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Single-Cell RNA-seq Analysis
Reveals Cellular Functional
Heterogeneity in Dermis Between
Fibrotic and Regenerative Wound
Healing Fates
Cao-Jie Chen1, Hiroki Kajita1, Kento Takaya1, Noriko Aramaki-Hattori 1, Shigeki Sakai1,
Toru Asou2* and Kazuo Kishi1*

1 Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan, 2 Department of
Plastic Surgery, Tokyo Cosmetic Surgery Clinic, Tokyo, Japan

Background: Fibrotic scars are common in both human and mouse skin wounds.
However, wound-induced hair neogenesis in the murine wounding models often results in
regenerative repair response. Herein, we aimed to uncover cellular functional
heterogeneity in dermis between fibrotic and regenerative wound healing fates.

Methods: The expression matrix of single-cell RNA sequencing (scRNA-seq) data of
fibrotic and regenerative wound dermal cells was filtered, normalized, and scaled;
underwent principal components analysis; and further analyzed by Uniform Manifold
Approximation and Projection (UMAP) for dimension reduction with the Seurat package.
Cell types were annotated, and cell–cell communications were analyzed. The core cell
population myofibroblast was identified and the biological functions of ligand and receptor
genes between myofibroblast and macrophage were evaluated. Specific genes between
fibrotic and regenerative myofibroblast and macrophage were identified. Temporal
dynamics of myofibroblast and macrophage were reconstructed with the Monocle tool.

Results: Across dermal cells, there were six cell types, namely, EN1-negative
myofibroblasts, EN1-positive myofibroblasts, hematopoietic cells, macrophages,
pericytes, and endothelial cells. Ligand and receptor genes between myofibroblasts
and macrophages mainly modulated cell proliferation and migration, tube development,
and the TGF-b pathway. Specific genes that were differentially expressed in fibrotic
compared to regenerative myofibroblasts or macrophages were separately identified.
Specific genes between fibrotic and regenerative myofibroblasts were involved in the
mRNAmetabolic process and organelle organization. Specific genes between fibrotic and
regenerative macrophages participated in regulating immunity and phagocytosis. We then
observed the underlying evolution of myofibroblasts or macrophages.

Conclusion: Collectively, our findings reveal that myofibroblasts and macrophages may
alter the skin wound healing fate through modulating critical signaling pathways.

Keywords: skin wound healing, fibrosis, regeneration, myofibroblast, macrophage, single-cell RNA sequencing
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INTRODUCTION

The skin is the organ with the largest surface area in the human
body that provides an efficient protective barrier against
mechanical injury, microbial pathogens, and trauma (1). The
skin ’s immune system is divided into two structural
compartments: epidermis and dermis, both of which contain a
plethora of immunocompetent cell types (2). The epidermis is
home to the main skin-resident immune cells, Langerhans cells,
and melanocytes. Meanwhile, immune-specialized cells like
dendritic cells, macrophages, and T cells reside in the dermis
(3). The communications within immune populations and the
skin environment are critical to the effectiveness of the skin
immune system (4). Wound healing is a complex process in the
human body, where numerous cell populations with different
functions are involved in the stages of hemostasis, inflammatory
response, growth, re-epithelialization, and remodeling (5). It is
essential to repair the skin after damage (6). Skin wound healing
involves three primary phases: inflammation, re-epithelialization,
and tissue remodeling (7). Nevertheless, effective therapeutic
strategies of accelerating healing and decreasing scarring remain
lacking. Single-cell RNA sequencing (scRNA-seq) technology has
emerged as an indispensable tool for elucidating cellular
phenotype and functional heterogeneity (8). Deciphering the
role of each cell type and interactions within cells is of
importance to understand the mechanism of normal wound
closure (9). Alterations in the microenvironment may influence
cellular recruitment or activation, resulting in damaged states of
wound healing. ScRNA-seq can be applied for deciphering the
cellular changes in chronic wounds and hypertrophic scarring,
thereby promoting the development of more effective therapeutic
solutions for healing wounds (10). Moreover, in-depth
understanding of the differences between fibrotic and
regenerative wound healing fates is a prerequisite for developing
more effective therapeutic interventions (2). Here, the purpose of
this study was to reveal cellular functional heterogeneity in the
dermis between fibrotic and regenerative wound healing fates.
MATERIALS AND METHODS

Acquisition of scRNA-seq Profiles
10× genomics scRNA-seq data of regenerative [GSM4213633;
large full-thickness excision (1 cm2) allows de novo follicle
regeneration] and fibrotic (GSM4213632; large wounds lead to
hairless scars) wound-induced hair neogenesis (WIHN) wounds
of adult 6- or 7-week-old C57Bl/6j mice were curated from the
Gene Expression Omnibus (GEO) repository (https://www.ncbi.
nlm.nih.gov/gds/). The accession number was GSE141814 (11).
Regenerative wounds were defined as hair neogenesis, decreased
contraction, decreased Wnt and TGF-b signaling activity, and
decreased collagen production, while fibrotic wounds were
defined as decreased hair neogenesis, increased contraction,
increased Wnt and TGF-b signaling activity, and increased
collagen production. This dataset was based on the platform of
GPL21103 Illumina HiSeq 4000 (Mus musculus).
Frontiers in Immunology | www.frontiersin.org 256
Quality Control
The DropletUtils package (v 3.13) was adopted to read unique
molecular identifiers (UMI) count matrix, identify cells from
empty droplets, remove barcode-swapped pseudo-cells, and
downsample the count matrix (12). The calculateQCMetrics
function of the Scater package was used for counting the
expression of genes in cells (13). Cells with proportions of
mitochondrial genes ≤ 10% and ribosomal genes ≥ 10% were
determined for further analysis.

Data Preprocessing and Principal
Component Analysis
The expression matrix was normalized with the NormalizeData
function of the Seurat package (14). The top 2,000 highly variable
genes were screened by the FindVariableFeatures function. Then,
expression data were linearly scaled utilizing the ScaleData
function. Finally, principal component analysis (PCA) was
performed with the RunPCA function based on the 2,000 genes.

Cell Cluster and Annotation
The principal components with large standard deviations were
selected. Then, cell clustering analysis was performed using the
FindNeighbors and FindClusters function of the Seurat package.
With the RunUMAP funct ion , Uni form Mani fo ld
Approximation and Projection (UMAP) was carried out for
dimension reduction. Cell types were annotated on the basis of
the known marker genes.

Identification of Novel Marker Genes
To calculate the differentially expressed genes between each
cluster and all other cells, the FindAllMarkers function of the
Seurat package was used and novel marker genes were identified
according to the following criteria: |log fold change (FC)| ≥ 0.1,
the minimum expression ratio of cell population = 0.25, and p-
value ≤ 0.05.

Ligand–Receptor Network Analysis
Based on the ligand–receptor pairs from the previous literature
(15), the relationship pairs of receptors and ligands were
analyzed based on the marker genes of various cells. Then, a
cell–cell communication network was conducted and visualized
with the Cytoscape software (16). The core cell population was
identified according to the largest number of receptor–ligand
pairs in the network. Moreover, the receptor and ligand genes
were extracted.

Function Enrichment Analysis
Function enrichment analysis of the indicated genes was carried
out utilizing the clusterProfiler package, including Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis (17). GO categories contain biological process,
cellular component, and molecular function. Terms with p < 0.05
were considered significantly enriched.

Protein–Protein Interaction Analysis
The Search Tool for the Retrieval of Interacting Genes (STRING)
database (version 11.0; https://string-db.org/) was utilized for
May 2022 | Volume 13 | Article 875407
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exploring the functional interactions between marker gene-
encoded proteins (18). Then, PPI networks were constructed
and the top 20 hub genes were identified.

Pseudotime Analysis
Pseudotime analysis was carried out with the Monocle 3 tool
(19). Firstly, genes that were expressed in at least 5% of the cells
were selected. Then, the reduceDimension function was utilized
to perform dimensionality reduction analysis, followed by cell
cluster with the clusterCells function. Afterwards, the
differentialGeneTest function was adopted to determine
candidate genes with differences between the clusters with p <
0.05. The dimensionality reduction analysis of the cells was carried
out using the DDRTree approach and the reduceDimension
function based on the candidate genes. Through the orderCells
function, the cells along the quasi-chronological trajectory were
sorted and visualized.

Gene Set Variation Analysis
The single-sample gene set enrichment analysis (ssGSEA)
function of the Gene Set Variation Analysis (GSVA) package
was utilized for comparisons of the differences in GO and KEGG
terms between groups (20).

Isolation and Culture of Fibroblasts
C57BL/6 male mice (8–10 weeks old; Sankyo) were used for
fibroblast isolation. Briefly, mice were sacrificed by cervical
dislocation. The trunk skin was separated in the ultra-clean
bench, immersed in 75% ethanol for disinfection, and then cut
into small pieces. Blood was removed by rinsing with PBS buffer
and transferred evenly to cell culture dishes. DMEM complete
medium (Wako) was added to submerge the tissue block that was
placed in a constant temperature incubator to fully cultivate. After
24 h, DMEM complete medium was added, which was replaced
every 3 days. The mouse skin fibroblasts were purified by the
differential adhesion method and were used for subsequent
experiments. Our study was approved by the Animal Ethics
Committee of Keio University School of Medicine [12090(5)].

Transfection
Using the TransIT-TKO Transfection Reagent (Mirus), siRNA-
Engrailed-1 (horizon) and siRNA-control were transfected into
fibroblasts in a constant-temperature incubator. Forty-eight
hours later, the knockdown effect of siRNA was confirmed by
real-time quantitative polymerase-chain reaction (RT-qPCR).

RT-qPCR
Total RNA was extracted from fibroblasts using the Isogen reagent
(Nippon Gene) following the manufacturer’s instructions. cDNA
synthesis was achieved based on the cDNA Synthesis System (Bio-
Rad). RT-qPCR was carried out utilizing SYBR Qpcr Mix (Toyobo)
on a 7500 Real-Time PCR system (Applied Biosystems). The primer
sequences were as follows: EN1, 5’-ACACAACCCTGCGATCC
TACT-3’(forward) and 5’-GGACGGTCCGAATAGCGTG-3’
(reverse); ACTB, 5’-GGC TGTATTCCCCTCCATCG-3’(forward)
and 5’-CCAGTTGGTAACAATGCCATGT-3’ (reverse). The
relative expressions were calculated with the 2−DDCt method.
Frontiers in Immunology | www.frontiersin.org 367
Wound Healing Assay
Fibroblasts were plated onto a 6-well plate (about 3 × 105 cells/
well). When the confluence reached 100%, the fibroblast
monolayer was scratched with a 1000-ml pipette tip.
Additionally, detached fibroblasts were removed with serum-free
medium. At 0 h and 24 h, the wounded area was photographed.

Statistical Analysis
All statistical analysis was performed using the R language
(version 3.6.1) and R Bioconductor packages. p < 0.05
indicated statistical significance.
RESULTS

Quality Control of scRNA-seq Data of
Fibrotic and Regenerative Wound
Dermal Cells
Herein, we collected scRNA data of dermal cells from large
skin wounds on day 18 with two distinct healing fates
(fibrosis: GSM4213632 or regeneration: GSM4213633) from
the GSE141814 dataset. Before analysis, we presented quality
control of scRNA data. Barcode rank plots separately
depicted the distribution of barcodes in total UMI count for
fibrotic and regenerative wound dermal cells (Supplementary
Figures 1A, B). Knee and inflection points in the barcode
rank plots indicated the transition of the total UMI count
distribution, which reflected the difference between empty
droplets and cell droplets. After filtrating empty droplets, we
counted the expression of genes in each cell (Supplementary
Figures 1C, D). Afterwards, we filtrated out cells with
proportions of mitochondrial genes > 10% and ribosomal
genes < 10% (Supplementary Figures 1E, F).

Cell Cluster of Fibrotic and Regenerative
Wound Dermal Cells
After normalizing scRNA data, we screened the top 2,000
highly variable genes across fibrotic and regenerative wound
dermal cells (Figure 1A). Then, scRNA data were linearly
scaled and analyzed by dimensionality reduction with PCA.
Here, we screened the top two principal components for
subsequent analysis (Figure 1B). PCA results uncovered the
prominent difference between fibrotic and regenerative wound
dermal cells (Figure 1C). According to the elbow point, we
identified the optimal principal components as 8 (Figure 1D).
Heatmaps depicted the top 20 marker genes in each principal
component (Figure 1E). With the UMAP method, dermal cells
were clustered into 15 clusters (Figure 1F). The top ten marker
genes of each cell cluster are presented in Figure 1G.

Identification of Cell Types and Their
Marker Genes Across Fibrotic and
Regenerative Wound Dermal Cells
This study attempted to identify cell types across fibrotic and
regenerative wound dermal cells. Based on the known marker
genes, six cell types were annotated, as follows: EN1-negative
May 2022 | Volume 13 | Article 875407
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myofibroblasts (n = 6,392), EN1-positive myofibroblasts (n =
2,219), hematopoietic cells (n = 3,774), macrophages (n = 1,461),
pericytes (n = 1,493), and endothelial cells (n = 303; Figure 2A).
Table 1 lists the cell ratio of each cell type. In particular, we
noticed the differences in ratios of EN1-negative and -positive
myofibroblasts between fibrotic and regenerative wound dermal
cells (Figure 2B). With |logFC| ≥ 0.1, the minimum expression
ratio of cell population = 0.25, and p-value ≤ 0.05, we identified
novel marker genes in each cell type (Supplementary Table 1).
The top ten marker genes in each cell type were visualized, as
follows: EN1-negative myofibroblasts (Aebp1, Col1a1, Col1a2,
Col3a1, Col8a1, Dcn, Eln, Mfap2, Mfap4, and Sparc),
Frontiers in Immunology | www.frontiersin.org 478
hematopoietic cells (AW112010, Cd3d, Cd3g, Cd52, Hcst, Ltb,
Ptprcap, Rac2, Srgn, and Trbc2), macrophages (Apoe, C1qb, Ccl9,
Cd74, Ctss, Fcer1g, H2-Eb1, Lyz2, Ms4a6c, and Tyrobp),
pericytes (Acta2, Col4a1, Col4a2, Gm13889, Higd1b, Myl9,
Mylk, Rgs5, Sparcl1, and Tagln), EN1-positive myofibroblasts
(Birc5, Pclaf, Stnm1, Ube2c, Hist1h2ap, Col5a3, Cks2, Aqp1,
Tnfaip6, and Timp1), and endothelia cells (Egfl7, Cldn5, Cdh5,
Ramp2, Ecscr, Pecam1, Cd200, Ltbp4, Aqp1, and Hist1h2ap)
(Figure 2C). Furthermore, we detected the expression levels of the
known marker genes that were used for annotating cell types, as
follows: endothelial cells (Cldn5, Pecam1, and Cd74), EN1-
negative and -positive myofibroblasts (En1, Col1a1, Dcn, Sfrp4,
A B

D

E

F

G

C

FIGURE 1 | Cell cluster of fibrotic and regenerative wound dermal cells. (A) The top 2,000 highly variable genes across fibrotic and regenerative wound dermal cells
according to standard deviation. Red dots meant highly variable genes. The top ten highly variable genes were marked. (B) Two of the most principal components
according to standard deviation. (C) PCA plots of wound dermal cells between fibrotic (fib) and regenerative (reg) conditions. Reference atlas was colored by tissue
of origin (fibrotic and regenerative wounds). (D) Determination of the optimal principal components through elbow plot. (E) Heatmaps showing the top 20 marker
genes in each principal component. (F) Cell cluster based on the screened principal components. (G) Heatmap showing the expression patterns of the top ten
marker genes in each cell cluster.
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TABLE 1 | Cell ratio of each cell type.

Cell type Group Count Total Ratio

Endothelial cell Fibrotic 76 5,130 0.014815
Endothelial cell Regenerative 112 10,512 0.010654
EN1-negative myofibroblasts Fibrotic 772 5,130 0.150487
EN1-negative myofibroblasts Regenerative 5,620 10,512 0.534627
EN1-positive myofibroblasts Fibrotic 454 5,130 0.088499
EN1-positive myofibroblasts Regenerative 1,765 10,512 0.167903
Hematopoietic cell Fibrotic 2,439 5,130 0.475439
Hematopoietic cell Regenerative 1,335 10,512 0.126998
Macrophage Fibrotic 725 5,130 0.141326
Macrophage Regenerative 851 10,512 0.080955
Pericytes Fibrotic 664 5,130 0.129435
Pericytes Regenerative 829 10,512 0.078862
Frontiers in Immunology | www.frontiersin.org
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FIGURE 2 | Identification of cell types and their marker genes across fibrotic and regenerative wound dermal cells. (A) UMAP plots showing cell types identified
by marker genes. Each cell type was colored by a unique color. (B) The cell ratio of EN1-negative and -positive myofibroblasts among fibrotic and regenerative
wound dermal cells. (C) Heatmap visualizing cell-type-specific gene expression patterns. Each column represented the average expression after cells were
grouped. (D) Integrated analysis showing marker genes across cell types. The size of each circle reflected the percentage of cells in each cell type where the
gene was detected, and the color shadow reflected the average expression level within each cell type. (E–J) UMAP plots of expression of the marker genes for
endothelial cells, EN1-negative and -positive myofibroblasts, macrophages, hematopoietic cells, and pericytes.
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Fndc1, and Lum), macrophages (Cd14, Cd68, and Csf1r), and
hematopoietic cells (Ptprc, Cd69, Acta2, and Rgs5)
(Figures 2D–J).

Cell–Cell Interactions Based on Ligand–
Receptor Interactions
Wound healing is a complex process that necessitates the
collaborative efforts of diverse cell lineages (21). Cell-to-cell
communications across diverse cell types thoroughly govern
appropriate functions of metazoans as well as widely rely on
interactions between secreted ligands and cell-surface receptors.
Based on the marker genes, ligand–receptor interactions were
matched. The number of ligands/receptors for myofibroblasts,
pericytes, endothelial cells, macrophages, and hematopoietic cells
Frontiers in Immunology | www.frontiersin.org 6910
was 114, 91, 32, 28 and 17, respectively (Figure 3A). According
to the number of intercellular receptor–ligand pairs, we screened
out myofibroblasts as the core cell population.

Biological Functions of Ligand and
Receptor Genes Between Myofibroblasts
and Macrophages
We further evaluated the biological functions of ligand and
receptor genes between myofibroblasts and macrophages. Our
results demonstrated that ligand and receptor genes between
myofibroblasts and macrophages were mainly involved in tube
morphogenesis and development, regulation of cell migration,
and motility (Figure 3B). Moreover, we found that the
TGF-b signaling pathway was markedly enriched by these
A

B

D E F

C

FIGURE 3 | Cell–cell interactions and biological functions of ligand and receptor genes between myofibroblasts and macrophages. (A) The network of ligand–
receptor-mediated multicellular signaling. The arrow pointed to the recipient cell, and the number on the line indicated the number of receptor–ligand pairs. (B) GO
enrichment results of ligand and receptor genes between myofibroblasts and macrophages. (C) KEGG pathways enriched by ligand and receptor genes between
myofibroblasts and macrophages. (D) RT-qPCR for the mRNA expressions of EN1 in fibroblasts transfected with siRNA of EN1. (E, F) Wound healing assay for the
migration of EN1-knockdown fibroblasts. Bar, 20 mm. ***p < 0.001.
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ligand and receptor genes between myofibroblasts and
macrophages (Figure 3C).

Knockdown of EN1 Facilitates
Fibroblast Migration
We further verified the effects of EN1 on the migration of
fibroblasts. Firstly, siRNA against EN1 was designed and
transected into fibroblasts. RT-qPCR demonstrated that EN1
mRNA expression was distinctly reduced following siRNA-EN1
transfection (Figure 3D). According to wound healing results,
EN1-knockout fibroblasts displayed significantly enhanced
migration capacity (Figures 3E, F). Hence, EN1 suppression
enabled to facilitate fibroblast migration.

Identification of Specific Genes Between
Fibrotic and Regenerative Myofibroblasts
and Their Biological Functions
With the cutoffs of |FC| > 1.2 and p < 0.05, we identified 546 up-
and 481 downregulated specific genes in regenerative compared
to fibrotic myofibroblasts (Figures 4A–C). Table 2 lists the first
20 up- and downregulated specific genes between regenerative
and fibrotic myofibroblasts. As depicted in Figure 4D, we
observed that the specific genes markedly participated in
Frontiers in Immunology | www.frontiersin.org 71011
collagen-containing extracellular matrix, posttranscriptional
regulation of gene expression, positive regulation of cell
migration, mRNA metabolic process, and apoptotic signaling
pathway. Moreover, ribosome and thermogenesis were
prominently enriched by the specific genes (Figure 4E).

Identification of Specific Genes Between
Fibrotic and Regenerative Macrophages
and Their Biological Functions
With the cutoffs of |FC| > 1.2 and p < 0.05, we found that 100
specific genes were significantly upregulated while 197 specific
genes were significantly downregulated in regenerative
compared to fibrotic macrophages (Figures 5A–C). Table 3
lists the first 20 up- and downregulated specific genes between
fibrotic and regenerative macrophages. GO enrichment analysis
uncovered that the specific genes were markedly involved in the
negative regulation of programmed cell death, the regulation of
cell migration, innate immune response and apoptotic signaling
pathway, collagen-containing extracellular matrix, the positive
regulation of T cell activation, and response to interferon g
(Figure 5D). Moreover, we observed that antigen processing
and presentation, pathways in cancer, phagosome, ribosome, and
tuberculosis were prominently enriched by the specific
genes (Figure 5E).
A B

D E

C

FIGURE 4 | Identification of specific genes between fibrotic and regenerative myofibroblasts and their biological functions. (A, B) Scatter plots and volcano diagram
for the up- and downregulated specific genes in regenerative (reg) compared to fibrotic (fib) myofibroblasts. Red dots meant upregulated genes while blue dots
meant downregulated genes. (C) Heatmap visualizing the expression patterns of the specific genes in fibrotic and regenerative myofibroblasts. Yellow represented
upregulation and purple represented downregulation. (D) GO enrichment results of specific genes that were abnormally expressed between fibrotic and regenerative
myofibroblasts. (E) KEGG pathways involved in specific genes that were abnormally expressed between fibrotic and regenerative myofibroblasts.
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PPI Network Analysis of Specific Genes
Between Fibrotic and Regenerative
Myofibroblasts or Macrophages
With the STRING tool, we probed the interactions between
myofibroblast- or macrophage-specific gene-encoded proteins.
In Figure 6A, there were 616 nodes in the PPI network of
myofibroblasts , reflect ing the close interact ions of
myofibroblast-specific gene-encoded proteins. According to
degree, the top 20 nodes were identified as hub genes,
including Rps27a, Rps11, Rps23, Rps3, Rps5, Rps15a, Rps6,
Rps9, Rps13, Rps14, Rps25, Rps3a1, Rps27, Rps8, Rps19,
Rps28, Rps7, Rpl8, Rps18, Rpl26, Rpl32, and Rps16,
indicating that the above genes were the core of the network.
Figure 6B depicts the interactions between macrophage-
specific gene-encoded proteins. The 20 hub genes were as
follows: Uba52, Rps9, Gnb2l1, Rpl27, Rpl38, Rps13, Rps15a,
Fau, Rpl18, Rpl30, Rpl35a, Rpl7, Rplp2, Rps24, Rpl13a, Rpl4,
Rps10, Rps12, Rps27rt, and Rps2. The above genes deserve in-
depth explorations.
Frontiers in Immunology | www.frontiersin.org 81112
Reconstruction of the Temporal Dynamics
of Myofibroblast and Macrophage
To investigate the underlying evolution amongmyofibroblasts and
macrophages, this study adopted the Monocle tool to reveal a
pseudotemporal ordering for the similarity of cell clusters with
developmental lineages. For myofibroblasts, the results clearly
demonstrated the uniform development of myofibroblasts from
cluster 6 to cluster 10 (Figure 7A). The trends of pseudotime‐
dependent genes along the pseudo‐timeline were divided into six
cell clusters of myofibroblasts with diverse expression dynamics.
Furthermore, we observed that macrophage under fibrotic
conditions was in the beginning position of the differentiation
process and was sequentially transformed into macrophage under
regenerative conditions (Figure 7B).

GSVA Between Clusters 6 and 10 of
Fibrotic and Regenerative Myofibroblasts
According to the results of pseudotime analysis of myofibroblasts,
we carried out GSVA between the initially differentiated cluster 6
TABLE 2 | The first 20 up- and downregulated specific genes between fibrotic and regenerative myofibroblasts.

Gene log2FC p-value Q-value Regenerative Fibrotic

Rplp0 0.870992 0 0 5.166991 4.295999
Ifitm2 0.843781 1.12E−173 1.94E−169 3.837826 2.994046
Mfap5 0.826158 5.93E−128 1.03E−123 4.591184 3.765026
Lgals1 0.820706 4.86E−284 8.43E−280 6.19352 5.372813
Hist1h2bc 0.81979 4.50E−90 7.81E−86 2.042755 1.222965
Serf2 0.805752 1.37E−310 2.39E−306 4.973459 4.167707
Rpl35 0.801322 0 0 5.164454 4.363133
Rps5 0.795055 5.07E−274 8.79E−270 4.725084 3.930029
Basp1 0.794315 1.55E−93 2.69E−89 2.268422 1.474106
Rpl6 0.792999 4.84E−266 8.40E−262 4.489802 3.696803
Ybx1 0.791379 6.39E−117 1.11E−112 2.98192 2.19054
Rps19 0.790084 0 0 5.198609 4.408525
Ost4 0.782118 2.55E−123 4.42E−119 3.079057 2.296939
Rpl29 0.780779 1.14E−175 1.98E−171 3.875578 3.094799
H19 0.767949 8.58E−45 1.49E−40 3.185378 2.417429
Rps11 0.763653 3.10E−260 5.37E−256 4.655295 3.891641
Rpl15 0.760256 2.28E−207 3.96E−203 4.262648 3.502392
Ift20 0.758 1.47E−93 2.55E−89 2.397842 1.639842
Ssr4 0.745387 2.11E−101 3.67E−97 2.89302 2.147633
Ubb 0.744921 1.14E−144 1.97E−140 4.529784 3.784862
mt-Nd4l −2.08112 0 0 0.883721 2.964844
mt-Atp6 −1.85976 0 0 5.349053 7.20881
Hspa1b −1.85125 4.49E−209 7.79E−205 0.611879 2.463132
mt-Co2 −1.84169 0 0 4.106449 5.948142
AC160336.1 −1.81875 4.98E−104 8.63E−100 0.763221 2.58197
Hspa1a −1.79337 2.08E−164 3.61E−160 1.385872 3.179244
mt-Nd4 −1.60147 3.51E−321 6.08E−317 3.543676 5.145146
mt-Nd5 −1.59322 2.78E−221 4.83E−217 1.144946 2.738165
mt-Cytb −1.57454 0 0 4.565919 6.140456
Igfbp2 −1.4162 1.28E−20 2.21E−16 2.045862 3.462061
mt-Nd3 −1.41514 1.13E−177 1.96E−173 1.403288 2.818428
mt-Nd1 −1.4142 4.61E−280 8.00E−276 4.509633 5.923829
mt-Co3 −1.39259 1.24E−268 2.15E−264 5.529273 6.921861
mt-Co1 −1.35374 1.30E−265 2.26E−261 5.598606 6.952347
mt-Nd2 −1.32088 1.81E−190 3.14E−186 2.765453 4.086338
Gm26917 −1.31863 7.03E−191 1.22E−186 0.653702 1.972335
Cd74 −1.15624 2.79E−193 4.84E−189 0.624805 1.781046
Lars2 −0.96874 2.21E−146 3.83E−142 0.232192 1.200933
Luc7l2 −0.91132 1.16E−98 2.01E−94 1.18695 2.098275
Hspg2 −0.90368 3.60E−128 6.24E−124 2.381196 3.284878
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and the final differentiated cluster 10. Compared with cluster 10 of
myofibroblasts in fibrotic and regenerative dermal cells, biological
processes such as the metabolic process significantly activated
cluster 6 of myofibroblasts in fibrotic and regenerative dermal
cells (Figure 8A). As depicted in Figure 8B, we noticed the
prominent activation of cellular components such as
mitochondria in cluster 6 of fibrotic and regenerative
myofibroblasts in comparison to those in cluster 10. Moreover,
we observed that fibrotic and regenerative myofibroblasts in cluster
6 had significantly activated molecular functions like oxidoreductase
activity compared with fibrotic and regenerative myofibroblasts in
cluster 10 (Figure 8C). We also compared the differences in KEGG
pathways between clusters. Diverse signaling pathways like
metabolic pathways, RNA transport, spliceosome, thermogenesis,
oxidative phosphorylation, carbon metabolism, ribosome, cell cycle,
protein processing in the endoplasmic reticulum, and biosynthesis
of amino acids were prominently activated in fibrotic and
regenerative myofibroblasts in cluster 6 compared to those in
cluster 10 (Figure 8D).

GSVA Between Fibrotic and Regenerative
Macrophages
GSVA was also presented between fibrotic and regenerative
macrophages. In Figure 9A, we determined that biological
processes such as the metabolic process and immune response
Frontiers in Immunology | www.frontiersin.org 91213
were markedly activated in fibrotic macrophages compared to
regenerative macrophages. The significantly activated cellular
components such as the spliceosomal complex, catalytic complex,
ribonucleoprotein complex, nuclear lumen, nucleoplasm, nucleolus,
cytosol, nucleus, catalytic step 2 spliceosome, chromosome, and
protein-containing complex were found in fibrotic macrophages
compared with regenerative macrophages (Figure 9B). As shown
in Figure 9C, we investigated the marked activation of molecular
functions like RNA binding, ATP binding, mRNA binding, adenyl
ribonucleotide binding, adenyl nucleotide binding, drug binding,
nucleic acid binding, heterocyclic compound binding, organic cyclic
compound binding, and ATPase activity in fibrotic macrophages in
comparison to regenerative macrophages. Moreover, our results
showed that KEGG pathways such as spliceosome, NOD-like
receptor signaling pathway, Fc gamma R-mediated phagocytosis,
antigen processing and presentation, endocytosis, necroptosis, and
natural killer cell-mediated cytotoxicity displayed marked
activation in fibrotic macrophages compared to regenerative
macrophages (Figure 9D).
DISCUSSION

Skin wound healing involves complicated coordinated interactions
within cells. Through scRNA-seq data, this study identified six cell
A B

D E

C

FIGURE 5 | Identification of specific genes between fibrotic and regenerative macrophages and their biological functions. (A, B) Scatter plots and volcano diagram
showing the up- and downregulated specific genes in regenerative (reg) compared to fibrotic (fib) macrophages. Red dots meant upregulated genes while blue dots
meant downregulated genes. (C) Heatmap visualizing the expression patterns of the specific genes in fibrotic and regenerative macrophages. Yellow represented
upregulation and purple represented downregulation. (D) GO enrichment results of specific genes that were abnormally expressed between fibrotic and regenerative
macrophages. (E) KEGG pathways involved in specific genes that were abnormally expressed between fibrotic and regenerative macrophages.
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TABLE 3 | The first 20 up- and downregulated specific genes between fibrotic and regenerative macrophages.

Regenerative Fibrotic

5.010571 2.536548
5.266303 2.928133
5.327119 3.192269
5.223726 3.218163
2.785851 0.949745
2.600128 0.764269
2.200177 0.551399
2.775437 1.202871
2.023966 0.65299
2.844128 1.812282
3.268016 2.263742
7.663418 6.728815
2.497856 1.669632
1.978589 1.154062
2.328203 1.53905
2.761737 2.043317
4.783109 4.168928
3.726565 3.115666
2.966403 2.373113
2.447508 1.855417
1.266466 2.715092
2.518111 3.475109
0.782974 1.701314
1.082872 1.999131
4.517284 5.40733
0.858755 1.737986
3.320621 4.155527
3.967573 4.752638
4.934988 5.70545
0.967289 1.723739
5.220528 5.972878
1.801335 2.553547
1.012111 1.740482
0.682842 1.35307
1.805651 2.465465
1.387319 2.038016
1.99459 2.636836
2.746255 3.382547
2.787025 3.415118
2.037704 2.654947
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Gene name log2FC p-value Q-value

Sparc 2.474022 3.60E−97 6.24E−93
Col1a1 2.33817 6.49E−90 1.13E−85
Col1a2 2.13485 3.01E−78 5.21E−74
Col3a1 2.005563 1.16E−91 2.01E−87
Dcn 1.836106 2.30E−46 3.98E−42
Bgn 1.83586 5.99E−50 1.04E−45
Fstl1 1.648779 1.28E−39 2.22E−35
Postn 1.572566 2.54E−51 4.40E−47
Mfap5 1.370976 2.18E−39 3.79E−35
Hbb-bs 1.031846 1.21E−39 2.10E−35
Cxcl2 1.004274 2.60E−15 4.51E−11
Actb 0.934603 1.46E−21 2.53E−17
Klf2 0.828223 1.34E−34 2.33E−30
Timp2 0.824526 1.09E−35 1.89E−31
Neat1 0.789153 1.13E−33 1.96E−29
Nfkbia 0.718421 2.88E−35 4.99E−31
Lgals1 0.61418 3.23E−47 5.60E−43
Fn1 0.610899 5.21E−31 9.03E−27
Pim1 0.59329 1.34E−26 2.32E−22
Cd63 0.592092 2.84E−21 4.92E−17
Hspa1b −1.44863 2.08E−61 3.60E−57
Hsp90aa1 −0.957 1.59E−41 2.76E−37
Gm26917 −0.91834 3.81E−57 6.61E−53
Gm42418 −0.91626 1.85E−56 3.20E−52
Tpt1 −0.89005 3.21E−101 5.57E−97
mt-Nd5 −0.87923 1.13E−46 1.96E−42
Hspa1a −0.83491 4.80E−34 8.32E−30
mt-Co2 −0.78506 1.59E−46 2.76E−42
mt-Atp6 −0.77046 5.82E−42 1.01E−37
Mycbp2 −0.75645 1.65E−49 2.86E−45
H2-Eb1 −0.75235 6.73E−15 1.17E−10
Fcgr2b −0.75221 7.44E−61 1.29E−56
Mrc1 −0.72837 6.62E−26 1.15E−21
mt-Nd4l −0.67023 7.15E−38 1.24E−33
AC160336.1 −0.65981 5.00E−25 8.66E−21
Prkcd −0.6507 2.95E−59 5.12E−55
Cybb −0.64225 8.79E−67 1.52E−62
Tgfbi −0.63629 6.10E−51 1.06E−46
H2-K1 −0.62809 3.72E−45 6.44E−41
Ier5 −0.61724 5.52E−41 9.58E−37
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A B

FIGURE 6 | PPI network analysis of specific genes between fibrotic and regenerative myofibroblasts or macrophages. (A) The PPI network of specific genes between
fibrotic and regenerative myofibroblasts. (B) The PPI network of specific genes between fibrotic and regenerative macrophages.
A

B

FIGURE 7 | Pseudotime ordering of myofibroblasts and macrophages. (A) Myofibroblasts and (B) macrophages. Each dot represented one cell and each branch
represented one cell state. The left plot was labeled with cell states and the right plot was labeled with developmental time.
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populations, namely, EN1-negative myofibroblasts, EN1-positive
myofibroblasts, hematopoietic cells, macrophages, pericytes, and
endothelial cells, across the dermis. Evidence suggests that EN1-
positive fibroblasts are known to function in scarring, and EN1-
negative fibroblasts yield wound regeneration. Thus, we used EN1
as a marker to divide the subgroups. Dynamic cellular events after
skin injury rely on bidirectional cell–cell communications against
effective wound healing (22). Our results demonstrated the cross-
talks between myofibroblasts, hematopoietic cells, macrophages,
pericytes, and endothelial cells in the dermis based on the ligand–
receptor interactions. As per previous studies, CX3CR1 may
mediate the recruitment of bone marrow-derived monocytes or
macrophages in skin wound healing, thereby releasing profibrotic
Frontiers in Immunology | www.frontiersin.org 121516
as well as angiogenic mediators (23). Moreover, macrophages
support proliferation and heterogeneity of myofibroblasts in skin
repair (24). Serum endothelial cell-derived extracellular vesicles
facilitate diabetic wound healing via enhancing myofibroblast
proliferation and decreasing senescence (25). Intradermal
adipocytes modulate the recruitment of myofibroblasts in skin
wound healing (26). Fibroblasts promote NG2+ pericyte
populations in murine skin development as well as repair (27).
On the basis of the above lines of evidence, there were remarkable
interplays between diverse cell types during dermis progression.
According to the number of ligands and receptors, we identified
myofibroblasts as the core cell population. Our function
enrichment analyses uncovered that the ligand and receptor
A B

DC

FIGURE 8 | GSVA between clusters 6 and 10 of fibrotic and regenerative myofibroblasts. (A–D) Heatmaps showing the differences in activation of biological processes,
cellular components, molecular functions, and KEGG pathways between clusters 6 and 10 of fibrotic (fib) and regenerative (reg) myofibroblasts.
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genes between myofibroblasts and macrophages were mainly
involved in regulating cell proliferation and migration, tube
development, and the TGF-b pathway. The TGF-b signaling
pathway plays an important role in the formation of collagen in
fibroblasts and myofibroblasts (28). Cytokine TGF-b may induce
dermal dendritic cells to express IL-31, thereby activating sensory
neurons as well as stimulating wound itching during skin would
healing (29). Hence, targeting the TGF-b pathway is the promising
therapeutic intervention to reduce abnormal skin scar formation.

To explore the differences in molecular mechanisms involving
myofibroblasts between fibrotic and regenerative wound healing
fates, we identified 546 up- and 481 downregulated specific genes in
regenerative compared to fibrotic myofibroblasts. This revealed the
heterogeneity of myofibroblasts between fibrotic and regenerative
wound healing. Our GO and KEGG enrichment analysis
uncovered the key biological functions involving the specific
genes between fibrotic and regenerative myofibroblasts. As a
Frontiers in Immunology | www.frontiersin.org 131617
result, these specific genes between fibrotic and regenerative
myofibroblasts prominently participated in the mRNA metabolic
process and organelle organization. Extracellular matrix of
connective tissues is synthesized by myofibroblasts that play a
critical role in sustaining the structural integrity of various
tissues (30).

Skin wound macrophage is an important regulator of skin
repair, and its dysfunction may cause chronic and non-healing
skin wounds (31). Further analysis identified that 100 specific
genes were significantly upregulated while 197 specific genes
were significantly downregulated in regenerative compared to
fibrotic macrophages. Functional enrichment analysis uncovered
that these specific genes between fibrotic and regenerative
macrophages primarily participated in regulating inflammatory
response, immunity, and phagocytosis. Immunity is the most
important function of the skin, which can prevent harmful
exposure from the external and internal environment (32).
A B

DC

FIGURE 9 | GSVA between fibrotic and regenerative macrophages. (A–D) Heatmaps visualizing the differences in activation of biological processes, cellular components,
molecular functions, and KEGG pathways between fibrotic (fib) and regenerative (reg) macrophages.
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Furthermore, late wound macrophage phagocytosis of the Wnt
inhibitor may induce chronic Wnt activity during fibrotic skin
healing (11). Collectively, our findings revealed that the
heterogeneity of myofibroblasts or macrophages might
determine wound healing fate as regenerative or fibrotic.
CONCLUSION

Taken together, this study uncovered cellular functional
heterogeneity in dermis between fibrotic and regenerative wound
healing fates. Moreover, myofibroblasts and macrophages may
change the skin wound healing fates by modulating critical
signaling pathways. Therefore, our data provided an insight into
the development of more effective therapeutic interventions for
improving healing fates.
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Supplementary Figure 1 | Quality control of scRNA-seq data of fibrotic and
regenerative wound dermal cells. (A, B) Barcode rank plots separately showing
the detected knee and inflection points for fibrotic and regenerative wound
dermal cells. (C, D) The expression of all genes, ribosomal genes, and
mitochondrial genes in each cell was shown for fibrotic and regenerative wound
dermal cells. (E, F) The proportions of mitochondrial and ribosomal genes
expressed in each cell were counted for fibrotic and regenerative wound
dermal cells.

Supplementary Table 1 | The list of novel marker genes identified in each cell type.
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A corrigendum on

Single-cell RNA-seq analysis reveals cellular functional heterogeneity in
dermis between fibrotic and regenerative wound healing fates

by Chen C-J, Kajita H, Takaya K, Aramaki-Hattori N, Sakai S, Asou T and Kishi K (2022)
Front. Immunol. 13:875407. doi: 10.3389/fimmu.2022.875407
In the published article, there was an error in Figures 2C, D and F as published. The dot

size for EN1 gene in different cell types in Figure 2D was wrong because we mislabeled the

gene name during the production of the picture. Due to the same reason, the Figure 2F was

also wrongly placed. In addition, we want to replace Figure 2C to add more feature genes

(top 15, previously was top 10) in the heatmap to better characterize cell-type-specific gene

expression patterns. The corrected Figures 2C, D and F appear below.
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The authors apologize for this error and state that this does not

change the scientific conclusions of the article in any way. The

original article has been updated.
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All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
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FIGURE 2

Identification of cell types and their marker genes across fibrotic and regenerative wound dermal cells. (A) UMAP plots showing cell types identified by
marker genes. Each cell type was colored by a unique color. (B) The cell ratio of EN1-negative and -positive myofibroblasts among fibrotic and
regenerative wound dermal cells. (C) Heatmap visualizing cell-type-specific gene expression patterns. Each column represented the average expression
after cells were grouped. (D) Integrated analysis showing marker genes across cell types. The size of each circle reflected the percentage of cells in each
cell type where the gene was detected, and the color shadow reflected the average expression level within each cell type. (E–J) UMAP plots of
expression of the marker genes for endothelial cells, EN1-negative and -positive myofibroblasts, macrophages, hematopoietic cells, and pericytes.
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New Food for Thought
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IRCCS, Rome, Italy, 2 Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart,
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Pancreatic ductal adenocarcinoma (PDAC) represents 90% of all pancreatic cancer cases
and shows a high mortality rate among all solid tumors. PDAC is often associated with
poor prognosis, due to the late diagnosis that leads to metastasis development, and
limited efficacy of available treatments. The tumor microenvironment (TME) represents a
reliable source of novel targets for therapy, and even if many of the biological interactions
among stromal, immune, and cancer cells that populate the TME have been studied,
much more needs to be clarified. The great limitation in the efficacy of current standard
chemoterapy is due to both the dense fibrotic inaccessible TME barrier surrounding
cancer cells and the immunological evolution from a tumor-suppressor to an
immunosuppressive environment. Nevertheless, combinatorial therapies may prove
more effective at overcoming resistance mechanisms and achieving tumor cell killing.
To achieve this result, a deeper understanding of the pathological mechanisms driving
tumor progression and immune escape is required in order to design rationale-based
therapeutic strategies. This review aims to summarize the present knowledge about
cellular interactions in the TME, with much attention on immunosuppressive functioning
and a specific focus on extracellular matrix (ECM) contribution.

Keywords: PDAC, TME, ECM, immune escape, immunotherapy
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year overall survival of 10%
(1). This solid tumor is characterized by a dense fibrotic tumor microenvironment (TME)
constituted by connective tissue, fibroblasts, blood vessels, and immune cells. Notably, PDAC is
fueled by the immunosuppressive TME (2), thus revealing that the relationship between cancer
progression and immunological evolution of TME is a key point to improve therapies (3). Although
several solid tumors show a good response to immunotherapies, PDAC lacks effective treatments
due to the continuous changes in the immune TME, where immunosuppressive cells are recruited,
such as tumor-associated macrophages (TAMs), regulatory T cells (Tregs), and bone marrow
org May 2022 | Volume 13 | Article 87629112122
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myeloid-derived suppressor cells (MDSCs) (4), that all together
help cancer cells to escape immunosurveillance (5). Since 1997,
chemotherapy based on gemcitabine as a single agent had been a
standard-of-care first-line treatment for more than two decades,
but two important clinical trials had shown that combination
regimens could guarantee stronger response and longer median
overall survival. In detail, PRODIGE and MPACT analyzed the
utility to combine several chemotherapeutic agents to increase
the efficacy of metastatic PDAC treatment (6–9). FOLFIRINOX
(5-fluorouracil, leucovorin, irinotecan, and oxaliplatin) and
gemcitabine/nab-paclitaxel are current first-line treatment for
PDAC patients with metastasis, but they have been associated
with many side effects (10–12). Currently, few novel effective
treatments are available for this cancer, despite the fact that
patients diagnosed with other solid tumors can rely on several
therapeutic strategies, highlighting the need to strengthen the
research in this field. Future perspectives for PDAC treatment
are looking at the combination of immunotherapeutic and
chemotherapeutic agents, aiming to fight cancer progression by
multiple approaches.

Despite numerous clinical trials recruiting PDAC patients to
test novel therapeutic strategies, a deep understanding of
pathological mechanisms driving carcinogenesis is needed. In
this context, it is helpful to consider that a complex interaction
among cells in the TME orchestrates PDAC progression and
determines the scarce success rate of available therapies, due to
the limited accessibility to cancer cells.

Recently, stromal, immune, and cancer cell interactions have
received much attention, being involved in PDAC progression
and immune response modulation. However, it is not completely
clear how these cells interact in the TME.

This review aims to summarize lights and shadows of this
complicated communication, considering critical mediators that
are emerging as important players in pancreatic tumorigenesis
and progression. Moreover, a specific focus on the recent
therapeutic strategies is also provided, attesting that different
combination treatments are entering clinic trials and seem to be
promising approaches to improve personalized therapies.
MOLECULAR SUBTYPES OF PDAC: THE
CONTRIBUTION OF TME CELLS

PDAC mainly develops from pancreatic intraepithelial neoplasia
(PanIN) (13), which is denoted by microscopic precursor lesions
undetectable with present diagnostic imaging techniques. A
small percentage of PDAC originates from pancreatic cystic
lesions, such as intraductal papillary mucinous neoplasms
(IPMNs) and mucinous cystic neoplasms, and can have
different aggressiveness depending on the specific site in the
pancreas (13). Histopathological features of PDAC have been
widely described over time (14, 15), but this classification does
not correspond to precise indications for treatments.

Molecular subtyping of PDAC could be more informative,
and the single gene mutations most commonly considered are
KRAS, TP53, SMAD4, and CDKN2A with a prevalence of more
Frontiers in Immunology | www.frontiersin.org 22223
than 50% in patients (16, 17). The progression from PanIN to
PDAC is marked by the accumulation of several molecular
events: KRAS mutations and telomerase shortening are early
events that determine the transition from normal duct to PanIN-
1; CDKN2A mutations are related to PanIN-2 stage; late events,
such as TP53, SMAD4, and also BRCA mutations, lead from
PanIN-3 to PDAC, with the consequent progression to
metastatic disease (18, 19).

During the last decade, several studies have been published in
which whole-genome sequencing and transcriptional profiling
analysis were applied on large cohorts of PDAC samples with the
aim of dissecting the molecular landscape of PDAC (20–24).
This has been possible thanks to the advances in next-generation
sequencing technologies and encouraged by the promising
results achieved in other tumor types with therapeutic
approaches based on a molecular stratification of the patients
(25–27). In 2011, Collisson and colleagues performed a first
array-based mRNA expression analysis of resected PDAC by
epithelium microdissection with stroma exclusion. They
proposed three subtypes, namely, classical, quasi-mesenchymal,
and exocrine-like, with the quasi-mesenchymal subtype showing
high tumor grade and poor survival (28).

In 2015, Moffitt and colleagues completed the molecular
subtyping of PDAC samples and metastasis by hybridization
arrays, and a subgroup of them by RNAseq. Transcripts derived
from normal pancreas and from TME were excluded, defining
two PDAC subtypes called basal-like and classical, and two
stromal subtypes described as normal and activated, with the
last one being associated with a worse prognosis (29).

In 2016, Bailey and colleagues profiled PDAC samples with a
wide variety of cellularity by array-based hybridization,
describing four subtypes, namely, squamous, pancreatic
progenitor, immunogenic, and aberrantly differentiated
endocrine exocrine (ADEX) (30). In comparison to Collisson
classification, Bailey et al. added the immunogenic subtype by the
profiling of the immune infiltrates in the TME, and this is
extremely important to identify an ideal therapeutic strategy,
especially for immunotherapeutic options.

Transcriptional profiling has been useful and informative for
signature mutations in KRAS, TP53, CDKN2A, and SMAD4 that
have been confirmed, but, more importantly, new genes have
been found mutated or transcriptionally altered, thus uncovering
a considerable genetic heterogeneity among PDAC patients (22,
31). For instance, about 10% of pancreatic cancer cases are
familiar and show germline inactivating mutations in genes
associated with the DNA repair pathways (e.g., BRCA1/2,
ATM, and PALB2) and a subgroup of these patients also have
similar germline mutations in epigenetic regulators (e.g., TET2,
DNMT3A, and ASXL1) (22, 32). This suggests that epigenetic
changes are an important factor in predisposing individuals to
pancreatic cancer.

Moreover, whole exome and genome sequencing exposed the
presence of somatic mutations in epigenetic regulators and
chromatin remodeling complexes (e.g., ARID1A/B, PBRM1,
MLL2/3/4, KDM6A, and SMARCA2/4) in a significant
percentage of PDAC patients (22, 31).
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These results further highlight the deep heterogeneity (both
molecular and epigenetic) of PDAC, made also evident by the
identification of various PDAC subtypes with different molecular
and phenotypic characteristics that reflect on prognosis and
response to therapies (28–30, 33).

Classical subtype tumors are more differentiated and tend to
respond better to chemotherapy and to have better prognosis.
On the other hand, basal-like subtype is characterized by high
tumor grade, strong chemoresistance and worse prognosis. From
a molecular standpoint, these subtypes are associated with
distinct gene signatures and epigenetic profiles. Specifically, the
classical subtype is characterized by an epithelial differentiation
gene signature, while the basal-like subtype shows a more
mesenchymal expression profile (21–24, 28–30, 33, 34).

Moreover, the two subtypes show differences in the activity of
specific superenhancers (SEs) and their upstream regulators (21).
SEs are large clusters of transcriptional enhancers that drive gene
expression to control cell identity (35, 36). The main
transcription factors (TFs) involved in the regulation of
subtype-specific SEs and transcription programs are MET,
MYC, and the DN isoform of the transcription factor TP63
(DNp63) for the basal-like subtype, and GATA6, PDX1, and
HNFs for the classical one (37–41). There is evidence that the
activity of these transcription factors is controlled by epigenetic
regulators that can not only alter their expression, but also
function as transcriptional co-regulators (41, 42).

Somerville et al. demonstrated that the DN isoform of the
transcription factor TP63 (DNp63) is a master regulator critical
for establishing basal-like cell identity in PDAC through
enhancer reprogramming, thus promoting tumor growth and
metastatic potential (43). Mechanistically, DNp63 increases
H3K27ac levels at the enhancers of basal-like lineage genes,
thus leading to increased transcriptions of genes such as KRT5/
6, TRIM29, and PTHLH, which promotes more aggressive PDAC
phenotypes (43).

Enhancer reprogramming has also been described as the
mechanism underlying FOXA1-driven tumor-to-metastasis
transition (44). Roe et al. established 3D organoid culture from
primary tumors derived from the KPC PDAC mouse model and
used ChIP-seq analysis to assess H3K27ac occupancy. Their
analysis , complemented with in vi tro and in vivo
overexpression experiments, revealed that FOXA1 is
responsible for increasing H3K27ac at specific enhancer
regions, thus activating foregut developmental genes that
promote anchorage-independent cell growth and invasion.
Moreover, FOXA1 gene transcription is enhanced in the
presence of missense mutations of p53 (p53R172H,
p53R245W, and p53R270H) (45). Specifically, KRAS effectors
phosphorylates cyclic AMP responsive element binding protein 1
(CREB1) and enable binding and hyperactivation by mutant p53.
Consequently, FOXA1 is upregulated and, by promoting b-
catenin stabilization, activates the canonical WNT pathway
supporting proliferation and metastasis (45, 46).

Pancreatic cancer cells can also remodel the epigenetic
landscape by repressing epigenetic modulators in order to
upregulate TFs that drive squamous PDAC transcriptional
Frontiers in Immunology | www.frontiersin.org 32324
programs. For instance, mutations in the histone H3K27me2/
3-specific lysine demethylase 6A (KDM6A) are frequently found
in the basal-like subtypes (47). Andricovich et al. found that loss
of KDM6A in PDAC can directly induce the basal-like subtype
by rewiring enhancer chromatin and activating SE regulating
DNp63, MYC, and RUNX3 (47). Mechanistically, such rewiring
is the consequence of the activity of histone type 2 lysine
methyltransferases (KMT2), which, as a consequence of
KDM6A loss, occupy and activate enhancers of genes
supporting the basal-like subtype. KMT2 enzyme families are
histone H3K4-specific methyltransferases that mark active gene
enhancers with H3K4me1 (48, 49) and indeed increased
H3K4me1, and KMT2D occupancies at basal-like supporting
elements have been reported in the absence of KDM6A (47).

Taken together, these studies highlight the ability of
pancreatic cancer cells to reprogram their epigenetic landscape
and subsequent transcription programs to sustain their growth,
differentiation, and metastasis.

In addition, recently, several studies have employed single-
cell RNA sequencing (scRNA-seq) aiming at further elucidating
the complexity of TME in PDAC (Table 1).

In a study from 2019, Elyada et al., using both PDAC patient
samples and murine models, identified two main immune cell
clusters: myeloid and lymphoid (52). Subsequent subclustering
showed the presence of six distinct subpopulations within the
first group, and five within the second. Specifically, for the
myeloid cluster, resident macrophages, alternatively activated
M2-like macrophages, classic monocytes, conventional type 1
dendritic cells (cDC1), and two types of Langerhans-like
dendritic cells were identified. For the lymphoid cluster, the
identified cell types were CD8+ T cells, CD4+ T cells, Tregs,
proliferating Tregs, and natural killer (NK) cells.

ScRNA-seq analysis of the immune cells in the TME has also
been employed to show differences between low-grade and high-
grade tumors, as well as between primary versus metastatic
lesions. In 2018, Bernard et al. performed a single-cell
transcriptomic profiling of cystic precursor lesions of PDAC
demonstrating that low-grade IPMNs are enriched for CTLs and
CD4+ effector T cells compared to high-grade IPMNs. At the
same PDACs, when compared to IPNMs, show an increased
presence of granulocytic MDSCs. This suggests a progressive
shift of the microenvironment in a tumor-promoting direction
(50). This modulation of the TME by the malignant cells seems
to be supported by other studies as well. For instance, Peng et al.
identified three PDAC patient clusters, with cluster 3 being
characterized by proliferation markers and associated with
worse survival compared with patients in the other two
clusters. Moreover, differential gene expression analysis showed
an enrichment of cell cycle, DNA replication, and DNA repair
pathways and depletion in several immune/T-cell activation gene
sets in cluster 3 in comparison to clusters 1 and 2 (51). They
reported an inverse correlation between high expression of
proliferative ductal markers and low expression of T-cell
activation markers. This result was then confirmed by
immunohistochemistry (IHC), which demonstrated that areas
characterized by ductal cells expressing low levels of Ki67 were
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also characterized by high T-cell infiltration and vice versa, thus
linking altered ductal cell proliferation and local immune
response and suggesting that a combination of cell-cycle
inhibitors and immunotherapy could be a valid therapeutic
approach (55).

Two novel subtypes of macrophages were identified by
Hossein et al. in advanced tumors by applying scRNA-seq to
three mouse models of PDAC: KrasLSL-G12D/+ Ink4afl/fl Ptf1aCre/+

(KIC), KrasLSL-G12D/+ Trp53LSL-R172H/+ Ptf1aCre/+ (KPC), and
KrasLSL-G12D/+ Trp53fl/fl Pdx1Cre/+ (KPfC) (53). Specifically, one
subtype expressed several genes associated with chemokines and
inflammation, while the other was enriched in major
histocompatibility complex II (MHC II)–associated genes.

In regard to the differences in TME immune cells between
primary tumors and metastatic lesions, using scRNA-seq, Lin
and colleagues compared immune cell population from primary
tumor resections with the ones obtained frommetastatic biopsies
(54). Two tumor-infiltrating lymphocyte (TIL) clusters were
identified, showing no difference between primary tumors and
metastases. One cluster was characterized by high levels of
markers associated with activation and exhaustion, while the
second one was representative of naive, antigen-inexperienced T
cells. On the other hand, macrophages from primary tumors and
metastases clustered separately. While the first displayed a gene
signature typical of M2-like polarization (higher levels of genes
associated with extracellular matrix production and wound
healing processes), the second expressed genes associated with
antigen presentation. However, it is worth mentioning that the
analyzed metastases were mostly hepatic; therefore, the observed
differences may be partially due to the distinct characteristic of
liver-resident and pancreas-resident macrophages.

A downside of scRNA-seq is the loss of tissue architecture,
which constitutes an obstacle to the study of intercellular
interaction. For this reason, complementary approaches like
multiplexed immunolabeling or RNA in situ hybridization
Frontiers in Immunology | www.frontiersin.org 42425
(RNA-ISH) have been developed. Despite having significantly
less molecular resolution, they provide spatial information at the
single-cell level. One of the earlier attempts was reported by
Carstens et al. who were able to simultaneously assess eight
markers [Dapi, alpha-smooth muscle actin (a-SMA), collagen I,
cytokeratin 8, Foxp3, CD3, CD4, and CD8] on tissue microarrays
composed of tissue obtained upon pancreatectomy of 132
patients with PDAC without neoadjuvant therapy (56).
Interestingly, they report an independent association between
improved patient survival and high infiltration levels of total T
cell, CD8+ cytotoxic T cell, and CD4+ effector T cell (56);
however, such association became only significant for the
seconds when taking into consideration only a 20-µm radius
around each cytokeratin 8-positive cancer cell. Moreover, no
correlation was found between a-SMA levels and T-cell
infiltration, while collagen I deposition positively correlated
with T-cell infiltration, suggesting that desmoplastic stroma
does not negatively impact lymphocyte infiltration (57, 58).

A similar approach was employed with a focus on myeloid
cells and macrophages by Väyrynen and colleagues (59). Using
tissue microarrays generated from 305 primary PDAC
specimens, the authors focused on four polarization markers to
assess the macrophage polarization status (M1: CD86, IRF1; M2:
CD163, CD206). They reported that M1-polarized macrophages
were located in significantly closer proximity to cancer cells than
M2-polarized macrophages and that a higher density of the latter
as well as CD15+ARG1+ immunosuppressive granulocytic cells
was associated with poor patient survival. Moreover, the authors
reported interesting associations between myeloid cell densities
and alterations in PDAC driver genes, thus further supporting
the effect of cancer cell on immune cell modulation in the
TME (59).

The integration of ISH techniques with scRNA-seq data has
allowed mapping rare cellular subpopulations on a spatial
context (60, 61). However, a throughput limitation persists in
TABLE 1 | scRNA-seq analyses to dissect the molecular complexity of TME in PDAC: a historical summary.

Year Molecular analysis
Samples

Resulting evidence Reference

2018 scRNA-seq
IPMN patients

Low-grade IPMNs are enriched for CTLs and CD4+ effector T cells compared to high-grade IPMNs Bernard
et al.
(50)

2019 scRNA-seq
PDAC patients

Three patient clusters identified: cluster 3 vs. clusters 1 and 2 showed high expression of proliferation markers and worse
survival; enrichment of cell cycle, DNA replication, and DNA repair pathways and depletion in several immune/T-cell
activation gene sets

Peng et al.
(51)

2019 scRNA-seq
PDAC patients,
murine models

Two immune clusters identified:
1. Myeloid cluster, composed of resident macrophages, M2 macrophages, classic monocytes, cDC1, and two types of
Langerhans-like dendritic cells
2. Lymphoid cluster, composed of CD8+ T cells, CD4+ T cells, Tregs, proliferating Tregs, and NK cells

Elyada
et al.
(52)

2019 scRNA-seq
Murine models of
PDAC (KIC, KPC,
KPfC)

Two immune clusters identified:
1. Expression of several genes associated with chemokines and inflammation
2. Enriched in MHC-II-associated genes

Hosein
et al.
(53)

2020 scRNA-seq
Human primary
tumors and
metastatic lesions

Two tumor-infiltrating lymphocyte clusters identified, with no difference between primary tumors and metastases:
1. High levels of markers associated with activation and exhaustion
2. Antigen-inexperienced T cell
Two macrophage clusters identified:
1. M2 polarization, expression of genes associated with extracellular matrix production and wound healing processes
2. Expression of genes associated with antigen presentation.

Lin et al.
(54)
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ISH techniques, avoiding considering it the best spatial
approach. Aiming to overcome this limit, recent spatial
transcriptomics (ST) methods have been developed, in order to
map any transcripts in whole tissue sections using ISH of
spatially barcoded oligonuclotides (62). Very recently,
Moncada et al. (2020) showed the potential of this breaktrough
technology to study PDAC TME composition (63). They used an
array-based ST novel approach to deconvolute scRNA-seq on
whole tissue by dividing the PDAC samples into two portions:
one to be used to obtain a single-cell suspension processed for
scRNA-seq; on the second portion, ST was performed to map the
expressed transcripts across the tissue. By the integration of the
two resulting analyses output, from primary PDAC tumors from
different patients, they were able to identify several specific cell
types and subpopulations, such as M1 and M2 macrophages,
enriched across spatially restricted areas of the tissue.

Keynote
Understanding molecular features of PDAC can reveal a source
of novel targets to be exploited for important advances in PDAC
therapy. The improvement of methods and the integration of
different technologies can give a comprehensive overview of
molecular landscape, during cancer progression and resistance
to treatments. The knowledge of genetics, epigenetics, and
transcriptomics behind PDAC is the key to targeting crucial
pathological mechanisms.
IMMUNOSUPPRESSIVE CELLS IN THE
TME OF PDAC

TAMs derive from the recruitment of CCR2+ monocytes to the
TME and usually represent the most abundant immune
population (64–66). In general, macrophages have distinct
states of polarization, which are commonly defined as M1 and
M2. The M1 phenotype is associated with pro-inflammatory
function and is activated through the classic pathway, by IFNg or
bacterial component stimulation; the M2 phenotype is related to
anti-inflammatory function, and is activated by alternative
pathways that lead to the suppression of Th1 immune
response in favor of the Th2 one (67, 68). As part of the innate
immune response, monocytes are recruited in the first phase of
cancer onset and differentiate in macrophages able to phagocyte
cancer cells, but their function is impaired by several
mechanisms of immune escape. TAMs in TME show very
heterogeneous features; however, most of them display an M2
polarization state, supporting angiogenesis and tumor growth
(69, 70). Cancer cells can adopt mechanisms to evade immune
surveillance; an example is to express high levels of the
transmembrane protein CD47, which represents the classic
signal “don’t eat me”, inducing an anti-phagocytic response
(71). Several cancers exploit this immune evasion strategy, and
some authors have considered the blockade of CD47 on cancer
cells or signal regulatory protein a (SIRPa) on macrophages as a
valid therapeutic option (72, 73), also for PDAC to target
pancreatic cancer stem cells and as adjuvant immunotherapy
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for liver micrometastasis (74, 75). TAMs can also secrete in the
TME a number of immunosuppressive cytokines, such as IL-6,
TGF-b, and IL-10 that are able to suppress CD8+ T-cell function
(76). Specifically, IL-6 is expressed at high levels in PDAC, and its
increasing circulating level is associated with advanced disease
and poor prognosis (77). The inhibition of IL-6 signaling along
with CD40 blockade is able to revert the TME to support an
antitumor immune response, by reducing TGF-b activation and
fibrosis deposition due to a decreased collagen type I production
(78). Moreover, chemokines such as CCL2, CCL17, CCL20, and
CCL22 induce the recruitment of Tregs to the tumor sites,
activating their regulatory function by IL10 and TGFb
signaling, leading to the accumulation of Tregs and impairing
the migration and activation of T cytotoxic effector cells (79–82).
TAMs can also express arginase I that is involved in reducing L-
arginine in the TME impairing T-cell function (83). TAMs are
also responsible for a reduced NK cell function, due to the
secretion of the above-mentioned cytokines resulting in a limited
production of IFN-g, perforin, and IL-12 by NK cells, which
determines a lower cytotoxicity and proliferation in the TME
(84). TAMs are able to reduce NK cell functioning also by direct
cell–cell interactions, since PDL-1 expressed on TAMs can bind
to PD-1 on NK cells, avoiding the activation of their cytotoxic
receptors (85).

Similarly to TAMs, neutrophils can also show heterogeneity
in the TME, showing a different state of activation and
consequent function. Neutrophils take part in early
inflammatory response, being able to produce and secrete
many cytotoxic compounds and also reactive oxygen species
(ROS), in order to kill stromal cells in the TME (86). By secreting
a high number of chemokines, such as CCL2, CCL3, CCL19, and
CCL20, neutrophils can drive the immune response, recruiting
monocytes and DCs, NK cells, and T-helper type 1 (Th1) and
type 17 (Th17) cells to the inflamed tissues (87, 88). Despite a
clear pro-inflammatory function, neutrophils can change to a
pro-tumor profile. Thus, the population of tumor-associated
neutrophils (TANs) can be considered dichotomous, showing
an N1 or N2 profile, comparably to TAMs. The N2 profile
sustains tumor growth by the activation of TGF-b signaling (89).
Moreover, pancreatic cancer cells can recruit TANs by secreting
chemokines of the CXC family, specifically CXCL6 and CXCL8
or CXCL1–3 and CXCL5–8 that are recognized by CXCR1 or
CXCR2 receptors expressed on neutrophils (90). High levels of
CXCR2 have been associated with tumor size in PDAC (91), and
a high number of TAN infiltrates can be considered an indication
of higher malignancy and worse prognosis in PDAC, considering
the expression of the CD177 neutrophil marker (92). A very
recent study has demonstrated that lorlatinib, an FDA-approved
ATP-competitive small-molecule tyrosine kinase inhibitor, is
able to inhibit the growth of PDAC at primary and metastatic
sites, through the regulation of neutrophil development and
recruitment and by constraining neutrophil-induced tumor
growth in the TME, in preclinical murine models of PDAC (93).

Myeloid-derived suppressor cells (MDSCs) are immature
myeloid cells with heterogeneous features; in fact, they can be
phenotypically similar to monocytes defining the subpopulation
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of mononuclear or monocytic (M-MDSCs or Mo-MDSCs), or
they can be more l ike neutrophi ls and are cal led
polymorphonuclear (PMN-MDSCs) or granulocytic (G-
MDSCs or Gr-MDSCs) (94, 95). MDSCs can exploit their
strongly immunosuppressive functions by several mechanisms.
One of them is to reduce T-cell proliferation through the
increased PD-L1 expression that binds to the PD-1 receptor on
T cells inhibiting their activation and self-tolerance (96, 97).
Moreover, MDSCs may positively regulate the expansion of
immunosuppressive Tregs by IL-10-induced TGF-b and IFNg
production (98) or by the secretion of reactive oxygen species,
such as ROS, Arg1, and iNOS (99). MDSCs can proliferate and
accumulate in the TME through the stimulation received by
some cytokines and chemokines produced after Yap signaling
activation (100). High levels of MDSCs, both in peripheral blood
and as tumor infiltrates, have been associated with low overall
survival and metastasis development in patients, even if their
immunosuppressive function is not common for all PDAC
patients. Specifically, a detailed gene signature has revealed that
immunosuppressive MDSCs can be defined as circulating
STAT3/arginase1-expressing CD14+ cells (101). MDSCs can
also directly promote tumor growth and angiogenesis by
MMP9 and VEGF secretion; in fact, they can produce high
levels of matrix metalloproteinases that are able to dissolve
extracellular matrix (ECM) and allow cancer cells to migrate
and invade other tissues (102). In addition, through the secretion
of high levels of VEGF and basic fibroblast growth factor (bFGF),
they can sustain angiogenesis (103).

Tregs represent an immune subset population of T
lymphocytes CD4+CD25+FOXP3+ with an immunosuppressive
function that is present in the TME of both PanIN and PDAC
(104). A high number of Treg infiltrates in the tumor has been
correlated to poor prognosis and metastasis development (105,
106). Tregs can interact with CD11c+ DCs determining their
reduced expression of MHC II, co-stimulatory molecules (CD40
and CD86), and indoleamine 2,3-dioxygenase (IDO),
suppressing IFN-g production and finally T-cell activation
(107). Moreover, PDAC patients have shown an imbalance in
the number of Tregs and Th17 cells, with a notable increase in
their ratio, determining important changes in cytokine
production, such as higher levels of IL-10 and TGFb, and
lower levels of IL-23, INF-g, and IL-17, with a consequent T-
cell inactivation (108).

On the other side, very recently, Tregs have been correlated to
an antitumorigenic effect by immune response stimulation
during pancreatic carcinogenesis. The depletion of Tregs in
mouse models of spontaneous tumorigenesis both before and
after the onset of PanIN determined a strong tumor progression,
and in murine models of invasive tumors, the depletion of Tregs
was not able to control cancer growth. A compensatory
mechanism to increase other CD4+ T cells and also
immunosuppressive myeloid cells has been demonstrated as a
consequence of Treg depletion (109, 110).

Besides immune cells, stromal cells in the TME can also
influence cancer progression and immune response. A scheme of
stroma-mediated interaction in PDAC is proposed in Figure 1.
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Cancer-associated fibroblasts (CAFs) play a crucial role in this
context, since they are responsible for ECM deposition and
remodeling. They are the most abundant population
representing up to 85% of all stromal cells, and are also
involved in a complex crosstalk with cancer and immune cells
(111). Fibroblasts do not show a characteristic expression of
specific surface markers; thus, it is very difficult to give a precise
definition of their origin and whether they convert in CAFs
during tumor progression. In a human cancer biopsy, CAFs can
be identified for exclusion due to the absence of epithelial,
endothelial, and leukocyte markers; the lack of molecular
mutations by cancer cells; and the characteristic elongated
morphology (112). A common consensus is that CAFs have a
tumor-suppressive function at the early state of tumorigenesis,
since depletion of an aSMA+ subset of fibroblasts in a PDAC
mouse model led to undifferentiated tumors with enhanced
hypoxia, increased tumor invasion, and decreased animal
survival (113), but during tumor progression, they can
dynamically change their role. CAFs are able to produce
fibrotic compounds, such as collagens, hyaluronic acid, and
fibronectin, contributing to ECM deposition (114) (better
discussed below). In addition, CAFs can secrete chemokines,
cytokines, growth factors, miRNAs, extracellular vesicles, and
metabolites to communicate with cancer cells and other TME
players to promote tumor progression (115). Over time, different
CAF subpopulations have been defined: myofibroblastic CAFs
(myCAFs) that express a-SMA and are responsible of TGFb
production; inflammatory CAFs (iCAFs) that produce
inflammatory mediators, such as cytokines, chemokines, and
complement complex; and antigen-presenting CAFs (apCAFs)
that express CD74 and MHC class II and interact with CD4+ T
cells. This apCAF subpopulation, however, lacks the necessary
co-stimulatory molecules to activate T cells, and is, therefore,
supposed to have an immunosuppressive role by acting as a
decoy tilting the ratio of CD8+ to Tregs.

Many authors have confirmed this classification by scRNA-
seq, in both mouse and human tissues (50, 52, 53, 116, 117).
iCAFs are associated with an activity of immune modulation,
which is crucial during PDAC progression, and are activated in a
paracrine manner by cancer cells through the secretion of
stimulating factors, but they are located distant from cancer
cells and myCAFs. Once activated, iCAFs can produce
inflammatory mediators, such as IL-6, IL-8, IL-11, CXCL1,
CXCL2, CXCL12, and leukemia inhibitory factor (LIF).
Moreover, they show an activation of several inflammatory
pathways, such as IFN-g response, TNF/NF-kB, IL-2/STAT5,
and IL-6/JAK/STAT3 signaling in humans (118). iCAFs can
modulate the immune response at different levels, inducing M2
polarization of TAMs, accumulating MDSCs, TANs, regulatory
B-cells (Bregs), and Th17 cells in the tumors, but also directly
decreasing CD8+ T cells through the production of the big-h3
stromal protein in a TGF-b-dependent manner (119). Recently,
an additional subtype has been identified in loose-type stromal
PDAC compared to dense-type stromal PDAC and named
meCAFs, representing a highly activated metabolic state and
associated with a poor prognosis but a better response to
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immunotherapeutic inhibition of PD-1 (120). In addition, a new
CAFs subset, named complement-secreting CAFs (cs-CAFs), has
been identified in early PDAC by scRNA-seq, showing high
enrichment for the components of the complement system, such
as C3, C7, CFB, CFD, CFH, and CFI, and being able to modulate
the immune response in the tumor (121).

Interestingly, these CAF subpopulations show a level of
plasticity being able to shift among the different phenotypes
(52), thus suggesting that TME modulation to improve therapies
based on immunological agents is theoretically possible.

Pancreatic stellate cells (PSCs) are resident cells in the pancreas
and are mainly responsible for fibrosis deposition during PDAC
(122), and their crucial role in pancreatic cancer progression has
been investigated more deeply in recent years. PSCs were isolated
for the first time in 1982 by Watari and colleagues who identified,
in murine pancreas, cells containing vitamin A droplets after an
excess of retinoid administration (123). In addition to several
physiological functions, such as pancreatic architecture
maintenance, tissue homeostasis, induction of amylase secretion,
phagocytosis, and ECM turnover (124), their contribution to
pathological mechanisms has also been elucidated, leading to the
confirmation that PSCs can influence the dense desmoplastic
reaction, tumor progression, metastasis, and resistance to
therapies (125). They are in a quiescent state and can respond
to different stimuli, such as cytokines/transcription factors, non-
coding RNAs, oxidative stress-related factors, hyperglycemia, and
Frontiers in Immunology | www.frontiersin.org 72728
ion channels and calcium signaling, to perform their activities
(126). Activated PSCs (aPSCs) acquire a myofibroblast-like
phenotype and produce ECM. In addition to many physiological
functions, aPSCs can play important roles also in pathological
conditions, such as PDAC, being responsible for the abundant
desmoplastic reaction that surrounds cancer cells reducing
accessibility to drugs. During early tumorigenesis, an intense
communication between stromal and cancer cells induces the
reprogramming of mesenchymal cells, and aPSCs can represent a
valid cellular source of CAFs (127). Despite these two populations
expressing similar markers, nowadays they are considered as
separate cellular entities; in fact, in experiments of three-
dimensional co-culture systems that reproduce the interactions
between CAFs and cancer cells, two spatially separated, mutually
exclusive, dynamic, and phenotypically distinct CAF subtypes
have been identified, but the difference between aPSCs and
CAFs still represents an important topic of discussion (116).
Besides the fibrotic activity, aPSCs are also able to regulate the
immune response during PDAC progression through the
production and secretion of cytokines, such as CXCL12,
impairing the migration of CD8+ and CD4+ T cells, NK cells,
and Tregs to the juxtatumoral compartment in proximity of the
tumor site (57). By several mechanisms, aPSCs can suppress T-cell
activity through IL-6 secretion, i.e., inhibiting T effector cell
migration, activating Tregs and TAMs, and impairing the
balance in the Tregs/T effectors ratio (128).
FIGURE 1 | Simplified scheme of stroma-mediated interaction in PDAC. Cancer-associated fibroblasts (CAFs) are crucial elements of the pancreatic ductal
adenocarcinoma (PDAC) stroma. They include different subtypes: myofibroblastic, inflammatory, and antigen-presenting subtypes. Both cell–cell and paracrine
interaction CAFs and PDAC cells are involved in manipulating the stroma. The cancer cells can induce, through transforming growth factor-b (TGFb) signaling, the
surrounding CAFs to adopt a myfibroblastic phenotype. Similarly, cancer cells produce IL-1, reprogramming CAFs to inflammatory CAFs, which, in turn, produce
chemokines like IL-6 and sustain cancer growth. Antigen-presenting CAFs, expressing MHC class II molecules, modulate the immune cells in the stroma. Pancreatic
stellate cells (PSCs) are mainly responsible for ECM deposition during PDAC, and are also able to modulate the immune response through the production and
secretion of cytokines, such as CXCL12 and IL-6, negatively affecting T-cell activity and migration. Adapted from “PDAC histology” by BioRender.com (2022).
Retrieved from https://app.biorender.com/biorender-templates.
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During the last few years, many authors have contributed to
describe the cellular heterogeneity in PDAC, but much is to be
learned about how stromal cells, such as CAFs, are able to
modulate cancer cells. Recently, Ligorio et al. identified a
single-cell population that can switch towards invasive and
proliferative phenotypes, marked by MAPK and STAT3
activation (129). This elegant work combined scRNA-seq and
proteomics to highlight that CAFs play an important role in
modulating cancer cell heterogeneity, and findings obtained in
model systems were then translated to primary human tumors,
in order to contextualize these cellular populations in the
architecture of PDAC tissue. Around 2015, some authors had
demonstrated that PDAC is the result of a mosaic in which
cancer cells are “tumor islands” and CAFs represent the “sea” all
around them. This nice view led to the convincement that the
interaction between PDAC cells and CAFs are not strictly
defined as stimulatory or inhibitory, but modulations of
stromal content can determine a different behavior in specific
tumor areas (130–132). Very recently, Grünwald and colleagues
defined subTMEs as functional units with specific epithelial and
immune phenotypes that are able to influence the progression of
PDAC (133). SubTMEs can be classified into “deserted” regions
(regions characterized by the presence of spindle-shaped
fibroblasts), “reactive” regions (regions with plump fibroblasts
containing enlarged nuclei), and “intermediate” regions (with
mixed features and an intermediate level of both characteristics).
Molecular and immune features are different in the three types of
subTMEs, but the key message of this study is the involvement of
stroma in influencing the response to chemotherapy as well. The
authors showed that the deserted subTME has a chemoprotective
role, associated with a poor response, leading to the conclusion
that future approaches aimed to attenuate the deserted TME
state could be able to improve therapy outcome.

Keynote
Intratumoral heterogeneity is the major obstacle for effective
PDAC therapies. Tricky cellular interactions support tumor
progression and resistance to current treatments. The intuition
of different types of communication of cancer cells with stromal
and immune compartments, in several spatial architecture
contexts, is the starting point to understand that PDAC needs
a novel approach. Taking into consideration the multiple faces of
the disease, opposing pro-tumor behaviors and enhancing
tumor-suppressive ones, could be a valuable strategy to
fight PDAC.
THE EMERGING ROLE OF ECM
COMPONENTS IN IMMUNE ESCAPING

A desmoplastic reaction is the deposition of a dense layer of
fibrotic ECM that happens as a response to an insult of different
nature such as tissue damage or neoplastic growth. Desmoplasia
is in fact a hallmark of PDAC, where it probably originates as an
attempt to restrain neoplastic cells (134). In fact, several studies
showed that impairing the stroma deposition lead to a more
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aggressive disease (113, 135, 136). PDAC cells, however, remodel
ECM to escape the confinement and interact with many ECM
proteins to support its growth. It is well known that the protein-
rich and collagen-based ECM plays an important role in PDAC
oncogenesis (137). This dense matrix is composed of type I, type
III, and type IV collagens, glycoproteins, proteoglycans, and
glycoaminoglycans that altogether support tumor progression,
metastatization, and therapy resistance (138, 139).

Recently, several studies also showed that ECM components
also play a role in immune regulation.

In PDAC, collagens are the most abundant ECM proteins
where they form the main scaffold for the TME. The binding of
ECM collagens with integrins and receptors such as DDR-1
expressed on the surface of neoplastic cell promotes proliferation
and migration of PDAC (137). Collagen overproduction and
consequent fibrosis seems to be inversely correlated with
immune infiltration in PDAC, mainly by providing a barrier
for immune cells and activating signaling that promotes immune
escape. Focal adhesion kinase (FAK) is the main driver of
collagen production in PDAC where it is hyperactivated. The
expression of this protein in PDAC correlates with fibrosis and
immune suppression (140). Loss of FAK in PDAC caused not
only a decrease in collagen deposition but also an increase in
effector T-cell infiltration in PDAC models (140). Sharma et al.
(141) targeted the hexosamine biosynthesis pathway (HBP), a
shunt pathway of glycolysis with 6-diazo-5-oxo-l-norleucine to
disrupt collagen deposition in the TME, causing an increase in
immune infiltration and an enhancement of immune checkpoint
inhibitory (ICI) therapy, such as anti-PD1. Deng et al. (142)
showed that the binding of collagen I to DDR1 promoted PDAC
growth, and it was also the major stimulus for CXCL5
production mediated by a DDR1/PKCq/SYK/NF-kB signaling
cascade. CXCL5 production and secretion resulted in the
recruitment of TANs, which not only favored immune
suppression but also supported cancer cell invasion and
metastasis by formation of neutrophil extracellular traps. These
traps are web-like extracellular fibers formed by neutrophils in
the ECM, consisting of chromatin DNA filaments, lactoferrin,
myeloperoxidase (MPO), histones, and elastase that are able to
activate PDAC invasion and also cause apoptosis of cytotoxic T
cells (142).

In addition to collagen, the TME also contains high levels of
glycoproteins that confer an immunosuppressive status.

Galectins are small glycoproteins that actively support cancer
growth and also immune escaping. These proteins are potent
negative regulators of the immune cell functions, and they are
highly expressed in cancer where they favor immune escaping
mainly by inducing CD8+ T-cell death (143). Galectin-1 has been
found to be upregulated in the PDAC, and is lowly expressed in
long-term (≥10 years) survivors (144). Orozco et al. showed that
loss of Galectin-1 in Ela-KrasG12Vp53−/−Lgals1−/− murine
models leads to a reduced stromal activation and favored a
transition in an immune permissive TME causing an effector
T-cell infiltration (145). Moreover, Galectin-1 can be secreted by
aPSCs mediating the immunosuppression of CD8+ T cells and
promot ing T-ce l l apop tos i s , con t r ibu t ing to the
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immunosuppressive TME (146). Galectin-3 is also secreted by
PDAC in the TME, where it inhibits T-cell proliferation (147).
Zhao et al. (148) demonstrated that Galectin-3 released by PDAC
stimulates the production of the M2 macrophages inducer IL-8
on PSCs via ITGB1/NF-kB signaling. Daley et al. (149) showed
that Galectin-9 is also present in PDAC TME where it promotes
tumor progression with its ligand Dectin-1. This Galectin ligand
is a member of the C-type lectin family of pattern recognition
receptors and is present on the surface of myeloid-monocytic
lineage cells, especially in macrophages. Dectin-1 is highly
expressed in PDAC TAMs, where it promotes the M2
phenotype upon activation by ligation with Galectin-9. Daley
et al. showed that anti-Galectin-9 immunotherapy triggered an
immune reprogramming in TAMs favoring the M1 phenotype
and also provoked an increase in immune infiltration and
consequent tumor reduction. This finding paves the way for
the development of new treatment strategies for PDAC. In fact,
Galectin-9 is also known to be a potent stimulator of T-cell
exhaustion and a major cause for immunotherapy failure. Yang
et al. (150) showed that Galectin-9 binds both PD-1 and TIM-3
causing both cell apoptosis and T-cell exhaustion in several types
of tumors, and they also demonstrated that anti-Galectin-9
immunotherapy was an effective treatment.

Mucins are a family heavily glycosylated proteins that are
involved in many physiological mechanisms (151, 152). Mucin
secretion is the main characteristic of PDAC precursor lesions
(IPMNs) (153). Mucins are also highly expressed in PDAC TME;
in fact, most of the recent studies that utilized scRNA-seq to
characterize PDAC samples identified a cluster of mucin-
producing cells especially in the patients with a more
aggressive disease (51, 154, 155). This evidence suggests that
mucins play a major role in PDAC carcinogenesis, not only
supporting PDAC development by activating several oncogenic
pathways, but also sustaining cancer cells to escape the immune
surveillance by multiple mechanisms.

MUC1 has been associated with a decreased interaction of the
NK cell receptor (NKG2D) with the tumor-associated ligand
MICA (major histocompatibility complex class I-related chain
A) by the involvement of Galectin-3, which is differentially
expressed in pancreatic cancer (156, 157). In detail, Galectin-3
can bind the NKG2D-binding site of MICA through modified
core 2 O-glycans of MUC1, thus inactivating NK cells and
inhibiting TNF-mediated apoptosis of cancer cells, promoting
the development of distant metastasis (158, 159). Moreover, the
purification of glycosylated MUC1 from ascitic fluid of
pancreatic patients have demonstrated that this mucin can
influence DC maturation, due to the limited processing and
presentation that retains MUC1 into the early endosomes (160).
DCs can also express MUC1 on their surface, impairing Toll-like
receptor (TLR) activation (161); in fact, the deletion of MUC1
gene induces DC response through the activation of TLR4 and
TLR5 and the production of co-stimulatory molecules, such as
CD40, CD80, and CD86, in addition to the secretion of pro-
inflammatory cytokines, such as TNF-a and VEGF (162). Also,
MUC2 is able to regulate DC response by decreasing pro-
inflammatory cytokines and increasing the secretion of IL-10
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and TGFb1, leading to an increased Treg recruitment (163). On
the other side, MUC4 expressed by pancreatic cancer cells
induces the apoptosis of cytotoxic T cells in a Fas-independent
manner, reducing immune response (164).

Mucins have also been related to metastasis development, due
to their deregulated glycosylation that leads to the expression of
specific structures on their surface, named T, sTn, sLea, and sLex
structures (165). MUC1, MUC2, MUC4, and MUC16 can
express these structures functioning as ligands for selectins that
are expressed on the surface of leukocytes and platelets, inducing
the formation of aggregates and metastasis (166, 167).

MUC5AC determines the suppression of antitumor function
of neutrophils, enhancing tumor progression and metastasis.
Since IL-8 produced by cancer cells induces neutrophil
migration, it has been demonstrated that MUC5AC silencing is
able to increase IL-8 production and neutrophil activation in
pancreatic cancer cells, showing the important role of this mucin
in modulating immune response (168). On the other hand,
MUC16 has been associated with long-term survival of
pancreatic cancer patients, inducing the activation of T cells
reactive to MUC16 neoantigens in response to primary tumors,
which are progressively lost during metastasis development
(169), attesting that mucin activities are very complex and are
strictly related to specific cancer contexts showing different
interactions among stromal, cancer, and immune cells.

Furthermore, TME in pancreatic cancer is strongly hypoxic,
and PSCs are mainly responsible for pH and oxygen level
modulation. In an acidic pH and hypoxic environment, PSCs,
in turn, increase the secretion of HGF that can activate MET
signaling in PDAC cells. MUC20 can contribute to cancer
progression since hypoxia and low pH upregulate MUC20
expression that is able to physically interact with the MET
receptor, being a crucial mediator between PSCs and cancer
cell communication (170). In addition, hypoxia impairs immune
cell function modulating both innate and adaptive immune
response, by transcriptional regulation via hypoxia-inducible
factors (HIFs) (171) and MUC1 is able to stabilize HIF-1a by
reducing the intracellular levels of a-ketoglutarate (172).

In the last decade, the perspective about ECM in PDAC
changes from an inert material to a key regulator of tumor
progression. It is clear now that ECM components’ ratios and
quality are finely regulated by PDAC, which uses these molecules
to communicate with TME cells and keep immunity at bay. The
general view now is that ECM provides a barrier that not only
protects PDAC cells physically, but also provides a plethora of
immunesuppressive signals. A huge effort has been made to
develop new strategies to disrupt these ECM tumor-promoting
functions; some of these sound promising, while many failed.
Probably, the main reason is that we are still missing many pieces
of knowledge about the complex interactions happening in the
ECM. New technologies may help us in the near future in this
context. The arising technologies of ST and proteomics will give
us an unprecedented look into PDAC. The two main spatial
technologies Visium (10X Genomics) and GeoMx (Nanostring)
are able to map on a histological image the entire transcriptome
and the expression of hundreds of proteins simultaneously at a
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resolution of few dozens of microns, helping researchers to
precisely identify and characterize the myriad of interactions
that happen in PDAC TME. Moreover, in 2022, two new spatial
technologies have been presented, the Xenium (10X Genomics)
and CosMx Spatial Molecular Imager (Nanostring) that will move
the ST and proteomics at a single-cell and even sub-cellular level
resolution, increasing exponentially the understanding and
knowledge of PDAC ECM interactome in the years to come.

Keynote
The hypothesis of a crucial role played by ECM in PDAC
progression is a well-demonstrated thesis. Exploiting the ECM,
with all the signals supporting tumor growth and helping cancer
cells in immune evasion, is a successful approach. However, we
need a deeper understanding of specific mechanisms and
interactions in the TME. Many studies are focusing on this
aspect and future directions are all aimed to compose the puzzle,
piece by piece.
THERAPEUTIC STRATEGIES: HOW CAN
WE HARNESS OUR KNOWLEDGE ABOUT
TME TO IMPROVE PDAC TREATMENT?

Current treatment options for PDAC are very limited in their
efficacy. Chemotherapy with gemcitabine as a single agent has
been used for many years (6), but the overall survival of patients
remained extremely low; thus, the combination therapy with
different chemotherapeutic agents became more effective and
entered the clinical practice. Gemcitabine/nab-paclitaxel
and FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan,
and oxaliplatin) are still valid options, but they are associated
with many side effects (10, 12). Recently, a novel second-line
treatment based on nanoliposomal Irinotecan (Nal-IRI) proved
to be effective. The NAPOLI1 trial (173, 174) showed the efficacy
of Nal-IRI in combination with 5-fluorouracil and leucovorin to
increase both overall survival and progression-free survival (PFS)
in both non-metastatic and metastatic patients. The HOLIPANC
trial (175) proved that neoadjuvant combination of Nal-IRI,
oxaliplatin, 5-fluouracil, and folinic acid (NAPOX) had a
considerable antitumor effect and increased overall survival of
patients with a metastatic disease.

Immunotherapy has received much consideration in PDAC,
but without reaching high success rate, due to the complex and
not fully understood relationship between immune and cancer
cells in the TME, as largely described above. Once activated, T
cells express PD-1, a transmembrane glycoprotein type I
belonging to the immunoglobulin superfamily CD28 that is
bound by its ligands, PD-L1 and PD-L2, expressed on antigen-
presenting cells (APCs) and cancer cells, resulting in T-cell
suppression and exhaustion (176). PD-1 expression is transient
and can decrease in the absence of signaling through the T-cell
receptor (TCR); otherwise, it is chronically activated in the
presence of an epitope target, such as in chronic viral
infections and in cancer (177). Less is known about PD-L1
expression on T cells, but recently, it has been demonstrated
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that its ligation stimulates intracellular signaling with a
suppressive activity, similar to PD-1 (178). Moreover, PD-L1
on T cells is able to induce the M2-like macrophage
differentiation via STAT6 signaling and to suppress
neighboring effector T cells (178). Cytotoxic T lymphocyte
antigen 4 (CTLA-4) is another important inhibitory
checkpoint that determines the suppression of the T cells’
response by binding CD80/CD86 on APCs (179). However, the
function of CTLA-4 is not completely understood, and some
authors have proposed that the CTLA-4 cytoplasmic domain
could not be directly involved in the transmission of inhibitory
signals, but could be mainly responsible in regulating the access
of CD28 receptors to their shared ligands (180). The aberrant
overexpression of PD-1, PD-L1, and CTLA-4 is very common in
the TME of PDAC, and they still represent good targets for
immunotherapy, but targeting one of them as monotherapy
approach (immune checkpoint inhibitors ICIs) has not granted
good response in PDAC patients as occurred for other types of
cancer (181–184). However, recent studies showed that the
modulation of the complex cell intrinsic and extrinsic of TME
may effectively increase immunotherapy efficacy. Carbone et al.
(185) showed that intratumoral injection of the Toll-like receptor
9 agonist IMO-2125 in combination with anti-PD1 activated an
immune-suppressive to immune-permissive transition of the
TME in PDAC models with both high and low immunogenic
potential. Toll-like receptor 9 (TLR-9) is a pattern recognition
receptor that is predominantly located in the cytoplasm of DCs,
macrophages, NK cells, and other APCs. IMO-2125 activates
TLR-9 signals that ignite the immune response with the
production of cytokines such as IFNg, IL-6, and IL-12. The
combination of this drug with anti-PD1 not only provoked a
relevant reduction of the tumor in the primary site, but also
showed an abscopal effect on distant sites as a result of the
peculiar efficacy of IMO-2125 to prime the adaptive
immune response.

A phase II clinical trial tested the efficacy of the combination
of PD-1 inhibition (pembrolizumab) with a CXCR4 antagonist
(BL-8040 also known as motixafortide) in patients with
metastatic disease refractory to one or more previous lines of
chemotherapy (186). BL-8040 is a small synthetic peptide that
binds to and inhibits CXCR4 (187, 188). CXCR4 binds to its
ligand CXCL12/SDF1, which is constitutively expressed in the
bone marrow, and inhibits the mobilization of CXCR4
expressing immune progenitor cells. Indeed, numerous
preclinical studies have shown that CXCR4 blockade through
BL-8040 treatment stimulated mobilization of T, B, and NK cells
from lymph nodes and bone marrow into the periphery (188,
189). Moreover, in murine models of lung cancer, BL-8040 also
promoted selective reduction of Tregs (190).

BL-8040 monotherapy and in combination with
pembrolizumab promoted an increase in the density of T cells
(CD3+, CD4+, and CD8+) and activated cytotoxic T cells (CD8+

granzyme B+) and a decrease in immunosuppressive elements
such as MDSCs in the TME.

This is in line with the results from a recent study
demonstrating that the chemokine CXCL12 derived from CAFs
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impairs the trafficking of multiple immune cell types within the
TME, thus favoring an immunosuppressive environment (191).
The authors reported that BL-8040 in combination with
pembrolizumab led to disease control in nearly a third of the
patients with heavily pretreated pancreatic cancer (186).
Successively, an expansion cohort of the study integrating BL-
8040 and pembrolizumab with the NAPOLI-1 chemotherapy
regimen was initiated (192). Enrolled patients had de novo
metastatic PDAC and disease progression following first-line
gemcitabine-based treatment. BL-8040 and pembrolizumab in
combination with nanoliposomal irinotecan, fluorouracil, and
folinic acid showed a potential for higher responses without
added toxicity. Currently, the effects of BL-8040 and the anti-
PD1 cemiplimab in combination with gemcitabine and nab-
paclitaxel for the first-line treatment of metastatic PDAC have
been tested in a phase II study (NCT04543071).

Another approach is targeting the CD40 member of the
tumor necrosis factor family. CD40 is expressed on immune
cells, and its stimulation through the use of agonists has been
shown to increase anticancer activity (193, 194) by improving T-
cell-dependent and -independent immune responses. Although
preliminary, some encouraging data on the feasibility of the use
of CD40 agonists are starting to be available. The phase I study
NCT00711191 tested the therapeutic effect of the agonist CD40
monoclonal antibody (mAb) CP-870,893 in combination with
gemcitabine in patients with advanced PDAC (195). Twenty-two
patients with advanced chemotherapy-naïve PDAC, twenty of
which with metastatic disease, were enrolled in the study. The
results showed that combination of CP-870,893 with
gemcitabine was well tolerated and provided some
encouraging, although preliminary, evidence of efficacy.
Following treatment, a systemic immune response was
detected, characterized by leukocyte trafficking, cytokine
production, and cellular activation. Moreover, thanks to
metabolic imaging, the authors showed that many patients
presented an overall decrease in the metabolic activity of the
primary pancreatic lesion. Nevertheless, the responses of
metastatic lesions to treatment were heterogeneous. These
findings suggest that the CD40 agonist can potentially improve
the efficacy of conventional therapies in PDAC treatment, but
further studies are required (195).

Another phase I study (NCT03214250) tested the agonist
CD40 mAb sotigalimab with gemcitabine and nab-paclitaxel,
with or without anti-PD1 mAb nivolumab (196). The results of
this study showed that this combination had clinical promise and
a clinically manageable safety profile in patients with metastatic
PDAC. Objective responses were documented in 14 of 24 dose-
limiting toxicity-evaluable patients. Median PFS was 11.7
months (95% CI, 7.1 to 17.8), and median overall survival was
20.1 months (95% CI, 10.5 to not estimable). Moreover, systemic
modulation of dendritic cells and B cells was detected, together
with activation of CD4+ and CD8+ T cells. These data support
the hypothesis that the addition of a CD40 agonist to
chemotherapy activates innate and adaptive immune response
in PDAC patients. This is also in line with observation from
studies utilizing CD40 mAb in murine models of PDAC (197,
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198). This approach is now being tested in a randomized phase II
clinical trial (NCT03214250).

The modulating effect of CD40 agonists on TME is also
confirmed by another clinical trial (NCT02588443).
Specifically, the results showed decreased density of tumor
stroma, increased DC activation, shift of TAM polarization
from M2-like to M1-like, as well as increased T-cell
infiltration, proliferation, and activation status (199).

Overall, these results suggest that CD40 agonists can
potentially benefit patients by improving response to
chemotherapy or immunotherapy and, since they act through
distinct mechanisms compared to ICIs, may even provide an
alternative for cancers refractory to ICIs.

Some of the possible strategies to overcome immunosuppression
are presented in Figure 2.

The introduction of cellular immunotherapy has been a
paradigm shift in cancer treatment.

Cell therapy based on chimeric antigen receptor (CAR) is one
of the most studied approaches. CAR-T are genetically
engineered T cells expressing specialized receptors that
recognize and attack cancer cells (200), which are typically
infused systemically. Although CAR-T therapy has shown
promise in the treatment of hematological malignancies, its
application in solid tumors has been hampered by a number of
factors, such as immunosuppressive TME, sub-optimal survival,
and ability of T cells to reach the tumor site, insufficient tumor
infiltration, and limited choice of antigens (201, 202).

As previously described, the unique PDAC TME presents
multiple challenges for the current therapeutic alternatives. CAR
T cells are also affected by the numerous cellular components
and extracellular matrix, which translates in a physical barrier
impairing their detection and infiltration ability (203). Moreover,
TME immune cells directly suppress T-cell activation through
the release and the expression of a variety of factors that limit T-
cell antitumor response (204). Another limit is represented by
the deep heterogeneity observed in PDAC, both among the
tumor cells as well as within the TME. This has drastically
held up the identification of target antigens in PDAC (129).
Despite these limitations, a number of targetable antigens
suitable for cellular immunotherapy are currently being tested
in both preclinical and clinical studies and include CEA, CD24,
HER2, PSCA, MUC1, and MSLN (205, 206). Given the
complexity of PDAC and its TME, and generally, to expand
the use of CAR T cell therapy to solid cancers, cellular
immunotherapies are also being explored in combination with
other therapeutic approaches (207, 208). Recent studies have
shown that chemotherapeutic drugs can be utilized in PDAC as
priming agents before CAR T therapy in order to counteract
the action of immunesuppressive cells, reduce autoimmunity,
reduce tumor burden, sensitize cancer cells to immunotherapy,
and improve CAR T cell survival rate in vivo (207).

In a phase I trial (NCT02159716), aimed at investigating the
safety and efficacy of lentiviral-transduced CARs (209), subjects
affected by solid cancers resistant to chemotherapy (PDAC,
mesothelioma, and ovarian cancer) were administered anti-MSLN
CART cells intravenously with and without cyclophosphamide pre-
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treatment. Indeed, the priming with chemotherapy was associated
with an increase in CAR T cell expansion in peripheral blood, which
peaked at day 14 after administration, but became undetectable after
6 months. Immune escape operated by tumors though upregulation
of immune checkpoint receptors can also lead to CAR T cell
inhibition (210).

The FDA has approved for solid tumors different checkpoint
inhibitors, including mAbs against PD-1 and PD-L1 (211, 212).
In the context of PDAC, CAR T cells against immune checkpoint
inhibitors PD-1/PD-L1 were tested in PD-L1-overexpressing
PDAC cells and in PDAC mouse models. Both CAR T cells
induced tumor regression and reduced T-cell exhaustion (213).
To overcome some of the limitations connected with the use of
autologous CAR T cells, the implementation of allogeneic CAR T
cells is being explored, as well as CAR NK cells and TIL therapy.
Allogenic CAR T cells may offer a cheaper and more
standardized alternative, which does not require individual-
specific manufacturing. T cells can be collected from healthy
donors, expanded, and stored, thus reducing time, cost, and
variability for each treatment (214, 215). The main limitation
with allogenic CAR T therapy is the potential risk for graft-
versus-host disease (GvHD). Lack of compatibility between
donor and recipient human leukocyte antigen (HLA) can lead
to an immune response that will result in the elimination of the
allogenic CAR T cells (216). Given its increased availability, next-
generation sequencing is now being progressively more used to
determine HLA compatibility; at the same time, gene editing
technologies can be used to “hide” allogeneic CAR T cells from
the host immune system by eliminating TCR expression (217).
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CAR NK cells are also being evaluated as an alternative to
allogenic CAR T cells (218). NK cells are components of the
innate immune system that can recognize targets without prior
sensitization, making them ideal candidates to deploy for
therapeutic use against cancer (219). NK cells that recognize
self-cells inhibit their own cytotoxic functions; therefore, more
encouraging progresses have been made with allogeneic NK cell
therapy in preclinical models and clinical trials. Indeed, it has
been shown that autologous NK cells derived from cancer
patients display less cytotoxicity compared to allogeneic NK
cells, derived from healthy individuals (220, 221). In a recent
study, Teng et al. employed, in a metastatic humanized
pancreatic cancer mouse model, NK cells isolated from
umbilical cord blood engineered to express a CAR construct
recognizing prostate stem cell antigen (PSCA) and soluble IL-15
to improve antitumor response (222). The authors report an
increase in cytotoxic function and survival, as well as reduced
tumor growth and prolonged persistence of NK cells within the
TME (up to 48 days).

Currently, two clinical trials (NCT02839954 and
NCT03941457) are investigating the use of allogeneic NK cell
infusions in PDAC, but no result has been published so far
besides a case report from NCT03941457 showing that ROBO1-
targeting NK cell infusions did not lead to serious toxicity (223).
ROBO1 (Roundabout Guidance Receptor 1) mediates cellular
responses to molecular guidance cues in cellular migration
including neural axon guidance during development and has
been found to be overexpressed in PDAC. While allogenic NK
cells are a promising approach, one of the main limitations is the
FIGURE 2 | Main strategies to overcome myeloid and Treg-mediated immunosuppression. Dendritic cells or inflammatory macrophages (TAMs M1) sustain the
antitumor immune response through antigen presentation. Myeloid-derived suppressor cells (MDSCs), anti-inflammatory tumor-associated macrophages (TAMs M2),
and regulatory T (Treg) cells regulate these processes by exploiting inhibitory pathways, thus establishing an immunosuppressive tumor microenvironment. Some of
the most clinically relevant therapeutic strategies available to target those pathways are reported. Created with BioRender.com.
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limited number of cells that a single donor can provide.
Therefore, the use of NK cell lines is also being investigated
(224). In a phase I clinical trial, CAR NK-92 cells directed against
MUC1 and PD-1 were tested on a variety of cancers expressing
both proteins (225). No severe adverse effects were observed, and
out of 13 subjects, 9 presented stable disease, one presented
progressive disease, while the other 3 were withdrawn from the
study. In an orthotopic PDAC model, treatment with anti-
ROBO1 CAR NK-92 cells was reported to synergize in
combination with brachytherapy (226); moreover, CAR NK-92
cells were well tolerated when administered as a case study in an
individual with metastatic pancreatic cancer, and the patient
achieved stable disease for 5 months (223). In a recent study, Da
et al. have investigated the antitumor efficacy of stimulator of
interferon gene (STING) agonist cyclic GMP-AMP (cGAMP) in
combination with CAR NK-92 cells targeting mesothelin in a
preclinical mouse model of pancreatic cancer (227). The authors
demonstrate that cGAMP can directly activate NK cells and
enhance the sensitivity of pancreatic cancer cells to the
cytotoxicity of NK cells. Moreover, the combination of cGAMP
with CAR NK-92 cells targeting mesothelin improved antitumor
efficacy (227).

Currently, three phase I/II clinical trials (NCT03941457,
NCT03940820, and NCT03931720) are ongoing to evaluate the
safety and efficacy of anti-ROBO1 CAR NK-92 cell therapy in
PDAC and other solid tumors. In a more recent approach, CAR
NK cells are manufactured from induced pluripotent stem cells
(iPSCs). CAR iPSC NK cells are derived from triple-homozygous
HLA donors, thus reducing the risk of rejection over multiple
infusions, and with the advantage of working with a cell
population that can grow indefinitely in an undifferentiated state
via self-renewal (228, 229). Moreover, this approach also allows
the increase of NK cell cytotoxicity through genetic engineering
(230–236). Clinical and preclinical studies are still ongoing;
however, CAR iPSC-NK cells could possibly provide a way for
consistent production of NK cells with an identical phenotype.

TILs are a heterogeneous population of lymphocytes that
naturally infiltrate solid tumors during the initial immune
response (237). Briefly, TILs are isolated from a tumor biopsy
and expanded ex vivo. The patient is then admitted to the
hospital, to receive preconditioning non-myeloablative
lymphodepletion, autologous TILs, and interleukin-2 (IL-2)
infusion. Currently, the efficacy of TIL therapy in PDAC is
being assessed in phase I and phase II clinical trials
(NCT05098197, NCT03935893, and NCT03610490); however,
TIL therapy has achieved positive clinical results in clinical trials
for other cancers. The adverse effects reported are connected to
the high dose of IL-2 required after infusion and to the
lymphodepletion (238–241). Despite the limited clinical
efficacy of cellular immunotherapy in PDAC, this field of
research is still promising. Several strategies are being tested in
order to overcome the challenges posed by the unique TME and
heterogeneity of pancreatic cancer. Eventually, the development
of off-the-shelf cellular immunotherapies will reduce
manufacturing costs and time to treatment administration and
result in overall less variability of the product.
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Also, immunotherapy in combination with epigenetic therapy
has recently been shown to be a promising approach (242, 243).
Epigenetic alterations are prominent in PDAC (21) and may be
involved in primary and acquired resistance to treatment by
conferring fitness advantage to tumor cells (244). The first
epigenetic drugs to be approved by the Food and Drug
Administration (FDA) and European Medicines Agency
(EMA) for certain hematological malignancies were inhibitors
of histone demethyltransferases (DNMTis) and histone
deacetylases (HDACis). However, first-generation epigenetic
drugs like the DNMTis azacytidine and decitabine and the
HDACis vorinostat and romidepsin have shown limited
efficacy in the treatment of solid tumors (245). Second-
generation compound drugs (the DNMTis zebularine and
guadecitabine and the HDACis belinostat, panobinostat,
tucidinostat, and valproic acid), while showing increased
selectivity (245), have also shown considerable side effects.
Recently, a new generation of epigenetic drugs is being
developed and is entering clinical testing.

Epigenetic drugs have been tested in combination with other
anticancer therapies, in order to overcome resistance and
sensitize cancer cells to treatment.

In the context of immunotherapy of PDAC, it has been recently
shown using the KPC mouse model that low-dose treatment with
the hypomethylating drug decitabine (DAC) can potentiate the
response to ICI therapy. The authors reported increased tumor
necrosis, slowing of tumor growth, and increased numbers of
CD4+, CD8+, PD-1+ TILs. However, the authors also reported a
potentially unfavorable increase of M2 macrophages, following
DAC treatment, that are predicted to antagonize ICI antitumor
effects (243), thus suggesting that combination therapy using
epigenetic drugs and immunotherapy can be further optimized.

In the future, new approaches will be developed involving a
combination of next-generation epigenetic drugs and novel
immunotherapy modalities, like vaccine-based and adoptive T-
cell therapies (246, 247). The success of PDAC treatment will
depend on the successful integration of genomic, epigenomic,
and transcriptomic data in order to identify precise biomarkers
for patient stratification and subsequent implementation of
personalized strategies.

Precision medicine approaches have been nicely discussed in
a very recent review. Hosein and colleagues have focused on
current preclinical and clinical evidence to show promising
combinatorial approaches, with the important conclusive
message of future directions that could take into account side
effects of PDAC treatments, with the aim to improve the quality
of life for many patients (248).

Keynote
PDAC is not completely strong and much vulnerability has been
unveiled. Current research shows much more integrated
approaches, to understand the disease from different points of
view, but finally considering the unique context and unifying the
huge efforts that many researchers are doing in the world. Last
but not least, there is an urgent need for biomarkers to stratify
patients and monitor therapies’ efficacy. Circulating cancer cells
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interact with immune cells influencing their function. The
consideration of a systemic immune involvement should be a
key point of view to understand surprising interactions.
CONCLUSION

Despite the existence of a number of therapeutic options, PDAC
remains among the diseases with the most urgent and prevalent
medical need. The principal reason is the limited success of
current treatments, which can be attributed to both late diagnosis
and trouble in reaching and killing cancer cells. The challenging
improvement of present therapeutic opportunities also harbors
the necessity to identify targets for early diagnosis and novel
drugs. To this aim, translational research focused in
understanding the complicated connections among cells in the
TME is more and more valuable to hypothesize novel treatment
Frontiers in Immunology | www.frontiersin.org 143435
approaches. In closing, a strong prevention campaign for
patients with high-risk factors and familiar predisposition for
this cancer could be useful to avoid advanced disease.
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Characterization of the immune
cell infiltration landscape
in myxofibrosarcoma to
aid immunotherapy

Zi-Yue Zhao1,2, Zhuo-Yuan Chen1,2, Bin Yu1,2, Bo Xiao1,2,
Li-Yan Liu1,2, Yu Xia1,2, Ao-Yu Li1,2, Ping-Xiao Wang1,2,
Cheng Xiang1,2, Chao Liu1,2, Hui-Qin Yang1,2,3,
Hui Li1,2* and Tao Xiao1,2*

1Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, China,
2Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China,
3Department of Orthopedics, The Affiliated yanan Hospital of Kunming Medical University,
Kunming, China
Myxofibrosarcoma (MFS) is a highly malignant subtype of soft tissue sarcoma,

accounting for 5% of cases. Immunotherapy guided by immune cell infiltration

(ICI) is reportedly a promising treatment strategy. Here, MFS samples (n = 104)

from two independent databases were classified as ICI clusters A/B/C and gene

clusters A/B/C. Then, a close relationship between ICI and gene clusters was

established. We found that the features of these clusters were consistent with

the characteristics of immune-inflamed tumors (cluster C), immune-desert

tumors (cluster B), and immune-excluded tumors (cluster A). Moreover, cluster

C was sensitive to immunotherapy. Finally, an independent ICI score was

established to predict the therapeutic effect, which has prospects for

application in guiding immunotherapy during clinical practice.

KEYWORDS

MFS, ICI, TME, prognosis, immunotherapy
Introduction

Myxofibrosarcoma (MFS) is an important subtype of soft tissue sarcoma, accounting

for 5% of soft tissue sarcomas and predominantly occurring in the limbs of elderly men

(1, 2). The pathological feature of MFS is pleomorphic tumor cells exhibiting nodular

morphology in the myxoid stroma with an infiltrative growth pattern (3–5). Recently,

surgery has become the mainstay of treatment for MFS (6). In low-grade MFS, the

infiltration and growth characteristics lead to deceptive tumor tissue boundaries (highly

malignant but with a low cellular appearance). The risk of metastasis is inevitable with
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high-grade MFS malignancy. Regrettably, the rate of in situ

recurrence after the MFS resection remains high (7).

Consequently, although the overall prognosis of MFS is better

than that of soft tissue sarcoma, given its unique pathological

characteristics, individualized and accurate treatment is still

helpful in improving the prognosis and survival expectation

(8). Accordingly, it is essential to construct a novel immune cell

infiltration (ICI) prognosis signature for predicting the

prognosis and guiding the personalized treatment of

MFS patients.

It has been established that immune cell infiltration is an

important feature of the tumor microenvironment (TME) (9).

Research on ICI is essential for researchers to better understand

the TME, with mounting evidence that the efficacy of

immunotherapy can be improved by increasing the degree of

ICI in TME (10). Indeed, research on ICI in tumor tissue

undoubtedly contributes to developing treatment plans.

Immune checkpoint inhibitors (ICIs) represent a relatively

new treatment scheme and have been the subject of a series of

studies to assess their efficacy in various tumors (11–13), with

satisfactory results being achieved in the clinic (14, 15).

Compared with traditional treatments, ICIs play a crucial

role in inducing a long-term immune response (16). In

particular, researchers have conducted clinical experiments to

evaluate the efficacy of pembrolizumab, nivolumab (anti-PD-1)

and ipilimumab (anti-CTLA) alone or in combination for

sarcoma treatment (17). A study showed that after

immunotyping of soft tissue sarcoma according to the

composition of TME, there were B-cell-rich tertiary lymphoid

structures in the two subtypes of the immune-high group, which

showed a high response rate to PD-1 blockade with

pembrolizumab in a phase 2 clinical trial (18). A study showed

that although PD-L1 can predict the clinical outcome of

pazopanib (a type of tyrosine kinase inhibitor, TKI) for

treatingsoft tissue sarcoma, predictive models are still

warranted to determine which patient population will benefit

from pazopanib (19).

A recent retrospective study of ICIs in sarcoma treatment by

You et al. analyzed the treatment-related indicators of 61

sarcoma patients treated with ICIs. It was suggested that

alveolar soft part sarcoma (ASPS), undifferentiated

pleomorphic sarcoma (UPS), and myxofibrosarcoma (MFS)
Abbreviations: MFS, myxofibrosarcoma;ICI, immune cell infiltration; GO,

Gene Ontology; GSEA, Gene Set Enrichment Analysis; TME, tumor

microenvironment; ICIs, immune checkpoint inhibitors; ASPS, alveolar soft

part sarcoma; UPS, undifferentiated pleomorphic sarcoma; PP, pseudo-

progression; HP, hyper-progression; mrcc, metabolic renal cell carcinoma;

HCC, hepatocellular carcinoma; tkis, tyrosine kinase inhibitors; TCGA, The

Cancer Genome Atlas; GEO, Gene Expression Omnibus database; FPKM,

fragments per kilobase per million; DEGs, differentially expressed genes;

TMB, tumor mutational burden; OS, overall survival time; BP, biological

process; CC, cellular component; MF, molecular function.
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were sensitive to immunotherapy (20). Notwithstanding that

ICIs represent a new type of immunotherapy different from

traditional anti-tumor therapy, the drug toxicity and efficacy

remain relatively unknown during treatment, and prediction

methods to investigate the treatment reaction are quite limited; it

can be challenging to determine and optimize the pseudo-

progression (PP) and hyper-progression (HP) of ICI treatment

in time (21). For the immunotherapy of various tumors,

although monotherapy with ICIs yields a good prognosis, it is

widely thought that the combination of ICIs and other targeted

drugs yields a better curative effect. Accordingly, the

combination of drugs has gradually become a new direction

for immunotherapy: A study analyzed the data of 1,769 cases of

metabolic renal cell carcinoma (MRCC) routinely collected in

randomized controlled trials and found that ICIs combined with

TKIs significantly improved the prognosis of MRCC patients

(22). In a retrospective study on the prognosis of

immunotherapy with ICIs for hepatocellular carcinoma

(HCC), the researchers found that the identification of

predictive biomarkers of response (such as TMB and PD-L1)

could effectively help patients during immunotherapy,

suggesting that the targeted study of prognostic biomarkers of

immunotherapy has broad prospects (23). Therefore, our study

substantiates that the prognosis prediction index of

immunotherapy for MFS based on ICI score has clinical

significance for guiding the optimization of immunotherapy.
Methods

Myxofibrosarcoma data collection

Clinical information and transcriptomic data of MFS

patients were obtained from The Cancer Genome Atlas

(TCGA) and Gene Expression Omnibus (GEO) databases. The

TCGA-SARC was designated the “CASE” type by the TCGA,

and the data were downloaded in fragments per kilobase per

million (FPKM) format. The MFS survival data were searched in

GEO, and the data which met the research requirements (n ≥30)

were selected and downloaded based on the integrity of survival

information and the sample size of the dataset. There were 40

samples from the TCGA and 64 samples from GEO (Dataset

GSE 72545).
Consensus clustering for the landscape
of immune cell infiltration

To quantify the degree of infiltration of 22 different immune

cell subsets in MFS tissue samples, the R package “CIBERSORT”

was used to conduct immune cell infiltration typing and the

most appropriate grouping number was selected for follow-up

research. To ensure the stability of the classification, 1,000
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iterations were performed. The immune/stromal cell content of

every sample was assessed by the ESTIMATE algorithm to

determine the purity of tumor samples. Additionally, the

unsupervised clustering “PAM” method was used in the

analysis based on EUCLIDEAN and WARD’s linkage. To

explore the possible relationship between MFS-related genes

and the ICI pattern at the genetic level, the differentially

expressed genes (DEGs) involved in MFS samples were

classified by the same method.
ICI-related DEGs enrichment analysis
and establishment of the ICI score

After genotyping MFS patients through unsupervised

clustering, the “Boruta” algorithm and “PCA” were used to

translate each sample and obtain various scores for the main

characteristics. The difference between the ICI scores of the two

main marker genes of each sample was the exact ICI score of this

scheme: ICI score = ∑ PCIA − ∑ PCIB. Then, Gene Set

Enrichment Analysis (GSEA) enrichment analysis of the

related pathways of the ICI high group and ICI low group was

conducted. The ICI-related genes (DEGs) were classified by the

“limma” R package according to the ICI in MFS samples. The

appropriate number of genotypes was calculated according to

the previous results to further explore the pattern of ICI. After

preliminary processing, the data were corrected, and significant

DEGs were screened based on the criteria: p <0.05 and absolute

fold change >1. Then, Gene Ontology (GO) functional

enrichment analysis was conducted.
Independent verification of ICI score

MFS-related somatic mutation data were obtained from the

TCGA. It is well-established that TMB is the number of mutations

in the coding region of an exome (number of mutations detected

in exon/mb length) (24). TMB is a validated scoring criterion for

predicting tumor immunotherapy. Therefore, we used TMB as the

standard to conduct differential expression analysis on MFS

samples to confirm the sample composition, and then used the

combination of ICI score and TMB score to conduct a stratified

test to verify the independence of the ICI score.
Data statistics and visualization

The Wilcoxon test analyzed the difference between the two

groups, while the Kruskal–Wallis test was used for more than two

groups. Kaplan–Meier survival curves were generated. Various R

packages were used to visualize the results, including: “limma,
Frontiers in Immunology 03
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e1071, estimate, corrplot, ConsensusClusterPlus, survival,

survminer, pheatmap, reshape2, ggpubr, ggplot2, and Boruta.”

Violin plots were generated by an online tool (http://vip.

sangerbox.com/login.html).
Results

The immune cell infiltration landscape in
the TME of MFS

CIBERSORT and ESTIMATE algorithms were used to

analyze the MFS tumor tissue samples and quantify immune

cells in MFS. The 104 tumor samples of MFS from the TCGA and

GEO were divided into three subtypes by unsupervised clustering

according to the pattern of ICI and the stability of the results

(Figure 1). After cluster analysis, 100 of 104 samples with

meaningful data were retained and classified as follows: ICI

cluster A (n = 47), ICI cluster B (n = 22), and ICI cluster C (n =

31). There were significant differences in the prognosis and

outcome among the three ICI types (log-rank test, p <0.001). We

found that the overall survival (OS) of ICI cluster B was significantly

lower than the other two sub-types (Figure 2A). As seen in the

heatmap, significant differences in clinical characteristics were

found among the three ICI clusters, while the box plot showed

the differences in expression of 22 immune cell subtypes and the

Stromal/Immune Score. Significantly higher infiltration levels of

resting memory CD4 T cells (p <0.001), activated NK cells (p

<0.01), monocytes (p <0.001), M2 macrophages (p <0.001), and

resting mast cells (p <0.001) were found in ICI cluster A compared

with the other 2 clusters. Memory B cells (p <0.05), resting NK cells

(p <0.01), and M0 macrophages (p <0.001) exhibited significantly

higher infiltration levels in ICI cluster B. Finally, CD8 T cells (p

<0.001), follicular helper T cells (p <0.001), gamma delta T cells (p

<0.001), and M1 macrophages (p <0.001) exhibited higher

infiltration levels in ICI cluster C, with the higher results in the

Stromal/Immune Score (Figure 2B). We used a correlation

coefficient matrix heat map to show the interaction among the

immune infiltration characteristics. A negative correlation was

found between M2 macrophage and follicular helper T cells, M2

macrophage and CD8 T cells, M2 macrophage and gamma delta T

cells, resting memory CD4 and CD8 T cells, and immune score and

resting memory CD4 T cells. A positive correlation was found

between gamma delta and CD8 T cells, Immune Score and CD8 T

cells, Immune Score and gamma delta T cells, eosinophils and

activated CD4 memory T cells, and M1 macrophage and CD8 T

cells (Figures 2C, D).

To further explore the feasibility of immunotherapy in

MFS, the expression differences in common immune

checkpoint-related genes in ICI typing were reflected by a

violin plot, in which CTLA4, LAG3, PD-1, and PD-L2 were

significantly different in three ICI sub-types (p <0.01). CTLA4,
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LAG3, PD-1, and PD-L2 expression in ICI cluster C was

significantly higher than in clusters A and B, and there were

significant differences among the three ICI subtypes of these

four genes (Figure 3).
Frontiers in Immunology 04
4546
Genotyping and difference analysis of
ICI-related genes

The gene expression of all samples was analyzed by ICI typing

and the R package “limma.” After three repetitions, 689 DEGs were
A B

D E F

G H I

C

FIGURE 1

We typed 104 samples from the TCGA-MFS and GEO (GSM 72545) through CIBERSORT analysis. The samples were finally divided into 3
independent subtypes according to the stability of typing results. (A–F) represent the sample purity when the typing was 2–7: The blue square
in the figure represents different classification aggregations. The darker the color and the smaller the number of blanks, the lower the difference
in the aggregated samples and the higher the purity of typing. (G–I) reflect the purity of typing and the stability in the samples: (G) The abscissa
is the sample, and the ordinate is the different classification, reflecting the stability between samples after different classification; (H) Cumulative
Distribution Function (CDF) curve showing the sampling error in different classifications; (I) Explanation of CDF curve, although the results of
both analyses were better, we still chose 3 types in combination with (A–F).
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C

FIGURE 2

Analysis of differences among ICI subtypes and immune infiltration characteristics. (A) We analyzed the difference in Overall Survival (OS) among the
3 ICI subtypes and visualized the details via a K-M survival curve: compared with ICI cluster A and ICI cluster C, the OS of ICI cluster B was
significantly lower, p <0.001; (B) Unsupervised cluster analysis was used to analyze the distribution of immune infiltration characteristics in MFS
samples. The abscissa represents the immune infiltrating characteristics, and the ordinate represents independent samples; (C) We explored the
relationships among 24 immune infiltrating characteristics (22 kinds of immune infiltrating cells and Stromal/Immune Score): red indicated a positive
correlation, and blue indicated a negative correlation. The higher the correlation, the larger the pie chart area; (D) The differences in expression of
24 immune infiltration characteristics in 3 ICI subtypes are visualized in a box plot: ***p <0.001, **p <0.01, and *p <0.05 ns p>0.05,no significance.
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obtained under the conditions of |logFC |>1 and corrected p-value

<0.05. By clustering the obtained DEGs of the samples with the

same arithmetic as the ICI subtypes, the sample sub-types according

to genes could also be calculated, which were called gene clusters.

Considering the stability within the sub-types, three gene sub-types

were divided from the differentiated samples (n = 104): gene cluster

A (n = 43), gene cluster B (n = 41), and gene cluster C (n = 20).

Gene clusters corresponded to ICI clusters (ICI cluster A–gene

cluster A, ICI cluster B–gene cluster B, ICI cluster C–gene cluster

C). In the prognostic K–M curve related to genotyping, the OS of

gene cluster A was significantly lower than that of the other two

clusters (p <0.001) (Figure 4).

KM analysis of three independent gene clusters showed

significant differences in OS. The OS of gene cluster A was

significantly lower than that of the other two clusters (log-

rank test, p <0.001) (Figure 5A). To further clarify the

difference in ICI characteristics in the genotyping of MFS,

the expression of 24 immune infiltrating characteristics in 101

differentiated MFS samples was analyzed by genotyping. M0
Frontiers in Immunology 06
4748
macrophage (p <0.001) exhibited high infiltration levels in

gene cluster A; activated NK cells (p <0.001), monocytes (p

<0.001), M2 macrophages (p <0.001), activated dendritic cells

(p <0.05), and resting mast cells (p <0.001) were highly

expressed in gene cluster B. Plasma cells (p <0.05), CD8 T

cells (p <0.001), activated CD4 memory T cells (p <0.05),

follicular helper T cells (p <0.001), gamma delta T cells (p

<0.001), M macrophages (p <0.001), Stromal Score (p <0.05),

and Immune Score (p <0 .001) were s ign ificant ly

overexpressed in gene cluster C. Addit ional ly , the

expression of the resting CD4 memory of T cells in gene

cluster C was lower than in gene clusters A and B (Figure 5B).

Subsequently, we sought to stratify according to the

relationship between gene expression and ICI characteristics

of MFS samples. Positive correlated genes were attributed to

class A (n = 70) while negative correlated genes to class B (n =

29), which was displayed in a heatmap (Figure 5C). To describe

the relationship between these genes and biological processes

(BPs), cellular components (CCs), molecular function (MF),
A B

DC

FIGURE 3

The expression differences between immune checkpoint-related genes and ICI subtypes were represented by a violin plot: CTLA4 (A), LAG3 (B),
PD-1 (C), and PD-L2 (D): There was a significant statistical difference among the three groups. Among the four independent genes, ICI cluster C
exhibited significantly higher expression than ICI clusters A and B, and the average expression of ICI cluster B was relatively lower than ICI
cluster (A) ICI clusters: 1-blue-A, 2-yellow-B, 3-red-C. ****p<0.0001, ***p <0.001, **p <0.01, and *p <0.05.
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and GO enrichment analysis were conducted. In class A, genes

were involved in the proliferation and activation of immune

cells, including the activation and degranulation of

neutrophils, the proliferation and regulation of leukocytes,

positive regulation of cytokine production, the proliferation

of lymphocyte and mononuclear cells, which mostly occurred

in secretory vesicles, NAD(P)H oxidase complex, and

secondary lysosomes in the plasma membrane. Potential

molecular functions include the activity of pattern

recognition receptors, superoxide-generating NAD(P)H

oxidase and oxidoreductase, and the binding of cytokine,

peptide, amide and amyloid-beta (Figure 5D). Moreover, we

found that class B had a close relationship with the
Frontiers in Immunology 07
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composition of extracellular matrix and was significantly

enriched in the biological function of extracellular matrix

components of tumor tissue by participating in the

composition of extracellular matrix in collagen, collagen

trimer, endoplasmic reticulum cavity, integrin complex, and

protein complex involved in cell adhesion. (Figure 5E).

To verify the consistency between ICI typing and

genotyping, we analyzed the differences in four immune

checkpoint-related genes with significant expression

differences in ICI subtypes by genotyping. Similar to ICI

typing, the four differential genes (CTLA4 (A), Lag3 (B),

PD-1 (C), and PD-L2 (D)) in gene cluster C were significantly

higher than in the other two clusters. Statistical differences
A B

D E F

G H I

C

FIGURE 4

We classified 104 different samples through unsupervised clustering. According to the obtained correlation results among types (A–F), the
number of gene types was set to 3. The correlation among types was comparable; a low correlation was associated with stable classification
results (G–I).
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FIGURE 5

Differential analysis of genotyping of immune infiltration. (A) After unsupervised cluster analysis of DEGs and samples, we divided the samples
into three independent gene clusters, the overall survival (OS) was analyzed by Kaplan–Meier analysis, and the log-rank test showed that P
<0.001. (B) The differences in expression among 24 kinds of immune infiltrating characteristics in the 3 gene clusters were visualized in a box
plot and statistically analyzed by Kruskal–Wallis test. (C) The clinical information was divided into two types. The abscissa was the samples, and
the ordinate was the genes. (D, E) According to gene type A and gene type B, which were positively correlated with the ICI model in DEGs, the
ordinate was the name of GO, the abscissa was the number of enriched genes, and the color represented the significance of the correlation
(red indicated a positive correlation and blue indicated a negative correlation). ***p <0.001, **p <0.01, *p <0.05 and ns p>0.05,no significance.
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among the three subtypes were also significant. The

consistency of the expression of immune checkpoint genes

in different unsupervised cluster typing confirmed the

rationality of ICI typing in MFS (Figure 6).
Acquisition of ICI model score and
verification with tumor mutation burden

The rationality and stability of the ICI model were

determined in advance. The feature genes and the related

sample expression volumes were extracted according to the

ICI classification using the “Boruta” algorithm. Then, the

“PCA” algorithm was used to obtain the ICI score. High (n =

88) and Low (n = 16) groups were obtained from the samples

according to their source, gene clusters, and clinical

information. The Sankey diagram provided an objective

overview of the relationship among gene clusters, survival

outcomes, and ICI scores. All the genes of cluster A and most

genes of cluster B belonged to the ICI High group, and the

remaining genes of cluster B and some of cluster C belonged
Frontiers in Immunology 09
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to the ICI Low group. Compared with the ICI High group, the

ICI Low group reflected a high probability of survival

(Figures 7A, C). The immune checkpoint and immune-

activating genes (IDO1, CD274 (PD1), HAVCR2, PDCD1

(PD-L1), CTLA4, LAG3, CD8A, CXCL10, CXCL9, GZMA,

GZMB, PRF1, IFNG, TBX2, and TNF) were selected as the

target genes, and their differential expression in the ICI High

and Low Scores groups was observed. Except for TBX2, all

related genes exhibited significantly higher expression in the

ICI Low Score group than in the High Score group (p >0.05)

(Figure 7B). GSEA was conducted to identify the different

functional pathways in the ICI High and Low Scores groups;

375 pathways were enriched in the ICI High Scores group and

429 in the ICI Low Scores group. We selected the top 5 related

pathways for visualization: Taste Transduction, Calcium

Signaling Pathway, Vascular Smooth Muscle Contraction,

Neuroactive Ligand Receptor Interaction, and Vasopressin

Regulated Water Reabsorption in the ICI High score group

and Spliceosome, Proteasome, RNA Degradation, Nucleotide

Excision Repair, and DNA Replication in the ICI Low scoring

group (Figure 7D).
A B

DC

FIGURE 6

The expression differences of 4 immune checkpoint-related genes in gene subtypes were consistent with ICI subtypes: CTLA4 (A), Lag3 (B), PD-
1 (C), and PD-L2 (D): Gene clusters: 1-blue-A, 2-yellow-B, 3-red-C. **** p<0.0001 ***P <0.001, **P <0.01, and *P <0.05.
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FIGURE 7

Established and verified the ICI score. (A) The relationship among gene clusters, ICI high or low groups and survival outcomes is visualized in a
Sankey diagram. (B) Based on the ICI score, we analyzed the expression difference among the immune checkpoint genes and immune-
activating genes. It should be noted that PDCD1LG2 is another name for PD-L2. (C) Effect of ICI score on patient survival. (D) GSEA indicated
significantly enriched signaling pathways corresponding to high and low ICI score groups. (E) Survival analysis was performed by TMB score in
our selected MFS samples. (F) MFS samples were stratified by TMB score and the ICI score established in this study. ***p<0.001,**p<0.01,
*p<0.05 and ns p>0.05, no significance.
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The current evidence suggests that tumor mutation

burden (TMB) is an effective biomarker for immunotherapy

of various tumors (24). Previous studies have shown that the

TMB High group is more sensitive to ICIs for tumor patients

with immunotherapy (25). Stratified analysis is an effective

method to explore the relationship between a new model of

tumor immunotherapy prognosis and TMB (26). According

to the immune characteristics of TMB, we divided the MFS

samples into the TMB High and TMB Low groups. The TMB

High group had a significantly better OS (p = 0.027)

(Figure 7E). Then, we began assessing the potential link

between TMB and ICI scores. In the stratified analysis, the

survival status of ICI Low groups (yellow and purple) was

significantly higher than that of ICI High groups (blue and

red) (p = 0.033), and the survival status of the TMB High

groups (yellow and bule) was higher than that of the TMB

Low groups (red and purple) (Figure 7F). No relationship was

found between the ICI scores and TMB results.
Discussion

Current evidence suggests that tumor immunotherapy is

more dependent on the interaction between tumor cells and

the tumor microenvironment (TME) than histological

findings (27). Overwhelming evidence substantiates that the

immune infiltration microenvironment can be harnessed to

predict the prognosis of gastric, breast, and lung cancers (28–

31). The identification of gene deletions in tumor samples is

highly significant for tumor treatment. Interestingly, it has

been shown that there are more gene deletions in sarcoma

samples with low immune infiltration, while the samples with

high immune infiltration exhibit stronger adaptability to the

therapeutic effect (32). Similarly, recent studies have

proposed that the polygenic immune risk score model based

on immune cell infiltration in osteosarcoma is a reliable

prognostic tool for osteosarcoma (33, 34). Nonetheless, few

studies have hitherto been conducted on MFS. Importantly,

our study can improve the current knowledge on the

prognosis of MFS from the perspective of autoimmunity.

First, the immune cells infiltrated in 104 MFS samples

from different databases were classified by unsupervised

cluster analysis. The difference in prognostic information

was analyzed based on the obtained ICI classification and

the r e l a t i onsh ip s among 24 immune infi l t r a t i on

characteristics (22 immune infiltration cells and immune

score, stromal score) were explored. Multiple immune

checkpoint-related genes were selected as immune

checkpoints, and their differences in expression were

ana l y z e d ba s ed on immune i nfi l t r a t i on t yp i n g .

Subsequently, after obtaining DEGs related to immune

infiltration, genotyping was carried out by unsupervised
Frontiers in Immunology 11
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cluster analysis. Genotyping was used to analyze the

differences between clinical prognosis and outcome of MFS

samples; the consistency with ICI typing results was verified.

Meanwhile, the characteristic genes related to immune

infiltration were obtained using “Boruta” and “PCA.” Then,

the ICI High and Low score groups were obtained by gene

analysis of immune infiltration. For this step, GO enrichment

analysis was used to explore the genes and protein functions

related to the ICI High and Low score groups. At the same

time, the differences in immune checkpoint genes were

analyzed again by gene typing. The results were compared

with the results of the first step to verify the stability and

rationality of our ICI typing. Finally, the difference between

immune checkpoint and immune activation-related genes

was analyzed by the ICI score obtained during the second

step, and GSEA enriched the top five signaling pathways

between ICI high and low score groups. TMB is often

considered as the number of tumor mutations (35). It is

well-established that TMB could be used as an independent

biomarker related to ICI in various solid tumors. Therefore,

the feasibility of our MFS-related ICI prediction model was

validated by comparing TMB with our established ICI score

(36). Our results showed that the established ICI score had a

definite guide value in predicting the prognosis of patients

with MFS. However, the results were visualized in a Sankey

diagram. It was found that the ICI score could not accurately

predict the prognosis, which may be related to the differences

in other cytokines, components, and localization points of

TME during GO analysis of MFS. These results show that

unidentified biological processes may affect the accuracy of

our ICI prognosis model.

Interestingly, Chen et al. documented an unprecedented

immunophenotypic typing in 2017 (37), including immune-

inflamed (characterized by a large number of infiltrated

immune cel l s , B cel l act ivat ion, T regulatory cel l

participation, and T cell depletion; checkpoints inhibitors

exert an effective antitumor effect), immune-excluded

(characterized by a large number of immune cells in the

stroma, with high immune and stromal scores, and few

immune infiltrating cells overall; checkpoint inhibitors yield

poor antitumor efficacy) and immune-desert tumors

(characterized by few or no CD8 T cells in the whole

sample, exhibiting immune tolerance or immune neglect;

checkpoints inhibitors exert no effect). According to the

results in Figures 2D, 5B, ICI cluster A and gene cluster A

showed the lowest expression of B and T cells, and immune

infiltration levels were generally low; cluster C showed higher

expression of the immune score and T cells, especially CD8 T

cells. The difference in immune infiltration characteristics in

our study was consistent with the three immune phenotypes,

which further validated the rationality of our typing

approach: an immune-inflamed tumor corresponded to
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cluster C (red), an immune-excluded tumor to cluster A

(blue), and an immune-desert tumor to cluster B (yellow).

At the same time, the high expression of immune checkpoint

genes in cluster C emphasized the importance of selecting

checkpoint inhibitors to achieve an antitumor effect. Our

results were consistent with the literature (36, 38, 39), which

proved that typing ICI and gene clusters could guide clinical

immunotherapy of MFS. Our findings substantiate that the

increase of immune infiltrating cells in the TME is a positive

factor for the prognosis of the tumor. Therefore ,

immunotherapies that can improve the degree of immune

cel l infi l trat ion in the TME are worth advocating.

Interestingly, it has been reported that autologous dendritic

cell immunotherapy could produce an active immune

response in tumors, but reliable biomarkers are warranted

to guide the treatment plan (10).

According to the GSEA results, the high-scoring group of

tumor samples in ICI was significantly enriched in the

activation and proliferation of immune cells. In a study on

tumor dichotomy (hot tumor and cold tumor), Li et al.

documented that immunotherapy yielded a better effect on

hot tumors. In mice experiments, the six-month survival rates

of the hot and cold tumor groups were 76.9 and 0.5%,

respectively (40). The overlap in characteristics of hot tumors

suggested that the prognosis of immunotherapy accounted for

the better prognosis in ICI cluster C (41). The difference

between the ICI score and the TMB score was significant (P

= 0.033), which corroborated that the ICI score was a new

valuable independent score.

However, we could not further validate the ICI score given

the lack of MFS samples, which were from public databases or

case collections of our research group. Our ICI score only

evaluated the prognosis of MFS from the perspective of

immune infiltration without considering other complex

mechanisms in TME. At the same time, the difference in

some results (especially between immune excluded and

immune inflamed) was not significant due to the sample

size limitation.
Conclusion

Our s tudy comprehens i v e l y ana l y z ed th e IC I

characteristics of MFS, established the effectiveness of ICI

typing and gene typing, predicted the prognosis of MFS

samples through ICI scores, and evaluated the therapeutic

effect of MFS under ICI typing along with differences in

immune checkpoint-related genes, which could assist

physicians in developing individualized immunotherapy

schemes and prognosis prediction.
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Development and validation
of a cancer-associated
fibroblast-derived lncRNA
signature for predicting clinical
outcomes in colorectal cancer

Hongda Pan1,2*†, Jingxin Pan3† and Jianghong Wu1,2*

1Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China, 2Department
of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 3Department of Hematology,
The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
Cancer-associated fibroblasts (CAFs) are actively involved in cancer progression

through generating extracellular matrix and orchestrating the crosstalk within the

tumor microenvironment (TME). This study aimed to develop and validate a CAF-

derived lncRNA (long non-coding RNA) (CAFDL) signature for predicting clinical

outcomes in colorectal cancer (CRC). Clinical data and transcriptomic profiles of

2,320 patients with CRC from The Cancer Genome Atlas (TCGA)-COAD and

TCGA-READ datasets and 16 Gene Expression Omnibus datasets were included in

this study. CAFDLs were identified using weighted gene co-expression network

analysis. The CAFDL signature was constructed using the least absolute shrinkage

and selection operator analysis in the TCGA-CRC training set. Multiple CRC

cohorts and pan-cancer cohorts were used to validated the CAFDL signature.

Patients with high CAFDL scores had significantly worse overall survival and

disease-free survival than patients with low CAFDL scores in all CRC cohorts. In

addition, non-responders to fluorouracil, leucovorin, and oxaliplatin (FOLFOX)/

fluorouracil, leucovorin, and irinotecan (FOLFIRI) chemotherapy,

chemoradiotherapy, bevacizumab, and immune checkpoint inhibitors had

significantly higher CAFDL scores compared with responders. Pan-cancer

analysis showed that CAFDL had prognostic predictive power in multiple

cancers such as lung adenocarcinoma, breast invasive carcinoma, stomach

adenocarcinoma, and thyroid carcinoma. The CAFDL signature was positively

correlated with transforming growth factor-beta (TGF-b) signaling, epithelial–

mesenchymal transition, and angiogenesis pathways but negatively correlated

with the expression of immune checkpoints such as PDCD1, CD274, and CTLA4.

The CAFDL signature reflects CAF properties from a lncRNA perspective and

effectively predicts clinical outcomes in CRC and across pan-cancer. The CAFDL

signature can serve as a useful tool for risk stratification and provide new insights

into the underlying mechanisms of CAFs in cancer immunity.

KEYWORDS

cancer-associated fibroblasts, long non-coding RNAs, colorectal cancer, pan-cancer,
prognosis, signature
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Introduction

Colorectal cancer (CRC) is the thirdmost common cancer and

the second leading cause of cancer-related death worldwide.

Standard treatments for CRC include surgery, adjuvant or

neoadjuvant chemotherapy and radiotherapy, and targeted

therapy (1). In recent years, immune checkpoint inhibitors (ICIs)

have revolutionized the treatment of patients with CRC, especially

those with microsatellite instability-high (MSI-H)/mismatch-

repair-deficient (dMMR) status (2). Cancer-associated fibroblasts

(CAFs) are the most abundant of all stromal cells that populate the

tumor microenvironment (TME). CAFs modulate the biological

properties of cancer cells and other stromal cells through

orchestrating the crosstalk within TME and releasing a variety of

regulatory factors (3). The extracellularmatrix remodeled by CAFs

acts as a physical barrier supporting tumor cell invasion and

inhibiting infiltration of antitumor leukocytes, leading to cancer

progression, immune evasion, and immunotherapy resistance (4).

In addition, CAFsmay confer substantial therapeutic resistance by

impairing drug delivery and immune signaling pathways (5).

Previous studies have shown that high CAF infiltration indicates

poor survival. CAFs are identified by protein biomarkers such as

alpha–smooth muscle actin or fibroblast activation protein (6).

Herrera et al. recently reported a CAF-derived gene signature for

predicting CRC prognosis involving 596 protein-coding genes (7).

Accumulating evidence suggests that long non-coding RNAs

(lncRNAs), a subset of non-coding RNAs with >200 nucleotides

in length, are closely implicated in the biological behaviors of CAFs

(8, 9). However, comprehensive analysis of lncRNAs associated

with CAFs is still lacking. Therefore, studies revealing the roles of
Frontiers in Immunology 02
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CAF in cancer immunology from a lncRNA perspective are

warranted. CAFs have a higher infiltration level in CRC

compared with other cancer types, suggesting that CAFs play a

more important role in CRC than in other cancers. CRC has a large

number of high-quality sequencing datasets containing lncRNA

expression profiles.

In this study, we developed and validated a CAF-derived

lncRNA (CAFDL) signature based on clinical data and

transcriptomic profiles of 2,320 patients with CRC from 18

datasets. The CAFDL signature could serve as a robust

predictor of overall survival (OS) and disease-free survival

(DFS), as well as response to all mainstay treatments of CRC,

including chemotherapy, chemoradiotherapy, targeted therapy,

and immunotherapy. Moreover, pan-cancer analysis revealed

the predictive power of the CAFDL signature in multiple

cancers, and its molecular and immune correlates were

explored (Figure 1). Our study opens up new avenues for risk

stratification and provides new insights into the underlying

mechanisms of CAFs in CRC and across pan-cancer.
Materials and methods

Data acquisition and processing

Transcriptomic RNA sequencing and corresponding clinical

data of 10,148 patients across 33 cancer types including colon

adenocarcinoma (COAD) and rectal adenocarcinoma (READ)

were downloaded from the TCGA database (https://portal.gdc.

cancer.gov). The raw read count was converted to transcripts per
FIGURE 1

Flow chart of this study.
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kilobase million (TPM) format and log2(x+1)-transformed.

Expression profiles and clinical information obtained from the

GeneExpressionOmnibus (GEO) for 16CRCdatasets (GSE17536,

GSE17537, GSE19860, GSE28702, GSE29621, GSE31595,

GSE33113, GSE37892, GSE38832, GSE39582, GSE45404,

GSE62080, GSE69657, GSE72970, GSE92921, and GSE143985)

using the Affymetrix® GPL570 platform. For immunotherapy

cohorts, transcriptome and clinical information of IMvigor210

(10) was downloaded from the online database (http://research-

pub.gene.com/IMvigor210CoreBiologies). Gene expression

profiles and clinical data of Gide’s (11), Nathanson’s (12), Kim’s

(13), Braun’s (14), and Liu’s (15) cohorts were obtained from their

articles. Expression profiling and clinical data of GSE91061 (16)

weredownloaded fromtheGEOdatabase.The “ComBat” tool from

the “sva” package of the R software was applied to correct for

systematic batch effects among the TCGA and GEO datasets. The

“ComBat” tool fromthe “sva”packageof theR softwarewas applied

to correct for systematic batch effects between the TCGA-COAD

and TCGA-READ datasets and among 16 GEO datasets,

respectively. Patients with a follow-up or survival duration of less

than 30 days were excluded from survival analysis to rule out the

bias due to loss to follow-up or perioperative death.
Tumor immunemicroenvironment analysis

CAF infiltrations were evaluated using three algorithms: EPIC

(17), xCELL (18), and MCPcounter (19). Tumor purity and the

presence of infiltrating stromal/immune cells in tumor tissues were

predicted using ESTIMATE algorithm (20). Immune cell

infiltrations in 33 cancer types were calculated using seven

algorithms: TIMER (21), EPIC, xCELL, CIBERSORT (22),

QUANTISEQ (23), MCPcounter, and TIDE (24).
Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA) is

a systematic bioinformatics algorithm capable of integrating

highly coordinated expressed genes into several gene modules

and investigating the relationship of modules to phenotypes of

interest. An appropriate soft power threshold (b) was chosen to

find the best balance to generate the largest number of modules

without loss of gene module membership (MM). WGCNA was

conducted using the “WGCNA” package in R.
Construction of the prognostic signature

The TCGA-CRC cohort was randomly divided into a training

set and an internal validation set in a 1:1 ratio. All CAFDLs

identified from WCGNA were included in the least absolute
Frontiers in Immunology 03
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shrinkage and selection operator (LASSO) Cox regression model

to construct the powerful prognostic signature. LASSO analysis was

repeated for 1,000 iterations until the area under the curve (AUC) of

time-dependent receiver operating characteristic (ROC) analysis

reached a maximum value in both the training and internal test

cohorts. A multivariate Cox regression model was finally used to

determine the coefficient and construct a prognostic signature based

on the candidate lncRNAs generated from the LASSO analyses. A

risk score for each patient was calculated as the sum of each gene’s

score, which was obtained by multiplying the expression of each

gene and its coefficient. The sensitivity and specificity of the

prognostic signature were accessed by ROC curves and area

under the ROC curves (AUC values).
Single-sample gene set
enrichment analysis

The enrichment scores of cancer hallmark gene sets were

calculated by single-sample gene set enrichment analysis

(ssGSEA) method with the “ssGSEA” package in R. Cancer

hallmark gene sets were downloaded from Molecular

Signatures Database.
Quantitative real-time PCR

TRIzol reagent (Thermo Fisher Scientific, Carlsbad, CA,

USA) was used to extract the total RNA from CRC and

normal tissues according to the manufacturer’s protocol.

Reverse transcription was performed using a Prime Script RT

reagent kit (Takara Biotechnology, China). Applied Biosystems

7900 Real-time PCR System (Thermo Fisher Scientific) was used

to perform the quantitative real-time PCR (qRT-PCR) assay.

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used

to normalize lncRNA expression.
Results

Assessing CAF infiltrations
in CRC cohorts

First, we established two integrated cohorts, namely, TCGA-

CRC and meta-GEO. The TCGA-CRC cohort of 625 patients

consisted of TCGA-COAD (N = 458) and TCGA-READ (N =

167) datasets. On the other hand, the meta-GEO cohort of 1,116

patients was pooled from six GEO datasets with OS data:

GSE17536 (N = 177), GSE17537 (N = 55), GSE29621 (N =

65), GSE38832 (N = 122), GSE39582 (N = 573), and GSE72970

(N = 124). CAF infiltrations in each CRC sample were evaluated

using three algorithms: EPIC, MCPcounter, and xCELL

(Table S1).
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WGCNA identified CAFDLs

After gene symbol annotation, 12,644 lncRNAs in the

TCGA-CRC and 2,023 lncRNAs in the meta-GEO cohort were

obtained. A total of 1,993 lncRNAs were shared by both cohorts.

We performed WGCNA on the lncRNA expression profiles of

TCGA-CRC and meta-GEO cohorts, respectively. The optimal

soft threshold used to generate modules was 3 for both cohorts.

The numbers of modules identified byWGCNA for TCGA-CRC

and meta-GEO cohorts were 14 and 9, respectively (Figure 2A).

We analyzed the relationship between modules and CAF

infiltrations assessed by EPIC, MCPcounter, and xCell

algorithms. CAF infiltration was significantly associated with

turquoise module in TCGA-CRC (REPIC = 0.67, RMCP = 0.74,

and RxCell = 0.54, respectively) (Figure 2A). The correlation

coefficient between the gene significance (GS) of CAF infiltration

and MM in the TCGA-CRC turquoise module reached 0.81

(Figure 2B). In meta-GEO, CAF infiltration was significantly

associated with green module (REPIC = 0.64, RMCP = 0.45, and

RxCell = 0.55, respectively) (Figure 2A). The correlation

coefficient between GS of CAF infiltration and MM in the

meta-GEO green module reached 0.84 (Figure 2C). The

turquoise module of TCGA-CRC contains 153 lncRNAs,

whereas the green module of meta-GEO contains 654

lncRNAs. We obtained 703 lncRNAs in these two modules,

which were defined as CAFDLs (Figure 2D).
Development of the CAFDL signature

The TCGA-CRC cohort was randomly divided into a

training set and an internal validation set. LASSO regression

analysis was used to select the optimal CAFDLs for building a

risk prediction model (Figure 2E). A multivariate Cox regression

model was finally used to determine the coefficient and construct

a prognostic signature based on the candidate lncRNAs

generated from the LASSO analyses (Figure 2F). The CAFDL

signature consists of 21 lncRNAs (HOTAIRM1, LINC01082,

MSC-AS1, LINC00460, USP30-AS1, AC096531.2, CASC15,

DGCR9, CT75, JAKMIP2-AS1, LINC00574, LINC00839,

LINC01686 , LINC01711 , LINC02044 , LINC02593 ,

MIR181A2HG, PAX8-AS1, SLC25A21-AS1, WEE2-AS1, and

ZEB1-AS1), and its corresponding risk score (CAFDL Score) is

the sum of the products of all lncRNA expression values and

coefficients. We examined the expression of these 21 lncRNAs in

CRC and normal tissues. Among the 21 lncRNAs, 14 lncRNAs

(HOTAIRM1, LINC01082, LINC00460, USP30-AS1,

AC096531.2, CASC15, CT75, LINC00574, LINC01711,

LINC02593, MIR181A2HG, SLC25A21-AS1, WEE2-AS1, and

ZEB1-AS1) were significantly differentially expressed between

CRC and adjacent normal tissues. LINC00460, CASC15,

LINC01711, MIR181A2HG, and ZEB1.AS1 were significantly
Frontiers in Immunology 04
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upregulated in CRC tissues, whereas the remaining lncRNAs

were significantly downregulated in CRC compared with normal

tissues (Figure 2G). Next, we analyzed the OS and DFS of

patients with CRC with high or low expression of the 21

lncRNAs, as suggested by the reviewers. CT75, DGCR9,

HOTAIRM1, LINC00460, LINC01082, LINC01711,

LINC02044, USP30-AS1, and ZEB1.AS1 were significantly

associated with OS (Figure S1A), and AC096531.2, CT75,

DGCR9, HOTAIRM1, LINC00839, LINC01082, LINC02044,

LINC02593, MIR181A2HG, SLC25A21-AS1, WEE2-AS1, and

ZEB1.AS1 were significantly associated with DFS (Figure S1B).

Each cohort was divided into high and low CAFDL groups

according to the optimal cutoff value calculated by the

“survminer” package in R. Kaplan–Meier survival analysis

showed that patients with high CAFDL scores in the TCGA-

CRC cohort had significantly worse OS than patients with low

CAFDL scores [P < 0.001, hazard ratio (HR) = 2.41, 95%

confidence interval (CI) 1.64–3.55] (Figure 3A). We collected

20 pairs of CRC and adjacent normal tissue samples for qRT-

PCR analysis. The expression of 11 of 21 lncRNAs

(HOTAIRM1, LINC01082, LINC00460, USP30-AS1, CASC15,

JAKMIP2-AS1, LINC00574, LINC01711, LINC02593,

SLC25A21-AS1, and ZEB1-AS1) was significantly different

between CRC and adjacent normal tissues. Among them,

LINC00460, CASC15, JAKMIP2-AS1, LINC01711, and ZEB1-

AS1 were significantly upregulated in CRC tissues, whereas

HOTAIRM1, LINC01082, USP30-AS1, LINC00574,

LINC02593, and SLC25A21-AS1 were significantly

downregulated in CRC tissues (Figure S2A).
Validation of the predictive value of
CAFDL signature for OS in CRC cohorts

We apply the CAFDL signature to eight CRC cohorts to

validate its predictive value for OS. In the TCGA-COAD (HR =

2.54, P < 0.001), TCGA-READ (HR = 2.67, P = 0.026),

GSE17536 (HR = 2.30, P < 0.001), GSE17537 (HR = 2.91, P =

0.023), GSE29621 (HR = 3.55, P = 0.004), GSE39582 (HR = 2.37,

P < 0.001), GSE72970 (HR = 1.90, P = 0.008), and total CRC

cohorts (HR = 2.18, P < 0.001), patients with high CAFDL scores

had significant worse OS compared with those with low CAFDL

scores (Figure 3A, Figure S3), except for GSE38832 (P = 0.172,

HR = 1 .79) , whose OS di ff e rence d id not reach

statistical significance.
Validation of the predictive value of
CAFDL signature for DFS in CRC cohorts

Next, we validate predictive value of CAFDL signature for

DFS in 12 cohort with DFS data. In the TCGA-COAD (HR =
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2.06 P < 0.001), TCGA-READ (HR = 2.05, P = 0.045), GSE17536

(HR = 3.03, P = 0.015), GSE17537 (HR = 2.44, P < 0.029),

GSE29621 (HR = 5.29, P = 0.02), GSE31959 (HR = infinity, P =

0.004), GSE33113 (HR = 4.53, P < 0.001), GSE37982 (HR = 2.82,

P < 0.001), GSE38832 (HR = 7.26, P = 0.025), GSE39582 (HR =

1.79 P < 0.001), GSE92921 (HR = 8.47 P < 0.019), and
Frontiers in Immunology 05
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GSE143982 (HR = 3.31, P = 0.016) cohorts, all patients with

high CAFDL scores had significantly worse DFS compared with

those with low CAFDL scores (Figure 3B). We performed ROC

analysis of the CAFDL signature in each of the TCGA and GEO

datasets for the predictive ability of DFS and OS at 1, 3, and 5

years and calculated its AUC values (Figure S2B).
B
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FIGURE 2

WGCNA identified CAFDL and LASSO analysis. (A) WGCNA identified modules associated with CAF infiltration calculated by EPIC, MCPcounter,
and xCell in TCGA-CRC and meta-GEO cohorts. (B) Correlation between gene significance for CAF infiltration and module membership in
turquoise module in TCGA-CRC cohort. (C) Correlation between gene significance for CAF infiltration and module membership in green
module in meta-GEO cohort. (D) A Venn diagram showing the number of lncRNAs in the turquoise module in the TCGA-CRC cohort and the
green module in the meta-GEO cohort. (E) LASSO analysis identifies 21 CAF-derived lncRNAs. (F) Multivariate Cox analysis calculated the
coefficient for each lncRNA in the CAFDL signature. (G) Expression of 21 CAF-derived lncRNAs in CRC and normal tissues. **P < 0.01, ***P <
0.001, NS non-significant.
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CAFDL signature is an independent
prognostic factor for OS and DFS

Univariate (Figures S2C, E) and multivariate Cox analyses

(Figures S2D, F) were performed for multiple clinicopathological

factors (age, gender, histological differentiation, and American

Joint Committee on Cancer (AJCC) TNM stage) together with

the CAFDL signature in the TCGA-CRC cohort. The results

showed that CAFDL signature, age, and TNM stage were

independent prognostic factors for OS, whereas CAFDL

signature and TNM stage were independent prognostic factors

for DFS.
CAFDL signature predicts response to
chemotherapy, radiotherapy, and
targeted therapy

Chemotherapy, radiotherapy, and targeted therapy are the

mainstay treatments for CRC. Non-responders to FOLFOX
Frontiers in Immunology 06
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(GSE28702 and GSE69657; Figures 4A, B) and FOLFIRI

(GSE62080; Figure 4C) chemotherapy had significantly higher

CAFDL scores compared with responders. The AUC values of

CAFDL signature for predicting response to chemotherapy in

GSE28702 (Figure 4A), GSE69657 (Figure 4B), and GSE62080

(Figure 4C) were 0.639, 0.715, and 0.750, respectively. In

addition, CAFDL signature can also effectively predict the

response to chemoradiotherapy in patients with rectal cancer

(GSE45404, AUC = 0.72); non-responders had significantly

higher CAFDL score than responders (Figure 4D). Notably,

CAFDL signature had excellent predictive power for response

to bevacizumab (GSE19860, AUC = 1); all responders belonged

to the low CAFDL score group (Figure 4E).
CAFDL signature predicts
immunotherapy outcomes

We appl ied the CAFDL signature to mul t ip le

immunotherapy cohorts and found that non-responders to
B

A

FIGURE 3

CAFDL signature can effectively predict the prognosis of patients with CRC. (A) Patients with high CAFDL scores have significantly worse overall
survival than those with low CAFDL scores in TCGA-CRC, TCGA-COAD, TCGA-READ, GSE17536, GSE17537, GSE29621, GSE38832, GSE39582,
GSE72970, and total CRC cohorts. (B) Patients with high CAFDL scores have significantly worse disease-free survival than those with low CAFDL
scores in TCGA-COAD, TCGA-READ, GSE17536, GSE17537, GSE29621, GSE31595, GSE33113, GSE37892, GSE38832, GSE39582, GSE92921, and
GSE143985 cohorts.
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ICIs had significantly higher CAFDL scores compared with

responders in Gide’s cohort (melanoma treated with anti–

programmed cell death 1 (PD-1)/cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) antibody; Figure 4F), Kim’s

cohort (gastric cancer treated with anti–PD-1 antibody;

Figure 4G), and GSE91061 (melanoma treated with anti–PD-1

antibody; Figure 4H). The AUC values of CAFDL signature for

predicting response to immunotherapy in Gide’s cohort

(Figure 4F), Kim’s cohort (Figure 4G), and GSE91061

(Figure 4H) were 0.753, 0.649, and 0.705, respectively.

Moreover, patients with high CAFDL scores had a significantly

worse prognosis than those with low CAFDL scores in Braun’s
Frontiers in Immunology 07
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cohort (clear cell renal cell carcinoma treated with anti–PD-1

antibody), Gide’s cohort, IMvigor210 (bladder urothelial

carcinoma treated with anti–programmed death ligand 1 (PD-

L1) antibody), Liu’s cohort (melanoma treated with anti–PD-1

antibody), andNathanson’s cohort (melanoma treated with anti–

CTLA-4 antibody) (all P < 0.05; Figure 5A). In the IMvigor210

cohort, patients in the low CAFDL score group had significantly

higher PD-L1 protein expression levels in immune cells

(Figure 5B) and tumor cells (Figure 5C). The high CAFDL score

group had higher proportion of immune desert phenotype, lower

proportion of immune-inflamed phenotype (Figure 5D), and

lower CD8+ T effector infiltration (Figure 5E).
B
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FIGURE 4

CAFDL signature can effectively predict the response to mainstay treatments of CRC. (A–E) Non-responders to FOLFOX (A, B) and FOLFIRI
(C) chemotherapy, chemoradiotherapy (D), and bevacizumab targeted therapy (E) had significantly higher CAFDL scores compared with
responders (left panels). ROC curves demonstrate the predictive power of the CAFDL signature for response to these treatments (right panels).
(F–H) Non-responders to ipilimumab/nivolumab (F), pembrolizumab (G), and nivolumab (H) had significantly higher CAFDL scores compared
with responders (left panels). ROC curves demonstrate the predictive power of the CAFDL signature for response to these treatments (right
panels). *P < 0.05, **P < 0.01, and ****P < 0.0001.
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CAFDL signature predicts prognosis
across multiple cancers

In addition to COAD and READ, we also attempted to

explore the predictive power of the CAFDL signature for clinical

outcomes in other cancers. The CAFDL signature is effective in

prognostic stratification in the most common cancers, including

lung adenocarcinoma (LUAD), breast invasive carcinoma

(BRCA), stomach adenocarcinoma (STAD), thyroid carcinoma

(THCA), bladder urothelial carcinoma (BLCA), kidney renal

clear cell carcinoma (KIRC), adrenocortical carcinoma (ACC),

cervical squamous cell carcinoma and endocervical

adenocarcinoma (CESC), kidney chromophobe (KICH),

sarcoma (SARC), thymoma (THYM), and uterine corpus

endometrial carcinoma (UCEC) (all P < 0.05; Figure 5F),

implying that CAFDL has broad applicability across pan-cancer.
Frontiers in Immunology 08
6263
Immune correlates of CAFDL signature
across pan-cancer

To fully demonstrate the pan-cancer TME landscape, immune

cell infiltrations across pan-cancer were evaluated using seven

algorithms: TIMER, EPIC, xCell, CIBERSORT, QUANTISEQ,

MCPcounter, and TIDE (Figure 6A). As expected, the CAFDL

signature was closely associated with the CAF infiltration

(Figure 6A). Epithelial cells, another important member of the

stromal component, also had a strong correlation with the CAFDL

signature. In addition, the CAFDL signature was also significantly

associated with macrophage M2 in COAD and READ. CAFDL

signature showed no or negative correlation with major immune

cells such as CD8+/CD4+ T cells, B cells, and M1 macrophages.

Next, we used the ESTIMATE algorithm to evaluate the pan-

cancer stromal score and immune score. The CAFDL signature
B C D E

F

A

FIGURE 5

CAFDL signature predicts clinical outcomes in immunotherapy cohorts and pan-cancer cohorts. (A) Patients with high CAFDL scores have
significantly worse overall survival than those with low CAFDL scores in Braun’s, Gide’s, IMvigor210, Liu’s, and Nathanson’s cohorts. (B, C) In the
IMvigor210 cohort, patients in the low CAFDL score group had significantly higher PD-L1 protein expression levels in immune cells (B) and
tumor cells (C). (D)The high CAFDL score group had higher proportion of immune desert phenotype and lower proportion of immune-inflamed
phenotype. (E) The high CAFDL score group had significantly lower CD8+ T effector infiltration. (F) In addition to COAD and READ, patients with
high CAFDL scores have significantly worse overall survival than those with low CAFDL scores in 12 TCGA datasets: LUAD, BRCA, STAD, THCA,
KICH, KIRC, ACC, SARC, BLCA, CESC, THYM, and UCEC. **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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showed a positive correlation with the stromal score, with an

overall correlation of 0.14 for the entire pan-cancer cohort and a

median correlation of 0.16 across 33 cancers, ranging from −0.25

to 0.71 (Figure 6B). However, CAFDL exhibited negative

correlations with the immune score (R = −0.14; Figure 6C)

and the ESTIMATE score (the integration of the stromal score

and the immune score, R = −0.02; Figure 6D), respectively.

Notably, CAFDL signature showed moderate correlation with

stromal score in COAD (R = 0.51) and READ (R = 0.56) and

weak correlation with immune score in COAD (R = 0.36) and

READ (R = 0.39), respectively. These results indicated that

CAFDL could specifically reflect the properties of stromal

components in TME but had a weak correlation with immune

cell infiltration.
Frontiers in Immunology 09
6364
Molecular features of CAFDL signature

We calculated the enrichment scores for cancer hallmark

gene sets across 33 cancer types using the ssGSEA method. The

CAFDL signature was significantly positively correlated with

epithelial–mesenchymal transition (EMT), WNT/b-Catenin
signaling, angiogenesis, and TGF-b signaling pathways across

pan-cancer, which are important mechanisms that occur in the

tumor stroma to promote tumor development and metastasis

(Figure 7A). Moreover, we analyzed the correlation of CAFDL

signature with expression of immune regulators. TGF-b is well

known to be one of the most important regulators of CAF

activation (25). The CAFDL signature was significantly

positively associated with TGFB1, CD276, CD40, VEGFA,

VEGFB, etc., but showed significantly negative correlation

with immune checkpoints (such as CD274, PDCD1, CTLA4,
B
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FIGURE 6

Pan-cancer immune correlates of CAFDL signature. (A) Correlation of CAFDL signature with immune cell infiltration evaluated using seven
algorithms: TIMER, EPIC, xCELL, CIBERSORT, QUANTISEQ, MCPcounter, and TIDE across pan-cancer. (B–D) Correlation of CAFDL signature
with stromal score (B), immune score (C), and ESTIMATE score (D) across pan-cancer.
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TIGHT, and HAVCR2) and anti-cancer immune regulators

(IFNG, IDO1, and GZMA) (Figure 7B).
CAFDL signature is associated with
immune exclusion

The TIDE online tool was used to assess the potential of

immune escape across pan-cancer. The TIDE score consists of

two components: immune dysfunction and immune exclusion.

CAFDL signature was positively correlated with exclusion score,

with an overall correlation of 0.14 for the entire pan-cancer

cohort and a median correlation of 0.24 across 33 cancers,

ranging from −0.16 to 0.49 (Figure 7C). However, CAFDL

signature had little correlation with dysfunction score (R =

0.04; Figure 7D) and TIDE score (R = 0.07; Figure 7E),

suggesting that CAF prevents immune cells from killing tumor

cells more by generating extracellular matrix (immune

exclusion) than by directly causing immune dysfunction.
Frontiers in Immunology 10
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CAFDL signature is independent of
tumor mutation burden and
microsatellite instability

Microsatellite instability (MSI) and tumor mutation burden

(TMB) are well-established predictors of response to

immunotherapy, but they are both intrinsic features of cancer cells

andare theoreticallyunrelated toCAFs. In theGSE39582,GSE92921,

and GSE143985 cohorts, there were no significant differences in

CAFDL scores between mutant and wild-type tumors of v-raf

murine sarcoma viral oncogene homolog B1 (BRAF) (Figures

S4A–C), kirsten rat sarcoma viral oncogene (KRAS) (Figures S4D–

F), and tumor protein P53 (TP53) (Figures S4G–I). Moreover, we

found little correlation between CAFDL signature and TMB across

33 cancers (Figure S5A), includingCOAD(R=0.13) andREAD(R=

0.02). Likewise, CAFDL scores of MSI-H/dMMR tumors were not

significantly different from those of MSS/pMMR tumors in TCGA-

COAD, TCGA-READ, GSE39582, GSE92921, and GSE143985

cohorts (Figures S5B–F).
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FIGURE 7

Molecular features of CAFDL signature. (A) Correlation of CAFDL signature with cancer hallmark gene sets across pan-cancer. (B) Correlation of
CAFDL signature with common immune regulators across pan-cancer. (C–E) Correlation of CAFDL signature with immune exclusion score
(C), immune dysfunction score (D), and TIDE score (E) across pan-cancer.
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Discussion

CAFs are major components of the TME and interact with

cancer cells by secreting extracellular matrix proteins as well as

cytokines and growth factors. CAFs block immune cell

infiltration and drug delivery, leading to immune escape and

resistance to various treatments including chemotherapy,

radiotherapy, targeted therapy, and immunotherapy. In recent

years, several studies have shown that CAF is closely related to

the poor prognosis of patients with cancer (26–28), and the

underlying mechanisms have begun to be revealed. Chen et al.

reported that CAFs impact the survival outcomes and treatment

response in CRC by regulating immune system (27). Li et al.

discovered a subgroup of CAFs correlated with poor survival

outcomes in patients with gastric cancer using single-cell RNA

sequencing (29). Sun et al. demonstrated that prognostic

signature based on CAF-secreted cytokines were associated

with genetic alterations and clinical outcomes (30). Zheng

et al. revealed that CAFs play an important role in TME, and

their secreted extracellular protein can serve as a prognostic

marker for triple-negative breast cancer (31). However, these

studies on CAFs are based on protein-encoding genes, and

studies on lncRNAs are still lacking. Herrera et al. (7) reported

a CAF-derived gene signature for predicting CRC prognosis

involving 596 protein-coding genes rather than lncRNAs, which

is different from our study. Zhang et al. (8) found that DNM3OS,

a CAF-promoted lncRNA, confers radio-resistance by regulating

DNA damage response in esophageal squamous cell carcinoma.

This study focused on the biological function of a specific CAF-

related lncRNA, whereas our study was a comprehensive

analysis of CAF-related lncRNAs. Liu et al. (9) developed an

immune-derived lncRNA signature for improving outcomes in

CRC using machine learning methods. This study involved

immune-derived lncRNAs rather than specifically focusing on

CAFDLs. LncRNA signatures have been widely reported in

CRC, and these signatures are closely related to specific

biological behaviors, including tumor immunity (9), epigenetic

modification (32, 33), and cell death (34). To the best of our

knowledge, this is the first comprehensive study on CAFDLs in

CRC, to establish a CAFDL signature in CRC, which

is innovative.

WGCNA has been successfully applied to identify gene

modules with various biological functions or cellular

characteristics (35, 36). In our study, we used WGCNA to

establish a co-expression network of lncRNAs and obtained

multiple modules through co-expression relationships. We

analyzed the correlation between the expression level of each

module and CAF score in CRC tissues, identified CAF-related

lncRNA modules, and finally identified CAFDLs.

Many studies have established lncRNA-based prognostic

prediction models (37–40). Liu et al. developed a novel

immune-related lncRNA signature in endometrial carcinoma

(37), patients were randomly divided into training cohort and
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test cohort, univariate Cox analysis was used to screen lncRNAs

associated with prognosis, LASSO regression was used to screen

lncRNAs most associated with DFS, and finally multivariate Cox

was used to establish a scoring system. In another study

developing an EMT-related lncRNA signature (38), patients

were also randomly divided into training group and test

group, risk prediction model was built, and the weight of each

lncRNA was calculated using LASSO regression. Yuan et al.

identified m5C-related lncRNAs in pancreatic ductal

adenocarcinoma (39), a preliminary screening was performed

by univariate Cox, a prediction model was established by LASSO

regression, and a risk score was calculated. A recent study

constructed a mutation-derived genome instability-related

lncRNAs signature in endometrial cancer (40), patients were

randomized 1:1 into training or test sets, and risk prediction

models were built using univariate and multivariate Cox

regression. In our study, we used TCGA-CRC to build a risk

prediction model and used the meta-GEO cohort as external

validation. The TCGA-CRC cohort is randomly split into a

training set and an internal validation set in a 1:1 ratio. The

LASSO analysis was repeated for 1,000 iterations until the AUC

reached a maximum value in both the training set and the

internal test set. Multivariate Cox regression models were finally

used to determine coefficients and construct prognostic

signatures based on candidate lncRNAs generated by LASSO

analysis. In contrast to the previously mentioned literatures, we

did not perform a univariate analysis of the initial screening.

This is because lncRNAs that constitute prognostic risk models

may not reach statistical significance when prognostic analysis is

performed on individual genes. Potential prognostic information

may be lost if certain important lncRNAs are deleted. Then,

because the results of LASSO regression analysis may vary each

time, we used multivariate Cox analysis to finally determine the

weight coefficient of each lncRNA after LASSO regression

established the prognostic model, instead of directly using

LASSO regression to calculate the coefficient, which was

similar to the analysis method of Liu’s study (37).

Our study included 18 datasets of 2,320 patients with CRC,

including COAD and READ datasets from the TCGA database,

and 16 CRC datasets from the GEO database. We established the

CAFDL signature in TCGA-CRC training set and verified its

predictive value in all CRC datasets. The CAFDL signature can

effectively predict the prognosis of patients with CRC, including

OS and DFS. In addition, CAFDL has also demonstrated robust

predictive power for response to chemotherapy, radiotherapy,

and targeted therapy, which are the mainstays of treatment for

CRC. Seven additional immunotherapy datasets were

incorporated into our study, and we found that CAFDL can be

used as a predictor of response to ICIs. Through comprehensive

analysis based on large-scale clinical samples and transcriptomic

data, we demonstrate that CAFDL can serve as a robust tool for

predicting survival outcomes and treatment response in patients

with CRC.
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Furthermore, pan-cancer analysis showed that, in addition

to COAD and READ, CAFDL had prognostic predictive power

in multiple cancers (such LUAD, BRCA, STAD, and THCA).

The expression level of CAFDL in pan-cancer is not clear, and

the CAFDL signature may not be applicable in all tumors. The

purpose of pan-cancer analysis in our study is to try to expand

the applicability of CAFDL signature to other cancers. This

provides evidence for researchers to conduct further studies in

other cancer types in the future.

We further explored the molecular and immune

mechanisms and found that CAFDL signature was positively

correlated with TGF-b signaling, EMT, and angiogenesis

pathways but negatively correlated with the expression of

immune checkpoints such as PDCD1, CD274, and CTLA4.

Moreover, the CAFDL signature was independent of MSI and

TMB, both of which are intrinsic features of cancer cells rather

than stromal cells.
Conclusion

In summary, we developed the robust CAFDL signature that

can effectively predict the survival outcomes and response to

multiple treatments in patients with CRC. Our study provides a

roadmap for patient stratification and may help improve

strategies for personalized follow-up and individualized

decision making for CRC.
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Validation of the CAFDL signature. (A) qRT-PCR detected the expression
levels of 21 lncRNAs constituting the CAFDL signature in paired CRC and

adjacent normal tissues. (B) ROC analysis of the predictive ability of
CAFDL signature on DFS and OS at 1, 3, and 5 years in CRC datasets. (C,
D)Univariate andmultivariate Cox analysis identify independent predictive
factors for OS in TCGA-CRC cohort. (E, F) Univariate and multivariate Cox

analysis identify independent predictive factors for DFS in TCGA-

CRC cohort.

SUPPLEMENTARY FIGURE 3

Landmark analysis of GSE17537.

SUPPLEMENTARY FIGURE 4

CAFDL score in patients with wild-type or mutant BRAF, Kras and TP53.

(A-C) CAFDL score in patients with wild-type or mutant BRAF in
GSE39582, GSE92921 and GSE143985 cohorts. (D-F) CAFDL score in

patients with wild-type or mutant Kras in GSE39582, GSE92921 and
GSE143985 cohorts. (G-I) CAFDL score in patients with wild-type or

mutant TP53 in GSE39582, GSE92921 and GSE143985 cohorts. ns,
non-significant.

SUPPLEMENTARY FIGURE 5

Correlation between CAFDL signature and TMB and MSI/MMR status. (A)
Correlation of CAFDL signature with TMB across pan-cancer. (B, C)
CAFDL scores of patients with MSI-H, MSI-L and MSS status in COAD

(B) and READ (C), respectively. (D) CAFDL scores of patients with dMMR
and pMMR status in GSE39582. (E, F)CAFDL scores of patients with MSI-H

and MSS status in GSE92921 (E) and GSE143985 (F), respectively. ns,
non-significant.
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The cancer-associated
fibroblast-related signature
predicts prognosis and indicates
immune microenvironment
infiltration in gastric cancer

Tsz Kin Mak1†, Xing Li1†, Huaping Huang1†, Kaiming Wu1,
Zhijian Huang1,2*, Yulong He1,2* and Changhua Zhang1,2*

1Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University,
Shenzhen, China, 2Guangdong Provincial Key Laboratory of Digestive Cancer Research, The
Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
Background: Gastric cancer (GC) is one of the most common cancers, with a

wide range of symptoms and outcomes. Cancer-associated fibroblasts (CAFs)

are newly identified in the tumor microenvironment (TME) and associated with

GC progression, prognosis, and treatment response. A novel CAF-associated

prognostic model is urgently needed to improve treatment strategies.

Methods: The detailed data of GC samples were downloaded from The Cancer

Genome Atlas (TCGA), GSE62254, GSE26253, and GSE84437 datasets, then

obtained 18 unique CAF-related genes from the research papers. Eight

hundred eight individuals with GC were classified as TCGA or GSE84437

using consensus clustering by the selected CAF-related genes. The

difference between the two subtypes revealed in this study was utilized to

create the “CAF-related signature score” (CAFS-score) prognostic model and

validated with the Gene Expression Omnibus (GEO) database.

Results: We identified two CAF subtypes characterized by high and low CAFS-

score in this study. GC patients in the low CAFS-score group had a better OS

than those in the high CAFS-score group, and the cancer-related malignant

pathways were more active in the high CAFS-score group, compared to

the low CAFS-score group. We found that there was more early TNM stage

in the low CAFS-score subgroup, while there was more advanced TNM stage in

the high CAFS-score subgroup. The expression of TMB was significantly higher

in the low CAFS-score subgroup than in the high CAFS-score subgroup. A low

CAFS-score was linked to increased microsatellite instability-high (MSI-H),

mutation load, and immunological activation. Furthermore, the CAFS-score

was linked to the cancer stem cell (CSC) index as well as chemotherapeutic

treatment sensitivity. The patients in the high CAFS-score subgroup had

significantly higher proportions of monocytes, M2 macrophages, and resting

mast cells, while plasma cells and follicular helper T cells were more abundant

in the low-risk subgroup. The CAFS-score was also highly correlated with the
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sensitivity of chemotherapeutic drugs. The low CAFS-score group was more

likely to have an immune response and respond to immunotherapy. We

developed a nomogram to improve the CAFS-clinical score’s usefulness.

Conclusion: The CAFS-score may have a significant role in the TME,

clinicopathological characteristics, prognosis, CSC, MSI, and drug sensitivity,

according to our investigation of CAFs in GC. We also analyzed the value of the

CAFS-score in immune response and immunotherapy. This work provides a

foundation for improving prognosis and responding to immunotherapy in

patients with GC.
KEYWORDS

CAFS-score, CAFs gene, Gastric cancer, immune therapy, immune microenvironment
infiltration
Introduction

Cancer is the leading cause of premature death, which causes a

hugepublic health and economic burden (1).According to the global

cancer statistics, there were 19.3million new cancer cases and nearly

10 million cancer-associated deaths worldwide in 2020. Among

them, gastric cancer (GC) represents more than 1 million new

cases and 769,000 deaths, ranking fifth in incidence (5.6%) and

fourth inmortality (7.7%) (2).CasesofGCwere frequentlydiagnosed

in the advanced stage (3).Meanwhile, a trend of augmented younger

GCcases (aged<50years) alsobringsa severe test in therapy (2).GCis

a highly molecular and phenotypic heterogeneity with a complex

tumormicroenvironment (TME). Researchon theTMEmayhelp to

explore the underlining mechanisms of tumorigenesis

and development.

The TME is a heterogeneous collection of various immune

cells, stromal cells, vessels, and extracellular matrix (ECM).

Tumor cells and the TME act as seed and soil; the TME fosters

tumor progression and mediates relapse (4). Cancer-associated

fibroblasts (CAFs) are one of the most abundant cells and act as

critical components among them. Activated CAFs create a

conducive environment for tumorigenesis and progression.

According to the research papers from PubMed, 18 CAF-

related genes that were confirmed by fundamental experiments

in GC were chosen for modeling purposes. Activated CAFs create

a conducive environment for cancer proliferation and

maintaining CSC by secreting a plethora of cytokines and

chemokines, such as CXC-chemokine ligand 12 (CXCL12),

interleukin-6 (IL-6), and IL-33 (5–8). Secretion of IL-6 can

promote the epithelial–mesenchymal transition (EMT) and

metastasis of GC via the JAK2/STAT3 signaling pathway.

Simultaneously, IL-6 also prompts cancer immune escape by

recruiting immunosuppressive cells into the TME (8, 9). Secretion
02
6970
of ECM-degrading proteases matrix metalloproteinases (MMPs),

such as MMP11 and MMP14, directly confers a migration track

by remodeling the ECM and physically pulling, promoting cancer

invasion and metastasis (10–12). Besides that, CXCL12 and

fibroblast growth factor 9 (FGF9) produced by CAFs facilitate

tumor neovascularization to overcome a hypoxic and acidic TME

(5, 7, 13). The CAF-derived hyaluronan and proteoglycan link

protein 1 (HAPLN1) promotes ECM remodeling by decreasing

the density and size of fibers, as well as increasing the fiber

alignment, resulting in tumor invasion and aggression in GC (14,

15). Meanwhile, GC cells also release the transforming growth

factor-b+ (TGFb+) exosomes to convert mesenchymal stem cells

(MSCs) into activated CAFs. The crosstalk biological aspects

between CAFs and GC create a positive feedback loop to

stimulate GC progression and metastasis (5). Other CAF-

related genes, such as mucin 1 (MUC1), Krüppel-like Zinc-

Finger Transcription Factor 5 (KLF5), tumor endothelial

marker 1 (TEM1), vascular adhesion molecule 1 (VCAM1),

periostin (POSTN), lysyl oxidase like 2 (LOXL2), neuropilin-2

(NRP2), rhomboid 5 homolog 2 (RHBDF2), and serum amyloid

A1 (SAA1), are characterized by high expression of genes

associated with a poor prognosis in patients with GC (12, 16–

22). In contrast, CAF-related genes such as Sorbin and SH3

domain-containing protein 1 (SORBS1), and secreted protein

acidic and rich in cysteine (SPARC) have a significantly low

expression in CAF and are closely related to poor prognosis in GC

(23, 24). Carcinogenesis and development are characteristic of the

interaction between multiple genes and signal pathways. It is not

sufficient to focus on one or two genetic biomarkers to correlate

with the GC prognosis. Hence, we put up an 18-CAF-related gene

subgroup classification and CAFS-score model that may provide

important insights into predicting prognosis and guiding

clinical practice.
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In this present study, we constructed a GC scoring model

(CAFS-score) based on 808 GC patients with transcriptome data

and clinical information and 14 identified GC-related CAF

genes, and validated its reliability with multiple datasets. We

clustered those patients into two CAF subtypes according to the

CAF genes’ expression levels and identified the differentially

expressed genes (DEGs). Then, patients were classified into three

DEG-related gene subtypes and established the CAFS-score

system. The clinical practice of this scoring model was

validated in GC patients, including prognosis, immune

microenvironment, and drug sensitivity.
Methods

Dataset collection and
sample information

The flowchart is described in Supplementary Figure S1 and

the samples were analyzed with staging statistics. The data of

gene expression, somatic mutation, and corresponding clinical

information of GC samples from The Cancer Genome Atlas

(TCGA) database (https://tcga-data.nci.nih.gov/tcga/) were

collected, which include tumor samples and para-cancer

samples with detailed information for further analysis. In

addition, 433 GC samples in South Korea (GSE84437) and 300

GC samples in the ACRG (Asian Cancer Research Group) study

(GSE62254) with detailed characteristic information and

survival duration were obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). Moreover, GSE26253 was

obtained from the GEO database.
Defining the CAF-related regulators

In the previous research study, Zang et al. (11) found that

matrix metalloproteinase 11 (MMP11) secreted by CAFs is not

only overexpressed in exosomes purified from plasma and GC

samples, but also associated with the overall survival (OS) of GC

patients. Shen et al. (15) showed that HAPLN1 is a significantly

upregulated gene in CAFs of GC, and higher expression is

associated with shorter OS in GC patients. CAF-derived IL-33

is upregulated in the human GC and served as a poorly

prognostic marker in GC patients proved by Su et al. (6). In

the research study of CAFs, Wand et al. (12) demonstrated that

MMP14, LOXL2, and POSTN are characterized by high

expression of genes associated with gastric tumor invasion.

The previous research studies found that SORBS1, IL-6,

MUC1, FGF9, KLF5, SPARC, TEM1, NRP2, CXCL12,

RHBDF2, SAA1, and VCAM are significant expressions in

CAF and have an association with GC (7, 8, 13, 16–24).

According to our search in research papers from PubMed, we

chose the 18 genes (MMP11, HAPLN1, IL-33, IL-6, SORBS1,
Frontiers in Immunology 03
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MUC1, FGF9, KLF5, SPARC, TEM1, VCAM1, POSTN,

MMP14, LOXL2, NRP2, CXCL12, RHBDF2, and SAA1) that

related to CAFs in GC.
Consensus clustering and
gene clustering

According to the selectedCAF-related genes, consensus clustering

was utilized to identify and classify the patient intomolecular subtypes

by the k-means method. The “ConsensuClusterPlus” package was

applied to determine the number of clusters and their stability. In

addition, 1,000 repetitions were performed to ensure the stability of

classification (25).

Setting the criteria of |log2(Fold Change)| > 1 and false

discovery rate (FDR)< 0.05, a list of DEGs from consensus

clustering was identified by utilizing the R package limma.

Secondly, according to the expression of prognostic DEGs, an

unsupervised clustering method was used to classify the patient

into different subtype groups (Gene subtype A, Gene subtype B,

and Gene subtype C) for further analysis.

To further examine the clinical value of the consensus

clustering and gene clustering, we evaluated the correlations

among the molecular subtypes, c l inicopathological

characteristics, and prognosis. The clinical characteristics

included age, gender, TNM stage, and grade. Furthermore, we

perform the Kaplan–Meier survival analysis in different clusters

using the survival package of the R software.
Gene set variation analysis

Gene set variation analysis is typically used to estimate variation

in pathway and biological process activity in expression dataset

samples (26). This method was performed to explain the

differences in biological processes between two CAFs-score

subtypes by using “GSVA” R packages. The gene sets of

“c2.cp.kegg.v7.4.symbols.gmt” were downloaded from the MSigDB

database for furtherGSVA.DEGswere analyzedusing theRpackage

clusterProfiler in Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG),with a cutoff value of FDR< 0.05.
Construction and validation of the
prognostic model

LASSO-Cox analysis was utilized to minimize the risk of

over-fitting using the “glmnet” R package. Multivariate Cox

analysis was used to select the candidate genes for establishing

a prognostic model (CAFS-score) in the training cohort. The

CAFS-score was calculated as follows:
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CAFS − score  =  o Expi �  coefið Þ
where Coefi and Expi denote the risk coefficient and

expression of each gene, respectively. The cutoff point was

determined using the “survminer” package. According to the

CAFS-score, we revealed that the survival curve was used for

visualization with both training and testing cohorts in the high-

or low-risk group by Kaplan–Meier analysis. p-values< 0.05 were

considered to be statistically significant.
Clinical correlation and stratification
analyses of the CAFS-score

Between the risk score and clinicopathological variables,

univariate and multivariate Cox regression analysis was done

to validate whether the CAFS-score is an independent

prognostic predictor. The results were revealed in the forest

map. Thorsson et al. (27) found that all tumors could be

divided into six immune subtypes, namely, wound healing

(C1), IFN-g dominant (C2), inflammatory (C3), lymphocyte

depleted (C4), immunologically quiet (C5), and TGF-b
dominant (C6). Therefore, we performed the factor of

immune sub-type (https://tcga-pancan-atlas-hub.s3.us-east-1.

amazonaws.com/download/Subtype_Immune_Model_Based.

txt.gz) between different risk groups, using the R software

of “RColorBrewer”.

For the gene mutation analysis, information on genetic

alteration was downloaded from the TCGA and GEO

databases. The R package “Maftools” was utilized for analyzing

the gene mutation in different risk subgroups. Moreover, the

correlation between the CAFS-score and total mutation burden

(TMB) was analyzed and performed in our study. Further

analysis, we revealed the relationship between the CAFS-score

and CSC index. The CSC index was calculated by using

innovative one-class logistic regression (OCLR) machine-

learning algorithm (28). In addition, we explored the

relationship between the different risk groups and MSI.
Identification of immune characteristics
for the CAFS-score

CIBERSORT (https://cibersort.stanford.edu/) is a common

algorithm to obtain cell composition from solid tumors or gene

expression profiles, which was used to analyze the enrichment of

immune cells in the CAFS-score for our study. The different

content of immune infiltrating cells between the high- and low-

risk groups was analyzed by Wilcoxon signed rank test and

performed on the box chart for the TCGA cohort. In further

analysis, we showed the correlations between the abundance of

immune cells and four genes in the prognostic model according

to the training cohort.
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Assessment of immunotherapy

For the predicted assessment of the patientwith immunotherapy

in the prognostic value of the CAFS-score, the time-dependent

receiver operating characteristic (ROC) curve analysis was

performed for obtaining the area under the curve (AUC). In

addition, we not only downloaded the tumor immune dysfunction

and exclusion (TIDE) score online (http://tide.dfci.harvard.edu/) but

obtained the T-cell-inflamed signature (TIS) score calculating the

average value of a log2-scale normalized expression in the 18

signature genes (29). Thereafter, we revealed the results after

comparing the prognostic values of the CAFS-score, TIDE, and

TIS by using the R package “timeROC” and performed time‐

dependent ROC curve analyses to obtain the AUC.

Besides comparing the prognostic values of the CAFS-score,

TIDE, and TIS, we also utilized the immunophenoscore (IPS) to

predict the response of immune checkpoint inhibitors (ICIs)

based on the expression of the main component in tumor

immunity. According to a scale with a range of 0–10 based on

representative cell-type gene expression z-scores, IPS was

calculated where the immunogenicity was positively correlated

with the score of IPS (30). The IPSs of patients with GC were

derived fromThe Cancer ImmunomeAtlas (TCIA) (http://tcia.at/

home). The result was performed using the R package “ggpubr”.
Assessment of drug sensitivity

Thesensitivityofvariousdrugswaspredicted inpatientsbetween

two CAFS-score subgroups. The pRRophetic R package was utilized

for drug prediction (31). Wilcoxon signed-rank test was utilized to

explore the difference in IC50 between different risk groups. The

results were performed by using the R package “ggplot2”.
Establishment and validation of a
nomogram scoring system

According to the independent prognosis outcome, a predictive

nomogram was produced by the clinical characteristics and the

CAFS-score using the “rms” package of R. In the nomogram

scoring system, each variable has a corresponding score, and the

total score is obtained by adding up the scores of all variables for each

sample (32). The nomogramwas evaluated usingROCcurves for the

1-, 3-, and5-year survival rates.Thenomogramcalibrationplotswere

used to describe the predictive value of the anticipated 1-, 3,- and 5-

year survival events in relation to the actual observed outcomes.
Statistical analysis

R software and R Bioconductor packages were used for the

data analysis.(version 4.1.2; https://www.R-project.org).
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Comparison of non-parametric or parametric method

differences was carried out using Wilcoxon test, Kruskal–

Wallis test, and t-test or one-way ANOVA. Spearman’s and

distance correlation analyses were used to calculate the

correlation coefficients. The validity of the model was verified

by the receiver operating characteristic (ROC) curve. Based on

the correlation between the CAFS-score and patient survival, the

best cutoff point of survival information for each cohort was

determined by the Survminer package. Kaplan–Meier test and

Log-rank test were used to analyze the prognosis of survival

curve, which were used to assess differences between groups. The

hazard ratio (HR) of CAF regulators and CAF-related genes was

computed by using the univariate Cox regression model. To

verify whether the CAFS-score was an independent prognostic

predictor, we incorporated the CAFS-score and CAF-related

clinical parameters into a multivariate Cox regression model

analysis. All statistical analyses were bilateral, and statistical

significance was set at p< 0.05.
Result

Overview of genetic changes and
expression variations of CAF-related
regulators in GC

First, we analyzed the gene mutations to understand the

mutation types of the selected CAF-related genes in GC samples

(Figure 1A). At the genetic level, CAF-related regulator mutations

were found in 82 of the 433 samples (approximately 18.94%). The

study revealed that POSTN had the highest frequency of

mutations. In contrast, we observed that IL-33, IL-6, CXCL12,

and SAA1 do not have any mutations in any GC samples. We

determined the frequency of copy number variants (CNVs) in

selected CAF-related genes and discovered changes in selected

CAF-related genes with CNVs on the chromosome (Figures 1B, C).

For example, KLF5 was shown to be a frequent modification, with

the majority of the changes focusing on copy number amplification

on the 13 chromosomes. In terms of expression levels, 14 of 18

selected genes in tumor samples showed a significant difference as

compared with normal samples (Figure 1D). A network was

created to show the whole landscape of the selected genes’

interconnections, regulator linkages, and prognostic significance

in patients with GC (Figure 1E).
Identification of CAF subtypes in GC

First, we analyzed and revealed the selected CAF genes of

prognostic value in the 808 GC patients using the univariate Cox

regression and Kaplan–Meier analysis (Figure S2). We used the

unsupervised clustering technique to identify different
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regulatory patterns based on the expression levels of 18 CAF-

related regulators. For classifying the entire cohort into subtypes

A (n = 444) and B (n = 364), the result revealed that k = 2 seems

to be the perfect choice (Figure 2A and Table S1). For the

survival analysis, the results showed that cluster B had a better

survival probability than cluster A (Figure 2B). Moreover, the

variations in biological behavior between these two patterns

were investigated using gene set variation analysis (GSVA)

enrichment analysis (Figure 2C and Table S2). It showed that

cluster A was enriched in terms of pathways associated with

ECM and tumor invasion, including the ECM–receptor

interaction and Focal adhesion. Figure 2D illustrates that the

CAF gene subtype B patterns were also linked to advanced TNM

stages, particularly the T stage. We explored the 22 infiltrating

immune cell types in the two GC subtypes (Figure 2E). The

result showed that most of the infiltrating immune cells were

significantly different between the two GC subtypes, except

CD56 bright natural killer cells, CD56 dim natural killer cells,

monocytes, and Type 2 T helper cells. In addition, infiltrating

immune cells were abundant in cluster A, except activated CD4

T cells, neutrophils, and Type 17 T helper cells. Following this,

we confirmed that the 18 CAF-related regulators could be used

to discriminate the two regulatory patterns (Figure S3A).

Setting the criteria of |log2(Fold Change)| > 1 and FDR<

0.05, 342 DEGs from consensus clustering were identified.

Under the functional enrichment analysis, GO analysis and

KEGG pathway analysis were performed, significantly related

to the DEGs. For Figure S3B, a total of 342 DEGs were

significantly associated with 789 GO terms (details in Table

S3), such as ECM organization for Biological Process (BP),

collagen-containing ECM for Cellular Component (CC), and

ECM structural constituent for Molecular Function (MF). In

addition, the result of the top 18 KEGG pathways associated with

candidate genes is illustrated in Figure S3C, such as PI3K-Akt

signaling pathway, Focal adhesion, and Protein digestion and

absorption. The results of GO term and KEGG suggested that

the CAFs play a dynamic role in the ECM and tumor invasion.

Identification of gene subtypes based
on DEGs

After further analysis of univariate Cox regression in DEGs,

we identified 316 genes related to survival time (p< 0.05), which

were used in further analysis. A consensus clustering technique

was utilized to classify patients into three genomic subgroups

based on prognostic genes, termed gene subtypes A to C, to

further validate this regulatory mechanism. According to

Kaplan–Meier curves, patients in subtype A had the worst

survival, whereas patients in cluster C had a favorable survival

time (Figure 3A). Furthermore, the gene subtype A pattern was

linked to an advanced TNM stage (Figure 3B). Expression of 14

of the previous18 selected CAF-related genes had a significant
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difference among the three gene subtypes, as expected based on

the patterns (Figure 3C).
Establishment risk assessment model and
survival outcomes in GC

The CAFS-score was constructed using DEGs connected to

subtypes. The distribution of patients in the two CAFs subtypes,
Frontiers in Immunology 06
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three gene subtypes, and two CAFS-score groups is revealed in

Figure 4A. According to the least partial likelihood deviance, 10

OS-associated genes remained after LASSO regression analysis

(Figures S4A, B). This was followed by multivariate Cox

regression analysis, wherein four genes (MMP11, HEYL,

NNMT, and PDK) were eventually obtained to construct the

prognostic model, named the “CAFS-score”. Based on the results

of the multivariate Cox regression analysis, the CAFS-score was

constructed as follows:
B

C D

E

A

FIGURE 1

Genetic and transcriptional alterations of CAFs-related genes in GC. (A)Mutation frequencies of 18 CAFs-related genes in 433 patients with STAD from
the TCGA cohort. (B) Frequencies of CNV gain, loss, and non-CNV among CAFs-related genes. (C) Locations of CNV alterations in CAFs-related genes
on 23 chromosomes. (D) Expression distributions of 1 8 CAFs-related genes in normal and GC tissues. (E) Interactions among CAFs-related genes in
GC. The connecting line among CAFs-related genes indicates their interaction, and the thickness of lines represents the strength of the association
between CAFs-related genes. Blue and pink represent negative and positive correlations, respectively. *P<0.05, **P<0.01, ***P<0.001.
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Risk score = expression level of MMP11 ∗ (0:13641)

+ expression level of HEYL ∗ (0:13075)

+ expression level of NNMT ∗ (0:11341)

+ expression level of PDK4 ∗ (0:12228)

After further analysis of applying risk score, there was a

significant difference in the CAFS-score between CAF subtypes

and gene subtypes (Figures 4B, C). The distribution plot of the
Frontiers in Immunology 07
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CAFS-score demonstrated that the survival times were reduced

while the CAFS-score increased (Figures 4D, E). Finally, we used

the risk score to re-distinguish high- and low-risk groups in the

training cohort and testing cohort. As illustrated in Figures 4F, G,

low-risk patients had a better OS than high-risk patients (p< 0.05,

log-rank test) whether in the training cohort or the GSE62254

cohort. Consistent with the results of the training cohort, patients

from the low-risk group had a betterOS thanhigh-risk patients (p<

0.05, log-rank test) in the GSE26253 cohort (Figure 4H).
B
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E

A

FIGURE 2

Identification of CAFs subtypes in GC. (A) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (B) Univariate
analysis indicating 18 CAFs-related genes corelated with the OS time. (C) GSVA of biological pathways between two distinct subtypes. (Red
and blue represent activated and inhibited pathways, respectively). (D) Differences in clinicopathologic features and expression levels of
CAFs-related genes between the two distinct subtypes. (E) The 22 infiltrating immune cell types in the two GC subtypes. **P<0.01,
***P<0.001.
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Clinicopathologic characteristics of
TCGA in the CAFS-score

Based on univariate Cox regression analysis, Figure 5A illustrates

that age, CAFS-score, and stage were significantly associated with the

prognosis of GC. After further multivariate Cox regression analysis,

Figure 5B shows that the CAFS-score presented as an independent

prognostic factorafteradjustingforotherclinicopathologic factors.The

clinicopathologic characteristics of GC patients in the TCGA cohort

are shown inFigure5C,which revealed a significantdifference ingrade

and TNM stage, especially for T stage. Furthermore, we found that

there wasmore early TNMstage in the low-risk subgroup, while there

wasmore advanced TNM stage in the high-risk subgroup (Figure 5D,

p< 0.05). In addition, we found that the immune sub-types were

significantly related to the risk between the two risk subgroups

(Figure 5E, p< 0.05). Meanwhile, GSVA enrichment analysis was

used to explore the differences in biological behavior between the two

risk subgroups (Figure S5). It illustrated that the high-risk groupswere

associated with ECM and tumor invasion, including the ECM–

receptor interaction and Focal adhesion.

Relationship of the CAFS-score with
TMB, MSI, and CSC index

We analyzed the gene mutations to further understand the

immunological nature in different risk subgroups. We identified
Frontiers in Immunology 08
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the top 20 genes with the highest mutation rates in the high-risk

subgroup (Figure 6A) and low-risk subgroup (Figure 6B). The

results illustrated that missense mutation was the most common

mutation type. The mutation rates of TTN, MUC16, and TP53

were not only higher than 25% in both groups, but the most

common in both groups. Moreover, we analyzed the relationship

between the risk score and TMB. The expression of TMB was

significantly higher in the low-risk subgroup than in the high-

risk subgroup (Figure 6C). In addition, the risk score was

correlated with TMB in gene subtypes (r = −0.26, p< 0.05), as

revealed in Figure 6D.

Moreover, we observed that the risk score was correlated

with the CSC index (r = −0.66, p< 0.05), as shown in Figure 6E.

Finally, we revealed that a low CAFS-score was linked to MSI-H

status, whereas a high CAFS-score was linked to microsatellite

stable (MSS) status (Figures 6F, G).
Immune infiltration in CAFS-score subgroup

The gene expression matrix of the TCGA database in GC was

uploaded into CIBERSORT web to estimate the fractions of 22

immune cells. Next, we explored the composition of immune cells in

different risk subgroups (Figure 7A) in the TCGA database of GC

samples. The result illustrated that the patients in the high-risk

subgroup had significantly higher proportions of monocytes, M2
B

C

A

FIGURE 3

Identification of gene subtypes based on DEGs. (A) Kaplan-Meier curves for RFS of the three gene subtypes (log-rank tests, p < 0.001). (B)
Relationships between clinicopathologic features and the three gene subtypes. (C) Differences in the expression of 18 CAFs-related genes
among the three gene subtypes. *P<0.05, **P<0.01, ***P<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.951214
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mak et al. 10.3389/fimmu.2022.951214
macrophages, and resting mast cells, while plasma cells and follicular

helper T cells weremore abundant in the low-risk subgroup (p< 0.05)

(Figure 7B). We also found that the infiltrating abundance of M0

macrophages, resting mast cells, resting dendritic cells, M2

macrophages, resting NK cells, and CD8 T cells was significantly

relatedtoOS(p<0.05)(FigureS6).Thehigher infiltratingabundanceof

macrophages M2 was associated with poorer OS.

Based on the training set, we explored that the CAFS-score was

positively correlated tonaïve B cells,M2macrophages, restingmast

cells, monocytes, andCD4memory resting T cells (Figure 7C). The

four genes were also shown to be highly linked to the majority of

immune cells (Figure 7D). Therefore, theCAFS-score is statistically

correlated with the infiltration of most kinds of immune cells. This

means that the CAFS-score has the potential to indicate poor

prognosis under different immune infiltrations.

Immunotherapy prediction

This study aims to assess the potential efficacy of

immunotherapy in a clinical setting in different risk subgroups.
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To illustrate, a higher TIDE prediction score corresponded with

a higher potential for immune evasion, which proved that the

patients were unlikely to benefit from the treatment of

immunotherapy. The subgroup with low risk had lower TIDE

scores than the subgroup with high risk, which means that

patients with low risk were more likely to benefit from ICI

treatment than those with high risk (Figure 8A), whereas higher

TIDE prediction scores are associated with poorer benefits from

ICI treatment. For a lower TIDE score, the patients with low risk

might have a better prognosis than those with high risk.

Moreover, we found that the T-cell exclusion score

(Figure 8C) and T-cell dysfunction (Figure 8D) were

significantly different between the two risk subgroups, except

the MSI score (Figure 8B). Under the AUC, the result illustrated

that our risk model was the best compared with TIS and TIDE

(Figure 8E). Therefore, we suggested that the predictive value of

risk was comparable with 18-gene TIS and TIDE.

Besides utilizing the TIDE score, we also analyzed the

correlation between the risk and IPS in GC patients to predict

the response of ICIs. For the IPS, cytotoxic T lymphocyte
B C
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FIGURE 4

Establishment risk assessment model and survival outcomes in GC. (A) Alluvial diagram of the subtype distributions in groups with different
CAFS-score and survival outcomes. (B) Differences in CAFS-score between two CAF subtypes. (C) Differences in CAFS-score between three
gene subtypes. (D, E) Ranked dot and scatter plots representing the CAFS-score distribution and patient survival status. (F-H) Kaplan-Meier
analysis of the RFS between the two risk groups in the TCGA, GSE62254, and GSE26253 cohort.
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antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1),

and programmed death ligand-1 (PD-L1) were the immune

checkpoints. Therefore, their immune checkpoints were utilized

to evaluate the potential ICI treatment (Figure 9). As a result, we

found that they were significantly elevated in the low-risk group,

which was categorized by the risk, which means more

immunogenicity on ICIs in the low-risk group. Collectively,

these results suggested that the low-risk group was more likely to

have an immune response and respond to immunotherapy.
Drug sensitivity

Except for assessment of ICI treatment, we tried to find the

links between different risk groupings and the effectiveness of

chemotherapy for treating GC in the training cohort. We

illustrated that the low risk was associated with a lower half

inhibitory concentration (IC50) of chemo-therapeutics such as

Mitomycin C, Paclitaxel, and Sorafenib (p< 0.05), whereas the

high risk was associated with a low IC50 such as Pazopanib,
Frontiers in Immunology 10
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Imatinib, and Bryostatin (p< 0.05). Therefore, Figure 10

illustrates that the CAFS-score acted as a potential predictor

for chemo-sensitivity, and details are shown in Table S4.
Establishment of a nomogram to
predict survival

Given the inconvenient clinical value of the CAFS-score in

predicting OS in patients with GC, a nomogram incorporating

the CAFS-score and clinicopathological characteristics was

developed to predict 1-, 3-, and 5-year OS rates in patients

with GC (Figure 11A). For the TCGA, GSE62254, and

GSE26253 cohorts, our AUC studies on the nomogram model

revealed a good accuracy for OS at 1, 3, and 5 years

(Figures 11B–D). In the TCGA, GSE62254, and GSE26253

cohorts, the proposed nomogram performed similarly to an

ideal model according to the calibration plots (Figures 11E–G).

Finally, we compared the nomogram’s prediction accuracy to

that of the TNM stage in the TCGA, GSE62254, and GSE26253
B
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FIGURE 5

Clinicopathologic characteristics of TCGA in CAFS-score. (A) The Univariate Cox regression analysis in CAFS-score subgroups. (B) The multiple
Cox regression analysis in CAFS-score subgroups. (C) The clinicopathologic characteristics of GC patients in the TCGA cohort. (D, E) The
staging and the immune subtypes was significantly related to the risk between the two CAFS-score subgroups, respectively. *P<0.05,
***P<0.001.
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cohorts (Figure S7). The results illustrated that the nomogram’s

AUC values were greater than the TNM stage in three cohorts.
Discussion

Globally, GC is one of the leading causes of preventable

death and ranks fifth in incidence (5.6%) and fourth in

mortality (7.7%) among malignant tumors (2, 33). The

etiology of this tumor remains poorly understood. Despite

the rapid development of biological agents, the choices of
Frontiers in Immunology 11
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treatment in GC are limited until now. Meanwhile, the

prognosis of advanced GC under the primary treatment

remains disappointing (34). CAFs are the most abundant cell

in the TME of GC. By exerting ECM deposition and

remodeling, the activated CAFs exhibit extensive reciprocal

signaling interaction, crosstalk with immune cells, and mediate

oncogenesis and progression of GC (5, 9, 35). However, it is not

precise to focus on a single gene or an entire CAF-related gene

set to correlate with GC prognosis. Hence, the results of the

present study are based on an 18-identified GC-related CAF

gene set and constructed a CAFS-risk score to predict
B

C D

E F G

A

FIGURE 6

Characteristic in gene mutation and relationship of CAFS-score with MSI and CSC index. (A, B) Significantly mutated genes in the mutated GC
samples of the high and the low risk groups, respectively. Mutated genes (rows, top 20) are ordered by mutation rate; samples (columns) are
arranged to emphasize mutual exclusivity among mutations. The right shows mutation percentage, and the top shows the overall number of
mutations. The color-coding indicates the mutation type. (C) The TMB of two differen risk subgroups. (D) Relationships between CAFS-score
and TMR in three gene subtypes. (E) Relationships between CAFS-score and CSC index. (F, G) Relationships between CAFS-score and MSI.
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FIGURE 7

Immune Infiltration in two CAFS-score subgroup (TCGA). (A) Composition of immune cells in two CAFS-score subgroup. (B) The Relative
immune infiltration score of 22 immune cells between low- and high-risk groups. (C) Relationships between CAFS-score and different immune
cells. (D) Correlations between the abundance of immune cells and four genes in the proposed model. *P<0.05, **P<0.01, ***P<0.001
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prognosis and guidelines for the individualized clinical

strategies of GC.

Consensus clustering algorithms offer the ability to

efficiently analyze and identify clusters of patients with

different characteristics in a large amount of data (36).

Therefore, we used this unsupervised algorithm to identify two

distinct molecular subtypes based on the expression levels of 18

CAF-related regulators. We found that patients with subtype B

had a better survival probability than subtype A patients. We

also used GSVA enrichment analysis to investigate the variations

in biological behavior between these two subtypes. Subtype A

was enriched in terms of pathways associated with ECM and

tumor invasion, especially ECM–receptor interaction and Focal

adhesion. Some literature proved that the ECM receptor
Frontiers in Immunology 13
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contributes to GC progression and poor survival (37). Focal

adhesion-related proteins independently predicted the poor

clinical prognosis of GC (38). Moreover, this consensus

clustering algorithm was also used to classify the patient into

three different subtype groups for deeper analysis according to

the expression of prognostic DEGs.

In this study, we constructed the powerfully effective

prognostic model and demonstrated its predictive ability. The

expression levels of four genes (MMP11, PDK4, HEYL, and

NNMT), including the CAF-related gene, MMP11, were also

explored in GC. MMP11, one kind of ECM-degrading protease,

in exosomes was secreted from CAFs and promoted GC cell

migration and invasion by regulating and shaping the TME.

Normally, MMP11 is absent in human organs, and the
B C DA

FIGURE 9

The prognostic value of CAFS-score in immunotherapy from TCGA cohort. (A–D) The vioplot of the difference expression of CTLA4 and PD-1
between high- and low-risk groups.
B C

D E

A

FIGURE 8

The prognostic value of CAFS-score in immunotherapy from TCGA cohort. (A–D) TIDE, MSI, T cell exclusion, and T cell dysfunction score in
two CAFS-score subgroup, respectively. (E) ROC analysis of CAFS-score, TIDE, and TIS on OS in GC cohort. ***P<0.001, ns, P>0.05.
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expression level of MMP11 correlates to the OS of gastric

patients (10, 11). HEYL and NNMT are usually upregulated in

GC. Both act as an oncogenic factor to promote the carcinogenic

and progressive process of GC via activating CDH11 and

transforming growth factor-b (TGF-b) expression, respectively
(39, 40). PDK4 promotes the Warburg effect in GC and the

overexpression of PDK4 also leads to drug resistance and GC

metastasis (41).

To further improve the accuracy of prognostic prediction,

we constructed and validated a nomogram by screening various

indexes, CAFS-score, age, gender, and pathological stage. The

result illustrated that age, CAFS-score, and pathological stage

were significantly associated with the prognosis of GC. Under

the newest edition of AJCC, In et al. found that the pathological

stage was closely associated with the prognosis of GC (42, 43).

Moreover, we developed a quantitative nomogram that

increased performance and made it easier to use the CAFS-

score. GC is considered as an age-related disease, because older

cancer patients have been shown to have poorer OS outcomes

(44). According to the result, we found that the CAFS-score

presented as an independent prognostic factor. Thorsson et al.

(27) found that all tumors could be divided into six immune

subtypes that are intended to serve as a resource for future

targeted studies to further advance the field. Therefore, we found

that the factor of immune subtypes was closely correlated with

the risk score. These immune subtypes represent features of the

TME that largely cut across traditional cancer classifications to

create subgroups and suggest that certain treatments may be

independent of histological type (27).
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Numerous studies on various tumors have shown that

patients with high TMB tend to favor good survival rates (45).

Similarly, we illustrated that higher TMB was seen in the low risk

of the CAFS-score. It means that high TMB has significantly

better OS than the patients with a low TMB. In some literature,

MUC16 mutations are associated with better prognosis and

higher TMB in GC, while TTN mutations are associated with

better response to immune checkpoint blockade in solid tumors

(43, 46, 47). Even though TP53 is one of the most frequently

mutated genes, it is insufficient to properly predict patient

outcomes (48, 49). Patients with a high level of MSI respond

better to immunotherapy and may benefit from it (50).

Therefore, GC patients with a low-risk score had a better

benefit from immunotherapy. In addition, GC cells with a

lower CAFS-score exhibited more pronounced stem cell

characteristics and a lower degree of cell differentiation.

To explore the importance of immune cell infiltration in GC

with different risk groups for our study, CIBERSORT was utilized

for analyzing the relative proportion of 22 immune cells in each

GC specimen. As we know, circulating monocytes in peripheral

blood migrate to tissue where they differentiate to macrophages or

dendritic cells. Macrophages can be differentiated into two main

types (M1 macrophages and M2 macrophages) depending on

mode of activation and function. Meanwhile, some literature

indicated that M2 macrophages can promote tumor growth in

GC (51, 52). Consistent with these studies, we illustrated that less

infiltration ofM2 had a better prognosis. Wang et al. analyzed that

the greater risk score resulted in a considerably shorter total

survival time, and there was a positive association between risk
B C

D E F

A

FIGURE 10

Relationships between CAFS-score and medicine sensitivity. Lower IC50 of indicated chemo-therapeutics drugs in low (A–C) and high (D–F)
CAFS-score group, respectively.
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score and dendritic cell infiltration in GC (53). Our result showed

that the CAFs gene is associated with ECM-associated pathways.

Therefore, less infiltration of dendritic cells had a better prognosis

according to our result. The literature revealed that infiltrating

mast cells are seen in large numbers in GC, which is linked to

tumor growth and predicts poorer OS (54). Consistent with this

study, we illustrated that more infiltration of mast cells had a

poorer prognosis. According to the evidence, we believed that the

CAFS-score had the potential to reflect immune cell infiltration as

well as the prognostic significance of various immune cell types.

In our study, we explored the CAFS‐based differences in the

TME that might reflect different immune benefits from ICI

therapy by utilizing TIDE and IPS. Firstly, the TIDE score is

associated with the two different mechanisms of immune escape,
Frontiers in Immunology 15
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namely, dysfunction of tumor-infiltrating cytotoxic T

lymphocytes (CTLs) and exclusion of CTL. For the evidence,

TIDE scores correlate to the potential of anti-tumor immune

escape and thus show the response rate to ICI treatment (55).

According to our analysis, we found that the lower CAFS-score

corresponds to a lower score of the TIDE than high CAFS-score

patients, and thus higher ICI response might predictably occur.

Secondly, the IPS is mainly associated with a couple of immune

checkpoints, including CTLA-4, PD-1, and PD-L1. For the

clinical trial with immunotherapy, literature demonstrated that

avelumab (anti-PD-1) has anti-tumor activity and is safe for

patients with GC, which is administered as maintenance therapy

(after the disease is under control with standard chemotherapy)

(56). Consistent with our results, it was significantly higher in
B C D

E F G

A

FIGURE 11

Construction and validation of a nomogram. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of GC patients in TCGA cohort. (B-D) ROC
curves for predicting the 1-, 3-, and 5-year ROC curves in TCGA, GSE62254, and GSE26253 cohorts. (E-G) Calibration curves of the nomogram
for predicting of 1-, 3-, and 5-year OS in the TCGA, GSE62254, and GSE26253 cohorts. ***P<0.001.
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the low-risk group, which was categorized by the CAFS-score.

Based on the results identified with TIDE and IPS, we discovered

that the CAFS-score may distinguish between various outcomes

in individuals receiving immunotherapy. The CAFS-predictive

score’s value has the potential to offer a theoretical foundation

for ICI treatment selection in clinical trials. This predictive

model could assist to speed up the development of

personalized cancer therapies.

According to the clinical trial, the literature showed that

immune therapy in patients with GC had a great outcome before

the disease was under control by standard chemotherapy (56).

We wanted to figure out if the combination treatment with

chemotherapy and immune therapy in GC had a better efficacy

for further study. Therefore, we explored the sensitivity of various

drugs in patients between two risk subgroups. Our study

demonstrated that the low-risk group had a high potential for

ICI response; meanwhile, we found out that the low risk was

highly associated with sensitive drugs, including Mitomycin C,

Paclitaxel, and Sorafenib. It means that further studies can focus

on the combined treatment for GC patients. These drugs were

found by the predictive model of the CAFS-score and had

potential to treat GC under specific conditions (57–59).

Our comprehensive analysis demonstrated that the CAFS-

score grouping might help to differentiate the clinicopathological

features, immune infiltration, and clinical prognosis of GC

patients. Furthermore, this study sheds light on the role of the

CAFS-score in prognosis predictive value, and provides insights

into individualized strategies, guiding immunotherapy, and

chemotherapy. However, further studies on interactions

among these model genes and their biological mechanisms

are needed.
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Deciphering the immune
landscape dominated by
cancer-associated fibroblasts to
investigate their potential in
indicating prognosis and guiding
therapeutic regimens in high
grade serous ovarian carcinoma

Yimin Li1,2,3†, Ruotong Tian4†, Jiaxin Liu5, Juanni Li1,6,
Hong Tan7*, Qihui Wu6,8* and Xiaodan Fu1,6*

1Department of Pathology, Xiangya Hospital, Central South University,
Changsha, China, 2Department of Pathology, Fudan University Shanghai Cancer Center,
Shanghai, China, 3Department of Oncology, Shanghai Medical College, Fudan University,
Shanghai, China, 4Department of Pharmacology, School of Basic Medical Sciences, Shanghai
Medical College, Fudan University, Shanghai, China, 5Department of Pathology, School of Basic
Medical Sciences, Central South University, Changsha, China, 6National Clinical Research Center for
Geriatric Disorders, Xiangya Hospital, Changsha, China, 7Department of Pathology, The Second
Xiangya Hospital, Central South University, Changsha, China, 8Department of Obstetrics and
Gynecology, Xiangya Hospital, Central South University, Changsha, China
Limited immunotherapeutic effect in high-grade serous ovarian carcinoma

(HGSOC) propels exploration of the mechanics behind this resistance, which

may be partly elucidated by investigating characters of cancer-associated

fibroblasts (CAFs), a significant population in HGSOC involved in shaping

tumor immune microenvironment. Herein, leveraging gene expression data

of HGSOC samples from The Cancer Genome Atlas and Gene Expression

Omnibus datasets, we suggested that CAFs detrimentally affected the

outcomes of HGSOC patients. Subsequently, we performed weighted gene

co-expression network analysis (WGCNA) to identify a CAFs-related module

and screened out seven hub genes from this module, all of which were

posit ively correlated with the infi l tration of immunosuppressive

macrophages. As one of the hub genes, the expression of fibrillin 1 (FBN1)

and its relevance to CD206 were further verified by immunohistochemistry

staining in HGSOC samples. Meanwhile, we extracted genes that correlated

well with CAF signatures to construct a CAFscore. The capacity of the CAFscore

as an independent prognostic factor was validated by Cox regression analyses,

and its relevance to components as well as signals in the tumor immune

microenvironment was also investigated. Under the evaluation by the

CAFscore, HGSOC patients with relatively high CAFscore had worse

outcomes, activated mesenchymal signaling pathways, and immune

checkpoint blockade (ICB) resistance signatures, which was consistent with

the fact that non-responders in anti-PD-1 treatment cohorts tended to have
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higher CAFscore. Besides, the possibility of CAFscore to guide the selection of

sensitive chemotherapeutic agents was explored. In conclusion,

individualized assessment of the CAFscore could uncover the extent of

stroma activation and immunosuppression and inform therapeutic

strategies to improve the benefit of therapies.
KEYWORDS

high grade serous ovarian carcinoma, cancer-associated fibroblast, tumor immune
microenvironment, prognosis, therapy prediction
Highlights

From the view of the intricate interplay between CAFs and

the immune microenvironment of HGSOC, we identify a gene

module associated with CAF traits and generate a CAFscore

evaluation system. As an independent prognostic factor, the

CAFscore extensively contacts with components and signals in

the HGSOC microenvironment. Evaluating the CAFscore of

individual may contribute to gaining a greater understanding

of stroma and the immune status of each patient, enhancing the

accuracy of prognostic prediction, and suggesting effective

treatment options.
Introduction

Ovarian carcinoma is the most fatal of all gynecologic

cancers, of which high-grade serous ovarian carcinoma is

characterized by a high recurrence rate with poor long-term

survival and results in the highest death tolls (1–3). Its malignant

biological properties are reflected in its early and widespread

dissemination to peritoneal surfaces, which largely relies on

communication between tumor cells and their adjacent

stromal microenvironment. Previous studies including The

Cancer Genome Atlas (TCGA) have identified various

subtypes of HGSOC, among which the mesenchymal subtype

was linked to conspicuously poorer survival when compared

with other subtypes, with increased stromal components such as

myofibroblasts and microvascular pericytes (4, 5), highlighting

the importance of the tumor stroma for the survival of

HGSOC patients.

Cancer-associated fibroblasts (CAFs), originating from

diverse groups of mesenchymal cells, are a prominent stromal

population in almost all tumors (6). Multiple mechanisms, such

as inflammatory signals, DNA damage, and physiological stress,

can lead to CAFs activation (7). Through secreting growth

factors, inflammatory ligands, and extracellular matrix (ECM)

proteins, activated CAFs extensively interact with cancer cells

and exert protumorigenic and antitumorigenic effects. In the
02
8788
past decade, the adverse effects of CAFs on ovarian cancer have

mostly been illustrated. Functionally, ovarian tumor cells

activate fibroblasts or induce cancer-associated fibroblasts-

phenotype to promote ovarian cancer progression and reduce

overall survival by secreting lysophosphatidic acid, interleukin-

1b (IL-1b), and C-C motif chemokine ligand 5 (CCL5) (8–10).

Reciprocally, activated ovarian CAFs contribute to epithelial

ovarian cancer metastasis by promoting angiogenesis and

tumor cell invasion, and even the resistance to platinum-based

chemotherapy, through releasing growth factors and metabolites

(11–13). Prior studies have shown a predominance of the

fibroblast in the HGSOC patient samples, based on the

analysis of single-cell separation and sequence (14, 15).

Remarkably, myofibroblasts and cancer-associated fibroblasts

driven by transforming growth factor-b (TGF-b) predicted the

poor outcome of HGSOC patients (16). As such a major

component of the stroma, CAFs affect each cancer

developmental stage, from initiation to invasion and

metastasis, leading to an unfavorable prognosis of ovarian

cancer, which inspired us to develop a prognostic model of

ovarian cancer based on the status and content of CAFs.

In addition to considering the interactions between CAFs

and tumor cells, CAFs’ engagement in crosstalk with other cells

within the tumor microenvironment (TME) also deserves

attention. The contribution of CAFs to establishing an

immunosuppressive TME has been supported by several lines

of evidence. In detail, CAFs not only impaired the functionality

of dendritic cells (DCs) and the infiltration of natural killer (NK)

cells but also facilitated the immunoinhibitory phenotype of

macrophages and the differentiation of naïve T cells into

regulator T cells (Tregs) (17–20). The potential intervention of

fibroblasts in TME is not limited to expressing ligands of

immune checkpoint molecules (ICMs), including programmed

death ligand 1 (PD-L1), PD-L2, and B7-H3/H4 on their own

surface (21). Also, CAFs upregulates the expression of ICMs on

other cells in the TME, thereby contributing to the impaired

function of tumor-infiltrating T lymphocytes. In the past decade,

immune checkpoint blockade, which has revolutionized the

treatment of several cancer types shows only modest results in
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HGSOC (22–25). Nevertheless, little is known about the

molecular mechanisms that dictate response or resistance to

these modalities. Considering the above backgrounds,

investigating interactions between CAFs and the immune

microenvironment helps elucidate the mechanism beneath the

limited effectiveness of immunotherapies in HGSOC and

develop CAFs-targeting immunotherapies.

Herein, prognosis-oriented clustering analysis distinguishing

twogroupsofHGSOCpatientswitha significantdifference inCAFs

infiltration suggested that CAFs were significantly involved in the

outcomes of HGSOC. Leveraging global gene expression data from

several independent sets of clinical HGSOC tumor samples, we

identified a gene co-expression module that presents high

correlations with signatures of CAFs and significantly overlaps

with participators of ECM. Subsequently, we screened out seven

hub genes from this CAF-related module, amongwhich FBN1was

further verified by immunohistochemistry (IHC) staining of

HGSOC samples. To a large extent, these hub genes might be

interpreted as fibroblast markers and correlated well with

macrophage infiltration. Meanwhile, we extracted genes that

correlated well with CAF signatures to construct a CAFscore.

Under the evaluation by the CAFscore, HGSOC patients with

relatively high CAFscore had worse outcomes, activated

mesenchymal signaling pathways, and ICB resistance signatures,

whichwas consistentwith the fact that non-responders in anti-PD-

1 treatment cohorts tended to have higher CAFscore. Besides, the

possibility of CAFscore to guide chemotherapeutic drug selection

was explored.
Materials and methods

Dataset acquisition and preprocessing

The R package “TCGAbiolinks” was used to download

TCGA RNA-seq data (FPKM normalized), and clinical data

were obtained from the cBioPortal website (http://www.

cbioportal.org/). Then, the FPKM values were transformed

into transcripts per kilobase million (TPM) values. The RNA

sequencing data and clinicopathological characteristics of TCGA

pan-cancer were obtained from UCSC Xena (https://

xenabrowser.net/datapage/). For the HGSOC cohort, the

expression data and detailed clinical information of

GSE140082, GSE17260, GSE18520, GSE26193, GSE30161, and

GSE32063 were downloaded from the Gene Expression

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/). Our

study included two immune checkpoint blockade treatment

cohorts with available expression and clinical information: the

IMvigor210 cohort (obtained from http://research-pub.Gene.

com/imvigor210corebiologies) and the GSE78220 cohort

(downloaded from GEO). The data preprocessing methods

were previously reported (26). Only patients with complete

related information were included in each cohort above in this
Frontiers in Immunology 03
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study. Batch effects from non-biological technical biases were

corrected using the “ComBat” algorithm of the “sva” package.

To further verify the expression of relevant key genes, 41

HGSOC samples were collected from Xiangya Hospital of

Central South University and written informed consent was

obtained from the Xiangya Hospital Ethics Committee. The

patients were informed and signed informed consent forms.
Estimation of TME cell infiltration

The immune score, stromal score, ESTIMATE score, and

tumor purity for tumor samples were estimated using the R

package “ESTIMATE” (27). Meanwhile, the levels of infiltrating

CAFs that was calculated by EPIC, MCPcounter and tumor

immune dysfunction and exclusion (TIDE), and other immune

cells that were calculated by CIBERSORT, EPIC, TIMER, and

MCPcounter algorithms in the TME of ovarian cancer (27–31).
Weighted gene co-expression
network analysis

In this study,weconductedweightedgene co-expressionanalysis

(WGCNA) using the R package “WGCNA” to cluster genemodules

most correlated with CAFs based on EPIC, MCPcounter, and TIDE

(32). We selected a soft threshold power b=3 and then constructed

the adjacency matrix by raising the intergenic Pearson correlation

matrix to the soft threshold power. The correlation between each

module and the different CAFs groups was further selected by

selecting the modules with the highest module-CAFs associations

to further select candidate modules related to CAFs infiltration.

Module membership (MM) represented the correlation between

module eigengenes and gene expression profiles, while gene

significance (GS) was defined as the absolute value of the

correlation between the gene and the clinical trait.
Generation of the CAFscore

TheWGCNAwas used to recognize co-expressed genemodules

closely related to the CAFs, and a total of 145 genes were determined

in the brown genemodule withGS>0.3 andMM>0.6. Then, we used

the ssGSEA (Single-sample Gene Set Enrichment Analysis)

algorithm to construct a CAF-relevant gene signature to quantify

the content of the CAFs of individual patients.
Functional and pathway enrichment
analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses via the R package
frontiersin.org
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“clusterprofiler” with a strict cutoff value of false discovery rate

(FDR)<0.05 (33). We performed gene set variation analysis

(GSVA) enrichment analysis as in our previous study (34).

The R package “IOBR” constructed a gene set that stored

genes associated with some biological processes (35). The

stroma pathways, DNA damage repair pathways, and

immune-related pathways were downloaded, and the ssGSEA

method was chosen in the process of pathway score

evaluation (36).
Immunohistochemistry (IHC) staining

IHC was performed as described previously (37). Primary

antibodies against CK (Ready to use, Maxim, MAB-0828),

CD206 (1:10000, Proteintech, Cat No.60143-1-Ig), FBN1

(1:500, Proteintech,Cat No.26935-1-AP) were used for

IHC staining.
Association analysis of the CAFscore and
Immuno-/Chemotherapeutic
Response prediction

We investigated the predictive capacity of CAFscore in

responding to immunotherapy and chemotherapies/targeted

therapies. First, the TIDE algorithm and the Immune Cell

Abundance Identifier (ImmuCellAI) algorithm were used to

predict the response to ICB therapy as previously described

(38). The drugs’ 50% inhibiting concentration (IC50) value was

predicted using the “pRRophetic” algorithm, and the correlation

between CAFscore and the IC50 value of the drugs was

determined using Spearman correlation analysis.
Statistical analysis

The statistical difference in the distribution in the two groups

was examined by unpaired Student’s t-tests (normally distributed)

and the Wilcoxon rank-sum test (nonnormally distributed).

Pearson’s or Spearman’s correlation analysis was used to examine

the relationships between two continuous variables. The chi-square

and Fisher’s exact tests were adopted to analyze the difference

between categorical variables. We used the R package “Survminer”

to determine the optimal cutoffs, and samples were classified into

high and low score groups based on the cutoff. Then, survival

analysis was carried out using the Kaplan-Meier method, and the

log-rank test was utilized to calculate the statistical significance. A

univariate Cox regression model was adopted to calculate the

hazard ratios (HR) for CAFs, and a multivariable Cox regression

model was used to ascertain the independent prognostic factors. All

statistical analyses were conducted using R software (version 4.0.5).
Frontiers in Immunology 04
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The p values were two-sided, and p values < 0.05 was considered

statistically significant.
Results

Validation of consistency of CAF
algorithms and identification of CAF as
an adverse prognostic factor in HGSOC

To examine whether CAF signatures calculated by three

recently established algorithms (MCP-CAFs, EPIC-CAFs, and

TIDE-CAFs) are generally consistent and stable, we evaluated

the correlation between any two signatures from the three

algorithms in each HGSOC patient from the integrated cohort

(Figure 1A). The strong positive correlation between each

signature is reflected by R=0.914, 0.868, and 0.866,

respectively. In order to characterize CAFs comprehensively

and convincingly, all three algorithms would be applied

simultaneously during the subsequent analysis. HGSOC

patients were grouped according to the content of CAFs, and

significant prognostic differences were observed between groups

(Figure 1B). Further, univariate Cox regression analysis

determined CAF signatures as indexes suggesting adverse

prognosis (Figure 1C).
Investigating the relevance between CAF
signatures and components as well as
signals in HGSOC immune
microenvironment

Given the impressive ability of CAF signatures to distinguish

between patients with widely varying outcomes, the role of CAFs

in the prognosis of HGSOC patients deserves further

exploration. The relevance of CAFs to prognosis should be

demonstrated by more proof. Specifically, CAF algorithms and

acknowledged sub-CAF signatures (myofibroblastic CAFs,

myCAFs; inflammatory CAFs, iCAFs), as well as markers, are

supposed to measure the content of CAFs. Prognostic-oriented

clustering in the HGSOC integrated cohort exhibited distinct

CAF signatures as well as markers between the two groups

(Figure 2A). As a prominent population in the TME of HGSOC,

CAFs undeniab ly engage in shaping the immune

microenvironment. Thus, we demonstrated correlations

between CAF signatures with cytokines including interleukins

and chemokines, in which CCL11, CXCL12, and CXCL14 were

remarkable because of their apparent positive correlations with

CAFs (Figure 2B). Based on the CAF signature displayed by the

MCP algorithm, the ESTIMATE algorithm showed that CAFs

were inversely correlated with Tumor Purity but positively

correlated with the ImmuneScore, StromalScore, and
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ESTIMATEScore (Figure 2C). Additionally, CAF signatures

positively correlated with macrophage abundance (Figure 2D),

enhanced immunotherapy resistance, and mesenchymal

activation, including epithelial-mesenchymal transition (EMT),

TGF-b signals, and pan-fibroblast TGF-b response (Pan-F-

TBRS) in the high CAFs group (Figure 2E). Heretofore, the

adverse role of CAFs in HGSOC was reflected by not only the

overall survival of patients but also possible participation in

mesenchyme activation, immunosuppression, and resistance

to immunotherapy.
Detection and functional interpretations
of a gene co-expression module shared
CAF characteristics in HGSOC

Identification of genes that show similar expression patterns

across samplesmight help shed light on shared biological processes,

for example, the mechanism for activation of CAFs in TME. Thus,

we investigated this by applyingWGCNA to an integratedHGSOC

cohort generated from TCGA and GEO datasets. b=3 was selected
to construct a standard scale-free network with the pick soft

threshold function (Figure S1A), where genes were assigned to
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eight differentmodules using a cluster dendrogram (Figure 3A). To

identify the module regulating CAFs, we correlated each module

eigengenewith differentCAF traits, suggesting the brownmodule’s

potential. The full module-trait correlation table is presented in

Figure 3B. The brown module members present good correlations

with CAF signatures (Figure 3C). Furthermore, GO analysis

revealed that brown module genes were mainly enriched in

functions such as extracellular matrix organization, collagen-

containing extracellular matrix, and extracellular matrix

structural constituents (Figure 3D). KEGG analysis of brown

module genes emphasized the PI3K-Akt signaling pathway, focal

adhesion, and ECM-receptor interaction (Figure S1B). The above

results raise the possibility that the brownmodule is a specific gene

network regulating the ECM and sharing similarities with the CAF

traits of HGSOC.
The hub genes extracted from CAFs-
related module as potential CAF markers
participating in the shaping of TME

Highly connected “hub” genes are thought to be paramount

in managing the behavior of biological modules (39). Therefore,
B

C

A

FIGURE 1

Validation of consistency of CAF algorithms and identification of CAF as an adverse prognostic factor in HGSOC. (A) The correlation between
any two signatures obtained by three CAF algorithms (MCP, EPIC, and TIDE) in each patient in the integrated cohort (TCGA-OV and GEO
datasets). (B) Survival analyses for patient with relatively high or low CAF signatures in the integrated cohort using Kaplan–Meier curves. (C)
Forest plot of univariate Cox analysis of CAF signatures in TCGA and GEO datasets.
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we set out to identify the hub genes in the brown module and

hypothesized that those hub genes might be associated with

CAFs in HGSOC. The relationships between genes in the brown

module and CAFs signatures were evaluated with GS and MM.
Frontiers in Immunology 06
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In the end, seven hub genes, including anthrax toxin receptor 1

(ANTXR1), pericytes derived growth factor receptor beta

(PDGFRB), adipocyte enhancer-binding protein 1 (AEBP1),

collagen type V alpha 2 chain (COL5A2), collagen type V
B

C

D

E

A

FIGURE 2

Investigating the relevance between CAF signatures and components as well as signals in HGSOC immune microenvironment. (A) The heatmap
shows the correlations between CAF signatures and acknowledged makers of CAFs in 1074 HGSOC patients in meta cohort. Pink represented
the relatively high score or expression and blue represented the relatively low score or expression. (B) Correlations between CAF signatures with
cytokines including chemokines, interleukins, and other cytokines. (C) Correlations between CAF signatures (MCP) and ImmuneScore,
StromalScore, ESTIMATEScore as well as Tumor Purity. (D) Correlations between CAF signatures (MCP) and immune cells (cibersort). (E)
Differences in ICB response-related signatures between low- and high-CAF (MCP) groups. ***, P < 0.001.
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alpha 1 chain (COL5A1), FBN1, and secreted protein acidic

and cysteine rich (SPARC), were screened out with GS >0.3

and MM >0.8 (Figure 4A). Among them, PDGFRB is an

acknowledged marker of CAFs (40), which supports the

accuracy of our results and suggests the potential of other

genes to characterize the abundance or properties of CAFs.

Univariate regression analysis confirmed the adverse role of

hub genes in the prognosis of HGSOC (Figure 4B). Significant

functions of these hub genes in modulating biological processes

relating to CAFs were validated by fair positive correlations

between hub genes and signatures as well as markers of CAFs

(Figure 4C). To extend other biological features from hub

genes themselves, we performed GSVA enrichment analysis

and revealed strong positive correlations between hub genes

with mesenchymal activation and classic cancer-promoting

pathways such as TGF-b signaling pathway, EMT, apical

junction, and angiogenesis (Figure 4D).

In the further investigation of relationships between hub

genes and the immune microenvironment of HGSOC, we

focused on FBN1, an ECM glycoprotein that has been reported

to promote the structure formation of calcium-binding

microfibrils (41). The ESTIMATE algorithm was performed to

assess components in the TME of patient samples ranked by the

mRNA level of FBN1. Those patients with relatively high FBN1
Frontiers in Immunology 07
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expression also owned higher StromalScore and ImmuneScore

(Figure 4E). As for specific immune components, FBN1 was

positively correlated with the infiltration of subpopulations of T

cells andmyeloid cells, especiallymacrophages, whichwas further

verified by the EPIC and TIMER methods (Figures 4F, G). Also,

there were positive correlations between FBN1 and biomarkers of

immunosuppressive macrophages as well as some immune

checkpoints (Figures 4H, S2A). The preference of the FBN1

expression in fibroblasts was confirm in a single cell RNA set

(GSE118828) downloaded from the Tumor Immune Single-cell

Hub (TISCH) (Figures S2B-D). Immunohistochemical staining

further verified that FBN1 was mainly expressed inmesenchymal

cells, and patients with relatively high FBN1 expression also had a

higher positive rate of CD206 (a marker of immunosuppressive

macrophages) (Figure 4I). From the above results, we could

speculate that CAFs expressing FBN1 may be involved in the

formation and maintenance of the immunosuppressive

microenvironment of HGSOC. The morphological distribution

and approximate protein levels of other hub genes that existed in

The Human Protein Atlas and TISCH are visualized in Figures

S3A-C. Besides, each hub gene was also assessed on its

correlations with scores calculated by the ESTIMATE algorithm

and the enrichment scores of various types of immune cells

(Figure S4A).
B

C
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FIGURE 3

Detection and functional interpretations of a gene co-expression module shared CAFs characteristics in HGSOC. (A) Network analysis of gene
expression in HGSOC cohort. Dendrograms obtained by average linkage hierarchical clustering of genes on the basis of topological overlap.
Modules of co-expressed genes were assigned colors. The color row underneath the dendrogram shows the modules assigned by the Dynamic
Tree Cut and merged to produce eight distinct modules. (B) Module-trait relationships: Each column corresponds to a trait, and each row
corresponds to a module eigengene. The number in the rectangle indicates the correlation coefficients (P-values in the brackets). The table is
color-coded by correlation based on the color legend: red to blue indicates a positive to negative correlation of module eigengenes with traits.
(C) Scatter plot of module eigengenes in brown module. (D) Gene Ontology analysis of genes in the brown module. CC, cellular component
(upper); MF, molecular function (middle); BP, biological process (bottom).
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FIGURE 4

The hub genes extracted from CAFs-related module as potential CAF markers participating in the shaping of tumor microenvironment. (A) The
correlations between any two hub genes. (B) Forest plot of univariate Cox analysis of hub genes in meta-cohort. (C) The correlations between
hub genes and CAF signatures (MCP, EPIC, and TIDE) and CAF markers. (D) Hallmark pathways in which hub genes were involved. (E) The TME
scores in HGSOC samples ranked by the mRNA level of FBN1. (F) The correlation between the mRNA expression of FBN1 and the level of
immune cell infiltration calculated by CIBERSORT. (G) The positive correlations between the mRNA expression of FBN1 and the level of
macrophage infiltration calculated by EPIC and TIMER. (H) The correlations between the expression of FBN1 and M2 macrophage markers in
mRNA levels. (I) HE staining and IHC staining of CK, FBN1 and CD206 in one sample with relatively low protein expression of FBN1 and the
other with high protein expression of FBN1.
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Establishment of the CAFscore
evaluation system as a prognostic
indicator in HGSOC and its involvement
in TME

Considering the significant impact of CAF traits on

prognosis, we picked out 145 genes in the brown module

when setting GS >0.3 and MM >0.6 to construct a scoring

system which was termed CAFscore, using ssGSEA for

measuring the prognosis of HGSOC patients. These 145 genes

were enriched in extracellular matrix organization and

mesenchymal activation, as revealed by GO and KEGG

analyses, similar to the enriched pathways of the entire brown

module (Figures S5A, B). Besides, the CAFscore correlated well

with hub genes and CAF signatures (Figure 5A). Meanwhile,

HGSOC patients were divided into a high CAFscore group

(n=330) and a low CAFscore group (n=744) based on an

optimal cutoff value for the CAFscore. Kaplan-Meier analyses

and univariate regression analysis suggested the CAFscore was a

prominently adverse prognostic factor in the integrated cohort

and most HGSOC patient datasets with sufficient samples

(Figures 5B, S6A, B). Particularly, in the TCGA-OV cohort,

multivariate Cox regression analysis revealed that the CAFscore

was an independent prognostic factor (Figure S6C). In the pan-

cancer univariate regression analysis, the CAFscore as a risk

factor was also applicable to most cancer types (Figure S6D). The

heatmap in Figure 5C demonstrated the enhanced EMT and

inflammatory signaling pathways (“IL6-JAK-STAT3 signaling”,

“TNFa signaling via NF-kb”, “inflammatory response”, and

“IL2-STAT5 signaling”), the release of cytokines (“TGF-b
signaling pathway” and “cytokine-cytokine receptor

interaction”), activated immunoreaction (“Fc Gamma R

mediated phagocytosis” and “leukocyte transendothelial

migration”), and impaired “apoptosis” in the high CAFscore

group. The CAFscore evaluation system was used to create a

landscape of TME characteristics and immune cell infiltration,

which revealed that the CAFscore was positively correlated with

not only the StromalScore and ImmuneScore (Figure 5D) but

also the infiltration of endothelial cells, myeloid cells, and CD4+

T cells (Figure 5E), particularly immunosuppressed

macrophages (Figure S7A). Also, the CAFscore, it should be

noted, is well related to the expression of immune checkpoints,

especially PD-L2 and TIM-3 (Figures 5F, G). Paramount

biological pathways engaging in the tumor immune

microenvironment were evaluated in high- and low-CAFscore

groups. Among them, signatures related to immunotherapy

resistance and mesenchymal activation were enriched, but the

DNA damage repair pathway was impaired in the high

CAFscore group (Figure 5H). The above results suggest the

capacity of the CAFscore for indicating individual prognosis and

the ability of CAFs to form the immunosuppressive and stroma-

activated TME of HGSOC.
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The role of the CAFscore in the
prediction of immunotherapy benefits
and the selection of sensitive
chemotherapeutic agents

To further elucidate the effects of CAFscore in the context

of immunotherapy (represented by ICBs), we first extended

our analysis to associations between CAFscore and tumor

mutation burden (TMB), which may influence cancer

immunogenicity. In the TCGA-OV cohort, there were

limited correlations between CAFscore and mutation counts

and a less significant difference in TMB across CAF groups

(Figure S8A). To predict ICB response, newly identified

predictors, such as TIDE scores and ImmuCellA (Figures 6A,

B, S8B), are widely used to evaluate the immune response (30,

38). The CAFscore was positively correlated with TIDE,

dysfunction, and exclusion and negatively correlated with

MSI Expr sig, and the CAFscore of HGSOC patients who

responded to immunotherapy was lower than those who did

not. Next, assessing the ability of the CAFscore to predict

patients’ responses to ICB in both immunotherapy cohorts:

GSE78220 (Figures 6C–E) and IMvigor210 (Figures 6F–H)

revealed that survival benefits and response to ICB treatment

were observed in patients with a low CAFscore (Figures 6C–H,

S8C, D). In the IMvigor210 cohort, patients were divided into

deserted, excluded, and inflamed subgroups based on the

infiltration status of CD8+ T cells (42). In different immune

phenotype subgroups, the overall survival of patients and

responses to ICB treatment varied based on the CAFscore

system. For example, a high CAFscore represents poor

prognosis and resistance to ICB in the excluded subgroups

(Figure 6G, S8E) but not in the deserted subgroup (Figure

S8C). This suggests that different levels of activation or

infi l trat ion of CAFs result in different degrees of

immunosuppression if there are immune components, thus

leading to variations in resistance to immunotherapy and the

outcome of patients.

To understand the effect of CAFscore on the clinical efficacy

of HGSOC treatments, we analyzed correlations between

CAFscore and IC50 of drug candidates in the Genomics of

Drug Sensitivity in Cancer (GDSC) database (Figure 6I). A

total of 31 drug candidates with |Rs| >0.5 were screened out,

the IC50 of the most of which (30 candidates) inversely

correlated with CAFscore, targeting PI3K-mTOR signaling,

RTK signaling, and other kinases (Figure 6J). Remarkably, the

estimated IC50 of imatinib exerted a pretty negative correlation

with the CAFscore, which means this agent might benefit

patients with a high CAFscore (Figure 6K). Together, these

results implied that CAFs played crucial roles in mediating the

immune response and correlated with drug sensitivity. Thus, the

CAFscore might be a potential biomarker for establishing

appropriate treatment strategies.
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Discussion

Tumor stroma and the immune microenvironment have

received an extensive concern for nearly a decade. The effector

cells that can kill tumor cells always garner much attention in the

development of immunotherapy. Nevertheless, the limited
Frontiers in Immunology 10
9596
benefit to HGSOC patients from ICB drives researchers to

investigate the mechanisms of this resistance and other novel

targets. As early as 2010, TCGA termed four HGSOC subtypes

based on gene content, of which the mesenchymal subtype was

characterized by high expression of HOX genes and increased

stromal components such as for myofibroblasts and
B
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FIGURE 5

Establishment of the CAFscore evaluation system as a prognostic indicator in HGSOC and its involvement with immune microenvironment. (A)
The correlations between the mRNA expression of hub genes and CAFscore. (B) Survival analyses for patient with relatively high- or low-
CAFscore in the integrated cohort using Kaplan–Meier curves. (C) GSVA enrichment analysis showing the activation states of biological
pathways in high- and low-CAFscore group. The heatmap was used to visualize these biological processes, and yellow represented HALLMARK
database and blue represented KEGG database. (D) The correlations between CAFscore and TME scores. (E) The correlations between the
CAFscore and the level of immune cell infiltration. (F) The correlations between the CAFscore and the expression of ICMs (CTLA4, IDO-1, LAG-
3, PD-1, PD-L1, PD-L2, TIGIT, TIM-3, BYLA). (G) Comparisons of PD-L2 (left) and TIM-3 (right) expression levels between high- and low-
CAFscore groups. (H) The differences in the enrichment scores of stroma-activated pathways, DNA damage repair pathways and ICB response-
related signatures between high- and low-CAFscore groups. ***, P < 0.001.
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microvascular pericytes (4). Also, the mesenchymal subtype was

identified by several independent studies. Thus, targeting CAFs,

a major component of the stroma, by altering their numbers,

subtypes, or functionality, is being explored as an avenue to

improve cancer therapies. In this study, we aim to evaluate the

effect of CAFs on the prognosis and response to immunotherapy

of HGSOC patients.

Several independent CAF signatures, as well as some well-

known fibroblast markers, including fibroblast activation protein

alpha (FAP), collagen 1A1 (COL1A1), and platelet-derived

growth factor receptor alpha (PDGFRA), were employed to

evaluate the content of CAFs. Kaplan-Meier survival

estimation and univariate Cox regression analysis confirmed

that CAF could be a risk factor for HGSOC patients, further

verified by prognostic-oriented clustering of HGSOC samples.
Frontiers in Immunology 11
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As a substantial source of growth factors and cytokines,

CAFs certainly orchestrate the composition and content of

soluble substances in TME and thus contribute to tumor

progression. The correlations between CAF signatures and

components of the immune microenvironment as well as ICB-

related signatures implied that elevated expression of cytokines

(e.g., CCL11, CCL21, CXCL12, CXCL14, IL-6, IL-16, and TGF-

b), the enrichment of immunosuppressive macrophages,

mesenchymal activation, and enhanced immunotherapy

r e s i s t a n c e w e r e a l l l i n k e d t o CAF s - e n r i c h e d

microenvironment. There have been specific studies about

CXCL12 and CXCL14 in CAFs in tumor progression.

Fibroblast-derived CXCL12 facilitated tumor cell intravasation

and limited T cell-mediated tumor control (42–44). Also, CAFs

expressed CXCL14 for their tumor-supporting properties (45,
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FIGURE 6

The role of the CAFscore in the prediction of immunotherapy benefits and the selection of sensitive chemotherapeutic agents. (A) The
correlations between CAFscore and TIDE, Dysfunction, Exclusion, and MSI expression signature. (B) The comparison of CAFscores between
responder and non-responder groups, according to TIDE (left) and ImmuCellAI (right) algorithms. (C) Survival analyses for low (19 cases) and
high (8 cases) CAFscore patient groups in the GSE78220 cohort using Kaplan–Meier curves. (D) The CAFscore in the group with complete
response (CR) or partial response (PR) versus the group with progressive disease (PD) in GSE78220. (E) The association of the CAFscore with
clinical response to anti-PD-1 immunotherapy per patient in GSE78220 cohort. (F) Survival analyses for low (148 cases) and high (200 cases)
CAFscore patient groups in IMvigor210 cohort using Kaplan–Meier curves. (G) Survival analyses for low (74 cases) and high (60 cases) CAFscore
patient groups in the excluded immune subgroup. (H) The CAFscore in the group with CR/PR versus the group with PD/stable disease (SD) in
IMvigor210 cohort. (I) The correlations between CAFscore and the estimated IC50 for drugs evaluated by the Spearman analysis. Each point
represents a drug. (J) The lines represent the relationship between candidate drugs and pathways. (K) The differences in the estimated IC50 for
lmatinib between high- and low-CAFscore groups in TCGA and GEO datasets, respectively. ***, P < 0.001.
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46). Besides, it is not known whether CCL11 (a chemokine for

eosinophils, engaging in ovarian cancer progression) (10, 47),

CCL21 (a chemokine for thymocytes and activated T cells,

mediating homing of lymphocytes) and IL-16 (a modulator of

T cell activation) participate in the functionality of CAFs and the

remodeling of the tumor immune microenvironment, which

might deserve further exploration. What is noteworthy is that

enhanced expressions of IL-6 and TGF-b are linked.

Experiments and observations show that iCAFs express less

ACTA2 (actin alpha2 smooth muscle, also abbreviated as

-SMA) and secrete more IL-6 and other inflammatory factors

(e.g., IL-8, IL-11, CXCL1, and CXCL2), thereby participating in

immune suppression, whereas myCAFs are responsible for ECM

remodeling, with high TGF-b and ECM proteins such as

fibronectin 1, and COL1A1 (48, 49). Given the relatively

weaker expression of iCAF markers than ECM components

and myCAF markers in CAFs-enriched samples, we suppose

that myofibroblasts are predominant CAF population in

HGSOC. As regards macrophages , CAFs-enr iched

environments also exhibited high expression of CCL2 (also

named monocyte chemoattractant protein-1, MCP-1), which

might partly explain the abundance of macrophages.

For a deeper understanding of the potential molecular

mechanisms of the link between CAFs and prognosis in

HGSOC patients, we performed WGCNA to find modules of

highly correlated genes and correlated modules to CAF traits,

and focused on the brown module that was characterized by

enrichment pathways and GO groups defining ECM production

and remodeling, cell adhesion, and angiogenesis. Afterward, we

extracted intramodular hub genes from the brown module that

exhibit excellently positive correlations with CAF traits. These

hub genes, conceivably, contain markers of collagen (COL5A2

and COL5A1) and PDGFRB. To identify a potential novel gene

target, we looked for highly connected genes that have not been

extensively studied as cancer targets and then focused on FBN1,

a structural component of calcium-binding microfibrils. A few

studies reveal that FBN1 is a risk factor for hematogenous and

lymphatic metastasis in serous ovarian cancer and promotes

chemoresistance in ovarian cancer organoids (50, 51). The

predominance of FBN1 in fibroblasts were confirmed in a

single cell RNA set (GSE118828) downloaded from the TISCH

database (52). Based on the contribution of CAFs, we

hypothes i ze tha t FBN1 plays an adverse ro le in

HGSOC prognosis.

In addition to the contribution to tumor growth, CAFs also

influence the infiltration and properties of other tumor

microenvironment components, which greatly accounts for

resistance to ICB. All signatures, from CAF algorithms to hub

genes in CAF-related modules to the CAFscore, indicate the

importance of macrophages and T leukocytes in the immune

microenvironment remolded by CAFs. In detail, CAFs advanced

the recruitment of monocytes (macrophage precursors) and

their differentiation into immunosuppressive macrophages
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(usually referred to as M2 macrophages) via multiple

regulatory molecules, including macrophage colony-

stimulating factor 1 (M-CSF1), IL-6, CCL2, and TGF-b,
thereby impairing responses from effector T cells and inducing

immune suppression in the TME (53–57). In turn, M2

macrophages were also able to enhance EMT to stimulate

activation of CAFs and influence the trans-differentiation and

activity of mesenchymal stem cells (one of the cellular precursors

o f CAFs ) ( 58 ) . B e s i d e s , t h e r e l e v an c e be twe en

immunosuppressive macrophages and CAFs was confirmed by

IHC staining of CD206 and FBN1 in our study, further

supporting the adverse role of FBN1 in HGSOC. Numerous

studies have illustrated the role of CAFs in modulating T cell

activities and functions. CAFs can recruit CD8+ cytotoxic T

cells. A study based on the single-cell dissection of cellular

components in ovarian cancer revealed that CAFs-T cells

cross-talk relies on the CXCL12/14-CXCR4 axis (59).

However, immunosuppression is a general feature of the TME

of HGSOC, which is consistent with the result that CAF

signatures and the CAFscore are positively correlated with T

cell exhaustion as well as dysfunction and resistance to ICB.

Also, CAFs stimulate the migratory activity of Treg cells and

markedly increase their frequency in colorectal tumor sites, and

promote Th2 polarization in pancreatic cancer (60, 61).

Furthermore, CAFs exerted immunosuppressive effects from

the following several aspects: modulating the degree of tumor-

associated neutrophils (TANs) activation (62); cooperating with

mast cells to induce the early malignant morphological

transition of benign epithelial cells (63); impairing the

functionality of infiltrating NK cells (64, 65); blocking DC

maturation and antigen presentation (18); increasing attraction

and differentiation of Tregs (66).

The CAFscore was contracted to indicate the relative content

of CAFs in individuals, which was further suggested as an

independent prognostic factor by univariate Cox regression

analysis, not only in HGSOC samples but also in pan-cancer.

HGSOC samples with high CAFscore exhibited poor overall

survival and enrichment of immune and inflammatory

pathways, cell connection and adhesion, and angiogenesis,

which inspired us to explore the potential of the CAFscore in

predicting the response to immunotherapy in HGSOC. Prior

studies indicate that cancers with high TMB are more likely to

benefit from ICBs (67). However, there were limited correlations

between CAFscore and mutation counts and less significant

differences in TMB across CAF groups, which could be

explained as extensive cross-talk between CAFs and other ICB

response determinants, such as mesenchymal activation and

immunosuppressive TME. HGSOC samples with high

CAFscore had significant stroma activation status (including

the highly expressed EMT and TGF-b pathways, as well as Pan-

F-TBRS), as well as increased infiltration of immunosuppressive

cells and ICM expression. HGSOC patients with higher

CAFscore not only tended not to respond to ICBs but also
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were more prone to immune escape when using TIDE and

ImmuCellA to evaluate the immune response. Further, survival

benefits and response to ICB treatment were observed in a

patient with a low CAFscore from two anti-PD-1

immunotherapy cohorts. In the IMvigor210 cohort, when

patients were divided into deserted, excluded, and inflamed

subgroups based on the infiltration status of CD8+ T cells

(42), high CAFscore represented poor prognosis and resistance

to ICB in the excluded subgroup, but not in the deserted

subgroup. Tumors with immune excluded phenotypes have an

abundance of immune cells retained in the stroma rather than

penetrating the tumor mass. The activation of stroma in TME

was thought to suppress T cells (68). The existence of CD8+ T

cells enables CAFs to exert their influence on shaping the

immune microenvironment. Different levels of activation and

infi l trat ion of CAFs result in different degrees of

immunosuppression if there are immune components, thus

leading to variations in resistance to immunotherapy and the

outcome for patients. Besides, more potential drug treatments

were adapted in the high CAFscore group in the drug sensitivity

analysis, suggesting another treatment strategy.

There are still many deficiencies in this study that should be

paid attention to and further explored. Firstly, we retrospectively

construct the CAFscore based on public datasets and patient

samples of our own, but complete clinical parameters alone are

not sufficient to support our prognosis model. Secondly, HGSOC

patients are divided into two groups just based on the content

rather than the different properties of CAFs. Finally, prospective

cohorts of HGSOC patients receiving immunotherapy are needed

to validate our findings further.

In conclusion, this study provides a valuable tool to evaluate

the content of CAFs from gene expression data, which is

represented as the CAFscore, with the properties of predicting

HGSOC patient prognosis and revealing the degree of

immunosuppression. Individualized assessment of CAFscore

informs therapeutic strategies to improve clinical benefit from

cancer therapies.
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SUPPLEMENTARY FIGURE 1

Detection and functional interpretations of a gene co-expression module

shared CAFs characteristics in HGSOC. (A) Left: An examination of the
scale-free fit index for a variety of soft-threshold values (b); Right: An
analysis of the mean connectedness for different soft-threshold values.
(B) KEGG pathway analysis of genes in the brown module.

SUPPLEMENTARY FIGURE 2

The correlations between the expression of FBN1 and immune
microenvironment (A) The correlations between the expression of FBN1

and ICMs in mRNA levels. (B) Scatter plot showing the cell clusters in

GSE118828. (C-D) Scatter plot (C) and violin plot (D) showing the
distribution of cells expressing a high level of FBN1 in GSE118828.
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SUPPLEMENTARY FIGURE 3

The hub genes extracted from CAFs-related module as potential CAFs
markers participating in the shaping of immune microenvironment. (A, B)
Scatter plot (A) and violin plot (B) showing the expression of other hub
genes for all cell types in GSE118828. (C) The morphological distribution

and approximate protein levels of other hub genes.

SUPPLEMENTARY FIGURE 4

The correlations between hub genes and immune cells.

SUPPLEMENTARY FIGURE 5

Enrichment analyses of CAFs-related genes. (A, B) GO pathways (A) and
KEGG pathways (B) in which genes constructing CAFscore were enriched.

SUPPLEMENTARY FIGURE 6

The CAFscore is a prognostic indicator in HGSOC. (A) Survival analyses for
patient with relatively high- or low-CAFscore in GEO database
(GSE140082, GSE18520, GSE26193) and TCGA-OV database using

Kaplan–Meier curves. (B) Univariate Cox regression analyses estimating
prognostic value of the CAFscore in different HGSOC cohorts. (C)
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99100
Univariate and multivariate Cox regression analyses of the CAFscore with
age, tumor grade and stage in the TCGA-OV cohort. HR and p-values were

displayed. (D) Univariate Cox regression analyses estimating prognostic
value of the CAFscore in different cancer types from TCGA dataset.

SUPPLEMENTARY FIGURE 7

The correlations between the CAFscore with the expression of
immunosuppressive macrophage markers in mRNA levels.

SUPPLEMENTARY FIGURE 8

The role of the CAFscore in the prediction of immunotherapy benefits (A)
The correlations between the CAFscore and synonymous mutation
counts, non-synonymous mutation counts, and all mutation counts in

TCGA-OV cohort. (B) The comparison of CAFscores between Responder
and non-Responder groups in TCGA and GEO datasets, respectively,

according to TIDE algorithms. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

(C, D) Survival analyses for low and high CAFscore patient groups in the
desert (C) and inflamed (D) immune subgroups. (E) The CAFscore in the

group with CR/PR versus the group with PD/(SD) in the desert (left),
excluded (middle) and inflamed (right) immune subgroups.
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Fibroblast growth factor
receptor family mutations as a
predictive biomarker for immune
checkpoint inhibitors and its
correlation with tumor immune
microenvironment in melanoma

Wengang Zhang1, Handai Xia1, Rui Yang1, Yuqing Zhang1,
Qi Zheng1, Xiaoling Shang1, Ni Liu1, Xinchun Ma1,
Chenxi Wei1, Hang Chen2, Xin Mu3, Xiuwen Wang1*

and Yanguo Liu1*

1Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China,
2School of Basic Medical Sciences, Shandong First Medical University, Jinan, China, 3Department of
Medical Imaging Center, Third People’s Hospital of Jinan, Jinan, China
Background: The emergence of immune checkpoint inhibitors (ICIs) has

significantly improved the clinical outcomes of patients with metastatic

melanoma. However, survival benefits are only observed in a subset of

patients. The fibroblast growth factor receptor (FGFR) family genes are

frequently mutated in melanoma, yet their impacts on the efficacy of ICIs

remain unclear. Our study aimed to explore the association of FGFR mutations

with ICIs efficacy in metastatic melanoma.

Methods: The Cancer Genome Atlas (TCGA) data (PanCancer Atlas, skin

cutaneous melanoma (SKCM), n = 448) in cBioPortal were collected as a

TCGA cohort to investigate the association between FGFR mutations and

prognosis of melanoma patients. To explore the impact of FGFR mutations on

the efficacy of ICIs in melanoma, clinical and tumor whole-exome sequencing

(WES) data of four ICI-treated studies from cBioPortal were consolidated as an

ICIs-treated cohort. Moreover, the relationship between FGFR mutations and

immunogenicity (tumor mutation burden (TMB), neo-antigen load (NAL),

mismatch repair (MMR)-related genes and DNA damage repair (DDR)-related

genes) of melanoma was evaluated utilizing data from the ICIs-treated cohort.

The influence of FGFR mutations on the tumor immune microenvironment

(TIME) of melanoma was also analyzed using the TCGA cohort.

Results: In the TCGA cohort, survival in melanoma patients with or without

FGFR mutations was nearly equivalent. In the ICIs-treated cohort, patients with

FGFR mutations had better survival than those without (median overall survival:

60.00 vs. 31.00 months; hazard ratio: 0.58, 95% CI: 0.42-0.80; P = 0.0051).
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Besides, the objective response rate was higher for patients harboring FGFR

mutations (55.56%) compared to wild-type patients (22.40%) (P = 0.0076).

Mechanistically, it was revealed that FGFR mutations correlated with increased

immunogenicity (e.g., TMB, NAL, MMR-related gene mutations and DDR-

related gene mutations). Meanwhile, FGFR mutant melanoma tended to

exhibit an enhanced antitumor TIME compared with its wild-type counterparts.

Conclusions: Our study demonstrated that FGFR mutations is a promising

biomarker in stratifying patients with advanced melanoma who might benefit

from ICIs therapy.
KEYWORDS

FGFR mutations, immune checkpoint inhibitors, melanoma, biomarker, tumor
immune microenvironment
Introduction

Melanoma is one of the most common malignancies in skin

cancer and its incidence is escalating annually (1). It is

characterized by being the leading cause of skin cancer-related

mortalities. Notably, the introduction of immune checkpoint

inhibitors (ICIs) and targeted agents have significantly improved

the survival of patients with advanced melanoma, boosting the

five-year survival rate from less than 10% historically to

approximately 40% currently (2–4). ICIs, especially agents

targeting the cytotoxic T-lymphocyte antigen 4 (CTLA-4) and

programmed death-1 (PD-1)/programmed death-ligand 1 (PD-

L1), provide robust benefits for patients with advanced

melanoma (5). The data from Checkmate 067 showed that the

five-year survival rates for advanced melanoma patients

receiving nivolumab plus ipilimumab and nivolumab were
totoxic T-lymphocyte
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52% and 44%, respectively (2). However, only a minority of

patients respond to ICIs and benefit from them in terms of

survival (6, 7). Moreover, some patients may experience

substantial toxicity from ICIs in both clinical trials and real-

world clinical practice (8). Therefore, identifying predictive

biomarkers for ICI efficacy and elucidating the potential

mechanisms modulat ing sensit ivi ty to ICIs are of

crucial importance.

Multiple factors have been identified to be critical in

predicting or influencing the success of ICIs in the treatment

of melanoma. It is acknowledged that tumor mutational burden

(TMB) can predict response to ICIs across a variety of cancers,

including melanoma, with higher TMB indicating a greater

probability of response (9). However, some patients with low

TMB respond to ICIs as well. Additionally, the optimal cutoff

value of TMB has not been determined, resulting in differing

perspectives on TMB among clinicians (10). It has been

determined that IFN-g (11), tumor T-cell infiltration (12) and

lactate dehydrogenase (13) are associated with the efficacy of

ICIs. Notwithstanding, none of them are sensitive and precise

enough to identify patients who would benefit most from ICIs.

Recently, it was found that gene mutations play important roles

in modulating the efficacy of ICIs (14). For example, PTPRT

mutant melanoma was more responsive to ICIs (15). In addition,

mutations in IGF1R (16), MAP2K1/2 (17), ARID1A (18) and

NOTCH4 (19) were associated with more benefit from ICIs in

melanoma, with the tumor immune microenvironment (TIME)

modulation and immunogenicity alteration as their potential

mechanisms. Hence, it is worthwhile to identify novel key

genetic mutations affecting the efficacy of ICIs and explore

their potential mechanisms, thereby maximizing the

therapeutic benefit of ICIs and reducing immune-related

toxicities for patients with melanoma.
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The fibroblast growth factor receptor (FGFR) family consist of

four highly conserved transmembrane receptors, FGFR1-4, which

play key roles in embryonic development, proliferation, angiogenesis,

and tumormetastasis (20). There is compelling evidence that FGFR is

mutated across numerous cancers and itsmutation triggers the FGFR

signaling pathway, hence promoting tumor progression (21).

Therefore, numerous studies have been devoted to the development

of agents targeting FGFR alternations to suppress cancer progression.

Currently, several FGFR inhibitors, such as erdafitinib and

pemigatinib, have been approved by Food and Drug

Administration (FDA) for the treatment of cholangiocarcinoma

with FGFR fusion or rearrangement (22, 23). In terms of metastatic

urothelial carcinoma, erdafitinib, a tyrosine kinase inhibitor of

FGFR1–4, showed great antitumor activity in patients with FGFR

alterations (mutations or fusions) (24). RAGNAR study in 2022

ASCO showed that multiple FGFR-altered (mutations or fusions)

solid tumors responded to erdafitinib. However, there are no effective

targeted drugs for metastatic melanoma with FGFR mutations.

Therefore, ICIs are important candidates for FGFR-mutated

melanoma. What is to be noted is that studies have proved that

geneticmutations can affect the efficacy of ICIs, with somemutations

(IGF1R, NOTCH4 and ARID1A) favoring ICIs (16, 18, 19) whereas

others (EGFR andALK) (25, 26) weakening their efficacy. In terms of

FGFR mutations, a recent study found that FGFR-altered and wild-

type bladder cancers had equivalent response rates to ICIs (27).

However, there is no relevant study on whether FGFR mutations

influence the effectiveness of ICIs in melanoma.

In this study, survival analysis was performed using the ICI-

treated melanoma cohort from cBioPortal to explore the impact

of FGFR mutations on the efficacy of ICIs in melanoma.

Furthermore, the immunogenicity and TIME of melanoma
Frontiers in Immunology 03
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with and without FGFR mutations were compared to

investigate the mechanisms underlying FGFR mutations in

predicting the efficacy and benefit of ICIs.
Materials and methods

Data collection and processing

The flowchart of this study was depicted in Figure 1. FGFR

mutation frequency in pan-cancer was calculated using all TCGA

PanCancer Atlas studies in cBioPortal (https://www.cbioportal.

org/) (28). The TCGA data (PanCancer Atlas, SKCM, n = 448) in

cBioPortal was rigorously consolidated as TCGA cohort. In

addition, clinical and tumor whole-exome sequencing (WES)

data concerning melanoma patients from four studies, consisting

of110(DFCI,Science2015) (29), 64 (MSKCC,NEJM2014) (30), 38

(UCLA, Cell 2016) (31), and 320 (MSKCC, Nat Genet 2019) (32)

samples, respectively, were downloaded to consolidated as ICIs-

treated cohort. Among patients in ICIs-treated cohort, three

samples with overall survival of 0 were excluded. A total of 529

samples were finally enrolled in ICIs-treated cohort. All patients in

ICIs-treated cohort have been treated with ICIs, including

antibodies targeting PD-(L)1 and CTLA-4. The majority of

patients in the ICIs cohort were treated with ICIs in second-line

ormore advanced line settings. All data in TCGA cohort and ICIs-

treated cohortweredownloaded in the cBioPortal database (https://

www.cbioportal.org/) (28). In our study, FGFR mutations (FGFR

Mut) meant that melanoma patients harbor any FGFRmutations,

including FGFR1, FGFR2, FGFR3 or FGFR4 mutations. In

contrast, when a patient did not harbor any FGFR mutations, it
FIGURE 1

Flow diagram of the study.
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was considered FGFR wild-type (FGFR Wt). All nonsynonymous

mutation types, including missense, translation start site, nonstop,

splice site, frameshift, and nonsense mutations, were included in

this study.
Analysis of the relationship between
FGFR mutations and clinical outcomes

Firstly, survival analyses were performed based on FGFR

mutation status using TCGA cohort and ICIs-treated cohort,

respectively. Then, subgroup survival analyses using ICIs-treated

cohort were performed based on FGFR mutation subtypes and

TMB level, respectively. In the subgroup analysis based on TMB

level, high TMB and low TMB were determined by the median

TMB of all samples in ICIs-treated cohort. When a patient’s

TMB was ≥ median TMB, it was classified as high TMB

subgroup, otherwise it was considered low TMB. Response

Evaluation Criteria in Solid Tumors (RECIST) version 1.1 was

employed to evaluate response to ICIs. Objective response rate

(ORR) reflects the percentage of patients with complete response

(CR) and partial response (PR). In addition, we have constructed

the nomogram for predicting survival of ICIs-treated melanoma

patients by integrating clinicopathological variables including

age, sex, ICIs categories, TMB, and FGFR1/2/3/4 status

utilizing Sangerbox.
Analysis of indicators relating
cancer immunogenicity

Multiple parameters involving immunogenicity, including

TMB, mutation count, neo-antigen load (NAL), mismatch

repair (MMR)-associated gene mutations and DNA damage

repair (DDR)-associated gene mutations, were compared

between FGFR Mut and FGFR Wt melanoma in ICIs-treated

cohort. Besides, 13 melanoma studies (DFCI, Nature Medicine

2019; UCLA, Cell 2016; Broad/Dana Farber, Nature 2012;

MSKCC, Clin Cancer Res 2021; MSKCC, NEJM 2014; TCGA,

Cell 2015; DFCI, Science 2015; MSKCC, JCO Precis Oncol 2017;

Broad, Cell 2012; TCGA, PanCancer Atlas; Yale, Nat Genet

2012; Broad, Cancer Discov 2014; Broad Institute, Nat Genet

2015) from cBioPortal (https://www.cbioportal.org/) were used

to analyze the correlation of FGFR mutation frequency with

TMB (median TMB and average TMB).
Analysis of TIME in FGFR
mutant melanoma

TCGA data (PanCancer Atlas, SKCM, n = 448) from

cBioPortal and RNA-seq data of corresponding samples

retrieved from UCSC Xena data portal (https://xenabrowser.
Frontiers in Immunology 04
104105
net) (33) were utilized to analyze the association of FGFR

mutations with TIME in melanoma. CIBERSORT algorithm

was used to calculate the proportion of 22 immune cells in each

patient with melanoma (34). Single-sample gene set enrichment

analysis (ssGSEA) method from R package GSVA was applied to

calculate the infiltration level of 28 immune cell types according

to the 28 published gene sets for immune cells (35, 36).

ESTIMATE, a method of evaluating the fractions of stromal

and immune cells, was applied to calculate stromal score

(stromal content), immune score (extent of immune cell

infiltration), ESTIMATE score (synthetic mark of stroma and

immune) and tumor purity of each patient with melanoma (37).

Four types of immune-related genes modulating TIME,

including immune-st imulator related genes , major

histocompatibility complex (MHC) molecule-related genes,

chemokines and their receptors, were obtained from previous

studies (38) and then compared between melanoma with FGFR

Mut and FGFR Wt. Gene Set Enrichment Analysis (GSEA) was

performed using the GSEA software (version 4.1.0) (http://www.

broadinst i tute .org/gsea/ index. j sp) with 1000 gene-

set permutations.
Statistical analysis

The Kaplan-Meier method and the log-rank test were used

to construct survival curves (overall survival (OS), disease-free

survival (DSS), and progression-free survival (PFS)) and

evaluate the survival analysis, respectively. Clinical parameters

of continuous variables (such as TMB, mutation count and

NAL) between FGFR Mut and FGFR Wt melanoma were

analyzed using Mann–Whitney U test. Categorical variables

(such as CR, PR, stable disease (SD), progressive disease (PD)

and ORR) were compared by c 2 test or Fisher’s exact test.

Spearman correlation coefficient was calculated to evaluate the

correlation of FGFR mutation frequency with median TMB or

average TMB in melanoma patients. When a P value was < 0.05,

it was considered statistically significant. All statistical analysis

was conducted by R software (version 4.1.3), GraphPad Prism

(version 9.0) or GSEA software (version 4.1.0).
Results

The features of FGFR mutations
in melanoma

Through TCGA PanCancer Atlas studies, the frequency of

FGFR mutations across various cancers was evaluated. Melanoma

ranked 1st with a mutation frequency of 22.05% among all 27

cancers, as depicted in Figure 2A, followed by endometrial

carcinoma and bladder urothelial carcinoma, respectively.

Subgroup analyses showed that the mutation frequencies of
frontiersin.org
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melanoma regarding FGFR1, FGFR2, FGFR3 and FGFR4 ranked

1st, 2nd, 2nd, and 2nd across all cancers, respectively (Figures S1A-

D). Multiple clinical characteristics of patients in TCGA cohort,

including age, gender and survival, were calculated, as shown in

Figure 2B. In addition, FGFRmutation subtypes were counted, with

P486/F/L/S, E731K, S787F and S342F being the most prevalent

mutation subtypes in FGFR1, FGFR2, FGFR3, and FGFR4,

respectively (Figures S2A-D).
Association of FGFR mutations with
survival in TCGA cohort

Patients with melanoma in TCGA cohort were mainly treated

with chemotherapy and surgery. Survival analysis showed patients

with FGFR Mut and FGFR Wt had comparable OS (median OS

(mOS): 98.40 vs. 78.97 months, hazard ratio (HR) 0.93, 95% CI

0.67-1.30, P = 0.6520) (Figure S3A). Similarly, there was no

significant difference in PFS (mPFS: 42.77 vs. 33.80 months, HR

0.91, 95% CI 0.69-1.19, P = 0.4938) and DSS (mDSS: 102.11 vs.
Frontiers in Immunology 05
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93.01 months, HR 0.84, 95% CI 0.59-1.20, P = 0.3560) between

FGFR Mut and FGFR Wt patients (Figures S3B-C).
Association of FGFR mutations with
clinical outcomes in ICIs-treated cohort

Patients in the ICIs-treated cohort were all subjected to ICIs

treatment, including anti-PD-(L)1 or anti-CTLA-4. Patient

characteristics in the ICIs-treated cohort were shown in Table 1.

Notably, patients harboring FGFR Mut had substantially longer

survival with a mOS of 60.00 months compared to the FGFR Wt

patients with a mOS of 31.00 months (HR 0.58, 95%CI 0.42-0.80;

P = 0.0051) (Figure 3A). Then, ICIs-treated cohort was divided into

four subgroups based on FGFR mutation status and TMB levels.

The results revealed that the mOS of patients in the

FGFRMutTMBhigh (HR 0.52, 95% CI 0.34-0.79, P = 0.0085),

FGFRMutTMBlow (HR 0.57, 95% CI 0.37-0.88, P = 0.0148)

and FGFRWtTMBhigh (HR 0.64, 95% CI 0.50-0.84, P = 0.0057)

subgroups were significantly longer than that of patients in the
A

B

FIGURE 2

Mutational landscape of FGFR in melanoma cohorts. (A) The prevalence of FGFR mutations across 27 cancers. (B) Association of FGFR
mutations and clinical characteristics in TCGA cohort (0 means no ending event occurred, 1 means ending event occurred).
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FGFRWtTMBlow subgroup, respectively (Figure 3B). In addition,

patients in the FGFRMutTMBhigh subgroup survived the longest

with mOS of not reached (NR), followed by FGFRMutTMBlow and

FGFRWtTMBhigh subgroups with mOS of 44.00 months and 41.00

months, respectively, although no statistical differences were

observed between them (all P > 0.05) (Figure 3B). FGFR

mutations were correlated with responsiveness to ICIs, with

higher response rate in patients with FGFR Mut (47.37%) than

that in patients with FGFR Wt (35.14%) (Figure 3C), but the

difference was not statistically significant (P = 0.4268). Meanwhile,

CR rate (16.67% vs. 5.60%, P = 0.1143), PR rate (38.89% vs. 16.80%,

P = 0.0502), SD rate (16.67% vs. 7.20%, P = 0.1774), and ORR

(55.56% vs. 22.40%, P = 0.0076) were found to be higher in FGFR

Mut group, whereas PD rate (70.40% vs. 27.78%, P = 0.0009) was

higher in FGFR Wt group (Figure 3D).
Analyses of FGFR mutation subtypes with
survival in ICIs-treated cohort

Subgroup survival analyses based on FGFR mutation

subtypes were performed. FGFR1 Mut patients had

significantly longer survival compared to patients with FGFR1
Frontiers in Immunology 06
106107
Wt (mOS: NR vs. 31.20 months; HR 0.19, 95%CI 0.10-0.35; P =

0.0076) (Figure 4A). Similarly, melanoma patients harboring

FGFR2 Mut had a pronounced survival advantage over those

with FGFR2Wt (mOS: 60.00 months vs. 31.20 months; HR 0.60,

95%CI 0.37-0.88; P = 0.0366) (Figure 4B). Regarding FGFR3, a
A

B

DC

FIGURE 3

Association of FGFR mutations with melanoma clinical outcomes in ICIs-cohort. (A) The Kaplan-Meier survival analysis comparing OS between
FGFR Mut and FGFR Wt patients in ICIs-cohort. (B) The Kaplan-Meier survival analyses comparing OS among FGFRMutTMBhigh,
FGFRMutTMBlow, FGFRWtTMBhigh and FGFRWtTMBlow subgroups in ICIs-cohort. (C) Proportion of responders to ICIs in melanoma patients
with FGFR mutations versus FGFR wild-type. (D) Comparison of the proportion of patients with complete response (CR), partial response (PR),
stable disease (SD) and progression disease (PD) between FGFR Mut and FGFR Wt melanoma in ICIs-cohort.
TABLE 1 Patient characteristics in the ICIs-treated cohort.

Characteristics No. (%)

No. of patients 529

Gender

Male 344 (65.0)

Female 185 (35.0)

Age

< 65 276 (52.2)

≥65 253 (47.8)

Treatment

Anti-CTLA4 245 (46.3)

Anti-PD-(L)1 284 (53.7)

FGFR status

FGFR Wt 77 (14.6)

FGFR Mut 452 (85.4)
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slight tendency was observed that patients harboring FGFR3

Mut benefited more from ICIs (mOS: NR vs. 32.00 months; HR

0.80, 95%CI 0.41-1.58; P = 0.8778), but no statistical difference

was obtained (Figure 4C). Melanoma patients harboring FGFR4

Mut showed a similar tendency, whose survival was longer than

those with FGFR4 Wt, though the difference was not statistically

significant (mOS: 49.27 months vs. 31.30 months; HR 0.66, 95%

CI 0.40-1.09; P = 0.17) (Figure 4D).
Construction of the nomogram to
predict survival of melanoma patients

A nomogram, integrating clinicopathological variables

including age, sex, ICIs categories, TMB, and FGFR1/2/3/4 status,

was formulated to predict the 1-year OS, 3-year OS and 5-year OS

of those ICIs-treated melanoma patients based on multivariable

analysis (Figure 5A). As shown in Figure 5B, the receiver operating

characteristic (ROC) curve showed that nomogram had relatively

stronger predictability for 1-year OS, 3-year OS, and 5-year OS,

with area under curves (AUC) of 0.65 (95%CI 0.59-0.70), 0.55 (95%

CI 0.47-0.62) and 0.60 (95% CI 0.46-0.74), respectively. (Figure 5B).

Besides, we have calculated the risk score of each patient based on

multivariable analysis. Consequently, patients in the low-risk score
Frontiers in Immunology 07
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group had significantly longer survival than those in the high-risk

score group (mOS: 44.0 months vs. 20.9 months; HR 0.58, 95%CI

0.45-0.75; P < 0.001) (Figure 5C). The risk map exhibited that

patients in in the low-risk score group had lower incidence of dead

events and higher incidence of FGFR mutation (Figure 5D).
Association of FGFR mutations with
parameters involving immunogenicity

To explore the underlying mechanisms of FGFR mutation

affecting ICIs efficacy, various immunogenicity-related

parameters were analyzed. FGFR mutation was associated with

higher TMB (P < 0.0001), as shown in Figure 6A. Furthermore,

13 melanoma cohorts were employed to analyze the correlation

between FGFR mutation frequency and TMB. A strongly

positive correlation was found between FGFR mutation

frequency and median TMB (r = 0.874, P < 0.001) (Figure 6B)

or average TMB (P < 0.001) (Figure S4). Besides, we observed

higher mutation count in FGFR Mut melanoma compared to its

Wt counterparts (P < 0.0001) (Figure 6C). Likewise, compared

with wild-type melanoma, FGFR Mut melanoma exhibited

higher NAL (P < 0.0001) (Figure 6D). Given the close

associat ion of DDR or MMR process with tumor
A B

DC

FIGURE 4

Survival analyses based on FGFR mutations subtypes in ICIs-cohort. (A) The Kaplan-Meier survival analysis comparing OS between FGFR1 Mut
and FGFR1 Wt patients in ICIs-cohort. (B) The Kaplan-Meier survival analysis comparing OS between FGFR2 Mut and FGFR2 Wt patients in ICIs-
cohort. (C) The Kaplan-Meier survival analysis comparing OS between FGFR3 Mut and FGFR3 Wt patients in ICIs-cohort. (D) The Kaplan-Meier
survival analysis comparing OS between FGFR4 Mut and FGFR4 Wt patients in ICIs-cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1030969
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.1030969
immunogenicity, the mutation frequencies of nine DDR genes

and four MMR genes were examined. Higher mutation

frequencies of DDR genes (ATM, ATR, BARD1, BRCA1,

BRCA2, CDK12, ERCC2, FANCA and PALB2) were detected

in FGFR Mut melanoma (all P < 0.05) (Figure 6E). Consistently,

four MMR genes, including MLH1, MSH2, MSH6 and PMS2,

mutated more frequently in FGFR Mut melanoma (all P < 0.05)

(Figure 6F). In terms of PD-L1, there was a tendency that FGFR

Mut melanoma expressed higher levels of PD-L1 than Wt

melanoma (P > 0.05) (Figure 6G).
Association of FGFR mutations with
immune cell infiltration in the TIME

CIBERSORT, ssGSEA and ESTIMATE were utilized to

assess the impact of FGFR mutations on the TIME of

melanoma. As shown in Figure 7A, the FGFR Mut melanomas

exhibited a mild tendency of higher proportion of anti-tumor

immune cells, such as CD8+ T cells, activated CD4+ memory T

cells, activated DC, activated NK and M1 macrophages, but the

difference was not statistically significant (all P > 0.05). In
Frontiers in Immunology 08
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contrast, lower proportion of M2 macrophages was observed

in FGFR Mut melanoma (P > 0.05) (Figure 7A). Notably,

ssGSEA exhibited that activated CD4+ T cells, activated DC

and memory B cells were significantly abundant in FGFR Mut

melanoma (all P < 0.05) (Figure 7B). Furthermore, immune cell

infiltration levels were evaluated based on FGFR mutant

subtypes and similar results were obtained (Figures S5, S6).

Immune score and ESTIMATE score, calculated by ESTIMATE,

were higher in FGFR Mut melanoma (Figure 7C), but not

statistically significant, which were in line with results from

CIBERSORT. According to these findings, we tentatively

concluded that FGFR Mut melanomas were associated with

increased infiltration of immune cells, which are essential

mediators of ICIs to kill tumor cells.
Association of FGFR mutations with the
TIME signatures

To further elucidate the impact of FGFR mutations on the

TIME of melanoma, four types of pivotal signatures modulating

TIME were analyzed. Firstly, we compared the expression levels
A

B

D
C

FIGURE 5

Construction of the nomogram to predict survival of melanoma patients. (A) A nomogram integrating clinicopathological variables including
age, sex, ICIs categories, TMB, and FGFR1/2/3/4 status to predict the 1-year OS, 3-year OS and 5-year OS of patients in ICIs-treated cohort.
(B) The ROC curve showed the predictive performance of the nomogram. (C) Survival curve of OS for patients from the ICIs-treated cohort
based on risk score. (D) The risk score map exhibited the risk score level, survival status and FGFR status for each patient from the ICIs-treated
cohort.
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of 43 immune-stimulator genes between FGFR Mut and FGFR

Wt melanoma, with the majority of genes expressing higher in

FGFR Mut melanoma, especially ICOSLG and TNFSF13 (P <

0.05) (Figure 8A). Secondly, diverse MHC molecules were

evaluated and it was discovered that they were expressed

slightly higher in FGFR Mut melanoma, though the difference

was not statistically significant (all P > 0.05) (Figure 8B). Thirdly,

chemokines and their receptors were explored. Regarding

chemokines, CCL1, CCL17, CCL22 and CCL23, were

significantly increased in FGFR Mut melanoma (all P < 0.05).

For other chemokines, most of them tended to express higher in

FGFR Mut melanoma, such as CCL5, CCL19, CXCL9, CXCL10,
Frontiers in Immunology 09
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CXCL11, CXCL13 and CXCL14 (all P > 0.05) (Figure 8C).

Regarding chemokine receptors, FGFR Mut melanoma

expressed higher levels of CCR5, CCR7, CXCR3, CXCR4 and

CXCR6 than their wild-type counterparts, but no statistical

difference was observed (all P > 0.05) (Figure 8D).

Furthermore, subgroup analyses were performed based on

FGFR mutation subtypes, and the results showed that the

expression levels of immune-stimulators, MHC, chemokines

and their receptors in melanoma with FGFR mutation

subtypes were mostly similar with the results above (Figures

S7-S10). Meanwhile, immune-related signatures (including

immune cell infiltration levels, immuno-stimulators, MHC and
A B

D E

F G

C

FIGURE 6

Association of FGFR mutations with parameters involving immunogenicity. (A) Comparison of TMB between FGFR Mut and FGFR Wt melanoma
in ICIs-cohort. (B) Correlation of FGFR mutation frequency with median TMB in 13 melanoma studies. (C) Comparison of mutation count
between FGFR Mut and FGFR Wt melanoma in ICIs-cohort. (D) Comparison of neo-antigen burden between FGFR Mut and FGFR Wt melanoma
in ICIs-cohort. (E) Comparison of DDR-related gene mutations between FGFR Mut and FGFR Wt melanoma in ICIs-cohort. (F) Comparison of
MMR-related gene mutations between FGFR Mut and FGFR Wt melanoma in ICIs-cohort. (G) Comparison of PD-L1 expression between FGFR
Mut and FGFR Wt melanoma using TCGA data (ns = not significant, *P < 0.05, ****P < 0.0001).
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chemokines) were compared between patients with

FGFRMutTMBhigh and those with FGFRWtTMBlow .

Consequently, there was a mild tendency for most immune-

related signatures were more highly expressed in melanomas

with FGFRMutTMBhigh, but most did not show a statistically

significant difference (Figure S11).
GSEA analysis

GSEA analyses were performed to further explore the

potential pathways by which FGFR mutations modulated the

efficacy of ICIs. KEGG_T_CELL_RECEPTOR and KEGG_B_

CELL_RECEPTOR signaling pathways were enriched in FGFR

Mut melanoma, both of which played vital roles in modulating

immune surveillance of B cells and T cells (Figures 9A, B).

Besides, evident enrichment of anti-tumor immunity-related

signatures in FGFR Mut melanoma was observed (such as
Frontiers in Immunology 10
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KEGG_CHEMOKINE, INTERFERON_GAMMA_RESPONSE,

TNFA_SIGNALING, INFLAMMATORY_ RESPONSE)

(Figures 9C-H). IL6_JAK_STAT3_SIGNALING, a typical

pathway related to TIME regulation, was found to be

abundant in FGFR Mut melanoma (Figure 9I).
Discussion

ICIs have significantly prolonged the survival of patients

with metastatic melanoma (2). Nevertheless, only a subset of

patients could benefit from ICIs (6). Indeed, the factors that

influence ICI efficacy are extremely diverse and complex. Besides

the widely recognized TMB, an increasing number of studies

have demonstrated that gene mutations exert considerable

impacts on the efficacy of ICIs, with some mutations favoring

ICIs and some attenuating ICIs (14, 16, 25, 26). Notably, FGFR

family driver genes are frequently mutated in melanoma,
A

B

C

FIGURE 7

Difference of immune cell infiltration between FGFR Mut and FGFR Wt melanoma. (A) Comparison of proportion of immune cells between FGFR
Mut and FGFR Wt melanoma. (B) Comparison of expression of immune cells between FGFR Mut and FGFR Wt melanoma. (C) Comparison of
immune-related score between FGFR Mut and FGFR Wt melanoma (ns = not significant, *P < 0.05, **P < 0.01).
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whereas its influence on ICIs efficacy in melanoma remains

unknown. In this study, we found that melanoma patients with

FGFR mutations who were treated with ICIs apparently survived

longer than those with FGFR wild-type. Besides, increased

immunogenicity and enhanced anti-tumor immunity in FGFR

mutant melanoma could be the potential mechanisms that

contribute to melanoma with FGFR mutations being more

responsive to ICIs.

FGFR, a subfamily of receptor tyrosine kinases, comprises

four members of FGFR1-4 (20). Similar to EGFR, FGFR is driver

gene playing key roles the development of cancer (21). Aberrant

FGFR could induce proliferation and migration of cancer cells

(21). However, the survival of FGFR mutant melanoma was

equivalent to that of the wild-type in our study. Substantial

studies have proven that some driver gene mutations play crucial

roles in modulating the efficacy of ICIs. Representatively, lung

cancer harboring EGFR mutations is generally not considered

for treatment with ICIs given that multiple clinical trials have

found that ICIs provide limited survival benefit for this
Frontiers in Immunology 11
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particular population (26), whereas KRAS mutation is a

favorable biomarker for ICIs benefit (39). In terms of FGFR, it

was found that ICIs provided comparable survival benefit for

metastatic urothelial cancer with and without FGFR3 mutation

(27). Strikingly, we found that melanoma with FGFR mutations

benefited more from ICIs than their wild-type counterparts.

Subgroup analysis based on FGFR mutation subtypes discovered

similar results, especially for FGFR1 and FGFR2. Therefore, not

only should melanoma patients with FGFR mutations be

considered for treatment with ICIs, but they should also be

given priority access. With the distinct survival benefit from ICIs

in patients with FGFR mutations compared to these wild-type,

FGFR mutations could be a novel biomarker for stratifying a

dominant subgroup of patients with advanced melanoma for

ICIs therapy.

It is well-accepted that immunogenicity plays a critical role

in the activation of anti-tumor immune cells to enhance ICIs

efficacy (40). Increased TMB is associated with the generation of

neoantigens, representing enhanced immunogenicity (41). In
A

B

D

C

FIGURE 8

The association of FGFR Mut with anti-tumor immunity signatures in melanoma. (A) The expression levels of immuno-stimulator related genes
in FGFR Mut versus FGFR Wt melanoma. (B) The expression levels of MHC molecule related genes in FGFR Mut versus FGFR Wt melanoma.
(C, D) Comparison of chemokines and their receptors between FGFR Mut and FGFR Wt melanoma (ns = not significant, *P < 0.05, **P < 0.01).
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the study, we found that FGFR mutant melanoma exhibiting

increased TMB, which could be an important factor behind their

more survival benefit from ICIs. Likewise, higher NAL was

identified in FGFR mutant melanoma, providing greater

evidence for prolonged survival and high response rate of

FGFR mutant melanoma patients who received ICIs. Besides,

the mutation frequencies of MMR-related genes and DDR-

related genes were higher in FGFR mutant melanoma,

correlating with genomic instability (42, 43), thereby

promoting the effectiveness of ICIs in killing cancer cells.

Collectively, we speculated that FGFR mutations would

enhance the immunogenicity of melanoma, thereby favoring

ICIs efficacy.

It is well acknowledged that the cancer-immunity cycle plays

key roles in recognizing and eliminating cancer cells, which is an

indispensable process in ICIs promoting anti-tumor immune

response (44). Of note, multiple factors are involved in

modulating the process of the cancer-immunity cycle. The
Frontiers in Immunology 12
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presentation of cancer antigens by antigen presenting cells is

the crucial first step (45). Dendritic cell, the most potent antigen-

presenting cells (46), infiltrated more pronounced in FGFR

mutant melanoma, which could intensify antigen presentation

and T cell activation. Next, trafficking of the activated effector T

cells into tumors guarantees its function (44). Higher expression

of chemokines (e.g., CCL17 and CCL22) that attract anti-tumor

immune cells (47–49) was found in FGFR mutant melanoma.

Consistently, immune cells, such as activated CD4+ T cell and

memory B cell, were more abundant in FGFR mutant

melanoma. Then, specific recognition via the interaction

between T cell receptor (TCR) on T cell and MHC on tumor

cell is the important final step ensuring the cancer-immunity

cycle (44). Thus, the mild tendency of increased MHC

expression in FGFR mutant melanoma (all P values > 0.05)

could improve the efficacy of ICIs. Meanwhile, significant

enrichment of B_CELL_RECEPTOR and T_CELL_RECEP

TOR pathways in FGFR mutant melanoma may further
A B

D E F

G IH

C

FIGURE 9

(A-I) Enriched Gene Sets in FGFR Mut and FGFR Wt melanoma.
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reinforce this crucial last step. Collectively, FGFR mutations

predominantly boost essential processes of the cancer-immunity

cycle in melanoma, which partially explains why patients with

FGFR mutations benefited more from ICIs.

Inflammatory TIME is universally acknowledged to be

associated with high response to ICIs (50, 51). GSEA showed

that patients with FGFR mutations were more abundant in

immunoinflammatory-related hallmark, such as INTER

FERON_GAMMA_RESPONSE, INFLAMMATORY_

RESPONSE and KEGG_CHEMOKINE (52). Therefore, it is

speculated that FGFR mutations can facilitate the formation of

an inflammatory TIME, which synergistically promotes ICIs to

activate immune cells to kill cancer cells.

In this study, we comprehensively investigated the influence

of FGFR mutations on the efficacy of ICIs in melanoma.

Meanwhile, a nomogram for predicting survival of melanoma

patients treated with ICIs was constructed. Furthermore, the

association of FGFR mutations with immunogenicity, factors

modulating the cancer-immunity cycle, and pathway

enrichment were investigated to unravel the potential

mechanisms of FGFR mutations affecting ICIs efficacy.

Notwithstanding, there are certain limitations for this study.

Firstly, the sample size of ICIs-treated cohort from public

database was relatively small, especially in terms of the

number of FGFR mutant patients. Therefore, prospective

research with larger sample size is required for further

verification. Secondly, the potential associations of FGFR

mutations with immunogenicity and the cancer-immunity

cycle were explored exclusively based on the analysis of public

databases, which could influence the reliability of the findings.

Therefore, biological validation by in vitro and in vivo

experimentation is necessary. Thirdly, a certain degree of

study heterogeneity existed. Patients in the ICIs-treated cohort

were treated with different ICIs, including anti-PD-(L)1 and

anti-CTLA-4. FGFR mutations may affect the efficacy of

different ICIs differently. Fourthly, the data in this study were

extracted from public database and some specific information is

not available, which can impair the reliability of our results.

Therefore, the predictive value of FGFR mutations in specific

ICIs warrants further investigation.
Conclusions

In the study, we first demonstrated that melanoma patients

with FGFR mutations benefited more from ICIs compared with

their wild-type counterparts. FGFR mutation subtypes (FGFR1,

FGFR2, FGFR3 and FGFR4) showed similar results. In

conclusion, it was revealed that FGFR mutations could be a

favorable biomarker in predicting the efficiency of ICIs for

melanoma. Mechanistically, FGFR mutations were strongly

associated with strengthened tumor immunogenicity and

inflamed antitumor immunity, which could be the underlying
Frontiers in Immunology 13
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mechanisms for FGFR-mutated melanomas benefit more

from ICIs.
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Pancreatic cancer and fibrosis:
Targeting metabolic
reprogramming and crosstalk of
cancer-associated fibroblasts in
the tumor microenvironment

Xin Li , Jianbo Zhou, Xue Wang, Chunxi Li , Zifan Ma,
Qiaoling Wan and Fu Peng*

Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the
Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research
Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,
Chengdu, China
Pancreatic cancer is one of the most dangerous types of cancer today, notable

for its low survival rate and fibrosis. Deciphering the cellular composition and

intercellular interactions in the tumor microenvironment (TME) is a necessary

prerequisite to combat pancreatic cancer with precision. Cancer-associated

fibroblasts (CAFs), as major producers of extracellular matrix (ECM), play a key

role in tumor progression. CAFs display significant heterogeneity and perform

different roles in tumor progression. Tumor cells turn CAFs into their slaves by

inducing their metabolic dysregulation, exacerbating fibrosis to acquire drug

resistance and immune evasion. This article reviews the impact of metabolic

reprogramming, effect of obesity and cellular crosstalk of CAFs and

tumor cells on fibrosis and describes relevant therapies targeting the

metabolic reprogramming.

KEYWORDS

pancreatic cancer, cancer-associated fibroblasts, fibrosis, metabolic reprogramming,
crosstalk, heterogeneity
Abbreviations: TME, tumor microenvironment; ECM, extracellular matrix; CAF, cancer-associated

fibroblast; PDAC, pancreatic ductal adenocarcinoma; PSC, pancreatic stellate cell; myCAF, myofibroblastic

CAF; iCAF, inflammatory CAF; a-SMA, a-smooth muscle actin; IL, interleukin; apCAF, antigen-presenting

CAF; meCAF, CAF with a highly activated metabolic state; csCAF, complement-secreting CAF; LIF, leukemia

inhibitory factor; TGF-b, transforming growth factor-b; Tregs, regulatory T cells; PDGF, platelet derived

growth factor; JNK, c-Jun N-terminal kinase; ERK, extracellular signal-regulated kinase; TCA, tricarboxylic

acid; HIF, hypoxia-inducible factor; MCT, monocarboxylate transporter; NetG1, Netrin G1; BCAA,

branched-chain amino acid; BCAT, branched-chain amino acid transaminase; BCKA, branched-chain a-

keto acid; PAI-1, plasminogen activator inhibitor-1; VEGF, vascular endothelial growth factor; TIMP-1,

tissue inhibitor of metalloproteinase-1; MMP, matrix metallopeptidase; CECR4, C-X-C motif chemokine

receptor 4; SATB-1, special AT-rich sequence-binding protein 1; NF-kB, nuclear factor KB; ESE3,

epithelium-specific E-twenty six factor 3; IRAK4, IL-1 receptor-associated kinase 4; NUFIP1, nuclear

fragile X mental retardation-interacting protein 1; SHH, sonic hedgehog; LOXL2, lysyl oxidase-like protein

2; MSC, mesenchymal stem cell; YAP1, Yes-associated protein 1.

frontiersin.org01116117

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152312/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152312/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152312/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152312/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152312/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1152312&domain=pdf&date_stamp=2023-03-22
mailto:pengf@scu.edu.cn
https://doi.org/10.3389/fimmu.2023.1152312
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1152312
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2023.1152312
Introduction

Pancreatic cancer is one of the most aggressive types of cancer,

being more common in developed countries and by low survival

rates (1). As the main form of pancreatic cancer, pancreatic ductal

adenocarcinoma (PDAC) has a discouraging prognosis, with a very

low five-year survival rate (2). There is a correlation between

lifestyle habits including smoking, alcohol consumption, and

genetic and environmental factors and the onset of pancreatic

cancer (1). Notably, the hormones, pro-angiogenic factors and

pro-inflammatory cytokines secreted by obese tissues make

obesity a risk factor for the occurrence of pancreatic cancer (3, 4).

Diabetes associated with obesity and chronic pancreatitis also show

a relevance to pancreatic cancer (5). Surgery is the treatment that

has the potential to cure pancreatic cancer now, whilst

chemotherapy, immunotherapy and targeted therapies have been

demonstrated to help enhance the overall survival rate of patients

(6–8).

Fibrosis driven by chronic inflammation occurs commonly in a

variety of cancers, such as liver, pancreatic, and lung cancers (9–11).

This formation of excessive intratumoral connective tissue is also

referred to as desmoplasia by pathologists (12). Desmoplasia is one

of the major pathological features and is intimately connected with

its occurrence, progression and prognosis of pancreatic cancer. The

desmoplastic reaction caused by inflammation gives pancreatic

cancer an extraordinarily rich ECM (13). The fibrotic response in

tumors is by the same mechanism as wound healing, being an

excessive accumulation of ECM components and involving multiple

cytokines and growth factors (14). ECM proteins are rich in

composition, including fiber-forming proteins, glycoproteins,

proteoglycans and matricellular proteins (15). The dense stroma

leads to hypoxia in the tumor microenvironment and makes it

difficult for chemotherapeutic agents to penetrate, thus imparting

chemoresistance to pancreatic cancer (16).

TME of pancreatic cancer contains abundant stroma, blood

vessels, and soluble proteins (17). Apart from cancer cells, three

types of normal cells are found in the TME, namely stromal cells,

fibroblasts, and immune cells (18). TME as a dynamic system has a

changing composition and influences the progression of fibrosis in

pancreatic cancer. Cancer-associated fibroblasts are extraordinarily

abundant and secrete a range of extracellular matrix proteins,

growth factors, and cytokines (19). CAFs crosstalk with tumor

cells and immune cells and perform metabolic reprogramming to

promote tumor development and fibrosis. In this review, we give a

summary of current information about the heterogeneity of CAFs

in pancreatic cancer cells, as well as updates on the metabolic

reprogramming, crosstalk and therapies in the TME.
Heterogeneity of CAFs

CAFs were initially thought to be homogeneous, but subsequent

studies proved that CAFs varied in origin, expression, and function

(20). Their typing remains incompletely elucidated, but existing

work demonstrates that functionally distinct or even completely
Frontiers in Immunology 02117118
opposite subtypes exist. Öhlund et al. found pancreatic stellate cells

(PSCs) were able to differentiate into two CAF subtypes,

myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs)

in mouse PDAC (21). They differed significantly in spatial

distribution and cytokine expression. myCAFs were distributed in

the periglandular region at a closer distance from tumor cells, with

high expression of a-smooth muscle actin (a-SMA) and low

expression of interleukin (IL)-6, whereas iCAFs were distributed

more distantly throughout the tumor, with low expression of a-
SMA but high expression of cytokines such as IL-6, IL-11, and

leukemia inhibitory factor (LIF) (21). This classification still has not

reached the end point, as three subgroups of iCAFs were identified

(22). Antigen-presenting CAFs (apCAFs) was identified in PDAC,

named for its ability to express MHC class II molecules (23). A new

CAF subtype with a highly activated metabolic state (meCAFs) was

found in loose-type PDAC (24). Complement-secreting CAFs

(csCAFs) were found in PDAC featuring a specific expression of

complement components such as C3, C7, C1R/S, CFD, CFH, CFI

(25). In the same study, Chen et al. defined PSCs as a subtype of

CAF and found that PSCs dominated in PDAC stages I, II and III

(25). The state of differentiation is reversible as iCAFs and myCAFs

are able to convert into each other and apCAFs can also differentiate

into myCAFs (21, 23). Modulation of transforming growth factor-b
(TGF-b), IL-1/JAK/STAT signaling and hedgehog signaling impact

on the differentiation of myCAFs and iCAFs (26, 27). Hypoxia

within the TME probably converted fibroblasts to iCAFs (28).

Neuzillet et al. proved the presence of at least four CAF subtypes

in PDAC, which were featured by distinct mRNA expression

profiles, with POSTN, MYH11, and PDPN as markers for three

of the subtypes (29). PDPN-positive CAFs are molecularly similar

to an iCAF subset, while POSTN-positive CAFs are not associated

with the classical myCAF/iCAF classification (30). And these two

subsets cooperate in the TME to induce the recruitment of

monocytes/macrophages (30). It is worth mentioning that the

identified subtypes of CAFs are not only present in pancreatic

cancer, but also can be found in breast, ovarian and lung cancer

models (31).

The major CAF subtypes show significant heterogeneity not

only in phenotypes but also in function (Figure 1). The pathways

enriched by myCAFs included ECM organization, and collagen

formation were significantly upregulated, and its high a-SMA

expression indicated its possible involvement in ECM formation

and fibrosis (23). iCAFs highly expressed inflammatory cytokines,

and up-regulated IFN-g response, TNF/NF-kB, IL-2/STAT5, IL-6/
JAK/STAT3, and the complement pathway (23). PDAC iCAFs were

classified into different subsets, and OGN was a unique marker for

one of those linked to a good prognosis (22). are correlated with a

poorer prognosis, whereas another study linked higher abundance

of iCAFs to a better prognosis (28, 30). This may result from the

presence of different subgroups in iCAFs, but it also demonstrates

that iCAFs simultaneously have tumor-promoting and inhibiting

properties. circCUL2 regulated miR-203a-5p/MyD88/NF-kB/IL-6
axis to induce the production of iCAFs, which increased the

secretion of IL-6, thereby promoting PDAC progression and

immunosuppression (32). Huang et al. found that mesothelial

cells were induced to differentiate into apCAFs by IL-1/NF-kB
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and TGF-b signaling (33). apCAFs promoted the transition of naive

CD4+ T cells into regulatory T cells (Tregs), which means that it

may be related to immunosuppression (33).

Although PSCs are generally considered to be the major

precursor cells for CAFs within pancreatic cancer, a recent study

indicated that PSCs produced only a small fraction of CAFs in

PDAC (34). However, the promotion offibrosis by PSCs remains an

important component of pancreatic cancer progression. While

activated PSCs are considered to be CAFs, for a clearer

representation of the source, PSCs are described separately from

CAFs in this review. PSCs were first identified in the intralobular

and interlobular connective tissues of normal pancreas with lipid

droplets containing vitamin A in 1982 (35). A study showed that

vitamin A deficiency contributed to the transition of PSCs from a

quiescent to the activated state (36). When injury or inflammation

activates the quiescent PSCs, this vitamin A droplet disappears

while the expression of collagen, fibronectin, laminin and a-SMA

increases, and EMT production rises. The activation of PSCs is

influenced by a variety of factors, including alcohol, diabetes,

oxidative stress, cytokines, growth factors, etc. TGF-b1 is

considered to be the main regulator, while platelet derived growth

factor (PDGF), IL-6, IL-11, c-Jun N-terminal kinase (JNK) and

extracellular signal-regulated kinase (ERK) are also implicated

(37–40).
Metabolic reprogramming in CAFs

Tumor cells still produce energy through less efficient aerobic

glycolysis even under adequate oxygen, enhancing glucose

transformation to pyruvate, termed the Warburg effect (41).

However, this is not due to mitochondrial damage as originally

envisioned by Warburg, but rather spontaneous metabolic

reprogramming of tumor cells, where activation of a series of
Frontiers in Immunology 03118119
signaling factors and pathways leads to a switch from

oxidative phosphorylation to glycolysis (42). Similar metabolic

reprogramming exists in CAFs, and the Warburg effect is more

obvious (43). Pancreatic cancer is one of the most severely hypoxic

tumors as known, and hypoxia-inducible factors (HIFs) are the

main regulators of hypoxia adaptation (44). Since the identification

of HIF-1a in 1995, a wide range of roles of HIF-1 is continuously

revealed in angiogenesis, cell metabolism, cell survival, and so forth

(45, 46). In breast cancer, ROS production by cancer cells induces

loss of Cav-1 in stromal cells, allowing CAFs to accumulate ROS

and activate HIF-1a, consequently reprogramming CAFs and

inducing autophagy (47, 48). The same alterations are shown in

the PDAC model, where Cav-1 is lost in response to PSCs

activation, correlating with stromal and cancer cells metabolic

coupling (49). To conclude, HIF-1a connects oxidative stress and

metabolic reprogramming of CAFs. Under such harsh conditions

with hypoxia and low nutrition, there is metabolic crosstalk

between CAFs with tumor cells and immune cells, all of which

interact with each other to make TME a more habitable

system (Figure 2).
Glucose metabolism

Pavlides et al. proposed the reverse Warburg effect, elucidating

that CAFs were able to perform glycolysis, producing pyruvate and
FIGURE 2

Cancer-associated fibroblasts (CAFs) promote fibrosis and tumor
growth through metabolic reprogramming. CAFs increase glycolysis
and glutamine secretion to supply lactate, branched-chain a-keto
acids (BCKAs), glutamine, and cytokines to tumor cells. Meanwhile,
tumor cells also secrete cytokines and microRNAs to regulate the
metabolic reprogramming of CAFs to enable themselves to survive
in a low-nutrient environment. Cav-1, Caveolin-1; ROS, reactive
oxygen species; GLUT-1, glucose transporter-1; MCT4,
monocarboxylate transporters 4; BCAT1, branched-chain amino
acid transaminase 1; BCAAs, branched-chain amino acids; NetG1,
Netrin G1; p-p38, phosphorylation of p38; FRA1, FOS-related
antigen 1; pAKT1/2, phospho-AKT1/2; p4E-BP1, p4E-BP1; Gln,
glutamine; Glu, glutamate; NGL1, Netrin-G ligand-1; TGF-b,
transforming growth factor-b; MCT1, monocarboxylate transporters
1; BCAT2, branched-chain amino acid transaminase 2; TCA cycle,
tricarboxylic acid cycle; GOT1, aspartate transaminase; Asp,
aspartate; OAA, oxaloacetate.
FIGURE 1

Characteristics of subtypes of cancer-associated fibroblasts (CAFs).
The different subtypes of CAFs show heterogeneity in distribution,
marker genes, and pathways in the tumor microenvironment. iCAF,
inflammatory CAF; a-SMA, a-smooth muscle actin; IL-6,
interleukin-6; myCAF, myofibroblastic CAF; TGF-b, transforming
growth factor-b; ECM, extracellular matrix; PDAC, pancreatic ductal
adenocarcinoma; apCAF, antigen-presenting CAF; meCAF, CAF with
a highly activated metabolic state; csCAF complement-
secreting CAF.
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lactate and making them available to cancer cells for use in the

mitochondrial tricarboxylic acid (TCA) cycle (50). In other words,

CAFs are captured by engaging with cancer cells and

reprogrammed to a glycolytic phenotype. thereby supplying

metabol ic intermediates tha t enable cancer ce l l s to

compensatively generate energy via mitochondrial OXPHOS (51,

52). Glycolysis is the main metabolic mode of CAFs due to the

increased expression of HIF-1a and monocarboxylate transporter

(MCT) 4 (53). HIF-1a is a key cytokine that enables cells to adjust

to hypoxic environments and undergo metabolic changes by

promoting glycolysis through genes which encode glucose

transporter proteins and enzymes of the glycolytic pathway (54).

MCTs are passive transporter proteins that transport

monocarboxylic acid ions and are highly expressed in tumors

(55). MCT1 and MCT4 exhibit proton-coupled symport, with

MCT4 generally involved in the export of lactate and MCT1

generally involved in the import of lactate (56). The expression of

two glycolytic enzymes, lactate dehydrogenase A and pyruvate

kinase M2, was found to be increased in CAFs (57). Furthermore,

when pancreatic cancer cells were co-cultured with CAFs, MCT1

protein, succinate dehydrogenase and fumarate hydratase

expression increased, demonstrating the metabolic coupling

existing between CAFs and cancer cells (57). Positive feedback of

Caveolin-1-ROS signaling prompted activation of PSCs and

upregulated the expression of glycolytic enzymes, and the

transporter protein MCT4, and downregulated the expression of

OXPHOS enzymes and the transporter protein MCT1, while the

protein expression in cancer cells was completely opposite (49).

Moreover, MiR-21 promotes glucose uptake and lactate secretion

by CAFs, indirectly enhancing pancreatic cancer cell invasion (58).

Interestingly, CAFs also show heterogeneity in metabolic pathways,

for iCAF had the highest metabolic activity and was more biased to

glycolysis, whereas myCAF scored higher in OXPHOS than iCAF

and apCAF (28).
Amino acid metabolism

Glutamine, an amide of glutamate, is an essential origin of

carbon and nitrogen in pancreatic cancer (59). Son et al. found that

PDAC cells metabolized glutamine using a specific aspartate

transaminase (glutamic-oxoacetic transaminase 1)-mediated

pathway to produce biomass precursors and redox power (60).

Glutamine also serves as an important energy source for CAFs and

is metabolized and secreted into metabolites such as glutamate, a-
ketoglutarate, aspartate and malate (53). Both Netrin G1 (NetG1)

on NetG1+ CAFs and NetG1 ligand on tumor cells were highly

expressed, resulting in the provision of glutamate/glutamine to

tumor cells (61). NetG1 acts as a key regulator involved in ECM

deposition, survival under low nutrient conditions and

immunosuppression through the regulation of downstream

pathways p38/FRA1 and AKT/4E-BP1 (61). PSCs increase

glutamine synthetase expression by regulating the Wnt/b-catenin/
TCF7 axis, thus promoting glutamine synthesis (62).

In addition to glutamine, alanine also acts as an important

carbon source in the TCA of tumor cells. Tumor cells stimulate
Frontiers in Immunology 04119120
CAFs to catabolize metabolized proteins through autophagy to

produce alanine and transaminate it to pyruvate (63). When

glutamine is depleted, CAFs take up extracellular proteins

through CaMKK2-AMPK-RAC1 s igna l ing-dependent

macropinocytosis and supply the produced amino acids to tumor

cells (64). The macropinocytosis recovers CAFs to restore the

production of collagen VI and fibronectin which is inhibited

during glutamine depletion (64). In addition, the study also

showed that protein-derived alanine was a secreted amino acid

when serum albumin was cultured as a nutritional source for PSCs

(64). It was demonstrated that pancreatic cancer cells and PSCs

express SLC38A2 and SLC1A4 respectively to perform alanine

exchange so as to meet the high alanine requirement of

pancreatic cancer cells (65).

Furthermore, branched-chain amino acids (BCAAs), also

known as leucine, isoleucine and valine, participate in metabolic

reprogramming and crosstalk in CAFs and pancreatic cancer cells

(66). Branched-chain amino acid transaminases (BCATs) can

reversibly catalyze the transamination reaction of BCAAs to

branched-chain a-keto acids (BCKAs) (67). TGF-b secreted by

cancer cells upregulates BCAT1 activity by activating SMAD5 in

CAFs, thereby increasing the secretion of BCKAs, which are

supplied to cancer cells for BCAA synthesis (68).
Lipid metabolism

Lipids form an important part of cellular biological membranes

and building blocks, and are also involved in signaling and

supplying energy (69). Multiple studies have demonstrated the

existence of lipid metabolic reprogramming of CAFs in different

cancer types, but regrettably there are not enough research in

pancreatic cancer (70–72). PSCs undergo lipidomic remodeling

upon activation, releasing lysophosphatidylcholine in large

quantities to promote migration and proliferation of PDAC cells

via the lysophosphatidylcholine-autotaxin-lysophosphatidic acid

axis (73). Recently, a study found that activation of one PSC

subpopulation is associated with elevated expression of

lipoprotein-uptake very low-density lipoprotein receptor, which

drives the expression of IL-33 (74). ROS-induced, endoplasmic

reticulum stress-dependent increase in IL-33 expression mediates

innate lymphoid type-2 cells activation, which induces proliferation

and activation of PSCs, thereby stimulating pancreas fibrosis (74).
Crosstalk: Complex communication
between CAFs and tumor cells

CAFs take part in multiple stages of tumor progression,

enabling bidirectional communication with other cells in the

TME through intercellular contacts, secreted proteins and

extracellular vesicles (75). Tumor cells signal CAFs to activate or

secrete cytokines and matrix proteins, while CAFs promote drug

resistance, proliferation, and migration of tumor cells. Here, we
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mainly summarize the signals from tumor cells that are significant

for fibrosis.
Extracellular vesicles

Extracellular vesicles are a form of intercellular communication

that is currently of great interest. They are classified as prostasomes,

apoptotic bodies, microvesicles and exosomes due to their size and

origin (76). Exosomes contain a variety of nucleic acids(DNA,

microRNA, lncRNA, circRNA), proteins, lipids and cytokines (77).

We mention the ability of cancer cells to initiate metabolic

reprogramming of CAFs, allowing them to provide nutrients to

cancer cells. CD9, a specific exosome marker present on the surface

of extracellular vesicles rich in annexin A6, enhances p38 mitogen-

activated protein kinase signaling to induce PDAC cell migration (78,

79). Exosomes derived from PDAC cells expressing oncogenic KRAS

mutants contain Survivin, imparting cell survival benefits to nearby

CAFs (80). MiR-1246 and miR-1290 contained in pancreatic cancer

cell-derived exosomes promote the expression of profibrogenic genes

in PSCs (81).
Secreted proteins

Mutated KRAS induces upregulation of plasminogen activator

inhibitor-1 (PAI-1) in pancreatic cancer cells which induces PSCs

activation via LRP-1/ERK/c-JUN pathway to promote

immunosuppression and fibrosis (82). Meanwhile, PAI-1 expression

was regulated by acyl-CoA synthetase long-chain 3, which may be

associated with the regulation of TGF-b (83). High expression of PAI-1
not only promoted PSCs activation but also was associated with a high

tumor infiltration of M2 macrophages (83). TGF-b1 represents a

critical factor in the activation of PSCs. The secretion of TGF-b1 in

pancreatic cancer cells is modulated by proteasome activator subunit 3-

mediated activation protein-1, thus regulating the proliferation of PSCs

(84). The induction of CAFs by TGF-b1 can be indirect, mediated

through extracellular matrix proteins and growth factors such as

PDGF, vascular endothelial growth factor (VEGF) and IL-6 (85).

PDGF activates the hippo pathway and adds phosphorylation of yes-

associated protein 1 in PSCs, and yes-associated protein 1 regulates the

transcription of genes triggered by the TGF-b1/SMAD pathway, such

as connective tissue growth factor and IL-6 (86). It has been shown that

overexpression of galectin-1 stimulates the TGF-b1/Smad signaling

pathway, with tissue inhibitor of metalloproteinase-1 (TIMP-1)

expression increasing more than matrix metallopeptidase (MMP) 2,

resulting in inhibition of ECM degradation and increased expression of

fibronectin, collagen I and a-SMA (87). In addition, the paracrine of

galectin-1 enhances the tumorigenic capacity of pancreatic epithelial

cells (88). CXCL12/CXCR4 participates in the fibrotic process and the

conversion of fibroblasts to myofibroblasts in multiple organs (89).

Tumor-produced lactate causes epigenomic reprogramming when

mesenchymal stem cells differentiate into CAFs (90). The increase of

a-ketoglutarate causes C-X-C motif chemokine receptor 4 (CXCR4)
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promoter demethylation, leading to CXCR4 upregulation (90).

Increase of special AT-rich sequence-binding protein 1 (SATB-1)

expression in pancreatic cancer cells by CAFs through the SDF-1/

CXCR4 axis further promotes CAFs activation (91). Furthermore, it

has been established that tumor cells and CAFs crosstalk through

nuclear factor KB (NF-kB) activated by paracrine-IL-1b. NF-kB
activation by tumor-secreted IL-1b induces the expression of ESE3 in

PSCs, then epithelium-specific E-twenty six factor 3 (ESE3) binds to

the promoters of a-SMA, collagen-I and IL-1b, activating PSCs and

promoting PDAC fibrosis (92). PDAC cells secrete IL-1b to activate IL-
1 receptor-associated kinase 4 (IRAK4) in CAFs, forming an IL1b-
IRAK4 feedforward circuitry that initiates fibrotic function in

CAFs (93).
Autophagy

Autophagy refers to a catabolic process to maintain intracellular

homeostasis (94). But there is growing proof that autophagy takes part

in the process of cellular secretion (95). Meanwhile, tumor cells are

capable of secreting cytokines to induce autophagy in PSCs (63, 96).

TGF-b1/Smad signaling-mediated autophagy promotes the conversion

of fibroblasts to CAFs and facilitates their glycolysis (97). Activation of

PSCs depends on autophagy, which is associated with the production

of ECM and the secretion of IL-6 (96). CAFs conduct ribosomal RNA

autophagy in a nuclear fragile X mental retardation-interacting protein

1 (NUFIP1)-dependent way, producing nucleosides available for

PDAC cells under low nutrient conditions and initiating metabolic

reprogramming (98). Collagen secretion can be facilitated by the

mitophagy-regulated synthesis of proline in CAFs (99). In addition, a

recent study found that PDAC cells generate lnc-FSD2-31:1 to promote

the autophagy of CAFs viamiR-4736, thereby inhibiting the activation

of CAFs (100).
Impact of crosstalk between CAFs and
cancer cells on fibrosis

In TME, CAFs secrete large amounts of ECM proteins and

remodeling enzymes to reorganize and stiffen the matrix (101). The

main contribution of tumor cells to ECM deposition is the

recruitment and activation of stromal cells. Multiple pathways of

intercellular communication including protein secretion and

extracellular vesicles enable pancreatic cancer cells to regulate the

cellular activities of CAFs. Cancer cells are involved in the cross-

linked sclerosis and degradation of ECM, aiding their invasion and

migration from different aspects. Pancreatic cancer cells rely on

multiple cytokines such as TGF-b, IL-1, sonic hedgehog (SHH), and

microRNAs to activate CAFs and thus promote ECM stiffness

(102). Meanwhile, pancreatic cancer cells also produce enzymes

to promote matrix protein cross-linking in ECM such as lysyl

oxidase-like protein 2 (LOXL2) (103). We summarize the

cytokines and modes of action associated with fibrosis during the

crosstalk between pancreatic cancer cells and CAFs (Table 1).
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Obesity: An accomplice to pancreatic
cancer fibrosis

Obesity is a critical independent risk factor for pancreatic

cancer and is consistently associated with the development of

pancreatic cancer. Obesity leads to hypertrophy and hyperplasia

of adipocytes and causes chronic inflammation of the adipose tissue

around or within the pancreas, which promotes tumor progression

(112). And along with the advancement of pancreatic cancer stages,

patients with pancreatic cancer experience adipose tissue loss as one

of the manifestations of cachexia (113). Adipose tissue is divided

into white, brown, and beige adipose tissue, while white adipose

tissue is further classified into subcutaneous white adipose tissue

and visceral white adipose tissue, with the latter playing a more

pivotal role in the progression of pancreatic cancer (114). The

cellular composition of white adipose tissue includes adipocytes,

preadipocytes, immune cells, pericytes, endothelial cells, and

multipotent stem cells (115). Some researches demonstrated the

correlation of adipose tissue with fibroblast transformation and the

formation and remodeling of ECM.
Frontiers in Immunology 06121122
On the one hand, cells in adipose tissue have the ability to be

reprogrammed intoCAFsbypancreatic cancer cells.Adrenomedullin in

the exosomes of pancreatic cancer cells promotes lipolysis in adipocytes

(116). The lipolysis may explain the weight loss of the patients and

represents aphenomenonofadipocytesdedifferentiation.Consequently,

the dedifferentiation possibly connects the cachexia with fibroplasia in

pancreatic cancer. When co-cultured with pancreatic cancer cells, 3T3-

L1adipocytesdedifferentiated tofibroblast-like cells, losing lipiddroplets

and expressing S100A4,MMP11, collagen I anda-SMA (117, 118). The

reprogramming is closely correlated with WNT5a signaling (119).

Adipose tissue-derived stromal cells can also be recruited to

extrapancreatic invasive lesions and differentiate into CAFs, producing

amore rigid ECM (120).Mucin 5AC secreted by pancreatic cancer cells

recruitsmesenchymal stemcells (MSCs) to a-SMA+CAFs (121).Activin

A produced by PDAC cells was found to be associated with the loss of

adipose tissue and the promotion offibrosis, with an induction of trans-

differentiation of white adipocytes into fibrotic cells (122). On the other

hand, adipocytesmediate fibrosis by crosstalk with neighboring cells via

paracrine secretion. Adipocytes secrete IL-1b to recruit neutrophils,

thereby enhancing the activation of PSCs (123).
TABLE 1 Overview of the impact of crosstalk between CAFs and tumor cells on fibrosis.

Factor Source Mode of
Action

Recipient
cells

Functional Relevance Reference

PAI-1 Pancreatic
cancer cells

Paracrine PSCs Activates PSCs and promotes fibrosis (82)

TGF-b1 Pancreatic
cancer cells

Paracrine PSCs Promotes proliferation of PSCs (84)

IL-1a PDAC cells Paracrine PSCs Promote ECM remodeling (104)

IL-1b PDAC cells Paracrine PSCs promotes PSCs activation and expression of a-SMA, collagen I and IL-1b
and activates CAFs to promote fibrosis

(92, 93)

PDGF Pancreatic
cancer cells

Paracrine PSCs Induces PSCs activation and promotes desmoplasia formation (105)

SHH Pancreatic
cancer cells

Paracrine PSCs induces the expression of Gremlin 1 in PSCs (106)

SATB-1 Pancreatic
cancer cells

Paracrine CAFs Maintains CAFs identity and promotes the activation of CAFs (91)

CXCL8 Pancreatic
tumor cells

Paracrine CAFs maintains the survival of CAFs and further promotes FGF-2 production. (107)

Oncogenic Kras-
induced factors

PDAC cells Paracrine CAFs Up-regulates the expression of CXCR2 and CXCR2 ligands in CAFs and
induces the conversion of CAFs into iCAFs

(108)

miR-4736 PDAC cells Extracellular
vesicles

CAFs Activates autophagy in CAFs, inhibits CAF activation and reduces
fibrosis.

(100)

miR-155 Pancreatic
cancer cells

Microvesicles CAFs Reprograms neighboring normal fibroblasts into CAFs (109)

miR-1246, miR-1290
and miR-21-5p

Pancreatic
cancer cells

Exosomes PSCs Promote the activation of PSCs and the production of collagen (81)

Lin28B Pancreatic
cancer cells

Exosomes Pancreatic
cancer cells

Recruits PSCs (110)

CCN2 or miR-21 PSCs Exosomes PSCs Promotes collagen expression (111)
f

PAI-1, plasminogen activator inhibitor-1; PSC, pancreatic stellate cells; TGF-b1, transforming growth factor-b1; IL, interleukin; ECM, extracellular matrix; a-SMA, a-smooth muscle actin; CAF,
cancer-associated fibroblast; PDGF, platelet derived growth factor; SHH, sonic hedgehog; SATB-1, special AT-rich sequence-binding protein 1; FGF-2, fibroblast growth factor 2; PDAC,
pancreatic ductal adenocarcinoma; iCAF, inflammatory CAF; Lin28B, lin-28 homolog B; CCN2, connective tissue growth factor.
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The therapy progress
of reprogramming

Ideas for targeting CAFs as therapeutic targets in pancreatic

cancer for clinical benefit are diverse including depletion of CAFs,

reprogramming CAFs to make them normal, and blocking signals

from CAFs (Figure 3) (124). However, studies concerning the

depletion of CAFs demonstrated that this treatment could lead to

the exact opposite of what was expected, a facilitation of tumor

progression (125, 126). Reprogramming CAFs to the stationary case

is currently considered a feasible approach. It has been preliminarily

demonstrated to be viable to normalize CAFs through endogenous

substances, gene regulation, agents and intercellular interactions.

Lipoxin A4 reversed the activation of PSCs to CAFs for matrix

reprogramming, with decreased expression of a-SMA and collagen

I (127). The increase of retinoic acid was able to inhibit CAFs and

reduce the expression of a-SMA and FAP (128). Zhao et al.

constructed a targeted drug delivery system based on red blood cells

vesicles partial protection to deliver retinoic acid to CAFs to disrupt

the Golgi apparatus and thereby inhibit the secretion of proteins such

as MMP2, MMP9 and CCL2 (129). In addition, all-transretinoic acid

inactivated PSCs by inhibiting Yes-associated protein 1 (YAP1) (130).

Vitamin D and its receptor were involved in stromal reprogramming

as well by inactivating CAF/PSC (131, 132). The activation of p53

could directly induce the accumulation of cytoplasmic lipid droplets in

PSCs, thus effectively reprogramming PSCs to a quiescent state (133).

Integrin subtype a 11 was also considered as a viable target for

controlling the phenotype and activation of PSCs (134). Several

studies have shown that metformin can reprogram PSCs to improve

desmoplasia (135–137). Metformin inhibited TGF-b1 secretion by

activating AMPK in pancreatic cancer cells, leading to blocking the

activation of PSCs (136). In addition, eribulin also showed potential

for normalizing CAFs due to its simulation of TGF-b downregulation

(138). Mechanical regulation of intercellular interactions such as N-

cadherin and N-cadherin ligand linkages could reprogram PSCs to a

stationary state, however not in all cases, as this reprogramming was

associated with mechanical dosing (139). Unfortunately, studies on

the regulation of the metabolism of CAFs are scarce, because the

mechanism of metabolic reprogramming of CAFs is still not entirely

clarified. Chen et al. designed a liposome carrying hydroxychloroquine

and paclitaxel to target autophagy in CAFs, with advantages for

crosstalk and fibrosis inhibition (140). A biomimetic nanocarrier

was devised to disrupt metabolic crosstalk by blocking lactate

production in both CAFs and cancer cells (141).
Discussion

CAF synthesizes, remodels and crosslinks ECM to increase

stiffness leading to the generation of a dense fibrotic tumor stroma

(101). CAFs act in pancreatic cancer progression as an essential

component of the stroma. Five subtypes of CAFs have been identified
Frontiers in Immunology 07122123
so far, namely myCAFs, iCAFs, apCAFs, meCAFs and csCAFs,

showing differences in expression and function in pancreatic

cancer. This is still not the endpoint of the classification of CAFs,

and the subtypes may contain subpopulations. As we mentioned

before, different subpopulations of iCAFs may have opposite effects

on tumor development. It implies that therapies targeting CAFs need

more specific biomarkers. Different subtypes of CAFs relate to the

discrepant prognosis of pancreatic cancer patients (24, 28).

Cells in the TME interact with each other to co-construct a

microenvironment suitable for tumor survival. CAFs conduct

metabolic reprogramming to provide available metabolites to

tumor cells (Table 2). Oxidative stressed-driven metabolic changes

in CAFs are known as the reverse Warburg effect, manifested by

glycolysis as the main mode of metabolism and increased utilization

of glutamine. Multiple forms of crosstalk including direct contact,

extracellular vesicles, paracrine and autophagy-dependent secretion

between tumor cells and CAFs activate CAFs for fibrosis on the one

hand and enhance tumor cells proliferation and migration on the

other. Cellular communication also exists between adipocytes and

other cells in the TME. Lipolysis occurs when adipocytes

dedifferentiate into CAFs, which perhaps partially explains both the

cachexia and desmoplasia.

Experimentally, depletion of CAFs proved to be an infeasible

treatment. Reprogramming CAFs to a normal state or blocking

signaling may be promising ways to target pancreatic cancer
FIGURE 3

Feasible design ideas for targeting fibrosis. Targeting CAFs in
metabolic reprogramming and signaling communication with
cancer cells is considered as a promising therapeutic modality.
Targeting markers of CAFs can inhibit CAFs, but there is a problem
of non-specificity and further search and research is still needed.
Targeting ECM elimination requires limitations, as sustained
defibrosis implies enhanced invasion. In addition, ECM protein
interactions may become an emerging therapeutic target. CAF,
cancer-associated fibroblast; FAP, fibroblast activation protein; a-
SMA, a-smooth muscle actin; PDGFR, platelet-derived growth factor
receptor; FSP, fibroblast-specific protein; PDPN, podoplanin; NG2,
nerve/glial antigen 2; ECM, extracellular matrix; SPARC, secreted
protein acidic and rich in cysteine.
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fibrosis. In conclusion, CAFs are important targets to explain

fibrosis and drug resistance in pancreatic cancer, but further

studies on the heterogeneity of CAFs and the mechanisms of

crosstalk are still needed to provide more basis for targeting CAFs

for therapy.
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The desmoplastic reaction observed in many cancers is a hallmark of disease

progression and prognosis, particularly in breast and pancreatic cancer. Stromal-

derived extracellular matrix (ECM) is significantly altered in desmoplasia, and as

such plays a critical role in driving cancer progression. Using fibroblast-derived

matrices (FDMs), we show that cancer cells have increased growth on cancer

associated FDMs, when compared to FDMs derived from non-malignant tissue

(normal) fibroblasts. We assess the changes in ECM characteristics from normal

to cancer-associated stroma at the primary tumor site. Compositional, structural,

and mechanical analyses reveal significant differences, with an increase in

abundance of core ECM proteins, coupled with an increase in stiffness and

density in cancer-associated FDMs. From compositional changes of FDM, we

derived a 36-ECM protein signature, which we show matches in large part with

the changes in pancreatic ductal adenocarcinoma (PDAC) tumor and metastases

progression. Additionally, this signature also matches at the transcriptomic level

in multiple cancer types in patients, prognostic of their survival. Together, our

results show relevance of FDMs for cancer modelling and identification of

desmoplastic ECM components for further mechanistic studies.

KEYWORDS

extracellular matrix, fibroblasts, mechanics, models, desmoplasia, pancreatic cancer,
breast cancer
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1 Introduction

The extracellular matrix (ECM) is a protein scaffold to which

cells adhere, that provides both biochemical and biophysical cues in

order to maintain organ homeostasis and integrity (1). The ECM

reveals a vital impact on cancer progression, as cancer cells invade

the ECM at the primary tumor and further interact with ECM

proteins at different stages of metastasis (2). Secondary to

physiological insults, such as wounds, a desmoplastic reaction

regularly occurs in cancer (3). Several studies have shown that

increased inflammation is a precursor of cancer (4), and tumors are

often described as “wounds that do not heal” (5). Such reaction of

the cancerous tissue stroma results in overproduction and

deposition of ECM concomitant with increased proliferation of

myofibroblasts in the tumor microenvironment (TME) and lacks

regaining of normal tissue homeostasis (6).

This desmoplastic reaction is a defining feature of breast- and

pancreatic cancers and is correlated with poor prognosis (7, 8). In

pancreatic adenocarcinoma (PDAC), desmoplasia has largely been

attributed to the physical properties of the tumor stroma, that

impedes drug delivery, response to radiation, and increases

metastasis to other organs, primarily the liver (9). At the primary

site in breast cancer, there is also an excessive deposition of the

ECM, mainly collagen I, and remodeling, which leads to

linearization of the fibers forming ‘tracks’ for cell migration from

the tumor margin (10). This ECM reorganization is usually present

at the invasive stage and is used prognostically, with increased

observation in the stroma correlating with poor outcome (11, 12).

Linearization of the ECM emerges from the cross-linking of fibers

with enzymes, primarily lysyl-oxidases (LOX, LOXL1-4) and the

physical compacting of the ECM by dividing cells (13) resulting in a

denser and stiffer ECM (14). In turn, stiffened matrix boosts b1-
integrin activity and thereby focal adhesion formation of the

stromal cells in the TME, transforming mechanotransduction into

pro-tumorigenic cell signaling responses (15, 16). For instance,

transcriptional activation of Yes-associated protein (YAP) with

increasing ECM stiffness promotes the proliferation and

migration of breast cancer cells upon transduction of signals from

the focal adhesions (17, 18). In addition, integrin-independent

mechanotransduction was shown to activate the EPHA2/LYN

kinase that promotes epithelial to mesenchymal transition (EMT)

and subsequently tumor cell invasion in breast cancer (19).

More than 80% of the ECM is produced by stromal cells (20).

Cancer-associated fibroblasts (CAFs) are key contributors to the

deposition and remodeling of the ECM during cancer progression,

in both breast and pancreatic cancer (21, 22). Normal fibroblasts

(NFs) and CAFs are commonly used in studies to better understand

cancer progression, especially with respect to cancerous

transformation and cell-cell communication in the TME (23, 24).

However, their contribution to the composition and organization of

the ECM and influence of this on cancer cell proliferation has so far

not been investigated in detail.

Understanding the specific role of ECM characteristics during

cancer progression is becoming increasingly important in order to

improve drug efficacy and identify potential therapeutic targets for

better patient outcomes. To study the influence of the fibroblast-
Frontiers in Immunology 02128129
derived ECM, we utilized fibroblast-derived matrices (FDMs) (25)

that resemble the ECM composition detected in decellularized

mouse organs (26). Here, we show that although cancer cells

equally adhere to the normal and cancerous matrices, they show

increased proliferation on CAF FDMs. The CAF FDM composition

mimics core changes in desmoplastic metastatic cancer in vivo.

Strikingly, CAFs assemble denser and stiffer ECM than NFs,

structurally resembling tumor matrix. We derive a 36-gene

matrisome signature based on CAF ECM, which shows

enrichment in multiple cancer types in humans and is prognostic

of several cancer types’ outcome.
2 Materials and methods

2.1 Cell lines

The 4T1 mouse mammary carcinoma cell line was a kind gift of

Fred Miller (Wayne State University). The KPCmT4 murine

pancreatic cancer cell line was isolated from PDAC tumor tissue

obtained from KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx1–Cre

mice of a pure C57BL/6 background and were gifted by the

Tuveson laboratory (Cold Spring Harbor Laboratory, NY, USA)

(27). Cell lines were cultured in Dulbecco’s modified Eagle medium

GlutaMAX (DMEMGlutaMAX; Gibco, Thermo Fisher Scientific, cat.

no. 10566016, Grand Island, NY, USA) supplemented with 1%

penicillin-streptomycin (PS, 100 U/mL, Gibco, Thermo Fisher

Scientific) and 10% fetal bovine serum (FBS, Gibco, Thermo Fisher

Scientific). The 4T1-H2B-GFP+ cells were previously generated by

stable transfection of 4T1 cells with a pBOS-H2BGFP vector (BD

Pharmingen, San Jose, CA, USA) (28). The KPCmT4-zsGreen cells

were generated by stable transfection of KPCmT4 cells with pHIV

Luc-zsGreen vector (gift from B. Welm, University of Utah, USA,

Addgene plasmid no. 39196). Immortalized mCAF1 and mNF1

murine fibroblast cell lines were a kind gift of Erik Sahai (The

Francis Crick Institute, London UK), isolated from the mammary

tumor, and healthy fat pad of FVB/n MMTV-PyMT mouse line,

respectively (23). Cells were cultured in DMEM high glucose (Gibco,

Thermo Fisher Scientific) with 10% FBS, 1% Insulin Transferrin

Selenium Solution (ITS-G Gibco, Thermo Fisher Scientific) and 1%

PS. All cell lines were regularly tested for mycoplasma and

maintained at a 37°C, 5% CO2 humidified atmosphere.
2.2 Fibroblast-derived matrices

Fibroblast-derived matrices (FDMs) from the mCAF1 and

mNF1 cell lines were generated as previously described (25).

Briefly, fibroblasts were seeded on cross-linked gelatin dishes, and

treated for 7 days with 50μg/ml ascorbic acid daily. Afterwards,

fibroblasts were treated with 20 mM NH4OH with 0.5% Triton-X-

100 for 5 minutes, followed by a gentle wash in PBS. 0.5% sodium

deoxycholate (Sigma-Aldrich, D6750-500 mg) was then added for

60 minutes at room temperature, and then removed. The FDMs

were washed in PBS and then DNase I (10 mg/ml in PBS) was added

for 60 minutes at 37 °C. This protocol was optimized for either a 6-
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well plate (volumes 1 ml/well), 12- and 24- well plate (volumes 0.5

ml and 0.25 ml/well) or a 96-well plate (volumes 0.1 ml/well). If not

immediately used, they were stored at 4°C in PBS supplemented

with 1% PS. For optimizing cell-derived matrix generation and use,

reader can further consult with previously published protocols

(29–31).
2.3 KPC mouse samples generation

KPC mice (Tg(Pdx1-cre)6TuvKrastm4TyjTrp53tm2Tyj)

were imported from The Beatson Institute for Cancer

Research (Glasgow, UK) and originally established from Jax

stocks #014647, #008180, #008652 in a mixed background (32).

Three mice (both sexes) per group were used. As control groups, we

used age-matched Pdx1-cre+ mice. KPC mice were used at

pancreatic intraepithelial neoplasia (PanIN) stage (3-4 months

old), early PDAC tumor stage (4.5 months old) and late tumor

stage (5-8 months old). For generating decellularized tissue,

pancreas/pancreatic tumors and livers in the same animal were

perfused according to previously published protocol (33). For the

liver metastases group were selected mice with developed tumor

where was observed macroscopic metastasis, resection of area from

decellularized livers was performed based on 2 knots of 9-0 suture

marking prior decellularization. After perfusion and washes in MQ

water samples were resected and snap frozen for further storage at

-80°C.
2.4 Intrasplenic KPC injections and
sample generation

Female C57BL/6 mice (6–12 weeks old; Taconic, Denmark)

were used for intrasplenic injections of KPCmT4 cells at 1 million

cells per 50μL of PBS (34). Healthy matched mice were used as a

control, 3 mice per group. 20 days post-injection livers were

decellularized according to (33) and samples were resected and

snap frozen after perfusion washes with MQ water.
2.5 Decellularized tissues for mass
spectrometry sample preparation

Decellularized tissue samples were defrosted, and tissues were

punched under dissection microscope (Greenough, with two-armed

gooseneck; Leica, model no. S6 D) with 2mm punch biopsy tools

(Harris Uni-Core) and weighed (tools thoroughly cleaned between

samples with methanol). Lysate preparation and digestion was done

according to (35) with modifications. Briefly, ~6mg of

decellularized tissue pieces were lysed using 30 μl of lysis buffer

(consisting of 6 M Guanidinium Hydrochloride, 10 mM TCEP, 40

mM CAA, 50 mM HEPES pH 8.5) in Barocycler 2320EXT

(Pressure BioSciences) set to 30 cycles of 45,000 p.s.i., 50 seconds

on, 10 seconds off. Samples were boiled at 95 °C for 5 minutes, after

which they were sonicated on the ‘high’ setting for 5 × 30 seconds in

a Bioruptor sonication water bath (Diagenode) at 4°C. KPC
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intrasplenic samples were filtered through Microcon centrifugal

unit with 30kDa cut-off (cat. no. Z648086, Millipore). After

determining protein concentration with Bradford reagent (cat. no.

B6916, Sigma), 20 μg was taken forward for digestion.

Samples were diluted 1:3 with 10% Acetonitrile, 50 mM HEPES

pH 8.5, LysC (MS grade, Wako) was added in a 1:50 (enzyme to

protein) ratio, and samples were incubated at 37°C for 4 hours.

Samples were further diluted to 1:10 with 10% Acetonitrile, 50 mM

HEPES pH 8.5, trypsin (MS grade, Promega) was added in a 1:100

(enzyme to protein) ratio and samples were incubated overnight at

37°C. Enzyme activity was quenched by adding 2% trifluoroacetic

acid (TFA) to a final concentration of 1%. Prior to mass

spectrometry analysis, the peptides were desalted on in-house

packed C18 Stage tips. For each sample, 2 discs of C18 material

(3M Empore) were packed in a 200μl tip, and the C18 material

activated with 40μl of 100% Methanol (HPLC grade, Sigma), then

40μl of 80% Acetonitrile, 0.1% formic acid. The tips were

subsequently equilibrated 2 x with 40μl of 1%TFA, 3%

Acetonitrile, after which the samples were loaded using

centrifugation at 4,000 x rpm. After washing the tips twice with

100μl of 0.1% formic acid, the peptides were eluted into clean 500μl

Eppendorf tubes using 40% Acetonitrile, 0.1% formic acid. The

eluted peptides were concentrated in an Eppendorf Speedvac, and

reconstituted in 1% TFA, 2% Acetonitrile for Mass Spectrometry

(MS) analysis.
2.6 FDM mass spectrometry
sample preparation

Lysates of the mCAF1 and mNF1 FDMs were collected in

biological triplicates. All lysates were washed in 1 x PBS, scraped,

and collected. Samples were centrifuged at 8000g for 10 minutes at

4°C. PBS removed, and 20 μL lysis buffer added (6 M Guanidinium

Hydrochloride, 10 mM TCEP, 40mM CAA, 100 mM Tris pH8.5).

Samples were vortexed and boiled for 5 minutes at 95°C for 5

minutes. Samples were then sonicated using the Bioruptor 5 x 30

seconds on/30 seconds off using maximum setting. Samples were

then centrifuged 1 min, 13,000 rpm and snap frozen in liquid

nitrogen. Sample preparation and acquisition were then performed

as previously described (26).
2.7 Mass spectrometry acquisition
and analysis

2.7.1 KPC samples
For each sample, peptides were loaded onto a 2cm C18 trap

column (cat. no.164705, Thermo Fisher), connected in-line to a 75 cm

C18 reverse-phase analytical column (cat. no. ES805, Thermo

EasySpray) using 100% Buffer A (0.1% Formic acid in water) at

750bar, using the Thermo EasyLC 1000 HPLC system, and the

column oven operating at 45°C. Peptides were eluted over a 200-

minute gradient ranging from 6 to 60% of 80% acetonitrile, 0.1%

formic acid at 250 nL/minute, and the Q-Exactive instrument

(Thermo Fisher Scientific) was run in a DD-MS2 top10 method.
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Full MS spectra were collected at a resolution of 70,000, with an AGC

target of 3×106 or maximum injection time of 20 milliseconds and a

scan range of 300–1750 m/z. The MS2 spectra were obtained at a

resolution of 17,500, with an AGC target value of 1×106 or maximum

injection time of 60 milliseconds, a normalized collision energy of 25

and an intensity threshold of 1.7 ×104. Dynamic exclusion was set to

60 seconds, and ions with a charge state < 2 or unknown were

excluded. MS performance was verified for consistency by running

complex cell lysate quality control standards, and chromatography

was monitored to check for reproducibility.

2.7.2 Analysis of all samples
The raw files were analyzed using Proteome Discoverer 2.4.

Label-free quantitation (LFQ) was enabled in the processing and

consensus steps, and spectra were matched against the MusMusculus

database obtained from Uniprot. Dynamic modifications were set as

Oxidation (M), Deamidation (N, Q) and Acetyl on protein N-

termini. Cysteine carbamidomethyl was set as a static modification.

All results were filtered to a 1% FDR, and protein quantitation done

using the built-in Minora Feature Detector. Normalization was

performed in the total peptide amount mode, which sums the

peptide group abundances for each sample and determines the

maximum for all files, then using it as a normalization factor. At

post-processing of the dataset proteins were sorted for identified

based on 2 or more unique peptides in addition to be quantified

among three biological repeats. Statistical analysis was performed

using Limma package of R studio software. LogFC values were

calculated as a difference of the means. A linear model was fit to

the data, following an empirical Bayes moderated t-test and p-values

adjustment for multiple testing with Benjamini-Hochberg method.

Proteins were next sorted for ‘in silico’ defined matrisome (36). For

heatmaps generation were used Cluster 3.0 (C Clustering Library

1.59) and visualization was done using Java Tree View (version 1.2.0).
2.8 Second harmonic generation (SHG)
imaging of FDMs combined with
fluorescence imaging

For imaging FDMs have been deposited as described on glass

bottom 24 or 12-well plates (cat. no. P24-1.0-13-F, MatTek) with

fibroblast cell number and volumes adjusted to the area of the wells.

After staining, FDMs were stored in 1% PS/PBS at +4°C. FDMs

were imaged on the inverted Leica SP5-X confocal microscope with

a two-photon laser (Spectra-physics, Mai Tai DeepSee model; range

680-1,040nm) adjusted to 880nm and SHG was detected by hybrid

detector (at 420-460, Leica, HyD S model). Alexa-488 secondaries

were detected simultaneously by PMTs (Leica). We used two

different objectives for imaging - lambda blue, 20×, 0.70

numerical aperture (NA) IMM UV; Leica, HCX PL APO model

and 40x, 1.3 NA OIL UV; Leica, HCX PL APO CS. SHG imaging

stacks were acquired at 512x512 pixels, 100Hz, 1 line averaging with

a 2.5um z-step using 40x objective. Antibody staining was acquired

at 1024x1024 pixels, 100Hz, 1 line averaging with 2.5μm z-step

using 20x objective. For data acquisition, Leica Application Suite

(LAS) version 4 microscope software was used.
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2.9 Analysis of FDM density and thickness

For analysis of fibrillar collagens density, single planes with the

largest presence of the ECM were selected from SHG z-stacks (40x

acquired). Brightness of images was equally adjusted, and images

were processed in Fiji software with Twombli plugin to measure

high density matrix (37). For analysis of FDM thickness, SHG signal

was measured across planes of z-stacks (40x acquired) in Fiji

software. Number of planes with signal were counted and

multiplied by z-step size in order to estimate thickness in μm.
2.10 Indentation-type atomic force
microscopy

mNF1 andmCAF1 FDMswere produced as described above in 35 x

10 mm petri dishes (cat. no. 353001, FALCON). Stiffness measurements

were carried out using a NanoWizard I AFM (JPK BioAFM Bruker

Nano GmbH, Berlin, Germany) in combination with an inverted optical

microscope (Axiovert 200, Carl Zeiss Micro Imaging GmbH, Göttingen,

Germany). To avoid external disturbance during measurement, the

whole setup is placed on an active vibration isolation table (Micro 60,

Halcyonics, Göttingen, Germany) inside a self-build 1 m³ soundproof

box. The AFMwas used in the indentationmode with pyramidal shaped

tips with a radius of around 20 nm and a spring constant of 0.1 N/m. For

each cantilever the spring constant and the sensitivity were determined

individually using the thermal noisemethod (38). Duringmeasurements,

the matrix was immersed in PBS (Biochrom Dulbecco’s PBS w/o Mg2

+/Ca2+, pH 7.4, Berlin, Germany). On each obtained matrix 6, force

maps of 5 x 5 indentation curves equally distributed in an area of 30 x 30

μm were obtained. Indentations were made up to 1.5 V with a speed of

10 μm/s and calibration was performed after the experiment. The six

force map locations were arbitrary chosen. During measurements the

cantilever was retracted in vertical direction (z-axis) up to 50 μm and

therefore the CellHesion® module (JPK BioAFM Bruker Nano GmbH,

Berlin, Germany) was used. The Young’s Modulus was extracted by

fitting the Hertz-Sneddon model for a pyramidal indenter to the whole

approach part of the force-indentation curves, using the JPK Data

Processing Software (Version 5.0.96, JPK Instruments).
2.11 FDM staining with antibodies and
CNA35 probe

Stored FDMs in 1% PS/PBS at 4°C were brought to room

temperature (RT). Next, FDMs were gently washed with PBS

following blocking in 3% donkey serum (cat. no.017-000-121,

Jackson ImmunoResearch), 1% BSA/PBS solution for 1 hour at RT.

After, matrices were gently washed with PBS and covered with primary

antibody dilution [1% BSA/PBST (0,05% Tween)]. Primary antibody

used: rabbit anti-periostin (polyclonal KR131, provided by M. Koch),

rabbit anti-collagen XII (polyclonal KR145, provided by M. Koch),

rabbit anti-collagen VIa1C (polyclonal, provided by R. Wagener) at

1:100 dilution. After overnight incubation at 4°C, matrices were gently

washed 3x5 minute in PBS-0.2% Tween and then secondary antibody

solution has been applied - 1% BSA/PBST with 1:500 donkey anti-
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rabbit AlexaFluor488 IgG (H+L) (A-21206, Thermo Fisher Scientific)

for 1 hour at RT. Finally, samples were gently washed 3x5 min in PBST

and stored in 1% PS/PBS at 4°C until imaging.

FDMs were also stained with in-house produced anti-collagen

CNA35-mCherry probe. The probe was produced according to (39)

with a few modifications. Briefly, streaked bacterial colony of BL21

(DE3) strain carrying a plasmid pET28a-mCherry-CNA35 (Addgene

#61607) was inoculated in 20ml kanamycin (50μg/ml) containing LB

medium (4529, SSI Diagnostica) and next day further expanded during

overnight culture in 2L NZY Auto-Induction LB medium (1/100)

(MB179, NZYtech). After centrifugation, bacterial pellet was lysed in

NZY Bacterial Cell Lysis Buffer supplemented with Lysozyme (50mg/

ml) and DNase I (2mg/ml) and frozen at -20°C until protein

extraction. Cleared from residual cell debris lysate was diluted with

0.5M NaH2PO4 pH 7,6 (1:10) and applied on a washed and

equilibrated pre-elution gelatin-sepharose (17-0956-01, GE

Healthcare) column connected to elution column with PureCube

100 INDIGO Ni-Agarose (75105, Cube Biotech). After two washes

with 10mM Tris, 150mM NaCl (pH = 7.6), elution was performed by

loading sequentially 5,10,20,30,60,80,150, 300 mM Imidazol in 20mM

Tris, 200mM NaCl (pH = 7.6) solutions. Three last fractions were

collected and dialysis of those was performed against 1 x PBS. Protein

concentrations were measured in all fractions, probe was protected

from light and sterile filtered (Ultrafree-cl gv 0.22um sterile

(UFC40GV0S, Millipore) prior being aliquoted and stored at -20°C.

For staining, FDMs were incubated with 1μM CNA35-mCherry in

PBS at RT overnight and washed with PBS before imaging.
2.12 Cell adhesion and proliferation

Cell adhesion and proliferation assays were performed using 4T1-

H2B-GFP andKPCmT4-zsGreen cells. 5000 (in 2% serumDMEM) cells

were seeded in high content 96-well imaging plates (Corning, 3340) on

wells containing mCAF1 FDMs, mNF1 FDMs or on plastic. Cells were

allowed to attach for 1 hour, after which plates for adhesion were fixed in

10% formalin (Formalin solution 10% neutral buffered, Sigma-Aldrich,

cat. no. HT501128-4L) (100uL per well) for 10 minutes. To follow

proliferation, additional plates were fixed at 1 day and 5 days post-

seeding. Cells were permeabilized in 0.2% Triton-X-100 in PBS (Sigma-

Aldrich, cat. no. T8787-50 mL) for 2–5 minutes. Next 2×PBS washes

were performed, after which DAPI was added at 1 mg/mL for 90 min at

room temperature. Plates were then washed 3x5 minutes in PBS, placed

in 100 mL PBS and stored at 4°C in the dark until imaging. Imaging was

performed on the INCell Analyzer 2200 (GE Healthcare Life Sciences).

Images were analyzed using the INCell Analyzer Workstation 1000

software (GEHealthcare Life Sciences). Nuclei were segmented based on

the DAPI staining using the Tophat segmentation method. The mean

intensity of GFP and DAPI in each nucleus were measured, and the

number of GFP positive and DAPI positive cells were counted and

compared between conditions. Note: Images in Figure 1A. are acquired

from a 24-well plate (cat. no. P24 -1.0-13F, MatTek Corporation) where

cell seeding densities were adjusted to the area of the wells andwells were

equilibrated with cell culture medium prior seeding. Samples were

prepared, fixed and permeabilized as described above after 3 days,

stained with DAPI (1 mg/mL) to visualize cell nuclei and
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AlexaFluor633-phalloidin (1:500; A22284, Thermo Fisher Scientific)

to visualize cell bodies for 1 hour at room temperature. Imaging was

performed on Leica SP8 confocal microscope with HC Plan-

Apochromat 10x/0.40 AI at 1024x1024 pixels resolution, 5 mm z-step.

mNF1 and mCAF1 fibroblasts proliferation was assessed in the

following way. 2000 cells were seeded in 96-well plates and cultured

under regular conditions for three days (72h). Afterwards, triplicates

and background wells measurements were performed 1 hour after

incubation with CellTiter 96 Aqueous One Solution Cell Proliferation

Assay (Promega, G3580) according to the manufacturers instructions.
2.13 Western blot validation of
mNF1/mCAF1 FDMs

FDMs were lysed in 9MUrea with 1% 2-Mercaptoethanol. Lysates

were shaken rigorously for 45 minutes at 4°C before 5 minutes of

sonication (30 sec. on 30 sec. off). Lysates were boiled for 5 minutes

before centrifugation at 15,000 rpm for 15 minutes at 4°C. Protein

lysates were resolved on NuPAGE 4 –12% Bis-Tris gels (Thermo

Fisher Scientific, cat. no.17080971) and transferred to nitrocellulose

membranes. Membrane was stained with Ponceau stain

(Supplementary Materials) (Sigma-Aldrich, cat. no. P7170).

Membranes were blocked in 5% milk for 1 hour and incubated with

primary antibodies overnight at 4°C. Primary antibodies included

LOX, Cell Signaling D8F2K (1:1000), Collagen IV Sigma-Aldrich

AB756P (1:1000), Collagen XII KR144 (1:1000; provided by M.

Koch). The next day, membranes were washed with TBS-Tween and

incubated with appropriate HRP-conjugated secondary antibodies for

one hour. Immunoblots were visualized on an ImageQuantTM LAS

400 instrument and images were analyzed using ImageJ.
2.14 Desmoplastic signature analysis from
human dataset

The long signature used for this study comprises of the following

36 proteins: Col1a1, Col1a2, Col5a2, Col6a1, Col6a2, Col8a1, Col12a1,

Col14a1, Col16a1, Dpt, Emilin1, Fn1, Fbn1 Mfap2, Mfap5, Postn,

Tgfbi, Thbs1, Thbs2, Thsd4, Tnc, Tsku, Vwa1, Aspn, Adamts2, Bmp1,

Cd109, Lox, Loxl2, Mmp19, Serpine1, Timp1, Angptl4 and Crlf1. The

short signature comprises 9 of these proteins: Col1a2, Col5a2, Col12a1,

Fn1, Mfap5, Postn, Tgfbi, Thbs2, Lox. These proteins were selected

based on, LogFC > 1.5, p-value < 0.05).

The entire database from the Celligner/DepMap tool (40) was

locally downloaded and the single-sample gene set enrichment

value of the desmoplastic fibroblast signature evaluated across

10070 patients from primary tumors of 29 tissues (67 tumor

subtypes) using the singscore package (41) in R. Tumor-wise

differences were evaluated using one-way ANOVA, followed by

Tukey HSD test. ANOVA p-value for all comparisons was p < 1*10-

16. Matrisome genes were defined in (42) and downloaded from the

Matrisome Project portal at http://matrisome.org/. In each test, the

entire cohort was scored, and the results presented. Additionally,

single genes were scored individually in the same way, results of

which are shown in Supplementary Figure 8.
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2.15 Analysis and statistics

Statistical analyses other than proteomics datasets were

performed in Prism 9 (version 9.4.1). All data was tested for

normal distribution, following which the appropriate statistical

analysis was performed. Significance was p-value < 0.05

throughout, apart from mass spectrometry data, where it defined

as p-value < 0.1 for in vivo dataset. Statistical analyses were

performed using unpaired t-test, or analysis of variance

(ANOVA, where there were multiple comparison groups).
3 Results

3.1 CAF FDM stimulates cancer
cells proliferation

For this study, we selected NF (mNF1) and CAF (mCAF1)

fibroblasts generated from FVB and PyMT-FVB mice, respectively,

which are present in the normal fat pad and late tumor stage. These

immortalized and well-characterized cells (23) allowed the generation

of sufficient FDMs in a span of 7 days, which is the shortest timeframe

described for FDM deposition (25, 29). We probed cancer cell

response, adhesion and proliferation, on these matrices versus

regular tissue culture plastic (Figure 1A). We chose two cell lines;

triple-negative breast cancer cells (4T1) and pancreatic cancer cells

(KPCmT4), given these are highly desmoplastic diseases. Firstly, we

assessed cell number of the cancer cells upon adhesion to the FDMs

and plastic (1 hour post-seeding), which showed no difference between

NF and CAF FDMs (Figure 1B). Quantification of the cells at two

additional time points (1 day, 5 days) showed that both cell types

proliferate more on the CAF FDM comparing to NF. Hence, CAF

FDM might instruct the cancer cell proliferative potential.
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3.2 CAF FDM structure reflects in vivo
desmoplastic ECM

In order to investigate whether changes in composition of the

cancerous ECM were causing the alterations in proliferation

observed, we next characterized the composition of both FDMs by

label-free mass spectrometry profiling (Figure 2A). We were able to

robustly detect 3392 proteins in total (Supplementary Table 1), from

which the matrisome was filtered (in silico defined ECM and related

proteins (36)). This led us to identify 151 proteins, further categorized

into ECM core (glycoproteins, collagens, and proteoglycans) and

associated proteins (ECM-affiliated, ECM regulators, secreted

factors). When we compared normalized relative abundance of

ECM proteins between CAF and NF, we observed that the

abundance of many ECM proteins was significantly increased

(adjusted p-value < 0.05) in CAF FDMs (Figure 2A), compared to

NF FDMs, where only a couple of ECM proteins (Srpx2, Ctsl) were

significantly decreased. Following this finding, we wanted to further

evaluate CAF/NF FDM differences. Here, we validated LC-MS/MS

findings (Figure 2A) by both immunofluorescence (IF) imaging

(Figure 2B) and Western Blot analysis (Figure 2C and

Supplementary Figure 3) for selected proteins (periostin, collagen

IV, XII, XIV, and lysyl oxidase) in the CAF FDM.

Based on these data, we hypothesized that the ECM produced

by CAF versus NF may have altered structure, and we focused on

performing label-free second harmonic generation (SHG) imaging

(Figure 2D and Supplementary Figure 1A). Single-plane and

maximum intensity projection (MIP) image analysis allowed

quantification of ECM density. This showed that CAF FDM

possesses denser packed collagen fibers (Figure 2E). Using

CNA35-mCherry probe, binding fibrillar collagens, we were able

to better visualize ECM fibers of the FDMs (Supplementary

Figure 1B) showing that CAF FDMs have higher intensity of the
A B

FIGURE 1

CAF FDM promotes breast and pancreatic cancer cells proliferation. (A) Representative images of 4T1-H2B-GFP breast cancer and KPCmT4-zsGreen
pancreatic cancer cells on plastic, mNF1, and mCAF1 FDMs. Day 3 post-seeding in 2% FBS DMEM. Staining with phalloidin (F-actin) and DAPI (nuclei).
(B) Adhesion (1 hour) and proliferation (1-5 days) of 4T1-H2B-GFP and KPCmT4-zsGreen cells seeded on plastic, mNF1, mCAF1 FDMs. Normalized or raw
cell count based on DAPI and GFP. n=3 repeats. One-way ANOVA test. ns, p-value > 0.05; ***p-value < 0.001, ****p-value < 0.0001. Scale bars 100 mm.
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collagens staining and indeed increased density of fibers

(Supplementary Figures 1C, D). Analysis of stacks through the z-axis

of FDMs concluded that CAF FDM is also significantly thinner than

NF FDM’s (Figure 2F). Thickness was previously shown to positively

correlate with the fibroblasts’ density (43), which in our model is also

reflected in the higher density of NFs nuclei in the depositing FDM

layer and NFs increased proliferation rate compared to CAFs

(Supplementary Figure 2). These findings highlighted that CAF

FDMs contain more ECM proteins and are thinner as well as denser

suggesting, a strong change in CAF FDM mechanics. Therefore, we

performed atomic force microscopy (AFM) measurements to

determine the stiffness of the FDMs. AFM analysis revealed that

CAF FDM stiffness is significantly increased compared to NF FDM

(Figure 2G). Increased stiffness and density are representative of

desmoplastic stroma in vivo, therefore, these FDMs present a

relevant model for mimicking those differences in vitro.
3.3 Composition of mammary CAFs FDM
reflects desmoplastic changes in
pancreatic cancer

Given this outcome, suggesting a strong pro-fibrotic deposition

by mammary CAFs, we hypothesized that these changes could
Frontiers in Immunology 07133134
represent desmoplastic changes in other cancer types. As PDAC is

known to have a highly desmoplastic primary tumor and metastatic

site (liver) (34, 44), we generated a proteomic PDAC dataset in

order to further explore desmoplastic ECM composition. Here, we

utilized our previously published ISDoT (In Situ Decellularization

of Tissues) method (45) in order to isolate and enrich native ECM

proteins from pancreatic and hepatic tissue during pancreatic

cancer progression including pancreatic intraepithelial neoplasia

(PanIN) and PDAC stages in the KPC (Tg (Pdx1-cre)

6TuvKrastm4TyjTrp53tm2Tyj) mouse model. We collected regions

from the pancreas of PDAC-developing mice, at PanIN and

established tumors stages with early and late formation, as well as

from the healthy pancreas of age-matched Pdx-1 Cre mice

(Figure 3A). The same approach was performed for the liver,

where KPC mice developed spontaneous macrometastases. We

also included livers, which developed experimental metastases

upon intrasplenic injection, where cancer cells drain into the liver

through the splenic vein, mimicking the latter stages of metastasis

with vast liver macrometastases (Figure 3A).

These samples were analyzed by label-free LC-MS/MS, and the

abundance of ECM proteins between healthy and tumor conditions

at each stage was quantified. Here, we detected 5472 proteins across

all conditions, of which 210 were core ECM and ECM-associated

proteins (filtered in the same way as the mCAF1/mNF1 proteomic
A B

D E F G

C

FIGURE 2

CAF FDM is compositionally and structurally different from NF FDM. (A) Volcano plot showing ECM composition difference between mCAF1 vs mNF1
FDMs. n= 3 samples per condition. (B) Validation of mCAF1 vs mNF1 upregulated proteins (Per - periostin, ColIV - collagen IV, Col XII - -collagen XII) by
immunofluorescent staining of FDMs. (C) Validation of mCAF1 vs mNF1 upregulated proteins (ColXII, ColXIV - collagen XIV, LOX - lysyl oxidase) by
western blotting.(D) Representative images of mNF1 and mCAF1 FDMs imaged by second harmonic generation (SHG). Maximum intensity projection and
y-z projection. (E) mNF1 and mCAF1 FDMs density (based on single plane analysis). n= 3 repeats. (F) mNF1 and mCAF1 FDMs thickness (based in y-z
projection analysis). n=3 repeats. (G) mNF1 and mCAF1 FDMs stiffness based on the atomic force microscopy measurements. n = 5-7 matrices. Unpaired
t-test- ****p-value <0.0001. Scale bars 100 um, except z-axis images with 10um scale bar.
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data). Comparison between the different stages of PDAC

progression (Supplementary Figure 4) allowed identification of

168 significantly upregulated ECM proteins at least in one of the

disease stages. These included a number of core matrisome proteins

such as collagens (Col1a1, Col1a2, Col5a2, Col8a1, Col12a1) and

glycoproteins (Ltbp1, Mfap2, Mfap5), which are upregulated

already at the PanIN stage. A few other proteins quantified, such

as Postn, Srpx2, Tgfbi, became upregulated during tumor

formation, but not at the PanIN stage. We also observed some

liver metastasis-specific ECM changes. Vwa1 (Von Willebrand

Factor A domain containing 1), for example, was downregulated

or unchanged in the pancreas, but significantly upregulated in the

liver. As with the CAF/NF proteomics, we also noted an increase in

the collagen crosslinking proteins LOX and LOXL2 in tumors and/

or metastases. Matching of FDMs dataset with PDAC indicated that

most of the proteins were also found in vivo (106, all categories)

(Figure 3B), while among the top list of altered proteins in CAF vs

NF most were also upregulated (Figure 3C) (cut-off LogFC > 1.59,

p-value < 0.05; grey – below detection limit in the in vivo dataset).

This list of 36 genes we defined as a long ‘desmoplastic signature’

and proteins also gradually upregulated during progression in

PDAC, 9 genes, as a short ‘desmoplastic signature’: Col1a2,

Col5a2, Col12a1, Fn1, Mfap5, Postn, Tgfbi, Thbs2, Lox.
Frontiers in Immunology 08134135
3.4 Desmoplastic signature is enriched in
multiple cancer types in human and is
prognostic of patient survival

We focused on identifying if the murine ‘desmoplastic

signature’ reflects ECM changes in human tumor datasets. The

signature genes/proteins were used to define an enrichment score as

previously reported (46) from gene expression values of TCGA

Pan-Cancer normalized cohort, assessed at both the tumor type and

the molecular subtype level.

Results showed a wide difference in enrichment scores, with

tumors from the blood [acute myeloid leukemia (AML)] expressing

the lowest scores and metaplastic/squamous tumors [breast (BRCA),

head and neck (HNSC), pancreatic (PAAD) cancers and sarcoma

(SARC)] the highest (Figure 4A). We confirmed these differences at

the tumor subtype level, where mesenchymal and immunoreactive

subtypes, characterized by large ECM deposition and tissue activation

phenomena, topped the landscape of signature enrichment levels.

These results are in line with the composition of the signature, that

features mostly genes/proteins associated with the ECM, its

organization, and TGFb signaling. The enrichment scores were

then divided into quartiles by tumor type and patients in the 1st

and 4th quartiles (“low” and “high”, respectively) were compared for
A B

C

FIGURE 3

Mammary CAFs deposit compositionally complex matrix reflecting desmoplastic changes in primary and metastatic pancreatic cancer. (A) Scheme of
the mass spectrometry samples generation for mNF1, mCAF1 FDMs dataset and PDAC dataset, including healthy age-matched tissues and tumors,
spontaneous liver metastases from PanIN to PDAC stages and healthy livers age-matched with experimental KPC liver metastases. (B) Venn diagram
showing an overlap in robustly detected proteins between the datasets. Color-coding is used for depicting matrisome categories (Core matrisome:
blue – Collagens, red – Glycoproteins, green – Proteoglycans; Matrisome-associated: dark violet – ECM-affiliated, black – ECM regulators, dark
blue – Secreted factors). (C) Heatmap of the ECM proteins’ fold changes significantly upregulated (p < 0.05), cutoff logFC >1.59 in mCAF1 vs mNF1
FDMs, compared to the PDAC dataset (tumor conditions vs healthy ones). n=3 samples per group. Grey colored are non-detected proteins. PanIN –
pancreatic intraepithelial neoplasia, transition to tumor; Pancreatic tumor presented from the early group. In bold are highlighted genes of the short
signature - matched to increasing with progression in the in vivo dataset.
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overall survival (OS). Results show significant monovariate

differences in survival for 9 tumor types (BLCA, CESC, GBM,

LGG, KICH, KIRC, KIRP, MESO, STAD (see Figure 4 legend for

abbreviations, all p-values < 0.05; Figure 4B), with uveal melanoma

(UVM) also being very close to significance (p-value = 0.052)

(Supplementary Figure 5). We confirmed that a higher level of

signature score in these cancer types positively correlates with the

abundance of fibroblasts in the samples (Supplementary Figure 6).

Interestingly, in all cases, a higher signature expression was associated

with poorer survival and different tumor types from the same organ

or system showed similar results (see, e.g., all kidney neoplasms

(KICH, KIRC and KIRP) and bladder cancer (BLCA), lung (LUAD,

LUSC, MESO), ovarian and cervical cancers (OVCA and CESC), and

high- and low-grade gliomas (LGG and GBM). We performed the

same analysis for the short signature which showed a relative increase

in expression score for most of the cancer types, prominent for

ovarian (OV) and colon (COAD) cancers (Supplementary

Figure 7A). Survival analysis in addition showed a significant

association of the signature expression with poor survival in

pancreatic (PAAD) and lung (LUAD) adenocarcinomas

(Supplementary Figure 7B).

Compared to 100 random signatures from the rest of the

matrisome, which is the largest gene “origin” (ontology) in the

signature, we observed that both the ‘short’ and ‘long’ signatures
Frontiers in Immunology 09135136
obtain much larger scores and much smaller dispersions, strongly

suggesting a coordinated and non-random expression of the genes

the signatures span across the whole cohort (Supplementary

Figures 9A, B). This is also reflected in principal component

analysis (PCA) overlaid with binned bidimensional probabilities,

showing a clear separation between signature and non-signature

genes (Supplementary Figure 9C). More importantly, we have

performed Cox Proportional Hazard (CoxPH) analysis for overall

survival (OS), disease-specific survival (DSS) and progression-free

interval (PFI) evaluating signature scores together with age, sex and

tumor type and found that - in all cases - the signature is an

independent estimator of survival, both in the pan-cancer cohort

and in the tumors previously identified via Kaplan-Meier OS

analysis (Supplementary Figure 10).
4 Discussion

Desmoplastic reactions at both the primary and secondary site in

multiple cancers are a hallmark of disease progression (47, 48), and

are characterized by an increased deposition of ECM, altered ECM

structure and composition as well as changes in the biophysical

properties of the surrounding stroma. These alterations are often

associated with poor drug response/delivery and poorer clinical
A B

FIGURE 4

Full CAF FDM signature is enriched in multiple cancer types in human and is prognostic of cancer patients’ survival. (A) Difference in the signature
expression score (box plots summarize median with min and max). Circles mark cancer types for which high expression of the signature defines
poor survival, shown in b (based on TGCA dataset). (B) Kaplan-Meier plots of cancer types which show significantly different probability of patients’
survival based on the signature expression. LAML, Acute Myeloid Leukemia; ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial Carcinoma;
LGG, Brain Lower Grade Glioma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma;
CHOL, Cholangiocarcinoma; COAD, Colon adenocarcinoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck
squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LIHC,
Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-
cell Lymphoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma
and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma; STAD,
Stomach adenocarcinoma; TGCT, Testicular Germ Cell Tumors; THYM, Thymoma; THCA, Thyroid carcinoma; UCS, Uterine Carcinosarcoma; UCEC,
Uterine Corpus Endometrial Carcinoma; UVM, Uveal Melanoma.
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outcome (49, 50). However, tools to model and study the effect of the

native ECM on cancer progression are still lacking. Here, we utilize

FDMs generated by NFs and CAFs, and validate FDM relevance to

the in vivo situation of desmoplastic cancer. Several studies profiled

tumors by single-cell RNA sequencing, showing that CAFs are

heterogeneous in both breast and pancreatic tumors (51).

Importantly, most of those subtypes are still active producers of the

ECM (based on Col1 and Col3). Temporally resolved proteomic

studies, which more reliably represent deposited ECMover the course

of disease progression, are still very limited (20, 52). Our approach of

FDM proteomics can be further applied to fill this gap in exploring

ECM deposition by the CAF subtypes.

To generate native ECM in a short timeframe in vitro, we used

immortalized NFs and CAFs densely seeded on cross-linked gelatin-

coated plastic. Removal offibroblasts results in a layer of the ECMwith

unique composition, structure, and mechanical properties. Our study

reveals that CAF FDM structure is much thinner and denser,

mechanically stiffer than NF. These parameters potentially depend

on both an increase in the crosslinking enzymes (e.g. LOXL2),

packaging collagen fibers core ECM components (FACIT collagens

- ColXIV, ColXII), and higher contractility of CAFs (23). CAF FDM

top compositional changes match desmoplastic PDAC alterations at

the primary and metastatic site and they form a gene signature

relevant for identifying desmoplastic state among a broad spectrum

of human tumors. Our analysis shows that sarcomas, head and neck,

mesothelioma, and lung cancers (ductal carcinoma, adenocarcinoma)

also possess pronounced desmoplastic ECM changes at the

transcriptional level. For some cancer types, stratification based on

our signature is prognostic of the overall survival. Surprisingly, those

are also ‘non-desmoplastic’ cancer types with a low signature score

(e.g. brain cancers (LGG, GBM) and kidney cancers (KICH, KIRP),

suggesting that we potentially lack understanding of which role

matrisome plays in their progression. Further experiments, such as

evaluation of the non-desmoplastic cancer type cell proliferation on

desmoplastic matrices, will shed light on the impact of these stromal

changes on either tumor growth, or other parameters driving cancer

progression. Interestingly, an earlier study uncovered epigenetic

regulation of YAP/TAZ pathway by translocation of JMJD1 histone

demethylase in the nucleus on stiffer CAF matrices as a mechanism

giving cancer cells a proliferative advantage (53). Other studies so far

mainly focused on comparing cancer cell migration on NF versus CAF

fibroblast matrices, for instance showing more alignment of the ECM

fibers by human prostate and pancreatic CAFs leading to directional

migration of cancer cells (54, 55). In this study we did not observe

more alignment by CAF indicating tissue or species-

specific differences.

We foresee that desmoplastic signature can be a useful tool for

identifying patients who could benefit from anti-fibrotic treatment.

As some of those targeted treatments were not successful (56), it is

critical to consider that pro-fibrotic changes are triggered early on

(e.g. in case of PanIN stage in our study), therefore, the stage of

disease can be a critical factor for starting the treatment. Further, we

need to understand if these ECM components are independent or

interdependent in creating desmoplastic response and how

preventing their build up can be tuned more effectively,

potentially by co-targeting an immune response and CAF
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heterogeneity. We acknowledge however, that there are

limitations when using the TCGA to look at the power of our

signature in defining patient outcomes. While different parameters

regarding survival are available, there is little information regarding

the treatment of these patients and their response, which is a crucial

parameter affecting clinical outcome. However, when evaluating

signature scores together with age, sex, and tumor type we found

that the signature is an independent estimator of survival.

Our datasets also highlight single proteins such as collagen XII,

a fibril-associated collagen with interrupted triple helices (FACIT)

binding to the surface of collagen fibers and promoting their

bundling and compaction. Its presence in the stroma was shown

to correlate with epithelial tension mediated by STAT3 signaling in

PDAC mouse models (57). Collagen XII was also found to be a

prognostic marker of poor patient outcome in colorectal cancer,

associated with the myofibroblastic invasive front and liver

metastases (58, 59). In breast cancer, its knockdown in CAFs in a

cancer cell co-implantation model showed that collagen XII ECM

compaction contributes to the metastatic dissemination (52).

However, biochemical and structural role of collagen XII, as well

as potential therapeutic targeting, remain undefined. This stresses

the need for further elucidation of the mechanistic role of ECM

components in desmoplasia, and in driving primary tumor

progression to metastasis.
5 Conclusions

In summary, our study highlights a desmoplastic signature of 36

ECM genes, the expression of which is prognostic of patient survival

in 9 cancers. The proteomic datasets presented here can be further

explored to investigate the role of specific ECM proteins in cancer

progression, and their potential as therapeutic targets. Our study

shows that CAFs can be used in vitro to generate complex

desmoplastic ECM substrates, and that the difference between

‘normal’ and desmoplastic ECM matrices stimulates cancer

cell proliferation.
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