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Editorial on the Research Topic

Integrative analysis of single-cell and/or bulk multi-omics sequencing

data

Introduction

Each type of omics data including genomics, epigenomics, transcriptomics,

proteomics, metabolomics, and metagenomics mainly provides the profile of one

particular layer for a cell or sample (Hasin et al., 2017). Integrative analysis of multi-

omics data could enable a more comprehensive dissection from different perspectives,

which may facilitate a better and deeper understanding of the underlying molecular

functions and mechanisms (Li et al., 2021). With the innovation and development of

sequencing technologies, various single-cell and bulk profiling technologies have been

developed and applied to a diversity of biological and clinical research (Lei et al., 2021; Li

et al., 2021; Jiang et al., 2022). Bulk sequencing approaches allow the elucidation of each

sample at the cell-population level, providing the averaged profile of a multitude of cells.

By contrast, single-cell sequencing methods can interrogate thousands of cells at single-

cell resolution for a given sample simultaneously. Joint analysis of multi-omics data

generated from bulk and single-cell sequencing protocols could effectively facilitate the

translation of basic science to practical applications (Stuart and Satija, 2019; Leng et al.,

2022). On the other hand, the sample/cell scale and data size are growing rapidly in

biomedical investigation. Thus, novel bioinformatics approaches are also in urgent need

to more efficiently and robustly integrate distinct types of omics data.

Since multi-omics strategies could be more powerful than single omics, combining

different types of single-cell or bulk sequencing data for a more comprehensive

exploration has become increasingly popular and important (Figure 1). In this
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Sequencing Data, we planned to collect novel findings and

methods related to analyzing bulk and single-cell multi-omics

or multimodal data with a systematic strategy. In total,

12 original research articles and one case report were

published in this Research Topic, covering multi-omics-based

cancer dissection, comparison of different data integration

methods, and database construction for expression

examination in various tissues. Here we concisely summarize

and discuss the main results revealed in these studies.

Studies published in this research
topic

Guo et al. found that the mutations in TP53 and KRAS were

significantly associated with the poor prognosis of intrahepatic

cholangiocarcinoma (ICC). They further classified the ICC

patients into different subgroups based on the mutation

feature of TP53 and KRAS, which could benefit the clinical

management of ICC. Johann et al. uncovered that the

mutations of AKT1 and TP53 signaling pathways were closely

associated with the pulmonary sclerosing pneumocytoma (PSP)

through integrative analysis of genomic, transcriptomic,

radiomic, and pathomic data. The insights into the underlying

etiology and molecular behavior of PSP gained in this study may

benefit corresponding therapy. Gao et al. constructed an effective

prognostic model for breast cancer using the differentially

expressed genes among distinct glycosylation patterns. Their

results highlight the value and importance of risk score

characterization based on glycosylation patterns for predicting

the overall survival and immune infiltration of breast cancer

patients. Hao et al. identified two subgroups of MYC signaling

inhibition and activation for lung adenocarcinoma (LUAD)

through joint analysis of genomics, transcriptomics, and

single-cell sequencing data from multiple cohorts. The two

LUAD subgroups discovered by them exhibited significant

differences in terms of prognosis, genomic variations, immune

microenvironment, as well as clinical features. Additionally, Jiang

et al. built and validated a model for predicting the prognosis of

LUAD by integrating bulk and single-cell RNA-seq data. They

also detected two distinct subtypes of LUAD patients that

differed in prognosis and immune characteristics. Sun et al.

systematically analyzed the transcriptome of synovial sarcoma

in terms of gene expression, alternative splicing, gene fusion, and

circular RNAs. Their integrative analysis provided new insights

into the transcriptomic profile and the underlying molecular

mechanism of synovial sarcoma. Wang et al. constructed a

clinical diagnostic map and a cluster prediction model for

glioblastoma based on the methylation, expression, and single-

cell sequencing data. The classification method developed by

them could potentially promote the analysis of methylation

heterogeneity for the promoter CpG islands in glioblastoma.

Zhao et al. revealed high cellular heterogeneity in both malignant

and immune cells of diffuse large B-cell lymphoma (DLBCL).

They provided novel insights into the transcriptional dynamics

of the tumor microenvironment for DLBCL. Zhang et al.

established a prognostic model based on eight genes (DEFB1,

AICDA, TYK2, CCR7, SCARB1, ULBP2, STC2, and LGR5) for

FIGURE 1
Overview of integrative analysis of multi-omics data generated from different bulk and single-cell sequencing technologies.
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predicting the overall survival of head and neck squamous cell

carcinoma (HNSCC) patients. The low-risk and high-risk groups

of HNSCC separately showed higher and lower immune scores,

thus those eight gene signatures have the potential to be used in

the clinical management of HNSCC. Li et al. classified

hepatocellular carcinoma patients into high-necroptosis and

low-necroptosis groups, which had a significant difference in

survival time. They found that the high-necroptosis patients were

with an enriched expression of immune checkpoint-related genes

and could benefit from certain immunotherapy. Wang et al.

uncovered four dysregulated oncogenic signaling pathways and

identified related potential prognostic biomarkers for pan-cancer

through systematic analysis of the TCGAmulti-omics data. Their

results could facilitate a better understanding of the function of

oncogenic signaling pathways in human pan-cancer. Kujawa

et al. systematically evaluated the influence of six different

data integration methods on single-cell analysis. They found

that ComBat-seq (Zhang et al., 2020), limma (Leek et al., 2012),

and MNN (Haghverdi et al., 2018) could effectively reduce batch

effects and preserve the differences between distinct biological

conditions. Deng et al. constructed a gene expression omnibus

database named ECO (https://heomics.shinyapps.io/ecodb/) for

mouse endothelial cells based on the sequencing data of

203 samples from 71 different conditions. ECO could enable

researchers to friendly explore endothelial expression profiles of

diverse tissues in conditions of certain genetic modifications,

disease models, and other stimulations in vivo.

Summary and perspectives

The studies published on this Research Topic discovered

meaningful results and offered new insights into corresponding

biomedical research. As we all know that the cost of sequencing

technologies is gradually decreasing, which can facilitate the

conduction of multi-omics investigations. Bulk and single-cell

protocols have their own advantages and limitations. Compared

to single-cell sequencing methods, bulk approaches do not need

living cells and the experimental procedures are usually simpler

(Li et al., 2021). Dissecting large-scale samples is more affordable

for bulk strategies, but bulk data can not effectively provide

cellular heterogeneity information. Single-cell sequencing allows

a better understanding of cell-to-cell variations and molecular

dynamics at single-cell resolution. However, existing single-cell

technologies for generating different types of omics data still

suffer lower capture efficiency and higher technical noise

compared to traditional bulk protocols (Mustachio and

Roszik, 2022; Wen and Tang, 2022). Therefore, bulk and

single-cell approaches are complementary, the combination of

bulk and single-cell data is valuable for getting both cell-

population and single-cell level perspectives (Li et al., 2021).

For example, the proportion of cell subtypes for large-scale bulk

data could be deconvoluted with the cell-type-specific signatures

inferred from the single-cell data of a small number of samples

(Aibar et al., 2017; Wang et al., 2019; Zaitsev et al., 2019;

Decamps et al., 2020; Lin et al., 2022). The biomarkers

identified in single-cell sequencing data can be further

correlated to the outcomes of patients to assess their potential

clinical value using corresponding bulk data from public

databases such as The Cancer Genome Atlas (TCGA)

(Weinstein et al., 2013).

Collectively, joint analysis of bulk and single-cell multi-omics

data can help us gain a more comprehensive and systematic view

of biological and clinical samples. The innovation of various

omics profiling technologies and related machine learning

methods for integrating different types of data will further

make multi-omics exploration more feasible and easier. We

hope the studies published on this Research Topic will inspire

related biomedical researchers to better understand the benefit

and value of multi-omics strategies.
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Integration of Single-Cell RNA
Sequencing andBulk RNASequencing
Data to Establish and Validate a
Prognostic Model for Patients With
Lung Adenocarcinoma
Aimin Jiang, Jingjing Wang, Na Liu, Xiaoqiang Zheng, Yimeng Li, Yuyan Ma, Haoran Zheng,
Xue Chen, Chaoxin Fan, Rui Zhang, Xiao Fu* and Yu Yao*

Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

Background: Lung adenocarcinoma (LUAD) remains a lethal disease worldwide, with
numerous studies exploring its potential prognostic markers using traditional RNA
sequencing (RNA-seq) data. However, it cannot detect the exact cellular and
molecular changes in tumor cells. This study aimed to construct a prognostic model
for LUAD using single-cell RNA-seq (scRNA-seq) and traditional RNA-seq data.

Methods: Bulk RNA-seq data were downloaded from The Cancer Genome Atlas (TCGA)
database. LUAD scRNA-seq data were acquired from Gene Expression Omnibus (GEO)
database. The uniform manifold approximation and projection (UMAP) was used for
dimensionality reduction and cluster identification. Weighted Gene Correlation Network
Analysis (WGCNA) was utilized to identify key modules and differentially expressed genes
(DEGs). The non-negative Matrix Factorization (NMF) algorithm was used to identify
different subtypes based on DEGs. The Cox regression analysis was used to develop
the prognostic model. The characteristics of mutation landscape, immune status, and
immune checkpoint inhibitors (ICIs) related genes between different risk groups were also
investigated.

Results: scRNA-seq data of four samples were integrated to identify 13 clusters and 9cell
types. After applying differential analysis, NK cells, bladder epithelial cells, and bronchial
epithelial cells were identified as significant cell types. Overall, 329 DEGs were selected for
prognostic model construction through differential analysis and WGCNA. Besides, NMF
identified two clusters based on DEGs in the TCGA cohort, with distinct prognosis and
immune characteristics being observed. We developed a prognostic model based on the
expression levels of six DEGs. A higher risk score was significantly correlated with poor
survival outcomes but was associated with a more frequent TP53 mutation rate, higher
tumor mutation burden (TMB), and up-regulation of PD-L1. Two independent external
validation cohorts were also adopted to verify our results, with consistent results observed
in them.
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Conclusion: This study constructed and validated a prognostic model for LUAD by
integrating 10× scRNA-seq and bulk RNA-seq data. Besides, we observed two distinct
subtypes in this population, with different prognosis and immune characteristics.

Keywords: ScRNA-seq, prognosis, prognostic model, NMF, lung adenocarcinoma

INTRODUCTION

Lung cancer is one of the most common incident cancers and the
leading cause of cancer-related death worldwide (Chen et al.,
2016). As the most predominant pathological subtype, lung
adenocarcinoma (LUAD) makes up more than 40% of lung
cancer cases (Travis et al., 2015; Neal et al., 2019). Although
promizing progress has been made in the screening, diagnosis,
and management of LUAD patients in recent decades, it remains
a lethal disease because a significant fraction of patients is
diagnosed at the advanced disease stage (Denisenko et al.,
2018; Lurienne et al., 2020). It is reported that more than 60%
of newly diagnosed patients present locoregional or distant
metastases at the time of detection (Brozos-Vázquez et al.,
2021), with overall survival (OS) less than 5 years (Denisenko
et al., 2018). With the rapid development of cancer genomics in
recent decades, more andmore gene alteration has been identified
as an effective treatment target for LUAD. The majority of LUAD
patients with driver gene mutation can benefit from molecular
targeted therapy, such as epidermal growth factor receptor
(EGFR)- tyrosine kinase inhibitors (TKIs), anaplastic
lymphoma kinase (ALK)-TKIs (Yi et al., 2021a), and recently
KRAS (Uras et al., 2020) and c-MET (Zhang et al., 2018)
inhibitors. However, there is still part of patients who cannot
get rid of the fate of resistance to these drugs due to secondary
mutation in tumors. Recently, immune checkpoint inhibitors
(ICIs) that target cytotoxic T lymphocyte-associated protein 4
(CTLA4), programmed death 1 (PD1), and programmed death-
ligand 1 (PD-L1) have shown promising effects in various
malignancies, including LUAD (Chen Y. et al., 2021; Huang
et al., 2021). Unfortunately, not all patients can benefit from
ICIs intervention, with a lower overall response rate observed in
clinical practice. Therefore, there is an urgent need to identify
potential prognostic and predictive biomarkers that could
precisely stratify patients and recognize patients who will
respond to treatment.

In recent decades, a growing body of studies explored potential
prognostic markers of LUAD using traditional RNA sequencing
(RNA-seq) data and have improved our understanding of tumor
occurrence and development (Chen et al., 2020). For instance, Yi
et al. developed a prognostic model to predict LUAD patients’
survival and response to immunotherapy based on 17 immune-
related genes (Yi et al.). Liang et al. also constructed a prognostic
model for these patients based on seven ferroptosis-related genes
(Liang et al.). Besides, our previous study also identified an
autophagy-related long non-coding RNA signature as a
prognostic biomarker for LUAD patients (Jiang et al., 2021).
Despite the promising predictive power has been observed in the
above studies, these prognostic signatures are based on traditional
RNA-seq, which cannot detect the exact cellular and molecular

changes in tumor cells because it mainly concentrates on the
“average” expression of all cells in a sample (Chen et al., 2020).

Recently, single-cell RNA-seq (scRNA-seq) has been used to
investigate the transcriptome of different cell types as an
innovative technology (Chen et al., 2020). It uses optimized
next-generation sequencing technologies to define the global
gene expression profiles of single cells, thus facilitating
dissection of the previously hidden heterogeneity in cell
populations (Liang et al., 2021). Given this advantage,
numerous studies have focused on identifying novel
biomarkers for malignancies by integrating scRNA-seq and
traditional RNA-seq (Zhang et al., 2019; Chen et al., 2020;
Liang et al., 2021). This study aimed to construct a prognostic
model for patients with LUAD by integrating scRNA-seq and
traditional RNA-seq data, with two external validation cohorts
being adopted to verify its risk stratification ability. Besides, we
also identified two different population subtypes using non-
negative matrix factorization (NMF), with distinct prognosis
and immune characteristics observed. We believe our findings
will provide potential prognostic biomarkers and therapeutic
targets for LUAD.

MATERIALS AND METHODS

Raw Data Acquisition
10× scRNA-seq data of two LUAD samples (T1 and T2) and two
normal samples (N1 and N2) were downloaded from the
GSE149655 series, which included 2,642 cells, 3,203 cells,
4,243 cells, and 2,466 cells for each sample. LUAD bulk RNA-
seq data, mutation data, and clinicopathological characteristics
were downloaded from the TCGA database. Besides, we also
downloaded progression-free survival (PFS) records of these
patients from UCSC Xena (https://xena.ucsc.edu/). The
human. gtf file was adopted to raw matrix annotation.
Furthermore, GSE31210 and GSE13213 cohorts were also
acquired from the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/) database to serve as independent
external cohorts for risk model validation. The detailed clinical
characteristics of patients in the TCGA and GEO cohorts are
summarized in Supplementary Table S1.

scRNA-Seq Data Processing and Analysis
The 10× scRNA-seq data were processed according to the
following steps: 1) R software, “Seurat” package (Macosko
et al., 2015) was adopted to convert 10× scRNA-seq data as a
Seurat object; 2) quality control (QC) of the raw counts by
calculating the percentage of mitochondrial or ribosomal genes
and excluding low-quality cells; 3) the “FindVariableFeatures”
function was adopted to filter the top 2000 highly variable genes
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after QC; 4) principal component analysis (PCA) was performed
based on the 2000 genes, and uniform manifold approximation
and projection (UMAP) (Becht et al., 2018) was used for
dimensionality reduction and cluster identification; 5) the
“Find All Markers” function was exploited to identify
significant marker genes for different clusters by setting log2
[Foldchange (FC)] as 0.3 and min.pct as 0.25; and 6) R software,
“SingleR” package (Aran et al., 2019) was applied to cluster
annotation to recognize different cell types. Next, we
performed Fisher’s exact test to identify potential significant
cell types between tumor and normal samples. We calculated
the FC value of each cell type in tumor and normal samples and
determined the cell types with FC> 4 or FC <0.25, p-value < 0.05
as the key cell types. Furthermore, we performed functional
enrichment analysis for the identified hub cell types using R
software, “ReactomeGSA” package (Griss et al., 2020). We used
the “analyze_sc_clusters” function for enrichment analysis and
extracted the results through the “pathways” function. R software,
“monocle” package (Borcherding et al., 2019) was adopted to cell
trajectory and pseudo-time analysis, with the method “DDRTree”
being used for dimensionality reduction. Subsequently, the
statistical method “BEAM” was used to calculate the
contribution of genes during cell development, and the top
100 genes were selected for visualization. Ultimately, R
software, “CellChat” (Jin S. et al., 2021) and “patchwork”
packages were adopted for cell-cell communication analysis
and network visualization.

Differentially Expressed Genes
Identification and Functional Enrichment
Analysis
Differential expression analysis was performed to filter
differentially expressed genes (DEGs) in the TCGA cohort by
using the R software, “limma” package, with |log2FC| >1.0 and
false discovery rate (FDR) < 0.05 being used as cut-off value. The
volcano plot was generated to visualize the distribution of the
identified DEGs. Subsequently, Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) analyses were
exploited to investigate the most significantly enriched
pathways and biological processes of the DEGs using R
software, “clusterProfiler” package.

Weighted Gene Correlation Network
Analysis
Weighted Gene Correlation Network Analysis (WGCNA) was
utilized to filter hub genes in DEGs via R software, “WGCNA”
package. WGCNA is divided into expression cluster and
phenotypic correlation analyses (Langfelder and Horvath,
2008). It mainly includes four steps: calculation of correlation
coefficient between genes, determination of gene modules, co-
expression network, and correlation between modules and traits
(Langfelder and Horvath, 2008). In the process of co-expression
network construction, soft thresholding power β was selected as
the lowest power with which fit index of scale-free topology
reached 0.90. The modules were presented together via

dendrogram after the process of clustering. Subsequently,
the module-trait heatmap was generated to further identify
the most significant DEGs in LUAD development by
comparing their correlation coefficients and p values.
Ultimately, we selected the intersection genes among the
marker genes and DEGs found in WGCNA for further
analysis.

Sample Clustering Using Non-Negative
Matrix Factorization Algorithm
Non-negative matrix factorization (NMF) was carried to divide
patients into different subtypes according to the following steps:
1) the univariate Cox regression analysis was performed to
identify potential prognostic DEGs via R software, “survival”
package; 2) sample clustering through “brunet” method in R
software, “NMF” package; 3) according to parameters such as
cophenetic, dispersion, and silhouette, the optimal number of the
cluster was identified to classify patients into different subtypes;
and 4) the consensus heatmap was generated in accordance with
the above optimal cluster number to view the distribution
characteristic among different subtypes. Then, we also
explored the relationship between different clusters and OS
and PFS. Besides, the MCPcounter algorithm was adopted to
estimate the infiltration of the immune cells between different
clusters.We also investigated the association between clusters and
six immune subtypes identified in a previously published study
(Tamborero et al., 2018).

Prognostic Model Construction and
Validation
First, the univariate Cox regression analysis was performed to
identify potential prognostic DEGs. Variables with a p-value <
0.01 were selected into the Least Absolute Shrinkage and
Selection Operator (LASSO) regression analysis to reduce the
number of genes in the final risk model through R software,
“glmnet” package. Ultimately, genes in the LASSO regression
were selected into the multivariate Cox regression analysis and
therefore constructed the prognostic model according to the
following formula:

risk score � ∑k

i�1βipexpi (1)
In the formula, “βi” represents the coefficient of the selected

genes in the multivariate Cox analysis and “expi” refers to its
expression value. All patients were divided into high- and low-
risk groups according to the median value of risk score. Survival
curves and risk plots were generated to visualize the survival
difference and status for each patient via R software,
“survminer” and “ggrisk” packages. Besides, we used R
software, “timeROC” package to draw the receiver operating
characteristic (ROC) curves to evaluate the performance of risk
score in predicting 1-, 3-, and 5 years OS of LUAD patients.
Additionally, GSE31210 and GSE13213 cohorts were used as
independent external cohorts to validate the utility of the
prognostic model.
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FIGURE 1 | Different clusters annotation and cell types identification in LUAD 10× scRNA-seq data. (A–C) Clusters annotation and cell types identification via
UMAP; (D) Functional enrichment analysis for the identified hub cell types using “ReactomeGSA” package; (E–G) Cell trajectory and pseudo-time analysis for the
identified hub cell types. LUAD, lung adenocarcinoma; scRNA-seq, single-cell RNA sequencing; UMAP, uniform manifold approximation and projection.
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Clinical Relevance, Mutation Landscape,
and Enrichment Analysis Between High-
and Low-Risk Groups
Next, we investigated the association between the risk score and
clinicopathological characteristics of patients in the TCGA
cohort. Furthermore, we adopted Cox regression analysis to
determine whether the risk score could be an independent
prognostic factor for LUAD patients via R software,
“survcomp” package. At the same time, R software,
“forestplot” package was used to draw forest plots of the
univariate and multivariate Cox regression analyses. Gene set
enrichment analysis (GSEA) was then performed to identify the
most significantly enriched pathways between high- and low-risk
groups through R software, “org.Hs.eg.db,” “clusterProfiler,” and
“enrichplot” packages. In addition, two waterfall plots were
generated to explore the detailed gene mutation characteristics
between high- and low-risk groups via “oncoplot” function in R
software, “maftools” package.

Immune Cells Infiltration and Immune
Function Status Between High- and
Low-Risk Groups
Then, single-sample gene set enrichment analysis (ssGSEA)
(Rooney et al., 2015) was adopted to estimate the infiltrating
score of immune cells and the activity of immune-related
pathways using R software, “GSVA” and “GSEABase”
packages. The Wilcoxon rank-sum test was used to compare
the statistical difference between high- and low-risk groups.
Besides, we also investigated the correlation between risk score
and immune checkpoint inhibitors (ICIs) related genes
expression levels and tumor mutation burden (TMB), with R
software, “ggplot2” package being adopted for visualization.

Statistical Analysis
The non-parameterWilcoxon rank-sum test was used to examine
the relationship of continuous variables between the two groups.
The LASSO regression and Cox regression analyses were used for
predictive model development. Kaplan-Meier survival analysis
was used to test the survival difference between different risk
groups. A log-rank test was adopted to examine the statistical
difference. A two-sided p-value < 0.05 was considered significant.
All analyses were conducted in R software (version 4.1.1) for
windows 64.0.

RESULTS

scRNA-Seq and Cell Typing of Normal and
Lung Adenocarcinoma Lung Samples
10× scRNA-seq data of two LUAD and two normal samples were
downloaded from the GSE149655 dataset. A total of 8,170 cells
were identified after QC, as shown in Supplementary Figure
S1A. We visualized the top 20 highly variable genes in
Supplementary Figure S1B. Thirteen distinct clusters were
identified after PCA and UMAP analysis (Figures 1A,B).

Then “SingleR” package was adopted to cluster annotation,
with UMAP being used to visualize the cell types after
dimensionality reduction. Overall, we identified nine cell types
in this step, including bladder epithelial cells, CD4+ effector
memory T cell, lymphatic endothelial cells, alveolar
macrophage, bronchial epithelial cells, tissue stem cells,
monocyte, NK cells, and memory B cell (Figure 1C). Of these,
NK cells, bladder epithelial cells, and bronchial epithelial cells
were identified as significant cell types. ReactomeGSA functional
enrichment analysis suggested that these cell types mainly are
involved in intracellular oxygen transport, FGFR1c and Klotho
ligand binding and activation, and synthesis of cardiolipin (CL)
(Figure 1D). Then, “monocle” package was exploited to analyze
the cell trajectory and pseudo-time of the identified three
significant cell types. We observed that NK cell only
corresponds to state 4, while bronchial epithelial cells occurred
in the whole state (Figures 1E–G). We then calculated the
contribution of genes during cell development, and the top
100 genes were selected for visualization (Supplementary
Figure S2A). We investigated the cell-cell communication
network by calculating communication probability
(Supplementary Figure S2B). Furthermore, we inferred the
cell-cell communication network based on specific pathways
and ligand-receptors. We identified that SEMA4D—PLXNB2
(Figure 2A), HLA−DPA1—CD4 (Figure 2B), and
C3—C3AR1 (Figure 2C) play crucial roles in the
communication network.

Identification of Differentially Expressed
Genes in Bulk RNA-Seq Data
A total of 1971 genes were identified as DEGs after differential
expression analysis (Figure 2D). Of these, 902 were up-regulated
genes, while 1,069 were down-regulated (Figure 2D). GO analysis
revealed that the DEGs were mainly enriched in the biological
processes of the humoral immune response, complement
activation, and protein activation (Figure 2E). KEGG analysis
indicated that the DEGs were mainly enriched in cell adhesion
molecules, cell cycle, and complement and coagulation cascades
(Figure 2F). Next, we performed WGCNA to identify DEGs
involved in LUAD development and progression. In the process
of co-expression network construction, we observed that the soft
thresholding power β was 5 when the fit index of scale-free
topology reached 0.90 (Figure 3A). Nine modules were identified
based on the average linkage hierarchical clustering and the soft
thresholding power (Figure 3B). We observed that the turquoise
module was significantly correlated with LUAD development
according to the correlation coefficient and p-value (Figure 3C).
Ultimately, 329 common genes, which are both marker genes and
WGCNA module genes, were selected to construct an expression
matrix for further analysis.

Different Molecular Subtypes Identification
All patients were divided into two clusters according to relevant
parameters after NMF (Figure 4A; Supplementary Figure S3). It
showed that patients in cluster 2 were correlated with poor OS
and PFS than patients in cluster 1 (Figure 4B). The MCPcounter
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algorithm was used to estimate the infiltration of the immune
cells in different clusters. We found that the infiltration levels of
endothelial cells, myeloid dendritic cells, and neutrophils were

significantly higher in cluster 1 (Figure 4C). However, cluster 2
had higher infiltration levels of B lineage, cytotoxic lymphocytes,
fibroblasts, and NK cells (Figure 4C). Besides, the Sankey plot

FIGURE 2 | Cell-cell communication network and identification of DEGs in TCGA cohort. (A–C) Cell-cell communication network identified that
SEMA4D—PLXNB2, HLA−DPA1—CD4, and C3—C3AR1 play crucial roles in the communication network; (D) The volcano plot to show the up-regulated and down-
regulated DEGs in TCGA cohort; (E,F) GO and KEGG enrichment analysis of the identified DEGs. DEGs, differentially expressed genes; TCGA, The Cancer Genome
Atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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was also applied to investigate the relationship between different
immune subtypes and clusters. It showed that patients in cluster 1
are mainly classified into Immune C3 (inflammatory) subtype
(Figure 4D). However, patients in cluster 2 are mainly classified
into Immune C1 (wound healing), Immune C2 (IFN-gamma
dominant), and Immune C6 (TGF-beta dominant) subtypes
(Figure 4D).

Prognostic Model Construction and
Validation
We performed univariate Cox regression analysis to identify
potential prognostic DEGs for LUAD in the TCGA cohort.
Seven genes were identified as prognostic DEGs. Then, LASSO
regression analysis was performed to reduce the number of DEGs
in the final risk model, with six genes were identified through this
step (Figure 5A). Ultimately, six genes were recognized as
independent prognostic DEGs via multivariate Cox analysis,
including CP, GOLM1, CYP4B1, DAPK2, NFIX, and FHL2.
According to their coefficients, we calculated the risk score
according to the following formula: risk score= expression
level of CP * 0.088 + expression level of GOLM1* 0.15 +
expression level of CYP4B1 * (−0.064) + expression level of
DAPK2 * (−0.082) + expression level of NFIX *(−0.059) +
expression level of FHL2 * 0.086. All patients were divided
into high- and low-risk groups according to the median value
of risk score. The survival curve showed that patients in the high-

risk group were associated with the worse OS when compared
with patients in the low-risk group (Figure 5B). Besides, it
revealed that the risk score had good performance in
predicting the OS in these individuals in the TCGA cohort
(AUC for 1-, 3-, and 5 years OS: 0.669, 0.674, and 0.642;
Figure 5B). Consistently, we observed similar results in the
GSE31210 cohort and GSE13213 cohort (Figures 5C,D). The
risk plots were generated to show detailed survival outcomes of
each patient in the TCGA cohort and external validation cohorts
(Figures 5E–G).

Clinical Relevance, Enrichment Analysis,
and Mutation Landscape Between High-
and Low-Risk Groups
Next, we investigated the relationship between the risk score and
clinicopathological characteristics, suggesting that younger
patients, males, current smokers, and positive lymph nodes
status were correlated with higher risk scores (Figure 5H). We
also performed single factor and multi-factor Cox analyses to
determine whether the risk score could be an independent
prognostic factor for LUAD patients compared with other
common clinicopathological parameters. We observed that the
risk score could serve as an independent prognostic factor for
these individuals (Figures 6A,B). Furthermore, we performed
GSEA analysis to identify the most significantly enriched
pathways between the two groups. We found that genes in the

FIGURE 3 | Identification of hub DEGs that participate in LUAD development through WGCNA. (A) The scale-free fit index for soft thresholding powers. The soft
thresholding power β in the WGCNA was determined based on a scale-free R2 (R2 = 0.90). The left panel illustrates the relationship between β and R2. The right panel
illustrates the relationship between β andmean connectivity. (B) A dendrogram of the DEGs clustered based on different metrics. (C) A heatmap illustrates the correlation
between different gene modules and clinical traits (normal vs. tumor); (D) The Venn plot to identify common DEGs between WGCNA module genes and marker
genes. DEGs, differentially expressed genes; LUAD, lung adenocarcinoma; WGCNA, Weighted Gene Correlation Network Analysis.
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high-risk group significantly enriched in cell cycle and DNA
replication (Figure 6C). However, genes in the low-risk group
significantly enriched in arachidonic acid metabolism
(Figure 6D). Afterward, we generated two waterfall plots to
explore the detailed gene mutation characteristics between
high- and low-risk groups. We identified that TP53, TTN, and
MUC16 were the most frequently mutated genes in high- and
low-risk groups (Figures 6E,F). Besides, we also observed that the
high-risk group harbored a more frequent TP53 mutation rate
than the low-risk group (Figures 6E,F).

The Immune Function Between High- and
Low-Risk Groups
We then adopted ssGSEA to estimate the infiltrating score of
immune cells and the activity of immune-related pathways in
different risk groups. The results demonstrated that the
infiltration levels of DCs, B cells, Mast cells, NK cells, T helper
cells, and TIL were significantly different in the two groups
(Figure 7A). Meanwhile, the two groups also had different
scores of MHC class I, parainflammation, and Type II IFN
response (Figure 7A). Subsequently, we investigated the

FIGURE 4 | Different subtype identification and clinical relevance analysis. (A) Two different subtypes were identified via the NMF algorithm. (B,C) The relationship
between different subtypes and OS and PFS of LUAD. (D) TME composition between different subtypes. (E) Sankey plot to show the association between different
subtypes and immune subtypes. NMF, non-negative Matrix Factorization; OS, overall survival; PFS, progression-free survival; LUAD, lung adenocarcinoma; TME, tumor
microenvironment.
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FIGURE 5 | Prognostic model establishment and validation for patients with LUAD. (A) Six DEGs were selected for multivariate analysis via LASSO regression
analysis. (B–D) Survival curves and ROC curves evaluate the risk stratification ability and predictive ability of the constructed risk model in the TCGA, GSE31210, and
GSE13213 cohorts. (E–G) Risk plots to illustrate the survival status of each sample in the TCGA,GSE31210, and GSE13213 cohorts. (H) The relationship between risk
score and common clinicopathological characteristics of LUAD. LUAD, lung adenocarcinoma; DEGs, differentially expressed genes; LASSO, Least Absolute
Shrinkage and Selection Operator; ROC, receiver operating characteristic curve; TCGA, The Cancer Genome Atlas.
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correlation between the risk score and the expression level of
common ICIs related genes. The results revealed that a higher risk
score was significantly associated with up-regulation of CD274
(PD-L1) (Figure 7B). Nevertheless, there was no significant
statistical difference between the risk score and PDCD1
(Figure 7C), CTLA4 (Figure 7D), LAG3 (Figure 7E), and
TIGIT (Figure 7F) expression. Besides, we also observed that a
higher risk score was positively correlated with a higher TMB
value (Figure 7G).

DISCUSSION

This study developed a prognostic model for LUAD patients by
integrating 10× scRNA-seq and bulk RNA-seq data. We found
that the constructed prognostic model can effectively stratify
patients into high- and low-risk groups in the TCGA and
GEO cohorts. Furthermore, we also explored the clinical
relevance, mutation landscape, and tumor immune
microenvironment (TME) in different groups. We noticed that

FIGURE 6 | Independent prognostic ability evaluation, pathway enrichment analysis, and gene mutation landscape analysis. (A,B) The univariate and multivariate
Cox regression analysis demonstrates the risk score’s independent prognostic ability. (C,D) GSEA to investigate the biological processes and pathways enriched in
high- and low-risk groups. (E,F) Waterfall plots summarize the gene mutation landscape in high- and low-risk groups. GSEA, Gene Set Enrichment Analysis.
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a higher risk score was significantly correlated with a more
frequent TP53 mutation rate, up-regulation of PD-L1, and
higher TMB value. These results support that patients with
higher risk scores could have potential clinical benefits from
immunotherapy. Moreover, we identified two distinct subtypes
using the NMF algorithm. We observed that different clusters
have distinct prognoses and TME components. Cluster 2 was
correlated with worse clinical outcomes and high infiltration
levels of fibroblasts. Accumulating studies have shown that
cancer-associated fibroblasts (CAFs) could transfer lipid to the
TME to support cancer cell growth (Lopes-Coelho et al., 2018;
Gong et al., 2020; Ma and Zhang, 2021). Recently, Gong et al.
elucidated that reprogramming of lipid metabolism in CAFs
potentiates migration of colorectal cancer cells through in vivo
and in vitro experiments (Gong et al., 2020). Furthermore, we
found that patients in cluster 2 are mainly classified into Immune
C1, Immune C2, and Immune C6 subtypes, which are correlated
with more aggressive immune infiltrates and worse prognosis
(Tamborero et al., 2018; Zhang et al., 2020). On the contrary,
patients in cluster 1 are mainly classified into the Immune C3

subtype, associated with a more favorable immune composition
and better clinical outcomes (Tamborero et al., 2018; Zhang et al.,
2020).

We identified six hub genes to develop the prognostic model
through LASSO and Cox regression analyses, including CP,
GOLM1, CYP4B1, DAPK2, NFIX, and FHL2. Ceruloplasmin
(CP) is a multicopper ferroxidase that mainly utilizes the
redox activity of copper to oxidize ferrous iron, facilitating
iron efflux via FPN1 (Chen F. et al., 2021). A previous study
reported that CP is up-regulated in LUAD samples and correlated
with poor clinical stage and survival outcome in these patients
(Matsuoka et al., 2018). GOLM1 belongs to the Golgi-associated
protein and is a crucial promoter of liver cancer growth and
metastasis (Mao et al., 2010). Numerous studies indicated that
GOLM1 is up-regulated in LUAD and can serve as an unfavorable
prognostic factor (Liu et al., 2018; Yang et al., 2018; ZhaoM. et al.,
2021; Song et al., 2021). Song et al. reported that overexpression
GOLM1 enhances lung cancer aggressiveness via inhibiting the
formation of P53 tetramer (Song et al., 2021). Although GOLM1
has been previously regarded as a diagnostic marker of liver

FIGURE 7 | Immune function, ICIs related genes expression pattern, and TMB between different risk groups. (A) Immune cells infiltration score and immune-related
pathways activity in the low- and high-risk groups estimated by ssGSEA. (B–F) The correlation between the risk score and the expression level of CD274, PDCD1,
CTLA4, LAG3, and TIGIT. (G) The relationship between the risk score and TMB. ICIs, immune checkpoint inhibitors; TMB, tumor mutation burden, ssGSEA, single-
sample gene set enrichment analysis.
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cancer, it is an independent prognostic factor for liver cancer
(Mao et al., 2010). In a recent study, Ye et al. revealed that
GOLM1 could drive hepatocellular carcinoma metastasis by
modulating EGFR /growth-factor-responsive receptor tyrosine
kinase (RTK) cell-surface recycling (Ye et al., 2016). CYP4B1 is a
drug-metabolizing enzyme gene. Several studies detected the
mRNA expression level of CYP4B1 in lung cancer samples
and its corresponding paraneoplastic samples (Czerwinski
et al., 1994; Tamaki et al., 2011). Tamaki et al. indicated that
CYP4B1 polymorphism is not correlated with lung cancer risk.
Therefore, further studies need to be performed to evaluate the
expression level of CYP4B1 in LUAD and its prognostic
significance. Death-associated protein kinase (DAPK) is the
Ser/Thr kinases family member. It has been reported that
DAPK family proteins play vital roles in mediating apoptosis
and function as tumor suppressors in various malignancies (Chen
et al., 2014; Jin M. et al., 2021). Interestingly, Jin et al. elucidated
that cigarette smoking induces aberrant N6-methyladenosine of
DAPK2 to promote lung cancer progression by activating NF-κB
pathway (Jin M. et al., 2021). Nuclear factor IX (NFIX) serves as a
master regulator, and its expression is associated with 17 genes
involved in the migration and invasion pathways, including
interleukin-6 receptor subunit β (IL6ST), metalloproteinase
inhibitor 1 (TIMP1), and integrin β-1 (ITGB1) (Rahman et al.,
2017). In a recent study, Zhao et al. indicated that long non-
coding RNA SNHG3 promotes the development of lung cancer
via the miR-1343-3p/NFIX pathway (Zhao L. et al., 2021). The
four and a half LIM domains 2 (FHL2) is a multifunctional
scaffolding protein regulating signaling cascades and gene
transcription (Wang et al., 2020). Numerous studies have
revealed that FHL2 is an adverse prognostic factor of
gynecological malignancies (Wang et al., 2020). However, no
study reported the expression level and prognostic significance of
FHL2 in lung cancer.

Subsequently, all patients were divided into low- and high-
risk groups by integrating the six hub genes. Two external
validation cohorts were also used to verify its predictive
ability, with consistent results were observed in these two
cohorts. Besides, we identified that the constructed prognostic
model has independent predictive ability in predicting the OS
of LUAD patients. We then investigated the gene mutation
landscape and immune function in different risk groups. We
identified that the high-risk group harbored a more frequent
TP53 mutation rate than the low-risk group. Numerous
studies identified that TP53 mutation is closely correlated
with treatment resistance and terminal prognosis in lung
cancer (Steels et al., 2001; Viktorsson et al., 2005; Xu et al.,
2020). However, many studies revealed that TP53 mutation
was significantly correlated with remarkable clinical benefit
from PD-1 inhibitors for patients with LUAD since it
increases TMB, up-regulates PD-L1 expression, and
remodels TME (Dong et al., 2017; Skoulidis and Heymach,
2019; Xu et al., 2020). Hence, we investigated the relationship
between the risk score and TMB value and PD-L1 expression
level. Not surprisingly, it indicated that a higher risk score was
significantly correlated with higher TMB value and PD-L1
expression level. Recently, Yi et al. investigated the regulation

of PD-L1 expression in the TME, suggesting that the
expression of PD-L1 is regulated by numerous factors,
including inflammatory stimuli and oncogenic pathways at
the levels of transcription, post-transcription, and post-
translation (Yi et al., 2021b). Besides, they indicated that a
comprehensive framework containing multiple surrogate
markers such as TMB would be valuable for selecting
patients and predicting outcomes (Yi et al., 2021b). Taken
together, patients with higher risk scores could have a potential
survival benefit from immune checkpoint blockades treatment.
The constructed prognostic model might be a potential
predictive biomarker for patients who received
immunotherapy. To our knowledge, this is the first study
that constructed and validated a prognostic model for LUAD
by integrating 10× scRNA-seq and bulk RNA-seq data. Besides,
two external validation cohorts were also used to verify its
performance in predicting the OS of these patients.
Nevertheless, there are several inevitable shortcomings in our
study. First, all these results were obtained from the
bioinformatic analysis, and experimental validation needs to
be performed in the future. Second, searching for effective
prognostic and predictive biomarkers for patients with
malignancy is an arduous task for us and needs a long way
to go. Our study developed a novel biomarker and provided
potential insights in this area. However, well-designed
prospective studies are warranted in the future to address
this issue.

CONCLUSION

This study constructed and validated a prognostic model for
LUAD by integrating 10× scRNA-seq and bulk RNA-seq data.
Besides, we identified two distinct subtypes in this population,
with different prognosis and immune characteristics being
observed in them. The higher risk score was correlated with
poor survival outcomes but associated with a more frequent TP53
mutation rate, higher TMB value, and up-regulation of PD-L1.
Our prognostic model might be a potential biomarker for LUAD
patients’ risk stratification and treatment response prediction.
Well-designed prospective studies are warranted in the future to
verify our findings.
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Omnibus for Mouse Endothelial Cells
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Endothelial cell (EC) plays critical roles in vascular physiological and pathological
processes. With the development of high-throughput technologies, transcriptomics
analysis of EC has increased dramatically and a large amount of informative data have
been generated. The dynamic patterns of gene expression in ECs under various
conditions were revealed. Unfortunately, due to the lack of bioinformatics
infrastructures, reuse of these large-scale datasets is challenging for many
scientists. Here, by systematic re-analyzing, integrating, and standardizing of 203
RNA sequencing samples from freshly isolated mouse ECs under 71 conditions, we
constructed an integrated mouse EC gene expression omnibus (ECO). The ECO
database enables one-click retrieval of endothelial expression profiles from different
organs under different conditions including disease models, genetic modifications,
and clinically relevant treatments in vivo. The EC expression profiles are visualized with
user-friendly bar-plots. It also provides a convenient search tool for co-expressed
genes. ECO facilitates endothelial research with an integrated tool and resource for
transcriptome analysis. The ECO database is freely available at https://heomics.
shinyapps.io/ecodb/.

Keywords: endothelial cells, gene expression, RNAseq, database, integration

INTRODUCTION

Endothelial cells (ECs) are single-layered squamous cells distributed on the inner surface of the
vasculature, constructing a barrier between the vasculature and tissues and controlling the exchange
of substances and fluids (Krüger-Genge et al., 2019). ECs are involved in many essential physiological
functions, such as regulating vasoconstriction and vasodilation, blood coagulation, paracrine action,
angiogenesis, and constitute barriers (Reglero-Real et al., 2016; Wong et al., 2017; Paone et al., 2019).
Dysfunction of EC is the driving factor for many diseases, including atherosclerosis, cancer,
hypertension, glomerular disease, and inflammation (Goveia et al., 2014; Li et al., 2019).
Uncovering the molecular mechanism of endothelial cells in these pathological conditions is
essential to understand the occurrence and treatment of diseases.
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With the rapid development of high-throughput sequencing
technologies in the last decades, especially the wide use of RNA
sequencing, the molecular level analysis of EC has increased
significantly and a variety of EC transcriptomics datasets have
been accumulated in the public domain (Khan et al., 2019; Munji
et al., 2019). Their raw RNAseq data generated by high-throughput
sequencing are deposited in the public databases, such as Gene
Expression Omnibus (GEO) (Barrett et al., 2007) and ArrayExpress
(Parkinson et al., 2007), but unfortunately, it is difficult for
researchers without bioinformatics skills to process these raw data
and extract the desired information. In some other fields, there are
already some databases that provide practical functions to greatly
promote the development of this field, such as the Allen Brain Atlas
(Lein et al., 2007) for neuroscience and ONCOMINE (Rhodes et al.,
2004) for oncology. For EC data, the effort of integrating has been
initiated, for example, EndoDB, which has made a collection of EC
data (Khan et al., 2019). However, there is still a lack of database
integrating all latest RNAseq data and also providing user-friendly
analysis functions and visualization tools.

Here, we integrated all freshly isolated EC bulk RNA
sequencing data from public sequence databases, processed
them with a standardized pipeline, and constructed a user-
friendly online database, ECO. It provides a one-click search
tool for in vivo EC profiles for each gene in various conditions
including pathological alterations, genetic modifications, and
other treatment conditions, in the form of easily
understandable bar-plots. Also, the database provides a search
function to find genes with similar expression profiles, which may
generate interesting hypothesis for future research.

METHODS

Retrieval of EC RNA Sequencing Datasets
We first conducted a systematic literature search for murine in
vivo EC bulk RNAseq studies in PubMed, the NCBI GEO
database, and the ArrayExpress database. It resulted in 19
RNA studies for EC under various conditions. They include
71 EC conditions. Each condition has multiple replicated
samples, and in total, there are 203 samples. The raw sequence
data for each condition, including the raw data for its exact
control group, were obtained from the NCBI Short Read Archive
(SRA) or ArrayExpress database.

Data Preprocessing on Galaxy
The raw sequence data obtained from SRA and ArrayExpress
were preprocessed with the Galaxy online server (Jalili et al.,
2020) (https://usegalaxy.eu/, version: 20.09) using a standardized
procedure for all datasets. The detailed procedure is described in
the Galaxy RNA-seq analysis instruction (https://training.
galaxyproject.org/training-material/topics/transcriptomics/
tutorials/rna-seq-reads-to-counts/tutorial.html).

The sequence data were uploaded in two ways: for the data
available in SRA, the SRA-tools (Leinonen et al., 2011) (version:
2.10.8) in Galaxy were used to upload these datasets reads in the
FASTA/Q format from the NCBI; for the other datasets from
ArrayExpress, the ArrayExpress FTP download links were used.

The FASTQ sequence files were then aligned to the referenced
mouse genome assembly (GRCm38/mm10) obtained from the
UCSC Genome Browser database (Navarro Gonzalez et al., 2021)
using the HISAT2 tool (Kim et al., 2015) (version: 2.1.0) on
Galaxy. The gene annotation file GTF (2020, ncbiRefSeq, mm10)
was also obtained from the UCSC Genome Browser database,
which was consistent with the genome sequence file. The
alignment bam files were then input to the featureCounts tool
(Liao et al., 2014) (version: 2.0.1, with default parameters) to get
the raw read counts for each genes (feature count files). In total,
203 samples were quantified and their count data were processed
in R (version: 4.0.3) for downstream analysis.

Data Normalization
In order to compare the EC expression level among different
samples in different conditions, all the raw count data were
normalized using rpkm function in the edgeR package
(version: 3.32.0). The FPKM values for each sample were
calculated, and then, the average expressions and standard
deviations for each of the 32 conditions (71 bars in the FPKM
plot) were calculated in R. The result for each gene was visualized
in bar-plot using the ggplot2 package (version: 3.3.2).

Differential Expression Gene Analysis
The gene expression raw count files were imported into the limma
package (version: 3.46.0) in R, and the voom function was used to
compare the gene expression between two groups (treated versus
control) with the default parameters. To remove low-expression
genes in each sample, the genes which were detected in only one
sample were filtered out. To visualize the differential expression
profiles among the 40 comparison groups, the fold changes and the
standard deviations for each gene were visualized in bar-plots.

Correlation Analysis
To search for the genes with similar expression profiles with a
query gene, the corr.test function from psych package (version:
2.0.12) was applied. The correlation coefficient and the p values
were calculated. The sorted result was stored in a table and is
available for download through our ECO database. In addition, to
better illustrate the correlation result, we chose the 10 most
correlated genes to the query gene and generated a heatmap
with the pheatmap package (version: 1.0.12).

ECO Web Tool Construction
Our ECO database, an interactive web application, is built mainly
using the R Shiny package (version: 1.6.0), as well as the other
auxiliary packages including shinythemes (version: 1.2.0), ggplot2
(version: 3.3.3), and ggh4x (version: 0.1.2.1). The ECO database is
available for free at https://heomics.shinyapps.io/ecodb/.

RESULTS

Construction of ECO
In order to construct a comprehensive omnibus of mouse in vivo EC
RNAseq profiles, we performed literature mining and identified 19
currently available RNA studies (Supplementary Table S1), which
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cover EC in a variety of pathological alterations, genetic
modifications, and other stimulated conditions. In these studies,
freshly isolated ECs were analyzed with RNA sequencing. In total,
there are 203 samples covering 71 in vivo conditions from 10 organs.
These data composite the base for ECO, and they were processed as
shown in the workflow (Figure 1). First, their raw data were obtained
from the GEO database or ArrayExpress database, respectively. The
sequence data were aligned to a standardized mouse genome
assembly (GRCm38/mm10), and gene expression in each sample
was quantified using the Galaxy analysis platform (Jalili et al., 2020).
The gene expression levels in each condition were then summarized
(average FPKM and standard deviation) and available for bar-plot
visualization in the ECO database (https://heomics.shinyapps.io/
ecodb). Also, the gene expression in each condition was compared
with its respective control by differential expression analysis, and log
scaled fold change (logFC) and p values were calculated, which are
also illustratedwith the bar-plot in the database. Besides the display of
expression profiles in ECs, ECO can further identify the genes which
showed similar expression profiles with the queried gene by using
correlation analysis. The results were shown both as a heatmap
and table.

Investigation for Inter-Organ Heterogeneity
of ECs by Using ECO
ECs in different tissues have heterogeneous phenotypes for their
distinct physiological needs (Kalucka et al., 2020). For instance,
brain ECs form tight junctions and express active transporters to
restrict diffusion, known as the blood–brain barrier (BBB)

(Daneman and Prat, 2015). In contrast, ECs in the kidney are
associated with fenestrae to allow efficient passage of high-
volume fluids and formation of urine (Dumas et al., 2021). EC
profiles from 10 organs, including the brain, lung, bone, kidney
aorta, liver, eye, muscles, lymph node, and embryo, were
cataloged in ECO. Users can access and download the
expression of the gene of their interest in ECs of different
organs in ECO by simple one-click of FPKM button. Also,
users can input a customized gene list to analyze their overall
gene expression enrichment pattern in a heatmap.

We use Slc2a1 as an example to explore the inter-organ
heterogeneity of a given gene. Slc2a1, encoding Glut1, which is
highly expressed in BBB ECs but not peripheral ECs and
facilitates glucose transport over BBB (Zheng et al., 2010).
When we access Slc2a1 expression by pressing the FPKM
button after entering the gene symbol in the query interface,
we get the normalized data bar-plot visualization for 32 sub-
groups from 10 organs. As expected, Slc2a1 is highly expressed in
ECs from the brain, but almost absent in other organs (Figure 2).

Exploring EC Gene Alterations in Response
to Disease, Genetic Manipulations, or Other
Stimulations In Vivo by Using ECO
ECs participate in the regulation of multiple processes including
angiogenesis, coagulation, and inflammation. Endothelial
dysfunction is associated with many pathological alterations and
aggravates progression of multiple life-threatening diseases including
cancers, cardiovascular disease, diabetes mellitus, and renal disorders.
In ECO, we collected EC transcriptomes from eleven mice disease
models (cerebral cavernous malformation (CCM), epilepsy,
experimental autoimmune encephalomyelitis (EAE), stroke,
traumatic brain injury (TBI), diabetic nephropathy, Alport
syndrome, liver cancer, non-alcoholic steatohepatitis (NASH),
experimental autoimmune uveitis (EAU), and facioscapulohumeral
muscular dystrophy (FSHD)), seven gene-modified animal models
(Jnk1/2/3 EC-specific deficient, Cpt1a EC-specific deficient, Tsc2
mesenchyme cell-specific deficient, Zmpste24 deficient,
adrenomedullin (AD) EC-specific deficient, Tankl stroma cell-
deficient, and EC-specific Notch1 mutants), and two clinically
relevant treatments (VEGF stimulations and chemo/
radiotreatment) (Supplementary Table S1). The users can access
the alteration of the genes of their interest in response to the
abovementioned conditions compared to their control by clicking
the logFC button. The result is illustrated in a bar-plot with 40
columns; each column represents the log2 scaled fold change, and its
statistical significance (p value range) is indicated by asterisks
(Figure 3).

We use Sele as an example to demonstrate the exploration of
its regulation in different pathological conditions, genetic
modifications, and treatments in vivo. E-selectin, encoded by
Sele, is upregulated in ECs in response to pro-inflammatory
signals, promoting the rolling and adherence of immune cells
to ECs for their diapedesis (Jubeli et al., 2012). Inflammation is
closely linked in the EC dysfunction in multiple diseases (Steyers
and Miller, 2014). As shown in Figure 3, ECO provides a
comprehensive portrait for Sele in different pathological

FIGURE 1 | ECO workflow.
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conditions. Selewas upregulated in ECs from eight disease models
including CCM, EAE, stroke, TBI, epilepsy, AOD, diabetic
nephropathy, Alport syndrome, and NASH, highlighting the
broad role of Sele in multiple disease progressions (Silva et al.,
2017).

Predicting the Function of Poorly
Characterized Genes Based on Correlation
Analysis Using ECO
The correlation analysis identifies the genes which have
similar expression profiles, and those co-expressed genes
may have similar function. In ECO, it provides correlation
analysis for the query gene to all other genes in all cataloged
EC groups, as well as in individual organs which have
relatively large number of samples. This facilitates
uncovering the function of novel or not much
characterized genes based on correlation analysis.

For example, we used a gene named C330027C09Rik as an
example. C330027C09Rik did not yet have a clear gene name at
the time of the gene assembly from the Ensembl database and was
named after the full-length cDNA sequences from the RIKEN project
(Hayashizaki, 2003). Among the top correlated genes, a list of well-
known cell cycle-related genes appears, for example, Mki67 and
Cenpf, indicating that this gene maybe related with cell cycle
(Figure 4). Interestingly, in the NCBI gene database,

C330027C09Rik has been formally named as cell proliferation-
regulating inhibitor of protein phosphatase 2A (Cip2a) (https://
www.ncbi.nlm.nih.gov/gene/?term=C330027C09Rik). This
confirmed the prediction from the correlation analysis.

DISCUSSION

Uncovering the EC transcriptional profile is critical to understand
the EC functions in various vascular disease conditions.
Previously, we have analyzed EC transcriptomes in normal
mice brain (Vanlandewijck et al., 2018) and lung (He et al.,
2018). It has improved the understanding of EC in these
individual organs, while, on the public domain, many
transcriptional profiling studies by different labs have
accumulated extensive datasets for EC. However, using
bioinformatics technologies to analyze these transcriptome
data is a challenging task for many researchers. As such, it is
of a great value to provide ECO, a user-friendly EC database, to
explore expression profiles. Compared with the previously
published EndoDB database (Khan et al., 2019), we have
included all nine RNAseq studies in EndoDB, as well as eleven
studies which were not presented there. ECO is a user-friendly
web-based tool making the ever-increasing amount of EC
transcriptome data easily accessible to non-bioinformatics
researchers, as well as specialists as a resource of curated data.

FIGURE 2 | Bar-plot of Slc2a1 expression in different conditions. The x-axis shows the 71 conditions, and the y-axis shows the normalized FPKM values. Each bar
shows the average expression (+/− standard deviation) in each condition. The bars are colored according to their organ origins, and all basal/control conditions are
shown with white color (high-resolution image is available in the ECO online database).
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FIGURE 3 | Sele regulation in different conditions. The x-axis shows the 40 conditions, and the y-axis shows the log2 scaled regulation fold change (logFC). Each
bar shows the average fold change with confidence interval in each condition. The bars are colored according to their organ origins (high-resolution image is available in
the ECO online database).

FIGURE 4 |Heatmap overview of the top correlated genes toC330027C09Rik. Each column shows one RNAseq sample, and its organ origin is colored on the top
of the heatmap. The top 10 correlated genes are visualized. The heatmap color shows the expression level in each sample (log2 scaled FPKM) (high-resolution image is
available in the ECO online database).
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The core feature of ECO is one-click access to EC gene expression
in different organs and alterations under different conditions for
all genes on the genome. Unlike other databases, ECO dedicates
to curate bulk RNAseq data from purified mouse EC under
different conditions. All the data are processed using a
standardized method for cross comparisons, and the results
are visualized with easily understandable bar-plots. To make
the users readily obtain the figures from ECO for presentation
or publication usage, all the figures can be downloaded in the
high-resolution PDF format.

ECO facilitates endothelial research with an integrated tool
and resource for transcriptome analysis. With the friendly
interactive interface, users can easily explore the published
endothelial datasets from a variety of conditions, which may
save some unnecessary animal experiments for vascular
researchers. Also, ECO maximizes the value of published
datasets by integrating them under a standardized
platform. It may reveal potential global patterns which
cannot be overserved from individual analysis. We expect
that ECO will be a useful tool for researchers in the vascular
community.
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Intrahepatic Cholangiocarcinoma
Chunguang Guo1†, Zaoqu Liu2†, Yin Yu3†, Yunfang Chen4, Hui Liu5, Yaming Guo1,
Zhenyu Peng1, Gaopo Cai1, Zhaohui Hua1*, Xinwei Han2* and Zhen Li1*

1Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 2Department of
Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 3Department of
Pathophysiology, School of BasicMedical Sciences, The Academy of Medical Science, Zhengzhou University, Zhengzhou, China,
4Department of Oncology, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian, China, 5Department of
Nursing, Zhumadian Central Hospital Affiliated to Huanghuai University, Zhumadian, China

Background: Due to high invasiveness and heterogeneity, the morbidity and mortality of
intrahepatic cholangiocarcinoma (ICC) remain unsatisfied. Recently, the exploration of
genomic variants has decoded the underlying mechanisms of initiation and progression for
multiple tumors, while has not been fully investigated in ICC.

Methods: We comprehensively analyzed 899 clinical and somatic mutation data of ICC
patients from three large-scale cohorts. Based on the mutation landscape, we identified
the common high-frequency mutation genes (FMGs). Subsequently, the clinical features,
prognosis, tumor mutation burden (TMB), and pharmacological landscape from patients
with different mutation carriers were further analyzed.

Results: We found TP53 and KRAS were the common FMGs in the three cohorts.
Kaplan–Meier survival curves and univariate and multivariate analysis displayed that TP53
and KRAS mutations were associated with poor prognosis. Considering the co-mutation
phenomenon of TP53 and KRAS, we stratified patients into “Double-WT,” “Single-Hit,”
and “Double-Hit” phenotypes by mutation status. Patients with the three phenotypes
showed significant differences in the mutation landscape. Additionally, compared with
“Double-WT” and “Single-Hit” phenotypes, patients with “Double-Hit” presented a dismal
prognosis and significantly high TMB. Through chemotherapy sensitivity analysis, we
identified a total of 30 sensitive drugs for ICC patients, of which 22 were drugs sensitive to
“Double-WT,” 7 were drugs sensitive to “Double-Hit,” and only one was a drug sensitive to
“Single-Hit.”

Conclusion: Our study defined a novel mutation classification based on the common
FMGs, which may contribute to the individualized treatment and management of ICC
patients.
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INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC), a primary malignant
tumor derived from the bile ducts, has high invasiveness and
heterogeneity (Moeini et al., 2016; Rizvi et al., 2018). In recent
decades, ICC has attracted increasing global attention due to its
difficult diagnosis, high morbidity, and poor prognosis features
(Zou et al., 2021). Despite continued advances in the modalities of
treatment, there is limited improvement in the overall survival
(OS) of ICC patients (Moeini et al., 2016; Sirica et al., 2019; Kelley
et al., 2020). ThemaximumOS of advanced ICC has not exceeded
15 months and the 5-year survival rate of ICC is under 10%
(Antwi et al., 2018). The genetic heterogeneity of ICC is an
important cause of its high malignancy (Sirica et al., 2019).
Therefore, it is necessary to recognize “high-risk” patients
based on genomic alterations of ICC, which will facilitate
improve prognosis and personalized treatment.

With the development of high-throughput sequencing
technologies and bioinformatics, the genomic characteristics of
ICC were proved to correlate with prognosis (Lamarca et al.,
2020). For example, the extracellular domain in-frame deletions
of FGFR2 promoted the progression of cholangiocarcinoma and
served as a genomic alteration of targeted therapy (Cleary et al.,
2021). Zhou et al. reported that SLIT2 was identified as a driver of
ICC dissemination and inflammatory cell infiltration (Zhou et al.,
2021). Additionally, tumor mutation burden (TMB) as a novel
mutational signature guides the prognosis of multiple solid
tumors. Based on the International Cancer Genome Consortium
(ICGC) database and the Memorial Sloan Kettering (MSK) Cancer
Center, the comprehensive mutational characterization of ICC has
been well described. Researchers have made numerous efforts to
reveal tumor-associated drivers such as TP53, KRAS, ARID1A,
IDH1, and SMAD4. Mutations of these drivers were involved in
the progression, prognosis, immunotherapy, and targeted therapy
(Liu et al., 2021a). Herein, we conjecture that some high-frequency
mutation genes (FMGs)may play an important role in the prognosis
of ICC. Compared with the existing prognosis signatures, FMGs do
not require a defining cutoff value to stratify patients due to their
binary data characteristics, which is more conducive to the cross-
platform promotion and clinical application.

In this study, we identified FMGs in ICC patients based on
multiple large-scale mutation cohorts. Then, based on the common
FMGs (TP53 and KRAS) of three cohorts, we formulate three novel
mutation phenotypes (“Double-WT,” “Single-Hit,” and “Double-
Hit”), and the relationship of three mutation phenotypes with TMB
and OS was further explored. Finally, we identified multiple
chemotherapeutic drugs with specific sensitivity between the three
phenotypes. Findings from our work may be conducive to the
identification of “high-risk” ICC patients and the application of
precise chemotherapy in clinical practice.

MATERIALS AND METHODS

Data Collection and Processing
Somatic gene mutation data of three independent cohorts were
collected from the cBioPortal dataset (https://www.cbioportal.

org/), including the ICGC dataset, MSK-2021 dataset, and
Shanghai dataset (Zou et al., 2014). The inclusion criteria for
ICC cohorts and samples were as follows: 1) the sample size of the
cohort was over 100; 2) selected the most recent cohort from the
same institution for inclusion in the study; 3) have somatic
mutation data; and 4) all were intrahepatic
cholangiocarcinoma. A total of 899 patients (ICGC: 417;
MSK-2021: 379; and SH: 103) meeting the inclusion criteria
were included in the study. The baseline clinical data of
patients are presented in Supplementary Table S1.

Delineate the Mutation Landscape
Somatic mutation and clinical information were processed using
R software. The “maftools” R package was further used to
visualize the mutation oncoplot (Liu et al., 2021b). For each
independent cohort, the mutation oncoplot displayed the genes
with top 20 mutation frequency, which were defined as FMGs.
The intersection genes of FMGs in the three cohorts were defined
as the common FMGs.

Assessment of Tumor Mutation Burden
TMB was defined as the total number of base substitutions,
insertions, and deletions in the coding region per megabase
(Liu et al., 2021c). Using the “tmb” function in the “maftool”
R package, we calculated the TMB of each patient. All based
substitutions and indels in the coding region of targeted genomes
were retained. In contrast, synonymous mutations failing to
contribute to amino acid change were discarded.

Clinical Characteristics and Prognostic
Evaluation
Univariate and multivariate Cox regression analyses were used
for survival analysis of clinical characteristics of patients,
including age, gender, hepatitis B virus (HBV), etc.
Kaplan–Meier survival analysis was used to estimate the
association between mutation phenotype and OS. Multiple
boxplots were used to display differences in TMB among
patients with the three phenotypes. In addition, to compare
the clinical characteristics of patients with the three
phenotypes in ICGC cohorts, we combined some clinical
features to facilitate comparison. For example, I, IA, and IB
stage (AJCC stages) were collectively referred to as I stage.

Drug-Response Prediction
To explore the therapeutic response of different drugs, we
downloaded the gene mutation and drug sensitivity
information from the Genomics of Drug Sensitivity in Cancer
(GDSC, https://www.cancerrxgene.org/). The sensitivity of
different drugs was assessed by the half-maximal inhibitory
(IC50), and the higher the IC50, the lower the sensitivity.
Using our previous integrated pipeline (Liu et al., 2021c), we
compare the drug sensitivity of different phenotypes. A summary
is as follows: 1) Kolmogorov–Smirnov tests, a normality test
algorithm, indicated that the imputed drug response (IC50) data
were not normally distributed (p < 0.05). 2) Based on this result,
Kruskal–Wallis and Wilcoxon rank-sum tests were utilized to
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calculate the p-values and the Benjamini–Hochberg (BH) method
was used for multiple testing correction. 3) For each potential
drug, if one phenotype was significantly lower than other
phenotypes (Wilcoxon rank-sum and Kruskal–Wallis test, false
discovery rate (FDR) < 0.05), the phenotype were defined as more
sensitive to the drug. 4) The sensitivity of the three phenotypes
was designated “Low sensitivity,” “Intermediate sensitivity,” and
“High sensitivity” according to the magnitude of the median
IC50 value.

Statistical Analysis
All data processing, statistical analysis, and plotting were
performed in R 4.0.5 software. The Wilcoxon rank-sum and
Kruskal–Wallis tests were performed to compare the differences
of two and multiple groups, respectively. Comparisons between
categorical variables using Fisher’s exact test or chi-squared test
were carried out. The Benjamin–Hochberg method was used to
further calculate the FDR. For every analysis, statistical
significance was considered at p < 0.05.

FIGURE 1 | Landscapes of high-frequency mutated genes (FMGs) in intrahepatic cholangiocarcinoma (ICC). (A–C)Oncoplot depicts the FMGs of ICC in the ICGC
(A), MSK (B), and Shanghai (C) cohorts. (D) Venn diagram of FMGs covered by the three large-scale cohorts.
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FIGURE 2 |Genemutations are associated with TMB and clinical prognosis. (A) TP53 and KRASmutations are associated with a higher TMB. (B–G) Kaplan–Meier
survival analysis of patients with TP53 or KRAS mutations in the three cohorts. (H–M) Univariate and multivariate Cox regression analysis. ns p > 0.05; *p < 0.05;
**p < 0.01; ***p < 0.001.
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RESULTS

Landscape of Somatic Mutations in ICC
The waterfall plot was utilized to describe the landscape of
somatic mutations in ICC patients. We defined 20 FMGs in
ICC samples from the ICGC cohort, which were TP53 (35%),
ARID1A (19%), KRAS (18%), SMAD4 (14%), SYNE1 (11%),
MUC16 (11%), BAP1 (9%), LRP1B (9%), FSIP2 (9%), and
EPHA2 (9%) (Figure 1A). A total of 20 FMGs were also
defined in ICC samples from the MSK cohort, including IDH1
(22%), ARID1A (21%), BAP1 (19%), TP53 (18%), PBRM1 (11%),
KRAS (10%), BRAF (7%), ATM (5%), FGFR2 (5%), and IDH2
(5%) (Figure 1B). In addition, we also defined 20 FMGs in ICC
samples from the Shanghai cohort, including TP53 (40%), KRAS
(17%), C16orf3 (16%), HLA-A (15%), TTN (15%), FAM230A
(13%), HLA-C (13%), MUC16 (13%), AHNAK2 (12%), and
CTD-3193O13.9 (11%) (Figure 1C). Interestingly, three
cohorts shared some common FMGs, including TP53 and
KRAS (Figure 1D). Consequently, the subsequent analysis
focused on TP53 and KRAS mutations.

TP53 and KRAS Mutations Associated With
TMB and Survival Prognosis
Among the two common mutated genes, ICC patients with
mutation in TP53 demonstrated significantly high TMB in the
three cohorts (Figure 2A). Nevertheless, compared with
patients without mutation in KRAS, patients with a
mutation group only presented significantly high TMB in
the ICGC cohort, which was not significantly different in
the MSK and SH cohorts (Figure 2A). Subsequently, the
Kaplan–Meier analysis was exploited to identify whether
TP53 and KRAS mutations were associated with OS in ICC
patients. As illustrated in Figures 2B–G, patients with TP53
and KRAS mutations presented a dismal prognosis.
Univariate Cox regression analysis displayed that the
hazard ratios (HRs) of TP53 and KRAS in the three
cohorts (Figures 2H–J), respectively, were 1.427 (95%
confidence interval [CI]: 1.030–1.975), 1.582 (95% CI:
1.049–2.387), 1.948 (95% CI: 1.339–2.836), 2.221 (95% CI:
1.419–3.478), 1.817 (95% CI: 1.135–2.907), and 1.855 (95% CI:
1.054–3.264) (all p < 0.05). Additionally, the multivariate
analysis also indicated that TP53 and KRAS mutations
remained statistically significant in the MSK cohort (all p <
0.05) (Figure 2L), and the HRs of TP53 and KRAS were 2.135
(95% CI: 1.436–3.174) and 2.278 (95%CI: 1.435–3.174). In the
Shanghai cohort (Figure 2M), the HRs of TP53 and KRAS
mutations were 2.083 (95% CI: 1.238–3.506, p < 0.05) and
1.751 (95% CI: 0.898–3.412, P = 0.10). However, TP53 and
KRAS were also risk factors for prognosis in the ICGC
cohorts, but the results were non-significant (Figure 2K).

TP53/KRAS Mutation Phenotypes
Prior studies have suggested that TP53 and KRAS mutation
had a co-mutation phenomenon (Chen et al., 2021).
Therefore, we suggested that the mutation status of TP53
and KRAS may be associated with clinical outcome and

underlying biological characteristics of ICC patients. Based
on the above considerations, patients with the double wild-
type of TP53 and KRAS were labeled “Double-WT,” patients
with one mutation (TP53 and KRAS) were labeled “Single-
Hit,” and patients with the commutation of TP53 and KRAS
were labeled “Double-Hit.” As showcased in Figures 3A–C,
there were significant differences among the survival outcome
among patients with three mutation subtypes in the three
independent cohorts. Notably, patients’ OS becomes
progressively shorter as TP53 and KRAS mutations
accumulated. The “Double-Hit” phenotype patients had the
shortest OS and the “Double-WT” phenotype patients had the
longest OS, while the OS of “Single-Hit” phenotype patients
was intermediate. Additionally, to further evaluate the
prognostic values of the three phenotypes, the
multivariable-adjusted analysis was utilized. As shown in
Supplementary Figure S2, the “Double-WT” phenotype
was an independent protective factor, while the “Single-
Hit” and “Double-Hit” phenotypes were independent risk
factors of prognosis. Subsequently, analysis of clinical
characteristics in the ICGC cohort showed that there were
no statistical differences in age, AJCC stage, and HBV status
between the three subtypes (Figures 3G–I). In contrast,
patients with the “Double-Hit” were more inclined to be
female in the ICGC cohort (Figure 3J). Further comparison
of TMB among the three phenotypes of patients revealed that
the “Double-Hit” phenotype was a tendency toward higher,
and significant differences were observed between the three
phenotypes (Figures 3D–F). Waterfall plots of the three
phenotypes suggest significant differences in the mutation
landscapes of different phenotypes, and the “Double-Hit”
phenotype had the lowest proportion (Figure 4A–I).
Additionally, we calculated the frequencies of genes in the
three phenotypes (Figure 5A), which were reported to be
associated with the invasion and progression of cancer, such
as SMAD4, APC, and ERBB4 (Zou et al., 2014; Lee et al.,
2016). Noteworthily, patients with “Double-Hit” phenotype
have higher mutation frequencies of SMAD4, APC, and
AXIN1, which were numbers of the Wnt signaling pathway
(Figure 5A). Previous study has reported that the Wnt
signaling pathway contributed to the progression of
cholangiocarcinoma by activating the downstream target
genes (Zhang et al., 2020). BRAF mutation has been
identified as a risk factor of cholangiocarcinoma (Tannapfel
et al., 2003) and was most common in “Double-Hit”
phenotype (Figure 5A).

Assessment of Chemotherapy Sensitivity
Based on the mutation and drug sensitivity information obtained
from the GDSC database, the responses of ICC patients with
different phenotypes to 266 chemotherapeutic agents were
compared, which contributed to exploring drugs with specific
sensitivity to each phenotype. As illustrated in Figure 5B, we
identified a total of 30 sensitive drugs for ICC patients, of which
22 drugs were sensitive to “Double-WT” (such as Axitinib,
Cisplatin, Pazopanib, Lestaurtinib, and PFI-1 et al.), 7 drugs
were sensitive to “Double-Hit” (such as Refametinib-2,
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Linsitinib, Trametinib, and VX-11e et al.), and only one drug was
sensitive to “Single-Hit” (KIN001-270). Interestingly, the targets
of sensitive drugs for “Double-Hit” phenotype patients mainly
focused on theMAPK signaling pathway. Likewise, p53 signaling,
VEGF signaling, and PI3K-AKT signaling were the targets of
sensitive drugs for “Double-WT” patients. The drug sensitivity
and target information may provide opportunities for targeted
therapy in ICC patients with different phenotypes. Our study
created conditions for chemotherapy for three mutation
phenotypes.

DISCUSSION

In the current era of precision medicine, decoding the genetic
information of tumors from the genetic levels is increasingly
important for the treatment of ICC patients. In the present study,
we comprehensively analyzed 899 clinical and genomics
mutation data from ICGC, MSK, and Shanghai cohorts. TP53
and KRAS were common FMGs in ICC, and its mutation was
associated with higher TMB and worse prognosis. Given the co-
mutation phenomenon of TP53 and KRAS, three mutation

FIGURE 3 | Difference of clinical characteristics and prognosis among three TP53/KRAS mutant phenotypes in the three cohorts. (A–C) Kaplan–Meier survival
analysis of the three phenotypes. (D–F)Boxplot of TMB for patients with three phenotypes. (G–J)Composition percentage of Age (G), AJCC stage (H), HBV (I), and Sex
(J) among the three phenotypes. ns p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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phenotypes (“Double-WT,” “Single-Hit,” and “Double-Hit”)
were identified in ICC patients. With the cumulative mutation
number in the three phenotypes, the prognosis of patients showed
a tendency of dismalness. Noteworthily, we unearthed multiple
potentially sensitive chemotherapeutic drugs of every phenotype,
which provided a resource for precise chemotherapy of ICC
patients in the clinic. In summary, our works presented a
novel mutation classification and elucidated the importance of
FMGs in guiding the treatment of ICC patients.

KRAS and TP53 mutations were known as major driver
oncogenes in a variety of cancers, including pancreatic ductal
carcinoma, non–small-cell lung cancer, and high-grade serous
carcinoma (Bange et al., 2019; Sauriol et al., 2020; Tsutaho
et al., 2020). Nevertheless, the clinical significance and
molecular mechanism of this co-mutation phenomenon in
ICC have not been elaborated. In our research, we found
that TP53 and KRAS were the FMGs in cohorts from
different countries. This suggests that the phenomenon of

FIGURE 4 | Mutation landscapes of “Double-WT,” “Single-Hit,” and “Double-Hit” phenotypes in the three cohorts. (A–C) In the ICGC cohorts, the mutation
landscapes of “Double-WT” (A), “Single-Hit” (B), and “Double-Hit” (C) phenotypes. (D–F)Oncoplot depicts the FMGs for the three phenotypes in the MSK cohort. (G–I)
Oncoplot depicts the FMGs for the three phenotypes in the SH cohort.
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TP53 and KRAS high-frequency mutations is not affected by
race and sequencing platforms, which is important for the
research of ICC. A previous study reported that mutation of
TP53 would cause the download of p53, which is a tumor
suppressor (Shi and Jiang, 2021). Dysfunction of p53 affects
the T cell activation, which plays a key role in tumor immune
escape. Similarly, KRAS mutation reduces tumor
immunogenicity by inhibiting tumor neoantigen
accumulation, thereby promoting tumor progression (Frost
et al., 2021; Tran et al., 2021). Unsurprisingly, univariate and
multivariate analysis displayed that TP53 and KRAS mutations
were risk factors in multiple ICC cohorts. The prognosis of
patients with the three phenotypes of “Double-WT,” “Single-
Hit,” and “Double-Hit” was significantly indifferent, with
“Double-Hit” having the worst prognosis and “Double-WT”
having the best prognosis, which suggests an accumulative
effect of the two mutations.

In addition, we found that we found that TMB tended to
increase with the accumulation of TP53 and KRAS mutations
in the ICGC and MSK cohort. However, due to the small
number of patients in the “Double-Hit” group, the increase in
TMB was not significant (ICGC cohort and MSK cohort) or
even decreased (SH cohort) in the “Double-Hit” group
compared with the “Single-Hit” and “Double-WT” groups.
TMB quantifies the mutations found in the tumor and is
correlated with quantity of neoantigens (Büttner et al.,
2019; Grosser et al., 2019). Evidence indicated that patients
with higher TMB also carry higher neoantigen loads (Büttner

et al., 2019). This suggested that patients with “Double-Hit”
(who tend to experience increase in TMB in the ICGC and
MSK cohorts) are a potentially beneficial population for
immunotherapy. In this study, we also found potentially
sensitive chemotherapeutic agents for patients with different
phenotypes. Patients with “Double-WT” phenotype were more
sensitive to Axitinib, Cisplatin, and PFI-1. Likewise, patients
with “Double-Hit” and “Single-Hit” phenotype also benefited
from specific drugs, such as Trametinib and KIN001-270.
Combining the benefits of immunotherapy and
chemotherapy, our work provides guidance for the clinical
management and individualized treatment of ICC patients
with different phenotypes. However, this study has
shortcomings, which are as follows: 1) further randomized
clinical trials are necessary to validate the study findings and 2)
some patients lacked clinical features, such as AJCC, tumor
size, and lymph node metastasis. Although our results were
derived from bioinformatics analysis rather than clinical
experiments, we believe that comprehensive analysis based
on the multicenter and larger sample can compensate for the
shortcoming.

CONCLUSION

In conclusion, we defined a novel classification based on the
common FMGs (TP53 and KRAS) in three large-scale cohorts.
Patients with the three phenotypes showed significant differences

FIGURE 5 |Molecular and pharmacological landscape of three mutant phenotypes. (A)Mutation rate of driver genes among threemutation phenotypes in the three
cohorts. (B) 30 potential chemotherapy drugs with specific sensitivity to each phenotype were identified in total. The left panel represents the drug names and the level of
sensitivity in each phenotype, the middle panel represents the drug-targeted molecules, and the right panel represents the drug-targeted pathways.
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in mutation landscape, prognosis, and pharmacological
sensitivity, which may provide new insights for individualized
treatment and management of ICC patients.
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Single-Cell RNA-Seq and Bulk
RNA-Seq Reveal Intratumoral
Heterogeneity and Tumor
Microenvironment Characteristics in
Diffuse Large B-Cell Lymphoma
Yang Zhao, Hui Xu, Mingzhi Zhang and Ling Li*

Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Background: Diffuse large B-cell lymphoma (DLBCL) is the most common histologic
subtype of non-Hodgkin’s lymphoma (NHL) with highly heterogeneous genetic and
phenotypic features. Therefore, a comprehensive understanding of cellular diversity
and intratumoral heterogeneity is essential to elucidate the mechanisms driving DLBCL
progression and to develop new therapeutic approaches.

Methods: We analyzed single-cell transcriptomic data from 2 reactive lymph node tissue
samples and 2 DLBCL lymph node biopsy tissue samples to explore the transcriptomic
landscape of DLBCL. In addition, we constructed a prognostic model based on the genes
obtained from differential analysis.

Results: Based on gene expression profiles at the single cell level, we identified and
characterized different subpopulations of malignant and immune cells. Malignant cells
exhibited a high degree of inter-tumor heterogeneity. Tumor-infiltrating regulatory CD4+

T cells showed highly immunosuppressive properties and exhausted cytotoxic CD8+

T cells were highly expressed with markers of exhaustion. Cell communication analysis
identified complex interactions between malignant cells and other cell subpopulations. In
addition, the prognostic model we constructed allows for monitoring the prognosis of
DLBCL patients.

Conclusion: This study provides an in-depth dissection of the transcriptional features of
malignant B cells and tumor microenvironment (TME) in DLBCL and provides new insights
into the tumor heterogeneity of DLBCL.

Keywords: diffuse large B-cell lymphoma, single-cell RNA sequencing, tumor microenvironment, tumor
heterogeneity, prognosis

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most common histologic subtype of non-Hodgkin’s
lymphoma (NHL) with highly heterogeneous genetic and phenotypic features. Gene expression
profiling divides DLBCL into two distinct molecular subtypes, the activated B-cell-like and the
germinal center B-cell-like subtypes (Scott et al., 2014; Reddy et al., 2017). Although the standard
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first-line treatment regimen (R-CHOP) results in complete and
durable remission in approximately 60% of cases, relapse occurs
in 30–40% of patients and refractory disease in another 10%
(Friedberg 2006; Friedberg 2011). Autologous stem cell
transplantation (ASCT) after salvage chemotherapy is the
standard second-line treatment for relapsed or refractory (R/
R) DLBCL (Gisselbrecht et al., 2010). However, half of the
patients are not eligible for transplantation due to ineffective
salvage therapy, and the other half relapse after ASCT (Crump
et al., 2017). The prognosis of this group of patients is extremely
poor and the choice of treatment options is challenging.

The journal Science selected tumor immunotherapy as the
most important scientific breakthrough of 2013 (Couzin-Frankel
2013). In 2017, the U.S. Food and Drug Administration approved
two chimeric antigen receptor T-cells targeting CD19 for the
treatment of R/R B-cell malignancies (Dwivedi et al., 2019).
Tumor immunotherapy has become a more important
treatment after the development of drug resistance in DLBCL
patients. Studies have shown that the tumor immune
microenvironment has a great impact on the efficacy of
immunotherapy (Li et al., 2018). Thus, it has become a
primary task to improve the current status of DLBCL
treatment with important clinical significance to deeply
explore the state of tumor microenvironment (TME) and drug
resistance mechanism in DLBCL patients and find new
therapeutic targets for DLBCL.

Tumor cells exist in a complex microenvironment composed
of infiltrating immune cells and stromal cells. These immune cells
and stromal cells, together with the cytokines and chemokines
they secrete, as well as the intercellular stroma and
microvasculature in the nearby area, constitute a complex
network of TME (Hui and Chen 2015; Shen and Kang 2018).
Tumor cells maintain their survival and proliferation by
communicating with the TME network, which also allows
tumor cells to develop immunosuppressive mechanisms to
evade immune surveillance and promote disease progression
(Coupland 2011; Ansell and Vonderheide 2013). The unique
structure of the secondary lymphoid organs (including lymph
nodes and spleen) in hematologic malignancies makes their
microenvironment very different from that of solid tumors. In
B-cell NHL, the TME is rich in immune cells, whereas in solid
tumors, the number of infiltrating immune cells is relatively low
(Ansell and Vonderheide 2013). Since the TME plays a crucial
role in tumorigenesis, progression and recurrence, it is
increasingly the focus of research on progression, metastasis
and treatment resistance in solid and hematologic malignancies.

Here, we provide insight into the TME and tumor
heterogeneity in DLBCL by analyzing single-cell
transcriptomic data from 2 reactive lymph node tissue samples
and 2 DLBCL lymph node biopsy tissue samples. We identified a
high degree of inter-tumor heterogeneity in DLBCL samples and
prominent immunosuppressive features in CD4+ regulatory
T cells (CD4+ TREG) and exhausted cytotoxic CD8+ T cells
(CD8+ TEXH). In addition, a prognostic model was constructed
in a Bulk RNA-seq (Bulk-cell RNA sequencing) cohort
containing 481 DLBCL samples based on the results of T cell
subpopulation differential expression analysis, and the efficacy of

the model in predicting prognosis and immunotherapy response
was validated by the Gene Expression Omnibus (GEO) cohort
and the Imvigor cohort.

MATERIALS AND METHODS

Acquisition and Processing of scRNA-Seq
Data
Single cell transcriptome data containing 2 reactive lymph node
tissue samples and 2 DLBCL lymph node biopsy tissue samples
were obtained from the heiDATA database (https://heidata.uni-
heidelberg.de) (Supplementary Table S1). Single cell samples
were prepared and Single-cell RNA sequencing (scRNA-seq) as
follows: single cell suspensions, synthetic complementary DNA
and single cell libraries were prepared using Chromium Single
Cell v2 3ʹ kits (10x Genomics) according to the manufacturer’s
instructions. Each was sequenced on a single NextSeq 550 lane
(Illumina). The data were aligned to the hg38 reference genome
with Cell Ranger (v2.1, 10x Genomics) using “mkfastq” and
“count” commands and default parameters. The results of the
Cell Ranger analysis contained the count values of unique
molecular identifiers assigned to each gene in each of the cells
for each individual sample using all mapped reads
(Supplementary Table S2).

Filtering of scRNA-Seq Data
The R package Seurat (v4.0.2) (Butler et al., 2018) was used to
perform quality control. Gene counts per cell, UMI counts per
cell, and percentages of mitochondrial and ribosomal transcripts
were calculated using the functions of the Seurat package. Genes
expressed in three or fewer cells were excluded from downstream
analysis. Before further analysis, libraries with >5% of
mitochondrial transcripts, libraries with UMI numbers
indicating an abnormal range of potential doublets, and
libraries with less than 200 genes were screened out. After
removing low-quality cells, we analyzed scRNA-seq profiles of
11,729 cells with an average sequencing depth of approximately
1,400 genes per cell.

Merging of Multisample Data With
Correction for Batch Effects
The canonical correlation analysis (CCA) and mutual nearest
neighbor (MNN) algorithms in the R package Seurat (v4.0.2)
(Butler et al., 2018) were used for sample whole and correction of
batch effects. After identifying the different cell types, the
subsetdata function was used to split the dataset into subsets
of different cell types.

Clustering and Dimensionality Reduction
We used Seurat (v4.0.2) (Butler et al., 2018) to perform clustering
analysis of cells. Data was normalized to log scale using the
“NormalizeData” function with a default scale parameter of
10,000. “FindVariableFeatures” function was used to identify
highly variable genes with parameters for “selection.method = vst,
nfeatures = 2000”. We standardized the data with the “ScaleData”
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function. These variable genes were used as input for PCA using the
“RunPCA” function. The first 20 principal components (PCs) and a
resolution of 0.5 were used for clustering using “FindClusters”.
Uniform manifold approximation and projection for dimension
reduction (UMAP) was used for two-dimensional representation
of first 20 PCs with “RunUMAP”. We used the “FindAllMarkers” or
“FindMarkers” function to determine the marker genes of each
cluster relative to all other clusters or to a specific cluster. The
selected parameters of marker genes were detected in at least 25%
of the cells in the target cluster, under p value of Wilcoxon test <0.05
and the differential expression threshold of 0.25 log fold change.
FeaturePlot, DotPlot, VlnPlot and DoHeatmap were used for
visualization of gene expression levels. We labeled the obtained
clusters as T cells, B cells, NK cells, Dendritic cells (DC) and
monocytes by known classical markers (T cells: CD3D, CD3E,
CD3G, TRAC; B cells: MS4A1, CD79A; NK cells: NKG7, GNLY;
DC: IRF7, IRF8; monocytes: LYZ, CD68.).

Analysis of Intercellular Communication
Because DLBCL1 contains significantly more cells than DLBCL2,
in order to perform a systematic analysis of intercellular
communication, we re-clustered DLBCL1 for annotation and
used the R package CellChat (v1.1.3) (Jin et al., 2021) to explore
the expression of ligand-receptor pairs.

Cell Trajectory Analysis
Branching developmental trajectories of CD8+ T cell
subpopulations were calculated using the R package Monocle
2 (v2.16.0) (Qiu et al., 2017). Monocle introduces the strategy of
ordering single cells in pseudo-time, by taking advantage of the
asynchronous progression of individual cells in these processes
and aligning them along trajectories corresponding to biological
processes, such as cell differentiation.

Single-Cell Regulatory Network Inference
and Clustering Analysis
After annotation of each cell type by characterization of cell type
marker genes, we used the SCENIC package (v1.2.4) (Aibar et al.,
2017) to analyze the enriched transcription factors in cell
subpopulations. The input matrix is a normalized expression
matrix, output by Seurat.

Gene Set Variation Analysis
Hallmark gene sets were downloaded from the MSigdb
(Molecular Signatures Database) database and Gene Set
Variation Analysis (GSVA) was performed using the R
package GSVA to determine the molecular characteristics of
different cell subpopulations. Gene-cell matrices are converted
into gene set-cell matrices and GSVA scores are calculated for sets
with at least 5 detected genes; all other parameters are default.

Prognostic Model Construction and
Validation
RNA-seq data and clinical information of 481 DLBCL patients
were downloaded from The Cancer Genome Atlas (TCGA)

database (https://cancergenome.nih.gov/) for screening
prognostic genes and developing prognostic models. RNA
sequencing data and clinical information for 420 DLBCL
patients from the external validation cohort GSE10846 dataset
were obtained from the GEO database. Data for the IMvigor210
immunotherapy cohort were obtained from the website http://
research-pub.gene. com/IMvigor210CoreBiology. Extracted
CD8+ TEXH subpopulation-related genes obtained from
differential gene expression analysis were used to construct
prognostic models. In the TCGA cohort, univariate Cox
regression analysis was performed using the R package
Survival to screen prognosis-related genes (p < 0.05). Lasso
regression analysis was performed using the R package glment
to further screen prognosis-related genes, and finally six
prognosis-related genes were obtained by multivariate Cox
regression analysis for the construction of the prognostic risk
model. The risk score of each patient was calculated as follows:

Risk score � ∑
n

j�1
(βj × expGj)

where β is the regression coefficient obtained by multivariate Cox
regression analysis and expG is the prognostic gene expression
level. Based on the median risk scores obtained from the
prognostic model, the DLBCL samples were divided into high-
risk and low-risk groups, and survival differences between the
different risk subgroups were compared by Kaplan-Meier curves.
We plotted time-dependent subject operating characteristic
(ROC) curves with 1, 3 and 5 years as the defined points,
calculated the corresponding area under the ROC curve to
assess the predictive power of the risk model, and verified
whether the risk score was an independent prognostic
indicator for DLBCL by Cox regression analysis. The
GSE10846 cohort was used as an independent external
validation cohort to verify the efficacy of the prognostic model.

Tumor Microenvironment Score, Immune
Cell Abundance and Immune Response
Prediction
ESTIMATE is an algorithm that uses expression data to estimate
stromal and immune cells in malignant tumor tissues, allowing
estimation of stromal and immune scores for each DLBCL sample
(Yoshihara et al., 2013). The deconvolution algorithmCIBERSORT is
a method for characterizing cell composition from gene expression
profiles of complex tissues, allowing inference of the relative content
of immune cells from large amounts of tumor transcriptome data
(Newman et al., 2015). Gene set enrichment analysis was performed
using GSEA software (v4.1.0) to identify pathways that are
predominantly enriched between high- and low-risk groups.
Significantly enriched gene sets were screened with a threshold of
p < 0.05. To validate the predictive power of prognostic models for
immunotherapy response, the IMvigor210 immunotherapy cohort
was used to assess differences in response to PD-L1 treatment in
patients in different risk groups. Spearman correlation analysis was
used to characterize the correlation between immune checkpoint
genes and risk scores.
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Statistical Analysis
All statistical analyses were performed in R (v4.0.5). Comparisons
between groups were performed using the Wilcoxon test and
t-test. Correlations were analyzed by using Spearmans
correlation. Survival curves were compared using log-rank test.
Statistical significance was accepted for p < 0.05. *p < 0.05, **p <
0.01, ***p < 0.001.

RESULTS

Single-Cell Transcriptomic Analysis
Revealed the Complexity of Diffuse Large
B-Cell Lymphoma
In this study, single-cell transcriptomic data obtained from 10x
Genomics sequencing were used to investigate the cellular
diversity and molecular features in DLBCL tissues. After data
quality control and filtering, 11,729 cells were obtained for
subsequent analysis. After normalization of gene expression
data, descending and clustering were performed using principal
component analysis and UMAP, respectively. Twelve cell
subpopulations were obtained by dimensionality reduction
and clustering (Figure 1A), and these cells were assigned to
five different cell types using known marker genes (Figures
1B,D): B cells (marker genes: MS4A1 and CD79A), T cells
(marker genes: CD3D, CD3E, CD3G and TRAC), NK cells

(marker genes: GNLY and NKG7), DC cells (marker genes:
IR7 and IR8), monocytes (marker genes: LYZ and CD68).
Notably, B cells and T cells are the major cell subsets of
DLBCL (Figure 1C).

Inter-Transcriptomic Heterogeneity of
Malignant Cells in Diffuse Large B-Cell
Lymphoma
To investigate the transcriptomic heterogeneity of malignant
B cells in DLBCL tissues, we re-clustered the B cells and
identified 13 cell subpopulations. (Figure 2A). To further
distinguish malignant B cells from non-malignant B cells, we
took advantage of the fact that the malignant B cell population
expresses only one type of immunoglobulin light chain, i.e. κ or λ
light chains. The ratio of light chains per B cell (κ/λ) was
calculated based on the expression of the genes IGKC
(encoding a constant portion of the κ light chain) and IGLC2
(λ light chain). Malignant lymph nodes contain malignant B cells
that uniformly express κ light chains, whereas reactive lymph
node samples contain only non-malignant B cells (Figure 2B).
We then re-clustered the malignant B cells and obtained eight
malignant B cell subpopulations (Figure 2C), which showed a
high degree of heterogeneity. SCENIC analysis identified EGR1,
FOS and STAT1 as potential transcription factors (Figure 2D).
Gene differential expression analysis revealed different
transcriptional profiles among malignant B cell

FIGURE 1 | Identification of cell types using scRNA-seq. (A,B) Cells from 4 samples were combined and visualized using UMAP association. Cells were colored
according to their cluster (A) or type (B). (C) Bar graph showing the proportion of cell types in each sample. (D) Typical marker genes for the immune cell types defined in
Figure 1B. Coloration was based on expression level.
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subpopulations: subpopulation 0 showed high expression levels
of the malignancy-promoting factors S100A6 and LY6E,
subpopulation 1 showed high expression levels of the tumor
suppressor BTG1 and TXNIP, subpopulation 2 showed high
expression levels of the immune-related genes CD74 and

HLA-DRA, subpopulation 3 and subpopulation 4 showed high
expression levels of cell proliferation genesMCM3, H2AFY, PCN,
MKI67, TK1, subpopulation 5 showed high expression levels of
metabolism-related genes FABP5, LDHA, ENO1, and
subpopulation 6 showed high expression levels of cell cycle-

FIGURE 2 | Transcriptome heterogeneity in malignant cells. (A) B cells from 4 samples were combined and visualized using UMAP association. Cells were colored
according to their clusters. (B) IGKC fraction, IGKC ÷ (IGKC + IGLC2), was calculated for each B cell. B cells were classified as κ+ if the fraction was >0.5 and as λ+ if the
ratio was below 0.5. The percentage of B cells expressing κ or λ was calculated based on the transcriptionally distinct B cell clusters. Nonmalignant B cells contain
approximately 50% κ and 50% λ-expressing B cells, whereas malignant B cells contain B cells that uniformly express the κ light chain. (C) The umap plot of
malignant B cells. (D)Heat map of area under the curve scores for regulation of expression by transcription factors imputed with SCENIC. (E) Heat map showing the top
10 differential genes in the 8 malignant B cell subpopulations (Wilcoxon test). (F) Differential activity pathways in the 8 malignant B cell subpopulations (scored by GSVA
for each cell).
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related genes CENPF, CCNB1, CDC20 (Figure 2E). GSVA
analysis showed different molecular signatures among
malignant B-cell subpopulations: interferon response-
dominant signature (subpopulation 0), cell proliferation-
dominant signature (subpopulation 3 and subpopulation 4),
metabolism-dominant signature (subpopulation 5), and
hypoxia-dominant signature (subpopulation 7) (Figure 2F).
In conclusion, these results reveal a high degree of inter-
tumor heterogeneity in DLBCL.

Enrichment of Immunosuppressive Tumor
Infiltrating Regulatory T Cells in Diffuse
Large B-Cell Lymphoma
Tumor-infiltrating immune cells are highly heterogeneous and
play an important role in tumor cell immune evasion and
response to immunotherapy. To investigate the transcriptomic
heterogeneity of T cells in DLBCL tissues, we re-clustered
T cells and identified 13 T cell subpopulations (Figures
3A–D). The T cell subpopulations were annotated by
differentially expressed marker genes as: CD4−CD8−Navie T
(IL7R,SELL, CCR7 and LEF1, subpopulations: 0, 3, 4 and 10),

CD4+ TH (CD4 and TRAC, subpopulations: 1, 2 and 5), CD8+

TTOX (CD8A, GZMK and NKG7, subpopulation: 6), CD4+

TREG (FOXP3,TIGIT, ICOS and CTLA4, subpopulations: 7
and 9), CD8+Navie T (CD8A, SELL and IL7R, subpopulation:
8), TPRO (MKI67 and TOP2A, subpopulation: 11), CD8+ TEXH

(CD8A, GZMA, NKG7, LAG3 and HAVCR2, subpopulation:
12). To understand the state transitions between CD8+ T cell
subtypes, we used Monocle2 to construct potential
developmental trajectories of T cells. Developmental
trajectories inferred from expression data or marker genes
suggest (Supplementary Figures S1A, B) that CD8+ T cells
have two differentiation pathways: cytotoxic CD8+ T cells
(CD8+ TTOX) and exhausted CD8+ T cells (CD8+ TEXH).
GSVA analysis revealed different signaling pathway
enrichment among subpopulations: WNT and TGF
signaling (CD4+ TH), TGF and TNF signaling (CD8+ TTOX),
IL6/STAT3, IL2/STAT5 and KRAS signaling (CD4+ TREG),
and interferon response (CD8+ TEXH) (Supplementary Figure
S1C). SCENIC analysis identified SREBF2, RAD21, IRF7 as
potential transcription factors in different T cell
subpopulations (Supplementary Figure S1D). Taken
together, our single-cell analyses reveal that CD4+ TREG are

FIGURE 3 | Transcriptome heterogeneity in T cells. (A,B) T cells from 4 samples were combined and visualized using UMAP association. Cells were colored
according to their cluster or subtype. (C) Bar graph showing the proportion of cell types in each sample. (D) Differentially expressed genes used to identify T cell
subpopulations.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8813456

Zhao et al. Intratumoral Heterogeneity and Microenvironment Characteristics

45

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


highly immunosuppressive and CD8+ TEXH highly express
exhaustion markers such as LAG3, TIGIT and HAVCR2.

Cellular Communication in Diffuse Large
B-Cell Lymphoma
To explore the interactions between cells in the DLBCL
microenvironment, we used CellChat to infer and analyze
intercellular communication networks. Dimension reduction,
clustering and cell type annotation of sample DLBCL1
identified 13 cell subpopulations containing 9 malignant
B cell subpopulations (MB1-9), 3 T cell subpopulations
(TREG, TTOX, Naive T), and 1 DC cell subpopulation (DC).
CellChat analysis revealed complex interactions between
malignant B cell subpopulations and with other cell
subpopulations, and 22 important pathways between 13 cell
subpopulations were detected in DLBCL tissues, with the MIF
signaling pathway being the prominent incoming and
outgoing signaling mode (Figures 4A–D). Network
centrality analysis of the inferred MIF signaling network
showed that malignant B cell subpopulations (MB-2, MB-7)

are the major senders and DCs are the major receivers of the
MIF signaling pathway (Figure 4E). Notably, among all
known ligand-receptor pairs, MIF signaling was
predominantly dominated by the MIF ligand and its
multimeric CD74/CXCR4 receptor (Figure 4F). CellChat
uses a pattern recognition approach based on non-negative
matrix decomposition to identify global communication
patterns as well as key signals in different cell groups (i.e.
pattern recognition modules). The output of this analysis is a
set of the so-called communication patterns that connect cell
groups with signaling pathways either in the context of
outgoing signaling (i.e. treating cells as sources) or
incoming signaling (i.e. treating cells as targets). The
application of this pattern recognition module revealed
three patterns of the outgoing signal and three patterns of
the incoming signal (Figures 5A,B). The outgoing signaling of
all malignant B cells is characterized by pattern #1, which
includes the MHC-II, MIF, MHC-I, CD22, CD45 and other
pathways, the outgoing signaling of T cells is characterized by
pattern #2, which represents the ADGRE5, LCK, IFN-II,
VCAM, PECAM1 and other pathways, and the outgoing

FIGURE 4 |Cellular communication in DLBCL. (A,B)Circle diagram showing the number of interactions or strength of interactions between any two groups of cells.
(C,D) Heat map of the cell-cell communication network for incoming or outgoing signaling action analysis. (E) Heat map showing the relative importance of each cell
group based on the four network centrality degrees of the calculated MIF signaling network. (F) Relative contribution of each ligand-receptor pair to the overall
communication network of the MIF signaling pathway.
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FIGURE 5 | Cellular communication patterns in DLBCL. (A) Visualization of outgoing communication patterns of secretory cells by alluvial plots showing the
correspondence between inferred potential patterns and cell populations, as well as signaling pathways. The thickness of the flow indicates the contribution of the cell
population or signaling pathway to each potential pattern. The height of each pattern is proportional to the number of cell populations or signaling pathways associated
with it. Outgoing communication patterns reveal how sending cells coordinate with each other and how they coordinate with certain signaling pathways to drive
communication. (B) Incoming communication patterns of target cells. Incoming communication patterns reveal how target cells coordinate with each other and how they
coordinate with certain signaling pathways in response to incoming signals.
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signaling of DC is characterized by pattern #3, which includes
the APP, BAFF, ICAM and other pathways. On the other
hand, the communication patterns of target cells show that

incoming malignant B cell signaling is dominated by patterns
#1, which includes signaling pathways such as CD22, CD45,
CD70, BAFF, IFN-II, etc. Incoming T cell signaling is

FIGURE 6 | Construction and validation of prognostic model. (A,B) Coefficients of selected characteristics are shown by the lambda parameter, the horizontal axis
represents the value of the independent variable lambda and the vertical axis represents the coefficient of the independent variable; partial likelihood deviation is plotted
against log(λ) using the lasso Cox regression model. (C,E) Survival analysis curves for high and low risk score groups. (D,F) ROC curves of the prognostic model. (G)
Univariate Cox regression analysis of DLBCL risk factors. (H) Multivariate Cox regression analysis of DLBCL risk factors.
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characterized by two patterns #2 and #3, driven by pathways
such as MHC-I, LCK, VCAM, ICAM, etc., while incoming DC
signaling is also characterized by patterns #3. These results
suggest that different cell types in the same tissue have
different signaling networks and the pattern of malignant
B-cell communication is homogeneous.

Construction of a Prognostic Model Based
on Exhausted CD8+ T Cell-Associated
Genes
The CD8+ TEXH subpopulation-related genes obtained from
the differential analysis were extracted for the construction of
the prognostic model. Nineteen genes were obtained by
univariate Cox regression analysis and lasso regression
analysis (Figures 6A,B), and finally six prognosis-related
genes for model construction were obtained using
multivariate Cox regression analysis (GABRA3, HOXC8,
RTN4R,CRLF1, BIRC3, REXO5). Using the regression
coefficients for each of the above 6 prognostic genes, we
constructed a prognostic model for DLBCL patients and
calculated the risk score according to the following
formula: risk score = (2.201 × GABRA3 expression level) +
(−0.719 × HOXC8 expression level) + (−0.765 × RTN4R

expression level) + (0.545 × CRLF1 expression level) +
(−0.013 × BIRC3 expression level) + (−0.226 × REXO5
expression level). Using the median value of the risk score
as the threshold, we divided DLBCL patients into low-risk
and high-risk groups. Survival analysis showed that patients
in the high-risk group had a poorer prognosis (p < 0.001)
(Figure 6C), with an area under the ROC curve of 0.83, 0.80
and 0.80 for 1-year, 3-years and 5-years OS, respectively
(Figure 6D). In the external validation cohort, survival analysis
also showed a poorer prognosis for patients in the high-risk group
(p < 0.001) (Figure 6E), with an area under the ROC curve of 0.71,
0.70 and 0.63 for 1-year, 3-years and 5-years OS, respectively
(Figure 6F). The results of univariate and multivariate Cox
regression analyses indicated that risk score was an independent
prognostic factor (Figures 6G,H).

Gene Set Enrichment Analysis for Different
Risk Groups
We performed gene set enrichment analysis (GSEA) to
identify potential biological processes between high- and
low-risk groups. The results showed that pathways such as
nitrogen metabolism, oxidative phosphorylation, ribosomes,
Alzheimer’s disease, and Parkinson’s disease were enriched in

FIGURE 7 | Gene and enrichment analysis of different risk groups. (A) KEGG-enriched pathway in the high-risk group (p < 0.05 and fdr-adjusted q < 0.05). (B)
KEGG-enriched pathway in the low-risk group (p < 0.05 and fdr-adjusted q < 0.05).
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the high-risk group, and pathways such as extracellular matrix
receptor interactions, focal adhesion, gap linkage, pathways in
cancer, and regulation of the actin cytoskeleton were enriched
in the low-risk group (Figures 7A,B).

Immune Landscape and Response to
Immunotherapy in Different Risk Groups
We used the ESTIMATE algorithm to assess the TME immune and
stromal abundance in the different risk groups, and the results showed
that the high-risk group had higher levels of immune and stromal
component abundance (Supplementary Figures S2A–C). We also
analyzed the proportion of 22 types of immune infiltrating cells
among different risk groups in 481 DLBCL samples using the
CIBERSORT algorithm (Supplementary Figure S2D), and the
results showed that seven types of immune infiltrating cells were
associated with risk scores: resting CD4 memory T cells, activated
CD4 memory T cells, regulatory T cells, γδ T cells, and M0, M1, and

M2macrophages (Figure 8A). Correlation analysis of risk scores with
immune checkpoint genes showed that most of the immune
checkpoint gene expression levels were positively correlated with
risk scores (Figure 8B). In addition, higher risk scores in the
IMvigor210 immunotherapy cohort were associated with anti-PD-
L1 treatment response (Figure 8C).

DISCUSSION

In this study, we combined scRNA-seq and bulk RNA-seq to
investigate the tumor heterogeneity and TME characteristics of
DLBCL.We showed the existence of malignant cell subpopulations
with different transcriptional characteristics in DLBCL samples,
such as a characteristic malignant cell subpopulation with
predominantly cellular proliferation and a malignant cell
subpopulation with predominantly metabolic characteristics.
Roider T et al. investigated intra-tumor heterogeneity in B-NHL

FIGURE 8 |Relationship between risk score and immune landscape. (A)Distribution of 22 immune cell types in high and low risk groups. (B)Correlationmatrix heat
map showing the correlation analysis of risk scores with immune checkpoint genes. (C) Boxplot showing the difference in the distribution of risk scores in different
immunotherapy response groups.
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at the level of drug response by scRNA-seq, with tumor subgroups
in the same lymph node responding significantly differently to
targeted and chemotherapeutic agents (Roider et al., 2020). This
suggests that a rational combination of anticancer drugs is needed
to target all tumor subgroups, especially those with proliferative
and aggressive characteristics, to improve therapeutic response and
avoid the development of tumor drug resistance.

Immunotherapy has become a major hot topic in oncology
treatment research, and inhibitors targeting the PD1-PDL1 axis
have been approved as second- or first-line therapies for an
increasing number of types of malignancies, including
melanoma, lymphoma, lung cancer, renal cell carcinoma, head
and neck squamous cell carcinoma, bladder cancer, liver cancer,
and gastroesophageal cancer. However, great progress has been
made in clinical application, but most patients receiving immune
checkpoint inhibitors (ICIs) have not benefited from them (Gong
et al., 2018). ICIs have shown significant efficacy in relapsed/
refractory classic Hodgkin’s lymphoma (cHL), with an overall
response rate (ORR) of 70–90% and have been approved for this
indication (Ansell et al., 2015; Kasamon et al., 2017; Rossi et al.,
2018). Unfortunately, ICIs are less effective in DLBCL, mainly
due to its high biological heterogeneity. (Armand et al., 2013;
Ansell et al., 2016; Lesokhin et al., 2016; Ansell et al., 2019;
Frigault et al., 2020). By transcriptomic analysis of the
microenvironment of multiple independent cohorts of DLBCL,
Kotlov N et al. characterized four major lymphoma
microenvironment (LME) categories associated with different
biological abnormalities and clinical behaviors, namely GC-
like, mesenchymal, inflammatory (IN), and depleted (DP)
(Kotlov et al., 2021). Analysis of the correlation between LME
category and response to chemoimmunotherapy showed that the
number of responders was highest in GC-like patients and lowest
in DP-LME patients. IN-LME is enriched in CD8+ T cells and a
subpopulation of CD8+ T cells with high PD-1 expression and
high expression of the immune checkpoint molecule PD-L1 and
the tryptophanolytic enzyme IDO1, suggesting that this LME class
may benefit from ICIs treatment. Steen CB et al. characterized
clinically relevant DLBCL cell states and ecosystems with EcoTyper
(a machine-learning framework integrating transcriptome
deconvolution and single-cell RNA sequencing), identified 5 cell
states ofmalignant B cells with different prognostic associations and
differentiation status, and revealed nine multicellular ecosystems in
DLBCL, known as lymphoma ecotypes (LE) (Steen et al., 2021).
They found T-cell transcriptomic heterogeneity in DLBCL and that
tumors high in LE4 are characterized by an immunoreactive T-cell
state with widespread expression of co-inhibitory and stimulatory
molecules, with potential implications for immunotherapeutic
targeting. These studies suggest that exploring the heterogeneity
of the DLBCL tumormicroenvironment may better stratify patients
to improve the efficacy of ICIs. Here, we identified seven different
T cell subsets, CD4−CD8−Navie T, CD4+ TH, CD8

+ TTOX, CD4
+

TREG, CD8+Navie T, TPRO, and CD8+ TEXH. we found a
significantly higher proportion of CD4+ TREG cells in DLBCL
samples compared to reactive lymph node tissue. Recently,
several studies have found that CD4+FOXP3+ T cells can be
divided into three subpopulations: 1) effector Tregs (eTregs),
which have a strong suppressive function; 2) naive Tregs, which

have the potential to differentiate into eTregs upon antigen
stimulation; and 3) non-Tregs, which are a non-suppressive
subpopulation (Nishikawa and Sakaguchi 2014). Studies have
shown that high infiltration of FOXP3+ Tregs cells in DLBCL is
associated with better prognosis, but these studies have targeted the
entire FOXP3 population rather than the true Tregs cells (eTregs)
that are essential for the impact of tumor immunity (Lee et al., 2008;
Serag El-Dien et al., 2017). Nakayama S et al. found that high
infiltration of FOXP3/CTLA-4 double-positive cells as eTregs was
associated with a poorer prognosis (Nakayama et al., 2017). Recent
animal studies with anti-CTLA-4 mAb using mice lacking
antibody-dependent cytotoxic activity (by modulation of the Fc
fraction or Fc receptor knockdown) showed that the anti-CTLA-4
mAb antitumor activity was attributed to depletion of
FOXP3+CD4+ Treg cells from tumor tissue rather than direct
activation of effector T cells (Bulliard et al., 2013; Selby et al.,
2013; Simpson et al., 2013). Indeed, the reduction of FOXP3+CD4+

Treg cells in tumor tissue after anti-CTLA-4 mAb (Ipilimumab)
treatment was strongly associated with clinical benefit (Hodi et al.,
2008; Liakou et al., 2008). Furthermore, the critical role of CTLA-4
on FOXP3+CD4+ Treg cell function was revealed in animal studies,
which showed that specific deletion of CTLA-4 in FOXP3+CD4+

Treg cells impairs their suppressive function and thus enhances
antitumor immunity (Wing et al., 2008; Ise et al., 2010). Our single-
cell analysis showed that the CD4+ TREG subpopulation (highly
expressing FOXP3 and CTLA-4) in DLBCL showed highly
immunosuppressive properties, attributed to the eTregs,
suggesting that immunotherapy against eTregs could be an
effective and novel treatment strategy for DLBCL patients with
highly infiltrated FOXP3/CTLA-4 double-positive cells.

In addition to the classical immune checkpoint molecules PD-1
and CTLA-4, T cell immunoglobulin mucin receptor 3 (TIM3, or
HAVCR2) and LAG-3 are also included in the field of tumor
immunotherapy research. TIM-3 is a type I transmembrane
protein that is expressed on T cells in a number of malignancies,
including melanoma, lung cancer, hepatocellular carcinoma, and
colon cancer. In these tumors, TIM-3 expression is usually
associated with dysfunctional T cells and poorer prognosis in
some tumor types (Anderson 2014). In hematologic malignancies,
TIM-3 expression has been observed in adult T-cell leukemia/
lymphoma and extranodal NK/T-cell lymphoma (Horlad et al.,
2016; Feng et al., 2018). In addition, TIM-3 expression levels in
DLBCL patients have been found to correlate with tumor stage and
response to chemotherapy (Xiao et al., 2014; Zhang et al., 2015).
LAG-3 is a member of the immunoglobulin superfamily and
functions as a negative regulator of T cell homeostasis. LAG-3 has
been shown to be expressed in tumor-infiltrating lymphocytes in a
variety of tumor types, including breast, ovarian, and lung cancers,
and is commonly associated with increased numbers of PD-1+ T cells
(Matsuzaki et al., 2010; Burugu et al., 2017; He et al., 2017). In
follicular lymphoma, high expression of LAG-3 is associated with
poorer patient prognosis and T-cell failure (Yang et al., 2017). Here,
we characterized a population of CD8+T cells with high expression of
LAG-3, TIM-3, TIGHT, i.e. exhausted cytotoxic CD8+ T cells, which
showed a molecular profile dominated by interferon response and
retained the expression of GZMA, GZMB and NKG7. Furthermore,
by SCENIC analysis, we revealed potential transcription factors, such
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as STAT1 and IRF7, in the CD8+ TEXH cell subpopulation. Beltra JC
et al. showed that in exhausted CD8+ T cells are enriched with open
chromatin regions that bind to STAT1 and IRF7 (Beltra et al., 2020),
which is consistent with our findings.

We constructed prognostic models based on differential
genes associated with CD8+ TEXH subpopulations obtained
from previous differential gene expression analysis, and the
efficacy of the prognostic models in predicting survival, and
response to immunotherapy was validated by internal or
external validation cohorts. This prognostic model could
identify high-risk DLBCL patients and helped clinicians
make better clinical decisions.

In conclusion, this study provides an in-depth dissection of the
transcriptional features of malignant B cells and TME in DLBCL
and provides new insights into the tumor heterogeneity of DLBCL.
The data from our study can serve as a resource for subsequent in-
depth studies to provide therapeutic targets and biomarkers for
immunotherapy in DLBCL through deeper biological exploration.
In addition, the prognostic model we developed can well predict
the prognostic status and immunotherapeutic response of DLBCL
patients with promising clinical applications.
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8-Gene signature related to
CD8+ T cell infiltration by
integrating single-cell and bulk
RNA-sequencing in head and
neck squamous cell carcinoma

Shoujing Zhang1, Wenyi Zhang2 and Jian Zhang1*
1Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of
Stomatology, Tianjin, China, 2Department of Prosthodontics, Tianjin Medical University School and
Hospital of Stomatology, Tianjin, China

Background: CD8+ T cells, a critical component of the tumor immune

microenvironment, have become a key target of cancer immunotherapy.

Considering the deficiency of robust biomarkers for head and neck

squamous cell carcinoma (HNSCC), this study aimed at establishing a

molecular signature associated with CD8+T cells infiltration.

Methods: Single-cell RNA sequencing data retrieved from the Gene Expression

Omnibus (GEO) database was analyzed to obtain the different cell types. Next,

the cell proportions were investigated through deconvolution of RNA

sequencing in the Cancer Genome Atlas (TCGA) database, and then the

immune-related genes (IRGs) were identified by weighted gene co-

expression network analysis (WGCNA). LASSO-Cox analysis was employed to

establish a gene signature, followed by validation using a GEO dataset. Finally,

the molecular and immunological properties, and drug responses between two

subgroups were explored by applying “CIBERSORT”, “ESTIMATE”, and single

sample gene set enrichment analysis (ssGSEA) methods.

Results: A total of 215 differentially expressed IRGs were identified, of which

45 were associated with the overall survival of HNSCC. A risk model was then

established based on eight genes, including DEFB1, AICDA, TYK2, CCR7,

SCARB1, ULBP2, STC2, and LGR5. The low-risk group presented higher

infiltration of memory activated CD4+ T cells, CD8+ T cells, and plasma cells,

as well as a higher immune score, suggesting that they could benefit more from

immunotherapy. On the other hand, the high-risk group showed higher

abundance of activated mast cells and M2 macrophages, as well as a lower

immune score.

Conclusion: It was evident that the 8-gene signature could accurately predict

HNSCC prognosis and thus it may serve as an index for clinical treatment.

KEYWORDS

CD8+ T cells, head and neck squamous cell carcinoma, immunotherapy, prognosis,
weighted gene co-expression network analysis
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the

seventh most common malignancy worldwide (Siegel et al.,

2020). Despite the effective and aggressive treatment

strategies involving surgery combined with radio- and

chemotherapy, patients with advanced stage HNSCC only

have a 50% five-year survival rate (Vigneswaran and

Williams, 2014). In recent years, immunotherapy involving

checkpoint inhibitors blocking programmed cell death

protein 1 (PD-1) or programmed death ligand-1 (PD-L1)

has been approved for clinical use, with preliminary results

showing that the strategy significantly improves the overall

survival of recurrent or metastatic HNSCC patients.

However, several clinical trials have demonstrated that

anti-PD-1/PD-L1 therapy is only beneficial to a few

patients (Ferris et al., 2016; Siu et al., 2019). Studies have

suggested that CD8+ T lymphocytes substantially express PD-

1 and may play an important role in the efficacy of

immunotherapy (Jia et al., 2020). It is worth noting that

high dense infiltration of CD8+ T cells in HNSCC patients is

generally associated with a good prognosis (Fridman et al.,

2017). Moreover, PD-1+ CD8+ T cells showed excellent anti-

tumor effect in an anti-PD1-resistant murine HNSCC model

(Xu et al., 2020). Therefore, there is an urgent need to explore

the molecular mechanisms associated with CD8+ T cells

infiltration.

Single-cell RNA sequencing (scRNA-seq) has been the

subject of rapid technological developments in the last decade,

thereby resulting in significant improvements in describing and

defining the tumor heterogeneity at a single-cell level (Qi et al.,

2019). Besides, application of scRNA-seq to characterize the

tumor microenvironment (TME) may provide valuable

insights into immune landscapes and even effective

immunotherapy strategies (Kurten et al., 2021). Similarly, the

gene signature identified based on immune molecular

characteristics might be a strong predictor of clinical outcome

and immunotherapy response (Song et al., 2022). However, the

predictive potential of the molecular mechanisms describing

immunophenotypic features in HNSCC have not yet been

elucidated.

This study explored the mechanism associated with

infiltration of CD8+ T cells through integrating bulk and

scRNA sequencing. Specifically, a LASSO-Cox regression risk

model was built and verified based on the hub immune-related

genes (IRGs) identified by weighted gene co-expression network

analysis (WGCNA) (Langfelder and Horvath, 2008). Next, we

comprehensively represented the various immune features of an

8-gene signature using “ESTIMATE” (Yoshihara et al., 2013),

“CIBERSORT” (Newman et al., 2015), single sample gene set

enrichment analysis (ssGSEA) approaches, and

immunophenoscore (IPS) data. It is expected that the

identified risk score will not only be used as an efficient

indicator for HNSCC prognosis, but also as a potential

therapeutic target.

Materials and methods

The study design is illustrated using a flow diagram

(Figure 1).

Data acquisition

The single cell RNA-sequencing profile of

GSE103322 dataset (Puram et al., 2017), comprising

5,902 single cells of 18 patients, was downloaded from

the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) (accessed date 13 October

2021). HNSCC RNA-sequencing, clinical and mutation

data were downloaded from The Cancer Genome Atlas

(TCGA) database using the GDC Data Portal (https://

portal.gdc.cancer.gov/ (accessed date 13 October 2021).

The Fragments per Kilobase per Million (FPKM) values

were first converted to transcripts per million kilobase

FIGURE 1
Flow chart schematic of this study.
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(TPM) values. To validate the prognostic power of the

model, the transcriptome and clinical files of the

GSE65858 dataset, containing 270 HNSCC samples, were

obtained from the GEO database (Wichmann et al., 2015).

Notably, a total of 2,720 IRGs were obtained from the

ImmPort (https://www.immport.org/home) and InnateDB

(https://www.innatedb.com/) databases (accessed date

13 October 2021).

FIGURE 2
Identification of the HNSCC-associated cell subtypes. (A) t-SNE plot classified cell clusters based on scRNA sequencing data. (B) t-SNE plot
identified the various cell subtypes. (C–E) Kaplan-Meier survival analysis of three cell subtypes using the deconvolved TCGA data. (C) CD8+ T cells:
p = 0.011, (D) Mast cells: p = 0.001, (E) Treg cells: p = 0.002. (F) Univariate analysis of ten cell subtypes.
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Processing of single-cell and bulk RNA-
seq files

The “Seurat” (version 4.1.1) package in R (version 4.1.2)

was applied to group 5,902 cells into appropriate clusters, with

the resolution set to 0.8. Results were presented by employing

the T-distributed stochastic neighbor embedding (t-SNE) for

dimension reduction. Next, diverse cell types, B/plasma cells,

endothelial cells, regulatory T cells (Treg cells), mast cells,

CD8+ T cells, epithelial cells, dendritic cells, macrophages,

fibroblasts, and CD4+ T cells were identified based on their

specific markers. The “Cellchat” (version 1.1.3) package was

used to analyze the cell–cell communication, and then

deconvolution was performed using the “BisqueRNA”

FIGURE 3
(A) The heatmap depicting marker genes associated with ten cell subtypes. (B) GSVA enrichment analysis of the cell subtypes. (C,D) Cell-cell
communication network of ten cell subtypes.
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(version 1.0.5) method (Jew et al., 2020) to calculate the cells

fractions of TCGA bulk profiles. Based on the TCGA RNA-seq

profiles, differentially expressed genes (DEGs) were identified

with FDR < 0.05 and |log2FC| > 1 set as the cutoff values.

Determination of immune-related
candidate genes

The differential IRGs were determined by overlapping

DEGs and IRGs, and then used to screen the hub genes by

WGCNA (version 1.7.0). First, Pearson correlation

coefficient was determined for every gene, and a suitable

soft threshold β was automatically selected through the pick

Soft Threshold function. Next, gene expression similarity

matrix was transformed into an adjacency matrix using a

network type of signed and soft powers β = 3, followed by

employing TOM (topological overlap measure) to cluster

genes into network modules. The 1-TOM (dissimilarity

TOM) was then applied as the input for hierarchical

clustering and the “DynamicTreeCut” algorithm was

employed to detect modules (clusters of highly

interconnected genes) as branches of the dendrogram.

Finally, we identified and selected a module (215 genes)

that significantly correlated with CD8+ T cells content.

Kaplan–Meier (KM) survival and univariate Cox analysis

were utilized to determine the hub genes associated with

survival at a threshold of p < 0.05.

Development of a prognostic signature in
TCGA (n = 498)

LASSO-Cox analysis was performed using “glmnet” package

to determine the optimal prognostic gene set. The risk score of

each HNSCC patient was determined as the sum of normalized

gene expression values weighted by their LASSO-Cox coefficients

in accordance with the following formula:

risk score � ∑
n

i�1
Coefp

i Expi

Where Coefi indicates the calculated regression coefficient of

each gene in the LASSO-Cox model and Expi represents the

mRNA expression value. Kaplan-Meier (KM) analysis,

receiver operating characteristic (ROC) curves, and

univariate and multivariate Cox regression analyses were

employed to validate the independent prognostic factors in

TCGA-HNSC and GSE65858 datasets. For better clinical

prediction of HNSCC patient survival probabilities, a

nomogram was constructed using the “rms” R package

based on multivariate Cox analysis results. The

concordance index (C-index) of the nomogram was

calculated to assess the discriminative ability.

Immune features and therapy prediction
in distinct risk groups

“CIBERSORT” (version 1.03) and “ESTIMATE” (version

1.0.13) analyses were applied to determine the abundance of

22 immune cells and immune infiltration scores. The ssGSEA

approach was employed via the “GSVA” (version 1.42.0) package

to compute the enrichment scores of 29 immune features

(Hänzelmann et al., 2013). To predict the susceptibility of

eight common chemotherapeutic drugs (5-Fluorouracil,

bleomycin, cetuximab, cisplatin, docetaxel, methotrexate,

rapamycin, and sunitinib) for HNSCC, the “pRRophetic”

(version 0.5) method was performed to evaluate the half-

maximal inhibitory concentration (IC50) of patients in

distinct groups (Geeleher et al., 2014). The

immunophenoscore (IPS) of HNSCC patients, which is a

scoring scheme that characterizes the determinants of tumor

immunogenicity (Charoentong et al., 2017), were downloaded

from The Cancer Imaging Archive (TCIA) database (https://tcia.

at/home, accessed date 15 November 2021). To predict the anti-

CTLA4 and anti-PD1 responses, patients with different IPS were

further compared between the two risk groups. Finally, the

“Maftools” (version 2.10.05) (Mayakonda et al., 2018) package

was used to determine the tumor mutational burden (TMB) and

identify the driver genes.

Enrichment analysis

The reference gene sets of Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway (c2. cp.kegg.v7.5.1. symbols.gmt)

were obtained from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb, accessed date 15 November 2021).

GSEA software (version 4.2.3) and Gene Set Variation

Analysis (GSVA) were conducted to determine the KEGG

pathways with FDR < 0.05.

Results

Cell typing in head and neck squamous
cell carcinoma scRNA-seq and
deconvolution in the Cancer Genome
Atlas-HNSC

We first collected the Smart-seq2 profile data of 5,902 cells in

the GSE103322 dataset. Principal component analysis (PCA) and

t-SNE analysis identified 27 cell clusters (Figure 2A). According to

expressions of marker genes, 10 distinct cell clusters were

identified, including CD8+ T cells, macrophages, CD4+ T cells,

fibroblasts, endothelial cells, B/plasma cells, mast cells, Treg cells,

epithelial cells, and dendritic cells (Figures 2B, 3A). GSVA results

showed that “MYC_TARGETS_V2” and “MYC_TARGETS_V1”
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were activated in epithelial cells, whereas “HYPOXIA” was

abundant in fibroblasts (Figure 3B). Results obtained after

applying the “CellChat” method showed that there was a strong

connectivity between different cell types (Figures 3C,D). Next, the

BisqueRNA approach was performed to calculate proportions of

the 10 cell types by deconvoluting the TCGA bulk profiles.

Supplementary Table S1 shows proportion of the 10 cell types

in 497 samples. Survival analysis demonstrated that mast cells (p =

0.001), CD8+ T cells (p = 0.011), and Treg cells (p = 0.002) were

significantly associated with HNSCC outcome (Figures 2C–E).

Moreover, univariate Cox analysis indicated that Treg cells were

associated with good outcome (p = 0.018), whereas mast cells were

intimately linked to poor prognosis (p = 0.019) (Figure 2F).

Construction and validation of a gene risk
signature associated with CD8+ T cells

First, 9,244 DEGs were obtained from the TCGA-HNSC dataset

comprising 501 tumor and 44 normal samples (Figure 4A).

Subsequently, 2,720 IRGs from ImmPort and InnateDB

databases were matched with DEGs, from which

840 differentially expressed IRGs were obtained for further

analysis (Figure 4B). Based on the 840 IRGs and proportions of

the 10 cell types in TCGA, the weighted gene co-expression network

was generated using the soft-thresholding power β = 3, which

resulted in identification of 10 modules (Figures 5A,B). To

further explore the features of CD8+ T cells infiltration, we

selected the turquoise module (215 genes) which had the

strongest correlation with CD8+ T cells (r = 0.86, p = 1e-17).

Univariate Cox analysis demonstrated that 45 of the 215 hub

genes were closely associated with HNSCC survival (Figure 5C).

Therefore, the 45 genes were subjected to LASSO regression analysis

to identify the optimal penalty coefficient (Figures 5D,E). The

survival analysis identified eight genes, including DEFB1, AICDA,

TYK2, CCR7, SCARB1, ULBP2, STC2, and LGR5, which were

significantly associated with HNSCC prognosis (Figures 6A–H).

The eight risk regression coefficients were then employed to

compute individual risk score of HNSCC patients according to

the following formula:

Risk score � (−0.097)pDEFB1 + (−0.444)pAICDA
+ (−0.175)pTYK2 + (−0.071)pCCR7
+ 0.020pSCARB1 + 0.079pULBP2 + 0.161pSTC2

+ (−0.128)pLGR5

Next, the 498 HNSCC patients were stratified into high- and

low-risk groups based on the median risk score. KM survival

analysis results indicated that the high-risk group patients

showed poorer outcomes compared to the low-risk group (p <
0.001, Figure 6I). Consistently, similar results were observed in

the GSE65858 dataset (p = 0.005, Figure 6J).

Validation in the Cancer Genome Atlas-
HNSC andGSE65858 cohorts, and scRNA-
seq data

The risk score, survival status distributions of HNSCC

patients, and correlation analysis are displayed in Figure 7.

Results demonstrated that survival reduced with rising risk

score, and there was a significant correlation between risk

FIGURE 4
The heatmap (A) and Venn diagram (B) identified the differentially expressed genes (DEGs) and immune-related DEGs between tumor and
normal samples in TCGA.
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score and survival in TCGA cohort (r = -0.2, p = 6.4e-06). Time-

dependent ROC and calibration curves at one-, three-, and five-

years were then constructed (Figures 8A,B). In the TCGA cohort,

the areas under the ROC curves (AUCs) were 0.679, 0.703, and

0.644 for 1-, 3-, and 5-years survival, respectively. In both the

TCGA and GSE65858 cohorts, univariate and multivariate Cox

analyses demonstrated that the risk score was an independent

predictor for prognosis (Figures 8C–F). To determine the cells

that these eight genes were enriched, the distribution plots for

expressions of the eight genes in the 10 cell types identified in the

GSE103322 dataset were generated and are shown in Figures

9A–I. Results showed that the expression levels of DEFB1 and

ULBP2 were higher in epithelial cells, whereas TYK2 and CCR7

levels were abundant in dendritic cells. In addition, the

endothelial cells had higher expressions of SCARB1 and STC2,

and LGR5 was highly expressed in both dendritic cells and

FIGURE 5
Development of an 8-gene signature. (A) The Cluster dendrogram of co-expression network modules obtained by WGCNA. (B) Correlation
heatmap among ten co-expressionmodules and the levels of cell subtypes. The turquoise module had the greatest correlation with CD8+ T cells (r =
0.86, p = 1e-17). (C) Univariate analysis of 45 immune-related hub genes. (D) LASSO coefficient profiles of 45 immune-related genes. (E) Tuning
parameter selection in the LASSO model using ten-time cross-validation.
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fibroblasts. Based on proportions of the 10 cell types obtained

after deconvolution, correlation analysis was performed to

evaluate the association among proportion of CD8+ T cells

and risk score. Obtained results revealed that fractions of

CD8+ T cells declined as the risk score increased (r = −0.41,

p < 2.2 e-16, Figures 9J,K).

Construction of a nomogram for clinical
practice

A heatmapwas generated to depict the changes in expression of

the eight genes between different clinical subgroups (Figure 10A).

The performance of the risk score was then explored in different

clinicopathological subgroups, including clinical stage (stage I-III

and stage IV), age (<=60 and >60), grade (G1-2 and G3-4), T stage

(T0-2 and T3-4), N stage (N0-1 and N2-3), and gender (female and

male). According to the survival analysis results, HNSCC patients

with high-risk scores consistently had a poorer outcome in all

subgroups (Figures 10B–G). Next, the three remarkable variables in

the multivariate analysis, including age, N stage, and risk score,

were selected and used to build a nomogram (C-index: 0.676) for

estimating the 1-, 3-, and 5-year survival rate (Figure 11A). By

drawing a vertical line to the axis points, we could estimate patient

survival based on total points. Overall, the calibration curves and

the AUC’s (1-, 3-, and 5-year: 0.733, 0.749, and 0.691, respectively)

suggested that the risk model could accurately predict the HNSCC

survival rate (Figures 11B,C).

FIGURE 6
Survival analysis of eight genes in risk signature. (A) ULBP2: p < 0.001. (B) SCARB1: p = 0.003. (C) STC2: p < 0.001. (D) DEFB1: p < 0.001. (E)
AICDA: p = 0.003. (F)CCR7: p < 0.001. (G) TYK2: p < 0.001. (H) LGR5: p < 0.001. (I,J) Survival analysis of the 8-gene signature in TCGA (p < 0.001) and
GSE65858 cohorts (p = 0.005).
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The immune landscape of the two risk
groups

To elucidate the biological characteristics activated in distinct

risk groups, KEGG pathway enrichment analysis was performed

using GSVA and GSEA methods. By setting the adjusted p value

(FDR) < 0.05, a total of 51 and 16 pathways were obtained in

GSVA and GSEA, respectively (Figures 12A,B). Several

overlapping immunoregulatory processes were enhanced in the

low-risk group, including “hematopoietic cell lineage”, “T cell

receptor signaling pathway”, “antigen processing and

presentation” and “natural killer cell-mediated cytotoxicity”. To

describe the patterns of immune infiltrations, CIBERSORT and

ESTIMATE methods were implemented for calculating the cell

fractions and immune-related scores of HNSCC samples (Figures

13A,B). The low-risk group showed more significant infiltrations

of CD8+ T cells, M1 macrophages, follicular helper T cells, plasma

cells, regulatory T cells, andmemory activated CD4+ T cells, as well

as a higher immune score. With regard to the high-risk group,

abundant infiltrations of activated mast cells, M2 macrophages,

resting NK cells, and low immune score were observed. The

ssGSEA approach was then applied to estimate the scores of

specific immune functions and cells. Results revealed significant

differences of most immune cells and functions between high- and

low-risk groups (Figure 13C). Besides, 15 immune checkpoint

molecules (IFNG, GZMB, HAVCR2, CD274, CD8A, PDCD1,

FIGURE 7
The relationship between risk score and HNSCC survival. (A–D) Distribution of risk score and survival status of 8-gene signature in TCGA (A,C)
and GSE65858 (B,D) cohorts. (E,F) The correlation analysis between overall survival (OS) and risk score in TCGA (E) and GSE65858 (F) cohorts.
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TBX2, IDO1, GZMA, LAG3, CXCL10, CTLA4, PRF1, CXCL9,

and TNF) were selected and their expressions were compared

between the two risk groups (Figure 13D). Based on the correlation

analysis results, it was evident that the expressions of CD274 and

CTLA4 in the two groups were significantly different (CD274: p =

0.0006; CTLA4: p = 2.5e-14), and decreased as the risk score rose

(CD274: r = −0.18, p = 3.6 e-05; CTLA4: r = −0.43, p < 2.2 e-16)

(Figures 13E–H). Next, the pRRophetic algorithm was applied to

predict the IC50 of eight common chemotherapeutic drugs

between the two groups. Patients with a high-risk score showed

an increased susceptibility to bleomycin (p = 0.00014), cisplatin

(p = 3.2e-05), and methotrexate (p = 0.039). On the other hand,

low-risk group patients showed increased sensitivity to rapamycin

(p = 5.6e-06) (Figures 14A–H). To forecast the response to anti-

PD1 and anti-CTLA4 immunotherapy, the IPS scores of HNSCC

patients were used to compare the two risk groups (Figure 14I–L).

Results indicated that patients in the low-risk group exhibited

higher IPS scores and showed greater response to anti-PD1

therapy and anti-PD1 plus anti-CTLA4 therapy

(ips_ctla4_neg_pd1_pos: p = 0.0054, ips_ctla4_pos_pd1_pos:

p = 1.6e -05) relative to patients in the high-risk group. Given

the important role of TMB in prognosis, the intrinsic connection

FIGURE 8
Validation of the 8-gene signature in TCGA and GSE65858 cohorts. (A,B) The ROC and calibration curves for determining the accuracy of
model. (C–F) Univariate and multivariate analysis of clinical features and risk score.
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between TMB and risk score was explored to assess genetic

signature. It was found that the high-risk group exhibited

higher TMB (Figure 15A). A significant correlation was

observed between TMB and risk score (r = 0.22, p = 1.3e-06,

Figure 15B). Survival curve suggested that a low TMB/low risk

group showed a great outcome compared with the other groups

(p < 0.001, Figure 15C). The top 20 driver genes with the highest

alteration frequency were analyzed (Figures 15D,E) and four genes

(TP53, PKHD1L1, DNAH9, FAT1) were significantly different

between high- and low-risk groups (Supplementary Table S2).

FIGURE 9
Verification using single-cell sequencing data. (A–H) Colors indicating the localization of the expression of eight genes: AICDA, CCR7, DEFB1,
LGR5, SCARB1, STC2, TYK2, and ULBP2. (I)Heatmap depicting expressions of the eight genes in the cell subtypes. (J) The levels of CD8+ cells in TCGA
deconvoluted data between low- and high-risk groups (p= 1.4 e-13). (K)Correlation analysis betweenCD8+ T cells levels and risk score (r = −0.41, p <
2.2 e-16).
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FIGURE 10
The relationship between risk signature and the clinical characteristics. (A) The heatmap depicting eight gene expressions among distinct
clinical patterns. (B–G) Kaplan-Meier survival analysis according to the 8-gene signature stratified by clinicopathological factors. (B) age<=60: p =
0.011, age>60: p < 0.001. (C) Female: p = 0.001, Male: p < 0.001. (D)G1-2: p = 0.002, G3-4: p < 0.001. (E)N0-1: p < 0.001, N2-3: p = 0.009. (F) Stage
I-III: p = 0.004, Stage IV: p = 0.001. (G) T0-2: p = 0.006, T3-4: p < 0.001.
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Discussion

Immunotherapy has been successful used to treat cancer

patients in the advanced tumor stage. Nevertheless, clinical

application of the strategy is hampered by several limitations,

including low response rates, development of serious side effects,

and drug resistance (Sacco et al., 2021). One of the key reasons for

these limitations is the paucity of potential predictive markers. In

the present study, we calculated the proportion of CD8+ T cells,

and selected IRGs-related to CD8+ T cells infiltration by

integrating scRNA and bulk sequencing profiles. As a result,

215 differential IRGs were identified by WGCNA, of which

45 genes were significantly associated with HNSCC survival.

Subsequently, we developed and validated an 8-gene risk model

which may be useful for predicting prognosis and

immunotherapeutic effect.

The eight critical genes, including DEFB1, AICDA, TYK2,

CCR7, SCARB1, ULBP2, STC2, and LGR5, play essential roles in

tumor progression and immune-modulatory effects. For

example, DEFB1, the human antimicrobial peptide defensin β

1, is considered as a potential tumor suppressor gene and has

been shown tomediate PI3K/mTOR signaling, thereby leading to

death of tumor cells (Sun et al., 2006; Lee et al., 2015).DEFB1was

also found to be theoretically useful as a prognostic biomarker for

HNSCC (Han et al., 2014). Moreover, DEFB1 was commonly

detected in epithelial cells, which is consistent with our results.

UL16-binding protein 2 (ULBP2), a ligand of the activating NK

cell receptor NKG2D, was found to be engaged in target

recognition by NK cells (Textor et al., 2011). A previous study

confirmed that the soluble ULBP2 secreted by cancer cells

contributed to the immune escape (Waldhauer and Steinle,

2006). Herein, we observed that ULBP2 was upregulated in

epithelial cells. Meanwhile, ULBP2 has been shown to be a

prognosis indicator for several cancers, such as lung cancer

and pancreatic cancer (Chang et al., 2011; Yamaguchi et al.,

2012). The activation-induced cytidine deaminase (AICDA) is an

essential enzyme of the adaptive immune system. A recent study

found that elevated expression of AICDA regulates the function

of B cells in regional lymph nodes and significantly improves

prognosis of HNSCC patients (Pylaeva et al., 2021). Tyrosine

kinase 2 (TYK2), a member of the Janus kinase (JAK) family, has

emerged as both a promising biomarker and a target for anti-

cancer therapies (Borcherding et al., 2021). It has been reported

that high expression of TYK2 is associated with better prognosis

of HNSCC (Fang et al., 2021). A recent review concluded that CC

motif chemokine receptor (CCR7) is correlated with good

outcomes of HNSCC patients (Korbecki et al., 2020).

However, if located on cancer cells, CCR7 and its ligands

(CCL19/CCL21) is a vital axis for carcinogenic properties,

such as epithelial-mesenchymal transition (EMT) tumor

invasion and migration (Chen et al., 2020; Korbecki et al.,

2020). Notably, the present study found that CCR7 was

predominantly expressed in dendritic cells. SCARB1 has been

demonstrated to be involved in cholesterol metabolism, thereby

facilitating cancer progression (Gutierrez-Pajares et al., 2016). In

addition, stanniocalcin-2 (STC2) exerted a significant role in a

wide variety of signaling pathways in HNSCC apoptosis and

autophagy (Li et al., 2020). Studies have revealed that

FIGURE 11
Construction of a nomogram for predicting survival of HNSCC patients. (A) Nomogram using two clinical traits (N stage and age) and the risk
score. (B,C) The calibration and ROC curves for determining the reliability of the nomogram to predict one-, three-, and five-year survival rates.
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downregulated expression of STC2 can suppress growth of

HNSCC cells (Li et al., 2019; Li et al., 2020). Moreover, the

leucine-rich repeat-containing G protein-coupled receptor LGR5

participated in Wnt signaling and was intimately linked to the

severity of HNSCC (Dalley et al., 2015).

Given the important role of immune cell infiltrations in the

diagnosis and treatment of diseases, we further explored the

immune landscape in different HNSCC groups. Based on the

degree of immune cell infiltrations, particularly CD8+ T cells,

the tumor phenotypes can be defined as two major patterns,

FIGURE 12
Functional enrichment characteristics of the risk signature. (A)Different activities of KEGG pathway scored byGSVA between high- and low-risk
groups. (B) GSEA analysis showing the sixteen KEGG functional pathways enriched in low-risk group.

Frontiers in Genetics frontiersin.org14

Zhang et al. 10.3389/fgene.2022.938611

68

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.938611


“hot” and “cold”, which are associated with good and poor

antitumor immune responses, respectively (Galon and Bruni,

2019). This study explored the abundance of immune cells and

functions using CIBERSORT, ESTIMATE, and ssGSEA methods.

According to the obtained results, the low-risk group exhibited

more infiltration of CD8+ T cells, memory activated CD4+ T cells,

and plasma cells, as well as higher immune score, and thus can be

categorized as “hot” tumor phenotype. On the other hand, the high-

FIGURE 13
Patterns of immune cells infiltration in two risk groups. (A) The box plot showing the fractions of 22 infiltrating immune cells and immune-
related scores based on CIBERSORT and ESTIMATE algorithms. (B) A heatmap presenting the 22 immune cells in the two risk score subgroups with
different immune-related scores. (C) The ssGSEA scores for 29 immune gene sets. (D)Differential expressions of the 15 immune checkpoint-related
genes. (E) CD274 expression difference among the high- and low-risk groups (p = 0.0006). (F) The spearman correlation plot between
CD274 expression and risk score (r = −0.18, p = 3.6 e-05). (G) CTLA4 expression difference among the high- and low-risk groups (p = 2.5 e-14). (H)
The spearman correlation plot between CTLA4 expression and risk score (r = −0.43, p < 2.2 e-16). pp < 0.05; ppp < 0.01; pppp < 0.001; ns: no
significance.
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FIGURE 14
Drug response prediction between the two risk groups. (A–H) The IC50 of eight common chemotherapeutic agents (5-Fluorouracil,
Bleomycin, Cetuximab, Cisplatin, Docetaxel, Methotrexate, Rapamycin, and Sunitinib) and correlation analysis with risk score. (I–L) The difference of
immunophenoscore (IPS) scores among high- and low-risk groups.
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risk group showed greater abundance of activatedmast cells, resting

NK cells, and M2 macrophages, and lower immune score,

suggesting the “cold” tumor phenotype. Furthermore, the

immune checkpoint-related genes exhibited relatively high

expressions in the low-risk group, including IFNG, PRF1,

GZMA, GZMB, CXCL10, CXCL9, CD8A, CD274 (PD-L1),

HAVCR2, IDO1, LAG3, CTLA4, and PDCD1. Studies have

confirmed that infiltration of M2 macrophages is associated with

tumorigenic chronic inflammation with secretion of

protumorigenic factors, such as IL-6, VEGF, and TGFβ (Ruffell

and Coussens, 2015). Accumulating evidence suggests that

preexisting CD8+ T cells and PD-L1 expression are generally

correlated with improved efficacy of immunotherapy (Farhood

et al., 2019; Gavrielatou et al., 2020). Consistently, our results

suggested that patients with low-risk score, as a consequence of

higher IPS scores, had more vigorous immune responses to anti-

PD1 therapy and anti-PD1 plus anti-CTLA4 therapy. Moreover,

patients in the two groups exhibited varying sensitivity to four

common chemotherapeutic drugs, including bleomycin, cisplatin,

methotrexate, and rapamycin (Cramer et al., 2019). Notably,

previous studies have verified the therapeutic safety and

effectiveness of chemotherapy in combination with PD-L1

blockade (Burtness et al., 2019; Cohen et al., 2019). Nevertheless,

different sensitivities to 5-Fluorouracil, cetuximab, docetaxel, and

sunitinib were not observed in this study. TMB level was considered

to be an indicator of immunotherapy response (Rizvi et al., 2015).

We then examined the relationship between TMB and the risk

score. The alteration frequency of TP53, PKHD1L1, DNAH9 and

FIGURE 15
(A) TMB difference among the high and low risk groups. p = 0.00028. (B) The Spearman correlation analysis between risk score and TMB. r =
0.22, p = 1.3e-06. (C) K-M survival analysis stratified by both TMB and risk scores. p < 0.001. (D,E) Distribution of the top 20 variant mutated genes
among high (D) and low (E) risk groups. The waterfall plot showing the genetic alterations types.
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FAT1was significantly different between high- and low-risk groups.

TP53 is one of the most frequently mutated genes in HNSCC and

TP53 mutations play a critical role in tumorigenesis and

progression (Nathan et al., 2022). Understanding the DNAH9

and FAT1 mutations may contribute to cancer surveillance and

treatment (Huang et al., 2021; Yang et al., 2022). Investigation of the

mutational signatures may allow for an improved selection of

immunotherapies in individual patients.

However, this study was limited by the fact that it lacked

experimental and clinical pathology studies to validate the function

of the eight genes. Therefore, further clinical trials are needed to

confirm the predictive potential of the risk signature.

Conclusion

In conclusion, by comprehensively analyzing the single-cell

and bulk RNA sequencing of HNSCC, this study developed and

externally validated a novel and robust model based on eight

CD8+ T cells-related genes. It is expected that the 8-gene

signature will facilitate understanding of HNSCC immune

characteristics, predict prognosis of HNSCC patients, and

guide the clinical use of immunotherapy.
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Oncogenic signaling pathway
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the role of pathways at multiple
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Dysregulation of signaling pathways plays an essential role in cancer. However,

there is not a comprehensive understanding on how oncogenic signaling

pathways affect the occurrence and development with a common

molecular mechanism of pan-cancer. Here, we investigated the oncogenic

signaling pathway dysregulation by using multi-omics data on patients from

TCGA from a pan-cancer perspective to identify commonalities across different

cancer types. First, the pathway dysregulation profile was constructed by

integrating typical oncogenic signaling pathways and the gene expression of

TCGA samples, and four molecular subtypes with significant phenotypic and

clinical differences induced by different oncogenic signaling pathways were

identified: TGF-β+ subtype; cell cycle, MYC, and NF2− subtype; cell cycle and

TP53+ subtype; and TGF-β and TP53− subtype. Patients in the TGF-β+ subtype

have the best prognosis; meanwhile, the TGF-β+ subtype is associated with

hypomethylation. Moreover, there is a higher level of immune cell infiltration

but a slightly worse survival prognosis in the cell cycle, MYC, and NF2− subtype

patients due to the effect of T-cell dysfunction. Then, the prognosis and

subtype classifiers constructed by differential genes on a multi-omics level

show great performance, indicating that these genes can be considered as

biomarkers with potential therapeutic and prognostic significance for cancers.

In summary, our study identified four oncogenic signaling pathway–driven

patterns presented as molecular subtypes and their related potential

prognostic biomarkers by integrating multiple omics data. Our discovery

provides a perspective for understanding the role of oncogenic signaling

pathways in pan-cancer.

KEYWORDS

signaling pathways, dysregulation landscape, molecular subtypes, multi-omics,
biomarkers, pan-cancer
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Introduction

A large number of studies have shown that the oncogenic

signaling pathways play important roles in cancers, and multi-

omics changes that occurred in these signaling pathways are

identified as the common biomarkers in cancers. Therefore, the

identification of oncogenic signaling pathways has become a key

step in cancer drug screening and cancer treatment. Although the

roles of individual pathways in the development of single cancer

have been successively discovered and demonstrated, it is

interesting to study how these signaling pathways affect

cancer development and progression from a pan-cancer

perspective.

There are many studies on oncogenic signaling pathways and

the genes involved (Joerger and Fersht, 2016; Taciak et al., 2018;

Calses et al., 2019). It has been reported that the RTK-RAS

pathway, PI3K/Akt signaling pathway, TP53 signaling pathway,

APC, and other signaling pathways often undergo genetic

changes in cancer. Then, the molecular mechanism of these

pathways and the role of each gene in these pathways and the

relationship between these pathways and the occurrence and

development of cancer were integrated (Vogelstein and Kinzler,

2004). Francisco used multi-omics data to analyze the

mechanisms and patterns of 10 pathways, including cell cycle,

Hippo, MYC, NOTCH, Nrf2, PI3Ki-Akt, RTK-RAS, TGF-β, p53,
and β-catenin/WNT, and identified the interaction of pathways

(Sanchez-Vega et al., 2018). The study has proven that the main

functions of the Hippo pathway include restriction of tissue

growth and regulation of cell proliferation, differentiation, and

migration in developing organs. In addition, the dysregulation of

the Hippo pathway can also lead to abnormal cell growth and the

occurrence of tumors (Meng et al., 2016). Giachino et al. (2015)

explored the role of the NOTCH signaling pathway in promoting

and suppressing cancer and analyzed the molecular mechanisms

of the NOTCH signaling pathway in hematological cancers and

solid tumors, which have also been linked to therapeutic

strategies targeting the NOTCH pathway in human cancer

treatment.

In recent years, the research on subtype analysis of single

cancer based on pathways has been continuously developed (Bild

et al., 2006; Liu et al., 2015; Kaunitz et al., 2017; Thanki et al.,

2017). Bidkhori et al. (2018) classified hepatocellular carcinoma

(HCC) patients into three subtypes with significant differences

based on graph and control theory concepts to the topology of

genome-scale metabolic networks and identified drug targets for

effective treatment of HCC patients.

Gong et al. (2021) discovered three subtypes of triple-

negative breast cancer (TNBC) with significant prognosis,

molecular subtype distribution, and genomic alterations by

investigating metabolic pathways, which demonstrated the

metabolic heterogeneity of TNBC and made it possible to

develop personalized treatments for unique tumor metabolism

characteristics. Park et al. (2019) identified glioblastoma

multiforme (GBM) subtypes with prognostic core genes,

prognostic chromosomal aberrations, and mutations. The aim

was to verify that the failure of targeted therapy in patients with

glioblastoma is associated with high heterogeneity and activation

of multiple oncogenic pathways. It is believed that subtype-

specific alterations can be used as new prognostic biomarkers

and therapeutic targets for GBM. Moreover, although the pan-

cancer analysis can open the doors to identification of the

commonalities in cancer and offer insights that could expand

further discoveries and cancer treatments, there are few studies

focused on the dysregulated patterns of multiple signaling

pathways systematically in pan-cancer, and the cooperative

mode of oncogenic signaling pathways is not clear.

Here, we proposed a method to identify different roles of

oncogenic signaling pathways from the perspective of pan-

cancer. The four molecular subtypes named by different

signaling pathways were identified based on the gene

expression of TCGA data, which shows distinct phenotypic

and clinical features. In addition, combining multi-omics data,

we studied the differences in differentially expressed genes, copy

number variations, chromatin accessibility, DNA methylation

levels, and tumor microenvironment of the four subtypes, and

identified differential genes of each omics which were used to

construct the prognostic models with significant results, such as

WNT7A, CNTN6, and CDR1. These differential signatures were

characterized as biomarkers with potential therapeutic and

prognostic significance for cancer. In conclusion, the research

helps to further understand the role of oncogenic signaling

pathways in pan-cancer.

Results

Four pathway-driven subtypes were
identified based on oncogenic signaling
pathways

In order to investigate the mechanism of 10 pathways in

cancers (Ciriello et al., 2013; Imperial et al., 2019; Paczkowska

et al., 2020), we collected 333 genes of 10 canonical oncogenic

signaling pathways confirmed in the previous research. Based on

those gene expression levels for 7,518 patients (TCGA training

set, Supplementary Table S1), we first characterized the

oncogenic signaling pathway dysregulation landscape by

calculating the enrichment scores of 10 pathways for each

patient with the GSVA package in R (Supplementary Figure

S1D) (Hanzelmann et al., 2013), and then using the consensus

cluster analysis (Wilkerson and Hayes, 2010; Gan et al., 2018), we

identified distinct clusters with the oncogenic signaling pathway

dysregulation landscape. To get the more robust clustering

results, the consistency of the clustering results was evaluated

between different cluster methods and measurements. There

were about 81% of the clustering results whose consistency
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rate reached 0.7 in all the cluster results. It showed that the

clustering results were consistent under different clustering

methods and measurements, which suggests that there are

significant different subtype patient groups in pan-cancer

(Figure 1A). Then, the consensus clustering results when k =

2–8 were discussed (Supplementary Figure S1). The variation

trend of the area under cumulative density function curve (CDF)

is shown in Supplementary Figure S1B, and the result at k = 4 was

the inflection point in all outcomes. Under k = 4, we observed the

clarity of classification of clustering results among 112 clustering

results, and then, the result with the measurement of the kmdist-

Spearman method was considered as the final result of clustering

(Figure 1B), which indicates that four robust consensus

molecular subtypes driven by specific oncogenic signaling

pathways were identified. The heat map shows the enrichment

score profile of 10 pathways for four molecular subtypes in

Figure 1C; it exhibits that the TGF-β pathway is upregulated

in subtype 1, then cell cycle, MYC and NF2 pathways are

downregulated in subtype 2, while subtype 3 is basically

opposite to subtype 2, and the TGF-β and TP53 pathways are

downregulated in subtype 4. Therefore, we named the four

molecular subtypes based on the characteristics of being

driven by the pathways as the TGF-β+ subtype (subtype 1);

cell cycle, MYC, and NF2− subtype (subtype 2); cell cycle and

TP53 + subtype (subtype 3); and TGF-β and TP53− subtype

(subtype 4), respectively.

Four subtypes based on oncogenic
signaling pathways show phenotypic and
clinical heterogeneity

To explore if there is the phenotypic and clinical

heterogeneity among those oncogenic signaling

pathway–driven molecular subtypes, we first continued to

compare the survival differences among patients in various

molecular subtypes using the Kaplan–Meier curve and the

log-rank test (Xie and Liu, 2005). It represents significant

differences in overall survival and disease-free survival time

among the patients of the four subtypes. The TGF-β+ subtype

had significantly better overall survival (OS) and disease-free

survival (DFS) (OS: Log rank, p < 0.0001, Figure 2A; DFS: Log

FIGURE 1
(A) Coincidence rate of the clustering results under different clustering methods and measures. (B) Consistent clustering result by the kmdist-
Spearman method to cluster the TCGA training set into four classes. (C) Dot plot of the enrichment scores for 10 pathways in four subtypes.
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rank, p < 0.0001, Figure 2B) than other subtypes. To investigate

whether these results hold for a specific cancer type or were only

valid to “pan-cancer”, we ran an analysis of the differences in

survival curves across the four subtypes within each cancer type.

It showed that the results of the survival curves remained similar

when compiling everything into pan-cancer; there were

differences only in CHOL, COAD, and THCA, but it was

considered due to the small sample size of the subtype

(Supplementary Figure S3).

A Cox hazard regression analysis was used to compare the

hazard ratio of OS and DFS among the four subtypes. Using the

TGF-β+ subtype as the reference group, we found that the other

three subtypes were significantly at a high risk for both OS and

DFS, suggesting that there was a relationship between poor

prognosis and the molecular subtypes driven by oncogenic

signaling pathways (Figures 2C,D). The results showed that

the hazard ratio of the TGF-β+ subtype was different from

the other three subtypes, indicating that the subtype

characteristics were independent predictors of patient survival.

The multiple Cox regression analysis also revealed that the

pathological stage was a risk factor for poor prognosis

(Supplementary Figures S2A,C). Then, we investigated if age

and sex contributed to the different hazard ratios among these

subtypes and found out that age > 60 was an important high risk

FIGURE 2
(A,B) Kaplan–Meier curves of the overall survival (OS) and disease-free survival (DFS) among the four subtypes in TCGA training cohort. (C,D)
Forest plot of single Cox regression analysis on subtypes for OS and DFS. The hazard ratios are shown with 95% confidence intervals. (E) Percentage
heat map shows the distribution of 32 cancers in four subtypes (left), and the dotted heat map and histogram show the distribution of 32 cancers in
the recurrence andmetastasis state (right). (F)Distribution of the four subtypes in the pathological stage. (G)Distribution of the four subtypes in
the recurrence and metastasis state. (H) Sensitivity to drugs of four subtypes’ patients. (None: sensitive; relapse, transfer, both: insensitive).

Frontiers in Genetics frontiersin.org04

Wang et al. 10.3389/fgene.2022.916400

77

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.916400


factor for survival both in OS and DFS, but the sex information

contributed to the hazard ratio only in OS (Supplementary

Figures S2B,D).

Next, we analyzed the distribution of cancer types among

patients to find out whether a cancer type is specifically enriched

in these subtypes. Cancers in the kidney with relatively better

prognosis are mainly enriched in the TGF-β+ subtype, intestinal

cancers are predominant in cell cycle and TP53 + subtype-

specific, and head and neck cancers are enriched in TGF-β
and TP53− subtype. This demonstrated that the distribution

of cancer types in the molecular subtypes may be tendentious, so

we categorized cancer types by molecular subtypes to understand

whether cancer type specific to the same subtype tend to be

driven by the same pathways, leading to similar mechanisms of

cancer pathogenesis. The TGF-β+ subtype was significantly

enriched in CHOL, PCPG, KICH, THCA, KIRC, and KIRP;

THE cell cycle, MYC, and NF2− subtype was significantly

enriched in ESCA, TGCT, LUAD, PAAD and PRAD, and the

cell cycle the TP53 + subtype was significantly enriched in READ,

CESC, COAD, LIHC, SKCM, DLBC, THYM, ACC, and UVM;

the TGF-β and TP53− subtype was significantly enriched in

HNSC, LGG, and OV. Nonetheless, the other nine mixed cancer

types of BLCA, BRCA, GBM, LUSC, MESO, SARC, STAD,

UCEC, and UCS were classified as mixed carcinomas, and

there was no significant difference enrichment among those

subtypes (Figure 2E). Furthermore, we continued to check if

the patients of cancer types enriched in the subtypes with poor

prognosis tend to metastasis or recurrence. The proportion of

recurrence and metastasis of the patients in CHOL, PCPG,

KICH, THCA, KIRC, and KIRP enriched in the TGF-β+
subtype were significantly lower than those of other cancers,

and the recurrence rate of the cell cycle, MYC and NF2 subtype-

specific patients was significantly higher than that of metastasis.

Most patients with cell cycle and TP53+ subtype-specific cancers

were more likely to develop metastases than local recurrence.

There was no significant difference in recurrence and metastasis

of mixed carcinomas. In other words, four oncogenic

pathway–related subtypes have tissue specificity and are

closely related to the recurrence and metastasis.

We further explored the reasons for differences in patient

survival and analyzed the pathological stage distribution of

patients among the four subtypes. From the TGF-β+ subtype

to TGF-β and TP53− subtype, the proportion of patients in the

early stage gradually decreased and the proportion in the late

stage gradually increased, which was consistent with the survival

analysis, indicating that the four subtypes’ patients have

significant differences in pathological stages (Figure 2F). At

the same time, the patients of the four subtypes also showed

differences in recurrence and metastasis rates. The patients of the

TGF-β+ subtype with the best prognosis owned the lowest rate of

recurrence and metastasis, while the patients of the TGF-β and

TP53− subtype with the worst prognosis owned a lower

metastasis rate than the patients of the cell cycle, MYC, and

NF2− subtype and cell cycle and TP53 + subtype, but it had a

significantly higher recurrence rate (Figure 2G), indicating that

those subtypes’ patients owned specific pathogenic molecular

mechanisms which determined the postoperative pathological

stage of the patient. Then, we used Fisher’s test to analyze the

status of recurrence and metastasis of patients after drug

treatment in four subtypes. First, we screened out the drugs

which were used by more than 50 patients for analysis

(Supplementary Figure S4A). The patients of the TGF-β+
subtype showed the smallest proportion of recurrence or

metastasis after drug treatment. Temozolomide was

significantly less sensitive in cell cycle and TP53 + subtype

patients (p < 0.05), and paclitaxel was significantly less

responsive in TGF-β and TP53− subtype patients (Figure 2H;

Supplementary Figure S4B). It means that temozolomide may be

related to the upregulation of the activity of the cell cycle and the

TP53 pathway and is also effective for the diseases caused by the

dysregulation of these two pathways.

Collectively, the patients of four subtypes based on oncogenic

signaling pathways had significant differences in clinical

phenotypes, such as survival time, tissue specificity, tumor

stage, recurrence and metastasis rates, and drug response. The

patients with the upregulated TGF-β pathway had the best

prognosis, while patients with downregulated TGF-β and

TP53 pathways had the worst prognosis. These data imply

that the pathogenesis of cancer is strongly correlated with the

molecular mechanisms of oncogenic signaling pathways, and the

dysregulation of pathways might be the driving factor for cancer

development.

Novel subtype and prognostic classifiers
were constructed based on the genes
related to prognosis among subtypes

To figure out whether transcriptional changes among

subtypes are related to the dysregulation of specific signaling

pathways, we estimated the gene expression difference in these

pathways in TCGA training cohort. According to 333 cancer-

related pathway gene expressions, 65 differentially expressed

genes between each subtype and other subtypes were

identified (p < 0.05 and fold change | log2FC | > 1,

Supplementary Table S2) (Robinson et al., 2010). Most genes

showed high expression in the cell cycle and TP53 + subtype and

the TGF-β and TP53− subtype, and just a few genes showed high

expression in the TGF-β+ subtype and the cell cycle, MYC, and

NF2− subtype (Figure 3A). Thereafter, by mapping differentially

expressed genes into these oncogenic signaling pathways, some

subtype-specific key sub-pathways with consistent

transcriptional change were identified (Figure 3B;

Supplementary Figures S5–S7). For example, NF2 and

WWC1 were highly expressed in the TGF-β+ subtype, which

promotes the high expressions of LATS1, SAV1, and other genes
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in the TGF-β+ subtype, whereas CRB1 and CRB2 were highly

expressed in the TGF-β and TP53− subtype, inhibiting the YAP1

gene, making it lowly expressed in the TGF-β and TP53− subtype

in the HIPPO pathway. This result showed that the different

driver genes might lead to the different pathway changes in the

TGF-β+ subtype and the TGF-β and TP53− subtype, which

suggests that the oncogenic signaling pathways own subtype-

specific driving sub-pathways, resulting in different states of

dysregulation of downstream pathways.

Furthermore, we explored whether these 65 differentially

expressed genes would predict a worse prognosis in pan-cancer.

A total of 56 prognostic-related genes were identified by using a

single Cox regression analysis, andmultivariate Cox proportional

hazard models revealed 30 genes which can predict worse

prognosis (Figure 3C). These 30 genes were enriched into

WNT, RTK-RAS, NOTCH, HIPPO, and cell cycle pathways

(Figure 3D). In particular, there are 10 differentially expressed

genes associated with prognosis enriched in the WNT pathway,

which might be part of the reason for the upregulation of the

WNT pathway activity in the cell cycle, MYC, and NF2− subtype

and TGF-β and TP53− subtype. Collectively, our results

demonstrate that there are strong relationships between

pathway dysregulation and the subtypes. We further explored

to construct a subtype and prognostic classifiers, based on the

expression profiles of these 30 genes, by using the support vector

machine (SVM) method. Then, TCGA test cohort was used to

verify these 30 genes as biomarkers for predicting subtype and

prognosis, and the classifiers’ results in survival were also very

significant (Figures 3E,F, p < 0.0001). At the same time,

GSE40967 and GSE37642 data on the GPL570 platform from

the Gene Expression Omnibus (GEO) database were downloaded

as validating (external verification) data sets. Then, SVM was

used to build the classifiers, and the classification result had

significant survival differences between our prognostic

FIGURE 3
(A)Heat map of the log2FC value of differentially expressed genes in four subtypes. (FC, fold change, the ratio of the average mRNA expression
for each cancer pathway–related subtype to the average mRNA expression for samples not of the aforementione subtype. Red, upregulated; blue,
downregulated.). (B) Interaction of genes in the HIPPO pathway and the FC value of the four subtypes of the gene. (C) Forest plot of multivariate Cox
regression analysis for 30 genes related to prognosis. The hazard ratios are shown with 95% confidence intervals (***p < 0.001; **p < 0.01; *p <
0.05; and p < 0.1). (D) Pathways in which 30 differentially expressed genes are enriched. (E) KM survival curves of the subtype classifier constructed
using samples from TCGA test cohort by the SVM method. (F) KM survival curves of the prognosis classifier constructed using samples from TCGA
test cohort by the SVM method. (G) KM survival curves of the subtype classifier constructed using GSE40967 by the SVM method. (H) KM survival
curves of the prognosis classifier constructed using GSE37642 by the SVM method.
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subgroups (Figure 3H). The Kaplan–Meier curve of

GSE40967 data also revealed distinct prognostic outcomes

among the predicted subtypes, although the difference was not

statistically significant (p = 0.08, Figure 3G), possibly due to the

single cancer type included in the data.

These results suggest that these 30 differentially expressed

genes associated with prognosis among subtypes could be

recognized as key genes in oncogenic signaling pathways and

biomarkers for identifying molecular subtypes and risk groups,

and their expression changes can also affect the expression of

upstream and downstream genes through the relationship of

promotion or inhibition between genes, leading to dysregulation

of oncogenic signaling pathways.

Oncogenic signaling pathway–based
subtypes show distinct genomic alteration
features

Genomic alterations can drive oncogenic signaling pathway

reprogramming in cancers. We further explored to compare

genomic alterations among the four subtypes with the copy

number variation data on 22,445 genes obtained from UCSC

Xena for TCGA pan-cancer patients. Genome-wide copy

number variation revealed that the TGF-β and TP53− subtype

had a significantly higher copy number variation, especially on

chromosomes 3, 4, and 19, as shown in Figure 4A. We further

examined the detailed characterization of copy number variation

FIGURE 4
(A) Somatic CNA frequency of individual genes in each subtype plotted along the chromosomes. (B) Comparisons of somatic CNA between
subtypes with −log10 FDR plotted along the chromosomes (Fisher’s exact test). (C) Interaction of the enriched pathways. The size represents the
number of genes, and the color represents the p-value. (D) Differences in copy number variation across the four subtypes of the four copy number
variation states of the seven genes and their relationship with the prognosis. (E) Changes in the number of amplified and deleted samples of
WNT7A in the four subtypes; the expression of WNT7A in the four subtypes (left) and the difference in survival between the two categories (right).
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across the subtypes. Between any two subtypes, the differences of

all genes in copy number amplification and deletion (−log10 FDR

value) were calculated using Fisher’s exact test (Figure 4B). There

were significant difference peaks on chromosomes 3, 5, and

6 between the TGF-β+ subtype and the cell cycle and TP53+

subtype; on chromosomes 3, 5, 7, and 19 chromosomes between

the TGF-β+ subtype and the TGF-β and TP53− subtype; and on

chromosomes 12 and 19 between the cell cycle and TP53 +

subtype and the TGF-β and TP53− subtype. Combined with

pathway-related genes, especially in chromosome 3, we found

that there were seven genes, namely, FAT2, CDK2, CDKN2A,

WNT7A, TCF7, FGFR4, and ROS1(−log10 FDR>2), which had

significant differences in the copy number between subtypes.

To further explore the biological functions of these seven

genes, we performed a pathway enrichment analysis for these

genes. In addition to affecting oncogenic pathways, we further

examined the biological functions of these genes to see if they

affect cancer development from other perspectives. The results

showed that the seven genes were also enriched in the pathways,

including Cushing syndrome, and the pathways of cancer and

kinase activity (Figure 4C). These genes were indeed involved in

cancer development as a multifunctional model, and this result

suggests that the genomic alterations of these genes may drive the

dysregulation of oncogenic signaling pathways. Then, the copy

number variation states of the seven genes which had different

copy number changes between subtypes were disassembled to

analyze. We found that FAT2-amp, FGFR4-amp, TCF7-amp,

and WNT7A-delete showed upregulation in the TGF-β+
subtype, and most other genes showed upregulation in the

other three subtypes. Multivariate Cox proportional hazard

models also revealed the prognosis-related states in non-

diploid normal copy states of the seven genes (Figure 4D).

The amplification frequency of WNT7A gradually increased

from the TGF-β+ subtype to the TGF-β and TP53− subtype,

and the frequency of WNT7A deletion gradually decreased from

the TGF-β+ subtype to the TGF-β and TP53− subtype. The most

deleted changes and the least amplification changes of WNT7A

in copy number variation were observed in the TGF-β+ subtype,

which was similar to the WNT7A gene expression trend among

the four subtypes. It shows that the copy number variation

change of WNT7A affects its expression on the transcriptome

and thereby affects the function of the WNT pathway, and this

FIGURE 5
(A) Five enhancers visualized using IGV. (B) ATAC accessibility (upper triangle) and expression (lower triangle) heat map of five enhancer-related
genes in four subtypes. (C) Pathways in which five enhancers are enriched. (D) Multi-Cox risk regression model of five enhancers. (E) KM survival
curve for classifying the high and low risks of TCGA validation set samples was constructed by five enhancers as features. (F) KM survival curve of
TCGA validation set samples divided into four subtypes by the classifier was constructed with five enhancers as features.
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result suggests that the copy number variation of WNT7A could

be a driver factor for WNT pathway dysregulation. Then, we

continued to select the four copy number variation states of

WNT7A as biomarkers for diagnosis. Notably, the survival of

patients with homozygous deletion of WNT7A was significantly

better than that of patients with normal diploid copies of

WNT7A (p = 0.0083, Figure 4E), which validates the efficacy

of WNT7A as a prognostic marker.

Five subtype-specific enhancers were
identified by a chromatin accessibility
analysis

The integration of transcriptome data and ATAC-seq could

determine a great deal of putative distal enhancers (Corces et al.,

2018). We continued to identify subtype-specific transcriptional

regulators that influence patterns of oncogenic pathway

dysregulation at the level of chromatin accessibility by

integrating ATAC-seq data with RNA-seq data for pan-cancer

cases in TCGA. A total of 2,579 differential ATAC peaks between

any subtypes were identified, and we found that there were five

enhancers showing subtype-specific activity in the oncogenic

signaling pathways such as CNTN6 in the NOTCH pathway and

MLXIPL in the MYC pathway. Furthermore, a location analysis

of these peaks showed that these subtype-specific enhancers’

chromosome locations were distinct. For example,

FZD1_m4 and CNTN6_m2 were located in the distal

upstream of the related genes, FHL1_p3 and NF2_p2 were

located in the inner gene, and MLXIPL_m4 was located in the

distal downstream of related genes (Figure 5A). We further

investigated whether these enhancers located in different

chromosomal regions could lead to its expression change.

Subsequently, expression of these subtype-specific enhancer-

related genes was analyzed, and it was found that the changes

in chromosome accessibility and gene expression showed a

consistent trend (Figure 5B). For example, MLXIPL displayed

high chromatin accessibility and gene expression level in the cell

cycle and TP53 + subtype, whereas it showed the opposite trend

in the cell cycle, MYC, and NF2− subtype. This result suggests

that these subtypes own their specific transcriptional regulators,

which drive oncogenic signaling pathway dysregulation by

distinct molecular mechanisms.

To understand the molecular function of the enhancers, we

performed the functional enrichment analysis and found that the

five genes were enriched in several other pathways, including cell

junction and anchoring junction pathways (Figure 5C). The

junctions of these pathways might affect cancer cell adhesion

and further affect the possibility of metastasis. We further

explored whether these subtype-specific enhancers could be

used to predict a worse OS and construct subtype classifiers.

NF2, CNTN6, and FZD1 presented very low risk. It suggests that

the genes ofNF2, CNTN6, and FZD1might be low risk factors for

poor prognosis (Figure 5D). Using these five genes as features, we

constructed subtype and prognostic classifiers using the random

forest method. The patients were divided into high- and low-risk

groups with significant survival differences according to the

prognostic model risk score (p < 0.0001, Figure 5E). Also, the

survival differences were also significant for subtype classifiers

(p = 0.009, Figure 5F). Overall, our analysis revealed that these

five genes can serve as key biomarkers for identifying patient

prognostic risk and subtypes based on oncogenic signaling

pathways.

Pathway-driven subtype-associated
methylation sites were identified

In tumor cells, proto-oncogenes are in a state of

hypomethylation and activated, while tumor suppressor genes

are in a state of hypermethylation and inhibited (Kulis and

Esteller, 2010; Gyorffy et al., 2016; Chen et al., 2021). Next,

we explored whether some methylated CPG sites had DNA

methylation abnormalities due to subtypes driven by the

oncogenic signaling pathway. We further performed a

methylated CPG site analysis, and 11,122 differential

methylated sites were identified. According to the methylation

sites’ position on the gene, the differential methylation site of

each subtype was classified (Figures 6A,B). There were the least

differential methylated sites in 3′UTR, and most of the

differential methylated sites were located on CpG islands.

There were a few differential methylated sites in the TGF-β+
subtype, but much more in the cell cycle and TP53 + subtype and

the TGF-β and TP53− subtype.

To compare methylation sites’ difference across subtypes, we

further used the weighted gene co-expression network

(WGCNA) (Langfelder and Horvath, 2008) to explore the

subtype-specific driving methylation sites from the

11,122 methylation sites. After screening, the soft thresholding

power of the WGCNA was 12 (Figure 6C). The network was

constructed to classify all methylation sites into four modules

(gray, brown, turquoise, and blue, Figure 6D). The correlations

between the four modules and the subtype characteristics were

obtained by using the phenotypic data on the patients

(Figure 6E). It can be seen that methylation sites in the

turquoise module are not only related to the turquoise

module but also to its corresponding traits (Figure 6F), which

further indicates that these sites are worthy of in-depth

exploration.

We continued to identify subtypes related to the methylation

sites, whose correlation with the turquoise module was greater

than 0.8 and the subtype with a correlation greater than 0.25, and

it revealed the strong correlations among these methylation sites.

A total of 15 genes mapped by the DMSs (differentially

methylated sites with a degree greater than 300) were

identified (Supplementary Table S3). Furthermore, we
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estimated the methylation level of genes across subtypes. The

methylation level of patients from the TGF-β+ subtype was

significantly lower than that of patients from other subtypes,

and the patients from the TGF-β+ subtype also had better

prognosis than patients from other subtypes (Figure 6G).

Then, these genes were mainly enriched in WNT, NOTCH,

and RTK-RAS pathways. The results indicate that oncogenic

signaling pathway–based subtypes are closely related to the

methylation status, and the genes annotated at these 15 CpG

sites are closely related to the dysregulation of oncogenic

signaling pathways; also, hypomethylation is associated with a

better prognosis for patients.

Identification of tumor
microenvironment–associated immune
biomarkers across subtypes

The tumor microenvironment (TME), the environment for

tumor cells to survive, could facilitate tumor cell growth,

metastasis, and immune escape. We estimated whether these

oncogenic signaling pathway–based subtypes would show

distinct tumor microenvironment characteristics. We first

analyzed the infiltration level of immune cells estimated by

TIMER and MCP of the four subtypes’ patients and found

these subtype patients with specific tumor microenvironments.

FIGURE 6
(A) Location of methylation sites on genes. (B) Location of methylation sites on CPG islands. (C) Analysis of network topology for different soft
thresholding powers. (D) Module colors and gene dendrogram. (E) Correlations between the four modules and the subtype characteristics of
samples. (F) Weighted interaction gene network of the CpG sites in the turquoise module. (G) Methylation profiles of the 15 CpG sites.
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It was mainly reflected in the fact that the infiltration of most

immune cells in the cell cycle, MYC, and NF2− subtype was

significantly higher than that of other subtypes (Figure 7A,

Supplementary Figure S8), especially neutrophils (Figure 7B)

and B cells (Figure 7C), whereas we found that patients of the cell

cycle, MYC, and NF2− subtype had a higher level of immune cell

infiltration but a poor prognosis. Therefore, we continued to

analyze this issue from the perspective of immune cell function

such as T-cell dysfunction (Jiang et al., 2018; Zhao et al., 2020)

and immune checkpoints. A total of 10 differentially expressed

T-cell dysfunction–related genes were identified across subtypes,

and these genes all showed significantly high expression in the

cell cycle, MYC, and NF2− subtype (Figures 7D–F), which

suggested that most patients in the cell cycle, MYC, and NF2−

subtype exhibited a state of T-cell dysfunction. We continued to

check the immune checkpoint genes’ expression level across

subtypes and found that immune checkpoint genes also

tended to be highly expressed in the cell cycle, MYC, and

NF2− subtype (Figure 7G). Immune checkpoint genes were

overexpressed, which can lead to suppressed immune function

and cause low body immune capacity. In general, our analysis

suggests that high gene expression of T-cell dysfunction and

immune checkpoint genes might be responsible for the patients

owning a higher level of immune cell infiltration but a lower

prognosis in the cell cycle, MYC, and NF2− subtype. Next, we

analyzed 14 cell states of the four subtypes’ patients based on the

gene set variation analysis (GSVA) (Yuan et al., 2019). Most cell

states except the cell cycle showed upregulation in the TGF-β+
subtype and the cell cycle, MYC, and NF2− subtype, and cell

cycle, DNA damage, and DNA repair showed upregulation in the

cell cycle and TP53 + subtype (Figure 7H). Overall, the

aforementioned results reveal significant differences in

immune cell infiltration, T-cell function, and cell state across

subtypes.

Next, we continued to analyze whether the aforementioned

10 T-cell dysfunction gene expression models could predict

patient prognosis and subtype. There were five genes with

significantly high risk, and only one gene showed significantly

FIGURE 7
(A) Normalized infiltration of immune cells from TIMER and MCP in the four subtypes. (B,C) Violin chart of TIMER neutrophils and B-cell
infiltration. (D)Gene expression heatmap of subtype-specific T-cell dysfunction genes. (E,F) Boxplot of TIMERCD4 T-cell and CD8 T-cell infiltration.
(G) Immune checkpoint tumor cells (left) and immune checkpoint T cells’ (right) corresponding gene normalized expression in the four subtypes. (H)
Cell state enrichment scores’ heat map. (I)HR values of 10 subtype-specific T-cell dysfunction genes. (J,K) KM survival curves of the prognostic
classifier (left) and subtype classifier (right) constructed with 10 subtype-specific T-cell dysfunction genes as features.
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low risk (Figure 7I). These genes were identified as key prognostic

factors and then used as features to construct prognosis and

subtype classifiers; both classifiers showed great performance

(KM survival curve, log rank: p < 0.0001, Figures 7J,K).

Materials and methods

TCGA data sets

The gene expression data on 32 cancers including

9,398 samples were downloaded from UCSC Xena (https://

xenabrowser.net/), and the data types were mRNA count-UQ

and mRNA FPKM-UQ. We divided all TCGA patients into the

training data set (80%) and the test data set (20%).

Then, the copy number variation data on 22,445 genes were

obtained from UCSC Xena. The copy number variation data on

TCGA samples included the four non-diploid normal copy states

of homozygous deletion (−2), single copy deletion (−1), low copy

number amplification (1), and high copy number

amplification (2).

The clinical data on TCGA samples including gender, age,

tumor weight, TNM stage, and survival time were downloaded by

the GDC tool (https://portal.gdc.cancer.gov/).

Gene expression omnibus data sets

We downloaded GSE40967 and GSE37642 data on the

GPL570 platform from the Gene Expression Omnibus (GEO)

database as an external validation data set. (https://www.ncbi.

nlm.nih.gov/geo/). GSE40967 contained two sets of data,

GSE39582 had 585 tumor samples including 566 CC samples

and 19 non-tumor samples. GSE40966 had 566 tumor samples.

The data contained clinical information including sex, age, TNM

stage, treatment strategy, survival time, and mutation

information. GSE37642 contained the expression data on

562 samples of adult acute myeloid leukemia (AML) patients.

The clinical information included age and survival status.

ATAC-seq data set

The genome-wide chromatin accessibility profiles (Corces

et al., 2018) of 410 tumor samples spanning 23 cancer types from

TCGA were downloaded by the GDC tool (https://portal.gdc.

cancer.gov/).

Immune cells

The tumor purity of the six immune cells, namely, B cells,

CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and

dendritic cells of TCGA cancer patients, were available from

TIMER (version 1.0) (Li et al., 2017) (http://cistrome.dfci.

harvard.edu/TIMER/).

DNA methylation data

The DNA methylation 450 k data on 31 cancers were

downloaded from UCSC Xena. The data recorded the DNA

methylation value (β value) of each array probe in each sample.

The DNA methylation value is a continuous variable between

0 and 1, which represents the degree of methylation. A higher β
value represents hypermethylation, and a lower β value

represents hypomethylation.

We used the Xena probeMap derived from GEO

GPL13534 to map the microarray probes to the coordinates of

the human genome, displaying the annotation information of all

methylation sites, including base changes, chromosomes, CPGs,

and gene positions.

Gene set variation analysis to calculate the
enrichment score of each pathway

Gene set variation analysis (GSVA) (Hanzelmann et al.,

2013) is a non-parametric, unsupervised method that

estimates the enrichment score of each gene set based on the

gene expression level. We used the R package “GSVA” (version

1.38.2) to calculate the enrichment scores of 10 oncogenic

signaling pathways for each sample and built a pathway

dysregulation profile. In the profile, the enrichment score

greater than 0 means that the pathway activity is upregulated,

while an enrichment score less than 0 indicates that the pathway

activity is downregulated. The enrichment score is close to 0,

which means that there is little difference in the pathway activity

(http://www.bioconductor.org/packages/release/bioc/html/

GSVA.html).

Consensus cluster on training samples

We used the ConsensusClusterPlus package (version 1.54.0)

in R (Wilkerson and Hayes, 2010) to perform consistent

clustering on the pathway dysregulation profile obtained by

the GSVA method. The optimal number of clusters is

determined by the cumulative density function (CDF), which

plots the corresponding empirical cumulative distribution

defined in the range between 0 and 1, and the optimal cluster

is determined by calculating the proportional increase in the area

under the CDF curve number. When any further increase in the

number of clusters (K) does not result in a corresponding

significant increase in the area of the CDF, the number of

clusters is determined.
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Our consistent clustering methods included pam, kmdist,

and hc, and clustering measures included Pearson, Spearman,

maximum, Minkowski, Manhattan, binary, Canberra, and

Euclidean methods. Using each method and each

measurement to cluster cancer samples, the number of

categories ranged from 2 to 8, reps = 50, pItem = 0.8, and

pFeature = 1, and a total of 112 clustering results were

obtained.

Then, under the same clustering number, we compared the

overlapping rate among these clustering results using the

Wilcoxon rank-sum test.

Kaplan–Meier and log-rank tests

We used the R packages “survival” (version 3.2–7) and

“survminer” (version 0.4.9) to calculate the survival difference

among subtypes; log rank p < 0.05 represents a significant

difference.

Identification of differentially expressed
genes

Subtype-specific differentially expressed genes were

identified (Wilcoxon text p < 0.05; |log2FC| > 1) by using the

R packages “edgeR” (version 3.32.1) (Robinson et al., 2010) and

“limma” (3.46.0).

Cox proportional hazards regression
model

We performed a univariate Cox regression analysis on

65 differentially expressed genes among subtypes (p < 0.01),

and then, 56 genes that correlated with the prognosis were

identified (p < 0.01). Then, the multivariate Cox proportional

analysis was performed, and 30 genes were regarded as

candidate prognostic genes. To identify independent

predictors that significantly contributed to OS or RFS, we

constructed a risk model based on these 30 genes and

calculated the risk score of each patient using the predict()

function in the survival package.

RiskScore � ∑ βi × Xi,

where βi represents the risk regression coefficient of the multiple

Cox analysis corresponding to each gene, and Xi represents the

gene expression value. The samples were divided into high- and

low-risk groups based on the median value of the risk score for

subsequent analysis.

Random forest and support vector
machine to construct the subtype and
prognosis classifiers

We used random forest and support vector machine (SVM)

methods to construct the subtype and prognostic classifiers by

using the R packages “randomForest” (version 4.6–14) and

“e1071” (version 1.7–6) in the training data set and then used

the test data set to test the performance of the classifiers. In the

random forest method, we set the cutoff to 0.5 so that every tree

“votes”. Next, we used the importance function to calculate the

accuracy of the model variables and the gini coefficient to judge

the importance of the variables. The mean value of the gini index

change was used as a measure of the importance of the variables,

and all features were sorted according to their importance.

Fisher’s exact test

We used Fisher’s exact test (Blevins and McDonald, 1985) to

calculate the difference in copy number amplification and

deletion between each two subtypes (p < 0.01; FDR > 2).

Integrative genomics viewer to visualize
ATAC-seq data

IGV (Integrative Genomics Viewer) (Thorvaldsdottir et al.,

2013) is a tool that can visualize sequencing data on a local

computer. For the ATAC-seq bw file of each sample, IGV

(version 2.7.0) was used to visualize the chromatin

accessibility at the genome position of each subtype.

Weighted gene co-expression network to
identify the methylation sites

The R package WGCNA (version 1.70–3) (Langfelder and

Horvath, 2008) was used to build a weighted gene co-expression

network. First, the soft threshold β was screened to ensure that

the constructed network was more in line with the characteristics

of the scale-free network. Next, the one-step method was used to

construct the network, and gene clustering was performed based

on TOM. Then, we used the hierarchical clustering tree to display

each module and obtained the correlation between the modules.

The correlations between characteristic methylation sites and

clinical phenotypes were assessed by Pearson’s correlation

analysis, and the correlation coefficients between modules and

clinical phenotypes were used to select modules for a

downstream analysis.
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MCP to calculate the cell infiltration
fraction

We used the R package MCPcounter (version 1.2.0) (https://

github.com/ebecht/MCPcounter) to calculate the infiltration

fraction of T cells, CD8 T cells, cytotoxic lymphocytes, NK

cells, B cells, monocytes, bone marrow dendrites, neutrophils,

endothelial cells, and fibroblasts based on gene expression data

in GDC.

Discussion

Cancer subtypes have broad prospects in understanding

cancer and personalized treatment (Cao et al., 2018; Guo

et al., 2019). However, many studies so far have been based

on single cancer. Analyzing from a pan-cancer perspective can

identify the differences and commonalities across different

cancer types. Signaling pathways change in different

combinations among cancers, and there are complex

interactions between pathways (Jackstadt et al., 2019; Li et al.,

2020). But the extent, mechanism, and co-occurrence of these

pathway changes varied across tumors and tumor types.

We divided patients of TCGA 32 cancer types into four

molecular subtypes; although our project covered most tissues

and organ systems, some tumor types including most

hematologic cancers were not included. Also, we did not

combine the known molecular subtypes of certain cancer

types for our analysis. Then, the biomarkers among subtypes

were identified at the multi-omics levels. A multi-omics analysis

is of great significance for revealing cancer development,

treatment resistance, and recurrence risk, and it is the key to

advancing precision medicine in clinical practice. However, we

did not conduct further and deeper mining of multi-omics

biomarkers we found. In addition, drug sensitivity requires

clinical evaluation; then well-designed clinical trials are

expected to test the possibility of translating our results to

clinical practice in the future.

In conclusion, our study provided a new perspective to

understand the relationship of the dysregulation of oncogenic

signaling pathways and cancers and identified potential

prognostic biomarkers from multiple omics data, and it

further might have implications for clinical applications in the

future.

Conclusion

Here, based on gene set variation analysis (GSVA), we

constructed a pathway dysregulation landscape and identified

four subtypes based on oncogenic signaling pathways in pan-

caner, which may provide an increased understanding of the

common molecular mechanisms driven by oncogenic signaling

pathways underlying the pathogenesis of the malignancy. These

four subtypes showed distinct patient prognosis, cancer type

distributions, transcriptional changes, chromatin accessibility,

genomic alterations, methylation degree, and tumor

microenvironment characteristics. Several signature sets were

identified by integrating multi-omics profiles, which were used

to construct a subtype classifier and a prognosis prediction

model. Overall, our analysis demonstrates that the molecular

heterogeneity of oncogenic signaling pathways, improves the

understanding of the mechanisms of oncogenic signaling

pathways driving tumor progression, and enables the

development of personalized therapies targeting unique tumor

oncogenic signaling pathway dysregulation profiles.
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cluster distribution using the kmdist–Spearman method, k = 2–8. (D)
Signaling pathway–based clustering results of TCGA training cohort (n=7518).
The heat map shows normalized enrichment scores of the four subtypes.

SUPPLEMENTARY FIGURE S2
(A,C) Forest plot of the multiple Cox regression analysis on the
pathological stage for OS (A) andDFS(C). (B,D) Forest plot of themultiple
Cox regression analysis on age and sex for OS (B) and DFS (D). The
hazard ratios are shown with 95% confidence intervals.

SUPPLEMENTARY FIGURE S3
Kaplan–Meier survival curves among the four subtypes of 22 cancers.

SUPPLEMENTARY FIGURE S4
(A) Drugs used by more than 50 patients (red). (B) Sensitivity of four
subtypes of patients to different situations with treatment. (None:
sensitive; relapse, transfer, both: insensitive).

SUPPLEMENTARY FIGURE S5
(A) Interactions of genes in the cell cycle pathway and fold change values
of four subtypes of genes. (B) Interaction of genes in the MYC pathway
and the fold change values of the four subtypes of the genes. (C)
Interactions of genes in the NOTCH pathway and fold change values of
four subtypes of genes.

SUPPLEMENTARY FIGURE S6
Interactions of genes in the RTK/RAS pathway and fold change values of
four subtypes of genes.

SUPPLEMENTARY FIGURE S7
Interactions of genes in the WNT pathway and fold change values of four
subtypes of genes.

SUPPLEMENTARY FIGURE S8
Infiltration of immune cells in MCP and TIMER in four subtypes.
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TCGA dataset.
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Background: Synovial sarcoma (SS) is a rare and aggressive cancer that can

come from distinct soft tissue types including muscle and ligaments. However,

the transcriptomic landscape of SS is still poorly understood. This study aimed

to systematically dissect the changes in SS transcriptome from different

perspectives.

Methods: We performed deep total RNA sequencing on ten paired Synovial

sarcoma and tumor-adjacent tissues to systematically dissect the

transcriptomic profile of SS in terms of gene expression, alternative splicing,

gene fusion, and circular RNAs.

Results: A total of 2,309 upregulated and 1,977 downregulated genes were

identified between SS and tumor-adjacent tissues. Those upregulated genes

could lead to the upregulation of the cell cycle, ribosome, and DNA replication

pathways, while the downregulated genesmay result in the downregulation of a

set of metabolic biological processes and signaling pathways. Moreover,

2,511 genes (including 21 splicing factors) were differentially alternative

spliced, indicating that the deregulation of alternative splicing could be one

important factor that contributes to tumorigenesis. Additionally, we identified

the known gene fusions of SS18-SSX1/SSX2 as well as 11 potentially novel gene

fusions. Interestingly, 49 circular RNAs were differentially expressed and their

parental genes could function in muscle contraction and muscle system

processes.

Conclusions: Collectively, our comprehensive dissection of the transcriptomic

changes of SS from both transcriptional and post-transcriptional levels provides

novel insights into the biology and underlying molecular mechanism of SS.
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Introduction

Synovial sarcoma (SS) is a rare and aggressive soft tissue

cancer, which tends to occur near large joints, particularly in the

extremities of the arms or legs, in young adults (Ladanyi et al.,

2002). At present, surgery is still the main treatment strategy for

SS. Cytogenetically, a significant portion of SS cases involve

nonrandom translocations between SS18 and SSX (Przybyl

et al., 2012). Although a range of studies has investigated the

genetic profile of SS from different cascades, a comprehensive

transcriptomic profile of SS from different aspects is still lacking

(Cancer Genome Atlas Research Network and Electronic

address, 2017; He et al., 2017). RNA sequencing (RNA-Seq)

technologies provide unprecedented opportunities to gain

insights into the transcriptome from various aspects,

including expression level, alternative splicing (AS), gene

fusions, and circular RNAs. These analyses are essential to

systematically reveal and better understand the abnormally

transcriptomic changes of SS; however, a comprehensive

exploration of the SS transcriptome from these aspects is still

currently lacking.

AS is a crucial mechanism of post-transcriptional

modification responsible for increasing both transcriptome

and proteome diversity of a cell in eukaryotes (Wang et al.,

2008; Keren et al., 2010). Since AS play important role in a variety

of physiological processes (e.g. developmental programming),

the misregulation of AS can result in splicing defects which may

have a pathogenic function to cause severe diseases, including

cancers (Wang and Cooper, 2007; Zhang and Manley, 2013).

However, the genome-wide AS profile of SS is rarely studied to

date. Furthermore, besides the common gene fusions formed by

the translocation between chromosome X and 18 in SS, other

gene fusions could also contribute to tumorigenesis or

progression (Edwards, 2010). In addition, many circular RNAs

(circRNAs) have been demonstrated to be functional as miRNA

sponges and modulators of transcription (Chen, 2016; Li et al.,

2018), which could be vital for different aspects of malignant

phenotypes, such as cell cycle, apoptosis, and invasion (Qu et al.,

2015; Greene et al., 2017). Moreover, some circRNAs are

potentially important biomarkers for certain cancers (Abu and

Jamal, 2016; Dong et al., 2017; Greene et al., 2017). But little is

known about the expression profile of circRNAs in SS and almost

no study has investigated this in SS. Thus, systematic dissection

of the SS transcriptome from both transcriptional and post-

transcriptional layers is necessary to better understand the

underlying mechanisms of SS development.

Here we performed Ribo-Zero RNA-seq on ten pairs of

Chinese SS and corresponding tumor-adjacent tissues to

comprehensively explore the transcriptome profile of SS from

various aspects. We first carried out differential expression

calling and detected a number of upregulated and

downregulated genes. Then the AS deregulation of a

multitude of genes and a set of tumor-specific gene fusion

events were identified. We also investigated the expression

changes of circRNAs between SS and tumor-adjacent tissues.

Moreover, we constructed an interaction network among

circRNAs, miRNAs, and their target genes, which enabled us

to further gain insights into the potential function of circRNAs

in SS.

Materials and methods

RNA extraction

Total RNA was extracted from the 10 mg synovial sarcoma

and tumor-adjacent tissues after grinding by Homogenizer

(Scientz) using TRIzol® Reagent (Invitrogen) and RNeasy

MinElute spin column (Qiagen) according to the

manufacturer’s instructions. Then the integrity of the total

RNA was determined by 2100 Bioanalyser (Agilent) and

quantified using the NanoDrop (Thermo Scientific). About

1 ug high-quality or media-quality RNA sample (OD260/

280 = 1.9–2.0, RIN≥4) was used to construct the sequencing

library.

Library preparation and RNA sequencing

RNA purification, reverse transcription, library

construction, and sequencing were performed at WuXi

NextCODE in Shanghai according to the manufacturer’s

instructions (Illumina). The rRNA-depleted sequencing

libraries from total RNA were prepared using Illumina

TruSeq® Stranded Total RNA Gold preparation Kit. About

1 ug total RNA was used as input material, and then the

Ribo-Zero Gold kit was used to remove both cytoplasmic

and mitochondrial rRNA. After purification of the remaining

RNA without rRNA, the RNA was fragmented into small pieces

using divalent cations under elevated temperature. The cleaved

RNA fragments are copied into the first-strand cDNA using

reverse transcriptase and random primers, followed by second-

strand cDNA synthesis. These cDNA fragments then were

subjected to end-repair, phosphorylation, and ‘A’ base

addition according to Illumina’s library construction

protocol. The products were purified and enriched with

PCR, and the AMPure XP Beads (Beckmen) were used to

clean up the amplified target fragments to create the final

cDNA library. After library construction, Qubit

2.0 fluorometer dsDNA HS Assay (Thermo Fisher Scientific)

was used to quantify the concentration of the resulting

sequencing libraries, while the size distribution was analyzed

using Agilent BioAnalyzer 2100 (Agilent). Sequencing was

performed using the Illumina system following Illumina-

provided protocols for 2 x150 paired-end sequencing in

WuXi NextCODE at Shanghai, China.
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Short-read mapping and gene expression
quantification

The RNA-seq reads of each sample for 10 pairs of SS and

tumor-adjacent tissues were separately aligned to the human

reference genome GRCh38 using HISAT2 (version 2.1.0) (Kim

et al., 2015). Then we quantified the gene expression of each

sample by employing StringTie (version 1.3.6) (Pertea et al.,

2015). The human gene annotation file in the GTF format of

version 95 from the Ensembl database (http://www.ensembl.org)

was used. The mapped read count and expression value in

transcript per million (TPM) for each gene were obtained

from StringTie and used for downstream analysis.

Differential gene expression calling

For differential expression analysis, the read countmapped to

each gene was used as input. The gene expression changes

between SS and tumor-adjacent tissues were examined using

DESeq2 (version 1.24.0) (Love et al., 2014). We defined the

differentially expressed genes (DEGs) with the threshold of |fold

change| >2 and adjusted p-value < 0.01.

Detection of alternative splicing events

We investigated the alternative splicing (AS) profile of genes

between SS and tumor-adjacent tissues by employing rMATS

(version 4.0.2) (Shen et al., 2014). The bam files outputted by

HISAT2 after read mapping were used as the input. Five

common AS types of exon skipping (ES), alternative 3′
acceptor sites (A3AS), alternative 5′ donor sites (A5DS),

intron retention (IE), and mutually exclusive exons (ME) were

investigated. The differential alternative splicing events were

identified with the cutoff of FDR <0.05.

Identification of gene fusions

In order to explore the genetic alterations, we employed

TopHat-Fusion (version 2.1.0) with default parameters to

identify the gene fusion events in all tumor and normal

samples (Kim and Salzberg, 2011). Only the fusions with at

least 3 supporting reads and 2 supporting pairs were considered.

Finally, 14 and 11 gene fusion pairs were detected in SS and

tumor-adjacent tissues, respectively. We only kept the 14 gene

fusions that are unique to SS and discarded the fusions detected

in tumor-adjacent tissues.

Circular RNA detection and differential
expression analysis

We investigated the expression profiles of circRNAs in SS

and tumor-adjacent tissues using CIRI (version 0.1.0) (Gao et al.,

2015). Then differential expression analysis was conducted by

employing DESeq2 (version 1.24.0) based on the expression

count of circRNAs identified by CIRI. Only the circRNAs

with expression changes of |fold change| >2 and adjusted

p-value < 0.01 were considered as differentially expressed. The

official IDs of circRNAs were obtained by coordinate mapping

using the circBase database (Glazar et al., 2014).

Construction of interaction network
among circRNAs, miRNAs, and target
genes

To gain insights into the function of circRNAs, we built an

interaction network among the circRNAs, miRNAs, and the

target genes of miRNAs. The PPI interactions were

downloaded from the STRING database (version 11.0)

(Szklarczyk et al., 2019). The regulatory relationship

between miRNAs and target genes, as well as the known

miRNA-circRNAs interactions, were obtained from the

starBase database (version 3.0) (Li et al., 2014). We only

used the circRNA-miRNA pairs supported by > 5 CLIP-seq

experiments and the miRNA-target gene pairs supported by >
2 CLIP-seq experiments and >2 degradome-seq experiments

in the StarBase2 database. Then we incorporated these

interactions to construct the interaction network among

circRNAs, miRNAs, and the genes targeted by miRNAs

using Cytoscape (version 3.7.2) (Shannon et al., 2003).

Only the parental genes of differentially expressed

circRNAs, DEGs, DASGs, and fusion genes were considered

in the interaction network construction.

Gene functional enrichment analysis

We conducted gene ontology (GO) and KEGG pathway

enrichment analyses using GSEA (version 4.0.1) for the

upregulated and downregulated DEGs between SS and tumor-

adjacent tissues (Subramanian et al., 2005). The functional

enrichment analysis of biological processes and pathways for

the differentially alternative spliced genes, fusion genes, and the

parental genes of circular RNAs were carried out with cluster

Profiler (version 3.12.0) (Yu et al., 2012). The enriched items with

adjusted p-value < 0.05 were defined as significant.
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Results

An abundance of important genes is
differentially expressed between SS and
tumor-adjacent tissues

To gain insights into the transcriptomic changes of SS

patients, we deeply sequenced the tumor and tumor-adjacent

tissues of 10 SS patients with total RNA sequencing (including

both poly (A+) and poly (A-) RNAs) (Table 1). We first aligned

the RNA-seq reads of each sample to the human reference

genome GRCh38 using HISAT2 (Kim et al., 2015) and then

conducted differential expression calling by employing DEseq2

(Love et al., 2014). A total of 4,286 differentially expressed genes

(DEGs) were detected using the threshold of |fold change| >2 and
adjusted p-value < 0.01, of which 2,309 (including 432 lncRNA

genes) and 1,977 (including 333 lncRNA genes) genes were

separately upregulated and downregulated in SS compared to

tumor-adjacent tissues (Figure 1A, Supplementary Table S1).

Interestingly, we found that 340, 185, 124, and 7 of those DEGs

are oncogenes, tumor suppressor genes (TSGs), transcription

factors (TFs), and splicing factors (see Supplementary Figure S1

for differentially expressed splicing factors), respectively

(Figure 1B). Specifically, 52 TFs (such as AES and BCL6) were

down-regulated and 72 TFs (e.g. ARID3A and BRCA2) were up-

regulated, suggesting that the expression changes of these TFs

could influence the expression of their downstream target genes

including related oncogenes and TSGs. Since oncogenes and

TSGs are closely correlated with cancer, their expression changes

may play an important role in the development of SS. Specifically,

in consideration of the crucial function of splicing factors in AS

regulation (Lee and Rio, 2015), we further conducted a qPCR

experiment to validate the expression profiles of the seven

splicing factors (ELAVL2, HNRNPA1, HNRNPH2, MBNL1,

PCBP1, QKI, and TIA1) in DEGs (Supplementary Figure S2).

As expected, the experimental results were consistent with the

RNA-seq data, indicating the robustness of our analysis.

Therefore, the differential expression of these splicing factors

could result in the AS deregulation of corresponding genes in SS.

Gene ontology (GO) and KEGG pathway enrichment

analyses showed that these upregulated and downregulated

DEGs were mainly involved in the fundamental and tumor-

related biological processes and pathways (Figures 1C–E

FDR <0.05). For example, the up-regulated DEGs were

primarily enriched in the cell-cycle-related biological processes

(e.g. chromosome organization, chromatin organization, and

DNA conformation change) and pathways of systemic lupus

erythematosus, cell cycle, DNA replication, and P53 signaling

(Figure 1C). Several previous studies also identified the cell-cycle-

related genes in sarcoma as a major category of up-regulated

genes (Chibon et al., 2010; Yen et al., 2012), which was in line

with our findings. By contrast, the down-regulated DEGs were

mainly involved in the metabolic-related biological processes

(such as energy derivation by oxidation of organic compounds,

muscle system process, and glucan metabolic process) and the

pathways of oxidative phosphorylation, insulin signaling

pathway, and vascular smooth muscle contraction

(Figure 1D). Thus, the result suggests that a multitude of

genes prominently altered their expression levels in SS, which

could be one of the main factors accounting for tumorigenesis

through up-regulating and down-regulating corresponding

pathways.

Deregulation of alternative splicing could
contribute to the tumorigenesis of SS

Considering that the misregulation of AS can lead to the

production of aberrant proteins that contribute to tumorigenesis

(Zhang and Manley, 2013), we further compared the AS profile

between SS and tumor-adjacent tissues by employing rMATS

(Shen et al., 2014). Five classical splicing categories of exon

TABLE 1 Detailed information of 10 synovial sarcoma patients.

Patient ID Age Sex Tumor Location Tumor Size
(cm)

Tumor status Outcome

1 26 Female Thigh 12*10.5*10 Primary Alive

2 18 Male Foot 6.0*3.5*2.0 Local recurrence Died

3 37 Male Groin 9.5*6*6 Local recurrence Alive

4 29 Female Lung 2.0*2.0*1.3 Primary Alive

5 59 Female Iliac Bone 5.5*4.5*3.5 Local recurrence Alive

6 28 Female Foot 2*1.7*0.7 Primary Alive

7 20 Female Neck 6*5*4 Primary Alive

8 27 Male Shank 7*6*2 Primary Alive

9 41 Male Shank 8*6*4 Local recurrence Alive

10 71 Female Thigh 9*6*3 Primary Alive
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skipping (ES), alternative 5′ donor sites (A5DS), alternative 3′
acceptor sites (A3AS), mutually exclusive exons (ME), and intron

retention (IR) were analyzed. In total, we identified 2511

(including 41 lncRNA genes) significantly differential AS

genes (DASGs), of which 2018, 223, 242, 486, and 159 belong

to the splicing mode changes of ES, A5DS, A3AS, ME, and IR,

respectively (Figure 2A, FDR <0.05, Supplementary Table S2). As

expected, ES was the most common differential splicing mode

(80.37%, 2018 out of 2511 DASGs), whereas IR was the least

(6.33%, 159 out of 2511 DASGs). Notably, the majority of those

DASGs among the five classical splicing categories were largely

different, only a small portion of them simultaneously exhibited

three or more distinct splicing types (Figure 2A).

Gene functional enrichment analysis indicated that those

2511 DASGs were mainly involved in the RNA splicing and

cancer-related biological processes and KEGG pathways (Figures

2B,C, adjusted p-value < 0.05), which was highly correlated with

the AS process. For instance, the top enriched biological

FIGURE 1
Differential expression profile and corresponding gene functions of SS. (A) Volcano plot displaying differentially expressed genes (DEGs)
between ten pairs of SS and tumor-adjacent tissues. |fold change| >2 and adjusted p-value < 0.01. (B)Different categories of DEGs. (C) Top enriched
up-regulated and down-regulated biological processes of DEGs. (D) Top enriched up-regulated and down-regulated KEGG pathways for DEGs. (E)
Examples of enriched biological processes and pathways. Adjusted p-value < 0.05. DEGs: differentially expressed genes.
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processes of those DASGs were mRNA processing, microtubule

cytoskeleton organization, and RNA splicing, while the enriched

pathways are endocytosis, RNA transport, proteoglycans in

cancer, and spliceosome. Moreover, we observed that

21 splicing factor genes showed significantly differential AS

between SS and tumor-adjacent tissues, such as HNRNPA1,

PTBP2, QKI, RBFOX2, and TRA2A. It is well known that the

splicing factors are crucial for AS regulation (Lee and Rio, 2015),

the deregulation of those splicing factors could drastically disrupt

the splicing process of many corresponding genes and contribute

to the tumorigenesis of SS (Dvinge et al., 2016). Furthermore, we

found that 346, 204, and 122 oncogenes, TSGs, and TFs were also

differentially spliced (Figure 2D). The abnormal splicing of these

TFs could influence the expression of their downstream target

genes and contribute to the development and progression of SS.

Only 368 genes shared between DASGs and DEGs, leaving most

of them were distinct (Figure 2E). These common 368 genes were

enriched in the biological process of actomyosin structure

organization and pathway of regulation of actin cytoskeleton

(Figure 2E, adjusted p-value < 0.05). Thus, the genes that showed

differential expression were quite distinct from those that

exhibited differential splicing, suggesting that AS is

FIGURE 2
Alternative splicing patterns and related gene functions of SS. (A) Venn plot of the DASGs for five common splicing modes. (B) Top 20 enriched
biological processes of DASGs. FDR <0.05. (C) Top 20 enriched pathways for DASGs. Adjusted p-value < 0.05. (D) Distinct categories of DASGs.
(E) Comparison between DEGs and DASGs. DASGs: differentially alternative spliced genes; DEGs: differentially expressed genes.
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FIGURE 3
Gene fusion landscape of SS. (A) Circos plot showing the 14 tumor-specific fusion pairs in SS. (B) Network of tumor-specific fusion genes. The
size and color of each circle correspond to the degree of fusion edges. (C)Heatmap displaying the supporting junction reads for tumor-specific gene
fusions. (D)Different categories of the fusion genes. (E) Expression profile of the fusion genes involved in significantly enriched biological processes.
Adjusted p-value < 0.05. (F) The fusion genes significantly correlated with the survival of TCGA sarcoma patients. p-value < 0.05.
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complementary with expression level in revealing the

transcriptomic changes. These results indicate that the

abnormal AS changes of genes could be another important

factor responsible for the tumorigenesis of SS.

Dissection of the gene fusions in SS

We further explored the gene fusion events in SS patients

using TopHat-Fusion (Kim and Salzberg, 2011). A total of 14 and

11 unique gene fusion pairs were separately identified in SS and

tumor-adjacent tissues, and no fusion was shared between them.

The 14 tumor-specific gene fusion pairs were from seven SS

patients, most of which (11 out of 14) resulted from the

rearrangements within the same chromosome, while 3 of

them were generated by breaking and rejoining two disparate

chromosomes (Figure 3A). In total, 27 genes were involved in

these tumor-specific gene fusions. SS18 was fused with SSX1 and

SSX2, which was in line with previous studies (Edwards, 2010). In

contrast, other genes were mainly fused with one partner

(Figure 3B).

As shown in Figure 3C, the maximum number of gene fusion

pairs detected in individual patients was four and the gene fusion

events in those SS patients were quite distinct. Intriguingly, these

tumor-specific gene fusion events contain one TF of SSX2 and

seven oncogenes of SS18, SSX1, SSX2, BCOR, CNOT1,

HIST2H2AC, and TOP1 (Figure 3D). Oncogene SS18 was

fused with the TF and oncogene of SSX2 as well as the

oncogene SSX1, which is consistent with the known findings

(Kawai et al., 1998). Besides, other oncogenes of BCOR, CNOT1,

HIST2H2AC, and TOP1 formed the fusion events of BCOR-

CCNB3, CNOT1-SETD6, HIST2H2AC-HIST2H2AB, and

TOP1-PLCG1-AS1, respectively. Previous studies have shown

that BCOR-CCNB3 fusion tends to occur in the undifferentiated

small round-cell sarcomas like Ewing sarcoma and has the

potential to drive sarcoma progression (Pierron et al., 2012; Li

et al., 2016; Kao et al., 2018). Other gene fusions could be novel

for SS, and the involved genes could be functionally important.

For example, CNOT1 encodes the CCR4-NOT transcription

complex subunit 1, which mainly participates in deadenylating

mRNAs (Pavanello et al., 2018). HIST2H2AC and HIST2H2AB

can generate the replication-dependent histones that are basic

nuclear proteins responsible for the nucleosome structure of the

chromosomal fiber. TOP1 encodes the enzyme of DNA

topoisomerase for controlling and altering the topologic states

of DNA during transcription (Baranello et al., 2016). Since TF

could regulate the expression of many downstream target genes

and oncogenes are closely associated with cancer, the fusion

events of those TFs and oncogenes may contribute to the

tumorigenesis/progression of SS. Interestingly, lncRNA genes

of LINC00970, LOC105375787, and PLCG1-AS1 were also

involved in the gene fusion events, but their functions were

still unknown. Gene functional enrichment analysis showed that

those fusion genes were significantly enriched in the KEGG

pathway of transcriptional misregulation in cancer (Figure 3E,

adjusted p-value < 0.05).

Moreover, we further explored the expression profile of these

fusion genes using synovial sarcoma data from The Cancer

Genome Atlas (TCGA) (Weinstein et al., 2013). As expected,

these fusion genes showed similar expression patterns between

the synovial sarcoma samples of us and TCGA (Supplementary

Figure S3A). Additionally, we also found that these fusion genes

exhibited slightly different expression profiles across distinct

types of TCGA sarcomas (Supplementary Figure S3B).

Considering that the number of synovial sarcoma samples is

limited, we used all the TCGA sarcoma samples to do the survival

analysis based on our identified fusion genes. Interestingly, the

expression levels of KLRB1 and TOP1 were significantly

associated with the survival of sarcoma patients (Figure 3F,

p < 0.05), indicating that they could be potential prognostic

markers.

Circular RNAs may play a role in SS
formation

Emerging evidence shows that circRNAs can involve in

various aspects of tumor biology (Dong et al., 2017; Zhang

and Xin, 2018), thus we further investigated the expression

profile of circRNAs in SS and tumor-adjacent tissues. We

detected 49 differentially expressed circular RNAs by

employing CIRI with the threshold of |fold change| >2 and

adjusted p-value < 0.01. As shown in Figure 4A, 21 of them

were significantly up-regulated in SS, whereas the other 28 were

down-regulated. Furthermore, we found that the great majority

(46 out of 49, 93.88%) of those differentially expressed circRNAs

were formed by the circulation of exons of their parental genes,

only two circRNAs of 10:24380869|24384423 (parental gene:

KIAA1217) and 17:35168061|35168685 (parental gene:

UNC45B) were produced from the intronic region and

another one (5:137757867|137759020) was generated in the

intergenic region (Figure 4B).

Intriguingly, 7, 5, and 3 of the parental genes for those

differentially expressed circRNAs were oncogenes, TSGs, and

TFs (Figure 4C). Previous studies have shown that circRNAs

can form posttranscriptional regulators to regulate the

expression of their parental genes (Memczak et al., 2013;

Zhang et al., 2013). Thus, these circRNAs have the potential

to affect the expression of their parental oncogenes, TSGs, and

TFs. Gene functional enrichment analysis showed that the

parental genes of those differentially expressed circRNAs

were mainly enriched in the muscle system process (such as

MAP2K4, HDAC4, TMEM38A, MYH1, MYH2, CAMK2G,

TRDN, and SULF2) and muscle contraction (e.g. HDAC4,

TMEM38A, MYH1, MYH2, TRDN, and SULF2) (Figure 4D,

adjusted p-value < 0.05).
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FIGURE 4
Expression profile and characteristics of circRNAs. (A) Expression heatmap showing the differentially expressed circRNAs. Supporting reads of
circRNAs were used in the heatmap. (B)Genomic region of the differentially expressed circRNAs. BSJ: back-spliced junction. (C)Distinct types of the
parental genes of differentially expressed circRNAs. (D) Significantly enriched biological processes for the parental genes of differentially expressed
circRNAs. Adjusted p-value < 0.05.

FIGURE 5
Comparison of DEGs, DASGs, fusion genes, and the parental genes of differentially expressed circRNAs. The overlapped genes for each part
were shown in the figure. DEGs: differentially expressed genes; DASGs: differentially alternative spliced genes.
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The genes involved in different types of
transcriptomic changes are largely distinct

We further compared the four gene types of DEGs, DASGs,

the fusion genes, and the parental genes of differentially

expressed circRNAs. As shown in Figure 5, the genes in one

type were largely distinct from that of other types, and no genes

were common among the four categories. Only a fraction of them

was involved in two or three types of changes (Figure 5).

Intriguingly, the DEGs of BCOR, HIST2H2AB, and MEG8,

and the DASGs of AKR1E2 and DCAF8 overlapped with the

fusion genes, suggesting that the fusion events may influence the

expression and/or AS profile of these genes. BCOR is an

oncogene, while MEG8 is an imprinted gene. Moreover,

18 DEGs (e.g. DNM3OS, ZNF730, DNAH14, and AFF2)

shared with the parental genes of differentially expressed

circRNAs, implying that expression changes of these genes

could affect the expression of circRNAs as well. In addition,

17 DASGs (such as SUCO, VWA8, MTUS1, and USP53) were

common to the parental genes of differentially expressed

circRNAs. Since circRNAs are mainly formed by AS of pre-

mRNAs through backsplicing (Barrett and Salzman, 2016), the

AS changes of these DASGs have the potential to influence the

expression of corresponding circRNAs. Collectively, our results

show that all the four transcriptomic aspects of expression

changes, AS, gene fusions, and circRNAs could be closely

correlated with the tumorigenesis/progression of SS.

CircRNAs could potentially regulate the
expression of a multitude of genes by
acting as miRNA sponges

An increasing number of studies suggested that endogenous

circRNAs can act as miRNA sponges to regulate corresponding

gene expression (Kulcheski et al., 2016; Panda, 2018). We further

constructed the interaction network among differentially

expressed circRNAs, miRNAs, and the miRNA target genes of

DEGs, DASGs, and fusion genes to elucidate the functional roles

of those differentially expressed circRNAs. Based on the known

FIGURE 6
Interaction network among circRNAs, miRNAs, and related target genes. The edges represent the potential interactions between different types
of genes and the size of each node is in proportion to the degree of edges. Only the target genes of DEGs, DASGs, fusion genes, and the parental
genes of differentially expressed circRNAs were considered for corresponding miRNAs. The protein-protein interactions were obtained from the
STRING database, while the known circRNA -miRNA interactions were downloaded from starBase. The resulting interaction network contains
5 circRNAs, 44 miRNAs, and 293 protein-coding genes. DEGs: differentially expressed genes; DASGs: differentially alternative spliced genes.
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miRNA-circRNA regulations, and the miRNA-targets

relationships in the starBase database (Li et al., 2014) as well

as the protein-protein interactions (PPIs) in the String database

(Szklarczyk et al., 2019), the resulting interaction network

involved in 5 circRNAs (hsa_circ_0001699, hsa_circ_0000247,

hsa_circ_0000246, hsa_circ_0000095, and hsa_circ_0000118),

44 miRNAs, 293 protein-coding genes, containing 57 miRNA-

circRNA interactions, 789 miRNA-mRNA interactions and

350 PPIs (Figure 6).

It is well known that circRNAs can regulate gene expression by

influencing transcription, mRNA turnover, and translation by

sponging RNA-binding proteins (RBPs) and miRNAs (Panda,

2018). Our resulting network showed that circRNAs

hsa_circ_0001699, hsa_circ_0000247, hsa_circ_0000246,

hsa_circ_0000095, and hsa_circ_0000118 could act as the

sponges of 14, 13, 13, 12, and 5 miRNAs, respectively. Moreover,

these miRNAs have the potential to regulate the expression of 119,

202, and 3 genes ofDEGs, DASGs, and/or fusion genes. Based on the

findings in previous studies (Kulcheski et al., 2016; Panda, 2018).

The expression of these miRNA target genes could be indirectly

influenced by corresponding circRNAs through competing for the

interaction with miRNAs. Consequently, our result suggests that

circRNAs could potentially function as miRNA sponges to regulate

the expression of an abundance of corresponding genes.

Discussion

In this study, we systematically explored the transcriptome

alterations of SS in terms of gene expression and AS, as well as

gene fusions and circRNAs. A total of 4286 genes (including

765 lncRNA genes) were differentially expressed between SS and

paired tumor-adjacent tissues, which were mainly involved in

fundamental biological processes and cancer-related pathways.

Moreover, we experimentally validated the differential expression

of seven splicing factors using qPCR. We also detected 2511 genes

(including 41 lncRNA genes) that showed differential AS, where the

most common ASmode was ES (80.37% of these DASGs), followed

by ME, A3AS, A5DS, and IR. Gene functional enrichment analysis

also showed that these DASGs were enriched in splicing-related

biological processes and pathways. Surprisingly, those DEGs and

DASGs were largely distinct, only a small portion of them were the

same, suggesting that AS is complementary with expression level for

investigating transcriptomic changes. Notably, a fraction of those

DEGs and DAGs were oncogenes, tumor suppressors, and TFs,

indicating that they could be closely associated with the

tumorigenesis of SS. Moreover, we identified 14 tumor-specific

gene fusion pairs in SS, which not only included the known gene

fusions of SS18-SSX but also contained novel fusion events involving

both protein-coding and lncRNA genes. Additionally, we observed

that 49 circRNAs markedly changed expression in SS compared to

tumor-adjacent tissues, and their parental genes were enriched in the

muscle system process.

To the best of our knowledge, we are the first to study the SS

transcriptome from a comprehensive view covering both

transcriptional and post-transcriptional levels. Specifically, the

deregulation of AS and the role of circRNAs were rarely explored

in SS previously. An increasing number of studies have shown that

imbalances in the AS process can affect the development of various

human diseases, especially the oncogenesis, progression, and

metastasis of a range of cancers (Scotti and Swanson, 2016). We

identified 122 differentially spliced TFs and 124 differentially

expressed TFs, suggesting that these TFs could be responsible for

the expression level changes of an abundance of their target genes

(Vaquerizas et al., 2009; Lambert et al., 2018). Moreover, we observed

that 7 and 21 splicing factors were dramatically changed in expression

level or AS profile. Since splicing factors are essential in regulating the

AS of genes, these abnormally changed splicing factors may

significantly contribute to the AS changes of many related genes

(Anczukow and Krainer, 2016). On the other hand, circRNAs have

critical regulatory functions and play key roles in the initiation and

progression of diverse diseases including cancers (Zhang et al., 2018;

Haddad and Lorenzen, 2019). The differentially expressed circRNAs

identified by us weremainly generated from the genes correlated with

the muscle system process and contraction. We also constructed the

interaction network among circRNAs, miRNAs, and downstream

target genes to elucidate their potential regulatory mechanism. The

resulting network indicated that those differentially expressed

circRNAs have the potential to act as the sponge for dozens of

miRNAs to indirectly regulate the expression of hundreds of DEGs

and DASGs.

Conclusion

Collectively, we systematically dissected the transcriptomic

profile of SS and identified a number of DEGs, DASGs, fusion

genes, and circRNAs that could be closely associated with the

tumorigenesis of SS. Our study not only gained novel insights

into SS transcription and post-transcription but also shed light

on the underlying molecular mechanisms.
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Glioblastoma (GBM) is characterized by extensive genetic and phenotypic

heterogeneity. However, it remains unexplored primarily how CpG island

methylation abnormalities in promoter mediate glioblastoma typing. First, we

presented a multi-omics scale map between glioblastoma sample clusters

constructed based on promoter CpG island (PCGI) methylation-driven

genes, using datasets including methylation profiles, expression profiles, and

single-cell sequencing data from multiple highly annotated public clinical

cohorts. Second, we identified differences in the tumor microenvironment

between the two glioblastoma sample clusters and resolved key signaling

pathways between cell clusters at the single-cell level based on

comprehensive comparative analyses to investigate the reasons for survival

differences between two of these clusters. Finally, we developed a diagnostic

map and a prediction model for glioblastoma, and compared theoretical

differences of drug sensitivity between two glioblastoma sample clusters. In

summary, this study established a classification system for dissecting promoter

CpG island methylation heterogeneity in glioblastoma and provides a new

perspective for the diagnosis and treatment of glioblastoma.

KEYWORDS

glioblastoma 1, subtype classification 2, CpG island 3, DNA methylation 4, tumor
microenviroment 5, single-cell RNA sequencing 6, intercellular communication 7

Introduction

Glioblastoma (GBM) is a malignant primary brain cancer characterized by high

infiltration into the parenchyma and wide phenotypic heterogeneity (Hua et al., 2015).

Despite advances in surgical techniques and clinical regimens, the standard therapies,

including surgical resection, chemotherapy, are predominantly ineffective for GBMs due

to therapeutic resistance, rapid recurrence, and the patient outcomes remain between
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12 and 15 months survival rate, 5-year survival rates at only 10%

(Tao et al., 2020). In light of the molecular complexity and

histopathological grading of GBM (Vitucci et al., 2017), there is a

critical need to complement the inaccurate prediction of disease

progression and the deviation of therapy with genomic

information.

The significant factors contributing to the pathogenesis of

GBM were epigenetic molecular mechanisms (Kosti et al., 2020).

DNA methylation, the most common epigenetic event in cancer,

contributes to carcinogenesis and frequently occurs in the

promoter region of genes (Agundez et al., 2011; Wang et al.,

2022). With the help of multi-omics datasets, profiles of GBM at

the transcriptome and methylation levels have been increasingly

reported to investigate the extensive heterogeneity in the tumor

and single-cell level regarding transcriptomic expression (Oh

et al., 2020). Several extensive cohort studies indicate an

important association between DNA methylation of the

promoter region and phenotypic of GBM (Guo et al., 2015).

For instance, the discordance of promoter methylation with O-6-

methylguanine-DNA-methyltransferase (MGMT) expression in

GBM has been a plausible strategy for sensitizing temozolomide

(TMZ) therapy and provides a strong rationale for the

development of new drugs (Yi et al., 2019). Furthermore,

numerous potential prognostic biomarkers, including long

non-coding RNA (lncRNA) and mRNA, were identified with

aberrant methylation (Han et al., 2020). The characterization of

the epigenome by DNAmethylation assay has been progressively

used to stratify and integrate molecular and phenotypic features.

Nevertheless, with advances in genomics, the single-gene

methylation status has limited its clinical utility.

During cancer development, aberrant DNA methylation

occurs within the gene promoter, CpG island, and their

shores (Hardy et al., 2017). However, CpG island has received

little individual attention. CpG sites methylation patterns are

believed to differ considerably between GBM patients

(Etcheverry et al., 2010). In particular, some cancers show an

apparent CpG island methylator phenotype (CIMP), of which a

critical milestone highlighting the clinical importance of the

epigenetic profile of gliomas was the discovery of the glioma

CpG island methylation phenotype (G-CIMP) (Northcott et al.,

2017; Ogino et al., 2018). Specifically, patients carrying G-CIMP

have a better prognosis than patients who do not carry this

phenotype. The clusters identified by separating Isocitrate

dehydrogenase (IDH) mutation status showed overall

concordance with G-CIMP, which exemplifies the particularity

of CpG island in the molecular diagnosis of GBM (Geisenberger

et al., 2015; Park et al., 2019). Recent studies also suggest that the

tumor microenvironment (TME) plays an essential role in

clinical outcomes and response to therapy (Gangoso et al.,

2021). The tumor microenvironment of GBM contains a large

number of infiltrating macrophages (Chen et al., 2019). However,

few studies have assessed the epigenetic alterations and the TME

simultaneously, especially at the single-cell level. Here we

explored a comprehensive genomic and transcriptomic

analysis. We resolve the comprehensive characterization of

GBM subgroups by integrating CpG island methylation,

expression profiling, and single-cell sequencing data. Finally,

we constructed a planetary diagnostic view and performed a

drug sensitivity analysis to illustrate the clinical contribution of

the results.

Materials and methods

Data sources

The HM450k DNA methylation data were downloaded from

The Cancer GenomeAtlas (TCGA, https://portal.gdc.cancer.gov/)

database and GSE41826 in Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/), which includes 155 tumor

samples and 56 normal samples. The methylation level of each

probe was represented by the β-value (from 0 to 1). β-Value =

Imeth/Imeth + Iunmeth, Imeth is the intensity of methylation, and

Iunmeth is the intensity of unmethylation. CpGmethylation probes

were annotated with the platform annotations in GEO

(GPL13534). Clinical information and expression data were

downloaded from the TCGA database, and the expression level

was quantified as fragments per kilobase of transcription per

million mapped reads (FPKM) values. Besides, we downloaded

gene expression data from the Chinese Glioma Genome Atlas

(CGGA, http://www.cgga.org.cn/) database as a supplementary

dataset, which includes 282 GBM patients who possessed

complete clinical information (Zhao et al., 2021a). The

annotation file for mRNAs and promoter region was derived

from the GENCODE database (https://www.gencodegenes.org/)

(Di Risi et al., 2021). The single-cell sequencing data were

obtained from GSE162631 in the GEO database, and cells

derived from the tumor cores of three GBM patients in the

dataset were selected (Xie et al., 2021a). Expression profile data

of human cancer cell lines (CCLs) were obtained from the Broad

Institute Cancer Cell Line Encyclopedia (CCLE) project (https://

portals.broadinstitute.org/ccle/). Drug sensitivity data of CCLs

were achieved from the Cancer Therapeutics Response Portal

(CTRPv.2.0, https://portals.broadinstitute.org/ctrp), which

contains the sensitivity data for 481 compounds over

835 CCLs (Lauria et al., 2020; Bagaev et al., 2021). The dataset

provides the area under the dose-response curve (area under the

curve AUC) values as a measure of drug sensitivity, and lower

AUC values indicate increased sensitivity to treatment.

Gene regulation patterns and GBM
molecular cluster classification

DEGs were identified with the Limma R package (version

3.48.3), and adjusted p-value<0.05 and
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|log2 Fold Change (FC)|>1 were considered to have a significant

difference (Liu et al., 2021). We used the MethylMix R package

(version 2.22.0) with the |log2 FC|>0.5, Cor < -0.3,

p-value<0.05 to extract the PCGI methylation-driven genes

(Xu et al., 2019). Based on the expression of genes, GBM

samples were clustered into K (2–9) groups using the

ConsensusClusterPlus package (version 1.56.0) in R software

(Wilkerson and Hayes, 2010). The optimal K value was

determined to obtain a stable cluster, of which correlation

coefficients were computed by spearman, and partitioning

around medoids was selected as a clustering algorithm.

Single sample gene set enrichment
analysis

The corresponding enrichment score was computed with

the GSVA R package (version 1.40.1) (Lauria et al., 2020),

which estimated the biological similarity of immune cells by

multi-dimensional scaling and a Gaussian fitting model to

represent the relative abundance of each immune cell type

in gene set enrichment analysis (ssGSEA). Specifically, the

tumor microenvironment was assessed by

immunohistochemistry for markers of immune cell types

(Supplementary Table S1). Further, the ssGSEA score was

normalized to unity distribution for each immune cell type,

and the estimate scores, including purity, stromal and immune

values, were calculated with the estimate R package (version

1.0.13) (Yoshihara et al., 2013).

Single-cell analysis

We collected three separate tissue samples originating from

the tumor core in GBM patients from GSE162631 (21). The raw

count data were loaded into the Seurat package (version 4.0.5) for

quality control (QC), data filtering, normalization, Principal

Component Analysis (PCA), Uniform Manifold

Approximation, and Projection (UMAP) visualization,

clustering. The single-cell sequencing data from three patients

were integrated by the Harmony R package (version 0.1.0) and

the cells withmitochondrial genes greater than 10% or fewer than

300 detected genes were filtered out. A scale factor of 10,000 was

used to normalize all the remaining cells (Xie et al., 2021a). We

used the FindAllMarkers function in Seurat to determine the

genes enriched in each cluster and set a logFC threshold of 0.25. It

applies a Wilcoxon Rank Sum test and performs multiple test

corrections using the Bonferroni method. We used Cellchat R

package (version 1.1.3) with the cellchatDB.Human database,

which includes supporting evidence for each signaling

interaction and considers the structural composition of ligand-

receptor interactions and cofactor molecules to identify and

visualize cell-cell interactions (Jin et al., 2021).

Co-expression network

We calculated the Spearman correlation between ligand-

receptor genes with PCGI methylation-driven genes. The

regulation pairs with Cor>0.4 and p-value<0.05 were used to

construct the co-expression network, which visualized in

Cytoscape (version 3.9.0). We used cytoHubba plug-ins built

into Cytoscape to calculate key genes in the network.

Statistical analysis

All statistical tests were performed in R software (v4.0.3). For

the comparisons of the normally distributed groups, statistical

analysis was performed by t-tests, and for non-normally

distributed variables, statistical analysis was analyzed by

Wilcoxon rank-sum tests. The Chi-square test is used to

compare clinical, pathological parameters, and other

categorical variables. Correlation between two continuous

variables was measured by either Pearson’s correlation or

Spearman’s correlation. For survival analysis, the differences

in prognosis between clusters were assessed via Kaplan-Meier

OS analysis, and log-rank tests were utilized to judge the

differences between clusters. The cluster prediction model was

constructed with LASSO regression in the glmnet R package

(version 4.1.2) (Huang et al., 2021). The pROC package (version

1.18.0) in R was utilized to calculate the ROC curves and AUC

values. For all statistical analyses, a two-tailed p < 0.05 was

considered significant. Significance values correspond to p-value

as follows: ns > 0.05, *<0.05, **<0.01, ***<0.001, ****<0.0001.

Drug sensitivity

We used the Ridge regression analysis in the pRRophetic R

package (version 0.5) to predict differences in drug sensitivity

between the two clusters of GBM cancer samples using default

settings (Yang et al., 2021). K nearest neighbor imputation was

applied to impute the missing AUC values. We used the

normalization method to modify the drug sensitivity data

matrix of CCLs (Roy et al., 2019). The drugs with

|log2 FC|>0.1 were considered to have differential sensitivity in

different clusters (Yang et al., 2021).

Results

Identification of glioblastoma clusters
based on promoter CpG island
methylation-driven genes

To investigate the DNAmethylation of promoter CpG island

(PCGI) associated with GBM disease progression, we established
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a richly computational strategy that maps the Infinium

HumanMethylation450K microarray to gene PCGI

methylation profiles and summarizes DNA methylation

patterns at the gene level (Zhao et al., 2021b). First, based on

the gene annotation derived from the GENCODE database and

GPL13534 platform file containing the methylation probes

information (Li et al., 2020; Di Risi et al., 2021), we defined

the promoter region as 2 kb located upstream of the transcription

start site (Hollstein et al., 2019). We extracted the relevant probes

on the PCGI from the annotation file for subsequent analysis

(Carro et al., 2010). The mean value for probes was calculated as

the methylation level of genes (Liu et al., 2020). In total,

46,072 probes in the DNA methylation microarray were

annotated to 15,067 genes, of which we selected 10,895 coding

genes according to the gene annotation file. The DNA

methylation profiles exhibit the distribution of DNA

FIGURE 1
(A) The Screening process of PCGI methylation-driven genes. The first circle shows the chromosomal location and ordering information. The
second circle represents the distribution of differential methylation genes. Red points represent hypermethylation, and blue ones represent
hypomethylation relative to normal samples. The third circle shows the relationship between methylation and gene expression. Blue and red bars
represent values with negative and positive correlations, respectively. (B) Overview of 48 PCGI methylation-driven genes. The first column
shows the absolute values of the correlation coefficients between DNA methylation and expression level. The second and third columns show the
fold change of the expression and methylation level. (C) Consensus cluster for GBM patients of TCGA based on PCGI methylation-driven genes. (D)
Kaplan–Meier survival analysis for TCGA sample clusters. (E) Hierarchically clustered heatmap for the expression of PCGI methylation-driven genes
across clusters in TCGA. (F) Consensus cluster for GBM patients of CGGA based on PCGI methylation-driven genes. (G) Kaplan–Meier survival
analysis for CGGA sample clusters. (H) Hierarchically clustered heatmap for the expression of PCGI methylation-driven genes across clusters in
CGGA.
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methylation across the CpG island with a typical DNA

hypomethylation tendency in GBM (Supplementary

Figure S1A).

Overall, studies on DNA methylation are thought to be

associated with an opposite gene expression pattern. Thus, we

identified the differentially expressed genes (DEGs) with Limma R

package (p-value<0.05; |log2 FC|>1; Supplementary Figure S1B)

and calculated the methylation differences and the correlation

between expression and methylation with MethylMix R package

(|log2 FC|>0.5; Cor ≤ -0.3; p-value<0.05). Ultimately, we identified

48 PCGI methylation-driven genes (Figures 1A,B and

Supplementary Table S2) (Xu et al., 2019).

To clarify the heterogeneity of PCGI methylation-driven

genes in TCGA-GBM tumor samples, we performed the

consensus cluster method to cluster the samples based on the

similarity of PCGI methylation-driven genes expression

signature (Datta et al., 2021). It is worth noting that all

samples were likely categorized into three clusters named

ClusterA, ClusterB, and ClusterC because the interference

between clusters can be minimized when K = 3 was selected

(Figure 1C and Supplementary Figures S1C–L) (Gong et al.,

2020). The epigenomic analysis demonstrates that GBM patients

exhibit different levels of abnormal methylation in promoter

CpG island, reflecting the heterogeneity of GBM. Particular

clustering results for each sample are listed in Supplementary

Table S3. The prognostic characteristics of clusters were further

appraised by survival analysis, indicating that PCGI methylation

is a significant prognostic factor in GBM patients (Figure 1D).

The heatmap showed significant disparities in PCGI

methylation-driven genes between clusters (Figure 1E). We

further collected 283 GBM samples from the Chinese Glioma

Genome Atlas (CGGA) RNA-seq database with clinical

information data available and performed the analogous

analysis to verify the rationality of results obtained from

TCGA(19): we determined the clustering results for CGGA

patients based on similarity in gene expression and calculated

the survival probabilities between different clusters (Figures

1F,G). Of particular interest, the expression pattern of PCGI

methylation-driven genes in the CGGA database is similar to that

of the TCGA database, with samples divided into three clusters

based on gene expression (Figure 1H). As could be expected, we

observed high concordance between the clustering results and

prognostic features of CGGA and TCGA.

Tumor microenvironment heterogeneity
between glioblastoma clusters

As substantial changes in the tumor microenvironment with

infiltrating immune cells and gene regulation machinery can

influence tumor progression (Tian et al., 2021), we put the DNA

methylation data into a broader GBM context to identify the

effect of PCGI methylation in-depth on the tumor

microenvironment. We first identified the DEGs between

clusters with significant survival differences (clusters A and C)

and performed the single sample gene set enrichment analysis

(ssGSEA) analysis based on the immune cell signature gene set to

investigate the differences between clusters (Bastola et al., 2020;

Krug et al., 2020). The results showed that specific PCGI

methylation-driven genes were substantially different between

clusterA and clusterC within the top differentially expressed

genes, including KIF21B, JPH4, NET O 1, FAM181B, AMER2

being up-regulated in clusterC, while ABCC3,MMP14, LGALS1,

SLC16A3, PDPN, ADM exhibiting up-regulated in clusterA

(Figures 2A,B). Additionally, we got the same results in the

CGGA database (Figure 2C). Remarkably, we observed

significant differences in the immune cell infiltration between

the two clusters. The abundance score of immune cells calculated

with ssGSEA was lower in clusterC and higher in clusterA, as

shown in Figure 2D. Collectively, it is worth investigating this

apparent inconsistency between clusterA and clusterC in the

tumor microenvironment as a possible reason for the difference

in clinical survival of patients (Gangoso et al., 2021). We further

utilized the ESTIMATE R package on the expression profiles of

TCGA samples to infer immune and stromal scores for

estimating Tumor Purity, Stromal, and Immune Scores

(Figure 2E) (Riaz et al., 2017; Stewart et al., 2017; Krug et al.,

2020). Studies exist demonstrating that themesenchymal subtype

has many immune cells, in concordance with our work, this

subtype showed lower cell density and large necrotic areas in

histopathology (Klughammer et al., 2018). We observed high

levels of macrophages in clusterA and low levels in clusterC

(Figure 2D). We have reviewed the available studies that higher

with increased macrophages is associated with lower overall

survival (Chen et al., 2019). We also found that the matrix

metalloproteinases (MMPs), which might influence the

expression of multiple proteins in the extracellular matrix,

were differentially expressed between two clusters

(Supplementary Table S4) (Theodoris et al., 2015). We

speculated that the differences in immune cells could be

responsible for the survival status between clusters A and C.

Similarly, we obtained practically consistent results by validating

with the CGGA database, which proved that our analysis was

reliable (Figures 2F,G).

Linking single cell analysis and
communication patterns to glioblastoma
clusters

To accurately assess the tumor microenvironment between

clusters A and C, we analyzed the single-cell data from the core

tumor region of three GBM patients (GSE162631). Specifically,

the cells were analyzed with the Seurat package in R and

annotated according to the expression of canonical cell class

markers and the SingleR R package (Xie et al., 2021a; Lu et al.,
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2021). After the data preprocessing pipeline, the dataset contains

14,926 cells, which cluster into 10 cell groups. The clusters

included Macrophages (APOC1, CD163, F13A1), Microglia

(CX3CR1, P2RY12, P2RY13), Neutrophils (IL1R2, CXCR2,

FPR2), T cells (CD3D, CD3E, GZMK), B cells (IGHG1,

IGHG3, CD79A), Dendritic cells (HLA-DQA1, HLA-DPB1),

Glial/Neuronal cells (FABP7, PTPRZ1), Endothelial cells

(CD34, VWF, CLDN5) and Mural cells (RGS5, PDGFRB,

NOTCH3) were identified in this data set (Figures 3A,B) (Xie

et al., 2021a). We observed a high content of macrophages,

monocytes, and microglia in the single-cell sequencing data of

GBM samples. Figure 3B illustrates the overlap in gene

expression between these 3 cell groups. Consistent with

previous studies, the gene expression patterns of these 3 cell

groups are similar, and it has always been a challenge to

accurately distinguish them in the GBM microenvironment

(Ryan et al., 2017; Yao et al., 2020).

Based on published research, we recognized that microglia and

tumor-associated macrophages, which accumulate in the tumor

region secreting MMPs to promote tumor invasion and secrete

tumor cell proliferation promoting factors are distinct

subpopulations derived from mononuclear phagocytes (Fan et al.,

2020; Ma et al., 2020). The available gene markers do not reliably

discriminate between microglia and macrophages. In contrast, the

B-cell content was shallow in the GBM microenvironment

(Figure 3A). In the central nervous system, B cells are responsible

for the antigenic presentation of tumor antigens and participate in

anti-tumor immunity (Galstyan et al., 2019).

To predict cell signaling and inferred the precise

connections between identified cell clusters to uncover

coordinated responses among different cell types. We

assessed not only the cell types in the tumor

microenvironment but also the interactions between cells

within the GBM tumor microenvironment, which constitute

FIGURE 2
(A) The volcano plot shows fold changes for genes differentially expressed between TCGA-clusters A and C. The differentially expressed PCGI
methylation-driven genes are highlighted in the figure. (B) Boxplots of differentially expressed PCGI methylation-driven genes between clusters A
and C. (C) The volcano plot shows fold changes for genes differentially expressed between CGGA-clusters A and C. The differentially expressed PCGI
methylation-driven genes are highlighted in the figure. (D) Heatmap and hierarchical clustering of normalized immune cell infiltration score of
TCGA samples. (E) Violin plots for the distributions of StromalScore, immuneScore, ESTIMATEScore, and TumorRurity of TCGA samples. (F)Heatmap
and hierarchical clustering of normalized immune cell infiltration score of CGGA samples. (G) Violin plots for the distributions of StromalScore,
immuneScore, ESTIMATEScore, and TumorRurity of CGGA samples.
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an additional layer of information for the integration of DNA

methylation data (Lennon et al., 2016).

Normalized single-cell data was then loaded into the Cellchat R

package, which integrates cell gene expression and prior knowledge

of the interactions between signaling ligands, receptors, and their

cofactors to model ligand-receptor mediated signaling interactions

(Jin et al., 2021; Leimkuhler et al., 2021). Lastly, we calculated the

probability of intercellular communication through Cellchat’s

standard process. We detected 35 significant ligand-receptor

pairs categorized into 18 signaling pathways, including SPP1,

MIF, COMPLEMENT, IL1, ANNEXIN, VISFATIN,

GALECTIN, CCL, TNF, PTN, VEGF, GAS, ANGPT, ANGPTL,

TGFβ, PARs, IL6, PDGF (Figure 3C). Signaling contribution

analysis of cell populations revealed that monocytes were the

most important source of SPP1 pathway receptors and the most

important source of ANGPTL pathway ligands. Additionally, the

communication patterns of multiple cell populations are clustered

in the GALECTIN pathway which provided compelling evidence

that different cells may depend on the same signals (Supplementary

Figures S2D–F).

We further intersected the identified ligand-receptor genes

with the list of differentially expressed genes between clusters A

and C in the TCGA database simultaneously. The results indicate

that ten ligand-receptor genes were differentially expressed

between clusters A and C. Notably, all ten ligand-receptor

genes were up-regulated in cluster A and down-regulated in

cluster C, showing a consistent pattern of differential expression

in general (Figure 3D). Compared to the ssGSEA results, these

significant differences in the expression distribution trends of the

ten ligand-receptor genes in the GBM sample clusters are

comparable to the differences in immune cell abundance

between clusters A and C (Figures 2D,F). Specifically, multiple

signaling pathways may be activated in the tumor

microenvironment of subtype A, including TNF, SPP1, MIF,

ANGPL, and ANGPTL (Figure 3C). For example, TNF receptor

superfamily members might participate in the progression of

GBM through responses to TNF signaling pathway and are

associated with poor prognosis (Xie et al., 2021b). This cross-

referencing of single-cell sequencing data with epigenetic analysis

models provides rapid insight into the mechanisms underlying

the analysis of the GBM tumor microenvironment.

The correlation between PCGI methylation-driven genes and

ligand-receptor genes was further evaluated to explore the effect of

PCGI methylation-driven genes on patients’ tumor

microenvironment. The correlation heatmap shows that 78.2% of

the correlation coefficient matrices had absolute values greater than

FIGURE 3
(A)UMAP of Single-cell sequencing data, colored for the 10 cell clusters. (B)Dot plot heatmap of the marker genes in individual cell clusters. (C)
The dot plot shows the significant signaling patterns and ligand-receptor pairs. Dot color reflects communication probabilities and dot size
represents computed p-values. The highlighted signals are pathways in which ligand-receptor genes are differentially expressed between clusters.
(D) Expression distribution of differentially expressed ligand-receptor genes in 10 cell clusters and comparison of expression between TCGA
sample clusters A and C. (E) Heatmap shows Spearman’s correlations between PCGI methylation-driven genes and ligand-receptor genes. (F) The
correlation between Cellchat score and macrophage infiltration score.
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0.4, embodying a critical regulatory relationship between PCGI

methylation-driven genes and ligand-receptor genes (Figure 3E).

Next, we applied weighted co-expression network analysis to the

correlation coefficient matrices and explored the critical nodes in the

network. Ranked by the degree method, we found that ITGA5 may

play an essential role in the network as a key node (Supplementary

Figure S2B and Supplementary Table S5). Our results show that the

major signaling pathways of ITGA5 include SPP1, ANGPTL,

ANGPT, which are characterized by monocytes in the incoming

interaction environment, but the communication patterns of

outcoming interaction are dominated by macrophages

(Supplementary Figure S2C). Then, we defined the mean value of

ligand-receptor genes expression in each sample of the TCGA

database as a Cellchat score, which quantified the strength of cell

communication.We observed that Cellchat score played a significant

positive correlation with the abundance of macrophages (Cor = 0.73;

p < 0.001) (Figure 3F ). Given the crucial role of macrophages in the

GBM tumor microenvironment, significant heterogeneity in the

expression profile of ligand-receptor genes could help us

differentiate the infiltration of macrophages in GBM clusters

regulated by PCGI methylation-driven genes, eliminating the

dependence of epigenetic typing on high-quality methylation data

(Klughammer et al., 2018).

Building diagnostic map and cluster
prediction model for the clinical
improvement of GBM clusters

Precise molecular clustering and clinical features may

become key components in prognostic index models

(Giacopelli et al., 2019). Therefore, to evaluate the

contribution of the GBM clustering results to diagnosis

and prognosis in this study, we constructed a diagnostic map

containing all clinical features in the database, based on the

samples from the CGGA database (Figure 4A and Supplementary

Figure S3A) (Bagaev et al., 2021). Additionally, to characterize

the clinicopathological relevance of our results, we not only

compared the clinical characteristics of the samples in the

CGGA database but also calculated the Cellchat score of each

sample (Figure 4B). We compared the distribution of multiple

clinical features and showed that the majority of patients in

clusterA were IDH wild-type. At the same time, we divided the

patients into high and low subgroups by the median value of the

Cellchat score. The distribution between Cellchat groups and

GBM clusters was assessed in the CGGA cohort. The samples in

Cellchat high score largely overlapped with clusterA and the

Cellchat low score overlapped with clusterC, which showed a

comparable outcome to TCGA database analysis (Figure 4C).

The reliability of our results was verified in the CGGA database,

synthetically validating our conclusions.

The clinical utility of our GBM clustering results provided

new insights into GBM progression compared to a single clinical

feature. For example, we observed that patients with MGMT

promoter unmethylated, IDH wild-type, 1p/19q non-codel in

clusterC were more likely to achieve a survival advantage at a

later stage of GBM progression than patients in clusterA (Figures

5A–C). These findings may suggest that the abnormal

methylation profile of promoter CpG islands does not

necessarily reflect initial risk factors in GBM progression but

is a late result of complex gene-tumor microenvironment

interactions throughout GBM progression.

FIGURE 4
(A)Clinical diagnosticmap based on GBM samples in CGGA database. Constellationmap of GBM sample distribution based on the results of this
study. The green points represent clusterA, and orange ones represent clusterC, which is consistent with the color annotation of other figures in this
study. (B–C) The distribution of CGGA clinical characteristics and Cellchat score we defined.
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We developed an accurate performance model which can

explore a prompt diagnosis (Pyonteck et al., 2013). Specifically,

the PCGI methylation-driven genes differentially expressed in

clusters A and C were used to construct the prediction model. We

randomly divided the samples of TCGA into a training dataset

(70%) and test dataset (30%) and brought the CGGA samples as

an independent test dataset to verify the repeatability of the

cluster prediction model. Then we fit the LASSO logistic

regression with the best lambda value to get a stable set of

selected features (Supplementary Figures S3B,C). Lastly, the

Area Under the Curve (AUC) area was used to quantify

response prediction, which exhibited reasonable prediction

accuracy in GBM patients with an AUC of 0.975 in the

TCGA database and 0.969 in the CGGA database (Figures 5D,E).

For refining the diagnostic map, we concentrated on

predicting drug response between GBM clusters based on the

CTRP dataset, which contains the gene expression profiles and

drug sensitivity profiles of cancer cell lines (CCLs) (Basu et al.,

2013; Yang et al., 2021). We excluded the compounds containing

NAs in more than 20% of the samples and excluded the CCLs

derived from hematopoietic and lymphoid tissue. After pre-

processing the data, we used 658 CCLs containing

266 compounds in CTRP and expression profile data from

GBM patients to predict patient response to drugs between

clusters A and C, based on pRRpphetic with a built-in ridge

regression model (Yang et al., 2021). The difference of estimated

AUC values of compounds between two clusters was compared

with the Wilcoxon rank-sum test, and the results indicated that

patients in clusterA showed significantly lower estimated AUC

values of Dasatinib and Selumetinib than clusterC (p < 0.001)

(Figure 5F and Supplementary Figures S3D,E). Previous studies

have shown that the combination of Crizotinib and Dasatinib

induced an anti-proliferative effect in GBM cell lines, exerting a

potent effect on different GBM cell lines when investigating

different tyrosine kinase inhibitors (Nehoff et al., 2015; Wang

et al., 2020). Additionally, Selumetinib, a kinase inhibitor

affecting actionable kinase targets associated with intracranial

tumor growth rate, has been selected for single and combination

therapy to develop a miniaturized system for drug testing

(Gilbert et al., 2018). The difference in estimated AUC values

suggest that patients in clusterA may be more sensitive to these

two drugs in clinical treatment (Yang et al., 2021). Overall, we

believe that our results provide new insights into improving

clinical outcomes for GBM patients and the basis for new

treatment options for GBM.

Discussion

Multi-omics data analysis has significantly propelled the

understanding of GBM biology, enabling scientists to provide

new insights into the GBM precision medicine (Bock et al., 2016).

FIGURE 5
(A–C) Kaplan-Meier survival curve analysis between clusters A and C in 1p/19q_Non-codel, MGMTp_un-methylated, and IDH_wildtype). (D)
The ROC curves of TCGA sample prediction results. (E) The ROC curves of CGGA sample prediction results. (F) Comparison of estimated Dasatinib
and Selumetinib sensitivity.
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Although the importance of aberrant DNA methylation is well

established in various cancers, comprehensive analyses of

genomic and single-cell sequencing data based on tumor

typing of CpG island within promoter regions remain

deficiency. Collectively, elucidating the complexity of the

epigenome in GBM typing and therapeutic response

specificity may reveal potential mechanisms of targeted

therapy and immunotherapy resistance (Manuyakorn et al.,

2010). Hence, we performed a consensus clustering analysis

with PCGI methylation-driven genes expression profiles and

identified three clusters in patients of TCGA and CGGA

database, which helped frame the development of GBM

precision diagnosis. The identification of PCGI methylation-

driven genes comprehensively reflects the influence of

methylation information layer on genes and avoids the noise

of miscellaneous methylation probe data. Many PCGI

methylation-driven genes have been proven extremely

valuable in diverse GBM research. For example, the up-

regulation of PDPN by cancer cells has recently been linked

to an increased risk for venous thromboembolism in GBM (Tawil

et al., 2021). Moreover, Hernando et al. found that forced

expression of reprogramming transcription factor SOX2,

which is highly expressed in GBM, reduces expression of

TET2 and 5hmC, thus contributing to the hyper-methylated

phenotype of GSCs (Lopez-Bertoni et al., 2022). In terms of other

clinical features and diagnostics, our results can complement

existing molecular typing while identifying new clinical

differences in the integration process.

Because of the particular proliferation form and development

process of the tumor, TME exhibits significant differences

compared to the normal tissue environment, leading to

exclusive characteristics of the tumor [58]. In this study,

clusters A and C we identified differed in the degree of

immune infiltration in GBM. Combined with the results of

single-cell sequencing, differences in the extent of macrophage

infiltration in the TME may account for the significant

differences in survival between clusters. Macrophages and

microglia are significantly abundant in the GBM

microenvironment and provide 10%–34% of the tumor mass,

which is supported by previous observations (Jacobs et al., 2012).

In studies on GBM typing, macrophages and microglia are more

increased in recurrent mesenchymal GBM than in primary non-

mesenchymal GBM (Wang et al., 2017). Classifying GBM

samples based on the TME has predictive power, so efforts to

characterize PCGI methylation-driven genes will prove

invaluable for identifying the immunosuppressed patients.

Additionally, matrix metalloproteinases (MMPs), a key factor

degrading almost all proteins in the extracellular matrix, were

found substantially distinct between clusters. MMPs can degrade

a variety of proteins in the extracellular matrix, and their

increased expression levels are positively correlated with the

malignancy of GBM. For example, MMP14 was reported to

be up-regulated in some types of cancer and to promote

cancer cell invasion (Theodoris et al., 2015).

Single-cell heterogeneity, essential for the precise application

of biomarkers and selecting appropriate drugs for clinical use,

plays an important role in tumor therapy and diagnostic [63].

The signaling pathways identified by the Cellchat R package help

us measure the dynamic interactions between tumor cells and

their microenvironment. For instance, multiple studies have

shown that macrophages maintain GBM cells and stimulate

angiogenesis through the SPP1 pathway, which correlates

positively with a higher macrophage density in GBM patients.

The maintenance of macrophage infiltration and its

immunosuppressive phenotype in GBM requires the

SPP1 pathway, which induces a positive feedback loop for

macrophage production of SPP1 [17]. Previous studies have

shown that ITGA5 was increased in GBM tissues and

promoted tumor cell proliferation and invasiveness, which is

consistent with our results (Figure 3D). Further experiments

revealed that NEAT1 promoted ITGA5 expression through

competitive binding with miR-128–3p, which might offer a

potential strategy for the treatment of GBM (Chen et al.,

2021; Shaim et al., 2021). Although many methodological

issues need further discussion, the ligand-receptor genes

differently expressed between clusters validate the

reasonableness of the typing results from different

perspectives, indicating the combination of gene methylation

and TME may be a beneficial strategy for GBM patients.

Lastly, the diagnostic map refined the former classification

and proposed new points for molecular typing [63]. As new

criteria and classification methods provide a more detailed

understanding of GBM, relying exclusively on a single

molecular marker could not satisfy an accurate diagnosis. The

observed GBM sample clusters based on PCGI methylation-

driven genes in this study improve homogeneous tumor

diagnosis and provide insights into the prognosis of GBM

patients at later stages of progression (Brennan et al., 2013;

Geisenberger et al., 2015). Strikingly, the Cellchat score we

defined distinguished the GBM subtypes with clear separation

in the CGGA and TCGA databases. This comprehensive DNA

methylation- and tumor microenvironment-based classification

of biomarker arrays improves molecular understanding of

pathway signaling among GBM cell clusters. Here, our results

also show that sample classification of GBM can further stratify

patient response to different drugs, which could ultimately

compensate for personalized therapies in groups of GBM

patients.

In conclusion, the results of our analysis adequately discuss

the heterogeneous profile of promoter CpG island methylation in

GBM. The GBM typing constructed by integrating PCGI

methylation-driven genes and the GBM tumor

microenvironment in our study contributes to improving the

understanding of homogeneous intra-tumor diagnostics.
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immune landscape, and drug
sensitivity in hepatocellular
carcinoma based on single-cell
sequencing analysis and
weighted co-expression network

Jingjing Li1,2†, Zhi Wu3†, Shuchen Wang2, Chan Li4,
Xuhui Zhuang2, Yuewen He2, Jianmei Xu4, Meiyi Su5,
Yong Wang2, Wuhua Ma2, Dehui Fan4,5 and Ting Yue6*
1Department of Anesthesiology, Jincheng People’s Hospital, Jincheng, Shanxi, China, 2Department of
Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine,
Guangzhou, China, 3Department of General Surgery, Jincheng People’s Hospital, Jincheng, Shanxi,
China, 4The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou,
China, 5Department of Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital,
Guangzhou, China, 6Department of Oncology Rehabilitation, Jincheng People’s Hospital, Jincheng,
Shanxi, China

Background: Hepatocellular carcinoma (HCC) is a highly lethal cancer and is

the second leading cause of cancer-related deaths worldwide. Unlike

apoptosis, necroptosis (NCPS) triggers an immune response by releasing

damage-related molecular factors. However, the clinical prognostic features

of necroptosis-associated genes in HCC are still not fully explored.

Methods: We analyzed the single-cell datasets GSE125449 and

GSE151530 from the GEO database and performed weighted co-expression

network analysis on the TCGA data to identify the necroptosis genes. A

prognostic model was built using COX and Lasso regression. In addition, we

performed an analysis of survival, immunity microenvironment, and mutation.

Furthermore, the hub genes and pathways associated with HCC were localized

within the single-cell atlas.

Results: Patients with HCC in the TCGA and ICGC cohorts were classified using

a necroptosis-related model with significant differences in survival times

between high- and low-NCPS groups (p < 0.05). High-NCPS patients

expressed more immune checkpoint-related genes, suggesting

immunotherapy and some chemotherapies might prove beneficial to them.

In addition, a single-cell sequencing approachwas conducted to investigate the

expression of hub genes and associated signaling pathways in different cell

types.
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Conclusion: Through the analysis of single-cell and bulk multi-omics

sequencing data, we constructed a prognostic model related to necroptosis

and explored the relationship between high- and low-NCPS groups and

immune cell infiltration in HCC. This provides a new reference for further

understanding the role of necroptosis in HCC.

KEYWORDS

prognostic model, hepatocellular carcinoma, necroptosis, therapy, nomogram

Introduction

Primary liver cancer is the sixth most common cancer in the

world and the second leading cause of cancer-related death (Yang

et al., 2019). Hepatocellular carcinoma (HCC) is the most

common type of primary liver cancer (Chaudhary et al.,

2019). Most HCC patients are diagnosed at an advanced

stage. The gold standard treatments, including tumor

resection, local ablation with radiofrequency, and sometimes

liver transplantation, have low success rates with high relapse

rates and short survival times (Dhanasekaran et al., 2016).

Additionally, patients with HCC who present with similar

tumor, lymph node, and metastasis (TNM) stage have

different clinical outcomes, and there are few current effective

prognostic indicators.

Recent research has demonstrated the importance of the

tumor microenvironment (TME) in promoting tumor

aggressiveness (Altorki et al., 2019). The survival of patients

with various malignancies can be prolonged by immune

checkpoint inhibitors. However, many patients with HCC

currently often respond poorly to immune checkpoint

inhibitors, which may be due to low mutational loads,

acquiring new immune checkpoints, and producing

immunosuppressive factors (Riley et al., 2019). Therefore,

there is a need to identify new biomarkers for HCC as well as

to comprehend their significance in TME.

Programmed cell death has a strong impact on the

characterization of the TME ecosystem (Chevrier et al., 2017).

Resistance to apoptosis, a problem affecting cancer development,

is one of the hallmarks of cancer (Reyna et al., 2017). In the

process of cancer cell resistance to death, growth signals are

overactivated, the metabolism is reprogrammed, and a change in

the immune microenvironment occurs (Sahin et al., 2017).

Inducing cancer cell death is becoming increasingly popular

as a potential cancer treatment method (Bersuker et al., 2019).

HCC cells can die by several different mechanisms, including

apoptosis and necroptosis (NCPS) (Yuan et al., 2019). Both

mechanisms play a significant role in homeostasis,

inflammation, anti-infection, and tumorigenesis (Karki et al.,

2021; Koren and Fuchs, 2021).

Necroptosis was once believed to be the “accidental death” of

cells. However, current research indicates that necroptosis is

distinct from conventional apoptosis (González-Juarbe et al.,

2017). Necroptosis leads to membrane destabilization, which

subsequently precedes swelling and lysis of cells, resulting in the

release of intracellular constituents (González-Juarbe et al.,

2017). Inhibited caspase 8 and receptor-interacting serine/

threonine protein kinase 1 (RIPK1) are both involved in

necroptosis pathway activation via recruitment and activation

of receptor-interacting serine/threonine protein kinase 3

(RIPK3) (Alvarez-Diaz et al., 2016). Necroptosis occurs when

caspase 8 is inactivated or absent, resulting in the activation and

autophosphorylation of RIPK1 and RIPK3(Tanzer et al., 2017).

During this process, the cell membrane ruptures, and the

contents are released, stimulating an immune response

(Kalliolias and Ivashkiv, 2016). Necroptosis becomes attractive

as an alternative to apoptosis for killing tumor cells if apoptosis

fails to kill them (Kalliolias and Ivashkiv, 2016). As well, the

immunemicroenvironment is positively impacted by necroptosis

(Gong et al., 2019).

Interestingly, the role of necroptosis in cancer is complex. In

general, high levels of necroptosis result in strong adaptive

immune responses that inhibit the progression of tumors. The

recruitment of strong immune responses may also contribute to

tumor progression (Koo et al., 2015; Najafov et al., 2017).

Moreover, the inflammatory response may contribute to

tumorigenesis and metastasis, as well as generate an

immunosuppressive tumor microenvironment. Guo et al.

(2022) has shown that loss of key necroptosis gene

significantly reduces clinical symptoms of liver injury and

fibrosis. Necroptosis has completely opposite effects on

different types of cancer, the mechanism of which is still

unclear. With the emergence of immune checkpoint therapy,

changes in the immune microenvironment resulting from

necroptosis are also important to consider. There is therefore

a need to investigate the relationship between necroptosis

and HCC.

Here, we downloaded the data of HCC patients from the TCGA

and ICGC databases, as well as two single-cell datasets, GSE125449

(Ma et al., 2019) and GSE151530 (Ma et al., 2021), and one

microarray dataset, GSE76427 (Grinchuk et al., 2018) from the

GEO database. The TCGA cohort was used for model building. The

ICGC cohort and GSE76427 were used to validate the results of our

analysis. Two single-cell sequencing datasets, GSE125449 and

GSE151530, were chosen for single-cell analysis because of their

relatively large sample size and inclusion of clinical data. Through
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comprehensive bioinformatic analysis, we developed a prognostic

model based on necroptosis and classified HCC patients into low-

and high-risk groups, the results of which were significantly

different. Furthermore, we explored the potential value of the

signature in guiding the tumor mutational load, immune

microenvironment, and drug sensitivity.

FIGURE 1
Flowchart of the analysis.
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Methods

Download and processing of
transcriptome data

This flowchart illustrates the key steps in the analysis

(Figure 1). The data of HCC were downloaded from TCGA

(https://portal.gdc.cancer.gov/) as a training cohort (Grossman

et al., 2016). Count data and TPM data of HCC were extracted

using R software (4.2.0), and a total of 363 tumor samples with

complete clinical data were obtained. The HCC dataset was

downloaded through ICGC (https://dcc.icgc.org/) database as

a validation cohort, and the count data type and TPM data type

of HCC were extracted, and a total of 240 tumor samples were

obtained with complete clinical information (Zhang et al., 2019).

GSE76427, measured using the Illumina HumanHT-12 V4.

0 expression beadchip, contained 115 HCC samples

(Grinchuk et al., 2018). The raw CEL files for GSE76427 were

downloaded from the GEO database. More details of the data

processing are in Supplementary Material S1, S2.

Download and processing of single-cell
data

The single-cell datasets GSE125449 and GSE151530 for HCC

were downloaded from the GEO database (https://www.ncbi.nlm.

nih.gov/geo/) (Barrett et al., 2013). The GSE125449 dataset contains

nine HCC samples and the GSE151530 dataset contains 32 HCC

samples. We performed quality control on the data of all samples.

We retained cells with genes expressed in at least 10 cells, less than

10% of mitochondrial genes, more than 200 genes, less than 5%

hemoglobin genes, less than 50% ribosomal genes, and expression

between 200 and 7000. We set a limit of 3000 highly variable genes.

Next, we normalized all samples, removed batch effects, and

integrated them by SCT. Then, using the tSNE method with the

“DIMS” parameter set to 20, the dimensionality of the data was

reduced. Cell clustering was then carried out using the “KNN”

method with a resolution of 2.0. Subsequently, the cells were

annotated with the Human Primary Cell Atlas (HPCA) from the

“SingleR” package as a reference dataset (Mabbott et al., 2013).

Finally, the proportion of NCPS-related genes in each cell can be

calculated using the “PercateFeatureSet” function.

Identification of NCPS-related genes

In the GeneCards database (https://www.genecards.org/),

614 genes associated with necroptosis were identified (Safran

et al., 2021). A total of 92 genes were identified that had an

association score of greater than 1.0 with necroptosis

(Supplementary Material S3). Then, the NCPS-related genes

were scored for each sample by the combined analysis of

ssGSEA (Single Sample Gene Set Enrichment Analysis) and

WGCNA (Weighted Co-Expression Network Analysis). The

log2 processed data were used for ssGSEA analysis.

ssGSEA

Gene sets enriched in a sample are often quantified by using

the ssGSEA method with “GSVA” package (version: 1.44.2)

(Bindea et al., 2013; Hänzelmann et al., 2013). In this study,

ssGSEA analysis was utilized to determine the NCPS-related

scores of each patient with HCC.

WGCNA

WGCNA analysis is one method used in systems biology for

determining patterns of genetic association among diverse

samples (Langfelder and Horvath, 2008). In addition to

identifying highly covariant genomes, WGCNA analysis can

be used to identify potential biomarkers or therapeutic targets

based on the correlation between genomes and phenotypes. In

this study, gene modules associated with NCPS scores in HCC

were found by “WGCNA” package (version: 1.71), and genes

associated with necroptosis were obtained. Non-gray modules

were identified by setting a soft threshold of eight, a minimum

number of module genes of 80, and combining modules that had

similarities of less than 0.3.

Construction of NCPS-related prognostic
model

First, univariate COX analysis was used to identify NCPS-

related genes with prognostic values by using the “survival”

package (version: 3.3-1). Next, a prognostic model was

developed based on the least absolute shrinkage and selection

operator (LASSO) regression for NCPS-related genes by using

the “glmnet” package (version: 4.1-4) (Lossos et al., 2004;

Friedman et al., 2010). In this way, the NCPS score could be

calculated for each HCC sample by the formula. Gene expression

levels were weighted by their respective coefficients of LASSO

regression to calculate the NCPS score. The formula was as

follows:

NCPS score � ∑
n

i�1
Coefi × Expi (1)

where n, Expi, Coefi, represented the number, the expression

value, and the coefficient of each selected gene, respectively.

According to the median value of the TCGA-HCC cohort,

patients could be classified into low- and high-risk groups.

Thereafter, we assessed the accuracy of the model by

comparing prognostic differences between the two groups.
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Validation of NCPS-related prognostic
model

The ICGC cohort and GSE76427 were selected as the external

validation cohorts. According to the formula of the prognostic

model, NCPS scores for each sample were calculated, and

patients were categorized based on their median NCPS scores

into high-risk and low-risk groups. We then conducted a survival

analysis comparing the high- and low-NCPS groups. Receiver

operating characteristic (ROC) curves were utilized to evaluate

the model’s accuracy by using the “timeROC” package (version:

0.4) (Li et al., 2018). To determine whether the model grouped

HCC patients more effectively, principal component analysis

(PCA) was performed using the “PCAtools” package (version:

2.8.0) and “scatterplot3d” package (version: 0.3-41).

Immune infiltration and mutation
landscape

We performed immune infiltration analysis of HCC patients

in the TCGA database using immune cell infiltration algorithms

from the IOBR package (version: 0.99.9) (Zeng et al., 2021). Next,

we examined the differences in the levels of immune cell

infiltration between the two NCPS groups and presented the

immune cells with different levels of infiltration as a heat

map. Also, the expression of immune checkpoint-related

genes in the various NCPS subgroups was visualized by a

boxplot. We identified the top 20 genes with the highest

mutation rates by comparing the mutation rates between

groups with high and low NCPS scores.

Nomogram

Using clinical data and NCPS values, a nomogram was

developed in this study to assess the probability of mortality

in patients with HCC using the “rms” package (version: 6.3-0)

and “regplot” package (version: 1.1). This nomogram was

evaluated by using prognostic ROC curves and decision curve

analysis (DCA) to determine its accuracy in predicting patient

outcomes. The DCA analysis was performed using the “ggDCA”

package (version: 1.1) (Vickers and Elkin, 2006).

Drug sensitivity, immunohistochemistry,
pathways

To improve personalized treatment, we calculated half

maximal inhibitory concentrations (IC50) using the

“pRRophetic” package (version: 0.5) and compared these data

between high-risk and low-risk groups (Geeleher et al., 2014).

Low IC50 values indicate greater drug effectiveness. The Human

Protein Atlas (HPA) database (version: 21.1, http://www.

proteinatlas.org/) is the most comprehensive database for

assessing protein distribution in human tissues (Uhlén et al.,

2015).

HPA database was used to obtain prognostic gene expression

data. Immunohistochemical staining images of normal and HCC

tissues were used to analyze the protein expression of genes. In

addition, we performed an enrichment analysis of pathways

associated with different cell types in the single-cell data and

then mapped the significantly different pathways to tSNE plots

for visualization. Pathway enrichment analysis was performed

using the “irGSEA” package (version: 1.1.2). Finally, the

pathways associated with HCC in the TCGA dataset were

analyzed.

Statistical analysis

Statistical analysis was performed using the R software

(version 4.2.0). Continuous data were analyzed using Mann-

Whitney tests, and categorical data were analyzed using Fisher’s

exact tests. Pearson correlation coefficient was used to estimate

the correlation between continuous variables. The Kaplan-Meier

method was used for survival analysis. The Log-rank test was

used to determine the significance of differences. All statistical

analyses were considered significant if the p-values were less

than 0.05.

Results

Annotation of single-cell sequencing data
and identification of differentially
expressed genes associated with NCPS

We first analyzed the single-cell sequencing datasets

GSE125449 and GSE151530 for HCC to integrate different

samples. As shown in Figure 2A, there were no significant

batch effects in the 23 samples, and further analysis of the

results could be conducted. The K-Nearest Neighbor (KNN)

algorithm was used to divide all cells into 43 clusters

(Figure 2B). After entering 92 genes related to NCPS using

the “PercateFeatureSet” function, a percentage of the genes

associated with NCPS was calculated for each cell. Cells were

classified based on the median percentage of NCPS genes and

represented as tSNE plots (Figure 2C). We then identified eight

distinct cell types based on the expression of surface markers of

different cell types in different clusters. They were T cells,

macrophages, endothelial cells, NK cells, monocytes, smooth

muscle cells, B cells, and tumor cells (Figure 2D). The surface

markers for eight types of cells are shown in Figure 2E.

Furthermore, we identified 3598 genes that were

differentially expressed between high- and low-NCPS groups
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(Supplementary Material S4). Using the WGCNA analysis of

363 samples from the TCGA cohort, we have obtained gene

modules associated with necroptosis. In total, eight non-gray

modules were identified by setting a soft threshold of 8

(Figure 3A). As shown in Figure 3B, MEsalmon, MEtan, and

MEpurple were strongly associated with the NCPS score.

Further analysis was performed on the genes in these three

modules.

FIGURE 2
Single-cell analysis. (A) There were no significant batch effects in the 23 samples. (B) Dimensionality reduction and cluster analysis. (C)
Percentage of genes in each cell that are involved in necroptosis. (D) Annotation of cells in accordance with their surface marker genes. (E) A list of
the surface markers of the eight types of cells.
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The NCPS-related prognostic model
could be used to classify HCC patients and
predict their prognosis

An intersection was drawn between differential genes derived

from single-cell analysis and genes identified by WGCNA. In

Figure 3C, 74 genes are shown as candidates for the next step in

the analysis (Supplementary Material S5). Based on univariate

COX analysis within the TCGA cohort, 45 genes have been

identified as significantly associated with prognosis. The LASSO

regression analysis employed a random seed of 2022, and the

results indicated that gene contraction stabilized with minimal

partial likelihood deviation when the number of genes included

was 8 (Figures 3D,E). Table 1 summarizes the results of the Lasso

regression for each of these genes. The prognostic model was

constructed from eight genes, including RAD21, NBN, PRKDC,

FIGURE 3
Construction of prognosticmodel. (A,B)WGCNA screening formodules relating to necroptosis. (C) The intersection between differential genes
identified by single-cell analysis and genes identified by WGCNA. (D,E) Using Lasso regression, the final genes were selected for the prognostic
model.
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MAP2K2, RIPK2, BOP1, POLR2E, and GPX4. As follows was the

prognostic model.

NCPS � RAD21*0.07523793 + NBN*0.02974632

+ PRKDC*0.2080255 +MAP2K2*0.13063826

+ RIPK2*0.05091183 + BOP1*0.0940779

+ POLR2E*0.18787475 + GPX4* 0.1444125

Based on median values, patients were divided into high-

and low-risk groups. Figure 4A showed that the high-NCPS

group in the training cohort had a worse prognosis (p = 0.015).

Figure 4B demonstrated that patients with high-NCPS had

worse outcomes than those with low-NCPS in the validation

cohort (p = 0.0078). ROC curves were generated for both the

training and validation cohorts to test the prognosis assessment

ability. As shown in Figure 4C, the area under the curve (AUC)

values were 0.722, 0.746, 0.741, and 0.763 at 1, 2, 3, and 5 years

in the TCGA cohort, respectively. In the validation cohort,

AUC values were 0.730, 0.653, 0.625 and 0.623 at 1, 2, 3 and

5 years, respectively (Figure 4D). In the GSE76427 cohort, the

results showed that the high-NCPS group had a worse

prognosis (p = 0.0037), and AUC values were 0.682, 0.696,

and 0.778 at 2, 3 and 5 years, respectively (Supplementary

Material S6).

Based on these results, the NCPS-related prognostic model

was found to be accurate in predicting the outcomes of patients in

all three cohorts. Furthermore, PCA was performed on the eight

genes included in all three cohorts, and the results were similar.

The results showed that the model performed well in classifying

HCC patients (Figures 4E,F).

The nomogram could be more reliable in
predicting patient outcomes than other
indicators

Combining clinical information and NCPS scores, we

constructed a nomogram that allows us to assess patients’

prognoses. In Figure 5A, the estimated mortality rates for

patients with the high-NCPS score “TCGA-G3-A7M9” were

0.626, 0.92, and 0.984 at 1, 3, and 5 years based on gender, age,

T-stage, and total stage (Table 2). Based on the low-NCPS

score, the estimated mortality rates for patients with “TCGA-

DD-AADS” were 0.0389, 0.102, and 0.153 at 1, 3, and 5 years

based on sex, age, T-stage, and total stage (Figure 5B). In

Supplementary Material S7, NCPS scores and clinical

characteristics of 363 patients from the TCGA-HCC dataset

are presented. Accordingly, a clinical decision could be

based on assessing a patient’s risk and guiding their

subsequent treatment. Furthermore, the accuracy of the

nomogram was assessed through ROC analysis, which

showed AUCs of 0.75, 0.67, and 0.68 for 1, 3, and 5 years,

respectively (Figure 5C). In addition, we assessed the utility of

the model to support clinical decision-making by using

decision curve analysis (DCA) and reported the net clinical

benefit of the model. The results showed that the nomogram is

better than other clinical indicators, indicating that the

nomogram is effective in predicting the patient’s prognosis

(Figure 5D).

Survival analysis and cellular localization
of the eight hub genes

Survival analysis was performed for each of the eight hub

genes. Compared with patients with low expression,

those with high levels of RAD219 (p = 0.0078), RIPK2 (p =

0.005), BOP1 (p = 0.0038), POLR2E (p = 0.02), and MAP2K2

(p = 0.017) had significantly poorer outcomes (Figure 6A). To

investigate the expression of the eight hub genes in

various cell types, we conducted a single-cell sequencing

analysis. As shown in Figures 6B–J, RAD21, BOP1,

POLR2E, and PRKDC were mainly expressed in tumor

cells, RIPK2 was mainly expressed in monocytes,

MAP2K2 was mainly expressed in tumor cells and

macrophages, NBN was mainly expressed in macrophages

and monocytes, and GPX4 was mainly expressed in tumor

cells and T cells.

TABLE 1 Eight genes were identified by lasso regression to construct a prognostic model.

ID Coef Hazard_ratio Low_CI High_CI p_value

RAD21 0.07523793 1.61760529 1.18401058 2.20998607 0.00252028

NBN 0.02974632 1.69458991 1.18308239 2.42724849 0.00401446

PRKDC 0.2080255 1.68776122 1.27783985 2.22918228 0.00022688

MAP2K2 0.13063826 1.83095476 1.27010213 2.6394691 0.00119002

RIPK2 0.05091183 1.61290563 1.22724908 2.11975272 0.00060646

BOP1 0.0940779 1.48888676 1.1924913 1.85895175 0.00044089

POLR2E 0.18787475 2.33187249 1.40355261 3.87418988 0.00108012

GPX4 0.1444125 1.69395714 1.12709302 2.54592189 0.01122826
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The NCPS scores are positively correlated
with the levels of immune cell infiltration
and the expression of immune checkpoint
genes

As shown in the above analysis, patient outcomes varied

significantly within the NCPS subgroups. To explore the reasons

for this and inform immunotherapy, comparisons of the levels of

immune cell infiltration between the various groups were

conducted.

As shown in Figure 7A, six different immune infiltration

algorithms have been used to estimate the relationship

between necroptosis and immune cells. Specifically, the

three algorithms of MCP counter, Quanti-seq, and TIMER

clearly demonstrated that there were more immune cell

infiltrations in the high-NCPS group, including

macrophages, NK cells, T cells, monocytes, B cells, and

dendritic cells. We then investigated the expression of

genes associated with immune checkpoints. Figure 7B

demonstrated that many immune checkpoint genes, such as

PDCD1 and CTLA4, were more highly expressed in the high

NCPS group. High NCPS patients were likely to have a higher

degree of immune infiltration. However, patients with high-

NCPS may suffer from low response states due to high levels of

immune checkpoint genes, and immune checkpoint inhibitors

may be of greater benefit to patients with such conditions. In

FIGURE 4
Validation of prognostic model. (A) Survival analysis of the training set showed significantly poorer outcomes for NCPS high group (p = 0.015).
(B) Survival analysis results in the validation set were similar to those in the training set (p=0.0078). (C) ROC curve of the training set. (D) ROC curve of
the validation set. (E,F) 3D-PCA analysis in the training set and validation set.
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addition, we examined the immune infiltration results

obtained by different algorithms. The QuantTIseq

algorithm showed that patients with high-NCPS levels had

more macrophages, B cells, and T cells (Figure 7C).

A high-NCPS score is associated with a
greater incidence of gene mutations

According to the NCPS scores in the high- and low-group,

20 of the top mutated genes were identified. As shown in Figures

8A,B, the incidence of mutations in the 20 most frequently

mutated genes was 89.53% (High NCPS) and 82.76 % (Low

NCPS) for the two groups. In the high-NCPS group, the

highest mutation rates were PT53 (40%), CTNNB1 (30%), and

TTN (29%). In the lowNCPS group, TTN (25%), CTNNB1 (24%),

and PT53 (21%) were the mutations with the highest rates. A

higher incidence of mutations was observed in the high-NCPS

group as compared to the low-NCPS group. Mutations were

analyzed for eight hub genes (Supplementary Material S8). The

highest Variant Classification shown in Figure 8C was Missense

Mutation. Single nucleotide polymorphism (SNP) was the highest

Variant Type (Figure 8D). Figure 8E indicated that an average of

100 genes were mutated in each sample. Figure 8F showed that the

top three base mutation types of single nucleotide variants (SNVs)

were C>T, C>A, and T>C. In addition, we analyzed the correlation
between pairs of mutated genes. Figure 8G showed a strong co-

relation between FLG and OBSCN (p < 0.0001, OR = 8.803),

FAT3 and DNAH7 (p = 0.00064, OR = 6.925). There was a strong

mutually exclusive relationship between CTNNB1 and TP53 (p =

FIGURE 5
Construction of the nomogram. (A) High-NCPS patient “TCGA-G3-A7M9”: Mortality rates were estimated to be 0.626, 0.92, and 0.984 at 1, 3,
and 5 years, respectively. (B) Low-NCPS patient “TCGA-DD-AADS”: Mortality rates in 1, 3, and 5 years were estimated to be 0.0389, 0.102, and 0.153,
respectively. (C) The ROC curve for the nomogram. (D) DCA analysis showed that the nomogram was more effective than other clinical indicators.

TABLE 2 Comparison of clinical data from patients with high- and
low-NCPS in the TCGA-HCC dataset.

Patient ID TCGA-G3-A7M9 TCGA-DD-AADS

NCPS score 4.501 2.920

Gender Male male

Status Dead Alive

Age (year) 70.104 63.636

M_stage MX M0

N_stage NX N0

Stage Stage IIIB Stage I

T_stage T3b T1

Survival time (year) 0.153 1.299

1-year mortality rates CI: 0.626 (0.432, 0.82) CI: 0.0389 (0.0234, 0.0646)

3-year mortality rates CI: 0.93 (0.782, 0.99) CI: 0.102 (0.0617, 0.165)

5-year mortality rates CI: 0.984 (0.906, 0.999) CI: 0.153 (0.094, 0.243)
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FIGURE 6
Survival analysis and cellular localization of the eight hub genes. (A) The survival analysis of eight hub genes in the TCGA cohort. (B–J) The
expression of eight hub genes in different types of cells.
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0.00811, OR = 0.459), AXIN1 and CTNNB1 (p = 0.00733, OR =

0.109) (Supplementary Material S9).

Drug sensitivity of HCC and hub gene
protein expression are positively
correlated with NCPS scores

Based on the “pRRophetic” package, we assessed the

sensitivity of different NCPS subgroups to drugs commonly

used as a treatment for HCC. The high-risk group showed

higher sensitivity to cisplatin, docetaxel, paclitaxel, sunitinib,

tipifarnib, bexarotene, bicalutamide, bortezomib, and

bleomycin, while the low-risk group showed higher sensitivity

to metformin, camptothecin, temsirolimus (Figure 9A). The

immunohistochemical analysis of the HPA database showed

that protein products with high NCPS-related genes were

expressed at higher levels in HCC samples compared to

normal tissues (Figure 9B).

Pathway enrichment and localization in
single-cell sequencing data

Pathway enrichment analysis of single-cell data revealed that

HALLMARK OXIDATIVE PHOSPHORYLATION was

FIGURE 7
Immune infiltration analysis of TCGA cohort. (A) Heat map of immune cell infiltration in high and low NCPS groups with six immune infiltration
algorithms. (B) Expression of immune checkpoint genes in high- and low-NCPS groups. (C) Results of the quanTIseq algorithm.
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upregulated in Malignant cells but downregulated in

T cells, TECs, and B cells. HALLMARK ALLOGRAFT

REJECTION was downregulated in Malignant cells,

upregulated in T cells, downregulated in CAFs, and

upregulated in TAMS. HALLMARK-TNFA -SIGNALING-

VIA-NFKB was downregulated in Malignant cells and

upregulated in TAMs. HALLMARK-TGF-BETA-

SIGNALING was upregulated in TECs (Figure 10). In

addition, we explored the expression of these signaling

pathways in different cell types by single-cell sequencing

analysis (Figures 11A–D) and profiled the pathways

associated with disease (Figure 11E).

FIGURE 8
Mutation landscape of TCGA cohort. (A,B) Mutated genes in high- and low-NCPS groups. (C,D) Classification and types of variants. (E)
Mutations in each sample. (F) The base mutation types of SNVs. (G) The correlation between pairs of mutated genes.
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Discussion

With increasing incidence, HCC has become the second

leading cause of cancer-related deaths (Bray et al., 2018). Due

to lifestyle changes, HCC has become the fastest growing cancer

in developed countries, but the response to antitumor therapy is

relatively poor. Approximately 50% of HCC patients receive

systemic therapy, traditionally with first-line sorafenib or

lenvatinib. In the past 5 years, immune checkpoint inhibitors

have completely altered the treatment regimen for HCC and

improved the prognosis (Llovet et al., 2022). The immune

microenvironment plays a significant role in the progression

of HCC, and HCC with high- and low-necroptosis respond

differently to immune checkpoint inhibitor therapy. However,

at present, there are no validated biomarkers to aid in clinical

decision-making in this regard.

Immune checkpoint inhibitors are used because immune

cells can receive inhibitory signals by activating immune

checkpoint molecules. By activating immune checkpoint

molecules to receive inhibitory signals, their activity and

FIGURE 9
Drug sensitivity and Immunohistochemical analysis. (A) Drug sensitivity analysis in. high- and low-NCPS groups. (B) Immunohistochemical
analysis of eight hub genes.
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proliferation are blocked (Huang and Chang, 2019). These

immune checkpoints can be used by cancer cells, leading to

impaired immune surveillance (Liu and Qin, 2019). PD-1, PD-

L1, and cytotoxic T cell antigen 4 (CTLA-4) are the main

immune checkpoints that have been targeted by monoclonal

antibodies.

Utilizing comprehensive data analysis on HCC datasets from

TCGA, ICGC, and GEO databases, we built a prognostic profile

for NCPS-related genes associated with HCC. We calculated risk

scores to identify high- and low-risk groups of patients with

HCC. All three cohorts both showed that the high-risk group did

significantly worse than the low-risk group in HCC. Xie et al.

(2022) found similar results in triple-negative breast cancer,

indicating that the higher the NCPS score, the larger the

tumor and the worse the prognosis. Furthermore, the ROC

curve revealed that this feature might be accurate in

predicting the prognosis of patients with HCC at 1, 3, and

5 years. Based on the immune microenvironment analysis,

immunotherapy was more likely to be effective in necroptosis

with higher expression levels. The low response to

immunotherapy of HCC could be attributed in part to the

low mutational load and the generation of new immune

checkpoints (Ricciuti et al., 2019; Scheiner et al., 2022).

Therefore, it becomes fascinating to explore the immune

FIGURE 10
Pathway enrichment analysis of single-cell data.
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microenvironment of HCC. Necroptosis may play an important

role in TME by the release of inflammatory molecules during the

induction of apoptosis. However, it remains unclear whether

necroptosis plays a role in HCC.

Necroptosis is a necrotic programmed cell death that is

powerfully immunogenic and participates in a complex

interplay of autophagy and apoptosis (Gong et al., 2017).

There is growing evidence that necroptosis plays an important

role in prognosis, disease progression and tumor metastasis, and

immune surveillance in cancer patients (Gong et al., 2019).

Targeting necroptosis through immune checkpoint is also

emerging as a new approach in tumor therapy.

The role of necroptosis in cancer is complex. It is still unclear

exactly what role necroptosis plays in cancer. In general, high

expression of necroptosis elicits strong adaptive immune

responses that can inhibit tumor progression (Yatim et al.,

2015). However, these recruited strong immune responses

may also promote tumor progression. The inflammatory

response may promote tumorigenesis and metastasis, as well

as may generate an immunosuppressive tumor

microenvironment (Seifert and Miller, 2017). Therefore, it is

essential to investigate the molecular mechanisms and

physiopathological aspects of necroptosis, as well as its

interaction with immunity. In addition, it is imperative to

FIGURE 11
Pathway enrichment analysis. (A–D) Localization of different pathways in the single-cell dataset. (E) The number of pathways enriched in the
TCGA cohort.
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discover the correlation between specific necroptosis markers

and the prognosis of HCC. This is to unravel the confusion of

necroptosis correlation in HCC and further develop targeted

antitumor therapeutic drugs. In this study, combining single-cell

analysis and second-generation sequence analysis, we were able

to identify a significant difference between NCPS groups in terms

of immune cell infiltration in HCC. Significant differences were

observed between the high- and low-NCPS groups. In addition,

the study findings indicated that a high level of NCPS group

corresponds to a high level of immune checkpoint gene

expression. Therefore, patients with HCC who have a high

NCPS are more likely to respond to immunotherapy.

The datasets GSE125449 and GSE151530 have been initially

explored to reveal changes in the immune microenvironment of

HCC. Among the published results, GSE125449 reveals different

degrees of heterogeneity of malignant cells within and between

tumors and different TME landscapes by single-cell sequencing

techniques. GSE151530 provides insights into the collective

behavior of HCC cell communities by single-cell sequencing

and potential tumor evolution in response to therapy drivers. We

first classified HCC cells into two groups based on their NCPS

scores by analyzing single cells of GSE125449 and GSE151530.

This provided a reference for us to study the heterogeneity of

necroptosis in HCC. Based on these two cell populations, we

calculated the differentially expressed genes, which then served as

a basis for constructing a prognostic model. For the validation of

the prognostic model, survival data from the ICGC dataset was

analyzed.

Our study has some limitations. First, a comprehensive

analysis of HCC tissues is needed to fully validate how the

eight NCPS-related genes are involved in the development of

HCC. This was not examined in the current study. Second,

further validation with larger patient datasets is needed better

to estimate the accuracy of the model’s predictions. Finally,

further experimental evidence is needed to fully understand

the role and mechanisms of eight NCPS-related genes in HCC.

Conclusion

Through the analysis of single-cell and bulk multi-omics

sequencing data, we constructed a prognostic model related to

necroptosis and explored the relationship between high- and

low-necroptosis groups and immune cell infiltration in HCC.

This provides a new reference for further understanding the role

of necroptosis in HCC. This may be useful in developing new

therapeutic targets for the treatment of HCC. However, further

molecular experiments are required to confirm the present findings.
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Integrated analysis of bulk and
single-cell RNA-seq reveals the
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MYC is one of the well-known oncogenes, and its important role in cancer still

remains largely unknown. We obtained lung adenocarcinoma (LUAD) multi-

omics data including genome, transcriptome, and single-cell sequencing data

frommultiple cohorts. We calculated the GSVA score of theMYC target v1 using

the ssGSEAmethod, and obtained the genes highly correlated with this score by

Spearman correlation analysis. Subsequent hierarchical clustering divided these

genes into two gene sets highly associated with MYC signaling (S1 and S2).

Unsupervised clustering based on these genes divided the LUAD samples into

two distinct subgroups, namely, the MYC signaling inhibition group (C1) and

activation group (C2). The MCP counter package in R was used to assess tumor

immune cell infiltration abundance and ssGSEA was used to calculate gene set

scores. The scRNA-seq was used to verify the association of MYC signaling to

cell differentiation. We observed significant differences in prognosis, clinical

characteristics, immune microenvironment, and genomic alterations between

MYC signaling inhibition and MYC signaling activation groups. MYC-signaling is

associated with genomic instability and can mediate the immunosuppressive

microenvironment and promote cell proliferation, tumor stemness. Moreover,

MYC-signaling activation is also subject to complex post-transcriptional

regulation and is highly associated with cell differentiation. In conclusion,

MYC signaling is closely related to the genomic instability, genetic alteration

and regulation, the immune microenvironment landscape, cell differentiation,

and disease survival in LUAD. The findings of this study provide a valuable

reference to revealing the mechanism of cancer-promoting action of MYC

in LUAD.
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Introduction

Lung cancer is the most common malignant tumor of the

respiratory system, and the basic and clinical research on lung

cancer is increasingly attracting attention (Mok et al., 2019;

Song et al., 2020; Song et al., 2022). Although the current

research on the pathogenesis of lung cancer has made great

progress, but the clinical treatment effect of lung cancer is still

not satisfactory, and the long-term survival rate of lung cancer

still has great room for improvement. With the deepening of

research, molecular biology has been widely used in the field of

lung cancer research, which not only provides many new

methods for lung cancer research, but also makes the

diagnosis and treatment of lung cancer into a new stage.

According to the different biological characteristics, lung

cancer is often divided into small cell lung cancer (SCLC)

and non-small cell lung cancer (NSCLC) in clinical, among

which the latter accounts for about 85% of all lung cancer

patients (Cheng et al., 2019). Lung adenocarcinoma (LUAD) is

the most common pathological subtype of lung cancer (Kim

et al., 2019; Song et al., 2021). Lung cancer is a highly

heterogeneous tumor, and lung cancer occurrence is a

multi-gene, multi-factor joint regulation, multi-stage and

multi-step process (Rajagopalan et al., 2018).A large

number of molecular abnormalities and the mechanism of

action remain to be explored.

The MYC gene family and its products are involved in the

regulation of cell growth, differentiation, and programmed

death, and play important roles in the formation of various

tumors (Vo et al., 2016). Previous studies have shown that MYC

can affect the cell cycle progression, and its amplification and

overexpression can lead to c-Myc proto-oncogene activation,

which subsequently promotes tumorigenesis and progression

(King et al., 2016; Lee et al., 2016).It can also regulate the

expression of VEGF, to control the angiogenesis (Thompson

et al., 2017). MYC, acting as a transcription factor, can regulate

the expression of a large number of genes in tumors. It can act as

an amplifier that globally upregulates the expression of protein-

coding genes within cancer cells. So with a slight MYC

expression disorder, it is possible to promote cancer cell

evolution (Jing et al., 2016; Wang et al., 2019; Poh et al.,

2019). Recent advances in high-throughput sequencing

technologies, such as whole-genome sequencing, have

allowed us to analyze tumors in unprecedented depth,

especially with the single-cell sequencing (scRNA-seq)

technologies that have emerged in recent years (Jiang et al.,

2022; Becht et al., 2018; Zhang et al., 2021). Among them,

scRNA-seq is a new technology for high-throughput

sequencing of mRNA at the single-cell level, studying the

overall level of gene expression for individual cells. Given

the non-negligible and important role of MYC in cancer cell

growth, proliferation, and differentiation, this study

innovativelyused LUAD multi-omics data from multiple

cohorts to systematicallyinvestigate the relevance of

transcriptional profile expression, genome instability, genetic

alteration and regulation, immune microenvironment

landscape, cell differentiation, and disease survival in

Halkmark MYC target V1 gene sets by integrating bulk and

single-cell RNA sequencing data. Figure 1 showed the workflow

of this study. This study indicated significant differences in

prognosis, clinical characteristics, immune microenvironment,

and genomic alterations between MYC signaling inhibition and

MYC signaling activation groups. MYC-signaling is associated

with genomic instability and can mediate the

immunosuppressive microenvironment and promote cell

proliferation, tumor stemness. Moreover, MYC-signaling

activation is also subject to complex post-transcriptional

regulation and is highly associated with cancer cell

differentiation. Take together, the findings of this study

provide a valuable reference to revealing the mechanism of

cancer-promoting action of MYC in LUAD.

Materials and methods

Data sources and sample collection

Expression profile data (tpm, counts, miRNA isoform) and

clinical information for TCGA-LUAD (n = 516) were

downloaded from the GDC (https://portal.gdc.cancer.gov/).

To avoid batch effects, the counts and tpm data that we used

were directly derived from the STAR-counts workflow type, and

were subsequently log2-transformed on the TPM data.

Mutation data and copy number variation (CNV) data for

the TCGA-LUAD dataset were also downloaded from the

cBioPortal (www.cbioportal.org/). Three independent LUAD

cohorts were collected from the GEO database (https://www.

ncbi.nlm.nih.gov/geo/) asexternal validations, respectively,

GSE68465 (n = 443) (Shedden et al., 2008), GSE72094 (n =

442) (Schabath et al., 2016), and GSE31210 (n = 226) (Okayama

et al., 2012; Yamauchi et al., 2012). For processing the GEO

data, we refer to the method of (Song et al. 2022). The LUAD

GEO dataset included in this study was mainly considered

based on the sample size. The above three LUAD cohorts

have a substantial number of cases, which is an important

basis for their inclusion in this study. The clinicopathological

parameters of LUAD patients in the TCGA and GEO cohorts

should be provided in the Supplementary Table S1.

Definition of signature genes

Pathways for MSigDB database were acquired using

the“msigdbr” package in R. The enrichment score for the

pathway “HALLMARK_MYC_TARGETS_V1” was calculated

using the ssGSEA algorithm of the “GSVA” package in R, and
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the genes highly correlated with this score were obtained by

Spearman correlation analysis, with the threshold set as: Rho>
0.5 and adj.p value <1e-3. Genes were subsequently filtered using
univariate cox regression analysis and log rank test with p

value≤0.05 as the threshold, and the two lists of genes

obtained were set as intersection, and shared genes were

considered as survival-related genes. We divided the resulting

gene set into S1 signature set and S2 signature set by hierarchical

clustering. All the genes in S1 were negatively correlated with

HALLMARK_MYC_TARGETS_V1 pathway score and HR < 1,

while S2 was all positively correlated with

HALLMARK_MYC_TARGETS_V1 pathway score and HR >
1. Therefore, S1 signature was thought to be associated withMYC

signaling inhibition, and S2 signature is associated with MYC

signaling activation.

Classifying samples with consensus
clustering

Samples were consistently clustered using the

“ConsensusClusterPlus” package in R (Qiu et al., 2021), with

the parameters set to: distance = “euclidean”, clusterAlg = “km,”

maxK = 5, reps = 100, pItem = 0.8, and the remaining parameters

took the default values. And sampels could be most distinctly

classified when k = 2. After checking the expression level of the

two signatures we previously identified in these two cluters,

reasonably, we defined samples with highly expressed

S1 signature genes as group C1 (MYC signaling inhibition

group). Conversely, samples with highly expressed

S2 signature genes were defined as group C2 (MYC signaling

activation group).

FIGURE 1
The work flow chart of this study. (A) Identifying MYC signaling related genes and clustering LUAD samples. (B) Analyzing the differences in
multiple levels (Genome, transcriptome, and immune infiltration) between two clusters. (C) Validating the robustness of the twoMYC signatures and
constructing the network of differentially expressed lncRNAs and miRNAs. (D) Verifying signatures association with LUAD cell differention in
scRNAseq data and IHC.

Frontiers in Genetics frontiersin.org03

Hao et al. 10.3389/fgene.2022.1021978

137

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1021978


Analysis of the genomic variability

We used “data_mutations_extended.txt” downloaded

from ciBioPortal to analyse the mutation landscape of two

clusters. Non-silenced SNV was analyzed using the “maftools”

R package. We focused onMYC gene family (MYC, MYCN,

MYCL) and pathway core genes and genes listed as cancer

driver genes by OncoKB(https://www.oncokb.org/

cancerGenes). The Fisher test of genes mutated in at least

30 samples were also performed using the mafCompare

algorithm to yield genes with significant differences in

mutation frequency in the two groups. Copy number

variations of related genes were analysized using “data_

CNA.txt” data from ciBioPortal. Among them, the CNV

state of genes is divided into −2, −1, 0, 1, 2, and

0 represents no CNV, 1 and 2 represent copy number

amplification, and -1 and −2 represent copy number loss.

Copy number variation at chromosome level were directly

extracted from the data_clinical_sample.txt, and only the top

10 most significantly variated chromosome arms between

C1 and C2 clusters were visualized. All the statistics of

genomic variability were performed with two-sided Fisher’s

exact test.

Description of the tumor
microenvironment

The scores of 10 typical immune cells, including T cells,

CD8 T cells, CTL, B cells, NK, and monocytes, were calculated

using MCP-counter. From a previous study (Bagaev et al.,

2021), data including purity, intratumor heterogeneity,

aneuploidy score, homologous recombination defects,

BCR.Shannon, TCR.Shannon, M1/M2 macrophage were

obtained. To further evaluate the impact of MYC on the

immune microenvironment, we used TIDE (http://tide.dfci.

harvard.edu/) to calculate the scores of TIL for MDSC,

CAF, and M2, as well as two indicators related to

immunotherapy response: T-cell dysfunction and exclusion

(Jiang et al., 2018).

Differential expression analysis of genes
(including mRNA, lncRNA, miRNA) and the
construction of CeRNA network

Using the “DESeq2” R package, the differential expression

analysis was performed (Zhao et al., 2021). The threshold was

set to adj.p value <0.001 and |log2FoldChange|> 0.5. And the

resulting log2FC and adj.p value were used as the colors and

sizes of the nodes in the subsequent network graph drawing,

respectively. Circular nodes represents lncRNA, and square

nodes represents miRNA. The selected lncRNA-miRNA

interaction, MYC/MYCN and-ncRNA interaction, and

miRNA-MYC/MYCN interaction were predicted using the

online tool RNAInter (http://www.rnainter.org/) and

mirWalk (http://mirwalk.umm.uni-heidelberg.de/). For the

prediction results, the drawing was performed using the

“igraph” R package (Mora and Donaldson, 2011). Gray

lines represent all possible interactions between ncRNA and

MYC/MYCN, and red lines indicate possible interactions

between ncRNA.

Analysis of the scRNA-seq data

The expression matrix of scRNA-seq and the clinical

information (such as histological type) of the samples were

downloaded from the website (https://doi.org/10.24433/CO.

0121060.v1) (Kumar and Song, 2022). The data contained a

total of 114,489 cells from 10 LUAD samples and 10 normal

lung tissue samples, and used 10x genomics for sequencing.

Genes below expression in 100 cells were filtered out using the

“Seurat” R package (Kumar and Song, 2022). Low-quality cells

were filtered out by the criteria where the number of

expressed genes was greater than 100 and less than

6,000 and the proportion of mitochondrial gene

expression was less than 20. After defining and

isolating epithelial cells from single cell expression profiling

data of total cells, again, samples with less than 100 epithelial

cells were filtered out for subsequent analysis. The top

15 principal components were used after PCA dimension

reduction. Eventually we obtained 3,684 normal epithelial

cells from the normal samples, and 15,477 malignant

epithelial cells from the tumor samples. The signature

module score was calculated using the AddModuleScore

function.

The interaction network of the Signature
gene and immunohistochemical

Genes with significant differential expression between

the two groups (C1 and C2 groups) and the genes belonging

to S1/S2 signature set were included in the potential nodes.

Associations between nodes were obtained by correlation

analysis, and edges with lower associations were filtered out.

The visualization was then performed using the “igraph” R

package.Circle size represents the -log10 (p-value), and the

circle color indicates the log2FoldChange for the difference

analysis after C1/C2 grouping. Pictures of IHC staining

derived from normal samples and LUAD samples were

selected on the HPA website (https://www.proteinatlas.org/) to

verify the relationship of key genes to cell differentiation. Here,

“HPAanalyze” R package was used to download the high

definition IHC pictures (Tran et al., 2019).
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Statistical analysis

All statistical analysis was done using R. Where the KM

survival analysis was performed by log rank test using the

“survival” and “survminer” R packages, and the univariate and

multivariate cox were done using the basis function coxph. We

filtered out samples with less than 30 days of follow-up date

before performing a survival analysis. Student’s t-Test was used

to compare the differences in gene expression levels between

clusters. A p-value of less than 0.05 was considered statistically

significant. Heatmaps were all plotted using the

“ComplexHeatmap” R package.

FIGURE 2
Identification of the two MYC signaling-associated signatures and unsupervised consistent clustering. (A) Flow chart of the sample
classification. (B) Comparison of MYC Target GSVA scores between normal and tumor tissues in LUAD (right); Heatmap showing the hierarchical
clustering of MYC Target GSVA scores-associated genes (left). (C) Venny plot showing survival-associated genes obtained by univariate cox analysis
and log-rank test. (D) Unsupervised clustering divided the LUAD samples into two distinct subgroups (k = 2). (E) CDF and consensus index. (F)
Heatmap showing the expression distribution of the Signature genes between the two clusters. (G)Comparison ofMYC Target GSVA scores between
the two distinct subgroups (C1 and C2). (H) Comparison of overall survival (OS) between C1 and C2. (I) Comparison of progress-free interval (PFI)
between C1 and C2.
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Results

Identification of the two MYC signaling-
associated signatures

The level of MYC signaling activation cannot be simply

judged by MYC gene expression and copy number

amplification. Considering that the genes regulated by the

same pathway are similar in their expression patterns, we

assessed the degree of MYC signaling activation by looking at

the overall expression levels of the MYC target genes, and

obtained all the highly correlated genes by similarity analysis.

We performed the subsequent analysis as to Figure 2A. We first

evaluated the enrichment score of the

MYC_TARGET_V1 pathway by ssGSEA algorithm, then

found the genes highly related with the score through

correlation analysis, and performed hierarchical clustering

(Figure 2B). As we expected, these genes could be divided into

two groups that were highly concordant, with one group being

highly positively correlated with MYC_TARGET_V1 and the

other group being highly negatively correlated. To further screen

for key genes, we further filtered out 478 survival-related genes by

FIGURE 3
Association of MYC signaling with Hallmark pathways and genomic variations. (A) Heatmap of pathway scores with significant differences (p <
0.001) betweenC1 and C2. (B)Mutations, copy number variations and expression of coremembers of theMYC pathway betweenC1 andC2 samples.
(C) Variation at top10 chromosome arm levels with significant differences between C1 and C2. (D)Waterfall plot showing the distribution of mutation
characteristics of commonly mutated genes in the C1 and C2, and differently mutated genes between two groups by fisher test.
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intersection using univariate cox analysis and log rank test of the

obtained genes (Figure 2C; Supplementary Table S2).

Importantly, both cluster genes negatively associated with

MYC_TARGET_V1 were associated with better prognosis,

and both genes positively associated with

MYC_TARGET_V1 were associated with worse prognosis.

Therefore, we defined these two cluster gene sets as S1 and

S2, respectively.

The MYC signaling-associated signature
could divide LUAD patients into two
clinical clusters

Considering that the S1 and S2 genes have significantly

different characteristics, we subsequently performed

unsupervised consistent clustering of LUAD samples based on

the expression of the signature genes, and finally obtained two

clusters of samples (Figures 2D,E). One group of samples highly

expressed the S1 signature gene, while the other group also highly

expressed the S2 signature gene (Figure 2F), so we named it as the

corresponding two C1 and C2 groups. Group C2 was the MYC

signaling activation group, and group C1 was the MYC signaling

inhibition group. The MYC scores were significantly different

between the two groups (Figure 2G). In addition, we also found

significant differences in OS (Figure 2H) and PFI (Figure 2I).

This suggests important roles of MYC signaling in LUAD.

Association of MYC signaling with
Hallmark pathways and genomic
variations

The association of MYC signaling with oncogenic pathways

and genomic variants remains unclear, therefore, we investigated

the GSVA score differences in Hallmark pathways between MYC

signaling activation (C2) and inhibition (C1) groups. As shown

in Figure 3A, in addition to the MYC and cell-cycle-related

pathways, the pathways such as glycolysis and PI3K were also up-

regulated in C2. Copy number variation (CNV) in all MYC

pathway core genes were significantly different between C1 and

C2 (fisher exact test p < 0.05). Specifically, these genes developed

CNV more frequently in C2, and MXD3 was both primarily lost

in C2 and mostly amplified in C1. MLXIP was the opposite. This

suggested that CNV changes were important causes of MYC

pathway activation. Meanwhile, besides MLXIP and MYCN,

other genes also differed in their expression between C1 and

C2. Interestingly, although MXD3 experienced more copy

number loss in C2, its expression remained higher in C2

(Figure 3B). We also examined CNV differences in

chromosome levels between C1 and C2 (Figure 3C). Not

surprisingly, multiple chromosomes-level CNV differences

exist between C1 and C2. In addition to occurring more

frequently in C2, the types of variants occurring also varied,

such as 5q being more amplified in C1. In LUAD, mutations in

many key genes play a crucial role in tumor development. They

are known as the driver genes. We examined the mutation

situation between C1 and C2. The results showed that besides

KRAS, EGFR, STK11 (these genes were thought to be mutually

exclusive to MYC pathway activation in previous studies (Zhang

et al., 2016; Mollaoglu et al., 2017)), most genes were more

mutated and higher in C2 (Figure 3D). Overall, the results of this

study indicate that MYC signaling is closely related with

oncogenic pathways and genomic variants.

MYC-signaling associates with genomic
instability, mediates the
immunosuppressive microenvironment,
and promotes cell proliferation, and tumor
stemness

In the above analysis, we found that the MYC signaling

activation group was significantly different from the inhibition

group in terms of genetic mutations. From this, we further

investigated the differences in genomic instability scores

between the two groups. We curated a list of genomic

instability scores from a previous study (Bagaev et al., 2021),

which was composed of the mutation burden score, the

aneuploidy score, and the HRD score. The mutation burden

score was non-silent mutations per Mb. The aneuploidy score

reported the total number of arm-level amplifications and

deletions and was computed using ABSOLUTE. Our results

indicate that the MYC signaling activation group presents a

higher genomic instability score than the MYC signaling

inhibition group (Figure 4A). In addition, we also found that

the MYC signaling activation group also showed higher

intratumoral heterogeneity, IFN-gamma response and M1/

M2 macrophages and lower TCR shannon, while the tumor

purity and BCR shannon did not be significantly different

between the two groups (Figure 4A). To analyze the effect of

MYC signaling on the immune cells and the tumor

microenvironment, we calculated the infiltration levels of the

10 immune cells using the MCP counter R package and

performed a statistical test with a t-test (Figure 4B). We found

that the cells mediating tumor killing (CD8+ T cells, NK cells) had

a higher infiltration abundance in the MYC signaling activation

group. As important as the infiltration abundance of the immune

cells in mediating the tumor immune response is the functional

status of the immune cells, so we also evaluated indicators that

reflect the immune function of LUAD with the online web tool

TIDE (http://tide.dfci.harvard.edu/). The results showed that the

tumor immune dysfunction score was significantly lower in the

MYC signaling activation group when compared to the MYC

signaling inhibition group (Figure 4C). This further suggests the

importance of MYC signaling in mediating the tumor
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immunosuppressive microenvironment. For the tumor immune

microenvironment, David Sacks et al. classified cancer samples

into immune subtype in C1-C6 (Sacks et al., 2018). Similarly,

Alexander Bagaev et al. defined the pan cancer sample of TCGA

as four isoforms: IE, IE/F, D, and F (Bagaev et al., 2021). We

explored the association between both C1/C2 groups and the

tumor microenvironment of these two different differentiation

methods. Coincidentally, our data suggest that ImC3 has a largely

overlapping relationship with C1 (Figure 4D). This further

highlights the association of MYC signaling with the tumor

immunosuppressive microenvironment. Incidentally, we also

explored the relationship between MYC signaling and cell

proliferation and tumor stemness. Surprisingly, the MYC

score had a significant correlation with both (Figures 4E,F).

FIGURE 4
Relationship between MYC signaling and genomic instability score, immune microenvironment, cell proliferation, and tumor stemness. (A)
Comparison of the purity, TMB, intratumor heterogeneity, IFN-gamma response, fraction altered, aneuploidy score, homologous recombination
defects, BCR.Shannon, TCR.Shannon, M1/M2 macrophage between C1 and C2. (B) Comparison of the abundance of immune cell infiltration
between C1 and C2. (C) Comparison of the scores of TIL for MDSC, CAF, and M2, as well as two indicators related to immunotherapy response:
T-cell dysfunction and exclusion between C1 and C2. (D) Association of C1/C2 with two immune microenvironment types. (E) Correlation of the
MYC Target GSVA score and cell proliferation. (F) Correlation of the MYC Target GSVA score and tumor stemness.
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FIGURE 5
Independent validation of MYC-signaling grouping and prognosis. (A) The upper part the heatmap showing the expression distribution of the
Signature genes between the two clusters inGSE31210. The Lower part: comparison ofMYC Target GSVA scores between the two distinct subgroups
(C1 and C2) in GSE31210 (right); Comparison of overall survival (OS) between C1 and C2 in GSE31210 (left). (B) The upper part: the heatmap showing
the expression distribution of the Signature genes between the two clusters in GSE68465. The Lower part: comparison of MYC Target GSVA
scores between the two distinct subgroups (C1 and C2) in GSE68465 (right); Comparison of overall survival (OS) between C1 and C2 in GSE68465
(left). (C) The upper part: the heatmap showing the expression distribution of the Signature genes between the two clusters in GSE72094. The Lower
part: comparison of MYC Target GSVA scores between the two distinct subgroups (C1 and C2) in GSE72094 (right); Comparison of overall survival
(OS) between C1 and C2 in GSE72094 (left). (D) The expression trend of signature genes and the distribution of the clinical characteristics of LUAD
patients in the C1 and C2 in the meta-cohort (n = 1,627). (E) The distribution of the clinical characteristics (stage, smoking, age, sex, vital status, and
grade) of LUAD patients in the C1 and C2. (F) Comparison of overall survival (OS) between C1 and C2 in the meta-cohort.
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Independent validation of MYC-signaling
grouping and prognosis

To verify that the two signature (S1 and S2) we defined were

stable on dividing LUAD samples into C1 and C2 groups

according to MYC-signaling activation levels, we used three

independent GEO datasets and a meta-cohort including

1,627 caces. The results showed that the MYC-signaling

grouping was robust, which could efficiently classify samples

into MYC-signaling activation group (C2) and MYC-signaling

inhibition (C1), and were always highly correlated with patient

prognosis (Figures 5A–D). Subsequently, we also investigated the

distribution of clinical characteristics between the two groups,

and we found that the MYC signaling activation group had more

dead patients, who had later staging and poor cell differentiation,

as shown in Figure 5E. Furthermore, Figure 5F also further

confirmed that MYC C2 patients had a shorter OS.

MYC-signaling activation was subject to
complex post-transcriptional regulation

In both the TCGA and GSE31210 data, some samples were

still classified into the MYC-signaling inhibition group (C1) even

with MYC experiencing copy number amplification. This

suggested that MYC-signaling activation was complex

regulated. Coincidentally, we found 15 lncRNAs in these two

signature gene sets (S1 and S2), of which 13 belong to S1 and

2 belong to S2 (Figure 6A). And the univariate cox analysis

suggested that they were all associated with prognosis

(Figure 6B). In addition to lncRNA, miRNA may also play an

important role in regulating MYC-signaling activation.

Therefore, we also explored the differentially expressed

miRNAs between the two groups (Figure 6C), and found

31 miRNAs were differentially expressed between groups.

lncRNA and miRNA, mRNA may regulate gene expression

FIGURE 6
Identification of non-coding RNA associated with MYC signaling. (A) lncRNAs differentially expressed between the C1 and C2 groups. (B)
Univariate Cox analysis revealed the relationship between these lncRNAs and prognosis. (C) miRNAs differentially expressed between the C1 and
C2 groups. (D)Construction of CeRNA networks associated to MYC signaling. The resulting log2FC and adj.p value were used as the colors and sizes
of the nodes in the subsequent network graph drawing, respectively. Circle represents lncRNA, and square represents miRNA.Gray lines
represent all possible interactions between ncRNA and MYC/MYCN, and red lines indicate possible interactions between ncRNA.
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through the CeRNA mechanism, and may also independently

affect protein expression through other mechanisms such as

acetylation. So we constructed a potential MYC/MYCN

expression regulatory network (Figure 6D).

MYC-signaling was highly correlated with
cell differentiation

Histologically, samples with highly differentiated tumor

cells were highly concentrated in C1, while those with poorly

differentiated cells were highly concentrated in C2. Moreover,

the S1/S2 signature score can independently distinguish the

tumor cell differentiation level (Figures 7A–C). To further test

the significance of these two signature, epithelial cells from

LUAD samples and normal lung tissue at different

differentiation levels were isolated and analyzed separately.

After dimensionality reduction by PCA and UMAP, we

obtained 3,684 normal epithelial cells, and 15,477 malignant

epithelial cells (Figure 7D). The average expression level of S1/

S2 signature in each single cell was calculated by the

AddMouduleScore algorithm (Figures 7E,F). The results

were highly consistent with the previous findings. We

found eight genes that were highly associated with cell

differentiation were significantly differentially expressed in

samples with different levels of differentiation in

GSE68465 and showed consistent changes with the degree

of differentiation (Figure 8A). Among them, CYP4B1, SUSD2,

NFIX, and SYNE1 were highly expressed in normal lung

epithelial cells and highly differentiated epithelial cells

(Figures 8B–E bottom). The IHC staining also indicated

that they had a higher expression in the normal (Figures

8B–E top) relative to the LUAD samples (Figures 8B–E

middle). KPNA2, UBE2S, HMGA1, and RPL39L were

highly expressed in poorly differentiated lung epithelial

cells (Figures 9A–D bottom). The IHC staining also

indicated that they had a lower expression in the normal

(Figures 9A–D top) relative to the LUAD samples (Figures

9A–D middle). These results indicated that MYC-signaling

was highly correlated with cancer cell differentiation.

FIGURE 7
MYC-signaling is highly correlated with cell differentiation. (A) The relation between the S1 signature score and cell differentiation in GSE68465.
(B) The relation between the S2 signature score and cell differentiation in GSE68465. (C) The connection between S1 signature score, S2 signature
score, MYC signaling, and cell differentiation in GSE68465. (D)UMAP analysis identifies cell populations of different tissue subtypes (E,F) The average
expression level of S1/S2 signature genes in each single cell was calculated by the AddMouduleScore algorithm.
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Discussion

In this study, we examined the tumor

MYC_TARGET_V1 score in multiple large LUAD cohorts,

and its correlation with transcriptional profile expression,

genomic instability, genetic alteration and regulation, immune

microenvironment landscape, cell differentiation, and disease

survival. MYC, acting as a transcription factor, and a slight

disturbance of MYC expression may promote cancer cell

evolution. To investigate the level of MYC signaling

activation, we analyzed the expression levels of the MYC gene

family and pathway core genes. We found that these genes were

mostly significantly different between the two groups. Further

investigating the copy number variation of the core MYC

pathway genes between the two groups, we found that they

did not show significant differences in the copy number

variation. This implies that the activation of MYC signaling is

epigenetically regulated, for example, DNA methylation

(Panopoulos et al., 2017).It has been shown that the turnover

of Myc proteins is determined by a cascade of phosphorylation

and ubiquitination events (Liu et al., 2019; Parang et al.,

2017).Notably, there is still a lack of evidence on whether

MYC is regulated by ncRNA. In contrast, MYC, as a

transcription factor, can regulate the activation and expression

of ncRNA, for example, the miR-15 and let-7 (Adams and

Eischen, 2016). In the study from Hou et al.(Zhang et al.,

2022), they found that the MYC/MAX-trans-activated

LINC00958 could promote the malignant behavior of LUAD

by recruiting HOXA1 and inducing oncogenic

reprogramming.To further clarify the pathways in which

MYC is involved, we calculated the enrichment scores of the

50 Hallmark pathways in MsigDB by the ssGSEA algorithm, and

found differences in multiple Hallmark pathway enrichment

scores between the two groups, a finding that was also

FIGURE 8
The key genes of MYC-signaling signature. (A) Genes highly associated with tumor cell differentiation. (B–E) Expression level of the key genes
(CYP4B1, SUSD2, NFIX and SYNE1) in LUAD tumor tissues, normal tissues as well as in single cells with different degrees of differentiation.
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consistent with previous studies. c-Myc, an important member of

the MYC gene family, acts as a proto-oncogene localized to

chromosome 8q24.1 and can be activated by chromosomal

amplification, translocation, and rearrangement (Xu-Monette

et al., 2016). In the above analysis, we also found that the

MYC signaling activation group was significantly different

from the inhibition group in terms of gene mutations. We

further investigated the relationship between MYC signaling

and the genome instability. We found that the MYC signaling

activation group presented higher genomic instability scores.

This result was not surprising, as reported in previous studies

(Hao et al., 2016; H. Song et al., 2020).

More and more researchers have noticed the close link

between tumor immune microenvironment and cancer

occurrence and progression (Wang et al., 2016; Yuan et al.,

2018; Tekpli et al., 2019). The MYC gene was also reported to

be involved in the immune regulation of multiple tumors (Han

et al., 2019; Swaminathan et al., 2020). In this study, we found

that the cells mediating the tumor-killing effect had a higher

infiltration abundance in the MYC signaling activation

group. Further investigating the functional status of the

immune cells, we found that the tumor immune dysfunction

score was significantly lower in the MYC signaling activation

group as compared to the MYC signaling inhibition group. This

further suggests the importance of MYC signaling in mediating

the tumor immunosuppressive microenvironment.Moreover, the

association of MYC with immune checkpoints is also slowly

being revealed. For example, Thongsuksai et al. (Sunpaweravong

et al., 2022)found that NSCLC tissues significantly express more

c-Myc and PD-L1 compared to the matched normal respiratory

epithelium, highlighting the important role of these key drivers in

tumorigenesis. Laura Soucek and his colleagues (Masso-Valles

et al., 2020) suggested that MYC, MYCL and MYCN might be

therapeutic targets for lung cancer and that elevated Myc levels

were also associated with treatment resistance, there may be

significant opportunities for the combination of Myc inhibitors

FIGURE 9
Lower expression genes in the normalrelative to the LUAD samples of MYC-signaling signature. (A–D) Expression level of the key genes (KPNA2,
UBE2S, HMGA1 and RPL39L) in LUAD tumor tissues, normal tissues as well as in single cells with different degrees of differentiation.
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with immunotherapies. It is well known that cancer occurrence is

closely associated with the uncontrolled clonal proliferation of

cells (Chung et al., 2019). As a well-known prooncogenic gene,

MYC has been reported in mediating cell proliferation (Feist

et al., 2018). However, its relationship between it and cell

proliferation and tumor stemness in LUAD also needs to be

further clarified. Our study showed a significant positive

correlation between cell proliferation rate as well as tumor

stemness and MYC score, and further highlights its non-

negligible role in regulating LUAD cell proliferation and

maintaining tumor stemness. Previous studies (Ireland et al.,

2020; Patel et al., 2021) have revealed the key role of MYC in

small cell lung cancer (SCLC) from a genomics perspective.

Trudy G. Oliver et al. (Ireland et al., 2020) defined different

SCLC molecular isoforms, based on the expression of ASCL1,

NEUROD1, POU2F3, or YAP1. They used mouse and human

models with time-series single-cell transcriptomic analysis to

reveal the dynamic evolution of MYC-driven SCLC isoforms,

finding that in neuroendocrine cells, MYC activated Notch to

dedifferentiate tumor cells, promoting the temporal transition of

SCLC from ASCL1 + to NEUROD1 + to YAP1 + state. The study

by Hideo Watanabe and his colleagues (Patel et al., 2021)has also

revealed the previously undescribed roles of the historically

defined general oncogenes c-Myc and L-Myc for regulating

lineage plasticity across molecular subtypes and histological

subclasses. From the data currently available, MYC in SCLC

seems to be studied more fully compared with LUAD. Therefore,

it is still important to further investigate the potential role of

MYC in LUAD from multi-omics data.

Overall, we used information from up to 1,600 samples of

multiple LUAD cohorts to represent the important role of MYC

signaling in LUAD from multiple dimensions of transcriptional

profile expression, genomic instability, genetic alteration and

regulation, immune microenvironment landscape, cell

differentiation, and disease survival.This provides a valuable

reference for deeply revealing the mechanism of cancer-

promoting action of MYC in LUAD. However, like many

other studies, the present study has some limitations. First,

this study was a retrospective study and it was difficult to

completely eliminate selective bias; second, although the

important role of MYC in LUAD was described from multiple

perspectives using multiple large study cohorts of LUAD and

multiple bioinformatics approaches, further validation of the

underlying experiments was lacking.
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Breast cancer is a heterogeneous disease whose subtypes represent

different histological origins, prognoses, and therapeutic sensitivity. But

there remains a strong need for more specific biomarkers and broader

alternatives for personalized treatment. Our study classified breast cancer

samples from The Cancer Genome Atlas (TCGA) into three groups based on

glycosylation-associated genes and then identified differentially expressed

genes under different glycosylation patterns to construct a prognostic

model. The final prognostic model containing 23 key molecules achieved

exciting performance both in the TCGA training set and testing set

GSE42568 and GSE58812. The risk score also showed a significant

difference in predicting overall clinical survival and immune infiltration

analysis. This work helped us to understand the heterogeneity of breast

cancer from another perspective and indicated that the identification of risk

scores based on glycosylation patterns has potential clinical implications

and immune-related value for breast cancer.

KEYWORDS

breast cancer, glycosylation, prognosis, subtype, biomarkers, immune

Introduction

Breast cancer has reached the highest incidence in women’s cancer types, and its

lethality has reached second place, followed by lung cancer (Sung et al., 2021). As a

heterogeneous disease, breast cancer’s multiple subtypes represent different histological

origins, prognoses, and therapeutic sensitivity (Perou et al., 2000; Cancer Genome Atlas

Network, 2012; Curtis et al., 2012; Marusyk et al., 2012). The pathological markers

estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor

2 (HER2) stratified patients with various treatment selecting, such as hormonal therapy
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(e.g., Tamoxifen) and HER2-targeted therapy (e.g.,

Trastuzumab) (Goldhirsch et al., 2013). Of note, HER2 is

characterized by poor prognosis and has multiple sites of

N-glycosylation, whose presence is linked with function

(Peiris et al., 2017). Subsequently, intrinsic molecular

subtyping based on expression profile highlights the intricate

complexity of this cancer type and the importance of genomic/

transcriptomic analyses for prognostic prediction.

PAM50 utilizes a 50 genes system that classifies breast cancer

into luminal A, luminal B, HER2-enriched, and basal-like

subtype that involves not only diverse biological processes but

also has prognostic significance (Prat et al., 2012; Prat et al.,

2015). The highly heterogeneous of breast cancer requires a

strong need for more specific biomarkers and broader

alternatives for personalized treatment. Meanwhile, efforts to

classify established histological subtypes have been carried out,

which identified at least four distinct subtypes of ER-negative and

six triple-negative subtypes (Teschendorff et al., 2007; Lehmann

et al., 2011). According to recent reports, researchers are seeking

a multi-angle classification approach to identify diversified

functional clustering and signatures, such as glycolysis (Zhang

et al., 2020a; Jiang et al., 2021), autophagy (Zhang et al., 2020b;

Jiang et al., 2022), ferroptosis (Wang et al., 2021), stemness (Li

et al., 2020), and immune microenvironment (Shen et al., 2020).

All these attempts allow us to make more defined and precise

characterizations based on new parameters to drive the

heterogeneity landscape of breast cancer and put forward new

ideas in prognostic prediction and treatment in the future.

Glycosylation is defined as a biosynthetic enzymatic

process characterized by the covalent attachment of single

sugar or glycans to a wide range of target proteins (Pinho and

Reis, 2015; Eichler, 2019). As a post-translational

modification, they play an essential role in almost all

aspects of the life processes of cells, such as cell cycle,

proliferation, and aging (Mallard and Tiralongo, 2017;

Gudelj et al., 2018; Gao et al., 2021). The glycosylation

pattern is profoundly altered during tumorigenesis. Among

them, O-glycan truncation, sialylation, fucosylation, and

N-glycan branching are common types of glycosylation in

cancer (Drake et al., 2015; Kölbl et al., 2015; Kudelka et al.,

2015; Taniguchi and Kizuka, 2015), leading to the occurrence

of malignant phenotypes such as cell adhesion, metastasis,

epithelial–mesenchymal transitioning, and even the shifting

of the tumor microenvironment (Günthert et al., 1991;

Rabinovich and Toscano, 2009; Pinho et al., 2011; Paredes

et al., 2012; Pinho et al., 2013). Researchers have also

identified glycosylation-related molecules as biomarkers for

cancer diagnosis and prognostics evaluation. For instance,

prostate-specific antigen (PSA) in prostate cancer (Gilgunn

et al., 2013), carcinoma antigen 125 (CA125/MUC16) in

ovarian cancer (Zurawski et al., 1988), CA19-9 and

carcinoembryonic antigen (CEA) in colon cancer

(Goldstein and Mitchell, 2005), and aberrantly glycosylated

MUC1 (also known as CA15-3) in breast cancer

(Kumpulainen et al., 2002). More recent studies have

mapped the histopathological orientation and tissue

distribution of N-linked glycans in clinical breast cancer

tissues (Scott et al., 2019a; Scott et al., 2019b), which

deepen the understanding of the heterogeneity of breast

cancer from the perspective of glycosylation.

Our study classified breast cancer samples from The Cancer

Genome Atlas (TCGA) into three groups based on glycosylation-

associated genes and then identified differentially expressed

genes under different glycosylation patterns to construct a

prognostic model. Finally, a model containing 23 risk

signatures was built and performed favorable predicting

efficacy in training and testing cohorts, and the evaluation of

immune infiltration and immunotherapy response were analyzed

as well.

Results

Classification of BRCA based on the
glycosylation-related gene sets

Figure 1 shows the workflow of our study. The TCGA

column of Table 1. We classified TCGA-BRCA samples (n =

1,104) based on 179 glycosylation-related genes (GRGs)

performed by consensus clustering analysis. Related

clustering parameters are shown in Figures 2A–C,

Supplementary Figure S1A, and Supplementary Figure S2A.

Considering the complexity of grouping and the feasibility of

subsequent analysis, we choose the optimal grouping when k =

3. Thus, we obtain three glycosylation-based clusters. We used

t-SNE (Figure 2D) and PCA (Supplementary Figure S2B)

dimensional reduction methods to observe that the samples

had favorable overall differences under this grouping. Cluster

3 exhibited shorter overall survival (OS), indicating a poorer

prognosis compared with clusters 1 and 2. (p < 0.05)

(Figure 2E). In brief, this grouping method based on

intracellular glycosylation status has specific differences in

breast cancer samples and has substantial clinical value.

Screening of differentially expressed
genes

We classified BRCA tumor samples into three clusters based

on glycosylation patterns. Next, we screened the DEGs of these

three clusters using the “Deseq2” R package. Supplementary

Figures S2C–E show the PCA map and DEGs heatmap

between the three clusters. Figure 4 shows the differential

analysis volcano plot of group 1 to group 2 (Figure 4A),

group 2 to group 3 (Figure 4B), and group 1 to group 3

(Figure 4C). We made a Venn diagram for the three groups
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of differential genes to show their overlap (Figure 4D). The genes

contained in each unit are shown in Supplementary Table S1, and

the genes that show differences under one grouping are included

in the next analysis. Finally, 1915 DEGs (Supplementary Table

S1) were obtained and used to construct a prognostic risk-scoring

model.

Immune characteristics of glycosylation-
related groups

To explore the correlation between glycosylation patterns

and immune characteristics, we analyzed the immune correlates

of the three clusters. Figures 3B and C show significant

differences in the immune score, stomal score, and immune

cell infiltration. Cluster 3 demonstrated the lowest immune and

stomal score and the poorest immune cell infiltration. Cluster

2 had the highest immune score and modest stomal score, and

the immune cell infiltration was also the most abundant. Cluster

1 had the mediocre immune score and highest stomal score, and

the immune cell infiltration was modest.

Construction and efficacy of risk-scoring
model

To further construct a prognostic risk-scoring model without

redundant genes, we used lasso regression to narrow down the

range of candidate genes. According to mean-square error

(Figure 4E) and coefficients (Figure 4F), we opted for the

former λ as it results in a better prediction efficiency than the

latter λ. Then, we fitted a multivariate Cox proportional hazard

model to develop more valuable integrated molecules in the

training set. Patients’ age, stage, and 23 genes were included in

this model, with a concordance index of 0.87 (Log-rank P: 4.48e-

43) (Figure 5A). Figure 5B arranged the sample from low to high

according to the risk score. The proportion of deaths increased as

risk scores rose. The 23 key molecule expression is also shown at

FIGURE 1
Workflow of our study design.
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the bottom. Its area under the ROC curve (AUC) in 1, 3, and

5 years prior to death was 0.89, 0.90, and 0.89, respectively

(Figure 5C). Kaplan–Meier (KM) analysis showed a significant

difference in overall survival (p < 0.0001) (Figure 5D).

Validating of risk-scoring model
predicting efficacy

We choose two breast cancer cohorts from GEO to validate

the efficacy of this protistic model. The GSE42582 column of

Table 1. In GSE42568 cohort, AUC in 1, 3, and 5 years prior to

death was 0.73, 0.82, and 0.88, respectively (Figure 6A), and

KM analysis presents a significant difference (p < 0.0001)

(Figure 6B). The GSE58812 column of Table 1. In

GSE58812 cohort, AUC in 1, 3, and 5 years prior to death

was 0.95, 0.77, and 0.79, respectively (Figure 6C), and KM

analysis presents a significant difference (p = 6e-04)

(Figure 6D).

Risk score related immune infiltration and
immunotherapy evaluation

We calculated a risk score for each sample according to the

expression levels and regression coefficients and divided the

BRCA cohort into low- and high-risk groups by median. To

better investigate the interactions between the risk score and the

immune microenvironment, we performed the ESTIMATE

algorithm and ssGSEA to evaluate the correlation between the

prognostic model and immune infiltrating in BRCA patients.

Supplementary figure S3A shows PCA clustering of immune

FIGURE 2
Consensus clustering classification of BRCA based on glycosylation-associated genes. (A)Optimal cluster distinction by consensus matrix (k =
3). (B) Empirical cumulative distribution function (CDF) plot displayed consensus distributions for each k. (C) Delta area plot. (D) T-SNE clustering of
sample distributions based on glycosylation-related genes. (E) KM survival analysis of three glycosylation-based groups.
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signatures. The low-risk group demonstrates a higher immune

score but no difference in the stomal score (Supplementary figure

S3B). In terms of immune cell infiltration (Figures 7B, 8C), the

risk score was slightly negatively correlated with immune cell

level. The low-risk group represents a more significant fraction of

activated B cells, eosinophils, mast cells, activated CD8+ T cells,

natural killer cells, and effector memory CD8+ T cells but no

difference in neutrophils, T follicular helper T cells, type 2 T

helper cells, and type 17 T helper cells. Then, we used TIDE, an

online tool, to evaluate immune checkpoint blockade (ICB)

response for our screened signatures based on the TCGA and

PRECOG cohorts. According to Figure 9, the gene set we input

obtained almost equivalent area under the curve (AUC) as other

predicting scores, especially CD274, CD8, IFNG, and Merck 18.

23 Gene signatures investigation

We further investigated the correlation between 23 gene

signatures and immune cell infiltration. Compared with the

low-risk group, the high-risk group harbors a low level of

SPPL2C, IGKV2D-24, IGLC2, QRFPR, LINC01871, FABP7,

AP000851.2, CLIC6, ILOVL2, FYB2, CDHR4, GNG4, TBR1,

AC015910.1, and UPK1B and a high level of PXDNL.

(Figure 7A). LINC01871, IGLC2, IGKV2D-24, MLIP,

LINC01235, and AP000851.2 positively correlated with

immune cell infiltration, and GNG4, PXDNL, KCNK3,

ELOVL2, FYB2, SPPL2C, CLIC6 negatively correlated with

immune cell levels. The main types of immune cells with

different infiltrating were activated CD4+ T cells, activated

FIGURE 3
Differences in immune characteristics of glycosylation-based groups. (A) PCA clustering of sample distributions in immune signatures between
three glycosylation-based groups. (B) Stomal score and the immune score of glycosylation-based groups (ESTIMATE algorithm). (C) Differences in
24 TME infiltration cells between glycosylation-based groups (ssGSEA) (****p < 0.0001).
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CD4+ T cells, natural killer T cells, activated B cells, activated

dendritic cells, and MDSC. (Figure 8A). In addition,

LINC01871 and IGLC2 positively correlated with immune

checkpoint molecules such as PD-1, PDL1, CTLA4, TIGIT,

LAG3, and BTLA and negatively correlated with HAVCR2.

FYB2, SPPL2C, ELOVL2, CLIC6, IGKV2D-24, L1CAM, and

AP000851.2 (Figure 8B).

Materials and methods

Data collection

The Breast Cancer (BRCA) data from The Cancer Genome

Atlas Program (TCGA) was accessed viaUCSC Xena (http://xena.

ucsc.edu/). A total of 179 genes encoding glycosylation enzymes,

targets, and regulators were obtained from previous literature

(Krushkal et al., 2017) and are listed in Supplementary Table S1.

Consensus clustering analysis based on
glycosylation-related genes

BRCA samples from TCGA were grouped into three

clusters using the “ConsensusClusterPlus” (version1.60.0) R

package (Wilkerson and Hayes, 2010) based on glycosylation-

related genes (GRGs) (maxK = 4, innerLinkage = “complete”).

“Fpkm” format was used for clustering analysis and “count”

for difference analysis. Principal component analysis (PCA)

and t-SNE were applied to assess sample clustering using the

“FactoMineR” (version2.4) and Rtsne (version0.16) packages.

“DESeq2” (version1.36.0) R package was used for screen

FIGURE 4
Construction of lasso regression model. Volcano plot of differentially expressed genes between cluster 1 vs. cluster 2 (A), cluster 2 vs. cluster
3 (B), and cluster 1 vs. cluster 3 (C) in BRCA. (D). Venn diagram of differentially expressed genes between glycosylation-based groups. (E). Cross-
validation plot for the penalty term λ based on differentially expressed genes. Vertical bars represent acceptable maximum and minimum λ values
with corresponding mean-squared error and the number of covariates. (F) Plots for lasso regression coefficients over different values of the
penalty parameter λ.
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differentially expressed genes (DEGs) between different

clusters (|logFC| > 2, FDR <0.05).

The prognostic risk-scoring model
constructed through GRGs-based clusters

First, the most minor absolute shrinkage and selection operator

(LASSO) removed redundant genes achieved using the “glmnet”

(version 4.1-4) R package. Ten-fold cross-validation was used to

select the penalty term, λ. The mean-squared error was computed

for the test data to measure the fitted models’ predictive

performance. Then, 38 genes (Supplementary Table S1) were

obtained for prognostic Cox regression construction using the

“My.stepwise” (version 0.1.0) package to establish the optimal

model. Finally, the 23 retained genes were used for calculating

risk scores according to the following formula:

Risk Score � ∑
n

i�0(Coef ipxi), (1)

where Coef i is the coefficient, and xi is the z-score-transformed

relative expression value of each selected gene. The time-

dependent receiver operating characteristic (ROC) curve

evaluated each model’s sensitivity and specificity. The

“survival” (version 3.3-1) R package was used, and the

Kaplan–Meier (KM) overall survival curves between different

clusters and risks were performed using the “survival” R

package.

FIGURE 5
Construction of multivariate Cox regression. (A)Multivariate Cox proportional hazardmodel based on lasso de redundant gene set in the TCGA
training set. (B) Proportion of deaths in the training set in high- and low-risk groups as risk score values increased. Top: red, high-risk; blue, low-risk.
Middle: red, death; blue, alive. Bottom: hierarchical clustering of 14 key molecules between low- and high-risk groups. (C) COX risk score’s time-
dependent ROC curves for 1, 3, and 5 years before death in the TCGA training set. In the training set, (D) Kaplan–Meier survival analyses for COX
low- and high-risk groups. (p < 0.0001, log-rank test).
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Immune infiltrates analysis

The single-sample gene-set enrichment analysis (ssGSEA)

was used to establish the relative abundance of 24 cell infiltration,

which was analyzed using the “GSVA” (version 1.44.2) package.

The ESTIMATE algorithm calculated stomal scores and immune

scores of high- versus low-risk groups and different GRGs-based

clusters. Immune checkpoint blockade (ICB) predicting

evaluation performed by biomarker evaluation module from

TIDE (Tumor Immune Dysfunction and Exclusion:

harvard.edu)">http://tide.dfci.harvard.edu/) (harvard.edu)), a

computational method to model tumor immune evasion and

ICB response and resistance regulators.

Hub-genes analysis

Immune Infiltrates differences of prognostic hub-genes were

performed using ssGSEA, as mentioned earlier. Checkpoints

correlation was analyzed using the ‘Hmisc’ (version 4.7-0) package.

All the statistical significance sets as p < 0.05 with two-side. Data

processing and visualization were performed using R version 4.1.2.

FIGURE 6
Predicting the efficacy of constructed multivariate Cox regression in the testing set. (A) COX risk score’s time-dependent ROC curves for 1, 3,
and 5 years before death in testing cohort GSE42568. (B) Kaplan–Meier survival analyses for COX low- and high-risk groups in testing cohort
GSE42568 (p < 0.0001, log-rank test). (C)COX risk score’s time-dependent ROC curves for 1, 3, and 5 years before death in testing cohort GSE58812.
(D) Kaplan–Meier survival analyses for COX low- and high-risk groups in testing cohort GSE58812. (p < 0.0001, log-rank test).
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Discussion

The role of glycocalyx–the extracellular carbohydrate coat, has

been proposed in breast cancer occurrence and development since

the 1950s (Aub et al., 1963). Then, it was noteworthy that plant

lectin and carbohydrate motif binding proteins showed a higher

affinity for malignant cells than normal cells in the 1960s (Remmele

et al., 1986). By the 1980s, biochemists found that the enzyme-linked

lectin binding assay could be used to predict tumor differentiation

and therapeutic reactivity (Parodi et al., 1982). Shortly afterward, it

was widely accepted that glycosylation status alteration could be

used as biomarkers for breast cancer prognosis and tumor burden

(Springer, 1997; Lin et al., 2002; Duffy et al., 2010). Given the

heterogeneity of breast cancer, more recent studies havemapped the

histopathological orientation and tissue distribution of glycosylated

modifications in clinical breast cancer samples. So far, the

influentially changed landscape of glycosylation processes in

breast cancer is vividly portrayed.

We obtained a set of glycosylation-related genes containing

181 molecules from previous pieces of literature, including

glycosylation pathways, genes encoding glycosylation targets or

regulators, and members of cancer pathways affected by

glycosylation (Supplementary Table S1) (Krushkal et al., 2017).

In our study, TCGA-BRCA tumor samples were divided into three

groups.We can consider three different glycosylated states based on

these glycosylation-related genes by using consensus clustering

analysis. There were significant differences in the expression

patterns of glycosylated genes between them, and the survival

FIGURE 7
Immune characteristics in high- and low-risk groups. (A) Risk signatures expression in high- and low-risk groups. (B) Differences in 24 TME
infiltration cells between high- and low-risk groups (ssGSEA) (*p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001).
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analysis also reflected the difference in survival time under different

glycosylated states (Figures 2D and E). It is well-documented that an

altered “glycan coat” is a distinct hallmark of cancer.

Given that immune cells express a large variety of lectin (glycan-

binding receptors), they recognize glycans on the tumor cell. Those

immune cells can sense and respond to changes in the glycan

signature of their environment. This often leads to tumor immune

escape and immunomodulation. Therefore, the glycosylation-

related signatures could affect tumor-immune cells’ connections

within the tumor microenvironment (Rodríguez et al., 2018; Lopes

et al., 2021). In addition, a variety of recruited stomal

components–transformed parenchyma and the associated

stroma–are involved in tumor progression and response to

treatment (Arneth, 2019; Hanahan, 2022). We further analyzed

the immune characteristics of glycosylation-based groups.

According to our results, group 3 demonstrated the lowest

immune and stomal score and the poorest immune cell

infiltration; group 2 had the highest immune score and modest

stomal score, and the immune cell infiltration was also the most

abundant. This indicates that group 2 tends to the glycosylation

pattern of immune cells, group 1 of stromal cells, and group 3 of

malignant cells (Figures 3A–C). In combination with the survival

analysis of Figure 2E, we were surprised to find that in terms of

glycosylation pattern, the glycosylation mode of tumor cells and

FIGURE 8
Immune infiltration status of prognostic signature. (A) Risk genes level in high- and low-risk groups. (B) Correlation between risk genes and
checkpoint molecule expression. (C) Correlation between riskscore and immune infiltration.
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immune cells did not show any difference in patient survival, while

the glycosylation of stromal cells may have a significant impact on

patients’ survival. In future explorations of tumor

microenvironment glycosylation, focusing on stromal cells may

be a more effective research direction. These results prove that

the classification based on glycosylation is meaningful and effective,

FIGURE 9
Biomarker evaluation from TIDE (Tumor Immune Dysfunction and Exclusion).
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which helps us to understand the heterogeneity of breast cancer

from another perspective. However, at present, the classification

samples are limited. Increasing the sample size will help formulate a

more stable grouping method and hopefully be applied to clinical

prognosis and prediction.

The change of glycosylation pattern in tumor cells and immune

microenvironment will affect the expression of other critical genes

and make their corresponding bioprocesses abnormal, thus,

inducing the transformation of malignant phenotypes, such as

proliferation, epithelial–mesenchymal transition, and apoptosis

resistance. To identify the prognostic genes influenced by

glycosylation processes, we screened the DEGs of these three

groups and constructed a predictive risk model through lasso

and Cox regression calculation. The final prognostic model

containing 23 key molecules achieved exciting performance both

in the TCGA training set and testing set GSE42568 and GSE58812

(Figures 5C and D, Figure 6). Using the model algorithm, we

calculated a risk score and divided the sample into high- and low-

risk groups by the median. This risk score also showed a significant

difference in predicting overall clinical survival and immune

infiltration (Figures 7B, 8C). Great achievement has been

obtained in ICB-based immunotherapies (Chen et al., 2020). In

order to obtain better clinical remission and fewer immune-related

adverse events, researchers are committed to developing biomarkers

to screen an effective population accurately. The reported measures

that can be used to predict the efficacy of ICI therapy include

immune cell infiltration (Cogdill et al., 2017), protein expressions

such as PD-L1 (Teng et al., 2015), mutations and neoantigens

(Mcgranahan et al., 2016), and genetic and epigenetic characteristics

(Ascierto et al., 2012). On the TIDE prediction website, our gene set

shows a favorable performance compared with the existing

evaluation methods (Figure 9), which proves that our model has

practical proficiency and value for further exploration and

improvement in immunotherapy prediction.

Then, we move on to several single prognostic genes.

LINC01871 significantly lower expression in the high-risk group

and positively correlated with most of the immune cell infiltration

(Figure 8). This suggests that LINC01871 may play a protective role

in breast cancer. According to a recent review of the literature,

LINC01871 has been identified by several studies in breast cancer

through bioinformatic measurement involving the cellular

phenotype of autophagy (Li et al., 2021; Wu et al., 2021; Jiang

et al., 2022; Luo et al., 2022), stemness (Li et al., 2020), immune

response (Ma et al., 2020; Mathias et al., 2021), ferroptosis (Xu et al.,

2021), and lipid metabolism (Shi et al., 2022). IGLC2 has a similar

expression and functional pattern to LINC01871 in our study

(Figure 8). Chang et al. (2021) found in a study of triple-negative

breast cancer (TNBC) cohort that a high expression of IGLC2 was

related to a favorable prognosis for TNBC patients, which is

consistent with our results. In addition, IGLC2 is linked with the

proliferation, migration, and invasion of MDA-MB-231 cells.

Pathway enrichment analysis showed that IGLC2 is related to

the extracellular matrix–receptor interaction (Chang et al., 2021).

All these features make IGLC2 have the potential to be a biomarker

to predict prognosis, even for identifying breast cancer patients who

can benefit the most from immune checkpoint blockade treatment.

ELOVL2 is another prognostic signature in our results. Studies have

shown that long noncoding RNA on its antisense chain (ELOVL2-

AS1) correlates with breast cancer prognosis. The predictive efficacy

of ELOVL2 needs to be verified in a larger sample size, and its

mediated cell function also needs to be further explored.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.

TABLE 1 Clinical information of TCGA, GSE42586, GSE58812.

TCGA GSE42568 PMID:
23740839

GSE58812 PMID:
25887482

Sample

Tumor 1,109 104 107

Normal 113 17 0

Survival

Dead 144 35 29

Alive 933 69 78

Age

<60 575 59 64

≥60 502 45 43

Grade

I — 11 —

II — 40 —

III — 53 —

Stage

I 179 11 —

II 609 40 —

III 246 53 —

IV 19 0 —

Unknown 24 0 —

Subtype

Luminal
A

497 — —

Luminal B 197 — —

Basal 171 — —

Her2 77 — —

Unknown 135 — —

ER expression

Positive — 67 —

Negative — 34 —

Her2, human epidermal growth factor receptor 2; ER, estrogen receptor.
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Large-scale comprehensive single-cell experiments are often resource-

intensive and require the involvement of many laboratories and/or taking

measurements at various times. This inevitably leads to batch effects, and

systematic variations in the data that might occur due to different

technology platforms, reagent lots, or handling personnel. Such technical

differences confound biological variations of interest and need to be

corrected during the data integration process. Data integration is a

challenging task due to the overlapping of biological and technical factors,

which makes it difficult to distinguish their individual contribution to the overall

observed effect. Moreover, the choice of integration method may impact the

downstream analyses, including searching for differentially expressed genes.

From the existing data integration methods, we selected only those that return

the full expression matrix. We evaluated six methods in terms of their influence

on the performance of differential gene expression analysis in two single-cell

datasets with the same biological study design that differ only in the way the

measurement was done: one dataset manifests strong batch effects due to the

measurements of each sample at a different time. Integrated data were

visualized using the UMAP method. The evaluation was done both on

individual gene level using parametric and non-parametric approaches for

finding differentially expressed genes and on gene set level using gene set

enrichment analysis. As an evaluation metric, we used two correlation

coefficients, Pearson and Spearman, of the obtained test statistics between

reference, test, and corrected studies. Visual comparison of UMAP plots

highlighted ComBat-seq, limma, and MNN, which reduced batch effects and

preserved differences between biological conditions. Most of the tested

methods changed the data distribution after integration, which negatively

impacts the use of parametric methods for the analysis. Two algorithms,

MNN and Scanorama, gave very poor results in terms of differential analysis

on gene and gene set levels. Finally, we highlight ComBat-seq as it led to the

highest correlation of test statistics between reference and corrected dataset

among others. Moreover, it does not distort the original distribution of gene

expression data, so it can be used in all types of downstream analyses.
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1 Introduction

Single-cell RNA sequencing (scRNAseq) is a technique that

allows the high-throughput examination of transcriptomes with

a single-cell resolution (Lee et al., 2014; Qian et al., 2022). The

transcriptome is a dynamic structure that responds rapidly in the

form of gene expression to the variety of factors that a cell is

subjected to. Moreover, the expression profile can be different in

cells of the same type which proves significant cellular

heterogeneity (Adil et al., 2021). This heterogeneity is masked

in bulk analyses where populations of cells are mixed and

sequenced together resulting in signal averages from millions

of cells. Single-cell RNA-seq overcomes this barrier and allows

the processing of millions of individual cells at a time.

In large projects that involve the processing of many cells

data are frequently generated at different times and in different

laboratories often equipped with various sequencing platforms

(Ming et al., 2022). Combining data generated separately for a

consolidated downstream analysis improves statistical power but

requires reliable data integration methods. Data integration is

also crucial in studies of different omics levels (genomics,

proteomics, metabolomics, etc.) to fully understand the

molecular complexity of different cell types (Bao et al., 2022).

The goal of single-cell data integration is to cluster together cells

of similar types; these cells should be intermingled and

indistinguishable even if they come from different

experiments. In other words, technical differences between

datasets should be removed while key biological variations

should be preserved. Data integration is a challenging task,

especially in large datasets containing highly heterogeneous

cell populations. Batch effect removal is a step in which we

want to reduce the technical variability in our data that might

occur due to differences in sample preparation, sequencing, or

processing. Thus, we want to integrate the data that could be

assigned to a known batch. Here, we are using the terms data

integration and batch correction interchangeably.

There is a variety of distinct algorithms for scRNAseq data

integration that are based on different principles and

assumptions (Haghverdi et al., 2018; Hie et al., 2019; Lin

et al., 2019; Liu et al., 2020; Zhang et al., 2020). An important

criterion of the division in terms of our study is based on the

output format which can be: (i) full expression matrix; (ii) low-

dimensional matrix of embeddings; or (iii) integrated graph. The

output type limits the potential downstream applications of

integrated data. The full expression matrix is the most

versatile format as it could be used in all downstream

analyses. On the other hand, a joint embedding is not

appropriate for some applications like differential expression

analysis or biomarker detection. Hence, the decision about the

choice of integration method is crucial and consequential.

Another key factor influencing the choice is the main

statistical approach that a particular method is based on. We

can distinguish two groups here: supervised and unsupervised.

The former requires cell-type annotations, and the latter does not

rely on data labeling.

The most recent and comprehensive evaluation of scRNAseq

integration methods was performed in (Luecken et al., 2022).

They evaluated the most popular tools on their ability to remove

batch effects while conserving biological information. Their

evaluation involved setups with and without cell identity

labels and different preprocessing combinations [with/without

scaling and highly variable genes (HVGs) selection], as well as the

diversity in output formats for each method and task. The

conclusion from this work is that there is no single, best

integration method and the performance is dependent on the

complexity of the integration task (the strength of batch effect,

the degree of confounding between batch and biological signals,

presence of nuanced biological variation, etc.) (Luecken et al.,

2022). Some methods, like BBKNN or Harmony, showed a

stronger action towards removing batch effect over

conservation of biological variation. For others, like ComBat,

MNN, and DESC the trend was in favor of bio-conservation.

Deep learning methods that use cell identity information, like

scGen or scANVI, preserved biological variation stronger than

label-free ones but require larger input data. Generally, HVG

selection improved the overall integration performance over the

full feature set, except for trajectory and cell-cycle conservation

analysis. Scaling the input data typically improved batch removal

at a cost of bio-conservation. In another evaluation of scRNAseq

data integration methods (Tran et al., 2020), they examined in

different simulation scenarios (balanced/unbalanced batches,

different dropout rates) the impact of data integration on

differential gene expression analysis (DGE analysis),

particularly whether it improves the recovery of differentially

expressed genes (DEGs). They found that MNN Correct, ZINB-

WaVE, ComBat, and scMerge were the top-performing methods.

ComBat turned out to be the best method for this task (being one

of the worst overall). scMerge had a good balance between DEGs

recovery and overall performance.

The above and other benchmarks typically cover a wide range

of evaluation aspects such as removal of batch effects and

conservation of biological variation, scalability for large

datasets, or computational requirements. Regardless of

existing comparisons of data integration methods, there is a

lack of studies that comprehensively investigate the impact of

data integration on differential gene expression analysis using

real data. In terms of DGE analysis most studies on

benchmarking methods for data integration focus only on
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overlaps of differentially expressed genes (Chazarra-Gil et al.,

2021) not providing deeper insight into the problem. This study

aims to fulfill this gap. Using two datasets, one of which requires

data integration to correct the confounded design of the study, six

integration methods that provide corrected gene expression

matrices were compared. The evaluation was done on

individual gene level using two different approaches

(parametric and non-parametric) and on gene set level (gene

set enrichment analysis).

2 Materials and methods

2.1 Data

The datasets used in this study come from two related

scRNAseq experiments aimed at investigating of the effects of

navitoclax treatment on the transcriptome of triple-negative

breast cancer cell line to better understand the process of

developing drug resistance (Marczyk et al., 2020; Patwardhan

et al., 2021). In both experiments, the same cancer cell line

(MDA-MB-231) was used as a model organism and two

biological replicates were provided (A and B). Cells were

exposed to 10 µM navitoclax and harvested at 3 time points:

before the treatment (baseline; T1), after treatment (T2), and

after recovery from the treatment (T3).

In both cases, immediately after plate harvesting, cells were

trypsinized and a single-cell suspension at a concentration of

1,000 cells/µl with viability above 90% was prepared. Chromium

Single Cell 3′ Library and Gel Bead Kit V2 (PN-120237),

Chromium Single Cell A Chip Kit (PN-120236), and

Chromium i7 Multiplex Kit (PN-120262) were used to

prepare single-cell libraries following the manufacturer’s

instructions. The same sequencer was used—HiSeq 4,000

(Illumina). In the first study (Patwardhan et al., 2021)

6,000 cells per sample were used (two samples were

multiplexed on one lane) and 25,000 reads per cell were

generated. In other study (Marczyk et al., 2020) 1,500 cells/

sample were sequenced in one lane generating 200,000 reads/cell.

To simplify the evaluation procedure only two time points

(T1 and T2) from both datasets (experiments) were considered

(Figure 1). Each experiment corresponds to a different design.

The first experiment corresponds to a balanced study design

where cells collected at different time points were split and

processed on the same chip, on the same day (Marczyk et al.,

2020). Two biological replicates termed replicate “A” and “B”

were involved. This dataset serves as a reference. The second

experiment corresponds to a confounded study design where

cells collected at different time points were processed on different

chips/batches (Patwardhan et al., 2021). This dataset termed a

test set was corrected using different data integration methods for

the removal of the batch effect.

FIGURE 1
Experimental design and benchmark procedure.

Frontiers in Genetics frontiersin.org03

Kujawa et al. 10.3389/fgene.2022.1009316

167

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1009316


2.2 Data preprocessing

The quality of raw RNA sequencing reads was assessed

with FastQC (Andrews, 2010) and the reads were processed

with 10x Genomics Cell Ranger 6.1.1 (Zheng et al., 2017) to

generate a gene-cell count matrix. Quality control was

performed separately for each dataset at cell- and gene-

level. Adaptive, sample-specific thresholds were chosen for

the number of UMI counts per cell, the number of genes, and

the fraction of mitochondrial counts using median absolute

deviation (MAD) from the median. Cells were considered of

poor quality if a given metric was more than 3 MADs from the

median in the wrong direction. Genes that were expressed in

less than 1% of cells for each dataset were removed. Finally,

we obtained expression matrices with the following

dimensions (cells x genes): 12,402 × 4,180 for reference set

(Marczyk et al., 2020) and 12,402 × 21,548 for test set

(Patwardhan et al., 2021). Such filtered expression matrices

were normalized separately using two approaches:

deconvolution (Lun et al., 2016) for non-parametric DGE

and transcript per million (TPM) metrics for parametric

DGE, both followed by (log2+1)-transformation.

Selection of highly variable genes (HVGs) for each dataset

was performed using the SCTransform function with variable

features. n = 5,000 (Hafemeister and Satija, 2019). A common

part of 3,620 HVGs was taken as input for data integration.

We did not want to be too restrictive with subsampling, as

high dimensionality is required for some methods (e.g., to

satisfy the orthogonality assumption in MNN detection).

2.3 Data integration methods

Since the goal of this study was to evaluate the

applicability of scRNAseq data integration methods in

terms of further differential analysis, we selected only the

methods that: (i) output full corrected expression matrix; (ii)

work in an unsupervised manner as we don’t have cell-type

labels. Thus, we benchmarked six algorithms (Table 1) and

for some of these tested two cases: (i) using all genes; (ii) using

only top HVGs.

2.3.1 ComBat-seq
ComBat-seq (Zhang et al., 2020) takes two parameters as

input: a raw, untransformed count matrix and a vector describing

the annotation of samples into batches. It is also possible to

specify biological covariates, whose signals will be preserved in

the corrected data. In our case, the technical variable associated

with the repetition was used as a batch separation vector and the

biological variable was associated with a time point. ComBat-seq

uses a negative binomial regression model to estimate batch

effects. The computed batch-effect estimators are then used to

calculate “batch-free” distributions, i.e., the expected

distributions if there were no batch effects in the data based

on the model (Zhang et al., 2020). Correction is performed by

quantile normalization to make the two distributions (empirical

and batch-free) with identical statistical properties. ComBat-seq

is the only method that preserves the integer nature of counts

making corrected data compatible with various differential

expression software (e.g., edgeR, DESeq2).

2.3.2 Limma
Limma (Leek et al., 2012) is another linear method to remove

batch effect components from the data. The correction is

performed by subtraction of the estimated component from

the original data. Limma batch-effect removal function

(removeBatchEffect) takes normalized and log-transformed

counts as an input. Similarly to ComBat-seq, it allows

addition of batch annotations and biological covariates into

the model.

2.3.3 Mutual nearest neighbor
MNN searches for mutual nearest neighbors (MNNs)

between two datasets or batches in the gene expression space.

A pair of MNNs consists of cells present in each batch set of

nearest neighbors based on Euclidean distance. These cells are

considered to be of the same type/state across batches (Haghverdi

et al., 2018). Differences in expression between identified MNNs

are used to compute the batch correction vector which is applied

to all cells. mnnCorrect function was run with two setups: with all

genes and with HVGs. In both cases normalized and log-

transformed expression values were used. merge. order,

argument was specified such as both repetitions from a given

TABLE 1 Selected scRNAseq data integration methods.

Tool Input Strategy Reference

ComBat-seq raw counts linear model Zhang et al. (2020)

limma logcounts linear model Leek et al. (2012)

MNN logcounts mutual nearest neighbors (gene expression space) Haghverdi et al. (2018)

scMerge logcounts stably expressed genes + RUV model Lin et al. (2019)

Seurat logcounts canonical correlation analysis + mutual nearest neighbors Stuart et al. (2019)

Scanorama raw counts mutual nearest neighbors (reduced space) + panoraming stiching Hie et al. (2019)
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time point were merged first and then combined. Thus, the

merging order was as follows: first T1A + T1B and T2A + T2B.

Then the summation results were added together. cos.norm.

out, was set to FALSE to disable cosine normalization before

computing corrected expression values to obtain corrected values

on the log scale, similar to the input data. The rest parameters

were set to default values.

2.3.4 scMerge
ScMerge (Lin et al., 2019) was run in the unsupervised mode

as we do not have cell-type information. In this mode, the

estimation of batch effects is performed on two levels: (i)

identification of stably expressed genes (SEGs) across batches

which serve as “negative control genes”; (ii) k-means clustering

based on the HVGs followed by the identification of mutual

nearest clusters (MNCs) from the batches based on Pearson

correlation as the dissimilarity metric. Cells belonging to a pair of

MNCs are considered to be of the same type in different batches

and serve as pseudo replicates. SEGs and pseudo replicate

information are the inputs for scMerge which uses the RUV

model to adjust the data. We ran scMerge with three setups of

kmeansK parameter: (5, 5, 5, 5), (4, 4, 4, 4) and (4, 4, 3, 3) on

(log2+1)-transformed counts.

2.3.5 Seurat v4
Seurat v4 (Stuart et al., 2019) is another method based on the

MNN concept (referred there as “anchors”). This method

includes two approaches to match anchors across datasets/

batches: Canonical Correlation Analysis (CCA) and reciprocal

Principal Component Analysis (rPCA). In both cases, the

searching of anchors is performed in a shared, reduced

subspace obtained by CCA (linear combinations of genes with

the maximum correlation between batches) or rPCA (maximum

variation between batches). The correction vector is computed

similarly to MNN (difference in expression profiles between two

cells in each anchor). The batch integration order is derived from

hierarchical clustering based on the distance between the

datasets. Seurat v4 (version 4.0) was run according to the data

integration tutorial on the web (https://satijalab.org/seurat/

articles/integration_introduction.html).

2.3.6 Scanorama
In Scanorama (Hie et al., 2019) the nearest neighbor

searching is performed in the low-dimensional subspace

obtained by randomized singular value decomposition (SVD).

The searching is performed across all batches and the priority of

dataset merging is determined based on the percentage of

matching cells in the batch. This reduces the risk of

overcorrection. Scanorama was run using the reticulate R

package following the tutorial (https://github.com/brianhie/

scanorama). Two setups were evaluated: with all genes as

input and using the top 2,000 HVGs based on data dispersion

(internally selected by the algorithm).

2.4 Evaluation of data integrationmethods

2.4.1 Visual inspection of data
UMAP (McInnes and Healy, 2018) was employed for all data

visualizations before and after data integration as it performs well

at preserving global data structure. UMAP was run with default

parameters using runUMAP function from scatter R package

(McCarthy et al., 2017).

2.4.2 Differential gene expression analysis:
Parametric and non-parametric approaches

Both datasets were processed through the same protocol to find

differentially expressed genes using two approaches: the parametric

method called MAST (Finak et al., 2015) and the non-parametric

method called EMDomics (Nabavi et al., 2016). MAST uses a hurdle

model to address bimodal expression distributions in scRNAseq data.

The bimodality is manifested in such a way that observed expression

is either strongly positive (continuous part) or non-detectable

(discrete part). The Hurdle model parameterizes both parts and

combines the information from them in the form of gene statistics to

infer changes in expression levels. DE testing is performed across the

two conditions through the LRT statistic. MAST was applied on the

log2 (TPM + 1) expression matrix without including the cellular

detection rate (the fraction of genes that are detected with non-zero

counts) as a covariate in the model. The following thresholds were

used for DEGs identification: an absolute value of log-fold change

(LFC) higher than 2, and false discovery rate (FDR) lower than 0.001

(Benjamini–Hochberg method for multiple testing correction was

used).

As an alternative when the corrected data do not fit the MAST

model, the EMDomics method was used which does not make any

assumptions about the data distribution. EMDomics uses the Earth

Mover’s distance (EMD) to measure the overall difference between

the two normalized distributions (gene expression in two conditions/

groups). This method is not restricted to finding only differences in

mean expression between two conditions but also captures the overall

difference in shape (bimodal vs. unimodal expression) between two

distributions. EMDomics was applied to log-normalized counts with

default parameters. DEGs were identified based on the following

thresholds: emd score higher than 2 and FDR smaller than 0.001. In

both cases, cells from two replicates (A and B) were compared

between two time points (T1 vs. T2).

A receiver operating characteristic (ROC) curve was created

by setting different thresholds on p-values from statistical tests

while estimating DEGs. To calculate performance metrics, a

reference dataset (with a balanced study design) was used as a

“ground truth”, and the sensitivity and specificity of each batch

correction method were calculated.

2.4.3 GSEA
Differential expression was also performed at the level of

gene sets using gene set enrichment analysis (GSEA). This step

was done using the fGSEA R package (Korotkevich et al., 2019).
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DE test statistics obtained by MAST (continuous Z-score:

C-component) were used as the ranking metrics. The

following gene sets from Molecular Signatures Database

(MSigDB) (Liberzon et al., 2015) were tested: Hallmark, Kegg,

GO, and REACTOME. The total number of considered gene sets

was 12,253; 50 gene sets for Hallmark, 186 for KEGG,

10,402 gene sets for GO, and 1,615 for REACTOME. Gene set

was identified as differentially enriched based on a p-value lower

than 0.05.

2.4.4 Correlation analysis
The correlation analysis was performed both at the level of

individual genes (DGE) and gene sets (GSEA). For each data

integration method, the previously mentioned DE test statistics

were taken: (i) MAST: continuous Z-score (C-component) (ii)

EMDomics: emd score (iii) GSEA: normalized enrichment score

(NES). The correlation between the balanced (reference) study

and the confounded dataset (test set, before correction) was

assessed and used as the benchmark for assessing the quality

of the data integration (Figure 1). Both, Pearson and Spearman

correlation coefficients were calculated.

3 Results

3.1 Comparison of datasets before data
integration

To visually examine the batch effect problem, the UMAP

algorithm was run separately for each dataset (Figure 2). In a

balanced study design (Figure 2A) there is strong segregation of

cells along time points while cells from both repetitions are

intermingled, which is desired. The opposite situation is observed

in the confounded study design (Figure 2B) where together with

separation along time points, the cells group by replicates which

proves a strong batch effect. The main cause was that the samples

in the confounded study were measured on different days.

Next, we calculated the following properties of individual

genes at the single-cell level: mean expression, the variance of

expression, and detection rate, which is a proportion of expressed

cells (Supplementary Figure S1). We observe a typical situation

that could be found in scRNAseq data: up to a mean normalized

count of around 1, variance and mean are roughly equal as

expected under a Poisson model either for balanced or

confounded (before correction) study design. Genes with a

higher average expression show overdispersion compared to

Poisson distribution (Supplementary Figure S1B,C). As

expected in scRNAseq data, in both experiments, many genes

are expressed in very few cells. All feature-level statistics were

comparable between balanced and confounded studies.

3.2 Differential analysis before data
integration

The number of DEGs identified with the parametric

approach was 965 for balanced and 191 for confounded study.

The overlap between the two datasets was 63 genes, from which

43 genes were upregulated, and 20 genes were downregulated in

the balanced study, and for the confounded study, the ratio of

upregulated to downregulated genes was equal to 20/43. The

correlation coefficients were equal to 0.16 (Pearson) and -0.21

FIGURE 2
UMAP visualization of (A) balanced study, (B) confounded study (before correction). There are strong batch effects manifested in the
confounded study.
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(Spearman) and both were significant. After using a non-

parametric approach, the number of DEGs was smaller: 80 for

balanced and 114 for confounded study. There were no common

DEGs between datasets. The correlation between test statistics

from both studies was much higher (Spearman: 0.72, Pearson:

0.75) than when the parametric method was used.

3.3 Data integration for batch effect
correction

The UMAP plots (Figure 3) show that ComBat-seq might

perform best in removing batch effects and preserving biological

variation. It produced two strong clusters separated by time

point, while the cells from technical repetitions are mixed

well. In the case of the limma method, we observe separation

by time point, but the repetitions are not mixed well—they seem

to have a small tendency to group separately. MNN algorithm

improved the separation by time point in both cases when all

genes and only the top 3,620 HVGs were taken. However, within

the time point T1 cells form characteristic subgroups are

observed. scMerge performed visually best with kmeansK =

(4,4,3,3). In other setups, there is an improvement in

separation by time point over no correction, and technical

replicates from T1 are well intermingled but not from T2

(replicate A clusters separately from replicate B). Seurat

achieved the worst result by mixing all cells together, thus it

was not evaluated in further comparisons. Scanorama achieved

little improvement no matter if all genes were used or

HVGs only.

As before, we counted the feature-level metrics after data

integration (Figure 4). Except for ComBat-seq, genes with a

higher average expression were not following the raw data

distribution after correction (Figure 4A). Moreover, for

FIGURE 3
UMAP visualization after integration.
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MNN, Scanorama negative values started to occur in the

corrected matrix. In most cases, the batch effect correction

also distorts the characteristic of the scRNAseq data mean-

variance relationship (Figure 4B). There is a sharp collapse of

the log variance in the upper range of the mean expression

(Figure 4B). The association between average expression

and detection rate is conserved only for ComBat-seq and

MNN (Figure 4C). Limma introduces small expression values

to all cells for many low expression genes (dropout rate

equal 1), while scMerge and Scanorama

consequently increase dropout rate with increased

expression of the gene.

3.4 Differential gene expression analysis
after data integration

For each method, only the best DEGs finding results were

shown from all the setups tested (Figures 5, 6): MNN and

Scanorama were run with all genes as input and scMerge with

K4444 setting. The number of DEGs identified with MAST

(parametric approach) and EMDomics (non-parametric

approach) is presented in Table 2. The intersection between

different data integration methods and approaches for DEGs

finding was small. For the confounded study, the number of

identified DEGs was almost identical between the two

FIGURE 4
Feature-level metrics for corrected study. (A) histograms of mean value, (B)mean-variance relationship - red line with intercept = 0 and slope =
1, (C) mean-detection rate relationship - red line indicates the expected distribution under a Poisson model. Individual points are colored by the
number of neighboring points.
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approaches, but the common part consists of only 62 genes

(Table 2). After data integration, only ComBat-seq gave a higher

number of DEGs than other methods, mostly when the

parametric approach was used. The non-parametric approach

identified a significantly larger number of DEGs after correction

for other data integration methods.

Based on the Pearson correlation coefficient (R), there is

an improvement in the correlation of MAST DE statistics

FIGURE 5
Correlation analysis after data integration using MAST statistics. Two correlation coefficients are shown: Pearson (R) and Spearman (ρ) and the
corresponding p values. The regression model is fitted (blue line) with confidence intervals (the grey area around the line).

FIGURE 6
Correlation analysis after data integration using EMDomics statistics. Two correlation coefficients are shown: Pearson (R) and Spearman (ρ) and
the corresponding p values. Regression model is fitted (blue line) with confidence intervals (grey area around the line).
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between the reference and the corrected study in the case of

ComBat-seq, limma, and scMerge (Figure 5). For MNN and

Scanorama, the test statistics themselves were much higher,

thus the correlation with the reference is smaller (Figure 5).

When the Spearman correlation coefficient is considered (ρ),

the correlation is higher for every integration method, and

Scanorama, scMerge, and ComBat-seq are the best. For a

non-parametric test approach, after data integration, both

correlation coefficients were smaller in all cases (Figure 6).

However, ComBat-seq and limma showed the smallest

decrease, while Scanorama gave negative correlation

values. In some cases, rank-based EMDomics gave the

same value of test statistic (dots arranged in horizontal

lines in Figure 6), which follows from assigning the same

expression values for individual genes after batch correction

using selected methods (e.g., limma, MNN).

ROC curves calculated for each method and statistical tool

(Figure 7) support the findings of correlation analysis. Only for

ComBat-seq and limma, the area under the ROC curve was

higher than 0.5 (Combat-seq: 0.72 and 0.86; limma: 0.74 and

0.65). The worst method was Scanorama (0.39 and 0.44).

3.5 Gene set analysis after data integration

The number of significantly enriched pathways for selected

gene sets is presented in Table 3. Overall, a smaller number of

enriched pathways was found after correction. Data integration

using ComBat-seq did not improve the correlation coefficients

for any of the considered gene sets (Figure 8; Supplementary

Table S1), but the dissimilarity was small. The opposite is

observed in the case of limma, where the correlation

improvement was found for all gene sets and both

coefficients. scMerge improved both coefficients for Hallmark

and GO and worsened for KEGG and Reactome. MNN and

Scanorama worsened the correlation for every gene set.

4 Discussion

We tested six scRNAseq data integration methods against two

experimentally derived datasets which, in some sense, are mirror

images of each other. Both experiments had the same biological

properties such as cell line, drug, time of harvesting, etc. The only

difference was in the technical study design; one experiment was

designed to minimize the technical variation and was our reference,

TABLE 2 Number of DEGs after correction.

Study/tool [MAST] [EMDomics] Intersection

balanced 965 328 246

confounded 191 197 62

ComBat-seq 287 115 114

limma 9 206 9

MNN 6 137 6

scMerge 0 20 0

Seurat 0 0 0

Scanorama 0 0 0

FIGURE 7
Receiver operating characteristic (ROC) curves from results of DEGs analysis using MAST (A) and EMDomics (B) tests. Color coding represents
different data integration methods or no correction (red).
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while the other manifested strong batch effects due to the difference

in capturing time of each batch. This dataset was corrected for batch

removal. Our study was not intended to evaluate many aspects of

the batch correction (accuracy, speed, scalability) as other published

benchmarks, but is focused on one unexplored so far aspect of

scRNAseq data integration which is its impact on DGE analysis in

real data scenario. Available benchmarks also address this problem,

however, based only on the simulated data scenarios. While these

evaluations can easily compute the number of true/false positive

DEGs identified in corrected datasets, they do not stress the real

challenge behind DGE analysis on batch-corrected datasets by

excluding multiple technical and biological factors occurring in

real data. For example, R package splatter (Zappia et al., 2017)

simulates the batch effect by randomly generating multiplication

factors from a log-normal distribution for each gene and group of

cells (i.e., batch). However, since all cells within a batch are modified

in the same way, parametric statistical tests can easily handle these

artificial batch effects by adding covariates to the model. Thus, our

study is unique and extends previous comparisons.

In this work, we tried to emphasize the challenge involved in

feature-level analyses on corrected gene expression matrices.

Indeed, cell-level analyses which are based on computing the

distance (clustering or trajectory analysis) are safe to apply to

corrected data because all cells are placed in the same coordinate

space, which is the idea of data integration. However, integration

algorithms give no guarantee to preserve relative differences in

gene expression space. Therefore, correction methods may

introduce artificial differential expression between cell types or

conditions. Moreover, a majority of integration tools change the

original nature of scRNAseq data: counts are no longer counts.

One exception is ComBat-seq which preserves the integer nature

TABLE 3 Number of enriched pathways for selected gene sets.

Study/tool Hallmark KEGG GO Reactome

balanced 31 19 568 219

confounded 21 14 387 51

ComBat-seq 0 0 25 13

limma 12 7 153 29

MNN 3 8 77 51

scMerge 4 3 46 16

Seurat [CCA] 15 9 326 10

Seurat [rPCA] 16 3 235 71

Scanorama 0 5 59 5

FIGURE 8
Correlation analysis (GSEA) after data integration using NES. Two correlation coefficients are shown: Pearson (R) and Spearman (ρ) and the
corresponding p values separately for each pathway/gene set.
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of counts. Counts preservation is important for the compatibility of

a corrected matrix with the available tools for differential expression

analysis which may require counts or values equivalent to counts. A

natural consequence of subtracting expression during integration

(for example in MNN or Scanorama) is negative values in the

corrected matrix which are hard to biological interpretation.

Moreover, the scale of corrected values can be much different

from the original counts which were especially apparent for

Scanorama. Therefore, corrected values can no longer be

considered as expression measures (of course still higher values

reflect higher expression). Model-based methods specifically

designed for scRNAseq DGE analysis (parametric approaches)

may not work well with corrected data given the fact that many

properties of original data are lost, and higher expressed genes are

dragged down after correction. Of course, one can attempt to apply

some transformations (e.g., Box-Cox transformation) on corrected

data, but they are computationally intensive and do not guarantee

the intended effect.

In general, gene set enrichment analysis should be more

robust against batch correction than gene level analysis but in our

case, this was not manifested. ComBat-seq which was best on

DGE analysis (in both, number of DEGs and correlation with

balanced study) did not improve correlations on the level of gene

sets, but it also did not decrease it much.

In terms of computational time, limma was the fastest

algorithm, while Scanorama used the least amount of memory

(Table 4). MNN ran on 8 processor cores, was much slower than

others (even algorithms ran on a single core) and in peaks, it

needed almost 30 GB of memory. We summarized all our

findings when comparing data integration methods in

Table 4. Our evaluations were done on a machine with Intel®

Xeon(R) CPU E5-2,650 v3 at 2.30GHz × 40 and 256 GB RAM.

Our study has some limitations. First, the analysis was done

on a set of two experiments concerning the same cancer cell line.

The results might slightly differ for other organisms. However,

since there is no other pair of experimentally derived balanced/

confounded studies, it was not possible to test it. Second, different

methods have multiple parameters to set. We have chosen default

values where possible and tested a few settings for another

method, however, we are aware that the optimal settings

might not be reached in this study.

Finally, we are rather careful with formulating overall

recommendations for the particular method as well as we do not

state that DGE analysis should not be performed at all. We rather

wanted to highlight the fact that single-cell data integration is one of

the current grand challenges (Lahnemann et al., 2020) in omics

analyses and better methods might still appear. Nevertheless, we

wanted to highlight the ComBat-seq method as it led to the highest

correlation of test statistics between reference and corrected dataset

among others and it does not distort the original distribution of

gene expression, so it can be used in all types of downstream analyses.
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TABLE 4 Summary of comparison between data integration methods.

Method Total
time [sec]

Single
core
time [sec]

Total
RAM [MiB]

Peak
RAM [MiB]

Ease
of use

Original data
distribution

UMAP
separation

ComBat-seq 4,007.2 4,007.2 2,039.5 30,652.1 easy not changed good

limma 24.2 24.2 2,039.2 15,302.1 easy changed medium

MNN (8 cores) 52,300.6 418,405 2,040.1 28,121.4 easy changed medium

scMerge
(8 cores)

14,404.9 115,240 2,042.8 28,117.2 easy changed medium

Seurat
(5 workers)

1,116.3 5,581.5 4,486.6 17,066.4 easy changed weak

Scanorama 5,925.9 2,542.7 2,055.4 2,055.6 medium changed weak
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Background: Pulmonary Sclerosing Pneumocytoma (PSP) is a rare tumor of the

lung with a low malignant potential that primarily affects females. Initial studies

of PSP focused primarily on analyzing features uncovered using conventional

X-ray or CT imaging. In recent years, because of the widespread use of next-

generation sequencing (NGS), the study of PSP at the molecular-level has

emerged.

Methods: Analytical approaches involving genomics, radiomics, and pathomics

were performed. Genomics studies involved both DNA and RNA analyses. DNA

analyses included the patient’s tumor and germline tissues and involved

targeted panel sequencing and copy number analyses. RNA analyses

included tumor and adjacent normal tissues and involved studies covering

expressed mutations, differential gene expression, gene fusions and molecular

pathways. Radiomics approaches were utilized on clinical imaging studies and

pathomics techniques were applied to tumor whole slide images.

Results: A comprehensive molecular profiling endeavor involving over

50 genomic analyses corresponding to 16 sequencing datasets of this rare

neoplasm of the lung were generated along with detailed radiomic and

pathomic analyses to reveal insights into the etiology and molecular

behavior of the patient’s tumor. Driving mutations (AKT1) and compromised

tumor suppression pathways (TP53) were revealed. To ensure the accuracy and

reproducibility of this study, a software infrastructure and methodology known

as NPARS, which encapsulates NGS and associated data, open-source software

libraries and tools including versions, and reporting features for large and

complex genomic studies was used.

Conclusion: Moving beyond descriptive analyses towards more functional

understandings of tumor etiology, behavior, and improved therapeutic

predictability requires a spectrum of quantitative molecular medicine
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approaches and integrations. To-date this is themost comprehensive study of a

patient with PSP, which is a rare tumor of the lung. Detailed radiomic, pathomic

and genomic molecular profiling approaches were performed to reveal insights

regarding the etiology and molecular behavior. In the event of recurrence, a

rational therapy plan is proposed based on the uncovered molecular findings.

KEYWORDS

pulmonary sclerosing pneumocytoma, molecular profiling, TP53 signaling pathway,
genomics, radiomics, pathomics, case report

1 Introduction

Pulmonary Sclerosing Pneumocytoma (PSP) is a relatively

uncommon benign tumor of the lung with potential for

malignant transformation that is manifested most commonly

by metastasis to regional lymph nodes (Zheng et al., 2022). PSP

was first reported by Liebow in 1956 (Liebow and Hubbell, 1956),

and shows a striking female predominance (female to male ratio

5:1) (Kalhor et al., 2010). Histologically, PSP is primarily

composed of 2 cell types (cuboidal epithelial and polygonal

stromal cells) and four histological types (hemorrhagic,

sclerotic, solid and papillary) (Gao et al., 2020).

Due to the lack of noteworthy clinical or imaging findings,

PSP is hard to recognize, and most cases are diagnosed by

histopathological analysis (Song et al., 2021). The neoplasm

may be confused with other benign nodules like hamartoma,

tuberculoma, bronchial cysts, or certain lung cancers (Cheung

et al., 2003). Often, patients are asymptomatic and PSP is

detected incidentally. Non-specific associated symptoms may

include: cough, chest pain, chest tightness and hemoptysis

(Cardemil et al., 2004).

Initial studies of PSP focused primarily on analyzing features

discovered using conventional X-ray or CT imaging. PSP has

been described as a distinct, juxta-pleural nodule with strong and

homogeneous enhancement on CT (Im et al., 1994; Xie et al.,

2003). Nevertheless, using the above-mentioned techniques,

there are no specific or classic imaging findings associated

with PSP (Wang et al., 2011).

In recent years, because of the widespread use of next-

generation sequencing (NGS), the study of PSP at the

molecular-level has emerged. PSP lacks the classic driver gene

mutational signatures of lung adenocarcinoma, e.g., EGFR,

KRAS; ALK, or ROS1 fusions (Sartori et al., 2007; Pal and

Chetty, 2020). A study utilizing whole-exome sequencing to

explore genomic modifications in PSP has been performed

(Jung et al., 2016). That study confirmed a high frequency of

AKT1 point mutations (overall 31 of 68 patients, 46%) including

p.E17K. It has been postulated that AKT1 mutations are the

genetic hallmark of PSP (Yeh et al., 2020). Another study

revealed that irregular activation of the mTOR pathway is a

consistent genetic event in PSP (Boland et al., 2021). The PI3K/

AKT/mTOR pathway is one of the most frequently activated

oncogenic pathways (Porta et al., 2014), and activated AKT

phosphorylates mTOR, which activates mTORC1.

This is the first study to use an advanced quantitative

molecular medicine approach to provide a more thorough

description of PSP. Using a combination of genomics,

radiomics (Lambin et al., 2017) and pathomics (Gupta et al.,

2019) a comprehensive description of the patient’s presentation

as well as the molecular determinants of this rare tumor are

provided along with a precision medicine therapy plan in case of

recurrence.

2 Case presentation

The patient is a pre-menopausal female who was admitted

to the hospital because of progressive and severe left sided

flank pain over a 1-week duration. The patient was a former

smoker (cigarettes, one pack/day) for 7 years, who quit 2 years

ago. She currently uses vaping products on a regular basis. The

initial clinical suspicion included a possible kidney stone;

however, imaging studies were negative for stones, but did

reveal a 3 cm mass in the left lower lung. Following a referral

to medical oncology a lobectomy of the left lower lung for

curative intent was performed by thoracic surgery.

Histopathologic features were consistent with pulmonary

pneumocytoma cell types, the tumor measured 3.2 cm in

greatest dimension, surgical margins were clean, and two

hilar/peribronchial lymphnodes were negative for

malignancy (stage Ib, p.T2a.N0.M0, NCCN v.3.2022). Also

identified were abundant hemosiderin-laden macrophages,

compatible with vaping related lung injuries.

3 Methods

3.1 Ethical compliance

This study is part of a clinical trial (NCT02597738) approved

by the Institutional Review Board of the University of Arkansas

for Medical Sciences (UAMS). As part of this trial, written

informed consent was obtained from the patient for research

use of clinical specimens and associated data.
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3.2 Genomics sample preparation

The QIAGENQIAseqHuman Lung Cancer Panel (DHS-005Z)

library prep kit (QIAGEN, 2022) was used for targeted DNA-based

assays involving tumor and normal (T/N). Supplementary File 1 in

BED format contains the exact regions of interest for the amplicon-

based assay. An Illumina HiSeq 3000 was utilized for all NGS

studies. The lung cancer panel, which utilizes uniform molecular

identifiers (UMIs) was run with a coverage of 3,000x for the tumor

and 600x for the germline. Whole genome sequencing (WGS)

libraries were constructed using the New England BioLabs (NEB)

NEBNext Ultra II DNA library prep kit (NEB, 2022), and sequenced

in an ultra-low-pass fashion for copy number analysis (CNA) at

~0.3x coverage for T/N. For RNA-based experiments, the Illumina

TruSeq Stranded Total RNA library prep kit (Illumina, 2022) was

used. Six biological replicates were utilized for the tumor and six for

the normal adjacent lung tissue. Sequencing was targeted at 200M

reads for these 12 samples. In summary, six biological replicates of

the tumor and adjacent normal lung (12 RNA NGS libraries) were

built and sequenced, and four DNA libraries were built and

sequenced.

3.3 Genomics molecular profiling

Genomics datasets were processed as previously reported by the

NGS Post-pipeline Accuracy and Reproducibility System (NPARS), a

reproducible software infrastructure developed by our group (Ma et al.,

2021). Three separate pathway analysis tools were utilized and all run

using default parameters. For canonical signaling pathway analysis,

two traditional pathway analysis tools were used, pathfindR v1.6.3

(Ulgen et al., 2019) and Gene Set Enrichment Analysis (GSEA) v4.2.3

(Aravind et al., 2005). Additionally, an unsupervised pathway analysis

tool namedWeighted CorrelationNetworkAnalysis (WGCNA) v1.71

(Langfelder and Horvath, 2008) was used and then limma (v3.52.1)

based methods were employed to further elucidate outputs generated

by WGCNA. A normalized RNA-seq gene counts matrix, which was

generated by NPARS via DESeq2 v1.36.0 (Love et al., 2014), was used

as input for signaling pathway analyses.

3.4 Radiomics

DICOM imaging studies from the initial medical workup

were obtained from the UAMS PACS and converted to NIfTI

format. Segmentations and visualizations were produced using

3D Slicer v4.13 (Fedorov et al., 2012). Tumor segmentations

(performed via thresholding techniques) were produced from CT

studies. The border region was segmented by adding a margin of

10 mm to the tumor. Radiomic features were extracted from

original images using Pyradiomics (van Griethuysen et al., 2017),

both in aggregate for segmentations and as feature maps. A bin

width of 25 voxels was used, and feature maps used a kernel

radius of 1 voxel and calculated in 2D space. The entropy

radiomics feature used is defined by the Image Biomarker

Standardization Initiative as intensity histogram entropy

(Zwanenburg et al., 2020).

3.5 Pathomics

Whole slide images were acquired using an Aperio CS2 whole

slide imaging scanner (Leica Biosystems) at ×40 magnification.

Image analysis was performed using the open-source program

QuPath (v0.3.2) that included a suite of tools (Bankhead et al.,

2017). Representative areas of the slide were annotated by a

pathologist, indicating areas of tumor, hemosiderin-laden

macrophages, and background lung parenchyma. From these

areas, cell nuclei were segmented using StarDist with the he_

heavy_augment model as described in the QuPath

documentation (Schmidt et al., 2018). Cell expansion was

enabled to approximate overall cell size. Cell classification was

accomplished using the built-in object classifier to train a

random trees classifier using the default feature extractor.

Features included measurements of area, shape and, color of

nuclei, cytoplasm, and overall cell.

4 Results

Figure 1 shows the salient medical imaging for the patient and

results from radiomics analyses. Sub-image (A), shows a pre-operative

chest CT imagewith contrast, zoomed to show amore optimal view of

the tumor in the left lower lung. Segmentations of the tumor and a

1.0 cm circumferential border were performed. At presentation, the

tumor had a maximum diameter of 3.2 cm, minimum diameter of

2.8 cm and a volume of 19.6 cm3. The median radiodensity of the

tumor was 41 HU, approximately midway between the median

densities of the kidneys (24 HU) and the liver (58 HU). As

reference, themedian density of normal lung (alveolar space) is ~ -650.

As part of cancer staging a PET/CT study (B) was performed.

Raw PET values were converted to standardized uptake values

(SUV). The mean SUV in the tumor was 1.3 with a maximum

SUV of 2.2. A reference volume of approximately 3 cm was

measured in the liver (standard comparison), which had a mean

SUV of 1.2 and maximum SUV of 1.5, implying that the tumor

had relatively low metabolic activity.

From the CT study, radiomic features were extracted (C) and

compared between the tumor and surrounding border region

representing the tumor microenvironment. Radiomic features

are most informative when comparing many similar tumors, but

salient information can be inferred from a single case. We

extracted the entropy of the segmentations (C), which is a

measure of the amount of information required to encode the

voxels of the image. Entropy measures the randomness of the

voxel values, where low values represent more homogenous
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regions and higher values represent more heterogenous regions.

The median entropy of the tumor and border regions were

0.92 and 1.89 respectively, illustrating that the

microenvironment (border region) was more complex

(heterogeneous). This result was highly statistically significant

using a two-sided Wilcoxon test (p < 2.2 x 10−16). Finally, volume

rendering showing the size and position of the tumor (D) was

produced using segmentations of the lungs and tumor from the

PET/CT study.

Figure 2 displays the results of pathomics analyses. As

background, nuclear segmentation using StarDist performed well

overall, with the primary deficiencies being occasional segmentation

of large cytoplasmic blebs without a visible nucleus, over-estimation

of nuclear size in foamy macrophages, and difficulty distinguishing

nuclei from hemosiderin in some hemosiderin-laden macrophages.

In Supplementary Figure 1, examples of measurement maps

corresponding to cell circularity are shown overlaid onto

intermediate magnification photomicrographs of background

lung and the tumor. In Figure 2, the pathologist’s annotations

(A) are shown in a low-power (4x) photomicrograph for areas

containing tumor (red) and hemosiderin laden macrophages (blue).

Density maps for cells classified as tumor (B), and as hemosiderin-

laden macrophages (C) for a region of tissue which was not used for

classifier training are displayed separately and then jointly (D).

Figure 3 displays a graphic produced by RCircos v1.2.2 (Zhang

et al., 2013), which summarizes and integrates the findings of seven

genomics methods into a single graphical image. The layout of the

RCircos diagram is as follows, from the outmost circle inward this

plot contains: i. human chromosomal ideogram, ii. lung cancer

targeted 72 gene panel for T/N, iii. RNA expressed mutations from

the full transcriptome (represented as a “dot” due to spacing), iv.

WGSDNAT/NCNAwith the red color representing amplification,

black for normal, and deletion as blue, v. Tumor RNA gene

expression and, vi. Tumor RNA gene fusions. In our study,

52 total genomic analyses were generated and analyzed,

specifically: DNA targeted panel T/N, DNA ultra-low-pass WGS

T/N for CNA, RNA studies involving six biological replicates from

the tumor and the normal adjacent lung (12 samples) subjected to:

1) RNA expressed mutation analysis, ii) statistical inferencing with

DESEq2 (Love et al., 2014), and iii) Fusion analysis via STAR-Fusion

(Haas et al., 2019). Supplementary Figure 2 illustrates the tissue

specimens and genomic analyses (total of 52) generated.

FIGURE 1
Radiomics analysis of the PSP tumor. (A) Pre-operative chest CT scan with contrast utilizing lung window settings. The image is an axial
projection that has been zoomed to show an optimal view of the tumor that resides in the left lower lung along with a small region of the
mediastinum. Tumor segmentation is outlined in red, with the 1 cm border surrounding the tumor proper, outlined in green. The x-axis contains a
size scale (cm) and y-axis Hounsfield Units (HU) scale (−1200–200) with shading. (B)Combined PET/CT of the tumor (zoomed) at diagnosis. The
tumor had a SUVmax of 2.2 and SUVmean of 1.3, the x-axis contains a size scale (cm) and y-axis contains the SUV scale (0–4.5) with color coding. (C)
Feature map showing the entropy of the tumor and 1 cm surrounding region, generated from a sagittal slice of the CT at presentation. The tumor is
significantly more homogenous than the surrounding region. The x-axis contains a size scale (mm) and y-axis contains an entropy scale (0–3.5) with
shading. (D) Volume rendering showing the size and position of the tumor at diagnosis. Produced using segmentations of the lungs and tumor from
the PET/CT series.
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Examining Figure 3, three somatic non-synonymous DNA

mutations were found by the targeted DNA panel: AKT1 p.E17K,

NF1 p.H1826Y, APC p.V1822D, with sequencing depths of 6,243

(allelic frequency: 36.75%), 5,809 (6.72%), 9,735 (61.6%)

respectively (see Supplementary Table 1 for targeted DNA

panel details). The AKT1 mutation is a driver for PSP tumors

(Yeh et al., 2020), the findings for NF1 and APC are not drivers.

The germline TP53 mutation p.P72R was detected with a depth

of 1573 and an allelic frequency of 50%, but this is not indicated

to be of significance per ClinVar (TP53). Finally, a TP53 p.K382fs

frameshift mutation was found at the low allelic frequency of

0.6% and a depth of 5158; however, the mutation did not pass

filter by smCounter2 (Xu et al., 2019) (homopolymer).

Due to RNA-seq experiments covering the entire

transcriptome and the use of six biological replicates, a total

of 1,119,654 RNA expressed mutations were found to pass filter

by HaplotypeCaller (DePristo et al., 2011; Van der Auwera et al.,

2013). Using the recommended depth filter of 10 from Guo et al.

and limiting mutations to those having a predicted impact of

moderate or high, the RNA expressed mutation analysis was

further filtered (Guo et al., 2017). After filtering, 8,139 mutations

remained for further analysis. Among these mutations, 2,938 of

them are found in all six tumor samples (see Supplementary

Table 2), and 1,854 mutations are private to specific samples (see

Supplementary Table 3). Based on the RNA-seq VCF files of the

six tumor samples and the six normal samples, a phylogentic

analysis was performed using PHYLIP v3.697 (PHYLIP) (see

Supplementary Figure 3). The PHYLIP dendrogram shows a

clear separation of tumor vs. normal and with the tumor arising

from the normal. The driving mutation found in the DNA study,

AKT1 p.E17K was expressed in five of six RNA biological

replicates with a depth range of 101–471, and VAF range of

28%–49% (see Supplementary Table 4).

Ultra-low pass WGS experiments revealed copy number

variations concentrated in chromosomes 5, 10, 14, 17, 19 and

21 (all amplifications). All the three DNA mutated genes, AKT1,

NF1, and APC, were amplified (see Supplementary Table 5;

Supplementary Figure 4). A differential gene expression

(DGE) analysis was performed by DESeq2 (Love et al., 2014)

on the RNA-seq data via NPARS. DGE analysis revealed

FIGURE 2
Pathomics analysis of the PSP tumor. (A) Low-power (4×) photomicrograph showing areas containing tumor (outlined red) and hemosiderin-
laden macrophages (outlined blue) as annotated by the pathologist. (B) Tumor with red color density maps showing the number of cells per mm2 as
identified by the classifier, and shown as percentages (0–100), where the 100% scale value corresponds to 1660 cells permm2, alongwith intense red
coloring. (C) Tumor tissue with blue color density maps showing hemosiderin-ladenmacrophages where themost intense blue color and scale
value of 100% corresponds to 349 cells per mm2 (as identified by the classifier). (D)Overlaid density maps for both cell types (same classifier results
and color intensity scales as in (B,C).
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11,646 genes to be significantly differentially expressed (adjusted

p-value < 0.1) between the tumor and matched normal adjacent

lung replicates (see Supplementary Table 6). A significant finding

was the overexpression of MDM2 in the tumor (log2 fold change:

1.33; q-value: 2.93E-11), a key regulator in the TP53 pathway.

RNA-seq gene fusion analysis showed a number of fusion

events across the genome (see Supplementary Table 7), with

TIMM23-PARGP1 found in all six tumor replicates. However,

the TIMM23-to-PARGP1 fusion does not drive PSP, in the

literature to-date. The total distinct fusions found across all

six tumor replicates and passed by STAR-Fusion was 36.

Using RNA-seq data (tumor and normal adjacent lung

biological replicates), both conventional signaling pathway

analysis tools, pathfindR and GSEA, found a large number of

abnormal candidate pathways. The pathways found to be

statistically significant by pathfindR are listed in

Supplementary Table 8. The GSEA’s most significant

pathways are listed in Supplementary Table 9. WGCNA

initially clusters genes into significant modules (in this study,

there are total of 100 modules). Then using the R package limma

v3.52.1, the most significantly differentiated modules were

extracted (Ritchie et al., 2015). Next, the most differentiated

module (module number 1, containing 5,108 genes), was sent to

pathfindR for further analysis. The most significant pathways for

genes within module number 1 were identified (see

Supplementary Table 10). Comparing the output from these

pathway analysis tools, we found that the TP53 signaling

pathway to be statistically significant by all three pathway

FIGURE 3
RCircos plot produced by the NGS Post-pipeline Accuracy and Reproducibility System (NPARS). This figure summarizes and integrates seven
genomics methods into one graphical plot. From the outermost ring inward: (i) human chromosomal ideogram, (ii) DNA panel mutations (tumor vs.
germline), (iii) RNA expressedmutations from the full transcriptome, each dot represents a RNA expressedmutation (depth greater than or equal 10),
(iv) whole genomeDNA copy number variations (tumor vs. germline) with red representing a copy number greater than 2, copy number equal to
2 by black coloring, and a copy number smaller than 2 by blue, (v) RNA gene expression (TPM) and, (vi) RNA gene fusions.
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analysis tools, and MDM2 overexpressed. Using pathfindR’s

KEGG (Kanehisa and Goto, 2000) integration, the

TP53 pathway shown in Figure 4.

5 Discussion and conclusion

Why does a relatively young woman develop an unusual tumor

in her lung? How is her presentation involving left flank pain related

to her pathologic processes? Using genomics, radiomics and

pathomics we sought to bring additional clarity to these questions.

The patient presentedwith severe left flank pain. It is established

that disease processes or injuries involving the lower lung may

present as flank pain (LeBlond, 2015). The 3D position of the tumor

and the proximity to the left lung base is nicely displayed by the

radiomics study in Figure 1D. Utilizing segmentation and entropy

calculations (Figure 1C) radiomics showed the tumor region to be

much more homogeneous vs. a surrounding 1 cm rim representing

an inflamed microenvironment, which is now known to be filled

with abundant hemosiderin-laden macrophages. Hemosiderin-

laden macrophages are an important finding regarding an acute

lung injury and indicates alveolar hemorrhage (Beasley, 2010). This

finding was also observed and quantified by the pathomics study

(Figures 2C,D). The patient’s lung injury is related to her vaping

practices and may be manifested in left lower lung due to tumor

growth and corresponding increased metabolism (Figure 1B).

The first principal genomicfinding of this study, was the detection

of the AKT1 p.E17Kmutation within both the DNA and RNA of the

patient’s tumor with convincing VAF and depth of coverage. This

finding is consistent with previous studies that have shownmany PSP

cases to harbor AKT1 mutations (Jung et al., 2016; Yeh et al., 2020).

There is a growing body of evidence that AKT1 mutations are a

hallmark of PSP (Yeh et al., 2020), and this oncogene can be assumed

to be the driving mutation for this patient’s tumor.

AKT1 is a member of the AKT kinase family. As meaningful

down-stream regulators of the PI3K signaling pathway, members

of the AKT kinase family play an import role. In all cancers, the

PI3K/AKT pathway is considered one of the most frequently

deranged (Mundi et al., 2016). Although our signaling study did

not find the pathway to be statistically significant, the pathway

contains a mutated AKT1, driving tumor proliferation (Yeh et al.,

2020), and is a viable drug target.

The second principal genomic finding, was that the

TP53 signaling pathway was found to be statistically

significant in all three pathway analysis methods. Chief among

the alteration of genes in the TP53 pathway is that the

p53 inhibitor MDM2 is significantly over-expressed in the

patient’s tumor. The overexpression of MDM2 in tumors

FIGURE 4
Pathway Result by pathfindR. The colored plot was generated based on KEGG pathway diagrams through pathfindR. Red colors represent
upregulated genes, and green colors the down regulated genes. In this plot for the TP53 pathway, MDM2 which is the principal negative regulator of
the pathway, was significantly upregulated.
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inhibits p53 and favors an uncontrolled environment for cell

proliferation (Chène, 2003; Hou et al., 2019). This helps to

explain an additional reason for tumor development. Namely,

a dampened response regarding tumor suppressor function by an

essential pathway focused on tumor surveillance and eradication.

In the TP53 signaling pathway, p53 and MDM2 proteins form a

central hub which is one of the key molecular complexes most

frequently connected to other signaling pathways in the cell. The

MDM2-p53 hub receives stress inputs, and by forming and changing a

large number of other pathways and functions in the cell, p53 responds

to the inputs (Levine, 2020). The MDM2-p53 hub is also a negative

feedback loop. In this loop,MDM2 is transcriptionally induced by p53,

but reciprocally blocks p53 activity (Zhou et al., 2017). According to

the colored KEGG pathway plot generated by pathfindR (Figure 4), it

is evident that the MDM2 gene is significantly upregulated.

Per standard-of-care guidelines, the patient had a lung surgery for

curative intent, but a precision oncology therapy plan was formulated

as a precaution in case of tumor recurrence. Active clinical trials

enrolling patients that target MDM2 abnormalities and AKT1 p.E17K

mutations exist. RegardingMDM2 inhibitors: (i) RO5045337 (Roche),

prevents the MDM2 protein from binding to the transcriptional

activation domain of p53 (NCI, 2022; Roche, 2022); (ii) siremadlin

(HDM201, Novartis), increases the activity of the tumor suppressor

p53 by selectively inhibiting the MDM2-p53 interaction (Novartis,

2022; Stein et al., 2022); and, (iii) alrizomadlin (APG-115, Ascentage),

restores p53 expression by binding to MDM2 protein (Tolcher et al.,

2019; Ascentage, 2022). Regarding the AKT1 finding, there are two

small molecule drugs targeting the ATK1 p.E17K mutation being

investigated: (i) capivasertib (AZD5363, AstraZeneca), inhibits all three

isoforms of AKT by inhibiting downstream signaling of the

AKT1 p.E17K mutation, (Chen et al., 2020; Kalinsky et al., 2021;

AstraZeneca, 2022); and, (ii) BAY1125976 (Bayer), deactivates full-

length AKT1 by binding into an allosteric binding pocket (Politz et al.,

2017; Bayer, 2022) (see Supplementary Table 11).

To date, this study provides themost comprehensive analysis of

a single human PSP neoplasm by utilizing radiomics, pathomics,

and multiple genomic analyses. Using these studies insights are

gleaned and discussed that span the patient’s initial presentation,

tumor development with molecular determinants, and a precision

medicine therapy plan is proposed in case of recurrence.
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