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Atherosclerotic plaque deposit in the carotid artery is used as an early estimate to
identify the presence of cardiovascular diseases. Ultrasound images of the carotid artery
are used to provide the extent of stenosis by examining the intima-media thickness
and plaque diameter. A total of 361 images were classified using machine learning
and deep learning approaches to recognize whether the person is symptomatic or
asymptomatic. CART decision tree, random forest, and logistic regression machine
learning algorithms, convolutional neural network (CNN), Mobilenet, and Capsulenet
deep learning algorithms were applied in 202 normal images and 159 images with
carotid plaque. Random forest provided a competitive accuracy of 91.41% and
Capsulenet transfer learning approach gave 96.7% accuracy in classifying the carotid
artery ultrasound image database.

Keywords: carotid artery, ultrasound image, machine learning, deep learning, stroke

INTRODUCTION

Every year, in India, 26% of people die due to cardiovascular diseases, stroke because of artery
stenosis is 75%, and heart attack is 42%. In the United States, one of the 19 deaths is due to
stroke (Farah, 2018). Risk factors that may lead to stroke are physical inactivity, being obese, heavy
drinking, use of illegal drugs, family history having a stroke and other cardiovascular diseases,
cholesterol, high blood pressure, diabetes, and smoking. Other factors with increased stroke risk
are race-, sex-, age-, and hormones-related problems.

Stroke is the third prominent reason for death in many developed countries (Benjamin et al.,
2019). The common cause of stroke is the formation of atherosclerotic plaque in the carotid artery
that can grow large enough to block blood flow leading to stenosis or rupture causing clots in
the artery. Progressive intimal accumulation of protein, lipid, and cholesterol makes medium-
and large-sized arteries, causing atherosclerosis. Atherosclerosis may be existing in body parts,
such as infernal aorta, coronary artery, superficial femoral artery, and the common carotid artery
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bifurcation region. Strain in the arterial wall causes variance
in clinical, mechanical, and molecular levels in the artery. The
plaque formation is compensated by artery enlargement with no
changes in the lumen region, where blood flows.

The mapping of features to any one of the classes in
a computer-assisted diagnostic system is called classification.
Machine learning algorithms that are used for biomedical image
classification are neural network, backpropagation, support
vector machine (SVM), adaptive binary tree-based SVM, decision
trees, such as linear regression, logistic regression, random forest,
k-nearest neighbor (KNN), k-means, Boltzmann machine, mean
shift clustering, Markov statistics nonparametric techniques, and
fuzzy-based classification methods.

Stimulated by the function and structure of the brain, an
artificial neural network (ANN) was developed. A subset of
machine learning, called deep learning, performs classification
tasks directly from the images. The accuracy of deep learning
sometimes exceeds human performance. The model extracts all
the necessary features by itself and performs the classification.
Transfer learning is a kind of deep learning which uses the learnt
knowledge from some other data and uses that for the application
in hand. Some of the transfer learning algorithms are Alexnet,
Mobilenet, Imagenet, Capsulenet, etc.

Carl Azzopardi et al. (2020) used a deep neural network
(DNN) to delineate lumen-intima boundary (LIB) and
media-adventitia boundary (MAB) with a fully automatic
segmentation technique. For the network stochastic gradient
descent optimization problem, a new objective function was
formulated. The invariant intensity data input was given to
the network with a bimodal synthesis of amplitude and phase
congruency. The performance in MAB and LIB detection was
96.2 and 92.5%, respectively. The study was made with just 15
images in each stenosis category which is not a sufficient number
for deep learning-based segmentation. Images from different
sources were not considered for learning, missing generalizability
(Azzopardi et al., 2020).

Roy-Cardinal et al. (2019) extracted noninvasive vascular
ultrasound elastography (NIVE) and ultrasound features, such
as homodyned-K (HK), Nakagami parametric maps, log-
compressed images. The algorithm identified large lipid area,
calcification, ruptured fibrous cap presence, differentiation
of nonvulnerable and vulnerable plaques, and confirming
symptomatic and asymptomatic patients using a random forest
classifier. The study population was 91, and only 5 cases with
fibrous caps were involved. A balanced dataset may give better
classification performance. Based on elastography and B mode
gray-level features, the AUC obtained was 0.90 (95% CI 0.80–
0.92, p < 0.001). The area of calcification accuracy obtained was
0.95 (95% CI 0.94–0.96, p < 0.001), performed using the above
features. Area under the curve variation for other tasks varied
between 0.79 and 0.97 (Roy-Cardinal et al., 2019).

Loizou et al. (2017) studied the texture variability in the
ultrasound video to identify the presence of vulnerable plaque.
The videos were intensity normalized, denoised, IMT segmented,
and texture feature learned to find systole and diastole states.
The texture was visibly variable for diastolic and systolic states.
More gray-scale average was recorded for systole compared to

diastole. Plaque structures had variable textures in both the
states. Systole and diastole features combined gave better results.
Borders of type 1 plaque were not identified by this method.
Acoustic shadowing was produced in type V plaque and was not
recognizable. The state diagram was improper for 2% of cases
(Loizou et al., 2017).

Lekadir et al. (2017) proposed a CNN classification model
for the different plaque constituents. Lipid core, calcified tissues,
and fibrous caps were detected with a correlation of 0.90 related
to clinical results. Based on the patch batched technique, 56
images were converted into 90,000 patches for the process. SVM
with predefined image features gave an accuracy of 78.5%. The
testing time taken for classifying each image was 52 ± 13 ms,
and changes in accuracy were reduced by 0.003 by changing
the patches between 9 × 9, 11 × 11, 13 × 13, and 15 × 15
(Lekadir et al., 2017). Pazinato et al. (2016) used the features of
neighboring pixels for carotid image classification. On a dataset
with calcium, lipids, muscles, fibrous, and blood tissues texture,
gradient, statistical, and local binary pattern (LBP) features were
used. Pixel-based machine learning classification was carried out
on the normalized image following multiscale description. The
method was computationally complex and did not focus on any
particular machine learning algorithm. The technique applied in
ultrasound tissue engineering achieved a classification accuracy
of 73%, and was statistically verified (Pazinato et al., 2016).

Gastounioti et al. (2015) explained the importance of
kinematic features for plaque analysis for a computer-aided
diagnosis (CAD). Fisher discriminant ratio-based feature
selection and SVM-based classification were performed.
Applying texture features gave 80% of accuracy and kinematic
features recorded 88% of accuracy. The accuracy of this proposed
CAD has still lots of scope for improvement. AUC, specificity,
and sensitivity improved by 0.70, 0.83, and 0.67, respectively
(Gastounioti et al., 2015). Vegas-Sánchez-Ferrero et al. (2014)
defined a gamma mixture model (GMM) for the subsampled
RF images, and their parameters are useful features to identify
various plaque tissues. The method outperformed in terms
of plaque echogenicity and characteristics. It achieved an
accuracy of 95.16% for four-class classifications and 86.56%
for three-class classification, which can still be improved
(Vegas-Sánchez-Ferrero et al., 2014).

Saba et al. (2021) proposed a classification approach for
carotid artery ultrasound images using four machine learning
models, one deep learning model, and one transfer learning
model. He used the scattering principle of the plaque, where
the symptomatic ones are more scattered than the asymptomatic
ones (Saba et al., 2021). He achieved stable results for
the characterization and classification of the carotid artery
ultrasound images.

Classification of the carotid artery images to identify the
presence of plaque deposit is performed by machine learning
algorithms, CART decision tree, random forest, and logistic
regression. Convolutional neural network (CNN)-based deep
learning classification and Mobilenet and Capsulenet transfer
learning approaches are performed in the carotid artery image
database. The performance of these classification methods is
analyzed with the true values confirmed by three radiologists.
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In this article, section 2 gives the methodology, section
3 describes the results and discussions, and section 4
concludes the article.

METHODOLOGY

This section defines the approach involved in the classification
of the carotid artery ultrasound images. Feature extraction
and selection are done to obtain the appropriate features. The
selected features are given as input to the machine learning
classification algorithms, CART decision tree, random forest,
and logistic regression. The images are given as input to the
CNN, transfer learning algorithms, Mobilenet and Capsulenet.
The classification performance measures are used to identify the
efficiency of the algorithms.

Figures 1A,B give the sample carotid artery ultrasound images
with and without plaque deposit.

Database Creation
Ethical clearance is obtained from the SRM Medical College
Hospital and Research Center, Kattankulathur, Tamil Nadu,
India, to collect carotid artery ultrasound images. Database of the
carotid artery ultrasound B mode images is collected from the
Bharat Scans, Chennai and the SRM Medical College Hospital
and Research Center, Kattankulathur, Chennai.

Feature Extraction
Machine learning involves high-dimensional data, where the
analysis requires a considerable amount of data for learning
and testing. The images obtained are denoised by curvelet
decomposition to remove speckle and preserve useful edges.
Feature reduction minimizes the effects of redundant variables
by selecting feature subsets. Choosing the most significant
features progresses the classification model performance and
reduces over fitting.

Following preprocessing and segmentation of the images, 63
features are taken from the images in the database. A number
of 33 texture features, 5 shape features, 10 histogram and
correlogram features, and 15 morphology features are extracted
from the images. Out of that, 22 most significant features
are selected by principal component analysis (PCA) method
(Parhizkar et al., 2021).

The most discriminant features from the extracted features are
selected based on the following approach. Distance between two
classes for every feature is computed as follows for mean m1, m2
and standard deviation σ1, σ2.

distance =
|m1−m2|√

σ2
1+σ2

2

(1)

Features with more distance are those with more significance.
From the 65 extracted features, 22 most significant features
were selected for the classification task. PCA-based feature
selection was performed in addition. The principal components
are derived from the eigenvalues. A correlated feature set is

converted into uncorrelated ones called principal components by
an orthogonal transformation.

The selected features are texture, spatial structure, skewness,
kurtosis, histogram, correlogram, histogram of oriented gradient
(HOG), Gabor wavelet, angular 2nd moment, shape, sharpness,
length irregularity, mean probability density function, gray-scale
median, multiregion histogram, arterial wall ROI’s randomness,
absolute gradient, radian and angular sum of discrete Fourier
transform for Fourier power spectrum, coarseness, convexity,
connectivity, and plaque volume. The potential features are given
as input to the machine learning classification algorithms.

Classification by Machine Learning
Algorithms
Proper data preparation, automation and iterative learning,
testing, scalability, and ensemble modeling are necessary for
a classification algorithm. The classification of the carotid
artery images database is performed with the machine learning
algorithms, CART decision tree, logistic regression, and random
forest algorithm.

Machine learning is to develop a mathematical model built
by training the inputs. The inputs are the features selected from
the ultrasound image dataset of the carotid artery. The learning
experience is generalized so that it can give the correct output for
the new image which is not in the database. The generalization of
the model is improved by applying a validation set to the trained
model. The resulting output and error are given as feedback to
the input so that training of the model improves. After many
iterations of tuning and training of the model, the trained model
is used with new unseen test data to find the performance of the
approach (Lundervold and Lundervold, 2019; Latha et al., 2020).

CART Decision Tree
The decision tree is a prediction-based machine learning model
with parameters represented in the branches and target outputs
represented in the form of leaves. Branch labels are represented
by leaves and feature conjunctions that lead to the leaves are
represented as branches. Target with continuous values is called
regression trees. Classification and regression tree (CART) is a
nonparametric decision tree algorithm (Seera and Lim, 2014).
Information gain defines how to quantify the quality of the split.
For attributes p and q, the information gain I is represented as

I
(
p, q

)
=−

p
p+ q

log2

(
p

p+ q

)
−

q
p+ q

log2(
q

p+ q
) (2)

To create a tree from the available attributes, entropy is
computed. It depends on how much variance the data has.

E (A)=

v∑
i=1

pi+qi

p+ q
I(p, q) (3)

The training sets each attribute that is found from the gain. It
is the variance between entropy and information gain.

Gain = I
(
p, q

)
−E(A) (4)

Decision trees can identify the nonlinearity in the dataset and
adapt accordingly. The data need not be standardized because a
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A B

FIGURE 1 | (A) Sample image without plaque deposit (B) with plaque deposit.

FIGURE 2 | (A) Tree formation for sample 53 images with kurtosis feature (B) ROC curve.

distance measure is not involved in the classification. Sigmoid
activation is used to get the optimum classification result. The
rules of CART and other decision trees are as follows:

1. Based on a variable’s value, the splitting criteria for a
node are formulated.

2. The stopping criteria are decided when to stop
splitting a tree.

3. Final target variable at the end of each node is calculated.

An output of one implies the presence of plaque, and zero
represents the absence of plaque in the image with a threshold
of 0.5. Figure 2 gives the results of applying the CART decision
tree for the carotid artery ultrasound image database. Using
the kurtosis feature, the tree formation for sample 53 images is
projected in Figure 2A. Kurtosis≤ 0.01 is separated and branches
are formed from that node. Figure 2B is the ROC curve for
which the AUC is 83.53%, which implies that CART is suitable
for disease classification in the carotid artery.

Classification and regression tree is nonparametric and hence
is independent on the distribution kind of the input data.
The algorithm is not affected by the outliers in the input
data. Without strictly following the stopping rule, the tree
can be overgrown and can be pruned back to the optimal
solution. Fit can be improved using a test set and validation
sets. The input variable set can be selected by combining
CART with other prediction methods. The drawbacks of

CART include variance in the model when a small change
in the database is made and imbalanced class data lead
to underfit trees.

Logistic Regression
Binary logistics is more suitable for categorical targets with linear
or nonlinear decision boundaries, with a threshold fixed. It
applies the logistic or sigmoid function. For the curve’s maximum
value L, steepness parameter or growth rate k and x0 being the
midpoint of x, the logistic function is given by

f =
L

1+e−k(x−x0)
(5)

Assuming threshold 0.5, for probability 0.5, class = 1 is
assigned. For probability < 0.5, class = 0 is assigned (Barui et al.,
2018). The cost function J used is crossentropy since sigmoid
activation is used.

J (θ)=
1
m

m∑
i=1

cost(hθ

(
xi) , (yi) (6)

Where cost
(
hθ (x) , y

)
= −log(hθ (x) ) for y = 1 and

cost
(
h (x) , y

)
= −log(1− h (x) ) for y = 0. The natural log

of odds called logit which transforms the line into the logistic
curve is

log
(

p (x)
1− p (x)

)
= β0+β1(x) (7)
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The logistic regression coefficients are found by maximum
likelihood estimation. Highly correlated inputs from the database
are removed after calculating the pair-wise correlation of the
features. It is done to prevent overfit because of multiple highly
correlated inputs. The sparsity of the data is also reduced so that
the likelihood estimation does not prevent target convergence
(Zhang et al., 2018; Javeed et al., 2019; Zhang and Han, 2020).
Figures 3A,B project the ROC curve and the number of trees
with AUC 87.55%.

Random Forest
Random forest is an ensemble classification approach, protecting
the structure from being affected by overfitting problems,
introduced by Ho in 1995. The tree learners of the random forest
follow bootstrap aggregation bagging. Without increasing, bias
bootstrapping reduces the variance of the model. The trees are
uncorrelated so the prediction of the average of many trees is not
noise-sensitive. Bootstrapping gives different input sets for each
training time. A forest is created randomly with root, internal,
and terminal nodes. Algorithm efficiency improves for a bigger
tree. Unlike other decision tree algorithms, random forest decides
the root and other nodes randomly.

The classifier is efficient enough to handle missing values and
is more suitable for categorical classification. Random forest is
created first, and predictions are made from the created forest
(Javeed et al., 2019; Wu et al., 2020). Sigmoid activation function
is used. Using the random nodes, incorrect labeling can be
identified using Gini impurity given by

IG (n)= 1−
j∑

i=1

(pi)
2 (8)

The algorithm for random forest creation is as follows.

1. From a total of m feature sets, K features are randomly
selected k < m.

2. Find node from features after best split point.
3. From the best divided, segregate child node.
4. The above steps are repeated until l number of

nodes is achieved.
5. Repeat the above steps for n times to achieve n nodes.

The prediction that forms the created random forest is done
by the below procedure.

1. For each test feature, the rules of the model are applied
to get the target.

2. For each predicted target, the votes are estimated.
3. The more voted target is considered the outcome.

Figure 4A projects the error rate which is least for nearly 85
number of trees, then increases, becomes constant, and the next
drop is marked in nearly 920 trees. Figure 4B gives the ROC
curve with AUC 90.63%.

Random forest combines individual tree’s decisions and
considers the maximum voted one, which makes it one of the best
machine learning algorithms. Trees are modeled more diversely,
thus implementing all possible models, and obtaining all possible

outcomes improves model efficiency. Kernel-induced random
forest (KIRF) is followed where trees are built till error no
longer reduces. Out of bootstrap (OOB) samples are applied to
get the error rate of the random forest by taking the mean of
the error from all the bags using all the available features. The
drawbacks of the random forest include model complexity, more
time consuming than other decision trees, and less intuitive for
large decision trees.

Deep Learning Algorithms
Deep learning, which is a class of ANN, extracts the semantic
from the images directly, resulting in better classification
performance. The deep learning model is built with multisource
labeled data and provides more generalized results. The carotid
artery ultrasound image classification is performed with a deep
learning approach, CNN.

Deep learning is a promising machine learning field that can
unravel artificial intelligence problems efficiently. It uses a DNN
where the solution depends on the database. Deep learning is
superior in terms of nonlinearity, generalization, harmony, fault
tolerance, parallelism, and learning. There are undisclosed neural
network layers that perform the learning for the available data.
Each layer holds a relationship with the next and the previous
layers. Deep learning absorbs features and useful representations
directly from the raw image bypassing the feature extraction step.
This automatic learning of feature representation and learning
both happen in the layers.

Due to complexity, the importance of the subject, carotid
image analysis using machine learning is not efficient enough
and needs a model learnt from a huge number of images. The
analysis does not depend on the features extracted manually. The
data may be patient-dependent and expert-dependent which may
influence the outcomes. Deep learning extracts the hidden feature
representations of the images and helps in efficient diagnosis.
For example, deep learning algorithms are CNN, DNN, DBM,
LSTM networks, and generative adversarial networks (GANs),
each having their pros and cons which does not require any
preprocessing of data. The extension of CNN called transfer
learning algorithms, such as Alexnet, Leenet, Googlenet, and
Resnet, has proved their efficiency in the testing phase to a huge
extent in terms of complexity.

Deep learning stacks many neuron layers constructing a
hierarchical feature representation. The layer count in the model
is over 1,000 creating a gigantic model memorizing all features
and thus makes more intelligent classification.

Deep learning executes feature engineering on its own by
combining and correlating the necessary attributes of the image.
Deep learning solves the classification problem end-to-end,
which makes the model better than other machine learning
approaches. There is a lot of scope of development of deep
learning with emerging techniques, such as transfer learning.
Other challenges of deep learning are interpretability, trust, data,
regulations, and workflow integration.

Convolutional Neural Network
Convolutional neural network is a proven traditional deep
learning network based on its translation invariance property
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and shared weights architecture. All nodes connected to all
nodes in the other layers build a much complex system and
may be inefficient. CNN uses the domain knowledge of the data
preserving the spatial relationship, assembling complex patterns
into small, simple patterns (Tajbakhsh et al., 2016).

Rectified linear unit (ReLU) activation function is used for
CNN activation. In convolution layer activation, previous layer
activations are convolved with parameterized filters of size

3 × 3. Learning the same weight reduces the complexity of
weight calculation for each layer and node. The convolution
layer outputs are polled in a pooling layer. For small grids,
the polling layer provides single output by max-pooling or
average pooling. Translational invariance is achieved after the
pooling layer preventing a shift in activation maps because
of the shift in the input. Increased stride length convolution
leads to downsampled pooling reducing the model complexity.
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Based on a stochastic sampling of the neural network, dropout
regularization is performed. Different neurons are removed
in different iterations leading to different outputs each time.
Weights are updated each time to get more optimal results.
Activation maps subtracted from the mean and divided by
standard deviations for each training batch give batch normalized
output (Lundervold and Lundervold, 2019). Figure 5 gives CNN
architecture. The image is directly fed as input to the model. The
convolution layer extracts features, such as corners, edges, and
colors from the input image. Deeper layers extract more deep
features, such as plaque structure, kurtosis, texture of plaque,
and nonplaque area. Dominant features from the restricted
neighborhood are extracted in the pooling layer.

Max-pooling representation is used, which minimizes
computational cost and provides translational in-variation to the
internal representation. Alternate convolution and pooling layers
are used to reduce the large feature space. Later, layers extract
more disease-related features assisting the classification process
and improve classification accuracy.

After the convolution and pooling, the data are converted
into a column vector, suitable for multilevel fully connected
architecture. It is followed by a feed-forward neural network and
back-propagation architecture in successive training iterations.
Dominant and low-level features are adequately identified and
classification proceeds.

Transfer Learning Based on Mobile Network
Architecture
A network pretrained on available images can be fine-tuned for
the application to be performed. When the source and the target
are nearly similar, transfer learning works best in terms of weight
updating and optimization compared to random initializations.

Figure 6 gives Mobilenet architecture. The types of transfer
learning are positive, negative, and neutral. Learning in a
condition facilitating another condition is called positive transfer
learning. Learning a task that makes learning another task harder
is called negative learning. A learning which does not make a
change in another learning is called neutral type of learning.
A 1× 1 convolution is associated with the depthwise convolution
outputs in a pointwise convolution layer. In a single step, inputs
and outputs are combined using a convolution filter. Using
Mobilenet, computation and model size have drastically reduced.
Transfer learning marks fast training, more accurate, and needs
fewer data. The significant levels of transfer learning are

1. Full network adaptation—weights are updated from a
pretrained network instead of arbitrary initialization and
apprise them during the training phase (Wang et al., 2016).

2. Partial network adaptation—network parameters from the
pretrained network are initialized and used as such for the
first few layers and the last layers are updated for training
(Zeng et al., 2017; Hesamian et al., 2019).

3. Zero adaptation—network parameters from a pretrained
network are used and are not changed throughout.

Zero adaptation may not be suitable for medical images
trained with other organs or general images because they may not
have similar properties of the carotid image. In using this carotid

FIGURE 6 | Mobilenet architecture.

database for testing a pretrained network, since the available
dataset is small than the training dataset, the following procedure
is followed. Overfitting may be a concern because of the small
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testing set (Akbarian et al., 2019; Latha et al., 2021). The extracted
high-level features may not be similar to the target dataset. The
key features of Mobilenet model compared with the CNN model
are the following.

1. Most of the pretrained layers near the start of
CNN are removed.

2. Instead, fully trained networks equal to the number of
classes for the application are included.

3. The newly obtained weights are randomized and replaced
instead of the removed network weights.

4. The network is trained to update the weights of the new
fully connected layers.

Mobilenet is a family of mobile-first computer vision model
for TensorFlow considering restricted data available and suited
for embedded applications. The model is small, low latent, and

low power designed by google researchers. A width multiplier
parameter is introduced to overcome the resource-accuracy
tradeoff. The resolution multiplier term reduces the layers’
internal structure. ReLU activation function is used.

Figure 7 gives the transfer learning with mobile net
architecture, which provides training accuracy 100% and
validation accuracy 95%. Though the training performance is
less than that of CNN, the validation performance has improved
drastically on using mobile net architecture.

Capsulenet
Geoffrey Hinton proposed Capsulenet in 2017, which is
a better representation of capsules than convolution. The
neuron activities also have a viewpoint variance in addition.
CNN requires augmentation and depends more on texture
features, which led to these transfer learning approaches.
CNN’s max-pooling may lose valuable information because of

FIGURE 7 | Transfer learning based on the Mobilenet architecture (snapshot of the obtained results).
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FIGURE 8 | Capsulenet architecture.

TABLE 1 | Confusion matrix of machine learning algorithms.

CART Decision tree Logistic regression Random forest

Actual positive (1) Actual negative (0) Actual positive (1) Actual negative (0) Actual positive (1) Actual negative (0)

Predicted positive (1) 123 34 120 27 132 23

Predicted negative (0) 23 181 14 200 8 198
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FIGURE 9 | CNN model applied to the carotid artery ultrasound image database (snapshot of the obtained results).

poor relationships between hierarchies of simple and complex
objects. Capsulenet applies vector activation and outputs which
encodes feature transformation information. ReLU activation
function is used.

FIGURE 10 | Capsulenet implementation for the carotid artery database
images (snapshot of the obtained results).

Figure 8 gives Capsulenet architecture with ReLU activation.
Capsules are convolutions with block nonlinearity and routing.
The iterations are slow but require few parameters than CNN.
Inside the knowledge representations, Capsulenet builds a better
model hierarchy. Capsule structures are added to the CNN
model, and the outputs are reused to get more stable higher
representations. Max-pooling is used instead of dynamic routing
and hence achieves translation invariance. It improves the
ability of the network to detect an object even wherever it
lies in the image.

RESULTS AND DISCUSSION

Choice of performance measures to evaluate the machine
learning algorithms gives hope for its practical use. An unsuitable
incorrect measure will mislead to wrong results and a flawed
model which is not suitable for the application. The available
data are imbalanced, and thus, analyzing more number of metrics
assists in proper model selection. It involves comparing the
proposed model with an existing model or predicting the class
label for a given image set.

Performance Metrics
The classification of a carotid artery ultrasound image as
symptomatic or asymptomatic is a binary classification problem.
The performance depends on the count of correctly classified
samples to their class (true positive (TP)), not belonging to
the class, correctly classified as (true negative (TN)), samples
misclassified to that class (false positive (FP)), and those that are
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TABLE 2 | Performance comparison of carotid artery image classification using machine learning approaches.

Algorithm Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F score (%) AUC (%)

CART Decision Tree 84.21 88.72 78.34 84.25 81.19 83.53

Logistic Regression 88.64 93.46 81.63 89.55 85.41 87.55

Random Forest 91.41 96.11 85.16 94.29 89.49 90.63

misrecognized as belonging to that category (false negative (FN))
(Sokolova and Lapalme, 2009). The overall effectiveness of the
model is given by

accuracy =
TP+ TN

TP+ TN+ FP+ FN
(9)

The labels class agreement with positive labels in the algorithm
is given by

precision =
TP

TP+ FP
(10)

Positive label identification efficiency is expressed by recall
or sensitivity. The relevant data points are identified using. F
score measures the relationship between the positive labeled data
and that given in the classifier. Specificity explains how effective
the model identifies a negative label. FPR is the false alarm
probability and TPR is the recall parameter. The model’s ability
to identify false classification is derived from the area under
the ROC curve (AUC). An AUC rate 1 is expected for an ideal
classification model. These measures signify the classification
model performance.

recall =
TP

TP+ FN
(11)

precision =
TP

TP+ FP
(12)

F score = 2×
precision× recall
precision+ recall

(13)

specificity =
TN

TN+ FP
(14)

AUC = (
1
2
)(

TP
TP+ FN

+
TN

TN+ FP
) (15)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(16)

ReLu activation function is used in the classification models.

TABLE 3 | Performance comparison of carotid artery image classification by deep
learning approaches.

Algorithm Accuracy (%)

CNN 55

Mobilenet 95

Capsulenet Transfer Learning 96.7

Machine Learning
Table 1 gives the confusion matrix of the machine learning
algorithms applied in the dataset containing 361 images, out
of which 159 are abnormal and 202 are those without any
disease indications.

The CART model gives an accuracy of 84.21%, specificity
88.72%, sensitivity 78.34%, and precision of 84.25%. The results
prove that the model is useful in identifying the negative cases
better than the positive ones. Logistic regression records an
accuracy of 88.64% for the carotid database. The obtained
specificity is 93.46%, sensitivity is 81.63%, and precision is
89.55%. More number of features added to the logistic regression
model will increase the variance in the odds and may lead to
overfitting. This reduces the generalization of the model fit.
Based on the chi-square test, Hosmer–Lemeshow goodness-of-
fit measure can improve model performance. The algorithm
that assumes the data is noise-free. Outliers from the training
data must be removed to prevent misclassification. Random
forest gives an accuracy of 91.41%, specificity 96.11%, sensitivity
85.16%, and precision of 94.29%. The above results prove
that random forest is a more accurate classifier than logistic
regression and CART decision tree for classifying the carotid
artery ultrasound images.

Deep Learning
Convolutional neural network model is applied on ultrasound
image database for the classification of the images as with and
without plaque deposit. The model achieved training accuracy
of 100% and validation accuracy of 55% as given in Figure 9.
Figure 10 gives the result of the capsulenet implementation in
the database.

Convolutional neural network requires a wide number of
data for training the model. Because of the limited number
of data, the validation performance is nearly half, though the
training is efficient. To overcome this, transfer learning was
introduced to perform a deep learning architecture with limited
training dataset.

Capsules group neurons and thus require fewer parameters
between layers. Pose matrix in Capsulenet defines the rotation
and translation of an object, which represents its change
in viewpoint. It makes the model better generalized to new
viewpoints. The spatial relationship between part of the image
and the whole is learnt which makes the image identification
simple. It is a viewpoint-dependent neural activity which does
not require image normalization and can also identify multiply
transformed images (Samiappan and Chakrapani, 2016; Arun
et al., 2019; del Mar Vila et al., 2020; Samiappan et al., 2020).
Underfitting problem was seen in the classification problem by
CNN, which has led to poor performance and generalization.
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The carotid artery ultrasound image dataset is small and was not
sufficient for a deep learning-based classification.

Initially, 300 training images and 61 validation images were
used. Data augmentation methods, such as rotation, flipping, and
translation were done to improve the classification accuracy.

Table 2 gives the performance of the three machine learning
techniques applied for the carotid artery ultrasound image
database. Random forest gives computationally faster and
improved performance results compared to CART and logistic
regression. Since the dataset was small (361 images), machine
learning algorithms were not computationally complex, lags
in accuracy of identification of the disease. Capsules group
neurons and thus require fewer parameters between layers.
Pose matrix captures rotated and translated versions as linear
transformations, and so, Capsulenet is better generalized to new
viewpoints. The spatial relationship between part of image and
the whole is learnt, which makes the image identification simple.
Capsulenet achieves accuracy of 96.7%, which is the highest for
the carotid artery database images.

The images in the database were flipped to both plane
axis rotated to π/4 axis. Table 3 gives the performance of
the three deep learning techniques applied in the carotid
artery image database.

Proposed Capsulenet with max-pooling gives 12.91, 8.33, 5.47,
43.12, and 1.75% improvement in accuracy compared with a
CART decision tree, logistic regression, random forest, CNN,
and Mobilenet classification algorithms, respectively. Negative
transfer is the interference of the previous knowledge in the new
learning. It has not affected the classification performance of the
carotid artery ultrasound images. It is proved with improved
performance measures.

It is proved that deep learning approaches give improved
accuracy of 95.7% for Capsulenet compared to other machine
learning and deep learning algorithms reported in the literature.

CONCLUSION

A number of 361 images were processed to form a database with
the help of radiologists. Extracted features from the database
images are applied to the machine learning algorithms CART
decision tree, random forest, logistic regression, CNN model,
Mobilenet, and Capsulenet transfer learning algorithms for
classifying the images as normal or abnormal. Machine learning
algorithms were able to perform with an accuracy of 84.21,
88.64, and 91.41%, respectively, for CART, logistic regression, and
random forest. Proposed Capsulenet transfer learning approach

eliminates the need for large amount of training data. Proposed
Capsulenet with max-pooling gives 12.91, 8.33, 5.47, 43.12, and
1.75% improvement in accuracy compared with CART decision
tree, logistic regression, random forest, CNN, and Mobilenet
classification algorithms, respectively.
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Affective computing is concerned with simulating people’s psychological cognitive
processes, of which emotion classification is an important part. Electroencephalogram
(EEG), as an electrophysiological indicator capable of recording brain activity, is portable
and non-invasive. It has emerged as an essential measurement method in the study
of emotion classification. EEG signals are typically split into different frequency bands
based on rhythmic characteristics. Most of machine learning methods combine multiple
frequency band features into a single feature vector. This strategy is incapable of utilizing
the complementary and consistent information of each frequency band effectively. It
does not always achieve the satisfactory results. To obtain the sparse and consistent
representation of the multi-frequency band EEG signals for emotion classification, this
paper propose a multi-frequent band collaborative classification method based on
optimal projection and shared dictionary learning (called MBCC). The joint learning
model of dictionary learning and subspace learning is introduced in this method.
MBCC maps multi-frequent band data into the subspaces of the same dimension using
projection matrices, which are composed of a common shared component and a band-
specific component. This projection method can not only make full use of the relevant
information across multiple frequency bands, but it can also maintain consistency across
each frequency band. Based on dictionary learning, the subspace learns the correlation
between frequency bands using Fisher criterion and principal component analysis
(PCA)-like regularization term, resulting in a strong discriminative model. The objective
function of MBCC is solved by an iterative optimization algorithm. Experiment results on
public datasets SEED and DEAP verify the effectiveness of the proposed method.

Keywords: cognitive computing, EEG-based emotion classification, multi-frequency band EEG signals, subspace
learning, dictionary learning

INTRODUCTION

Affective computing focuses on how to actively learn, reason, and perceive the surrounding
world, as well as realize a certain level of brain-inspired cognitive intelligence by simulating
people’s psychological cognitive processes (Aranha et al., 2019; Samsonovich, 2020). Researchers in
psychology and neurobiology investigate the changes and relationships in the human physiological
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systems that occur during various emotional states and activities
(Li et al., 2020). More and more evidences show that with the
progress of neuroscience research, there is a connection between
human emotional activity and the activity of specific areas of the
brain, especially the cerebral cortex and central nervous system.
For example, the amygdale is associated with emotions like fear
and anxiety in the limbic system of the brain. Anger can activate
the left frontal lobe of the brain (Davis and Whalen, 2001).
Researchers have also studied the relationship between certain
diseases and emotional activities, such as cancer, cardiovascular
disease, and depression (Zhao et al., 2018). Wirkner et al. (2017)
and Guil et al. (2020) studied the impact of emotional activity
on the progression of breast cancer patients. Nurillaeva and
Abdumalikova (2021) studied the pathways of communication
between the heart and the brain, as well as the relationship
between heart rhythm and cognitive and emotional functions.
According to the study of Gianaros et al. (2014), there is a
link between affective regulation and cardiovascular disease.
The author discussed how intense emotional activity and the
immune system interact, and how these close interactions affect
the treatment of rheumatic cardiovascular disease. Tennant
and McLean (2001) associated mood disorders such as anxiety,
depression, and anger with coronary heart disease. Authors
classified mood disorders as an important risk factor for coronary
heart disease, and concluded that mood disorders are frequently
associated with coronary heart disease events. Klatzkin et al.
(2021) studied the food intake of emotional dieters during various
emotional and stress responses. Researchers are also interested in
the impact of emotional activities in the business field. According
to research on the effect of emotion on commercial advertising,
advertisements with emotional expression and influence are
easier for consumers to remember, and publicity images with
emotional color can influence consumers’ access behavior
(Shareef et al., 2018). It is clear that research on human emotional
activities is important not only in the study and understanding of
humanity, but also in medical health and commercial activities.
As a result, the study of human emotions, including emotional
activity intervention, can be regarded as scientific and practical.

Electroencephalogram activities are closely related to people’s
psychological attention consciousness and emotional experience.
An emotional EEG signal is a physiological electrical signal
collected by the human brain in a specific emotional state. EEG
signals, as a window into brain thinking activities, cognitive
processes, and mental states, are an important technical means
for studying brain function and its neural mechanism. Wearable
devices placed on the top of the head collect emotional
EEG signals. The acquisition electrode’s placement position
is typically determined using the international standard 10–
20 and other systems. Researchers in the field of artificial
intelligence study the relationship between emotional activities
caused by internal and external stimuli and the content of
stimuli. Machine learning technology in artificial intelligence
is widely used in EEG signals-based emotion classification.
For example, Liu et al. (2020) developed a multi-level features
guided capsule network to describe the internal relationship of
multiple EEG signal channels. The advantage of this model is
that different levels of feature mapping are integrated during

the process of forming the primary capsule, which can improve
feature representation ability. Zhong et al. (2020) proposed
a regularized graph neural network to mine both local and
global relationships between various EEG channels. This method
can alleviate the problem of time dependence in emotional
process. Ni et al. (2021) developed a domain adaptation sparse
representation classification model to alleviate the problem
of insufficient training data in the new scene. This method
employed the discriminative knowledge of historical data or
related data to aid in establishing the classification model of
the current scene.

According to intra-band correlation with a distinct
psychological state, the EEG signals can be split into five
frequency bands. Different frequency band EEG signals reflect
the different states of brain state. Table 1 briefly describes the
information of five frequent bands of EEG signals (Gu et al.,
2021a; Shen et al., 2021). Many scholars have studied EEG signals
in different frequency bands. Mohammadi et al. (2017) used
wavelet transform to decompose EEG signals into five sub-band
signals, then extracted entropy and energy features from each
sub-band signal and sent them to support vector machine and
k-nearest neighbor, respectively. Li and Lu (2009) proposed
a frequency band search method to find the best frequency
band for emotion classification. According to their findings,
the gamma frequency band is appropriate for EEG-based
emotion classification using still images as stimuli. Zheng and
Lu (2015) built a Multi-frequent band emotion recognition
classifier using deep neural networks. This study had shown
that the beta and gamma bands contained more discriminative
information for emotion classification. Li et al. (2018) used the
hierarchical deep learning model to train numerous classifiers
on EEG signals. They verified that high-frequency bands
played the most important role in emotion classification. Yang
et al. (2018) developed a 3D representation of signal segment
to extract representative features on bands. They integrated
multiple frequency bands and used the constructed 3D signal
cube as model input. Li et al. (2019) developed a sparse linear
regression model using the technologies of graph regularization
and sparse regularization. The authors compared the effects
of different frequency band signals in emotion recognition on
various EEG datasets.

Because there are internal relationships and differences
between different frequency bands, a new learning method is
required to make full use of the information in multi-frequency
band data. Despite extensive research on the use of different
frequency bands of EEG signals for emotion recognition, one
traditional strategy is to directly concatenate features from

TABLE 1 | The basic information of five frequent bands of EEG signals.

Patterns Frequency Brain state

Delta (δ) 1–3 Hz Slowest “sleep waves”

Theta (θ) 4–7 Hz Light meditation and sleeping

Alpha (α) 8–13 Hz Closing the eyes, relaxation

Beta (β) 14–30 Hz Waking consciousness and reasoning waves

Gamma (γ) 30–100 Hz Sensory and high-level information processing
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multi-frequent bands in high dimensional space and consider this
single feature vector as the model’s input. Obviously, this strategy
does not account for the complementarity and consistency of the
data in each frequency band.

Our previous work named as optimized projection and Fisher
discriminative dictionary learning (OPFDDL) (Gu et al., 2021a)
extracted multi-frequent band EEG features in the optimal sparse
representation subspace, and adopted the Fisher discrimination
criterion to build a discriminative classifier. This method did
not directly concatenate the features of each frequency band,
but regarded each band signal as an independent feature. It
incorporated the band-correlation knowledge into a dictionary
learning model by learning independent projection matrices for
each frequency band signal. Inspired of this work, we further use
multi-frequent band shared information to exploit the intrinsic
knowledge of EEG signals and achieve correlation modeling of
multiple band data. Thus, in this study we propose a multi-
frequent band collaborative EEG emotion classification method
based on optimal projection and shared dictionary learning
(MBCC). We construct a projection matrix for each frequency
band. The projection matrix is composed of a common shared
matrix (called shared component) and a frequency band-specific
matrix (called specific component). The shared matrix well
reflects the relationship between frequency bands. The EEG
signal of each frequency band is projected to the subspace
through the projection matrix, and the dictionary shared by each
frequency band is learned in the subspace. The corresponding
sparse representation is then obtained from the new data features
using dictionary learning. According to Fisher’s criterion, the
MBCC method ensures that the coding reconstruction errors
of the same class are as small as possible, while the coding
reconstruction errors of different classes are as large as possible.
Considering the information available in the original domain
should not be lost in the projection space, we provide a
regularization term similar to principal component analysis
(PCA) that can retain discriminative knowledge to improve
the discrimination ability of the model. An efficient alternating
iterative optimization algorithm is designed to solve the proposed
model. The experiment yielded good classification results on the
public EEG emotion datasets SEED (Zheng and Lu, 2015) and
DEAP (Koelstra et al., 2011).

The advantages of MBCC are as follows: (1) An effective
discriminative dictionary is trained using the dictionary
learning model framework by capturing common shared
feature information from multi-frequency band data. The
first correlation between data in multiple frequency bands is
represented by the common shared dictionary. It creates a link
between data from different frequency bands in order to obtain
a new feature representation of EEG data. (2) Take into account
the complementarity and difference of frequency band data,
the projection matrix of each frequency band has the common
shared and independent components. The common shared
component reflects the second correlation between multiple
frequency bands and can keep each frequency band consistent.
(3) To assess the model’s discriminative ability, the Fisher
criterion based on coding error is introduced in the projection
space. Furthermore, the PCA-like regularization term based on

the common shared projection component contributes to obtain
more discriminative sparse coding.

BACKGROUND

Let ZZZ = [zzz1, ...,zzzn] ∈ RRRd×n be a set of d-dimensional n training
signals. The traditional dictionary learning is to learn a dictionary
matrix to sparsely represent the EEG signals Z. The problem of
dictionary learning (Jiang et al., 2013; Gu et al., 2021b) is,

min
D,A
||Z−DA||2F + λ||A||1,

s.t. ∀i, ||di||0 = 1,
(1)

where D = [ddd1, ...,dddk] ∈ RRRd×K is the learned dictionary, K
is the dictionary size. AAA = [aaa1, ...,aaan] ∈ RRRK×n is the sparse
coding coefficient matrix. The first term in Eq. (1) is to
minimize the reconstruction errors of Z. The second term is the
sparsity constraints.

In our previous work OPFDDL method (Gu et al., 2021a),
ZZZm
= [zzzm

1 , ...,zzz
m
nm
] ∈ RRRd×nm is the class m frequent band signal

set, m = 1, 2, ...,M, n =
∑

m nm. By introducing the frequent
band specific projection matrix GGGm

∈ RRRd×p, each training signal
zzzm

j is projected into a low-dimensional space, as GGGmzzzm
j . Suppose

SSSm
w and SSSm

b are within-class and between-class reconstruction
errors of the m-th frequent band signals, respectively. SSSm

w and SSSm
b

are defined as,

Sm
w = Tr(

∑nm
j=1((G

m)Tzm
j −(G

m)TDδ(am
j ))× ((G

m)Tzm
j

−GmTDδ(am
j ))

T)

= Tr(GmTWm
w Gm)

(2)

where WWWm
w =

∑nm
j (zzzm

j −DDDδ(aaam
j ))× (zzz

m
j −DDDδ(aaam

j ))
T . The

function δ(aaam
j ) returns the coding coefficients consistent with the

class of zzzm
j .

Sm
b = Tr(

∑nm
j ((Gm)Tzm

j −(G
m)TDξ(am

j ))× ((G
m)Txm

j
−GmTDξ(am

j ))
T)

= Tr((Gm)TWm
b Gm)

(3)

where WWWm
b =

∑nm
j (zzzm

j −DDDξ(aaam
j ))× (zzz

m
j −DDDξ(aaam

j ))
T . The

function ξ(aaam
j ) returns the coding coefficients not consistent

with the class of zzzm
j .

According to the classification rule of Fisher criterion (Peng
et al., 2020; Zhang et al., 2021), the OPFDDL method proposes
the discriminative model on M frequent bands in the projection
space,

min
Gm,D

∑
m Tr(GmT Wm

w Gm)∑
m Tr(GmT Wm

b Gm)
,

s.t. (Gm)T(Gm) = I, m = 1, 2, ...,M
(4)

Then the matrices G̃GG, W̃WWw, and W̃WWb are defined as

G̃GG = [GGG1,GGG2, ...,GGGM
], W̃WWw =

WWW1
w · · · 0
...

. . .
...

0 · · · WWWM
w

, and
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W̃b =

WWW1
b · · · 0
...

. . .
...

0 · · · WWWM
b

. With these definitions, the objective

function of OPFDDL has the following form,

min
G̃,D,λ

λ2Tr(G̃TW̃wG̃)− λTr(G̃TW̃bG̃),

s.t. G̃TG̃ = I,
(5)

where λ is the adaptive weight parameter.
The training procedure of OPFDDL is given by Algorithm 1.

ALGORITHM 1 | The OPFDDL algorithm.

Repeat

1. Calculate the coding coefficients by solving the following problem:

min
A
||G̃T Z−DA||2F + λ||A||1 (6)

2. Calculate the projection matrix by solving the following problem:

(λ2W̃w − λW̃b)G̃ = γG̃ (7)

3. Calculate the dictionary D by:

D = D−
λD

n

∑
k

∂L(Z̃k)

∂D
, k = 1, . . . ,d (8)

∂L(Z̃k)

∂D
= 2G̃G̃T D(33T

+HHT )− 2G̃G̃T Z̃k(3
T
+HT ) (9)

3 = [δ1, δ2, ..., δM
],H = [ζ1, ζ2, ..., ζM

] (10)

4. Calculate the adaptive weightλ by:

λ =
tr(G̃T W̃bG̃)

2tr(G̃T W̃wG̃)
(11)

Until convergence

MULTI-FREQUENT BAND
COLLABORATIVE EEG EMOTION
CLASSIFICATION METHOD BASED ON
OPTIMAL PROJECTION AND SHARED
DICTIONARY LEARNING

Objective Function of MBCC
The OPFDDL method can be regarded as the baseline
algorithm of MBCC. The primary distinction between the
MBCC method and OPFDDL is that, although OPFDDL
also employs a projection matrix to project each frequency
band to the subspace, the correlation between projection
matrices is weak. The common shared component defined
in MBCC is a key part of multi-frequent band collaborative
learning. In addition, according to the consistency principle,
the PCA-like regularization term in the shared potential space

further captures the discriminative information contained among
multiple frequency bands. Thus, the MBCC method can balance
discriminative knowledge and multi-frequent band correlation in
the projection space.

We look for a projection matrix in the MBCC method to
project the data from d-dimensional space to p-dimensional
space. This study assumes that the projection matrix GGGm

∈ RRRd×p

for each frequency band has two parts: the shared component
GGG0
∈ RRRd×p, which is a common shared matrix that reflects the

correlation between different frequency bands, and the band
specific component G̃GG

m
∈ RRRd×p, which is the projection matrix

for each frequency band. The matrix is equal to the sum of the
shared component and the band specific component,

Gm
= (1− σ)G0

+ σ G̃m
, (12)

where σ ∈ [0, 1]is the balance parameter. When σ = 1, the
projection matrix GGGm is degenerated into the band specific
matrix G̃GG

m
, which is equivalent to the projection matrix in the

OPFDDL method. When σ = 0, the model only learns the
common shared matrix.

The projection of the signal in each frequency band is
represented as,

(Gm)Tzm
j = ((1− σ)G0

+ σG̃m
)Tzm

j . (13)

The within-class reconstruction error of the m-th frequent
band in the projected space can be represented as

Jm
w = Tr(

∑nm
j
∑p

k[(1− σ)G0(:, k)T(zm
j −Dδ(am

j ))+

σG̃m
(:, k)T(zm

j −Dδ(am
j ))]

2)

= Tr
(
((1− σ)G0

+ σG̃m
)TWm

w ((1− σ)G0
+ σG̃m

)
)
.

(14)

The between-class reconstruction error of the m-th frequent
band in the projected subspace can be represented as

Jm
b = Tr(

∑nm
j
∑p

k[(1− σ)G0(:, k)T(zm
j −Dξ(am

j ))+

σG̃m
(:, k)T(zm

j −Dξ(am
j ))]

2)

= Tr
(
((1− σ)G0

+ σG̃m
)TWm

b ((1− σ)G0
+ σG̃m

)
)
.

(15)

Thus, the Fisher criterion of all frequent bands is written as,

min
D,G0,G̃m

∑
m Tr

(
((1− σ)G0

+ σG̃m
)TWm

w ((1− σ)G0
+ σG̃m

)
)

∑
m Tr

(
((1− σ)G0 + σG̃m

)TWm
b ((1− σ)G0 + σG̃m

)
) .

(16)
Because different frequent band data describe the same object,

there must be an internal connection between them. The model
maximizes the commonality of multiple frequent band data in the
shared projection space using the consistency principle. When
projecting the data from multiple bands to the optimal subspace,
we need to preserve the discriminative information available in
the original space. To solve this problem, we use a PCA-like
regularization term as follows,

J(G0) = min
G0

∑
m
||Zm
− G0(G0)TZm

||
2
F. (17)
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Ignoring the constant terms in J(GGG0), Eq. (17) can be
represented as,

J(G0) =−min
G0

∑
m Tr

(
((G0)TZm)((G0)TZm)T

)
= −min

G0

∑
m Tr

(
(G0)TZm(Zm)TG0) . (18)

Let2m
= Zm(Zm)T , Eq. (18) can be written as,

J(G0) =−min
G0

∑
m

Tr
(
(G0)T2mG0

)
. (19)

Combined the Fisher criterion and PCA-like regularization
term, the objective function of MBCC is,

min
G0,G̃m,D

∑
m Tr(((1− σ)G0

+ σG̃m
)TWm

w ((1− σ)G0

+σG̃m
))− α

∑
m Tr((G0)T2mG0)∑

m Tr(((1− σ)G0
+ σG̃m

)T

Wm
b ((1− σ)G0

+ σG̃m
))

,

s.t. ∀m,
(
(1− σ)G0

+ σG̃m
)T (

(1− σ)G0
+ σG̃m

)
= I.

(20)
The projection matrix is orthogonal and it will result in

an efficient procedure for optimization. We can see that the
dictionary learned in the MBCC method have the stronger
discriminative ability.

Define G = [G0
;G1
; ...,GM

] ∈ R(M+1)d×p,�m
= [(1−

σ)Id, σId, ..., σId] ∈ Rd×(M+1)d, 1m
= [Id, 0d×d, ..., 0d×d] ∈

Rd×(M+1)d, 3 =
∑M

m (�
m)TWm

w�
m,2 =

∑M
m (1

m)T2m1m,
H =

∑M
m (�

m)TWm
b �

m, Eq. (20) is equivalent to,

min
G,D

Tr
(
GT3G

)
− αTr

(
GT2G

)
Tr
(
GTHG

) , (21)

s.t. GTG = I.

By combining the two terms on the numerator, we can get,

min
G,D

Tr
(
GT(3− α2)G

)
Tr
(
GTHG

) , (22)

s.t. GTG = I.

Optimization
It is not easy to directly solve the variables G and D in the
objective function. Therefore, we will take the alternative iterative
optimization scheme to decompose the original problem into two
sub-optimization problems.

Update G. For the given dictionary D, there must be a
minimum ρ, which satisfies the following formulation,

Tr
(
GT(3− α2)G

)
Tr
(
GTHG

) ≥ ρ, (23)

We have F(ρ) = min
G

Tr
(
GT(3− α2)G

)
− ρTr

(
GT HG

)
.

As a result, we can define the function of ρ by,

Tr
(

GT(3− α2)G
)
− ρTr

(
GTHG

)
≥ 0, (24)

According to Zhang et al. (2017), (1) F(ρ) is a decreasing
function of ρ. (2) F(ρ) = 0 if ρ = ρ∗. In addition, the minimum
ρ always exists.

Then ρ can be updated by,

ρ = ρ+ λρ
F(ρ)
F′(ρ) ,

F′(ρ) = −Tr(GTHG),
(25)

where λρ is the learning rate.
With the fixed ρ and D, the objective function of G is,

min
G

Tr
(
GT(3− α2− ρH)G

)
,

s.t. GTG = I,
(26)

The optimization of G can be solved by the following
eigenvalue decomposition,

(3− α2− ρH)G = γG. (27)

The columns of the matrix G are the eigenvectors with respect
to the first p minimum eigenvalues of Eq. (27).

Update D. With the fixed G, the objective function of D is,

min
D

Tr(GT3G)
Tr(GTHG)

, (28)

Let D = [D1,D2, ...,DC] be the learned dictionary, and Dj is
the j-th class sub-dictionary. The Eq. (28) can be re-written as,

J(Dj) = min
Dj

C∑
j=1

Tr(GT3jG)
Tr(GTHG)

, (29)

where 3j =
∑

m=1
∑c

j6=s(Z
m
j −Ds0

m
j,s)× (Z

m
j −Ds0

m
j,s)

T ,
H =

∑
m=1

∑c
j=1(Z

m
j −Dj0

m
j,j)× (Z

m
j −Dj0

m
j,j)

T . 0m
j,s and

0m
j,j are the coding coefficient matrices corresponding to classes s

and j of the m-th frequent band, respectively, where s6=j.
Dj can be updated by gradient descent method, in which Dj is

computed as,

Dj = Dj + η∂J(Dj),

∂J(Dj) =
∂J(Dj)
∂3j

∂3j
∂Dj
+

∂J(Dj)
∂H

∂H
∂Dj
.

(30)

There is no connection between 3j and Dj, i.e., ∂3j
∂Dj
= 0.

Therefore, we only need compute ∂J(Dj)
∂H

∂H
∂Dj

.

∂J(Dj)

∂H
=
−Tr(GT3jG)(G)TG(

Tr(GTHG)
)2 , (31)

∂H
∂Dj
= (0m

j,j)
T(Dj0

m
j,j − Zm

j ). (32)

Update A. With the fixed D and G, the sparse coding
coefficient matrix A can be computed as,

min
A
||GTZ−DA||2F + λ||A||1, (33)
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Since A is differentiable, it can be obtained by,

A = (DTD+ λI)−1(DTGTZ). (34)

The alternating optimization procedure of MBCC is
summarized in Algorithm 2.

ALGORITHM 2 | The MBCC algorithm.

Repeat

1. Calculate the coding coefficient matrix A by Eq. (34)

2. Calculate the projection matrix G by Eq. (27)

3. Calculate the dictionary D by Eq. (30)

Until convergence

Testing
For the testing procedure, each frequency band feature of the
signal z is represented as zm. With the obtained{Gm, D}by
Algorithm 2, its label l(zm) on the m-th frequency band can be
computed by the following optimization problem,

l(zm) = min
zm
||(Qm)Tzm

−Dj(DT
j Dj)

−1DT
j zm
||2. (35)

Then the majority voting strategy is used to determine the class
label of signal z,

y = arg max
m

l(zm). (36)

EXPERIMENT

Datasets and Experimental Settings
Two EEG emotion recognition data sets used in the experiment,
SEED and DEAP datasets, which are described as follows.
The SEED dataset is an emotional EEG dataset collected and

TABLE 2 | The accuracy (standard deviations) of all methods on SEED
dataset in session 1.

Methods β + γ α + β + γ θ + α + β + γ δ + θ + α + β + γ

SVM 77.87 77.96 79.07 81.02

(8.69) (9.42) (9.96) (8.26)

LC-KSVD 78.39 80.10 81.65 83.50

(9.81) (8.13) (9.19) (8.38)

MvCVM 81.03 81.89 83.01 83.84

(9.84) (8.72) (9.67) (9.93)

GLSRM 81.62 82.84 83.33 84.17

(9.66) (8.95) (8.11) (9.39)

MVU 81.65 82.85 83.08 84.27

(9.93) (9.50) (8.67) (9.04)

OPFDDL 81.18 83.67 84.81 86.52

(8.51) (8.18) (8.76) (8.59)

MBCC 81.85 84.61 86.07 87.91

(7.98) (8.69) (8.82) (8.26)

The best performance of each comparison is emphasized by the bold font.

provided by Shanghai Jiao Tong University’s BCMI Laboratory.
The dataset is completed by requiring participants to wear EEG
acquisition equipment and recording the emotional EEG signals
produced by watching three different types of movie clips. Sixty-
two channel electrodes are used in the SEED dataset. The dataset
was compiled from 15 participants. With a total of 15 clips, the
films are classified as positive, negative, or neutral in terms of
their emotional impact. There are five clips of each type, and
each movie clip lasts about 4 min. To ensure the experiment’s
validity and accuracy, the playback sequence of the 15 videos is
random, with no repeated clips. Every participant repeated the
experiment three times. A few days were set aside in the middle of
each experiment to allow participants to adjust their emotions so
that they had a consistent emotional response to the same movie
clip. In the experiment, EEG signals are divided into 5-s segments

TABLE 3 | The accuracy (standard deviations) of all methods on SEED
dataset in session 2.

Methods β + γ α + β + γ θ + α + β + γ δ + θ + α + β + γ

SVM 77.25 78.04 79.67 80.92

(8.53) (7.81) (7.96) (9.92)

LC-KSVD 78.31 79.63 80.88 82.37

(7.74) (7.23) (9.65) (9.62)

MvCVM 80.53 82.55 83.37 83.94

(8.28) (8.33) (8.24) (9.54)

GLSRM 80.78 82.66 82.70 83.94

(7.09) (8.75) (8.56) (9.11)

MVU 81.76 82.51 82.84 84.24

(8.88) (8.89) (9.57) (9.82)

OPFDDL 81.30 83.22 84.76 86.21

(8.75) (8.78) (9.90) (9.43)

MBCC 81.90 84.24 86.14 87.87

(8.52) (7.99) (8.85) (8.07)

The best performance of each comparison is emphasized by the bold font.

TABLE 4 | The accuracy (standard deviations) of all methods on SEED
dataset in session 3.

Methods β + γ α + β + γ θ + α + β + γ δ + θ + α + β + γ

SVM 77.19 78.24 79.31 80.78

(9.23) (9.65) (9.41) (9.50)

LC-KSVD 77.61 79.76 80.12 81.92

(8.12) (7.09) (7.32) (9.87)

MvCVM 79.87 82.14 83.18 83.53

(8.67) (8.12) (8.02) (9.13)

GLSRM 80.45 81.30 82.43 83.28

(9.09) (9.59) (9.34) (8.84)

MVU 80.84 81.32 83.00 83.94

(9.27) (8.13) (9.72) (9.28)

OPFDDL 81.05 83.18 84.61 86.43

(7.84) (9.67) (9.08) (9.86)

MBCC 81.81 84.24 85.63 87.74

(8.04) (8.98) (8.22) (8.90)

The best performance of each comparison is emphasized by the bold font.
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FIGURE 1 | Confusion matrices of MBCC on the SEED dataset, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ, (D) δ+ θ+ α+ β+ γ.

FIGURE 2 | Confusion matrices of OPFDDL on the SEED dataset, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ, (D) δ+ θ+ α+ β+ γ.
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and features are extracted every 0.5 s. Thus, the sequence length
of each segment is 19.

The DEAP dataset is another open database for emotion
recognition research that uses EEG and peripheral physiological
signals. The dataset recorded the EEG data and 13 peripheral
physiological signals of 32 participants using music videos as
stimulus materials. The DEAP dataset employs 40 music videos,
each of which is 1 min long, as stimulus materials. These
music videos are labeled and screened using the general three-
dimensional model of valence, arousal, and dominance.

To illustrate the effectiveness of the MBCC method, the
comparison methods in the experiment are: SVM (Cortes and
Vapnik, 1995), LC-KSVD (Jiang et al., 2013), multi-view CVM
(MvCVM) (Huang et al., 2016), global and local structural risk
minimization (GLSRM) (Zhu et al., 2016), multi-view learning

TABLE 5 | The accuracy (standard deviations) of all methods on the DEAP
dataset in valence.

Methods β+ γ α+ β+ γ θ+ α+ β+ γ

SVM 62.21 63.04 63.55

(8.30) (8.09) (8.76)

KSVD 62.63 63.51 63.94

(8.59) (8.28) (8.43)

MvCVM 63.87 64.20 64.65

(8.57) (8.42) (9.07)

GLSRM 64.15 66.26 66.84

(9.60) (8.71) (9.35)

MVU 64.14 66.18 66.79

(9.02) (9.29) (9.13)

OPFDDL 66.04 68.42 69.08

(8.74) (8.40) (8.95)

MBCC 66.64 68.85 69.97

(8.65) (8.20) (8.46)

The best performance of each comparison is emphasized by the bold font.

TABLE 6 | The accuracy (standard deviations) of all methods on the DEAP
dataset in arousal.

Methods β+ γ α+ β+ γ θ+ α+ β+ γ

SVM 64.77 65.37 65.85

(10.85) (11.67) (10.94)

KSVD 65.07 66.07 66.20

(10.46) (11.09) (11.86)

MvCVM 66.31 66.90 67.19

(11.01) (11.48) (11.24)

GLSRM 66.49 69.05 69.49

(10.33) (10.27) (10.48)

MVU 66.38 69.10 69.27

(10.79) (10.75) (11.12)

OPFDDL 68.46 70.35 70.59

(10.56) (10.87) (10.06)

MBCC 69.14 70.96 71.55

(10.39) (10.88) (10.70)

The best performance of each comparison is emphasized by the bold font.

with universum (MVU) (Wang et al., 2014), and OPFDDL (Gu
et al., 2021a). In detail, the Gaussian kernel is used in MvCVM.
The kernel parameter and the weight parameter are searched in
the grid {1/64, 1/32, . . . , 64} and {1, 101, . . . , 103}, respectively.
The weights and offsets in GLSRM are searched in the grid{0.1,
0.2, . . . , 1}, and its regularization parameters are searched in the
grid {1, 101, . . . , 103}. In MVU, the learning rate is 0.99, and
the relaxation of views is 10−6. In OPFDDL and MBCC, the
number of atoms in each class is selected in {5, 10, . . . , 35}.
The dimension of matrix G is set to be 90% of the dimension
of the EEG signal features. The parameter α is searched in the
grid{0.1, 0.2, . . . , 1}. The parameter σ is set as σ = 1− α. The
regularization parameter in Eq. (2) was set as 0.01. All methods
are implemented in MATLAB.

Experiments on the SEED Dataset
The commonly used power spectral density (PSD) features (Jenke
et al., 2014) are adopted in δ, θ, α, β, and γ frequent bands. We
obtain 62 dimensional features on each band. We divided the
EEG signal data corresponding to the 15 movie clips collected
and used 12 clips as training data and the remaining three clips
as test data. In both the training and test sets, the proportion
of three classes of EEG signals is the same. After the final
preprocessing, the samples of three different classes of EEG
signals in the training and test sets are balanced. The SEED
dataset is divided into three sessions (sessions 1–3) according to
the time interval of signal acquisition. The classification results of
all methods in three sessions are shown in Tables 2–4. We can see
that the MBCC method performs the best in terms of accuracy
in all three sessions. In Table 2, the accuracies of the MBCC
method are 0.67, 0.94, 1.26, and 1.39% better than the second
best method OPFDDL in multi-frequent bands β+ γ,α+ β+

γ,θ+ α+ β+ γ,δ+ θ+ α+ β+ γ. The results in Tables 3, 4
are similar to those in Table 2. Compared with the OPFDDL
method, the proposed MBCC has the ability to take into account
the complementarity and consistency between frequency bands
while maintaining the PCA constraints of the data structure in the
projection space, which is conducive to improving classification
performance. Thus, the dictionary learned in the projection
space by MBCC has good discriminative performance. The SVM
and LC-KSVD methods merge all frequency band data into a
vector for learning, and they cannot effectively find the internal
connection between each frequency band. For joint learning of
multiple perspectives, MvCVM, GLSRM, and MVU treat each
frequency band as a learning view. Obviously, the MBCC method
obtains a more discriminative model based on dictionary learning
and subspace learning.

By calculating the average results of all experiments on three
sessions, Figures 1, 2 show the confusion matrices of MBCC
and OPFDDL on the SEED dataset, respectively. The real label
is represented by the ordinate of the confusion matrix, while the
predicted label is represented by the abscissa.

It can be seen from Figures 1, 2 that (1) the classification
results of positive emotional EEG signals are relatively good
on the SEED dataset, while the classification results of negative
emotions are relatively poor. Positive emotion is easier to identify
than negative and neutral ones. This shows that positive emotions
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FIGURE 3 | Confusion matrices of OPFDDL on the DEAP dataset in valence, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ.

FIGURE 4 | Confusion matrices of MBCC on the DEAP dataset in valence, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ.

can cause similar brain feedback between frequency bands more
than neutral and negative emotions. (2) The data of different
frequency bands are projected into subspaces, and the common
shared component of the projection matrix represents the
correlation between frequency bands. Obviously, the OPFDDL
method does not have this characteristic. (3) In addition, the
MBCC method use the PCA-like regularization term based on

shared projection matrix to make full use of the discriminative
information of EEG data. Thus, the MBCC method achieves
better classification accuracy on the SEED dataset.

Experiments on the DEAP Dataset
In the DEAP dataset, music video stimulation is a three-
dimensional emotion model based on valence, arousal, and
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FIGURE 5 | Confusion matrices of OPFDDL on the DEAP dataset in arousal, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ.

FIGURE 6 | Confusion matrices of MBCC on the DEAP dataset in arousal, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ.

dominance. The valence and arousal of emotion are classified
in this subsection. The binary valence-oriented classification
refers to the classification of emotions according to high valence
and low valence. Also, the binary arousal-oriented classification
refers to the classification of emotions according to high arousal

and low arousal. The classification threshold is set to 5, the
participant’s score ∈ [1, 5]for valence is low valence, and score ∈
(5, 9] is high valence. Similarly, the participant’s score ∈ [1, 5]for
arousal is low arousal, and score ∈ (5, 9] is high arousal. The EEG
signals are segmented by a 4-s time window with an overlap 2 s
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FIGURE 7 | Classification accuracy of MBCC vs. different α on the SEED and
DEAP datasets.
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FIGURE 8 | Classification accuracy of MBCC vs. different K on the SEED and
DEAP datasets.

for each frequency band. Similar to the feature extraction strategy
in subsection “Experiments on the SEED Dataset,” PSD features
are used in the DEAP dataset. Following (Shen et al., 2021), four
frequency bands (θ, α, β, γ) are used in the experiment.

Tables 5, 6 compare the average recognition results on valence
and arousal on the DEAP dataset, respectively. We can see that
(1) all methods have achieved the better classification accuracy
for the arousal than the valence on the DEAP dataset. The reason
may be that arousal, as an indicator of physiological arousal,
reflects the degree of activation of neurophysiological activities,
which can be directly reflected in changes in physiological
signals. The valence-oriented classification is a more complex
task involving mental state, and PSD features may not fully
reflect valence’s state. (2) Compared with the benchmark methods
SVM and LC-KSVD, the MBCC method has achieved much
better results. Compared with GLSRM, MVU, and OPFDDL
methods, the classification performance of the MBCC method
has further improved. The MBCC method has the accuracy rate
of 69.97% for the valence-oriented classification, and 71.55% for
the arousal-oriented classification using four frequency bands.
The classification accuracies of the MBCC method are increased
by 0.89 and 0.96%, respectively, when compared to the second
best method. This is due to that the multi-frequent band
data maintains the consistency between feature similarity and

semantic similarity in the learned subspace and can learn a more
discriminative dictionary shared by frequency bands.

Figures 3, 4 show the confusion matrices of the OPFDDL
method and the MBCC method in valence, respectively.
Figures 5, 6 show the confusion matrices of the OPFDDL method
and the MBCC method in arousal, respectively. Compared with
OPFDDL, MBCC has obvious advantages in valence-oriented
and arousal-oriented classifications. When different band data
describe the same object, there must be an internal connection
between each band data. According to the consistency principle,
the MBCC method maximizes the commonness of multiple
frequent bands in the shared projection space. Furthermore,
the Fisher criterion and PCA-like regularization term aids
in learning more discriminative sparse representation and
maintaining data structure.

Parameter Analysis
The parameter involved in the objective function of the MBCC
method is α, and its impact on MBCC’s performance is analyzed
here. The set value range specifies how to conduct experiments
on the SEED session 1 and DEAP dataset, respectively. Figure 7
depicts the accuracy values at various values of α. The figure
shows that MBCC achieves the highest accuracy value when
taking 0.4, 0.5, and 0.6 on the SEED session 1, DEAP in valence,
and DEAP in arousal, respectively.

The atomic number K of the dictionary also directly
determines the performance of the MBCC method. Figure 8
shows the accuracy values under different K values. We can see
that when K reaches 15 and 20 on the SEED session 1 and
DEAP dataset, respectively, the accuracy rate tends to stabilize.
It indicates that the learned dictionary well represents the data
characteristics of the EEG data. Also it shows that the MBCC
method can be well applied to the SEED and DEAP datasets using
a small size of dictionary.

CONCLUSION

According to the consistent complementarity of multi-frequent
band EEG signals and the internal correlation of data itself,
this study proposes multi-frequency band collaborative EEG
emotion classification method based on the idea of dictionary
learning and subspace learning. Using a projection matrix,
this method maps different frequency band data to the
subspaces of the same dimension. Unlike most existing projection
strategies, the projection matrix we designed is divided into
two parts, a common shared component and a band-specific
component. This strategy can fully use the relevance of different
frequency bands and their shared semantics. In the subspace,
the MBCC method learns the common shared dictionary
between the frequency bands, which can represent the correlation
and discrimination of the EEG data. Simultaneously, the
incorporation of Fisher criterion and PCA-like regularization
term into the subspace via dictionary learning makes the learned
model more discriminative.

However, the time computation of MBCC is relatively high.
It may be not suitable for real-time predicting emotional states
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in applications of human-computer interaction. This is the
problem we need to solve in the next stage. Furthermore,
the work that can be studied further in the future includes:
(1) Human emotions are susceptible to external influences.
For example, the emotions of the subjects may change while
watching a film. The overall emotions of watching the film
may be consistent, but the emotions may be inconsistent with
expectations at times. As a result, the collected EEG signals
are mixed with abnormal samples. In practice, selecting the
appropriate abnormal sample processing method is important.
The use of the correct processing method can improve the
accuracy of emotional EEG signal recognition. (2) EEG signals
have the characteristics of randomness. That is, for the same
individual subjects, EEG signals are different even in the same
emotional state at different times. How to improve the robustness
of emotion classification model in multiple domains still needs
further research. In the future, we will continue to design
and improve our method to be suitable in across time and
individuals scenes.
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Alzheimer’s disease is a neurological disorder characterized by progressive cognitive

dysfunction and behavioral impairment that occurs in old. Early diagnosis and treatment

of Alzheimer’s disease is great significance. Electroencephalography (EEG) signals can

be used to detect Alzheimer’s disease due to its non-invasive advantage. To solve the

problem of insufficient analysis by single-channel EEG signal, we analyze the relationship

between multiple channels and build PLV framework. To solve the problem of insufficient

representation of 1D signal, a threshold-free recursive plot convolution network was

constructed to realize 2D representation. To solve the problem of insufficient EEG

signal characterization, a fusion algorithm of clinical features and imaging features was

proposed to detect Alzheimer’s disease. Experimental results show that the algorithm

has good performance and robustness.

Keywords: Alzheimer’s disease, EEG, PLV, recursive graph, no-threshold

INTRODUCTION

Alzheimer’s disease is a degenerative disease of the central nervous system, mainly manifested
as progressive memory impairment, cognitive dysfunction, personality change and language
impairment, and other neuropsychiatric symptoms, which seriously affect social, career, and life
functions. Alzheimer’s disease is a common disease in the elderly, and its prevalence and incidence
are extremely high. According to statistics, the incidence of Alzheimer’s disease is 5%, the disease is
the most common type of dementia in the elderly, accounting for 50–70% of Alzheimer’s disease,
common in people over 65 years old. It is of great significance to study it.

Alzheimer’s Disease
Alzheimer’s disease occurred in elderly and senile prophase, characterized by progressive cognitive
dysfunction and behavioral impairment of nervous system diseases, main show is memory
disorders, aphasia, disuse, agnosia, visual spatial ability damage, abstract thinking and calculation
ability damage, personality and behavior change, and so on, can be improved by drug treatment,
and the disease is not cured. The etiology and pathogenesis of Alzheimer’s disease are extremely
complex, and may be related to genetic factors, brain pathological changes and other factors.
Generally, Alzheimer’s disease tends to occur in people over 65 years old. Mental stimulation,
trauma, neurological diseases and other factors can induce Alzheimer’s disease. The main
pathological changes were amyloid precursor protein gene on chromosome 21, PSEN1 gene on
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chromosome 14, and PSEN2 gene mutation on chromosome
1. The brain was reduced in size and weight, and the typical
histopathological changes were neuroinflammatory plaques,
neurofibrillary tangles, and neuron loss (Yoon et al., 2022).
Alzheimer’s disease is usually silent onset, pre-dementia, and
dementia stage symptoms are different, but generally manifested
as memory impairment, speech loss or emotional apathy, crying
and laughing impermanent, severe patients can be complicated
with lung infection, urinary tract infection and pressure ulcers,
and other diseases. Early diagnosis and early treatment is of
great significance.

Method
The current examination methods mainly include:
neuropsychological test, hematological examination,
neuroimaging examination, Electroencephalography (EEG),
cerebrospinal fluid testing, genetic testing. Due to the
convenience of EEG collection, it has a good detection effect for
early Alzheimer’s disease to become the main research direction.
To this end, we used EEG for the study. Morabito et al. (2012)
constructs the model analysis of Alzheimer’s disease EEG from
the perspective of energy entropy. Anh et al. (2012) used support
vector machine (SVM) to cluster EEG. Falk et al. (2012) analyzed
the disease by the variability in EEG amplitude. Hulbert and
Adeli (2013) combine EEG and imaging information to make
a diagnosis of the disease. Morabito et al. (2013) proposed the
EEG enhancement algorithm to highlight the area where the
lesion signal is located. Zhao and He (2014) used a deep learning
network for disease diagnosis. Cassani et al. (2014) extracted
useful information from the EEG to conduct the research on
Alzheimer’s disease. Bhat et al. (2015) combined the clinical
neural data and EEG to conduct the study. Al-Jumeily et al.
(2015) was diagnosed by EEG analysis. Al-Nuaimi et al. (2016)
analyzed EEG from the perspective of amplitude to diagnose
early Alzheimer’s disease. Yu et al. (2016) analyzed EEG, the
signal transmission process. Kulkarni and Bairagi (2017) used
SVM to extract the significant features of the EEG signal.
Deng et al. (2017) constructed a multiscale model from an
entropy perspective to analyze the complex EEG. Chikara et al.
(2018) proposed monetary reward and punishment to response
inhibition modulate activation and synchronization within the
inhibitory brain network. Houmani et al. (2018) built multiple
networks to implement disease analysis. Kim and Kim (2018)
analyzed the correlation between the signals and extracted the
features. Yang et al. (2018) studied the multi-channel data of EEG
and proposed parallel revolutionary recurrent neural network
to realize Alzheimer’s disease recognition. Chen et al. (2020)
constructed a model from the perspective of classification to
realize signal analysis. Yu et al. (2019) introduced the fuzzy
learning theory to analyze the EEG signals. Maturana-Candelas
et al. (2019) constructed a multiscale model to extract EEG
features. Chikara and Ko (2019) used hierarchical model to
neural activities classification of human inhibitory control,
which achieved good results. Rossini et al. (2020) proposed
markers for early Alzheimer’s disease diagnosis, demonstrating
the validity of the EEG analysis. Qiu et al. (2020) analyzed the
EEG transmission process. Oltu et al. (2021) proposed a novel

Alzheimer’s disease detection algorithm based on EEG. Li et al.
(2021) analyzed the correlation between multiple channels to
diagnose the disease. Puri et al. (2022) proposed the Kolmogorov
Complexity diagnosis of Alzheimer’s disease. Ding et al. (2022)
proposed the Alzheimer’s disease automatic detection system
based on EEG.

In conclusion, the diagnosis of Alzheimer’s disease based on
EEG has achieved some results. However, there are still the
following problems in computer processing: (1) The correlation
between different channels is not studied. (2) The EEG signal
is not well visualized and difficult to analyze. (3) With limited
characteristics and insufficient characterization.

In view of the difficult problem of analysis of Alzheimer’s
disease, we use computer to assist diagnosis. (1) Analyze
the corresponding relationship between different channels at
the same time and build PLV network structure. (2) One-
dimensional EEG signals are converted into two-dimensional
recurrence plot to achieve visual analysis of features. (3)
Combining clinical features with EEG signals features to realize
diagnosis of Alzheimer’s disease.

ALGORITHM FRAMEWORK

Through the analysis of EEG signals, we constructed a new
Alzheimer’s disease analysis algorithm, and the block diagram
is shown in Figure 1. The model is constructed from the
perspective of cognition, and the EEG signal analysis model
based on Phase Locking Value (PLV) is proposed to simulate the
EEG transmission process. From the correlation of EEG time
series, the EEG signal analysis algorithm based on recurrence
plot is proposed to convert one-dimensional information into
two-dimensional information for intuitive analysis. From the
perspective of feature correlation, multi-source features are
extracted in order to build a model, and finally realize the fusion
of decision sets and Alzheimer’s disease analysis.

EEG Signal Analysis Based on PLV
Research shows that the cognitive process of human brain
designs the activities of various brain regions and the information
dissemination and interaction between different functional
regions (Sarma and Barma, 2022). From the perspective of
computer, this process can be regarded as building a network
between relevant brain regions to reflect the relationship between
mutual transmissions and processing. Since EEG signal has phase
synchronization relationship, we use PLV to measure EEG phase
synchronization relationship:

PLV =
1

N

∣

∣

∣

∣

∣

∣

N−1
∑

j=0

exp (i1ϕ (t))

∣

∣

∣

∣

∣

∣

(1)

1ϕ (t) = ϕx

(

j1t
)

− ϕy

(

j1t
)

(2)

Where, φx(t) and φy(t) represent the instantaneous phase of
x(t) and y(t), respectively, 1φ(t) represents the phase difference,
1t represents the period of application. Clustering coefficient
can measure the degree of brain function separation, and the
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FIGURE 1 | The proposed algorithm flow chart.

proportion of the number of connections and the maximum
number of connections between a node and adjacent nodes.

The clustering coefficient of node i is defined as:

Ci =

∑

k6=i

∑

l 6=i,l 6=k

cikcilckl

∑

k6=i

∑

l 6=i,l 6=k

cikcil
(3)

where cij is the weight between nodes i and j of the adjacency
matrix. The characteristic path length L represents the minimum
number of edges of two nodes connected in the network.

The weighted network is expressed as:

L =
N (N − 1)
N
∑

i=1

N
∑

j 6=i

(

1/Lij
)

(4)

where N represents the number of weighted nodes and Lij
represents the number of edges of the shortest path of nodes i
and j.

G =
1

N (N − 1)

N
∑

i=1

N
∑

j 6=i

L−1
ij (5)

Local subnet efficiency is

Lei =
1

NGi

(

NGi − 1
)

∑

i,k∈Gi

L−1
j,k

(6)

where NGi is the number of nodes of the subgraph Gi. The
centrality of the network is introduced for measurement:

bi =
∑

m6=i,6=n

σmn (i)

σmn
(7)

FIGURE 2 | The calculation process.

Where, σmn(i) represents the number of shortest paths from node
m to node n, which goes through i. σmn represents the shortest
path length from m to n. As shown in Figure 2, the signal starts
F1 and ends F3 through two branches. We take i =2 and b2 =

0.5+0.5
0.5+0.5+1.0 = 1

2 to achieve the centrality measure.
Under the condition of network establishment, it is necessary

to extract features from the signal as input. Common Space
Pattern (CSP) is used to extract airspace information. It is an
efficient spatial filtering algorithm whose goal is to create an
optimal common spatial filter (Kumar et al., 2017). We use CSP
to extract features. CSP obtains the most distinguishing feature
vector by diagonalizing the task covariance matrix. The specific
process is as follows:

Given two types of data samples X1 and X2, the corresponding
covariance matrix is

Ri =
XiX

T
i

trace
(

XiX
T
i

) (8)
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FIGURE 3 | Alzheimer’s disease recurrence plot. (A) Calm. (B) Morbidity. (C) Transitional period.

The corresponding mixed space covariance matrix is

Rc = R̄1 + R̄2 (9)

Where, R̄1 andR̄2 represent the average covariance matrix of two
types of tasks.

Principal component analysis is applied to decompose
eigenvalues of Rc:

Rc = Uc3cU
T
c (10)

Where, Uc represents eigenvector matrix and 3c represents
eigenvalue. The corresponding whitening matrix is

P =
UT
c√
3c

(11)

The spatial filter P is constructed to meet the
following conditions:







S1 = PR1P
T = B31B

T

S1 = PR2P
T = B32B

T

31 + 32 = I

(12)

Calculate the projection matrix, and whiten the transformation
of the eigenvector corresponding to the maximum eigenvalue in
EEG and max (31, 32) to achieve the best classification. To do
so, a projection matrix is built:

W =
(

BTP
)T

(13)

EEG data characteristics are obtained:

ZM×N = WM×M ∗ XM×N (14)

Select the maximum values of 2m row from ZM×N as feature
input, which is input into the constructed PLV network to realize
feature classification.

EEG Signal Analysis Algorithm Based on
Recurrence Plot
Recurrence plot can be used to measure the correlation of time
series. Its core idea is to map the trajectory of moving state to the
plane, which can realize visualization as shown in Figure 3. The
set of time series is marked as X, and the corresponding recursion
diagram is:















Rij = ϕ
(

ε − rij
)

i, j ∈ {1, 2, ....,N − (m− 1) τ }
rij =

∥

∥X (i) − X
(

j
)∥

∥

ϕ =
{

1 x ≥ 0
0 other

(15)

According to the recursive state of two times, i and j represent the
horizontal and vertical coordinates of the image, and the matrix
R composed of 0 and 1 is obtained.

Although the recurrence plot can intuitively express the time
series, it increases the threshold φ. The richer nonlinear dynamic
characteristics are lost and the characterization is incomplete.
Thus, we improve it as follows to retain its characteristics to the
greatest extent:

ERij =
∣

∣ε − rij
∣

∣ i, j ∈ {1, 2, ....,N − (m− 1) τ } (16)

Convolutional neural network (CNN) network has shown unique
advantages in target segmentation and recognition, and has the
invariance of translation, scaling and tilt of network structure.
It is usually composed of input layer, convolution layer, pooling
layer, full connection layer, and output layer.

With the increase of network layers, the network has nonlinear
fitting ability and improves the performance of the model. But
it will also be accompanied by the phenomenon of gradient
disappearance. In order to solve this problem, we introduce
the residual block to construct the relationship between input
and output through fitting the residual mapping of multi-
layer networks is shown in Figure 4. The problem of difficult
convergence of the deep-seated network can be solved according
to certain overlapping rules. The structure is shown in Table 1.

Based on the above introduction, PLV was used to analyze the
correlation between signals and calculate the probability PE of
signal attributes. To obtain the probability RE of signal attributes,
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FIGURE 4 | Network structure.

TABLE 1 | Network parameters.

The network layer Parameters

Conv 1 (7, 7, 64); D = 2

Conv 2 (3, 3, 64) × 2; Maxpooling; D = 2

Conv 3 (3, 3, 64) × 2; Maxpooling; D = 2

Conv 4 (3, 3, 128) × 2

Conv 5 (3, 3, 128) × 2

Conv 6 (3, 3, 256) × 2

Conv 7 (3, 3, 256) × 2

Conv 8 (3, 3, 512) × 2

Conv 9 (3, 3, 128) × 2

a network based on non-threshold recursive plot was built
from the time correlation of EEG signals. We collected the age,
gender, basic diseases (hypertension, hyperlipidemia, diabetes),
eye movement test, etc., and selected the patients with statistically
significant characteristics using p < 0.05. Age, diabetes, and eye
movement tests were significant by screening.

EXPERIMENT AND RESULT ANALYSIS

There are two data, (1) http://adni.loni.usc.edu/; (2) Clinical data
collected by the hospital. The frequency of signal acquisition
is 8–30Hz, 62 channels of data. With the consent of the
patients, 100 patients with Alzheimer’s disease at different stages
were collected including 48 women and 52 men aged 55–80
years. The EEG collected was divided into calm, morbidity,
and transitional period according to professional physicians and
clinical manifestations. Total 1,000 points of data were collected
in each period. Construct data sets and conduct experiments.

Introduction of Experimental Parameters
and Evaluation Indexes
We analyzed the characteristics of EEG signals and sampled
the data. For each EEG signal accord to the principle of
average sampling, we obtained 1,000 data points, and formed
the recursive plot data of 1,000 × 1,000 data. Then, subsequent
experiments were conducted on this basis. In order to ensure
the consistency of the experiment, we preprocessed the EEG
signal data. Through data analysis, to ensure the consistency

of the experiment, EEG signal data were preprocessed and
representative Fp1, Fp2, F3, and F4 were normalized.

Accuracy A is used to measure the performance of
different algorithms:

A =
TP + TN

TP + FP + TN + FN
(17)

Where, TP is the positive sample with correct model
classification, FP is the negative sample with wrong model
classification, TN is the negative sample with correct model
classification, and FN is the positive sample with wrong
model classification.

Performance of PLV Algorithm
Webuild the brain network graphG= (V, E) and using EEG click
as network nodes. The graph side shows the channel relationship.
The PLV can be used as a synchronicity measure to represent the
connection strength in a weighted network analysis. The results
for Alzheimer’s disease are shown in Figure 5, with a low degree
of connection in Fp1. The connection degree between Fp2 and F3
and F4 is high, so the study is carried out based on this.

EEG Signal Analysis of Recurrence Plot
We explored the recurrence plot by selecting EEG during periods
of calm, transition and onset as shown in Figure 6. From the
analysis of EEG signal, during the calm period, EEG does not
fluctuate much, and the signal in the lower right corner of the
recursion graph is strong. In transition, the EEG considerably
began from smooth band, in the middle of the recursive plot
chart presents signal is stronger. During the onset of the disease,
the EEG amplitude was further enlarged, but it was not obvious
on the EEG alone and could not be distinguished effectively,
and the signal intensity around the recursion diagram was
strong. Based on this, the three can be distinguished. Subsequent
fusion of PLV and clinical features can further improve the
detection effect.

The ROC curve corresponding to our algorithm is compared
with the mainstream algorithm, as shown in Figure 7. SVM
algorithm (Anh et al., 2012) constructed the classifier and realized
the classification of Alzheimer’s disease. Parallel revolutionary
Cyclic Neural Network (PCRNN) (Yang et al., 2018) established
depth model and analyzed signal composition. Libsvm classifier
(Chen et al., 2020) constructs the model from the perspective
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FIGURE 5 | EEG PLV.

of classification to realize signal analysis. DTW can realize the
measurement of time series. The idea of DTW is to extend
and shorten two time series to represent signal similarity with
the shortest distance. However, EEG signals have a strong
correlation, and the number of points collected by the EEG
signal is too large, which will lead to information loss and
error information introduction through DTW extension and
shortening. Result in poor effect. Figure 7 quiet period for
acquisition of data, due to the quiet period EEG signals
is relatively stable, our algorithm and comparison algorithm
can better on the test. Figure 7 shows the data collected in
the transitional period. The EEG gradually fluctuates from a
relatively stable signal. However, due to the limited amplitude
of fluctuation, the detection effect of the algorithm decreases
compared with that in the calm period. Figure 7 shows the
data collected during the onset of the disease, and the EEG
fluctuates greatly, which can be detected by changing the
amplitude. Overall, all algorithms performed best for quiet
Alzheimer’s disease, followed by morbidity and transitional
Alzheimer’s disease. In addition, the algorithm establishes a
model from the perspective of EEG, carries out processing,
recurrence plot and auxiliary features of EEG Alzheimer’s
disease, and realizes EEG Alzheimer’s disease analysis, with
high performance.

We added comparative experiments, and the PR algorithm
proposed transformed 1D features into 2D PR without threshold,
which achieved certain results in the diagnosis of Alzheimer’s
disease. On this basis, PLV was adopted to analyze the correlation
between different channels at the same time, and the detection
effect was further improved. Finally, we simulate the process of
physician diagnosis, and fuse the clinical features into the model
to achieve the best effect.

CONCLUSIONS AND DISCUSSIONS

Alzheimer’s disease is a central nervous system variable disease,
although there is no effective treatment method, but it has
a positive effect on its early diagnosis and early treatment.
Studies show that EEG has non-invasive and easy acquisition
characteristics, which has proved to be an effective means
to detect Alzheimer’s disease, for which we propose a new
Alzheimer’s disease analysis algorithm.

Early AI algorithms conducted the analysis only from a
single signal perspective, ignoring the response relationship
between different channels at the same time, resulting in the
limited representational ability of the established model. With
the improvement of medical and information acquisition ability,
scholars focus their attention to the signal transmission process to
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FIGURE 6 | Recurrence plot.

build a model, which enhances the model representation ability.
After deeply studying the EEG transmission process, the PLV
model is constructed to simulate the EEG transmission process
to obtain the Alzheimer’s disease transmission characteristics.

EEG can be regarded as a time series signal, and the
traditional algorithm only builds the model from the 1-
dimension perspective to carry out the study of similarity
measures. Due to the complexity of the signal, a unified 1-
dimensional model cannot be constructed. In this paper, 1-
dimensional EEG is transformed into 2D recurrence plot to
measure signal similarity in an intuitive way, and construct
a threshold-free mechanism to quantify similarity. On this

basis, a deep-learning network is constructed to simulate the
cognitive process of physicians and obtain Alzheimer’s disease
signal characteristics.

A large number of clinical data show that Alzheimer’s disease
is very closely related to clinical characterization, and modeling
from the signaling perspective alone has certain limitations.
Clinical data collected from patients show that people with
hypertension and diabetes have a high probability and rapid
progression of Alzheimer’s disease.

In this paper, based on EEG signals, signal transmission,
signal similarity, and clinical characterization are combined to
achieve the detection of Alzheimer’s disease. Experiments
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FIGURE 7 | Alzheimer’s disease ROC curve.

show that the algorithm has strong robustness and
detection rate. Subsequently, we will continue to collect
data to expand the data set and carry out annotation
and feature mining of typical data to assist doctors in
accurate diagnosis.
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Major Depressive Disorder (MDD) is the most prevalent psychiatric disorder, seriously
affecting people’s quality of life. Manually identifying MDD from structural magnetic
resonance imaging (sMRI) images is laborious and time-consuming due to the lack of
clear physiological indicators. With the development of deep learning, many automated
identification methods have been developed, but most of them stay in 2D images,
resulting in poor performance. In addition, the heterogeneity of MDD also results
in slightly different changes reflected in patients’ brain imaging, which constitutes
a barrier to the study of MDD identification based on brain sMRI images. We
propose an automated MDD identification framework in sMRI data (3D FRN-ResNet) to
comprehensively address these challenges, which uses 3D-ResNet to extract features
and reconstruct them based on feature maps. Notably, the 3D FRN-ResNet fully
exploits the interlayer structure information in 3D sMRI data and preserves most of
the spatial details as well as the location information when converting the extracted
features into vectors. Furthermore, our model solves the feature map reconstruction
problem in closed form to produce a straightforward and efficient classifier and
dramatically improves model performance. We evaluate our framework on a private
brain sMRI dataset of MDD patients. Experimental results show that the proposed
model exhibits promising performance and outperforms the typical other methods,
achieving the accuracy, recall, precision, and F1 values of 0.86776, 0.84237, 0.85333,
and 0.84781, respectively.

Keywords: major depressive disorder, deep learning, feature graph reconstruction network, structural magnetic
resonance imaging, automated identification

INTRODUCTION

Major Depressive Disorder (MDD), one of the most common diseases associated with suicidal
behavior, has become increasingly prevalent in recent years and is expected to be the largest
contributor to the world’s disease burden by 2030 (GBD 2017 Disease and Injury Incidence and
Prevalence Collaborators, 2018). People with MDD are at higher risk for obesity, cardiovascular
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disease, stroke, diabetes, cognitive impairment, cancer, and
Alzheimer’s disease. Approximately 8% of men and 15% of
women suffer from depressive disorders during their lifetime,
and nearly 15% of them choose to commit suicide (Gold et al.,
2015). Therefore, it is crucial to diagnose MDD early and provide
timely treatment.

Currently, the clinical diagnosis of MDD is mainly based on
the relevant criteria in the Diagnostic and Statistical Manual
of Mental Disorders (DSM), combined with the patient’s
interview and the subjective judgment of the clinician (Sakai
and Yamada, 2019). The rapid development of medical imaging
technology has provided more possibilities for pathological and
identification studies of psychiatric disorders. Common medical
imaging available includes Computerized Tomography (CT),
Positron Emission Tomography (PET), Magnetic Resonance
Imaging (MRI). Compared with other types of medical
images, brain structural MRI (sMRI) images can describe
changes in brain tissue volume or structure and reflect
changes in neural activity in the brain. Therefore, sMRI is
widely used to detect and treat psychiatric disorders. On the
other hand, Segall et al. (2009) have found that sMRI of
the brain can generate reliable and accurate brain volume
estimates, making it practical to study the classification of
depression based on brain sMRI images. However, due to
the lack of clear physiological indicators, images of MDD
patients cannot visually present abnormalities or lesions.
Therefore, automated MDD identification is urgently needed in
clinical practice.

Under the deep learning method, it is not easy to obtain
many training samples, and the heterogeneity of MDD is
substantial. Furthermore, most current deep learning networks
rarely involve 3D data. How to apply deep learning framework
to the identification task of MDD sMRI data has become a
research hotspot and challenge. So far, many outstanding studies
have been presented, such as Seal et al. (2021) proposed a deep
learning-based convolutional neural network named DeprNet to
classify Electroencephalogram (EEG) data from MDD patients
and normal subjects. Baek and Chung (2020) proposed a
contextual Deep Neural Network (DNN) model using multiple
regression to efficiently detect depression risk in MDD patients.
However, the methods above use only a 2D deep convolutional
neural network, which cannot obtain the image’s shallow and
deep semantic features. It also easily leads to overfitting, which
seriously affects the accuracy and robustness of the system and
requires a considerable computational cost.

Previous methods rarely use sMRI data to identify MDD
automatically and lack of MDD sMRI dataset, motivating us to
start this study. Moreover, the primary purpose of this paper
is to improve the automated identification accuracy of MDD
effectively to help clinicians make a medical diagnosis. Therefore,
we propose and develop an automated MDD sMRI data
identification framework (3D FRN-ResNet), which introduces
the Feature Map Reconstruction Network (FRN) based on the
ResNet model. Its network structure is shown in Figure 1.
Compared with other methods, our novel framework can
preserve the granular information and details of the feature
maps without overfitting the model. The contributions of our

study are: (1) A feature map reconstruction network is proposed.
(2) Building a 3D residual connectivity network to learn more
deep features of sMRI images. (3) Preserving more texture
details in sMRI images of MDD patients. (4) To get better
identification results.

The remainder of this paper is organized as follows. After
reviewing the state-of-the-art in the field of traditional machine
learning-based methods, deep learning-based methods, and
mental illness detection methods in Section “Related Works.”
Then, we explain our approach for solving the problem of
MDD identification with sMRI data in Section “Materials and
Methods.” Then, we describe MDD sMRI dataset and the
evaluation metrics, also the experimental details in Section
“Experiments.” Finally, the results and the discussions are
described in Sections “Results and Discussion,” followed by the
conclusion in Section “Conclusion.”

RELATED WORKS

Traditional Machine Learning
In recent years, machine learning techniques have been
widely used to mine medical images as computer-aided
diagnostic methods. Multivariate pattern analysis (MVPA),
a data-driven machine learning method, has been used
in diagnostic classification studies of mental disorders at
the individual level (Bachmann et al., 2017). Researchers
have classified feature selection algorithms into Filter-style
feature selection algorithms and Wrapper-style feature selection
algorithms based on the different feature evaluation strategies
(Lazli et al., 2019). In the Filter feature selection model, Mwangi
et al. (2012) used the T-test algorithm to implement feature
selection and classification on a multicenter MDD dataset.
Moreover, in the Wrapper model, Guyon et al. (2002) proposed
a support vector machine-based recursive feature elimination
(RFE-SVM) algorithm for gene sequence feature selection. This
algorithm has been widely used in machine learning tasks for
medical image analysis, such as Hidalgo-Muñoz et al. (2014)
used the RFE-SVM algorithm to classify structural image features
of Alzheimer’s disease, which outperformed the T-test feature
selection algorithm.

However, the Filter model usually has low computational
intensity but poor classification accuracy; the Wrapper model
has high classification accuracy but runs slowly, which is
challenging to apply to datasets with many features. Therefore,
researchers combined the advantages of both and proposed
a combined Filter and Wrapper feature selection method
to improve the classification accuracy while reducing the
computational time overhead. Among them, Ding and Fu
(2018) used the feature selection method combining the Filter
model and Wrapper model to conduct experiments on several
different types of datasets. The experimental results showed
that the hybrid algorithm has high computational efficiency
and classification accuracy (Ding and Fu, 2018). However, the
drawback of the above methods is that they usually require
manual feature design and redundant feature removal to extract
useful distinguishable features.
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FIGURE 1 | The overall diagram of our proposed 3D FRN-ResNet framework.

Deep Learning
Deep learning techniques have led to remarkable progress in
machine learning methods and promising results in medical
image classification applications. Chen et al. (2021) proposed a
cyclic Convolutional Neural Network (CNN) framework that can
take full advantage of multi-scale and multi-location contexts
in a single-layer convolution (LeCun et al., 1989). Cyclic CNNs
can be easily plugged into many existing CNN pipelines, such
as the ResNet family (He et al., 2016), resulting in highly
low-cost performance gains (Chen et al., 2021). Liang and
Wang (2022) proposed a novel model which uses involution
and convolution (I-CNet) to improve the accuracy of image
classification tasks by extracting feature representations on the
channel and spatial domains. Wang et al. (2021) proposed
a semi-supervised generative adversarial network (CCS-GAN)
for image classification. It employs a new cluster consistency
loss to constrain its classifier to maintain local discriminative
consistency in each unlabeled image cluster. At the same
time, an enhanced feature matching approach is used to
encourage its generator to generate adversarial images from
low-density regions of the true distribution, thus enhancing
the discriminative ability of the classifier during adversarial
training. The model achieves a competitive performance in semi-
supervised image classification tasks (Wang et al., 2021). For fine-
grained image classification, it has been a challenge to quickly
and efficiently focus on the subtle discriminative details that make
subclasses different from each other. Zhang et al. (2021) proposed

a new multi-scale erasure and confusion method (MSEC) to
address the challenge of fine-grained image classification.

Furthermore, Dai et al. (2021) proposed a model named
TransMed for multimodal medical image classification in terms
of medical image. TransMed combines the advantages of CNN
and transformer to efficiently extract low-level features of images
and establish long-range dependencies between modalities. The
method has great potential to be applied to many medical image
analysis tasks. Karthikeyan et al. (2020) used three pre-trained
models-VGG16 (Simonyan and Zisserman, 2014), VGG19
(Simonyan and Zisserman, 2014), RESNET101 (He et al., 2016),
on a dataset of X-ray images from patients with common bacterial
pneumonia, COVID-19 patients, and healthy individuals to
investigate migration learning methods. The proposed method
obtained the best results (Karthikeyan et al., 2020). Talaat et al.
(2020) proposed an improved hybrid image classification method
that uses CNN for feature extraction and a swarm-based feature
selection algorithm to select relevant features.

Mental Illness Detection
There are numerous mental illness detection algorithms, most
of which are based on improvements to the basic deep
learning framework. Payan and Montana (2015) used sparse
autoencoder and 3D convolutional neural networks based on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets
to build algorithms that could predict patients’ disease status,
outperforming the latest research findings at the time. Similarly,
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Farooq et al. (2017) applied deep convolutional neural networks
such as Goolenet and ResNet on the ADNI dataset to learn
discriminative features, achieving the purpose of classifying
Alzheimer’s disease (AD), mild cognitive impairment (MCI),
advanced mild cognitive impairment (LMCI), and healthy
individuals. Moreover, the prediction accuracy of the proposed
technique was significantly improved compared (Farooq et al.,
2017). Li and Liu (2018) applied the deep dense network
(DenseNet) to the ADNI dataset. The original sMRI images did
not need to be standardized preprocessing and directly extracted
and classified features. The experimental results proved the
effectiveness of the proposed method. Yang et al. (2022) proposed
a spatial similarity-based perceptual learning and fusion deep
polynomial network model to learn further robust information to
detect obsessive-compulsive disorder (OCD); the model achieved
promising performance in the rs-fMRI dataset of OCD patients.
Ulloa et al. (2015) proposed a classification architecture using
synthetic sMRI scans to scale up the sample size efficiently.
A simulator that can capture statistical properties from observed
data using independent component analysis (ICA) and random
variable sampling methods was also designed to generate
synthetic samples. Afterward, the DNN was specially trained
on continuously generated synthetic data, and it significantly
improved the generalization ability in classifying Schizophrenia
patients and healthy individuals (Ulloa et al., 2015). Eslami et al.
(2019) devised a data augmentation strategy to generate the
synthetic dataset required to train the ASD-DiagNet model. The
model consists of an auto-encoder and single-layer perceptron
to improve the quality of extracted features and improve the
detection efficiency of autism spectrum disorder.

Our Work
Although various deep learning frameworks have been proposed
and significant progress has been made in the classification of
brain tumor images. There are still challenges, such as insufficient
sample size for training (Wertheimer et al., 2021), overfitting
or underfitting due to the increased dimensionality of images
(from 2D to 3D), and excessive consumption of computational
resources (Pathak et al., 2019). In addition, the use of deep
learning feature representation has weakened the interpretability
of the features and is not conducive to the pathological analysis
and understanding of the learned features (Zadeh Shirazi et al.,
2020). These challenges limit the application of deep learning in
medical images, so more innovative deep learning models are
needed to achieve better results in medical images.

We propose a 3D FRN-ResNet framework for MDD sMRI
images identification, which uses 3D-ResNet as the base
framework. The conventional ResNet network incorporates
pooling operations to extract global features, discarding a large
amount of local detail information and thus reducing the
resolution of the data. Specifically, during sMRI image processing
of the brain, changes in neural activity in abnormally active (or
inactive) brain regions are difficult to capture, but these small
changes may be necessary for MDD. To solve this problem, we
introduce the FRN method so that the granularity information
and details of the feature map can be retained without overfitting
the model. Its network structure is shown in Figure 1. It achieves

this by framing class membership as a problem in reconstructing
the feature map. Given a set of images belonging to a single
class, we generate the associated feature maps and collect the
component feature vectors across locations and images into a
single pool of support features. For each query image, we attempt
to reconstruct each location in the feature map as a weighted
sum of the support features with a negative mean squared
reconstruction error as the class score. Images from the same class
should be easier to reconstruct because their feature maps contain
similar embeddings, while images from different classes are more
complex and produce larger reconstruction errors. By evaluating
the reconstruction of the complete feature map, FRN preserves
the spatial details of the appearance. Additionally, by allowing
this reconstruction to use feature vectors from any location in
the support image, FRN explicitly discards the annoying location
information. An auxiliary loss function is also introduced, which
encourages orthogonality between features of different classes to
focus on feature differences.

We evaluate the performance of the proposed model on
a constructed sMRI dataset of MDD patients and compare
it with other methods. The results show that our model has
good performance in automated MDD sMRI data identification.
(1) A novel identification network structure based on feature
map reconstruction is proposed in this paper. (2) Feature
extraction followed by feature map reconstruction of sMRI
images retains more fine spatial details and dramatically
improves the identification performance. (3) Classification-
assisted loss functions are developed to distinguish between
different features classes.

MATERIALS AND METHODS

Our goal is to identify MDD using sMRI images automatically.
In order to obtain good identification performance, a robust
network structure is usually required. Therefore, we propose
the 3D FRN-ResNet model for automated MDD sMRI data
identification, consisting of a feature extraction network and a
feature map reconstruction network. The network structure of
3D FRN-ResNet is shown in Figure 1. This section describes the
preprocessing process, the network structure of 3D FRN-ResNet,
and the loss function used in detail.

Data Preprocessing
The sMRI data preprocessing work is implemented using the
MATLAB-based SPM12 toolkit (Ashburner et al., 2021). The
main contents of preprocessing include AC-PC calibration,
non-brain tissue removal, gray matter segmentation, spatial
standardization, and spatial smoothing. The size of sMRI data for
each subject after processing is 121× 145× 122 voxels.

Anterior Commissure-Posterior Commissure
Calibration
The calibration procedure focuses on the anterior commissure
(AC) and posterior commissure (PC) calibration. We use
MATLAB software to perform AC-PC calibration, resampling the
images in the standard 256 × 256 × 256 mode, and then the
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FIGURE 2 | Results of removing non-brain tissue.

N3 algorithm is used to correct for non-uniform tissue intensity.
We also perform skull stripping and cerebellar resection after
correcting the images by AC-PC correction.

Non-brain Tissue Removal
The original images of sMRI contain some non-brain structures,
such as skulls. In order to avoid increasing the computational
workload and to avoid subsequent image preprocessing, which
may affect the experimental results. Non-brain structures such
as skulls need be removed from the images during the image
preprocessing operation. Figure 2 shows the comparison of a
sample before and after removing non-brain tissue.

Gray Matter Segmentation
During sMRI image processing, sometimes only the state of
specific regions is focused on, which requires tissue extraction
from the target area according to the brain’s anatomy. In the
preprocessing process, we segment the sMRI into three different
images by brain gray matter, white matter, and cerebrospinal fluid
structures. Considering the critical influence of the gray matter
region on the diagnosis of MDD (Arnone et al., 2013), only
the gray matter part is used for the experiments in this paper.
Figure 3 shows the result of gray matter segmentation.

Spatial Standardization
Standardization is the alignment of the images from the previous
preprocessing process to the standard brain template space
Montreal Neurological Institute (MNI) to unify the coordinate
space of all images. The algorithms used for standardization
are non-rigid body alignment algorithms, including affine and
non-linear transformations. Figure 4 shows the comparison of
a sample before and after spatial standardization.

Spatial Smoothing
After completing the above series of processing, it is also
necessary to perform a smoothing process on the image to
suppress the noise of the functional image. Additionally, the
signal-to-noise ratio needs to be improved to reduce anatomical

FIGURE 3 | Results of gray matter segmentation.

FIGURE 4 | Results of spatial standardization.

or functional differences between images. Usually, the function
used for the smoothing process is the Gaussian kernel function.
In addition, based on experience and practical attempts, we
use a 64 × 64 × 64 pixel cube to down-sample gray matter
density images, and this processing saves computing time and
memory consumption with no loss of classification accuracy.
Figure 5 shows the comparison of a sample before and after
spatial smoothing.

3D-ResNet Framework
Although ResNet has achieved excellent results on many 2D
natural image datasets, it has little success in medical images. The
reason is that the convolution kernels and pooling kernels in 2D
networks are two-dimensional matrices. It can only move in the
two directions of height H and width W of 2D flat images, so only
2D features can be extracted. In contrast, most medical image
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FIGURE 5 | Results of spatial smoothing.

data such as sMRI are 3D stereo data. When using 2D network
processing, only 3D images can be input in layers, or one of the
dimensions can be used as the channel dimension. But neither of
the two methods can make good use of the inter-layer structure
information of the data.

Based on this, this paper adds a depth dimension D to the
filters such as convolution kernels and pooling kernels in the 2D
network, and extends them into 3D matrix. In this way, the filters
can be moved in all 3 directions (H, W, D) of the sMRI data, so
that the spatial information of the data can be fully exploited. And
the output of each filter is also a 3D data. The structure diagram of
the 3D-ResNet is shown in Figure 6. Let the size of one of the 3D
convolution kernels is k × k × k × channel, the number is n, the
input data size is h× w× d. And since the sMRI data used in this
paper is similar to a grayscale map, the channel dimension is 1.
Therefore, the output size of this convolution kernel is as follow:

(h− k+ 1)× (w− k+ 1)× (d − k+ 1)× n (1)

By a similar method, the pooling layer and batch
normalization layer in ResNet can be extended to construct
a 3D residual connected network (3D-ResNet). The network can
better extract representative features from 3D sMRI data and
improve the accuracy of identification in MDD patients.

The 3D-ResNet network structure is shown in Figure 6. Due
to the small size of the input region feature map, the convolution
pooling operation is removed from the bottom layer of the
network. And the input map is directly made to enter the residual
network consisting of four stacked residual convolution modules.

Figure 7 shows an example of feature extraction from the
3D-ResNet middle layer. At the end of the extraction process,
the network learns details such as contour boundaries, position,
and orientation, enabling more learning of deeper features in the
sMRI and preparing it for the next step.

Feature Map Reconstruction Networks
Framework
The feature extractor can produce a feature map. However,
the distance metric function requires a vector representation of
the whole graph. Therefore, a method needs to be found to
convert the feature map into a vector representation. Ideally,
this conversion would preserve the granularity of information
and details of the feature map without overfitting the model. But
existing methods, such as global average pooling, are very crude
in discarding some spatial information or flattening a feature
map into a long vector, which also loses location information.
In order to convert the feature map into a vector representation
while preserving the spatial details, Feature Map Reconstruction
Networks (FRN) are proposed in this paper.

When there is a single input image xq, we wish to predict its
label yq. Firstly, let xq passes through feature extractor to generate
a feature map Q ∈ Rr×d, where r represents the size of the space
and d is the number of channels. For each class c ∈ C, we pool
all features from the k input images into a feature matrix Sc ∈
Rkr× d .

Then, we try to reconstruct Q as a weighted sum of rows in
Sc by finding the matrix W ∈ Rr × kr so that W × Sc ≈ Q can
be obtained. Finding the optimal W is equivalent to solving the
linear least squares problem:

W = arg min
W
||Q-WSc||2 + λ||W||2 (2)

where || • || is the Frobenius norm, which λ is a weighted ridge
regression penalty term used to ensure the treatability of the
linear system when it is over- or under-constrained (kr 6= d).

The ridge regression equation leads to the optimal solution W
and Qc.

W = QSTc (ScSTc + λI)−1 (3)

Qc =WSc (4)

For a given class c, the distance between Q and Qc is defined as
the Euclidean distance and then deflated by using 1

r . A learnable
temperature factor λ is also introduced. The final predicted
probability is thus given by:

〈
Q,Qc

〉
=

1
r
||Q− Qc||

2 (5)

P(yq = c|xq) =
e(−γ〈Q,Qc〉)∑

c′∈C e
(−γ

〈
Q,Qc′

〉
)

(6)

In order to ensure the stability of the training, we decide to
use 1

kr to improve λ. This has the additional benefit of making
our model somewhat robust, in addition to the parameters that
λ should be learned. The change λ has diverse effects: the large
one λ avoids over-reliance on the weights of W, but it also
reduces the effectiveness of the reconstruction. And it increases
the reconstruction errors as well as limit the distinguishability.
Therefore, we disentangle the degree of regularization ρ from
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FIGURE 6 | Proposed 3D-ResNet structure.

FIGURE 7 | Visualization of extracted features.

the magnitude of Qc by introducing a learned recalibration term.
This leads to the following formula:

Qc = ρWSc (7)

λ andρare parameterized as eα and eβ to ensure non-negativity
and are initialized to zero. In summary, our final prediction is
given by the following equation.

λ =
kr
d
eα ρ = eβ (8)

Qc = ρWSc = ρQSTc (ScSTc + λI)−1Sc (9)

P(yq = c|xq) =
e(−γ〈Q,Qc〉)∑

c′∈C e
(−γ

〈
Q,Qc′

〉
)

(10)

The method introduces only three learning parameters:α,β,
andγ. The temperature γ appears in previous works
(Chen et al., 2020).

Figure 8 is a diagram of the FRN network structure. Support
image is converted to a feature map (left) and aggregated to
a pool of class conditions (middle). A best-fit reconstruction
of the query feature map is computed for each class, and the
closest candidate generates the predicted class (right). Among
them, h × w is the feature map resolution, d is the number
of channels, and the green triangle represents the convolutional
feature extractor.

Loss Function
Medical image classification often faces the problem of minor
differences in the appearance of pathological targets and non-
targets. We also face this challenge for our MDD brain tumor
classification task. For this purpose, our loss function consists
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FIGURE 8 | Feature map reconstruction networks network structure diagram.

of two components. The first is the cross-entropy loss function,
which can be understood as a composition of two parts. The first
part is the calculation of the mutual entropy with label 1, and the
second part is the calculation of the mutual entropy with label
0. We sum the two to obtain the overall mutual entropy. The
formula is as follows.

L = −
1
N

N∑
i=1

[
yi log(pi)+ (1− yi) log(1− pi)

]
(11)

where N is the total number of samples, yi is the category to
which the ith sample belongs, and pi is the predicted value of the
ith sample.

In addition to the classification loss, we use an auxiliary loss
that encourages support features from different classes to span
the potential space.

Laux =
∑
i∈C

∑
j∈C,j6=i

||̂SîSTj ||
2 (12)

Among then, Ŝ is line normalized and projects the features
onto the unit sphere. This loss encourages orthogonality between
features from different classes. Similar to Christian et al. (2020),
we reduce this loss by a factor of 0.03. We use Laux as the auxiliary
loss in our subspace network implementation, which replaces
the SimCLR fragment in the cross-transformer implementation
(Carl et al., 2020).

EXPERIMENTS

Dataset
The benchmarking clinical MDD sMRI images dataset is
collected at the Seventh Hospital of Hangzhou (SHH) with
Institutional Review Board (IRB) approval, and is used to
train and test our model. Furthermore, the SHH dataset
contains 68 subjects, including 34 MDD patients and 34 healthy
controls (HC). All patients with MDD met the diagnostic
criteria of the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) for MDD. And all healthy
controls passed the non-patient version of the structured clinical
interview of the DSM-IV. All sMRI images have an imaging
field of view (FOV) = 240 mm × 256 mm, a voxel size of
1 mm × 1 mm × 1 mm, a layer thickness of 1 mm, and a scan
layer count of 192. sMRI slice images from the MDD and HC in
SHH dataset are shown in Figure 9.

Evaluation Metrics
A total of 54 samples in SHH dataset are used in the training
process, including 27 MDD patients and 27 healthy individuals.
In addition, 14 samples are used for validation, including 7
MDD patients and 7 healthy individuals. We use four metrics to
evaluate the model performance: Accuracy, Recall, Precision, and
F1 score. Accuracy is calculated as:

Accuracy =
TN + TP

FP + TN + TP + FN
(13)
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FIGURE 9 | Structural magnetic resonance imaging slice images from the MDD and HC in SHH dataset. Left to right: axial view, sagittal view, coronal view, and 3D
presentation.

where TN, TP, FP, and FN are the number of true negative,
true positive, false positive, and false negative, respectively. Recall
refers to the ability of a classifier to correctly detect positive
samples, reflecting the proportion of patients with MDD that
are correctly determined as a percentage of the total number of
patients, defined as:

Recall =
TP

TP + FN
(14)

Precision refers to the proportion of samples with a positive
prediction that are correctly predicted, defined as:

Precision =
TP

TP + FP
(15)

Precision and Recall are contradictory metrics. In general,
Recall tends to be low when Precision is high, while Recall
tends to be high when Precision is low. When the classification
confidence is high, Precision is high; when the classification
confidence is low, Recall is high. To be able to consider these two
metrics together, the weighted average F-measure of Precision
and Recall is proposed, which reflects the overall metric, defined
as:

F1 =
2× Precision× Recall
Precision+ Recall

(16)

In disease diagnosis studies, the higher the recall rate, the
smaller the missed diagnosis rate. Therefore, the accuracy and
recall of models are of most interest.

Experimental Details
In deep learning training, the setting of hyperparameters is
critical and determines the performance of our model. In the
training of the 3D FRN-ResNet model, the initial learning rate
is set to 0.01, the weight decay value is set to 0.001, the number
of epochs is 100, and then the learning rate is changed to 0.1
times when the validation set loss value does not drop for 10
consecutive epochs. Considering the sample size limitation and
using a fivefold cross-validation method to enhance the model’s
generalization ability.

All experiments are performed on a CentOS server with
NVIDIA TITAN Xp GPU, dual-core Intel(R) Xeon(R) Silver 4210
CPU @ 2.20 GHz processor, Python 3.6 programming language,
and PyTorch 1.0 deep learning framework.

RESULTS

We use four metrics, Accuracy, Recall, Precision, and F1 value,
to measure model performance. The average results of the
metrics obtained on the training and validation sets are shown
in Table 1. The experimental results show that the model has
good robustness. We can observe that the Recall is at a high value,
which indicates that the model is quite comprehensive in MDD
patient identification. Furthermore, we can see that the Precision
is also at a high value, demonstrating that the model has a good
ability in MDD patient identification. In addition, the Recall of
the training set is 0.84, and the F1 value of the training set is
0.85, which is very close. The same is true in the validation set,
suggesting the ability to discriminate between healthy and MDD
patients in our model is about the same.

Figures 10, 11 respectively show the composite plot of the
scatter plot and box plot of the evaluation index results of the
training set and the validation set. It can be seen from the box
plots that the fluctuations of the results are tiny, and only a
few outliers appear. In the box plot, the horizontal line in the
middle of the box indicates the median of a dataset. It can
also be observed in the scatter plot that the recall rate reaches
a high range, and the recall rate represents the ability of the
model to diagnose patients who suffer from MDD. The smaller
the difference between the Recall and F1 values, the better the
model’s performance in resolving class imbalance. It can be seen

TABLE 1 | Test results on the training and validation sets.

Accuracy Recall Precision F1

Training 0.86 0.84 0.85 0.85

Validation 0.78 0.76 0.77 0.76
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FIGURE 10 | Combination of scatter plot and box plot of training set.

FIGURE 11 | Combination of scatter plot and box plot of validation set.

from the figure below that the recall fluctuation range is not
large, indicating that the model has the similar ability to predict
the MDD patients and healthy individuals. After validation, the
overall performance of the model reached a high level.

In order to explore the influence of different network
structures on the performance of the MDD identification
algorithm, firstly we use five feature extraction networks with
different structures for training based on the FRN structure
in the classification layer. After that, the 3D-Resnet structure
with the best effect is used as the feature extraction network,
and the FRN structure is replaced with a general fully
connected layer for classification. The experimental results
show that compared with ordinary convolutional networks,
ResNet and DenseNet structures can extract and retain richer
detail information, and learn feature representations with
strong discriminative power, thereby effectively improving the
identification accuracy of the network.

From Table 2, we can see that the structural model combining
3D-ResNet and FRN has the highest classification accuracy,

with the correct rate and recall rate achieving 85 and 84%,
respectively. We can also observe that accuracy and recall
have been significantly improved after the 3D operation of the
network. For example, the identification accuracy of 3D-ResNet
is 6% higher than that of 2D DenseNet, which shows that the 3D-
ResNet proposed in this paper can mine effective information,
providing more effective features than the general ResNet and
the traditional 2D networks. Meanwhile, it can be seen from
Table 2 that the FRN network can effectively improve the high
heterogeneity problem in the sMRI images of MDD patients and
thus is applicable in MDD sMRI images identification.

Figure 12 shows the ROC curves of different algorithms using
FRN-net on the SHH dataset. It can be seen that from the figure
out algorithms outperforms others, which further confirms the
effectiveness of our algorithm. The main reason is that we exploit
both multi-scale layers and contextual spatial information to
reduce the semantic gap to a large extent.

The results of the ROC curve in Figure 13 are consistent
with those in Figure 12, indicating that our algorithm does
improve image identification accuracy. On the one hand, our
algorithm proposes a 3D residual connection network, which
extends the idea of residual connections to three dimensions.
It makes full use of the spatial and contextual information of
the image, and preserves the spatial details when converting the
extracted features into vectors and location information. Thus,
higher average accuracy than other methods is achieved, which
also demonstrate the effectiveness of the 3D residual connection
network and classification based on feature map reconstruction.
On the other hand, since we decompose the image into multiple-
scale layers, sufficient scale information is used when generating
multi-scale visual histograms. Therefore, our method has the best
classification specificity and sensitivity.

To further illustrate that the feature map reconstruction
method proposed in this paper is informative for correct
classification, we obtain experimental results for each query
image. In Table 3, all networks are trained with 3D-ResNet
as the backbone. The results in their tables validate the
effectiveness of the classification method based on the feature
map reconstruction proposed in this paper.

Figure 14 illustrates the algorithm’s performance based on the
above test parameters. The proposed FRN can be predicted to be
the best due to its property of classifying affected regions spread
over a given image from a performance overview. 3D ResNet
guarantees its performance in computation time and average

TABLE 2 | Results comparison with different network structures.

Model Backbone Accuracy Recall Precision F1

FRN(ours) 3D-ResNet 0.85 0.84 0.86 0.84

ResNet 0.79 0.78 0.80 0.79

3D-DenseNet 0.84 0.82 0.87 0.84

DenseNet 0.78 0.78 0.79 0.78

SimpleCNN 0.60 0.58 0.61 0.60

Full connected 3D-ResNet 0.82 0.80 0.82 0.81

Bold values mean the best performance.
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FIGURE 12 | ROC curves with FRN-Net for different backbones of the training set.

FIGURE 13 | ROC curves with FRN-Net for different backbones of the validation set.

accuracy for medical image datasets, with the highest recall and
satisfying precision. Statistical, visual, and experimental evidence
is provided through comparisons with other algorithms.

To sum up, through the above experiments, we can see
that the performance of the ProtoNet method is not as good
as other methods. Because traditional ProtoNet algorithms
extract feature histograms through direct statistical methods,
which are linear features that need to be combined with non-
linear classifiers to perform well. The DSN method outperforms
the ProtoNet method, probably because the DSN algorithm

predicts class membership by computing the distances between
query points and their projections into the latent subspace
formed by the supporting images of each class, which improves
methods for image predictive classification. Whereas the CTX
method explicitly produces class-level linear reconstructions
and outperforms the DSN method. Our algorithm decomposes
the image into multi-scale layers and performs 3D residual
network feature extraction and feature map reconstruction to
predict classification, greatly enhancing the discrimination of
image feature representation. Therefore, our algorithm has the
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TABLE 3 | Results comparison with different classifiers.

Model Accuracy Recall Precision F1

Train ProtoNet 0.82 0.81 0.83 0.82

DSN 0.81 0.79 0.82 0.81

CTX 0.80 0.79 0.81 0.80

FRN(ours) 0.86 0.83 0.84 0.83

Validation ProtoNet 0.76 0.75 0.77 0.76

DSN 0.74 0.72 0.75 0.74

CTX 0.75 0.74 0.76 0.75

FRN(ours) 0.80 0.78 0.76 0.77

best average classification accuracy, specificity, and sensitivity,
which indicates that 3D FRN-ResNet indeed improves image
classification accuracy. On the one hand, our algorithm proposes
a 3D residual connection network, which extends the idea of
residual connections to three dimensions. It makes full use of the
spatial and contextual information of the image and preserves
the spatial details when converting the extracted features into
vectors and location information. Thus, higher average accuracy
than other methods is achieved, demonstrating the effectiveness
of the 3D residual connection network and classification based
on feature map reconstruction. On the other hand, since
we decompose the image into multiple-scale layers, sufficient
scale information is used when generating multi-scale visual
histograms. Therefore, our algorithm has the best classification
specificity and sensitivity.

DISCUSSION

The 3D FRN-ResNet proposed in this paper can effectively
improve the identification accuracy and recall rate of sMRI
data from MDD patients and healthy controls, and verifies

TABLE 4 | Results comparison with typical methods.

Method Accuracy Recall Precision F1

Jiao et al., 2017 0.82 0.79 0.84 0.81

An et al., 2021 0.81 0.79 0.82 0.80

Ben et al., 2020 0.79 0.77 0.81 0.79

Cheng et al., 2022 0.83 0.80 0.82 0.81

Abdar et al., 2021 0.81 0.80 0.81 0.79

Proposed 0.85 0.82 0.82 0.82

Bold values mean the best performance.

its effectiveness and feasibility. The proposed model can assist
physicians to complete the diagnosis, and has significant
significance in research value.

The method is compared with some typical medical image
classification algorithms, and the results are shown in Table 4.
All of these methods use the private SHH dataset. These
results can be compared with those obtained using the
proposed method. Our proposed method is one of the best
and achieves better performance than other methods evaluated
under the same conditions. Jiao et al. (2017) introduced a
joint model with a CNN layer and a parasitic metric layer.
Where the CNN layer provides the essential discriminative
representation, and the metric learning layer enhances the
classification performance for that particular task (Jiao et al.,
2017). An et al. (2021) proposed a multi-scale convolutional
neural network, a medical classification algorithm based on a
visual attention mechanism, which automatically extracts high-
level discriminative appearance features from the original image.
In the method proposed by Ben et al. (2020), a new classification
framework was developed to classify medical images using
sparse coding and wavelet analysis, which showed a significant
improvement in identification accuracy. Cheng et al. (2022)

FIGURE 14 | Performance comparison with various models.
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proposed a modular group attention block that captures feature
dependencies in medical images in both channel and spatial
dimensions for resulting in improved classification accuracy.
Abdar et al. (2021) proposed a novel, simple and effective
fusion model with uncertainty-aware module for medical image
classification called Binary Residual Feature fusion (BARF).

Table 4 shows that the model has some advantages in
classification. The bold text in the table represents the best
performance. But there are still differences in accuracy, and
the model has limitations. In future work, solutions can be
proposed for this situation, such as designing a network structure
more suitable for small samples to maximize the neural network
learning ability. In addition, many of the algorithms proposed in
the top methods have excellent performance. How to combine
the advantages of these algorithms and integrating them into
models is the focus of future work. In clinical care, it helps
experts understand patients’ current situation faster and more
accurately, saving experts’ time and achieving a leap in the quality
of automatic medical classification.

CONCLUSION

This paper proposes an automated MDD sMRI data
identification framework and performs a performance validation
on the private SHH dataset with satisfactory results. The
framework comprises a feature extractor and a feature map
reconstruction network. 3D-ResNet acts as a feature extractor
to ensure that MDD sMRI data with depth features can be
learned. Then, the feature map reconstruction network solving
the reconstruction problem in a closed-form produces a class
of simple and powerful characters, which contains fine spatial
details without overfitting the position or pose. Furthermore,
we use an auxiliary loss that encourages support features from
different classes to span the potential space to more clearly
distinguish between classes. Additionally, a benchmarking
clinical MDD sMRI images dataset with 68 subjects (SHH)
is collected to train and test the model, and we evaluate the
proposed 3D FRN-ResNet on the SHH dataset. Experimental
results show that the proposed model exhibits promising
performance and outperforms the typical other methods,
achieving the accuracy, recall, precision, and F1 values of 0.86776,
0.84237, 0.85333, and 0.84781, respectively. Compared with some
benchmark methods, the method proposed in this paper can
effectively improve the identification accuracy and recall of MDD

and healthy controls, and then assist doctors to complete the
diagnosis in medicine, which has great value in practical clinical
computer-aided diagnosis applications.

Even though the 3D FRN-ResNet framework has
demonstrated its potential within the automated identification
for MDD sMRI data, some limitations still need to be improved.
For example, the model performance cannot be well exploited
due to sample size limitations. Thus, we can use better data
enhancement methods, which provide a good starting point for
further research.
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Alzheimer’s disease (AD) is a neurodegenerative brain disease, and it is challenging
to mine features that distinguish AD and healthy control (HC) from multiple
datasets. Brain network modeling technology in AD using single-modal images often
lacks supplementary information regarding multi-source resolution and has poor
spatiotemporal sensitivity. In this study, we proposed a novel multi-modal LassoNet
framework with a neural network for AD-related feature detection and classification.
Specifically, data including two modalities of resting-state functional magnetic resonance
imaging (rs-fMRI) and diffusion tensor imaging (DTI) were adopted for predicting
pathological brain areas related to AD. The results of 10 repeated experiments and
validation experiments in three groups prove that our proposed framework outperforms
well in classification performance, generalization, and reproducibility. Also, we found
discriminative brain regions, such as Hippocampus, Frontal_Inf_Orb_L, Parietal_Sup_L,
Putamen_L, Fusiform_R, etc. These discoveries provide a novel method for AD
research, and the experimental study demonstrates that the framework will further
improve our understanding of the mechanisms underlying the development of AD.

Keywords: multi-modal, LassoNet, resting state functional magnetic resonance imaging, diffusion tensor
imaging, feature detection

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative brain disease that leads to the damage and
death of brain nerve cells in disease progression. It destroys people’s memory, learning, language,
cognition, life, and other abilities, and seriously affects the quality of life of patients and families
(Zhang and Wang, 2015; Lam et al., 2021; Lim et al., 2021). AD risk is also greater later in
life for people with cardiovascular disease, high blood pressure, and diabetes. The Alzheimer’s
Association published a “2021 Alzheimer’s Disease Facts and Figures,” reporting a significant
increase in AD deaths worldwide due to the COVID-19 pandemic. According to the clinical
symptoms of patients, Alzheimer’s disease is divided into a normal state (normal control, NC),
mild cognitive impairment (mild cognitive impairment, MCI) state, and diseased AD state.
MCI manifests as a decline in memory and thinking abilities at a rate greater than the decline
in perception caused by normal aging, but this decline does not interfere with normal social
interaction and work. However, patients with MCI have a high probability of further deterioration
to AD (Zhang et al., 2016; Wang et al., 2017). It is currently difficult to distinguish MCI from
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memory decline due to normal aging, and MCI involves very
subtle brain changes. Therefore, the early diagnosis of MCI/AD is
extremely challenging (Davis et al., 2018; Wang et al., 2018; Zhang
et al., 2018; Potashman et al., 2021).

Magnetic resonance imaging (MRI) has become a hot
spot in the field of AD and MCI disease research due to
its non-invasiveness, multi-sequence imaging, high resolution,
and strong repeatability (Zhang Y.-D. et al., 2014; Zhang
et al., 2015a). Resting-state functional MRI (rs-fMRI) and MRI
diffusion tensor imaging (DTI) are imaging techniques that
can study brain mechanisms from the perspective of human
brain functional connectivity and structural connectivity. They
provide imaging evidence for the pathological studies on AD
and MCI. Many studies have found the network structure
related to the resting state in the cerebral cortex, which
covers the brain regions that show a decline in metabolic
function in the early stages of AD, including the posterior
cingulate cortex and the internal parietal region (Choo et al.,
2010; Hu et al., 2014; Zhang et al., 2015b; Shim et al.,
2017; Wang et al., 2021). Neuroimaging data from a single
modality usually can only reflect part of the brain characteristics,
but many current research studies show that the fusion of
information from multiple imaging modalities can reflect the
brain activity mechanism more comprehensively (Zhang Q
et al., 2014; Zhang and Shi, 2020; Lei et al., 2021; Jiao et al.,
2022).

Functional MRI quantifies the temporal correlation between
brain regions by detecting the blood oxygen level dependence
(BOLD) in the human brain (Zhang and Shi, 2020; Wang
et al., 2017), while DTI can track the spatial correlation of
white matter fiber tracts by exploiting the kinetic mechanism
of water molecule diffusion. Combining the spatiotemporal
high-resolution information reflected by fMRI and DTI can
comprehensively describe biological brain characteristics from a
spatiotemporal perspective and improve the accuracy of brain
network modeling, which is of great scientific significance
for studying the neurophysiological mechanisms of AD/MCI
diseases (Dyrba et al., 2015; Aderghal et al., 2020; Xu
et al., 2021). Wee et al. considered the information regarding
the complementary features of multiple imaging techniques,
integrated multi-modal information from DTI and rs-fMRI, and
used multi-kernel support vector machines to build a classifier
for the study of disease classification and early prediction
of MCI (Dai et al., 2019). Schonberg et al. used fMRI to
define the regions of interest for DTI, providing a more
comprehensive and functionally relevant white matter mapping
map for preoperative preparation of brain tumors (Schonberg
et al., 2006). Qi et al. propose a framework that combines DTI and
fMRI multimodal imaging data to accurately identify potential
neurological markers responsible for working memory deficits
(Qi et al., 2018). Li et al. integrated the image information
of rs-fMRI and DTI into a Lasso modeling framework for
the accurate diagnosis of brain network lesions in early AD,
further demonstrating that fusion of multi-modal information
can effectively identify brain network features (Li et al., 2020).
The above-mentioned finding proves that compared with single-
modal data, more valuable features can be obtained by using

multi-modal data. The multi-modal fusion method may further
improve the recognition accuracy of AD/MCI (Zhang et al.,
2015b; Wang et al., 2016; Mak et al., 2017).

In multi-modal neuroimaging analysis, since the
features extracted from the original images tend to have
higher dimensionality, only a few clinical samples contain
complete multi-modal data, which will produce the curse
of dimensionality. Therefore, we propose a neural network
framework with Lasso regression for multi-modal image
feature extraction and classification. Figure 1 illustrates the
neural network framework of multi-modal neuroimaging for
Alzheimer’s disease.

MATERIALS AND METHODS

Data Processing
The images of 85 subjects (33 healthy control, 29 early mild
cognitive impairment, and 23 AD) were downloaded from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI1), including
rs-fMRI and DTI. All neuroimaging data were obtained using a
SIEMENS 3T MRI scanner. For the rs-fMRI images, the echo
time (TE), the repetition time (TR), the flip angle, the slice
thickness, and the time points were set as 30.0 ms, 3.0 s, 90,
3.4 mm, and 197, respectively. For the DTI data, the gradient
directions, the echo time, the repetition time, the flip angle,
and the voxel size were set as 30, 95 ms, 12.4 s, 90, and
2 × 2 × 2 ms3. For the T1 images, the TE, TR, flip angle,
the slice thickness, and the T1 time were set as 3.0 ms, 2.3 s, 9.0,
1.0 mm, and 900 ms, and the collection plane was SAGITTAL.
The Table 1 showed the significant differences among the three
groups in terms of gender (p < 0.001), age (p < 0.001), MMSE
(p< 0.001), and EDU (p< 0.001) by t-test.

Data Acquisition
The rs-fMRI images were processed using SPM122 (Han and
Glenn, 2018) and DPARBI 6.13 (Yan et al., 2016) as follows:
(1) The raw DICOM files were converted to NIFITI format. (2)
The first 10 time series nodes of each individual subject were
removed manually to avoid the magnetic field inhomogeneity
problem caused by the startup of the scanner and the influence
of the discomfort of the subject’s initial state on the results. (3)
The interslice scan times were corrected to the same time point.
(4) Images with head movement beyond 2.5 mm translation or
2.5-degree rotation were removed to correct head movement
during scanning. (5) The head motion, white matter signal, and
cerebrospinal fluid signal were set as the main noise covariates
to reduce the influence of noisy covariate signals on scan results
and reduce biological artifacts. (6) Different morphological brains
were standardized to the same standard template and were
registered to T1 images. (7) The 4 × 4 × 4 mm3 Gaussian
kernel was applied for spatial smoothing to reduce spatial
noise. (8) The linear trend was removed, and 0.01–0.1 Hz

1www.adni-info.org
2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3http://rfmri.org/DPABI
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FIGURE 1 | An illustration of the proposed multi-modal framework for AD.
(A) Data processing. The fMRI and DTI images were preprocessed, and then
the regions of interest were extracted as fMRI and DTI features through the
AAL template, and the corresponding brain networks of fMRI and DTI were
obtained, respectively. Then, computed the inverse proportional function of
the structural brain network as a penalty matrix. (B) Multi-modal LassoNet
Modeling with a neural network. We constructed a multi-modal network
framework for feature selection and classification based on the LassoNet
model. It consisted of residual connection and an arbitrary feed-forward neural
network. The input to the network was the fMRI feature information. The
penalty matrix was introduced to the residual connection to sparse features.
(C) The detection of the pathological mechanism of AD. We visualized brain
regions for selected features to analyze the affected discriminative brain
regions.

filtering was applied to reduce the interference due to low-
frequency and high-frequency noise. The automated anatomical
labeling (AAL; Tzourio-Mazoyer et al., 2002) atlas was applied to

TABLE 1 | Participant characteristics.

Subjects HC EMCI AD P

Number 33 29 23

Gender (M/F) 12/21 14/15 14/9 <0.001

Age (Mean ± sd) 73.88 ± 7.15 74.52 ± 7.30 74.34 ± 8.14 <0.001

MMSE (Mean ± sd) 29.15 ± 1.13 28.52 ± 1.45 21.78 ± 1.89 <0.001

EDU (Mean ± sd) 16.55 ± 2.34 16.31 ± 2.56 14.96 ± 1.90 <0.001

HC, healthy control; EMCI, early mild cognitive impairment; AD, Alzheimer’s
disease; MMSE, Mini-mental status examination; M/F, male/female; Edu,
education; sd, standard deviation.

segment the brain into 90 regions, and the time series of BOLD
signals were extracted.

The DTI data were processed using FSL4 (Woolrich et al.,
2009), PANDA5 (Abbasi et al., 2021), and MRIcron (NITRC:
MRIcron: Tool/Resource Info) software in Ubuntu18.04 as
follows: (1) The raw DICOM files were converted to NIFITI
format (∗.nii.gz). (2) The brain templates were estimated
based on non-diffusion-weighted b0 images using the bet
command. (3) The non-brain space was removed using the
fslroi command and eddy current correction. (4) The diffusion
tensor metric was calculated using the dtifit command. (5)
Deterministic white matter tract in the brain was tracked
using the dti_recon and dti_tracker commands. (6) A part
of the skull tissue in the T1 images was removed using the
bet command. (7) The fractional anisotropy (FA) value of
each subject was registered to its corresponding T1 image
using the flirt command of FSL. When DTI images were
registered with other images, DTI data causing significant
deformities were removed. It should be noted that the
DTI images and rs-fMRI images were registered with the
same T1 imaging.

Multi-Modal LassoNet Framework
Construction
The rs-fMRI functional brain networks can measure temporal
correlations between anatomically segmented brain regions;
DTI-based structural brain networks can characterize and track
spatial white matter tracts in the brain. Herein, it is considered to
unify the multi-modal image information of rs-fMRI and DTI in
a brain network modeling framework, combining the respective
advantages of the two modalities, which can describe the dynamic
mechanism of the brain network from the perspective of time and
space, and realize the construction of the brain network model.

After preprocessing of fMRI images, we obtained 187 time
series (BOLD signal) of 85 participants, and there were 90 ROIs
in each image. Let us assume that we have n participants and i
ROIs. We explored a multi-modal network framework for feature
selection and classification based on the LassoNet (Yan and Bien,
2017; Chen et al., 2019). For n participant, we assumed that the
fMRI time series of the i-th ROI was xi = {x1i, x2i, ..xdi} ∈
Rn × d, (i = 185), where d was the number of time points. Our
goal was to find the best function f ∗(xi) for predicting yi (the type

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
5https://www.nitrc.org/frs/?group_id=582
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of Alzheimer’s diagnosis). As the problem of learning f ∗(xi) is
non-parametric, we assumed that there was no linear or quadratic
restriction. The multi-modal network consisted of two parts:
residual connection and arbitrary feed-forward neural network.
The penalty was introduced to the residual connection to sparse
features. We define G to be the class of residual feed-forward
neural networks:

G =
{
f ≡ fθ,w : x 7−→θTX + gw (X)

}
(1)

where gW (X) denotes a feed-forward network with weights W,
W(1)

∈ Rd × K represents the weights in the first hidden layer,
and θ ε Rd represents the weights in the residual layer.

Let L be the empirical loss2 on the training set with fMRI time
series, then L is defined as Equation 2.

L (θ,W) =
1
n

n∑
i = 1

`(fθ,w (xi),Yi) (2)

where W is the weight of the first hidden part; θ is the weight
of the residual part; n is the number of participants as training
observations size, and ` is the loss function. The LassoNet model
objective function is defined as Equation 3.

minimize
θ, W

L (θ,W) + λ||θ||1 subject to
∣∣∣∣∣∣W(1)

i

∣∣∣∣∣∣ ≤ M |θi| ,

i = 1, · · · d (3)

where W(1)
i is the weight of feature i and d is the data dimension.

The coupling strength of human brain functional connectivity
and structural connectivity is closely related to the brain
excitation process, and stronger structural brain connectivity is
likely to lead to the enhancement of corresponding functional
connectivity. Here, we introduced a parameter named the
punishment factor to improve the LassoNet model. The
punishment matrix of each DTI image is defined as the inverse
proportional function of structural brain networks (Equation 4).

Dji = e−
ρ2
ji
σ (4)

where ρji is the FA information between j-th brain region and
i-th brain region in the DTI network, and σ is the mean of the
standard deviation of all elements in the structural brain network
of all participants. Equation 4 is used to penalize the estimated
connection strength value between the j-th ROI and the i-th ROI.

Since each participant had a corresponding DTI structure
network information D, we calculated the max feature λmax of
each D using Equation 5.

(λaE− D) x = 0 (5)

where λmax = max (λa), E is the unity matrix, and x is the
eigenvector. The DTI feature matrix is defined as Equation 6.

DTIvector = [λ1,λ2 · · · · · ·λn] , n ∈ [1, 85] (6)

Then, we modify the LassoNet objective function to Equation 7.

minimize
θ, W

L (θ,W) + λ · DTIvector ||θ||1

subject to
∣∣∣∣∣∣W(1)

j

∣∣∣∣∣∣ ≤ M
∣∣θj∣∣ , j = 1, · · · d (7)

So, the multi-modal LassoNet framework was constructed. We
summarize the training algorithm of multi-modal LassoNet, as
shown Table 2.

Feature Detection and Model
Comparison
Using the resulting images, we obtained the initial dataset of
85 participants and 187 × 90 features in each participant. We
extracted three groups from the dataset, namely, AD-HC, AD-
EMCI, and EMCI-HC. For each group, the train set, validation
set, and test set were selected randomly using the ratio Strain :
Svalid : Stest = 6 : 2 : 2. Integrating with DTI structure network
information, the Strain and Svalid were applied to filter the optimal
λ and integrating with DTI structure network information. With
the resulting λ, the Strain and Stest were used to detect features
and get the sparse feature matrix that classified well in AD-HC,
AD-EMCI, or EMCI-HC.

Since the multi-modal framework was optimized based on the
LassoNet model, to determine the superiority of our proposed
framework, we used the classic Lasso, Group Lasso, Sparse Group
Lasso, and ElasticNet to compare the classification accuracy.

Given n data samples
{(
x1, y1

)
,
(
x2, y2

)
, · · ·

(
xn, yn

)}
, xi ∈

Rd, xi was a d dimensional vector, that is, each observed data
were composed of the values of d variables, and each yi ∈ R was a
real value. Let the mapping f : Rd → R that minimize the sum
of squared errors, and the optimization objective is defined as
Equation 8.

W∗ = argminβ

1
n
∣∣∣∣y− XW

∣∣∣∣2
2 (8)

The optimization objective of Lasso (Equation 8) was obtained by
introducing the L1 regularization term in Equation 9.

W∗ = argminβ

1
n
∣∣∣∣y− XW

∣∣∣∣2
2 + λ||W||1 (9)

The Lasso was applied to the group and the Group Lasso was
obtained as Equation 10.

min
W ∈ Rp

∣∣∣∣∣
∣∣∣∣∣y−

L∑
l = 1

XlWl

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ

L∑
l = 1

√
pl||Wl||2

 (10)

The Sparse Group Lasso was obtained by integrating the original
Lasso into the Group Lasso, as Equation 11.

min
W ∈ Rp

∣∣∣∣∣
∣∣∣∣∣y−

L∑
l = 1

XlWl

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ1

L∑
l = 1

||Wl||2 + λ2 ||W||1


(11)
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TABLE 2 | Training algorithm of multi-modal LassoNet.

Algorithm: Multi-Modal LassoNet with neural network

1: Input: X ∈ Rn × d represents fMRI time series (BOLD signal), B represents Number of epochs, M represents hierarchy multiplier, ε represents path multiplier, α

represents learning rate, D represents penalty matrix from DTI network.
2: Initialize: L (θ,W) represents the feed-forword network on the loss, λ represents the penalty, k represents the number of activate features,
DTIV = [λ1, λ2, λ3 · · · · · ·λn represents the multimodal matrix calculated from the penalty matrix D, d represents the number of features, θ∈ Rdrepresents the
weights in the residual layer, K is the number of units in the first hidden layer, θ∗ and W∗ are the optimal parameters after iteration.
3: while k > 0 do
4: Update λ← (1 + ε)λDTIv
5: for b∈ (1...B) do
6: Compute gradient of the w.r.t to (θ,W) with back-propagation
Update θ← θ− α∇θL and W ← W−a∇W L
7: for j ∈ {1 . . .d} do
8: Sort the entries of W(1)

j into
∣∣∣W(1)

j

∣∣∣ ≥ . . . ≥
∣∣∣W(1)

(j,K)

∣∣∣
9: Compute wn : =

M
1 + nM2 · SλD

(∣∣θj
∣∣ + M ·

∑n
i = 1

∣∣∣W(1)
(j,i)

∣∣∣)
10: Find n∗,the first n ∈ {0, ... ...,K} such that

∣∣∣W(1)
(j,n + 1)

∣∣∣ ≤ wn ≤

∣∣∣W(1)
(j,n)

∣∣∣
11: Update θ∗j ←

1
M · sign

(
θj
)
·wn∗ ,W

(1)
j
∗

← sign(W(1)
j ) ·min

(
wn∗ ,

∣∣∣W(1)
j

∣∣∣ )
12: end for
end for
13: return (θ∗,W(1)∗)
14: end while

FIGURE 2 | The relationship between the accuracies and λ.

The definition of ElasticNet was obtained by combining L1 and
L2 regularization and Lasso (Equation 12).

min
W ∈ Rp

∣∣∣∣∣
∣∣∣∣∣y−

L∑
l = 1

XlWl

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ2

L∑
l = 1

||Wl||2 + λ1

L∑
l = 1

||Wl||1


(12)

The same Strain and Svalid were applied to filter the optimal
parameters. Using the same Strain and Stes, the experiments

were repeated 10 times in all five frameworks with the
optimal parameters.

Evaluation Metrics
In this study, the samples were positive and negative, and the
results classified had the following cases:

True Positive (TP): the positive sample was predicted as a
positive sample.
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FIGURE 3 | The prediction accuracy was obtained through 10 experiments for five methods in three groups. (A) Prediction accuracy of AD-HC group. (B) Prediction
accuracy of AD-EMCI group. (C) Prediction accuracy of EMCI-HC group.

TABLE 3 | The classification performance comparison of the five methods.

Group Methods ACC (%) ± SD SEN (%) ± SD SPE (%) ± SD GMean (%) ± SD F1 (%) ± SD

AD-HC Lasso + SVM 85.45 ± 1.10 75.34 ± 2.87 91.89 ± 0.81 83.19 ± 1.49 80.05 ± 1.66

GroupLasso + SVM 86.16 ± 0.78 77.13 ± 1.73 91.97 ± 1.00 84.24 ± 0.93 80.75 ± 2.75

ElasticNet + SVM 84.56 ± 1.00 74.90 ± 2.14 90.72 ± 1.24 82.41 ± 1.13 79.04 ± 1.24

Sparse Group Lasso + SVM 85.75 ± 0.83 75.99 ± 2.29 92.20 ± 0.88 83.69 ± 1.11 80.89 ± 1.18

Multi-modal LassoNet 90.68 ± 0.34 88.81 ± 0.68 91.91 ± 0.55 90.34 ± 0.36 88.25 ± 0.52

AD-EMCI Lasso + SVM 75.88 ± 0.58 93.06 ± 0.87 54.22 ± 0.95 71.03 ± 0.61 81.15 ± 0.56

GroupLasso + SVM 75.92 ± 1.04 93.12 ± 0.63 54.33 ± 1.77 71.12 ± 1.14 81.16 ± 0.87

ElasticNet + SVM 76.13 ± 0.61 92.91 ± 0.94 54.98 ± 1.96 71.45 ± 1.01 81.27 ± 0.60

Sparse Group Lasso + SVM 70.23 ± 0.63 90.44 ± 1.05 44.69 ± 1.82 63.56 ± 1.04 77.05 ± 0.67

Multi-modal LassoNet 83.63 ± 0.74 87.32 ± 1.22 79.00 ± 1.33 83.05 ± 0.76 85.70 ± 0.84

EMCI-HC Lasso + SVM 67.04 ± 0.69 78.67 ± 1.98 57.61 ± 1.49 67.30 ± 0.68 68.12 ± 0.90

GroupLasso + SVM 84.42 ± 0.65 96.62 ± 0.65 74.43 ± 0.98 84.80 ± 0.52 84.08 ± 0.57

ElasticNet + SVM 83.76 ± 0.42 94.69 ± 0.69 74.72 ± 0.92 84.11 ± 0.44 84.07 ± 0.41

Sparse Group Lasso + SVM 83.20 ± 1.15 95.83 ± 0.88 72.74 ± 1.43 83.49 ± 1.14 70.86 ± 1.16

Multi-modal LassoNet 88.77 ± 0.70 90.87 ± 1.05 87.06 ± 0.95 88.94 ± 0.69 87.92 ± 0.83

True Negative (TN): the negative sample was predicted as a
negative sample.
False Positive (FP): the negative sample was predicted as a
positive sample.
False Negative (FN): the positive sample was predicted as a
negative sample.

ACC (accuracy) is the number of correctly classified samples
divided by the total number of samples (Equation 13).

ACC =
TP + TN

TP + TN + FP + FN
(13)

SEN (sensitivity) is the proportion of pairs of all positive samples
(Equation 14).

SEN =
TP

TP + FN
(14)

SPE (specificity) is the proportion of pairs of all negative samples
(Equation 15).

SPE =
TN

TN + FP
(15)

GMean is the geometric mean (Equation 16).

GMean =
√
SEN + SPE (16)

F1 is a comprehensive evaluation indicator. Sometimes, accuracy
and sensitivity needed to be considered together as Equation 17.

F1 =
2TP

2TP + FP + FN
(17)

The receiver operating characteristic (ROC) curve and the
area under curve (AUC) value are also used to evaluate the
performance of the classifier.

RESULTS

The Results of Parameter Optimization
Initially, 187 × 90 = 16, 830 features were obtained and Strain
and Svalid were applied to filter the optimal parameters. The λ

was the interval of (0.1, 1), and the corresponding accuracy was
calculated in each group. As shown in Figure 2, the best accuracy
of the AD-HC group is 92.79% and λ is 0.1. The peak value
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FIGURE 4 | The ROC curve of the five methods in three groups. (A) Prediction accuracy of AD-HC group. (B) Prediction accuracy of AD-EMCI group. (C) Prediction
accuracy of EMCI-HC group.

TABLE 4 | Discriminative brain regions.

Group ID Regions Abbreviation ID Regions Abbreviation

AD-HC 61 Parietal_Inf_L IPL.L 19 Supp_Motor_Area_L SMA.L

24 Frontal_Sup_Medial_R SFGmed.R 59 Parietal_Sup_L SPG.L

37 Hippocampus_L HIP.L 83 Temporal_Pole_Sup_L TPOsup.L

79 Heschl_L HES.L 64 SupraMarginal_R SMG.R

7 Frontal_Mid_L MFG.L 81 Temporal_Sup_L STG.L

73 Putamen_L PUT.L 52 Occipital_Mid_R MOG.R

15 Frontal_Inf_Orb_L ORBinf.L 32 Cingulum_Ant_R ACG.R

56 Fusiform_R PoCG.L

EMCI-HC 37 Hippocampus_L HIP.L 14 Frontal_Inf_Tri_R IFGtriang.R

27 Rectus_L REC.L 59 Parietal_Sup_L SPG.L

17 Rolandic_Oper_L ROL.L 88 Temporal_Pole_Mid_R TPOmid.R

30 Insula_R INS.R 44 Calcarine_R CAL.R

6 Frontal_Sup_Orb_R ORBsup.R 49 Occipital_Sup_L SOG.L

8 Frontal_Mid_R MFG.R 31 Cingulum_Ant_L ACG.L

38 Hippocampus_R HIP.R 7 Frontal_Mid_L MFG.L

15 Frontal_Inf_Orb_L ORBinf.L

AD-EMCI 22 Olfactory_R OLF.R 63 SupraMarginal_L SMG.L

32 Cingulum_Ant_R ACG.R 57 Postcentral_L PoCG.L

89 Temporal_Inf_L ITG.L 51 Occipital_Mid_L MOG.L

82 Temporal_Sup_R STG.R 24 Frontal_Sup_Medial_R SFGmed.R

85 Temporal_Mid_L MTG.L 39 ParaHippocampal_L PHG.L

42 Amygdala_R AMYG.R 13 Frontal_Inf_Tri_L IFGtriang.L

28 Rectus_R REC.R 60 Parietal_Sup_R SPG.R

8 Frontal_Mid_R MFG.R

of the EMCI-HC group is at the node of 0.3. The prediction
accuracy reaches a peak with a λ value of 0.2. We can also
observe that the accuracy of the AD-HC group is much higher
than the other two groups. This may be caused by the large
difference between AD and HC. An interesting finding is that
the accuracy of the AD-EMCI group is the lowest and the gap
in this group is also the lowest. This proves that the similarity
between AD and EMCI is higher, and the similar features make
the classification more stable.

Comparison With Other Methods
We applied the same Strain and Stest to assess the performance of
the five models, and 10 independent experiments were conducted
to evaluate the universality of these models. As shown in Figure 3,

the Multi-modal LassoNet has good prediction accuracy, and in
three groups, the accuracy of the Multi-modal LassoNet is the
highest, far exceeding the other four models. The peaks of the
Multi-modal LassoNet are above 90% in the AD-HC and EMCI-
HC groups, and in the other four models, they are all below 90%.
In the AD-EMCI group, the best accuracy is above 85%, and in
the other four models, it is below 80%. Additionally, the gap of the
Multi-modal LassoNet in 10 experiments is less than 2%. It can
be seen from Figure 3 that the Multi-modal LassoNet framework
has satisfactory classification accuracy in different groups only
by adjusting the λ. The curves of the Multi-modal LassoNet
also prove that the proposed framework has good stability, and
the introduction of DTI information improves the classification
performance of the LassoNet model.
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FIGURE 5 | Visualization of discriminative brain regions. (A) AD-HC, (B) AD-EMCI, and (C) EMCI-HC.

The classification information of the five methods is presented
in Table 3. Multi-modal LassoNet classifiers reported very
good performance. In the AD-HC group classification, ACC,
SEN, SPE, GMean, and F1 were 90.68 ± 0.34, 88.81 ± 0.68,
91.91 ± 0.55, 90.34 ± 0.36, and 88.25 ± 0.52, respectively. In
the AD-EMCI group classification, ACC, SEN, SPE, GMean,
and F1 were 83.63 ± 0.74, 87.32 ± 1.22, 79.00 ± 1.33,
83.05 ± 0.76, and 85.70 ± 0.84, respectively. In the EMCI-
HC group classification, ACC, SEN, SPE, GMean, and F1 were
88.77 ± 0.70, 90.87 ± 1.05, 87.06 ± 0.95, 88.94 ± 0.69, and
87.92± 0.83, respectively.

For further validation of our framework and results, we plot
the ROC curves of five methods for the AD-HC, AD-EMCI,
and EMCI-HC groups, as shown Figure 4. The AUC values of
our proposed Multi-modal LassNet for AD-HC, AD-EMCI, and
EMCI-HC groups were 0.9120, 0.8478, and 0.8975, respectively.

DISCUSSION

Modeling techniques based on a single neuroimaging modality
lacked the spatial and temporal high-resolution information
brought by different modalities in characterizing the brain
network structure, and could not fully reflect the dynamic

mechanism of brain network connections (Tulay et al., 2019;
Zhuang et al., 2019; Lei et al., 2020). Therefore, we proposed a
multi-modal LassoNet model that was a Lasso neural network
modeling framework using multi-modal information fusion. This
method fused two modalities of fMRI and DTI in a sparse Lasso
neural network framework and introduced connection strength
and subject structure to complete the construction of a multi-
modal brain network. Our proposed method mainly addresses
two issues, which include the selection of AD-related brain ROIs
and the classification and diagnosis of AD. The experimental
results showed that the multi-LassoNet modeling of multi-modal
information could facilitate higher sensitivity of disease diagnosis
and effectively improved the accuracy of model classification. The
good classification performance also revealed that the detected
features of the multi-modal model based on fMRI and DTI
reflected that the brain atrophy caused by the disease process
would lead to the decrease of white matter fiber connectivity
(Gupta et al., 2020). It also proved that structural connectivity
and functional brain network features between connections had
coupling effects.

Compared with the current popular Lasso method, Group
Lasso, Sparse Lasso, and elastic network method, it was
proved that the proposed multi-modal Lasso-based neural
network method was higher than other methods in classification
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performance and had strong regularization parameter stability. It
proved that fusion of multi-modal information more effectively
identified brain network features. Moreover, the results indicated
that the constraint effect of the DTI structural network and the
introduction of the strength of the brain area connection had
a certain degree of influence on the validity of the multi-modal
brain network model. Table 4 shows the top 15 important brain
regions with different classification results.

Visualization selected discriminative brain regions using the
BrainNet Viewer toolbox (Xia et al., 2013), as shown in Figure 5.
By analyzing the brain regions classifying AD-HC,AD-EMCI,
and EMCI-HC, we found that the brain regions belonging
to Hippocampus, Frontal_Inf_Orb_L, and Parietal_Sup_L were
among the top 15 brain regions. Previous studies had found
that the hippocampus of the brain was responsible for human
memory and spatial activities and was closely related to AD
pathology (Douaud et al., 2011; Fares et al., 2019). In addition,
some studies had also shown that functional atrophy in the
parahippocampal gyrus is an early marker of AD/MCI disease
(Wang et al., 2016), and the parahippocampal gyrus shows
a more distinct ability than the hippocampus in the early
stage of the disease (Zhu et al., 2019). Frontal_Inf_Orb_L
corresponded to the region of interest recommended by
physicians for the clinical diagnosis of AD (Jiang et al.,
2015). Parietal_Sup_L may be associated with the underlying
mechanism of its clinical effect, and it may play a role in the
potential compensatory mechanism of mobilizing more regions
to complete the function after a functional decline (He et al.,
2021). The Hippocampus_L and Hippocampus_R found in the
AD-HC and EMCI-HC groups were reported as the pathogenic
regions of AD. Chik et al. (Yuan et al., 2022) found that
the neurosteroids in the hippocampus were changed during
the progression of Lv et al. (2022) found that compared to
the healthy mouse, the mice having TYRO protein kinase-
binding protein had insufficient learning and memory abilities,
and the amyloid β in the hippocampus was increased, which
worsened with aging. Liu et al. (2022) proved that memory
could be improved by enhancing the functional activity in the
hippocampus and the medial prefrontal cortex. Moreover, the
hippocampus region was not found in AD-EMCI. This gives
a message that the difference in the hippocampus between
AD and EMCI is not obvious, and their main difference
is found in other brain regions, such as the Amygdala_R,
which is not found in the other two groups. Hong et al.
(2022) reported tau deposition in the parahippocampus and
amygdala by studying positron emission tomography (PET)
images in patients with AD. The amygdala atrophy was found
in mild AD subjects and could be used to predict the Mini-
Mental State Examination scores and hippocampal atrophy
(Poulin et al., 2011).

In addition, the Putamen_L was reported to be the earliest
brain region to show increased Aβ deposition and is a marker
of cognitive decline (Zammit et al., 2020; Cogswell et al., 2021).
The Fusiform_R was confirmed to be a characteristic region of
AD (Guo et al., 2017; Sprung et al., 2021). Brain network analysis
results generally had a high sensitivity to segmentation template
selection. Different segmentation templates produced different

brain network topology structures, which might potentially affect
the reproducibility of model classification performance. The
segmentation template used in this paper was the AAL structure
of 90 brain regions. However, in the future, the robustness value
of the proposed method would be further verified from the
perspectives of multiple segmentation scales.

In this study, a deterministic fiber tracking technique derived
from DTI images was used to construct a structural brain network
in a multi-modal modeling framework. But this tracking method
only considered the trajectories where white matter fibers cross
or diverge (Lei et al., 2021). Therefore, there may be biases in
determining the most reasonable fiber configuration, affecting
the accuracy of structural network construction. Future research
work will consider adopting a more efficient probabilistic
fiber tract-tracing strategy to obtain the probability value of
brain area connection to complete accurate multi-modal brain
network construction.

In this study, we proposed a novel multi-modal LassoNet
framework for the discriminant analysis of features. This research
is an attempt to apply fMRI and DTI multi-modal information
and sparse representation technology to the research of neural
network framework, and provides a new idea for designing a
brain network modeling framework that integrates more modal
information in the future. The features of multi-modal data can
be fused to obtain more comprehensive pathological information.
Compared to the conventional methods, the proposed method
seeks to identify AD-related brain ROIs and in the classification
and diagnosis of AD. The high-performance classification
implied that the proposed multi-modal LassoNet framework was
beneficial for the early diagnosis and prediction of AD disease.
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Alzheimer’s disease (AD) is a progressive dementia in which the brain shrinks as
the disease progresses. The use of machine learning and brain magnetic resonance
imaging (MRI) for the early diagnosis of AD has a high probability of clinical value and
social significance. Sparse representation classifier (SRC) is widely used in MRI image
classification. However, the traditional SRC only considers the reconstruction error and
classification error of the dictionary, and does not consider the global and local structural
information between images, which results in unsatisfactory classification performance.
Therefore, a large margin and local structure preservation sparse representation
classifier (LMLS-SRC) is developed in this manuscript. The LMLS-SRC algorithm uses
the classification large margin term based on the representation coefficient, which
results in compactness between representation coefficients of the same class and
a large margin between representation coefficients of different classes. The LMLS-
SRC algorithm uses local structure preservation term to inherit the manifold structure
of the original data. In addition, the LMLS-SRC algorithm imposes the `2,1-norm on
the representation coefficients to enhance the sparsity and robustness of the model.
Experiments on the KAGGLE Alzheimer’s dataset show that the LMLS-SRC algorithm
can effectively diagnose non AD, moderate AD, mild AD, and very mild AD.

Keywords: Alzheimer’s disease, sparse representation classifier, image classification, magnetic resonance
imaging, KAGGLE Alzheimer’s dataset

INTRODUCTION

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that usually progresses
slowly in the early stages and gets worse over time (Katabathula et al., 2021). AD often occurs in the
elderly. The initial symptoms are easy to forget recent events. With the development of the disease,
the symptoms may include language problems, disorientation, mood swings, loss of self-care ability,
etc., which will eventually seriously affect the daily life of the elderly. Currently, about 90 million
people worldwide suffer from AD of varying degrees. It is estimated that by 2050, the number
of AD patients will reach 300 million (Wong, 2020). The specific symptoms of very mild AD are
progressive decline in memory or other cognitive functions, but do not affect the ability of daily
living. According to statistics, about 10–15% of very mild AD will eventually transform into AD
(Porsteinsson et al., 2021). Current scientific and clinical research has not yet clearly identified the
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pathogenesis and etiology of AD, and there is no fully effective
treatment drug. AD is uncontrollable and irreversible after being
diagnosed. However, if patients can be intervened and treated in
the early stage of mild cognitive impairment (MCI), it is hoped
that the onset of AD will be delayed by 5 years, and even stop the
progression of AD in the stage of MCI, and no longer worsen
into AD, reducing the number of patients with AD by 40%
(Venugopalan et al., 2021).

In the past decade, neuroimaging techniques have been
widely used in the classification and prediction of AD. Among
them, magnetic resonance imaging (MRI) is a non-contact
imaging technology that can provide detailed three-dimensional
anatomical images of the brain and provide effective information
for the classification and prediction of AD (Al-Khuzaie and
Duru, 2021). The AD classification algorithms based on machine
learning usually extract the required features from the collected
medical images by manual or semi-manual methods. Various
parts of the brain regions of AD patients will atrophy to varying
degrees due to the progression of the disease process. The
volume, shape and texture information of the hippocampus,
gray matter, white matter, and cerebral cortex of the brain are
important features to distinguish AD and healthy people (Lee
et al., 2020; Gao, 2021). To classify AD MRI images, some studies
extract the volume information of the whole brain or part of
the brain. Some scholars segment different regions of the brain
and take the volume of each segment as features. According to
the anatomical automatic labeling brain region template, some
researchers divide the entire brain or part of the brain region
into multiple regions and then obtain the features for each
region. AD Patients often experience cerebral cortex atrophy
and ventricular enlargement, and early AD patients usually
have hippocampal atrophy (van Oostveen and de Lange, 2021).
Therefore, some scholars use the volume information of different
regions of interest such as the hippocampus as features based on
medical prior knowledge. Another common feature extraction
method is the morphometric measurement method, which is
often implemented based on MRI images and PET images. For
example, Al-Khuzaie and Duru (2021) took the overall shape of
the brain in MRI images as features. Katabathula et al. (2021)
used the shape information of the hippocampus as features. Brain
gully dilation is often seen in AD patients. Furthermore, texture
features are also widely used in MRI images. Gao (2021) extracted
the grayscale co-occurrence matrix of images as features. Hett
et al. (2018) used 3D Gabor filter to extract and classify multi-
directional texture features of MRI images.

Classifiers such as sparse representation classifier (SRC),
logistic regression (LR), support vector machine (SVM), and
decision tree (DT) are widely used in AD MRI image
classification. For example, Kruthika et al. (2019) used a multi-
level classifier to classify AD MRI images. They first used a naive
Bayes classifier, and then used SVM as secondary classification
to classify the data with confidence lower than the threshold.
Liu et al. (2015) proposed a multi-view learning algorithm based
on inherent structure of mild cognitive impairment (MCI) MRI
images, which used the multi-view features of MCI images to
train multiple SVMs, and then fused and discriminated each
classifier result. Altaf et al. (2018) used SVM, random forest, and

K-nearest neighbor (KNN) to train AD classifiers, respectively,
and the final classification result was the weighted sum of
the results of each classifier. Yao et al. (2018) used the idea
of hierarchical classification to classify AD MRI images. They
initially classified samples into four classes (AD, healthy, MCI,
converted MCI), then they trained several binary classifiers (AD
and converted MCI, healthy and MCI), and finally got a classifier
that can classify all samples into four classes. Pan et al. (2019)
proposed an algorithm to integrate multi-level features based
on FDG-PET images, and simultaneously considered the region
features and connectivity between regions to classify AD or MCI
from healthy people. Finally, multiple SVMs were used for voting
classification, and good results had been achieved in multiple
binary classification tasks.

Magnetic resonance imaging image features usually suffer
from high dimensionality and small sample size, which may
lead to overfitting in data-driven machine learning methods
(Jiang et al., 2019). To solve this problem, most existing
methods adopt feature selection or feature representation to
exploit the potential knowledge of data. Sparse representation is
one of the widely used feature representation methods. Sparse
representation can explore potential relationships within the data
(Gu et al., 2021). Chang et al. (2015) proposed a dictionary
learning algorithm based on sparse decomposition of stacked
prediction. They used the spatial pyramid matching method to
encode representation coefficients, and used SVM to classify
the pathological state of tumors. Shi et al. (2013) developed a
multi-modal SRC algorithm for lung histopathological image
classification, which used genetic algorithm to guide the learning
of three sub-dictionaries of color, shape and texture, and
then combined sparse reconstruction error and majority voting
algorithm for classification of lung histopathology images. He
(2019) proposed a spatial pyramid matching algorithm based
on joint representation coefficient, which utilized the three
color channel information of RGB, and converted the grayscale
description operator into a color description operator, which
improved the image classification performance. Jiang et al. (2019)
extracted features from breast cancer histopathological images
based on stacked sparse autoencoder, and used Softmax function
to detect cell nuclei in histopathological images. Zhang et al.
(2016) realized the fusion of global and local features of the
nuclear image, and then combined the ranking and majority
voting algorithm to classify the histopathological images of
breast cancer. The above algorithms can effectively extract image
features by introducing the sparsity of the image, and the
extracted features have good reconstruction properties, but they
do not have good discriminative ability.

To improve the diagnosis of MCI and AD based on
MRI images, we propose large margin and local structure
preservation sparse representation classifier (LMLS-SRC) in this
manuscript. The traditional SRC only uses the classification
error term to control the classification accuracy, and does not
fully consider the class label information of the representation
coefficients. Different from the traditional SRC, the LMLS-
SRC algorithm introduces the classification margin term
of representation coefficients into the sparse representation
classifier, so that the similar representation coefficients are
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compact in the representation space, and the dissimilar
representation coefficients are separated as much as possible
in the representation space. Experiments on the KAGGLE
Alzheimer’s dataset verify the advantages of our algorithm. Major
contributions of this manuscript are highlighted below: (1)
Considering the global information of the data by using the
large margin term, the obtained dictionary is discriminative,
and the representation coefficient has the small intra-class
distance and large inter-class distance. (2) The local structure
preservation term is introduced, which can inherit the manifold
structure of the original data. (3) The `2,1-norm term on the
representation coefficients is used, which can enhance the sparsity
and robustness of the representation coefficients.

BACKGROUNDS

Dictionary-Based Sparse Representation
Classifier
Using SRC algorithm in image classification, how to design
effective dictionary and representation coefficient for
feature representation is the key factor to determine the
algorithm performance (Wright et al., 2009). There are three
aspects considered in the design of SRC algorithm: (1) The
reconstruction error of the representation coefficients is small, so
that the samples are as close to the original samples as possible
in the sparse representation; (2) The representation coefficients
are constrained to make the representation coefficients as sparse
as possible; (3) The discrimination term should be considered
to better extract more discriminative information of data
(Jiang et al., 2013).

Let X = [X1, ..., XK] ∈ Rd×N be the K-classes training sample
set, Xk = [x1, ..., xNk ] be the k-th class training sample subset,
k = 1, 2,. . ., K,N = N1 + N2 + · · · + NK . d is the dimensional
of samples. The SRC algorithm for image classification can be
represented as,

min
D,A
||X-DA||2F + λg(A)+ ηf (D,A,Y), (1)

where Y is the class label matrix of X. D ∈ Rd×m is the learned
dictionary, and A ∈ Rm×N is the representation coefficient
matrix of X. m is the size of dictionary. In model training, the data
reconstruction item ||X-DA||2F is to ensure the representation
ability of the dictionary D, so that the reconstruction error of
the training data is minimized, and the reconstructed image is as
close to the original sample as possible. The regularization term
is used to constrain the sparsity of the representation coefficients,
which is usually represented as,

g(A) = ||A||p. (2)

where || · ||p is the regularization term of the representation
coefficient A (p < 2), which makes the representation coefficient
as sparse as possible. f (D,A,Y) is the discriminative function
term of representation coefficient for classification to ensure the
discriminative ability of D and A.

To obtain a discriminative dictionary, Yang et al. (2017)
developed a supervised Fisher discrimination dictionary learning

(FDDL), which associated the elements in the dictionary
with the class labels of the samples based on the Fisher
discrimination criterion. Jiang et al. (2013) proposed the
discriminative Label consistent K-SVD (LC-KSVD) algorithm.
Zhang et al. (2019) proposed a robust flexible discriminative
dictionary learning (RFDDL) algorithm based on subspace
recovery and enhanced locality. This algorithm improved image
representation and classification by enhancing representation
coefficient robustness. The computational complexity of the SRC
representation coefficient is usually high. To quickly obtain the
representation coefficients, Ma et al. (2017) proposed the local
sparse representation algorithm, which used the KNN criterion
to select k samples adjacent to the current sample to build
a dictionary matrix. In this way, the size of the dictionary is
reduced and the process of representation coefficient is greatly
accelerated. Similarly, inspired by the KNN criterion, Zheng and
Ding (2020) developed a sparse KNN classifier based on group
lasso strategy and KSVD algorithm. Wang et al. (2018) proposed
a SRC algorithm based on the `2-norm, which replaced the `1-
norm with the `2-norm to constrain the coefficients. Ortiz and
Becker (2014) proposed an approximate linear SRC algorithm.
Authors used least square algorithm to select the training samples
corresponding to the absolute values of the k largest coefficients
to build a sub-dictionary.

KAGGLE Alzheimer’s Image Dataset
The experiments in this manuscript are carried out on the
KAGGLE Alzheimer’s image dataset (Loddo et al., 2022). The
KAGGLE Alzheimer’s dataset contains a total of four types of
MRI images: non AD (3,200 images), very mild AD (2,240
images), mild AD (896 images) and moderate AD (64 images),
with the resolution of 176 × 208. The KAGGLE Alzheimer’s
dataset does not provide detailed information on patient
status. Figure 1 shows some example images of the KAGGLE
Alzheimer’s dataset.

THE PROPOSED ALGORIHTM

Objective Function
The purpose of sparse representation is to represent the sample
with as few elements as possible on a given dictionary, so that
a more concise representation of the sample can be obtained,
and the useful information contained in the sample can be easily
obtained. Thus the core problem of sparse representation is
how to compute sparse coding coefficients on a given learned
dictionary. Compared with the commonly used `1-norm and `2-
norm, `2,1-norm can improve the robustness of the model and
reduce the computational complexity. Thus, we introduce `2,1-
norm constraint on representation coefficients in LMLS-SRC, i.e.,

51 = arg min
D,A
{||X-DA||2F + λ1||A||22,1}, (3)

where λ1 is a constant.
We define a large margin term on representation coefficient

that relies on a specific neighborhood size for intra-class
and inter-class representation coefficients. The large margin
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term minimizes the intra-class distance of the representation
coefficient and maximizes the inter-class distance of the
representation coefficient, so as to improve the difference
between the representation coefficients of different classes. The
large margin term on representation coefficient can be written as,

f (ai) = arg min{
∑
t∈Ck

||ai − at||2

Nk
−

∑
j/∈Ck

||ai − aj||2

N − Nk
}, (4)

where
∑

t∈Ck
||ai−at ||2

Nk
represents the distance between ai and the

sparse representation of the same class.
∑

j/∈Ck
||ai−at ||2
N−Nk

represents
the distance between ai and the sparse representation of the
different class. Ck is the index set of the k-th class sample.

We build the intra-class similarity matrix Qw and inter-class
similarity matrix Qb based on representation coefficient. The
elements of the matrix Qw and matrix Qb are expressed as,

qwij =
{

1/Nk, if i, j ∈ Ck
0, otherwise

(5)

qbij =
{

1/(N − Nk), if i ∈ Ck, j /∈ Ck
0, otherwise

(6)

Then the large margin term on representation coefficient can
be expressed as,

52 = arg min
A

1
N
∑N

i=1 f (ai)

=
1
N
∑N

i=1
∑N

j=1(q
w
ij ||ai − aj||2 − qbij||ai − aj||2)

=
1
N

(
2
∑N

i=1 a2
i − 2

∑N
i=1
∑N

j=1 aiq
w
ij aj
)
−

1
N

(∑N
i=1 a2

i +
∑N

j=1 a2
j q

b
jj − 2

∑N
i=1
∑N

j=1 aiq
b
ijaj
)

= tr( 1
N AT(2I− 2Qw)A)− tr( 1

N AT(I+ Q̃b
− 2Qb)A)

= tr( 1
N AT(I− 2Qw

− Q̃b
+ 2Qb)A)

= tr(ATSA)

(7)

where S = 1
N (I− 2Qw

− Q̃b
+ 2Qb). The matrix Q̃b is the

diagonal matrix with the element being the column-sum of Qb .
Following the principle of local structure preservation, if two

images are close in the original space, they should also have
similar representation coefficients. To this end, we construct
a similarity matrix P that reflects the intrinsic local structure
between images. The element of matrix P is defined as,

pij =

{
exp

(
−
||xi−xj||22

2σ2

)
, if xi ∈ N(xj) or xj ∈ N(xi),

0, otherwise,
(8)

where N(xj) represents the k nearest neighbors of xj .
The local structure preservation term on representation

coefficient is expressed as,

53 = arg min
A

∑N
i,j pij||ai − aj||22

= tr(AT(P− P̃)A)

= tr(ATLA),

(9)

where the graph Laplacian matrix L is L = P− P̃,P̃ is the
diagonal matrix with the element being the row-sum of P.

The LMLS-SRC algorithm is a supervised learning model.
Using the class labels of all training samples, we use a linear
classifier W for representation coefficient A and dictionary D, i.e.,

54 = arg min
W,A
||WA–Y||2F+λ5||W||2F. (10)

In summary, the objective function of the LMLS-SRC
algorithm can be written as,

F(D,A,W) = min
D,A,W

51 +52 +53 +54, (11)

i.e.,

min
D,A,W

||X–DA||2F + λ1||A||22,1 + λ2tr(ATSA)

+λ3tr(ATLA)+ λ4||WA–Y||2F + λ5||W||2F,
s.t. ||di||22 ≤ 1,∀i

(12)

where λ1,λ2,λ3,λ4, and λ5 are trade-off parameters.
By alternately optimizing the representation coefficient

A, dictionary D and classifier parameter W, the following
performance can be obtained as: (1) the dictionary D has
more sparse representation performance, which enhances the
reconstruction of the sample by the dictionary. (2) LMLS-
SRC maximizes the distance between different classes of
representation coefficients and greatly reduces the similarity
between different classes of representation coefficients. (3)
The representation coefficient is more discriminative, which is
beneficial to the performance of image classification.

Optimization
(1) Fix D, W, and update A. Eq. (12) can be written by,

min F(A) = ||X–DA||2F + λ1||A||22,1 + λ2tr(ATSA)

+λ3tr(ATLA)+ λ4||WA–Y||2F. (13)

According to the definition of `2,1-norm, ||A||22,1=tr(AT�A).
� is a diagonal matrix whose elements are setting by �ii =

1/(2||Ai||2) where Ai represents the i-th row of A.
Equation (12) can be re-written by,

min F(A) = ||X–DA||2F + λ1tr(AT�A)+ λ2tr(ATSA)

+λ3tr(ATLA)+ λ4||WA–Y||2F. (14)

Setting ∂F(A)
/
∂A = 0, we can obtain,

∂L
∂A
= 2DTDA− 2DTX+ (2λ13+ 2λ2S+ 2λ3L)A

+2λ4(WTWA–WTY). (15)

A can obtained by the updated by,

A
∗

= (DTD+ λ13+ λ4WTW+ λ2S+ λ3L)−1

(λ4WTY+DTX). (16)

(2) Fix A, W, and update D. Equation (12) can be written by,

min F(D) = ||X–DA||2F,
s.t. ||di||22 ≤ 1,∀i

(17)
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We can solve Eq. (17) by the following Lagrangian dual
function,

min F(D, σ) = ||X–DA||2F +
m∑
i=1

γi
(
||di||22 − 1

)
, (18)

where γi is the Lagrange multiplier of i-th atoms.
We build a diagonal matrix 2 with the element 2ii = γi.

Equation (18) can be written by,

min F(D, 2) = ||X–DA||2F + tr(DTD2)− tr(2). (19)

Setting ∂F(D, 2)
/
∂D = 0, we can obtain,

D
∗

= XAT(AAT
+2)−1. (20)

(3) Fix A and D, and update W. Equation (12) can be written
by,

min F(W) = λ4||WA–Y||2F + λ5||W||2F. (21)

Setting ∂F(W)
/
∂W = 0, we can obtain,

W
∗

= λ4YAT(λ4AAT
+λ5I)−1. (22)

The optimization steps of LMLS-SRC algorithm are shown in Algorithm 1.

Input: training set X and its label matrix Y, tolerance error δ, maximum number of
iterations maxiter, parameters λ1,λ2,λ3,λ4, and λ5,

Output: parameters D, A, and W.

Initialize: initialize D and A using the LC-KSVD algorithm, W = I, m = 1,

Calculate matrices Qw, Qb, and P;

While not converged and m ≤ maxiterdo

Calculate D(m) by Eq. (20);
Calculate A(m) by Eq. (16);
Calculate W(m) by Eq. (22);

Check the convergence condition |F(D(m),A(m),W(m))−F(D(m−1),A(m−1),W(m−1))|
F(D(m−1),A(m−1),W(m−1))

<δ

m = m + 1

end while

EXPERIMENTS

Experimental Settings
In clinical diagnosis, AD classification tasks consist of two
categories. The first is the AD binary classification task,
which extracts features based on MRI images and uses
machine learning models to classify normal individuals
and AD patients, which can help doctors diagnose AD
patients. The second is the classification of various ADs,
especially the diagnosis and identification of mild AD and
very mild AD. Early prediction of AD can help to take
treatment and intervention measures in the early stage of
AD. Therefore, in this manuscript, we design binary, three-
class and four-class classification tasks on the KAGGLE
Alzheimer’s dataset.

Volume analysis is the commonly used feature extraction
method in AD classification. Volumetric feature extraction is

divided into two categories: density maps and predefined area
methods. AD MRI image is mainly related to the volume of the
density map structure, cortical structure, subcortical structure
and other regions. In this manuscript, we use FSL (FMRIB
software library) toolbox to extract MRI features (Jenkinson et al.,
2012). FSL is a library of comprehensive analysis tools for brain
imaging data such as MRI, developed by the FMRIB Centre in
Oxford. We use the FSL toolbox to calculate the volume, area
and thickness characteristics of various brain tissues in brain MRI
images. In the comparison experiment, the LMLS-SRC algorithm
is compared with SRC (Wright et al., 2009), logistic regression
(LR) (Tsangaratos and Ilia, 2016), linear discriminant (LD) (Kim
et al., 2011), LC-KSVD, FDDL, and sparse representation-based
discriminative metric learning (SRDML) (Zhou et al., 2022). The
radial basis function (RBF) kernel is used in LR. The default
settings are used to produce test results from these classifiers
using the MATLAB classification learner toolbox. The RBF kernel
and the regularization parameters for all comparison algorithms
range from 10−3 to 103. The number of dictionary atoms in SRC
and dictionary learning is set as the number of training samples.
Indicators of classification performance include classification
accuracy, sensitivity, specificity, precision, F1-score, and G-mean.
We carry out 5-fold cross-validation strategy and record the
experimental results.

Experimental Results
(1) Binary classification task. The main goal of this work is to
classify brain MRI into AD and non AD classes. We utilized 3,200
and 62 MRI images for non AD and AD classes, respectively.
We randomly selected 1,000 MRI images from the non AD class
images to increase the moderate AD class dataset to 620 MRI
images using data augmentation techniques. The comparative
training and test results in binary classification task are shown
in Tables 1, 2, respectively.

(2) Three-class classification tasks. The main goal of this work
was to classify brain MRI into three classes: non AD, mild AD,
and moderate AD. Using data augmentation techniques, these
three classes of datasets contain 3,200, 700, and 620 images,
respectively. We randomly selected 1,000 MRI images from the
non AD class. The comparative training and test results in three-
class classification task are shown in Tables 3, 4, respectively.

(3) Four-class classification tasks. The main goal of this work
is to classify brain MRI images into four classes: very mild AD,
non AD, mild AD, and moderate AD. Similar to the three-
class classification task described, we randomly selected 1,000
MRI images each from non AD class images and very mild
AD, respectively, and used data augmentation to increase the
moderate dementia dataset to 520 MRI images. The number of
images in the four categories of very mild AD, non AD, mild AD,
and moderate AD are 1,000, 1,000, 700, and 520, respectively. The
comparison training and test results in four-class classification
task are shown in Tables 5, 6, respectively.

We can see that all the comparison algorithms have the highest
classification accuracy in the binary classification task (AD and
non AD). It shows that these machine learning algorithms have
excellent performance in the classification and diagnosis of AD.
It is more practical to classify patients, very mild AD, non
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FIGURE 1 | Example samples of the KAGGLE Alzheimer’s dataset, (A) Non AD, (B) Moderate AD, (C) Mild AD, (D) Very Mild AD.

AD, mild AD, and moderate AD into four classes, and this
classification task is more difficult. The classification accuracy of
all the comparison algorithms on the four-class task is slightly
lower than that on the two-class task. However, the LMLS-SRC
algorithm achieves the best results in these tables, indicating that
our algorithm has a great improvement in the diagnosis of AD.

In Tables 2, 4, 6, the LMLS-SRC algorithm improves the
classification accuracy of the second best algorithm by 2.84, 3.00,
and 2.41%, respectively. This shows that the dictionary learned in
this study has better reconstruction performance for the samples
of same class and better discriminative performance for samples
of different classes. KSVD, LC-KSVD, and LMLS-SRC are SRC
algorithms. The KSVD and LC-KSVD algorithms only constrain
the discriminative ability of the representation coefficients,
and do not take into account the large margin between the
representation coefficients of different classes. Therefore, the
discriminative ability of the learned dictionary obtained by KSVD
and LC-KSVD is still weak. The dictionary learned by the
LMLS-SRC algorithm in this manuscript is combined with the

classification large margin criterion, which directly constrains the
intra-class distance and inter-class distance of the representation
coefficients. Compared with the other three algorithms, the inter-
class differences of the dictionary learned by our algorithm are
more discriminative.

Parameter Analysis
(1) Convergence analysis. The update of {(D), (A), (W)} in
the objective function are three convex optimization problems.
That is, when other parameters are fixed, the iterative solution
of dictionary D, representation coefficient A and classifier
parameter W is the convex problem. The solution of dictionary D
is obtained by Eq. (20). The solution of dictionary A is obtained
by Eq. (16). The solution of dictionary W is obtained by Eq. (22).
Figure 2 shows the convergence of the LMLS-SRC algorithm. As
shown in Figure 2, it can be seen that the classification accuracy of
the LMLS-SRC algorithm tends to be parallel to the X-axis from
the 10th iteration. Here, it can be considered that our algorithm
converges after 12 iterations.
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TABLE 1 | The comparative training results (with standard deviation) in binary
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 81.30 81.99 80.06 80.58 82.26 81.02

(2.84) (3.15) (2.80) (3.32) (3.27) (2.97)

LR 82.15 82.62 81.79 82.68 82.51 82.20

(2.55) (2.66) (2.70) (2.35) (2.56) (2.60)

SRC 82.10 78.97 77.33 77.63 77.55 78.15

(2.35) (2.01) (2.64) (1.62) (1.43) (2.28)

LC-KSVD 80.27 81.34 78.94 80.85 79.93 80.13

(2.54) (2.12) (2.63) (1.82) (2.07) (1.59)

FDDL 83.16 84.47 81.38 85.20 82.86 82.91

(2.64) (??) (1.83) (1.45) (1.69) (1.54)

SRDML 85.71 85.91 85.09 84.10 85.08 85.50

(2.15) (2.23) (1.75) (1.88) (1.74) (1.96)

LMLS-SRC 89.80 90.39 87.87 88.89 90.43 89.12

(2.02) (1.35) (2.06) (1.35) (1.28) (1.19)

The bold values in Tables 1–6 are the best experiment results.

TABLE 2 | The comparative test results (with standard deviation) in binary
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 80.92 81.64 80.44 81.45 80.70 81.04

(2.26) (1.69) (2.10) (2.06) (1.62) (1.37)

LR 81.61 82.28 80.96 82.81 80.79 81.62

(1.71) (2.58) (2.70) (1.04) (1.88) (2.64)

SRC 82.91 83.18 82.86 83.07 82.94 83.02

(1.75) (2.46) (2.28) (1.16) (1.87) (2.37)

LC-KSVD 82.15 82.59 80.51 82.78 82.56 81.54

(2.74) (1.38) (2.80) (2.55) (1.96) (1.93)

FDDL 82.89 84.26 81.71 84.35 83.23 82.98

(2.23) (1.50) (1.43) (1.14) (2.02) (1.46)

SRDML 85.44 87.13 84.35 86.42 85.42 85.73

(2.14) (2.20) (2.10) (2.74) (2.05) (2.15)

LMLS-SRC 88.28 90.15 86.75 90.08 88.31 88.43

(2.07) (2.06) (1.67) (1.92) (1.18) (1.68)

TABLE 3 | The comparative training results (with standard deviation) in three-class
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 80.13 80.70 80.52 79.57 80.94 80.61
(2.72) (1.92) (2.24) (2.28) (2.34) (2.36)

LR 81.31 82.55 80.25 81.17 81.82 81.39
(2.55) (2.30) (2.03) (2.62) (2.19) (2.16)

SRC 81.94 82.20 80.46 81.09 81.17 81.33
(2.20) (2.49) (2.59) (2.10) (2.21) (2.54)

LC-KSVD 83.80 85.54 81.64 83.94 83.32 83.57
(1.76) (1.68) (2.98) (2.23) (1.80) (2.24)

FDDL 84.04 86.12 81.13 83.93 84.32 83.59

(2.30) (2.61) (2.33) (2.24) (2.36) (2.47)

SRDML 85.39 86.82 84.88 86.32 86.86 85.85

(2.33) (2.00) (2.37) (2.05) (2.33) (2.02)

LMLS-SRC 89.32 91.38 86.81 88.86 89.00 89.07

(1.84) (1.20) (2.81) (2.12) (1.53) (1.83)

TABLE 4 | The comparative test results (with standard deviation) in three-class
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 78.47 79.40 77.83 78.94 78.76 78.61

(2.16) (1.99) (2.50) (2.29) (1.60) (2.23)

LR 79.43 80.38 78.75 79.50 78.99 79.56

(2.02) (2.56) (2.19) (1.95) (2.18) (1.75)

SRC 80.23 80.22 79.26 79.31 79.47 79.74

(1.79) (2.53) (2.30) (2.54) (1.39) (2.31)
LC-KSVD 81.72 82.22 80.59 81.19 81.05 81.40

(1.31) (2.34) (2.41) (2.22) (1.35) (2.40)
FDDL 82.26 83.12 80.87 82.53 82.39 81.98

(2.20) (2.37) (1.42) (2.56) (2.44) (1.84)
SRDML 84.90 85.66 83.86 85.27 85.11 84.76

(2.27) (2.49) (1.80) (2.83) (2.13) (2.12)
LMLS-SRC 87.90 89.25 86.53 88.71 88.44 87.88

(1.81) (2.02) (2.04) (1.74) (1.81) (2.27)

TABLE 5 | The comparative training results (with standard deviation) in four-class
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LR 79.70 80.06 78.70 81.49 79.23 79.37

(1.47) (2.15) (2.20) (2.73) (1.48) (2.10)

LR 80.81 81.71 79.41 80.87 80.40 80.55

(1.88) (1.47) (2.09) (2.11) (1.22) (1.27)

SRC 80.86 82.38 79.92 78.97 80.41 81.14

(2.02) (2.29) (1.84) (1.37) (1.62) (2.05)
LC-KSVD 82.61 84.10 80.92 82.36 83.52 82.50

(2.16) (1.58) (1.55) (2.02) (2.32) (1.59)
FDDL 83.85 84.56 82.70 83.46 84.09 83.63

(1.56) (2.80) (2.29) (3.09) (2.07) (2.53)
SRDML 85.91 86.46 83.28 83.39 84.97 84.85

(2.05) (2.63) (2.34) (2.16) (1.55) (2.48)
LMLS-SRC 86.58 87.64 85.93 86.93 86.21 86.78

(1.59) (1.13) (2.45) (2.00) (1.49) (1.66)

(2) Training set size. The size of the training set usually directly
determines the performance of machine learning algorithms.
Figure 3 shows the classification accuracy of the LMLS-SRC
algorithm on binary-class, three-class and four-class classification
tasks under different training sets of each subclass. The X-axis
represents the training sample size N of each subclass, N = [50,
100,. . ., 400]. From Figure 3, we can see that the accuracy
of LMLS-SRC increases with the increase of training samples.
When the training sample size of each subset reaches 200, the
performance of the LMLS-SRC algorithm is basically stable,
indicating that the LMLS-SRC algorithm can achieve better
performance without too many training samples.

(3) Regularization parameters. The LMLS-SRC algorithm has
five regularization parameters λ1,λ2,λ3,λ4, and λ5, and the
regularization parameters are all obtained in [1.0E-3. . ., 1.0E+3].
λ2 controls the role of the large margin term. λ3 controls the role
of the local structure preservation term. λ4 controls the role of
the linear classifier. Figure 4 shows the classification accuracy of
the LMLS-SRC algorithm in the binary, three-class and four-class
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TABLE 6 | The comparative test results (with standard deviation) in four-class
classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean

LD 77.67 79.69 77.51 78.40 77.50 78.59

(2.22) (1.51) (2.15) (2.52) (2.08) (1.80)

LR 78.56 79.60 78.47 78.59 78.23 79.03

(1.89) (2.51) (1.60) (2.74) (1.43) (2.01)

SRC 79.40 79.77 79.06 80.25 79.15 79.41

(2.13) (2.33) (2.68) (1.44) (2.32) (2.50)

LC-KSVD 81.25 81.77 81.34 80.87 81.55 81.55

(2.40) (2.19) (1.59) (2.36) (2.08) (1.86)

FDDL 81.45 81.06 80.02 80.67 80.69 80.54

(1.33) (2.00) (2.09) (2.73) (1.25) (2.05)

SRDML 83.13 82.10 82.94 83.56 83.17 82.52

(2.06) (2.26) (2.04) (1.49) (1.99) (2.15)

LMLS-SRC 85.54 86.19 84.51 86.15 85.97 85.34

(1.59) (2.03) (2.12) (1.63) (1.06) (2.07)

FIGURE 2 | Convergence of the LMLS-SRC algorithm.

FIGURE 3 | Classification accuracy of local structure preservation sparse
representation classifier (LMLS-SRC) under different training sets of each
subclass.

tasks with different λ2, λ3, and λ4, respectively. Figure 4 shows
that the performance of the LMLS-SRC algorithm varies greatly
with different λ2, λ3, and λ4, while fixing the other parameters.
Therefore, it is reasonable to use a grid search strategy to optimize
the regularization parameters.
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FIGURE 4 | Classification accuracy of LMLS-SRC with different regularization
parameters, (A)λ2, (B)λ3, and (C) λ4.

CONCLUSION

With the acceleration of the global aging trend, one of the
problems brought about is the rapid increase in the number
of AD patients. The pathogenesis and effective treatment of
AD are still unclear at present. Early detection, classification,
and prediction of AD, and targeted care and treatment of
patients on this basis can delay the progression of AD. Machine
learning algorithms that can automatically extract information
and complete inference have good application prospects in
AD classification and prediction. Therefore, this manuscript
conducts research based on the application of SRC algorithm
in AD classification. The research content mainly includes two
aspects: model construction and model performance evaluation.
The proposed LMLS-SRC algorithm introduces the large margin
term and local constraint term in the traditional SRC model,
and obtains the dictionary and representation coefficients with
discriminative ability while maintaining the data manifold
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structure. The effectiveness of the LMLS-SRC algorithm is
validated on the KAGGLE Alzheimer’s dataset.

Although the LMLS-SRC algorithm shows the advantages
compared with some excellent algorithms, there are still some
problems to be solved. In the future, we will mainly focus on
the following aspects: (1) The LMLS-SRC algorithm belongs
to the shallow model. How to design the deep model of the
sparse representation algorithm needs to be further studied. (2)
In this manuscript, brain MRI images are used as the basic
data to study the application of AD classification. Multimodal
data can provide richer information, and how to extract
AD-related features from multimodal data can be studied
in the future. (3) This manuscript uses the volume features
extracted by using FSL tool. Extracting various features for
AD classification can be done in the next future. (4) In
practical applications, image classification often encounters small
samples or even a single training sample, and traditional SRC
algorithms cannot effectively handle such situations. How to
deal with the single training sample is the work to be further
studied in the future.
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Computer-aided diagnosis (CAD) has undergone rapid development with the advent of
advanced neuroimaging and machine learning methods. Nevertheless, how to extract
discriminative features from the limited and high-dimensional data is not ideal, especially
for amnesic mild cognitive impairment (aMCI) data based on resting-state functional
magnetic resonance imaging (rs-fMRI). Furthermore, a robust and reliable system for
aMCI detection is conducive to timely detecting and screening subjects at a high risk of
Alzheimer’s disease (AD). In this scenario, we first develop the mask generation strategy
based on within-class and between-class criterion (MGS-WBC), which primarily aims at
reducing data redundancy and excavating multiscale features of the brain. Concurrently,
vector generation for brain networks based on Laplacian matrix (VGBN-LM) is presented
to obtain the global features of the functional network. Finally, all multiscale features are
fused to further improve the diagnostic performance of aMCI. Typical classifiers for small
data learning, such as naive Bayesian (NB), linear discriminant analysis (LDA), logistic
regression (LR), and support vector machines (SVMs), are adopted to evaluate the
diagnostic performance of aMCI. This study helps to reveal discriminative neuroimaging
features, and outperforms the state-of-the-art methods, providing new insights for the
intelligent construction of CAD system of aMCI.

Keywords: machine learning, aMCI, MGS-WBC, multi-scale features, VGBN-LM

INTRODUCTION

Alzheimer’s disease (AD), which occurs frequently in elderly individuals, is a chronic
and irreversible neurodegenerative disease accompanied by brain impairments in memory,
communication, and reasoning (Dadar et al., 2017). The new report indicates that more than
5.7 million individuals have been diagnosed with AD in the United States (Association, 2018).
Unfortunately, as yet, there is no agreed medication or treatment protocol to cure and rehabilitate
patients with AD (Xi et al., 2022). Amnesic mild cognitive impairment (aMCI), which is generally
characterized by prominent deficits in memory, is widely considered as the early stage of AD due

Frontiers in Aging Neuroscience | www.frontiersin.org 1 May 2022 | Volume 14 | Article 89325074

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.893250
http://creativecommons.org/licenses/by/4.0/
mailto:ych987@126.com
mailto:chenexm@163.com
https://doi.org/10.3389/fnagi.2022.893250
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.893250&domain=pdf&date_stamp=2022-05-30
https://www.frontiersin.org/articles/10.3389/fnagi.2022.893250/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-893250 May 24, 2022 Time: 15:20 # 2

Cai et al. MGS-WBC and VGBN-LM Algorithms

to its greater risk of conversion to AD (Bian et al., 2014; Barone
et al., 2016). Accordingly, a robust and reliable system for
aMCI detection is conducive to timely detecting and screening
the subjects with AD at high risk, thus providing an optimal
treatment period for patients.

Resting-state functional magnetic resonance imaging (rs-
fMRI), which reflects the neural functional activity of the brain by
measuring spontaneous blood oxygen level dependency (BOLD)
signal fluctuations in a non-invasive way, has been widely
employed as one of the important techniques to diagnose brain-
related diseases (Li et al., 2018; Li R. et al., 2020; Sundaram et al.,
2020). However, rs-fMRI data are confronted with formidable
challenges to the existing pattern classification methods due to its
limited data samples and high dimensions, which is not favorable
for aMCI detection (Kassani et al., 2020). In consequence,
existing methods for observing alterations of spontaneous neural
activity, such as regional homogeneity (ReHo), the amplitude of
low-frequency fluctuation (ALFF), and functional connectivity
analysis, are employed to explore the biological mechanisms of
brain function and reduce the redundant information of brain
(Harrison et al., 2019; Liao et al., 2019; Ting et al., 2020; Xiao
et al., 2020). Furthermore, the aMCI can be diagnosed using rs-
fMRI data processed by the use of abovementioned methods as
reported in a few studies (Zhou et al., 2014; Kim et al., 2020; Li
Y. et al., 2020). Consequently, the diagnosis of aMCI based on
these data can be employed for timely prevention and screening
of potential patients with AD.

In this study, the data sample after preprocessing is then
conducted using ReHo calculation, ALFF calculation, and
functional connectivity construction, and we obtain two three-
dimensional whole-brain structures and the brain functional
network. Then, we develop an MGS-WBC model, which
mainly consists of the intraclass volatility detection method
using variable coefficient and multiscale statistical thresholds,
to excavate the multiscale features and reduce the redundancy
information both in the whole-brain structures and functional
network. It is remarkable that the traditional approaches only
use the single local features of the functional network as
the input of the classifier, while ignoring its global features.
Therefore, we present a VGBN-LM model that extracts the
global features and then concatenates local features obtained
from the MGS-WBC model to further excavate features of the
functional network. Then, we fuse the features that resulted
from the MGS-WBC model and VGBN-LM model to further
improve the diagnostic performance of aMCI. Concurrently,
to evaluate the validity of obtained features and diagnostic
performance of aMCI, typical machine learning classifiers
applied to the limited number of data, such as naive Bayesian
(NB), linear discriminant analysis (LDA), logistic regression
(LR), and support vector machines (SVMs), are utilized.
Noting that the leave-one-out cross-validation is employed to
avert the overfitting problem in this study (Sangnawakij and
Niwitpong, 2017). This study greatly improves the diagnostic
performance of aMCI compared with the traditional methods,
providing new insights for the construction of the computer-
aided diagnosis (CAD) system for neurodegenerative diseases,
especially for aMCI.

Herein, it is not ideal how to extract discriminative features
from the limited and high-dimensional data, especially for aMCI
data based on rs-fMRI. Furthermore, a robust and reliable system
for aMCI detection is conducive to timely detecting and screening
subjects at a high risk of AD. Hence, the novel aspect of this
study is that we first develop an MGS-WBC model to extract
discriminative features of whole-brain structures and functional
networks using volatility detection and multiple significant
thresholds. In the following section, we present a VGBN-LM
model that excavates the global features of the functional network
and fuses its local features, thus overcoming the low availability of
the network feature. Finally, all features generated from the MGS-
WBC model and VGBN-LM model are concatenated to further
improve the diagnostic performance of aMCI.

The remainder of the study is structured as follows: We discuss
the related studies on feature extraction and the diagnosis of
aMCI in the “Related Work” Section. We present data source,
data acquisition, and data preprocessing in the “Materials”
Section. We describe the methodologies of aMCI’s diagnostic
system in the “Methods” Section. We provide the experiment
results and analysis in the subsequent section and give the
conclusion in the final section.

RELATED WORK

Advanced neuroimaging, machine learning techniques, and
statistical algorithms provide an opportunity to understand how
the brain works between healthy control (HC) and patients with
brain diseases, and to analyze the pathological mechanism of the
brain (Nadarajah and Kotz, 2006; Lei et al., 2019). Additionally,
rs-fMRI, which is convenient and suitable for patients with
cognitive impairment who feel difficult to complete tasks, is
widely employed in the study of diseases related to the central
nervous system, which can reflect the functional condition of
the brain under the default state. Nevertheless, how to extract
discriminative features from the limited and high-dimensional
data is not ideal, especially for the aMCI data based on rs-fMRI.

To address this issue, numerous previous studies have focused
on excavating biomarkers associated with aMCI disease from
the perspective of neuroimaging. For example, compared with
the HC group, abnormal patterns of diverse-club and rich-
club organizations in the functional network are revealed using
the two-sample t-test in the aMCI group, indicating that
the overlapping nodes might be potential biomarkers in the
diagnosis of aMCI (Xue et al., 2020). Also, a previous study
has revealed that abnormal alterations of ALFF in patients with
aMCI are found involved in brain regions, such as the right
hippocampus, parahippocampal cortex, and left lateral temporal
cortex, which may act as biomarkers of disease (Xi et al., 2013).
The former investigation has also confirmed that disruptive
patterns of ReHo are found using the two-sample t-test in the
brain, which is conducive to better comprehending the neural
substrates of aMCI and can be served as biomarkers (Zhen et al.,
2018). It should be noted that all the studies mentioned above
are conducted using statistical methods and existing medical
background knowledge to analyze the disruptive patterns of brain
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disease, ignoring the adoption of machine learning techniques to
assess the validity and reliability of diagnostic results.

Currently, machine learning techniques have been actively
adopted by researchers to design the CAD system of aMCI,
which mainly aims at improving the classification performance
and putting it into clinical practice (Zhang et al., 2015; Yang
et al., 2021). To the limited number of data and information
redundancy problems, feature selection is first implemented and
then acted as the input of machine learning classifiers, which
are suitable for small data learning, such as NB, LDA, LR, and
SVM. A previous investigation based on the functional network
classification of aMCI has elucidated that the obvious brain
regions which resulted from the two-sample t-test are served as
the input of SVM classifier, resulting in the ACC of 69% (Lee et al.,
2015). Moreover, it has been reported that the identification ACC
of aMCI is 75.35% when using significant regions of the ALFF
as the input of SVM classifier (Yang et al., 2018). Up to now,
the existing literature not only lacks quantity in the concerned
study but also focuses on the single significant threshold method,
ignoring the extraction of multiscale features in the brain.

In this study, we first develop an MGS-WBC model using
validation detection and multiple significant thresholds methods
to extract multiscale features both in the whole-brain structures
and functional network. Concurrently, we present the VGBN-
LM model to extract the global features of the functional
network and fuse its local features. Finally, we fuse the extracted
features generated from the MGS-WBC model and VGBN-LM
model to further improve the diagnostic performance of aMCI.
Compared with the traditional method, the results elucidate
that the proposed methods provide the accuracy (ACC) of
89.55, 91.04, 92.54, and 94.03% with the same input data
in four typical classifiers, including NB, LDA, LR, and SVM,
and maximum improvements are 1.49, 1.49, 1.50, and 4.48%,
respectively. Moreover, the area under the curve (AUC) on
the four sequence classifiers mentioned above are 95.63, 92.69,
97.59, and 97.33%, increasing by 2.49, 1.96, 2.67, and 2.23%
compared with the traditional method. It can be inferred that
our aMCI diagnostic system is more suitable and reliable than
the traditional method. In addition, this study can help reveal
impressible and discriminative neuroimaging features, providing
new insights for the construction of the CAD system of aMCI.

MATERIALS

Description of the Data Source
In this study, the raw data samples are composed of two parts,
including 39 patients with aMCI and 38 HCs. These raw data
samples are obtained from the second stage of Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, which helps
to explore neurological biomarkers of cognitive disease and assist
in the diagnosis and treatment of the disease1.

It deserves to be further mentioned that not all data samples
are conformed to work demands. One data sample has been
precluded due to undue head movement (cumulative translation

1http://adni.loni.usc.edu/

or rotation >2 mm or 2◦) and poor quality of image registration
(Wang et al., 2018). Concurrently, we exclude 6 patients with
aMCI and 4 HCs for inconsistent voxel size or dimension of the
brain. To sum up, we end up with 33 patients with aMCI and 34
HCs in this study (Wang et al., 2020).

Data Acquisition and Preprocessing
All the data samples we focus on in this study are based on
rs-fMRI obtained using a clinical 3.0-Tesla (T) scanner. Noting
that each raw data sample based on rs-fMRI is composed of
brains at 140 points in time. To maintain the reliability of
the raw data samples, the subjects are instructed to lay flat,
to close their eyes without thinking, and to keep their head
in position throughout the imaging processing. We perform
the scanner parameters as follows (Li W. et al., 2020): Echo
time (TE) = 30 ms, repetition time (TR) = 3,000 ms, voxel
size = 3.31 mm × 3.31 mm × 3.31 mm, flip angle (FA) = 80◦.
More detailed information about scanner parameters based on
rs-fMRI data can be inquired on the ADNI’s website.

We perform raw data sample preprocessing using Resting-
State fMRI Data Analysis Toolkit plus (RESTplus)2, which
is based on math software MATLAB2012a3 and Statistical
Parametric Mapping software (SPM12)4. The raw data
preprocessing steps we adopt are depicted as follows: first,
owing to the machine and human factors, the imaging signal
acquired at the beginning of scanning may exhibit unstable
signal ingredient factors. Thus, the first 5 time points of each
data sample after imaging are discarded in this study. Also, we
calibrate the brains of the remaining time points to eliminate the
effects induced by discrepancies between various brains or slices.
We further normalize the brains of all data samples using the
echo-plane imaging (EPI) template from the original coordinate
system to Montreal Neurological Institute (MNI) coordinate
system due to the shape of each subject’s brain being inconsistent.
Specifically, we smooth out the noise that exists in the brain using
a Gaussian kernel of 6-mm full width at half maximum (FWHW)
for functional network and ALFF analysis (Yang et al., 2021).
After that, we remove the variables that affect the dependent
variables, including nuisance cerebrospinal fluid signal, global
mean signal, white matter signal, and 6 head motion parameters.
Finally, the signals with important physiology meaning are
obtained through a bandpass filter of 0.01–0.08 Hz (Vicente et al.,
2018). Based on the steps mentioned above, the data samples
after preprocessing are utilized in the following section.

METHODS

Overview of the Amnesic Mild Cognitive
Impairment Diagnosis System
In this study, we develop a diagnosis system for aMCI. At first,
the raw data samples based on the rs-fMRI are pre-processed
as depicted in the “Related Work” Section. In the next step,

2http://restfmri.net/forum/RESTplusV1.2
3http://www.mathworks.com/products/matlab/
4https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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FIGURE 1 | Overall framework of amnesic mild cognitive impairment (aMCI) diagnosis system.

the data samples after preprocessing are calculated using typical
approaches used to observe alterations of neuronal activity, such
as ReHo, ALFF, and functional connectivity, and we obtain two
whole-brain structures and one functional network for each data
sample. Then, the calculated data samples are acted as the input of
MGS-WBC model and VGBN-LM model we propose to extract
biological features of whole-brain structures and functional
networks. To evaluate the validity of obtained features, NB, LDA,
LR, and SVM are utilized in this study. Furthermore, the leave-
one-out cross-validation is carried out to avert the overfitting
problem in this study.

In the results, the features generated by the MGS-WBC
model and VGBN-LM model yield better performance than
the traditional method in the aMCI detection process. The
framework of our aMCI diagnosis system is illustrated in
Figure 1.

Mask Generation Strategy Based on
Within-Class and Between-Class
Criterion
In this section, we develop an MGS-WBC model to reduce the
redundancy both in the whole-brain structures and functional
networks and to further excavate the corresponding features of
multiscale significant thresholds. Remarkably, the connectivity
of the functional network is constructed using the Pearson
correlation coefficient (PCC), and the inputs of PCC come from
the time series of the corresponding brain regions. Also, to
better extract the time series of the brain, we employ the general
template of anatomical automatic labeling (AAL) to segment

the brain into 90 regions (Ju et al., 2019). The structure of
the MGS-WBC model shown in Figure 2 mainly consists of
within-class volatility detection using variable coefficient and
multi-scale significant thresholds. Since the mask size using a
single significant threshold of 0.001 < p < 0.05 is much larger
than p < 0.001, the traditional method only uses the mask
with p < 0.001 for feature extraction and ignores the effective

FIGURE 2 | The description of mask generation strategy based on
within-class and between-class criterion (MGS-WBC) model.
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utilization of features. Besides, for the limited amount of data
with a high dimension, how to better extract discriminative
features effectively corresponding to the significant threshold of
0.001 < p < 0.05 is no clear. First, intraclass volatility detection
mask of the whole-brain structures and 90 × 90 functional
network, which is defined as Maskvolatility, are generated using
variable coefficient within the group to extract the smallest values
of the first 5% (Xu et al., 2017), and the variable coefficient (VC)
is defined as follows:

VC =

√∑n
i=1(xi−

−
x)2

n
−
x

× 100% (1)

where x̄ denotes the average value of the selected pixel or
selected brain region, n denotes the number of subjects within
the group, and xj denotes the value of the selected pixel or
selected brain region corresponding to the ith subject. To
obtain the features under multiple significant thresholds, we use
Maskvolatility and a two-sample t-test to generate the mask of
0.001 < p < 0.05, defined as Mask0.001<p<0.05, which makes
a large difference between the averages of the classes and the
fluctuations within the classes are stable. Next, we further use
the traditional method that extracts the features obtained from
p < 0.001 to generate a mask, defined as Maskp < 0.001. And
finally, Mask0.001 < p < 0.05 and Maskp < 0.001 are concatenated as
the input mask of whole-brain structures or functional networks
to extract the final features. It is worth mentioning that the whole-
brain structures employed in this study are calculated using
the ALFF method and ReHo method, respectively, which are
commonly employed to analyze neural activity in the brain and
reduce the dimensions of brain data.

Vector Generation for Brain Networks
Based on Laplacian Matrix
In this section, we present a VGBN-LM model for extracting the
global features of the functional network. Laplacian Eigenmaps
(LE) is a non-linear dimensionality reduction method, which
constructs the relationship between samples from the local point
of view, and can reflect the local relationship of samples to
a certain extent. That is, the points related to each other are
expected to be as close as possible to each other in the space
after dimensionality reduction. Accordingly, we mainly use LE’s
conception to extract global features of the functional network.
Here is a brief introduction to the LE algorithm (Belkin and
Niyogi, 2001):

Step 1: The construction of the graph is defined as G(V, W):
Given n samples x1, x2..., xn in Rd, the edge connection wij
between sample i and sample j is established using b nearest
neighbors, and the wij can usually be constructed using Gaussian
kernel function shown in (2). Notably, wij represents symmetric,
D represents the node degree matrix shown in (3), and xn
represents the eigenvector corresponding to the sample n.

wij = e−
|| xi−xj ||

2

t (2)

Dii =
∑
j

wij (3)

Step 2: To maintain the identical geometric property as
possible after reducing the dimension of the functional network,
it can be solved as the minimization problem of yTLy. That is, if
the connection value wij is larger, the values of yi and yj will be
closer, as shown in (4). Thus, this reduces now to (5).

yTLy = yT(D−W)y
= yTDy− yTWy
=
∑n

i=1 diy
2
i −

∑n
i,j=1 yiyjwij

=
1
2 (
∑n

i=1 diy
2
i − 2

∑n
i,j=1 yiyjwij +

∑n
j=1 djy

2
j )

=
1
2
∑n

i,j=1 wij(yi − yj)2 ≥ 0

(4)

Yopt = arg min
YTDY=I

tr(YTLY) (5)

Step 3: Finally, after using the Lagrange multiplier method, the
optimal result can be obtained by (6).

Ly = λDy (6)

However, the goal of the LE algorithm is to reduce the
dimension of the sample features, and the dimension of the
reduced features depends on the number of minimum non-
zero eigenvalues, which does not conform to the requirements
of extracting the global features from the functional network in
this study. Moreover, it is unable to transform the functional
network from two dimensions to one dimension that maintains
the global features. Thus, considering the limited and high-
dimensional data, the VGBN-LM model based on the Laplacian
matrix is proposed to reduce the dimension of 90 × 90
functional network and obtain the global features of functional
network. Concurrently, we expect that the functional network
after dimension reduction operation can maintain and reflect the
identical geometric property of functional network. That is, we
represent the global features of 90 × 90 functional network in
terms of reduced dimension vector.

First, we construct the minimization problem based on the
Laplacian matrix. More specifically, let

min yTLy = 1
2
∑

i,j wij(yi − yj)2

s.t. yTDy = σ
(7)

where σ represents the special real number and its value will be
introduced later. We then use Lagrange to acquire optimal result,
which can be formulated as follows:

G(y,λ) = yTLy+ λ(σ− yTDy) (8)

Then, we take the derivative of y and λ of G
(
y,λ

)
,

respectively.

∂G(y,λ)
y =

∂(yTLy+λ(σ−yTDy))
y

=
∂(yT(L−λD)y+λ∂)

y
= 0

⇒ Ly = λDy

(9)
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∂G(y,λ)
λ
=

∂(yTLy+λ(σ−yTDy))
λ

⇒ yTDy = σ
(10)

Thus, the optimal result turns to determine the solution of (11).

{
Ly = λDy
yTDy = σ

(11)

Nevertheless, the LE algorithm employs constraint conditions
of yTDy = 1 to obtain the eigenvectors corresponding to all non-
zero eigenvalues, ignoring that all the optimal results may not
satisfy the original constraint condition. Moreover, the generated
eigenvectors of 90 × 90 functional network cannot present
its global features due to the excessive redundant features and
limited amount of data.

Next, we deform Ly = λDy to obtain the optimal result, and
its expression could be written as:

Ly = λDy
⇔ (D−W)y = λDy
⇔ Dy− λDy =Wy
⇔ (1− λ)Dy =Wy
⇔ yT(1− λ)Dy = yTWy
⇔ (1− λ)yTDy = yTWy

(12)

If λ 6= 1, we obtain

(1− λ)yTDy = yTWy

⇒ yTDy = yTWy
1−λ

(13)

Then, if λ = 1, it can be inferred as below:

(1− λ)yTDy = yTWy
⇔ Ly = λDy

λ=1
−→ Ly = Dy
⇔Wy = 0

(14)

Therefore, the optimal result of (11) can be further deformed
as:

{
yTDy = σ

Ly = λDy
⇒


{
yTDy = yTWy

1−λ

yTDy = σ
, if λ 6= 1{

Dy = Ly⇔Wy = 0
yTDy = σ

if λ = 1
(15)

Significantly, the solution of (15) is reached by use of the
backward induction. Let (λξi , yξi) represents the solutions of{
yTDy = yTWy

1−λ
⇔ Ly = λDy

yTDy = σ
if λ 6= 1, then we can deduce

that σξi = yTξiDyξi . Based on this, we can obtain the following

form:

arg minyTDy=σ yTLy
Lλξi=λξiDyξi ,y=yξi

−→ min λξiy
T
ξi
Dyξi

yTξiDyξi=
yTξi

Wyξi
1−λξi

−→ min λξi
yTξiWyξi
1−λξi

= min(λξ1

yTξ1Wyξ1
1−λξ1

,λξ2

yTξ2Wyξ2
1−λξ2

, ...,λξi
yTξiWyξi
1−λξi

)

, i ∈ (1, 2, ..., d)

(16)

where d represents the number of solutions in Ly = λDy.
Concurrently, we assume that Dy = Ly have the solutions,
defined as yβj , and then we make σβj = yTβjDyβj . From this, it can

be deduced that the equation
{
Dy = Ly⇔Wy = 0
yTDy = σ

if λ = 1

have the solution. Therefore, we can deduce the expression as
follows:

arg minyTDy=σ yTLy
y=yβj
−→ min yTβjLyβj

= min(yTβ1
Lyβ1 , y

T
β2
Lyβ2 , ..., y

T
βj
Lyβj), j ∈ (1, 2, ..., h)

(17)

where h represents the number of solutions in Dy = Ly. To sum
up, the optimal result of (7) can be written as follows:

arg minyTDy=σ yTLy = min(min λξi
yTξiWyξi
1−λξi

,min yTβjDyβj)

, i ∈ (1, 2, ...d) and j ∈ (1, 2, ..., h)
(18)

Remarkably, the value of σ is obtained from the optimal
solution in (18). Here, the procedure of VGBN-LM model can
be summarized as follows:

Step 1: Given n brain regions extracted using AAL template,
we use the absolute value of PCC shown in (19) to construct
the edge connection wij between brain region i and brain region
j instead of Gaussian kernel function and b nearest neighbors
method.

wij =

∣∣∣∣∣∣∣
∑n

i=1(xi −
_
x)(yi −

_
y)√∑n

i=1(xi −
_
x)2
√∑n

i=1(yi −
_
y)2

∣∣∣∣∣∣∣ (19)

where xi and yi denote the two signals from two different brain
regions,

_
x denotes the average value corresponding to xi,

_
y

denotes the average value corresponding to yi, and n denotes the
total number of brain regions in AAL template.

Step 2: We present (7–19) to reduce the dimension of the
matrix wij from two dimensions to one dimension. Meanwhile,
we maintain and reflect the global structure information in the
lower dimension space to a certain degree. That is, the closer the
connections between brain regions before dimension reduction,
the nearer the corresponding values after dimension reduction.
In this way, our generated vector yoptresulted from (18) contains
global features of functional network.

Step 3: Due to the limited amount of data, the two-sample
t-test method is employed to select the global features with
obvious differences (p < 0.05) in the generated vector yopt , and
then, we concatenate the local features obtained from MGS-WBC
model for the following analysis.
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Multiscale Feature Fusion
We concatenate all the generated features obtained from MGS-
WBC model and VGBN-LM model to further improve the
diagnostic performance of aMCI. That is, if the dimensions of two
input features xinput and yinput are p and q, then the dimension of
the output feature z is equal to p+ q.

Classification Using Naive Bayesian,
Linear Discriminant Analysis, Logistic
Regression, and Support Vector Machine
As can be seen from the above data, we have obtained
multiscale features of whole-brain structures and functional
networks using the MGS-WBC model and VGBN-LM mode.
Considering the limited amount of data, the selection of an
appropriate classifier adopted in this study is crucial to evaluate
the validation of obtained features and improve the diagnostic
performance of aMCI. Fortunately, the SVM classifier and
the LR classifier exhibit effective diagnostic performance in
terms of mild cognitive impairment (MCI), and it has been
exploited by the majority of researchers (Ciulli et al., 2016;
Khatun et al., 2019). In addition, typical classifiers applied to
small data learning, such as NB classifier and LDA classifier,
are also employed to better assess the generalization ability of
features. The following is a brief introduction to the classifiers
mentioned above.

The NB classifier mainly uses the probability of known data
to determine the classification of the unknown data (Liu et al.,
2016):

(1) Each data sample x is composed of m-dimensional
features, denoted by a1, a2, a3, ..., am .

(2) We calculate the conditional probability for each category
under each data sample. The category set is denoted as C =
{l1, l2, ..., lk}, hence, we calculate p(l1|x), p(l2|x), ..., p(lk|x)
separately.

p(lk|x) =
p(lk)p(x|lk)

p(x)
(20)

where p(lk|x) can be deduced by (20) and k is the class
number of x.

(3) If p(lf |x) = max(p(l1|x), p(l1|x), ..., p(lk|x)), then lf is the
category corresponding to x, where f ∈ (1, 2, ..., k).

The main idea of the LDA classifier is to ensure that
the intraclass variance of each class is small, and the mean
difference between classes is large in the space after the
projection (Ji and Ye, 2008). Given input data set D =
{(x1, y1), (x2, y2), ..., (xn, yn)}, y ∈ {0, 1}, meanwhile, Nj(j =
0, 1) denotes the number of data samples corresponding to the
category j, x denotes the input and Xj(j = 0, 1) denotes the set
of data samples corresponding to the category j. The mean vector
of the data sample corresponding to class j can be expressed as
follows:

uj =
1
Nj

∑
x∈Xj

x , j = 0, 1 (21)

The covariance matrix of the data sample corresponding to
class j is denoted as

∑
j.∑

j =
∑
x∈Xj

(x− uj)(x− uj)T , j = 0, 1 (22)

Then, the divergence matrix within class is defined as Sw.

Sw =
∑
x∈X0

(x− u0)(x− u0)
T
+

∑
x∈X1

(x− u1)(x− u1)
T (23)

where u denotes mean value.
Simultaneously, the divergence matrix between classes can be

described as Sb.

Sb = (u0 − u1)(u0 − u1)
T (24)

In this way, the optimization objective is rewritten as follows:

arg max J(w) =
wTSbw
wTSww

(25)

According to (21–25), it can be inferred as follows:

w = S−1
w (u0 − u1) (26)

That is, the optimal projection direction w can be determined
by calculating the mean and variance of the original two types of
samples, and then, the classification is conducted on this basis.

The LR classifier is a probabilistic statistical classification
model, which uses a probability score as the predicted value of the
dependent variable to evaluate the mutual relation between the
dependent variable and the independent variable. Specifically, we
utilize the L2 regularization considering the overfitting problem
in this study (Chen et al., 2011). The loss function with L2
regularization can be described as follows:

J(θ) = 1
m
∑m

i=1[−y
(i) log(hθ(x(i)))]

−
1
m
∑m

i=1[(1− y(i)) log(1− hθ(x(i)))]
+

η
2m
∑n

j=1 θ2
j

(27)

where hθ(x) is defined as:

hθ(x) =
1

1+ e−θTx
(28)

Then, we take the derivative concerning (27).

∂J(θ)
∂θj
=

1
m

m∑
i=1

(hθ(xi)− yi)xij +
η

m
θj (29)

where m represents the number of data samples, and ηrepresents
the regularization coefficient. Finally, the parameters θj
corresponding to the minimum loss function are obtained
through continuous iteration.

The SVM classifier is to obtain the optimal separating
hyperplane in the feature space to maximize the interval between
positive and negative data samples on the training set. It is also
worth noting that the kernel function adopted in this study is the
Gaussian Radial Basis Function kernel (Zhou et al., 2014). The
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SVM classifier mainly works around the following optimization
problems (Cristovao et al., 2022).

min
w,b

1
2 ||w||

2
+ C

∑N
i=1 ψi

s.t. yi[wTxi + b] ≥ 1−ψi, ψi ≥ 0
(30)

The Gaussian kernel is described as follows:

K(x, xi) = exp(−
||x-xi||2

σ2 ) (31)

where C represents the penalty coefficient, xi represents the data
sample, yi represents class corresponding to ith data sample,
w and b represent the optimal parameters of the model, N
represents the number of data, and ψi represents the relaxation
variable that corresponds to the ith data sample.

In this study, the leave-one-out cross-validation is employed
to avert the overfitting problem of classifiers and overcome the
limited number of data, which means that one data sample
is employed as the testing set and the remaining samples are
employed as the training set. Besides, the parameter adjustment
process of the classifier follows the optimal principle.

Evaluation Criteria
In this study, we obtain features using the MGS-WBC model and
VGBN-LM model. To evaluate the validity of obtained features,
the most widely used measurements for binary classification
problems, such as ACC, F1-Score, and AUC, are adopted based
on the confusion matrix (Kam et al., 2020).

ACC =
TP + TN

TP + TN + FP + FN
(32)

Precision =
TP

TP + FP
(33)

Sensitivity =
TP

TP + FN
(34)

F1− Score =
2× Precision× Sensitivity
Precision+ Sensitivity

(35)

True positive (TP), false negative (FN), false positive (FP),
and true negative (TN) are defined to calculate the evaluation
indicators of classifiers, as is shown in Figure 3.

FIGURE 3 | Confusion matrix used to measure the binary classification
problems.

EXPERIMENT RESULTS AND ANALYSIS

In this section, compared with the traditional method, we
first analyze the diagnostic performance of aMCI by using the
whole-brain structural features obtained from the MGS-WBC
model as the input of four classifiers. Then, we analyze the
diagnostic performance of aMCI by using the global features
obtained from VGBN-LM model and local features obtained
from MGS-WBC model as the input of four classifiers compared
with the traditional method. In the end, we fuse all features,
including whole-brain structural features, local features, and
global features, to further improve the diagnostic performance of
aMCI. It is notable that the order of the above four classifiers is as
follows: NB, LDA, LR, and SVM.

The Performance Analysis of
Whole-Brain Structural Features
In our experiments, the MGS-WBC model is adopted in
two whole-brain structures, including ReHo and ALFF, to
reduce the data redundancy and extract multiscale features.
For the whole-brain structure calculated by ReHo, as shown
in Table 1 and Figures 4, 5, we obtain 10 obvious regions of
the brain using MGS-WBC model, including the right gyrus
rectus (GR), left pallidum (PAL), left cingulate gyrus (CG),
left supplementary motor area (SMA), left inferior cerebellum
(IC), right IC, left middle temporal gyrus (MTG), left middle
frontal gyrus (MFG), right MFG, and left middle occipital
gyrus (MOG), while only six obvious brain regions, namely,
left IC, right IC, left MTG, left MFG, right MFG, and left
MOG, are found using a single significant threshold (two-
sample t-test, p < 0.001). Significantly, each significant region is
composed of the activated voxels in the brain. Then, the features
extracted from 10 significant regions and six significant regions
are separately employed as the input of classifiers, including
NB, LDA, LR, and SVM, to evaluate the aMCI’s diagnostic

TABLE 1 | The extracted clusters using MGS-WBC model after ReHo calculation.

Region Peak/MNI t-score Cluster size

x y z

R GR 21 −18 −45 −2.9046 5

L PAL −12 0 −3 −2.6854 5

L CG −15 −6 36 2.3872 5

L SMA −15 −9 54 3.3572 9

L IC −12 −63 −60 −4.2059 8

R IC 24 −69 −48 −3.8093 24

L MTG −51 −39 −12 −4.0141 11

L MFG −48 42 −15 4.2324 7

R MFG 45 48 0 4.1363 7

L MOG −45 −66 3 −3.7574 10

The x, y, and z coordinates are the primary peak locations in the MNI space.
Cluster size ≥ 5 voxels in two-sample t-test. L, left; R, right; GR, gyrus rectus;
PAL, pallidum,; CG, cingulate gyrus; SMA, supplementary motor area; IC, inferior
cerebellum; MTG, middle temporal gyrus; MFG, middle frontal gyrus; MOG, middle
occipital gyrus.
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FIGURE 4 | Compared with the HC group, the ReHo in aMCI group exhibits prominent differences based on MGS-WBC2. L, left; R, right; GR, gyrus rectus; PAL,
pallidum; CG, cingulate gyrus; SMA, supplementary motor area.

FIGURE 5 | Compared with the HC group, the ReHo in aMCI group exhibits prominent differences based on SSW1. L, left; R, right; IC, inferior cerebellum; MTG,
middle temporal gyrus; MFG, middle frontal gyrus; MOG, middle occipital gyrus.

performance. Table 2 presents the diagnostic performance of
aMCI using different feature extraction methods of the whole-
brain structure (ReHo). The results of MGS-WBC2 all exceed
66.67% in the four classifiers. Besides, compared with the
single significant threshold in the whole-brain structures (SSW1)
(Zhang et al., 2015; Yang et al., 2018), the results of MGS-WBC3

provide the ACC of 88.06, 89.55, 91.04, and 91.04% in the
four classifiers, improving by 4.48, 2.98, 10.44, and 4.47%,
respectively. Concurrently, the AUC are 94.12, 96.08, 96.88,
and 95.72% in four classifiers, and the increases are 2.24,
1.96, 5.53, and 1.51% compared with SSW1. For F1-Score, we
provide about 87.88, 89.55, 91.18, and 90.91% in four classifiers,
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TABLE 2 | Performance metrics of different classifiers using MGS-WBC model
after ReHo calculation.

Classifier Method ACC F1-Score AUC

NB SSW1 0.8358 0.8358 0.9189

MGS-WBC2 0.6866 0.6667 0.7460

MGS-WBC3 0.8806 0.8788 0.9412

LDA SSW1 0.8657 0.8732 0.9412

MGS-WBC2 0.7164 0.6885 0.7799

MGS-WBC3 0.8955 0.8955 0.9608

LR SSW1 0.8060 0.8169 0.9135

MGS-WBC2 0.7164 0.7077 0.7861

MGS-WBC3 0.9104 0.9118 0.9688

SVM SSW1 0.8657 0.8696 0.9421

MGS-WBC2 0.7612 0.7419 0.7709

MGS-WBC3 0.9104 0.9091 0.9572

SSW1 refers to the single significant threshold (two-sample t-test, p < 0.001) in the
whole-brain structures (Zhang et al., 2015; Yang et al., 2018). MGS-WBC2 refers to
the combination of volatility detection and significant threshold (0.001 < p < 0.05)
in the MGS-WBC model. MGS-WBC3 refers to the fused features, that is, the final
output of MGS-WBC model.

TABLE 3 | The extracted clusters using MGS-WBC model after ALFF calculation.

Region Peak/MNI t-score Cluster size

x y z

VER 27 0 33 2.6341 21

VER 27 −21 45 −2.7783 5

The x, y, and z coordinates are the primary peak locations in the MNI space. Cluster
size ≥ 5 voxels in two-sample t-test. VER, vermis.

and maximum improvements are 4.30, 2.23, 9.49, and 3.95%
compared with SSW1.

Next, for the whole-brain structure after ALFF computation,
as shown in Table 3 and Figure 6, only two significant regions of
the brain corresponding to different locations are found, whereas
no significant region exists using SSW1. As shown in Table 4, the
results of MGS-WBC2 or MGS-WBC3 provide the ACC of 65.67,
73.13, 71.64, and 67.17% in four classifiers. In addition, we get
the AUC of 65.67, 77.72, 77.18, and 75.22% in four classifiers.
For F1-Score, we obtain 65.67, 72.73, 69.84, and 60.71% in
four classifiers.

TABLE 4 | Performance metrics of different classifiers using MGS-WBC model
after ALFF calculation.

Classifier Method ACC F1-Score AUC

NB 0.6567 0.6567 0.6567

LDA MGS-WBC2 0.7313 0.7273 0.7772

LR /MGS-WBC3 0.7164 0.6984 0.7718

SVM 0.6716 0.6071 0.7522

MGS-WBC2 refers to the combination of volatility detection and significant
threshold (0.001 < p < 0.05) in MGS-WBC model. MGS-WBC3 refers to the fused
features, that is, the final output of MGS-WBC model.

Our goal is to make the average difference between the
classes larger and the variance within the classes more stable.
Consequently, we develop an MGS-WBC model using multiple
significant thresholds and validation detection to generate the
fused features of whole-brain structures. Through ablation
experiments, it can be inferred that the features of whole-
brain structures extracted using MGS-WBC can significantly
improve the diagnostic performance of aMCI in typical classifiers
compared with the SSW1. It indicates that the MGS-WBC model
we present is valid, and the model can also effectively remove
redundant information from the brain.

The Performance Analysis of Functional
Network Features
In our experiments, to fully excavate the features of the functional
network, we develop an MGS-WBC model to extract local
features. Meanwhile, we present a VGBN-LM model to extract
global features of the functional network and fuse its local
features to improve the diagnostic performance of aMCI.

First, we select the local features of the functional network
using MGS-WBC model to improve the diagnosis performance
of aMCI. Our findings elucidate that three pairs of connected
brain regions with notable differences are found using MGS-
WBC2, including (45, 46), (73, 76), and (74, 76), as can be
seen from Table 5. Also, two pairs of connected brain regions,
such as (64, 58) and (63, 74), are found using SSW1. The brain
regions involved in the local feature selection are shown in
Figure 7, where the light blue ball denotes the selected brain
regions, and the red line indicates that the two selected brains
are connected. Notably, the number in Figure 7 and Table 6
denotes the brain regions segmented using the AAL template.

FIGURE 6 | Compared with HC group, the ALFF in aMCI group exhibits prominent differences based on volatility detection in the MGS-WBC model. VER, Vermis.
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TABLE 5 | Performance metrics of local features using MGS-WBC model.

Classifier Method ACC F1-Score AUC

NB SSF1 0.7313 0.7188 0.7496

MGS-WBC2 0.5672 0.5538 0.6346

MGS-WBC3 0.7463 0.7463 0.8048

LDA SSF1 0.7313 0.7188 0.7531

MGS-WBC2 0.6269 0.6032 0.6854

MGS-WBC3 0.7164 0.7164 0.8066

LR SSF1 0.6567 0.5490 0.7308

MGS-WBC2 0.6119 0.5938 0.6961

MGS-WBC3 0.7015 0.6667 0.7995

SVM SSF1 0.7612 0.7576 0.7647

MGS-WBC2 0.6418 0.5862 0.6943

MGS-WBC3 0.7761 0.7826 0.8324

SSF1 refers to the single significant threshold (p < 0.001) in the functional network
(Zhang et al., 2015; Yang et al., 2018). MGS-WBC2 refers to the combination
of volatility detection and significant threshold (0.001 < p < 0.05) in MGS-
WBC model. MGS-WBC3 refers to the fused features, that is, the final output
of MGS-WBC model.

FIGURE 7 | The brain regions involved in local feature selection: 45 represents
the left cuneus; 46 represents right cuneus; 73 represents left putamen; 76
represents right pallidum; 74 represents right putamen; 64 represents right
supramarginal gyrus; 58 represents postcentral gyrus; and 63 represents left
supramarginal gyrus.

The diagnosis performance of aMCI using local features resulted
from the MGS-WBC model is sorted in Table 5 compared with
SSF1. When the features generated from MGS-WBC2 are used
as the input of the four classifiers, including NB, LDA, LR, and
SVM, the classification metrics ranged from 55.38 to 69.61%.
Meanwhile, the results elucidate that except for LDA, each of NB,
LR, and SVM classifiers makes large improvements using MGS-
WBC3 compared with SSF1. Although the ACC and F1-Score of
LDA decreased by 1.49 and 0.24%, respectively, the AUC value
increased by 5.35%.

TABLE 6 | Local feature selection of functional network using MGS-WBC model.

Connected regions Group Volatility detection p-value

(45, 46) aMCI 0.2611 0.0157

HC 0.3063 0.0462

(73, 76) aMCI 0.6176 0.0335

HC 0.5038 0.0335

(74, 76) aMCI 0.5172 0.0133

HC 0.3487 0.0133

(64, 58) aMCI and HC – 0.0006

(63, 74) aMCI and HC – 0.0006

45 represents the left cuneus; 46 represents right cuneus; 73 represents left
putamen; 76 represents right pallidum; 74 represents right putamen; 64 represents
right supramarginal gyrus; 58 represents postcentral gyrus; and 63 represents left
supramarginal gyrus.

TABLE 7 | Global features analysis using VGBN-LM model.

Classifier Method ACC F1-Score AUC

NB VGBN-LM1 0.4478 0.3934 0.5116

VGBN-LM 0.6418 0.6757 0.6996

LDA VGBN-LM1 0.5672 0.5246 0.3137

VGBN-LM 0.6269 0.6377 0.6185

LR VGBN-LM1 0.5224 0.5000 0.5330

VGBN-LM 0.6567 0.6567 0.6979

SVM VGBN-LM1 0.4627 0.4375 0.3966

VGBN-LM 0.6119 0.6286 0.6729

VGBN-LM1 refers to VGBN-LM model while without using two-sample t-test
(p < 0.05). VGBN-LM refers to the method we propose in the “Vector Generation
for Brain Networks Based on Laplacian Matrix (VGBN-LM)” Section.

We further develop a VGBN-LM model to extract global
features of the functional network, including left MFG (p = 0.035,
two-sample t-test), left hippocampus (p = 0.030, two-sample
t-test), right hippocampus (p = 0.038, two-sample t-test), left
amygdala (p = 0.009, two-sample t-test), and right amygdala
(p = 0.013, two-sample t-test), and the global features, are then
used as the input of classifiers to evaluate the validity of the
extracted features. As summarized in Table 7, the results reveal
that the ACC, F1-Score, and AUC in the four classifiers can
achieve more than 61% using VGBN-LM. Moreover, the results
of VGBN-LM can provide the ACC of 64.18, 62.69, 65.67,
and 61.19% in four classifiers, and maximum improvements
are 19.40, 5.97, 13.43, and 14.92% compared with VGBN-LM1.
Also, compared to VGBN-LM1, the AUCs of the four classifiers
are 69.96, 61.85, 69.79, and 67.29%, and the growth rates are
18.80 30.48, 16.49, and 27.63%. For F1-Score, we provide about
64.18, 62.69, 65.67, and 61.19% in four classifiers, increasing
by 28.23, 11.31, 15.67, and 19.11% compared with VGBN-LM1.
Furthermore, we reduce the number of features per data sample
from 4,005 ( 8100−90

2 ) to 5 using VGBN-LM.
Then, we fuse the multiscale features of functional network,

including local features and global features, to further improve
the diagnostic performance of aMCI. The local features of
functional network are obtained using SSF1 and MGS-WBC2. As
summarized in Table 8, using MGS-VGBN1, each of NB, LDA,
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TABLE 8 | Performance metrics of local and global features of functional network.

Classifier Method ACC F1-Score AUC

NB SSF1 0.7313 0.7188 0.7496

MGS-VGBN1 0.7313 0.7353 0.7772

MGS-VGBN2 0.7612 0.7647 0.8164

LDA SSF1 0.7313 0.7188 0.7531

MGS-VGBN1 0.7463 0.7536 0.7763

MGS-VGBN2 0.7761 0.7761 0.8119

LR SSF1 0.6567 0.5490 0.7308

MGS-VGBN1 0.7164 0.6545 0.7879

MGS-VGBN2 0.7761 0.7692 0.8342

SVM SSF1 0.7612 0.7576 0.7647

MGS-VGBN1 0.7761 0.7761 0.8057

MGS-VGBN2 0.7910 0.7879 0.8520

SSF1 refers to the single significant threshold (p < 0.001) in the functional
network (Zhang et al., 2015; Yang et al., 2018). MGS-VGBN1 refers to local
features generated from volatility detection of MGS-WBC model and global features
generated from VGBN-LM model in functional network. MGS-VGBN2 refers to the
fused features of functional network.

LR, and SVM classifiers has a large value in ACC, F1-Score, and
AUC, and its values ranged from 65.45 to 80.57%. Specifically, the
results of MGS-VGBN2 provide the ACC of 76.12, 77.61, 77.61,
and 79.10%, and the growth rates are 2.99, 4.48, 11.94, and 2.98%
compared with SSF1. In addition, we obtain the AUC of 81.64,
81.19, 83.42, and 85.20% in four classifiers, and the improvements
are 6.68, 5.88, 10.34, and 8.73% compared with SSF1. For F1-
Score, we provide about 76.47, 77.61, 76.92, and 78.79% in four
classifiers, and the improvements are 4.59, 5.73, 22.02, and 3.03%
compared with SSF1.

Regarding limited and high-dimensional data, we present
a VGBN-LM model that excavates the global features of the
functional network and fuses local features obtained by the
MGS-WBC model. By ablation experiments, multiscale features
of functional network we propose can greatly improve the
diagnostic performance of aMCI compared to SSF1, indicating
that the global features we propose can play a certain role in
the intelligent diagnosis of aMCI. Besides, the features extracted
by this study can accurately locate the significant regions in the
brain, which is convenient for doctors to conduct further studies.

The Performance Analysis of Fused
Features
In our experiments, we mainly fuse the multiscale
features, including whole-brain structural features and
features of functional network, to improve the diagnostic
performance of aMCI.

As summarized in Table 9, compared with the single
significant threshold (p < 0.001) in the whole-brain structures
and function network (SSWF1) (Zhang et al., 2015; Yang et al.,
2018), the ACC of NB, LDA, LR, and SVM classifiers are about
89.55, 91.04, 92.54, and 94.03%, increasing by 1.49, 1.49, 1.50,
and 4.48%, respectively. Besides, this study provides the AUC of
95.63, 92.69, 97.59, and 97.33% in the four classifiers, increasing
by 2.49, 1.96, 2.67, and 2.23%, respectively. For F1-Score, this

TABLE 9 | The fused features analysis.

Classifier Method ACC F1-Score AUC

NB SSWF1 0.8806 0.8788 0.9314

FUSE 0.8955 0.8955 0.9563

LDA SSWF1 0.8955 0.8986 0.9465

FUSE 0.9104 0.9091 0.9269

LR SSWF1 0.9104 0.9091 0.9492

FUSE 0.9254 0.9254 0.9759

SVM SSWF1 0.8955 0.8986 0.9510

FUSE 0.9403 0.9412 0.9733

SSWF1 refers to the single significant threshold (p < 0.001) in the whole-brain
structures and function network (Zhang et al., 2015; Yang et al., 2018). FUSE
refers to the fused features obtained from MGS-WBC and VGBN-LM models in
the whole-bran structures and functional network.

study provides about 76.47, 77.61, 76.92, and 78.79% in the four
classifiers, increasing by 1.67, 1.05, 1.64, and 4.26%, respectively.

Over the years, the extraction of biomarkers of aMCI based
on rs-fMRI data has been reported by numerous studies (Yang
et al., 2018, 2021), yet very few studies about multiscale feature
extraction of whole-brain structures and functional network due
to limited data, and how to use machine learning methods
to verify the effectiveness of the features. Furthermore, a
robust and reliable system for aMCI detection is conducive
to timely detecting and screening patients at a high risk of
AD. Based on this, we extract multiscale features according to
the characteristics of the brain and develop the framework of
the diagnostic system. Our proposed models, including MGS-
WBC model and VGBN-LM model, outperform the traditional
approaches (SSWF1) (Zhang et al., 2015; Yang et al., 2018)
in this study. It turns out that the fused features obtained
from the MGS-WBC model and VGBN-LM model are more
important than the traditional single-scale features in terms of the
diagnosis of aMCI. Furthermore, our feature selection methods
will make the diagnosis of aMCI more accurate and reliable,
providing novel insights for the extraction of discriminative
neuroimaging features.

CONCLUSION

In this study, we present a system for the diagnosis of aMCI.
We first develop an MGS-WBC model to extract discriminative
features of whole-brain structures and functional networks.
Then, we propose a VGBN-LM model that excavates the global
features of the functional network and fuses its local features,
thus overcoming the low availability of the functional network
features. Finally, we fuse all the features generated from the
MGS-WBC model and VGBN-LM model to further improve the
diagnostic performance of aMCI. The results demonstrate that
this study outperforms the traditional method. In conclusion, the
proposed feature extraction methods can be utilized to detect
other similar neurological diseases of the brain, providing new
insights for the intelligent construction of the CAD system. The
future study contains applying our approaches to other brain
diseases and verifying the robustness of the system. Besides, more

Frontiers in Aging Neuroscience | www.frontiersin.org 12 May 2022 | Volume 14 | Article 89325085

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-893250 May 24, 2022 Time: 15:20 # 13

Cai et al. MGS-WBC and VGBN-LM Algorithms

data will be collected so that deep learning models can be used for
accurate classification.
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Objective: To explore the therapeutic effect and mechanism of low-frequency repetitive
transcranial magnetic stimulation on the speech function of patients with non-fluent
aphasia after stroke.

Methods: According to the inclusion and exclusion criteria, 60 patients with post-stroke
non-fluent aphasia were included and randomly divided into treatment group (rTMS
group) and sham stimulation group (S-rTMS group). Patients in rTMS group were given
low-frequency rTMS + ST training. Patients in the S-rTMS group were given sham low-
frequency rTMS + ST training. Once a day, 5 days a week, for a total of 4 weeks.
The Western Aphasia Battery and the short-form Token test were used to evaluate
the language function of the patients in the two groups before and after treatment.
Part of the enrolled patients were subjected to functional magnetic resonance imaging
examination, and the morning fasting venous blood of the enrolled patients was drawn
before and after treatment to determine the content of BDNF and TNF-α.

Results: In the comparison before and after treatment within the group, all dimensions
of the WAB scale of the patients in the rTMS group increased significantly. Only two
dimensions of the WAB scale of the patients in the S-rTMS group improved significantly
after treatment. The results of the short-form Token test showed that patients in
the rTMS group improved significantly before and after treatment. The resting state
functional magnetic resonance imaging of the two groups of patients before and after
treatment showed: the activation of multiple brain regions in the left hemisphere of the
rTMS group increased compared with the control group. The serum BDNF content of
the patients in the rTMS group was significantly higher than that of the patients in the
S-rTMS group after treatment.

Conclusion: Low-frequency rTMS combined with conventional speech training can
significantly improve the speech function of patients with non-fluent aphasia after stroke.

Keywords: repetitive transcranial magnetic stimulation, aphasia, functional magnetic resonance, BDNF, TNF-α
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HIGHLIGHTS

- Low-frequency rTMS can improve the expression and
other language functions of patients with non-fluent
aphasia after stroke.

- Low-frequency rTMS can promote brain plasticity changes in
patients with non-fluent aphasia after stroke.

- Low-frequency rTMS can promote the secretion of BDNF by
the central nervous system of stroke patients.

INTRODUCTION

Aphasia refers to a type of language disorder syndrome in which
organic brain diseases are caused by various reasons, which cause
damage to related brain areas that dominate brain language
expression and listening comprehension, so that patients cannot
perform normal speech expression and understand the other
party’s words. It is very common in patients with cerebrovascular
disease. According to research statistics, the incidence of aphasia
in stroke patients is about 20–40% (Menichelli et al., 2019).

Aphasia Recovery Mechanism
Regarding the mechanism of aphasia recovery, when the language
hub of the dominant hemisphere is damaged in the acute
phase, its inhibition of the surrounding brain areas will be
weakened, which promotes the activation of the brain areas
around the damaged brain area and the functional reconstruction
of plasticity, and promotes the recovery of the patient’s language
function. In the subacute phase, the mirror brain area of the
language hub of the right hemisphere is activated due to the
weakening of the inhibition of the dominant hemisphere, which
is beneficial to the recovery of the function of patients with
aphasia to a certain extent. In the chronic recovery period, as the
function of the dominant hemisphere on the left side of the brain
gradually recovers, its activation level gradually increases during
language training, and the inhibition to the right hemisphere
gradually increases. At the same time, the activation level of
the right hemisphere gradually decreased the language hub
gradually returns to the left dominant hemisphere. Therefore,
in the chronic phase, in order to reduce the inhibitory effect
of the non-dominant hemisphere on the dominant hemisphere,
it is necessary to inhibit the corresponding brain areas of the
non-dominant hemisphere, and at the same time, it can excite
the language hub in the dominant hemisphere and promote the
recovery of the language function of the patients. Also in clinical
practice had showed that cortical stimulation could facilitate
functional improvement (Zhang J. et al., 2021).

Application of rTMS in Aphasia
Repetitive transcranial magnetic stimulation technology is one
of the main representatives of non-invasive brain stimulation
technology that has emerged in recent years. It not only has a
temporary inhibitory or excitatory effect on the cerebral cortex,
but also has a long-term plasticity change effect. A large number
of research results affirm its efficacy in the treatment of aphasia
(Rossetti et al., 2019), but the specific mechanism of action is still

unclear. Some scholars use the method of functional magnetic
resonance to explore the specific mechanism of the rTMS by
the specific activated/inhibited brain regions, but the conclusions
are very different (Szaflarski et al., 2018; Arheix-Parras et al.,
2021; Fahmy and Elshebawy, 2021; Neri et al., 2021). In addition,
studies have also found that: after rTMS treatment, the levels of
brain-derived neurotrophic factor in peripheral blood of patients
with depression was higher than before, which may be one of the
mechanisms of rTMS (Zhao et al., 2019).

Research Purposes
In this study, low-frequency repetitive transcranial magnetic
stimulation was applied to the posterior inferior frontal gyrus
of the right cerebral hemisphere in patients with non-fluent
aphasia after stroke. Clarify its therapeutic effect on the language
function of patients with aphasia, and some patients were
enrolled in the rest state functional magnetic resonance scan
before and after treatment, using low-frequency amplitude score,
degree centrality method to statistically analyze the scanned
image data, to identify specific activated or inhibited brain
regions, and combined the method of functional connection
to explore the plasticity changes of specific brain regions. At
the same time, before the start of treatment and after the end
of the treatment course, the early morning venous blood of
the enrolled patients was collected to determine the content of
BDNF, and to explore the treatment mechanism of rTMS in
patients with non-fluid aphasia after stroke from the perspective
of cytokines, providing clinical and theoretical support for the
clinical treatment of aphasia.

PATIENTS AND METHODS

Research Object
According to the inclusion and exclusion criteria, 60 patients with
post-stroke aphasia who were hospitalized in the Rehabilitation
Medicine Department of Qingdao University Affiliated Hospital
from 2017-12 to 2019-10 were randomly divided into treatment
group (rTMS group) and control group (S-rTMS group). This
study was reviewed by the ethics committee of the Affiliated
Hospital of Qingdao University (qyfykyll 2018-23). Written
informed consent was obtained from the individual for the
publication of any potentially identifiable images or data included
in this article.

Inclusion Criteria
(1) Clinical compliance with the criteria of “Diagnosis Essentials
for Various Cerebrovascular Diseases” formulated by the Fourth
National Cerebrovascular Disease Conference of the Chinese
Medical Association in 1995; CT or MRI confirmed as the
first stroke in the left hemisphere (dominant hemisphere); (2)
Right Handy (standardized measurement), normal language
function before onset; (3) The course of illness is about
2 weeks to 6 months after stroke; (4) Western Aphasia
Battery (WAB) aphasia quotient (AQ) < 93.8, non-Fluent
aphasia, with a score of 0–4 for speech fluency; (5) Chinese
is the first language, and the education level above elementary
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school can cooperate to complete the assessment; (6) No
epilepsy, severe heart disease, severe physical disease; (7)
Clear mind, cooperative physical examination, and orientation
Complete, without obvious memory impairment and intellectual
impairment; (8) Able to independently maintain a sitting position
for more than 30 min; (9) Patients and family members sign
informed consent.

Exclusion Criteria
(1) Complicated with other neurodegenerative diseases, such
as speech disorder caused by Parkinson’s disease, dementia,
etc.; (2) Auditory or visual defects may affect assessment and
treatment; (3) Application of drugs that change the excitability
of the cerebral cortex (antiepileptic drugs), sleeping pills,
benzodiazepines, etc.; (4) Combined with epilepsy, severe heart,
liver, kidney dysfunction or other serious physical diseases; (5)
Unconscious and unable to cooperate with examination and
treatment; (6) A history of mental abnormalities; (7) According
to safety guidelines, there are contraindications to rTMS and
MRI, such as metal foreign bodies in the body or other electronic
devices implanted in the body.

Among them, 60 patients completed the initial evaluation of
the WAB scale and the short-form Token test. The patients in
the rTMS group completed the entire experimental process and
completed the final evaluation of the WAB scale and the short-
form Token test. One patient in the S-rTMS group was converted
due to recurrence of cerebral hemorrhage. He was admitted to
neurosurgery for treatment, and another patient was discharged
from the trial early due to personal reasons. Therefore, only
28 patients completed the final evaluation of the WAB scale
and the short-form Token test. In order to explore the specific
mechanism of rTMS, we performed resting functional magnetic
resonance scans on some patients before and after treatment,
and collected the peripheral blood of the patients, and measured
the changes of BDNF and TNF-α in their peripheral serum.
The general information of the enrolled patients is shown in the
following table (Table 1).

Research Methods
Apparatus
All experiments were completed in the Department of
Rehabilitation Medicine and the Central Laboratory of the
Affiliated Hospital of Qingdao University.

TABLE 1 | General information of the enrolled patients.

rTMS group S-rTMS group

Number of cases 30 30

Clinical scale measurement (pre/post) 30/30 30/28

Serum factor determination (pre/post) 30/28 30/24

fMRI (pre/post) 16/13 12/10

Gender: (Male: Female) 17:13 14:16

Course of disease (months, χ ± s) 3.27 ± 1.50 3.75 ± 1.67

Age (years, χ ± s) 63.47 ± 7.81 59.91 ± 8.58

Aphasia quotient-pre 28.16 ± 22.86 22.76 ± 18.81

Stroke type (hemorrhagic: infarct: mixed) group 13: 15: 2 16: 13: 1

Reagents
Human brain-derived neurotrophic factor (BDNF) enzyme-
linked immunoassay (ELISA) kit: enzyme-linked, CK-E12065
human tumor necrosis factor alpha (TNF-α) enzyme-linked
immunoassay (ELISA) kit: mlbio, ml077385.

Consumables
1.5 ml centrifuge tube (American Axygen), each volume tip
(American Axygen).

Equipment
Magnetic field stimulator: Wuhan Yiruide Company CCY-
IA type.

Electric heating constant temperature blast drying oven:
Shanghai Senxin DGG-9140B.

High-speed refrigerated centrifuge: Thermo Scientific.
Pipette: Eppendorf.
Microplate reader: SPECTCA MAX190 (Molecular

Company, United States).

rTMS Treatment Method
Measurement of Motor Threshold
Select the contralateral abductor pollicis brevis muscle as the
measuring muscle, and place the recording electrode on the
muscle abdomen of the muscle and the reference electrode on
the first joint of the thumb of the ipsilateral upper limb. The
stimulation coil stimulates the patient’s right brain, gradually
adjust the position of the stimulation coil, determine the most
suitable stimulation position and stimulation intensity (at this
time the incubation period is shortest, and the amplitude is the
largest), and gradually adjust the output intensity to find out
10 consecutive stimulations that trigger the contralateral thumb
short The stimulus intensity that the abductor motor evoked
potential appears at least 5 times and the amplitude is not less
than 50 µV is the motor threshold.

Stimulation Site
select the patient’s non-dominant hemisphere (right hemisphere)
at the back of the inferior frontal gyrus as the stimulation site,
place the stimulation coil close to the surface of the patient’s skull
and place it tangentially, the center point of the “8” coil is placed
at the mark, and the stimulation coil The handle points vertically
to the patient’s back occiput. The body surface positioning
method is selected according to the electrode positioning map
calibrated by the International Electroencephalography Society.
Before and after treatment, WAB scale assessment and resting
functional magnetic resonance scan were performed on the
two groups of patients. The stimulus parameters and stimulus
parts of the sham stimulation group were the same as the
treatment group, but the stimulation coil was perpendicular to
the surface of the skull.

Stimulation Parameters
Set 80% of the motor threshold as the stimulus intensity, the
stimulus frequency is 1 Hz, 10 pulses are a sequence, the
sequence interval is 2 s, 100 sequences per day (total 1,000
pulses in total), treatment for 5 days a week. The total course of
treatment is 4 weeks.
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Routine Speech Training and Language Function
Scale Assessment
Conventional speech training is conducted by speech therapists
including Schuell training method, blocking removal method,
de-inhibition method, program training method and other
methods to conduct one-to-one speech training for patients, and
appropriately combine computer picture naming training, etc.
Each training time is about 30 min. The Western aphasia battery
(WAB) Chinese version scale and the short-form Token test were
used to evaluate the two groups of patients before and after
treatment, and the evaluation results were summarized according
to each dimension.

Functional Magnetic Resonance Data and
Processing Methods
Functional Magnetic Resonance Parameter Setting
Use resting functional magnetic resonance (Rs-fMRI) scan for
all subjects. The scan parameters are: TR 2,000 ms, TE 30 ms,
slice thickness 5.0 mm, no interval, visual The field angle is
240 mm × 240 mm, and the matrix is 960 mm × 960 mm.
The imaging range covers the whole brain as much as possible.
There are 25 layers from the base of the skull to the parietal lobe,
with 279 frames in each layer, and a total of 6,975 images are
collected. The acquisition time is 558 s. During the examination,
the patient is required to avoid any purposeful thinking
activities as much as possible, lie supine on the examination
bed with eyes closed, breathe calmly, and keep consciousness.
Start scanning after the patient adapts to the magnet and
surrounding environment.

Image Preprocessing
based on Matlab R2017b platform for preprocessing, and
then use DPABI v4.01 and SPM12 software to process the
image data. The processing steps are as follows: format
conversion, time layer correction, head movement correction,
spatial standardization, de-linear shift, regression covariate, etc.
Select the 0.010 ∼ 0.027 Hz (slow5) sub-band to process and
analyze the image.

Fractional Amplitude of Low-Frequency Fluctuation
The fALFF value is the ratio of the sum of the amplitude of the
preset frequency band to the sum of the amplitude of the whole

1http://rfmri.org/dpabi

frequency band, and then normalize the whole brain voxels, that
is, divide by the mean value of whole brain f ALFF to get mfALFF,
then Gaussian smoothing (FWHM is 4 mm × 4 mm × 4 mm),
you can get the smfALFF result.

Degree Centrality Analysis
Each voxel is a node, and the connection between the voxel
and the voxel is called an edge. Calculate the Pearson’s
correlation coefficient between any two voxels (nodes) with
obvious functional connection in the brain function connection
group, according to the threshold level of r > 0.25, you can get
a (number of voxels)× (number of voxels) undirected adjacency
correlation matrix, get the weighted DC value, and then divide
it with the whole brain DC mean, that is, complete the data
standardization process, and then perform Gaussian smoothing
for statistical analysis between groups.

Functional Connectivity Analysis
Select several speech-related brain regions of interest (ROI) based
on previous research at home and abroad, calculate the average
time series of each ROI, and then perform pairwise analysis of
the above ROI Pearson correlation calculation analysis between,
obtain the correlation coefficient between any two ROIs, thus get
the correlation matrix, and then normalize it, and then enter the
next step of processing and analysis.

Serum Processing and Storage Methods
Collect 3 ml of early morning venous blood from the enrolled
patients before the treatment and after the end of the treatment
course. After centrifugation at room temperature for 5 min,
store the centrifuged serum in a refrigerator at −80◦C for future
reference. If precipitation occurs during storage, it needs to
be centrifuged again. Detection steps: balance reagents, prepare
reagents, add samples, develop color, terminate the reaction,
determine optical density (OD value), use ELISA calc software
to calculate serum factor content, etc.

Statistical Analysis
The scores of the various dimensions of the WAB scale and the
short-form Token test score data are analyzed using SPSS19.0
statistical software package. The measurement data obtained in
this experiment is expressed as (χ ± s), and the measurement
data within and between groups are compared using single Factor
analysis of variance, count data using chi-square test, pairwise

TABLE 2 | Evaluation results and statistical analysis of the clinical scale for the two groups of patients.

rTMS (30) S-rTMS (28)

Pre Post Pre Post

Spontaneous language 5.10 ± 5.03 9.93 ± 5.24* 3.73 ± 4.22 6.68 ± 4.46*#

Listening comprehension 3.51 ± 2.50 5.86 ± 2.79* 3.13 ± 2.34 4.69 ± 2.46

Repetition 3.21 ± 2.83 5.56 ± 3.04* 2.69 ± 2.52 3.97 ± 2.91

Naming 2.26 ± 2.41 4.96 ± 2.49* 1.86 ± 2.11 3.39 ± 2.17*#

Aphasia quotient 28.16 ± 22.86 52.62 ± 25.02* 22.76 ± 18.81 37.46 ± 20.51*#

Short-form Token Test 12.77 ± 8.41 20.90 ± 9.97* 11.17 ± 8.13 17.57 ± 9.19*

*There is a statistical difference in the comparison before and after treatment within the group, P < 0.05.
#Comparison of the two groups after treatment between the groups, there is a statistical difference, P < 0.05.
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correlation analysis using linear correlation analysis, P < 0.05
indicates that the difference is statistically significant. Use DPABI
v4.0 software to perform two-sample t-test on the obtained
slow5 band fALFF, DC, and FC image data in the rTMS group
(after treatment-before treatment) and S-rTMS group (after

treatment-before treatment), and use GRF correction to perform
multiple Comparative correction, the threshold is individual level
P < 0.05, clump level P < 0.05. Serum BDNF and TNF-α levels
were analyzed using SPSS19.0 statistical software package. The
measurement data obtained in this experiment are expressed as

FIGURE 1 | fALFF analysis of the difference between the two groups before and after treatment. The blue area is the brain area where activation is inhibited
(threshold: individual level P < 0.05, clump level P < 0.05).
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FIGURE 2 | DC analysis of the distribution of brain regions with significant differences between the two groups before and after treatment, the yellow area is the
activated brain area (threshold: individual level P < 0.05, clump level P < 0.05).

χ ± s. The measurement data within and between groups are
compared by single-factor analysis of variance, P < 0.05 indicates
a statistical difference.

RESULTS

(1) The effect of low-frequency rTMS stimulation on the Broca
mirror area in the right inferior frontal gyrus on the dimensions
of the WAB scale and the short-form Token test scores in patients
with non-fluent aphasia after stroke: both the scores of each
dimension of the WAB scale in the rTMS group before and after
treatment and the short-form Token test scores were significantly
improved (P < 0.05), while the WAB scale of patients in
the S-rTMS group only had three dimensions of spontaneous
language, naming, and aphasia quotient, and the short-form
Token test scores were significantly improved (P < 0.05). After
treatment, the scores of the two groups of patients were only
statistically different in the three dimensions of WAB scale,
spontaneous language, naming, and aphasia quotient (P < 0.05),
see Table 2 for details.

(2) fALFF analyzes the brain regions where the difference
between the two groups is more meaningful: through data
analysis, it can be seen that in the Slow5 subband, there are two
Clusters with statistical differences, The fALFF value of multiple
brain regions of the patients in the rTMS group was decreased
than that of the patients in the S- rTMS group, such as the right

dorsolateral superior frontal gyrus, right supplementary motor
area, right inferior frontal gyrus pars opercularis (voxel 56, MNI
X = 36, Y = −39, Z = 15, T = −4.76, P < 0.05), right Brodmann
area 8, right angular gyrus, right supramarginal gyrus, and right
middle temporal gyrus (voxel 19, MNI X = 27, Y = −9, Z = 24,
T = −5.37, P < 0.05) indicating that the activation of the above
brain regions in the rTMS group was suppressed than that of the
patients in the S-rTMS group. See Figure 1 for details.

FIGURE 3 | Select ROI function connection pairwise comparison function
connection diagram (p < 0.05).
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(3) DC analysis of the brain regions where the difference
between the two groups is more meaningful: the results show
that the DC value of multiple brain regions of the patients in
the rTMS group was enhanced than that of the patients in the S-
rTMS group, such as the left parietal lobe [superior parietal lobule
(voxel 78, MNI X = −12, Y = −81, Z = 48, T = 4.74, P < 0.05),
angular gyrus)], left frontal lobe [BA6 area, middle frontal gyrus,
superior frontal gyrus, supplementary motor area (voxel 35, MNI
X = −3, Y = −24, Z = 57, T = 6.70, P < 0.05), paracentral
lobule], bilateral Limbic lobe (cingulum gyrus) indicating that
the activation of the above brain regions in the rTMS group was
significantly higher than that of the patients in the S-rTMS group.
See Figure 2 for details.

(4) On the basis of the previous image processing, according to
the pre-selected multiple ROIs related to the language function,
the pairwise function connection analysis is performed on the
basis of the difference between the two groups, and the t-test
is performed. The result shows: between the left frontal lobe
(supplementary motor area) (voxel 35, MNI X = −3, Y = −24,
Z = 57, T = 6.70, P < 0.05) and the right temporal lobe (middle
temporal gyrus) (voxel 19, MNI X = 27, Y = −9, Z = 24,
T =−5.37, P < 0.05) became stronger (P < 0.05), indicating that
the connection between the two hemispheres of the patients in
the rTMS group was strengthened as shown in Figure 3.

(5) Changes in the serum BDNF content of the two groups of
patients before the treatment and after the end of the treatment
course: the serum BDNF content (pg/ml) of the patients in the
rTMS group increased from 35.34 to 42.09 (P < 0.05), while the
serum BDNF of the patients in the S-rTMS group the content
(pg/ml) increased from 31.24 to 34.76 (P > 0.05). There was
no significant difference in serum BDNF content between the
two groups before treatment (P > 0.05). After the treatment,
the serum BDNF content of patients in the rTMS group was
significantly higher than that of the patients in the S-rTMS group
(P < 0.05) and the specific results are shown in Table 3.

DISCUSSION

Aphasia is an organic brain disease caused by various reasons,
causing damage to the related brain areas that dominate
brain language expression and listening comprehension, which
leads to a language disorder syndrome with abnormal speech
expression and abnormal listening comprehension. Among the
various diseases of brain damage, stroke is the most common.
According to research statistics, about 30% of stroke patients are
accompanied by aphasia (Menichelli et al., 2019).

As a new non-invasive technology that directly acts on the
cerebral cortex, rTMS has been proven by many studies to treat

patients with aphasia after stroke, but its specific mechanism is
still controversial.

In this study, patients with non-fluent aphasia after stroke
were treated with low-frequency rTMS for 4 consecutive weeks.
The WAB scale and short-form Token test were used to evaluate
the aphasia of patients before and after the treatment. The results
of the study found that the low-frequency rTMS on the posterior
inferior frontal gyrus of the right hemisphere combined with
conventional speech training compared with false low-frequency
rTMS combined with conventional speech training, the patient’s
naming, spontaneous language and other expression skills have
been significantly improved.

Low-frequency rTMS combined with speech training can
significantly improve the expression ability of patients with
aphasia. The results of this study are consistent with the
conclusions of previous studies. Some scholars use low-frequency
rTMS as a single treatment method. After a short-term treatment
is given to the patient’s non-dominant hemisphere inferior frontal
gyrus (the mirror area of the Broca area) for a short period of
time, it is found that this single stimulation can improve the
accuracy of patient naming, and the patient’s reaction time will
be significantly shortened (Terao and Ugawa, 2002).

Harvey et al. (2019) used another continuous theta
pulse magnetic stimulation (similar to low-frequency rTMS
stimulation) to act on the posterior part of the right inferior
frontal gyrus of patients with chronic aphasia. After treatment,
they found that the patient’s picture naming ability was
significantly improved, indicating that this treatment plan
is beneficial to improve the patient’s naming ability (Harvey
et al., 2019). Some scholars also use low-frequency rTMS to
stimulate the posterior part of the inferior frontal gyrus of the
non-dominant hemisphere for 10 times. The results show that
this treatment can significantly improve the patient’s language
fluency (Lopez-Romero et al., 2019). Some scholars have also
combined low-frequency rTMS on the posterior part of the right
inferior frontal gyrus with speech training. After 2 weeks of
treatment, the language fluency of patients with aphasia in the
treatment group has improved greatly compared with the control
group (Haghighi et al., 2017).

Our study combined low-frequency rTMS with conventional
speech training and found that its therapeutic effect was
significantly better than that of simple speech training. There are
many similar studies. Yoon et al. (2015) combined low-frequency
rTMS therapy with speech therapy to explore the combination
of the two and the therapeutic effect. The treatment course was
4 weeks. The Korean version of the WAB scale was used to
evaluate the two groups of patients before and after treatment.
It was found that the naming and retelling ability scores of
the patients after low-frequency rTMS stimulation increased

TABLE 3 | Comparison statistical scores of serum BDNF levels before and after treatment in the two groups.

Number pre/post Pre-BDNF (pg/ml) Post-BDNF (pg/ml) P-value in group

rTMS group 30/28 35.34 ± 5.53 42.09 ± 9.16 0.0116

S-rTMS group 30/24 31.14 ± 9.27 34.76 ± 8.79 0.4326

P-value between groups 0.2541 0.0077
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significantly, and rTMS combined with speech training can be
used as a treatment for brain Effective treatment for patients with
non-fluent aphasia after stroke (Yoon et al., 2015).

In order to explore the specific mechanism of low-frequency
rTMS on patients with aphasia, we performed resting functional
magnetic resonance examinations on some patients before and
after treatment, and used different analysis methods to perform
statistical analysis on the obtained image data. First, use the
fractional Amplitude of Low-frequency Fluctuation (fALFF)
method to analyze. This method is to standardize the ALFF at
the individual level. After the standardization at the individual
level, the shortcomings of ALFF can be effectively avoided, and
the sensitivity and specificity of detection can be improved.
Some scholars (Liu, 2016) used functional magnetic resonance
to study the brain plasticity of patients with aphasia and found
that rehabilitation training can increase the ALFF value of the
temporal lobe of the left cerebral hemisphere and the right
cerebellum, suggesting that the above brain areas are in the
recovery process of aphasia play an important role.

Our study found that the fALFF value of multiple brain
regions in the right hemisphere frontal lobe (right inferior frontal
gyrus pars opercularis, right supplementary motor area, etc.)
decreased. It shows that the activation of the above brain regions
was significantly inhibited in the rTMS group of patients. The
reason for the analysis is that low-frequency rTMS treatment
on the mirror area of the Broca area of the right regions can
inhibit the activation of this area, showing the above-mentioned
hypoperfusion in the brain regions, and the local blood oxygen
is disproportionately reduced due to the decreased oxygen
consumption of neurons. Deoxyhemoglobin (paramagnetic) is
relatively increased, so it shows a weakened signal. This shows
that low-frequency rTMS can indeed significantly inhibit the
ROI of the target area, thereby reducing the activation of the
right brain area, reducing its inhibition of the Broca area of the
dominant hemisphere through the corpus callosum, promoting
the activation of the Broca area of the dominant hemisphere, and
improve the speech expression functions of patients with aphasia
by promote the brain plasticity. Some scholars have found that
the degree of language impairment in patients with aphasia is
positively correlated with the Pearson correlation test of the right
middle frontal gyrus (Zhu et al., 2014), which is consistent with
our study that the activation of the right frontal lobe decreases
and the activation of the left inferior frontal gyrus increases
during the recovery period of speech function.

At the same time, the activation of the right temporal
lobe (middle temporal gyrus) and right parietal lobe (corner
gyrus, right superior marginal gyrus) and other brain regions
in the rTMS group was also inhibited. The analysis reason
was considered to be given to the right inferior frontal gyrus
with low frequency after rTMS treatment, the activation of
this area decreases, and at the same time, there are different
degrees of functional connection between this area and the
surrounding brain areas. The function decline of a brain region
will also affect the function of the surrounding brain regions.
The function of the above-mentioned regions in the right
hemisphere decreases, and the function of the above-mentioned
regions will weaken the inhibitory effect to the corresponding

brain regions of the dominant hemisphere, thereby promoting
the functional activation and recovery of the above-mentioned
brain regions in the dominant hemisphere. As the above brain
regions in the dominant hemisphere are the reading center and
the naming center, it can also explain why the low frequency
rTMS stimulated on the posterior part of inferior frontal gyrus
in the right hemisphere can improve naming and dyslexia in
patients with aphasia.

Then, we used the Degree Centrality (DC) method to analyze.
DC reflects the number of connections in the adjacent areas of the
brain. Specifically, it refers to the number of direct connections
between a node in the brain and other adjacent nodes, which
can be directly quantified (Van den Heuvel and Sporns, 2013).
DC can reflect the attributes of important nodes (hub nodes) at
the center of the brain network. Because of its high connectivity
with the surrounding brain nodes, it has a core dominance,
and even has long-distance connections with other nodes, and
its functions are the most complex, so its energy consumption
(oxygen consumption) is higher than that of general nodes, also
it is easy to be damaged in cerebrovascular diseases (Bullmore
and Sporns, 2012). Wise (2003) found that speech training can
activate the brain areas around the damaged language center in
the dominant hemisphere. Other studies believe that inhibiting
the activation level of the right cerebral hemisphere and reducing
its inhibition to the dominant hemisphere through the corpus
callosum can improve the long-term efficacy of patients with
aphasia (Breier et al., 2009).

The left triangular of the inferior frontal gyrus in the dominant
hemisphere is known as the classic language brain area of
“oral expression,” which is mainly used for speech planning and
execution. In recent years, scholars believe that the scope of the
classic Broca area should include other areas of the frontal lobe,
such as the frontal middle gyrus of the dominant hemisphere
which responsible for participating in language production. At
the same time, studies have found that the superior hemisphere
superior frontal gyrus is also a key area in the language network,
which is related to patients’ language fluency and functions
such as semantic conversion, retelling, naming, and listening
comprehension (Sollmann et al., 2014). The results of our study
showed that the DC value of the brain regions was increased
such as the left superior parietal lobule, the left angular gyrus,
left frontal lobe (BA6 area, middle frontal gyrus, superior frontal
gyrus, supplementary motor area, paracentral lobule), bilateral
Limbic lobe (cingulum gyrus) indicating that the above brain
regions of the patients in the rTMS group were activated
compared with that of the patients in the S-rTMS group, which
also supports the above view.

Finally, we adopt the method of Functional Connection
(FC) to analyze. FC reflects the degree of connection of
neuronal activity between different brain regions that are far
away. Through rs-fMRI, the functional network and anatomical
structure of the entire brain can be studied. Li (2017) studied
the brain function of patients with motor aphasia after stroke
and found that after 1 month of rehabilitation, the functional
connection between the middle temporal gyrus of the left
dominant hemisphere and the left frontal lobe, insula and
other brain regions increases. At the same time, the functional
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connection between the middle temporal gyrus of the left
dominant hemisphere, the marginal lobe of the left hemisphere,
and the cerebellum decreased. During the recovery period of
aphasia, the functional connection between the left middle frontal
gyrus and the undamaged brain area around the damaged brain
area also increases. In addition, some researchers believe that
(Zhu et al., 2017), patients with acute stroke not only have
disordered language central function, but also interfere with the
default network of the brain, which leads to a decline in the
cognitive function of stroke patients.

Some scholars (Sreedharan et al., 2019) found that the
recovery of language function in patients with aphasia after stroke
is often accompanied by changes in functional connectivity: in
the acute phase, the functional connection coefficient of the
language neural network is significantly reduced. In the chronic
phase, the functional connection coefficient of the language
neural network is significantly enhanced. The study also found
that even in high-risk patients, there is a decrease in resting
functional connectivity. Some scholars (Zhang C. et al., 2021)
found in the study of patients with motor aphasia after stroke
that the patients were accompanied by a significant decline in
language ability, and the average functional connectivity index of
the frontal and parietal lobe in the left dominant hemisphere also
decreased significantly. As language comprehension improves,
and the average connection index of the frontal and parietal lobe
of the dominant hemisphere also gradually increases. The above
phenomenon shows that the language comprehension ability of
patients with aphasia after brain injury improves, it may be
achieved by changing the functional connections between brain
areas. Moreover, research has confirmed that the improvement of
language function in patients with aphasia is also related to the
changes in the functional connections of brain regions.

The supplementary motor area is very important for motion
control. The front area of the supplementary motor area is
mainly responsible for the preparation and selection of sports.
The back of the supplementary motor area is responsible for the
execution of the movement, and the entire supplementary motor
area plays a decisive role in both the low-level execution of the
movement and the high-level control of the movement. Studies
have confirmed that the treatment of bilateral supplementary
motor area in patients with aphasia can improve the naming
ability of patients (Naeser et al., 2020). This also indicates that
the treatment of low-frequency rTMS on the mirror area of the
Broca area in the right hemisphere can improve the language
function of patients with aphasia by improving the number and
efficiency of functional connections in multiple brain areas. Our
research also found that after low-frequency rTMS treatment,
the functional connection between the supplementary motor area
of patients with aphasia and some brain regions of the bilateral
hemispheres was significantly enhanced, and this may be one
of the possible mechanisms for low-frequency rTMS to improve
patients with aphasia.

At the same time, in order to explore the specific therapeutic
mechanism of low-frequency rTMS, we measured the changes
in peripheral serum BDNF and TNF-α concentrations of the
enrolled patients before and after treatment, and planned to
explore the specific mechanism from the perspective of cytokines.

Studies have confirmed that there are many nutritional factors
in the brain to promote the recovery and improvement of
brain function in patients. After rTMS treatment, it may
promote the release of some nutritional factors in the brain and
promote the repair or improvement of damaged brain function
(Arheix-Parras et al., 2021).

Studies have found that after rTMS treatment, the levels of
BDNF in peripheral blood of patients with depression are higher
than before, which may be one of the mechanisms of rTMS (Zhao
et al., 2019). So, we detected the serum BDNF concentration
in peripheral blood of the two groups of patients before and
after treatment.

It is well known that BDNF is essentially a protein, which
plays an important role in the growth and differentiation of nerve
cells, and can repair damaged nerve cells, thereby improving
advanced cognitive functions (learning, memory, etc.) (Asadi
et al., 2018; Huey Fremont et al., 2020), especially, it plays
an important role in mediating the neural plasticity process of
language function recovery in patients with aphasia after stroke
(Di Pino et al., 2016). Animal studies have also shown that BDNF
promotes long-term potentiation (LTP) through TrkB signaling
(Lamb et al., 2015), which is considered to be essential for the
intermittent memory process of the hippocampus (Zagrebelsky
and Korte, 2014). Moreover, studies have found that BDNF can
cross the blood–brain barrier through a high-volume saturated
transport system. Animal studies have observed a positive
correlation between the levels of BDNF in the brain and blood
(Angelucci et al., 2011). Morichi et al. (2013) also found that
changes in BDNF in peripheral blood are related to changes
in cerebrospinal fluid (CSF) BDNF, and changes in BDNF at
the peripheral level may reflect changes in BDNF in the brain.
Therefore, some scholars believe that changes in BDNF at the
peripheral level may reflect or at least partially reflect changes
in brain BDNF (Fritsch et al., 2010). Winter et al. (2007) also
found that the serum BDNF content increased significantly after
high-intensity exercise, and the vocabulary learning speed was
also significantly improved. They believed that the increase in
the short-term learning success rate was related to the increase
in the BDNF level.

Therefore, in this study, the peripheral blood of patients in
the enrolled group was collected before and after low-frequency
rTMS treatment, and the changes in peripheral serum BDNF
content were measured, and then to explore the BDNF content
changes in central nervous system. The results showed that
the serum BDNF content of peripheral blood in the rTMS
group increased significantly before and after treatment, and
the serum BDNF content of the patients in the rTMS group
was significantly higher than that of the patients in the S-rTMS
group after treatment. This suggests that patients with non-
fluent aphasia have a significant increase in serum BDNF levels
in peripheral blood after low-frequency rTMS treatment. Many
previous studies have confirmed that the increase in serum BDNF
content in peripheral blood can reflect the changes in BDNF
content in the patient’s brain from the side. Therefore, we believe
that after low-frequency rTMS stimulation, the content of BDNF
in the brain of patients also increases to a certain extent, which
may be one of the mechanisms of low-frequency rTMS.
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In summary, our research results show that low-frequency
rTMS combined with conventional speech training can
significantly improve the language function of patients with non-
fluent aphasia. In addition to directly changing the excitability
of the cortex of the stimulated brain area, rTMS can inhibit the
activation of different brain areas in the frontal and temporal
lobes of the right cerebral hemisphere, and promotes the
activation of different brain regions in the frontal and temporal
lobes of the left dominant hemisphere, thereby improving the
function of different brain regions and promoting changes in
brain plasticity. It will also affect the transmission, expression and
release of various cytokines and neurotransmitters, especially the
expression and release of BDNF, which in turn promotes changes
in brain plasticity. This may be one of the mechanisms by which
rTMS promotes the improvement of the central nervous system,
especially the language function of the brain.
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Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease.

To distinguish the stage of the disease, AD classification technology challenge has been

proposed in Pattern Recognition and Computer Vision 2021 (PRCV 2021) which provides

the gray volume and average cortical thickness data extracted in multiple atlases from

magnetic resonance imaging (MRI). Traditional methods either train with convolutional

neural network (CNN) by MRI data to adapt the spatial features of images or train with

recurrent neural network (RNN) by temporal features to predict the next stage. However,

the morphological features from the challenge have been extracted into discrete values.

We present a multi-atlases multi-layer perceptron (MAMLP) approach to deal with the

relationship between morphological features and the stage of the disease. The model

consists of multiple multi-layer perceptron (MLP) modules, and morphological features

extracted from different atlases will be classified by different MLP modules. The final vote

of all classification results obtains the predicted disease stage. Firstly, to preserve the

diversity of brain features, the most representative atlases are chosen from groups of

similar atlases, and one atlas is selected in each group. Secondly, each atlas is fed into

one MLP to fetch the score of the classification. Thirdly, to obtain more stable results,

scores from different atlases are combined to vote the result of the classification. Based

on this approach, we rank 10th among 373 teams in the challenge. The results of

the experiment indicate as follows: (1) Group selection of atlas reduces the number of

features required without reducing the accuracy of the model; (2) The MLP architecture

achieves better performance than CNN and RNN networks in morphological features;

and (3) Compared with other networks, the combination of multiple MLP networks has

faster convergence of about 40% and makes the classification more stable.

Keywords: atlas, multi-layer perceptron, Alzheimer’s disease, classification, PRCV competition
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INTRODUCTION

Alzheimer’s disease (AD) is a common neural degenerative
disease, from which 60 to 70% of senile patients with dementia
suffer (Jagust, 2013). A feature of AD is the damage induced
by the irreversible and progressive cognitive function of human
brains. It is continuously progressing when a normal-control
(NC) gradually becomes a patient with AD. Mild cognitive
impairment (MCI) is the early disease-developing stage (Reiman
et al., 2010). Therefore, being able to correctly represent the
disease-developing stage a patient is in helps in diagnosing and
slowing the process of the disease. Over time, the condition
of AD is often accompanied by brain atrophy. Recently, in
Pattern Recognition and Computer Vision 2021 (PRCV 2021),
the AD classification technology challenge1 provided a dataset
frommultiple atlas partitions and extracted volume features. This
dataset is used for three classification tasks of NC/MCI/AD. The
data of each sample in the dataset consists of brain gray matter
volume and average cortical thickness that are extracted from
multiple atlases.

The AD classification frameworks directly analyze the
patterns in neuroimaging data of AD/MCI/NC subjects. In
addition, the classification framework is comprised of multi-
components: feature extraction, feature selection, dimensionality
downsampling, and feature-based classification. According to
the PRCV 2021, the task of the challenge is to do the three
classifications of patients. Over the past decade, the cortical
thickness, voxel-wise, and hippocampal morphological features
of sMRI were used to diagnose AD (Jagust, 2013). After jointly
aligning whole-brain image data to associate each brain voxel,
voxel features have extracted a vector with multiple scalar
measurements. Gray matter voxels are used for input features
and trained in the support vector machine (SVM) classifier to
classify AD and NC categories (Klöppel et al., 2008). To improve
the performance of the model, the researchers used a 3D CNN
to make predictions about the stage of the disease that the AD
patient was in based on MRI (Bron et al., 2015). In some work,
researchers have also improved the accuracy of classification
by pre-training or providing model complexity (Payan and
Montana, 2015; Korolev et al., 2017). In the competition, most
of the better-performing teams have optimized their methods
based on the multi-layer perceptron (MLP) architecture. The
adjustments on the network are, broadly, as follows: combining
MLP with attention mechanisms, adjusting the depth of the MLP
network, combining multiple networks for data processing, etc.
For the processing of datasets, some teams filtered data based
on the characteristics of the atlas or supplemented the data
with interpolation.

Since comparative evaluations of these feature extraction
techniques reveal several limitations for classifying AD, we
present a multi-atlas multi-layer perceptron (MAMLP) approach
to a one-dimensional long vector data extracted from multiple
atlases. Compared to the CNN and rerrent neural network
(RNN) methods, our method converges faster and has higher

1Pattern Recognition and Computer Vision 2021 Alzheimer’s disease classification

technology challenge: https://competition.huaweicloud.com/information/

1000041489/circumstance.

accuracy during the training process. A network composed of
multiple MLP modules achieves higher accuracy in this task than
a single MLP network. In addition, our method ranks the 10th in
the competition.

RELATED WORK

Reliable diagnosis of AD ought to adapt to different datasets,
such as MRI scans collected by several patient groups, to reduce
differences in data distribution and bias against specific groups.
The existing machine learning model has been applied to the
detection of AD. According to existing studies, the cortical
thickness, somatotopic and hippocampal morphological features
extracted by sMRI can be used to diagnose AD (Jagust, 2013).
After aligning whole brain image-feature data to associate each
brain voxel in common, voxel features are extracted a vector
with multi-scalar measurements. The coefficients of the series are
calculated and normalized to eliminate the rotation translation
effect and the features used to train the SVM-based classifier.
Researchers applied the gray matter voxels as input features and
trained the SVM classifier to classify AD and NC categories
(Klöppel et al., 2008). In practical problems, there is often more
than one factor affecting a thing, that is the dependent variable
corresponds to more than one independent variable. For MRI
data, we should also consider more image features. However, due
to the limitations of extraction methods, the data inevitably have
some biases and errors that need to be corrected by humans.
And traditional machine learning methods are more demanding
for data processing, and different processing methods may bring
large differences in results.

The existing deep learning model has been applied to the
classification of AD. 2D CNN was used to extract slice features
from MRI scans. Deep learning aims to reduce the use of
domain expert knowledge in designing and extracting the most
appropriate discriminant features (Plis et al., 2014). In the AD
classification task, the researchers used a model of 3D CNN
to perform feature extraction of the complete MRI, which was
then used for AD/NC classification (Bron et al., 2015), and some
researchers have also used unsupervised auto-encoders to pre-
train convolutional layers or a more complex network to improve
the accuracy of classification (Payan andMontana, 2015; Korolev
et al., 2017). In some studies, part of the CNN architecture was
inspired by Hosseini-Asl et al. (2018), they provide a pre-trained
3DCNN network that learns to capture generic features of AD
biomarkers and adapts to datasets from different domains. There
are also studies using RNN to train an AD classifier (Velazquez
et al., 2019). Cheng and Liu (2017) uses extracted inter-slice
features to perform the final classification. Both CNN and RNN
need a large number of training data and optimized structures to
achieve reliable performance. These researches used CNN-based
or RNN-based to extract essential features of MRI or acquired
the dense representation of MRI to build a regression model
for AD score prediction or to train a different classifier. Due to
CNN’s or RNN’s excellent performance on image classification,
more researches used several data modalities on different planes
and clinical scores to build multi-channel CNN and increase the
model prediction ability. Although these methods perform well
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in image or text data, they may not be suitable for some discrete
feature data, such as PRCV 2021 AD classification technology
challenge dataset.

This paper uses AD classification methods based on deep
learning for the PRCV 2021 AD classification technology
challenge dataset, namely, SVM, RNN, CNN, region
convolutional neural network (RCNN), and MLP. In order
to solve the problem of the characteristics of the dataset itself
and the small number of data samples, we used different MLPs
to analyze the data from different atlases after screening. The
advantage of this method is that it simplifies the structure of the
network and prevents overfitting. At the same time, after atlas
screening, some similar atlases are removed, which can reduce
the negative impact of redundant data on the results. It is similar
to the top-ranked methods, such as the use of multiple networks
and atlas screening. In contrast to all these solutions, our method
is carried out on the dataset. According to our model design
and training method, the optimal model is obtained. Using the
official scoring index of the competition, our model is better than
other algorithms. However, due to the small number of samples
in the data set, the results were somewhat unstable, and there
was a gap between some optimization techniques that our team
failed to surpass.

MATERIALS

Datasets
The dataset was provided by the PRCV 2021 AD classification
technical challenge and contains 2,600 samples. Table 1 shows
the distribution and composition of the data. The age range of
the samples was 32–91, with 1,982 samples concentrated between
the age range of 60 and 80. The dataset contains the sample’s
brain gray matter volume and mean cortical thickness, which
were extracted by the Computational Anatomy Tool12 (CAT12)
based on multiple atlases.

The CAT12 software first aligns the MRI images and segments
out the brain. Then, according to the different atlases, CAT12
segments the MRI and calculates the volume and cortical
posteriority of the different regions. Finally, features of multiple
atlases were combined to form a sequence of 28,169 one-
dimensional features. These 28,169 eigenvalues are used as the
feature data of this sample. Table 2 shows the information on
the templates. There are 13 types and 30 versions of templates
used. The name in the table indicates the name of the template,
while the version indicates the version used. Each template has a

TABLE 1 | The distribution and composition of the data.

Class Distribution Subject total

Label AD 671

MCI 1,148

NC 781

Age Above 80 385

60 – 80 1,983

Under 60 232

different region of interest (ROI), and based on ROI, the number
and value of features extracted are different.

DATA PREPROCESSING

This section introduces several novel contributions in data
preprocessing. First, the atlases were filtered to reduce the
dimensions when the dataset contains a small number of samples
with high-dimensional morphological features. Second, the
invalid value caused by the atlas mapping error was replaced by
the average value or 0 when extracting the morphological feature
from the brain atlas. Third, standardization was applied to adjust
the data magnitude that is different between multiple atlases.

Based on the characteristics of the dataset, the data
preprocessing methods, including atlas filtering, invalid
value replacement, and data normalization, were established
(Figure 1).

Atlas Filtering
The data in the PRCV 2021 AD classification technology
challenge dataset combined 28,169 features extracted by 30
atlases. Among these atlases, some were similar to each other.
For example, AAL1 to AAL2 to AAL3 was a process of
gradual evolution and subdivision, which also had a similar
relationship between Schaefer2018_1000 and Schaefer2018_100.
Since a small sample with high-dimensional features caused over-
fitting of the model, to reduce the feature redundancy of the
template, we filtered out templates with similar functions and
division basis and selected a template with the most detailed

TABLE 2 | The data summary of the atlases.

Name Version ROI number

AAL (Rolls et al., 2020) AAL(1/2/3v1) 90/116/170

AICHA (Joliot et al., 2015) AICHA_reordered 384

Brainnetome (Fan et al.,

2016)

rBN_Atlas_246_1mm 246

Brodmann (Zilles and

Amunts, 2010)

Brodmann 41

Gordon (Gordon et al.,

2016)

Gordon 333

Hammersmith (Hammers

et al., 2003)

Hammers-mith (83/95) 83/95

Harvard-Oxford (Desikan

et al., 2006)

HarvardOxford 113

Jülich (Eickhoff et al., 2005) Juelich-thr25 103

Melbourne Tian_Subcortex

(S1/S2/S3/S4_7T)

62/54/34/16

MIST (Urchs et al., 2019) MIST (7/12/20/36/64/

122/197/325/444)

7/12/20/36/64/

122/197/325/444

Scheafer (Schaefer et al.,

2018)

Schaefer

2018(100/200/400/

600/800/1000)

100/200/400/

600/800/1000

SUIT Cerebellum-MNIflirt 28

Yeo (Thomas Yeo et al.,

2011)

Yeo2011 (7/17) 7/17

“Version” represents the name of each version, where the different versions are indicated

in “()” and “ROI Number” represents the number of ROIs for the different versions.
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FIGURE 1 | Data preprocessing. Each row represents different partitions. Atlas is represented by A, and N in each column represents the extracted data number. (A)

Atlas filtering. (B) Invalid value replacement. (C) Data standardization.

division among them (Figure 1A). For example, in the case
of AAL templates, we kept the most detailed division of the
AAL3v1 version as representative of this class of template.
Meanwhile, we kept Schaefer2018_1000 as representative for the
Schaefer2018 template.

Invalid Value Replacement
The morphological features are extracted from the MRI image
by selecting a specific brain template with the CAT12 tool.
During the extraction process, part of the data was lost due to
the registration error of the template, which resulted in empty
and infinite values. These invalid values directly led to the

disappearance of the gradient in the model during the training
process. As shown in Figure 1B, we dealt with these invalid values
by replacing them. Empty and infinite values were replaced with
0 and the average value, respectively.

Data Standardization
The feature extracted from the different atlas had a magnitude
difference. As shown in Figure 1C, the maximum data was
>10,000, while the minimum data was <10. We standardized
the data to adjust the values to the same magnitude. The mean
and standard deviation of the whole dataset was calculated, and
each data was divided into standard deviation from the mean.
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The calculation of standardized data is as follows:

x̂ij =
xi̇j −mean

std
(1)

where i is the number of data and j is the number of the
eigenvalues of the data i. Mean represents the average of the
dataset, and std represents the standard deviation of the dataset.
Equation (2) and Equation (3) show the calculation of mean and
std, respectively.

mean =
1

i̇j

N
∑

i=1

M
∑

j=1

xij (2)

std =

√

√

√

√

∑N
i=1

∑M
j=1 xij

ij
(3)

where the N and M are respectively, the size of the dataset and
the length of each data.

After the data preprocessing, the length of data was reduced
from 28,169 to 8,377. Invalid values in the data were removed by
replacement. Finally, the data was standardized to reduce the gap
in value.

METHODS

In this section, we present theMAMLPmodel using the challenge
of dataset for AD prediction, specifically the one-dimensional
long vector data extracted from multiple atlases. Then, we
discussed the MAMLP architecture, which interlinks multiple
MLP blocks with state connections, for modeling the differential
information in the AD.

Further, this paper selects the data extracted from different
atlases, constructs different small MLP networks according
to different atlas for processing, and finally obtains the final
prediction outputs combined with the results. Considering that
constructing a huge MLP network often leads to overfitting
due to insufficient samples of the dataset, this method not only
avoided the overfitting caused by too small a sample size but
also simplified the network to a certain extent and improves
the efficiency of the algorithm. The structure of MAMLP is
shown in Figure 2. We first separated the pre-processed data
according to different atlases. The data from different atlases were
input to different MLP network modules for analysis. Finally,
the classification outputs of all MLP networks were combined to
obtain the final result.

Mixed Layers MLP Modular
After the separation operation, the data of different atlases were
input to different MLP networks for analysis. However, we
observed that the number of ROIs between the various atlases
was not consistent, and the number of different feature values
was extracted based on different atlases. Therefore, a fixed MLP
structure Was apparently more difficult to applied to all atlases.

To solve this problem, we designed a mixed-layer MLP
network to facilitate the classification, and employed a two-layer
or three-layer linear layer network to process the data according

to the number of each atlas. As shown in Figure 2, a fully
connected network containing three linear layers was used to
process the data when the number of ROIs of the atlas was >100.
Unlike the three linear layers network, if the number of atlases
is <100, the number of linear layers is reduced to two. In the
end, different network output classification results were based
on original dataset from different atlases and were combined in
the subsequent operation. The final classification result of the
network can be expressed by the following equation:

O = max





N
∑

j=1

SoftMax(Mj)



 (4)

where the M represents the output of the MAMLP subnetwork,
j represents the jth subnetwork, and N represents the number
of subnetworks.

Ativation Function and Loss Function
In the MLP network, superscript l is set to represent the data
related to layer l, which consists of L layers. The input layer is
marked as 0, the output layer is marked as l, and the subscript
represents the matrix or a vector index. The deactivation value
of layer L is equal to the activation value of the previous
layer multiplied by the network weight matrix and adds the
network deviation.

Equation (5) shows the calculation method for inactive
value, where zl represents the inactive value of Layer l, W l

represents the layer l network weight matrix, and bl represents
the layer l network bias. In addition, al represents the value
of the l layer after the activation function, and the method of
calculation is shown in Equation (6), where h (z) denotes the
activation function.

zl = al−1W l + bl (5)

al = h
(

zl
)

= max
(

0, zl + N (0, 1)
)

(6)

Equation (5) facilitates the convergence of an end-to-end
model training.

According to Equation (5) and Equation (6), zl and al are
calculated in order, and the output layer zL is obtained. Loss
function C

(

aL, y
)

is then calculated according to Equation (6),
where y represents the label, and nL represents the number of
neurons in the output layer.

C
(

aL, y
)

= −
nL
∑

i=1

yi log a
L
i (7)

The output ŷ of the final network is the subscript with the highest
probability in aL. Equation (8) is the calculation method of ŷ.

ŷ = argmaxi∈{1,···nL}a
L (8)

Therefore, standard MLPs are not equipped to deal with
unreliable input data. We show in this section that the gain
of MAMLP over those models increases in two important step
with unreliable inputs: multi-step prediction and dealing with
original data.
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FIGURE 2 | Multi-atlas multi-layer perceptron (MAMLP) Classification structure implements a two-steps scheme: three linear layers with regions of interest (ROIs)

>100 and two linear layers with ROIs <100.

Implementation
Our approach has two key components: the first is the
filtering of atlases in data preprocessing, and the second is the
analysis of the network structure using different fully connected
networks for different atlases. In atlas filtering, we keep the
most detailed atlases among similar atlases for division. The
original dataset was processed using 30 atlases for MRI and
28,169 feature values were extracted. After processing, 13 atlases
containing 8,377 feature values were finally retained. In the
network structure, the data were processed using a hybrid
network structure.

First, we separated the data from different atlases into 13
groups and fed them into different fully connected networks
for analysis. Based on the number of ROIs of the atlases, data
with a number >100 features are fed into a fully connected
network with three linear layers for processing. Data with a
number <100 features are fed into a fully connected network
with two linear layers for processing. The structure of the fully
connected network with three linear layers. The first linear layer

was followed by a linear rectification function (ReLU) layer as
the activation function. The second linear layer is followed by a
dropout layer to prevent overfitting, while the last linear layer is
followed by only a Softmax layer to obtain the final classification
results. The fully connected network containing two linear layers
removes the first linear layer and the ReLU layer compared to the
network containing three linear layers. Finally, the results of each
network are combined to obtain the final classification results.

Model Evaluation
In addition to using accuracy as the evaluation standard, we
also introduce the F1 function as the evaluation index when
evaluating the model. In statistics, the F1 function is used
to simultaneously calculate the accuracy of unbalanced data
classification problem under the consideration of the accuracy
and recall of the model. The calculation formula is as follows:

F1 = 2
Recall× Precision

Recall+ Precision
(9)
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In the multi-classification problem, the F1 score of each category
is usually calculated first and averaged to obtain the macro
F1 score. The macro F1 score is then used to evaluate the
performance of the model in our experiment. The calculation
formula is as follows:

macro F1score =
F1score1 + F1score2 + F1score3

3
(10)

The Area Under Curve (AUC), as the evaluation index of
binary classification standards, measures the ratio of true positive
(recall) and false-positive classification. In multi-classification
experiments, the macro F1 score is added as the evaluation
index. Toward binary classification, AUC is also added to
comprehensively evaluate the performance of models. The
calculation formula is as follows:

AUC =
∑

predpos > predneg

positiveNum ∗ negativeNum
(11)

The denominator is the total number of combinations of
positive and negative samples, while the numerator is the
number of combinations where positive samples are greater than
negative samples.

EXPERIMENTS AND DISCUSSION

To comprehensively evaluate the performance of the model, we
set up several groups of experiments to compare and study the
effects of the data dimension, network structure, and the number
of atlases on the experimental results. Meanwhile, we further
discuss the results of the competition and the advantages and
disadvantages of our approach compared to other teams.

Parameter Setting of Experiment
The experimental environment of this paper was the PyTorch
framework and NVIDIA–TITAN-XP GPU. During the training
process, we adopted the following strategies: Cross-Entropy as
the loss function; Stochastic Gradient Descent (SGD) as the
optimizer; the learning rate is set to 0.001; the dropout layer
in the network is set to 0.5. We divided the number of the
training-set and test-set into 2,300:300, and 100 cases of each label
were selected in the test-set. In the AD/NC/MCI experiment,
four indicators were used for evaluation, including Accuracy,
Precision, Recall, and F1score. AUC was used as an evaluation
indicator in the binary classification experiment. The higher all
the indicators, the better the effect of classification.

Comparative Experiments of Data
Pre-processing
In the data pre-processing section, the following pre-processing
operations are performed on the data: (1) Atlas Filtering for
feature dimension reduction; (2) replacement of invalid values
in the data; and (3) standardization of the data values. To
demonstrate the effectiveness of these treatments, we conducted
comparative experiments on data pre-processing.

Table 3 shows the impact of data pre-processing on
the experiment. Compared with the unfiltered data and

TABLE 3 | Effect of data preprocessing on the experiment.

Preprocessing Accuracy Precision Recall F1 score

Without preprocessing 0.25 0.15 0.11 0.13

Filtering atlas 0.51 0.47 0.43 0.45

Data standardization 0.64 0.63 0.64 0.64

Data standardization and filtering atlas 0.67 0.68 0.67 0.68

All experiments assume that the invalid values have been removed. Otherwise,

the experiments cannot be performed. Bold values mean the best value in the

comparative experiment.

unstandardized data, the accuracy of the pre-processed data
is improved greatly. These experiments were performed by
default after the second pre-processing operation (invalid
value replacement) because the model would have experienced
gradient disappearance without this preprocessing. The results
of the experiments show that (1) “Filtering Atlas” had an
impact on the accuracy of the model, improving it by
about five percent; and (2) “Numerical standardization” is
significant. Without standardization, differences in extraction
criteria between templates will make it difficult for the model to
learn valuable information.

Considering that a huge number of atlases are used in the data
extraction process and that some atlases have high similarities, we
filtered the models in the data preprocessing stage and selected
one in the similar atlases. To further explore the accuracy of the
model with the different number of atlases, we tried to keep more
atlases or further removed them.

Figure 3 shows the experimental results with different
numbers of atlases. The number of atlases after data
preprocessing is 13. These results suggest that the classification
accuracy was improved by removing similar atlases, but the
classification accuracy showed a decreasing trend when atlases
are further removed. These findings are understandable because
using too many similar atlases causes the number of features
per sample to exceed the sample size of the PRCV 2021 AD
classification technology challenge dataset. A situation that
over-fits the model while using too few atlases does not provide
sufficient feature data. Therefore, choosing the appropriate
number of atlases can further improve the classification accuracy
of the model.

Different Methods Based on Different Data
Dimensions
By splicing the data, the original one-dimensional data can
be spliced into two- or three-dimensional data. Then, the
convolution under the corresponding dimension can be used
for data processing and analysis. We follow that these extracted
data do not have image characteristics, such as color and form.
Therefore, the method of using convolutional analysis after
up dimensioning is considered to have poor performance for
PRCV 2021 AD classification technology challenge dataset. We
processed the data as two-dimensional and three-dimensional
fake-image data and used classical CNN to process them.
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FIGURE 3 | Classification accuracy of the model under different amounts of atlases. The number of atlases after data preprocessing is 13.

In the experiment of different dimensions, the data are
spliced as 168×168 two-dimensional data and 31×31×30 three-
dimensional data. The data is then processed by invalid value
replacement and standardization before training. On the two-
dimensional data, visual geometry group (VGG) (Simonyan and
Zisserman, 2014) and ResNet50 (He et al., 2016) are used to
analyze the data, while the full-size diagnosis network (FDN)
is used on the three-dimensional data (Li et al., 2019). For the
comparison experiments, we use the same learning rate and batch
size. The network structure is also the same as in the original
paper, except that the FDN model uses a non-iterative version.
The setup of these methods follows the original design of their
papers. Meanwhile, we use an MLP network with 4 linear layers
to compare with our method and evaluate the effectiveness of the
method in four metrics, which are Accuracy, Precision, Recall,
and F1score.

As shown in Table 4, our method obtained the best results
in all four metrics. In addition, the method of raising the
dimensionality does not effectively improve the classification
accuracy. These results suggest that the method of using CNN
for feature extraction on two-dimensional or three-dimensional
data is not as effective as the method of using MLP on one-
dimensional data. These findings are understandable because
although the data has been improved on the dimension, it still
does not have image features, such as color-feature or shape-
feature. In addition, the CNN still cannot extract those disease-
related features well. Compared with a single MLP network, since
the data extracted from different atlas are not correlated, our

TABLE 4 | Data summary of different methods based on different data

dimensions.

Data dimension Models Accuracy Precision Recall F1 score

One-dimensional MLP 0.66 0.66 0.65 0.66

MAMLP (ours) 0.67 0.68 0.67 0.68

Two-dimensional VGG 0.56 0.58 0.55 0.56

ResNet50 0.64 0.66 0.61 0.62

Three-dimensional FDN 0.55 0.53 0.54 0.55

The bold part represents the best result.

method separates them and uses different networks for analysis,
which can better prevent model overfitting and prevent mutual
interference between different atlas data.

Different Methods Based on
One-Dimensional Data
One-dimensional feature data in the PRCV 2021 AD
classification technology challenge dataset comes from gray
matter volume and mean cortical thickness components
extracted from different atlases. Unlike MRI, the data in the
dataset loses original image characteristics, such as color or
shape. The methods which are used to process MRI on two-
dimensional or three-dimensional had poor performance for this
dataset. However, some methods for natural language processing
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TABLE 5 | Data summary of in Alzheimer’s disease (AD)/mild cognitive impairment

(MCI)/normal control (NC) classification.

Methods Accuracy Precision Recall F1 score

CNN-1d (Kim, 2014) 0.55 0.52 0.52 0.52

RNN (Liu et al., 2015) 0.65 0.64 0.63 0.64

RCNN (Zhou et al., 2016) 0.62 0.62 0.62 0.63

MAMLP (ours) 0.67 0.68 0.67 0.68

The bold part represents the best result.

are often used to process one-dimensional feature data. Hence,
we compared these methods with ours.

The procedure we followed can be briefly described as data
pre-processing using different methods to analyze the data and
four indicators to evaluate the model. We use three methods to
compare with our method, including CNN-1d, RNN, and RCNN
(Kim, 2014; Liu et al., 2016; Zhou et al., 2016).

As shown in Table 5, our method obtained the best results
in all four metrics. The research we have done suggests that
these natural language processing-related methods are not very
good at extracting the relationship between features and disease
stages compared to our methods. The CNN has advantages
in performing two-dimensional image feature extraction, but
does not work well for processing one-dimensional long vector
data. Recurrent neural networks are mainly concerned with the
temporal relationship between features and perform poorly in
identifying the relationship between features and classification
results. For PRCV 2021 AD classification technology challenge
dataset, it has lost its original imaging features after atlas
extraction, and the correlation between each feature is not
obvious. As a result, CNN and RNN-related methods do not
apply to this dataset compared to MLP.

To further measure the performance of the model, we take
AUC as the evaluation standard and experiment on binary
classification problems. Among them, the number of samples in
each category in the classification problems of NC/MCI, NC/AD,
andMCI/AD are 781/1,148, 781/671, and 1,148/671, respectively.
We divide the train set and test set according to a ratio of 4:1.
For the rest of the setup, it was kept consistent with the triple
classification experiment.

Table 6 shows that the performance of the four methods in the
three binary classification tasks. In the classification of NC/MCI
and NC/AD, our model obtained the highest score. RNN
model performs better in the classification of MCI/AD. In the
experiments with dichotomous classification, the performance
of the individual models was largely consistent with that of
trichotomous classification, but in MCI/AD, the RNN performed
much better. This phenomenon illustrates that our method is
more sensitive to the differences between NC and AD/MCI and
is more accurate in determining whether the disease is present.

Meanwhile, we compared the differences between the fixed
MLP network and the hybrid MLP network, which is to verify
whether this approach can improve the classification accuracy.
As shown in Table 7, the mixed network structure exhibits a
greater advantage in all metrics compared to the fixed one. This

TABLE 6 | Data summary of different models in binary classification.

Methods Accuracy F1 score AUC

(a) Data summary of NC/MCI classification

CNN-1d (Kim, 2014) 0.65 0.75 0.60

RNN (Liu et al., 2015) 0.73 0.79 0.71

RCNN (Zhou et al., 2016) 0.73 0.80 0.69

MAMLP (ours) 0.75 0.81 0.74

(b) Data summary of NC/AD classification

CNN-1d (Kim, 2014) 0.84 0.83 0.84

RNN (Liu et al., 2015) 0.86 0.84 0.85

RCNN (Zhou et al., 2016) 0.85 0.83 0.84

MAMLP (ours) 0.89 0.89 0.90

(c) Data summary of MCI/AD classification

CNN-1d (Kim, 2014) 0.68 0.69 0.64

RNN (Liu et al., 2015) 0.78 0.71 0.77

RCNN (Zhou et al., 2016) 0.77 0.68 0.75

MAMLP (ours) 0.77 0.66 0.74

The bold part represents the best result.

TABLE 7 | Different numbers of linear layers on multi-layer perceptron (MLP)

modules.

Number of linear layers Accuracy Precision Recall F1 score

Two 0.56 0.51 0.52 0.52

Three 0.59 0.58 0.57 0.58

Two and three mixed 0.67 0.68 0.67 0.68

Four 0.58 0.59 0.58 0.59

The bold part represents the best result.

phenomenon is also easily explained by the fact that a small
network is not suitable for large inputs when approaches use a
fixed network structure and vice versa. If a fixed structure is used
in all MLP sub-networks, the number of features per template
should be fixed, which is difficult to achieve. Therefore, a mixed
network structure is a more suitable method.

In addition, we believe that there is no correlation between
data from different atlases. Different from the original MLP
network, referring to the Ortiz’s method (Ortiz et al., 2016),
the data is segmented according to different atlases and then
sent into different MLP models for classification before the
results are combined. In this way, we effectively reduce the
complexity of the model and prevent the overfitting of the
algorithm. Figure 4 shows the change process of loss, accuracy,
and f1score in the training process of different models. With
the continuous improvement of training times, the value of
loss continues to decline while the classification results of some
models gradually deteriorate. It can be inferred that due to
the small sample size and excessive training, the model has
the phenomenon of overfitting, which is more obvious in
the complex model. Compared with other models, our model
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FIGURE 4 | Training details of different models. (A) Loss in training. (B) Accuracy in training. (C) F1score in training.
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FIGURE 5 | Results of the competition. The horizontal axis represents the ranking of the competition and the vertical axis represents the score of the competition. The

competition uses F1score as the final evaluation metric. The figure shows the 17 winning teams among 373 teams, among which our team gained the rank of 10th.

performs better in both the convergence speed of loss and the
ability to prevent overfitting.

Discussion of PRCV2021
PRCV 2021 AD Classification Technical Challenge provides
a dataset containing gray matter volumes and mean cortical
thickness extracted from multiple atlases. Based on this dataset,
PRCV 2021 proposes a triple classification task for AD.
Figure 5 shows the rankings and scores of all winning teams
in the competition, among which our team ranks 10th. Most
of the better performing teams in the competition have
optimized their methods based on the MLP architecture. The
adjustments on the network are as follows: combining MLP with
attention mechanism, adjusting the depth of MLP network, and
combining multiple networks for data processing, etc. For the
processing of the dataset, some teams filtered the data based
on the characteristics of the atlas or supplemented the data
by interpolation.

In the competition, most of the teams used the MLP-based
network and did various optimized operations. Among them,
the best-performing method used a combination of MLP and
attention and got the highest score of 0.7033. They added
multiple attention modules to the network and connected
outputs of different depths as input to the module. Compared
with their method, we all used multiple different MLPs for
training. The advantage of this is that it can effectively avoid
the uncertainty of classification accuracy under a single model.

However, their method adds an attention mechanism before
obtaining the classification results so that the model can more
accurately identify the characteristics related to the disease type
and reduce the interference of other redundant data to solve the
problem of overfitting.

There were also teams in the competition that used traditional
machine learning algorithms, mainly random forests and SVM,
and achieved good results. We think that traditional machine
learning algorithms are also very applicable to this type of
data. However, through post-competition experience sharing,
we found that most of the machine learning teams focused
their work on data processing and that most of the teams that
won awards had a good approach to processing the dataset.
Hence, in that task, the machine learning algorithms had higher
requirements for data processing compared to deep learning
related methods.

Similar to our method was that of the team that won
fifth place. They also used different MLP networks to train
data from different atlases. However, the difference is that our
method removes some similar atlases before training, while
their method selects the atlas based on the training results
after training. After an analysis, we believe that their method is
more appropriate because the correlation between the extracted
results of the atlas and the disease should be judged by
the model.

Compared to teams with similar scores to ours, our method
still has a certain advantage. For example, the seventh-place
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team uses a clever way to optimize. They train a large number
of networks, and select the four with the best results to
combine. Due to the small number of samples and larger
number of feature values in the PRCV 2021 AD classification
technology challenge dataset, most of the teams’ methods suffer
from overfitting problems. This is also evident in the training
process, where the same model and parameters end up with
a significant difference in classification accuracy. They take
advantage of this feature to train a model that better fits the
test set. Although this method has obtained good scores in
the competition, its performance may not be good if the test
set is re-divided. Compared with their method, our method is
more versatile.

CONCLUSION

Against the dataset provided by the PRCV 2021 AD classification
technology challenge, we propose a MAMLP model for
Alzheimer’s classification based on brain region data extracted
by multi-atlas segmentation. The results of the experiment
indicate that our model has better classification accuracy and
generalization ability when targeting such datasets. Of course,
our method is not optimal, as there are similarities in the ideas
of the method compared to the teams ranked before us. For
example, redundant data are removed by atlas selection and
multiple networks are used for combination. The disadvantage
is the lack of skill in training or the randomness caused by
the small sample. An obvious limitation of this study is that
the overfitting of the model due to the small sample has not
been fully resolved. The next step is to use some small sample
training methods to further improve the accuracy of the model.
At the same time, compared with other teams’ data processing
methods, our method still has some gaps. In the face of high-
dimensional data, dimensionality reduction is an important step,
and if we can effectively remove some redundant data and

duplicate data, we believe the classification effect of themodel can
become better.
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Alzheimer’s disease (AD) is an irreversible neurological disorder that affects the
vast majority of dementia cases, leading patients to experience gradual memory
loss and cognitive function decline. Despite the lack of a cure, early detection of
Alzheimer’s disease permits the provision of preventive medication to slow the disease’s
progression. The objective of this project is to develop a computer-aided method
based on a deep learning model to distinguish Alzheimer’s disease (AD) from cognitively
normal and its early stage, mild cognitive impairment (MCI), by just using structural MRI
(sMRI). To attain this purpose, we proposed a multiclass classification method based
on 3D T1-weight brain sMRI images from the ADNI database. Axial brain images were
extracted from 3D MRI and fed into the convolutional neural network (CNN) for multiclass
classification. Three separate models were tested: a CNN built from scratch, VGG-
16, and ResNet-50. As a feature extractor, the VGG-16 and ResNet-50 convolutional
bases trained on the ImageNet dataset were employed. To achieve classification, a new
densely connected classifier was implemented on top of the convolutional bases.

Keywords: Alzheimer’s disease, deep learning, prediction, magnetic resonance imaging, mild cognitive
impairment

INTRODUCTION

Alzheimer’s disease (AD) is a progressive disease that causes neuronal loss and dementia in
the elderly. Alzheimer’s disease patients typically exhibit progressive memory loss at the outset,
followed by cognitive decline and, eventually, loss of independence. It is predicted that by 2050,
one out of every 85 people in the world will have AD (Brookmeyer et al., 2007). At the moment,
there are approximately 90 million people who have been identified as having AD, and the number
of diseased patients is expected to reach 300 million by 2050 (Zhu et al., 2015).

There are medications that can provide temporary moderate symptom relief or slow the
progression of AD, and these treatments have been shown to help patients with AD by achieving
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maximum cognitive function and maintaining independence for
a period of time. However, there are currently no effective or safe
drugs or therapies for curing Alzheimer’s disease or altering the
disease process in the brain (Tatiparti et al., 2020). The search
for effective strategies to treat or prevent Alzheimer’s disease
remains one of the most difficult endeavors in medicine. As a
result, it is critical to detect Alzheimer’s disease in its early or
prodromal stages so that patients can receive treatment before the
disease progresses. Currently, the standard non-invasive clinical
strategy for performing prognostic prediction for Alzheimer’s
disease is manual assessment via structural neuroimaging such
as magnetic resonance imaging (MRI) or computed tomography
(CT). Computer-aided methods based on artificial intelligence
(AI) algorithms are currently being used to accomplish AD
diagnostics (Wen et al., 2020).

In tandem with the rapid growth of AI, academics have
been employing AI techniques such as deep learning to address
complex problems in a variety of sectors, particularly medicine.
Researchers have extended the use of multiple deep learning
models to diagnose various stages of Alzheimer’s disease. Current
neuroimaging investigations that use computer-aided system
studies have made substantial progress in classifying Alzheimer’s
disease (AD) and cognitively normal (CN) participants. Even
though the binary classification of AD and CN participants
performed admirably, it is not as useful as predicting the early-
stage change of moderate cognitive impairment (MCI) to AD.
The majority of research stopped at a binary categorization,
without predicting whether a patient had MCI or the likelihood
of converting to AD.

Detecting Alzheimer’s disease in its prodromal stage, or
anticipating its potential, is critical for its treatment, just as it
is for other diseases. Treatments are successful if AD patients
receive them as soon as feasible after being suspected of having
AD biomarkers or symptoms. A 1-year delay in the progression
of Alzheimer’s disease can decrease the number of afflicted people
by 10% (McKhann et al., 2011). According to the statistics,
detecting Alzheimer’s disease in its early stages is critical to reduce
the number of patients worldwide.

Neurologists must manually study brain scans and undertake
cognitive assessments during the diagnosis of Alzheimer’s disease
in order to make an accurate diagnosis of the symptoms
and course of the disease. Because subtle changes in brain
anatomy can be observed years before distinct biomarkers can
be visualized by humans, it is realized that the human visual
system is incapable of identifying subtle changes in underlying
brain structure that may contain vital information about a
patient’s disease state, even when the analysis is performed by
the experienced neurologists. As a result, an AI-based computer-
aided system can assist neurologists in detecting complicated
brain illnesses while reducing the potential for misdiagnosis.
Moreover, it is expected to decrease the workload on medical
professionals and reduce the frequency of patient visit and
waiting time. Many recent studies (Basaia et al., 2019; Bi et al.,
2020; Jiang et al., 2020; Guo et al., 2021; Hett et al., 2021;
Mehdipour Ghazi et al., 2021; Deng et al., 2022) have been
conducted to forecast early stages of Alzheimer’s disease. The goal
of this study is to build a computer-aided system based on a deep

learning algorithm to evaluate the pathological brain structural
changes in MRI data in order to forecast the early stages of
Alzheimer’s disease before it progresses to the severe stages. The
contributions of this proposed study are as follows:

1. Performing novel preprocessing procedures on brain
structural MRI used for training and testing the
convolutional neural network.

2. Implementing CNN to perform multiclass classification
(3-way) to classify cognitively normal (CN), MCI,
and AD subjects.

3. Evaluating the performance by metrics such as accuracy,
precision, recall, and F1-score.

The rest of this article is organized as follows: the following
section discusses the materials and methods used in this study
and the subsequent section elaborates the experimental results
and discussion. The final section emphasizes the conclusion and
future research directions.

MATERIALS AND METHODS

Dataset—Alzheimer’s Disease
Neuroimaging Initiative
The relevant data were retrieved from the database of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), which is
available publicly upon approval from the ADNI. The ADNI
database contains multiple collections of MRI images categorized
by phase of the study, for example, ADNI1, ADNI2, ADNI-GO,
and ADNI3 (as of August 2021). This study adopts all the sMRI
data in the ADNI1 collection. A total of 819 subjects (229 CN, 398
with MCI, and 192 with AD) were enrolled at baseline. The CN
class consists of healthy aging controls with no conversion within
3 years of follow-up visits from baseline. Subjects diagnosed with
mild cognitive problems without losing their ability to carry out
daily activities were retained in the MCI class. The AD class
comprises patients identified as AD through diagnosis at baseline
and exhibit no sign of reversion within 2 years of follow-up visits.

All the acquired sMRI were generated from scanners of
various manufacturers, such as Philips, Siemens, and General
Electric. On account of the various acquisition protocols, the
dataset will undergo a preprocessing procedure. There is 1.2 mm
spacing between two MRI scans, and the dimension of a voxel
is 256 × 256 × 256. In terms of resolution, there is only a slight
difference found across the patients. The data used were restricted
to the standard 1.5 T T1-weighted sMRI, which were acquired by
the volumetric three-dimensional magnetization-prepared rapid
gradient-echo (3DMPRAGE) protocol. Other data acquisition
settings include 8-channel coil, TR = 650 ms, TE = minimum full,
flip-angle = 8◦, and FOV = 26 cm. Participants may have multiple
scans at baseline and follow-up visits (after 1, 2, and 3 years).

The data used were restricted to the standard 1.5 T
T1-weighted sMRI, which were acquired by the volumetric
three-dimensional magnetization-prepared rapid gradient-echo
(3DMPRAGE) protocol. Other data acquisition settings include
8-channel coil, TR = 650 ms, TE = minimum full, flip-angle = 8◦,
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and FOV = 26 cm. Participants may have multiple scans at
baseline and follow-up visits (after 1, 2, and 3 years). It is
important to note that not all participants appeared at every
planned follow-up visit. Some participants were retained in the
study without appearing at every follow-up meeting. There was
also a significant decrease in follow-up visit rate after 2 years,
indicating that fewer data were available over time. Table 1
summarizes the demographic information for the 819 subjects
with age ranges from 55 to 92 years, including 192 patients
with AD, 398 subjects belonging to the MCI, and 192 who are
cognitively normal and were included in the study. Based on
Table 1, it can be seen that the CN group is more educated
than the MCI and AD groups with mean education years of
16.0 ± 2.9 years, and the MCI group is the youngest among the
three groups with a mean age of 74.7 ± 7.4 years.

Proposed Model
The process of the proposed approach is depicted in Figure 1.
As a result, the acquired ADNI1 dataset is initially subjected to
a number of preprocessing methods. The retrieved 2D images
are then divided into training, validation, and testing sets. Three
CNN models are evaluated: a CNN trained from scratch, VGG-
16, and ResNet-50. The training data was supplemented before
feeding the training data into the CNN models for training.

Preprocessing
Preprocessing was applied to each brain sMRI to normalize
the data into desired form and format. The routine of
preprocessing steps can be summarized into six different steps:
(1) skull-stripping, (2) non-uniform intensity correction, (3)
segmentation, (4) extraction of 2D image from 3D MRI volume,
(5) pixel values normalization, and (6) data augmentation.

Skull Stripping
Skull stripping is the removal of the skull from a 3D brain MRI.
For quantitative morphometric studies, the skull is the non-
brain tissue that functions as noise, lowering CNN classification
performance (Goceri and Songül, 2017). Aside from that,
removing the skull from the brain enhances segmentation
outcomes. To obtain solely the brain tissues, the skull section was
stripped or deleted using the DeepBrain library. Figures 2A,B
depicts the raw brain had its skull stripped together with intensity
normalized using the DeepBrain library.

Bias Field Correction
Strong bias fields are known to cause voxel tissue type
mislabeling, undermining the algorithm’s accuracy, which is
based on gray and white matter contrast (Gupta et al., 2019).
To keep this impact to a minimum, the N4 bias field correction
method was used in conjunction with the SimpleITK library for
correcting low-frequency intensity presented non-uniformly in
brain sMRI (Tustison et al., 2010). Following that, the intensity
variation of the same brain tissue was deleted based on its
location within the image. The bias-corrected brain displayed
more consistent intensity in the white matter region (Figure 2C).

TABLE 1 | Demographic of participants with MCI and AD and cognitive normal
subjects from the study population.

Diagnostic type Number of
participants

Age Gender (M/F) Education
(years)

CN 229 75.8 ± 5.0
(59.9–89.6)

119/110 16.0 ± 2.9
(6–20)

MCI 398 74.7 ± 7.4
(54.5–89.3)

257/141 15.7 ± 3.0
(4–20)

AD 192 75.3 ± 7.5
(55.1–90.9)

101/91 14.7 ± 3.1
(4–20)

Tissue Segmentation
The hidden Markov random field (HMRF) tissue classifier was
used to segment T1-weighted sMRI data that had previously been
skull-stripped and bias field corrected (Zhang et al., 2001). The
hidden Markov models were used to develop the HMRF idea.
In contrast to hidden Markov, HMRF features an underlying
Markov random field rather than a Markov chain.

The brain sMRI volumes were segmented into three
different regions of GM, WM, and CSF using the HMRF
tissue classifier from the DIPY library. These three
main features were used to differentiate AD from MCI
and CN. Alterations in WM and GM were commonly
used for the analysis of AD progression (Klöppel et al.,
2008). In ML approach studies, it would be laborious to
perform tissue segmentation and feature extraction. Hence,
automated segmentation is essential for a dataset with a
large number of images. Figure 2D shows the plotting of
the resulting segmentation with a clear separation between
GM, WM, and CSF.

Extraction of 2D Images From the 3D Volume
The Matplotlib library was used to extract 2D slices or images
from the segmented 3D MRI after the segmentation phase. More
specifically, brain pictures in PNG format were recovered from
the axial view of the 3D MRI slices ranging from the 160th to
170th slice. Slices in this range provide a wealth of information
about the GM, WM, and CSF. For the three courses, a total
of 2,387 brain scans were performed (CN, MCI, and AD).
Good model performance is associated with selecting the best
available slices containing relevant morphological information
(Stoeckel and Fung, 2005). Given the preferable slice range,
every interval of five slices (e.g., 160th, 165th, and 170th) of
three brain images were extracted from the MRI volume of
the AD and CN subjects, in which AD and MCI have 2,043
and 2,051 images, respectively. One scan was removed from
the CN class due to file corruption. In addition, two brain
images (160th and 165th) were extracted for the MCI class that
yielded 2,044 images.

A padding private function was implemented to add padding
to all final images, so that the output images have a uniform
dimension of 271 × 271 pixels. Here, the images were saved in
gray scale format and named according to their classes with a
number suffix in an increasing sequence. After preprocessing, the
data were all in the form of 2D images. This helps to substantially
reduce the dataset size from 37 GB to 260 MB.
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FIGURE 1 | Workflow of the proposed model. A preprocessing steps, which include noise removal and intensity normalization, segmentation, pixel value
normalization, and 2D image extraction and data augmentation, will be performed followed by the classification by an AD-CN-MCI CNN classifiers.

FIGURE 2 | Preprocessing steps: (A) raw bran MRI, (B) skull stripped MRI, (C) bias field corrected MRI, and (D) tissue segmented MRI (WM is denoted in yellow,
GM is denoted in green, and CSF is denoted in light blue).

Pixel Values Normalization
As of this stage, every image data were in gray scale with pixel
values ranging between 0 and 255 (8-bit). Before the training
process, we normalize every image pixel value with a value
between 0 and 1.

Data Augmentation
The process of data augmentation was performed to mitigate the
general problem of the small dataset, which is overfitting during
training, by applying various transformations on the images from
the dataset. The transformations used were rotation of 15◦, zoom
range of 0.10◦, height shift range of 0.10◦, and width shift range
of 0.10◦.

Prediction Model
The CNN models used in this study will be described in detail
here. To perform the 3-way classification task, three different

CNN models were tested. The first model is a CNN that was
trained from the ground up. Furthermore, the second and third
models used the transfer learning technique. CNN models with
pretrained ImageNet weights, such as VGG-16 and ResNet-50,
were used instead of training a model from scratch. These models
were trained to classify 1,000 different image classes using the
ImageNet database, which contains over a million images.

Convolutional Neural Network From Scratch
Figure 3 depicts the 2D CNN architecture that was created from
scratch. In a nutshell, the architecture consists of the following
elements: five convolutional layers followed by ReLU activation;
five max-pooling layers; two dropout layers; a flatten layer; a
fully connected layer with 256 neurons followed by a dropout
layer and a batch normalization layer; and, finally, an output
layer with softmax activation that outputs the probability of
prediction for each class.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 June 2022 | Volume 14 | Article 876202115

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-876202 May 27, 2022 Time: 15:34 # 5

Lim et al. Deep Learning-Based Alzheimer’s Disease Prediction

FIGURE 3 | Layout of CNN trained from scratch. Briefly, the architecture comprises the following: 5 convolutional layers followed by ReLU activation; 5 layers of
max-pooling layers; 2 dropout layers; a flatten layer; a fully connected layer with 256 neurons followed by a dropout layer and a batch normalization layer; and
ultimately an output layer with softmax activation, which outputs the probability of prediction for each class.

The CNN first layer was fed preprocessed axial view brain
sMRI data. The second layer was a convolutional layer that
performed convolution operations on input images and filtered
the output to produce multiple feature maps. There were five
convolution layers in total, each with 16-32-64-128-256 feature
maps. All of the convolution filters had a size of 22, a stride
of one, and “same” padding, which ensured that the output
was the same size as the input. After each convolutional layer,
a max-pooling layer with 22 regions was applied. The pooling
layers functioned as down-sampling layers, resulting in the
creation of multiple pooled maps. The final two pooling layers
were followed by a dropout layer with a dropout rate of 0.5,
which meant that 50% of the nodes in the layers would be
dropped out to ensure regularization and prevent overfitting.
The pooled feature maps were then flattened to a 1D vector
and fed into the next fully connected layer with 256 neurons.
A batch normalization layer was added before the dropout layer
to improve the model’s regularization even further. The final
layer is the output layer with three nodes incorporating softmax
activation function to determine the probabilities of each possible
class of the classification task. Finally, a vector consisting of
probabilities belonging to the AD, CN, and MCI classes was
obtained as the final classification result.

VGG-16
In this study, the pretrained VGG-16 model was used in the
form of a feature extractor (Simonyan and Zisserman, 2015).
Also, VGG-16 with pretrained weights was used as a bootstrap
feature extractor for feature extraction from the preprocessed
brain sMRI images. The extracted features were then directed to
a new classifier, which was trained from scratch.

It is important to note that the gray scale image dataset could
not be directly fed to the VGG-16 model because it is a pretrained
model with a fixed input configuration. VGG-16 requires RGB
images with three channels as input. A gray scale image, on
the contrary, has only one channel. The obvious solution is to
iteratively repeat all of the image arrays in the dataset three times
on a new dimension. As a result, the same image would appear in
all three channels. This was accomplished by specifying the color
mode as “RGB” in the Keras library’s flow from directory method.

ResNet-50
The pretrained ResNet-50 model was used as a feature extractor,
similar to VGG-16, and a new densely connected classifier was
used for prediction (He et al., 2016). Deep neural network
training is difficult because adding more layers causes the
infamous vanishing gradient problem, also known as the
exploding gradient problem. The main feature of ResNet is
the design of residual connections. The residual block enabled
ResNet to connect the previous layer to the current layer as well
as the layer behind the previous layer. As a result, each layer
can capture more than just the observations of the previous
layer. Furthermore, the batch normalization layer is placed
after each convolutional layer in ResNet. Batch normalizations
normalize layer weights, allowing for faster training rates. This
speeds up deep network training and reduces the vanishing
gradient problem.

Parameters and Evaluation Metrics
Table 2 summarizes the best parameter combinations for training
the three networks. In addition, the evaluation metrics were
accuracy, precision, recall, and F1-score. Keras, an open-source
high-level neural network API for building deep models, was
used to build all of the deep learning models, with TensorFlow
as the backend. Keras was chosen because it enables rapid
prototyping and parallel computing with GPUs. In this study,
training, validation, and testing routines were carried out on
Google Colab in order to execute Python 3 codes for data
preprocessing and the development of a CNN model. The GPU
model would be assigned at random based on the availability on
Google Colab. There was no published limit on the idle timeout
period, RAM size, or disc size. Typically, a RAM size of around 13
GB and a disc size of around 70 GB would be allocated for GPU
accelerated runtime.

In addition, to facilitate model training, two types of
“callbacks” in Keras were implemented during training: Early
Stop and ModelCheckpoint. Early Stop enabled the models to
stop training if their performance did not improve after five
epochs of monitoring validation loss. This is one method for
preventing a model from overfitting. Next, ModelCheckpoint
ensured that models always saved the best weights while training
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to avoid loss of progression. Saving the weights is more efficient
than saving the entire model’s information because a large
network like VGG-16 can take up at least 500 MB of memory.

RESULTS AND DISCUSSION

Training and Validation Performance
Table 3 reports the training and validation performance of the
three different CNN models being experimented.

To avoid overfitting, all model training was completed with
an early stop and a patience level of 15 epochs. The training and
validation routines were halted when the validation loss began
to deteriorate. The CNN trained from scratch finished training
in 46 min, making it the quickest of the three models. Deep
CNN, such as VGG-16 and ResNet-50, with multiple stacking
layers, can be computationally expensive and take much longer
to train than a shallow model trained from scratch. ResNet-
50’s longer training time can be attributed to a large number of
trainable parameters. The ResNet-50 model, which has a frozen
convolutional base and a swapped densely connected classifier,
has 42.5 million trainable parameters.

The VGG-16 model, on the contrary, had an identical
densely connected classifier and a frozen convolutional base with
8.4 million trainable parameters. Interestingly, despite having five
times the number of trainable parameters as VGG-16, ResNet-
50 spent only 21.33% more time on training. The inclusion of

TABLE 2 | Hyperparameters of CNNs adopted in the experiments.

Parameter CNN VGG-16 ResNet50

Number of epochs 100 100 100

Batch size 512 256 256

Weight initializer Xavier uniform Xavier uniform Xavier uniform

Optimizer Adam Adam Adam

Adam parameters β1 = 0.9,
β2 = 0.999

β1 = 0.9,
β2 = 0.999

β1 = 0.9,
β2 = 0.999

Learning rate 10-4 10-5 10-4

Loss function Categorical
cross-entropy

Categorical
cross-entropy

Categorical
cross-entropy

Metrics Accuracy Accuracy Accuracy

Data augmentation Rotation,
zoom, height
shift, width
shift, shear,

horizontal flip

Rotation,
zoom, height
shift, width
shift, shear,

horizontal flip

Rotation,
zoom, height
shift, width
shift, shear,

horizontal flip

All the architectures adopted Xavier’s uniform as the weight initializer and Adam
as the optimizer.

TABLE 3 | Summary of training and validation performance.

Model Training
time

(minutes)

Steps Training Validation

Accuracy Loss Accuracy Loss

CNN 46 97 0.8755 0.3102 0.7270 0.7094

VGG-16 75 57 0.9492 0.1511 0.8066 0.5263

ResNet-50 91 56 0.9164 0.2150 0.7686 0.5901

multiple batch normalization layers between the convolutional
layer and the non-linear activation function may be the primary
reason for this, allowing a higher learning rate to be used
(He et al., 2016).

The loss function quantifies a model’s performance in
classifying input images from a dataset. The loss value
indicates how well a model performs after each optimization
epoch. The goal of training a deep learning network is
to minimize the error calculated using the loss function
while increasing testing accuracy. VGG-16 achieved a training
loss value of 0.1511, while CNN from scratch and ResNet-
50 achieved training loss values of 0.3102 and 0.2150,
respectively. In terms of validation performance as measured
by loss value, VGG-16 achieved the lowest loss value of
0.5263. ResNet-50 came in second with a loss value of
0.5901, and CNN from scratch came in third with a loss
value of 0.7094.

The transfer learning method was tested for its ability to
produce satisfactory results on small datasets, as seen in recent
literature. Deep models with pretrained weights, such as VGG-
16 and ResNet-50, were used for feature extraction instead of
learning the convolutional bases from scratch. To improve the
output classification scores, a new densely connected classifier
trained from scratch was added to both models. Both VGG-
16 and ResNet-50 outperform the CNN trained from scratch
in this case. Despite the use of various regularization methods,
such as dropout, batch normalization, and data augmentation,
the overfitting problem persists in both models.

Testing Performance and Discussion
After all of the models had been trained and validated, the 20%
held out testing data were run on each and every model. The
confusion matrix was used as a tool to assess model classification
performance, along with a summary of prediction results. The
number of correctly or incorrectly predicted predictions is
summarized systematically in a table, with count values broken
down by class. The confusion matrix is a table with three rows
and three columns because it is a three-way classification task
with three different classes. The predicted lab is represented
by the rows (y-axis), and the predicted label is represented
by the columns (x-axis). Figure 4 depicts confusion matrices
that describe each model’s classification performance on test
data. Using the seaborne library, each confusion matrix is
visualized as a color-coded heat map. The darker cells for
the diagonal elements can be seen in all of the plotted
confusion matrices. This indicates that a large amount of data
is correctly predicted according to its label. The off-diagonal
elements with light shades, on the contrary, indicate model
misclassifications.

The CNN predicted the MCI group with the highest accuracy
and the CN group with the lowest accuracy when trained from
scratch. It correctly classified 304 of 409 MCI images and 291
of 408 CN images. In contrast, the AD group has the highest
classification accuracy in VGG-16 and ResNet-50, while the MCI
group has the lowest classification accuracy. ResNet-50 classified
341 AD images out of 410 AD images predicted by VGG-16.
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FIGURE 4 | Confusion matrix of three models on test data: (A) CNN from scratch; (B) VGG-16; and (C) ResNet-50. Each of the confusion matrices is visualized as a
color-coded heat map using the seaborne library. It can be observed that all the plotted confusion matrices have darker cells for the diagonal elements. This
indicates that more data are being predicted correctly to their respective label. Conversely, the off-diagonal elements with light shades indicate misclassifications
done by the model.

In the MCI group, VGG-16 correctly predicted 288 images, and
ResNet-50 correctly classified 282 of 409 AD images.

To further evaluate the classification model, classification
metrics such as accuracy, precision, recall, and F1-score were
calculated with the aid of the confusion matrices. For each
classification model (CNN from scratch, VGG-16, and ResNet-
50), the reported classification performance on test data is
accuracy of 72.70, 78.57, and 75.71%, respectively; precision of
71.50, 73.94, and 72.86%, respectively; recall of 71.32, 81.37, and
75.00%, respectively; and F1-score of 71.41, 77.48, and 73.91%,
respectively. Based on Figure 5, it is observed that VGG-16,
which achieved the lowest loss value of 0.5263, performed the
best on test data with an accuracy of 78.57%. The lowest testing
accuracy of 72.70% is obtained using the CNN from scratch.

For further in-depth evaluation of performance on test data,
the classification results for each class label are reported in
Table 4. Similar to what was being analyzed using the confusion
matrices, the AD group has the highest accuracy value for

VGG-16 and ResNet-50. VGG-16 performed the greatest in
predicting AD class with an accuracy of 83.90%, precision of
82.49%, recall of 83.90%, and F1-score of 83.19%. Interestingly,
ResNet-50 has the lowest accuracy in predicting the MCI class.
Overall, using VGG-16 improved the performance values for
all three classes.

The AD group scored the highest accuracy value for VGG-16
and ResNet-50. VGG-16 performed the greatest in predicting AD
class with an accuracy of 83.90%, precision of 82.49%, recall of
83.90%, and F1-score of 83.19%.

DISCUSSION

From the results obtained, the VGG-16 model outperformed
the CNN trained from scratch and the ResNet-50 model. It
has the best testing performance with an accuracy of 78.57%,
precision of 73.94%, recall of 81.37%, and F1-score of 77.48%.
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FIGURE 5 | Comparison of classification performance on test data. For all the metrics, VGG-16 ranks the highest.

Comparing its performance to other related works, VGG-16 has
a performance below the average. Being trained on the ImageNet
dataset, VGG-16 was able to extract representations using its
convolutional base for learning the multiclass classification task.
Despite the great performance on learning the representations,
VGG-16 still encountered the typical overfitting problem due
to the small dataset used. Several regularization methods were
used, such as dropout, batch normalization, data augmentation,
and early stopping. However, the signs of overfitting can still
be noticed. This could be due to the high complexity of the
classification task. The subtle discrepancies between the MCI
and AD images require a large amount of data to learn the
representation to classify them. With the small dataset being used
in this project, the VGG-16 model could not learn the problem
completely, hence the overfitting problem. Another possible
reason could be that the dataset being used in this project has
substantial differences as compared to the ImageNet dataset. The
VGG-16 was pretrained on general images from the ImageNet
without including medical images. Hence, the high-level features
learned by the higher layers of the VGG-16 are not sufficient to
differentiate the classes in this study.

Based on the results obtained, it is of importance to choose
a proper training strategy for the model. Hence, the model is

TABLE 4 | Testing accuracy, precision, recall, and F1-score for all class label.

Model Class
label

Accuracy Precision Recall F1-score

CNN from scratch AD 0.7244 0.7775 0.7244 0.7500

CN 0.7132 0.7150 0.7132 0.7141

MCI 0.7433 0.6941 0.7433 0.7178

VGG-16 AD 0.8390 0.8249 0.8390 0.8319

CN 0.8137 0.7394 0.8137 0.7748

MCI 0.7042 0.7978 0.7042 0.7481

ResNet-50 AD 0.8317 0.7715 0.8317 0.8005

CN 0.7500 0.7286 0.7500 0.7391

MCI 0.6895 0.7726 0.6895 0.7287

Bold values are highest value.

able to spend the least time training while trying to cover as
many cases as possible. An adequate model capacity is essential
for model generalization. Model depth should be kept as small
as possible to prevent a model from overfitting on training
data. The greater the depth, the more cases the model can
memorize. As a consequence, the final system will perform
worse on unseen data. Another possible reason behind inferior
performance could be insufficient data augmentation. The data
augmentation used is insufficient to generate diversity for the
original dataset. An example of aggressive data augmentation
can be seen in the study by Basaia et al. (2019). Apart
from general augmentation transformations such as rotation,
zooming, and scaling, the study implemented deformation,
cropping, and flipping.

The strengths of this study are elaborated as follows. In
general, most of the studies emphasized performing binary
classification of different phenotypes of AD. In this study, three
different classes (AD, CN, and MCI) are classified directly using
a single classifier. This study is less common as most of the
studies deal with the problem of multiple class labels by dividing
the problem into several binary sub-problems. Moreover, tissue-
segmented sMRI brain images were used, which substantially
lower the requirement for computational costs in terms of
power and time. Second, MRI images were segmented into GM,
WM, and CSF for training and testing the model. Moreover,
models were tested using an independent set of images held out
from the dataset. In addition, the performance of popular deep
transfer learning models such as VGG-16 and ResNet-50 was
evaluated to study their performance on images not from the
ImageNet domain.

CONCLUSION

In this study, we have conducted a series of experiments with
different deep learning CNN architectures on preprocessed axial
sMRI brain images retrieved from the ADNI database. To address
the problem of classifying brain sMRI images of three distinct
classes of AD, CN, and MCI, three different CNN models were
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built, namely, a CNN from scratch, VGG-16, and ResNet-50. The
VGG-16 model outperforms the other two models in testing.
The results show that, despite being trained on general images
from the ImageNet dataset, VGG-16 is capable of extracting
relevant features for the classification task. Using the same
dataset, the pretrained VGG-16 outperforms shallow CNN and
classical machine learning algorithms. However, its performance
is considered subpar when compared to other literature, which
also employed deep learning techniques. Increasing the number
of data for training is the main factor for improving classification
performance. This project serves as a catalyst to motivate further
study on computer-assisted AD diagnosis systems that can
provide automated early diagnosis of AD and the detection of
more phenotypes of AD.

For future studies, a list of improvements can be suggested.
Effort should be devoted in attempting different pretrained
CNN families such as AlexNet (Krizhevsky, 2014), Xception
(Chollet, 2017), Inception (Szegedy et al., 2016), MobileNet
(Howard et al., 2017), and other variants of VGG and ResNet
as well as the more recent state-of-the-art network (Tan
and Le, 2019, 2021) as base model for feature extraction.
Furthermore, classification performance could be improved
through fine-tuning. Unfreeze some layers, or even half of
the model, for training with the classifier at a slower learning
rate. Finally, a few different methodologies for improving
classification performance to distinguish between AD, CN, and

MCI may be investigated in the future. One method is to
include multimodal data in the study. Multimodal research
necessitates feature fusion to combine features from various
modalities into a single feature vector. Another method for
improving performance is to enrich the feature learning process
by fusing low-dimensional features like clinical scores with the
MRI features space.
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Alzheimer’s disease (AD) is a progressive neurodegenerative disease with insidious and
irreversible onset. The recognition of the disease stage of AD and the administration of
effective interventional treatment are important to slow down and control the progression
of the disease. However, due to the unbalanced distribution of the acquired data volume,
the problem that the features change inconspicuously in different disease stages of
AD, and the scattered and narrow areas of the feature areas (hippocampal region,
medial temporal lobe, etc.), the effective recognition of AD remains a critical unmet
need. Therefore, we first employ class-balancing operation using data expansion and
Synthetic Minority Oversampling Technique (SMOTE) to avoid the AD MRI dataset
being affected by classification imbalance in the training. Subsequently, a recognition
network based on Multi-Phantom Convolution (MPC) and Space Conversion Attention
Mechanism (MPC-STANet) with ResNet50 as the backbone network is proposed for
the recognition of the disease stages of AD. In this study, we propose a Multi-Phantom
Convolution in the way of convolution according to the channel direction and integrate
it with the average pooling layer into two basic blocks of ResNet50: Conv Block and
Identity Block to propose the Multi-Phantom Residual Block (MPRB) including Multi-
Conv Block and Multi-Identity Block to better recognize the scattered and tiny disease
features of Alzheimer’s disease. Meanwhile, the weight coefficients are extracted from
both vertical and horizontal directions using the Space Conversion Attention Mechanism
(SCAM) to better recognize subtle structural changes in the AD MRI images. The
experimental results show that our proposed method achieves an average recognition
accuracy of 96.25%, F1 score of 95%, and mAP of 93%, and the number of parameters
is only 1.69 M more than ResNet50.

Keywords: MPC-STANet, Multi-Phantom Convolution, Space Conversion Attention Mechanism, Synthetic
Minority Over-sampling Technique, Alzheimer’s disease recognition
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INTRODUCTION

Alzheimer’s disease (AD) is an insidious and slowly progressive
neurodegenerative disease, which is mainly found in the elderly
population over 60 years of age and is clinically manifested
as amnesia, loss of mobility, language ability, etc. (Beitz,
2014; Andrieu et al., 2015). Alzheimer’s disease has a long
developmental cycle and is divided into five disease stages: Non-
Demented, Very Mild Demented, Mild Demented, Moderate
Demented, Severe Dementia. Very Mild Demented, where
people with Mild Demented often have memory loss, and in
severe cases, dementia; Mild Dementia, where people show
a lack of memory, personality changes, disorientation, and
difficulty performing daily tasks; Moderate Dementia, where
patients experience significant personality changes and sleep
disturbances, and already require additional care and support,
which can be easily recognized by health care professionals.
Severe Dementia, where patients with this condition already lack
the ability to communicate, have difficulty completing the small
tasks of life and require full-time treatment. Due to the long
stage of Alzheimer’s disease and the lack of obvious changes
in the features of the early disease, it is difficult for patients
themselves to realize this and it is difficult for doctors to make a
correct judgment in time based on some of the small pathological
features of patients in the early stages of the disease (the first
four disease stages of Alzheimer’s disease) (Wu and Swaab, 2005).
When the symptoms of patients are obvious before they are
diagnosed, Alzheimer’s disease has already reached the late stage
(the fifth disease stage: Severe Dementia). At this time, the patient
has the problems of being unable to eat and incontinence and
needs others to take care of their daily life, including eating or
going to the toilet. A large number of nerves in patients have
experienced irreversible death, and the reflex becomes abnormal,
resulting in irreversible cognitive degeneration and dementia,
which cannot achieve good therapeutic effects (Nelson et al.,
2012). The use of deep learning research has little significance
in recognizing severe dementia. Therefore, in this study, we only
carry out diagnosis and recognition for the first four stages of
Alzheimer’s disease, which is of great significance for slowing and
controlling the progress of the disease (Dubois et al., 2016).

The pathogenesis of Alzheimer’s disease is complex, among
which age is an important factor in the cause of this disease, and
genetic factors, external trauma, education level, trace elements,
etc., are also important reasons for the occurrence of this disease
(De la Torre, 1999). The biological features of Alzheimer’s disease
include the formation of senile plaques due to the accumulation
of β-amyloid (Aβ) in the cerebral cortex and the hippocampal
region, neuronal cell reduction, and neurofibrillary tangles within
neuronal cells, etc. (Zhao and Zhao, 2013). The brain structure
of Alzheimer’s disease patients is mainly characterized by brain
atrophy, narrowing of the gyrus, enlargement of the sulcal
gaps, and the degree of atrophy in the hippocampus region
and medial temporal lobe atrophy compared to normal people.
The observation of the brain structure of Alzheimer’s patients
is mainly through the Alzheimer’s MRI medical images, which
capture information about the relevant disease pattern of the
patients through neuroimaging of the white matter area of

the brain and assist doctors in judging the disease stage of
Alzheimer’s disease, while the Alzheimer’s MRI medical images
have the problems of difficulty in acquiring and the extremely
unbalanced distribution of the acquired data volume (Chen and
Glover, 2015). The manual recognition process of Alzheimer’s
disease is very complex. First, doctors need to ask the patient
about recent living environment through psychological scales to
assess whether his/her cognitive functions have deteriorated, then
employ nuclear magnetic imaging to check whether the imaging
structures of the brain of the patient have started to atrophy
and change, and finally use electroencephalogram and long-term
monitoring of the heartbeat to determine whether the patient is
showing changes in cognitive functions and brain signals. Such
a testing process relies on the professional knowledge of the
physicians and clinical experience, but manual analysis of the
medical image is time-consuming and laborious, and there is a
risk of misdiagnosis. Therefore, if we can employ a computer
to assist in diagnosis, we can improve the efficiency of doctors
to a certain extent and also reduce the misdiagnosis and leakage
caused by humans (Frisoni et al., 2010; Royce et al., 2019; Lu et al.,
2020).

The stage recognition of Alzheimer’s disease has been a
popular research direction in the field of computer vision-
aided diagnosis, and numerous studies have combined traditional
machine learning methods to recognize this disease and
achieved good recognition results (Negin et al., 2018; Wang
et al., 2019). For example, Magnin et al. (2009). proposed
and evaluated a novel automated method of whole-brain
anatomical MRI based on support vector machine (SVM)
classification to distinguish Alzheimer’s disease (AD) patients
from elderly control subjects, with a mean correct classification
of 94.5% (mean specificity 96.6%; mean sensitivity 91.5%)
for AD and control subjects. Lebedev et al. (2014) used a
random forest classifier trained based on MRI measures of
different structures for the diagnosis of Alzheimer’s disease and
achieve the best AD/HC sensitivity/specificity (88.6%/92.0%)
results after combining with cortical thickness and volume
measurements. However, although the above research methods
were successfully applied to Alzheimer’s disease classification
and diagnosis, the extraction of effective features in Alzheimer’s
disease diagnosis often plays a more important role than the
construction of classifiers, which requires manual selection
of regions of interest before classification and a series of
manual feature extraction steps with a priori knowledge,
which is a tedious extraction process and has human factors
interfering (Li et al., 2012; Sabuncu and Konukoglu, 2015).
With the development of computer platforms, convolutional
neural networks (CNNs) have been widely recognized for their
good image recognition, and a large number of CNN-based
Alzheimer’s classification models have emerged. For example,
Sarraf and Tofighi (2016) used convolutional neural networks
to successfully classify functional MRI data from Alzheimer’s
brains with normal healthy brains, where the accuracy of the
test data reach 96.85%. Ieracitano et al., 2019 proposed a data-
driven approach to distinguish subjects with AD, MCI, and HC
by acquiring electroencephalogram recordings and transforming
the correlation spectra of 19 channels of electroencephalogram
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traces into 2D grayscale images, and then classifying binary and
multiple classes in 2D images using CNN models with 89.8 and
83.3% accuracy, respectively.

The above examples all show the application results of
the field of deep learning in Alzheimer’s disease well while
demonstrating the better adaptability and data discrimination
of the convolutional neural networks (CNN) within the field of
Alzheimer’s disease recognition. However, due to the complex
structure of the human brain during Alzheimer’s disease and
the difficulty of detecting subtle structural changes in the brain
during mild disease, and the fact that the aging process of
normal people is accompanied by shrinkage of brain structures,
Alzheimer’s patients also suffer from shrinkage of brain areas,
which poses many difficulties for research (Young et al., 2013;
Lockhart and DeCarli, 2014). Only the correct determination
of the changes in brain structure can effectively diagnose the
different stages of Alzheimer’s disease. Therefore, the main
problems of this study are as follows: (1) the Alzheimer’s MRI
medical images acquired during the first four disease stages of
Alzheimer’s disease have the problem of unbalanced distribution
in terms of data volume, which can affect the training effect of
the model and make the classification results biased toward the
class with more MRI images. (2) The brain structures in different
disease stages of Alzheimer’s disease produce subtle changes
on MRI images, and the regions of interest (e.g., sulcal gaps,
gyrus, hippocampal region, medial temporal lobe) account for a
small proportion of the whole MRI image, complicating feature
extraction. (3) The lack of distinctive features of Alzheimer’s
disease makes convolutional neural networks often accompanied
by an increase in the number of convolutional layers to improve
the ability of the neural network for feature extraction. However,
when the number of layers of the neural network exceeds a certain
threshold, there will be problems such as gradient disappearance
and gradient explosion, making the neural network difficult
to be trained, and the long-time training is not conducive to
Alzheimer’s disease prediction (Guo et al., 2017; Wu et al., 2018;
Hu et al., 2021).

To deal with the problem of classification imbalance in the
dataset, the most basic approach is either to directly copy the
minority classes and add them to the sample set or to employ a
certain percentage of the majority classes as the training set to
obtain a relatively balanced dataset (López et al., 2013; Maxwell
et al., 2018). However, this approach tends to lead to the problem
of model overfitting, which makes the information learned by the
model not generalized enough. To address this problem, Chawla
et al. (2002) proposed the Synthetic Minority Oversampling
Technique (SMOTE), which uses the similarity between the
classes with fewer samples in the feature space to build synthetic
new samples and add them to the minority classes. The SMOTE is
a good solution to the problem that the information obtained by
random oversampling is too special and not generalized enough.
Therefore, we combine SMOTE with data expansion (flipping,
adding random Gaussian noise, and contrast adjustment) for
Alzheimer’s disease to perform class-balancing preprocessing for
better training results.

Given the little variation in the Alzheimer’s MRI images in
different disease stages and the small proportion of regions of

interest, Toğaçar et al. (2021) used DeepDream, fuzzy color image
enhancement, and super columnar techniques to process the
Alzheimer’s MRI dataset, input the processed MRI dataset into
VGG-16 for feature extraction, and finally used Support Vector
Machine (SVM) as a classifier. The recognition accuracy of using
this method was 100% for MD and ND as well as 99.94% for
VMD and MOD. Using the data enhancement algorithm on the
Alzheimer’s MRI dataset can enhance the features of each MRI
image and suppress useless background information so that the
deep learning model can better extract these features and achieve
a high recognition rate. However, the use of data enhancement
algorithms often has the problems of a cumbersome operation
process and poor generalization ability, and the input of the deep
learning model often requires a large amount of image data,
which takes a long time to complete the feature enhancement
operation. Thus, we improve the ability of the network to
extract features by redesigning the structure of the deep neural
network to avoid using more feature enhancement algorithms
for the dataset. Therefore, we propose a recognition network
of Alzheimer’s disease based on Multi-Phantom Convolution
and Space Conversion Attention Mechanism (MPC-STANet)
with the residual network ResNet50 as the backbone network
(He et al., 2016). Compared with VGG-16, ResNet50 has lower
complexity and required parameters, and faster convergence
speed. It has 50 training layers, which can extract more subtle
features from Alzheimer’s MRI images, with better classification
accuracy. Moreover, the unique residual connection of ResNet50
breaks the symmetry of the neural network, improves the
utilization of neurons in each layer, and multiple branches
ensure that even if some layers degenerate, it will not affect
the overall performance, which makes it widely used in the
field of image recognition. Since the feature performance of the
Alzheimer’s MRI medical image is very different from that of
an ordinary image, we structurally designed the convolutional
layer of ResNet50 to better suit Alzheimer’s disease: (1) To
increase the feature extraction of small and scattered regions in
the Alzheimer’s MRI images, we employ dilated convolution (Yu
and Koltun, 2015) instead of the original 7 × 7 convolution
layer in STAGE1 to obtain a larger perceptual field without
changing the number of parameters. (2) To extract more subtle
pathological features of structures, we employ Multi-Phantom
Convolution and the Space Conversion Attention Mechanism in
the residual blocks to extract richer characterization information
from patients’ MRI images. Meanwhile, to avoid the redundancy
of useless information, we add an average pooling layer to
integrate space information in the shortcut branch of the residual
block to improve the detection speed along with reducing
the computation.

The contributions of this study are as follows.

(1) To solve the problem of classification imbalance in the
Alzheimer’s disease dataset, we increased the data volume in
the minority classes using data expansion methods such as
flipping, adding noise, and contrast adjustment (as depicted
in Figure 1), and performed class-balancing operation
using SMOTE (the results are displayed in Table 1).
SMOTE performs a class-balancing operation by artificially
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FIGURE 1 | Principles of Alzheimer’s disease recognition.

TABLE 1 | The number of the four disease stages and their proportions.

Disease type Original
number

Percentage Expanded
number

Percentage

Non-Demented 3200 50% 3200 25%

Very Mild Demented 2240 35% 3200 25%

Mild Demented 896 14% 3200 25%

Moderate Demented 64 1% 3200 25%

TABLE 2 | The recognition accuracy of the original dataset and the preprocessed
dataset in the three models.

Network model Original data set Preprocessed data set

ResNet50 76.9% 84.6%

ResNet50-SPAM 81.2% 89.4%

MPC-STANet 85.5% 96.2%

TABLE 3 | Comparison of accuracy and number of parameters of four networks.

Network model Parameters Accuracy

ResNet50 25.56M 84.6%

ResNet50-DC 25.56M 86.7%

MPC-STANet 27.25M 96.2%

TABLE 4 | Comparison of accuracy and number of parameters of three networks.

Network model Parameters Accuracy

ResNet50 25.56M 84.6%

ResNet50-MPRB 21.10M 89.5%

MPC-STANet 27.25M 96.2%

synthesizing new samples from the minority classes and
adding them to the dataset for classification balance, which
well solves the problem of model overfitting, as displayed

TABLE 5 | The influence of attention mechanisms on network accuracy.

Network model Accuracy

ResNet50 84.6%

ResNet50-SE 85.9%

ResNet50-CMBA 87.8%

ResNet50- SCAM 90.1%

MPC-STANet 96.2%

TABLE 6 | Performance evaluations of each disease stages.

Network model Recall F1-score Precision

Non-Demented 97% 96% 97%

Very Mild Demented 95% 94% 95%

Mild Demented 97% 97% 98%

Moderate Demented 95% 93% 94%

in Table 2. In the MPC-STANet model, the recognition
accuracy of the class-balancing processed dataset is
improved by 10.7% compared to the unprocessed dataset.

(2) To extract the scattered and subtle pathological features
of Alzheimer’s disease, the MPC-STANet is proposed
in this study. (a) We employ Dilated Convolution in
STAGE 1 of the network to extract features from scattered
pathological regions of Alzheimer’s disease to obtain a
larger range of feature information. As displayed in
Table 3, the recognition accuracy of ResNet50 after using
Dilated Convolution is improved by 2.1% compared with
ResNet50. (b) To extract more subtle pathological features,
we proposed Multi-Phantom Residual Block (including
Multi-Conv Block and Multi-Identity Block) based on
Multi-Phantom Convolution, average pooling layer, and
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FIGURE 2 | Confusion matrix of the MPC-STANet.

Conv Block and Identity Block of ResNet50 to extract
richer characterization information in the Alzheimer’s MRI
images, and the recognition accuracy is improved by
4.9% compared to ResNet50 and the model parameters
decreased by 4.46M compared to ResNet50 (as displayed
in Table 4). (c) Space Conversion Attention Mechanism is
inserted between Multi-Phantom Convolution and 1 × 1
convolution, aiming to solve the problem of difficult
recognition due to small differences between disease stages.
Space Conversion Attention Mechanism preserves more
important feature information (e.g., hippocampal region,
brain gyrus, sulcal gaps, etc.) and discards redundant
information (e.g., background) by assigning different
weights in vertical and horizontal directions to enhance the
extraction of tiny features, and the recognition accuracy is
improved by 5.5% compared to ResNet50 (as displayed in
Table 5).

(3) The recognition accuracy of the recognition methods
proposed in this study for the first four stages of Alzheimer’s
disease in non-demented, very mild demented, Mild
Demented and Moderate Demented are 97, 95, 98, and 94%,
respectively. Other performance evaluations are shown in
Table 6 and the confusion matrix of the MPC-STANet is
shown in Figure 2. In experiment 3.5, we tested the MPC-
STANet and other networks in the same environment.
The experimental results show that the Recall, F1-score,
Precision, and mAP of the MPC-STANet proposed are 96,
95, 96, and 93%, respectively, which are higher than the
other networks. The overall performance of the model is
good, and the performance evaluations of other networks
are shown in Table 7.

Therefore, we propose a method in this study for
recognizing disease stages of Alzheimer’s disease that combine
class-balancing preprocessing and the MPC-STANet. The
recognition principle is depicted in Figure 3. First, the
minority classes are enhanced by flipping, adding noise
and contrast adjustment, and then the class-balancing
operation is achieved by SMOTE. Finally, the processed
MRI dataset is input into the MPC-STANet for training

TABLE 7 | Evaluation indexes of the networks.

Network model Recall F1-score Precision mAP

ResNet50, He et al., 2016 83% 82% 85% 81%

VGG16, Toğaçar et al., 2021 80% 76% 77% 75%

U-Net, Hazarika et al., 2022 79% 75% 77% 73%

LeNet-5, Li et al., 2015 83% 82% 80% 75%

ADVIAN, Wang et al., 2019 84% 82% 85% 81%

MobileNet-SVM, Fei et al., 2022 90% 89% 89% 84%

DFNN, Huang et al., 2020 85% 82% 84% 81%

ResNet-STN, Sun et al., 2021 88% 89% 86% 83%

TReC, Xiao et al., 2021 91% 90% 92% 88%

Inception-v4, Bae et al., 2020 87% 90% 88% 85%

EfficientNetB0, Savaş, 2022 92% 94% 94% 92%

AlexNet, Hanmugam et al., 2022 77% 73% 75% 70%

GoogleNet, Hanmugam et al., 2022 84% 87% 86% 81%

MPC-STANet 96% 95% 96% 93%

and testing. To better extract the pathological features of
Alzheimer’s disease, Dilated Convolution, Multi-Phantom
Residual Block (including Multi-Conv Block and Multi-
Identity Block), and Space Conversion Attention Mechanism
are incorporated in the MPC-STANet to achieve better
recognition accuracy.

MATERIALS AND METHODS

Data Acquisition
Dataset is an important part of the field of pattern recognition
and data mining. Since the main motivation of this study is
to design a deep learning framework for Alzheimer’s disease
classification, the adopted Alzheimer’s MRI dataset was created
by researcher Sarvesh Dubey (Kaggle) and was collected
from multiple websites, hospitals, and public repositories.
The dataset consists of 896 MRI Mild Dementia images, 64
MRI Moderate Dementia images, 3,200 MRI Non-Dementia
images, and 2,240 MRI Very Mild Dementia images, and
the distribution of the number of MRI images in different
stages of Alzheimer’s diseases is displayed in Table 8. All MRI
images were preprocessed and resized to 128 × 128 pixels and
saved in JPG format, and some of the images are depicted in
Figure 1.

Class-Balancing Preprocessing Based
on Data Expansion and SMOTE
As displayed in Table 8, the Alzheimer’s MRI dataset acquired
has the problem of unbalanced distribution in terms of data
volume, which will lead to the imbalanced learning effect of
the neural network model, and the problems of overfitting
and under-fitting exist simultaneously. To address this problem,
we can expand the dataset with the help of data expansion
methods and Synthetic Minority Oversampling Technique
(SMOTE) technique to balance the data volume of the first
four disease stages to improve the accuracy of the neural
network model.
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FIGURE 3 | Principles of Alzheimer’s disease recognition.

TABLE 8 | Number distribution of Alzheimer’s disease dataset.

Disease type Original number Percentage

Non-Demented (ND) 3200 50%

Very Mild Demented (VMD) 2240 35%

Mild Demented (MD) 896 14%

Moderate Demented (MOD) 64 1%

Data Expansion
Training the neural network model with more datasets allows
it to learn more effective feature points to improve the
recognition accuracy of the model, prevent overfitting, etc.
We use MATLAB 2020b to flip the image, add random
Gaussian noise, contrast adjustment, and other data expansion
methods to expand the minority classes to improve the
training effect of the neural network model. Also, the data
expansion method is an important way to balance the data
volume of different classes and the result images are shown in
Figure 4.

Synthetic Minority Oversampling Technique
Table 8 displays the number of images in the dataset for
the first four disease stages of Alzheimer’s disease, which
indicates that the classes of the dataset are unbalanced.
If a class-unbalanced dataset is used for prediction, the
predictions tend to yield conclusions that are also biased,
that is, the classification results will be biased toward the
majority class. To address this problem, we apply synthetic
minority oversampling technique (SMOTE) to this dataset,
which addresses the classification imbalance in the dataset
by randomly replicating the classes with fewer samples in
the dataset to match the classes with more samples. We
oversample the classes with fewer samples using the seeds
of 42 random number generators, and Table 1 displays the
distribution of the Alzheimer’s disease dataset after using the data
expansion and SMOTE.

Suppose the number of the minority classes samples are Tand
set a sampling ratio to determine the magnification N according
to the sample imbalance ratio so that the sample can be expanded
by N times after sampling. The algorithm steps of the SMOTE are
as follows:

Step1: Consider a sample x ∈ {1, ..., T} in the minority
class, calculate its distance to all samples in the minority
classes based on the Euclidean distance, and select K the
nearest neighbors.

|x| =
√

x2
1 + x2

2 + x2
3 + ...+ x2

n (1)

Step2: Randomly select a sample B from the K nearest
neighbors and combine it with the original sample to
synthesize a new sample according to the following
formula.

xnew = a+ rand(0, 1)×
∣∣a− b

∣∣ (2)

Step3: Repeat Step 2 and Step 3 N times.

Step4: Repeat the above steps for T samples of the minority
classes.

ResNet50 Backbone
ResNet50 constructs the deep network model as a shallow
network model and an additional layer of self-mapping connects
the trained shallow structure with the additional layer of self-
mapping through residual units, transmits the input across layers
through a shortcut, and then adds the output after convolution
to achieve the effect of fully training the underlying network.
ResNet50 has 6 STAGE (STAGE1∼ STAGE6), containing 49
convolutional layers and 1 fully connected layer. Among them,
the 49 convolutional layers consist of two basic blocks. As shown
in Figure 5, one is Identity Block, which has the same dimension
of input and output, so it can be concatenated with more than
one for deepening the network layers; the other basic block is
Conv Block, which has an inconsistent dimension of input and
output, so it cannot be concatenated consecutively and its role is
to change the dimension of the feature vector.

The actual Alzheimer’s disease needs to be judged by looking at
the pathological features such as the degree of enlargement of the
sulcal gaps, and the degree of atrophy in the hippocampus region
and medial temporal lobe. However, due to the small variation in
MRI image features during the four disease stages: mild dementia
(MID), moderate dementia (MOD), non-dementia (ND), and
very mild dementia (VMD), more subtle pathological features
need to be extracted to better discriminate. To extract more subtle

Frontiers in Aging Neuroscience | www.frontiersin.org 6 June 2022 | Volume 14 | Article 918462127

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-918462 June 4, 2022 Time: 15:9 # 7

Liu et al. MPC-STANet

FIGURE 4 | MRI image processed by augmentation methods.

FIGURE 5 | ResNet residual block.

pathological features, this study employs ResNet50, the winner of
the ImageNet large-scale visual recognition competition in 2015,
as the basic network. However, the properties of the Alzheimer’s
MRI images are very different from those of ordinary images,
and designing according to the pathological characteristics of
Alzheimer’s disease can effectively improve the accuracy of the
model. Therefore, we propose a recognition network of
Alzheimer’s disease based on Multi-Phantom Convolution and
Space Conversion Attention Mechanism (MPC-STANet), which
is improved based on ResNet50.

Recognition Network of Alzheimer’s
Disease Based on Multi-Phantom
Convolution and Space Conversion
Attention Mechanism
The MPC-STANet is upgraded based on ResNet50, and the
network structure is depicted in Figure 6.

The feature extraction network of ResNet50 consists of 7 ×7
convolution and 3 ×3 maximum pooling layer (STAGE1),
convolutional residual extraction network composed of Conv

Block and Identity Block (STAGE2˜STAGE5), average pooling
layer, and fully connected layer (STAGE6). The MPC-STANet
proposed in this study is based on ResNet50, using the Dilated
Convolution (DC) instead of 7 ×7 convolution of STAGE1;
changing the two basic blocks of Conv Block and Identity
Block using Multi-Parallel Convolution (MPC) and averaging
pooling layer, proposing Multi-Conv Block and Multi-Identity
Block; adding the Space Conversion Attention Mechanism
(SCAM) between the convolution blocks. This study improves
the network structure, and more details will be provided in the
following chapters.

Dilated Convolution
The pathological feature points of different disease stages
of Alzheimer’s disease are obscure and scattered. To classify
disease stages based on the Alzheimer’s MRI medical images
more accurately, more effective subtle pathological features
need to be extracted. ResNet50 uses a 7 × 7 convolution
with a large perceptual field in STAGE1, which is sufficient
for extracting features from common and ordinary images
in the ImageNet database, but it is difficult to adequately
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FIGURE 6 | The t overall architecture of the MPC-STANe.

consider the subtle pathological features of MRI. Therefore, to
reduce the information loss during the extraction process
and improve the recognition ability of the model, we
employ Dilated Convolution (DC) to replace the 7 × 7
convolution in STAGE1. Dilated Convolution increases the
perceptual field while maintaining the size of the feature
map unchanged and does not cause problems such as
information loss.

Dilated Convolution expands the perceptual field size of
ordinary convolution by setting different dilation rates (r).
Among them, r determines the interval size of the holes injected
in the convolution. If r is too small, the range of the perceptual
field is limited, and if r is too large, the features in the perceptual
field lose some relevance. Dilated Convolution can be regarded
as inserting a zero value of r-1 into the convolution kernel during
ordinary convolution. For ordinary convolution, the convolution
kernel of 3 × 3 is calculated on the feature map, and the
perceptual field of the new feature point is three, as depicted
in Figure 7A. For the dilation convolution with dilation rate
r = 2, one zero value is inserted between the 3 × 3 convolution
kernels to obtain its perceptual field of five, as depicted in
Figure 7B, which results in the equivalent of two ordinary 3 × 3
convolutions with only one computation.

Assuming that Dilated Convolution kernel is k×k, and the
dilated rate is r, then the actual convolution kernel is:

K = k+ (k− 1)× (r − 1) (3)

After Dilated Convolution process, the relationship between
the size of the input and output feature maps is as follows:

W2 =
W1 + 2p− r × (k− 1)− 1

s
+ 1 (4)

Among them, W1 and W2 represent the size of the input
and output feature maps, respectively, s and p represent the
step-size and the patch.

Multi-Conv Block and Multi-Identity Block Based on
Multi-Phantom Convolution
ResNet50 residual block mainly consists of a linear branch (one
1 × 1 convolution layer and two 3 × 3 convolution layers) and a
shortcut branch with 1 × 1 convolution, where the linear branch
is used to extract feature information in the feature map and
generate the output feature matrix; the shortcut branch uses 1× 1
convolution to increase the number of channels and match the
number of channels of the linear branch, which is used to avoid
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FIGURE 7 | Perceptual field of ordinary convolution and extended convolution.

the problems of gradient disappearance and gradient explosion
caused by network depth. Finally, the output feature matrixes
of the two branches are summed to obtain the feature map of
residual block output, and then the feature map is put into the
Relu activation function to enhance the non-linearization of the
model. However, due to the variety of structural changes in MRI
images in different stages of Alzheimer’s disease such as the
changes in the cerebral cortex, especially in the temporal and
parietal regions, the features that appear tend to show only subtle
differences; whereas the structure of the hippocampal region of
suffering from Alzheimer’s disease is significantly changed in
different stages.

To address this problem, we propose the Multi-Phantom
Convolution (MPC) by borrowing the convolution by channel
direction in the Inception network (Szegedy et al., 2016), and
incorporating MPC into the residual block to propose Multi-
Phantom Residual Block (MPRB), which has two blocks: Multi-
Conv Block and Multi-Identity Block, to extract the features of
more abundant characterization information in patients’ MRI.
MPRB divides the feature matrix map output from 1 × 1
convolution into 4 parts of feature maps equally according to the
channel direction, and then the feature maps of the different parts
are extracted by different convolution and pooling operations
for multi-scale feature extraction, and finally concatenated
according to the channel direction. MPRB can extract more
subtle pathological features; meanwhile, the MPRB reduces the
training parameters and speeds up the convergence of the model
when dividing the input feature maps and parallel convolution
operations. In addition, it should be noted that the pathological
features account for small regions of the whole MRI image and
the proportion of information to be acquired is small. o avoid
the redundancy of useless information, we add a 2 × 2 average
pooling layer to integrate spatial information in the shortcut
branch of MPRB, and the structure of MPRB is depicted in
Figure 8. The average pooling layer has no parameters and does

not change the global number of parameters while preventing
overfitting at this layer.

The specific implementation process of Multi-Phantom
Residual Block:

Step1: The input feature matrix is successively passed
through the 1 × 1 convolution layer, batch norm layer, and
Relu activation function, and takes the result as the input
of step 2; the input feature matrix is successively passed
through the average pool layer, 1× 1 convolution layer and
batch norm layer as the output of the shortcut branch.

Step2: The feature matrix of the linear branch is divided into
four parts according to the channel direction.

Step3: The feature map I: passing through the 1 × 1
convolution layer; the feature map II: passing through the
1 × 1 convolution layer and 3 × 3 convolution layer
successively; the feature map III: passing through the 1× 1
convolution layer and 5× 5 convolution layer successively;
the feature map IV: passing through the maximum pool
layer and 1× 1 convolution layer successively.

Step4: The four feature maps are concatenated according to
the channel direction and passed through the batch norm
layer and Relu activate function.

Step5: The feature map output from step 4 with the feature
map output through the Space Conversion Attention
Mechanism (SCAM) are summed by pixels, and the sum
result successively passes through the 1 × 1 convolution
layer and batch norm layer.

Step6: Sum the linear branch (the output of step 5) with
the shortcut branch, and pass through the Relu activate
function.
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FIGURE 8 | The structure of multi-phantom residual block.

Space Conversion Attention Mechanism
The visual attention mechanism is a brain signal processing
mechanism that is unique to human vision. By quickly scanning
the global image, human vision obtains the target region to be
focused on, which is generally called the focus of attention, and
then devotes more attention resources to this region to obtain
more detailed information about the target to be focused on,
while suppressing other useless information. The core goal of
adding an attention mechanism to the network is essentially
similar to the human selective visual attention mechanism,
which also selects the more critical information for the current
task goal from a multitude of information and ignores other
redundant information to successfully improve the expressive
power of the network.

The more popular attention mechanisms include SENet (Hu
et al., 2018), CBAM (Woo et al., 2018), and Non-local Neural
Networks (Wang et al., 2018), and many pieces of research
combined with the recognition of attention mechanisms have
achieved good recognition results, for example, Huang et al.
(2020). proposed a brain tumor diagnosis system based on
a differential feature neural network (DFNN), which mainly
consists of an innovative differential feature map (DFM) block
and a squeeze-and-excitation (SE) block. The experimental
results indicated that the average accuracy of DFNN in classifying
the brain as abnormal and normal on two databases was 99.2
and 98%, respectively. Xiao et al. (2021) proposed an early
diagnosis method for pathological brain called the TReC, which
imported the CBAM convolutional channel attention mechanism
into the pre-trained ResNet residual block and replaced the fully
connected layer with a new FC layer. The experimental results
indicated an accuracy of 100% in the two-class classification
task and an accuracy of 97.44% in the multi-class classification
task. Sun et al. (2021) proposed a recognition method of
the residual network (ResNet) combining space transformation
network (STN) and non-local attention mechanism (non-local
attention) to consider the long-range correlation in feature space,

and successfully applied the method to the early diagnosis of
Alzheimer’s disease, with the recognition accuracy of up to 97.1%,
macroscopic accuracy of up to 95.5%, macroscopic recall of up to
95.3%, and macroscopic F1 value of up to 95.4%.

The space dimension of the image refers to the height (H) and
width (W) of the image, and C represents the feature channel
of the image. The space attention mechanism pays attention
to the importance of the space location features of the image,
generating space attention coefficients for the output feature
maps, and enhancing or suppressing different space location
features according to the feature weights. The traditional space
attention mechanism tends to focus on weight assignment in only
one direction, which inevitably leads to the loss of important
information in the image. For the Alzheimer’s MRI images, it is
important to observe space changes in different disease stages,
such as small changes in the cerebral cortex and structural
changes in the hippocampal region, which are important for
determining the stage of Alzheimer’s disease. Therefore, we
propose a Space Conversion Attention Mechanism (SCAM) that
assigns weights based on both vertical and horizontal directions,
and the specific structure is depicted in Figure 9.

The Space Conversion Attention Mechanism is composed of
three parts:

(a) The horizontal spatial attention mechanism is used to
generate horizontally oriented weight coefficients for each
row of features; the vertical spatial attention mechanism is
used to generate vertically oriented weight coefficients for
each column of features.

ci =

n∑
j=1

exp(ei,j)∑n
k=1 exp(eik)

hj (5)

Among them, ei,j represents the weight coefficients assigned
by the horizontal or vertical attention mechanism, pixel j
represents the sequence feature, i represents the temporal features
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at a certain moment, and hj represents the hidden layer
information of the feature sequence j. cI = {c1, c2 ... ci−1, ci}

represents the weight coefficients of the vertical attention
mechanism in the feature sequence; c5 = {c1, c2 ... ci−1, ci}

represents the weight coefficients of the horizontal attention
mechanism in the feature sequence.

(b) To further expand the difference between the weight
coefficients, we add the horizontal and vertical weight
coefficients (addition strategy). for example, the small
weight coefficient maybe 0.1 + 0.3 and the large weight
coefficient maybe 0.8 + 0.9. In contrast, the difference
between the summed weight coefficients is more obvious.

add = cI + c5 (6)

(c) To select the more interesting regions, we match the
horizontal and vertical weight coefficients to find the
maximum value (maximum strategy), which is used to
complement the results of the second part of the weight
coefficients [e.g., max(0.3, 0.8)].

max = max(cI, c5) (7)

Finally, we concatenate the weight coefficients calculated by
the above strategy with cI and c5 through formula (6), and the
concatenated results are passed through 1 × 1 convolution and
sigmoid function to make the dimension of input and output
consistent.

SPA = concatenate([cI, c5, add, max]) (8)

Weight = σ(Fh(SPA)) (9)

Among them, SPA represents the Space Conversion Attention
Mechanism, Fh represents 1 × 1 convolution, σ represents the
sigmoid function, and Weight represents the feature weights.

RESULTS AND ANALYSIS

Experimental Environment and Settings
All of the trains and tests in this work are carried out on the same
hardware and software platform. The hardware environment is
Windows (64bit) operating system, Intel Core i7-9700U CPU,
and 2080Ti GPU. The software programming environment for
data expansion is MATLAB 2020b; The software programming
environment for the MPC-STANet is Python 3.8.12, Pytorch
1.8.2, and CUDA 10.2. Considering the memory size of the GPU
and the time of the experiment, we set the Batchsize to 32 for
training and 8 for testing. The learning rate Ir was set to 10−3,
and the epochs was set to 140. The Adam optimizer and Cross-
Entropy Loss were used during training, and the incremental
gradient descent was used as the training method. After class-
balancing preprocessing, there were 12,600 MRI images in
Alzheimer’s disease dataset. In this experiment, according to

the ratio of 7:2:1, we divided the dataset into a training set,
test set, and validation set for training and testing the MPC-
STANet.

Effectiveness Experiment of the Module
Effectiveness Experiment of Preprocessing
To verify whether the training with a class-balanced preprocessed
dataset can improve the performance of the model and improve
the recognition accuracy, we input the original dataset and the
preprocessed dataset into ResNet50, ResNet50-SPAM, and the
MPC-STANet, respectively, for experiments. Table 2 displays
the recognition accuracy of the original dataset and the
preprocessed dataset in the three networks. The results show
that the recognition accuracy of the three networks in the
preprocessed dataset is significantly higher than that of the
original dataset. This is because the dataset is expanded by
flipping, adding noise, and contrast adjustment, which increases
the diversity of the dataset and avoids network coverage.
The SMOTE algorithm is used to make the samples achieve
class balance, to avoid the information learned during training
to tend to the disease majority class. As a result, following
preprocessing, the accuracy of the dataset has increased in
all three models.

Effectiveness Experiment of Dilated Convolution
We used Dilated Convolution (DC) in STAGE 1 of the MPC-
STANet. To verify the effect of the DC on classification
performance, we conducted experiments on ResNet50,
ResNet50-DC, and the MPC-STANet under the same test
environment. Table 3 displays that using DC in ResNet50
can improve the recognition accuracy without changing the
model parameters.

Effectiveness Experiment of Multiple-Phantom
Residual Block Based on Multiple-Phantom
Convolution
To verify the effect of the Multiple-Phantom Residual Block
(MPRB) on model accuracy and parameter, we trained and tested
ResNet50, ResNet50-MPRB, and the MPC-STANet using the
same dataset. As displayed in Table 4, the experimental results
show that ResNet50-MPRB with multiple-phantom residual
blocks can greatly improve the accuracy of the network and
reduce the number of parameters of the model.

Effectiveness Experiment of Space Conversion
Attention Mechanism
To more intuitively understand the improvement of the
network accuracy by Space Conversion Attention Mechanism
(SCAM), we trained and tested ResNet50, ResNet50-SE,
ResNet50-CMBA, ResNet50-SCAM, and the MPC-STANet,
respectively, on the preprocessed dataset. Table 5 displays
the accuracy of the networks with different attentions
on the test set. The experimental results show that after
using the attention mechanism, ResNet50-SE, ResNet50-
CMBA, and ResNet50-SCAM improve 1.3, 3.2, and 5.5%,
respectively, in terms of accuracy compared to ResNet50.
The SCAM outperforms the other attention mechanisms
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FIGURE 9 | Space conversion attention mechanism structure.

TABLE 9 | Comparison of recognition accuracy and parameters of
different networks.

Network model Parameters Accuracy

ResNet50 25.56M 84.6%

ResNet50-DC 25.56M 86.7%

ResNet50-MPRB 21.10M 89.5%

ResNet50-SCAM 31.17M 90.1%

ResNet50-DC-MPRB 21.10M 93.3%

ResNet50-DC-SCAM 31.17M 93.8%

ResNet50-MPRB-SCAM 27.25M 94.6%

MPC-STANet 27.25M 96.2%

in improving accuracy by considering the weight feature
relationship in both horizontal and vertical directions.
The accuracy of the MPC-STANet proposed in this
study is 96.2%, which indicates that the Alzheimer’s MRI
images features are deeply extracted, and the network is
effective in recognizing.

Table Ablation Experiment
To fully validate the effectiveness of the method proposed in
this study, we employed the same dataset and experimental
environment, and only changed the parts that needed
to be compared in each experiment. In this experiment,
ResNet50 is selected as the backbone network, and one
or more of the three methods, Dilated Conv (DC), Multi-
Phantom Residual Block (MPRB), and Space Conversion

Attention Mechanism (SCAM), are added to compare
the effects of different schemes on model parameters and
recognizing accuracy. The comparing results are displayed in
Table 9.

Based on the accuracy of the network, the accuracy of
the MPC-STANet was higher than other networks, reaching
96.2%. When SCAM was applied to ResNet50, its accuracy
improved by 5.5% compared to the original ResNet50.
Similarly, ResNet50 using Dilated Conv or MPRB methods
improved by 2.1 and 4.9%, respectively, compared to the
original ResNet50. The preceding evidence indicates that
all three methods are effective for increasing accuracy.
And the solution of DC paired with MPRB or SCAM
has the largest improvement in accuracy with 8.7 and
9.2%, respectively.

Based on the number of parameters of the network,
the network with Dilated Conv is the same in terms
of the number of parameters as the network that
keeps a single variable, which is consistent with the
principle that Dilated Convolution does not change
the number of parameters. In terms of the number
of parameters, ResNet50-MPRB is 4.46M less than
ResNet50, demonstrating that the MPRB method aids in
network compression.

Overall Evaluation of the MPC-STANet
In the same environment, the MPC-STANet has a more stable
learning process and higher recognition accuracy than its
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backbone network ResNet50. The performance of the MPC-
STANet on the four disease stages are depicted in Figure 2.
In the confusion matrix, the numbers 0, 1, 2, and 3 represent
the four disease stages, Non-Demented, Very Mild Demented,
Mild Demented, and Moderate Demented, respectively. We
tested the MPC-STANet using a total of 2,560 MRI test
sets and displayed the test results in the confusion matrix.
The diagonal of the confusion matrix is the number of
correctly predicted images with a total of 2,462 MRI images.
The overall recognition rate of the MPC-STANet is 96.2%.
Table 6 displays the recognition rate of the four disease
stages in the MPC-STANet. It can be seen that the highest
precision of Mild Demented reached 98%, and that of Moderate
Demented was only 94%.

Comparison With Other Networks
We employ four indexes, Recall, F1-score, Precision,
and mAP to evaluate the performance of the MPC-
STANet. The results are displayed in Table 7, The
performance indexes of the MPC-STANet all surpass 90%,
higher than those of other networks, indicating that this
network is more advantageous in recognizing Alzheimer’s
disease than other networks, and is better for classifying
the disease stage.

DISCUSSION

In this study, we construct the MPC-STANet capable of
discriminating the first four disease stages of Alzheimer’s disease
and use the Alzheimer’s MRI images created by researcher
Sarvesh Dubey as the dataset. We employ data expansion
and SMOTE to perform class-balancing preprocessing of the
dataset, and then input the preprocessed dataset into the MPC-
STANet for recognition, and its average recognition accuracy
reaches 96.25%. The experiments show that the combination
of class-balancing preprocessing and MPC-STANet for the
recognition of the first four disease stages of Alzheimer’s
disease is effective and does not require operations such as
numerous feature enhancement preprocessing or manual feature
extraction, but the following explorations are needed: (1) The
researcher who provided the Alzheimer’s MRI dataset did not
provide any statistical information about patients and did not
account for this condition, which raises doubts about our
recommended approach. Therefore, Alzheimer’s disease datasets
with detailed statistics need to be further considered in future
explorations to be more convincing. (2) In the Space Conversion
Attention Mechanism, we employ the maximum strategy to
match the vertical and horizontal weight coefficients to select
the regions of interest. However, we tend to ignore the data
in the small value regions using the maximum value strategy,
resulting in data loss. Therefore, it is worth thinking about
considering both maximum and minimum values. (3) The
actual data volume of Alzheimer’s disease collected in this
study is not enough. In the future, the Alzheimer’s MRI image
data should be further enriched to improve the generalization
ability of the model.

CONCLUSION

To address the problems of classification imbalance of the
Alzheimer’s MRI datasets, small structural changes during
different disease stages, small proportion of feature regions
to the whole MRI image, and scattered features, we propose
a novel method for recognizing different disease stages of
Alzheimer’s disease based on class-balancing preprocessing and
Multi-Phantom Convolution and Space Conversion Attention
Mechanism recognition network (MPC-STANet). First, we
perform class-balancing preprocessing on the Alzheimer’s MRI
datasets using data expansion methods such as flipping,
adding noise and contrast adjustment, and SMOTE. Then,
we propose the MPC-STANet with ResNet50 as the backbone
network. In the MPC-STANet, Dilated Convolution is used
to increase the perceptual field of the network to recognize
scattered feature regions, and Space Conversion Attention
Mechanism is used to enhance feature extraction of subtle
changes in the MRI Alzheimer’s image. Based on Multi-Phantom
Convolution, Multi-Phantom Residual Block (including Multi-
Conv Block and Multi-Identity Block) is proposed to extract
subtle brain feature points. For the recognition of different
disease stages of Alzheimer’s disease, the proposed MPC-STANet
has higher recognition accuracy and a smaller number of
parameters compared with the ResNet50 backbone network. The
experimental results indicate that the recognition accuracy of the
MPC-STANet is 96.2% and the number of parameters is only
1.69M higher than that of ResNet50.

Based on the detection of the disease stages of Alzheimer’s
disease has been a hot research topic in the field of computer
vision-aided diagnosis, The MPC-STANet can be used for disease
stage recognition after acquiring the Alzheimer’s MRI dataset,
which is significant for doctors to distinguish the disease and take
corresponding treatment. Future research in this study will focus
on how the network can handle complex structural brain features,
how to enhance the extraction ability for subtle and scattered
features, and how to handle datasets that are not preprocessed.
In addition, we need to consider how to further optimize the
structure of the network model to facilitate a more effective
recognition of Alzheimer’s disease and delay the deterioration of
this disease promptly.
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Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that often
occurs in the elderly. Electroencephalography (EEG) signals have a strong correlation
with neuropsychological test results and brain structural changes. It has become an
effective aid in the early diagnosis of AD by exploiting abnormal brain activity. Because
the original EEG has the characteristics of weak amplitude, strong background noise
and randomness, the research on intelligent AD recognition based on machine learning
is still in the exploratory stage. This paper proposes the discriminant subspace low-rank
representation (DSLRR) algorithm for EEG-based AD and mild cognitive impairment
(MCI) recognition. The subspace learning and low-rank representation are flexibly
integrated into a feature representation model. On the one hand, based on the low-
rank representation, the graph discriminant embedding is introduced to constrain the
representation coefficients, so that the robust representation coefficients can preserve
the local manifold structure of the EEG data. On the other hand, the least squares
regression, principle component analysis, and global graph embedding are introduced
into the subspace learning, to make the model more discriminative. The objective
function of DSLRR is solved by the inexact augmented Lagrange multiplier method.
The experimental results show that the DSLRR algorithm has good classification
performance, which is helpful for in-depth research on AD and MCI recognition.

Keywords: electroencephalography, Alzheimer’s disease, low-rank representation, subspace learning,
classification

INTRODUCTION

Alzheimer’s disease (AD) is a disease characterized by memory loss, slow and gradual changes
in brain function, and the manifestations of intellectual loss (Zhang et al., 2021). With the
advancement of global aging, AD has now become a major public health problem affecting the
world. The existing treatment of AD can only temporarily help relieve memory and cognition, but
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not a cure. To obtain disease-controlling treatments, it is an
urgent need to classify the course of AD for early diagnosis. And
especially, the National Institutes of Health revised the clinical
diagnostic criteria for AD, characterizing research guidelines
for early diagnosis and treatment (Cummings, 2021). The
progression of AD is mainly divided into three stages. The first
is the early clinical stage with no symptoms; the second is the
intermediate stage with mild cognitive impairment (MCI); and
the final stage with dementia symptoms (Mirzaei and Adeli,
2022).

More researchers are studying methods that can
sensitively and conveniently monitor AD, involving cognitive
neuropsychological detection, biochemical detection,
neuroimaging detection, and so on. In recent years,
electroencephalography (EEG) has become an important
tool for studying human brain activity (Ghorbanian et al.,
2015). Noninvasive EEG imaging methods are directly related
to neural local field potentials and have a high temporal
resolution. The millisecond-level temporal resolution and
direct electrophysiological information provided by EEG can
accurately reflect cognitive behaviors related to human neural
activity. Therefore, more studies are beginning to use EEG for
the diagnosis and prediction of early AD. For example, EEG
spectral studies have revealed that EEG diffuse slow waves are
a major feature of AD. EEG studies of AD patients have shown
that the reduced power in the alpha (8–15 Hz) band and the
increased power in the delta (0.5–4 Hz) band are significant
features of AD (Fröhlich et al., 2021). The increase in power
in the theta (4–8 Hz) band and the decrease in power in the
beta (15–30 Hz) band also indicate that they can be useful
for detecting MCI to AD transitions (Maturana-Candelas
et al., 2020). Recently, machine learning technology has been
widely used in the analysis of brain imaging data, which has
greatly promoted the development of cognitive neuroscience.
Most of the research revolves around feature extraction and
classifier optimization. In terms of feature extraction, Wen
et al. (2020) first converted the EEG signals into multispectral
images and then used a deep convolutional neural network
learning model for EEG classification. Similarly, Ieracitano
et al. (2019a) drew the power spectral density of the EEG
into the form of a spectrogram, and converted the EEG
signal classification into a CNN-based image classification
problem. Ieracitano et al. (2019b) spliced the continuous
wavelet transform features and bispectral features of EEG
signals to achieve the fusion of the two types of features. The
advantage of this algorithm is that the fused features can
obtain higher accuracy than only using one type of feature.
The disadvantage is that the correlation between features is
not considered enough. At the same time, the dimension of
fusion features is greatly increased, which is easy causing the
over-fitting problem.

In terms of classification algorithms, Miltiadous et al.
(2021) compared six classification algorithms for EEG
analysis for frontotemporal dementia in AD and verified
the effectiveness of these algorithms. This study provided
solutions for the early diagnosis of frontotemporal dementia.
Anuradha and Jamal (2021) detected the progression of

AD by detecting abnormal behavior in EEG. The authors
used a feed-forward artificial neural network as a classifier
to perform EEG feature analysis on abnormal and normal
subjects and obtained a classification accuracy of 94.4%. Ge
et al. (2020) exploited the robust biomarkers in EEG, combined
linear discriminant analysis as a classifier, and proposed a
systematic identification framework based on signal processing
and computer-aided techniques for the detection of AD.
Araujo et al. (2022) developed an intelligent system that can
distinguish various stages of AD through EEG signals. The
system used wavelet packet to extract multi-band features of
EEG signals and used multiple machine learning methods as
classification models.

Electroencephalography signals can reflect the functional state
of the brain and the activity of brain physiological structures.
The difficulties in classifying EEG signals using machine learning
algorithms are as follows: first, the amplitude of the EEG signals
is usually around 50 µv. The EEG signals are very weak, and
their background noise is usually very strong. Second, EEG
signals have strong randomness. In the process of acquisition,
EEG signals will not only be stimulated by the outside world
but also produce interference signals due to their own blinking
and other actions. Therefore, it is still a challenging task to
use machine learning methods to identify AD based on EEG
signals. To solve this problem, the researchers usually reduce
the dimension of EEG high-dimensional data and extract a
small amount of the most valuable compact information, which
not only saves storage space and processing time but also
enables learning a robust model (Lei et al., 2021). Subspace
learning and low-rank representation can well achieve this goal.
Subspace learning is a well-known dimension reduction method
in machine learning. Its main goal is to adopt appropriate
strategies to map high-dimensional original data into the low-
dimensional subspace to reduce the data dimension. Low-rank
representation (LRR) can effectively separate the noise in the
EEG signals to restore clean data and obtain accurate subspace
segmentation of data.

Inspired by the strong theory of subspace learning and
low-rank representations, this paper proposes an EEG-based
discriminant subspace low-rank representation learning
algorithm (DSLRR) for AD recognition. On the one hand,
based on the low-rank representation, DSLRR utilizes the
supervised information and local manifold information by least
squares regression (LSR) and graph discriminant embedding.
On the other hand, DSLRR introduces principal component
analysis (PCA) and global preserved constraints into the
subspace of learning. The algorithm optimization adopts a
strategy of alternating parameter updates using the inexact
augmented Lagrange multiplier method. Our contribution
is as follows: (1) The DSLRR algorithm combines subspace
learning and low-rank representation in a flexible manner. (2)
By introducing global graph embedding and PCA term, the data
projection can preserve the global structure information of EEG
data in the discriminant subspace. (3) The learned low-rank
representation coefficient can effectively avoid the negative
effects of the original data’s redundant features and noise
information. (4) By introducing LSR and graph discriminant
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embedding, the learned low-rank representation coefficient
can explicitly contain the intrinsic local manifold structure
and discriminant information of EEG data. The experiments
on four EEG datasets verify that the DSLRR algorithm can
be effectively used for the recognition of AD, MCI, and
healthy control (HC).

BACKGROUND

Electroencephalography Dataset for
Alzheimer’s Disease and Mild Cognitive
Impairment Recognition
The EEG data were obtained from 109 participants recruited at
the IRCCS Centro Neurolesi Bonino-Pulejo in Italy, including
23 HC, 49 AD, and 37 MCI (Fiscon et al., 2018). The
age of men and women and the proportion of genders are
shown in Figure 1. The EEG data collection time was from
2012 to 2013. The scalp electrode position was determined
using the international 10–20 system, and EEG data from 19
electrodes were collected. The sampling frequency was 256 or
1,024, and the acquisition time of EEG signals was 300 s.
To reduce the effect of the artifact, the EEG signals from 60
to 240 s were selected, and the adopted normalized sampling
frequency was 256 Hz. Feature extraction adopted the fast
Fourier transform, which divided 180 s of data into six epochs
of 30 s, and extracted 16 Fourier coefficients. Therefore, 304
features (19 electrodes × 16 Fourier coefficients) were available
for each sample.

Subspace Learning
We have a labeled dataset with n samples Y =

[
y1, ..., yn

]
∈ Rd×n

, where yi represents the ith training sample, and its class
label matrix is Ȳ =

[
ȳ1, ..., ȳn

]
∈ RC×n . The dimension of the

sample is d, and n samples are divided into C classes. When
the dimensionality of the original EEG data is high, the data
computational and storage costs will be very large. Thus, a
common solution is to project the high-dimensional data into
a low-dimensional space (Lei et al., 2021). Let Q ∈ Rd×C be
the projection matrix, the projection data can be represented as
V = [v1, ..., vn] ∈ RC×n in the label space, where V = QT Y .

Generally speaking, the premise of manifold subspace learning
is that the data exists in high-dimensional space in the form
of manifold embedding from low-dimensional space data. The
key point of manifold learning is to ensure that low-dimensional
data can reflect the inherent structural information contained
in high-dimensional space (Zhang et al., 2020). As a commonly
used manifold learning algorithm, locality-preserving projection
(LPP) preserves the local neighbor relationship of the data by
using an adjacency graph and affinity matrix (Weng and Shen,
2008). The LPP algorithm consists of three steps. Step 1 is to
construct an adjacency graph. For example, we construct an
adjacency graph using the k-nearest neighbor algorithm. The
nearest neighbors of each point connected to it are known as
neighbor nodes. Step 2 is to assign weights to each edge. In
the adjacency graph, the affinity matrix represents the similarity

between sample points, which can generally be calculated using
the two-value method, cosine distance or Gaussian kernel
function. For example, the affinity matrix E constructed by the
two-value method can be defined as follows:

Eij =

{
1, if yi ∈ Nk(yj) or yj ∈ Nk(yi)
0, otherwise

(1)

where Nk(yi) represents the k nearest neighbor nodes of yi .

Low-Rank Representation
Low-rank representation aims to exploit the sparsity of matrix
singular values to model high-dimensional data in multi subspace
(Li et al., 2017; Jiang et al., 2021). Given a dataset Y, the LRR
algorithm regards the input data itself as a dictionary and uses
the basis in the dictionary to linearly represent the sample points,
while minimizing its rank. The optimization problem of LRR can
be described as follows:

min
L

rank(L),

s.t. Y = YL,
(2)

where L ∈ Rn×n is the representation coefficients of Y, which
reflects the global correlation between the original data samples.
In theory, the coefficient matrix L obtained by the LRR should be
a block diagonal matrix. That is to say, each block corresponds to
a subspace, the number of blocks represents the number of data
subspaces, and the size of the block corresponds to the dimension
of the subspace.

Eq. (2) is not a convex optimization problem due to its
discrete. Using the nuclear norm instead of rank(L), Eq. (2) can
be transformed into the convex optimization problem as:

min
L
||L||∗ ,

s.t. Y = YL,
(3)

where ||||∗ is the nuclear norm.
Considering the noise or sparse error in Y, LRR enhances

the model’s robustness by improving the correlation between the
individual columns of L, and the problem of LRR can be written
as:

min
L,S
||L||∗ + θ ||S||1 ,

s.t. Y = YL+ S,
(4)

where S ∈ Rd×n is sparse component of Y. θ is the
regularization parameter.

Obviously, LRR decomposes the data Y into low-rank
representation YL and sparse representation S. The former
component YL generally represents the main features contained
in Y, and the latter generally represents the redundant features
and noise information contained in Y. In the clean data scenario,
S represents the reconstruction error. Therefore, L can accurately
indicate the subspace segmentation of Y, which ensures the
robustness of the learned model. However, LRR ignores the
role of local structure information in data and does not exploit
the supervised information in the training data. Therefore, LRR
cannot reflect the intra-class identity and inter-class dissimilarity
in low-rank representation.
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FIGURE 1 | The basic information of EEG data used in this study, (A) age of men and women, and (B) proportion of gender.

DISCRIMINANT SUBSPACE LOW-RANK
REPRESENTATION ALGORITHM

Objective Function
Discriminant Margin Term on Representation
Coefficients
To learn the discriminant low-rank representations, we introduce
graph discriminant embedding (Huang et al., 2018) into our
algorithm, which combines supervised information to define
intra-class and inter-class graph affinity matrices. We think if two
EEG samples are closer in the original space, their representation
coefficients will be close to each other. The compactness between
samples of the same class and the separability between samples of
different classes is the important knowledge in discriminant low-
rank representations. To this end, we define affinity matrices Ecom

and Esep to represent the similar relationship between intra-class
and inter-class, respectively:

Ecom
i,j =


e−||yi−yj||

2

t , if yi ∈ N̂k(yi) or yj ∈ N̂k(yi), ȳj = ȳi
e −t
||yi−yj||

2 , if yi /∈ N̂k(yi) or yj /∈ N̂k(yi), ȳj = ȳi

0, if ȳj 6= ȳi
(5)

Esep
i,j =


e−||yi−yj||

2

t , if yi ∈ Ñk(yi) or yj ∈ Ñk(yi), ȳj 6= ȳi
e −t
||yi−yj||

2 , if yi /∈ Ñk(yi) or yj /∈ Ñk(yi), ȳj 6= ȳi

0, if ȳj = ȳi
(6)

where N̂k() and Ñk() represent the k-nearest neighbor samples of
intra-class and inter-class, respectively. The parameter t (t > 0) is
the weight parameter used to adjust the correlation between two
samples. We set t = 1 in this study.

Then we define the discriminant margin term ς1(L) on
representation coefficients:

ς1(L) =
∑n

i=1 ςi(Li)
=
∑n

i=1
∑n

j=1(
∣∣∣∣Li − Lj

∣∣∣∣2 Ecom
i,j −

∣∣∣∣Li − Lj
∣∣∣∣2 Esep

i,j )

= Tr(LTUL)
(7)

where U = Ecom
− Esep

+ εI, ε is a very small positive. Eq.
(7) represents the intra-class compactness and the inter-
class dissimilarity in representation coefficients. Its essence
is to excavate the local structural information representation
coefficients. In addition, Eq. (7) can avoid the influence of the
redundant information and noise of the original data.

Global Structure Term on Projection
We adopt the affinity matrix E to represent the correlation
between two samples using supervised information. The element
eij in E is computed as:

eij =
{

1, if yi and yj are of the same class
0, otherwise

(8)

To preserve the global discriminant information of the original
data in the subspace, we introduce the global structure term on
projection:

ς2(Q) = 1
2
∑

i,j eij
∣∣∣∣QTyi − QTyj

∣∣∣∣2
2 − βTr(QTYYTQ)

= Tr(QTYEYTQ)− βTr(QTYYTQ)

= Tr(QTY(E− βI)YTQ)

(9)

where β is the regularization parameter.
The first factor

∑
i,j eij

∣∣∣∣QTyi − QTyj
∣∣∣∣2

2 in Eq. (9) is the
global preserved component on projection. Obviously, when this
component reaches the minimum, the distance of samples of the
same class will be as close as possible in the projection subspace.
The second component Tr(QTYYTQ) in Eq. (9) is the PCA
component on projection. Its goal is to ensure that the projecting
data in the low-dimensional subspace can depict the inherent
structure information contained in the original space.

Least Squares Regression Term
As an effective supervised learning method, LSR learns the
linear projection that transforms the sample to the label space,
and obtains the regression vector as the data representation
in the label space (Zhao et al., 2022). Therefore, we try to
find a projection matrix with the help of LSR in the low-rank
representation. Different from the traditional projection method
on the original data, the DSLRR algorithm only uses clean data
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representation to learn the projection matrix in the low-rank
representation framework, which can not be affected by the
redundant information of EEG data. This idea can be obtained
as:

ς3(Q, L, S) = ||L||∗ + θ ||S||1 + γ
∣∣∣∣V − Ȳ

∣∣∣∣2
F + η ||V||2F ,

s.t. Y = YL+ S,
V = QTYL,
1TnL = 1Tn .

(10)

where γ and η are regularization parameters.
Equation (10) tries to minimize the least squares loss between

the regression results and the corresponding regression target.
In addition, in the low-rank representation framework, the
compact representation of the data can be learned through
subspace projection.

The Objective Function
We integrate Eqs (7), (9), and (10) into a learning model, and
obtain the objective function of the DSLRR algorithm:

min ς1(L)+ ς2(Q)+ ς3(Q, L, S)
= min

Q,L,S
µTr(LTUL)+ αTr(QTY(E− βI)YTQ)+ ||L||∗+

θ ||S||1 + γ
∣∣∣∣V − Ȳ

∣∣∣∣2
F + η ||V||2F ,

s.t. Y = YL+ S,
V = QTYL,
1TnL = 1Tn .

(11)

where α and µ are regularization parameters.
From Eq. (11), we can see that the DSLRR algorithm combines

subspace learning and low-rank representation into a learning
model. Based on low-rank representation learning, the compact
and discriminant low-rank representation can be reinforced by
graph discriminant embedding. Based on subspace learning, the
discriminant projection can be obtained by LSR, global structure
preserved, and PCA technologies.

Optimization
There are three unsolved parameters {Q, L, S} in Eq. (11). To
make Eq. (11) separable, the relaxation matrix 3 is introduced
to represent L. Substitute the constraint V = QTYL into Eq. (11),
Eq. (11) can be re-written as:

min
Q,L,S
||3||∗ + θ ||S||1 + γ

∣∣∣∣QTYL− Ȳ
∣∣∣∣2
F + η

∣∣∣∣QTYL
∣∣∣∣2
F +

µTr(LTUL)+ αTr(QTY(E− βI)YTQ),

s.t. Y = YL+ S,
1TnL = 1Tn ,

L = 3.

(12)
We optimize three parameters by the inexact augmented
Lagrange multiplier algorithm in an iterative optimization

strategy (Kang et al., 2015). Eq. (12) has the following form:

min
Q,L,S,3

||3||∗ + θ ||S||1 + γ
∣∣∣∣QTYL− Ȳ

∣∣∣∣2
F + η

∣∣∣∣QTYL
∣∣∣∣2
F +

µTr(LTUL)+ αTr(QTY(E− βI)YTQ)+ Tr(τTa (Y − YL− S))
+Tr(τTb (3− L))+ Tr(τTc (1TnL− 1Tn ))+ δ

2 (||Y-YL− S||2F +
||3− L||2F +

∣∣∣∣1TnL− 1Tn
∣∣∣∣2
F),

(13)
where δ is a trade-off parameter. The matrices τa ∈ Rd×n,
τb ∈ Rd×n , τc ∈ Rd×n , and τd ∈ Rd×n are the
Lagrange multipliers.

1) Optimize Q, while fixing the other parameters. Eq. (13) can
be written as:

min
Q

γ

∣∣∣∣∣∣QTYL− Ȳ
∣∣∣∣∣∣2
F
+ η

∣∣∣∣∣∣QTYL
∣∣∣∣∣∣2
F
+ αTr(QTY(E− βI)YTQ).

(14)
We can get the closed-solution of Q as:

Q = [Y((α(E− βI))+ (γ+ η)LLT)YT
]
−1YLȲT . (15)

2) Optimize 3 , while fixing the other parameters. Eq. (13) can be
written as:

min
3
||3||∗ + Tr(τTc (L−3))+ δ

2 ||L−3||2F

= min
3

1
δ
||3||∗ +

1
2

∣∣∣∣3− (L+ 1
δ
τc)
∣∣∣∣2
F .

(16)

We use the singular value thresholding operator (Cai et al.,
2010; Li et al., 2017) to solve Eq. (16). We employ the singular
value decomposition algorithm on L+ 1

δ
τc as L+ 1

δ
τc = H61,

where H is the diagonal matrix with its element being a
group of singular values {2k}, 1 ≤ k ≤ p, p is the rank. The
matrix 3 can be computed by 3 = H�(1/δ)61 , in which
�(1/δ)6 = diag({2k −

1
δ
}+), where “+” means the positive part.

3) Optimize L, while fixing the other parameters. Eq. (13) can
be written as:

min
L

γ
∣∣∣∣QTYL− Ȳ

∣∣∣∣2
F + η

∣∣∣∣QTYL
∣∣∣∣2
F + µTr(LTUL)+

Tr(τTa (Y − YL− S))+ Tr(τTb (3− L))+ Tr(τTc (1TnL− 1Tn ))+
δ
2 (||Y-YL− S||2F + ||3− L||2F +

∣∣∣∣1TnL− 1Tn
∣∣∣∣2
F),

(17)
Let the first derivative of L in Eq. (16) be zero, we have,

2aL = 2b +2c, (18)

2a = 2U + 2(γ+ η)YTQQTY + δ(YTY + 1n1Tn + In), (19)

2b = 2γYTQȲ + δ(YTY-YTS+3+ 1n1Tn ), (20)

2c = YTτa − τb − 1nτc, (21)

We can get the closed-solution of L as:

L = 2−1
a (2b +2c). (22)
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4) Optimize S, while fixing the other parameters. Eq. (13) can be
written as:

min
S

θ

δ
||S||2,1 +

1
2

∣∣∣∣∣∣∣∣S− (Y − YL+
1
δ
τa)

∣∣∣∣∣∣∣∣2
F
, (23)

According to the theory of (Liu et al., 2013), we can obtain the S
by

S(:, i) =

{
||τi||−θ
||τi||

||τi|| , if θ
δ

< ||τi||

0, otherwise
(24)

where τi is the ith column vector of the matrix τ a .

Testing
Given test EEG data Ytest , we first compute its low-rank
representation Ltest using Eq. (11), while setting parameters γ =0,
α =0, and µ =0. Second, we construct the new training set YL
and test set YtestLtest . Third, we use the training set YL to train
a classifier and build a classifier to predict the label of YtestLtest
. In this study, we used nearest neighbor (NN) algorithm as the
classifier. The whole training and testing procedure for EEG data
recognition are summarized in Algorithm 1.

Algorithm 1: DSLRR algorithm for EEG data recognition.

Input: The training EEG data Y and its label Ȳ , the testing EEG data
Ytest ;

Output: the class label of Ytest ;

// Construct the new training data on Y

Calculate matrices E by Eq. (8), Ecom by Eq. (5) and Esep by Eq. (6);

Repeat:

Optimize Q using Eq. (15) with3 , L, and S fixed;

Optimize3 using Eq. (16) with Q, L, and S fixed;

Optimize L using Eq. (22) with3 , Q, and S fixed;

Optimize S using Eq. (24) with3 , L, and Q fixed;

Obtain the new testing data YL;

Until Eq. (13) convergence

// Construct the new testing data on Ytest

Repeat:

Optimize Q using Eq. (15) with3 , L, and S fixed, while setting γ

=0, α =0, and µ =0;

Optimize3 using Eq. (16) with Q, L, and S fixed, while setting γ

=0, α =0, and µ =0;

Optimize L using Eq. (22) with3 , Q, and S fixed, while setting γ

=0, α =0, and µ =0;

Optimize S using Eq. (24) with3 , L, and Q fixed, while setting γ

=0, α =0, and µ =0;

Until Eq. (13) convergence

Obtain the new test data YtestLtest ;

// Train a classifier and predict the class label

Train a classifier using training data YL (such as NN classifier,
support vector machine);

Test and output the class label of YtestLtest using the trained
classifier.

EXPERIMENT

Experimental Settings
To verify the effectiveness of the DSLRR algorithm, we compared
the DSLRR algorithm with the SPCA (Jiang, 2011), LRR (Liu
et al., 2013), LRDLSR (Chen and Yang, 2014), JSLC (Lu et al.,
2021), and NRLRL (Gao et al., 2021) in the experiment.
The LRR algorithm is the baseline algorithm of the DSLRR
algorithm. SPCA and JSLC algorithms are subspace learning
algorithms. LRDLSR and NRLRL are low-rank representation
algorithms. For SPCA, the weight parameters are set in the
covariance mixture, α is set inversely proportional to the sample
size, and η is searched in [2−5, 2−4, ..., 25

]. For LRR, the
parameter λ is searched in [1, 4, ..., 30]/

√
d , where d is the data

dimension. For LRDLSR, the parameters α and β are searched
in [10−4, 10−3, ..., 1], and the parameters γ and λ are set to
be 0.01. For JSLC, subspace dimension and the size of the
dictionary are searched in [50, 100,. . . , 300]. The regularization
parameters are searched in [0.5, 1,. . . , 5]. For NRLRL, the
size of the dictionary is searched in [50, 100,. . . , 300], and
λ ,γ , and η are searched in [2−4, 2−3, ..., 24

]. For DSLRR,
all regularization parameters are searched in[2−4, 2−3, ..., 24

],
and k-nearest neighbors in N̂k() and Ñk() are searched
in [1,. . . , 11].

Due to the limited training EEG samples, we expand the EEG
data with the data augmentation strategy. The number of EEG
samples in HC, MCI, and AD is 69, 74, and 98, respectively.
In this section, the experiments are conducted on four EEG
datasets for AD and MCI recognition, namely, (1) HC & AD,
(2) HC & MCI, (3) HC & (MCI+AD), and (4) MCI & AD.
The ratio of the two classes of samples is 1:1. We randomly
select 50 samples in each class for model training, and the
rest samples are used for testing. We perform our experiments
10 times and record the classification performance in terms of
accuracy, sensitivity, specificity, precision, F-measure, G-mean,
and Jaccard. All experiments are conducted by MATLAB on a
Windows machine.

Classification Results
The classification results in four EEG datasets are reported in
Tables 1–4, where the best results are highlighted in bold. These
four data sets are binary classification problems. According to the
results in Tables 1–4, we can see that:

(1) Alzheimer’s disease is a population suffering from AD,
which has shown clinical symptoms. The EEG signal
differentiation between AD and healthy people is the most
significant, and the difference between EEG features is more
obvious. Therefore, the classification performance in the
dataset of AD and HC is high. Although the symptoms
of MCI are not as significant as those of AD, there is a
certain probability of AD. The difference between the EEG
features and those of healthy people is also significant, and
the difference between EEG features is also obvious, so the
classification performance in the dataset of MCI and HC
is also high. In addition, AD and MCI are mixed into one
class in the third dataset of HC and (AD+MCI), which
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TABLE 1 | Classification results of the comparison algorithms in HC and AD dataset.

Accuracy Sensitivity Specificity Precision F-measure G-mean Jaccard

SPCA 92.54 92.11 92.98 93.51 92.46 92.35 86.33

±2.68 ±1.58 ±2.09 ±2.22 ±2.69 ±2.75 ±3.03

LRR 88.16 92.11 84.21 85.29 88.45 87.99 79.55

±2.56 ±2.06 ±1.53 ±2.24 ±1.79 ±1.53 ±2.51

LRDLSR 93.42 99.87 86.84 88.42 93.84 93.18 88.42

±2.78 ±2.03 ±2.72 ±2.86 ±2.78 ±2.77 ±2.78

JSLC 94.68 96.84 92.63 93.10 94.87 94.66 90.82

±1.93 ±1.66 ±1.80 ±2.59 ±3.55 ±2.01 ±1.49

NRLRL 96.05 92.11 99.70 99.74 95.71 95.88 92.11

±3.03 ±1.08 ±1.36 ±2.08 ±2.99 ±2.78 ±3.46

Our algorithm 97.74 95.49 99.81 99.79 97.55 97.65 95.49
±2.68 ±2.14 ±1.57 ±1.91 ±3.19 ±1.64 ±1.72

The bold values mean the best performance results.

TABLE 2 | Classification results of the comparison algorithms in MCI and AD dataset.

Accuracy Sensitivity Specificity Precision F-measure G-mean Jaccard

SPCA 91.12 91.71 90.53 91.71 91.01 90.70 84.19

±3.23 ±3.24 ±2.62 ±2.92 ±3.00 ±1.77 ±2.54

LRR 87.89 80.42 95.37 94.77 86.23 87.15 76.85

±1.99 ±3.20 ±2.39 ±2.95 ±2.61 ±1.79 ±2.52

LRDLSR 92.32 84.32 99.89 99.90 90.46 91.93 84.32

±1.39 ±2.09 ±2.98 ±2.78 ±2.98 ±2.91 ±2.55

JSLC 92.98 88.42 97.54 97.70 92.04 92.46 86.41

±2.49 ±2.38 ±2.44 ±2.55 ±2.60 ±2.08 ±1.78

NRLRL 94.74 89.47 99.53 99.47 94.29 94.51 89.47

±2.13 ±3.34 ±2.33 ±1.69 ±2.22 ±3.29 ±3.88

Our algorithm 95.61 94.74 96.49 96.67 95.43 95.48 91.40
±1.83 ±2.09 ±1.75 ±2.35 ±2.19 ±2.04 ±2.67

The bold values mean the best performance results.

TABLE 3 | Classification results of the comparison algorithms in HC and (MCI+AD) dataset.

Accuracy Sensitivity Specificity Precision F-measure G-mean Jaccard

SPCA 92.11 84.21 99.25 99.13 91.43 91.77 84.21

±2.62 ±1.39 ±2.98 ±2.53 ±2.37 ±2.46 ±2.12

LRR 89.47 84.21 94.74 94.12 88.89 89.32 80.00

±3.48 ±3.08 ±1.94 ±3.43 ±2.92 ±2.34 ±2.28

LRDLSR 94.74 94.74 94.74 95.16 94.62 94.56 89.90

±3.08 ±3.17 ±3.63 ±1.25 ±2.38 ±2.44 ±1.37

JSLC 95.61 94.74 96.49 96.37 95.44 95.55 91.67

±2.18 ±1.91 ±2.60 ±2.46 ±1.57 ±1.61 ±2.67

NRLRL 96.26 92.22 99.43 99.35 95.86 95.99 92.26

±2.78 ±3.57 ±1.62 ±3.38 ±3.78 ±1.89 ±3.38

Our algorithm 98.42 99.34 96.84 97.00 98.46 98.40 97.00
±2.50 ±1.91 ±2.65 ±2.86 ±1.44 ±1.29 ±2.49

The bold values mean the best performance results.

is significantly distinguishable from healthy EEG signals.
Therefore, its classification performance is expectable. The
classification accuracy of DSLRR algorithm in AD and
HC is 97.74%. The classification accuracy of the DSLRR
algorithm in MCI & and HC is 95.61%. The classification
accuracy of the DSLRR algorithm in HC and MCI+AD is
98.42%. The classification accuracy of these three datasets

is above 97.26%. The experimental results illustrate that
DSLRR can better identify MCI and AD from HC.

(2) Compared with the first three datasets, the difference
between EEG features between MCI and AD is relatively
low. Therefore, the classification performance of each
algorithm decreases to a certain extent in the MCI & AD
dataset. However, we can see that the DSLRR algorithm still
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TABLE 4 | Classification results of the comparison algorithms in HC and MCI dataset.

Accuracy Sensitivity Specificity Precision F-measure G-mean Jaccard

SPCA 86.84 98.76 73.68 79.17 91.01 90.70 84.19

±3.20 ±3.13 ±3.36 ±3.56 ±2.75 ±1.75 ±3.09

LRR 84.21 84.21 84.21 84.21 86.23 87.15 76.85

±2.64 ±3.22 ±2.36 ±3.15 ±3.05 ±3.00 ±2.57

LRDLSR 88.60 89.47 87.72 88.12 90.46 91.93 84.32

±2.18 ±3.20 ±2.97 ±2.64 ±3.08 ±3.03 ±3.06

JSLC 89.47 98.32 78.95 82.61 92.04 92.46 86.41

±2.77 ±3.01 ±3.38 ±2.17 ±3.05 ±1.58 ±3.03

NRLRL 90.79 92.11 89.47 90.08 94.29 94.51 89.47

±2.68 ±3.49 ±1.69 ±3.00 ±2.39 ±2.71 ±1.83

Our algorithm 93.42 94.74 92.11 92.46 95.43 95.48 91.40

±2.39 ±1.93 ±2.25 ±1.69 ±2.12 ±2.06 ±2.04

The bold values mean the best performance results.

FIGURE 2 | Classification accuracy of DSLRR with ablation experiment in four EEG datasets.
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FIGURE 3 | F-measure of DSLRR with ablation experiment in four EEG datasets.

achieves the best values of accuracy, F-measure, G-mean,
and Jaccard. On the one hand, through the joint learning
of subspace and low-rank representation, the DSLRR
algorithm can learn the robust and discriminant projection

subspace. On the other hand, by making full use of Laplace
manifold and LSR technologies, the DSLRR algorithm can
exploit the structure knowledge and manifold structure
information of EEG signals. Furthermore, the sum of the
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FIGURE 4 | G-mean of DSLRR with ablation experiment in four EEG datasets.

FIGURE 5 | The convergence of the DSLRR algorithm in four datasets, (A) HC and AD, (B) HC and MCI, (C) HC and (MCI+AD), and (D) MCI and AD.

columns of each low-rank coefficient matrix L of 1 has a
positive effect on the classification.

(3) The LRR algorithm can describe the correlation of data, and
the coefficient matrix is low rank. However, this algorithm
doesn’t consider the local structural characteristics of the
data, and often cannot effectively exploit the discriminant
information in the data. In this case, the LRR algorithm
is not directly applicable to the EEG classification for AD
recognition. The JSLC algorithm achieves good results in
four datasets. JSLC is a low-rank representation model
based on dictionary learning, which integrates discriminant
information of samples into dictionary learning, and can
also eliminate the influence of noise information on the
classification model. This result shows that joint learning
of low-rank representation and subspace learning is an

effective means to solve EEG classification. The NRLRL
algorithm conducts low-rank learning in the original data
space. Its classification performance is lower than DSLRR
in four datasets, which further shows that more data
dimensions may not improve model performance. Due
to the redundant information and noise in EEG data,
it is effective to obtain the compact and discriminant
feature representation through subspace learning and low-
rank representation.

Ablation Experiment
The DSLRR algorithm integrates discriminant margin term,
global structure term, and LSR term on the basis of the LRR
algorithm. To verify the role of these terms, we performed
ablation experiments on four EEG datasets. For discriminant
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FIGURE 6 | The accuracy of the DSLRR algorithm with different k in four datasets, (A) HC and AD, (B) HC and MCI, (C) HC and (MCI+AD), and (D) MCI and AD.

margin term, its purpose is to use supervised information to
establish graph embedding, to improve the distinguishing ability
of the model. To verify its effect, we remove this item from
Eq. (11), that is, set the parameter µ = 0. For global structure
terms, their purpose is to preserve the structure information
of data in subspace. To verify its effect, we remove this item
from Eq. (11) by setting the parameter α = 0. For the LSR term,
its purpose is to use the least square constraint to utilize the
discriminant information in the data. Similarly, to verify its effect,
we remove this item from Eq. (11), that is, set the parameter
γ = 0. The classification accuracy, F-measure, and G-means of
DSLRR with an ablation experiment in four EEG datasets are
shown in Figures 2–4, respectively. From the results in Figure 2,
we can see that if any one of three terms is removed from Eq. (11),
the classification accuracy in the four EEG datasets has decreased
to varying degrees. This is because each term has a corresponding
contribution to the EEG classification task, which also illustrates
the necessity of the coexistence of these three terms from another
perspective. The results in Figures 3, 4 show that this conclusion
is well verified. Therefore, the lack of any term will degrade the
performance of the DSLRR algorithm.

Parameter Analysis
To show the convergence of the DSLRR algorithm, we plot its
convergence curve in Figure 5. As shown in Figure 5, the DSLRR
algorithm converges quickly in several iterations across four EEG
datasets. The results show that the DSLRR algorithm is acceptable
in the running time, which shows that the DSLRR algorithm has
high practical worthiness.

We plot the classification accuracy of the DSLRR algorithm
with different k-nearest neighbors in Figure 6. Figure 6 visually
shows that the classification is mildly sensitive to k. The DSLRR
algorithm can achieve good classification accuracy when the
parameter k is in the range of [5, 7, 9]. When k is <5 or k is greater

than 9, the classification accuracy is slightly lower. Therefore, we
can fix k = 7 in the experiment.

CONCLUSION

With the emergence of global aging, the prediction and diagnosis
of AD have attracted extensive attention. In recent years,
EEG technology has been developed and has become an
important means to detect abnormal brain activity in patients
with AD. To realize the early diagnosis of AD, we propose
the DSLRR learning algorithm. The DSLRR algorithm inherits
the advantages of low-rank representation, removes redundant
information and noise, and improves the discriminant ability of
low-rank representation through graph discriminant embedding.
Meanwhile, based on subspace learning, the DSLRR algorithm
introduces LSR and global structure preserving constraints to
further improve the discriminative ability of the model. Extensive
experimental results on real EEG data verify the effectiveness of
the DSLRR algorithm.

In the future, we will continue to explore our work in the
following aspects. First, the DSLRR algorithm is essentially a
linear learning method. The brain is a nonlinear system with the
ability of self-adaptation and self-regulation. Under some internal
or external stimuli, the regulation and application functions of
biological tissue will inevitably affect the electrophysiological
signals, so that neurons have chaotic discharge phenomena,
which present nonlinear characteristics. This makes the DSLRR
algorithm unable to exert its performance in complex EEG data.
To this end, we consider introducing a nonlinear learning model
to improve the stability and accuracy of the DSLRR algorithm,
so that it can be better suitable for various complex application
scenarios. Second, the DSLRR algorithm is suitable for EEG
classification using single-feature information. At present, the
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technologies of feature processing and feature exaction are more
mature, and the obtained feature information is correspondingly
more diverse. In the next stage, we will extend the proposed
algorithm to multi-feature scenarios to form a richer AD
recognition system. Third, with the popularization of EEG
acquisition equipment, using the existing labeled samples to
analyze the unlabeled samples in multiple domains is a difficult
problem in EEG-based AD recognition. We will use transfer
learning technology to extend our algorithm in the future, to
further enhance the generalization of the algorithm.
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Accurate recognition of patients with Alzheimer’s disease (AD) or mild cognitive
impairment (MCI) is important for the subsequent treatment and rehabilitation. Recently,
with the fast development of artificial intelligence (AI), AI-assisted diagnosis has been
widely used. Feature selection as a key component is very important in AI-assisted
diagnosis. So far, many feature selection methods have been developed. However,
few studies consider the stability of a feature selection method. Therefore, in this
study, we introduce a frequency-based criterion to evaluate the stability of feature
selection and design a pipeline to select feature selection methods considering both
stability and discriminability. There are two main contributions of this study: (1) It
designs a bootstrap sampling-based workflow to simulate real-world scenario of feature
selection. (2) It develops a decision graph to determine the optimal combination
of supervised and unsupervised feature selection both considering feature stability
and discriminability. Experimental results on the ADNI dataset have demonstrated the
feasibility of our method.

Keywords: artificial intelligence, Alzheimer’s disease, feature selection, stability, discriminability

INTRODUCTION

Alzheimer’s disease (AD) (Xiao-Cong et al., 2018; Hou et al., 2020; Mishra and Li, 2020; Subasi,
2020; He et al., 2022) is a degenerative disease of the central nervous system, which is clinically
manifested as progressive memory impairment, cognitive dysfunction, language dysfunction, and
personality change, etc. AD has a serious impact on the lives of patients, but also brings a heavy
economic burden to patients’ families. At present, the research progress of AD is slow, and the
disease factors cannot be accurately determined. It is usually found at an advanced stage, and
even treatment will not produce a better therapeutic effect. Therefore, the early diagnosis of AD
is very critical, which can effectively inhibit the development of the disease, and even avoid the
occurrence of clinical symptoms by taking timely treatment. Mild Cognitive Impairment (MCI) is
considered as an intermediate state between health and AD. In patients with MCI, the probability
of progressing to AD is about 10–15% (He et al., 2022). Therefore, if patients with MCI can be
effectively identified and actively intervened, it is of great significance for the control of AD.

With the rapid development of artificial intelligence (Jiang et al., 2020; Xia et al., 2020; Zhang
et al., 2020a,b, 2021a,b, 2022), intelligent models are widely used in MCI or AD recognition.
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Kloppel et al. (2008) input gray matter features of brain
images of AD patients into linear support vector machines
(SVM), so as to apply the trained SVM to clinical studies.
Ashburner and Friston (2000) applied morphometric methods to
the diagnosis of AD, which spatially normalized high-resolution
images of all subjects into the same stereotactic space. Then,
gray matter was separated from the spatially normalized images
and data smoothing was performed on them. Voxel parameter
test statistics were performed on the two groups of smoothed
gray images to improve the uneven intensity of the brain artifact
images. Hinrichs et al. (2009) also proposed an AD recognition
framework based on the smoothness of three-dimensional image
coordinate space. It directly integrates the spatial relations of
voxels into the learning framework and does not require image
preprocessing information of other modes, thus automatically
classifying subjects according to structural or functional imaging
features. In addition, MCI was associated with changes in cortical
morphology, such as cortical thickness, sulcus depth, surface
area, gray matter volume, and mean curvature in different brain
regions. These features have been shown to have a specific
neuropathological and genetic basis. However, most methods
have focused on univariate prediction models, and cortical
features are usually isolated. Therefore, Li et al. (2014) used a
multivariate approach to study the abnormalities of multiple
cortical features in patients with mild cognitive impairment,
and identified subtle patterns of changes in cortical anatomical
structure through a classification model. Liu et al. (2013) used
non-linear global data structure to map multivariable MRI data
such as regional brain volume and cortical thickness into a low-
dimensional local linear space through local linear embedding
method, and trained a disease classifier by embedding brain
features to predict whether MCI would be transformed into AD
in the future. Möller et al. (2016) took the voxel values extracted
from the voxel data as the original feature data, and proposed a
feature selection method to apply to the original feature vector,
so as to reduce the dimension of the original feature vector to
a low-dimensional space and carry out the next classification
task. From the above-mentioned studies, we can summarize the
general process of MCI/AD recognition based on intelligent
model, as shown in Figure 1. From Figure 1, it can be found
that the general process of MCI/AD recognition contains four
components, preprocessing, feature extraction, feature selection,
and prediction. Preprocessing aims to process the original images
including registration, standardizing and smoothing. Feature
extraction aims to extract original features from the images
after preprocessing. Feature selection aims to select discriminant
features from the original feature set. Prediction aims to build
a classification model to recognize MCI or AD patients. In the
phase of prediction, based on the selected features, a prediction
model is established for MCI/AD recognition.

From Figure 1, it can be found that feature selection is a
key phase in the process of MCI/AD recognition. The goal
of feature selection is to select discriminant features with low
relevance between each other and high relevance to the outcome.
In recent 2 years, some excellent feature selection work has
emerged in the field of medical images. For example, Demir and
Akbulut (2022) proposed a new residual- convolutional neural

network to extract deep features from MRI images. Mainenti
et al. (2022) proposed a radiomics-based pipeline to enhance
MRI-based risk stratification in patients with endometrial
cancer. Although previous studies have achieved great success
in feature selection, feature discriminability is often the first
important factor and feature stability is always omitted. In
this study, first of all, feature stability, variance, and pairwise
correlation were analyzed. Then, the least absolute shrinkage and
selection operator (LASSO) and recursive feature elimination
(RFE) were employed to search for the optimal feature set
(Mainenti et al., 2022).

In this study, we focus on feature selection because few
studies consider both the stability and performance of feature
selection so far, which are two key factors for the classification
phase. The main contributions cover two aspects. The first one
is that we introduce a frequency-based criterion to evaluate
the stability of a feature selection method. The second is
that we propose a bootstrap-based flow chart and a decision
graph to select the best combination of supervised and
unsupervised feature selection methods. The following sections
are organized as follows. Section “Data and Methods” presents
the data we used and the methods we proposed. Section
“Results” reports the experimental results, section “Discussion”
discusses the experimental results and the last section concludes
the whole study.

DATA AND METHODS

Data
In this study, we select 103 patients with MRI and PET from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) as
our datasets. ADNI is a 5-year public partnership sponsored
by several institutes, companies, and non-profit organizations
(Zhang et al., 2021b). Owning to the original images cannot
be directly used for our study, we set up a data preprocessing
pipeline, which contains three main steps. Firstly, each subject in
ADNI contains 96 PET images. Statistical parametric mapping
(SPM) (Muzik et al., 2000) is used to fuse these PET images to
construct a 3-D one which has brain spatial information and the
feature information between tissue structures are also retained.
In addition, motion correction is performed due to head motion.
Secondly, the MRI image and PET image of each subject are
registered, and affinely aligned. In the third step, the average
template data generated is used to spatially normalize all PET
images to the standard MNI space. PET images are also smoothed
(8 mm Gaussian) to avoid the influences caused by noises. The
AAL (automated anatomical atlas) (Rolls et al., 2020) which is
available as a toolbox1 for SPM is used as a template to extract
original features from PET images. Based on AAL, the brain
is segmented into 116 regions, and we select 90 regions from
the cerebrum for feature extraction. To be specific, firstly, the
PET images are resampled to the same size as the AAL template
so that each region is in correspondence spatially. The size of
AAL template is 61 ×73 ×61. Then we extract average intensity

1http://www.gin.cnrs.fr/AAL
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FIGURE 1 | General process of MCI/AD recognition.
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FIGURE 2 | Flow chart for stability evaluation.

values from all regions of PET images as original features for our
proposed classification model.

Methods
Stability Evaluation Metrics
In this study, we use a frequency-based criterion to measure
the stability of a feature select method (Nogueira et al., 2017).
For clarity, suppose we have a feature selection method 8 and
a d-dimensional dataset X. The feature selection method is
performed on the d-dimensional dataset X to select discriminant

features. The feature selection process is repeated M times by
a bootstrap strategy. Then we can define a binary matrix Z, as
shown in (1) to indicate the feature selection results of M tries,

Z =


z11 z12 ... z1d
z21 z22 ... z2d
... ... ... ...

zM1 zM2 ... zMd

 (1)
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In Z, each row represents one try of feature selection. In each
row, zij = 1(i = 1, 2, ...,M, j = 1, 2, ..., d) represents that the
j-th feature is selected in the i-th try; otherwise, the j-th feature is
not selected. Based on the binary matrix Z, the stability of feature
selection method 8 in terms of the frequency-based criterion can
be defined as:

Stability(Z) = 1−
1
d

∑d
f=1

[
M

M−1 ( 1
M

∑M
i=1 zif )(1− 1

M
∑M

i=1 zif )
]

1
M

∑M
i=1

∑d
f=1 zif

d (1−
1
M

∑M
i=1

∑d
f=1 zif

d )
(2)

From (2), we can see that Stability(Z) ranges from 0 to 1, the
greater the value, the better the stability.

Stability Evaluation Workflow
In this study, we use a supervised feature selection method to
reduce features irrelative to the outcome, and an unsupervised
feature selection method to reduce redundant features. To
evaluate the stability of feature selection, a bootstrap sampling-
based flow chart is established, which is shown in Figure 2.
Firstly, the AD dataset is split into the training set (70%) and
the testing set (30%) by bootstrap sampling. Then supervised and
unsupervised feature selection is performed on the training set
to select discriminant features. The testing set is updated with
the selected features. Finally, a Ridge regression model is trained
based on the selected features. The bootstrap sampling is repeated
M times so that the matrix Z in (1) can be obtained. Based on
Z, we can use (2) to evaluate the stability of the supervised and
unsupervised feature selection methods we used.

Decision Graph for Feature Selection
In Li et al. (2017), a feature selection package was shared
which contains 33 different kinds of supervised and unsupervised
feature selection methods. In this study, we aim to choose a
best supervised and unsupervised combination from this package
for AD diagnosis. First of all, we set up an initial exclusion
criterion to select a part of supervised and unsupervised feature
select methods from the package provided by Li et al. (2017).
The exclusion criterion states: (1) if prediction performance
in terms of AUC of a feature selection method is lower than
0.5, the method is excluded. (2) If the running time of one
try of a feature selection method is more than 30 min, the
method is excluded. These exclusion criteria are defined for two
reasons. The first is that if the prediction performance of the
feature selection method is lower than 0.5, it indicates that the
prediction performance of the method is close to the randomness
level. Second, if the running time of a feature selection method
exceeds 30 min, it will exceed the normal tolerance range when
the training set size is not large. With the exclusion criterion,
we finally select F score (denoted as S1:), T Score (denoted
as S2), ReliefF (denoted as S3), and Fish Score (denoted as
S4) as supervised feature selection methods, and Lap_score
(denoted as U1), spectral feature selection (SPEC, denoted as
U2), Monte Carlo feature selection (MCFS, denoted as U3), non-
negative discriminative feature selection (NDFS, denoted as U4),
unsupervised discriminative feature selection (UDFS, denoted as
U5), and Person_score (denoted as U6) as unsupervised feature

TABLE 1 | All combinations of supervised and unsupervised feature
selection methods.

Combination name Name of supervised
method

Name of unsupervised
method

S1U1 F score Lap_score
S1U2 SPEC
S1U3 MCFS
S1U4 NDFS
S1U5 UDFS
S1U6 Person score
S2U1 T score Lap_score
S2U2 SPEC
S2U3 MCFS
S2U4 NDFS
S2U5 UDFS
S2U6 Person score
S3U1 ReliefF Lap_score
S3U2 SPEC
S3U3 MCFS
S3U4 NDFS
S3U5 UDFS
S3U6 Person score
S4U1 Fish score Lap_score
S4U2 SPEC
S4U3 MCFS
S4U4 NDFS
S4U5 UDFS
S4U6 Person score

selection methods. Therefore, we have 24 combinations, i.e.,
S1U1, S1U2,. . . , S4U6, as shown in Table 1. Secondly, as we
stated before that both performance and stability are important
for Alzheimer’s disease diagnosis.

Based on Figure 2, we can generate the matrix Z. Thus,
we can use (2) to evaluate the stability of the supervised and
unsupervised feature selection methods we used. Therefore, we
design a decision graph, as shown in Figure 3, to determine
the best combination of the supervised and unsupervised feature
selection methods.

RESULTS

The decision graph of all combinations for MRI features is shown
in Figure 4. It is observed that the combination S2U6 wins the
best in terms ofAUC∗Stability, which means that the combination
of T Score (supervised feature selection method) and Person
Score (unsupervised feature selection method) performs better
than other combinations in terms of both AUC and stability.
Therefore, the supervised feature selection method T Score and
the unsupervised feature selection method Person Score will be
selected as the feature selection methods for modeling.

The decision graph of all combinations for PET features is
shown in Figure 5. Similar to Figure 4, it is observed that
the combination S1U1 and S4U6 wins the best. Therefore, the
combination F score + Lap score or the combination Fish Score +
Person Score will be selected for the following phase of modeling.

From Figures 4, 5, it can be found that this is no combinations
that always perform best. Our method is case-dependent, which
means that it provides decision support for users.
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FIGURE 3 | Decision graph for feature selection.

FIGURE 4 | Decision graph for MRI features.

DISCUSSION

In this study, we have 103 subjects, for both MRI and PET,
the feature dimension of each subject is 93, which is near to
the number of subjects. When classification models are applied
to the high-dimensional data, a critical issue is known as the
curse of dimensionality, which refers to the phenomenon that
data becomes sparse in high-dimensional space may occur (Li
et al., 2017). Therefore, feature selection plays a very significant
role in the recognition of AD or MCI. So far, many feature
selection methods have been successfully applied in the field
of medical image-based diagnosis. For example, in Salvatore
et al. (2015), employed PCA (principle component analysis)
to select discriminant features from the density maps of WM
(white matter) and GM (gray matter) as input of SVM for
AD recognition. In Liu et al. (2013), employed LLE (local
linear embedding) as the unsupervised feature reduction method
to reduce features from the space of multivariate regional

brain volume and cortical thickness MRI to a locally low-
dimensional linear space while maintaining the global non-
linear data structure. Then, the reduced brain features in
the low-dimensional space were used to train the prediction
model. Unlike Liu et al. (2013) and Salvatore et al. (2015) in
Beheshti et al. (2015) proposed a filter-based supervised feature
reduction method containing three main steps. First of all, feature
extraction was carried out by using the voxel clusters that are
detected by the voxel-based morphometric (VBM) on sMRI
and the voxel values as the volume of interest (VOI). Secondly,
the probability distribution function of the VOI was employed
to represent the statistical information of the respective high-
dimensional structural MRI samples. Thirdly, the final selected
features were employed to train a SVM classifier to perform
the AD recognition task. In Nir et al. (2015) extracted DTI-
based features and proposed a tractography-based model to
recognize AD and MCI. First of all, the authors used tractography
and clustering techniques to locate and organize fibers into 18
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FIGURE 5 | Decision graph for PET features.

fiber bundles. Secondly, the authors computed density maps
to quantify the number of fibers passing through each voxel
and used the shortest path graph search to reduce the fiber
bundles based on maximum density path (MDP) so that the
fiber bundles can be expressed in a compact and low-dimensional
space. Thirdly, the diffusivity measures of fractional anisotropy
(FA) and MD computed along all the registered across subjects
(MDPs) were selected as the features to train an SVM classifier.
Feature selection methods in this category can be characterized
as making use of the global or local statistical information. In
De Martino et al. (2008) employed multivariate feature selection
to select features to model functional MRI spatial patterns. To
be specific, the authors employed RFE combined with an SVM
classifier (REF-SVM) to reduce the irrelevant voxels recursively.
Similarly, in Wee et al. (2011), based on DTI images, Wee et al.
proposed a framework for MCI recognition. In this framework,
the original features come from the anatomical regions, and
REF-SVM was also used to reduce the original feature set.

Although different kinds of feature selection (reduction)
methods have been widely used for AD and MCI recognition,
an important thing that is not fully considered is the
stability of the feature selection methods. In practice, we
expect that the selected feature selection method can maintain
robustness when training data changes slightly. Therefore,
in this study, we introduce a frequency-based criterion to
evaluate the stability and design a pipeline to select feature
selection methods considering both stability and discriminability.
Experimental results shown in Figures 4, 5 indicate that the
proposed pipeline works well and can help us to determine
the best combination of feature selection methods. That is
to say, the proposed criterion AUC∗Stability can find the
optimal combination of supervised and unsupervised feature
selection methods.

CONCLUSION

In this study, we introduce a frequency-based criterion to
evaluate the stability of feature selection and design a pipeline
to select feature selection methods considering both stability and
discriminability.
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As a neurodevelopmental disorder, autism spectrum disorder (ASD) severely affects the
living conditions of patients and their families. Early diagnosis of ASD can enable the
disease to be effectively intervened in the early stage of development. In this paper, we
present an ASD classification network defined as CNNG by combining of convolutional
neural network (CNN) and gate recurrent unit (GRU). First, CNNG extracts the 3D spatial
features of functional magnetic resonance imaging (fMRI) data by using the convolutional
layer of the 3D CNN. Second, CNNG extracts the temporal features by using the GRU
and finally classifies them by using the Sigmoid function. The performance of CNNG was
validated on the international public data—autism brain imaging data exchange (ABIDE)
dataset. According to the experiments, CNNG can be highly effective in extracting the
spatio-temporal features of fMRI and achieving a classification accuracy of 72.46%.

Keywords: ASD classification, CNNG, CNN, spatio-temporal features, ABIDE

INTRODUCTION

The neurodegenerative diseases such as autism spectrum disorder (ASD) have received increasing
attention in recent years. ASD, also referred to as autism, is a common neurodevelopmental
cognitive disorder in children, mostly related to genetic factors. Due to the unclear etiology of
autism, lack of specific drug treatment and life-long incurable, the patient’s family needs to bear
heavy psychological and economic pressure for a long time. ASD is characterized by complexity and
heterogeneity. ASD mainly relies on the doctor’s diagnosis on the foundation of the Diagnostic and
Statistical Manual of Mental Disorders. It is not only time-consuming but also highly subjective,
which can easily lead to misdiagnosis. Therefore, the development of a fully automatic ASD
diagnostic technology will alleviate the burden on doctors and be helpful to detect symptoms and
obtain early intervention and treatment in childhood.

With the development of medical imaging, many functional neuroimaging techniques have
been proposed to use in brain research, such as Electroencephalogram (EEG), magnetic resonance
imaging (MRI), functional magnetic resonance imaging (fMRI), and so on (Laxer, 1997; Wu
et al., 2001; Holdsworth and Bammer, 2008). fMRI has the advantages of non-invasiveness and
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high temporal and spatial resolution. fMRI can enable people to
more intuitively understand the physiological and pathological
functional activities of the brain. Therefore, fMRI is widely used
in clinical and basic research in many fields such as neuroscience,
cognitive science and psychology (Heuvel and Pol, 2010; Liu S.
et al., 2019; Liu S. et al., 2020; Vakamudi et al., 2020). The
fMRI which takes blood oxygenation level dependent (BOLD)
signal imaging as the fundamental principle can be divided into
task state and resting state in brain research. Task-fMRI means
that fMRI data is collected by subjects under the specified task,
such as staring at a certain color of a certain mark or moving
a finger for a period of time. As a method of acquiring brain
signals with the high spatial and temporal resolution, resting-
state fMRI (rs-fMRI) requires subjects in a state of complete
relaxation without accepting any specified or strenuous tasks. The
acquisition method is simple and fast and is suitable for ASD
patients, so it is widely used in ASD classification. As with most
classification studies of neurological disorders, the data used in
this paper were resting-state fMRI. Due to the lack of subtype data
of ASD in the current public datasets, ASD classification studies
are mainly aimed at dichotomizing ASD and typical controls
(TC). We also aim to distinguish ASD and TC.

In recent years, with the advancements in computer
technology and machine learning, artificial intelligence has
been broadly applied in different industrial fields. Scholars are
committed to using machine learning to process and analyze
medical data. The processing based on medical data has received
more and more attention from researchers. Brain neuroimaging
has also gradually provided a new way for the classification
research of brain neurological diseases. The study of fMRI-
based ASD classification can be divided into two directions
in terms of model composition: traditional machine learning
and deep learning.

Scholars from various countries have proposed different
ASD classification and identification methods with traditional
machine learning. The main steps include feature extraction
and classification. In 2015, Plitt et al. (2015) used three
groups of regions of interest to generate three independent
fMRI time-course correlation matrices for subjects. Then, the
generated feature matrix is used for classification by combining
linear kernel-based support vector machine (SVM), and the
classification accuracy was 73.89% in 178 subjects. In 2020, Wang
et al. (2020) put forward a multi-site adaption framework via low-
rank representation decomposition to address the differences
between multiple sites. The key idea is to establish a common low-
rank representation for data from multiple sites. One site can be
treated as the target domain and the rest as the source domain.
So, each site can be mapped into a common space by using the
low-rank representation. It can reduce the distribution difference
of data at different sites by using the data of the target domain
to linearly represent the data of the source domain. Finally, the
proposed algorithm used a linear kernel-based SVM classifier for
ASD classification, and its classification accuracy is 71.88% in 468
subjects. In 2020, Zhao et al. (2020) extracted the time-invariant
features in the low-order or high-order dynamic functional
connectivity network of fMRI data by using central moment.
By integrating the traditional functional connectivity network,

the low-order dynamic functional connectivity network and
features were extracted from the high-order dynamic functional
connectivity network, and a linear kernel-based SVM classifier
was used to obtain up to 83.00% accuracy in 45 ASD patients and
47 TCs. In the same year, Karampasi et al. (2020) used the time
series extracted by the CC200 atlas, demographic information,
texture and divergence features of the BOLD signal as manually
extracted features. Then, five feature selection algorithms such
as recursive feature elimination with correlation bias reduction,
local learning, infinite feature selection, minimum redundancy
maximum correlation and Laplace score were used for feature
selection. Finally, SVM based on linear kernel and Gaussian
kernel, K-nearest neighbor classifier, linear discriminant analysis
and random forest were used for ASD classification. Among
them, the linear kernel-based SVM classifier achieved the
highest classification accuracy of 72.5% among 871 subjects. Sun
et al. (2021) first investigated the statistical differences among
six resting-state networks. Then, they analyzed subjects with
independent component analysis and applied an image-based
meta-analysis to explore the consistency of spatial patterns across
different sites. Finally, using these patterns as features, the results
were predicted by an SVM classifier based on the Gaussian
radial basis sum function. The six resting-state networks achieved
classification accuracies of 66.10, 53.20, 59.70, 50.00, 75.80, and
88.70% in 295 subjects, respectively.

The process of feature selection in traditional machine
learning algorithms is often accompanied by a certain degree of
subjectivity. With the rapid progress of computer technology,
classification algorithms based on deep learning have gained
popularity. Deep learning-based methods can learn optimal
classification strategies directly from raw data by using
hierarchies of varying complexity. Compared with traditional
machine learning methods, it has stronger classification and
recognition capabilities. In 2018, Heinsfeld et al. (2018) used the
CC200 functional atlas to segment the brain into 200 regions of
interest (ROI) and calculated the Pearson correlation coefficient
between each ROI to generate a functional connectivity matrix.
Then, by removing the upper triangular and diagonal parts of the
functional connectivity matrix, the remaining parts were spread
into a one-dimensional vector to be used as classification features.
Finally, two stacked denoising self-encode network with Softmax
activation function was used for ASD classification, which
obtained an accuracy of 70% in 1,035 subjects. In 2018, Xiao et al.
(2018) divided the dataset of each subject into 30 independent
components. Then, 20 key components were selected based on
the maximum energy criterion for all bands. The array of 84 key
features for all subjects was reshaped into a 3,400∗84-dimensional
key feature matrix. After performing normalization, the feature
matrix was fed into a stacked autoencoder and the subjects
were classified by using a Softmax classifier, which obtained an
average classification accuracy of 87.21% in 84 subjects. In 2019,
Rathore et al. (2019) obtained a classification accuracy of 69.2%
in 1,035 subjects by using a simple 3-layer neural network with
functional correlation and its topological features of EEG signals.
In 2020, Thomas et al. (2020) trained a full 3D CNN containing
only the average pooling layer and two convolutional layers,
and the classification accuracy achieved 66% on 1,162 subjects.
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Niu et al. (2020) introduced a multichannel deep attention neural
network for ASD classification, whose classification accuracy
achieved 73.2% in 809 subjects. Li et al. (2020b) put forward
an ASD classification algorithm on the basis of interpretable
graph neural networks. In this algorithm, each graph convolution
block contains a nodal convolution layer and a nodal pooling
layer. This algorithm segmented brain images into 84 ROIs by
using Desikan-Killiany mapping and constructed a functional
connectivity matrix by using Pearson correlation coefficients. The
functional connectivity matrix was fed into the proposed graph
neural network for ASD classification, which obtained 79.7%
classification accuracy in 118 subjects.

In 2019, Khosla et al. (2019) extracted ROI time series features
by different atlases and further proposed an integrated learning
strategy based on 3D CNN. The new network used the full-
resolution 3D spatial structure of rs-fMRI data to fit a non-linear
prediction model and obtained a classification result of 72.8%.
Li et al. (2020a) presented an ASD classification algorithm by
combining attention, long and short-term memory recurrent
neural networks and self-encoder networks. This algorithm
utilized functional connectivity as a feature and achieved 71.3%
inter-site classification accuracy.

Functional magnetic resonance imaging images are an
arrangement of a series of three-dimensional images obtained in
a time series with a large number of data voxels. Most current
methods used atlases to segment the brain into multiple regions
of interest and construct a functional connectivity matrix as
features. Then feature extraction methods were used to select
some of the optimal features to input into a classifier for
ASD classification. These algorithms did not fully exploit the
spatio-temporal information of the source images. And they
destroyed the temporal and spatial correlation of the original
data. Therefore, we design an ASD classification algorithm based
on 3D CNN and GRU. The representative high-level features
of 3D images at each time point are gradually extracted by 3D
convolutional neural networks. Then, the above spatial features
at each time point are fed into GRU in series to analyze their
temporal correlation information. Finally, a fully connected layer
with a Sigmoid activation function is used to predict the category.

The main contributions of this paper are: (1) We combine the
strengths of 3D CNN and GRU to construct a CNNG network.
The CNNG network performs well in extracting the spatio-
temporal features of fMRI data and hence obtains better ASD
classification performance. (2) CNNG adopts intercepting time
dimension, scaling brain image size as well as regularization and
Dropout to prevent the overfitting phenomenon during model
training. (3) We select the data of 871 subjects in the commonly
used ABIDE database as the experimental data so that the trained
model has better generalization ability for the diagnosis of ASD.

THE PROPOSED ALGORITHM

Some studies have been conducted for ASD classification by
using CNN (Li et al., 2018; El-Gazzar et al., 2019). Because
of the complexity and high dimensionality of fMRI images,
only a few studies are using intact brain images directly as

FIGURE 1 | The structure of the CNNG model.

input data. Researchers have devoted themselves to reducing the
input dimensionality by downscaling four-dimensional images
into two-dimensional images or segmenting brain regions to
construct functional connectivity matrices. And then the CNN
networks or brain functional networks are constructed for
classification. However, the above methods severely neglect the
spatio-temporal information in fMRI data. Because the original
fMRI data has high spatial and temporal dimensions, it will
cause a serious overfitting phenomenon when the original fMRI
data is the direct input of the network. Therefore, in this paper,
the fMRI data are spatially reduced and intercepted with fixed
temporal dimensions. For better results, we construct a deep
learning classification model based on spatio-temporal features
by combining it with a 3D convolutional neural network and
gated recurrent unit, called the CNNG model. The CNNG model
uses multiple 3D CNN networks with shared weights to extract
the spatial features of brain images at each time point, and then
uses the GRU to resolve the temporal information. The structure
of the CNNG model is presented in Figure 1.

Figure 1 illustrates that the 3D spatial structure of fMRI at
each time point is sent to 3D CNN for spatial feature extraction.
The extracted spatial features are separately flattened and sent
to GRU for temporal feature extraction. The last layer is the
fully connected layers (FC) with the Sigmoid activation function,
which predicted classification results. Each node of the layer
in FC is attached to all nodes of the previous layer, and the
features extracted in the previous layer are combined to output
the prediction probability. Each part is described in detail below.
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Three-Dimensional Convolutional Neural
Network
A convolutional neural network is a deep feed-forward neural
network with local connectivity features and weight sharing. 3D
convolution extends 2D convolution to 3D and extracts features
of 3D data by 3D kernel convolution. Assuming that element
kx0y0z0

ij is the value at the position (x0, y0, z0) of the j-th feature
map of the i-th layer, then the three-dimensional convolution can
be expressed as:

kx0y0z0
ij =∂

(
bij+

∑
c

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijc k(x0+p)(y0+q)(z0+r)

(i−1)c

)
(1)

where ∂ is the activation function. Pi, Qi, and Ri are the
dimensional magnitudes of the three directions, respectively. wpqr

ijc
is the value of the convolution kernel connecting the c-th feature
map of the i− 1-th layer with the j-th feature map of the i-th layer
at the position (p, q, r). bij is bias.

Medical images contain two-dimensional, three-dimensional
and four-dimensional images, etc. 3D convolution can extract
spatial features of 3D images, which is increasingly used in
medical image analysis. The fMRI contains data from 3D brain
space images, so the 3D CNN is suitable for the 3D spatial feature
extraction of fMRI. In CNN, large convolutional kernels can be
replaced with repeated small convolutional kernels. The different
sizes of the convolutional kernels bring the different sizes of the
perceptual field. So, it is often used to replace one layer of large
convolutional kernels with multiple layers of small convolutional
kernels to reduce the number of parameters and computation
while maintaining the same perceptual field. For example, it is
very common to replace one layer of 5× 5 convolutional kernels
with two layers of 3× 3 kernels, and to replace one layer of 7× 7
kernels with three layers of 3× 3 kernels.

The structure of the 3D CNN model used in this paper is
presented in Figure 2. The input size of 3D CNN is 28× 28× 28,
and it contains three convolutional layers. Each convolutional
layer has 8 convolution kernels with the size of 3× 3× 3, and
they are all connected with ReLU layers. The fourth layer is the
maximum pooling layer with a step size of 2 and a kernel size of
2× 2× 2. The main purpose of the maximum pooling layer is to
reduce the image size, prevent overfitting and reduce the running
time. To extract more advanced features, three sets of repeated
convolutional and pooling layers are added after the pooling
layer. And the size of each convolutional kernel is 3× 3× 3. The
number of filters in each convolutional kernel is 16, 32, and 64.

The size of the pooling kernel after each convolutional layer is
2× 2× 2.

Gated Circulation Unit
After extracting the fMRI spatial features by using 3D CNN, we
use GRU to process the spatial features arranged along the time
dimension after flattening. GRU is an improved version of long
short-term memory (LSTM) presented by Cho et al. (2014), in
which many ideas are borrowed from LSTM. LSTM has three
inputs and three outputs, while the GRU has two inputs and two
outputs (Xin et al., 2021; Liu S. et al., 2022). GRU can accelerate
the training and enhance the network performance because of
fewer parameters. The structure of GRU neurons is shown in
Figure 3.

Let be the input of the GRU, and ct is the output of the GRU. As
can be seen from Figure 3, the expression of GRU is also slightly
different from that of LSTM, with the following equation:

zt = σ
(
Wz ·

[
ht−1, xt

])
(2)

rt = σ
(
Wr ·

[
ht−1, xt

])
(3)

h̃t = tanh
(
W ·

[
rt ∗ ht−1, xt

])
(4)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (5)

where zt denotes update gate. rt denotes reset gate. h̃t denotes
hidden unit. ht is the current moment output. Wz, Wr, and W
denote weights. tanh is the activation function.

In terms of operation, the GRU and LSTM work in a similar
way. But the GRU unit uses a hidden state to combine the
forgetting and input gates into a single update gate. It controls
both how much information needs to be forgotten from the
hidden layer of the previous moment and how much memory
information from the hidden layer of the current moment is
added. There is also a new “gate” in the GRU called the reset gate,
which controls whether the computation of h̃t depends on state
ht−1 at the previous moment. When, rt = 0, h̃t is only related
to the current input xt and has nothing to do with the history
state. When, rt = 1, h̃t is related to xt and ht−1. The advantage
of GRU over LSTM is that there is less internal “gating” and
fewer parameters than LSTM. GRU can achieve equivalent levels
of performance, and it is easier to train, which can greatly increase
training efficiency. Therefore, we use GRU for feature extraction
in the time dimension to obtain better ASD classification results.
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FIGURE 2 | The structure of single-frame convolutional neural network (CNN).
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FIGURE 3 | The structure of gate recurrent unit (GRU).

Model Training
The proposed model extracts the spatial features before the
temporal analysis. The specific parameter settings of the single-
frame CNN model are given in Table 1. We first use two repeated
three-dimensional convolutions with the size of 3× 3× 3 to
extract the low-level features. Then, we use repeated pooling and
convolution to extract the high-level features. And the repeated
two-layer convolution is replaced by a single convolutional layer
with a kernel size of 3× 3× 3, which is reduce the number
of parameters. The extracted spatial features are flattened and
input into a GRU with 32 neurons. Finally, the predicted
values are output by a fully connected layer with a Sigmoid
activation function.

The adaptive moment estimation (Adam) optimization
algorithm is used for model optimization in the network training.
The loss function is the cross-entropy loss function. The input
batch size is set to 1, and the learning rate is 0.00001. Dropout
means that in the training process of the network, neural network
units are randomly discarded from the network according to a
certain probability. To avoid overfitting of the proposed model,
the values of dropout and recurrent_dropout of the parameters
in GRU are set to 0.3. The two-parameter regularization is carried
out in the Dense layer with the parameter 0.00001.

DATA PREPROCESSING

The rs-fMRI data used in this paper are from the international
publicly available Autism Brain Imaging Data Sharing Project

TABLE 1 | Structure of single-frame 3D convolutional neural
network (CNN) model.

Layer Type Output size Filter Core size

1 Conv3D 28× 28× 28 8 3× 3× 3

2 Conv3D 28× 28× 28 8 3× 3× 3

3 Conv3D 28× 28× 28 8 3× 3× 3

4 MaxPooling3D 14× 14× 14 8 2× 2× 2

5 Conv3D 14× 14× 14 16 3× 3× 3

6 MaxPooling3D 7× 7× 7 16 2× 2× 2

7 Conv3D 7× 7× 7 32 3× 3× 3

8 MaxPooling3D 4× 4× 4 32 2× 2× 2

9 Conv3D 4× 4× 4 64 3× 3× 3

10 MaxPooling3D 2× 2× 2 64 2× 2× 2

dataset. The dataset brings together 1,112 subjects (539 ASD
patients and 573 TCs) from 17 sites around worldwide,
including: California Institute of Technology (Caltech), Carnegie
Mellon University (CMU), Kennedy Krieger Institute (KKI),
Ludwig Maximilians University Munich (MaxMun), New York
University Langone Medical Center (NYU), Olin Institute
of Living at Hartford Hospital (Olin), Oregon Health and
Oregon Health and Science University (OHSU), San Diego
State University (SDSU), Social Brain Lab (SBL), Stanford
University (Stanford), Trinity Centre for Health Sciences
(Trinity), University of California, Los Angeles (UCLA),
University of Leuven (Leuven), University of Michigan (UM),
University of Pittsburgh School of Medicine (Pitt), University
of Utah School of Medicine (USM), and Yale Child Study
Center (Yale). The corresponding sites and the sizes of
samples are shown in Table 2, and all the data can be
downloaded from the official website from ABIDE I (2022).
The database includes rs-fMRI, structural MRI, and extensive
phenotypic information for each subject. In this paper, the
subjects with missing partial information were excluded.
A final dataset of 871 subjects, including 403 ASD patients
and 468 TCs, was obtained by removing the samples with
incomplete brain coverage, high motion peaks, ghosting and
other scanner artifacts.

During fMRI acquisition, a lot of noise is generated, so
preprocessing is required before use. The preprocessing method
used in this paper is the configurable pipeline for the analysis
of connectomes (CPAC), and the specific processing steps are as
follows:

(1) Time slice correction. There is a time difference in the
acquisition of fMRI images. To ensure the accuracy of the images,
3dTshift of functional neuroimaging analysis was used to correct
the time slices.

(2) Head movement correction. When collecting data, it is
impossible to guarantee that the subject does not move at all.

TABLE 2 | Names of the 17 sites and their sample sizes.

Serial number Sites ASD TC Total subjects

1 Caltech 19 19 38

2 CMU 14 13 27

3 KKI 22 33 55

4 Leuven 29 35 64

5 MaxMun 24 33 57

6 NYU 79 105 184

7 OHSU 13 15 28

8 Olin 20 16 36

9 Pitt 30 27 57

10 SBL 15 15 30

11 SDSU 14 22 36

12 Stanford 20 20 40

13 Trinity 24 25 49

14 UCLA 62 47 109

15 UM 68 77 145

16 USM 58 43 101

17 Yale 28 28 56
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Some slight movements can lead to huge data differences, so head
movement correction is needed.

(3) Alignment. The skewed functional or structural image is
adjusted to the vicinity of the spatial standard position, so that
the subsequent processing algorithm can quickly find the optimal
value and ensure a higher quality alignment.

(4) Numerical normalization. The 4D fMRI images were
globally normalized with the global mean value equal to 1,000.

(5) Interference signal regression. The Friston 24-parameter
model regression was used to eliminate the head movement effect
of the functional image after alignment. To reduce the effect of
respiration and heartbeat, the regression was done. Regression is
also used to remove low-frequency drift generated by the long
machine operation (Wang, 2020).

(6) Filtering. To reduce the influence of noise such as
breathing and heartbeat and remove the low-frequency drift and
the high-frequency noise, the low-frequency signal in the range
of 0.01–0.1 Hz is selected. This frequency band can reflect the
individual’s spontaneous neural activity and has certain biological
significance (Lu et al., 2007).

(7) Spatial normalization. In general, the size of the human
brain varies. In order to unify the standard, the image space is
normalized to the template space of the Montreal Neurological
Institute with a resolution of 3× 3× 3 mm3.

In the ABIDE dataset, the dimensions of the 3D spatial
brain images were consistent for each site. While the temporal
dimensions varied, the OHSU site had the least temporal
dimension of 78, and the CMU site had the highest temporal
dimension of 316. Since the model requires a fixed input
size, the fMRI data is preprocessed before being fed into the
network. Specifically, the fMRI of the first ten time points was
removed in the time dimension, and 32 consecutive frames of
3D brain images were taken from the eleventh frame. Spatially,
the spatial dimension of each image (61, 73, 61) is downsampled
to (28, 28, 28). After the processing of temporal and spatial
dimensions, the size of the obtained fMRI data is (28, 28, 28,
32). This ensures the same model input and preserves the spatio-
temporal characteristics of fMRI. The selection of the time input
size is discussed in detail in the experimental results analysis
section.

EXPERIMENTAL RESULTS AND
ANALYSIS

The experiments in this paper are based on the Tensenflow 1.0
platform. The environment is the Ubuntu18.4 operating system.
The hardware is a server with 32G memory, Intel(R) Xeon(R)
CPU E5-2667 processor and NVIDIA Tesla K40c.

As we all know, in the field of deep learning, it is very
important to divide the training set and test set reasonably. For
the traditional machine learning stage (the size of data set is
less than 10,000), the general allocation ratio is that the ratio of
training set to test set is 7:3 or 8:2. Try to keep the distribution
of training set and test set consistent. For verifying the validity of
CNNG and retaining as much training data as possible, the data
is categorized into a training set and a test set in a ratio of 8:2.

In binary classification studies, Accuracy, Sensitivity and
Specificity are commonly used indicators, which can be expressed
as:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

In this experiment, the label for ASD patients is “1,” and
the label for TC is “0.” The above equation True Positive (TP)
indicates the number of samples with label “1” predicted to the
number of samples with label “1.” False Positive (FP) indicates
the number of samples that predict a label of “0” to a label
of n“1” True Negative (TN) indicates the number of samples
with the label “0” predicted to the number of samples with the
label “0.” False Negative (FN) indicates the number of samples
with the label “1” predicted as the label “0.” TP+FP+TN+FN
is the total number of samples. TP+FN is the total number
of samples with the true label “1”. TP+FP is the total number
of samples with the prediction label “1,” including both correct
and incorrect predictions. FP+TN represents the total number
of samples with the true label “0.” TN+FN represents the total
number of samples with the prediction label “0,” including both
correct and incorrect predictions.

It can be seen from the above description that the sensitivity
reflects the ability of ASD patients to be correctly distinguished.
The higher the sensitivity means the higher the probability
that a patient with ASD will be correctly diagnosed. The
specificity reflects the effect of TC subjects being correctly
classified. The accuracy reflects the overall classification ability.
The higher the accuracy, the greater the value for practical
medical diagnosis applications.

Ablation Experiments
Effects of Different Convolution Kernel Sizes
For the purpose of obtaining the optimal model, we select the
number of convolution layers and the size of the convolution
kernel by comparison experiments. First, the number of
convolution layers and the kernel size before the first pooling
layer are determined. The experiments were conducted by using
convolution kernels with a size of 5× 5× 5 and 7× 7× 7 as well
as replacing them with repeated small convolution kernels. The
result is listed in Table 3. From Table 3, it is clear that the repeated
small convolutional kernels have better classification results than
the corresponding large convolutional kernels. For example,
the superposition of three convolution kernels with a size of
3× 3× 3 achieves a maximum accuracy of 72.46%. It is about
2% higher than the accuracy of the model with the corresponding
convolutional kernel size of 7× 7× 7. Similarly, when two
convolution kernels with a size of 3× 3× 3 are superimposed,
the accuracy rate is 70.04%. While the classification accuracy of
the model with a convolution kernel size of 5× 5× 5 is only
67.63%. The above results show that the superposition of small
convolutional kernels has the advantages of a small number of
parameters and the low computational complexity. It is clear
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that the classification effect of only one convolution layer with
a convolution kernel size of 3× 3× 3 is not ideal. It may be
due to the fact that the receptive field is too small to effectively
extract the features.

Comparison of Long Short-Term Memory Module and
Gate Recurrent Unit Module
Since LSTM and GRU are the variations of RNN, both are widely
used in temporal information extraction. The classification
results based on temporal feature extraction selection by LSTM
and GRU, respectively, are shown in Table 4. When GRU is
replaced by LSTM in the proposed method, the classification
accuracy is 68.60%, the sensitivity is 56.60%, and the specificity
is 81.19%. The accuracy is significantly lower compared to GRU,
so we use GRU for temporal feature extraction.

Effects of Different Time Dimensions
The selection of the number of fMRI time points has an
important influence on the model training. In the time
dimension, 8, 16, 32, and 48 frames of fMRI images are
used for experiments in this paper. Table 5 presents the
classification effects.

According to Table 5, the classification accuracy improves
when the temporal dimension increases. However, it starts to
decrease when the temporal dimension is 48. Specifically, when

TABLE 3 | Classification performance of different convolutional kernel sizes.

Kernel sizes (number
of layers)

Accuracy Sensitivity Specificity

7 x 7x 7 (1) 70.53% 64.15% 77.23%

5 x 5 x 5 (1) 67.63% 62.37% 72.64%

3 x 3 x 3 (3) 72.46% 65.35% 79.25%

3 x 3 x 3 (2) 70.04% 65.09% 75.25%

3 x 3 x 3 (1) 62.32% 59.80% 66.04%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

TABLE 4 | Performance of different temporal feature extraction modules.

Time feature
extraction module

Accuracy Sensitivity Specificity

LSTM 68.60% 56.60% 81.19%

GRU 72.46% 65.35% 79.25%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

TABLE 5 | Classification performance of different time interceptions.

Time dimension Accuracy Sensitivity Specificity

8 63.74% 59.33% 67.32%

16 69.08% 63.46% 72.12%

32 72.46% 65.35% 79.25%

48 69.57% 62.37% 76.42%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

the time dimension is taken as eight, the classification accuracy
is low. This may be mainly due to the short time resulting in
the short feature vector extracted by the tandem CNN, which
cannot extract the temporal features effectively. And when the
time dimension is 48, the number of parameters and computation
of model training increases, which may easily lead to the
phenomenon of overfitting. So, in the proposed algorithm, we
finally choose the data of 32-time points, which can archive the
best classification effect.

Effects of Different Numbers of Gate Recurrent Units
The selection of GRU has experimented in the previous section,
and the number of GRU units also determines the performance
of CNNG. So, we set the number of GRU units to 16, 32
and 48 for experimental analysis. From Table 6, the accuracy,
sensitivity and specificity are lower when the number of GRU
units is too small or too lager. This is because when the number
of GRU units is less than 32, the proposed model is limited
by the number of units and is not sufficient to fully express
the information contained in the temporal dimension of the
fMRI data. And when the number of units increases to 48, the
classification performance shows different degrees of degradation
due to overfitting because the parameters of the units are too
redundant. Therefore, the model performance is optimal when
the number of GRU units is taken as 32.

Comparison With Traditional Machine
Learning Algorithms
For verifying the validity of CNNG, we compare it with the ASD
classification algorithm by using traditional machine learning.
The comparison algorithms are: (1) ASD classification algorithm
by using graph Fourier transform (GFT) and support vector
machine proposed by Brahim and Farrugia (2020), which is
abbreviated as RBF-SVC; (2) An ASD classification algorithm
based on functional connectivity networks and recursive-
clustering elimination support vector machine proposed by
Chaitra et al. (2020), which is abbreviated as RCE-SVM; (3)
A hybrid ASD classification algorithm by combining different
brain segmentation definitions, functional connectivity matrix
construction methods and feature extraction methods proposed
by Graa and Silva (2021), which is abbreviated as HFR; (4) The
ASD classification algorithm proposed by Abraham et al. (2016)
based on CC400 brain atlas and support vector machine, which
is abbreviated as C-SVC; (5) The ASD classification algorithm on
the basis of functional connectivity and ridge regression classifier
proposed by Yang et al. (2019), which is abbreviated as FCR.

TABLE 6 | Classification performance with different numbers of gate recurrent
unit (GRU) units.

Number of GRU units Accuracy Sensitivity Specificity

16 71.50% 64.15% 77.28%

32 72.46% 65.35% 79.25%

48 71.01% 62.38% 74.26%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.
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The test results of the compared algorithm used in this paper
are all from the test results of the code offered by the author
in the corresponding reference. The test set used in this paper
comes from 17 different sites, so the final metrics obtained
are the average accuracy, average sensitivity and specificity.
Table 7 presents the performance of CNNG and the comparison
algorithm on the test set.

As presented in Table 7, the accuracy, sensitivity and
specificity of the CNNG model in 871 subjects reached
72.46, 71.35, and 79.25%, respectively. The accuracy is
obviously higher than other traditional machine learning
algorithms. When classifying ASD, many traditional machine
learning algorithms need to divide the brain into multiple
regions of interest, which is treated as a node for subsequent
feature selection or calculation. This process obviously loses
fMRI spatial information of the data. After the original
image is preprocessed, the CNNG model directly extracts
and classifies features through the model, which fully
exploits the spatiotemporal information of fMRI data,
thereby extracting more discriminative features and further
enhancing the classification capability of the algorithm.
In addition, the manual features extracted by the fixed
computational feature algorithm are sensitive to noise, scanning
equipment and parameters, and make a big influence on
the overall classification capability of traditional machine
learning algorithms.

TABLE 7 | Classification performance of traditional machine learning
algorithms and CNNG.

Classification Accuracy Sensitivity Specificity

RBF-SVC 66.70% 62.35% 72.35%

RCE-SVM 67.30% 64.5% 70.10%

HFR 71.10% 67.00% 75.00%

C-SVC 67.00% 53.20% 78.30%

FCR 71.98% 70.89% 71.53%

CNNG 72.46% 71.35% 79.25%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

TABLE 8 | Classification performance of deep learning algorithms and CNNG.

Classification Accuracy Sensitivity Specificity

CNN-MLP 70.22% 62.35% 72.35%

SVC 71.10% 67.00% 75.00%

DiagNet 70.30% 68.03% 72.20%

HI-GCN 67.20% 65.90% 68.40%

GAT 68.02% 74.06% 62.26%

CNNG 72.46% 74.35% 79.25%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

Comparison With Deep Learning
Algorithms
We also carry out a comparison between CNNG and the deep
learning-based ASD classification algorithm. The comparison
algorithms are: (1) The ASD classification algorithm based
on convolutional neural network and multilayer perceptron
presented by Sherkatghanad et al. (2020), which is abbreviated
as CNN-MLP; (2) The ASD classification algorithm based
on functional connection network, extreme random tree and
support vector machine proposed by Liu Y. et al. (2020), which
is abbreviated as SVC; (3) The ASD classification algorithm
based on joint representation learning deep multimodal model
proposed by Eslami et al. (2019), which is abbreviated as DiagNet;
(4) The ASD classification algorithm based on the hierarchical
graph convolutional neural network framework introduced by
Hao et al. (2020), which is abbreviated as HI-GCN; (5) The
ASD classification algorithm based on graph attention network
proposed by Hu et al. (2021), which is abbreviated as GAT.
The test results of the comparison algorithm used in this paper
are all from the test results of the code offered by the author
in the corresponding reference. The test set used in this paper
comes from 17 different sites, so the final metrics obtained are
the average accuracy, average sensitivity and specificity. Table 8
presents the results of CNNG and the comparison algorithm
on the test set.

Table 8 shows that the proposed algorithm obtains an
accuracy of 72.46% in the experiment of 871 subjects, which is
5.26% higher than that of HI-GCN, 4.44% higher than that of
GAT, and 2.44% higher than that of CNN. It is also a certain
improvement compared to SVC and DiagNet. The proposed
algorithm also obtains a specificity of 79.25% and a sensitivity
of 74.35%. All the results reveal that the overall performance
of CNNG is superior to the other deep learning algorithms,
which suggests that directly extracting spatio-temporal features
from 4D fMRI data for classification has better results for ASD
classification than just by using 2D or 3D fMRI data or functional

FIGURE 4 | Receiver operating characteristic (ROC) curve of CNNG model.

Frontiers in Aging Neuroscience | www.frontiersin.org 8 July 2022 | Volume 14 | Article 948704163

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-948704 June 29, 2022 Time: 15:38 # 9

Jiang et al. ASD Classification

connectivity. For further evaluating the performance of CNNG,
the receiver operating characteristic (ROC) curve and the area
under the curve (AUC) values are plotted in Figure 4. In Figure 4,
the horizontal coordinate represents the false positive rate (FPR)
and the vertical coordinate represents the true positive rate
(TPR). The ROC curve reflects the trend of the TPR and the
FPR. The closer the area is to 1, the stronger the recognition
ability is. Among the above proposed deep learning algorithms,
the values of AUC for CNN-MLP, DiagNet, HI-GCN, and GAT
are 0.7486, 0.764, 0.745, and 0.7358, respectively. As shown in
Figure 4, the AUC value of the proposed algorithm is 0.79, which
is 5.42% higher compared to GAT. This is an improvement of
4.5% compared to HI-GCN. Compared to CNN-MLP, the ACU
of CNNG is improved by 4.14%. There is also a magnitude
improvement compared to DiagNet. These data indicate that
CNNG performs well for classification.

CONCLUSION

In this paper, we put forward a deep learning model—CNNG,
which can fully exploit the spatio-temporal information in
fMRI data to avoid excessive dimensionality reduction and
missing information caused by using the manual features for
classification. CNNG is mainly composed of 3D CNN and GRU.
In CNNG, spatial feature extraction is extracted by using 3D
CNN, and then GRU is used to analyze temporal information.
The validity of the CNNG model is proved by comparing it
with the algorithms based on traditional machine learning and
the algorithms based on deep learning. The experimental results
indicate that CNNG performs better than other algorithms for
ASD classification. CNNG can extract fMRI data features from
the perspective of spatio-temporal convolution, which has some
clinical value for the early diagnosis of ASD. At present, the
sensitivity of the proposed algorithm does not obtain a large
improvement, and next, we will optimize the algorithm for better
ASD classification.
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Objective: Deep learning algorithms have long been involved in the diagnosis of
severe neurological disorders that interfere with patients’ everyday tasks, such as
Parkinson’s disease (PD). The most effective imaging modality for detecting the condition
is DaTscan, a variety of single-photon emission computerized tomography (SPECT)
imaging method. The goal is to create a convolutional neural network that can
specifically identify the region of interest following feature extraction.

Methods: The study comprised a total of 1,390 DaTscan imaging groups with PD and
normal classes. The architecture of DenseNet-121 is leveraged with a soft-attention
block added before the final classification layer. For visually analyzing the region of
interest (ROI) from the images after classification, Soft Attention Maps and feature map
representation are used.

Outcomes: The model obtains an overall accuracy of 99.2% and AUC-ROC score
99%. A sensitivity of 99.2%, specificity of 99.4% and f1-score of 99.1% is achieved that
surpasses all prior research findings. Soft-attention map and feature map representation
aid in highlighting the ROI, with a specific attention on the putamen and caudate regions.

Conclusion: With the deep learning framework adopted, DaTscan images reveal the
putamen and caudate areas of the brain, which aid in the distinguishing of normal and
PD cohorts with high accuracy and sensitivity.

Keywords: neural networks, Parkinson’s disease (PD), DenseNet architecture, region of convergence (ROC), area
under the curve

INTRODUCTION

Parkinson’s disease (PD) is recognized as a chronic neurodegenerative condition of the central
nervous system that primarily affects older adults (Pahuja et al., 2019) by Pereira et al. Researchers
recognize the lack of dopaminergic neurons as the major cause of PD (Prediger et al., 2014). In
the etiology of PD, oxidative stress is becoming a key factor in dopaminergic neuron degeneration
(Zhou et al., 2009; Blesa et al., 2015). Loss of dopaminergic neurons is observed in substantia nigra
of the mid-brain and later in loss of dopamine transporters in the striatum (Porritt et al., 2005).
The striatum is the most significant component of the brain’s basal ganglia region, which produces
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is responsible for releasing the dopamine neurons in the mid-
brain. The disease’s progressive nature may be attributed
to the gradual deterioration in the striatum with age
(Shahed and Jankovic, 2007).

Early PD is defined as the time frame before the start of
severe motor symptoms and before the beginning of significant
neurological impairment; yet, there is a scarcity of evidence that
indicates the true potential of early therapy in terms of clinical
and financial results (Zhou et al., 2009). More clarification is
needed to study the true effect of early intervention on these
outcomes. Future research should examine the impact of new
diagnostic tools like genetic biomarkers on a wide range of
medical issues (Porritt et al., 2005; Zhou et al., 2009).

Non-motor symptoms of PD result include anosmia (which
affects the olfactory system), fatigue, disturbed sleep cycle, and
fluctuations in bodyweight, disorders involving in temperament
and cognitive aptitude, coronary artery disorders, bladder and
bowel incontinence and digestive tract disorders. While the
motor symptoms include resting tremor, rigidity, impaired
body balance, slowing and freezing down of body movements
or bradykinesia. As a result of such motor symptoms, the
affected individual suffers from micrographia, dystonia and
overall struggle in daily life activities. One may be able to find
significant traits that are not normally employed in the clinical
diagnosis of PD using machine learning algorithms, and depend
on these alternative measures to diagnose PD in preclinical stages
or atypical forms.

A person’s gait and movement patterns are closely
scrutinized during a medical examination. Parkinson’s disease is
characterized by bradykinesia (slow, tiny movements). Rigidity,
or the quality of being rigid. During a medical exam, we passively
move the patient’s joints to discover this. The arms, legs, and neck
are often rigid in those with Parkinson’s disease. Restless tremors.
While individuals aren’t paying attention or are preoccupied,
these tremors come out, therefore a good opportunity to notice
this is when someone is walking. To diagnose this illness, there
are no biomarkers (tests or assessments). We don’t need to
do imaging or laboratory testing unless we feel that there is a
different reason for the patient’s symptoms. Movement indicators
are just a portion of the picture for Parkinson’s disease, since it
affects every region of the body.

Changes in memory and cognition, difficulty sleeping,
emotional symptoms including worry and sadness, or even
hallucinations, are among the most often reported symptoms.
Patients with Parkinson’s disease are more likely to have issues
with their autonomic nervous system. Controls such as heart rate,
digestion, breathing, pupillary response and urine and sexual
desire are all under the control of this system, which is mostly
unconsciously active (Marine et al., 2019).

Neuroimaging technique in the recent past, particularly
SPECT (single-photon emission computed tomography), have
presented promising potential because of their sensitivity and
specificity in diagnosing early PD. SPECT is proved to be
more accessible to clinicians, being less expensive (Lauretani
et al., 2015; Jinjin et al., 2019). The SPECT method of imaging
avails 123I-FP-CIT, i.e., 123I-Ioupane. This radioligand binds the
dopamine transporters in the striatum and termed as SPECT
DaTSCAN Dopamine transporter levels in the brain may be

seen using the DaTSCAN procedure, a form of Single-Photon
Emission Computed Tomography (SPECT) (Harisudha et al.,
2021). Traditionally, a standardized analysis and detection of
such subject images are carried out by specialized technicians and
radiologists. Notably, smaller putamen and caudate regions (the
dopamine transporters) are observed in the case of PD patients,
mainly because of the steady deficiency of dopaminergic neurons
(Shahed and Jankovic, 2007; Mohammed et al., 2020).

In the healthcare industry, machine learning techniques
are becoming more prevalent. Machine learning allows an
algorithms to learn and extract meaningful representations
from data in a semi-automated way, as the term indicates.
Machine learning models have been used to diagnose Parkinson’s
disease using a variety of data modalities, such as handwriting
trends, gait patterns, and neuroimaging methodologies
(Dhanalakshmi and Venkatesh, 2016; Matesan et al., 2018;
Oláh et al., 2021).

Patients with PD who are diagnosed and treated early have
decreased chance of progression and perhaps cheaper long-
term care expenditures. Computer-Aided Diagnosis models that
sufficiently make use of Artificial Intelligence (AI) techniques,
particularly Deep Learning (DL) methods in the recent past;
have suitably specialized as a reliable diagnostic tool (Matesan
et al., 2018; Oláh et al., 2021). With the advancement in central
processing unit (CPU) and graphics processing unit (GPU),
better availability of reliable databases with ease of access in
online platforms, and rapid improvisation of learning algorithms
(Rumman et al., 2019; Bevilacqua et al., 2020).

Parkinson’s disease is distinct from other disorders in various
ways, including how well it responds to levodopa. PD may
be differentiated using a variety of neuroimaging methods,
according to current scientific research. An imaging study using
positron emission tomography (PET) has revealed a possible
mechanism for the lack of response to PD treatment, as the
study was also used in the preservation of dopamine receptors
in PSP (Brooks et al., 1992). MRI with a high field strength
(1.5 T) and a heavy T2 weighting, [18F]-fluorodopa positron
emission tomography, [11C] raclopride imaging of dopamine
D2 receptors, and single photon emission computed tomography
of striatal dopamine reuptake sites are all possible imaging
investigations (Warren et al., 2007).

MRI is the best structural imaging method that does not use
ionizing radiation when compared to nuclear imaging. In the
early stages of Parkinson’s disease, the vast majority of routine
MRI methods failed to detect disease-specific abnormalities.
Brain parenchyma sonography, a commonly used diagnostic tool
for Parkinson’s disease (Brooks et al., 1992), recently revealed
abnormal hyper echogenicity in both PD and essential tremor
(Warren et al., 2007). As a recent research found that 77%
of levodopa patients first reacted favorably to the medicine,
levodopa has become an essential treatment for Parkinson’s
disease (PD) (Brooks et al., 1992). Levodopa has been argued by
physicians to be detrimental to prognosis since it is not definite
of Parkinson’s disease (Warren et al., 2007). To distinguish
Parkinson’s disease from other Parkinsonian illnesses, Apo
morphine injections have been tried subcutaneously, however,
they are ineffective and contribute very little to the diagnosis of
PD (Brooks et al., 1992).
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Despite promising pre-clinical data, many previously
proposed medicines have failed clinical trials, underscoring the
need of a well-thought-out study plan. Recent advances in our
knowledge of the pathogenic processes and anatomical bases
of Parkinson’s disease (PD) symptoms have opened up new
therapeutic options, and it now seems likely that approaches
to treating the disease will change considerably in the years
ahead. Crediting the recent success of deep learning in medical
image classification, this study relies on a similar motive,
to detect the disease as early as possible, making optimum
use of the convolutional neural network (CNN), a DL based
architectural topology (Tagare et al., 2017; Rui et al., 2020).

In the case of making precise judgments based on large
datasets, deep neural networks are clearly an asset. The
methodology implemented in this research are Deep learning
algorithms in which DenseNet 121 performed well when
compared to other techniques. All previous layers provide extra
input to DenseNet layers, which in turn provide their own feature
maps to all following layers. Instead of adding the activations
generated by one layer to the activations generated by subsequent
levels, the activations are simply concatenated together. As the
layers build upon one another, they share a “collective wisdom.”
In order to maintain some kind of global state, the original
inputs and activations from prior levels are retained at each layer
(or, to be more accurate, between blocks of layers). A smaller
number of parameters for a given depth is the result of this
approach, which facilitates the reuse of existing features. Since
dense networks can handle smaller datasets, they’re especially
well-suited to them. Because there are no duplicate feature maps
to train when DenseNets are connected in this manner, they
need less parameters than a similar classic CNN. Some ResNets
versions have also shown that many layers contribute little and
may be eliminated. As a result, ResNets have a large number
of parameters since each layer has its own weights to learn.
A tiny number of new feature maps is all that DenseNets layers
do, since they are relatively narrow (e.g., 12 filters). There was
also an issue with training in extremely deep networks, due
to the flow of information and gradients stated above. Because
the gradients from the loss function and the original input
picture can be accessed directly by each layer in DenseNets, this
problem is alleviated (Ahlrichs and Lawo, 2013; Minja et al., 2019;
Latha et al., 2020).

RELATED WORKS

Rumman et al. (2019) proposed an image processing and
Artificial Neural Network (ANN) based approach to find the
domain of putamen and caudate as the region of interest from
SPECT images for detecting PD in its early stage. The region
values of the putamen and caudate were then fetched to the ANN
classifier for recognition.

Wolfswinkel et al. (2021) developed a convolutional neural
network called DaTNet-3 to differentiate and classify normal
and PD subjects that underwent the DaTSCAN procedure.
They collected the imaging data from Parkinson’s Progression
Marker Initiative (PPMI) and a hospital-based dataset. Wenzel

et al. (2019) explored variable image characteristics at different
camera settings using FP-CIT SPECT to train the InceptionV3
CNN model for automated classification. Three image settings:
unsmoothed, smoothed, and combination of smooth and
unsmoothed were fed into the neural network.

Dhanalakshmi et al. (2019) introduced the role of isosurface
to extract and collect only the most relevant features from
complex 3D DaTSCAN images. This method was further utilized
to implement CNN architectures such as LeNet and ALexNet
for PD classification. Martínez-Murcia et al. (2017) performed
an exhaustive analysis of DaTSCAN images implementing a
voxel-based logistic lasso model. The model helped to define
the regional voxels in the caudate, putamen, and globus pallidus
area for an informed classification of control and PD categories.
Additionally, another ML technique called logistic component
analysis was utilized for judging feature differences within the
same population or groups.

Ortiz et al. (2019) utilized Alexnet architecture and introduced
an image normalization layer to capture the region of interest
from SPECT images. The model helps achieve high classification
accuracy for classifying PD and control groups. Adams et al.
(Subhrajit et al., 2018) performed a quantitative analysis of DAT
SPECT imaging by combining the baseline score of DAT image
scans with UDPRS_III (motor function scores) as base input
parameters. These features, which included motor function and
DAT scan scores, were then provided as input to the CNN model
for prediction and classification for PD.

Oliveira et al. (Mohammed et al., 2020) assessed certain
features that contribute to dopaminergic degeneration for PD
using [123l] FP-CIT SPECT brain scans. A total of seven
features were calculated and employed for the assessment using
ML classifiers that include Support Vector Machine (SVM),
K-Nearest Neighbours (KNN), and Logistic Regression (LR).
Most accurate results were obtained using the SVM classifier with
the seven features.

Martínez-Murcia et al. (Oliveira et al., 2018) developed and
proposed a 3-D CNN system for a fast feature diagnosis of
PD using SPECT imaging modality. Activation maps were
constructed and visualized for practical feature understanding
of the network. Shiiba et al. (2020) studied and assessed shape
features of SPECT images combined with semi-quantitative
parameters to feed into Machine Learning classifiers. The semi-
quantitative features and the shape features were used to extract
and study the region of interest in classifying PD.

Pianpanit et al. (2021) investigated different model
interpretation methods using SPECT images with deep
learning model approaches. Techniques like SHAP (Shapley
Additive explanations) and guided backpropagation were
explored for their attributes and their performance compared for
distinguishing between normal and PD subjects.

It is critical to diagnose PD at an early stage, given that the
severity of PD and its many phases are essential in determining
when to intervene. Many researchers have suggested a model
predict and diagnose the disease. Deep learning for image analysis
has yielded some of the most impressive progress in recent
years (Adams et al., 2018). Various deep learning and machine
learning approaches have been used to predict PD in multiple

Frontiers in Aging Neuroscience | www.frontiersin.org 3 July 2022 | Volume 14 | Article 908143168

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-908143 July 8, 2022 Time: 8:54 # 4

Thakur et al. DenseNet Model for PD Classification

studies. Imaging modalities including MRI (Magnetic Resonance
Imaging) and SPECT for detecting PD have raised high interest
in research studies.

Sivaranjini et al. (Adams et al., 2018) attempted to classify
PD and healthy control images from MRI modality by following
the architecture of the transfer learning model, AlexNet. This
model successfully recognizes the structural differences in normal
and PD subjects and yields optimal results. Chakraborty et al.
(Magesh et al., 2020) carried out data pre-processing for
3T T1-Weighted MRI brain scans and designed a 3D CNN
model for extracting complex patterns in the brain images of
normal and PD cohorts.

All studies that employed accuracy in model assessment
obtained a diagnostic accuracy above chance values for each
research. It’s possible certain data types may not be generalizable
enough to forecast how effectively they may help us discriminate
between Parkinson’s disease and other Parkinsonian illnesses,
but the application of machine learning to many various kinds
of data led to great diagnostic accuracy in PD. Data splitting
procedures and cross validation were not described despite the
great diagnostic accuracy and performance reported in many
investigations. When 2D slices are derived from 3D volumes in
data modalities like 3D MRI scans, several slices may be created
for a single patient. Data leakage and an overestimation of model
performance may occur if the same subject is used in the training,
validation, and testing sets. This compromises the repeatability of
reported findings.

In the proposed work the following approaches are taken as
objectives for this study:

1. Taking the PPMI repository’s DaTSCAN SPECT images
as the adequate dataset for usage in the study.
2. Comparing healthy Vs. PD cohorts contour edge
imaging technique.
3. Analyze and train the images on DenseNet-121, CNN
topologies with a soft attention block in addition to it,
influenced by the works of Martínez-Murcia et al. (2017),
Oliveira et al. (2018), and Wolfswinkel et al. (2021).
4. Compare the results with other pre-
trained CNN models.
5. Visualize the successful model results using Soft
Attention Map and Feature Map representation.
6. Analyze the results using statistical metrics.

The paper is structured as follows: The section 3 explains
about the materials and methods followed by section 4 deals with
the methodology in detail along with the results and discussion.
The session 5 concludes the research work.

MATERIALS AND METHODS

Dataset
The data for this research was acquired from the PPMI public
repository, which is a multimodal, prolonged study of radiomic
feature observations, neuroimaging, and biological markers in
PD patients and healthy controls (HC).

Various industries’ scientists, researchers, sponsors, and study
populations have continued to work together to build this
substantial searchable archive to make PD research and therapies
easier and more effective by finding progression biomarkers.

Data Preprocessing
A SPECT scan generates a volumetric image of the basal
ganglia. Typically, a collection of axial view planes is then
created for clinical evaluation. These picture sequences have
been anonymized and exported in PNG format. All images were
created using a single slice that is most typical of the basal ganglia’s
anatomical location.

To begin, the image is first pre-processed and the ROI,
the putamen and caudate area, is segmented. The caudate
and putamen area segmentation areas are computed and given
as features to the Deep learning algorithms. With the help
of the training data, the DL algorithms are trained and the
prediction model may be utilized to distinguish PD patients from
healthy ones. The deep learning algorithms implemented in this
research work are DenseNet 121, Xception, ResNet 50, MobileNet
V2, Inception ResNet V2, ResNet 152V2, EfficientNet B1. The
Figure 1 depicts the suggested procedure using SPECT pictures
from the PPMI database.

Contour Edge Detection
Edge detection is a technique for detecting the borders of objects
in images. It detects brightness disparities in image processing,
computer vision, and machine vision fields. Edge detection is
used to extract images and data. Edge detection are essential in
computer vision since they involve identifying and classifying
objects in images.

In Parkinson’s disease, nigrostriatal loss is often
disproportionate, with greater degradation observed in the
putamen relative to the caudate nucleus. Corresponding with
Parkinson’s disease are aberrant appearances such as symmetrical
loss of uptake in both putamen and total loss in absorption in
the caudate and putamen despite usual functioning. Figure 1
uses canny-edge detection to highlight the putamen and caudate
region in normal and healthy cohorts. Finding a closed form
and drawing the object’s border is the primary goal of contour
detection as shown in Figure 1. It is also possible to employ
contour detection to estimate an object’s form based on such
attributes as its aspect ratio, length, and solidity. The images
are accustomed to working with grayscale images, the first step
is to transform the image to gray. To approximate contours, a
simple threshold is utilized. Smoother contours may be achieved
by using the OPEN and CLOSE technique. A list of contours is
obtained and the final contours are sketched on the color.

Data Augmentation
Figures 2, 3 depict the data augmentation that was performed
on both the subtypes, Health Control and PD patients. Data
augmentation was adopted to correct the balance of the dataset
due to its moderate size and the small number of HC participants
engaged in the screening procedure. The description of the
eight different type of augmentations is mentioned in the
Table 1. The eight augmentation techniques were so chosen
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FIGURE 1 | Edge detection (A) healthy subject (B) PD subject.

FIGURE 2 | Data augmentation for healthy control participants.

manually that the model extracts different spatial representations
throughout the dataset in order to ensure that the final models
function effectively in the event of several limitations like over
fitting conditions. After data augmentation, 1,840 images of HC
participants and 2,002 images of PD patients are generated. The

imaging data selected for this study includes 1,390 DaTscan
SPECT images, which are split into two classes: PD (with 1,160
images) and Healthy Controls (with 230 images), as shown in
Table 2. The PPMI imaging support validated the diagnosis of PD
by confirming that the screening DaT-SPECT (123I FP-CIT) is
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FIGURE 3 | Data augmentation for PD participants.

TABLE 1 | Image augmentation types and its description.

Augmentation type Description

Shift Scale Rotate Shifts along the x/y axis, scale (zoom in/out) and
rotates on a random value

Rotate-90 Rotate by 90 degrees.

Posterize Reduces the number of bits for each color channel

ISO Noise Random sensor noise or Gaussian noise.

Downscale Reduces the overall resolution of the image

Vertical Flip Flip the input vertically around the x-axis.

Sepia Noise Sepia filter is added randomly

Hue Saturation Adds hue saturation to the image

TABLE 2 | Dataset of DaTscan SPECT images.

Study class No. of subjects Average age

Male Female

PD 1160 63.68 ± 62.35 ±

CN 230 61.87 ± 59.26 ±

associated with a DaT deficiency. The network is divided into two
segments during the training phase. The augmentation network
uses two images of the same kind as the input image and outputs
a layer with the same resolution as the input image. This layer
is used to create an “enhanced” version of the original picture.
Finally, the enhanced picture is sent into a second network, which
is called a classification network. An end-of-network drop in
classification accuracy is due to a loss in cross entropy on class
sigmoid. End-to-end, an addition loss is calculated to control
how well augmented images match their input counterparts. As
a result, the total loss is the sum of these two losses.

The overall block diagram of diagnosis of PD using SPECT
images is shown in Figure 4. The SPECT image is pre-
processed, augmented and classified using various Deep learning

algorithms. The performance metrics are compared for with and
without augmented images. The metrics are accuracy, sensitivity,
specificity, precision and F1 score. The SPECT quantitation of
a given picture feature is affected by a wide range of physical
parameters, but three stand out: attenuation, scatter and detector
response (or finite spatial resolution limited by the collimator). As
the image feature size falls, detector response, or limited spatial
resolution, becomes more critical in SPECT quantification.

The detected activity concentration drops with the volume of
features smaller than nearly twice the detector’s spatial resolution.
This is because the SPECT image’s count values are dispersed
across a broader area than the emission source itself. As a result,
the actual concentration is lowered. If a source is big enough, the
dispersion of counts away from that source is counterbalanced to
a greater extent than with smaller sources. Linear deconvolution
filtering, such as Wiener or Metz filters, may be used to adjust
detector response. The detector response will become blurry if the
filter gain is greater than unity at low spatial frequencies. High-
frequency picture noise may be controlled by “rolling-off” the
filter to zero gain. The need for a model to display what location
it is attending to while making a decision/prediction in deep
learning. Various attention mechanisms have been introduced
in the past years. With the development of automated pattern
learning mechanisms, particularly models that can be trained to
focus on specific regions, it is now possible to focus on critical
areas for attention.

METHODOLOGY

DenseNet Architecture
The DenseNet (densely connected convolutional network) is
recognized for having convolutional neural network architecture
that is state-of-art, when validated for classification using the
popular ImageNet dataset. Huang et al. validated the technique
of using direct connections in a feed-forward manner from each
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FIGURE 4 | Overall block diagram of the proposed work.

FIGURE 5 | DenseNet, (A) overall architecture; (B) transition layer; (C) dense layer.

layer to every other layer. Every layer in the model architecture
takes the target input and concatenation of the preceding
layers’ feature maps. It performs non-linear operations such as

batch normalization, ReLU, and convolution or pooling. The
resultant feature maps of each layer are provided as inputs to
the succeeding connected layers after the non-linear function’s
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FIGURE 6 | Soft attention mechanism.

TABLE 3 | DenseNet121 architecture with Soft Attention Block for classification of
PD and HC cases.

Layers Output
shape

Kernel size and details

Convolution 2D 112× 112 7× 7 conv, stride 2 (Rui et al., 2019)

Max Pooling 2D 56× 56 3× 3 max−pool,stride 2

Dense Block (Pahuja et al.,
2019)

56× 56

[
1× 1 conv

3× 3 conv

]
× 6

Transition Layer (Pahuja
et al., 2019)

56× 56 1× 1 conv

28× 28 2× 2 average pool,stride 2

Dense Block (Prediger
et al., 2014)

28× 28

[
1× 1 conv

3× 3 conv

]
× 12

Transition Layer (Prediger
et al., 2014)

28× 28 1× 1 conv

14× 14 2× 2 average pool,stride 2

Dense Block (Blesa et al.,
2015)

14× 14

[
1× 1conv

3× 3conv

]
× 24

Transition Layer (Blesa
et al., 2015)

14× 14 1× 1 conv

7× 7 2× 2 average pool,stride 2

Dense Block (Zhou et al.,
2009)

7× 7

[
1× 1conv

3× 3conv

]
× 16

Soft Attention Block 7× 7 Soft Attention× 1

Classification 1× 1 7× 7 global average pool

Layer 2 Fully Connected Dense Layer, Softmax

computation. If the size of the feature maps changes, the
concatenation procedure is unsuccessful. Hence, the need for
pooling operation is crucial when the size of the feature maps
varies (Chakraborty et al., 2020).

The architecture is organized into distinct blocks, i.e., Dense
blocks (densely connected) to assist in the pooling process. The
layers between dense blocks are transition layers that conduct
the tasks of convolution, batch normalization, and pooling. On
an average note, each function generates K unique feature maps,

a hyper-parameter known as the growth rate which determines
the number of feature maps each layer delivers to the network
(Sivaranjini and Sujatha, 2020). Once updated, the feature maps
may be viewed throughout the network. Unlike other traditional
CNN models, this also waives the need to reproduce one
layer to another.

Each layer in the network reproduces k feature maps and
causes many parameter inputs as shown in Figure 5. As a
solution, to limit the number of input feature maps to 4k, a [1× 1]
size of convolution was employed in the bottleneck layer. Thus,
minimizing the amount of feature mappings at transition layers
is another optimal feature of DenseNet. The number of feature
maps in a dense block with n feature maps results in θn, later in
the transition layer, lying in the factor range of 0 < θ ≤ 1, known
as the compression factor (Gao et al., 2019). DenseNet’s design
provides many advantages in addition to network compactness:
it overcomes the vanishing gradient problem, optimizes feature
transfer, and minimizes the rate of parameters. DenseNet121
network architecture was utilized in this paper.

Soft Attention Block
SPECT DaTSCAN method helps in distinguishing between
Parkinson’s and control subjects by helping to visualize the basal
ganglia region. The dopamine transporters: putamen and caudate
regions are reported to get smaller in size due to the loss of
dopaminergic neurons in the case of PD patients. Soft attention
can be a useful idea to detect the region in the image where
minor to significant distortion is found, which is considered an
abnormality and needs further analysis.

Soft attention takes the robust approach of promoting the
most relevant input (in this case, pixels in an image) while
still allowing a subset of the other information to contribute
to the model’s decision-making as shown in Figure 6. It is
taking inspiration from the good works of Martínez-Murcia et al.
(2017) and Dhanalakshmi et al. (2019), a soft attention block
that utilizes 3D-convolution to attend and identify the essential
features responsible for classification.

This way, the high-level features are first extracted, and
the resultant convolution of ’K’ kernels generates a feature
map (having K attention heads). This feature map is further
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FIGURE 7 | Soft attention map visualisation of PD patients with the ROI highlighted.

normalized to calculate the importance score (or soft attention
score) based on the appropriate location from the extracted
feature map. A 3-D tensor f x

∈ Rhx
×wx
×dx

having a 3-D kernel
of size H ∈ 3 x 3 x nx is input to the convolutional layer that
results in a feature mapf3d ∈ Rhx

×wx
×1.

Such K kernels, work as attention points to generate f3d ∈

Rhx
×wx
×K . These feature maps are further normalized and

averaged to be retained for calculating the importance score (for
dominant locations) or the soft attention score. The equation for
soft attention score denoted by “S” is given below:

S =
K∑

k=1

exp
(

f3dij

)
∑wx

i=1
∑hx

j=1 exp
(

f3dij

) ;where f3d = H
(
f x) (1)

The resultant f x tensor is thereby multiplied with the soft
attention score S, so the value becomesf x

s . A learnable scalar is
assigned to compute the weights, which in this case is y with a

value of 0.01. The total weight is calculated by the equation given
below:

αy = f x
+ yf x

s (2)

The finalized soft attention layer helps the model decide
the specific locations of the feature map that has important
attributes on the whole.

Figure 5 shows the soft attention maps.
Convolution and pooling are the foundation of DenseNet. In

order to get to the classification layer, there are four more dense
blocks followed by transition layers. After that comes a dense
block followed by yet another transition layer. The DenseNet121
architecture with Soft Attention Block for classification of PD and
HC cases is shown in Table 3.

The stride is 2 and the first convolution block comprises 64
filters of size 7 × 7. After that, there’s a MaxPool layer with
3× 3 max pooling and a stride of 2. ReLU activation and the real
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FIGURE 8 | Soft attention map visualisation of HC patients with the ROI highlighted.

Conv2D layer follow BatchNormalization in every convolutional
block. In Table 3, convolutions with 1 × 1 and 3 × 3 kernel
sizes are used in each dense block. This is repeated six times in
dense block 1, twelve times in dense block 2, twenty-four times
in dense block 3, and ultimately sixteen times in dense block 4.
Each 1 × 1 convolution has four times the number of filters in
dense block. As a result, 4 filters are employed, yet only 3 of those
filters are ever used. In addition, the input tensor and the output
tensor must be joined.

The number of channels in the transition layer is to be reduced
to half of the current channels. An average pool layer with a stride
of two is used in conjunction with a 1× 1 convolutional layer. bn
rl conv already has a kernel size of 1× 1, therefore we don’t need
to declare it again.

Half of the channels in the transition layers must be removed.
To figure out how many channels there are, we need to acquire

half of the input tensor x. As a result, we may utilize Keras
backend (K) to produce a tuple with the dimension of x when
given a tensor x. For our purposes, we simply need to know how
many filters there are in that form. So [−1] is added. This number
of filters may be divided by two to reach the desired result.

The dense blocks and transition layers have now been defined.
The thick blocks and transition layers must now be stacked
one on top of the other. Since the repetitions are 6,12,24,16 we
build a “for loop” to go through them. In this way, the loop is
executed four times, each time with a different number from the
range of 6, 12, 24, or 16. The dense blocks and transition layers
are now complete.

There is a final output layer, then Global Average Pooling.
Following Dense Block 4, there is no transition layer between
Dense Blocks 3 and 4, but it goes straight into the Classification
Layer after Dense Block 4. Global Average Pooling is used on the

Frontiers in Aging Neuroscience | www.frontiersin.org 10 July 2022 | Volume 14 | Article 908143175

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-908143 July 8, 2022 Time: 8:54 # 11

Thakur et al. DenseNet Model for PD Classification

FIGURE 9 | Dense Block of DenseNet121 with batch normalization operation.

connection ’d,’ not the one on ’x,’ as was previously stated. To
eliminate the for loop from the above code and stack the levels
one after the other without a transition layer is another option.

RESULTS AND DISCUSSION

Visual Assessment
DenseNet is compared with the other deep earning algorithms
such as ResNet, Inception ResNet, Xception, MobileNet, and
EfficientNet V2. The vanishing gradient issue was solved by
introducing the idea of residual connections in ResNet V2.
Inception ResNet, a ResNet version that employs several size
kernels inside the same layer, is utilized since it is difficult to select
on a ResNet kernel size. For example, Xception proposed the
notion of depth-wise separable convolution in order to minimize
the number of parameters without compromising performance.
There are now between 100 and 1,000 less parameters since
MobileNet has included point wise convolution in addition to
depth wise convolution. The Soft Map visualization for PD and
healthy controls are shown in Figures 7, 8.In soft attention,
instead of utilizing the image x as an input, we use weighted image
characteristics compensated for attention in soft attention. The
areas of the image that get the most attention seem brighter. The
weighted characteristics of the DL algorithms, as well as the PD
and normal it predicted, are shown in the image above. The low
weight of the feature map multiplied by the soft focus discredits
places that aren’t significant. As a result, regions with high levels
of attention retain their original worth while those with low levels
of attention approach zero (become dark in the visualization).

With the “PD and normal patient,” the attention module creates
a new feature map with all areas darkened except the region
of interest area.

In order to know the working of the model, and how it defines
the ROI through its various layers, feature maps visualization
may be useful. Figure 8 shows layers inside the dense block,
including batch normalization and ReLU activation, and how
they influence in the overall classification work of the model.
These feature maps highlighted help in conclusively deciding the
putamen and caudate regions taking the major role in predicting
the desired class.

The Figure 9 represents the DenseNet 121 algorithm
implementing Batch normalization operation. Normalizing
network activations over a mini-batch of a certain size is what
batch normalization is all about. It is possible to normalize a
mini-batch of data by computing the mean and variance for each
characteristic. To get the feature’s standard deviation, remove
the mean and divide the feature by the mini-batch standard
deviation. Batch normalization enhances the model’s training
speed by smoothing the loss function and improving the model’s
parameters. Poorly initialized neural networks are addressed by
batch normalization. Pre-processing may be done at every level
of the network, according to this interpretation. At the start of
training, it compels the activations in a network to take on a unit
Gaussian distribution. One of the most often used techniques for
training deep neural networks (DNNs) is Batch Normalization
(BatchNorm). The gradients are more predictable and steady as a
result of this smoothness, making it easier to train.

Internal covariate shift is no longer an issue. This ensures that
each layer’s input is spread around a common mean and standard
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FIGURE 10 | Dense Block of DenseNet121 with ReLU activation.

deviation. Assume for a moment that we’re training an image
classification model that sorts photos into one of two groups: PD
or NPD. If we just have photographs of PD, these images will
also be distributed in a certain manner. The model’s settings will
be updated as a result of using these photographs. if we get a
fresh batch of photos from people who are not diagnosed with
PD. As a result of this change, the distribution of these new
photos will be somewhat altered. Using these fresh photos, the
model will adjust its parameters. As a result, the distribution of
the concealed activation will shift as well. It’s called an internal
covariate shift, and it’s a change in the concealed activation. Batch
normalization enhances the model’s training speed by smoothing
the loss function and improving the model’s parameters.

Figure 10 represents the DenseNet 121 algorithm
implementing ReLU activation function. It is possible to
increase the learning pace of deep neural networks by using
ReLU activation functions in the hidden layers. Deep neural
networks now employ the rectified linear unit as their typical
activation function. Using ReLU activation function, the
vanishing gradient issue is avoided. This is the reason why
the deep neural network’s learning speed can be improved
by activating ReLU. As a result of avoiding the need to do
exponential and division computations, employing rectified
linear units speeds up computations significantly. Squeezing

values from 0 to the maximum imparts sparsity into the hidden
units, another ReLU feature. ReLUs may readily overfit when
compared to sigmoid functions, although the dropout approach
has been used to mitigate this problem, and deep neural networks
with corrected networks have shown enhanced performance.
Because of its simplicity and dependability, the ReLU and its
derivatives have been included into several deep learning systems.

Quantitative Assessment
The Figure 11A shows the validation accuracy plot having an
accuracy of 99.2% and the validation loss is shown in Figure 11B.
An AUC of 99% is achieved for DenseNet 121 architecture.
Classification methods rely on the AUC-ROC statistic to gauge
their effectiveness is shown in Figure 11C.

Figure 12 shows the performance metrics for DenseNet 121
implemented for with and without augmentation. The accuracy
with augmented images is better than without augmented images.
The AUC-ROC measure gives us a good idea of a model’s ability
to differentiate between different classes. The more AUC a model
has, the better it is judged to be. For every conceivable cut-off for
a test or combination of tests, AUC-ROC curves are widely used
to illustrate the relationship and trade-off between sensitivity and
specificity. The accuracy for with and without implementing soft
attention Map visualization is 95% and 99.62% is achieved.
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FIGURE 11 | DenseNet, (A) accuracy; (B) loss curve; (C) ROC curve.

A B

FIGURE 12 | (A) Without augmented images; (B) with augmented images.

The ROC curve’s area under the curve provides an indication
of the test’s value in answering the underlying issue. At different
threshold values, AUC—ROC curves may also be used as a
performance evaluation. Using the AUC-ROC to assess the

performance of a classification model is vital. When a model’s
accuracy is improved via the use of this test, its value and
correctness are both increased. In classification issues, the true
positive rate and the predictive value of a predictive model may be
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TABLE 4 | Overall accuracy of DenseNet 121 for PD and control subject.

Without augmented images With augmented images

Class Accuracy Sensitivity Specificity Precision F1-Score Accuracy Sensitivity Specificity Precision F1-Score

PD 94% 92% 91% 88% 88% 99% 99% 99% 99% 99%

CN 91% 89% 88% 86% 87% 99% 99% 98% 99% 99%

Overall Score 92.5% 90.5% 89.5% 87% 87.5% 99% 99% 98.5% 99% 99%

FIGURE 13 | Comparison of DenseNet using soft attention with other deep learning algorithms.

TABLE 5 | Comparison of various deep learning models.

Deep learning algorithms Computational time

Xception 1.5 min

ResNet 50 2.25 min

MobileNet V2 1.7 min

Inception ResNet V2 1.75 min

ResNet 152V2 3.3 min

EfficientNet B1 3.2 min

DenseNet 121 2.15 min

summarized using this technique, which helps us understand the
trade-off between the two. Table 4 compares the augmented and
non-augmented on the scales of accuracy, sensitivity, specificity,
precision and accuracy.

DenseNet 121 gave an improvement of 3.2, 5.2, 7.2, 11.2, 14.2,
and 29.2% in accuracy when compared to other deep learning
algorithms such as Xception, ResNet 50, MobileNet V2, Inception
ResNet V2, ResNet 152V2, and EfficientNet B1 as shown if
Figure 13. DenseNet 121 solves the vanishing-gradient issue and
encouraging feature reuse. DenseNet also decrease the number of
parameters which yields an increase in accuracy.

In Table 5 the comparison of various deep learning techniques
based on the computational time is listed. DenseNet 121 has the
computational time of 2.15 min with an accuracy of 99.2%.

Many researchers have expanded their horizons by employing
numerous deep learning frameworks to detect PD from

normal and other disease categories, which might be used
in future analysis and examinations. Magesh et al. (Adams
et al., 2018) used transfer learning (with VGG16 as the
leading model architecture) for classifying PD from normal
groups. Local Interpretable Model-Agnostic Explainer (LIME)
was selected as an illustratable method to find the region of
interest to analyze PD and normal group DaTscan images.
LIME proved to be vital substitute for explainable-AI based
diagnosis to be used instead of Grad-CAM and saliency
mapping representation.

Chien et al. (2020) reflected the focus on putamen and
caudate region (from SPECT images) and demonstrated the use
of artificial neural network for detecting PD and parkinsonism
caused by other disorders. Sensitivity and specificity of 81.8%
and 88.6% were achieved, though these research classes could be
further investigated for study.

Nazari et al. (2022) tested layer-wise relevance propagation
(LRP) based CNN for classification of normal and reduced
patients. The study achieved a sensitivity and specificity of 92.8%
and 98.7% respectively. Relevance maps were plotted which could
be further investigated for clarity.

Chen et al. (2021) put focus on striatum scanning and
implemented a CNN model based on attenuation correction.
Monte-carlo based simulation results were drawn for a
clearer visual assessment based on voxel-wise, patch-wise
and image-wise imaging methods. Although computationally
expensive, this strategy showed promise as a substitute in
clinical scenario.
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Tufail et al. (2021) attempted at developing 3D-CNN
to extract attributes of Alzheimer’s Disease (AD), PD and
normal classes from both PET and SPECT images. This
multi-classification based experiment helped in establishing
the relationship between AD and PD patients. This study
reflects that 3D CNN models at relatively cheaper cost in
computational levels could be thus developed for voxel based
understanding of 3D SPECT images with explainable-AI based
techniques implemented.

Leung et al. (2021) developed an approach by evaluating
based on mean absolute error (MAE) and mean absolute
percentage error (MAPE) for outcome prediction. The study
was based on a three staged ensemble method to reveal
spatiotemporal attributes, to demonstrate the connection
between imaging and non-imaging information, for predictions
based on motor outcomes.

The limitations of this study are, the selected features have
been specifically tailored to the diagnosis of Parkinson’s disease.
In people with Parkinson’s disease (PD), the illness advances in a
predictable manner: First, the putamen on the side of the patient’s
clinical symptoms begins to decline in DaT concentration,
and subsequently the caudate. Striatum on DaTSCAN loses its
comma-shape and becomes dot-shaped or vanishes completely
when this occurs. It is possible to “force” a pre-defined region into
the form of an exclamation point, resulting in a semi-quantitative
metric that is still high but solely represents caudate binding,
and therefore does not account for putamen dysfunction. When
training, the ReLU may become unstable, resulting in the
death of certain gradients. This is a serious drawback. So
some neurons die and the weight updates don’t activate in
subsequent data points, preventing learning since dead neurons
offer zero activation.

CONCLUSION

This work demonstrates that significant clinical examination
performance may well be attained utilizing deep learning for
SPECT scan interpretation and analyses. In order to accurately
diagnose PD, it may be necessary to use DaTscan imaging
to evaluate pathophysiological changes. Although our method
allows to describe and visualize normal and PD cohorts relatively
explicitly, of DaTscan SPECT images, using soft attention maps,
it cannot be used for clinically analyzing the motor outcomes
from SPECT images. Instead of using Gradient-weighted Class
Activation Mapping (Grad-CAM), soft attention mapping is used
which is cost-effective.

This is possible even with a modest number of participants
by exploiting the strength of huge pre-trained neural networks
through the transfer learning process along with manual
addition of soft-attention block, as was done with DenseNet
architecture in this study. The necessity for an end-to-end
3D CNN architecture should also be noted for future study.
There were five CNN models employed in comparison with
our CNN model: DenseNet 121, Xception 50, Resnet 50,
Mobilenet V2, Inception ResNet V2, and EfficientNet B1. An
AUC of 99% and an accuracy of 99.2 % are achieved in this

system, compared to previously suggested methods. Further
DenseNet-121 with the soft attention block retains features with
low level of complexity.

This was a semi-automatic diagnostic process, not an entirely
automated diagnosis monitoring system. Utilizing the complete
scan volume rather than just a single slice may prove to be
a rewarding topic of future study. If the transfer learning
process is to be employed, this would need the usage of a
properly pre-trained 3-D convolutional neural network. Though
the simulation findings and study are intriguing, they can be
corroborated with much bigger datasets. It is imperative to deal
with the requirement for an end-to-end 3-D CNN model that
can retrieve relevant features from the 3-D SPECT image data
itself for improved clearer outcomes in future. This mandates
that we continue to make progress on our research in deep
learning and explainable-AI methods on Parkinsonism and
related disorders.
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Rapid screening and identification of potential candidate compounds are very important

to understand the mechanism of drugs for the treatment of Alzheimer’s disease (AD) and

greatly promote the development of new drugs. In order to greatly improve the success

rate of screening and reduce the cost and workload of research and development,

this study proposes a novel Alzheimer-related compound identification algorithm namely

forgeNet_SVM. First, Alzheimer related and unrelated compounds are collected using

the data mining method from the literature databases. Three molecular descriptors

(ECFP6, MACCS, and RDKit) are utilized to obtain the feature sets of compounds,

which are fused into the all_feature set. The all_feature set is input to forgeNet_SVM,

in which forgeNet is utilized to provide the importance of each feature and select the

important features for feature extraction. The selected features are input to support

vector machines (SVM) algorithm to identify the new compounds in Traditional Chinese

Medicine (TCM) prescription. The experiment results show that the selected feature set

performs better than the all_feature set and three single feature sets (ECFP6, MACCS,

and RDKit). The performances of TPR, FPR, Precision, Specificity, F1, and AUC reveal

that forgeNet_SVM could identify more accurately Alzheimer-related compounds than

other classical classifiers.

Keywords: virtual screening, network pharmacology, Alzheimer, data fusion, feature selection, machine learning

INTRODUCTION

Alzheimer’s disease (AD) is the most common type of senile dementia, which is a frequently
occurring disease of the elderly (Romanelli et al., 1990; Morán et al., 1992; Wang et al., 2014). Its
main clinical manifestations are the decline of cognitive function, mental symptoms and behavior
disorders, and the decline of daily living ability (Almeida and Crocco, 2000; Daulatzai, 2014; Zhao
et al., 2016; Gong et al., 2017). It poses a great threat to the health and quality of life of the elderly and
brings a heavy economic burden to society (Rice et al., 1993; Rothstein et al., 1996; Hu, 2006;Wang,
2014). Themain reason for the onset of AD is the central nervous system disease in the brain, which
causes a series of mental diseases such as learning impairment, memory impairment, and speech
impairment (Ogomori et al., 1989; Hao et al., 2013). Family inheritance, physical diseases, and head
trauma can cause the onset of this disease (Heyman, 1994; Mehta et al., 1999). However, in the
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process of studying the pathogenesis of AD, there are some
problems such as unclear pathogenesis, difficult early diagnosis,
and no preventable and curable drugs. Therefore, the diagnosis
and treatment of AD have been a difficult problem for medical
researchers in recent decades.

Alzheimer is a complex disease with multiple factors.
At present, the main drugs for the treatment of AD in
clinics are acetyl cholinesterase inhibitors, glutamate receptor
inhibitors, etc. (Liston et al., 2004; Dong et al., 2005; Sugimoto,
2006). These drugs can alleviate the symptoms caused by
the decline of cognitive function, but cannot fundamentally
eliminate the pathogeny. Network pharmacology is based
on multi-disciplinary knowledge such as system biology,
multi pharmacology, bioinformatics, computer technology, and
network analysis (Berger and Iyengar, 2009; Chen et al.,
2012; Yuan et al., 2019; Li et al., 2020). It systematically
studies the drug-target-pathway-disease interaction network and
discusses the multi-component, multi-target, and multi-channel
pharmacological mechanism of traditional Chinese medicine
(TCM) (Li et al., 2014; Xiong et al., 2018; Jiang et al., 2020; Gao
et al., 2021). It plays a very important role in exploring treatment
approaches and clarifying drug efficacy, especially in finding
the effective components of drugs, which is highly consistent
with the holistic view emphasized by the theory of traditional
Chinesemedicine. In recent years, a variety of traditional Chinese
medicine prescriptions have been proposed to improve AD by
network pharmacology from point of view of multi-component,
multi-target, and multi-channel (Sun et al., 2017; An et al., 2020;
Wang et al., 2020; Huang et al., 2021). Pang et al. analyzed
25 targets and 13 TCM prescriptions for the treatment of AD
and selected 7 representative Chinese medicines (Pang et al.,
2016). Naive Bayesian and recursive partitioning was utilized to
predict the targets contributing to the chemical components of
traditional Chinese medicine in order to construct a compound-
target-disease network and explain the synergistic mechanism
of multiple effective components of TCM prescriptions. Tao
et al. analyzed the compounds of Paeoniae Rubra Radix and
Phellodendri Cortex, and the Alzheimer-related targets to reveal
the mechanism of these two medicinal materials for intervening
AD (Tao et al., 2015). Wang et al. analyzed the main active
components of Liuwei Dihuang Decoction and the main action
targets of active components and carried out the GO and
pathway analyses to give the multi-component, multi-channel
and multi-target mechanism of Liuwei Dihuang Decoction in the
treatment of AD (Wang et al., 2021). Jiang and Wang utilized
network pharmacology to analyze the mechanism of Bajitian
for treating AD and obtain that this drug could play an anti-
pharmacological role in many aspects, such as neurotransmitter,
regulation and regulation of ion channels (Jiang and Wang,
2021).

In network pharmacology, screening the main active
compounds of prescriptions is an essential step. In past studies,
this step is processed mainly by manually searching public
databases. In this study, a novel machine learning method,
namely forgeNet_SVM is proposed to identify Alzheimer-related
active compounds. The data mining method is utilized to
collect Alzheimer-related compounds from the literature. Three

FIGURE 1 | The flowchart of forgeNet algorithm.

molecular descriptors (ECFP6, MACCS, and RDKit) are utilized
to obtain the feature sets of compounds respectively, which
are fused into an all_feature set. The all_feature set is input to
the forgeNet_SVM, in which forgeNet is utilized to give the
importance of each feature and select the important features for
feature extraction. The selected features are input to support
vector machines (SVM) algorithm to identify the newAD-related
compounds in TCM prescription.

METHODS

forgeNet
Forest graph-embedded deep feed forward network (forgeNet) is
based on ensemble method and deep learning, which has been
utilized for gene regulatory network inference and biology data
classification (Kong and Yu, 2020; Yang, 2021). Figure 1 shows
the framework of forgeNet, in which the development of feature
graph and classification of deep learning model are contained.
Compared to classical deep learningmodels, forgeNet could solve
the dimension imbalance of biomedical data and is more robust
(Kong and Yu, 2020).

Development of Feature Graph
With the dimension-imbalance data, the important features of
the data are selected for feature extraction. Thus, forgeNet utilizes
forest ξ , which includes p decision trees (DTs). According to
the training dataset with the classification labels, ξ is fitted and
pDTs could be created (ξ (θ) = {T1(θ1), T2(θ2), . . . , Tp(θp)}, θiis
the coefficient). If a binary tree is considered a special case of a
directed graph, the graph set could be obtained as follows.

8 = {G1(V1, E1), . . . ,Gi(Vi, Ei), . . . , GN(Vp, Ep)}. (1)

Where Vi and Eidenote vertex and edge sets of Gi, respectively.
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In order to combine the directed graph set 8, we can obtain
the final aggregated graph as follows.

G =
p

⋃

i=1

Gi. (2)

Classification of Deep Learning Model
According to the feature graph obtained from the previous
step, graph-embedded deep feed forward networks (GEDFN) are
utilized to train in order to obtain the optimal model, which is
utilized to provide the classification results of the unknown data
(Yang, 2021). Every layer of GEDFN is given as followed.

Z1 = σ (X(Win2G)+ bin),
. . .

Zk+1 = σ (ZkWk + bk),
. . .

Zout = σ (ZlWl + bl),
y = softmax(ZoutWout + bout).

(3)

Where X represents input vector, Zk denotes the k − th hidden
layer, 2 is Hadamard product,Wk and bk are the weight and bias
of the k− th hidden layer, respectively.

forgeNet also gives a feature importance evaluate mechanism,
which is based on Graph Connection Weights (GCW) method
(Kong and Yu, 2018). The score of i − thfeature is defined
as follows.

ci =
n

∑

a=1

|W(in)
ia T(Aia = 1)| +

n
∑

b=1

|W(in)
bi

T(Abi = 1)|

+
b1

∑

c=1

|W(1)
ic T(Aia = 1)|. (4)

Where n is the number of features in the dataset,W(in) represent
the weights between the input layer and the first hidden layer,
and W(1) represent the weights between the first hidden layer
and the second hidden layer. After forgeNet is trained, the
importance scores for all the features could be computed with
the trained weights.

Support Vector Machine
Support vector machine (SVM) is one of the most classical
machine learning algorithms, which was proposed in the year
1995 (Cortes and Vapnik, 1995). SVM is suitable for the
classification problems of small-medium samples, nonlinear, and
high-dimensional pattern recognition. The basic principle of
SVM is to find an optimal classification surface (Hyperplane),
which can not only separate the samples without errors but also
maximize the margin, based on the most classification surface
in the case of linear separability (Suykens and Vandewalle, 1999;
Saunders et al., 2002). Therefore, the learning process of SVM is
an optimization problem.

The training dataset contains N sample points
{(x1, y1), . . . , (xN , yN)}, in which xi is inputting feature vector
and yi is classification label{+1, −1}. Hyperplane is labeled as

(w · x) + b = 0. The optimal hyperplane problem is constructed
as follows.

min
α

1
2

N
∑

i=1

N
∑

j=1
αiαjyiyj(xi · xj)−

N
∑

i=1
αi.

s.t.
N
∑

i=1
αiyi = 0, αi ≥ 0, i = 1, 2, . . . ,N.

(5)

By the Lagrange optimization method, the optimal solution

α∗ = (α∗
1 , α∗

2 , . . . , α∗
N)

T is obtained. The optimal classification
function can be given as follows.

f (x) = sgn{
N

∑

i=1

α∗
i yi(xi · x)+ b∗}. (6)

Where b∗ is a classification threshold.
For the linearly separable dataset, linear SVM is suitable.

However, for a nonlinear dataset, in order to solve the linear
inseparable problem, the kernel function could be utilized to
map the characteristics of nonlinear separable data points from
a relatively low dimension to a relatively high dimension and
calculate the relationship between them. The algorithm process
of searching the optimal classification hyperplane in the high-
dimensional feature space is similar to linear separable SVM,
which utilizes kernel function to replace the point product in the
high-dimensional feature space. The common kernel functions
contain linear kernel, polynomial kernel, radial basis function
(rbf), and Sigmoid kernel function, which are defined as followed.

Klinear(xi, xj) = xi · xj. (7)

Kpolynomial(xi, xj) = ((xi · xj)+ 1)d. (8)

Krbf (xi, xj) = exp(−
∥

∥xi − xj
∥

∥

2

2σ 2
). (9)

Ksigmoid(xi, xj) = tanh(k(xi · xj)+ θ). (10)

Where d is an order of polynomial, σ is the radius of radial basis,
k is a scalar and θ is a shifting value.

forgeNet_SVM
In order to improve the classification accuracy of SVM, especially
for high-dimensional datasets, a new classifier based on forgeNet
and SVM (forgeNet_SVM) is proposed in this paper. ForgeNet
can not only be utilized for classification but also score the
features in the dataset to indicate the importance of the
features. Therefore, in forgeNet_SVM algorithm, for high-
dimensional datasets, the forgeNet algorithm is used to select
important features for feature extraction. In the next step, the
important features are input into SVM for learning to solve the
classification problem.
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FIGURE 2 | Flowchart of Alzheimer-related active compound identification by forgeNet_SVM.

Alzheimer-Related Active Compound
Identification
Figure 2 is the flowchart of Alzheimer-related active compound
identification by forgeNet_SVM. The detailed algorithm is given
as follows.

1. Studies on TCM in the treatment of AD have to be
searched in the literature databases. The queried works of
literature need to be analyzed and then collected and mined
for important drugs and prescriptions for the treatment
of AD, which contains Epimedii Folium, Anemarrhena
asphodeloides, Radix Ginseng-Poria drug pair, Bajitian, and
Polygni Multiflori Caulis. Next, mAlzheimer-related closely
active compounds, such as naringin, quercetin, Kaempferol, β-
Sitosterol, Isorhamnetin, Stigmasterol, and Icariin have to be
retrieved. These important compounds have been verified by
biological experiments or the molecular docking method. m

active compounds are utilized as positive samples for further
data analysis. In order to determine the negative sample, m
active compounds are input to the UDU-E website to generate

the corresponding decoys (Mysinger et al., 2012). In order

to set up the inactive compound set (negative samples), the

random decoy selection is performed 3 m times from the
obtained decoy sets without putting it back. Thus, the inactive

compound set contains 3m compounds. The sets of active and

inactive compounds constitute the compound sample dataset.

2. The molecular structures of compounds in the dataset

collected are SMILES (simplified molecular input line

entry system). According to the SMILES structures, three
molecular descriptors (ECFP6, MACCS, and RDKit) are

utilized to obtain the feature sets of compounds respectively.

ECFP6 (e1, e2, . . . , ene ), MACCS (m1,m2, . . . ,mnm ) and RDKit
(r1, r2, . . . , rnr ) feature sets of each compound are fused into an
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all_feature set (e1, e2, . . . , ene ,m1,m2, . . . ,mnm , r1, r2, . . . , rnr ),
where ne, nm, and nrare the numbers of ECFP6, MACCS,
and RDKit feature sets, respectively. The forgeNet_SVM is
utilized to identify Alzheimer-related compounds according
to the dataset collected. In order to improve the classification
performance of the classifier, all features are input to the
forgeNet, which could be utilized to provide the importance
of each feature. According to the score of each feature, the
important features for classification are selected in order to
achieve the purpose of feature extraction. The selected feature
set is give as [d1, d2, . . . , dn].Next, the selected features are
input to SVM algorithm for learning. The features of new
compounds in TCM prescription are extracted with the same
method, which are input to SVM in order to be identified.

EXPERIMENTS AND DISCUSSIONS

In order to test the effectiveness of the proposed method in
this paper, the prescriptions and drugs for treating AD are
searched. In total 94 Alzheimer-related active compounds are
collected and 282 unrelated compounds are also obtained.
Each compound is extracted by ECFP6, MACCS, and RDKit
to obtain three feature sets (ECFP6, MACCS, and RDKit),
respectively. These three feature sets are combined, and a
total of 2,423 features are obtained for each compound as
the all_feature set. In order to evaluate the performance of
the method, TPR, FPR, Precision, Specificity, F1, ROC, and
AUC are applied. Seven classical classifiers containing AdaBoost
(Cao et al., 2013), Gradient Boosting Decision Tree (GBDT)
(Hu and Min, 2018), K-Nearest Neighbor (KNN) (Denoeux,
1995), logistic regression (LR) (Maalouf, 2011), naive Bayes
(NB) (Rish, 2001), random forest (RF) (Breiman, 2001), and
decision tree (DT) (Breiman et al., 1984)) are also utilized to
identify the compounds about Alzheimer. In forgeNet_SVM,
the number of trees is set to 1,000, random forest is utilized,
three hidden layers are contained, the learning rate is set
as 0.0001, the number of training epochs is set to 50,
and the linear kernel is selected as the kernel function. In
GBDT, the maximum number of weak learners is set to
200. In LR, L2 norm is utilized to constrain the arguments.
In RF, the number of decision trees is set to 100, the
bootstrap method is utilized and the number of features is
set to

√

n_features(n_features is the number of features) when
searching for the best segmentation.

For forgeNet_SVM, forgeNet can select the important features
from a large number of feature sets. First, the different numbers
of features are tested for affecting the performance of ourmethod.
The numbers of important features selected by forgeNet are
50, 100, 200, 500, 600, 700, 800, 900, 1,000, and 1,200. With
the different numbers of feature sets, by 10-cross validation
method, the performances of TPR, FPR, Precision, Specificity,
F1, ROC, and AUC obtained are shown in Figure 3. The 10-cross
validation method is utilized to divide the training and testing
datasets in order to evaluate themodel. From Figure 3, we can see
that ourmethod performs best in terms of TPRwhen selecting 50,
500, 600, 800, 900, and 1,000 features. In terms of FPR, Precision,

FIGURE 3 | Performances of forgeNet_SVM with the different numbers of

features.

Specificity, and F1, our method performs best when selecting 800
and 900 features. Through the results, we can see that ourmethod
performs best when 800 and 900 features are selected. In the
following experiment, we select the first 900 important features
as feature set by forgeNet.

We compare the effects of different feature sets on the
performance of the algorithm. The feature sets include ECFP6,
MACCS, and RDKit, and all features and selected features are
obtained by forgeNet. Two datasets are utilized. The first dataset
contains all the compounds (Dat1), and another one is obtained
by random division (Dat2) in which 70% of compounds are
used as the training set and the remaining compounds are
as the testing set. With Dat1, using the 10-cross validation
method, the performances of our method with different feature
sets for Alzheimer-related compound identification are shown
in Figure 4 and Table 1. From Figure 4, it could be seen that
the selected feature set has better ROC curves than three single
feature sets (ECFP6, MACCS, and RDKit) and all features.
Furthermore, in terms of AUC, the selected feature set is 4%
higher than ECFP6, 6% higher than MACCS, 4.1% higher
than RDKit, and 0.4% higher than the all_feature set. From
Table 1, it could be seen that in terms of TPR, FPR, Precision,
Specificity, and F1, the selected feature set performs better
than ECFP6, MACCS, RDKit, and the all_feature sets. With
Dat2 and the different feature sets, the identification results of
active compounds are shown in Figure 5 and Table 2. From
Figure 5, the selected features are utilized to obtain a better ROC
curve than the other four feature sets. In terms of AUC, the
selected feature set is 4, 6, 4.1, and 0.37% higher than ECFP6,
MACCS, RDKit, and the all_feature sets, respectively. Table 2
shows that our selected features could make SVM obtain the
best performances of TPR, FPR, Precision, Specificity, and F1.
From all the results, it could be seen that the merged feature
set (all features) performs better than the three single feature
sets (ECFP6, MACCS, and RDKit). Using the forgeNet, the
important features could be selected, so the selected feature set
could obtain better performances than the merged feature set
in terms of TPR, FPR, Precision, Specificity, and F1. Thus the
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FIGURE 4 | ROC curves and AUC performances of our method with different feature sets for Alzheimer-related compound identification with Dat1.

TABLE 1 | Performances of our method with different feature sets for Alzheimer-related compound identification with Dat1.

Feature sets TPR FPR Precision Specificity F1

Selected features 0.946809 0.031915 0.908163 0.968085 0.927083

ECFP6 0.829787 0.060284 0.821053 0.939716 0.825397

MACCS 0.882979 0.124113 0.70339 0.875887 0.783019

RDKit 0.882979 0.106383 0.734513 0.893617 0.801932

All features 0.93617 0.056738 0.846154 0.943262 0.888889

The bold values denote the best performances.

FIGURE 5 | ROC curves and AUC performances of our method with different feature sets for Alzheimer-related compound identification with Dat2.
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TABLE 2 | Performances of our method with different feature sets for Alzheimer-related compound identification with Dat2.

Feature sets TPR FPR Precision Specificity F1

Selected features 0.964286 0 1 1 0.981818

ECFP6 0.678571 0.059524 0.791667 0.940476 0.730769

MACCS 0.821429 0.142857 0.657143 0.857143 0.730159

RDKit 0.857143 0.214286 0.571429 0.785714 0.685714

All features 0.678571 0.059524 0.791667 0.940476 0.730769

The bold values denote the best performances.

TABLE 3 | Performances of 15 methods for Alzheimer-related compound identification with Dat1.

Methods TPR FPR Precision Specificity F1 AUC

forgeNet_SVM 0.946809 0.031915 0.908163 0.968085 0.927083 0.99313

AdaBoost 0.914894 0.035461 0.895833 0.964539 0.905263 0.974083

forgeNet_AdaBoost 0.914894 0.035461 0.895833 0.964539 0.905263 0.974083

GBDT 0.904255 0.039007 0.885417 0.960993 0.894737 0.981326

forgeNet_GBDT 0.914894 0.028369 0.914894 0.971631 0.914894 0.982383

KNN 0.989362 0.77305 0.299035 0.22695 0.459259 0.798759

forgeNet_KNN 0.893617 0.028369 0.913043 0.971631 0.903226 0.978101

LR 0.989362 0.56383 0.369048 0.43617 0.537572 0.942282

forgeNet_LR 0.93617 0.042553 0.88 0.957447 0.907216 0.942282

NB 0.287234 0 1 1 0.446281 0.643617

forgeNet_NB 0.946809 0.039007 0.89 0.960993 0.917526 0.962464

RF 0.882979 0.031915 0.902174 0.968085 0.892473 0.98823

forgeNet_RF 0.904255 0.031915 0.904255 0.968085 0.904255 0.986457

DT 0.87234 0.109929 0.725664 0.890071 0.792271 0.881206

forgeNet_DT 0.946809 0.060284 0.839623 0.939716 0.89 0.943262

The bold values denote the best performances.

TABLE 4 | Performances of 15 methods for Alzheimer-related compound identification with Dat2.

Methods TPR FPR Precision Specificity F1 AUC

forgeNet_SVM 0.964286 0 1 1 0.981818 0.998299

AdaBoost 0.357143 0.309524 0.277778 0.690476 0.3125 0.991071

forgeNet_AdaBoost 0.892857 0 1 1 0.943396 0.995748

GBDT 0.821429 0.607143 0.310811 0.392857 0.45098 0.997449

forgeNet_GBDT 0.928571 0 1 1 0.962963 0.993197

KNN 1 1 0.25 0 0.4 0.742347

forgeNet_KNN 0.892857 0.035714 0.892857 0.964286 0.892857 0.94494

LR 1 0.678571 0.329412 0.321429 0.495575 0.964711

forgeNet_LR 0.928571 0.071429 0.8125 0.928571 0.866667 0.985544

NB 0 0 1 0.5

forgeNet_NB 0.964286 0.059524 0.84375 0.940476 0.9 0.951743

RF 0.535714 0.130952 0.576923 0.869048 0.555556 0.987724

forgeNet_RF 0.928571 0 1 1 0.962963 0.996173

DT 0.857143 0.630952 0.311688 0.369048 0.457143 0.839286

forgeNet_DT 0.964286 0.011905 0.964286 0.988095 0.964286 0.97619

The bold values denote the best performances.

feature extraction method can improve the accuracy of active
compound recognition.

AdaBoost, GBDT, KNN, LR, NB, RF, and DT are also
directly utilized to predict Alzheimer-related compounds with

Dat1 and Dat2. In forgeNet_SVM, SVM is also replaced with
these seven classifiers in order to constitute forgeNet_AdaBoost,
forgeNet_GBDT, forgeNet_KNN, forgeNet_LR, forgeNet_NB,
forgeNet_RF, and forgeNet_DT, which are utilized to identify
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compounds. With Dat1 and Dat2, the performances of 15
methods for Alzheimer-related compound identification are
listed in Tables 3, 4, respectively. From Table 3, KNN and LR
could obtain the best TPR performance, which shows that
KNN and LR could identify the most active compounds. But
these two methods shave the worst FPR performances, which
are 0.77305 and 0.56383, respectively. The results reveal that
LR identifies most of the compounds as active compounds.
In terms of FPR, Precision, and Specificity, NB performs best.
But NB has the worst TPR performance, which shows that NB
identifies most of the compounds as inactive compounds. In
terms of F1 and AUC, forgeNet_SVM could obtain the best
performances among the 15 methods. From Table 4, KNN and
LR could gain the best TPR performance, which reveals that
these two methods could identify all true active compounds.
forgeNet_SVM, forgeNet_NB, and forgeNet_DT could obtain
the second better TPR performance. ForgeNet_SVM could gain
the best FPR performance, which shows that our proposed
method can identify all true inactive compounds. In terms of
Precision, Specificity, F1, andAUC, forgeNet_SVM also performs
best. On the whole, our proposed method could infer more true
active and inactive compounds than other methods.

CONCLUSION

In this study, a novel Alzheimer-related compound identification
algorithm based on data fusion and forgeNet_SVM is proposed.
Three feature descriptionmethods (ECFP6,MACCS, and RDKit)
are utilized to obtain the feature sets of Alzheimer related and
unrelated compounds, which are fused into the all_feature set. In
forgeNet_SVM, all_feature set is input to forgeNet, which could
evaluate the importance of each feature and extract the important
features according to the given scores. The selected features are
input to SVM algorithm to identify the new compounds in a
TCM prescription. The Alzheimer-related dataset collected is
utilized, and the experiment results show that forgeNet_SVM

could identify more true-positive compounds and fewer false-
positive compounds than other classical classifiers, such as
AdaBoost, GBDT, KNN, LR, NB, RF, and DT. We make the
comparison experiments that give the optimal number of the
selected features for forgeNet_SVM. In terms of TPR, FPR,
Precision, Specificity, F1, and AUC, the selected feature set
performs better than the all_feature set and three single feature
sets (ECFP6, MACCS, and RDKit).

In the future, we will apply forgeNet_SVM to identify other
diseases related compounds, such as cancer, COVID-19, and
cardiovascular diseases.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

WB conceived the method. BY designed the method and
conducted the experiments. WB and SH wrote the main
manuscript text. All authors reviewed the manuscript.

FUNDING

This work was supported by the Talent Project of Qingtan Scholar
of Zaozhuang University, the Natural Science Foundation of
China (No. 61902337), the Fundamental Research Funds
for the Central Universities (2020QN89), Xuzhou Science
and Technology Plan Project (KC19142 and KC21047),
Shandong Provincial Natural Science Foundation, China (No.
ZR2015PF007), Jiangsu Provincial Natural Science Foundation
(No. SBK2019040953), Natural Science Fund for Colleges and
Universities in Jiangsu Province (No. 19KJB520016), and Young
Talents of Science and Technology in Jiangsu.

REFERENCES

Almeida, O. P., and Crocco, E. I. (2000). Perception of cognitive deficits and

behavior disorders in patients with Alzheimer’s disease. Arq. Neuropsiquiatr.

58, 292–299. doi: 10.1590/S0004-282X2000000200015

An, H. M., Huang, D. R., Yang, H., Liu, X. G., Du, J., Li, Y., et al. (2020).

Comprehensive chemical profiling of Jia-Wei-Qi-Fu-Yin and its network

pharmacology-based analysis on Alzheimer’s disease. J. Pharm. Biomed. Anal.

189, 113467. doi: 10.1016/j.jpba.2020.113467

Berger, S. I., and Iyengar, R. (2009). Network analyses in systems pharmacology.

Bioinformatics. 25, 2466–2472. doi: 10.1093/bioinformatics/btp465

Breiman, L. (2001). Random forest. Mach. Learn. 45, 5–32.

doi: 10.1023/A:1010933404324

Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. (1984). Classification and

Regression Trees (CART). Biometrics. 40, 358. doi: 10.2307/2530946

Cao, Y., Miao, Q. G., Liu, J. C., Gao, L. (2013). Advance and prospects of

AdaBoost algorithm. Zidonghua Xuebao/Acta Automatica Sinica. 39, 745–758.

doi: 10.1016/S1874-1029(13)60052-X

Chen, Y., Liu, Z. L., and Xie, Y. B. A. (2012). knowledge-based framework for

creative conceptual design of multi-disciplinary systems. Comput. Aided Des.

44, 146–153. doi: 10.1016/j.cad.2011.02.016

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,

273–297. doi: 10.1007/BF00994018

Daulatzai, M. A. (2014). Role of stress, depression, and aging in cognitive

decline and Alzheimer’s disease. Curr. Top. Behav. Neurosci. 18, 265–296.

doi: 10.1007/7854_2014_350

Denoeux, T. (1995). A k-nearest neighbor classification rule based on

Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25, 804–813.

doi: 10.1109/21.376493

Dong, H., Csernansky, C. A., Martin, M. V., Bertchume, A., Vallera, D.,

and Csernansky, J. G. (2005). Acetylcholinesterase inhibitors ameliorate

behavioral deficits in the Tg2576 mouse model of Alzheimer’s disease.

Psychopharmacology. 181, 145–152. doi: 10.1007/s00213-005-2230-6

Gao, Q., Han, Z. Y., Tian, D. F., Liu, G. L., Wang, Z. Y., Lin, J.

F., et al. (2021). Xinglou Chengqi Decoction improves neurological

function in experimental stroke mice as evidenced by gut microbiota

analysis and network pharmacology. Chin. J. Nat. Med. 12, 881–899.

doi: 10.1016/S1875-5364(21)60079-1

Gong, X. Q., Luo, L. J., and Neurology, D. O. (2017). Comparative analysis

on cognitive function and behavioral and psychological symptoms between

vascular dementia and Alzheimer disease. Neural Repair. 12, 122–123.

doi: 10.16780/j.cnki.sjssgncj.2017.02.008

Frontiers in Aging Neuroscience | www.frontiersin.org 8 July 2022 | Volume 14 | Article 931729190

https://doi.org/10.1590/S0004-282X2000000200015
https://doi.org/10.1016/j.jpba.2020.113467
https://doi.org/10.1093/bioinformatics/btp465
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2307/2530946
https://doi.org/10.1016/S1874-1029(13)60052-X
https://doi.org/10.1016/j.cad.2011.02.016
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/7854_2014_350
https://doi.org/10.1109/21.376493
https://doi.org/10.1007/s00213-005-2230-6
https://doi.org/10.1016/S1875-5364(21)60079-1
https://doi.org/10.16780/j.cnki.sjssgncj.2017.02.008
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Yang et al. Alzheimer-Compound Identification Based forgeNet_SVM

Hao, C., Freeman, C., Jacobson, G. A., and Small, D. H. (2013). Proteoglycans in

the central nervous system: role in development, neural repair, and Alzheimer’s

disease. IUBMB. 65, 108–120. doi: 10.1002/iub.1118

Heyman, A. (1994). Head trauma as a risk factor for Alzheimer’s disease. J. Neurol.

Sci. 127, 6–6. doi: 10.1016/0022-510X(94)90119-8

Hu, J., and Min, J. (2018). Automated detection of driver fatigue based on EEG

signals using gradient boosting decision tree model. Cogn. Neurodyn. 12,

431–440. doi: 10.1007/s11571-018-9485-1

Hu, R. D. (2006). The effects of health education to the family members of elderly

patients with alzheimer’s disease on the quality of life.Med. J. Chin. People’s Lib.

23, 7–9. doi: 10.3969/j.issn.1008-9993.2006.06.003

Huang, X. Y., L,i T. T., Zhou, L., Liu, T., Xiong, L. L., and Yu, C. Y. (2021).

Analysis of the potential and mechanism of Ginkgo biloba in the treatment

of Alzheimer’s disease based on network pharmacology. Ibrain 7, 21–28.

doi: 10.1002/j.2769-2795.2021.tb00060.x

Jiang, R., Zhang, X., Li, Y., Zhou, H., Wang, H., Wang, F., et al. (2020).

Identification of the molecular mechanisms of Salvia miltiorrhiza relevant to

the treatment of osteoarthritis based on network pharmacology. Discov. Med.

30, 83–95.

Jiang, Z., and Wang, Z. (2021). Material basis and mechanism of bajitian

(morindae officinalis radix) treating Alzheimer’s disease. J. Tradit. Chin. Med.

39, 255–258W. doi: 10.13193/j.issn.1673-7717.2021.03.061

Kong, Y., and Yu, T. (2018). A graph-embedded deep feedforward

network fordisease outcomeclassification and feature selection

using gene expressiondata. Bioinformatics. 34, 3727–3737.

doi: 10.1093/bioinformatics/bty429

Kong, Y., and Yu, T. (2020). forgeNet: a graph deep neural network model using

tree-based ensemble classifiers for feature graph construction. Bioinformatics.

36, 3507–3515. doi: 10.1093/bioinformatics/btaa164

Li, R., Li, Y., Liang, X., Yang, L., Su, M., and Lai, K. P. (2020). X, et al.

Network Pharmacology and bioinformatics analyses identify intersection genes

of niacin and COVID-19 as potential therapeutic targets. Brief. Bioinformatics.

22, 1279–1290. doi: 10.1093/bib/bbaa300

Li, X., Wu, L. H., Liu, W., Jin, Y. C., Chen, Q., Wang, L. L., et al. (2014). A Network

Pharmacology Study of ChineseMedicine QiShenYiQi to Reveal Its Underlying

Multi-Compound, Multi-Target, Multi-Pathway Mode of Action. PLoS ONE 9,

e95004. doi: 10.1371/journal.pone.0095004

Liston, D. R., Nielsen, J. A., Villalobos, A., Chapin, D., Jones, S. B., Hubbard,

S. T., et al. (2004). Pharmacology of selective acetylcholinesterase inhibitors:

implications for use in Alzheimer’s disease. Eur. J. Pharmacol. 486, 9–17.

doi: 10.1016/j.ejphar.2003.11.080

Maalouf, M. (2011). Logistic regression in data analysis: an overview. Int. J. Data

Anal. Tech. Strateg. 3, 281–299. doi: 10.1504/IJDATS.2011.041335

Mehta, K. M., Ott, A., Kalmijn, S., Slooter, A. J., Duijn, C. M. V., Hofman,

A., and Breteler, M. M. (1999). Head trauma and risk of dementia

and Alzheimer’sdisease: the Rotterdam study. Neurology. 53, 1959–1962.

doi: 10.1212/WNL.53.9.1959

Morán, M. A., Cebrián, J. L., Gómez-Ramos, P., Cabello, A., Madero, S., and

Mufson, E. J. (1992). Diagnosis of Alzheimer’s disease. Evaluation of senile

plaques of the diffuse type.Medicina Clínica. 98, 19–23.

Mysinger, M.M., Carchia, M., Irwin, J. J., Shoichet, B. K. (2012). Directory of useful

decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking.

J. Med. Chem. 55, 6582. doi: 10.1021/jm300687e

Ogomori, K., Kitamoto, T., and Tateishi, J. (1989). Beta-protein amyloid is widely

distributed in the central nervous system of patients with Alzheimer’s disease.

Am. J. of Pathol. 134, 243–251.

Pang, X. C., Wang, Z., Fang, J. S., Lian, W. W., Zhao, Y., Kang, D., et al.

(2016). Network pharmacology study of effective constituents of traditional

Chinese medicine for Alzheimer’s disease treatment. Acta Pharmaceutica

Sinica. 51, 725.−731. doi: 10.16438/j.0513-4870.2015-0950

Rice, D. P., Fox, P. J., Max,W.,Webber, P. A., Hauck,W.W., Lindeman, D. A., et al.

(1993). The economic burden of caring for people with Alzheimer’s disease.

Health Aff. 12, 164–176. doi: 10.1377/hlthaff.12.2.164

Rish, I. (2001). An empirical study of the naive Bayes classifier. J. Universal Comp.

Sci. 3, 41–46. doi: 10.1002/9781118721957.ch4

Romanelli, M. F., Ashkin, K., Morris, J. C., and Coben, L. A. (1990). Advanced

Alzheimer’s disease is a risk factor for late-onset seizures. Arch. Neurol. 47,

847–850. doi: 10.1001/archneur.1990.00530080029006

Rothstein, Z., Prohovnik, I., Davidson, M., Beeri, M. S., and Noy, S. (1996). The

economic burden of Alzheimer’s disease in Israel. Isr. J. Med. Sci. 32, 1120–1123.

Saunders, C. Stitson, M. O., Weston, J. Holloway, R. Bottou, L. Scholkopf,

B. et al. (2002). Support vector machine. Comp. Sci. 1, 1–28.

doi: 10.1007/978-3-642-27733-7_299-3

Sugimoto, M. (2006). Acetylcholinesterase inhibitors used in treatment of

Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine

receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology. 51,

474–486. doi: 10.1016/j.neuropharm.2006.04.007

Sun, L. M., Liu, L. F., Zhu, H. X., Zhu B J, Zhang Q C. (2017). Network

pharmacology-based study on intervention mechanism of Huanglian Jiedu

decoction in the treatment of Alzheimer’s disease. Acta Pharmaceutica Sinica.

8, 1268–1275. doi: 10.16438/j.0513-4870.2017-0144

Suykens, J. A. K., and Vandewalle, J. (1999). Least squares support vector machine

classifiers. Neural Process. Lett. 9, 293–300. doi: 10.1023/A:1018628609742

Tao, X. Q., Zhang, X. Z„ Li, N., Cao, L., Ding, G., Wang, Z. Z., et al. (2015). Study

on molecular mechanism of Paeoniae Rubra Radix and Phellodendri Cortex

intervening Alzheimer’s disease using network pharmacology methods. Chin.

Tradit. Herb. Drugs. 46, 1634–1639. doi: 10.7501/j.issn.0253-2670.2015.11.013

Wang, M., Wang, S., Li, Y., Cai, G. M., Cao, M., Li, L. F. (2020). Integrated

analysis and network pharmacology approaches to explore key genes of

Xingnaojing for treatment of Alzheimer’s disease. Brain Behav. 10, e01610.

doi: 10.1002/brb3.1610

Wang, R., Jia, Y., Song, J., Liu, L. J., Zhan, X. H., Hou, J. L., et al. (2021). Mechanism

of Liuwei Dihuang decoction in treatment of dementia based on network

pharmacology. J. Henan University (Medical Science). 40, 84–92.

Wang, X., Kim, J. R., Lee, S. B., Kim, Y. J., Joung, M., Kwon, H. W.,

et al. (2014). Effects of curcuminoids identified in rhizomes of Curcuma

longa on BACE-1 inhibitory and behavioral activity and lifespan of

Alzheimer’s disease Drosophila models. BMC Complement. Med. Ther. 14, 88.

doi: 10.1186/1472-6882-14-88

Wang, Z. X. (2014). Effects of extended care on the quality of life of the

elderly patients with Alzheimer’s disease. Practical Geriatr. 28, 254–259.

doi: 10.3969/j.issn.1003-9198.2014.03.024

Xiong, D. D., Qin, Y., Xu, W. Q., He, R. Q., Wu, H. Y., Wei, D. M., et al. (2018). A

network pharmacology-based analysis of multi-target, multi-pathway, multi-

compound treatment for ovarian serous cystadenocarcinoma. Clin. Drug

Investig. 38, 909–925. doi: 10.1007/s40261-018-0683-8

Yang, B. (2021). Gene Regulatory Network Identification based on Forest

Graph-embedded Deep Feedforward Network. 6th International Conference

on Cloud Computing and Internet of Things. Okinawa, p. 68–72.

doi: 10.1145/3493287.3493297

Yuan, C. Y., Liu, B. T., Huang, J. Y., Yan Z. S., Chen, R., and Huo, L. N.

(2019). Application of network pharmacology on screening and mechanism

of pharmacodynamic substances of traditional Chinese medicine. Guangzhou

Chem. Indust. 47, 20–22.

Zhao, W. N., Bi, P. X., Li, S. O., Yin, C. H., Yang, Y. D., and Sun, L. (2016).

Comparative study of damage to cognitive function and mental behavior

in patients with general paresis of the insane, Alzheimer’s disease, and

frontotemporal dementia. Int. J. Clin. Exp. Med. 9, 7374–7380.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Yang, Bao and Hong. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 July 2022 | Volume 14 | Article 931729191

https://doi.org/10.1002/iub.1118
https://doi.org/10.1016/0022-510X(94)90119-8
https://doi.org/10.1007/s11571-018-9485-1
https://doi.org/10.3969/j.issn.1008-9993.2006.06.003
https://doi.org/10.1002/j.2769-2795.2021.tb00060.x
https://doi.org/10.13193/j.issn.1673-7717.2021.03.061
https://doi.org/10.1093/bioinformatics/bty429
https://doi.org/10.1093/bioinformatics/btaa164
https://doi.org/10.1093/bib/bbaa300
https://doi.org/10.1371/journal.pone.0095004
https://doi.org/10.1016/j.ejphar.2003.11.080
https://doi.org/10.1504/IJDATS.2011.041335
https://doi.org/10.1212/WNL.53.9.1959
https://doi.org/10.1021/jm300687e
https://doi.org/10.16438/j.0513-4870.2015-0950
https://doi.org/10.1377/hlthaff.12.2.164
https://doi.org/10.1002/9781118721957.ch4
https://doi.org/10.1001/archneur.1990.00530080029006
https://doi.org/10.1007/978-3-642-27733-7_299-3
https://doi.org/10.1016/j.neuropharm.2006.04.007
https://doi.org/10.16438/j.0513-4870.2017-0144
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.7501/j.issn.0253-2670.2015.11.013
https://doi.org/10.1002/brb3.1610
https://doi.org/10.1186/1472-6882-14-88
https://doi.org/10.3969/j.issn.1003-9198.2014.03.024
https://doi.org/10.1007/s40261-018-0683-8
https://doi.org/10.1145/3493287.3493297
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Mild Cognitive Impairment Recognition Via Gene Expression Mining and Neuroimaging Techniques
	Table of Contents
	Performance Analysis of Machine Learning and Deep Learning Architectures on Early Stroke Detection Using Carotid Artery Ultrasound Images
	Introduction
	Methodology
	Database Creation
	Feature Extraction
	Classification by Machine Learning Algorithms
	CART Decision Tree
	Logistic Regression
	Random Forest

	Deep Learning Algorithms
	Convolutional Neural Network
	Transfer Learning Based on Mobile Network Architecture
	Capsulenet


	Results and Discussion
	Performance Metrics
	Machine Learning
	Deep Learning

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Multi-Frequent Band Collaborative EEG Emotion Classification Method Based on Optimal Projection and Shared Dictionary Learning
	Introduction
	Background
	Multi-Frequent Band Collaborative Eeg Emotion Classification Method Based on Optimal Projection and Shared Dictionary Learning
	Objective Function of MBCC
	Optimization
	Testing

	Experiment
	Datasets and Experimental Settings
	Experiments on the SEED Dataset
	Experiments on the DEAP Dataset
	Parameter Analysis

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Alzheimer's Disease Analysis Algorithm Based on No-threshold Recurrence Plot Convolution Network
	Introduction
	Alzheimer's Disease
	Method

	Algorithm Framework
	EEG Signal Analysis Based on PLV
	EEG Signal Analysis Algorithm Based on Recurrence Plot

	Experiment and Result Analysis
	Introduction of Experimental Parameters and Evaluation Indexes
	Performance of PLV Algorithm
	EEG Signal Analysis of Recurrence Plot

	Conclusions and Discussions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	3D FRN-ResNet: An Automated Major Depressive Disorder Structural Magnetic Resonance Imaging Data Identification Framework
	Introduction
	Related Works
	Traditional Machine Learning
	Deep Learning
	Mental Illness Detection
	Our Work

	Materials and Methods
	Data Preprocessing
	Anterior Commissure-Posterior Commissure Calibration
	Non-brain Tissue Removal
	Gray Matter Segmentation
	Spatial Standardization
	Spatial Smoothing

	3D-ResNet Framework
	Feature Map Reconstruction Networks Framework
	Loss Function

	Experiments
	Dataset
	Evaluation Metrics
	Experimental Details

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer's Disease
	Introduction
	Materials and Methods
	Data Processing
	Data Acquisition
	Multi-Modal LassoNet Framework Construction
	Feature Detection and Model Comparison
	Evaluation Metrics

	Results
	The Results of Parameter Optimization
	Comparison With Other Methods

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Large Margin and Local Structure Preservation Sparse Representation Classifier for Alzheimer's Magnetic Resonance Imaging Classification
	Introduction
	Backgrounds
	Dictionary-Based Sparse Representation Classifier
	KAGGLE Alzheimer's Image Dataset

	The Proposed Algorihtm
	Objective Function
	Optimization

	Experiments
	Experimental Settings
	Experimental Results
	Parameter Analysis

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References

	Diagnosis of Amnesic Mild Cognitive Impairment Using MGS-WBC and VGBN-LM Algorithms
	Introduction
	Related Work
	Materials
	Description of the Data Source
	Data Acquisition and Preprocessing

	Methods
	Overview of the Amnesic Mild Cognitive Impairment Diagnosis System
	Mask Generation Strategy Based on Within-Class and Between-Class Criterion
	Vector Generation for Brain Networks Based on Laplacian Matrix
	Multiscale Feature Fusion
	Classification Using Naive Bayesian, Linear Discriminant Analysis, Logistic Regression, and Support Vector Machine
	Evaluation Criteria

	Experiment Results and Analysis
	The Performance Analysis of Whole-Brain Structural Features
	The Performance Analysis of Functional Network Features
	The Performance Analysis of Fused Features

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Study on Low-Frequency Repetitive Transcranial Magnetic Stimulation Improves Speech Function and Mechanism in Patients With Non-fluent Aphasia After Stroke
	Highlights
	Introduction
	Aphasia Recovery Mechanism
	Application of rTMS in Aphasia
	Research Purposes

	Patients and Methods
	Research Object
	Inclusion Criteria
	Exclusion Criteria

	Research Methods
	Apparatus
	Reagents
	Consumables
	Equipment

	rTMS Treatment Method
	Measurement of Motor Threshold
	Stimulation Site
	Stimulation Parameters

	Routine Speech Training and Language Function Scale Assessment
	Functional Magnetic Resonance Data and Processing Methods
	Functional Magnetic Resonance Parameter Setting
	Image Preprocessing
	Fractional Amplitude of Low-Frequency Fluctuation
	Degree Centrality Analysis
	Functional Connectivity Analysis

	Serum Processing and Storage Methods

	Statistical Analysis

	Results
	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	References

	Combined Multi-Atlas and Multi-Layer Perception for Alzheimer's Disease Classification
	Introduction
	Related Work
	Materials
	Datasets

	Data Preprocessing
	Atlas Filtering
	Invalid Value Replacement
	Data Standardization

	Methods
	Mixed Layers MLP Modular
	Ativation Function and Loss Function
	Implementation
	Model Evaluation

	Experiments and Discussion
	Parameter Setting of Experiment
	Comparative Experiments of Data Pre-processing
	Different Methods Based on Different Data Dimensions
	Different Methods Based on One-Dimensional Data
	Discussion of PRCV2021

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Deep Learning Model for Prediction of Progressive Mild Cognitive Impairment to Alzheimer's Disease Using Structural MRI
	Introduction
	Materials and Methods
	Dataset—Alzheimer's Disease Neuroimaging Initiative
	Proposed Model
	Preprocessing
	Skull Stripping
	Bias Field Correction
	Tissue Segmentation
	Extraction of 2D Images From the 3D Volume
	Pixel Values Normalization
	Data Augmentation

	Prediction Model
	Convolutional Neural Network From Scratch
	VGG-16
	ResNet-50
	Parameters and Evaluation Metrics


	Results and Discussion
	Training and Validation Performance
	Testing Performance and Discussion

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	MPC-STANet: Alzheimer's Disease Recognition Method Based on Multiple Phantom Convolution and Spatial Transformation Attention Mechanism
	Introduction
	Materials and Methods
	Data Acquisition
	Class-Balancing Preprocessing Based on Data Expansion and SMOTE
	Data Expansion
	Synthetic Minority Oversampling Technique

	ResNet50 Backbone
	Recognition Network of Alzheimer's Disease Based on Multi-Phantom Convolution and Space Conversion Attention Mechanism
	Dilated Convolution
	Multi-Conv Block and Multi-Identity Block Based on Multi-Phantom Convolution
	Space Conversion Attention Mechanism


	Results and Analysis
	Experimental Environment and Settings
	Effectiveness Experiment of the Module
	Effectiveness Experiment of Preprocessing
	Effectiveness Experiment of Dilated Convolution
	Effectiveness Experiment of Multiple-Phantom Residual Block Based on Multiple-Phantom Convolution
	Effectiveness Experiment of Space Conversion Attention Mechanism
	Table Ablation Experiment
	Overall Evaluation of the MPC-STANet
	Comparison With Other Networks


	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Discriminant Subspace Low-Rank Representation Algorithm for Electroencephalography-Based Alzheimer's Disease Recognition
	Introduction
	Background
	Electroencephalography Dataset for Alzheimer's Disease and Mild Cognitive Impairment Recognition
	Subspace Learning
	Low-Rank Representation

	Discriminant Subspace Low-Rank Representation Algorithm
	Objective Function
	Discriminant Margin Term on Representation Coefficients
	Global Structure Term on Projection
	Least Squares Regression Term
	The Objective Function

	Optimization
	Testing

	Experiment
	Experimental Settings
	Classification Results
	Ablation Experiment
	Parameter Analysis

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Evaluation of Feature Selection for Alzheimer's Disease Diagnosis
	Introduction
	Data and Methods
	Data
	Methods
	Stability Evaluation Metrics
	Stability Evaluation Workflow
	Decision Graph for Feature Selection


	Results
	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	CNNG: A Convolutional Neural Networks With Gated Recurrent Units for Autism Spectrum Disorder Classification
	Introduction
	The Proposed Algorithm
	Three-Dimensional Convolutional Neural Network
	Gated Circulation Unit
	Model Training

	Data Preprocessing
	Experimental Results and Analysis
	Ablation Experiments
	Effects of Different Convolution Kernel Sizes
	Comparison of Long Short-Term Memory Module and Gate Recurrent Unit Module
	Effects of Different Time Dimensions
	Effects of Different Numbers of Gate Recurrent Units

	Comparison With Traditional Machine Learning Algorithms
	Comparison With Deep Learning Algorithms

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Soft Attention Based DenseNet Model for Parkinson's Disease Classification Using SPECT Images
	Introduction
	Related Works
	Materials and Methods
	Dataset
	Data Preprocessing
	Contour Edge Detection
	Data Augmentation


	Methodology
	DenseNet Architecture
	Soft Attention Block

	Results and Discussion
	Visual Assessment
	Quantitative Assessment

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Alzheimer-Compound Identification Based on Data Fusion and forgeNet_SVM
	Introduction
	Methods
	forgeNet
	Development of Feature Graph
	Classification of Deep Learning Model

	Support Vector Machine
	forgeNet_SVM
	Alzheimer-Related Active Compound Identification

	Experiments and Discussions
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Back Cover



