tox21 10K compounds. The non-
overlapping 592 LOPAC compounds were randomly split into
two sets of equal size, with 296 compounds in each set.
One set was provided to the Challenge participants for model
testing and the other was held back for final evaluation. An
additional set of 345 compounds, for which no experimental
data was available at the time of the Challenge, was provided
by the EPA as an extension to the Tox21 10K collection.
The training, test, and final evaluation sets appeared to cover
similar chemical structure spaces as shown by the 3D plots
generated using principal components 1–3 generated from the
729-bit ChemoTyper2 fingerprints (Supplementary Figure 1).
The chemical structures of these compounds were provided to
the Challenge participants to generate activity predictions. While
in parallel, these compounds were also screened against the 12

2https://chemotyper.org/
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assays to generate experimental data. The experimental screens
were finished at the same time as the final model submission
was closed. These newly generated assay data together with the
296 LOPAC compounds (641 compounds total) were used as
the final evaluation set to score and rank the model submissions
to determine the winners. All datasets were posted online3 for
registered participants to download, which are now open to the
public.

Challenge participants were asked to provide an estimate of
the probability of a chemical being active in an assay as well as an
active/inactive call. The performance of the model was evaluated
by the area under the Receiver Operating Characteristic (ROC)
curve (AUC-ROC) using the activity estimates produced by the
model. The ROC curve is a plot of sensitivity [TP/(TP+FN)]
vs. (1-specificity [TN/(TN+FP)]) (Zweig and Campbell, 1993),
where TP = true positive (number of active compounds also
predicted as active), FP = false positive (number of inactive
compounds predicted as active), TN = true negative (number of
inactive compounds also predicted as inactive), and FN = false
negative (number of active compounds predicted as inactive).
A perfect model would have an AUC-ROC of 1 and an AUC-
ROC of 0.5 indicates a random classifier. In cases where there
was a tie between the AUC-ROC scores from two teams, the
balanced accuracy (BA = (specificity + sensitivity)/2) calculated
based on the active/inactive calls was used to determine the final
ranking. Teams were expected to provide a prediction on the
activity of every compound in the final evaluation set. Missing
predictions were counted as false positive or false negative in
the scoring process. Teams were asked, in addition, to provide
a description of the prediction method they used, which should
be embodied in a set of algorithms and a software system, for
the Challenge organizers to directly use to verify the results.
Challenge rules and scoring criteria were also posted online4,
where registered Challenge participants were able to upload their
model predictions and method descriptions.

Consensus Modeling
A consensus model (Eduati et al., 2015) was built for each assay
based on all the submitted models for that assay, such that the
probability of a chemical being active in an assay is determined
by combining predictions made by all individual models. Each
individual model is also weighed by its predictive performance
on the final evaluation set, as measured by the AUC-ROC score,
such that better performingmodels would contribute more to the
consensus prediction. Specifically, for the consensus model, the
probability C of chemical i being active is calculated as follows:

Ci =

n∑

j=1

wj · Pj (1)

where n is the total number of models that provided predictions
for chemical i, Pj is the predicted probability of chemical i being
active by model j, and wj is the weight of model j, which is
the AUC-ROC score on the final evaluation set obtained by
model j. Ci is thus the consensus prediction of the activity of

3https://tripod.nih.gov/tox21/challenge/data.jsp
4https://tripod.nih.gov/tox21/challenge/submissions.jsp

chemical i in an assay. The performances of the consensusmodels
are evaluated by generating the AUC-ROC scores on the final
evaluation set using these consensus probabilities as predictors.

RESULTS AND DISCUSSION

Challenge Participation
The training dataset was made available to the Challenge
participants at the time of the Challenge launch in July 2014.
The test dataset was provided in early August 2014, when a
Leaderboard was also created on the Challenge website for
teams to submit their predictions on the test set. Teams were
allowed to train and test their models using the Leaderboard until
October 2014, at which point the Leaderboard was closed, the
test dataset was released to the participants to test and improve
models on their own, and the Challenge began to accept model
submissions for final evaluation. Fifty-three teams participated in
the Challenge by submitting a model either at the testing stage
or for final evaluation. Final model submission was closed in
November 2014 when the scoring started. Teams were allowed
an additional month to submit their method descriptions. Final
model performance scores and ranking were made available to
all teams who submitted a model for final evaluation on the
Challenge website in January 2015. The top ranking teams and
their scores were posted on the Challenge website5 and the
winning teams (Table 2) were announced on the NCATS website,
January 26, 20156. For the final model evaluation, we received
378 model submissions from 40 teams (Figure 1), averaging 32
models per assay/subchallenge.

Model Performance
The performances of the submitted models measured by AUC-
ROC and BA are shown in Figure 2. All winning models
performed well with AUC-ROC scores ranging from 0.81 to 0.95
(1 is the perfect score) and BAs ranging from 0.68 to 0.90. The
BA values were found generally lower than the AUC-ROC scores
because the teams were asked to decide on their own the most
appropriate cutoffs to make the active/inactive calls based on
their training and testing results. This task tested the contestant’s
ability to select the right cutoff using the ROC. If the optimal
cutoff was selected, the BA should have been very close to the
AUC-ROC value.

Subchallenges SR-MMP and NR-AhR received the best
performing models with the best AUC-ROC scores >0.9 and
average AUC-ROC scores >0.8. The models received for the
other subchallenges were comparable on average, with the
NR-AR and NR-AR-LBD models achieving the lowest average
performance scores (∼0.7). A common confounding factor
that affected model performance was data quality. We checked
the reproducibility of the training and the final evaluation
datasets against the model performances (Figure 3). All datasets
used for this Challenge were found to be of high quality
with >90% reproducibility. No correlation was found between
data reproducibility and the average AUC-ROC score per
subchallenge, as all datasets were highly reproducible and the

5https://tripod.nih.gov/tox21/challenge/leaderboard.jsp
6http://www.ncats.nih.gov/news-and-events/features/tox21-challenge.html
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TABLE 2 | Tox21 challenge winners.

Team name Challenge assay(s) Team member(s) Organization(s)

Bioinf@JKU Grand Challenge (all 12 assays)

Stress Response Panel

NR-AhR

SR-ARE

Günter Klambauer, Ph.D.

Sepp Hochreiter, Ph.D.

Andreas Mayr, M.Sc.

Thomas Unterthiner, M.Sc.

Institute of Bioinformatics, Johannes Kepler University Linz, Austria

Bioinf@JKU-ensemble1 NR-ER

SR-HSE

Günter Klambauer, Ph.D.

Sepp Hochreiter, Ph.D.

Andreas Mayr, M.Sc.

Thomas Unterthiner, M.Sc.

Herbert Zaunmair

Institute of Bioinformatics, Johannes Kepler University Linz, Austria

Bioinf@JKU-ensemble3 NR-AR-LBD Günter Klambauer, Ph.D.

Sepp Hochreiter, Ph.D.

Ulrich Bodenhofer, Ph.D.

Andreas Mayr, M.Sc.

Thomas Unterthiner, M.Sc.

Institute of Bioinformatics, Johannes Kepler University Linz, Austria

Bioinf@JKU-ensemble4 Nuclear Receptor Signaling

Panel

NR-PAR-gamma

Günter Klambauer, Ph.D.

Sepp Hochreiter, Ph.D.

Birgit Hauer

Andreas Mayr, M.Sc.

Thomas Unterthiner, M.Sc.

Institute of Bioinformatics, Johannes Kepler University Linz, Austria

AMAZIZ SR-ATAD5

SR-MMP

Ahmed M. Abdelaziz Sayed Technical University of Munich

Dmlab NR-AR

Aromatase

p53

Gergõ Barta, M.Sc. Budapest University of Technology and Economics

Microsomes NR-ER-LBD Yoshihiro Uesawa, Ph.D. Department of Clinical Pharmaceutics, Meiji Pharmaceutical University

best performing models were already reaching the level of assay
precision.

Active rate or data balance is another common factor that
affects model performance. Models built on less balanced data
or assays with lower active rates (e.g., <5%) are generally of
lower quality. There are different computational approaches to
balance data and enhance model performance, but if the number
of actives is too low, the information that can be retrieved from
the active chemical structures that the model is trained on will
be limited, nonetheless. Active rate was taken into consideration
when selecting assays for the Challenge such that assays with
extremely low active rates (e.g., <2%) were excluded. The
active rates of the assays used in the Challenge were compared
against the model performances as well (Figure 3), and a positive
correlation was found between the two (r = 0.63, p = 0.03), i.e.,
models built for assays with higher active rates tend to perform
better. For example, the assays with the best performing models,
SR-MMP and NR-AhR, had >10% active rates, whereas the NR-
AR assays that received the lowest average model performances
had <5% actives.

Consensus Modeling—Wisdom of the
Crowd
The goal of this Challenge was to rely on the wisdom of the
crowd to identify high quality models that could aid chemical

toxicity assessment, and previous challenges have shown that
aggregation of predictions, which leverage the collective insight
of all participants, can provide a more robust estimate than any
individual model (Marbach et al., 2012; Eduati et al., 2015). We
generated consensus models by aggregating the individual model
predictions and tested the performance of the models on the
final evaluation set. The consensus models performed on a par
with the winning models (Figure 4). We tried a few different
aggregation approaches. When we averaged all individual model
predictions to produce the consensus prediction, the consensus
model performed better than 86% of the individual models
for each subchallenge, on average. We then weighed the
predictions from each individual model by their AUC-ROC
score, such that the better performing models would contribute
more to the consensus prediction. This approach improved
the performance of the consensus models by outperforming
87% of the individual models. To further reduce the impact of
poor performing individual models, we only included the top
performing models (AUC-ROC > 0.8) from each subchallenge.
In this case, the consensus model performed better than 96%
of the individual models for each subchallenge. For 6 out
of the 12 subchallenges, the consensus model outperformed
the winning model. Interestingly, even though weighing all
individual predictions equally (including the worst individual
models) resulted in less than optimal consensus models, the
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FIGURE 2 | Performances of models received for the 12 subchallenges for final evaluation. (A) Measured by AUC-ROC (B) Measured by balanced accuracy.

consensus models still outperformed the individual models 86%
of the time, portraying the wisdom of the crowd.

In addition, we checked the compounds that were frequently
predicted correctly or incorrectly by teams, and calculated a
correct prediction rate for each compound in the final evaluation
set. We then looked at the activity outcome distribution of
each compound in the 12 assays used in the Challenge.
In each assay, there were often a number of compounds
for which no conclusive activity call could be made. Some
compounds showed inconclusive activity in more assays than
others. Based on this information, we also calculated an
inconclusive rate for each compound in the final evaluation

set. When the two parameters were compared, we found a
strong negative correlation between the correct prediction rate
and the inconclusive rate of compounds (r = −0.75, p <

10−20). Inclusive outcomes were excluded when evaluating
model performances, but the compounds that tend to produce
inconclusive outcomes still appeared to be less predictable
than compounds for which the activity was often clear. This
observation suggests that there might be certain characteristics
of the frequent inconclusive compounds that make them
“unpredictable” and outliers/violators of the structure-dictates-
activity rule. These compounds and their assay activities will
be examined in more detail in a follow up study. Nevertheless,
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FIGURE 3 | Factors influencing model performance (displayed as mean AUC-ROC ± standard deviation). Assays that had higher active rates received

better models. No correlation was found between data reproducibility and model performance because all assays were highly reproducible.

FIGURE 4 | Wisdom of the crowd. The best consensus models (colored in

red) outperformed 96% of the individual models (colored in gray) on average

and half of the winning models.

this type of information/insight could only be learned through a
crowdsource exercise like this Challenge.

Methods used by Winning Teams
A wide range of chemical descriptors and/or fingerprints, and
machine learning algorithms were employed by the winning
teams, including both public tools and commercial or custom
in-house software. The sources of chemical descriptors included
MOE (Chemical Computing Group Inc., Montreal, Canada),

ChemAxon (ChemAxon LLC., Cambridge, MA), Dragon (Talete
SRL, Milan, Italy), PaDel (Yap, 2011), RDKit7, PubChem
fingerprint8, GSFrag (Tetko et al., 2005), ISIDA fragments
(Ruggiu et al., 2010), ESTATE indices (Hall and Kier, 1995),
AlogPS (Tetko and Tanchuk, 2002), CDK (Steinbeck et al.,
2003), inductive descriptors (Cherkasov, 2005), Adriana.Code
(Molecular Networks GmbH, Erlangen, Germany), QNPR
(Thormann et al., 2007), MERA, and MerSy (Bartashevich
et al., 2002), to list a few. Examples of modeling algorithms
included Random Forest (Breiman, 2001), deep neural networks
(Schmidhuber, 2014), support vector machines (SVM) (Cortes
and Vapnik, 1995), Elastic Nets (Zou and Hastie, 2005),
Gradient Boosting Decision Trees (Friedman, 1999), Extra Trees
(Geurts et al., 2006), associative neural networks (Tetko, 2008),
and k-Nearest Neighbors (Altman, 1992). SVM appeared to
be a popular algorithm choice among the winning teams.
The winners commonly used multiple descriptor types and
applied feature selection to select the most relevant descriptors,
employed multiple modeling algorithms, and applied consensus
models to make the final predictions. In addition to what
the Challenge provided, the Grand Challenge winner also
used outside data, such as data from literature and public
databases including PubChem and ChEMBL (Gaulton et al.,
2012).

CONCLUSIONS

The Tox21 Data Challenge produced high quality winning
models, thus confirming the ability of computational approaches

7http://www.rdkit.org/
8https://pubchem.ncbi.nlm.nih.gov/
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to provide meaningful predictions of toxicity responses in
terms of pathway disruption upon environmental compound
exposure using (only) chemical structure information. The
combination of the individual models from all participating
teams produced better performing consensus models, some of
which even outperformed the winning models, showing the
wisdom of the crowd. The high predictive performance of these
models also serves as a validation of the quality of datasets
produced from the Tox21 qHTS assays, which were the basis
for this Challenge. The winning models will be made publicly
available so that they can be applied to other chemical sets for
which no experimental data are available and used to prioritize
chemicals for more in-depth toxicity evaluation. All winning
models, or better performing consensus models, can be applied
in parallel to establish activity/toxicity profiles for these data
poor chemicals. Compared to the other challenge participants,
the winning teams often applied multiple descriptor types with
feature selection, and multiple modeling algorithms to reach
consensus predictions. As a follow up study, we will compare
in detail the methods used by different teams to determine if
there are specific techniques that enabled the winning models to
outperform other models.
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The Tox21 Data Challenge has been the largest effort of the scientific community

to compare computational methods for toxicity prediction. This challenge comprised

12,000 environmental chemicals and drugs which were measured for 12 different

toxic effects by specifically designed assays. We participated in this challenge to

assess the performance of Deep Learning in computational toxicity prediction. Deep

Learning has already revolutionized image processing, speech recognition, and language

understanding but has not yet been applied to computational toxicity. Deep Learning

is founded on novel algorithms and architectures for artificial neural networks together

with the recent availability of very fast computers and massive datasets. It discovers

multiple levels of distributed representations of the input, with higher levels representing

more abstract concepts. We hypothesized that the construction of a hierarchy of

chemical features gives Deep Learning the edge over other toxicity prediction methods.

Furthermore, Deep Learning naturally enables multi-task learning, that is, learning of all

toxic effects in one neural network and thereby learning of highly informative chemical

features. In order to utilize Deep Learning for toxicity prediction, we have developed

the DeepTox pipeline. First, DeepTox normalizes the chemical representations of the

compounds. Then it computes a large number of chemical descriptors that are used

as input to machine learning methods. In its next step, DeepTox trains models, evaluates

them, and combines the best of them to ensembles. Finally, DeepTox predicts the toxicity

of new compounds. In the Tox21 Data Challenge, DeepTox had the highest performance

of all computational methodswinning the grand challenge, the nuclear receptor panel, the

stress response panel, and six single assays (teams “Bioinf@JKU”). We found that Deep

Learning excelled in toxicity prediction and outperformed many other computational

approaches like naive Bayes, support vector machines, and random forests.

Keywords: Deep Learning, deep networks, Tox21, machine learning, tox prediction, toxicophores, challenge

winner, neural networks

1. INTRODUCTION

Humans are exposed to an abundance of chemical compounds via the environment, nutrition,
cosmetics, and drugs. To protect humans from potentially harmful effects, these chemicals must
pass reliable tests for adverse effects and, in particular, for toxicity. A compound’s effects on human
health are assessed by a large number of time- and cost-intensive in vivo or in vitro experiments.
In particular, numerous methods rely on animal tests, trading off additional safety against ethical
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concerns. The aim of the “Toxicity testing in the Twenty-first
century” initiative is to develop more efficient and less time-
consuming approaches to predicting how chemicals affect human
health (Andersen and Krewski, 2009; Krewski et al., 2010). The
most efficient approaches employ computational models that can
screen large numbers of compounds in a short time and at low
costs (Rusyn and Daston, 2010). However, computational models
often suffer from insufficient accuracy and are not as reliable
as biological experiments. In order for computational models
to replace biological experiments, they must achieve comparable
accuracy. Within the “Tox21 Data Challenge” (Tox21 challenge),
the performance of computational methods for toxicity testing
was assessed in order to judge their potential to reduce in vitro
experiments and animal testing.

The Tox21 challenge organizers invited participants to build
computational models to predict the toxicity of compounds for
12 toxic effects (see Figure 1). These toxic effects comprised stress
response effects (SR), such as the heat shock response effect (SR-
HSE), and nuclear receptor effects (NR), such as activation of the
estrogen receptor (NR-ER). Both SR and NR effects are highly
relevant to human health, since activation of nuclear receptors
can disrupt endocrine system function (Chawla et al., 2001; Grün
and Blumberg, 2007), and activation of stress response pathways
can lead to liver injury or cancer (Bartkova et al., 2005; Labbe
et al., 2008; Jaeschke et al., 2012). For constructing computational
models, high-throughput screening assay measurements of these
twelve toxic effects were provided. The training set consisted of
the Tox21 10K compound library, which includes environmental
chemicals and drugs (Huang et al., 2014). For a set of 647 new
compounds, computational models had to predict the outcome

FIGURE 1 | Overview of the Tox21 challenge dataset.

of the high-throughput screening assays (see Figure 1). The assay
measurements for these test compounds were withheld from
the participants and used to evaluate the performance of the
computational methods. The “area under ROC curve” (AUC) was
used as a performance criterion that reflects how well a method
can rank toxic compounds higher than non-toxic compounds.

The participants in the Tox21 challenge used a broad range
of computational methods for toxicity prediction, most of
which were from the field of machine learning. These methods
represent the chemical compound by chemical descriptors, the
features, which are fed into a predictor. Methods for predicting
biological effects are usually categorized into similarity-based
approaches and feature-based approaches. Similarity-based
methods compute a matrix of pairwise similarities between
compounds which is subsequently used by the prediction
algorithms. These methods, which are based on the idea that
similar compounds should have a similar biological effect include
nearest neighbor algorithms (e.g., Kauffman and Jurs, 2001;
Ajmani et al., 2006; Cao et al., 2012) and support vector
machines (SVMs, e.g., Mahé et al., 2005; Niu et al., 2007;
Darnag et al., 2010). SVMs rely on a kernel matrix which
represents the pairwise similarities of objects. In contrast to
similarity based methods, feature based methods either select
input features (chemical descriptors) or weight them by a
score or a model parameter. Feature-based approaches include
(generalized) linear models (e.g., Luco and Ferretti, 1997;
Sagardia et al., 2013), random forests, (e.g., Svetnik et al.,
2003; Polishchuk et al., 2009), and scoring schemes based on
naive Bayes (Bender et al., 2004; Xia et al., 2004). Choosing
informative features for the task at hand is key in feature-
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based methods and requires deep insights into chemical and
biological properties and processes (Verbist et al., 2015), such
as interactions between molecules (e.g., ligand-target), reactions
and enzymes involved, and metabolic modifications of the
molecules. Similarity-based approaches, in contrast, require
a proper similarity measure between two compounds. The
measure may use a feature-based, a 2D graph-based, or a 3D
representation of the compound. Graph-based compound and
molecule representations led to the invention of graph and
molecule kernels (Kashima et al., 2003, 2004; Ralaivola et al.,
2005; Mahé et al., 2006; Mohr et al., 2008; Vishwanathan et al.,
2010; Klambauer et al., 2015). These methods are not able
to automatically create task-specific or new chemical features.
Deep Learning, however, excels in constructing new, task-
specific features that result in data representations which enable
Deep Learning methods to outperform previous approaches,
as has been demonstrated in various speech and vision
tasks.

Deep Learning (LeCun et al., 2015; Schmidhuber, 2015) has
emerged as a highly successful field of machine learning. It
has already impacted a wide range of signal and information
processing fields, redefining the state of the art in vision (Cireşan
et al., 2012a; Krizhevsky et al., 2012), speech recognition (Dahl
et al., 2012; Deng et al., 2013; Graves et al., 2013), text
understanding and natural language processing (Socher and
Manning, 2013; Sutskever et al., 2014), physics (Baldi et al., 2014),
and life sciences (Cireşan et al., 2013). MIT Technology Review
selected it as one of the 10 technological breakthroughs of 2013.
Deep Learning has already been applied to predict the outcome of
biological assays (Dahl et al., 2014; Unterthiner et al., 2014, 2015;
Ma et al., 2015), which made it our prime candidate for toxicity
prediction.

Deep Learning is based on artificial neural networks with
many layers consisting of a high number of neurons, called deep
neural networks (DNNs). A formal description of DNNs is given
in Section 2.2.1. In each layer Deep Learning constructs features
in neurons that are connected to neurons of the previous layer.
Thus, the input data is represented by features in each layer,
where features in higher layers code more abstract input concepts
(LeCun et al., 2015). In image processing, the first DNN layer
detects features such as simple blobs and edges in raw pixel data
(Lee et al., 2009; see Figure 2). In the next layers these features are
combined to parts of objects, such as noses, eyes and mouths for
face recognition. In the top layers the objects are assembled from
features representing their parts such as faces.

The ability to construct abstract features makes Deep
Learning well suited to toxicity prediction. The representation
of compounds by chemical descriptors is similar to the
representation of images by DNNs. In both cases the
representation is hierarchical and many features within a
layer are correlated. This suggests that Deep Learning is
able to construct abstract chemical descriptors automatically.
The constructed features can indicate functional groups or
toxicophores (Kazius et al., 2005) as visualized in Figure 3.

The construction of indicative abstract features by Deep
Learning can be improved by Multi-task learning. Multi-task
learning incorporates multiple tasks into the learning process
(Caruana, 1997). In the case of DNNs, different related tasks
share features, which therefore capture more general chemical
characteristics. In particular, multi-task learning is beneficial for
a task with a small or imbalanced training set, which is common
in computational toxicity. In this case, due to insufficient
information in the training data, useful features cannot be
constructed. However, multi-task learning allows this task to

FIGURE 2 | Hierarchical composition of complex features. DNNs build a feature from simpler parts. A natural hierarchy of features arises. Input neurons

represent raw pixel values which are combined to edges and blobs in the lower layers. In the middle layers contours of noses, eyes, mouths, eyebrows and parts

thereof are built, which are finally combined to abstract features such as faces. Images adopted from Lee et al. (2011) with permission from the authors.
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borrow features from related tasks and, thereby, considerably
increases the performance.

Deep Learning thrives on large amounts of training data in
order to construct indicative features (Krizhevsky et al., 2012)
and, thereby, well-performing models. Recently, the availability
of high-throughput toxicity assays provides sufficient data to use
Deep Learning for toxicity prediction (Andersen and Krewski,
2009; Krewski et al., 2010; Shukla et al., 2010). In summary,
Deep Learning is likely to perform well with the following
prerequisites:

Large dataset: “Big data” Several thousand data points must be

available to allow the Deep Learning

method to learn hierarchical

representations of the data.

Many related input features Multiple similar, i.e., correlated, inputs must

be available. This allows very robust hidden

representations.

Multi-task setting Each data point has multiple possible

output classes. The hidden representations

can be shared across tasks, enhancing

performance.

These three conditions are fulfilled for the Tox21 dataset: (1)
High throughput toxicity assays have provided vast amounts of
data. (2) Chemical compound descriptors are correlated. (3) A
Multi-task setting is natural as different assays measure different
but related toxic effects for the same compound (see Figure 4).
To conclude, Deep Learning seems promising for computational
toxicology because of its ability to construct abstract chemical
features.

2. MATERIALS AND METHODS

For the Tox21 challenge, we used Deep Learning as key
technology, for which we developed a prediction pipeline
(DeepTox) that enables the use of Deep Learning for toxicity
prediction. The DeepTox pipeline was developed for datasets
with characteristics similar to those of the Tox21 challenge
dataset and enables the use of Deep Learning for toxicity
prediction.We first introduce the challenge dataset in Section 2.1.
In Section 2.2 we then present, howwe utilized Deep Learning for
Toxicity prediction, while in Section 2.3 the DeepTox pipeline is
explained.

2.1. Tox21 Challenge Data
In the Tox21 challenge, a dataset with 12,707 chemical
compounds was given. This dataset consisted of a training
dataset of 11,764, a leaderboard set of 296, and a test set of
647 compounds. For the training dataset, the chemical structures
and assay measurements for 12 different toxic effects were fully
available to the participants right from the beginning of the
challenge, as were the chemical structures of the leaderboard
set. However, the leaderboard set assay measurements were
withheld by the challenge organizers during the first phase of
the competition and used for evaluation in this phase, but
were released afterwards, such that participants could improve
their models with the leaderboard data for the final evaluation.

FIGURE 3 | Representation of a toxicophore by hierarchically related

features. Simple features share chemical properties coded as reactive

centers. Combining reactive centers leads to toxicophores that represent

specific toxicological effects.

Table 1 lists the number of active and inactive compounds in
the training and the leaderboard sets of each assay. The final
evaluation was done on a test set of 647 compounds, where
only the chemical structures were made available. The assay
measurements were only known to the organizers and had to be
predicted by the participants. In summary, we had a training set
consisting of 11,764 compounds, a leaderboard set consisting of
296 compounds, both available together with their corresponding
assay measurements, and a test set consisting of 647 compounds
to be predicted by the challenge participants (see Figure 1). The
chemical compounds were given in SDF format, which contains
the chemical structures as undirected, labeled graphs whose
nodes and edges represent atoms and bonds, respectively. The
outcomes of the measurements were categorized (i.e., that is
labeled) as “active,” “inactive,” or “inconclusive/not tested.” Not
all compounds were measured on all assays (see Figure 4A).

2.2. Deep Learning for Toxicity Prediction
Deep Learning is a highly successful machine learning technique
that has already revolutionized many scientific areas. Deep
Learning comprises an abundance of architectures such as deep
neural networks (DNNs) or convolutional neural networks. We
propose a DNNs for toxicity prediction and present the method’s
details and algorithmic adjustments in the following. First we
introduce neural networks, and in particular DNNs, in Section
2.2.1. In Section 2.2.2, we then discuss key techniques that
led to the success of DNNs compared to shallow and small
neural networks. The objective that was minimized for the DNNs
for toxicity prediction and the corresponding optimization
algorithms are discussed in Section 2.2.3. We explain DNN
hyperparameters and the DNN architectures used in Section
2.2.4. In Section 2.2.5, we describe the hardware that was
employed to optimize the objectives of the DeepTox DNNs.

2.2.1. Deep Neural Networks
A neural network, and a DNN in particular, can be considered
as a function that maps an input vector to an output vector.
The mapping is parameterized by weights that are optimized in
a learning process. In contrast to shallow networks, which have
only one hidden layer and only few hidden neurons per layer,
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FIGURE 4 | Assay correlation. (A) Histogram showing the number of unambiguous assay label assignments per compound. Only ≈500 compounds had a label for

just one assay, more than half (54%) of the compounds had labels for 10 or more tasks. (B) Absolute correlation coefficient between the different assays of the Tox21

challenge.

TABLE 1 | Number of active and inactive compounds in the training (Train) and the leaderboard (Leader) sets of each assay.

Set Class A
h
R

A
R

A
R
-L
B
D
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R
E
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ro
m
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ta
s
e

A
T
A
D
5

E
R

E
R
-L
B
D

H
S
E

M
M
P

p
5
3

P
P
A
R
.g

Train Inactive 7219 8982 8296 6069 6866 8753 6760 8307 7722 6178 8097 7962

Train Active 950 380 303 1098 360 338 937 446 428 1142 537 222

Leader Inactive 241 289 249 186 196 247 238 277 257 200 241 252

Leader Active 31 3 4 48 18 25 27 10 10 38 28 15

FIGURE 5 | Schematic representation of a DNN.

DNNs comprise many hidden layers with a great number of
neurons. A DNN may have thousands of neurons in each layer
(Cireşan et al., 2012b), which is in contrast to traditional artificial
neural networks, that employ only a small number of neurons.
The goal is no longer to just learn the main pieces of information,
but rather to capture all possible facets of the input.

A neuron can be considered as an abstract feature with
a certain activation value that represents the presence of this

feature. A neuron is constructed from neurons of the previous
layer, that is, the activation of a neuron is computed from the
activation of neurons one layer below. The first layer is the
“input layer,” in which neuron activations are set to the value of
the input vector. The last layer is the “output layer,” where the
activations represent the output vector. The intermediate layers
are the “hidden layers,” which give intermediate representations
of the input vector.

Figure 5 visualizes the neural network mapping of an input
vector to an output vector. A compound is described by the
vector of its input features x. The neural network NN maps the
input vector x to the output vector y. The activation value hlj
of a neuron j in a layer l of the neural network is computed as

the weighted sum over the values hl−1
i of all neurons i in layer

(l − 1), followed by the application of an activation function f .

The weightwl
ji scales the activation h

l−1
i of neuron i in layer (l−1)

before it is summed to compute the activation of neuron j in layer
l. If the neural network hasm layers, then the formulas are

y = NN(x) ,

h0 = x ,

hlj = f
( ∑

i

wl
ji h

l−1
i

)
,

y = hm .
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In matrix notation, the activation of neurons is

hl = f
(
Wl hl−1

)
.

The output layer often has a special activation function, which
is denoted by σ instead of f in Figure 5. Each neuron has a bias
weight (i.e., a constant offset), that is added to the weighted sum
for computing the activation of a neuron. To keep the notation
uncluttered, these bias weights are not written explicitly, although
they are model parameters like other weights.

2.2.2. Key Techniques for Deep Neural Networks
Recent algorithmic improvements in training DNNs enabled the
success of Deep Learning: (1) “rectified linear units” (ReLUs)
enforce sparse representations and counteract the vanishing
gradient, (2) “dropout” for regularization, and (3) a cross-entropy
objective combined with softmax or sigmoid activation.

One of the most successful inventions in the context of DNNs
are rectified linear units (ReLUs) as activation functions (Nair
and Hinton, 2010; Glorot et al., 2011). A ReLU f is the identity
for positive values and zero otherwise. This activation function is
called the “ramp function”:

f (x) = max (0, x) .

Using ReLUs in DNNs leads to sparse input representations,
which are robust against noise and advantageous for classifiers
because classification is more likely to be easier in higher-
dimensional spaces (Ranzato et al., 2008). Probably the most
important advantage of ReLUs is that they are a remedy for the
vanishing gradient (Hochreiter, 1991; Hochreiter et al., 2000),
from which networks with sigmoid activation functions and
many layers suffer. “Vanishing” means in this context that the
length of a gradient decreases exponentially when propagated
through the layers, ultimately becoming too small for learning in
the lower(/est) layers. Another enabling technique is “dropout,”
which is one of the new regularization schemes that arose with
the advent of DNNs in order to prevent overfitting—a serious
problem for DNNs, as the number of hidden neurons is large
and the complexity of the model class is very high. Dropout
avoids co-adaption of units by randomly dropping units during
training, that is, setting their activations and derivatives to zero
(Hinton et al., 2012; Srivastava et al., 2014). The third technique
that paved the way for the success of DNNs is the application
of error functions such as cross-entropy and logistic-loss as
objectives to be minimized. These error functions are combined
with softmax or sigmoid activation functions in the output
neurons.

2.2.3. DNN Learning, Objective and Optimization
The goal of neural network learning is to adjust the network
weights such that the input-output mapping has a high predictive
power on future data. We want to explain the training data, that
is, to approximate the input-outputmapping on the training data.
Our goal is therefore to minimize the error between predicted
and known outputs on that data. The training data consists of

the output vector t for input vector x, where the input vector
is represented using d chemical features, and the length of the
output vector is n, the number of tasks. Let us consider a
classification task. For classification, the output component tk
for task k is binary, that is, tk ∈ {0, 1}. In the case of toxicity
prediction, the tasks represent different toxic effects, where zero
indicates the absence and one the presence of a toxic effect. The
neural network predicts the outputs yk. In the output layer of the
neural network a sigmoid activation function is used. Therefore,
the neural network predicts outputs yk, that are between 0 and
1, and the training data are perfectly explained if for all training
examples all outputs k are predicted correctly, i.e., yk = tk.
To penalize non-matching output-target pairs, an error function
or objective is defined. Minimizing this error function means
better aligning network outputs and targets. Typically, the cross-
entropy is used as an error function for multi-class classification.
In our case, we deal withmulti-task classification, where multiple
outputs can be one (multiple different toxic effects for one
compound) or none can be one (no toxic effect at all). For the
multi-task setting we use a logistic error function −tk log(yk) −
(1 − tk) log(1 − yk) for each output component k. If tk = yk,
then only terms (1 log 1) or (0 log 0) appear, and the logistic
error function is zero (note that (0 log 0) is defined to be zero).
Otherwise, the logistic error function gives a positive value. The
overall error function is the sum of these logistic error functions
across all output components:

−

n∑

k=1

tk log(yk) + (1− tk) log(1− yk) .

To cope with missing labels, we introduce a binary vector m for
each sample, where mk is one if the sample has a label for task
k and zero otherwise. This leads to a slight modification to the
above objective:

−

n∑

k=1

mk

(
tk log(yk) + (1− tk) log(1− yk)

)
.

Learning minimizes this objective with respect to the weights, as
the outputs yk are parametrized by the weights. The optimization
problem is usually solved by gradient descent, which aims
to minimize an objective function by iteratively adapting the
parameters of the optimization problem in the direction of the
steepest descent (the negative gradient) until a stationary point is
found. A critical parameter is the step size or learning rate, i.e.,
how strongly the parameters are changed in the update direction.
If a small step size is chosen, the parameters converge slowly to
the local optimum. If the step size is too high, the parameters
oscillate.

For neural networks, gradient descent can be applied with
high computational efficiency by using the backpropagation
algorithm (Werbos, 1974; Rumelhart et al., 1986). A
computational simplification to computing a gradient over
all training samples is stochastic gradient descent (Bottou, 2010).
Stochastic gradient descent computes a gradient for an equally-
sized set of randomly chosen training samples, a mini-batch, and
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updates the parameters according to this mini-batch gradient
(Ngiam et al., 2011). The advantage of stochastic gradient descent
is that the parameter updates are faster. The main disadvantage
of stochastic gradient descent is that the parameter updates are
more imprecise. For large datasets the increase in speed clearly
outweighs the imprecision.

2.2.4. Hyperparameter Settings and DNN Network

Architectures
The DeepTox pipeline assesses a variety of DNN architectures
and hyperparameters. The networks consist of multiple layers
of ReLUs, followed by a final layer of sigmoid output units, one
for each task. One output unit is used for single-task learning.
In the Tox21 challenge, the numbers of hidden units per layer
were 1024, 2048, 4096, 8192, or 16,384. DNNs with up to four
hidden layers were tested. Very sparse input features that were
present in fewer than 5 compounds were filtered out, as these
features would have increased the computational burden, but
would have included too little information for learning. DeepTox
uses stochastic gradient descent learning to train the DNNs
(see Section 2.2.3), employing mini-batches of 512 samples.
To regularize learning, both dropout (Srivastava et al., 2014)
and L2 weight decay were implemented for the DNNs in the
DeepTox pipeline. They work in concert to avoid overfitting
(Krizhevsky et al., 2012; Dahl et al., 2014). Additionally, DeepTox
uses early stopping, where the learning time is determined by
cross-validation.

Table 2 shows a list of hyperparameters and architecture
design parameters that were used for the DNNs, together with
their search ranges. The best hyperparameters were determined
by cross-validation using the AUC score as quality criterion. Even
thoughmulti-task networks were employed, the hyperparameters
were optimized individually for each task. The evaluation of
the models by cross-validation as implemented in the DeepTox
pipeline is described in Section 2.3.4.

2.2.5. GPU Implementation
Graphics Processor Units (GPUs) have become essential tools for
Deep Learning, because the many layers and units of a DNN give
rise to a massive computational load, especially regarding CPU
performance. Only through the recent advent of fast accelerated
hardware such as GPUs has training a DNN model become
feasible (Schmidhuber, 2015). As described in Section 2.2.1,
the main equations of a neural net can be written in terms
of matrix/vector operations, which are prime candidates for

TABLE 2 | Hyperparameters considered for the neural networks.

Hyperparameter Values considered

Scaling of predefined features {standard-deviation, tanh, sqrt}

Number of Hidden Units {1024, 2048, 4096, 8192, 16,384}

Number of Layers {1, 2, 3, 4}

Backpropagation Learning Rate {0.01, 0.05, 0.1}

Dropout usage/rate {no, yes (50% Hidden Dropout, 20% Input

Dropout)}

L2 Weight Decay {0, 10−6, 10−5, 10−4}

execution on massively parallel hardware architectures. Using
state-of-the-art GPU hardware speeds up the training process
by several orders of magnitude compared to using an optimized
multi-core CPU implementation (Raina et al., 2009). Hence, we
implemented the DNNs using the CUDA parallel computing
platform and employed NVIDIA Tesla K40 GPUs to achieve
speed-ups of 20–100x compared to CPU implementations (see
Supplementary Section 5 for an overview on the computational
resources that were used).

2.3. The DeepTox Pipeline
As mentioned above, we developed a pipeline, which enables
the usage of DNNs for toxicity prediction. The pipeline receives
raw training data and supplies predictions for new data. In
detail “DeepTox” consists of: (1) cleaning and quality control of
the data containing the chemical description of the compounds
(Section 2.3.1), (2) creating chemical descriptors as input features
for the models (Section 2.3.2), (3) model selection including
feature selection if required by the model class (Section 2.3.3), (4)
evaluating the quality of models in order to choose the best ones
(Section 2.3.4), and (5) combiningmodels to ensemble predictors
(Section 2.3.5). The individual steps of the pipeline are visualized
as boxes in Figure 6.

2.3.1. Data Cleaning and Quality Control
In the first step, DeepTox improves the quality of the training
data. We had observed that the chemical substances in question
are often mixtures of distinct chemical structures that are
not connected by covalent bonds. Therefore, we introduced

FIGURE 6 | DeepTox pipeline for toxicity prediction.

Frontiers in Environmental Science | www.frontiersin.org February 2016 | Volume 3 | Article 80 | 23

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Mayr et al. DeepTox

a fragmentation step to the DeepTox pipeline. In this step,
these distinct structures are split into individual “compound
fragments.” Examples of frequently recurring compound
fragments are Na+ and Cl− ions. Upon fragmentation,
identical compound fragments can appear multiple times,
which are merged by DeepTox. In this merging step, DeepTox
semi-automatically labels merged compound fragments,
removing contradictory and keeping agreeing measurements.
Compound fragments that appear in multiple mixtures can
have varying toxicity measurements since Tox21 testing was
based on mixtures. If all measurements agree, the fragments
are automatically labelled. For disagreeing measurements, an
operator has to disentangle the contradictory measurements
by assigning activities to compounds in the mixture. If this is
impossible, the label is marked to be unknown. All fragments are
then normalized by making “H”-atoms explicit and representing
aromatic bonds/tautomers consistently, by calculating a
canonical formula (Thalheim et al., 2010) using the software
Chemaxon. After merging and normalization, the size of the
dataset might be reduced. In the case of the Tox21 challenge
dataset, 12,707 compounds were reduced to 8694 distinct
fragments. To counteract the reduction in the training set size,
an optional augmentation step was introduced to DeepTox:
kernel-based structural and pharmacological analoging (KSPA),
which has been very successful in toxicogenetics (Eduati et al.,
2015). The central idea of KSPA is that public databases already
contain toxicity assays that are similar to the assay under
investigation. KSPA identifies these similar assays by high
correlation values and adds their compounds and measurements
to the given dataset. Thus, the dataset is enriched with both
similar structures and similar assays from public data (see
Supplementary Section 2). This typically leads to a performance
improvement of Deep Learning methods due to increased
datasets. Overall, the data cleaning and quality control procedure
improves the predictive performance of the DNNs.

2.3.2. Chemical Descriptors
For Deep Learning, a large number of correlated features is
favorable to achieve high performance (see Sections 1 and
Krizhevsky et al., 2012). Hence, DeepTox calculates as many
types of features as possible, which can be grouped into two
basic categories: static and dynamic features. Static features
are typically identified by experts as promising properties for
predicting biological activity or toxicity. Examples are atom
counts, surface areas, and the presence or absence of a predefined
substructure in a compound. Since static features are defined a
priori, the number of static features that represent a molecule
is fixed. For the static features, DeepTox calculates a number
of numerical features based on the topological and physical
properties of each compound using off-the-shelf software (Cao
et al., 2013). These static features include weight, Van der Waals
volume, and partial charge information. DeepTox also calculates
the presence and absence of 2500 predefined toxicophore
features, i.e., patterns of substructures previously reported as
toxicophores in the literature (e.g., Kazius et al., 2005), and
standard binary and count features such as MACCS and PCFP.
Dynamic features are extracted on the fly from the chemical

structure of a compound in a prespecified way (e.g., ECFP
fingerprint features, Rogers and Hahn, 2010) The DeepTox
pipeline uses JCompoundMapper (Hinselmann et al., 2011) to
create dynamic features. Dynamic features are often highly
specific and therefore sparse. Even if a huge (possibly infinite)
number of different dynamic features exists, handling the dataset
would remain feasible, as absent features are not reported.
Normally, either the presence of a feature (binary) or the count of
a feature (discrete) is reported for each compound. While many
of these sparse features may be uninformative, some dynamic
features may be specific to toxic effects.

The DeepTox pipeline uses a large number of different types
of static or dynamic features (see Supplementary Section 1).
Different types of input features have substantially different scales
and distributions which poses a problem for DNNs. To make all
of them available in the same range, DeepTox both standardizes
real-valued and count features and applies the tanh nonlinearity.
If the software libraries fail to compute a particular feature,
median-imputation is performed to substitute the missing
value before standardization. The Tox21 dataset in particular
comprised several thousands of static features and hundreds of
millions of dynamic features that were sparsely coded.

2.3.3. DeepTox Model Selection and Complementary

Models
Model Selection is the key step in the DeepTox pipeline. Its goal
is to find a model that describes the training data (i.e., assay
measurements of compounds) well and can be used to predict
assay outcomes of unmeasured compounds.

The main workhorses in the model building part of the
DeepTox pipeline are Deep Neural Networks (DNNs), which
are described above. Here, we present complementary learning
techniques that are included in the DeepToxmodel building part.
These techniques include SVMs, random forests (RF), and elastic
nets. These methods are used for cross-checking, supplementing
the Deep Learning models, and for ensemble learning to
complement DNNs. DeepTox considers both similarity-based
method, such as SVMs, and feature-based methods, such as
random random forests and elastic nets.

2.3.3.1. Support vector machines
SVMs are large-margin classifiers that are based on the
concept of structural risk minimization. They are widely used
in chemoinformatics (Mohr et al., 2010; Rosenbaum et al.,
2011). SVMs are similarity-based machine learning methods
and therefore depend on a kernel function that determines the
similarity of two compounds.

The choice of similarity measure is crucial to the performance
of SVMs. DeepTox uses a linear kernel as a similarity measure
between two compounds x and z, and variations of the Tanimoto
kernel:

• Klinear(x, z) =
∑

p∈P N(p, x) · N(p, z),

• KMinmax(x, z) =

∑
p∈P min N(p,x),N(p,z)∑
p∈P max N(p,x),N(p,z)

,

• KMinmax_new(x, z) =

∑
p∈P N(p,x)+N(p,z)>0

min(N(p,x),N(p,z))
max(N(p,x),N(p,z))∑

p∈P N(p,x)+N(p,z)>0 1
,
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where N(p, x) quantifies feature p for compound x, and P

features are considered for a set of compounds. For binary input
features, N(p, x) indicates whether a substructure p occurs in
the molecule x. For integer-valued input features, N(p, x) is the
standardized occurrence count of p in x. For real-valued input
features, N(p, x) is the standardized value of a feature p for
molecule x.

Our novel MinMax kernel KMinmax_new(x, z) allows
continuous features (e.g., partial charges) to be combined with
with discrete (e.g., atom counts) and binary (e.g., substructure
indicators) features. Since only positive values are allowed,
DeepTox splits continuous and count features into positive and
negative parts after centering them by the mean or the median.

The hyperparameters for learning SVM models are the
SVM regularization parameter, a shrinkage/growth parameter
for the kernel similarity, and weights of kernel matrices.
Hyperparameters were selected as for DNNs.

2.3.3.2. Random forests
Random forest (Breiman, 2001) approaches construct decision
trees for classification, and average over many decision trees for
the final classification. Each individual tree uses only a subset of
samples and a subset of features, both chosen randomly. In order
to construct decision trees, features that optimally separate the
classes must be chosen at each node of the tree. Optimal features
can be selected based on the information gain criterion or the
Gini coefficient. The hyperparameters for random forests are the
number of trees, the number of features considered in each step,
the number of samples, the feature choice, and the feature type.
Random forests require a preprocessing step that reduces the
number of features. The t-test and Fisher’s exact test were used
for real-valued and binary features, respectively.

2.3.3.3. Elastic net
Elastic nets (Friedman et al., 2010; Simon et al., 2011) learn
linear regression functions. They basically compute least-square
solutions. However, in contrast to ordinary least squares the
objective includes a penalty term—a weighted combination
between the pure L1 and the pure L2 norm on the coefficients
of the linear function. The L1 and L2 regularization leads to
sparse solutions via the L1 term and to solutions without large
coefficients via the L2 term. The L1 term selects features, and
the L2 term prevents model overfitting due to over-reliance on
single features. In the Tox21 challenge DeepTox used only static
features for elastic net. Since elastic nets built this way typically
showed poorer performance than Deep Learning, SVMs and
random forests, they were rarely included in the ensembles of the
Tox21 challenge.

2.3.4. Model Evaluation
DeepTox determines the performance of our methods by
cluster cross-validation. In contrast to standard cross-validation,
in which the compounds are distributed randomly across
cross-validation folds, clusters of compounds are distributed.
Concretely, we used Tanimoto similarity based on ECFP4
fingerprints and single linkage clustering to identify compound
clusters. A similarity threshold of 0.7 gave us many small clusters

that we then distributed randomly across the folds. DeepTox
considers two aspects for defining the cross-validation folds: the
ratio of actives to inactives and the similarity of compounds.

The ratio of actives to inactives in the cross-validation folds
should be close to the ratio expected in future data. In the Tox21
challenge training dataset, a certain number of compounds
were measured in only a few assays, whereas we expected the
compounds in the final test set to be measured in all twelve
assays. Therefore, in the cross-validation folds, only compounds
with labels from at least eight of the twelve assays were included.
Thus, we ensured that the ratios of actives to inactives in the
cross-validation folds were similar to that in the final test data.

The compounds in different cross-validation folds should not
be overly similar. A compound in the test fold that is similar to a
compound in the training folds could easily be classified correctly
by all methods simply based on the overall similarity. In this case,
information about the performance of the methods is lost. To
avoid that excessively similar compounds are in the test and in
the training fold during model evaluation, DeepTox performs
cluster cross-validation, which guarantees a minimum distance
between compounds of all folds (even across all clusters) if single-
linkage clustering is performed. In the challenge, the clusters
that resulted from single-linkage clustering of the compounds
were distributed among five cross-validation folds. The similarity
measure for clustering was the chemical similarity given by
ECFP4 fingerprints. In cluster cross-validation, cross-validation
folds contain structurally similar compounds that often share the
same scaffold or large substructures.

For the Tox21 challenge, the compounds of the leaderboard
set were considered to be an additional cross-validation fold.
Aside from computing a mean performance over the cross-
validation folds, DeepTox also considered the performance on
the leaderboard fold as an additional criterion for performance
comparisons.

2.3.5. Ensembles of Models
DeepTox constructs ensembles that contain DNNs and
complementary models. For the ensembles, the DeepTox
pipeline gives high priority to DNNs, as they tend to perform
better than other methods. The pipeline selects ensemble
members based on their cross-validation performance and,
for the Tox21 challenge dataset, their performance on the
leaderboard set. DeepTox uses a variety of criteria to choose
the methods that form the ensembles, which led to the different
final predictions in the challenge. These criteria were the
cross-validation performances and the performance on the
leader board set, as well as independence of the methods. The
performance criteria ensure that very high-performing models
form the ensembles, while the independence criterion ensures
that ensembles consist of models built by different methods, or
that ensembles are built from different sets of features.

A problem that arises when building ensembles is that values
predicted by different models are on different scales. To make
the predictions comparable, DeepTox employs Platt scaling
(Platt, 1999) to transform them into probabilistic predictions.
Platt scaling uses a separate cross-validation run to supply
probabilities. Note that probabilities predicted by models such

Frontiers in Environmental Science | www.frontiersin.org February 2016 | Volume 3 | Article 80 | 25

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Mayr et al. DeepTox

as logistic regression are not trustworthy as they can overfit to
the training set. Therefore, a separate run with predictions on
unseen data must be performed to calibrate the predictions of
a model in such a way that they are trustworthy probabilities.
Since the arithmetic mean is not a reasonable choice for
combining the predictions of different models, DeepTox uses a
probabilistic approach with similar assumptions as naive Bayes
(see Supplementary Section 3) to fully exploit the probabilistic
predictions in our ensembles.

3. RESULTS

3.1. Benefit of Multi-Task Learning
We were able to apply multi-task learning in the Tox21 challenge
becausemost of the compounds were labeled for several tasks (see
Section 1). Multi-task learning has been shown to enhance the

TABLE 3 | Comparison: multi-task (MT) with single-task (ST) learning and

SVM baseline evaluated on the leaderboard-set.

Task AUC MT AUC ST AUC SVM

NR.AhR 0.8409 0.8487 0.8289

NR.AR 0.3459 0.3755 0.3344

NR.AR.LBD 0.9289 0.8799 0.8771

NR.Aromatase 0.7921 0.7523 0.7710

NR.ER 0.6949 0.6659 0.6962

NR.ER.LBD 0.7272 0.6532 0.6895

NR.PPAR.gamma 0.7102 0.6367 0.6653

SR.ARE 0.8017 0.7927 0.8201

SR.ATAD5 0.7958 0.7972 0.7310

SR.HSE 0.8101 0.7354 0.6697

SR.MMP 0.8489 0.8485 0.8256

SR.p53 0.7487 0.6955 0.6662

performance of DNNs when predicting biological activities at the
protein level (Dahl et al., 2014). Since the twelve different tasks of
the Tox21 challenge data were highly correlated, we implemented
multi-task learning in the DeepTox pipeline.

To investigate whether multi-task learning improves the
performance, we compared single-task and multi-task neural
networks on the Tox21 leaderboard set. Furthermore, we
computed an SVM baseline (linear kernel). Table 3 lists the
resulting AUC values and indicates the best result for each task in
italic font. The results for DNNs are the means over 5 networks
with different random initializations. Both multi-task and single-
task networks failed on an assay with a very unbalanced class
distribution. For this assay, the data contained only 3 positive
examples in the leaderboard set. For 10 out of 12 assays, multi-task
networks outperformed single-task networks.

3.2. Learning of Toxicophore
Representations
As mentioned in Section 1, neurons in different hidden layers
of the network may encode toxicophore features. To check
whether Deep Learning does indeed construct toxicophores,
we performed separate experiments. In the challenge models,
toxicophores (see Section 2.3.2) were used as input features.
We removed these features to withhold all toxicophore-related
substructures from the network input, and were thus able to
check whether toxicophores were constructed automatically by
DNNs.

We trained a multi-task deep network on the Tox21 data
using exclusively ECFP4 fingerprint features, which had similar
performance as a DNN trained on the full descriptor set
(see Supplementary Section 4, Supplementary Table 1). ECFP
fingerprint features encode substructures around each atom in a
compound up to a certain radius. Each ECFP fingerprint feature
counts how many times a specific substructure appears in a
compound. After training, we looked for possible associations

FIGURE 7 | Quantity of neurons with significant associations to toxicophores. (A) The histogram shows the fraction of neurons in a layer that yield significant

correlations to a toxicophore. With an increasing level of the layer, the number of neurons with significant correlation decreases . (B) The histogram shows the number

of neurons in a layer that exceed a correlation threshold of 0.6 to their best correlated toxicophore. Contrary to (A) the number of neurons increases with the network

layer. Note that each layer consisted of the same number of neurons.
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between all neurons of the networks and 1429 toxicophores, that
were available as described in Section 2.3.2. We checked the
associations using a U-test, in which a neuron was characterized
by its activation over the compounds of the training set
and a toxicophore was characterized by its presence/absence
in the training set compounds. The alternative hypothesis
for the test was that compounds containing the toxicophore
substructure have different activations than compounds that do
not contain the toxicophore substructure. Bonferroni multiple
testing correction was applied afterwards, that is the p-values
from the U-test were multiplied by the number of hypothesis,
concretely the number of toxicophores (1429) times the number
of neurons of the network (16,384). After this correction, 99% of
neurons in the first hidden layer had a significant association with
at least one toxicophore feature using a significance threshold
of 0.05. The number of neurons with significant associations
decreases with increasing level of the layer. In the second layer,
there are 97% neurons with a significant association and 90 and
87% in the third and fourth layer, respectively (see Figure 7A).
Next we investigated the correlation of known toxicophores to

neurons in different layers to quantify their matching. To this
end, we used the rank-biserial correlation which is compatible
to the previously used U-test. To limit false detections, we
constrained the analysis to estimates with a variance <0.01.
We observed that higher layers have a higher number of
neurons with rank-biserial correlation above 0.6 (see Figure 7B).
This means features in higher layers match toxicophores
more precisely.

The decrease in the number of neurons with significant
associations with toxicophores through the layers and the
simultaneous increase of neurons with high correlation can be
explained by the typical characteristics of a DNN: In lower
layers, features code for small substructures of toxicophores,
while in higher layers they code for larger substructures or
whole toxicophores. Features in lower layers are typically part
of several higher layer features, and therefore correlate with
more toxicophores than higher level features, which explains the
decrease of neurons with significant associations to toxicophores.
Features in higher layers are more specific and are therefore
correlated more highly with toxicophores, which explains the

FIGURE 8 | Feature Construction by Deep Learning. Neurons that have learned to detect the presence of toxicophores. Each row shows a particular hidden unit

in a learned network that correlates highly with a particular known toxicophore feature. The row shows the three chemical compounds that had the highest activation

for that neuron. Indicated in red is the toxicophore structure from the literature that the neuron correlates with. The first row and the second row are from the first

hidden layer, the third row is from a higher-level layer.
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increase of neurons with high correlation values. Our findings
underline that deep networks can indeed learn to build
complex toxicophore features with high predictive power for
toxicity.

Visual inspection of the results also confirmed that lower
layers tended to learn smaller features, often focusing on single
functional groups, such as sulfonic acid groups (see row 1 and

2 of Figure 8), while in higher layers the correlations tended to

be with larger toxicophore clusters (row 3 of Figure 8). Most
importantly, these learned toxicophore structures demonstrated

that Deep Learning can support finding new chemical knowledge

that is encoded in its hidden units.

3.3. Comparison of DNN and
Complementary Methods
We selected the best-performing models from each method in
the DeepTox pipeline based on an evaluation of the DeepTox
cross-validation sets and evaluated them on the final test set. The
methods we compared were DNNs, SVMs (Tanimoto kernel),
random forests (RF), and elastic net (ElNet). Table 4 shows the
AUC values for each method and each dataset. We also provided
the mean AUC over the NR and SR panel, and the mean AUC
over all datasets. The results confirm the superiority of Deep
Learning over complementary methods for toxicity prediction by
outperforming other approaches in 10 out of 15 cases.

TABLE 4 | AUC Results for different learning methods as part of DeepTox evaluated on the final test set.
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DNN 0.837 0.827 0.851 0.923 0.778 0.825 0.829 0.804 0.775 0.791 0.811 0.863 0.930 0.860 0.856

SVM 0.832 0.819 0.849 0.919 0.822 0.748 0.818 0.819 0.781 0.799 0.798 0.848 0.946 0.854 0.827

RF 0.820 0.805 0.840 0.917 0.776 0.812 0.810 0.806 0.786 0.770 0.746 0.826 0.945 0.835 0.805

ElNet 0.803 0.787 0.826 0.897 0.788 0.692 0.778 0.763 0.768 0.765 0.805 0.844 0.924 0.818 0.799

TABLE 5 | The leading teams’ AUC Results on the final test set in the Tox21 challenge.
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our method 0.846 0.826 0.858 0.928 0.807 0.879 0.840 0.834 0.793 0.810 0.814 0.865 0.942 0.862 0.861

AMAZIZ 0.838 0.816 0.854 0.913 0.770 0.846 0.805 0.819 0.828 0.806 0.806 0.842 0.950 0.843 0.830

dmlab 0.824 0.811 0.850 0.781 0.828 0.819 0.768 0.838 0.800 0.766 0.772 0.855 0.946 0.880 0.831

T 0.823 0.798 0.842 0.913 0.676 0.848 0.801 0.825 0.814 0.784 0.805 0.811 0.937 0.847 0.822

microsomes 0.810 0.785 0.814 0.901 – – 0.804 – 0.812 0.785 0.827 – – 0.826 0.717

filipsPL 0.798 0.765 0.817 0.893 0.736 0.743 0.758 0.776 – 0.771 – 0.766 0.928 0.815 –

Charite 0.785 0.750 0.811 0.896 0.688 0.789 0.739 0.781 0.751 0.707 0.798 0.852 0.880 0.834 0.700

RCC 0.772 0.751 0.781 0.872 0.763 0.747 0.761 0.792 0.673 0.781 0.762 0.755 0.920 0.795 0.637

frozenarm 0.771 0.759 0.768 0.865 0.744 0.722 0.700 0.740 0.726 0.745 0.790 0.752 0.859 0.803 0.803

ToxFit 0.763 0.753 0.756 0.862 0.744 0.757 0.697 0.738 0.729 0.729 0.752 0.689 0.862 0.803 0.791

CGL 0.759 0.720 0.791 0.866 0.742 0.566 0.747 0.749 0.737 0.759 0.727 0.775 0.880 0.817 0.738

SuperTox 0.743 0.682 0.768 0.854 – 0.560 0.711 0.742 – – – – 0.862 0.732 –

kibutz 0.741 0.731 0.731 0.865 0.750 0.694 0.708 0.729 0.737 0.757 0.779 0.587 0.838 0.787 0.666

MML 0.734 0.700 0.753 0.871 0.693 0.660 0.701 0.709 0.749 0.750 0.710 0.647 0.854 0.815 0.645

NCI 0.717 0.651 0.791 0.812 0.628 0.592 0.783 0.698 0.714 0.483 0.703 0.858 0.851 0.747 0.736

VIF 0.708 0.702 0.692 0.827 0.797 0.610 0.636 0.671 0.656 0.732 0.735 0.723 0.796 0.648 0.666

Toxic Avg 0.644 0.659 0.607 0.715 0.721 0.611 0.633 0.671 0.593 0.646 0.640 0.465 0.732 0.614 0.682

Swamidass 0.576 0.596 0.593 0.353 0.571 0.748 0.372 0.274 0.391 0.680 0.738 0.711 0.828 0.661 0.585
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3.4. Tox21 Data Challenge Results
The DeepTox pipeline, which is dominated by DNNs,
consistently showed very high performance compared to
all competing methods. It won a total of 9 of the 15 challenges
and did not rank lower than fifth place in any of the subchallenges
In particular, it achieved the best average AUC in both the SR
and the NR panel, and additionally the best average AUC across
the whole set of sub-challenges. It was thus declared winner of
the Nuclear Receptor and the Stress Response panel, as well as
the overall Tox21 Grand Challenge.

The leading teams’ results (team names abbreviated) from
all 12 subchallenges and the average results over the 12
subchallenges and the subchallenges that were part of the
“Nuclear Receptor” and the “Stress Response” panel, respectively,
are given in Table 5. The best results are indicated in bold
with gray background, the second-best results with light gray
background.

The Tox21 challenge result can be summarized as follows: The
Deep-Learning-based DeepTox pipeline clearly outperformed all
competitors.

4. DISCUSSION

In this paper, we have introduced the DeepTox pipeline for
toxicity prediction based on Deep Learning.

Deep Learning is known to learn abstract representations
of the input data with higher levels of abstractions in higher
layers (LeCun et al., 2015). This concept has been relatively
straightforward to demonstrate in image recognition, where
simple objects, such as edges and simple blobs, in lower layers
are combined to abstract objects in higher layers (Lee et al.,
2009). In toxicology, however, it was not known how the data
representations from Deep Learning could be interpreted. We
could show that many hidden neurons represent previously
known toxicophores (Kazius et al., 2005)—proven concepts
which have formerly been handcrafted over decades by experts
in the field. Naturally, we conclude that these representations
also include novel, previously undiscovered toxicophores that
are latent in the data. Using these representations, our
pipeline outperformed methods that were specifically tailored to
toxicological applications.

Successful deep learning is facilitated by Big Data and the
use of graphical processing units (GPUs). In this case, Big Data
is a blessing rather than a curse. However, Big Data implies a
large computational demand. GPUs alleviate the problem of large

computation times, typically by using CUDA kernels on Nvidia
cards (Raina et al., 2009; Unterthiner et al., 2014, 2015; Clevert
et al., 2015). Concretely, training a single DNN on the Tox21
dataset takes about 10 min on an Nvidia Tesla K40 with our
optimized implementation. However, we had to train thousands
of networks in order to investigate different hyperparameter
settings via our cross-validation procedure, which is crucial
for the performance of DNNs. The hyperparameter search was
parallelized across multiple GPUs. Concluding, we consider the
use of GPUs a necessity and recommend the use of multiple GPU
units.

Similar to the successes in other fields (Dahl et al., 2012;
Krizhevsky et al., 2012; Deng et al., 2013; Graves et al., 2013;
Socher and Manning, 2013; Baldi et al., 2014; Sutskever et al.,
2014), Deep Learning has increased the predictive performance
of computational methods in toxicology. As confirmed by
the NIH1, the high quality of the models in the Tox21
challenge makes them suitable for deployment in leading-edge
toxicological research. We believe that Deep Learning is highly
suited to predicting toxicity and is capable of significantly
influencing this field in the future.
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The need for filling information gaps while reducing toxicity testing in animals is

becoming more predominant in risk assessment. Recent legislations are accepting in

silico approaches for predicting toxicological outcomes. This article describes the results

of Quantitative Structure Activity Relationship (QSAR) modeling efforts within Tox21 Data

Challenge 20141, which calculated the best balanced accuracy across all molecular

pathway endpoints as well as the highest scores for ATAD5 andmitochondrial membrane

potential disruption. Automated QSPR workflow systems, OCHEM (http://ochem.eu),

the analytics platform, KNIME and the statistics software, CRAN R, were used to conduct

the analysis and develop consensus models using 10 different descriptor sets. A detailed

analysis of QSAR models for all 12 molecular pathways and the effect of underlying

models’ accuracy on the quality of the consensus model are provided. The resulting

consensusmodels yielded a balanced accuracy as high as 88.1%± 0.6 for mitochondrial

membrane disruptors. Such high balanced accuracy and use of the applicability domain

show a promising potential for in silico modeling to complement design HTS screening

experiments. The comprehensive statistics of all models are publicly available online at

https://github.com/amaziz/Tox21-Challenge-Publication while the developed consensus

models can be accessed at http://ochem.eu/article/98009.

Keywords: computational toxicology, alternative testing, Quantitative structure activity relationship, high

throughput screening, predictive toxicology, Tox21

INTRODUCTION

High-throughput screening (HTS) allows researchers to conduct millions of chemical, genetic, or
pharmacological experiments with minimal intervention. Such procedures may quickly identify
potentially active compounds, antibodies, or genes that control particular biochemical pathways.
The results of such assays guide the research process. And thus this approach has become a valuable
and viable tool for large-scale evaluation of chemicals (Kavlock and Dix, 2010; Judson et al., 2011;
Wetmore et al., 2012). The large amounts of data generated by HTS available today may be used
to correlate chemical structures to their biological activities. QSARs may support the identification

1Tox21 Data Challenge 2014—Data Available at: https://tripod.nih.gov/tox21/challenge/data.jsp
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of key characteristics in chemical structures responsible for
such activities. This knowledge is then used to provide
predictions about the possible activity of test compounds in
virtual screening settings for regulatory purposes. The quality
of QSAR models based on large chemical libraries from HTS
experiments varies. However, the accuracy is usually high enough
to support prioritizing chemicals that are worth being subjected
to experimental testing. This approach satisfies the imminent
need to prioritize chemicals testing, filling information gaps,
accelerating the chemical registration process and lowering the
overall costs of testing (US EPA, OCSPP).2

Tox21 (Tice et al., 2009; Betts, 2013) represents a multi-
agency effort that uses HTS assays for toxicity modeling
and prediction in the US. The US Environmental Protection
Agency (EPA), The National Institutes of Health (NIH),
The National Center for Advancing Translational Sciences
(NCATS), The National Institutes of Environmental Health
Sciences/National Toxicology Program (NIEHS/NTP) and the
Food and Drug Administration (FDA) cooperate in screening
chemical substances for some selected potential toxic effects.
The data may then be used, with the assistance of in silico
techniques, for providing an alternative for expensive, time-
consuming, and ethically-questioned animal testing. This implies
the potential for providing an economical method for toxicity
testing prioritization for thousands of yet untested compounds
(Betts, 2013).

Similar efforts to reduce animal testing and utilize
computational toxicity modeling are made in Europe. The
European Chemical Agency (ECHA) described the role of
animals in ensuring the safe use of chemical substances as being
the last resort. This is one of the key principles for the REACH
(Registration, Evaluation, Authorization, and Restriction of
Chemicals) legislations. It encourages the use of so-called
“alternative approaches” to reduce animal testing. QSAR
modeling is one of the promoted mechanisms for alternative
chemicals’ risk assessment. Guiding documents exist that explain
the best practices and the requirements for accepting QSAR
models’ predictions (Worth et al., 2005). These guidelines are
essential for directing the stakeholders on how to utilize QSAR
methodologies in a manner that gets accepted by the regulators.
The guidelines warrant evaluating the human and environmental
toxicity risks, complying with the regulatory requirements
and reducing the need for animal testing at the same
time.

The Tox21 Data challenge follows the open-innovation
principles (Chesbrough, 2006) to crowdsource scientists’ efforts
in analyzing HTS data generated through the Tox21 project. It
aspires to predict the pathways’ interference of chemicals using
only their chemical structures. Such predictions can therefore
guide regulators and participating governmental agencies in
identifying the chemicals (either drugs or industrial) that carry
the highest concern for human and environmental risks. The
aim of this study is to describe the methodologies used by

2US EPA, OCSPP, O. Using Predictive Methods to Assess Hazard under

TSCA. Available at: http://www2.epa.gov/tsca-screening-tools/using-predictive-

methods-assess-hazard-under-tsca#models [Accessed October 15, 2015].

the winning corresponding author during the challenge (team:
AMAZIZ) and to extend the analysis on the chemical libraries
beyond what was possible during the limited duration of the
challenge. The study investigates a comprehensive approach
on consensus modeling and analyzes multiple descriptor
packages.

MATERIALS AND METHODS

Molecular Pathways Screening
In this study, 12 molecular pathway endpoints were investigated,
which were selected on the basis of toxicological relevance.
The targets were experimentally screened as part of the Tox21
program and the resulting data library made accessible for
competitors by the Tox21 Data Challenge organizers (Tox21
Data Challenge 2014—Data).

Estrogen Receptor (ER) (AID 7430773, AID 7430794)
Tox21 compounds library was screened for potentially acting as
agonist at the estrogen receptor alpha. Such activators could lead
to reproductive dysfunction (Aop:30)5. Two different cell lines
were used:

- ER-alpha-UAS-bla GripTiteTM cell line (ER-LBD): This cell
line was developed by Invitrogen, Carlsbad, CA, USA. Cells
contain a beta-lactamase reporter gene controlled by an
Upstream Activator Sequence (UAS) stably integrated into
HEK293 cells.

- BG1-Luc-4E2 cell line (ER-full): Dr. Michael Denison
from University of California provided the cell line. Cells
endogenously express the full-length ER-alpha and are
stably transfected with a plasmid containing four estrogen
responsive elements (ERE) under the control of an upstream
luciferase reporter gene.

Androgen Receptor (AR) (AID 7430406, AID 7430537)
Compounds that agonist the AR may cause reproductive
dysfunction (Aop:23)8. The ability of Tox21 compounds to

3AID 743077—qHTS assay to identify small molecule agonists of the estrogen

receptor alpha (ER-alpha) signaling pathway: Summary—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743077 [Accessed July 10, 2015].
4AID 743079—qHTS assay to identify small molecule agonists of the estrogen

receptor alpha (ER-alpha) signaling pathway using the BG1 cell line—PubChem

BioAssay Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.

cgi?aid=743079 [Accessed July 10, 2015].
5Aop:30—Estrogen receptor antagonism leading to reproductive dysfunction-

aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:30 [Accessed

December 15, 2015].
6AID 743040—qHTS assay to identify small molecule agonists of the androgen

receptor (AR) signaling pathway using the MDA cell line—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743040#aDescription [Accessed July 10, 2015].
7AID 743053—qHTS assay to identify small molecule agonists of the

androgen receptor (AR) signaling pathway: Summary—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743053 [Accessed July 10, 2015].
8Aop:23—Androgen receptor agonism leading to reproductive dysfunction—

aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:23 [Accessed

December 15, 2015].
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agonist the androgen receptor alpha was measured in two
different cell lines.

- GeneBLAzer AR-UAS-bla-GripTite cell line (AR-LBD): This
cell line is provided by Invitrogen, Carlsbad, CA, USA.
Cells contain a beta-lactamase reporter gene controlled by
an upstream activator sequence (UAS) stably integrated into
HEK293 cells.

- MDA-kb2 AR-luc cell line (AR-full): This cell line was
deposited by Wilson et al. It is a human breast carcinoma cell
line that was stably transfected with a luciferase reporter gene
under control of the MMTV promoter containing response
elements for both androgen receptor (AR) and glucocorticoid
receptor (GR).

Aryl Hydrocarbon Receptor (AHR) (AID 743122)9

AHR activation is thought to lead to multiple adverse
outcomes including hepatic steatosis (Aop:57)10, uroporphyria
(Aop:131)11, developmental abnormalities and embryolethality
(in birds) (Aop:22)12, and embryo toxicity in fish (Aop:21)13

inter alia. A cell based HepG2-AhR-luc assay was used to
assess the activation of AhR for Tox21 compounds. The
HG2L7.5c1 cell line, as developed by Dr. Michael S. Denison
(University of California at Davis), was utilized. The human
hepatocellular carcinoma (HepG2) cells were stably transfected
with an Ah receptor-responsive firefly luciferase reporter gene
plasmid carrying 20 dioxin responsive elements and luciferase
reporter gene. AhR activation leads to an increase in luciferase
activity and therefore ligands can be detected.

Peroxisome Proliferator-Activated Receptor Gamma

(PPAR-gamma) (AID 743140)14

PPAR-gamma activation has been associated with impaired
fertility in adult females (Aop:7)15. GeneBLAzer PPAR gamma
UAS-bla HEK293H cell line was used in this assay. This cell line
is provided by Invitrogen, Carlsbad, CA, USA. Cells contain a
beta-lactamase reporter gene controlled by an upstream activator
sequence (UAS) stably integrated into HEK293H cells.

9AID 743122—qHTS assay to identify small molecule that activate the aryl

hydrocarbon receptor (AhR) signaling pathway: Summary—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743122 [Accessed July 10, 2015].
10Aop:57—AhR activation leading to hepatic steatosis—aopwiki Available at:

https://aopkb.org/aopwiki/index.php/Aop:57 [Accessed December 15, 2015].
11Aop:131—Aryl hydrocarbon receptor activation leading to uroporphyria—

aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:131 [Accessed

December 15, 2015].
12Aop:22—AHR1 activation leading to developmental abnormalities and

embryolethality (in birds)—aopwiki Available at: https://aopkb.org/aopwiki/

index.php/Aop:22 [Accessed December 15, 2015].
13Aop:21—AhR activation leading to embryo toxicity in fish—aopwiki Available

at: https://aopkb.org/aopwiki/index.php/Aop:21 [Accessed December 15, 2015].
14AID 743140—qHTS assay to identify small molecule agonists of the peroxisome

proliferator-activated receptor gamma (PPARg) signaling pathway: Summary—

PubChem BioAssay Summary Available at: https://pubchem.ncbi.nlm.nih.gov/

assay/assay.cgi?aid=743140 [Accessed July 10, 2015].
15Aop:7—PPAR γ activation leading to impaired fertility in adult female- aopwiki

Available at: https://aopkb.org/aopwiki/index.php/Aop:7 [Accessed December 15,

2015].

Nuclear Factor (erythroid-derived 2)-Like

2/Antioxidant Responsive Element (Nrf2/ARE) (AID

743219)16

The CellSensor ARE-bla Hep-G2 assay was used to assess
the activation of the report gene and thus identify chemicals
that stimulate oxidative stress. The cells contain a beta-
lactamase reporter gene controlled by the Antioxidant Response
Element (ARE) stably integrated into HepG2 cells. Fluorescence
intensity was measured to assess the activation of the responsive
element.

Aromatase Enzyme Inhibitors (AID 743139)17

Aromatase inhibition is associated with reproductive dysfunction
among other adverse outcomes (Aop:25)18. The MCF-7 aro
ERE cell line (human breast carcinoma), as provided by Dr.
Shiuan Chen (Beckman Research Institute of the City of
Hope), was used in order to identify aromatase inhibitors. Cells
were stably transfected with a promoter plasmid, pGL3-Luc,
encompassing three repeats of the estrogen responsive element
(ERE).

ATAD5 Receptor (ATAD5) (AID 720516)19

A cell-based assay using embryonic kidney cells (HEK293T)
was used to screen the Tox21 compounds library. The assay was
developed by Kyungjae Myung (NHGRI, NIH) to detect any
enhanced Level of Genome Instability Gene 1 (ELG1; human
ATAD5) protein, which increase in response to different kinds of
DNA damage. The assay uses a luciferase reporter-gene tagged
with ATAD5 to measure the induction of ELG1. Therefore, an
increase in luciferase activity marks a chemically induced genetic
stress.

Heat Shock Response (HSE) (AID 743228)20

HSE-bla HeLa cell line was utilized in this HTS assay. This
cell line is provided by Invitrogen, Carlsbad, CA, USA. Cells
contain a beta-lactamase reporter gene controlled by the heat
shock response elements.

16AID 743219—qHTS assay for small molecule agonists of the antioxidant

response element (ARE) signaling pathway: Summary—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743219 [Accessed July 10, 2015].
17AID 743139—qHTS assay to identify aromatase inhibitors: Summary—

PubChem BioAssay Summary Available at: https://pubchem.ncbi.nlm.nih.gov/

assay/assay.cgi?aid=743139 [Accessed July 10, 2015].
18Aop:25—Aromatase inhibition leading to reproductive dysfunction (in fish)—

aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:25 [Accessed

December 15, 2015].
19AID 720516—qHTS assay for small molecules that induce genotoxicity in

human embryonic kidney cells expressing luciferase-tagged ATAD5: Summary—

PubChem BioAssay Summary Available at: https://pubchem.ncbi.nlm.nih.gov/

assay/assay.cgi?aid=720516 [Accessed July 10, 2015].
20AID 743228—qHTS assay for small molecule activators of the heat shock

response signaling pathway: Summary—PubChem BioAssay Summary Available

at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=743228 [Accessed July

10, 2015].
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TABLE 1 | Number of records and unique molecules in each dataset.

Molecular pathway endpoint Training set records

(unique molecules)

Test set

records

Complete training set

records (unique molecules)

NUCLEAR RECEPTOR SIGNALING PANEL

Aryl hydrocarbon receptor (nr-ahr) 8169 (6716) 272 8441 (6988)

Androgen receptor MDA-kb2 AR-luc cell line (nr-ar) 9362 (7468) 292 9654 (7760)

Androgen receptor GeneBLAzer

AR-UAS-bla-GripTite cell line (nr-ar-lbd)

8599 (6927) 253 8852 (7180)

Aromatase enzyme (nr-aromatase) 7226 (5966) 214 7440 (6180)

Estrogen receptor alpha BG1-Luc-4E2 cell line (nr-er) 7697 (6334) 265 7962 (6599)

Estrogen receptor alpha ER-alpha-UAS-bla

GripTiteTM cell line (nr-er-lbd)

8753 (7138) 287 9040 (7425)

Peroxisome proliferator-activated receptor gamma

(nr-ppar-gamma)

8184 (6607) 267 8451 (6874)

STRESS RESPONSE PANEL

Nuclear factor (erythroid-derived 2)-like 2/antioxidant

responsive element (Nrf2/ARE) (sr-are)

7167 (5959) 234 7401 (6193)

ATAD5 receptor (sr-atad5) 9091 (7256) 272 9363 (7528)

Heat shock factor response element (sr-hse) 8150 (6617) 267 8417 (6884)

Mitochondrial membrane potential (sr-mmp) 7320 (5941) 238 7558 (6179)

p53 signaling pathway (sr-p53) 8634 (6931) 269 8903 (7200)

Nuclear receptor (nr) assay panel contained seven assays while the stress response (sr) assay panel covered five assays.

Disruptors of the Mitochondrial Membrane Potential

(MMP) (AID 720637)21

The mitochondrial dysfunction is considered a key event
in multiple adverse outcomes (Event:177)22 including
neuroinflammation leading to neurodegeneration, excitotoxicity,
and learning and memory impairment. A homogenous cell-
based assay with a water-soluble mitochondrial membrane
potential sensor (m-MPI, Codex Biosolutions, MD) was applied
to the Tox21 compounds in order to identify those that can
induce mitochondrial toxicity. In healthy cells, the water-soluble
dye accumulates in the mitochondria as aggregates, causing
red fluorescence. In case of a decrease in MMP, the dye cannot
accumulate in the mitochondria and thus remains in the
cytoplasm as monomers causing green fluorescence.

Agonists of the p53 Signaling Pathway (P53) (AID

720552)23

p53 gene has been identified as target of AFB1-induced adduction
and subsequent mutation which is a key event leading to
Hepatocellular Carcinoma (HCC; Aop:46)24. Using CellSensor
p53RE-bla HCT-116 cell line, the Tox21 compounds were

21AID 720637—qHTS assay for small molecule disruptors of the mitochondrial

membrane potential: Summary—PubChem BioAssay Summary Available at:

https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=720637 [Accessed July 10,

2015].
22Event:177—Mitochondrial dysfunction - aopwiki Available at: https://aopkb.org/

aopwiki/index.php/Event:177 [Accessed December 15, 2015].
23AID 720552—qHTS assay for small molecule agonists of the p53 signaling

pathway: Summary—PubChem BioAssay Summary Available at: https://pubchem.

ncbi.nlm.nih.gov/assay/assay.cgi?aid=720552 [Accessed July 10, 2015].
24Aop:46—Mutagenic Mode-of-Action leading to Hepatocellular Carcinoma

(HCC)—aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:46

[Accessed December 15, 2015].

screened. This cell line is provided by Invitrogen, Carlsbad,
CA, USA. Cells contain a stably integrated beta-lactamase
(BLA) reporter gene controlled by the p53 response elements.
Fluorescence intensity was measured to assess the activation of
the responsive element.

Datasets and Data Cleaning
Data were downloaded from the Tox21 challenge website
(NIH)25 in both SDF and SMILES formats. The files contained
the molecular representation (SDF or SMILES), a molecule name
as well as the target response. In addition, SDF files contained
few extra tags for the DSSTox compound ID (DSSTox_CID), the
chemical formula and the average mass (FW). Both file formats
were compared to examine consistency. KNIME (Berthold et al.,
2007) was used to compare the structures and responses in both
file formats. The data covered 12 pathway endpoints covering the
“Nuclear Receptor Signaling Panel” (seven assays) and the “Stress
Response Panel” (five assays). All assay endpoints are listed in
Table 1.

For each molecular pathway endpoint, both training and
leaderboard test sets were combined to form a whole training
set. Some molecules were presented multiple times (i.e., exact
SMILES representation in spite of different molecule names).
The basis for such duplicated records may be the result of
intentional repetitive testing for quality control purpose. The
Online CHEmical database and Modeling environment platform
(OCHEM; Sushko et al., 2011) was used to check records
duplication. It calculates the INCHI (James et al., 1995) key
structure hash to compare structures. Some records showed
different experimental responses despite exhibiting the same

25NIH Tox21 Data Challenge 2014. Available at: https://tripod.nih.gov/tox21/

challenge/about.jsp
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FIGURE 1 | Example of conflicting training data. The examples shown

were obtained from the Estrogen Nuclear Receptor dataset. In some cases, it

could be reasonable to assume that p-Kresol would be inactive (four records

shows inactive against only one active record). In other cases, such as

methoxypropan-2-ol, it is not possible tell whether the compound was truly

activating the Estrogen nuclear receptor (with one record in every class).

Compounds are compared using their calculated INCHI keys generated from

the SDF representation. All 12 targets showed similar cases.

molecular structures. Figure 1 shows an example of such
duplicates with conflicting experimental measurements. Table 1
shows the number of records per dataset as well as the number of
unique molecules.

Computational Methods
Software Tools
OCHEM (Sushko et al., 2011) offers an interactive web interface
(http://www.ochem.eu) that may be used to explore the data,
construct QSAR models and run predictions. It also offers
the ability to interpret results using prediction-driven matched
molecular pairs (Sushko et al., 2014). Handling large datasets
and thousands of QSAR models is more convenient using
workflow systems such as KNIME (Berthold et al., 2007). For
that, OCHEM exposes a number of methods through SOAP web
services (Using SOAP web-services—OCHEM user’s manual—
eADMET docs)26. These methods allow the user to login, upload
data, create properties, create or delete QSAR models, download
model statistics, and to run predictions on the constructed
models. OCHEM implements an xml format that allows users
to configure the QSAR modeling tasks with regard to all steps
including descriptors calculation, descriptors pre-filtering, and
configuring the machine learning algorithms.

26Using SOAP web-services—OCHEM user’s manual—eADMET docs Available

at: http://docs.ochem.eu/display/MAN/Using+SOAP+web-services [Accessed

January 5, 2015].

Throughout this work, different KNIME (Berthold et al.,
2007) workflows were used to explore the data, initialize the
QSAR model building process on OCHEM and download the
modeling results. All QSAR models were built using OCHEM.
CRAN R (R Core Team, 2015) was used to build consensus
models and analyze models’ performance.

In silico Descriptors Calculation
Ten descriptor packages were selected from OCHEM to be used
for constructing QSAR models. These packages were compiled
from multiple academic and commercial sources. The selected
packages are: GSFrag (Aires-de-Sousa and Gasteiger, 2001),
ISIDA fragments (length 2–4; Varnek et al., 2008), Chemaxon
descriptors (Introduction to Calculator Plugins—Calculator
Plugins—ChemAxon - DOCS)27, Estate indices (Hall et al., 1995;
Huuskonen et al., 2000), and AlogPS (Tetko et al., 2001a,b), CDK
(using all constitutional, topological, geometrical, electronic,
and hybrid descriptors; Steinbeck et al., 2003), Inductive
descriptors (Cherkasov et al., 2008), Dragon 6 (Todeschini and
Consonni, 2009), Adriana.Code (ADRIANA.Code—Calculation
ofMolecular Descriptors |Inspiring Chemical Discovery)28, Mera
and Mesry (Grishina et al., 2002; Potemkin and Grishina, 2008;
Potemkin et al., 2009), QNPR (using SMILES representations—
length 1–3 and a threshold of 5; Thormann et al., 2007). Further
details on these packages and their integration within OCHEM
was reported earlier (Sushko et al., 2011).

The same structure-preprocessing protocol was used prior to
the calculation of any descriptor package utilizing Chemaxon
Standardizer that is integrated within OCHEM workflow. The
standardization workflow consisted of salt counter-ion removal,
charge neutralization and the standardizing of certain chemotype
representations; such as nitro groups and aromatic rings. For 3D
descriptor packages, structural coordinates were optimized using
CORINA (Sadowski et al., 1994) starting from a clean SMILES
representation. Descriptors calculation failed for some chemicals,
the number of failed molecules depends on the nature of the
descriptor package. Reasons for calculation failure could be large
molecular sizes or undefined chemotypes. The Supplementary
Materials (Data Sheet 1) include the count of failedmolecules for
each constructed model.

Machine Learning
The associative neural networks (ASNN; Tetko, 2002a,b)
algorithm was used to construct all models. ASNN is a
multilayered perceptron (Rosenblatt, 1957) neural networks
algorithm that utilizes ensemble learning. As such, it can be
represented by a multilayered graph in which all nodes in a
certain layer are linked to the nodes of the preceding one. The
resulting class membership is the output of a single neuron in
the last layer of the network. ASNN uses a k-Nearest Neighbors
(kNN) approach over the space of ensemble predictions to
accommodate for a local correction for the ensemble of neural

27Introduction to Calculator Plugins—Calculator Plugins—ChemAxon—DOCS

Available at: https://docs.chemaxon.com/display/CALCPLUGS/Introduction+to+

Calculator+Plugins [Accessed January 9, 2015].
28ADRIANA.Code—Calculation of Molecular Descriptors |Inspiring Chemical

Discovery Available at: http://www.molecular-networks.com/products/

adrianacode [Accessed September 28, 2013].
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networks. The kNN distance is based on the correlation between
the vectors of predicted samples by the networks of the ensemble.
All configurations for the algorithm were set to OCHEM defaults
[i.e., three neurons in the hidden layer, 1000 iterations, using
model ensemble size of 64, the method for neural network
training was SuperSAB (Tollenaere, 1990)].

Performance Measures and Validation Protocol
Due to the unbalanced nature of the datasets, balanced accuracy
was used throughout the study, as well as during the challenge,
as the primary measure for comparing models’ performance. It
is important to notice that the challenge did not only account
for the balanced accuracy but also the Area Under the Receiver
Operating Characteristic (AUROC) curve (Hanley and McNeil,
1983).

Bagging (Breiman, 1996) was used to validate the accuracy
of the training set. Bagging is a meta-algorithm that involves
the aggregation of many models, each of which is based on its
own training set (“bag”). Bagging utilizes the random sampling,
with repetition, of many subsets of the training set. In each
bagging meta-model constructed, an ensemble of 64 models was
developed. For each model in the ensemble the training examples
were selected randomly from the original training set allowing
duplicates (i.e., resampling with replacement). The prediction
of each classification was determined by majority voting among
the ensemble members. Stratified bagging (Tetko et al., 2013)
was used as the validation protocol. It also served to handle
the unbalance of the training set (Kotsiantis et al., 2006). In

the current implementation, for each of the 64 models in an
ensemble, equal numbers of active and inactive compounds were
randomly selected. Thus, the size of the training set was always
double the size of the minority class.

The calculation of statistical measures was done only using
the validation set (out of bag compounds). For molecules with
conflicting experimental measurements (see Figure 1), the class
with more experimental measurements (majority vote) was
selected. Molecules that showed an equal number of active and
inactive experimental measurements were excluded.

Consensus Modeling
For each endpoint, consensus models were built using all possible
combinations of the underlying 10 models (each built using
different in silico descriptor package), i.e.,

∑10
i= 1 C

10
i . In total,

12,276 models (1023 × 12 endpoints) were constructed. Simple
averaging of the predictions was used for building each of the
consensus models.

Two approaches for consensus model selection were
investigated in this study. The first approach considers consensus
models that show the highest validated balanced accuracy on the
training set. The second approach considers consensus models
which combine models built with all 10 descriptor packages
regardless of the resulting validation balanced accuracy. Both
approaches performed comparatively well.

Applicability Domain
In this study, a distance-based method was used to estimate the
applicability domain for all models. The distance to model is

FIGURE 2 | Training set balanced accuracies for all 120 models as grouped by their respective endpoints. Red points represent the validated (through

bagging) balanced accuracies calculated on the training set. Blue points represent the balanced accuracy on the evaluation set.
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defined in the property space (rather than the descriptor space;
Tetko et al., 2006). This approach uses the standard deviation
between the predictions of an ensemble of models (generated
through bagging) as a measure of distance.

RESULTS AND DISCUSSION

Individual Models
In total 10 descriptor packages were used to model 12 in vitro
assay endpoints resulting in 120 QSAR models constructed

TABLE 2 | Comparison of the performance of different descriptor

packages in constructing QSAR models for in vitro pathway disruption

prediction.

Descriptors Training Training Evaluation Evaluation

package total score set rank total score set rank

Dragon 6 111 1 86 2

CDK 105 2 98 1

ISIDA Fragments 88 3 65 5

Chemaxon Descriptors 79 4 71 4

ALogPS, OEstate 73 5 79 3

Adriana.Code 55 6.5 55 8

QNPR 55 6.5 45 9

Inductive Descriptors 36 8 57 7

Mera, Mersy 30 9 62 6

GS Fragments 28 10 42 10

with 64-bagging-validation. Different endpoints showed varying
success. Figure 2 shows the balanced accuracy of all 120
models as grouped by their respective targets with respect to
both training and evaluation sets. Other statistical parameters
such as specificity, sensitivity, Matthews’s correlation coefficient
(MCC), and overall accuracy are provided in the Supplementary
Materials (Data Sheet 1). All models are published online and
may be examined through http://www.ochem.eu/mode/[model-
id] replacing [model-id] with the respective model identification
number available in the results tables. Users can see a model’s
summary with performance statistics and applicability domain
graphs as well as apply the model to new compounds.

To compare descriptor packages’ success, each package was
given a score from 1 to 10 according to its rank (a score of 10
was given to the descriptor package contributing to the model
with the highest balanced accuracy and a score of 1 for the
lowest). The scores were summed for all endpoints. The final
rank of descriptors is summarized in Table 2. Dragon and CDK
descriptor packages shared the top positions in both training and
evaluation sets.

As shown in Figure 2, a direct correlation exists between the
validated training and the evaluation sets’ balanced accuracies
with the exception of the nr-ar-lbd endpoint. This can also be
seen by directly plotting the training set against the evaluation
set balanced accuracies as shown in Figure 3.

Table 3 lists the performance of the single descriptor package
models with the highest balanced accuracy for each pathway
endpoint together with their corresponding performance on the

FIGURE 3 | Correlation between training and validation set balanced accuracies for 120 models constructed for 12 endpoints using 10 individual

descriptor packages for each endpoint.
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TABLE 3 | Performance of the single-descriptor-package models with the

highest training set balanced accuracy for each pathway endpoint.

Molecular Descriptors Training Evaluation Wining

pathway package balanced balanced balanced accuracy

endpoint accuracy accuracy (evaluation set)

nr-ahr CDK 0.850 0.836 0.853

nr-ar CDK 0.779 0.768 0.736

nr-ar-lbd CDK 0.834 0.643 0.650

nr-aromatase Dragon 6 0.818 0.699 0.737

nr-er CDK 0.728 0.726 0.749

nr-er-lbd Dragon 6 0.795 0.650 0.715

nr-ppar-gamma Dragon 6 0.776 0.784 0.785

sr-are Dragon 6 0.770 0.704 0.729

sr-atad5 Dragon 6 0.788 0.773 0.741

sr-hse Dragon 6 0.771 0.803 0.799

sr-mmp CDK 0.858 0.888 0.904

sr-p53 ISIDA Fragments 0.781 0.716 0.765

The balanced accuracies of winning models in the data challenge (Tox21 Data Challenge

2014 - Final Leaderboard) are shown for reference. Cases were models perform better

than wining balanced accuracy are underlined. Three significant digits are shown for

comparison. However, the difference in the balanced accuracy in many cases is not

significant to justify some models as being more superior than others. Supplementary

Materials (Data Sheet 1) include the upper and lower boundaries for balanced accuracies

as well as p-values.

final evaluation set. The highest balanced accuracy achieved by
any of the competing teams (measured on the evaluation set)
during the challenge was reported online (Tox21 Data Challenge
2014—Final Leaderboard)29. It is also shown in Table 3 (referred
to as “winning balanced accuracy”) for reference.

Consensus Modeling
Table 4 shows the consensus models with highest validated
balanced accuracy based on the training set for each endpoint
as well as their respective performance on the evaluation set.
For all endpoints, consensus modeling was able to improve the
performance on the training set. In six endpoints, the consensus
models’ predictive ability on the evaluation set would also result
in a better than winning balanced accuracy.

For comparison, Table 5 shows the performance of the
consensus models involving all 10 underlying descriptor
packages for each pathway endpoint. In seven endpoints, the
predictive ability of these models on the evaluation set slightly
exceeded those of the highest validated balanced accuracy
(Table 4).

Descriptor packages differed in their success in representing
the chemical structures. Some descriptor packages failed during
the calculation phase for some of the molecules (e.g., reporting
a chemical structure being too large for calculation). Therefore,
models based on them would be deprived from any information
gain from those failed molecules (i.e., will have a smaller training
set size). AQSARmodel built on such descriptorsmay show good

29Tox21 Data Challenge 2014—Final Leaderboard Available at: https://tripod.nih.

gov/tox21/challenge/leaderboard.jsp [Accessed June 18, 2015].

TABLE 4 | Performance of the consensus models with the highest training

set balanced accuracy for each pathway endpoint.

Molecular Training Evaluation Wining Ids for

pathway set balanced set balanced balanced models used

endpoint accuracy accuracy accuracy in building

(evaluation set) consensus

nr-ahr 0.865 0.859 0.853 512

nr-ar 0.785 0.752 0.736 515

nr-ar-lbd 0.838 0.592 0.650 516

nr-aromatase 0.824 0.715 0.737 513

nr-er 0.736 0.756 0.749 517

nr-er-lbd 0.810 0.726 0.715 518

nr-ppar-gamma 0.802 0.741 0.785 514

sr-are 0.799 0.730 0.729 534

sr-atad5 0.809 0.734 0.741 519

sr-hse 0.794 0.767 0.799 520

sr-mmp 0.882 0.900 0.904 521

sr-p53 0.795 0.783 0.765 522

The balanced accuracies of winning models in the data challenge (Tox21 Data Challenge

2014 - Final Leaderboard) are shown for reference. Cases where models perform better

than wining balanced accuracy are underlined. Three significant digits are shown for

comparison. However, the difference in the balanced accuracy in many cases is not

significant to justify some models as being more superior than others. Supplementary

Materials (Data Sheet 1) include the upper and lower boundaries for balanced accuracies

as well as p-values.

statistics on the smaller training set but fail to perform similarly
for an external evaluation set.

The second approach has the advantage of covering the largest
number of molecules by compensating for the failure of some
packages in descriptors calculation. It can also compensate for
some packages bias by offering a wider range of molecular
representations. However, it might suffer from the disadvantage
of picking noise from descriptor packages with particularly
bad performance. It also involves the highest computational
expense, as applying suchmodels to newmolecules would require
calculation of all descriptors from 10 packages. On the other
hand, the first approach has the advantage of picking fewer
descriptor packages with the highest performance.

DISCUSSION

The combination of the workflow tool (KNIME), the QSAR
modeling platform (OCHEM), and the statistical package
(CRAN R) allowed the creation and analysis of thousands of
models with high efficiency. The use of HTS in vitro assays
to construct QSAR models that are able to predict certain
molecular pathways’ perturbation paves the way toward a
better understanding for the mode of chemical toxicity and
allows for prioritization of testing efforts. This is in line
with the vision of EPA and ECHA for replacing unnecessary
animal toxicity testing, rapidly reducing information gaps,
and achieving higher outcomes with available efforts and
resources.

Due to the time constraint during the challenge, the consensus
models selection for team AMAZIZ was based on expert
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TABLE 5 | Performance of the consensus models involving all 10

descriptor packages for each pathway endpoint.

Molecular Training Evaluation Wining

pathway set balanced set balanced balanced accuracy

endpoint accuracy accuracy (evaluation set)

nr-ahr 0.850 0.858 0.853

nr-ar 0.770 0.754 0.736

nr-ar-lbd 0.824 0.599 0.650

nr-aromatase 0.811 0.760 0.737

nr-er 0.730 0.744 0.749

nr-er-lbd 0.794 0.756 0.715

nr-ppar-gamma 0.779 0.759 0.785

sr-are 0.789 0.707 0.729

sr-atad5 0.786 0.727 0.741

sr-hse 0.766 0.773 0.799

sr-mmp 0.875 0.903 0.904

sr-p53 0.784 0.759 0.765

The balanced accuracies of winning models in the data challenge (Tox21 Data Challenge

2014 - Final Leaderboard) are shown for reference. Cases where models perform better

than wining balanced accuracy are underlined. Three significant digits are shown for

comparison. However, the difference in the balanced accuracy in many cases is not

significant to justify some models as being more superior than others. Supplementary

Materials (Data Sheet 1) include the upper and lower boundaries for balanced accuracies

as well as p-values.

knowledge including the criteria discussed in this study, namely
the performance of the model with regard to their balanced
accuracy and to a lesser extent the AUROC, preference to
descriptor packages, which show more success in representing
a larger size of the training set and the simplicity of the
underlying descriptor packages (e.g., 2D descriptors are simpler
in calculation than 3D descriptors, as they do not need 3D
optimization). Table 6 shows the models that were used for the
final submission of team AMAZIZ in the challenge. All models
can be accessed through their identification numbers for further
analysis and to run predictions on new compounds. This study
represents a systemic approach to consensus models selection as
well as a deeper analysis beyond the challenge.

The Androgen receptor GeneBLAzer AR-UAS-bla-GripTite
cell line endpoint showed exceptional difficulty in modeling.
Big discrimination exists between validated performance on the
training set and the prediction ability on the evaluation set.
Indeed, the endpoint has the lowest success in modeling in
the challenge with the winning model being able to achieve
a balanced accuracy of only 65% only (the lowest among all
endpoints).

Further investigation of the models constructed for this
endpoint shows multiple models that would have been able to
achieve a higher predictive ability on the evaluation set (0.75–
0.80) as shown in Figure 4. However, such models did not
show the highest validated balanced accuracy and were thus
not selected. The lack of direct correlation between validated
balanced accuracy and predictive ability on the evaluation set
(Figure 3) can be attributed to the statistical variation in the
prediction performance of models for these sets and may also
suggest that the split of the whole cluster of chemicals into

TABLE 6 | Models used for the final submission by team AMAZIZ during

the Tox21 challenge.

Molecular pathway endpoint Ids for models used in building consensus

nr-ahr 523

nr-ar 524

nr-ar-lbd 525

nr-aromatase 351

nr-er 526

nr-er-lbd 527

nr-ppar-gamma 528

sr-are 533

sr-atad5 529

sr-hse 530

sr-mmp 531

sr-p53 532

Consensus models involving all 10 descriptor packages (sr-are and sr-mmp) failed for the

calculation of 23 molecules of the evaluation set and were replaced by simpler models,

based on the consensus of three models only, predicting these molecules.

training and evaluation sets may not have been completely
random.

Although the alternative approaches for animal testing are
highly encouraged, their proper use, and validity must be
ensured. For QSAR model building, five OECD principles were
established in 2004 (Directorate et al., 2007; OECD Quantitative
Structure-Activity Relationships Project [(Q)SARs])30. The
OECD principles were taken into consideration during the
development of all QSAR models in this study as following:

− The first OECD principle is to have a defined endpoint to
ensure the transparency in any physicochemical, biological, or
environmental effect that a QSAR model is trying to assess. In
this Tox21 challenge, 12 biological targets were well-defined
by groups working on the experimental HTS part of the
project - for assessment as listed in Table 1.

− The second principle is having an unambiguous algorithm.
The “algorithm” refers to the form of relationship between
the descriptors of chemical structure and the endpoint
in the QSAR model. This can be mathematical/statistical
methods or rule-based models defined by experts. Presenting
a clear description of the algorithm ensures transparency
and allows others to reproduce the model and explain how
predictions are generated. In this study, all algorithms used for
machine learning, descriptor packages, prefiltering criteria,
validation as well as the chemical standardization procedures
are described and can be reproduced using the online platform
OCHEM. Indeed the process of building high quality QSAR
models is tedious and complex. However, by documenting
all steps, it is reproducible. Furthermore, by publishing all
final models online, the scientific community has continuous
access to perform predictions on the constructed QSAR
models without a need to reproduce them.

30OECD Quantitative Structure-Activity Relationships Project

[(Q)SARs] Available at: http://www.oecd.org/chemicalsafety/testing/

oecdquantitativestructure-activityrelationshipsprojectqsars.htm [Accessed

June 23, 2015].
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FIGURE 4 | Each sub-figure shows the performance of 1023 consensus models constructed for a single endpoint with x-axis representing the

validated balanced accuracy on the training set and y-axis shows the balanced accuracy on the evaluation set. A positive trend line can be noticed with all

endpoints except nr-ar-lbd.

− The third principle, defining domain of applicability, QSAR
models are expected to give reliable predictions only for
chemicals that are similar to the ones used in the model’s
training process. In this study, quantitative assessment of the
model’s confidence in prediction was estimated for all models.
This reports the degree of similarity between the compound
to be predicted and the model’s training set (Sushko, 2011;
Sahigara et al., 2012).

− The fourth principle is having appropriate measures of
goodness-of-fit, robustness, and predictivity. This principle
highlights the need for statistical validation of QSAR models
in order to judge models’ performance. Such performance
validation can be either internal or external. In this
study, bootstrap aggregation was used to estimate validation
accuracy for the training set. The main statistical parameter

applied for comparing all models was balanced accuracy.
Performance of all models was also verified against an external
test set.

− The fifth and last principle is having a mechanistic
interpretation, if possible. The “if possible” phrase shows
that the mechanistic interpretation is not mandatory for
model acceptance by regulators. Sometimes, the iterative
model building process and the involvement of data-mining
techniques increase the complexity of the developed QSAR
models through multiple training set refinements rendering
the mechanistic interpretation hard to directly establish. A
different approach for interpretation of complex models using
matched molecular pairs was previously suggested (Sushko
et al., 2014). All models in this study can be examined using
this approach on the OCHEM platform.
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The ultimate goal of QSAR models in predictive toxicology,
ordinarily, is to forecast an adverse outcome rather than
protein binding. In this sense, QSAR prediction of molecular
pathways’ perturbation is, in itself, an attempt to mechanistically
understand toxicological risks. In the context of adverse outcome
pathways (AOP), such perturbations are considered as molecular
initiating events (MIE), or key events (KE) leading to certain
adverse outcome. Such KEs are connected through key event
relationships (KERs) to form the network of multiple AOPs.
These AOPs form the functional prediction component for real-
life circumstances (Villeneuve et al., 2014). In a joint effort
between the European Commission—DG Joint Research Centre
(JRC) and U.S. EPA, an AOP wiki is being developed. Among
its goals is the accommodation of the worldwide efforts for AOP
development. The wiki is one of the components of the OECD-
sponsored AOP Knowledgebase. The investigated molecular
pathways have been suggested to play a role in many adverse
outcomes. A comprehensive analysis of the biological impact of
the perturbation of these pathways is beyond the scope of this
article.

CONCLUSIONS

Using QSAR for modeling the outcome of in vitro toxicity assays
(representing different molecular pathways) showed promising
success with balanced accuracies reaching up to more than 85%
for several endpoints as shown in Table 4. The relatively high
balanced accuracies among models confirmed the possibility
of modeling HTS results from in vitro assays using in silico
descriptors as reported in earlier studies (Abdelaziz et al., 2015).

Bagging validation provided a good indication for the models’
predictive ability on external validation sets (Figure 3). Stratified
bagging addressed the unbalanced nature of the training set and
reduced bias toward the majority class. The stratified bagging
contributed models, which were optimized toward the balanced
accuracy. Moreover, the selection of consensus models also used
balanced accuracy as the optimization criteria. This is one of
the reasons why models developed in this study calculated the
best balanced accuracy across all 12 analyzed targets and did not
get the highest AUROC scores, which were used by competition
organizers to rank the models. However, despite this, the used
strategy allowed to calculate the highest AUROC scores for two
targets. It is also important to realize that, due to the model
prediction variances, selecting a model with the highest validated
accuracy does not guarantee the highest predictive ability for an
evaluation set.

Consensus modeling improved the predictive ability of
models as signified by both validation and evaluation set
accuracies. To a large degree this result was achieved thanks to

the diversity of descriptor packages, which captured different
aspects of the molecular structures. Use of different descriptors
also compensated for failure of some descriptors to represent
certain structures and thus covering the entire training set.

In summary, a computational methodology used to develop
QSAR models was described. This methodology achieved the
highest balanced accuracy for all of the Tox21 Data Challenge
organized by the NIH. A similar strategy of consensus modeling

was also successful to develop Rank-1 model for another Tox21
Challenge organized by the EPA and TopCoder (Novoratskyi
et al., under review). Moreover, the developed models are made
publicly available at http://ochem.eu/article/98009 thus allowing
other researchers to use them for prospective and retrospective
analyses.
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The pharmaceutical industry constantly seeks new ways to improve current methods

that scientists use to evaluate environmental chemicals and develop new medicines.

Various automated steps are involved in the process as testing hundreds of thousands

of chemicals manually would be infeasible. Our research effort and the Toxicology

in the Twenty First Century Data Challenge focused on cost-effective automation of

toxicological testing, a chemical substance screening process looking for possible

toxic effects caused by interrupting biological pathways. The computational models

we propose in this paper successfully combine various publicly available substance

fingerprinting tools with advanced machine learning techniques. In our paper, we explore

the significance and utility of assorted feature selection methods as the structural

analyzers generate a plethora of features for each substance. Machine learning models

were carefully selected and evaluated based on their capability to cope with the

high-dimensional high-variety data with multi-tree ensemble methods coming out on

top. Techniques like Random forests and Extra trees combine numerous simple tree

models and proved to produce reliable predictions on toxic activity while being nearly

non-parametric and insensitive to dimensionality extremes. The Tox21 Data Challenge

contest offered a great platform to compare a wide range of solutions in a controlled and

orderly manner. The results clearly demonstrate that the generic approach presented

in this paper is comparable to advanced deep learning and domain-specific solutions.

Even surpassing the competition in some nuclear receptor signaling and stress pathway

assays and achieving an accuracy of up to 94 percent.

Keywords: Classification, random forest, toxicity, Tox21, challenge, competition

1. INTRODUCTION

Traditional toxicity testing protocols using animal experiment-based models have many
drawbacks; they are expensive, time-consuming (Shukla et al., 2010) and might raise ethical or
reliability concerns. The urgent need to involve alternative methods in chemical risk assessment
drove the National Research Council (NRC) in the U.S. to project a new vision and strategy for the
increased use of in vitro technologies in toxicity screening studies (Krewski et al., 2010). European
measures soon followed as the European Chemical Agency (ECHA) issued similar guidelines.
These guidelines promoted quick and cost effective computational methods and described the role
of animal testing as the last resort. Over the years, this lead to the development and wide-scale
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implementation of high-throughput screening (HTS) techniques.
A process that is capable of screening thousands of compounds
using a quick and standardized protocol, furthermore, it may be
combined with robotic methods (Malo et al., 2006).

The popularity of HTS opened up chemical toxicity research
to machine learning and the big data era. The need of novel
techniques in data handling, data transformation, and data
mining sparked substantial research efforts throughout the years.
This new emerging trend brought about the convergence of
toxicity screening protocols and conventional graphical data
mining tools (e.g., RapidMiner1, KNIME2) or popular scripting
languages in data science (R3, Python4). With various modules,
libraries, and extensions available to read, transform and analyze
HTS assay data, it really comes down to a choice of preference.

Over the years, Random forests (Svetnik et al., 2003),
projection pursuit, partial least squares and Support vector
machines (Si et al., 2007) have been applied successfully to the
Quantitative Structure-Activity Relationship (QSAR) task. Each
of these methods has different advantages and disadvantages (see
Liu and Long, 2009 for a detailed review). Judson et al. (2008) also
carried out an extensive review of conventional machine learning
methods applied in HTS; methods included Nearest neighbors,
Nave Bayes, Regression trees, Support vector machines, Artificial
neural networks. The comparison showed that most models
provide comparable performance when suitable data preparation
is carried out. The authors identified careful feature selection as
the most crucial step in preparing the data. Furthermore, Dahl
et al. successfully applied multi-task neural networks to exploit
task inter-dependencies (Dahl et al., 2014).

The usage of Random forests in HTS applications was first
suggested by Svetnik et al. (2003). Svetnik et al. demonstrated
superior performance compared to othermethods at the time and
described additional useful features of the proposed method. The
main strengths were identified as high classification performance,
aggressive regularization to capture sparsity and useful services
such as built-in performance assessment and feature importance.

The following document describes in detail team Dmlab’s
approach to solving the Tox21 Data Challenge5. The challenge
offered a compound toxicity screening classification problem
on two panels [Nuclear Receptor Signaling (NR) and Stress
Response (SR)] and 12 different assays: Androgen Receptor (AR,
AR-LBD), Aryl Hydrocarbon Receptor (AhR), Estrogen Receptor
(ER, ER-LBD), Aromatase Inhibitors (aromatase), Peroxisome
Proliferator-activated receptor gamma (ppar-gamma),
Antioxidant Response Element (ARE), luciferase-tagged
ATAD5 (ATAD5), Heat Shock Response (HSE), Mitochondrial
Membrane Potential (MMP), and Agonists Of The P53 Signaling
Pathway (P53). For further details on the competition, see Huang
et al. (2016).

Our general approach was to utilize the vast machine
learning features offered by Python’s scikit-learn library6 and

1https://rapidminer.com/products/studio/
2https://www.knime.org/
3https://www.r-project.org/
4https://www.python.org/
5https://tripod.nih.gov/tox21/challenge/
6http://scikit-learn.org/

prepare the dataset for analysis by combining data manipulating
tools (RapidMiner and KNIME) with domain specific structure
analyzers in order to provide high-accuracy toxicity screening.

This article contains three major sections:

1. Materials and Methods shows the underlying models in detail
with references, introduces the software used, provides data
description, and basic statistics. The second part of this section
describes how the substance screening framework works and
how to reproduce contest results.

2. Results contains the thorough evaluation of the proposed
methods in the competition context

3. Conclusions and discussions are provided in the last section
with an indication of future research directions.

2. MATERIALS AND METHODS

The Tox21 Data Challenge portal contains helpful guidance
and a multitude of materials to start working on the problem.
The challenge organizers even generously provided a simple
benchmark solution to kickstart the process, comparison of the
benchmark and team Dmlab’s approach can be found in Table 1.
While the Naïve Bayes classifier utilized in the benchmark is a
good initial approach, it falls behind when it comes to parameter
tuning options and accuracy in general. Finding a more suitable
classifier was chief among the goals of this competition. The
same goes for replacing the lower level components of the stack;
using the same inputs as other challengers gives no edge in a
competitive environment.

The flow chart in Figure 1 gives a high-level overview
of the solution process and the techniques combined. The
process involves 3 major steps: data preparation, modeling, and
post-processing. The data preparation step includes deriving
descriptors from structural information, transforming the data
to suit modeling purposes and finalizing the set of descriptors
to be used. Modeling involves model selection, parameter tuning
and generating predictions. The post-processing step covers the
optimal threshold selection and application process to generate
toxicity decisions.

2.1. Data Description
The Tox21 Data Challenge provided a dataset with the structural
information of 11,737 distinct molecules. The different assays
contained results for between 7143 and 9068 of the molecules.
The respective activity flag was used as the target variable of
analysis for each individual track.

While challenge tracks are intended to be independent
a quick correlation and clustering analysis shows signs of

TABLE 1 | Building the solution stack.

Benchmark solution Dmlab solution

Molecular descriptors Library synthesizer PaDel descriptor/RDKit

Fingerprinting PCFP (PubChem) PubChem/Avalon

Structure standardizer LyChI PaDel descriptor/RDKit

Classifier model Naïve bayes Random forest/extra trees

Frontiers in Environmental Science | www.frontiersin.org August 2016 | Volume 4 | Article 52 | 45

https://rapidminer.com/products/studio/
https://www.knime.org/
https://www.r-project.org/
https://www.python.org/
https://tripod.nih.gov/tox21/challenge/
http://scikit-learn.org/
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Barta Identifying Toxins Using Multi-Tree Ensembles

FIGURE 1 | Detailed overview of the proposed solution.
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positive correlation between track activities in various cases
(see Figure 2). Notably, the closest relationship is between
NR-AR, NR-ER and their LBD counterparts. Surprisingly
enough, NR and SR assays mix in the two other clusters,
one containing AhR, Aromatase, ARE, and MMP, while
the other includes the remaining assays; PPAR-gamma,
ATAD5, HSE, and p53. Correlation coefficients hint at possible
inter-track information gain that could be harnessed to
achieve better classifier performance, but no such action was
taken during the challenge. A promising direction for future
research.

2.1.1. Generating Descriptors
At the beginning of the analysis, the structural information of
the molecules in the training and test set has to be processed

to generate descriptive attributes for data analysis. During
the challenge, our team used 2 different versatile tools to
generate the descriptive attributes; PaDel Descriptor and RDKit
cheminformatics toolkit. Other tools, like the CDK Descriptor
Calculator7, were also experimented with but failed to generate
conclusive results.

2.1.2. PaDel Descriptor
PaDel Descriptor8 was developed by the Pharmaceutical Data
Exploration Laboratory at the National University of Singapore.
The tool has the capabilities to generate 1-dimensional, 2-
dimensional structural information and many fingerprints
as seen in Yap (2011), and also operates in a multi-core

7http://www.rguha.net/code/java/cdkdesc.html
8http://www.yapcwsoft.com/dd/padeldescriptor/

FIGURE 2 | Correlation and potential clustering of challenge tracks.
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fashion to reduce computational times. It also acts as a
structure standardizer; removes salts, detects aromaticity, and
standardizes nitro groups. As a result, 1444 2-dimensional
attributes were extracted from the structures. 3-dimensional
descriptors were also experienced with, but failed to be generated
for many molecules, and ultimately were discarded from the
analysis.

In addition, the tool also offers 12 different fingerprint
versions; CDK fingerprint, CDK extended fingerprint, Estate
fingerprint, CDK graph only fingerprint, MACCS fingerprint,
PubChem fingerprint, Substructure fingerprint, Substructure
fingerprint count, Klekota-Roth fingerprint, Klekota-Roth
fingerprint count, 2D atom pairs, and 2D atom pairs count. Out
of those the PubChem Substructure Fingerprint (see Bolton
et al., 2008) was selected based on its empirical performance
widespread use, which is also the default fingerprinting method
in the PaDel Descriptor. It is a 2-dimensional chemical structure
fingerprint that consists of an 881-dimension binary vector.
Each bit represents a boolean determination of the absence or
presence of a specific structural element as can be seen in the
PubChem Substructure Fingerprint manual9.

2.1.3. RDKit Cheminformatics Toolkit
RDKit, an open source toolkit for cheminformatics10, was
also utilized in the descriptor generating process. There are

9ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
10http://www.rdkit.org

many wrappers available to work with the tool in different
environments; our team chose the KNIME extension, which
inherently works with SDF and SMILES files (see Figure 3).

Descriptive attributes were generated by the descriptor
calculation feature. In addition Gasteiger charges were also
calculated by the calculate charges feature, see Gasteiger and
Marsili (1980) for details. The toolkit also offers 8 distinct
fingerprints to be generated; Morgan, FeatMorgan, AtomPair,
Torsion, RDKit, Avalon, Layered, and MACCS. Empirical results
showed the Avalon fingerprint11 as the most promising, and was
selected as the final fingerprinting option to work with.

Similarly to the PaDel scenario, salts were removed at the
beginning of the process using the salt stripper feature. In the
end, 117 descriptors, 118 charges, and 1024 fingerprint flags were
extracted as new features.

2.2. Data Preparation
The resulting dataset used in data analysis combines two main
sources. PaDel descriptor provides 2-dimensional features and
the PubChem fingerprint, while RDKit adds its respective
structural descriptors along with the Avalon fingerprint.

The whole dataset contains 3418 attributes; this means a
relatively wide data table that makes feature selection a top
priority. The many descriptors represent a high dimensional
sparsely inhabited feature space. Cautious measures have to be

11http://sourceforge.net/projects/avalontoolkit

FIGURE 3 | Sample molecule structures displayed by the RDKit cheminformatics toolkit. (A) NCGC00260687. (B) NCGC00261143. (C) NCGC00261111.
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taken as this kind of classification problem is particularly prone
to overfitting.

Additionally, some of these attributes overlap, as different
sources provide the same functionality. First, correlated attributes
were removed to avoid the effect of multicollinearity as suggested
by Chong and Jun (2005). In this step, attributes were filtered
where a pairwise correlation was above 0.95. Other attributes
were deemed useless and removed, based on their low variance
(below 0.1) or high ratio of missing values (above 10%). Note,
this step removes many of the Gasteiger charges.

Literature review underlined the importance of feature
selection in QSAR protocols. To carry out careful filtering of the
feature space, the functionality of conventional methods were
combined in a novel way. RapidMiner, a reliable data analysis
software, offers various feature selection operators (Schowe,
2011), and also comes with a powerful extension12 to further
extend options. In this attempt, 5 basic feature selector operators
were combined to generate a versatile ranking of individual
attributes, thus creating a flexible attribute filtering scheme.
The basic operators include calculating feature relevance by
computing the value of correlation with respect to the target
attribute, based on the information gain ratio, based on the
Gini impurity index, by measuring the symmetrical uncertainty
with respect to the class, and according to how well their values
distinguish between the instances of the same and different
classes that are near each other.

Summing the aforementioned ranks represents the universal
scoring for the given input variable provided by a committee of
experts, thus creating amore reliable ranking. Using the universal
scoring, 681 features were selected for further analysis, meaning
depending on the assay the analytical base table contained
roughly 10–13 timesmore observations than features, a data table
size much less prone to overfitting. Further details on the final set

12http://sourceforge.net/projects/rm-featselext/

of descriptors andmost important input features for all 3 winning
tracks are provided in the Supplementary Materials.

Many of the structural descriptor features contain missing
values; we decided that attributes with excessive missing values
are to be entirely removed. Some molecule structures are
prone to fail to generate descriptors in PaDel and/or RDKit,
and thus missing values are generated. Classification models
implemented in Python do not handle missing values well, so
all rows in the training set including such values were removed
entirely. On the validation sets (test set and final evaluation set),
where dropping a molecule was no option, such values were
imputed with a fixed 0 value, which in the case of fingerprints,
represents the absence of a specific pattern and is considered a
safe option.

2.3. Random Forests and Extra Trees
The Random forest is perhaps the best-known of ensemble
methods, thus it combines simple models called base learners for

TABLE 2 | Searching the parameter space.

Model Parameter Options tested

Random forest classifier

Extra trees classifier

Splitting criterion Gini, entropy

Number of estimators 499, 799, 999, 1200

Support vector classifier Kernel Radial basis function, linear

Gamma parameter 0.01, 0.001, 0,0001

C parameter 1, 10, 100,1000

Class weight auto, none

Gradient boosting classifier Learning rate 0.01, 0.1, 0.3

Number of estimators 250, 500,1200

Max tree depth 2, 3, 5

Subsampling 0.75, 0.9, 1.0

FIGURE 4 | Illustrative example of 5-fold cross-validation.
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TABLE 3 | Comparison of leaderboard and final performance on all assays.

Panel Assay Modeling method Tuned model parameters LB AUC Eval. AUC Balanced acc.

NR AR ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.71 0.83 0.61

NR Ahr ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.85 0.78 0.56

NR AR-LBD RandomForestClassifier No. estimators: 499, criterion = “entropy” 0.86 0.82 0.49

NR ER ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.70 0.77 0.66

NR ER-LBD RandomForestClassifier No. estimators: 799, criterion = “entropy” 0.79 0.77 0.59

NR Aromatase ExtraTreesClassifier No. estimators: 999, criterion = “entropy” 0.85 0.84 0.56

NR PPAR-gamma ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.83 0.83 0.55

SR ARE SupportVectorClassifier Kernel type: ANOVA 0.82 0.77 0.52

SR ATAD5 ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.80 0.80 0.61

SR HSE ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.88 0.86 0.56

SR MMP ExtraTreesClassifier No. estimators: 799, criterion = “entropy” 0.93 0.95 0.69

SR p53 ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.74 0.88 0.58

FIGURE 5 | ROC curves of the winning models. (A) NR-AR. (B) NR-Aromatase. (C) SR-P53.

increased performance. In this case, multiple treemodels are used
to creating a forest as introduced by Breiman (2001).

There are three key factors of forest creation:

1. bootstrapping the dataset
2. growing unpruned trees
3. limiting the candidate features at each split

These steps ensure that reasonably different trees are grown
in each turn of iteration, which is key to the effective model
combination.

The bootstrapping step of the model creation carries out
a random sampling of a dataset with N observations with a
replacement that results in N rows, but only ca. 63% of the
data used as stated in (1) (Efron and Tibshirani, 1993). The
probability that an observation x does not get into the sample S
equals

P(x /∈ S) = (1−
1

n
) ≈ e−1

= 0.368 (1)

Pruning the trees would reduce variance between trees and thus
considered inessential as the overfitting of individual trees is
balanced anyway by the ensemble.

When growing trees a different set of features is proposed as
candidates in finding the best split based on information criteria
like Gini or entropy. The subset of features is selected randomly
further increasing the variance between trees.

The output of the trees is then combined by averaging the
results based on some weights or by performing a majority vote
in the case of classification problems.

Random forests have very few vital parameters to tune,
they are effectively non-parametric. The unique architecture
provides many benefits and is widely recognized as a good
initial approach to most problems. Unlike decision trees, the
ensemble method’s averaging property inherently finds a balance
between high variance and bias. It is insensitive to many data
related issues such as the large number and heterogeneity of
features, outliers, missing data, and even an unbalanced target.
Other than being a great out-of-the-box tool it offers various
useful services. Random forest gives an intrinsic evaluation of
the results based on the data discarded by bootstrapping (called
out-of-bag error), it also gives estimates what variables are
important.

Extra Trees is a slightly different Random forest variant
suggested by Pierre Geurts, Damien Ernst and Louis Wehenkel
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FIGURE 6 | Top 20 empirical feature importance assessment on assay SR-P53.

FIGURE 7 | Using a cutoff threshold on assay NR-AR to transform probabilistic predictions (A) to actual activity (B) that resembles training

distribution (C).

in the article “Extremely randomized trees” in 2006 (Geurts et al.,
2006). The extreme randomization comes from the fact that the
variable splitting in each node is no longer based on finding the

best split, but done in a completely random manner. This causes
the trees grown to be even less data dependent, thus introducing
extra variance between them.

Frontiers in Environmental Science | www.frontiersin.org August 2016 | Volume 4 | Article 52 | 51

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Barta Identifying Toxins Using Multi-Tree Ensembles

TABLE 4 | Performance comparison of final solution and winning solution on all assays.

Panel Assay Modeling method Cutoff point Evaluation AUC Position Best AUC Perf. ratio (%)

NR AR ExtraTreesClassifier 0.50 0.83 1 0.83 100

NR Ahr ExtraTreesClassifier 0.40 0.78 28 0.93 84.20

NR AR-LBD RandomForestClassifier 0.50 0.82 7 0.88 93.11

NR ER ExtraTreesClassifier 0.35 0.77 11 0.81 94.61

NR ER-LBD RandomForestClassifier 0.35 0.77 12 0.83 93.26

NR Aromatase ExtraTreesClassifier 0.45 0.84 1 0.84 100

NR PPAR-gamma ExtraTreesClassifier 0.50 0.83 6 0.86 96.58

SR ARE SupportVectorClassifier 0.60 0.77 10 0.84 91.43

SR ATAD5 ExtraTreesClassifier 0.35 0.80 4 0.83 96.65

SR HSE ExtraTreesClassifier 0.50 0.86 7 0.86 98.93

SR MMP ExtraTreesClassifier 0.50 0.95 2 0.95 99.54

SR p53 ExtraTreesClassifier 0.35 0.88 1 0.88 100

2.4. K-Fold Cross-Validation
Cross-validation is the primary method of model evaluation. In
this technique, multiple models are trained using the same tuning
parameters and subsequently tested on a different subset of data.
The results are more reliable than performing the simple holdout
method that could be misleading when a not-so-fortunate split
is used.

During cross-validation the data is partitioned into K disjoint
subsamples; typicalK values lie between 5 and 10. Model training
is then carried out using K-1 folds and testing on the last
fold, as seen in Figure 4. The process is performed until all the
folds have been used for testing and the cross-validation error
equals

ECV =
1

K

K∑

i=1

Ei, (2)

where Ei is the error measured at each iteration. A 3-fold
cross-validation scheme was used in the evaluation phase to
ensure honest performance assessment. In general, local cross-
validation scores were close to the leaderboard but slightly
overestimated accuracy in some cases. K-fold cross-validation
also ensured that the modeling has been executed using all
data.

3. RESULTS

3.1. Model Implementation and Evaluation
The distribution of the target variable for all assays is highly
skewed (target event between 3 and 16%). This causes difficulties
for conventional modeling methods when it comes to predicting
target values. Model alternatives were preselected based on
their ability to handle the characteristics of the specific
classification problem; having highly imbalanced target and a
high dimensional feature space. Out of the many modeling
methods Python’s scikit-learn provides, the following were tested
thoroughly:

1. Random Forest Classifier
2. Extra Trees Classifier

3. Gradient Boosting Classifier
4. Support Vector Classifier

Results clearly showed that neither Gradient boosting classifier
(GBC) nor Support vector classifier (SVC) was able to handle
target imbalance properly. Literature suggests balancing of
target (Zakharov et al., 2014), which takes either substantial
modification of the original method (Chen et al., 2004)
or re-sampling of the whole dataset (Zhang et al., 2013).
None of these advanced approaches was pursued in depth,
as the random forest class was able to deliver convincing
results in most cases without any further transformation
needed. GBR and SVC approaches were subsequently
discarded.

All models were evaluated using the K-fold cross-validation

paradigm, using 3 folds to perform honest performance

assessment. As the number of observations compared to the

number of features is relatively low, this represents a crucial

step in involving all observations in both the training and

the testing phase. Model parameters were tuned using the

grid search method; a combination of cross-validation and an

exhaustive search in parameter space. Results were evaluated

based on the area under the receiver operating characteristics

curve score (ROC-AUC) as designated by the challenge
organizers. Table 2 shows the parameter settings that were
tested.

The final evaluation models were trained on the combined

training and testing dataset to encapsulate all the information

available.
Table 3 shows the parameter settings found optimal for each

track along with leaderboard and final evaluation performance.

All solutions were ranked based on the challenge criteria:

ROC-AUC, but balanced accuracy scores are also provided.

As a sole exception, modeling for the SR-ARE assay was

carried out completely in RapidMiner using Support vector

classifier and is not discussed in this article. Any parameters

not mentioned in Table 3 were set to their respective default

values (see the scikit-learn documentation for details). Although

a wide spectrum of models was experimented with, all
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FIGURE 8 | ROC curves of best models (blue) and selected Dmlab models ranked 2–10th (red). (A) SR-ATAD5. (B) SR-MMP. (C) SR-HSE.

optimal solutions came from the Random forest class of
models with very similar parameter settings, meaning this
approach proved to be a relatively robust that worked well
on all assays. The only real difference is the number of
estimators employed, that varies in a broader spectrum from
499 to 999 depending on the assay. Performance discrepancy
between leaderboard and final evaluation was also minimal,
4.73 ± 0.04 percent for NR and 4.62 ± 0.05 percent for SR
panel.

Besides successfully avoiding overfitting and working reliably
on all assays, the solution stack discussed in this paper also
provides useful insights into variable importance, a feature
crucial to the deeper understanding of complex problems like
toxicity screening. Figure 6 shows empirical feature importance
assessment for the assay SR-P53, and underlines the significance
of specific patterns to this problem, such as conventional
bond orders and the presence of particular ring patterns.
Further details on the most important input features for
all 3 winning tracks are provided in the Supplementary
Materials.

3.2. Post-Processing the Results
As part of the final evaluation task, molecule activity decisions
had to be submitted instead of simple activity probabilities. As
seen previously, the distribution of the target variable for all
assays is highly skewed. This made cutting at the conventional
0.5 probability threshold impractical. The output of each model
was further tuned to better represent the expected distribution of
the target using a flexible cutoff point. Figure 7 contains details
of the process; do note the logarithmic scale on the figure. The
optimal cutoff point per assay was calculated to closely resemble
the target distribution observed on the training set published by
the organizers. A strong assumption was made that evaluation
and training data was sampled in a nearly stratified manner.
The optimized cutoff point used in each assay can be found in
Table 4.

4. DISCUSSION

The Tox21 Data Challenge offered a novel way of mass chemical
assay classification. Much of our team’s efforts were focused on
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developing accurate predictions with the help of well-established
domain specific descriptors and finding the right approach to
feature selection. Modeling was carried out using the cutting
edge of open source data science tools available. This approach
was highly capable of capturing toxicity driving factors while
also avoiding overfitting on the training data. In the competition
context, the proposed solution achieved a winning position in 3
of the Tox21 Data Challenge 2014 tracks and delivered highly
comparable results on the rest.

The solution’s robustness and competitiveness are proven
through empirical results. The model evaluation shows empirical
evidence that Random forest class predictors suit the particular
classification problem well. When built on carefully preselected
features they offer extremely high performance in the chemical
assay classification domain.Model performance, however, greatly
depends on the feature set used and the cutoff threshold applied;
the proposed approach for both issues worked convincingly in
11 out of the 12 challenge tracks. The Random forest method is
found to be insensitive to most modeling parameters; the number
of estimators has a slight effect on performance, but overfitting is
rarely an issue.

When compared to other challenger’s solutions the Random
forest stack offers convincing performance with 3 assay wins and
6 more places among the top 10. Figure 5 shows the graphical
representation of the winning solution performances. Even when
the achieved ranking is not so prominent, ROC-AUC scores show
a promising performance ratio compared to the assay winning
solutions proving the approach’s versatility (see Table 4). Average
performance ratios were found to be 94.54± 4.99 percent for NR
and 97.31± 3.16 percent for SR panel. Figure 8 offers additional
graphical comparison of performance ratios on selected assays
SR-ATAD5 (96.65%), SR-MMP (99.54%), and SR-HSE (98.93%)
respectively.

All computations were carried out on a quad core PC with
Intel Core i5 CPU @ 3.20 GHz processor and 16 GB of RAM.

Depending on the assay, single thread model building on the
full dataset took between 28.3 and 42.2 s. Random Forests

also possess the capability for multi-thread execution; using
scikit-learn’s parallelization feature reduces model building time
between 9.6 and 13.7 s. Model application is generally quick;
predictions are generated within seconds regardless of the data
size.

In summary, the article provides a detailed description of
the solution stack used to develop high accuracy QSAR models.
This approach was able to achieve the highest accuracy in 3
different tracks of Tox21 Data Challenge. This accurate modeling
approach also provides useful services, such as intrinsic feature
importance that gives immediate feedback and further facilitates
understanding the proposed toxicology screening method. The
methodology used in the competition may be applied in other
problems in cheminformatics as well. Furthermore, winning
models are made publicly available for comparison and further
research.
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Random forest (RF) is a machine-learning ensemble method with high predictive

performance. Majority voting in RF uses the discrimination results in numerous decision

trees produced from bootstrapping data. For the same dataset, the bootstrapping

process yields different predictive capacities in each generation. As participants in the

Toxicology in the Twenty-first Century (Tox21) DATA Challenge 2014, we produced

numerous RF models for predicting the structures of compounds that can activate

each toxicity-related pathway, and then selected the model with the highest predictive

ability. Half of the compounds in the training dataset supplied by the competition

organizer were allocated to the validation dataset. The remaining compounds were

used in model construction. The charged and uncharged forms of each molecule were

calculated using the molecular operating environment (MOE) software. Subsequently,

the descriptors were computed using MOE, MarvinView, and Dragon. These combined

methods yielded over 4,071 descriptors for model construction. Using these descriptors,

pattern recognition analyses were performed by RF implemented in JMP Pro (a statistical

software package). A hundred to two hundred RF models were generated for each

pathway. The predictive performance of each model was tested against the validation

dataset, and the best-performing model was selected. In the competition, the latter

model selected a best-performing model from the 50% test set that best predicted

the structures of compounds that activate the estrogen receptor ligand-binding domain

(ER-LBD).

Keywords: random forest model, estrogen receptor ligand-binding domain, model-selection, Tox21 DATA

Challenge 2014, pattern recognition

INTRODUCTION

The Toxicology in the Twenty-first Century (Tox21) challenge, launched in the United States in
2008, is the largest study of toxic substances to date (Shukla et al., 2010). The Tox21 project is
promoted as a collaborative research among the National Institute of Health (NIH), Environmental
Protection Agency (EPA), and Food and Drug Administration (FDA), and accords with the
Memorandum of Understanding, which outlines the legal requirements of collaboration among
U.S. public institutions (http://epa.gov/ncct/Tox21/; Ettlin, 2013; Tice et al., 2013). Tox21 is a
far-reaching plan embracing the understanding of toxicities, establishment of evaluation systems,
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comprehensive experimental analyses, and constructions of
prediction methods. Tox21 provides a chemical library of
approximately 10,000 typical toxic compounds (the Tox21 10K
library) as proper objects for toxicity evaluations (Hsieh et al.,
2015). Activation and inhibition of various nuclear receptors
such as the androgen receptor (AR), aryl hydrocarbon receptor
(AhR), Ligand-binding domain of the androgen receptor (AR-
LBD), estrogen receptor α (ER), ligand-binding domain of
the estrogen receptor α (ER-LBD), aromatase and peroxisome
proliferator-activated receptor γ (PPAR-γ), and stress response
pathways such as nuclear factor (erythroid-derived 2)-like
2/antioxidant responsive element (ARE), ATP-ase family AAA
domain containing 5 (ATAD5), heat shock factor response
element (HSE), mitochondrial membrane potential (MMP), and
p53 were selected as investigation items in toxicity evaluation
for the Tox21 10K library based on a published research for key
regulatory pathways that integrate genetic and environmental
modulators (Gohlke et al., 2009). One goal of Tox21 is
to construct prediction models of toxicity-related biological
activities from chemical structures. NIH’s National Center
for Advancing Translational Sciences (NCATS) organized the
Tox21 Data Challenge 2014, in which participants compete
in predicting biological toxic responses using computational
toxicology technologies (https://tripod.nih.gov/tox21/challenge/
index.jsp). Competitors predicted the existence of unpublished
activities of various “evaluation set compounds” from the
chemical structures and known activities of “training set
compounds” extracted from the Tox21 10K library. The
competition targets were the 12 proteins/pathways mentioned
above, including PPARγ and p53 (Shukla et al., 2010). On a
homepage designed for the challenge, the organizers uploaded
the chemical structures of approximately 8,000 compounds in
the Tox21 10K library as the target data, and their assay results
of the proteins/pathways as the training set. As the evaluation
set, they also offered the chemical structures of 647 compounds
without the assay results. Each model submitted by the registered
teams was ranked by its ability to predict the activities in
the evaluation set. We registered the prediction results of
7 proteins/pathways based on random forest (RF) models
(Breiman, 2001) with elaborate technologies, which yielded
excellent prediction results. In particular, among the submitted
models, our model best predicted the active compounds in
the ER-LBD assay system (http://ncats.nih.gov/news/releases/
2015/tox21-challenge-2014-winners). The RFmethod constructs
many decision-trees and averages the predicted values to obtain
the final ones. Trees are grown by bootstrapping samples of
observations, and each split on each tree considers a randomly
sampled descriptor. The current study describes the construction
of our model and the characteristics of the prediction results in
the Tox21 data challenge 2014.

MATERIALS AND METHODS

Conformations
The training dataset includes both chemical structures and
activities; the evaluation dataset includes only the chemical

structures. Both datasets were downloaded from the homepage
set up for the challenge (https://tripod.nih.gov/tox21/challenge/
index.jsp). The prediction model for discriminating between
active and inactive compounds in the assays of each sub-
challenge was constructed from the training dataset in the SDF
files. The SDF files were changed to mdb file format by molecular
operating environment (MOE) 2013.08 (Chemical Computing
Group Inc., Quebec, Canada), which also cleaned up the chemical
structures, removing smaller molecules such as counter-ions.
Meanwhile, the charged and uncharged forms of each molecule
were calculated using the protonation function in MOE. In other
words, if there were chargeable functional groups in a chemical
structure, both charged and uncharged forms were generated
for that structure. Partial charges with force field (MMFF94x)
parameters were allocated to the atoms in each molecule
(Halgren, 1996). Next, the local-minimum 3D conformations
of the charged and uncharged forms were computed by the
MOE’s Rebuild3D minimization function. The charged and
uncharged forms might introduce different descriptors with
different 3D/topological conformations and counts of functional
groups. Therefore, acquisition of the descriptors should provide
detailed molecular information on each chemical structure.

Descriptors
A variety of descriptors were computed by 3 software packages:
MOE, MarvinView 5.12.4 (ChemAxon Kft., Budapest, Hungary),
and Dragon 6 (Talete srl., Milano, Italy). Excluding the
overlapping descriptors, 4071 descriptors were selected for
constructing the prediction models. These descriptors are
summarized in Supplemental Table 1. However, some of the
descriptors could not be calculated in lithium, which was
included in the evaluation datasets. Because the structural and
physicochemical properties in lithium were dissimilar to all
other compounds in the datasets, the activity of lithium was
evaluated with the lowest probability among the compounds in
the evaluation datasets.

Datasets
In seven of the sub-challenge targets (ER, ARE, p53, PPAR-γ,
ATAD5, ER-LBD, and AhR), half of the compounds in each
training dataset were randomly selected as the validation dataset
(50% test set). The remaining compounds in the training datasets
(50% training set) were used to construct the prediction models.
That is, the 50% test set was used to externally validate the
constructed models but not the internal data generating the
RF resampling processes. The evaluation process is outlined in
Figure 1. The evaluation set in Figure 1 is the final evaluation
set prepared by the competition organizer. This set included 647
chemical structures without their assay results during the period
of the competition.

Pattern Recognition and Rigorous
Selection
Pattern recognition analyses of these descriptors were performed
by the RF method (Breiman, 2001) using the bootstrap-forest
function in the statistical software package JMP Pro 10.02 (SAS
Institute Inc., Cary, NC, USA).
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FIGURE 1 | Datasets used in model construction.

Because they perform bootstrapping, RF models have
different predictive performances for the same combination of
hyperparameters. The contribution of a combination can be
checked by comparing the performance of that combination
with the average performance of plural models. Therefore, to
select the best combination of hyperparameters, we estimated
at least 10 models with each combination. The hyperparameter
decision step was based on data sets with ER-LBD. Specifically, we
estimated the discrimination abilities of themodels for predicting
compound activities by the area under the receiver operating
characteristic curve (ROC–AUC), which scores the probability
of activity of the compound. The predictive performance of
each model contributed from 50% of the ER-LBD training set
was evaluated on the 50% test set in the assay result. Based
on the investigations, the hyperparameters were set as follows:
Number of Trees, specifying the number of trees to grow before
averaging (100), Number of Terms, denoting the number of
columns specified as predictors (1032), Bootstrap Sample Rate,
specifying the proportion of observations sampled in each tree
growth (1), Maximum Splits Per Tree, defining the minimum
number of splits in each tree (2000), and Minimum Size Split,
defining the minimum number of observations required for
candidate splitting (2). The same hyperparameters were applied
in all predictions of all targets. Using combinations of these
hyperparameters, from 100 to 200 RF models were generated
for each target (the numbers of the models, decided a priori,
were 192, 100, 150, 109, 151, 200, and 132 in ER, ARE, p53,
PPAR-γ, ATAD5, ER-LBD, and AhR, respectively), and their
predictive performances were evaluated on the 50% test set
in each sub-challenge. After the competition, the assay results
of the evaluation set were available for viewing. Therefore,
we could compute the ROC-AUC values in the evaluation
set and the prediction results of the numerous RF models
for ER-LBD constructed by the above method. The modeling
process was validated in ROC-AUC comparisons of the 50%
training set and 50% test set (Figure 2). In this validation,
prediction values in the 50% training set and 50% test set as
well as in the evaluation set were recalculated for the different
values of the hyperparameters, Number of Terms (1–1000), and
Maximum Splits Per Tree (2–400) during the construction of 190
models.

Computational Environment
All simulations were performed on a desktop personal computer:
Endeavor MR7200-M (Epson Direct Corporation, Nagano,
Japan) with Windows 7 sp1 (64 bit), an Intel R© Core™i7-4790
CPU (3.6 GHz), and 32.0 GB RAM.

RESULTS

Rigorous Selection
Figure 2 presents the relationships among the ROC-AUC values
of ER-LBD obtained by the RF models in the 50% training
set, 50% test set, and evaluation set for different values of
the hyperparameters Number of Terms (1–1000) and Maximum
Splits Per Tree (2–400). The AUC values in the 50% training set
were well-correlated with those in the 50% test set. However, the
AUC values in the 50% test set and the final evaluation set were
not simply correlated; rather, there was an optimal point at which
the AUC of the 50% test set corresponded to the highest AUC of
the evaluation model.

Targets
The RF models described in the Methods section were
constructed for 7 targets; namely, ER, ARE, p53, PPAR-
γ, ATAD5, ER-LBD, and AhR. Using these models, we
predicted the activities of the compounds included in the
final evaluation set of the targets. The model performances
were evaluated by their ROC–AUC values and their rankings
in the Tox21 data challenge 2014 (Table 1; https://tripod.
nih.gov/tox21/challenge/index.jsp). In the competition, 125
participants were registered from 18 countries, and finally, 40
teams from 11 countries submitted prediction models (Huang
et al., 2015). Most of our models were within the top 10
of the registered sub-challenges. In particular, our models
achieved the highest ROC–AUC in the ER-LBD sub-challenge.
The estimated scores of the compounds in the evaluation
set of each target are plotted against the assay results in
Figure 3.

DISCUSSION

In constructing the prediction models, we considered the various
factors discussed below.

Charged and Uncharged Forms
For chemical structures with chargeable functional group(s), we
generated both the charged form under neutral pH conditions
and the uncharged form. The structures of these forms should
differ in their numbers of functional groups and optimized
3D-conformations. Therefore, by constructing both forms, we
can extract more structural information from each molecule
because of the greater variety of generated descriptors. Actually,
a previous investigation confirmed that including the descriptors
from both forms improved the predictive ability of the RF
models, relative to descriptors from unilateral forms (data not
shown).
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FIGURE 2 | Relationships among the ROC-AUC values of numerous prediction models in the ER-LBD test, training and evaluation datasets for

different values of the hyperparameter Number of Terms (1–1000) and Maximum Splits Per Tree (2–400) during the construction of 190 models. R2 and

RMSE means determination coefficient and root mean squared error, respectively.

TABLE 1 | ROC–AUC values of the RF models.

Target assay Category ROC-AUC Best ROC-AUC Ranking

ER-LBD Nuclear receptor 0.827 0.827 1

ATAD5 Stress response pathway 0.812 0.828 3

ARE Stress response pathway 0.802 0.84 7

ER Nuclear receptor 0.783 0.81 7

AhR Nuclear receptor 0.901 0.928 8

p53 Stress response pathway 0.826 0.88 10

PPAR-gamma Nuclear receptor 0.718 0.861 15

ROC–AUC values are the results of the author’s study. Best ROC-AUC denotes the best result in the Tox21 data challenge 2014. Ranking refers to the authors’ results.

Usage of Numerous Descriptors
To maximize the information on the chemical structures,
we calculated numerous descriptors including structural
and physicochemical features using the MOE, Marvin,
and Dragon software packages. Approximately 10,000
descriptors were generated from the above-described charged
and uncharged forms. After discarding the overlapping
descriptors, we obtained 4,000 descriptors for the modeling
studies.

RF Model
The model construction was based on the RF algorithm
(Breiman, 2001), which has advantage of high prediction
potency, low computational cost, handling of large and
prejudiced data, and resistance to effects containing outliers
(Bruce et al., 2007). On account of its high cost performance,
model construction by RF can proceed in standard computing
environments. Because it ranks the contributions of the model
descriptors, the RF algorithm can also estimate the importance of
physicochemical features of the compounds during interactions
with biopolymers such as proteins. For instance, the importance
of the descriptors in constructing the ER-LBD model was
estimated from the entropic changes and the descriptor-
usage numbers at the split points. In this model, the most
significant descriptors were the number of aromatic hydroxyls
(nArOH) and the smallest eigenvalue (n.1) of the mass-weighted

Burden matrix (SpMin1_Bh_m) (sup. Table 1) (Burden, 1989;
Todeschini and Consonni, 2009). Such characteristics of the RF
algorithmmight provide useful knowledge for understanding the
interactions.

Rigorous Model Selection
A high-performance model was selected among numerous RF
models. When constructing the RF models, we performed
bootstrap sampling of compound–descriptor combinations.
Because the bootstrap process is repeated randomly, each
constructed model has a unique predictive ability. For example,
the average, highest and lowest ROC-AUC values among
numerous ER-LBD prediction models in the trial shown in
Figure 2 were respectively 0.869, 0.998, and 0.762 in the 50%
training set, 0.802, 0.876, and 0.715 in the 50% test set, and 0.743,
0.850, and 0.650 in the evaluation set. Selection of the submitted
models was based on their prediction potentials in the 50% test
set. The competition rules allowed free selection of the target
pathways for submission. Our 7 targets were selected from the
12 pathways for no special reason. Although we did not attempt
to predict the active compounds in the remaining five pathways,
we expect that our method would predict these with equal
efficacy.

Furthermore, our rigorous model selection strategy
successfully predicted the ATAD5, ARE, ER, AhR, and
p53 pathways. The ROC–AUC values obtained for
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FIGURE 3 | Estimated scores of compounds in the evaluation set. Act and Inact denotes the active and inactive results in each assay.

these pathways ranked among the top 10 registered
by competitors (Table 1). In contrast, the predictive
performance of PPAR-γ (ROC–AUC = 0.718) was ranked
at 15. Such varying performance for different targets might
reflect varying compatibility with the hyperparameter
combination in the RF modeling. The hyperparameter
combination was determined from the training data for
ER-LBD, and might be markedly suboptimal for PPAR-γ
prediction.

After the competition, the assay results of the compounds
in the evaluation set were opened for viewing, so we could
validate the current construction method of the RF models.

Scatter plots between the ROC-AUC values in the 50% test
set and evaluation set revealed a strong correlation between
the 50% test set and the evaluation dataset, confirming the
prediction potential of the models for this dataset (Figure 2).
This result supports the strategy of selecting the best model
from numerous RF models, based on their ROC-AUC values
of the 50% test set. However, the optimal combinations of
hyperparameters for predicting the evaluation set and the 50%
test set were non-identical. The best-performing models for the
test set may be overfitted. To improve the model selection,
we should use the current results to refine the hyperparameter
combinations.
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CONCLUSIONS

We have constructed a high-performance single RF model
for biological pathway prediction. The method succeeded by
rigorously selecting the best model among numerous previous
models. Each of the previous models has a unique performance
because of the bootstrap data sampling used in model
construction. Increasing the number of previous models and
refining the hyperparameter combinations might improve the
final model. In other words, the generalizability of the prediction
models can be influenced by the number of generated RF
models, which depends on the performance of the computational
environment.
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To assess the toxicity of new chemicals and drugs, regulatory agencies require

in vivo testing for many toxic endpoints, resulting in millions of animal experiments

conducted each year. However, following the Replace, Reduce, Refine (3R) principle,

the development and optimization of alternative methods, in particular in silico methods,

has been put into focus in the recent years. It is generally acknowledged that the more

complex a toxic endpoint, the more difficult it is to model. Therefore, computational

toxicology is shifting from modeling general and complex endpoints to the investigation

and modeling of pathways of toxicity and the underlying molecular effects. The U.S.

Toxicology in the twenty-first century (Tox21) initiative has screened a large library

of compounds, including approximately 10K environmental chemicals and drugs, for

different mechanisms responsible for eliciting toxic effects, and made the results publicly

available. Through the Tox21 Data Challenge, the consortium has established a platform

for computational toxicologists to develop and validate their predictive models. Here,

we present a fast and successful method for the prediction of different outcomes of the

nuclear receptor and stress response pathway screening from the Tox21 Data Challenge

2014. The method is based on the combination of molecular similarity calculations and a

naïve Bayes machine learning algorithm and has been implemented as a KNIME pipeline.

Molecules are represented as binary vectors consisting of a concatenation of common

two-dimensional molecular fingerprint types with topological compound properties. The

predictionmethod has been optimized individually for eachmodeled target and evaluated

in a cross-validation as well as with the independent Tox21 validation set. Our results

show that the method can achieve good prediction accuracies and rank among the

top algorithms submitted to the prediction challenge, indicating its broad applicability in

toxicity prediction.

Keywords: molecular fingerprints, molecular similarity, machine learning, toxicity prediction, Tox21 Data

Challenge 2014
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Introduction

The U.S. Toxicology in the twenty-first century (Tox21) initiative
has been established in 2008 with the vision to support the
transformation of toxicology into a predictive science (Krewski
et al., 2010). In order to achieve this goal, a large library
of compounds, including approximately 10K environmental
chemicals and drugs, was screened for different mechanisms
responsible for eliciting toxic effects. Among the screens were
high-throughput assays for two important pathways, the nuclear
receptor and the stress response pathway, which were the subject
of the Tox21 Data Challenge 2014.

Interactions of chemicals with nuclear receptors represent
a major health concern. In particular, binding of chemicals
to steroid receptors can cause the disruption of the normal
endocrine function and have an adverse effect on development,
reproduction and metabolic homeostasis (Huang et al., 2014).
A famous example of an endocrine disrupting chemical is
bisphenol A, a compound which has been widely used, e.g.
in plastic bottles and metal cans, but has only recently been
associated with impairments of neurobehavioral development
(Weiss, 2012). Bisphenol A and its derivatives have been
shown to exhibit a promiscuous binding behavior involving,
for instance, estrogen receptors (ER), androgen receptors (AR)
and peroxisome proliferator-activated receptors (PPAR) of the
γ subtype (Delfosse et al., 2014), all of which are subject
of the Tox21 screening. Another current focus of the Tox21
screening is aromatase, an enzyme involved in the conversion
of androgen to estrogen and therefore a target of endocrine
disrupting chemicals (Chen et al., 2014), as well as the aryl
hydrocarbon receptor (AhR), a nuclear receptor involved in the
mediation of tumorgenesis induced by dioxin (Murray et al.,
2014). Similarly, mechanisms related to cellular stress also play
a role in toxicological pathways. For example, recent studies
have shown that the impairment of mitochondrial function
is associated with drug-induced adverse effects on the liver
and cardiovascular system (Nadanaciva and Will, 2011; Attene-
Ramos et al., 2015).

To assess the risks of new chemical entities, in vivo animal
studies are required by regulatory agencies to evaluate various
toxicological endpoints. However, in silico toxicology is gaining
acceptance as an alternative method which can help to reduce
the number of animal experiments performed. Computational
predictions often rely on the observation or assumption that
similar molecules manifest a similar biological effect. Similarity-
based methods have been successfully applied to solve various
research questions including predictions of targets (Campillos
et al., 2008), therapeutic indications (Nickel et al., 2014) or
side-effects (Lounkine et al., 2012). In particular, machine
learning approaches such as k-nearest neighbors, naïve Bayes

Abbreviations: 2D, two-dimensional; AhR, aryl hydrocarbon receptor; AR,

androgen receptor; ARE, antioxidant response element; ATAD5, genotoxicity

induction; AUC, area under the curve; BAC, balanced accuracy; ER, estrogen

receptor 1; HSE, heat shock response; LBD, ligand binding domain; MMP,

mitochondrial membrane potential; PPAR, peroxisome proliferator-activated

receptor; ROC, receiver operating characteristic; Tox21, U.S. Toxicology in the

twenty-first century initiative.

models, support vector machines, random forests or ensembles
of different classification methods can use the similarity defined
the molecular structure and properties to make predictions
for novel compounds. This concept has also been frequently
and successfully applied to predictions of various toxicological
endpoints (Drwal et al., 2014; Gadaleta et al., 2014; Li et al., 2014;
Liu et al., 2015).

Here, we describe the development of a fast and successful
method for the prediction of different outcomes of the nuclear
receptor and stress response pathway screening from the
Tox21 Data Challenge 2014. The method is based on the
combination of a simple molecular similarity calculation with
a naïve Bayes machine learning algorithm. Three different two-
dimensional (2D) molecular representation methods as well as
their combination were compared and the prediction methods
were optimized individually for every target. The evaluation
of each model showed that all models can achieve good
performance and prediction accuracies as well as rank among the
top submissions among the Tox21 challenge participants.

Materials and Methods

Overview
An overview of the workflow used in this study is given
in Figure 1. In the first step, all molecular structures were
standardized and the duplicates as well as compounds with
ambiguous activity values were removed. The training and test
set provided by the Tox21 Data Challenge 2015 organizers
were merged and used in a 13-fold cross-validation to optimize
parameters for the classification algorithms. The optimized
models were then used to predict the activities of the evaluation
set compounds. All steps are described in detail in the following
sections. For the majority of tasks, the open pipeline generation
platform KNIME v.2.10.0 (Knime.com AG) was used.

Data Preparation
Standardization
All molecular structures were downloaded from the Tox21 Data
Challenge 2014 website (https://tripod.nih.gov/tox21/challenge/
index.jsp) and their molecular structures were standardized
using the Instant JChem software (version 6.2, Chemaxon)
with the following settings: Water molecules were removed,
molecules were aromatized, adjacent positive and negative
charges transformed into double/triple bonds, explicit hydrogens
were added and the 3D conformation was generated and cleaned.
After the standardization, InChIKeys were calculated using
RDKit (http://www.rdkit.org) nodes in KNIME in order to
identify and remove duplicates. In case duplicate molecules were
found to have different activities (1 and 0) for a particular target,
they were marked as ambiguous and removed from the training
set of this target.

Additional Data
For each target, a search for additional known ligands was
performed in the ChEMBL bioactivity database v.19 (Bento et al.,
2014). A search was performed for the target name and EC50

or IC50 values in case of agonists or antagonists, respectively.
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FIGURE 1 | Workflow overview.

Additional datasets were standardized and checked for duplicates
as described above.

Calculation and Combination of Fingerprints
Different types of molecular representations were calculated for
each compound: ToxPrint fingerprints were calculated using
the ChemoTyper software (version 1.0, Molecular Networks
GmbH). Extended-connectivity fingerprints (Rogers and Hahn,
2010) of the ECFP4 type were calculated using RDKit nodes
in KNIME. 960-bit MACCS keys were calculated using the
Discovery Studio 3.1 program (Accelrys Inc./BIOVIA). In
addition, several topological properties indicating the three-
dimensional (3D) structure were calculated using RDKit and
CDK nodes in KNIME. The use of topological descriptors has
been previously reported in a structure-toxicity relationship
study (Pasha et al., 2009). Furthermore, topological descriptors
have several advantages compared to 3D descriptors, including
conformational independency, simplicity and low computational
resources. A number of topological descriptors were calculated,
but only those displaying values with considerable difference
between active and inactive molecules were used further.
These included the Chi0V, Chi1N, Kappa1 and HallKierAlpha
descriptors (Hall and Kier, 1991) as well as the topological polar
surface area. The descriptors were transformed into a binary
vector by binning. For each descriptor, a number of “bins”
(and bits in the fingerprint) was defined, representing different
descriptor value ranges. Whenever the descriptor value was
found in a specific range, the bit at the respective position was
set to 1. Therefore, it was ensured that close values exhibited high
fingerprint similarity. The combined fingerprint consisted of a
concatenation of all four binary fingerprints with a length of 2929
bits—960 bits for MACCS keys, 1024 bits for ECFP4, 729 bits
for ToxPrint and 216 bits for the property-based fingerprint, as
indicated in Figure 2.

Toxicity Prediction Methods
Cross-validation
In order to validate the prediction models, a 13-fold cross-
validation was implemented in KNIME. The KNIME workflows
are presented in Supplementary Figures S1, S2. A 13-fold
validation was chosen in order to produce a test set similar
in size to the final validation set of the Tox21 challenge. It
was investigated whether the addition of external data (known
ligands from the ChEMBL database, see Section Additional
data) was able to improve the prediction rate. Different activity
cut-offs for the ChEMBL compounds were considered for this
purpose. Furthermore, it was also investigated whether reducing
the actives in the training set to the most diverse compounds
was able to increase the performance of the model. In this
case, the RDKit Diversity Picker node was used using different
thresholds. Finally, the effect of the removal of highly correlated
fingerprint bits on the model performance was explored using
the Correlation Filter node. To determine the best settings,
the performance was evaluated using a receiver operating
characteristic (ROC) analysis. The area under the curve (AUC)
was calculated using the ROC curve node.

Naïve Bayes Learning
Naïve Bayes is a commonly applied stochastic classifier based on
the Bayes theorem of conditional probability (Nidhi et al., 2006).
The major characteristic of the classifier is the naïve assumption
that all input features are independent. Main advantages of
the method compared to other machine learning algorithms
are fast computational time during training and prediction
as well as a low parameter complexity and insusceptibility to
irrelevant features. Furthermore, it has been suggested that
the combination of molecular fingerprints with descriptors can
be beneficial in the context of Bayesian modeling (Vogt and
Bajorath, 2008).
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FIGURE 2 | Molecular representation. For every input molecule from

the Tox21 data set, different 2D-fingerprints are calculated and

combined. The concatenation consists of MACCS keys (960 bits), the

extended-connectivity fingerprint ECFP4 (1024 bits), ToxPrint (729 bits)

and a fingerprint developed from topological descriptors (216 bits). Both

MACCS as well as ToxPrint fingerprints encode the presence of specific

substructures. Examples of MACCS and ToxPrint substructures are

shown in boxes. Substructures present in a sample molecule taken

from the Tox21 dataset are highlighted in orange boxes. ECFP4

encodes the connections of each atom within a 4-atom radius. The

property-fingerprint encodes the presence of descriptor values in specific

bins representing value ranges.

Thus, we implemented a naïve Bayes predictor with the
Tox21 training sets. The Fingerprint Bayesian Learner and
Predictor nodes in KNIME were used for this purpose. The
predictor received an input of active and inactive molecules and
their fingerprints. The output consisted of two scores for each
molecule, a score for being active (B1) and a score for being
inactive (B0).

Molecular Similarity
The Tanimoto index is one of the most common metrics
for fingerprint-based molecular similarity calculations and has
recently been shown to be among the best choices for this purpose
(Bajusz et al., 2015). For the comparison of molecular similarity,
three Tanimoto coefficients were computed: the maximum
Tanimoto coefficient to actives in the training set (T1), the average
Tanimoto coefficient to actives in the training set (T2), and the
maximum Tanimoto coefficient to all inactives in the training
set (T3).

Combination of Methods
All scores and Tanimoto coefficients were normalized in KNIME
using Z-score normalization to obtain scores following a
Gaussian distribution and MinMax-normalization to obtain
values between 0 and 1. Different combinations of the naïve Bayes
scores B1 and (1-B0) as well as the Tanimoto scores T1, T2 and
(1-T3) were examined, including the minimum, maximum and
mean of the scores.

Determination of Score Threshold
For every target, a threshold of the final score was determined
which was used to classify the compounds into active
and inactive molecules. The score threshold was determined
by choosing the threshold which resulted in the maximal
balanced accuracy ((sensitivity+specificity)/2) over all rounds of
cross-validation.

Results

The Tox21 Data Challenge 2014 consisted of the prediction
of 12 different screening outcomes (targets): the activation or
inhibition of nuclear receptors AhR, PPARγ, aromatase, ER
and AR (full length and ligand binding domain, LBD) as well
as the effect on stress response pathways consisting of the
activation of the antioxidant response element (ARE), heat
shock response (HSE) and p53 signaling, the disruption of
mitochondrial membrane potential (MMP) and the induction
of genotoxicity (ATAD5). Before building predictive models, all
chemical structures were normalized as described in theMethods
section and duplicates were removed. Only compounds explicitly
marked as active or inactive were used for model development.
Wherever available, additional active molecules were extracted
from the ChEMBL database (Bento et al., 2014) and used for
model development. As summarized in Supplementary Table S1,
the proportion of unique active and inactive molecules as well
as the presence of external actives differed considerably between
targets.
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Choice of Molecular Representation
How well a prediction model performs does not only depend
on the underlying algorithm, but also the features used as
input. In the case of predictions of small molecule toxicities
and other biological activities, the performance thus depends
on the molecular representation which ultimately influences
the computed similarity between molecules (Floris et al.,
2014). Here we compared the performance of three common
molecular fingerprints as well as their combination. ECFP4
is a member of the extended-connectivity fingerprint type
often used to analyze structure-activity relationships of small
molecules (Rogers and Hahn, 2010). MACCS keys are another
frequently used fingerprint type which encodes the presence
of specific substructures and has been successfully used for
predictions of acute oral toxicity (Li et al., 2014). The ToxPrint
fingerprint (Yang et al., 2015a) is based on a library of more than
700 chemotypes which represent molecules in public chemical
and toxicity databases and cover substructures associated with
toxic effects and thus may be of particular importance for in
silico toxicity predictions. We also evaluated the addition of a
property-based fingerprint as has been suggested previously (Xue
et al., 2003). Here, descriptors encoding the topology of the
Tox21 compounds were calculated and translated into a binary
fingerprint.

In order to determine the optimal fingerprint for the
prediction, fingerprints were used individually as well as in
combination and evaluated in cross-validation on one of the
targets, namely ER-LBD. As summarized in Table 1, all three
types of fingerprints showed a good performance using both the
Bayesian classifier as well as the similarity search approach. In
the majority of cases models built with individual fingerprints
exhibited AUC values above 0.75 and a concatenation of all
three fingerprints led to a slight increase in performance.
Furthermore, a combination of the concatenated fingerprints
with a property-based fingerprint encoding the topology of the
molecules demonstrated the best prediction results and was thus
used as a descriptor for all targets of the challenge.

Model Optimization and Validation
In the preliminary evaluation of descriptors for ER-LBD, a
common observation was that a consensus score consisting of
a machine learning score and a similarity coefficient usually
resulted in the best model performance (Table 1). Therefore,
it was investigated which combination of scores led to the
best prediction. In particular, the scores from the Bayesian
classifier and the similarity search were combined into a
consensus score using either a mean, maximum or minimum
value. Since the optimal settings might differ depending on
the target and its active and inactive molecules, the best
parameters were determined individually for every target in a
cross-validation study. The optimization involved the variation
of the following parameters: the addition of active molecules
from external sources (ChEMBL database) using different
activity value thresholds, the addition of a correlation filter
to remove highly correlated fingerprint features as well as the
incorporation of a diversity picker to restrict the number of
active to train a naïve Bayes model to the ones with highest
diversity.

The best settings found for every Tox21 target are shown in
Table 2. As indicated, similarity search gave the best performance
for 4/12 targets when an average Tanimoto was calculated
from the T1, T2, and (1-T3) scores indicating the similarity
to active as well as the dissimilarity to inactive molecules (see
Methods). For all other targets, a combination of the machine
learning algorithm and a similarity scoring showed the best
results. In most cases, a mean function was used to generate
a consensus score combining the naïve Bayes and Tanimoto
coefficients.

The performance of each model was evaluated using
ROC-AUC values as well as balanced accuracies. The cross-
validation results for the best settings as well as the external
validation results provided by the challenge organizers are
summarized in Figure 3. In cross-validation, all models exhibited
excellent performance with AUC values between 0.78 and
0.9, with the best three models obtained for the targets

TABLE 1 | Performance of different fingerprints in cross-validation of predictions for ER-LBD.

Scorea ROC-AUC

MACCS ECFP4 Toxprint Combinedb Allc

naïve Bayes B1 0.7664 0.7870 0.7744 0.7833 0.7874

naïve Bayes 1—B0 0.7720 0.7716 0.7818 0.8031 0.8021

Similarity T1 0.7805 0.7773 0.7840 0.7957 0.8008

Similarity T2 0.6660 0.6873 0.7223 0.6697 0.7023

Similarity 1—T3 0.5455 0.6228 0.5751 0.5831 0.6299

Mean Bayes score 0.7718 0.7823 0.7813 0.7968 0.7991

Mean tanimoto 0.7752 0.8014 0.8034 0.7901 0.8173

Mean consensusd 0.7951 0.8145 0.8148 0.8134 0.8240

aScores have been calculated as follows: B1, naïve Bayes score for actives; B0, naïve Bayes score for inactives; T1, maximum Tanimoto score to actives; T2, average Tanimoto score

to actives; T3, maximum Tanimoto score to inactives.
bCombination of MACCS, ECFP4 and Toxprint fingerprints.
cCombination of all fingerprints with property-based fingerprint calculated from topological descriptors.
dMean of the average Bayes score and the average Tanimoto score.
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TABLE 2 | Parameters of the most successful prediction models.

Target External compounds Correlation filter Diversity Picker Naïve Bayesa Similarityb Consensus score

AhR ≤ 5000 nM – 19% actives Mean Mean Mean

AR ≤ 5 nM – – Mean Mean Mean

AR-LBD ≤ 5 nM – – – Mean –

Aromatase – – 58% actives – Mean –

ER ≤ 5 nM – – Max Mean Mean

ER-LBD ≤ 5 nM 0.9 44% actives Min Mean Mean

PPARγ – – 47% actives Max Max Min

ARE – – – – Mean –

ATAD5 ≤9200 nM – 9% actives 1−B0 T1 Mean

HSE ≤160 nM – 43% actives Max Mean Mean

MMP – – 17% actives 1−B0 T1 Mean

P53 – 0.9 54% actives – Mean –

aCombination of the Naive Bayes scores for active (B1 ) and inactive (1-B0 ) compounds.
bCombination of the Tanimoto similarity scores: maximum Tanimoto score to actives (T1 ), average Tanimoto score to actives (T2 ), 1—maximum Tanimoto score to inactives (T3 ).

FIGURE 3 | Performance of models predicting the outcome of the

Tox21 screening outcomes. (A) Area under the curve (AUC) calculated in a

ROC analysis. (B) Balanced accuracies (BAC). Results are shown for our

models in cross-validation (dark red) and external validation (yellow) as well

as the average external validation results among the top 10 challenge

participants.
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AhR, AR-LBD, and MMP. For AhR, MMP, and p53, the
results of the external validation set showed a very similar
performance to the cross-validation, indicating good and
universal models and scores. In the cross-validation, the
balanced accuracies of the individual models ranged between
70 and 82% (see Figure 3). For several targets, including AhR,
HSE, and p53, the balanced accuracy obtained in external
validation remained constant or increased in comparison
to the cross-validation results, illustrating broadly applicable
models.

Comparison to Other Challenge Participants
All models submitted to the challenge were evaluated by the
challenge organizers and ranked according to their AUC values
for the external validation set. The prediction values for the top 10
participating teams are publicly available (https://tripod.nih.gov/
tox21/challenge/leaderboard.jsp) and summarized in Figure 3,
Supplementary Tables S2, S3. Taken together, 7 out of 12
models we submitted were found in the top 10 leaderboard.
While our models were not nominated as the sub-challenge
winners, in many cases their AUC value was found very close
to the winning model. This was for instance observed for the
target HSE, where the top 9 ranking models showed AUC
values differing only by 0.02, suggesting that similarly good
models can be obtained with various approaches. As indicated
in Figure 3, our models for the targets AhR, ER-LBD and p53
were also very close to the average AUC of the leading models.
Although most leaderboard models showed AUC values within a
small range, large differences were observed for the prediction
accuracies (between 49 and 90%). Interestingly, four of our
models (targets: AR-LBD, ER-LBD, aromatase, and HSE) were
the determined to be the most accurate amongst all submissions
(see Figure 3 and Supplementary Table S3). Four additional
models, developed for the targets AhR, ARE, ATAD5, and p53,
displayed accuracies higher or equal to the average of the top 10
submitted models.

Discussion

Here, we describe a successful machine learning method
for the prediction of different outcomes of the nuclear
receptor and stress response pathway screening from the
Tox21 Data Challenge 2014. The key to our method is the
combination of different molecular fingerprints and descriptors
as well as the integration of two different algorithms, a
similarity-based approach and a naïve Bayes machine learning
technique.

Combination of Features and Algorithms
The selection of features is a crucial and non-trivial part
of development of predictive models. The features should be
able to describe the differences between actives and inactives
in the training set and allow extrapolating to other, yet
untested compounds. Although several molecular fingerprints,
such as extended-connectivity, substructure-based or path-based
fingerprints are standards in the chemoinformatics field and
have been successfully applied to prediction tasks, the results

are dependent on the data and none of the methods is able
to clearly outperform the others (Duan et al., 2010). To
avoid the choice of the wrong descriptor, the combination of
(independent) fingerprints has been suggested (Duan et al., 2010)
and several studies have successfully applied combinations of
path- and substructure-based fingerprints (Drwal et al., 2014;
Banerjee et al., 2015). As we report here, the combination of
different fingerprint types has also been of advantage for the
prediction of estrogen receptor ligands. An associated problem,
however, is that a combined fingerprint is likely to contain
highly correlated features. We have thus investigated the use
of a correlation filter to remove fingerprint bits with high
correlation, but the filter was able to increase the prediction
performance only for two targets. A more effective approach
proved to be the use of a diverse subset of active molecules in
the training set, though the size of the diverse subset giving the
best results had to be optimized individually for every target.
As the active molecules of the different Tox21 sub-challenges
might contain different important molecular characteristics,
the use of extensive cross-validation to optimize the feature
selection for every sub-challenge could further improve the
prediction performance. Automated feature selection using deep
neural networks, as suggested by one of the other teams
participating in the Tox21 challenge (Unterthiner et al., 2015),
offers an alternative way to determine the most relevant
features in the input molecules which can be advantageous for
large sets of molecules, but is obviously associated with large
computational costs.

Combinations of multiple machine learning algorithms,
also referred to as hybrid or ensemble learning, are a well-
described approach and have been applied to solve diverse
research questions (Yang et al., 2015b). It is usually assumed
that the use of multiple models can increase the prediction
accuracy as compared to the use of a single model and help
to manage high-dimensional and complex data sets. Similarly
to our approach, several other studies have proven that
merging a naïve Bayes classifier with a similarity-based approach
such as k-nearest neighbors can result in highly predictive
models for various applications including the prediction of
molecular targets (Ferdousy et al., 2013; Liu et al., 2013).
Future investigations could focus on the evaluation of other
classification methods (logistic regression, random forests, etc.)
and larger model ensembles for the purposes of toxicity
prediction.

Conclusions

Our models use a combination of molecular fingerprints and
algorithms and show consistently good performance for the 12
outcomes of the Tox21 screen, four of the models being the most
accurate amongst the challenge participants. We are planning to
make our models publicly available by incorporating them into
our toxicity prediction platform ProTox (http://tox.charite.de) in
the future.

The Tox21 Data Challenge 2014 has provided an excellent
opportunity for academic and industrial groups to assess
and directly compare the quality of their toxicity prediction
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methods. The results will be of great value to the scientific
community and can help to pave the way toward the use
of more in silico toxicity models as decision-making tools to
evaluate potential health hazards of environmental chemicals
and drugs.
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The ability to determine which environmental chemicals pose the greatest potential

threats to human health remains one of the major concerns in regulatory toxicology.

Computational methods that can accurately predict a chemical’s toxic potential in silico

are increasingly sought-after to replace in vitro high-throughput screening (HTS) as

well as controversial and costly in vivo animal studies. To this end, we have built

Quantitative Structure-Activity Relationship (QSAR) models of 12 stress response and

nuclear receptor signaling pathways toxicity assays as part of the 2014 Tox21 Challenge.

Our models were built using the Random Forest, Deep Neural Networks and various

combinations of descriptors and balancing protocols. All of our models were statistically

significant for each of the 12 assays with the balanced accuracy in the range between

0.58 and 0.82. Our results also show that models built with Deep Neural Networks had

higher accuracy than those developed with simple machine learning algorithms and that

dataset balancing led to a significant accuracy decrease.

Keywords: Tox21, machine-learning, stress response signaling pathways, nuclear receptor signaling pathways,

endocrine disrupting chemicals, QSAR, deep learning

INTRODUCTION

The ability to determine which environmental chemicals pose the greatest potential threats to
human health remains one of the major concerns in regulatory toxicology. In addition, the
inability to recognize potentially toxic substances during the initial steps of drug development
contributes to the failure of promising pharmaceutical leads in more than 30% of human
clinical trials (Kola and Landis, 2004). Historically, the estimated human health impact of these
chemicals has been assessed through in vivo animal studies. Animal studies, however, are costly,
laborious, impractical for evaluating large numbers of chemicals, and are being progressively
eliminated due to their controversial nature (Anastas et al., 2010). However, over the past several
years, the focus has switched to high-throughput in vitro screening (HTS) in order to identify
chemical hazards and prioritize chemicals for additional in vivo testing (O’Brien et al., 2006).

Abbreviations: AR, androgen receptor; AR-LBD, androgen receptor—ligand binding domain; AhR, aryl hydrocarbon

receptor; ER, estrogen receptor alpha—full; ER-LBD, estrogen receptor alpha—ligand binding domain; PPAR-gamma,

peroxisome proliferator-activated receptor gamma; ARE, nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive

element; HSE, heat shock factor response element; MMP, mitochondrial membrane potential; p53, tumor suppressor p53;

QSAR, Quantitative Structure-Activity Relationship; HTS, High-Throughput Screening; AUC, Area under the curve; BA,

Balanced accuracy; DNN, Deep Neural Network.
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The ToxCast project and the Tox21 consortium have used
high-throughput screening to characterize the in vitro biological
activity of chemicals across multiple cellular pathways and
biochemical targets (Dix et al., 2007). HTS campaigns, however,
can also be costly and time-consuming because every new series
of chemicals must be screened against multiple toxicity endpoints
and at various concentrations. Therefore, in silico methods
that can accurately predict toxicity toward the prioritization of
chemicals for experimental testing are in-demand. To this end,
the 2014 Tox21 Challenge sought to “crowdsource” predictive
models from various researchers across the globe to assess
how well their models can predict the toxic potential of a
compound in several biological pathways screened against the
Tox21 10,000 compound library (https://tripod.nih.gov/tox21/
challenge/about.jsp).

Quantitative Structure-Activity Relationship (QSAR) models
provide such a computational method toward the in silico
prediction of chemical toxicity. QSAR models utilize complex
machine learning algorithms to establish a relationship between
chemical structure and the modeled endpoint (toxicity). Robust
and rigorously-validated QSAR models are then used to provide
in silico predictions of the endpoint-of-interest for yet-untested
chemicals (Tropsha, 2010). Thus, the Tox21 program aimed
to identify new methods for assessing chemical toxicity in the
form of QSAR models in order to improve the identification of
chemicals that may affect the functions of seven nuclear receptors
(AR, AR-LBD, ER, ER-LBD, AhR, Aromatase, PPAR-gamma)
and five stress response pathways (ARE, ATAD5, HSE, MMP,
p53) in the human body.

Several of these pathways of interest regulate normal
endocrine function. Endocrine disrupting chemicals (EDCs)
interfere with the endocrine system through interactions
with nuclear receptors (Diamanti-Kandarakis et al., 2009).
EDCs engender myriad adverse developmental, reproductive,
neurological, and immunological effects in both humans
and wildlife. Unfortunately, both humans and wildlife are
ubiquitously exposed to EDCs, as EDCs have widespread
industrial applications, resulting in endocrine toxicity (Casals-
Casas and Desvergne, 2011). For instance, bisphenol-A and its
analogs—EDCs which are used heavily in the manufacturing of
polycarbonate plastics and epoxy resins (Bae et al., 2002)—have
been shown to bind to the estrogen receptor (ER), androgen
receptor (AR), and peroxisome proliferator-activated receptor
(PPAR) gamma (Han et al., 2003). Moreover, there is ample
evidence that EDCs also interact with stress response pathways,
such as mitochondrial membrane potential (MMP) and tumor
suppressor p53 (Min et al., 2003; Chandra, 2013). For these
reasons, the identification of endocrine disrupting chemicals
(EDCs) is of particular interest to the Tox21 program and
environmental chemical hazard screening in general.

The overall goal of the Tox21 Challenge was to predict
compound activity (toxic or non-toxic) in pathway assays
provided by the Challenge organizers using only chemical
structure data. The data provided was generated from
seven nuclear receptor and five stress response pathway
assays run against the Tox21 compound library. We
performed various permutations of curation and balancing

protocols to generate Random Forest (RF) and deep neural
net (DNN) models employing either Dragon or SiRMS
descriptors.

METHODS

Datasets
All datasets (training and test sets) of compound toxicity in
12 different pathway assays were downloaded from the Tox21
Challenge website (https://tripod.nih.gov/tox21/challenge/index.
jsp). The training set included 11,764 compounds with activities
0 (non-toxic) and 1 (toxic) in each of the 12 assays. Test set
1 comprised 296 compounds with various activities in each of
the 12 assays. This test set, initially used to evaluate model
performance, was subsequently merged into the training set. Test
set 2 included 647 compounds with various activities in each of
the 12 assays. This set was used to evaluate model performance
and to rank model submissions of various participants. For all
datasets in each assay, a compound was active (1), inactive (0), or
untested.

Dataset Curation
Each dataset was curated according to our well-established
protocol (Fourches et al., 2010). Structural standardization, the
cleaning of salts, and the removal of mixtures, inorganics, and
organometallics was performed using Instant JChem software
(version 6.2, ChemAxon).

In the case of replicate compounds, InChI Keys were
generated using Instant JChem software. For replicates with the
same activities in a given assay, a single representative compound
was selected for inclusion into the training set. For replicates
with the different activities in a given assay, all compounds were
excluded.

After curation, the sizes of the training set, test set 1, and test
set 2 were reduced to 9323 compounds, 291 compounds, and 641
compounds, respectively.

Dataset Balancing
For each pathway assay, only compounds that were explicitly
tested (active or inactive) were used. Inactive (non-toxic)
compounds were the predominant majority (ratio 10:1 or higher)
as compared to active (toxic) compounds in the training sets for
each of the 12 assays. Inactive compounds were down-sampled
such as to make the remaining number of inactives similar to the
respective number of active compounds in each of the individual
assays either (a) randomly or (b) according to highest Tanimoto
similarity to compounds in test set 2. In a separate study (c), the
training set was left unbalanced (see Supplemental for individual
assay counts).

Molecular Descriptors
Dragon Descriptors
An ensemble of 2489 molecular descriptors was computed with
the Dragon software (version 5.4) for all compounds (with
explicit hydrogen atoms) in every dataset.
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SiRMs
2D Simplex Representation of Molecular Structure (SiRMS)
descriptors (Muratov et al., 2010) were generated by the HiT
QSAR software (Kuz’min et al., 2008). At the 2D level, the
connectivity of atoms in a simplex, atom type, and bond nature
(single, double, triple, or aromatic) have been considered. SiRMS
descriptors account not only for the atom type, but also for
other atomic characteristics that may impact biological activity of
molecules, e.g., partial charge, lipophilicity, refraction, and atom
ability for being a donor/acceptor in hydrogen-bond formation
(H-bond). Detailed description of HiT QSAR and SiRMS can be
found elsewhere (Kuz’min et al., 2008; Muratov et al., 2010).

Model Building and Evaluation
Random Forest (RF)
QSAR models were built using an in-house implementation on
Chembench (http://chembench.mml.unc.edu) of the original RF
algorithm (Breiman, 2001).

External 5-fold Cross Validation
All RF models were evaluated using external 5-fold cross
validation (Tropsha et al., 2003). Every training set for each of the
12 assays was randomly partitioned into five equal parts with the
same active (toxic)/inactive (non-toxic) ratio before modeling. In
turn, each of the five parts was “left out” to form an external set
used to validate the model developed on the remaining four parts
that collectively amounted to the modeling set.

Score Threshold
The ensemble of selected RF models outputs a continuous
consensus score (RF score) ranging from 0 (non-toxic) to 1
(chemical predicted to be toxic by all models). When there is a
disagreement between those individual RFmodels, the consensus
RF score can thus take any value between 0 and 1. When
computed for a set of chemicals, RF scores can be used to
rank those chemicals based on their increasing RF-evaluated
likelihood of being toxic. For all assays, a RF score threshold was
arbitrarily set to 0.5, with scores ≥ 0.5 being active (toxic) and
scores <0.5 being inactive (non-toxic).

Y-Randomization
Models were further validated through Y-randomization,
wherein activities (i.e., the response variable Y) observed
for the original training set are randomly assigned to the
training set compounds multiple times and the models are
built for all datasets generated by these multiple permutations
of the response variable. This procedure ensures that the
models built for the original datasets do not reflect a chance
correlation between multiple independent variables (i.e.,
chemical descriptors) and the dependent variable.

Deep Learning Models
We trained deep neural net (DNN) (Schmidhuber, 2015) models
with the rectified linear units (ReLU) activation function (Nair
andHinton, 2010) instead of typical sigmoidal units. The rectified
linear unit computes the function f(x) = max(0,x). In other
words, the activation is simply thresholded at zero when x < 0
and then linear with a of slope 1 when x > 0.

Neural networks can have many hyperparameters. Therefore,
in order to choose the best network architecture, we performed
a grid search over the parameters based on the 10% randomly
selected validation set from the training data. The parameter
space include number of hidden layers {2, 3}, number of neurons
{100, 200, 400, 800, 1600}, amount of dropout {0, 0.25, 0.5}, and
L2 regularization.

All networks were trained using mini-batched stochastic
gradient descent (SGD) and AdaGrad (Duchi et al., 2011).
AdaGrad is an Adaptive Gradient Method that utilizes different
adaptive learning rates for every feature. It was shown
to significantly accelerate convergence and slightly improve
performance of DNNs (Dean et al., 2012). The output layer is a
standard softmax classifier and cross entropy objective function.
For every endpoint, DNN models were trained independently.

In addition, we also investigated the performance of a
multitask network (one model for all 12 tasks trained jointly)
using the identical training approach. Learning several tasks
at the same time is performed with the aim of mutual
benefits between different tasks. The similarity (and dissimilarity)
between the tasks is exploited to enrich a model (Caruana, 1997).

All models were trained using in-house software based
on Theano framework (Bastien et al., 2012). We also used
normalized DRAGONH descriptors as our input vectors.

Data Visualization
We use a multidimensional scaling (MDS) approach (Borg
and Groenen, 1997), implemented in Python, to seek a
low-dimensional representation of the data that conserves
the distances in the original high-dimensional space. ECFP6
fingerprints are used to calculate the similarity matrix between
the chemicals. MDS applied on this similarity matrix attempts
to model the similarity or dissimilarity of data as distances
in geometric space. In this way, higher similarity between the
chemicals results in shorter distances between the chemicals in
the projection.

RESULTS

Overview
We have developed several Random Forest models using
different descriptors and balancing approaches as described in
Methods; these models are summarized in Table 1. Models 1, 2,
and 3 were submitted for final evaluation and ranking; whereas,
Model 4 was built after the Tox21 Challenge had closed (Table 1).

Evaluation and Ranking
The performance of all submitted models was evaluated by
AUC-ROC resulted from predictions made for test set 2.
Results for all of our models in comparison with the winning
model for each assay are summarized in Figure 1. None of
our submitted models (Model 1, Model 2, and Model 3) were
ranked in the top 10. Additionally, differences in balancing
protocol and descriptor type in our submitted models had
little effect on the overall performance. Model 4 was built
using unbalanced data. It was not submitted for evaluation
by the organizers, and therefore was ineligible for ranking.
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TABLE 1 | Description of models implemented using Random Forest.

Model name Descriptor Balancing protocol

Model 1 DRAGONH 1:1 Randomly

Model 2 DRAGONH 1:1 to test set 2

Model 3 SiRMS 1:1 Randomly

Model 4 DRAGONH Unbalanced

Nevertheless, Model 4 showed a greater AUC value for 10
of the 12 assays over our three submitted models. Model 4
also showed comparable predictive performance to the winning
models: seven of the 12 AUCs (AhR, Aromatase, ATAD5, ER, ER-
LBD, MMP, p53) differ from the winner by 0.05. Interestingly,
when comparing the external balanced accuracy, defined as
(Sensitivity + Specificity)/2, of our models to those of winning
models (based on AUC), a different trend emerges (Figure 2).
For nine out of the 12 assays, the external balanced accuracy of
at least one of our models is higher than that of the winning
model. Indeed, for all submitted models in the Challenge,
our Model 2 had the highest external balanced accuracy for
AR (0.74); Model 4 had an even higher external balanced
accuracy (0.82).

Figure 3 visualizes the distribution of active and inactive
compounds from the training dataset and test set 2 based on
fingerprint similarity (see SectionModel Building and Evaluation
for details). Figures 3A,B show the distribution of compounds
in the training sets of Models 2 and 4, respectively, as well as
in test set 2 for one of our most accurately predicted endpoints,
AhR. Figures 3C,D show the same type of distribution for one
of the least accurately predicted endpoints, HSE, that has largest
increase in AUC as a result of using unbalanced dataset for
modeling (Model 4). This analysis reveals that balanced training
dataset used in Model 2 for AhR (Figure 3A) has tight clustering
of active compounds in addition to broad coverage for the
compounds to be predicted in test set 2. Thus, an increase in the
number of compounds in the training dataset when unbalanced
dataset is used does not result in a significant gain in AUC.
However, as opposed to AhR, no distinct clusters are observed
in the balanced dataset for HSE. Active and inactive compounds
are widely dispersed, which calls into question the assay quality
of this endpoint. This dispersion results in the misclassification
of inactive compounds in test set 2. Figure 3D, however, shows
that using unbalanced data increases the chemical diversity,
which provides better coverage of test set 2, and enhances
representation of inactives found in the test set 2. This expansion
reflected in an increase of AUC (see Figure 1).

After the results of the challenge were announced, we also
decided to evaluate the limit of model performance even
further. We used Model 4 as our base line (see Table 2). We
combined all three datasets and retrained Model 4 with the
same RF parameters using 5-fold external cross validation (Model
4/5CV column inTable 2). Unexpectedly, we obtained significant
performance boost. AUCs for three endpoints, AR, AR-LBD, and
ER-LBD are significantly higher as compared to AUC values
achieved by Model 4. Accuracy for the other nine assays were
approximately on par with the balanced models. It is not clear
why such discrepancy is observed, most likely it is due to

TABLE 2 | Post-challenge assessment of the accuracy (AUC) of different

models and their comparison with the wining solution.

Subchallenge Model 4 Model DNN/1 DNN/12 Winner

4/CV5 task tasks

AhR 0.91 0.91 0.90 0.87 0.93

AR 0.73 0.82 0.83 0.89 0.83

AR-LBD 0.72 0.91 0.89 0.88 0.88

ARE 0.78 0.83 0.81 0.76 0.84

aromatase 0.80 0.82 0.86 0.76 0.84

ATAD5 0.81 0.83 0.85 0.72 0.83

ER 0.79 0.79 0.81 0.74 0.81

ER-LBD 0.78 0.86 0.83 0.90 0.83

HSE 0.79 0.80 0.79 0.77 0.86

MMP 0.93 0.92 0.95 0.85 0.95

p53 0.85 0.82 0.84 0.77 0.88

PPAR-gamma 0.79 0.81 0.70 0.80 0.86

Average AUC 0.81 0.84 0.84 0.81 0.86

The color gradient is a heat map for each model. The highest AUC for each subchallenge

is darkest green, etc.

the small size of the test set and very small number of active
compounds in each of them.

Given that the overall challenge winner used DNN (Mayr
et al., 2015), we decided to investigate the utility of DNN after
the completion of the challenge. Due to very limited technical
information released by the winning team, however, we were not
able to independently verify their models. Instead, we trained
DNN according to our own protocol (See SectionModel Building
and Evaluation). Table 2 also reports performance of DNN
models in single task and multitask regimes. On average, both
approaches were not able tomatch the winningmodel, AUCs 0.84
and 0.81 vs. 0.86. However, the difference between DNN/1task
(our best overall model) and winning team is small with a notable
exception of PPAR-gamma, 1AUC= 0.16. The single task DNN
model was also significantly better than Model 4 for AR and
AR-LBD. Very recently, models of drug-induced liver injury
(DILI) with DNN were also found to provide better performance
than previously described “shallow” prediction models (Xu et al.,
2015). Therefore, DNN architectures seems to be beneficial
for toxicity prediction. In strike contrast, performance of the
multitask model was poor for five assays (ARE, Aromatase,
ATAD5, ER, and p53). Due to the limited dataset size, we were
not able to reliably train all DNN models. In order to take
full advantage of deep learning methods at least an order of
magnitude larger number of training examples is necessary.

DISCUSSION

The results of our submitted models (Model 1, Model 2,
and Model 3) indicate that for these data no combination
of descriptors or balancing protocol outperforms any other
combination. Intriguingly, our unbalanced (and un-submitted)
Model 4 outperformed our submitted models and had AUC
values comparable to the winning models. This observation
demonstrates that for these assays balancing actually decreases
model performance. This may be because balancing restricts the
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FIGURE 1 | Comparison of AUC values for the Tox21 assays. AUC values of our models (blue, orange, gray, and yellow) as well as the AUC values of the winning

model (purple).

FIGURE 2 | Comparison of external balanced accuracy (BA) values for the Tox21 assays. BA values of our models (blue, orange, gray, and yellow) as well as

the BA values of the winning model (purple).

chemical space covered in toto by inactives. Since the number of
actives in test set 2 is much smaller than the number of inactives
(between 1 and 14% of test set 2 compounds are actives for a
given assay), reducing the chemical space of inactives through
balancing may have resulted in the misclassification of inactives
in test set 2. In general, when training set compounds are highly
imbalanced toward the inactive class, QSAR classification will
favor the majority (inactive) class, resulting in low sensitivity for
the minority (active) class (Chen et al., 2005). For this reason,
datasets are usually balanced as to maximize the sensitivity and
specificity of the training set. In the current challenge, however,
models were evaluated on an external dataset that was highly
populated with the inactive class. Therefore, for future challenges
and/or modeling efforts regarding these assay endpoints, using
unbalanced data may be preferable.

Conflicting performance trends obtained in Table 2 also
emphasizes the following community needs:

1. Judging model performance using a very small test set can be
suboptimal.

2. Deep Learning can provide some accuracy improvement
compared to regular machine learning methods. However,
model reproducibility is very hard to achieve, especially for
this rapidly emerging field.

3. Further methodological developments are required to
investigate applicability and methods of training multitask-
DNN method. There is a significant room for model
improvement and exploiting information about assay
relations as well as target features and other biological
information.

CONCLUSION

In this work, we investigated the use of different QSAR
approaches for toxicity assays prediction in the 2014 Tox21
challenge. We carefully curated all datasets according the well-
established protocol. We used Random Forest and Deep Neural
Nets to train models. In addition we also explored several
balancing strategies. The model performance was evaluated by
the area under the receiver operating characteristic curve (AUC-
ROC) and by the balanced accuracy (BA). The values for AUC-
ROC were in the range of 0.55–0.87 and those for BA were
in the range of 0.58–0.82; the highest predictive power was
achieved for the AR pathway assay. No significant difference in
respective model performance was found when using different
curation protocols or different descriptors. Marginal increase
in AUC-ROC as well as in BA was observed for some of
the pathways when the dataset was balanced based on the
similarity to the external test set (test set 2). Moreover, a
significant increase in the balanced accuracy of prediction
for external datasets was found once the unbalanced datasets
were used to build the model. Our results show that overall
neural networks achieved improvement over simple machine
learning algorithms and that balancing lead to a significant
accuracy decrease.

The Tox21 Challenge was evaluated using the AUC metric.
Interestingly we noticed, when evaluated using BA, at least one
of our models outperformed the winning model in 10/12 assays.
Furthermore, our Model 2 had the highest balanced accuracy for
AR (0.74) against all submissions. Our models, therefore, can
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FIGURE 3 | Distribution of active and inactive compounds from the training dataset and test set 2 based on fingerprint similarity. (A) Balacned training

set used for endpoint AhR in Model 2 and test set 2. (B) Unbalanced training set used for AhR in Model 4 and test set 2. (C) Unbalanced training set used for

endpoint HSE in Model 2 and test set 2. (D) Unbalanced training set used for HSE in Model 4 and test set 2. Each point represent either compounds from the test set

2 (cyan) and training set inactives (black) and actives (orange).

be used for future screening of compounds for toxicity in these
pathways. Our models have the additional advantage of being
freely and publicly available through our Chembench platform
(https://chembench.mml.unc.edu/; Walker et al., 2010).

The goal of the 2014 Tox21 Challenge was to predict toxicity
in the various biological pathways using chemical structure data
only. The availability of these chemical structures and their
associated biological activity in the pathways of interest affords
the opportunity to build pathway-based hybrid QSAR models.
Hybrid QSAR models utilize in vitro bioactivity as biological
descriptors in conjunction with chemical descriptors in order to
improve the predictivity of QSARmodels (Liu et al., 2015). These
hybrid QSAR models could be employed toward the prediction
of in vivo toxic effects, which is a considerable challenge for
predictive toxicology.

In sum, the 2014 Tox21 Challenge successfully enabled
academic groups, industrial teams, and fans of machine-learning
from around the world to compare and contrast various in
silico methodologies toward the prediction of toxicity in several
different assays. These modeling efforts and their associated
findings will be of great use to the scientific community and will
enhance the quality of toxicity prediction going forward.
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Toxicity evaluation of newly synthesized or used compounds is one of themain challenges

during product development in many areas of industry. For example, toxicity is the

second reason—after lack of efficacy—for failure in preclinical and clinical studies of

drug candidates. To avoid attrition at the late stage of the drug development process,

the toxicity analyses are employed at the early stages of a discovery pipeline, along with

activity and selectivity enhancing. Although many assays for screening in vitro toxicity are

available, their massive application is not always time and cost effective. Thus, the need

for fast and reliable in silico tools, which can be used not only for toxicity prediction of

existing compounds, but also for prioritization of compounds planned for synthesis or

acquisition. Here I present the benchmark results of the combination of various attribute

selection methods and machine learning algorithms and their application to the data

sets of the Tox21 Data Challenge. The best performing method: Best First for attribute

selection with the Rotation Forest/ADTree classifier offers good accuracy for most tested

cases. For 11 out of 12 targets, the AUROC value for the final evaluation set was =0.72,

while for three targets the AUROC value was = 0.80, with the average AUROC being

0.784 ± 0.069. The use of two-dimensional descriptors sets enables fast screening and

compound prioritization even for a very large database. Open source tools used in this

project make the presented approach widely available and encourage the community to

further improve the presented scheme.

Keywords: toxicity prediction, machine learning, molecular descriptors, molecular fingerprints, Tox21 Data

Challenge 2014

INTRODUCTION

Toxicity evaluation of newly synthesized or used chemicals (pharmaceuticals and its metabolites,
cosmetic ingredients, biocides, or anthropogenic pollutants) is one of the main challenges during
product development in many areas of industry. For example, it has been estimated that in
the pharmaceutical industry the toxicology and clinical safety is accounting for 30% of failures
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in clinical trials (Kola and Landis, 2004). The risk of attrition can
be substantially reduced by the introduction of toxicity testing
at the early stages of product development. Such evaluation,
especially when performed on a large scale, is neither time/cost
effective, nor—in case of tests performed on animals—ethically
justified. It is estimated that the introduction of a new pesticide
to the market requires testing on 7000 animals and costs tens of
millions of dollars (Erickson, 2011). Moreover, animal models are
frequently poorly correlated with response on humans (Knight,
2007; Shanks et al., 2009). Although in vivo testing seems
to be inevitable at the late stage of a product development,
many efforts to shift from traditional in vivo tests to higher-
throughput and less expensive cell-based assays have been made.
For example “The Toxicology in the 21st Century” (Tox21)
program, is aimed at developingmore reliable toxicity assessment
methods as well as developing and validating cellular (in vitro)
toxicity assays. The Tox21 10K chemical library consists of
∼10,500 plated compound solutions, consisting of 8311 unique
chemical substances, including pesticides, industrial chemicals,
food-use additives and drugs (Huang et al., 2014). Acquired
activity data can serve not only as in vitro signatures that
could be used to predict in vivo toxicity endpoints (Martin
et al., 2011; Sipes et al., 2011) and to prioritize chemicals for
extensive toxicity testing (Judson et al., 2010), but also to provide
the scientific community with training data sets for developing
reliable in silico toxicity models (Sun et al., 2012). Also, many
attempts toward development of new computational methods
for high-throughput toxicity prediction have been made and
many techniques and algorithms have been proposed (Deeb
and Goodarzi, 2012; Bakhtyari et al., 2013; Cheng et al., 2013;
Valerio, 2013; Low et al., 2014; Omer et al., 2014; Toropov et al.,
2014; Rouquie et al., 2015). In recent years, machine learning
methods are gaining more attention as robust and accurate
tools for Quantitative structure–activity relationship (QSAR) and
Quantitative structure–property relationships (QSPR) modeling
(Durrant and Amaro, 2015; Freitas et al., 2015; Liu, 2015). The
key to success in building predictive models are: (a) the quality
of a training data set, (b) the descriptive power of molecular
descriptors, and (c) selecting and tuning machine learning
algorithms. Here I present a detailed description of creating
activity prediction models using the Tox21 Data Challenge data
set (Subchallenges 1–12). It consists of activity data for two
panels playing important roles in toxicological pathways. Nuclear
Receptor Signaling Panel (nr) included activity data for seven
targets: aryl hydrocarbon receptor (ahr), androgen receptor—
full length (ar) and Ligand Binding Domain (ar-lbd), aromatase,
estrogen receptor alpha—full length (er) and Ligand Binding
Domain (er-lbd) and peroxisome proliferator-activated receptor
gamma (ppar-gamma). Stress Response Panel (sr) included
data for five targets: nuclear factor (erythroid-derived 2)-like
2/antioxidant responsive element (are), ATAD5, heat shock
factor response element (hse), the disruption of mitochondrial
membrane potential (mmp) and p53. Great emphasis is laid upon
the initial performance benchmark of the various combinations
of attribute selection methods and classification algorithms.
Two-dimensional molecular descriptors set and dictionary-based
fingerprints enable fast screening and compound prioritization

even for very large databases. All software used during this
study is freely available and open source, making the presented
approach widely available for the scientific community.

MATERIALS AND METHODS

The training dataset provided by the Challenge organizers
(https://tripod.nih.gov/tox21/challenge/data.jsp) consisted of the
activity data for ∼10 k compounds (Tox21 10 K compound
library, structures provided as SMILES) on 12 targets, with the
activity class assigned “Active” or “Not active” (for discussions
of activity call procedures, see Shockley, 2012; Tice et al.,
2013). The Testing dataset, provided later by the Challenge
organizers consisted of activity data for 269 compounds. The
final predictions were performed on the evaluation set of 647
compounds with unknown activity.

All calculations were performed on the desktop computer with
Intel Core i7-4770 K CPU processor (eight cores) and 16 GB
RAM, running Ubuntu 12.04.5 LTS.

Structures Standardization and
Preprocessing
The chemical structures in the provided Tox21 Challenge data
sets were standardized using the LyChI (Layered Chemical
Identifier) program (version 20141028, https://github.com/ncats/
lychi). Compounds with ambiguous structure (compound
identifier with more than one chemical structure assigned) or
activity (compound identifier with activity labels “Active” and
“Not active” on a single target) were excluded using KNIME
GroupBy node (KNIME 2.10.4, http://www.knime.org/; Berthold
et al., 2007). For each compound, only the biggest component
was preserved (KNIME component Separator node). For each
target, data set was downsized such that the activity values were
evenly distributed—all records from the minority class were
retained and a random sample from the majority class was added
(KNIME Row Sampling node). Standardized and downsized
datasets used for modeling are available as Supplementary
Materials.

Descriptors Generation
For standardized data sets, two-dimensional molecular
descriptors were calculated using KNIME nodes: RDKit (http://
rdkit.org/, 117 descriptors), CDK (Beisken et al., 2013; http://
sourceforge.net/projects/cdk/, 97 descriptors) and fingerprints
[PubChem (881 bits) and MACCS (167 bits)], giving 1262
descriptors for each compound. For the list of used descriptors
and literature references see Supplementary Table S5. For each
target, Arff weka file was created using KNIME Arff Writer
node.

Classification Algorithms Screen
Preprocessing and classification algorithms screen was
performed in the Weka Experiment Environment (Weka
3.6.6, Hall et al., 2009), with 10-fold cross validation with 10
repetitions. In each run, data was preprocessed with Remove
Useless filter (all constant attributes are deleted, along with
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any that exceed the maximum percentage of variance, set to
99%) and Standardize filter (standardizes all numeric attributes
to have zero mean and unit variance). Attribute selection was
performed with two search methods: Best First and Rank Search,
with CfsSubset attribute evaluator. Machine learning algorithms
tested were: ADTree (alternating decision tree), FT (functional
trees), FURIA (Fuzzy Unordered Rule Induction Algorithm),
IBk (k-nearest neighbors), J48, Naïve Bayes, REPTree, and SMO
(sequential minimal optimization for training a support vector
classifier). Ensemble methods tested in the second step of the
screen were: Rotation Forest, Decorate, Dagging, Bagging and
AdaBoost M1. Unless otherwise stated, all algorithms were
used with default settings. The performance of the models was
measured using area under the receiver operating characteristic
(ROC) curve metrics (AUROC).

Predictions
The final models were built in KNIME with Weka 3.6 nodes,
using the Best First attribute selection method with Rotation
Forest/ADTree classifier (for parameters of the classifier see
Supplementary Table S6). For each target, 10 models were built
using randomly selected subset of 95% of training set. Each
model was evaluated on the remaining 5% of the training set and
on the testing set. The model with the best AUROC value was
selected for the final predictions. The estimation of probability of
a chemical being active was rounded to three decimal places.

RESULTS AND DISCUSSION

The data processing workflow is shown in Figure 1. It involved
six main steps: data preprocessing, descriptors calculation,
feature selection and classification algorithms screen, training,
testing, and predictions.

Data Preprocessing
The first stage of data preprocessing included data sanitization.
First, SMILES were standardized with the LyChi program. For
the training dataset, out of 11,764 unique input compounds,
9231 (78%) had fixed structure. Among the most frequent
modifications were: unifying aromaticity model, neutralization
and small counterions removal. Next, structures containing

more than one component were separated and only the biggest
component was preserved. This was the most vague reduction of
the initial data, but this step was necessary for proper descriptors
calculations. Also, an analysis of the most frequently removed
components showed that these were mainly inorganic acids,
metal ions and water molecules (see Table 1), which are frequent
components of pharmaceutical mixtures and should not be
treated as a factors determining activity on investigated targets.
Finally, each subset of the training data set was downsized such
that the activity values are equally distributed. The selection
of the majority class members (inactives) was random (see
Sections Structures Standardization and Preprocessing: Materials
and Methods), which means that the output from this step could
influence the results of further predictions. Here, the downsizing
was a single-time procedure and the influence of various sets of
majority class on models’ performance was not investigated. For
the initial and final compositions of the training data set (see
Table 2).

Molecular Descriptors Calculation
Generation of higher-dimensional molecular descriptors (3D,
4D, 5D) is time consuming and may be prone to conformer
generation errors. To avoid these shortcomings, low-dimensional
(0D, 1D, 2D) descriptors and dictionary-based fingerprints were

TABLE 1 | Top 10 most frequently removed minor components from an

initial training data set.

Removed component Count % of all removed components

HCl 955 32.6

Na+ 533 18.2

H2O 254 8.7

Cl− 157 5.4

Br− 110 3.8

Sulphuric acid 83 2.8

Methylsulfonic acid 54 1.8

K+ 50 1.7

Maleic acid 47 1.6

I− 41 1.4

FIGURE 1 | Activity prediction workflow.
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TABLE 2 | Initial and final training data sets composition.

Target Initial training data set Preprocessed training data set

Data set size Actives count % actives Data set size Actives count % actives

nr-ahr 8169 950 11.6 1900 950 50.0

nr-ar 9362 380 4.1 756 378 50.0

nr-ar-lbd 8599 303 3.5 604 302 50.0

nr-aromatase 7226 360 5.0 712 356 50.0

nr-er 7697 937 12.2 1866 933 50.0

nr-er-lbd 8753 446 5.1 882 441 50.0

nr-ppar-gamma 8184 222 2.7 442 221 50.0

sr-are 7167 1098 15.3 2188 1094 50.0

sr-atad5 9091 338 3.7 674 337 50.0

sr-hse 8150 428 5.3 850 425 50.0

sr-mmp 7320 1142 15.6 2246 1123 50.0

sr-p53 8634 537 6.2 1064 532 50.0

used here. It was shown earlier that such descriptors may
carry the similar information-level to higher dimensional ones
(Estrada et al., 2001; Oprea, 2002; Roy and Das, 2014) and can be
successfully used in building predictive QSAR models (Roy and
Roy, 2009; Garcia et al., 2011; Chavan et al., 2014; Su et al., 2015).

Feature Selection and Classification
Algorithms Screen
Various attribute selection, data preprocessing and classification
algorithms are available (Witten et al., 2011). It is not known a

priori which combination of the above is optimal for the problem
under consideration, as for different data sets the accuracy of
algorithms varies (Smusz et al., 2013). This is why an initial
methods assessment was conducted, evaluating the performance
(expressed as the AUROC value) of the combination of:

• Attribute selection methods: two search methods were
evaluated: Best First and Rank Search

• Classifiers: 14 classifiers setups were evaluated

Most classifiers were used with default settings. For IBk, four
values of k were probed (1, 3, 5, and 10), as this parameter
may significantly influence the performance of this classifier.
SMO algorithm was probed with three kernels (RBF kernel,
polynomial kernel, and normalized polynomial kernel). To
validate various modeling approaches, a 10-fold cross validation
with 10 repetitions was used. In each run, training data were
preprocessed independently (removal of a constant attribute,
data standardization, attribute selection). This allowed an
estimation of how the procedures under the investigation will
generalize to an independent data set. Results of the initial
evaluation are summarized in Figure 2 (for values obtained in
the initial methods evaluation see Supplementary Table S1).

As expected, the performance of evaluated classifiers varied.
For the tested set of the descriptors, among the best performing
ones were ADTree, IBk, and Naïve Bayes. Performance of
IBk classifier varied slightly for various values of k, with
better AUROC values for the higher k (5 and 10). The
worst performance was observed for SMO (Sequential Minimal

Optimization). However, the parameters for these methods (C,
gamma) were not optimized and certainly such optimization
would increase their performance. As for the attribute selection
methods, in most cases there were no significant differences in
performance between algorithms. The exception is the Naïve
Bayes classifier, where the differences are substantial. Generally,
the Best First method was slightly better than Rank Search (mean
AUROC for all experiments: 0.778 ± 0.056 and 0.768 ± 0.055,
respectively). In the studied descriptors space, the overall “target
predictability” also varied. The sr-mmp and nr-ar-lbd are “the
most predictable” targets while sr-hse and nr-er are “the least
predictable” ones. The latter observation may be caused by the
insufficient descriptive power of calculated molecular features to
describe the nature of binding small molecule ligands to these
targets.

After initial algorithms screen, the four best performing
methods (Naïve Bayes, ADTree, and IBk) were evaluated in
combination with ensemble methods: Rotation Forest, Decorate,
Dagging, Bagging, and AdaBoost. The SMO classifier was treated
as the “negative control.” The Best First attribute selection
method was used. Results are summarized in Figure 3 (for
AUROC values obtained in this experiment see Supplementary
Table S2).

The application of the ensemble methods in most cases caused
increase of the obtained AUROC values. The average AUROC
for all targets for Naïve Bayes classifier increased from 0.79
to 0.80 (when combined with Bagging, Dagging, Decorate and
Rotation Forest) but decreased to 0.78 in case of AdaBoostM1.
For ADTree, the AUROC values increased from the initial 0.79–
0.82 (in combination with Decorate) and 0.83 (for Rotation
Forest). For comparison of the performance of the selected
ensemble classifiers see Supplementary Table S4. The best and
most stable performance for all targets was observed for Rotation
Forest ensemble method with two classifiers: ADTree and IBk
(k = 10) (Mean AUROC for all experiments: 0.831 ± 0.038
and 0.820 ± 0.038 respectively). Based on these results, the Best
First attribute selection method with Rotation Forest/ADTree
classifier was used for the final activity predictions for all targets.
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FIGURE 2 | Heat maps presenting results of the initial methods evaluation. Color coded AUROC values are presented for 14 classifiers (Y axis) in combination

with two attribute selection methods (top X axis), grouped by the target (down X axis). Additional group presenting mean AUROC values is added for classifiers

comparison.

FIGURE 3 | Heat maps presenting results of the ensemble methods

assessment. Color coded AUROC values for 12 classifiers (Y axis) for each

challenge target (X axis) are shown. Aditional column presenting mean AUROC

values is added for classifiers comparison.

Training, Testing, and Final Predictions
For each target, 10 models were built using randomly selected
subsets of 95% of the training set. Each model was tested on two
sets: the remaining 5% of the training set and the provided testing
set. The use of the 5%-random subset, apart from the constant
testing set, helped to assure that the performance of the selected
model is obtained not due to chance, but by merit inherent to the

TABLE 3 | AUROC values obtained for the best models selected for final

predictions.

Target AUROC testing AUROC evaluation set

Training set 5% Testing set

nr-ahr 0.92 0.84 0.89

nr-ar 0.76 0.50 0.73

nr-ar-lbd 0.91 0.82 0.79

nr-aromatase 0.92 0.79 0.78

nr-er 0.85 0.67 0.77

nr-er-lbda 0.95 0.70 0.78

nr-ppar-gammaa 0.97 0.71 0.67

sr-are 0.87 0.80 0.72

sr-atad5a 0.91 0.65 0.76

sr-hse 0.90 0.74 0.80

sr-mmp 0.92 0.86 0.93

sr-p53 0.88 0.72 0.79

aThese models were not submitted to the final evaluation of the Tox21 Challenge.

method. The model with the highest AUROC value was selected
for the final predictions on the evaluation set. The performance
on the testing and evaluation data sets of selected best models
is summarized in Table 3. For AUROC statistics of all generated
models see Supplementary Table S3.

The average AUROC value for the final predictions for all 12
targets was 0.784 ± 0.069. The best results were obtained for nr-
ahr and sr-mmp (AUROC values: 0.89 and 0.93, respectively).
The lowest AUROC value was obtained for nr-ppar-gamma
(0.67), despite good performance of the model on the testing
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sets. As stated earlier, lower performance for some targets may
be caused by the insufficient descriptive power of calculated
molecular features to describe the complex nature of binding
small molecule ligands to these targets.

In general, one can observe the correlation between AUROC
values for testing and evaluation data sets. Most prominent
examples include sr-mmp and nr-ahr (good performance in both
testing and final evaluation) and nr-ar (moderate performance in
both cases). On the other hand, for nr-ppar-gamma, the results
obtained on the testing data sets are very good, while the final
performance is moderate. In this case, one of the reasons could
be that the chemical space of the evaluation set is out of the
applicability domain of the selected model.

Computational Performance
Descriptors Calculation
The choice of low-dimensional descriptors guaranteed a high
speed of calculations. A test run, carried for randomly selected
50 k clean drug like compounds fetched from ZINC database,
showed a calculation rate at 12.65 s/1000 compounds (±1.33 s).
The workflow for the descriptors calculation may be further
optimized by applying a better parallelization scheme and by
using all available CPUs on all stages of calculations.

Classification Performance
The biggest influence on the training time has the attribute
selection step. Results from initial algorithms assessment (10-
fold cross validation with 10 repetitions) shows that, for Best
First, the average time of a single run was 10.197 ± 6.359 s,
while for Rank Search it was 80.983 ± 66.302 s. Although the
differences between these algorithms are high, in many cases
training is a one-time procedure and training time is not a main
factor for consideration. The average testing time for Best First
method was 0.034± 0.063 s, while for Rank Search it was 0.119±
0.242 s. For the setup used for final evaluation (Best First attribute
selection method with Rotation Forest/ADTree classifier) the
average training time for all targets was 13.084 ± 8.627 s, while
the testing time was 0.042± 0.033 s. For training and testing time
values see Supplementary Tables S1, S2).

Related Works
Recently, a few papers describing various classification methods
applied to the Tox21 dataset have been published. Drwal
et al. described a successful approach of applying similarity
comparison and machine learning for activity prediction (Drwal
et al., 2015). These authors also used two dimensional descriptors
sets in the form of 2929 bit-long bitvector, encoding molecular
features, properties and connectivity information. The training
dataset was enriched by adding activity data fetched from the
literature (when available). Various parameters of similarity
searching (Tanimoto fingerprint similarity to active or inactive
compounds), of machine learning (Naïve Bayes) and of the
combination of these methods were evaluated. The established

methodology applied to the Tox21 dataset gave comparable
results to the ones shown in this work (for four targets, the
methods presented here gave better AUROC values, for two, the
values were equal).

Deep learning methods were also applied to the Tox21
classification challenge. Unterthiner et al. used deep neural
network with 40,000 input features describing molecules
(Unterthiner et al., 2015). The presented scheme allowed
the team to get the highest AUROC values in most of the
Tox21 sub-challenges. The drawback of this methodology is the
high demand for computational resources. Ramsundar et al.
used simple two-dimensional descriptors and fingerprints in
connection with Massively Multitask Networks (Ramsundar
et al., 2015). Comparison to other classification algorithms
(logistic regression, random forest) showed better performance
for the deep learning method. Again, this methodology is
computationally very expensive.

CONCLUSIONS

The presented method uses fast to calculate, two-dimensional
descriptors and, in most cases, shows good predictive
performance. Moreover, the use of free and open source
tools makes the presented approach widely available for the
community. To further improve the described workflow, a
wider set of descriptors may be used, including fingerprints
basing on connectivity information (like ECFP4 or Morgan
fingerprints) or recently presented ToxPrint fingerprint, which
cover substructures associated with toxicity (Yang et al., 2015).
Also, other classification methods, including ensemble methods
and deep learning techniques, should be investigated.

The Tox21 Data Challenge 2014 has offered the opportunity
to compare and benchmark various approaches for toxicity
prediction. The results clearly show that the very accurate in
silico methods are now, or soon will be, at our fingertips.
However, there is still a lot of work to be done to improve
the quality of models to fully supersede traditional, in vitro
assays.
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Modern drug discovery and toxicological research are under pressure, as the cost of

developing and testing new chemicals for potential toxicological risk is rising. Extensive

evaluation of chemical products for potential adverse effects is a challenging task, due

to the large number of chemicals and the possible hazardous effects on human health.

Safety regulatory agencies around the world are dealing with two major challenges. First,

the growth of chemicals introduced every year in household products and medicines that

need to be tested, and second the need to protect public welfare. Hence, alternative

and more efficient toxicological risk assessment methods are in high demand. The

Toxicology in the 21st Century (Tox21) consortium a collaborative effort was formed

to develop and investigate alternative assessment methods. A collection of 10,000

compounds composed of environmental chemicals and approved drugs were screened

for interference in biochemical pathways and released for crowdsourcing data analysis.

The physicochemical space covered by Tox21 library was explored, measured by

Molecular Weight (MW) and the octanol/water partition coefficient (cLogP). It was found

that on average chemical structures had MW of 272.6 Daltons. In case of cLogP the

average value was 2.476. Next relationships between assays were examined based on

compounds activity profiles across the assays utilizing the Pearson correlation coefficient

r. A cluster was observed between the Androgen and Estrogen Receptors and their

ligand bind domains accordingly indicating presence of cross talks among the receptors.

The highest correlations observed were between NR.AR and NR.AR_LBD, where it was

r = 0.66 and between NR.ER and NR.ER_LBD, where it was r = 0.5. Our approach to

model the Tox21 data consisted of utilizing circular molecular fingerprints combined with

Random Forest and Support Vector Machine by modeling each assay independently. In

all of the 12 sub-challenges our modeling approach achieved performance equal to or

higher than 0.7 ROC-AUC showing strong overall performance. Best performance was

achieved in sub-challenges NR.AR_LBD, NR.ER_LDB and NR.PPAR_gamma, where

ROC-AUC of 0.756, 0.790, and 0.803 was achieved accordingly. These results show
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that computational methods based on machine learning techniques are well suited to

support and play critical role in toxicological research.

Keywords: in silico, toxicology, tox21 data challenge 2014, machine learning, data-mining, cheminformatics,

predictive toxicology

INTRODUCTION

The average person is exposed to hundreds of chemicals not
found naturally in the human organism during his lifespan.
Xenobiotic man-made products can be found in wide range
of cleaning and healthcare products, as food additives or
drugs ingredients among others in various concentrations and
mixtures. Advances in modern combinatorial chemistry have led
to an unprecedented growth of synthetic chemicals availability on
the market. Over the course of the last five decades the number of
registered organic and inorganic substances in Chemical Abstract
Service (CAS) Registry database grew well over 33 million,
when in the 1965 the number was barely exceeding that of 200
thousands (Binetti et al., 2008).

Chemical toxicity may cause life-threating adverse effects
on human health, therefore it is necessary to conduct regular
risk assessments to ensure and protect public safety (Landrigan
and Goldman, 2011). Hazardous toxicological effects on human
health that may result due to short or chronic exposure to
toxic chemicals include acute toxicity, toxicity to reproduction,
mutagenicity and carcinogenicity (Binetti et al., 2008).

The traditional paradigm in toxicity testing consists of in vivo
toxicology, where compounds are tested in various and usually
high concentrations against tens or even hundreds of rodents
or other animals (Merlot, 2010). This paradigm in toxicity
testing is not feasible in modern toxicological research due to
the large number of chemicals that need to be tested, the high
cost of animal models, low throughput readouts, ethical issues,
often contradictory findings and poor extrapolability to humans
among others and have been extensively discussed in literature
(Sun et al., 2012; Calafat et al., 2015).

Safety regulatory agencies are currently dealing with two
major challenges. First, the increased number of chemicals
that need to be tested for potential harmful effects on
human health and second, the time and cost required to
evaluate those chemicals (Hartung, 2009). Hence, novel and

more efficient assessment methods for evaluation of potential
toxicological effects are in high demand. Alternative avenues

are currently being explored for chemical risk assessment
using in-vivo and in-vitro approaches, such as human cell-
based assays and high-throughput screening technologies (HTS;

Ekins et al., 2005; Inglese et al., 2006; Shukla et al., 2010).
Quantitative high-throughput screening (qHTS) technology has
emerged as powerful and efficient way to alleviate limitations
of single-point concentration HTS screening and allow to
study complex toxicological mechanisms to specific pathways
of targeted organs that may lead to disease (Inglese et al.,
2006; Lock et al., 2012). qHTS is a titration-based screening
approach that utilizes modern screening technologies, such as
high-sensitivity detectors, low-volume dispensing and robotic

plate handle (Inglese et al., 2006). As opposed to single-point
concentration HTS screening, which typically suffers from
large number of false positives and false negative readouts,
qHTS is capable of identifying and efficiently elucidating
structure-activity relationships (SARs) from primary screens.
Furthermore, qHTS screening allows thousands compounds
(>104 compounds) to be evaluated in different concentrations
in cell models in an unprecedented rate (Schmidt, 2009; Attene-
Ramos et al., 2013).

Computational approaches for modeling pharmacological
and toxicological data combined with powerful data mining
algorithms have been steadily gaining popularity by public
and private bodies over the last decades (Muster et al.,
2008; Kavlock and Dix, 2010). In-silico approaches utilize
experimental data generated by in-vivo and in-vitro screening
technologies and combined with cutting-edge data mining
and cheminformatic techniques are capable of developing
powerful predictive models. Such models could be applied
to “virtually screen” thousands of chemicals for potential
unwanted reactions early on during development cycles or
to re-evaluate existing ones. In silico approaches can be
applied to generate testable hypothesis for chemicals and direct
experimentation toward the most likely unwanted interactions,
which can then be validated or invalidated. Hence, in-silico
approaches could become the “next big thing” as decision-
making tools during the development and risk assessment
stages. Therefore, computational approaches could provide more
efficient utilization of the limited experimental resources.

The Toxicology in the 21st Century (Tox21) consortium is a
major collaborative effort involving several agencies, the National
Institutes of Health (NIH), the Environmental Protection Agency
(EPA), and the Food and Drug Administration (FDA), was
formed to develop and evaluate alternative risk assessment
methods (Dix et al., 2007; Judson et al., 2009). A collection of
10,000 compounds composed of environmental chemicals and
approved drugs was screened for interference in biochemical
pathways of Nuclear and Stress receptor pathways and released
for crowdsourcing data analysis.

The datasets released as part of the data challenge were
generated by qHTS screening assays and contained compounds
activity data against 12 assays, seven of which were part of
the Nuclear Receptors (NR) and five of Stress Response (SR)
pathways. Nuclear Receptors (NR) are an important family of
transcription factors responsible for regulating gene expression
and have a wide range of key roles in organisms’ cell growth
and proliferation, metabolism and homeostasis (Olefsky, 2001).
Chemical interference by environmental pollutants or other
xenobiotic chemicals can disturb homeostasis and lead to
severe toxicities (Janošek et al., 2006). In vivo effects may
range from male feminization to reproduction disorders and
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have been linked with chemical interference of NR (Baker,
2001). Structurally members of NR family present common
features, which consist of a DNA binding domain (DBD), which
recognize and bind to specific DNA sequences, and a ligand
binding domain (LBD), which is located at the C-terminal
half, and is responsible for recognizing and interacting
with hormone molecules (Wurtz et al., 1996; Moras and
Gronemeyer, 1998; Bourguet et al., 2000). NRs included in the
challenge were Androgen Receptor (NR.AR), Androgen Receptor
Ligand Binding Domain (NR.AR_LBD), Estrogen Receptor
(NR.ER) and Estrogen Receptor Ligand Binding Domain
(NR.ER_LBD), Aryl hydrocarbon Receptor (NR.AhR) and
Peroxisome Proliferator-Activated Receptor gamma (NR.PPAR-
γ). Aromatase (NR.Aromatase), member of the Cytochrome
P450 protein family, responsible for the biosynthesis of estrogens,
was the last included assay part of the NR pathway group
(Simpson et al., 1994, 1997).

Cells respond to environmental stress factors, such as elevated
and extreme temperature ranges, DNA damages, environmental
and chemical toxicants and mechanical damages through a
number of mechanisms that belong to Stress Response (SR)
pathways (Fulda et al., 2010). Stress Response pathways are
responsible formaintaining cell and tissue homeostasis. Five such
biochemical assays were included in the challenge namely the
ATPase family AAA domain-containing protein 5 (SR.ATAD5),
which is involved in DNA damage response (Fox et al., 2012).
Heat Shock response Elements (SR.HSE), which are proteins
responsible for regulating the expression of heat shock genes
(Wu, 1995). Mitochondrial Membrane Potential (SR.MMP)
assays are used to evaluate chemically induced mitochondrial
toxicity (Varga et al., 2015). Mitochondrial membrane potential
changes are commonly measured using fluorescent dyes tools
and are linked with cell capacity to generate ATP (Perry et al.,
2011). Tumor suppressor protein (SR.p53), typically the p53
pathway is “off” and is activated when cells are under stress or
damaged, hence being a good indicator of DNA damage and
other cellular stresses (Vogelstein et al., 2000). Tumor suppressor
protein p53 is activated by inducing DNA repair, cell cycle arrest
and apoptosis (Levine, 1997). The fifth and last SR assay was
the antioxidant response element (SR.ARE) signaling pathway.
SR.ARE is responsible for regulating the expression of genes in
cells exposed to oxidative stress that can change the cellular redox
statues (Nguyen et al., 2003).

First the distribution of physicochemical space covered by
the Tox21 library by utilizing simple molecular descriptors,
the molecular weight (MW) and the octanol/water coefficient
(cLogP) were examined. This analysis was performed to obtain
an overview of the physicochemical space covered by the Tox21
library and the overlap between the training and testing datasets
released during the competition.

It’s been shown that chemicals can be active against
multiple targets simultaneously, which has been termed as
“polypharmacology” (Keiser et al., 2007; Klabunde, 2007). One
of the major limitations when analyzing public bioactivity
datasets is data incompleteness, which results to sparse bioactivity
matrices (Mestres et al., 2008). On the contrary the Tox21 dataset
provides a less incomplete bioactivity matrix across the 12 tested

assays allowing such analysis to be carried out. The goal here was
to investigate relationships between assays in bioactivity space
based on the reported chemicals activities across the assays.

Our approach to model the Tox21 data consisted of
utilizing circular molecular fingerprints combined with Random
Forest and Support Vector Machines by modeling each assay
independently. Circular fingerprints were selected for the study
as they have been previously shown to perform well in virtual
screening applications (Bender, 2010; Hu et al., 2012; Cereto-
Massagué et al., 2015). As machine learning techniques two
well-established algorithms in the field of cheminformatics were
selected and applied, namely the Random Forest (RF) and the
Support Vector Machine (SVM). Since their introduction to the
field of molecular modeling they have both been successfully
applied for a wide range of modeling tasks ranging from virtual
screening (Koutsoukas et al., 2011), QSARs/QSPRs (Dudek
et al., 2006; Guha, 2008) and to more recent proteocheometric
modeling tasks (van Westen et al., 2011). Random Forest (RF),
developed by Breiman, is an ensemble of unpruned classification
or regression tress formed by applying bootstrap samples of the
training data and random features selection in tree induction
(Breiman, 2001). On the other hand, the Support Vector
Machine (SVM), developed by Cortes and Vapnik, is a non-
probabilistic kernel-based supervised learning method that maps
input vectors into high-dimensional feature space where the
decision hyperplane is constructed (Cortes and Vapnik, 1995).
Our main hypothesis was that utilizing circular fingerprints
combined with supervised machine learning methods would
allow us to develop fast and accurate predictive models well
suited for predictive toxicology.

MATERIALS AND METHODS

In total three datasets were released by the Tox21 data
challenge team during the competition: The training set which
was designated to serve for model development and hyper-
parameters tuning, which from now on will be referred as
Tox21_10k, and contained initially 11,764 structures covering
activity measurements against 12 assays. The first released test
set, which was used to rank teams submissions during the early
phase of the competition, which from now on will be referred
as Tox21_LDB, and contained 296 structures. The final released
dataset was the external validation set, this dataset was used
for the final phase of the competition for model evaluation and
ranking teams’ submissions, which from now on will be referred
as Tox21_Ext_Valid, and contained 647 structures. Compounds
activities for the external dataset were made publicly available
only after the completion of the competition. Final teams
submissions were evaluated based on the generated predictions
on the external set Tox21_Ext_Valid set.

Data Preprocessing
Prior to modeling steps the datasets were pre-processed and
chemical structures standardized with the aim of retaining
only suitable structures for the following modeling steps. The
importance of data curation prior to modeling steps has
been extensively discussed in Fourches et al. (2010). Chemical
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structures were standardized using the ChemAxon Standardizer
software package and stored in SDF (ChemAxon Standardizer,
2014) with the options on: (i) remove salts and solvents,
(ii) disconnect metal atoms, (iii) remove fragments (keep
largest ones), (iv) add explicit hydrogens, (v) aromatize, (vi)
neutralize, (vii) tautomerize, (viii) mesomerize, the protocol
utilized is provided in the Supplementary Material named
“Stand_Prot.xml.”

The number of unique structures in the Tox21_10k was
measured to be 7,502 from the initial 11,764 and 295 for the
Tox21_LBD following the standardization process. Following
the structure standardization steps compounds activities were
normalized by applying the majority rule based on standardized
SMILES strings on a per assay basis. In cases where multiple
activities were reported against a assay the activity with the
most occurrences was retain, else were discarded as ambiguous.
Instances where only a single activity was present were retained.
Those cases could be attributed to variances in experimental
conditions, concentrations, levels of purity and different vendors
used, as was also stated by the Tox21 Team during the
competition. The number of total instances, the number of
active and inactive compounds as also the ratio of inactive/active
per assay is shown on Table 1. The number of total instances
per assay ranged from 5,747 for NR.Aromatase and up to
6,950 for NR.AR. The ratio of inactive/active instances per
assay ranged from 5.5, relatively imbalanced, for SR.ARE and
SR.MMP and up to 30.2, highly imbalanced, for NR.AR_LBD.
The final datasets that resulted from the above described process
are provided in the Supplementary Files “Sup_Tox21_10k” and
“Sup_Tox21_LDB.”

Molecular Descriptors
As molecular descriptors the Morgan Fingerprints (Circular
Fingerprints) with radius 3 were utilized, which are equivalent
to the extended connectivity fingerprints ECFP_6 (Rogers and
Hahn, 2010), with diameter 6. The open source RDKit library
(version 2014.09.1) was used to generate the molecular
fingerprints from the standardized chemical structures
(Landrum, 2015). The descriptors were generated as hashed
binary vectors of 1,024 bits length. Morgan fingerprints were the
only descriptor utilized during the modeling steps. Molecular
Weight (MW) and the octanol/water partition coefficient
(cLogP) were calculated using the MOE software package and
used to examine and visualize the physicochemical space covered
by the Tox21 library (Chemical Computing Group Inc., 2015).

Modeling Approach
Following the data pre-processing the two datasets Tox21_10k
and Tox21_LDB were merged to form one larger dataset that
was used for model development and hyper-parameters tuning,
shown in Figure 3. No external data outside of those provided
by the Tox21 Challenge team were utilized in any step of the
modeling process. RF and SVM were utilized as implemented in
the open-source machine learning library Scikit-learn (Pedregosa
et al., 2011).

Each assay/sub-challenge was modeled independently
following a single-task approach. 10-fold cross-validation was

applied to tune the hyper-parameters for each algorithm. As
performance metric the area under the ROC curve (AUC)
was used. Receiver Operating Characteristics (ROC) graphs
are commonly used in machine learning to compare and
visualize the performance of binary classifiers (Fawcett, 2006).
The area under the ROC curve (ROC-AUC) of a classifier
is a single scalar values represents expected performance,
and is equal to the probability that the classifier will rank
a random chosen positive instance higher than a negative
instance (Bradley, 1997). AUC takes values between (0,1),
where values equal to or smaller than 0.5 show that a classifier
performs no better or worse than random, instead for values
greater than 0.5 a classifier is expected to perform better than
random.

In case of SVM the radial basis function “rbf” kernel was
considered with values for Cost {103,102,101,1,10−1} and gamma
{10−4, 10−3, 10−2, 10−1, 1}. In case of Random Forest the values
considered for the number of trees was {50, 100, 300, 500, 1000,
1500} and number of features in each split {log2, sqrt}. The best
average AUC and the standard deviation observed over 10-fold
cross validation per assay by RF and SVM during the hyper-
parameter tuning are shown in Figure 4, named “Best RF 10-CV”
and “Best SVM 10-CV” accordingly. The implementations used
to tune RF and SVM using ROC-AUC as evaluation metric based
on the Scikit-learn are provided in the Supplementary Material
“RF_tune.py” and “SVM_tune.py.”

RESULTS

First the chemical space covered by the Tox21 chemical library
was examined by calculating and analyzing the distribution of
Molecular Weight (MW) and cLogP for the library, shown in
Figure 1. As mentioned earlier the total number of structures
counted was 7,502 in Tox21_10k, 295 in Tox21_LBD and 647
in Tox21_Ext_Valid following the pre-processing steps. Here it
was found that compounds had on average MW of 271.2 and
a median of 244.3 Dalton with 50% of compounds having MW
between 166 and 337 Dalton. In case of cLogP the average
value was 2.41 and median 2.39, with 50% of compounds
having values between 0.98 and 3.753. This analysis indicates
that a large portion of compounds included in the Tox21
library represent chemicals with drug-like properties, although
compounds withMW and cLogP values outside of those typically
occupied by drug-like molecules are not rare, e.g., compounds
with MW over 1,000 Daltons and cLogP lower than -1 or higher
than 6.

Next the relationships between assays based on bioactivity
profiles of the tested chemicals were examined. Relationships
between assays were calculated utilizing the Pearson correlation
coefficient r based on compounds activities across tested
assays (Todeschini et al., 2012), shown in Figure 2. The
analysis was generated using the R programming language
(Ihaka and Gentleman, 1996) and the “corrplot” package for
visualization, the R script is provided in the Supplementary
Material “CorrelationAssaysPlot.R” (Wei, 2013). A cluster was
formed between the Androgen and Estrogen Receptors and
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TABLE 1 | Number of data points per assay obtained following the standardization process.

NR-AR NR-AR NR-ER NR-ER NR NR-AhR NR-PPAR SR-ARE SR-MMP SR-p53 SR-HSE SR-

-LBD -LBD -Aromatase -gamma ATAD5

Total 7202 6714 6107 6912 5747 6493 6429 5790 5770 6739 6430 7027

Active 252 215 650 290 274 733 175 896 890 412 316 263

Inactive 6950 6499 5457 6622 5473 5760 6254 4894 4880 6327 6114 6764

Ratio of

Inactive/active

27.6 30.2 8.4 22.8 20.0 7.9 35.7 5.5 5.5 15.4 19.3 25.7

The dataset utilized for model development and hyper-parameter tuning resulted by merging the Tox21_10k and Tox_LDB datasets. The ratio of inactive/active instances per assay

ranged from 5.5 in SR.ARE and SR.MMP and up to 30.2 in NR.AR_LBD.

FIGURE 1 | Molecular Weight (MW) and cLogP distribution for the

Tox21 chemical library, (gold) Tox21_10k, (green) Tox21_LDB and

(purple) Tox21_Ext_Valid. For each color, the rug on x and y-axis represent

the areas that are more densely populated. On average the compounds in the

Tox21 library present MW of 272.6 and a median of 240.4 Daltons with 50% of

compounds having MW between 166 and 339. In case of cLogP the average

value was 2.476 and median 2.439, with 50% of compounds being between

1.045 and 3.811.

their ligand bind domains accordingly, which can be seen
on the top-left corner of the Figure 2, indicating presence of
cross-talks between the two receptors. The correlation between
NR.AR and NR.AR_LBD was found to r = 0.66 and between
NR.ER and NR.ER_LBD r = 0.5. Furthermore, correlation
of r = 0.39 between the NR.AR_LBD and the NR.ER_LBD
was observed, indicating that the two ligand binding domains
share some structural similarities that can accommodate similar
ligands. On the contrary, weak correlations were measured
between the NR.AR and the NR.ER_LBD as also between the
NR.ER and the NR.AR_LBD, where it was measured to be
r = 0.33 and r = 0.22 accordingly. The rest receptors
didn’t show any correlation between them as the highest
observed correlation didn’t exceed of r = 0.23 between
NR.ER_LBD and SR.p53 and of r = 0.21 between SR.p53 and
SR.HSE.

Our group participated in the competition under team aliases
frozenarm and ToxFit, where the first submission was based on

the results obtained modeling the data using SVM and the latter
based on RF independently. In all of the 12 sub-challenges our
modeling approaches achieved performance of at least 0.7 ROC-
AUC, only for the assay (SR.HSE) the results achieved by SVM
were below 0.7 (0.689), showing strong overall performance,
shown in Table 2 and Figure 4. As expected the performance
achieved by both algorithms during cross validation on the
training set and on the external set were different, as shown
in Figure 4, with the results achieved on the external dataset
being lower. These observed differences could be attributed
to several factors, e.g., structural differences between chemical
space included in the training and test set, imbalances among
inactive/active instances per assay and limitations of utilized
molecular descriptors to capture complex chemical features
responsible for the bioactivities. When comparing the results
achieved by SVM and RF on the Tox21_Ext_Valid, as shown in
Table 2, it can be seen that both algorithms achieved comparable
results, with RF achieving slightly better ROC-AUC in 7 out of
12 tasks, while SVM in 4 out of 12, and in 1 task (NR.AR) where
both algorithms achieved the same ROC-AUC of 0.744.

It worth noting that in our modeling approach no external
data besides of those provided during the competition were
utilized and only a single molecular descriptor was used, mainly
due to time constrains during the competition. Utilizing external
bioactivity data, e.g., from ChEMBL (Gaulton et al., 2012)
or PubChem (Wang et al., 2009) databases, and additional
molecular descriptors could potentially improve the performance
of the models on the external evaluation set.

DISCUSSION

Chemical toxicological risk assessment is a necessary step
to ensure public safety and to promote well-being. Potential
hazardous side-effects should be detected as early as possible
in order to allow informed decisions to be made regarding
the future fate of those products. Computational approaches
that combine experimental data generated by next generation
of high-throughput screening technologies, such as qHTS,
and powerful data mining techniques could provide valuable
predictive systems for the identification of potential safety
alerts for yet untested chemicals, while simultaneously reducing
unnecessary animal testing. Furthermore, collaborative research
initiatives such as the Toxicology in the 21st Century (Tox21)
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FIGURE 2 | Pearson correlation coefficient r between assays based on compounds activity profiles across the assays. A cluster was formed between the

Androgen receptor (NR.AR) and the Androgen receptor ligand-binding domain (NR.AR_LBD), where r was measured 0.66. The Estrogen receptor (NR.ER) and the

Estrogen receptor ligand-binding domain (NR.ER.LBD) had r = 0.5. Weaker correlation between the NR.AR_LBD and the NR.ER_LBD was observed (Pearson

r = 0.39) showing possible crosstalk between the ligand binding domains. The rest measured correlation were low and did not exceed r = 0.23 between the

NR.ER.LBD and SR.p53 and r = 0.21 between SR.HSE and SR.p53.

TABLE 2 | Performance achieved by our modeling approach using Random Forest (RF) and Support Vector Machine (SVM) measured by ROC-AUC per

sub-challenge on the external To21_Ext_Val.

Algorithm NR-AhR NR-AR NR-AR NR NR-ER NR-ER NR-PPAR SR.ARE SR.ATAD5 SR.HSE SR.MMP SR.p53

-LBD -Aromatase -LBD -gamma

RF 0.865 0.744 0.722 0.739 0.745 0.790 0.803 0.700 0.726 0.752 0.859 0.802

SVM 0.861 0.744 0.756 0.738 0.729 0.752 0.791 0.697 0.729 0.689 0.862 0.803

Our team participated in the Tox21 data challenge 2014 under team aliases frozenarm and ToxFit. Performance achieved per assay ranged from 0.7 for the SR.ARE and up to 0.865

ROC-AUC for NR.AhR. Our best achieved performance per assay is indicated in bold.

consortium with the support of the research community
could contribute toward the development of novel and
powerful approaches for predictive toxicological research.
These in-silico approaches could direct experimentation
toward the most likely toxic chemicals first, hence providing
a far better utilization of the limited experimental resources
and ultimately leading to safer chemical products reaching
the market or hazardous ones being removed from
circulation.

The modeling approach devised by our team to model
the Tox21 data challenge 2014 was based on simple circular

molecular fingerprints and supervised machine-learning
algorithms Random Forest and Support Vector Machine. Here
a single task approach was followed, where each assay was
modeled independently by RF and SVM. Overall the modeling
approach achieved decent performance with results achieving
strong performance measured by ROC-AUC equal to or higher
than 0.7. The described approach has the advantage of being
fast as it is based on simple circular descriptors, which can be
generated efficiently for large number of chemical structures and
utilized open-source software packages for the main modeling
steps. As expected both algorithms selected for the study, RF

Frontiers in Environmental Science | www.frontiersin.org March 2016 | Volume 4 | Article 11 | 90

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Koutsoukas et al. In silico Predictive Toxicology

FIGURE 3 | Workflow followed to model the Tox21 dataset (the Tox21_10k dataset containing the initially released data for model development, the

Tox21_LDB used for leaderboard ranking and the blind dataset Tox21 External Validation Set for final model evaluation). (A) Structure standardization

step, (B) Activities normalization and molecular descriptors calculations. (C) Datasets Tox21_10k and Tox21_LDB were merged into one larger dataset that was

subsequently used for model development and hyper-parameters tuning. Final models were evaluated based on the generated predictions on the blind

Tox21_Ext_Val Set.

FIGURE 4 | Performance measured by ROC-AUC achieved by RF and SVM accordingly (shown as RF and SVM) per sub-challenge compared to the

top-1 reported performance. The best-reported results of the competition per sub-challenge are shown as Best Competition Submission. Best performance

achieved during hyper-parameters optimization for RF and SVM over 10-fold cross validation, both the best mean AUC and the standard deviation over the 10-folds

are shown as Best RF 10-CV and Best SVM 10-CV, respectively. Our submissions for the To21_Ext_Valid ranged from 0.69 AUC in SR.HSE achieved by SVM, worse

performance, and up to 0.865 for SR.AhR by RF, best performance.
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and SVM, showed good performance and achieved comparable
results on the external set.
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Estrogen receptors (ERα) are a critical target for drug design as well as a potential source

of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents

is critical in both drug discovery and chemical toxicity areas. Using computational tools,

e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential

ERα binding agents before chemical synthesis. The purpose of this project was to

develop enhanced predictive models of ERα binding agents by utilizing advanced

cheminformatics tools that can integrate publicly available bioassay data. The initial ERα

binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained

from the Tox21 Challenge project organized by the NIH Chemical Genomics Center

(NCGC). After removing the duplicates and inorganic compounds, this data set was used

to create a training set (259 binders and 259 non-binders). This training set was used

to develop QSAR models using chemical descriptors. The resulting models were then

used to predict the binding activity of 264 external compounds, which were available to

us after the models were developed. The cross-validation results of training set [Correct

Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the

unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all

compounds in the training set were used to search PubChem and generate a profile of

their biological responses across thousands of bioassays. The most important bioassays

were prioritized to generate a similarity index that was used to calculate the biosimilarity

score between each two compounds. The nearest neighbors for each compound within

the set were then identified and its ERα binding potential was predicted by its nearest

neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross

validation; CCR = 0.68 for external prediction) showed significant improvement over

the original QSAR models, particularly for the activity cliffs that induce prediction errors.

The results of this study indicate that the response profile of chemicals from public

data provides useful information for modeling and evaluation purposes. The public big

data resources should be considered along with chemical structure information when

predicting new compounds, such as unknown ERα binding agents.

Keywords: QSAR modeling, estrogen receptor α, bioassay profiling, endocrine disrupting chemicals, biosimilarity
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INTRODUCTION

Estrogen receptors are cellular proteins that are activated when
bound to estrogen molecules. When activated, estrogen receptors
trigger the expression of gene products crucial to the endocrine
system (Hall et al., 2001). These receptors can also be activated
by certain endocrine disrupting chemicals (EDC), resulting in a
disruption of normal estrogen signaling (Shanle and Xu, 2011).
There are two unique estrogen receptors: ERα and ERβ. These
two receptors are highly similar in the DNA binding domain, but
differ more significantly in other regions. While there are many
EDC that interact with both receptors, the difference between
these two receptors allows some ligands specifically bind to only
one receptor as well. Among all known binding agents, the ERα

binders are much better characterized than ERβ binders (Hall
et al., 2001; Shanle and Xu, 2011). Due to the nature of available
data, this study focuses solely on ligands binding to ERα.

When estrogen receptors are activated by small molecules
other than estrogens, the expression of the associated genes
is deregulated leading to neurological, developmental, and
reproductive toxicity (Mueller and Korach, 2001). There are
many small molecules with different chemical structures which
exhibit interaction with the ligand binding domain of the
estrogen receptor (Blair et al., 2000; Schug et al., 2011).
Considering the large number of compounds which needs to
be evaluated for their estrogen receptor binding potentials,
traditional experimental toxicology protocols can be costly and
time-consuming. As a result, there is a strong need to effectively
pre-screen and prioritize small molecules for potential endocrine
disruption prior to more costly animal testing. In a 2007
publication, the U.S. National Research Council identified both
high-throughput screening (HTS) and computational models as
critical chemical toxicity evaluation tools in Twenty-First century
toxicology (Committee on Toxicity Testing and Assessment of
Environmental Agents N.R.C., 2007). HTS has been viewed
as a potential alternative to animal models due to the ability
to test many molecules at a rapid pace and lower cost. The
large number of HTS studies has resulted in publically available
bioassay databases which are a rich source of in vitro data (Zhu
et al., 2014). Motivated by these available data, computational
modeling, which costs even less than HTS, has been used as
another important evaluation protocols for EDCs (Ding et al.,
2010).

Quantitative structure-activity relationship (QSAR) modeling
has been applied to develop estrogen receptor binding models
in the past decade, as shown in Table 1 (Hong et al., 2002;
Serafimova et al., 2007; Liu et al., 2008; Li and Gramatica,
2010; Taha et al., 2010; Vedani et al., 2012; Zang et al., 2013;
Zhang et al., 2013, 2014; Deng et al., 2014; Ng et al., 2015).
These studies have covered a wide range of modeling approaches
and data set sizes, from a descriptor-based decision tree (Hong
et al., 2002) to 3-D docking and multi-dimensional QSAR
(Vedani et al., 2012). The number of compounds used for
modeling purpose in these studies range from less than 100
to more than 8000. The QSAR modeling of estrogen receptor
binding agents has also been reviewed (Lo Piparo and Worth,
2010).

TABLE 1 | A sampling of QSAR studies on estrogen receptor interaction.

Year Receptor

studied

Data set size Method References

2005 α 232 training/

463 test

Decision Tree Hong et al., 2002

2007 α 645 COREPA Serafimova et al., 2007

2008 α 108 OLS/GA-VSS Liu et al., 2008

2010 β 119 GA-MLR Taha et al., 2010

2010 α 132 GA-MLR/kNN Li and Gramatica, 2010

2012 α 106α/96β Docking/mQSAR

(VirtualToxLab)

Vedani et al., 2012

2013 α/β 546α/137β kNN (STL and

MTL)

Zhang et al., 2013

2013 α 8147 SVM Zang et al., 2013

2014 α/β 81 MLR/RBFNN Deng et al., 2014

2015 α 3308 Decision forest Ng et al., 2015

Although, there have been many promising models developed
to predict ER binding data, these QSAR models are all based on
data derived from chemical structure alone. As a result, there
is increasing evidence that the applicability of these models is
limited to certain compounds (Johnson, 2008; Scior et al., 2009).
In certain cases, compounds with similar structures may show
significantly different activities, leading to prediction errors in
QSAR models. These pairs of molecules are known as “activity
cliffs” in QSAR studies (Maggiora, 2006). QSAR models predict
the activity of compounds only based on their chemical structure
information, but the presence of activity cliffs can lead to
unavoidable prediction errors if there is no other information
than chemical structures (Cruz-Monteagudo et al., 2014).

Inspired by the biosimilarity study reported by Low and
her coworkers (Low et al., 2013), in this study, we developed
enhanced computational models for estrogen receptor binding
agents using both QSAR approaches and a biosimilarity search,
which is based on publically available bioassay data. The initial
QSAR models developed using the combination of various
chemical descriptors and modeling approaches, were integrated
with the biosimilarity information to generate hybrid predictions.
Using the resulting hybrid models, the new compounds can be
directly predicted for their estrogen receptor binding potential.
The incorporation of a biosimilarity search based on additional
bioassay data can solve the activity cliffs issue of QSAR modeling
and improve the prediction accuracy of new compounds.

MATERIALS AND METHODS

Data Curation
The original dataset used in this study was obtained in two
parts separately from the National Center for Advancing the
Translational Science (NCATS) via the Tox21 Challenge project.
The dataset (PubChem assay AID 743077) consisted of the
results of the quantitative High Throughput Screening (qHTS)
to identify agonists of the ERα signaling pathway by measuring
the expression of a beta lactamase reporter gene controlled
by an ERα ligand binding domain (ER-LBD) fusion protein
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(National Center for Biotechnology Information, 2015). This
dataset was used as the training set in the Tox21 Challenge. The
original dataset consisted of 8753 compounds, of which 446 were
categorized as active (ERα binders) and 8307 were categorized
as inactive (non-binders). The compounds were processed by
the CaseUltra R© (www.multicase.com) structure checker tool to
remove duplicates and inorganic compounds, resulting in 5647
unique organic compounds (259 actives and 5388 inactives). All
the active compounds were selected for the training set and
combined with a randomly selected 259 inactive compounds to
produce a balanced training set of 518 compounds. An additional
but much smaller set of compounds not included in the original
qHTS data was provided by the Tox21 Challenge project as an
external test set to validate the resulting models (see Figure 1 for
modeling workflow). This external test set of 297 compounds (25
actives and 272 inactives) was also processed by the CaseUltra R©

structure checker to remove duplicates and inorganics, resulting
in 264 unique compounds (24 actives and 240 inactives).

Chemical Descriptors
Once the datasets were curated, chemical descriptors were
calculated using two commercial descriptor generators. A
total of 192 2-D Molecular Operating Environment R© (MOE)
(www.chemcomp.com) descriptors were generated using MOE
version 2013, which include physical properties, atom and bond
counts, connectivity and shape indices, adjacency and distance
matrix descriptors, etc. Dragon R© (www.talete.mi.it/) version 6

was used to generate 1259 descriptors including constitutional
indices, drug-like indices, connectivity indices, functional group
counts, etc. All descriptors were normalized to (0,1) and any
redundant descriptors were removed by deleting those with
low variance (standard deviation <0.01 for the whole training
set) and randomly keeping one of any pairs of descriptors
that had high correlation (R2 > 0.95 between two descriptor
values for the training set compounds), leaving 132 unique MOE
descriptors and 594 unique Dragon descriptors for both data sets.
In order to calculate the chemical similarity among compounds,
MOE 2013 was used to calculate 166 MACCS fingerprints of
each compound. These fingerprints were used as descriptors to
calculate the Tanimoto coefficient of each compound pair to
determine their chemical similarity (Willett, 2006).

QSAR Model Development and Model
Validation
Three machine learning algorithms were used to develop
QSAR models: support vector machines (SVM), random forest
(RF), and k nearest neighbor (kNN; Mitchell, 2014). In this
study, the RF (Breiman, 2001) and SVM (Vapnik, 2000)
algorithms available in R R© 3.0.2 using the packages “e1071”
and “randomForest” (Dalgaard, 2008) were implemented. The
available SVM algorithmwas tuned to identify the optimal inputs
for model performance. The kNN models (Zheng and Tropsha,
2000) were built using in-house modeling tools, also available
at Chembench (http://chembench.mml.unc.edu; Walker et al.,

FIGURE 1 | The hybrid modeling workflow.
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2010). This model uses a genetic algorithm selection procedure
to predict the activity of a target compound by identifying the
k most similar compounds within the chemical descriptor space
and using their activity to predict that of the target compound.
The best model of each run is kept, while inferior models are
discarded. In our modeling process, a random selection of 50
chemical descriptors was used in each iteration of the algorithm.
Each method was performed with both MOE and Dragon
descriptors, as shown in the modeling workflow in Figure 1.
The six resultingmodels (SVM-Dragon; SVM-MOE; RF-Dragon;
RF-MOE; kNN-Dragon; and kNN-MOE) were averaged to give
a consensus prediction, as described in previous publications
(Solimeo et al., 2012; Kim et al., 2014). All models were validated
using a five-fold cross validation. In this procedure, the training
set was randomly split into five equal selected subsets. Four
subsets (80%) were used as a training set and the compounds
in the fifth subset (20%) were used as a test set. The training set
was used to develop QSARmodels and the resulting models were
used to predict the test set. This procedure was repeated five times
until all compounds were used in the test set once (Golbraikh
et al., 2003; Tropsha and Golbraikh, 2007).

Biosimilarity Calculation
An in-house profiling tool (Zhang et al., 2014) was used to extract
relevant bioassay data from PubChem for each compound in
both the training and test sets. The PubChem assays were ranked
by the numbers of active responses for the compounds in our
training set. The resulting PubChem bioassay profile consisted
of 44 bioassays, which contain the largest number of active
responses in the training set, and was then used to calculate
the biosimilarity between pairs of two compounds using the
following formula:

Weighted Estimate of Biological Similarity (WEBS)

=

∑
(p+ (ω)n)∑

(p+ (ω) n+ d)

where p is the number of assays in which both compounds show
active results, n is the number of assays in which both compounds
show inactive results, and d is the number of assays in which the
two compounds show opposite results. Inconclusive data were
not considered in the calculation. The negative response data
(inactives) are weighted less than positive responses (actives) in
the biosimilarity calculation. In this study, the weight parameter
ω was given the value of 0.06. The resulting WEBS values
range from 0 to 1 and were used to determine the nearest
neighbors in the training set for each test set compound. Any
compound with WEBS similarity score over 0.6 was considered
as a potential nearest neighbor for the target compound. The
ERα binding activities of up to the top five nearest neighbors
were used to calculate the predicted activity of the relevant test
set compound. When fewer than five nearest neighbors existed
within the training set, all nearest neighbors were used.

In order to form a hybrid model, the biosimilarity prediction
was averaged with the QSAR prediction for each compound.
For compounds which were not able to be predicted by the
biosimilarity tool due to missing data, the QSAR consensus

prediction was used as the predicted value. Compounds with
opposite results from QSAR consensus models and biosimilarity
search were considered as inconclusive and removed. This
method returned a prediction for 192 of the 264 test set
compounds.

RESULTS

QSAR Results
The modeling set was used to develop six individual QSAR
models and their predictions were averaged as a consensus
prediction. The model performance was indicated by five-fold
cross validation of the modeling set itself and external prediction
of a set of 264 unknown compounds. The performance was
evaluated by calculating the sensitivity, specificity, and CCR for
all models, as shown in Figure 2.

sensitivity =
true positives(

true positives + false negatives
)

specificity =
true negatives(

true negatives + falsepositives
)

CCR =
sensitivity + specificity

2

For the five-fold cross-validation procedures, the predictivity was
similar across all the models (CCR = 0.642−0.749). However,
the external predictions of the 264 unknown compounds showed
a significant decrease in accuracy (CCR = 0.544−0.627), as
observed in previous QSAR studies (Zhu et al., 2008a; Solimeo
et al., 2012; Ng et al., 2015). Compared to individual models,
the consensus model gave similar performance to the best
individual models for both five-fold cross validation (sensitivity
= 0.730, specificity = 0.704, and CCR = 0.717) and external
predictions (sensitivity = 0.500, specificity = 0.683, and CCR
= 0.592). Applying an applicability domain (AD), as described
in previous studies (Zhu et al., 2008a, 2009), to both validation
procedures did not show an improvement in predictive ability,
so all predictions (100%) were retained when analyzing the QSAR
models.

Bio-Assay Profile and Predictions
Our previous studies have shown improvements of QSARmodels
by incorporating biological data as extra descriptors into the
modeling procedure (Sedykh et al., 2011; Kim et al., 2014).
Relevant bioassay activity has been shown to be useful for the
bioactivity predictions (Zhu et al., 2008b; Wang et al., 2015;
Kim et al., 2016). In this study, the in-house profiling tool was
used to automatically extract and optimize a biological profile
containing 44 PubChem assays for 518 modeling set compounds.
Using the WEBS score to calculate the biological similarity of
each two compounds, those most similar compounds withWEBS
scores over the nearest neighbor cut-off were identified for each
test set compound and then used to predict the ERα binding
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FIGURE 2 | The performance of all resulting models. (A) Cross-validation of the 518 training set compounds; (B) external validation of 264 unknown compounds.

potential. When combining the biosimilarity search with the
QSAR consensus model as a hybrid model, the cross validation
demonstrated a significant improvement of the accuracy over
traditional QSAR modeling only based on chemical descriptors.
Compared to the QSAR consensus model, the sensitivity,
specificity and CCR of the hybrid model increased from 0.730 to
0.963, from 0.704 to 0.925, and from 0.717 to 0.939, respectively.

The external test set was also predicted by including up
to five of the most biosimilar compounds in the training set.
These hybrid predictions showed a noticeable improvement over
the QSAR based solely on chemical descriptors. The external
test set predictions returned a sensitivity = 0.813, specificity =

0.540, and CCR = 0.676 with a coverage of 73% (192 out of
264). The increase of sensitivity in both cross validation and

external predictions brings considerable benefit when prioritizing
potential EDCs for experimental testing.

DISCUSSION

The estrogen receptor has been the target of many modeling
studies due to the effects of endocrine disruption that occur
when a compound present in the environment or in a consumer
product activates the receptor. While recent modeling studies
(Ng et al., 2015) have demonstrated impressive relative balanced
accuracy and specificity based on only chemical structures, these
models are still challenged by the high prevalence of false negative
results when testing an external set, leading to a low sensitivity.

Frontiers in Environmental Science | www.frontiersin.org March 2016 | Volume 4 | Article 12 | 98

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Ribay et al. Hybrid Modeling Estrogen Receptor Binders

There is a need for methods that can quickly and effectively
screen a wide range of chemicals to correctly identify potential
EDCs before a product is brought to market. This is a particular
challenge when screening new compound sets, such as that used
as an external test set in this study, where only a small fraction
of the new compounds may be active binders. The attempt to
use QSAR models based on only chemical descriptors to fill
this need has been hindered by the structural diversity of the
estrogen receptor binders and has reached a bottleneck due
to the existence of activity cliffs. In this study, the noticeable
improvement of the sensitivity of the model when predicting an
external test set using the hybrid model suggests that the use
of biological response data may be of particular importance in
lowering the rate of false negative predictions from a model.
Although this study focuses on activation of ERα only, there is
a wide variety of chemical structures that are able to activate
this receptor due to its large ligand binding domain (Shanle
and Xu, 2011). The lack of experimental data, especially for
active compounds (ERα binders), has resulted in activity cliffs in
QSARmodels based solely on chemical structures and limited the
applicability of traditional QSAR modeling methods.

The QSAR models all showed acceptable predictivity when
considering the cross validation of the training set. However,
the external prediction of 264 unknown compounds had
significantly decreased prediction accuracy, especially for
individual models. Although the consensus model shows
relatively stable performance, the sensitivity of its external test set
prediction is much lower than the cross validation results due to
the high proportion of false negatives. Table 2 displays examples
of compounds that were consistently predicted incorrectly by the
original QSAR models along with both their chemical nearest
neighbor and biological nearest neighbor in the training set.
The first active compound, A-315456 (PubChem CID 6603710),
an α-1D-adrenoceptor antagonist, is an ERα binder that was
incorrectly predicted as inactive by all QSAR models. This
compound’s chemical nearest neighbor in the training set is the
inactive compound sulfamethoxazole (PubChem CID 5329).
Dimethoxynaphtoquinone (PubChem CID 3136) is also an
active ERα binder that was incorrectly predicted by the QSAR
consensus model. Its chemical nearest neighbor dichlofop-
methyl (PubChem CID 39985) is an inactive compound in
this assay. Similarly, the compound N-methyl-2,3-diphenyl-
1,2,4-thiadiazol-5-imine (PubChem CID 682802) is an inactive
compound. However, its chemical nearest neighbor, in the
training set, dichlorodiphenyltrichloroethane (DDT) (PubChem
CID 3036), is an ERα binder. These prediction errors cannot
be avoided if only chemical structure information is used for
modeling.

The prediction of the test set compounds improved when
biosimilarity results were combined with the QSAR consensus
model to form a hybrid model. Of particular note, the sensitivity
of the external test set prediction increased from 0.500 for the
QSAR consensus model alone to 0.813 for the hybrid model. In
these examples, the biological nearest neighbors, as determined
by WEBS score, provide more useful information for the
predictions of external compounds. For example, the biological
nearest neighbor in the training set of A-315456 (PubChem

CID 6603710), an ERα binder, is toxaphene (PubChem CID
5284469), also an active compound (Table 2). For the other
external test set compounds in Table 2, their biological nearest
neighbors show the same ERα binding activities as the relevant
target compounds. Furthermore, the WEBS scores for these
test set compounds show dissimilarity to their chemical nearest
neighbors. For example, the inactive compound N-methyl-
2,3-diphenyl-1,2,4-thiadiazol-5-imine (PubChem CID 682802)
has a biological nearest neighbor, malathion (PubChem CID
4004), a widely used insecticide that also showed inactive
response in the ERα binding assay. Its chemical nearest neighbor,
DDT (PubChem CID 3036), a now-banned insecticide, has
a very low biosimilarity (WEBS = 0.0169) to N-methyl-
2,3-diphenyl-1,2,4-thiadiazol-5-imine. Seven PubChem assays
with testing data for both compounds show opposite results
between these two compounds. The above analysis indicates
that the activity cliffs are chemically similar compounds
but have different biological effects (i.e., ERα binding).
The hybrid model, using biosimilarity search as additional
information in the modeling process, was able to differentiate
them.

The bioassay response profile of the compounds shows
promising potential to improve traditional QSAR models.
Furthermore, when examining the PubChem assays used in the
profile of this study, many targets of the assays regulate or are
regulated by ERα. This provides additional useful information
as to the types of bioassays which may be most useful in
developing hybrid prediction models for ERα. The highest
ranked assay, which consists of the highest number of active
responses for our training set compounds, was used to screen
potential inhibitors of histone lysine methyltransferase G9a
(PubChem AID 504332). This assay acts as a co-regulator in the
estradiol-induced activation or repression of gene transcription
by ERα (Métivier et al., 2003; Purcell et al., 2011). Several
other assays used in this profile specifically target enzymes in
the cytochrome P450 (CYP450) family. These assays include
screening inhibitors for CYP1A2 (PubChem AID 410) and
CYP3A4 (PubChem AID 884), and a composite screening results
for various CYP450 inhibitors (PubChem AID 1851). These
proteins modulate ERα signaling by helping to maintain the
androgen/estrogen balance (Tsuchiya et al., 2005). By analyzing
the bioassays within the response profile, it indicates the future
direction of gathering useful data for evaluating potential ERα

binders.
The biosimilarity methodology used in this project shows

a promising way to improve the predictivity of traditional
QSAR modeling, particularly for increasing the sensitivity of the
prediction results. However, since many compounds may not
have been tested and have no data available in public resources,
the usefulness of biosimilarity is limited by its coverage. A
potential strategy to address the limitation of missing data is by
using “read-across” methods (Patlewicz et al., 2014) to fill gaps
in bioassay data for unknown compounds. Another pitfall of
using the public data is the presence of experimental errors and
the redundancy between various assay results. Currently, we are
developingmultiple novel datamining approaches to address this
issue and will report them in future studies.
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TABLE 2 | Three test set compounds (the first compound in each group) with their chemical nearest neighbor (the second compound) and biological

nearest neighbor (the third compound).

Compound Activity WEBS Score Bioprofiles*

1 Active –

*

Inactive 0.117

Active 1.00

2 Active –

**

Inactive N/A N/A

Active 1.00

3 Inactive –

***

Active 0.0169

Inactive 1.00

*In the selected bioprofiles, the red color indicates active response, blue color indicates inactive response and white color indicates no data available. The bioprofiles only consist of the

assays out of 44 PubChem assays that have the data for the three compounds in each group:

*First group bioprofile assays: PubChem AID 410, 883, 884, 893, 504832, 686978.

**Second group bioprofile assays: AID 410, 884, 504847, 686978, 686979, 743244.

***Third group bioprofile assays: AID 884, 886, 887, 893, 504847, 686978, 686979.

N/A indicates there is no data available for this compound within these assays.
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CONCLUSION

In this study, we first developed QSAR models for the qHTS
assay data, which identify agonists for the ERα signaling pathway,
provided in the Tox21 challenge. The external test set prediction
of all QSAR models, including the consensus model, is lower
than the cross validation results of the training set. However, by
combining the biosimilarity search, developed using the bioassay
response profile automatically extracted from PubChem, with
the QSAR consensus predictions, a hybrid model was created.
The resulting hybrid model showed a noticeable improvement in
both cross-validation and external prediction results compared
to QSAR models based only on chemical descriptors. This
result demonstrated that integrating extra biological data in the
modeling process can improve traditional QSAR models when
predicting ERα binding potentials for unknown compounds.
This strategy can be used to develop enhanced models to evaluate
other types of toxicity for compounds of interest.
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