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Editorial on the Research Topic

Explainable, trustworthy and responsive intelligent processing of

biological resources integrating data, information, knowledge, and

wisdom-volume II

The increasing practice of Artificial Intelligence (AI) in biological and biomedical

resources faces challenges of the explainable, trustworthy, responsive AI processing of

multi-modal, intertwined, interactive biological and biomedical data, which requires the

integration of data, information, knowledge, wisdom and purpose (DIKWP) across

objective content and subjective cognition/purpose. Transformations among data,

information, knowledge and wisdom open possibilities to comply with uncertainties

originating in the incompleteness of data samples, insufficiency of information,

vulnerability of invalid knowledge and imbalanced wisdom strategies, towards

achieving more precise, robust, reproducibility and less repeated operations of data

Research Topic and information synthesis, and more comprehensive knowledge

reproducibility through multiple sources reasoning and abstraction. Moreover,

alongside the COVID emergency, more and more attention is focused on balancing

social welfare, cultural moralities, and the biological practices involving privacy-

preserving data Research Topic and legal information usage, under rapid iterations of

international political and technical negotiations, towards a responsible AI-enabled AI

governance implementing justice, transparency and fairness. This Research Topic aimed

to collect the latest research efforts devoted to building capabilities of integration and

transformation of multi-modal data, information, knowledge and wisdom in an

integrated semantic understanding space unifying subjective purposes and objective
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formalism, to validate data, retrieve information, abstraction on

information to attain knowledge hypotheses, and balanced

optimization. In total, nine articles including one review

article were published in Frontiers in Genetics.

In the review article Wang et al. proposed a systemic

construction towards the mutual incentive among the “social-

biological-technological triangle” interaction in hope of

interpreting the success and lessons of AI participation in the

prevention and treatment of COVID-19.

The Research Topic published eight original research papers

that cover a wide range of efforts in applying AI technology in

multiple biological and biomedical data sources. Three papers focus

on explainable intelligence crossing data graph, information graph

and knowledge graph, led by Geng et al., Zhao et al. and Diao et al.,

respectively. In the article towards addressing the information

overloaded problem for personalized recommendation/

prescription, Geng et al. proposed a compliment method for

integrating subjective sentimental information in the information

graph form and objective feature representation in knowledge graph

based on representational learning via triple-autoencoder. In the

article towards leveraging current data intensive or statistical based

data graphs into logically explainable knowledge graph in medical

industry, Zhao et al. proposed a multi-layers entity extraction

architecture to extract object-level entities with “object-attribute”

dependencies in the data graph for construction of logic in high-

quality medical knowledge graphs based real electronic clinical

records. In the article towards constructing an error-avoiding and

effort-saving solution in discovering bioinformatics workflow

fragments and leveraging historical usages of related activities/

services, Diao et al. proposed a workflow Knowledge Graph to

unifying common types of data entities and data structural

relationship in the data graph of service invoking network, and

the implicit information of the information graph in both individual

user’s requirements and service communities.

Two article focus on hybrid intelligence resource merging

mechanisms crossing incomplete data, inconsistent information

and not validated knowledge, led by Wang et al. and Yu and

Duan respectively. In the article towards objectifying the

knowledge level inconsistency and redundancy originating in

the information subjectivity inputted by various biomedical

experts, Wang et al. proposed a data-information-knowledge

merging approach for biomedical ontologymatching via a hybrid

graph attention network. In the article towards addressing

sparsity of data and the cold start of recommendation in

prediction of Quality of Services, Yu and Duan proposed a

GRU-GAN based learning uniformity over quality data and

user characteristic information.

Additionally, three articles presented a trusted resource

scheduling method, a miRNA prediction algorithm, and a

biological adaptation mechanism, respectively. In the article

towards realizing reliable and credible intelligent processing of

biological resources, Yu et al. designed a composite service

scheduling model under the containers instance mode

hybridizing reservation and on-demand. In the article towards

understanding miRNAs’ cellular function information and

knowledge roles in regulating gene expression, Min et al.

proposed to predict essential miRNAs using XGBoost

framework with Classification and Regression Trees on

various types of sequence-based information features. In the

article of towards enhancing the diversity of self-replicating

structures, Xu et al. proposed an active self-adaptations in

comparison with the passive mechanism through introduction

of knowledge rules.
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XGEM: Predicting Essential miRNAs
by the Ensembles of Various
Sequence-Based Classifiers With
XGBoost Algorithm
Hui Min1, Xiao-Hong Xin1, Chu-Qiao Gao1, Likun Wang2* and Pu-Feng Du1*

1College of Intelligence and Computing, Tianjin University, Tianjin, China, 2Institute of Systems Biomedicine, Department of
Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life
Sciences, Peking University Health Science Center, Beijing, China

MicroRNAs (miRNAs) play vital roles in gene expression regulations. Identification of
essential miRNAs is of fundamental importance in understanding their cellular
functions. Experimental methods for identifying essential miRNAs are always costly and
time-consuming. Therefore, computational methods are considered as alternative
approaches. Currently, only a handful of studies are focused on predicting essential
miRNAs. In this work, we proposed to predict essential miRNAs using the XGBoost
framework with CART (Classification and Regression Trees) on various types of sequence-
based features. We named this method as XGEM (XGBoost for essential miRNAs). The
prediction performance of XGEM is promising. In comparison with other state-of-the-art
methods, XGEM performed the best, indicating its potential in identifying essential
miRNAs.

Keywords: essential miRNA, CART, XGBoost, sequence features, ensemble classifier

INTRODUCTION

MicroRNAs (miRNAs) are functional non-coding RNAs of ~22 nt in length. miRNAs are
involved in regulating gene expressions (He and Hannon, 2004) in animals and plants. They
have diverse expression patterns and regulate many biological processes, including cell
proliferation (Cao et al., 2022), cell differentiation (Martin et al., 2016), cell apoptosis
(Zhang et al., 2019), fat metabolism (Nematbakhsh et al., 2021), and development of
animals and plants (Zhang et al., 2018). They are also related to many complex diseases
(Wojciechowska et al., 2017), including many types of tumors (Zhang et al., 2007; Lee and Dutta,
2009; Fridrichova and Zmetakova, 2019).

lin-4 (Lee et al., 1993) was the first miRNA to be discovered, followed by let-7 (Reinhart et al.,
2000). The regulatory roles of miRNAs have been widely studied (Bartel, 2004, 2018). Although
miRNAs are small in length, their cellular role is important. Knocking out or knocking down some
miRNA genes will result in lethal or infertile phenotypes (Bartel, 2018). These miRNAs genes are
thought to be essential for the organism to live or develop. With the progress of miRNA gene
annotations, many computational methods were developed to find miRNA genes in the genome
(Wang et al., 2019). However, this resulted in many annotated miRNA genes in the database with
little or no functional understanding (Bartel, 2018; Ru et al., 2019). As a basis toward the
understanding of gene cellular functions, a gene should be determined if it is essential or not
(Zeng et al., 2018; Campos et al., 2019).
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In the context of miRNA genes, there are two categories of
methods for identifying essential miRNAs: experimental methods
and computational predictions. The experimental methods
usually perform gene knockout or gene expression knockdown
experiments on animal or plant models. By observing the
phenotypes, the essentiality of the gene in question will be
determined (Larrimore and Rancati, 2019). For example,
Ahmed et al. (2017) reported that the miR-7a-2 is an essential
miRNA gene by knocking out the miR-7a-2 gene in the mouse
genome to observe the result that it caused infertility. Since the
experimental methods are inevitably time-consuming and labor-
intensive, computational predictions are always considered as
alternative approaches or, at least, beneficial supplements.
Computational prediction methods usually combine machine
learning algorithms with statistical features of genomic
sequences and structures to construct classifiers. Currently,
there is no genome-wide clear set of essential miRNA genes.
Therefore, constructing such machine learning-based predictors
for essential miRNA genes is still a challenging task. As far as we
know, only a handful of studies tried to predict essential miRNAs.

Ru et al. (2019) carried out a study in computationally
predicting essential miRNAs. They collected 85 essential
miRNAs from the literature (Bartel, 2018). By compensating
88 non-essential miRNAs from their own random selection,
they presented a benchmarking dataset for computationally
predicting essential miRNAs. They achieved a promising result
by applying a simple voting scheme in the ensemble of multiple
classifiers. Song et al. (2019) collected 77 essential miRNAs from
the same literature (Bartel, 2018). They proposed the miES
method based on the logistic regression algorithm. Yan et al.
(2020) developed a third method based on the same 77 essential
miRNAs, namely, PSEM, for the prediction of essential miRNAs
in the mouse genome.

In this study, we applied the XGBoost (extreme gradient
boosting) method (Chen and Guestrin, 2016) with
classification trees to construct our predictor on various
sequences and structural features. By optimizing features and
parameters, we achieved better prediction performances than
existing studies. We named our method as XGEM (XGBoost for
essential miRNAs). We provided genome-wide prediction results
in mice as a supplemental annotation to the mouse genome.

MATERIALS AND METHODS

Experimental Data
We considered the dataset from Ru’s work (Ru et al., 2019), which
contains 85 essential and 88 non-essential pre-miRNA sequences.
We also obtained the dataset of miES (Song et al., 2019) and
PESM (Yan et al., 2020) work, which contains 77 essential
miRNAs. To compose a working dataset, we randomly picked
up 77 non-essential miRNAs as negative samples for the miES
and PESM dataset. We noted the former dataset as Ru’s dataset
and the latter dataset as the miES-PESM dataset. Ru’s dataset was
used for training and testing the XGEMmethod, while the miES-
PESM dataset was used only for performance comparison.

Feature Extraction Methods
Five sequence feature extraction methods were incorporated in
our work. They are k-mer frequencies, sequence mismatch
features, subsequence features, PseDSSPC (pseudo-distance
structure status pair composition), and triplet compositions.
BioSeq-Analysis 2.0 (Liu et al., 2019) and repRNA (Liu et al.,
2016b) were used to generate these features. Although the
algorithms for generating these features have been elaborated
in various works of the literature (Chen et al., 2015, 2018; Liu
et al., 2016a, 2019; Zhang et al., 2021), we briefly described them
here for the convenience of readers.

Given an RNA sequence R with length l, it can be noted as
follows:

R � r1r2...rl, (1)
where ri (i = 1, 2, 3, . . . l) ∈ {A, C, G, U} is the i-th residue in R.

The k-mer frequencies are the appearance frequency of 4k

type’s k consecutive nucleotides. The sequence R is separated into
l–k + 1 k-mers, which are r1r2 . . . rk, r2r3 . . . rk+1, . . . , and rl-k+1rl-
k+2rl. We noted the k-mer frequency as a vector of 4k dimensions
(Wei et al., 2014), which can be noted as follows:

F1(k) � [f1,1 f1,2 / f1,4k ]T, (2)
where f1,i (i = 1, 2, . . . , 4k) is the frequency of the i-th type of
k-mer, and T is the transpose operator.

The mismatch feature is proposed by Leslie et al. as an
alternative method of k-mer frequencies (Leslie et al., 2004).
The method considers inaccurate matching and calculates the
number of occurrences of k consecutive nucleotides that differ by
at most m mismatches (m = 0, 1, . . . , k-1). We define the
mismatch feature vector as follows:

F2(k,m) � ⎛⎝∑m
j�0
c1,j ∑m

j�0
c2,j / ∑m

j�0
c4k,j ⎞⎠

T

, (3)

where ci,j (i = 1, 2, . . . , 4k and j = 0, 1, . . . , m) is the number of
occurrence of the ith type k-mer in sequence R with exactly j
mismatches.

The subsequence feature is a method that allows non-
continuous matching, which considers more matching
situations (Lodhi et al., 2002). The value of the feature vector
is determined by the number of occurrences of the subsequence
and a decay factor δ ∈ [0, 1]. The subsequence feature vector of
sequence R is defined as follows:

F3(k,m) � (∑
a1

δl(a1) ∑
a2

δl(a2) / ∑
a4k

δl(a4k ) )T

, (4)

where ai (i = 1, 2, . . . , 4k) is a subsequence in Rwith possibly non-
contiguous matching to the ith type of k-mer, and l (ai) a length
function can be defined as follows:

l(ai) � { 0 ai is a contiguous matching of the i − th type of k −mer
|ai| otherwise

. (5)

|.| is the operator to calculate the length of a string.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8774092

Min et al. Predicting Essential miRNAs

7

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Triplet feature is a combination of the primary sequence and
secondary structural information of RNA. It was proposed by Xue
et al.( 2005). By using the ViennaRNA package (Lorenz et al.,
2011), we can estimate the secondary structure of R as follows:

S � s1s2s3/sl, (6)
where si (i = 1, 2, .., l) ∈ { ’ (’, ’)’, ’.’ } denotes the secondary
structure status of the ith residue. The “ (‘ and ’)” represent the
residue in a pairing status, while "." represents the unpairing
status. By ignoring the difference between “ (‘ and ’)”, there are
eight possible structural statuses of a triplet. Combining the
structural status and the centered nucleotide of a triplet, 32
types of possible structural triplets can be obtained. Therefore,
a 32-dimensional vector can be constructed to describe the

appearance frequency of all structural triplets, which can be
noted as follows:

F4 � [f4,1 f4,2 / f4,32 ]T, (7)
where f4,i (i = 1, 2, . . . , 32) is the normalized frequency of the i-th
structural triplet.

PseDSSPC was proposed by Liu et al. (Liu et al., 2016a). It
represents the RNA sequence by considering both local and
global information of secondary structures. Let ti (i = 1, 2, . . .
, l) ∈ {A, C, G, U, A-U, U-A, G-C, C-G, G-U, and U-G} be the
structural status of the i-th residue, where A, C, G, and U
represent the four types of unpaired residues, while A-U, U-A,
G-C, C-G, G-U, and U-G represent the six paired status. For
every ti, its free energy e (ti) can be calculated. We first computed
the raw appearance frequency of each of the 10 structural status,
which can be noted as g5,1, g5,2, . . . g5,10. Given a parameter d, we
can calculate the appearance frequency of all structural status
pairs with a distance in the range [1, d]. These can be noted as
g5,11, g5,12, . . . , g5,110, g5,111, g5,112, . . . , g5,210, . . . , g5,10+(d-1)100+1,
g5,10+(d-1)100+2, . . . , g5,10+100d. After that, with a lag parameter λ,
correlation coefficients can be computed for the serial of free
energy values. The kth tier correlation coefficient can be defined as
follows:

g5,10+100d+k � 1
l − k

∑l−k
i�1

[e(ti) − e(ti+k)]2, (8)

where k = 1, 2, . . . , λ.
With all aforementioned definitions, we can construct

PseDSSPC features as follows:

F5 � [f5,1 f5,2 / f5,10+100d+λ ]T, (9)
where T is the transpose operator,

FIGURE 1 | Overall flowchart of our method.

FIGURE 2 | Prediction performances using five different types of
features with CART.
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f5,i �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g5,i

1 + d + w ∑10+100d+λ

k�10+100d+1
g5,k

1≤ i≤ 10 + 100d

wg5,i

1 + d + w ∑10+100d+λ

k�10+100d+1
g5,k

10 + 100d + 1≤ i≤ 10 + 100d + λ
, (10)

and w is a balancing parameter.

XGBoost With Classification Trees as Base Classifiers
We used CART (Classification and Regression Trees) with the
Gini index as the purity function (Grajski et al., 1986) to create
base classifiers in this work. Given a sample set D, the Gini
function is defined as follows:

G(D) � ∑k
i�1
pi(1 − pi) � 1 −∑k

i�1
p2
i , (11)

where k is the number of classes in the set, and pi is the proportion
of the ith class.

Considering an attribute α, the set D is divided into several
subsets according to different values of α. The purity at this
branching node is defined as follows:

I(D, α) � ∑v
j�1

∣∣∣∣Dj

∣∣∣∣
|D| G(Dj), (12)

where v is the number of subsets,Dj is the j-th subset, and |.| is the
cardinal operator of a set.

FIGURE 3 | Parameter effects on CART with different types of features. Parameters of features are scanned (A). k-mer features (B); mismatch features (C);
subsequence features (D); PseDSSPC features. In (A) and (B), the vertical axis is the accuracy in leave-one-out cross-validation. In (C,D), the heat color represents the
accuracy in leave-one-out cross-validation. The optimized parameter is k = 5 for the k-mer features, k = 2 andm = 1 for the mismatch features, k = 2 and δ = 0.9 for the
subsequence features, and d = 5, λ = 5, and w = 0.5 for the PseDSSPC features.
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FIGURE 4 | Parameter effects on CART with different types of features. Parameters of CART are scanned. The accuracy, F1-score, and AUROC are presented in
each panel. (A), (B), and (C) are scanning CART parameters S, D, andM on k-mer features, respectively, and (D), (E), and (F) are scanning CART parameters S, D, and
M on mismatch features, respectively; (G), (H), and (I) are scanning CART parameters S, D, andM on subsequence features, respectively; (J), (K), and (L) are scanning
CART parameters S, D, and M on PseDSSPC features, respectively; (M), (N), and (O) are scanning CART parameters S, D, and M on the triplet features,
respectively. The best parameter for k-mer features is S = ‘best’, D = 8, and M = 490. The best parameter for mismatch features is S = ‘best’, D = 4, and M = 13. The
best parameter for subsequence features is S = ‘best’, D = 3, and M = 14. The best parameter for PseDSSPC features is S = ‘best’, D = 3, and M = 460. The best
parameter for the triplet features is S = ‘best’, D = 4, and M = 30.
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XGBoost (Chen and Guestrin, 2016) was used to create
ensembles for boosting performances of classification trees.

Performance Measures
Four statistics, including accuracy (Acc), precision (Pre), recall
(Rec), and F1-score (F), are used to quantitively describe the
performance of our method. They are defined as follows:

Acc � TN + TP

FN + FP + TN + TP
, (13)

Pre � TP

TP + FP
, (14)

Rec � TP

TP + FN
, (15)

F � 2Pre · Rec
Pre + Rec

, (16)

where TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives, respectively. We also
used the area under the receiver operating characteristic
(AUROC) curve to measure the performance of our model.

Parameter Calibration
We used a grid search strategy with leave-one-out cross-
validation to find the optimal parameters. For k-mer features,
we scanned k = 1, 2, 3, 4, 5, and 6. For mismatch features, we
scanned k = 1, 2, 3, 4, 5, and 6 andm ∈ [0, k-1] with a step of 1. For
subsequence features, we scanned k = 2, 3, and 4, and δ ∈ [0.1, 0.9]
with a step of 0.1. In PseDSSPC, we scanned d ∈ [1,10] with a step
of 1, λ ∈ [1, 20] with a step of 1 andw ∈ [0.1, 0.9] with a step of 0.1.

Different combinations of parameter values in CART and
XGBoost are explored. We adjusted three parameters in the
CART algorithm, including the randomness of branching (S),
the maximum depth (D), and the maximum number of features
(M). We scanned S ∈ [“best”, “random”], D ∈ [3,10] with a step of
1 andM ∈ [3, n] with a step of 1, where n is the number of sample
features. We adjusted S, D, and M in order; when the former
parameters are being scanned, the latter ones are set as default
values. The best value of the former is applied to the latter
parameter adjustment. We adjusted four parameters in
XGBoost, including the number of trees (T), the learning rate
(R), the maximum depth of trees (D), and the regularization
parameter (λ). We scanned T ∈ [50, 500] with a step of 10, R ∈
[0.1, 0.5] with a step of 0.02,D ∈ [3, 10] with a step of 1, and λ ∈ [0,
2] with a step of 0.1. Similar strategies to the CART parameter
optimization were applied.

System Implementation
The CART and XGBoost algorithms are implemented using
Python with the scikit-learn package. The whole flowchart of
this work is illustrated in Figure 1.

RESULTS AND DISCUSSIONS

Performance Analysis by CART
We combined each of the five feature extraction methods with
CART. We optimized the parameters of each kind of features.
The best performances of each type of features can be found in
Figure 2. The evaluation was performed on Ru’s dataset. Leave-
one-out cross-validation protocol was applied on each type of
features. The entire record of the parameter optimization process
can be found in Supplementary Tables S1–S5.

From Figure 2, the subsequence features seem to have the best
performances among the five. It has the highest or second to the
highest value in terms of all performance measures. On the
contrary, the performances of k-mer features and triplet
features seem not as high as the others. The k-mer features
have lowest performance values in terms of recall and the
AUROC. The triplet features have the lowest performance
values in terms of accuracy, precision, and F1-score. However,
the precision value of k-mer and the recall value of triplet features
are still competitive, which make them still worth a further
boosting analysis. It should be noted that the PseDSSPC
features, which by design would preserve most of the sequence
information, did not give outstanding performances. This may be
the result of the CART classifier, which cannot sufficiently utilize
the information in this form.

With the optimal features, we analyzed the effect of different
parameters in two steps. The first step is to analyze the effect of
parameters in features, the latter one for the parameters in CART.
When we performed the first step analysis, the parameters in the
second step were fixed as their optimal values and vice versa.
Figure 3 recorded the effects of parameters on all type of features.
On all four types of features, which have at least one parameter
each, the prediction accuracy peaks at some combinations of
parameters, while it valleys with other combinations. Therefore,
the parameters of features affect the performances. Figure 4
recorded the effects of CART parameters on all types of
features. The peaks of the parameter D are the most
significant. Although the parameter M causes the most
fluctuation on performances, it is generally a random
oscillation without easily observable patterns. Due to limited

TABLE 1 | Performance of the five strong classifiers.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUROCa (%)

k-mer 82.7 80.9 84.7 82.8 86.4
Mismatch 96.0 94.3 97.6 96.0 96.4
Subsequence 93.1 94.1 94.1 94.1 97.3
PseDSSPC 90.8 91.6 89.4 90.4 94.8
Triplet 80.9 80.9 80.0 80.4 85.3

aAUROC is the area under a receiver operating characteristic curve.
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FIGURE 5 | Parameter effects on XGBoost with different types of features. Parameters of XGBoost are scanned. The accuracy, F1-score, and AUROC are
presented in each panel. The number of trees (T), the learning rate (R), the maximum depth of trees (D), and the regularization parameter (λ) are scanned on each type of
sequence features. (A), (B), (C), and (D) are scanning parameters on k-mer features. The best parameter values are T = 60, R = 0.18, D = 6, and λ = 1. (E), (F), (G), and
(H) are scanning parameters on mismatch features. The best parameter values are T = 80, R = 0.22, D = 4, and λ = 0. (I), (J), (K), and (L) are scanning parameters
on subsequence features. The best parameter values are T = 50, R = 0.12, D = 6, and λ = 0.3. (M), (N), (O), and (P) are scanning parameters on Pse-DSSPC features.
The best parameter values are T = 60, R = 0.24, D = 5, and λ = 0.9. (Q) (R), (S), and (T) are scanning parameters on triplet features. The best parameter values are T =
500, R = 0.18, D = 5, and λ = 1.
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figure panel spaces, we only present a subset of performance
measures in the figures. As we have mentioned, a comprehensive
and quantitative record can be found in Supplementary Tables
S1–S5.

Boosting CART Performances Using
XGBoost
We applied XGBoost on the CART classifiers with each of the five
types of features. The parameters of XGBoost are optimized to get
the best AUROC. Leave-one-out cross-validations were
performed on Ru’s dataset. The prediction performances of
the best boosted classifiers are listed in Table 1.

According to Table 1, the subsequence features achieved
97.3% AUROC after boosted by XGBoost, which is the highest
AUROC among all five models. However, its performances in
terms of other measures are not as high as the mismatch features.
The mismatch features achieved the best values in accuracy,
precision, recall, and F1-score. Therefore, the mismatch
features and the subsequence features with XGBoost are better
choices than the other three for predicting essential miRNAs.

Similar to the analysis on non-boosted CART classifiers, we
performed an analysis to see the results with different XGBoost
parameter values. Figure 5 gives the details of all results when the
parameters are adjusted. Due to limited space in the figure panels,
we only presented three performance measures. Full records can
be found in Supplementary Table S6 . All curves in Figure 5
show that the AUROC is just slightly affected by the parameters
of XGBoost. The accuracy and F1-score ride the same tides when
parameters are turned. Because of the theoretical relationship
between F1-score and the accuracy, this observation indicated
that the classifier is boosted in a balanced manner by XGBoost.
This is an expected behavior of a good boosting framework on an
informative and balanced training dataset.

Independent Dataset Test
We selected mismatch features with XGBoost and subsequence
features with XGBoost as the optimal models. We tested the
feasibility of the two models in predicting potential essential

miRNAs. We collected 16 mouse pre-miRNAs from various
works of the literature, which had no overlap with our training
dataset, as an independent testing dataset (Supplementary Table S7).
Among them, eight were essential, and the others were non-essential.
On this testing dataset, themismatch features with XGBoost achieved
90.6% AUROC. The subsequence features with XGBoost achieved
81.2% AUROC. Therefore, we believe that the mismatch features
with XGBoost is the one best choice for predicting essential miRNAs.
We named this method XGEM (XGBoost for essential miRNAs).

Genome-wide Prediction
We downloaded all 1,234 mouse pre-miRNA sequences from the
miRbase (Kozomara et al., 2019). The 85 essential miRNAs and
88 non-essential miRNAs in the training dataset were removed.
The 16 sequences in the testing dataset were also removed, leaving
1,045 sequences with unknown essentiality. XGEMwas applied to
create predictions for all of them. The results are recorded in
Supplementary Table S8. It can provide guidance for the study of
miRNA biological function experiments. It should be noticed that
XGEMwas trained on balanced datasets. However, the real world
is highly imbalanced. Therefore, false positives are inevitable in
the prediction results. But this does not diminish the value of the
results as the prediction shrinks the range of potential essential
miRNAs to a much smaller scale, which is exactly the purpose of
computational predictions.

Comparison With State-of-the-Art Methods
We compared XGEM to all existing state-of-the-art methods,
including Ru’s work (Ru et al., 2019), miES (Song et al., 2019), and
PESM (Yan et al., 2020).

The comparisons with miES and PESM were performed on the
miES-PESM dataset. A 50-time repetition of 5-fold cross-validation
was performed by all three methods on the same dataset. The
repetition was used to eliminate inevitable randomness in the
process of 5-fold cross-validation. The average performance
values of the 50-time repetition were compared. The comparison
with Ru’s work was performed on Ru’s dataset. Leave-one-out
cross-validation was performed by both methods on the same
dataset. The comparison details are depicted in Figure 6. XGEM

FIGURE 6 |Comparison of different methods onmouse pre-miRNA datasets. The accuracy, F1-score, and AUROC are compared. (A) A comparison between the
XGEM, miES, and PESM method on the miES-PESM dataset; (B) A comparison between XGEM and Ru’s work on Ru’s dataset.
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performed the best in both comparisons. Although the benefits of
XGEM is not large enough for us to claim that XGEM is definitely a
better choice in predicting essential miRNAs, it is enough to state
that XGEM is a better or at least comparable method to all state-of-
the-art methods.

CONCLUSION

Determining essentiality of non-coding genes is an important and
fruitful research area, particularly for computational biology. In
this article, we developed XGEM, which is a computational tool
for predicting essential miRNAs. We evaluated the performance
of XGEM in the mouse genome, with comparison to other state-
of-the-art methods. The results indicated that XGEM has a
potential to identify essential miRNAs. This is useful in
understanding the biological functions of miRNA genes. We
plan to establish a web server for hosting the implementation
of XGEM. Due to the availability of limited resources currently,
we will do this as a future work. In addition, the technology for
developing XGEM can be extended to identify other types of
essential non-coding genes, particularly those non-coding small
RNA genes.
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The unprecedented outbreak of the Corona Virus Disease 2019 (COVID-19) pandemic has
seriously affected numerous countries in the world from various aspects such as
education, economy, social security, public health, etc. Most governments have made
great efforts to control the spread of COVID-19, e.g., locking down hard-hit cities and
advocating masks for the population. However, some countries and regions have relatively
poor medical conditions in terms of insufficient medical equipment, hospital capacity
overload, personnel shortage, and other problems, resulting in the large-scale spread of
the epidemic. With the unique advantages of Artificial Intelligence (AI), it plays an extremely
important role in medical imaging, clinical data, drug development, epidemic prediction,
and telemedicine. Therefore, AI is a powerful tool that can help humans solve complex
problems, especially in the fight against COVID-19. This study aims to analyze past
research results and interpret the role of Artificial Intelligence in the prevention and
treatment of COVID-19 from five aspects. In this paper, we also discuss the future
development directions in different fields and prove the validity of the models through
experiments, which will help researchers develop more efficient models to control the
spread of COVID-19.

Keywords: Artificial Intelligence, clinical diagnosis, COVID-19, medical imaging, Pandemic Prediction, pandemic,
COVID-19 review, telemedicine

INTRODUCTION

In December 2019, COVID-19 hit Hubei, China, and many pneumonia cases of unknown cause
were found in some hospitals in Wuhan. The pandemic has been infecting millions of people
afterwards, which was eventually confirmed as an acute respiratory infection caused by Novel
Coronavirus 2019 infection. On 11 February 2020, the World Health Organization (WHO)
named it “COVID-19” (Wang et al., 2020a; He et al., 2020; Sohrabi et al., 2020), and the fight
against COVID-19 began around the world. This disease is a highly contagious and highly
pathogenic infectious disease, which may cause various forms of disease from mild to severe
(Chen et al., 2020a; Paules et al., 2020). For example, it can transfer the mild self-limiting
respiratory illness to severe pneumonia and even cause multiple organ failure, or death. Up till
to 23 September 2021, there have been 230,773,965 COVID-19 infections worldwide, as shown
in Figure 1, the number of confirmed COVID-19 infections is still increasing. Figure 2 shows
the top 15 countries with the highest cumulative number of confirmed cases and the highest
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number of deaths globally, where the top three are United
States, Brazil and India. [The data in Figures 1, 2 are from the
website: https://github.com/CSSEGISandData/COVID-19.
This COVID-19 data repository is from the Center for
Systems Science and Engineering (CSSE) at Johns Hopkins
University. The data was downloaded on 20 September 2021].
Thus, it is worth thinking about what caused the pandemic.
The outbreak of the pandemic is due to the lack of relevant
information in the early stages and the prediction of its future
transmission, resulting in delayed national containment
measures and low awareness of self-protection among the
population. Moreover, in some areas with poor medical
conditions, there is not enough vaccine for the public, and
patients cannot afford systematic treatment or expensive
hospital expenses, thereby they have to self-isolate which
greatly increased the risk of infection.

At present, due to the lack of effective antiviral drugs for
COVID-19, patients with mild symptoms can be treated with
general treatment, such as bed rest, timely and effective
oxygen therapy, appropriate application of antibiotics,
antiviral therapy and glucocorticoid therapy, etc. In the
treatment of critically ill patients, the treatment principle is
based on general treatment, such as actively prevent
complications, treat basic diseases, prevent secondary
infections, support organ functions, and respiratory
support, etc. However, these methods are not able to
completely stop the death toll from rising, hence,
developing a drug that targets COVID-19 would be an
effective way to stop the spread of the pandemic (Bayat
et al., 2021).

Recently, more and more AI researchers have devoted to
the prevention and treatment of COVID-19 from different
fields (Chamola et al., 2020), including clinical medicine,
economics, infectious diseases, computer science,
psychology, government management, etc. Therefore,
Artificial Intelligence is able to help us better understand
the protein structure of COVID-19 virus and develop
effective drugs to cure patients (Rahman et al., 2020;
Soomro et al., 2022), which will greatly save the time of

drug design and vaccine development. It can also diagnose
whether it is infected by learning clinical data and Computed
Tomography (CT) images, which greatly saves the problem of
manpower shortage, in order to help to control suspected
patients as soon as possible, and implement measures such as
isolation and monitoring (Yu et al., 2020). Second, machine
learning can also be used to make reasonable predictions
about the future development trend of the COVID-19, so as to
help decision-makers implement corresponding control
measures to prevent the spread of COVID-19. Finally, the
construction of telemedicine platform is inseparable from the
participation of AI. Therefore, AI plays an extremely
important role in combating the COVID-19 pandemic.

Nowadays, researchers have been widely applying AI to
against the outbreak of COVID-19. In this paper, we aim to
systematically review the active role of AI in prevention the
outbreak of COVID-19 pandemic, and the current challenges
in the related research. In addition, we also summarized and
demonstrated the recently studies in terms of the results and
conclusions from different aspects. Chapter 2 discusses the
interpretation of medical images by AI. Chapter 3 introduces
the use of clinical data modeling to detect the severity of
patients. Chapter 4 discusses the application of AI in the

FIGURE 1 | The number of new confirmed cases worldwide every day.
The abscissa is the timeline and the ordinate is the number of COVID-19
confirmed cases. The number of COVID-19 cases is increasing in the first
300 days, and there is a wavy line in the second 300 days.

FIGURE 2 | Top 15 countries with cumulative confirmed cases and
deaths. Confirmed cases are shown above, and deaths are shown below. The
United States, India and Brazil are the top three, with the United States having
the most cumulative confirmed cases and deaths.
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treatment of patients with COVID-19. Chapter 5 summarizes
the COVID-19 epidemic prediction model represented by
mathematical models and machine learning models. Chapter
6 introduces the current development of telemedicine
technology. Finally, the challenges and future development
directions of AI technology in the prevention and treatment
of COVID-19 are discussed in Chapter 7.

ARTIFICIAL INTELLIGENCE
INTERPRETATION OF CHEST RADIOLOGY
IMAGES
Recently, with the development of computer technology, AI
interpretation of medical images can help doctors identify and
detect the types of diseases and determine the affected areas. As

TABLE 1 | Main methods of Medical Imaging for COVID-19.

Classifier Data set Accuracy Data availability References

CNN 2000 x-rays images (162 COVID-19 positive, 4280
common pneumonia positive, 400 TB positive)

99.92% https://github.com/ieee8023/covid-
chestxray-dataset

Das et al. (2020)

CNN + PCA 500 X-ray images (250 COVID-19 positive cases and
250 normal healthy cases.)

97.6–100% https://www.kaggle.com/
paultimothymooney/chest-xray-
pneumonia

Rasheed et al.
(2021)

CNN + ACGAN 1124 X-ray images (403 images of COVID-19 and
721 normal images)

95% https://github.com/agchung/Figure1-
COVID-chestxray-dataset

Waheed et al.
(2020)

Based on deep convolutional
neural network CovXNet

1583 normal X-ray images, (1493 COVID-19
pneumonia X-ray images and 2780 bacterial
pneumonia X-ray images)

97.4% (Second
category)

https://github.com/Perceptron21/
CovXNet

Mahmud et al.
(2020)

90.2% (Multiple
categories)

Deep CNN transfer learning
method

423 COVID-19, 1485 viral pneumonia and 1579
normal chest X-ray images

99.7% (Second
category)

https://www.kaggle.com/
tawsifurrahman/covid19-radiography-
database

Chowdhury et al.
(2020)

97.9% (Three
categories)

Deep CNN model CoroNet X-ray images of 1203 normal cases, 1591 viral
pneumonia cases

95% (Three
categories)

https://github.com/drkhan107/
CoroNet

Khan et al. (2020)

93% (Four
categories)

COVID-Net COVID X Open access to the benchmark data set
(13,975 CXR images, 358 COVID-19 CXR images.)

98.9% https://github.com/lindawangg/
COVID-Net

Wang et al.
(2020b)

nCOVnet 142 COVID-19 X-ray images 5863 non-COVID-
19 X-ray images

97% https://github.com/ieee8023/covid-
chestxray-dataset

Panwar et al.
(2020)

DenseNet121 2724 C T images (1029 COVID-19 images,) 90.8% https://wiki.cancerimagingarchive.net/
display/Public/LIDC-IDRI

Harmon et al.
(2020)

DarkNet model based on Deep
Learning

500 normal and 500 COVID-19 images 98.08% (Second
category)

https://github.com/muhammedtalo/
COVID-19

Tulin et al. (2020)

87.02% (Multiple
categories)

Deep transfer learning (DTL)
model with DenseNet201

1,262 COVID-19 positive images, 1,230 negative
images

99.82% https://www.kaggle.com/
plameneduardo/sarscov2-ctscan-
dataset

Vijay et al. (2020)

An automated COVID-19
screening (ACoS)

696 normal, 696 pneumonia and 696 COVID-19
X-ray images

98.062% https://github.com/ieee8023/covid-
chestxray-dataset

Chandra et al.
(2021)

Based on deep Bayes-
Extrusion Network-COVID
Diagnosis-Net

X-ray images (1583 normal persons, 4290 cases of
common pneumonia, and 76 cases of COVID-19
infection)

100% (Second
category)

https://data.mendeley.com/datasets/
rscbjbr9sj/2

Ucar and
Korkmaz, (2020)

98.3% (Three
categories)

Deep learning model and
transfer learning based on
VGG-16

250 COVID-19 images, 2753 other lung diseases
images, and 3520 health images

98% https://github.com/muhammedtalo/
COVID-19

Brunese et al.
(2020)

A weakly supervised deep
learning framework

TCIA Open data set (150 3D volumetric chest CT
exams of COVID-19, CAP and NP patients)

92.3% https://www.cancerimagingarchive.net/
collections/

Hu et al. (2020)

A technique based on a deep
residual network

1345 viral pneumonia cases, 10,200 normal cases
and 3616 COVID-19 cases

92.1% (Four
categories)

https://github.com/pawelparker/DNN-
lung-infection-Pattern

Panahi et al.
(2022)

Transfer learning 29 different
types of AI-based models

352 chest X-ray images (51 COVID-19, 21 non-
COVID-19,160 pneumonia,54 TB, and 66 normal
images)

93.8% (Validation
accuracy)

https://github.com/arunsharma8osdd/
covidpred

Sharma et al.
(2020)

A multi-view feature learning
method

1092 X-ray images (364 COVID-19, 364 normal, and
364 pneumonia)

99.82% (Three
categories)

https://www.kaggle.com/
paultimothymooney/chest-xray-
pneumonia

Hamidreza,
(2022)
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COVID-19 is persistently ravaging the world, researchers have
been leveraging medical images (e.g., chest X-rays and CT
images) as the main tools for COVID-19 diagnosis. This
section summarizes the main methods of medical imaging for
COVID-19 in Table 1. Methods based on deep learning, such as
deep feature extraction, pre-trained Convolutional Neural
Network (CNN) and end to end training CNN models, have
been widely used for image classification tasks. For depth feature
extraction, most of the preprocessed depth CNNmodels are used,
such as Residual Neural Network 18 (ResNet18), Residual Neural
Network 50 (ResNet50), Residual Neural Network 101
(ResNet101), Visual Geometry Group 16 (VGG16) and Visual
Geometry Group 19 (VGG19). For the classification of deep
features, a Support Vector Machine (SVM) classifier is used
together with various functions, e.g., Linear, Quadratic, Cubic
and Gaussian, etc.

Das et al. (Das et al., 2020) proposed a CNN-based model to
identify infected cases from viral pneumonia or healthy cases.
This work used 6 datasets which contain 7,000 X-ray images, in
order to classify the COVID-19 positive, positive ordinary
pneumonia, tuberculosis positive and healthy patients. The
classification accuracy (AUC) of the model for COVID-19
positive and negative cases was 99.96% (AUC was 1.0).
Similarly, it has an accuracy of 99.92% (AUC 0.99) in
classifying pneumonia, tuberculosis and COVID-19 positive
cases. Rasheed et al. (Rasheed et al., 2021) added a dimension
reduction method based on Principal Component Analysis
(PCA) on the basis of the CNN to further accelerate the
learning process and improve classification accuracy by
selecting features with high discriminability. The results
showed that the overall accuracy was 95.2%–97.6% without
PCA and 97.6–100% with PCA for positive case identification.
The applicability of PCA dimension reduction is illustrated. In
addition, Waheed et al. (Waheed et al., 2020) proposed a method
for synthesizing chest X-ray (CXR) images by developing models
based on auxiliary classifier Generative Adversarial Networks
(GAN), which improved accuracy 10% by adding synthetic
images generated by Covid-GAN. Recently, transfer learning
has been widely used in this field. Chowdhury et al.
(Chowdhury et al., 2020) proposed a robust technique for
automatic detection of COVID-19 pneumonia from chest
X-ray images by leveraging pre-trained deep learning
algorithms to maximize detection accuracy, which achieved
99.7% accuracy.

So which model is more effective at detecting COVID-19?
Elasnaoui et al. (El Asnaoui and Chawki, 2021) introduced a
deep learning model (VGG16, VGG19, Densenet201,
Inception_ResNet_V2, Inception_V3, Resnet50, And
MobileNet_V2) conducted a comparative study on the
detection and classification of COVID-19. Results showed
that the use of ResnetV2 and Densnet201 had better results
than other models used in this study (accuracy of ResnetV2
and Densnet201 was 92.18 and 88.09%, respectively). Ismael
et al. (Ismael and Şengür, 2021) proposed a new end-to-end
training CNN model. The Support Vector Machines (SVM)
classifier was used to classify the deep features, and different
functions were matched. The results show that the deep

features extracted from the ResNet50 model and the SVM
classifier with linear kernel function produce an accuracy of
94.7%, which is the highest among all the obtained results. In
addition, it also shows that deep learning methods are better
than local descriptors. Especially the performance of deep
features and SVM classifier is better than other methods. In
deep feature classification, the cubic function is usually better
than all other functions. The ResNet50 model usually
produces better results than other preprocessed CNN
models. Finally, for end-to-end training, deep CNN models
produce better results than shallow networks. Therefore, we
also tried to use Resnet to classify chest X-ray images into
three categories: normal, viral pneumonia and COVID-19.
The accuracy rate in the validation set is 96%. Figure 3 shows
the good performance of the model, which can accurately
classify X-ray images. The specific structure of this model is
shown in Figure 4.

While AI has made some progress in medical imaging, with
many models achieving near 100% accuracy on open data sets,
there is still a long way to go. We believe that the following
points need to be paid attention to in the future: 1. A large
open data set is very necessary. So we must continue to
increase data sharing and jointly build a complete large-
scale database for researchers to use. 2. Hospital imaging
data may be incomplete, so we need to improve the
accuracy of segmentation and classification to prevent
diagnostic errors for COVID-19. 3. As the current
epidemic is normalized, we need to develop a system to
reduce the pressure on doctors and better apply it to
clinical practice. 4. Marking data manually is expensive and
time-consuming, so unsupervised deep learning models will
be the focus of future research. Finally, we hope that medical
image recognition can be deployed to hospitals as soon as
possible, so that more patients can receive immediate
treatment and save more lives.

ARTIFICIAL INTELLIGENCE ANALYSIS OF
PATIENT CLINICAL DATA

Since 2019, the COVID-19 has gripped the world. The COVID-
19 is shockingly transmissible and is constantly mutating. even in
an era dominated by information technology, clinical
information data on COVID-19 patients is still scarce, and
clinical predictions of morbidity, mortality, severity and
prognosis are lagging behind. This requires the sharing of
Electronic Health Records (EHR) clinical data with researchers
and public health agencies. Brat et al. (Brat et al., 2020) formed an
International Consortium (4CE) consisting of 96 hospitals in five
countries. Successfully leveraged the open source Informatics for
Integrating Biology & the Bedside (I2B2) tool KIT10-17 to
manage, complete, and share data extracted from the EHR.
The goal is to integrate, share and interpret data about the
clinical trajectory of patients. Of course, we also hope that
more websites around the world can share data with hospitals,
which will make a great contribution to clinical intelligence in the
future.
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As shown in Table 2, currently many researchers have
begun to make use of limited clinical data to predict the
severity of COVID-19 patients and conduct feature
screening for critical indicators in clinical data in
combination with Artificial Intelligence methods. Razavian
et al. (Razavian et al., 2020) used clinical data and EHR data of
3345 retrospective and 474 prospective hospitalized cases, and
based on real-time data values, vital signs and oxygen support
variables, established and verified a black box model to
identify patients with good prognosis within 96 h. The
results showed that the Light Gradient Boosting Machine
(Light GBM) model performed well in EHR data, with a
positive predictive value of 93.3%. In addition, Arjun et al.
(Yadaw et al., 2020) applied machine learning technology to
3841 patients treated by Mount Sinai Health System in New
York City, The United States, implemented a systematic
machine-learning-based framework by using missing value
interpolation, 6 feature selection, 7 classification and 4
statistical techniques. It was found that three highly

accessible clinical parameters of patient age, minimum
oxygen saturation, and type of patient encounter were fed
into an automated Extreme Gradient Boosting (XGBoost)
algorithm that accurately classified patients as likely to
survive or die. In addition, Liang et al. introduced a
machine learning variable selection algorithm called Least
Absolute Shrinkage and Selection Operator (LASSO), it was
used to identify 10 variables with statistical significance (p <
0.05) hazard ratio characteristics (Liang et al., 2020a), (Liang
et al., 2020b), a COVID-Gram-based online calculator was
developed to allow clinicians to enter the values of the 10
variables required for the risk score and automatically
calculate the likelihood of a COVID-19 inpatient
developing critical illness (95%CI). Covino et al. used
Multivariate proportional hazards (COX) regression to
determine the risk factors related to progression (Marcello
et al., 2020), (Ji et al., 2020), and a new predictive scoring
model was established. Liang also compared the deep learning
survival COX model with the classical COX model (Liang

FIGURE 3 | Classification results of Resnet model. If the classification is correct, a green label will appear, otherwise a red label will appear. The Resnet model can
correctly classify normal, viral pneumonia, and COVID-19 after training.

FIGURE 4 |Resnet model framework structure. The characteristic of Resnet is that it is easy to optimize and can improve accuracy by increasing depth. The internal
residual block uses jump connection to alleviate the problem of gradient disappearance.
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et al., 2020b), and found that the deep learning survival COX
model is better.

Finally, multimodal clinical data information can more
accurately diagnose and predict the risk level of patients. Chen
et al. (Chen et al., 2020b) combined modeling of medical images
and clinical data, and found that the combined model of clinical
and radiological semantic features achieved the best effect, with
the highest accuracy and specificity, and the maximum AUC was
0.986. Liang (Liang et al., 2020b) added the abnormality of X-ray
image into clinical information, and found that the abnormality

of X-ray image was the first predictive variable of critical
condition. So we hope that future EHR data will be more
readily available, a more authoritative and comprehensive
database will be established. In this way, our research will be
in-depth, and the proposed model is applicable.

At last, we use a variety of EHR data modeling, and it is found
that The Neural Network Classifier (NN), Random Forest (RF),
K-Nearest Neighbor (KNN), SVM, Naive Bayes (NB), Logistic
Regression (LR) and Linear Discriminant Analysis (LDA) have
a good effect with an accuracy of 95.4422%. The comparison of

TABLE 2 | Modeling method of EHR data.

Model Data set Result Important features Availability References

Three models, clinical feature
model (C model), radiological
semantic feature model (R
model), and clinical and
radiological semantic feature
combination model (CR
model)

CT images and clinical
data from 70 COVID-19
and 66 non-COVID-19
pneumonia patients

The CR model has the
highest accuracy and
specificity with a maximum
AUC of 0.98

GGO with consolidation, tree-in-
bud, offending vessel
augmentation in lesions,
temperature, heart ratio, etc.

https://doi.org/10.1007/
s00330-020-06829-2

Chen et al.
(2020b)

Four models (Logistic
Regression, Random Forest,
Light-GBM, and a collection
of these three models)

Clinical data and EHR
data of 3345
retrospective and 474
prospective Inpatients

The Light-GBM model
achieved the best
performance on the
validation set

Age, Sex, Race, Neutrophils
Percent, Lymphocytes Percent,
Eosinophils Percent, C-Reactive
Protein, C-Reactive Protein, etc.

https://doi.org/10.1038/
s41746-020-00343-x

Razavian
et al. (2020)

Recursive Feature Elimination
method, Logistic Regression,
Support Vector Machine,
Random Forest and Extreme
Gradient Enhancement
(XGBoost) algorithm for
prediction.

In 3841 patients at Mount
Sinai Health System, 961
retrospective and 249
prospective patients

XGBoost algorithm can
accurately classify patients as
likely to live or die.

Age, minimum oxygen saturation,
and type of patient
encounter, etc.

https://github.com/
SBCNY/Clinical-
predictors-of-COVID-
19-mortality

Yadaw et al.
(2020)

χ2 test or Kruskal-Wallis test,
Multivariate Regression
analysis

1,951 charts of
confirmed cases in 26
hospitals in Italy.

mortality is predicted by age
and the presence of
comorbidities.

Age, diabetes, chronic
obstructive pulmonary disease
(COPD) and chronic kidney
disease, etc.

https://www.
clinicaltrials.gov

Wang et al.
(2020c)

Mann-whitney U, χ2 test,
Univariate Cox Analysis

Clinical data from 69
patients

The risk of death in elderly
patients may be independent
of age, and the presence of
severe dementia is a risk
factor for this population.

Lactate dehydrogenase and
blood oxygen saturation, etc.

https://doi.org/10.1111/
ggi.13960

Marcello et al.
(2020)

Minimum absolute
contraction selection
operator (LASSO) and
Logistic Regression

COVID-19 patients from
575 hospitals in
31 provincial-level
regions in China

The predictive variables were
extracted and the severity of
the patients was calculated
successfully

Age, Dyspnea, Cancer history,
COPD, Comorbidity, X-ray
abnormality, etc.

https://github.com/
cojocchen/covid19_
critically_ill

Liang et al.
(2020b)

Multivariate COX Regression Clinical data of 208
patients

The CALL scoring model was
established, and the area
under ROC curve was 0.91

Age, Comorbidity, Lymphocyte,
D-dimer, LDH, Lymphocyte, etc.

https://doi.org/ 10.
1093/cid/ciaa414

Ji et al. (2020)

Machine learning variable
selection algorithm for
Minimum Absolute
Contraction and Selection
Operator (LASSO),
Combined with Cox deep
learning model

1590 patients at 575
medical centers

Deep learning survival Cox
model is better than
traditional Cox model

Age, hemoptysis, dyspnea,
unconsciousness, number of
comorbidities, cancer history,
neutrophil-to-lymphocyte
ratio, etc.

http://118.126.104.170/ Liang et al.
(2020a)

Models Based on Whole
Clinical Parameters

A publicly available
dataset consisting of
clinical parameters and
protein profile data

The best classification model
based on clinical parameters
achieved a maximum
accuracy of 89.47%

Serum creatinine, age, absolute
lymphocyte count, and D-dimer
and proteins.

http://14.139.62.220/
covidprognosis/

Sardar et al.
(2021)

Unsupervised hierarchical
clustering and principal
component analysis.

Patients. Rotterdam
cohort samples

An immune-type based
scheme to stratify COVID-19
patients at hospital
admittance into high and low
risk clinical categories

Serum pro-inflammatory, anti-
inflammatory and anti-viral
cytokine and anti-SARS-CoV-2
antibody measurements

https://bitbucket.org/
immunology-emc/
covid_severity_
publication/src/master/

Mueller et al.
(2022)
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different algorithms is shown in Figure 5. We compare the
advantages and disadvantages of different algorithms by using a
box plot, which is composed of five numerical points, namely,
minimum observed value, 25% quantile, median, 75% quantile
and maximum observed value. We can conclude from the figure
that the average value (yellow line) of NN, RF, KNN, SVM, NB,
LR, and LDA is 95.4422%, which is better than Gaussian Bayes
(GB) Classification and Regression Trees (CART). Although, we
can use the above model to analyze the clinical data of patients,
so as to obtain the corresponding prediction results (whether
they have COVID-19 or not). Since machine learning model and
deep learning model are black box models, we need to study
their interpretability more, so that we can understand the
mechanism of model prediction and its practicability more
easily. In addition, we can combine clinical data with medical
imaging data to build a comprehensive model. The problems are
analyzed from the multi-modal perspective by integrating
various disciplines.

ARTIFICIAL INTELLIGENCE DISCOVERY
OF DISEASE TREATMENTS

At present, COVID-19 has spread all over the world. The
cunning virus is constantly mutating and posing a serious
threat to human health in the world. It means the use of
Artificial Intelligence to identify the host protein and the
possible targeting mechanism of the COVID-19 protein has
important implications for prevention and treatment of
COVID-19. Das et al. (Das et al., 2021) proposed a
computational scheme for reconstructing the host virus
protein-protein interaction network, using host proteins from
17 important signaling pathways to investigate possible
targeting mechanisms of Severe Acute respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) proteins. The results showed that

Non-structural Proteins (NSP3) and Structural Protein (Spike)
were the most influential proteins in interacting with multiple
host proteins. The Mitogen-activated Protein Kinase (MAPK)
pathway is the most severely affected pathway in SARS-COV-2
infection. Some proteins involved in multiple pathways are
highly concentrated in host Protein-Protein Interactions
(PPI) and are mainly targeted by multiple viral proteins. The
most prominent drug molecules highlighted in the study are
arsenic trioxide, dexamethasone and hydroxychloroquine,
which may play an important role in preventing deaths. Yaar
et al. (Yaar et al., 2021) used Deep Learning (DL), Random
Forest (RF), and Gradient Boosted Trees (GBTs) were used to
predict the relationship between disease severity and protein in
93 samples (60 COVID-19 patients, 33 controls) and 370
variables from open websites. The study identified TGB1BP2
in cardiovascular group II and MILR1 in inflammatory group as
the two most important proteins associated with disease
severity. Compared with other algorithms, the proposed
model (GBTs) achieves the best prediction of disease severity
based on protein. The results also suggest that changes in blood
protein associated with the severity of COVID-19 can be used
for disease surveillance, early diagnosis and treatment.

In addition, Artificial Intelligence can also be used to discover
effective drugs to treat COVID-19. Kong et al. (Kong et al., 2020)
described a Web server that can predict binding patterns between
COVID-19 targets and ligands, including small molecules,
peptides and antibodies. The server provides a friendly
interface and binding pattern visualization for the results,
which makes it a useful tool for discovering COVID-19 drugs.
Wang et al. (Wang, 2020) effectively provided possible treatment
options for the outbreak of COVID-19 infectious diseases
through computer-aided drug design. This study found that
some drugs can act as inhibitors of the major proteases in
novel coronavirus, including Carfilzomib, lopinavir et al.
Contribute to rational drug design for COVID-19 major
proteases. Beck et al. (Beck et al., 2020) used a pretrained
Deep-Learning-based drug targeting interaction model, namely
molecular converter-drug targeting interaction (MT-DTI), to
identify commercially available drugs that act on SARS-COV-2
virus proteins. An antiretroviral drug used for the treatment and
prevention of Human Immunodeficiency Virus (HIV) was found
to be the best compound, with an inhibitory effect of 94.94 nm
against SARS-CoV-2 3C-like proteases. Ton et al. (Ton et al.,
2020) introduced a new Deep Learning platform, Deep Docking
(DD). The DD combined with Glide can be used to quickly
estimate the docking fraction between 1.3 billion chemical
structures and the new SARS-CoV-2MPro active site, so that
drugs with higher docking fraction can be found compared with
known protease inhibitors. Beata et al. (Beata et al., 2020) used
Cryo-electron tomography and molecular dynamics simulation
were used to help us understand SARS-CoV-2 infection and
develop safe vaccines.

At last. Senior et al. (Senior et al., 2020) trained a Neural
Network to accurately predict the distance between residue pairs,
which conveyed more information about the structure than
contact prediction, and determined the most likely three-
dimensional shape of the protein through energy

FIGURE 5 | Model comparison of EHR data. Using a box plot to reflect
the classification characteristics of different models. The NN,RF,SVM, NB, LR
and LDA are better than other models.
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minimization. This adds to our understanding of the COVID-19
and helps us develop effective treatments for patients with
COVID-19. Schaarschmidt et al. (Schaarschmidt et al., 2017)
analyzed protein prediction using Coevolution and Machine
Learning methods, compared it with previous CASP
experiments, and discussed the results of structure prediction
and prediction provided on finite target sets. They found that in

more than half of the targets, especially those with many
homologous sequences, the accuracy was more than 90%, and
in some cases the best predictors were 100% accurate. In
conclusion, AI can help us get out of the COVID-19 sooner
or later!

Figure 6 shows the genome organization of SARS-COV-2.
The organization of a genome is the linear sequence of genetic

FIGURE 6 | SARS-COV-2 genome. The number line represents the number of amino acids, and different colors represent different Protein Fragments.

FIGURE 7 |Mathematical model. The picture shows four classic models of infectious diseases, Susceptible-Infected model (SI), Susceptible-Infected- Susceptible
model (SIS), Susceptible-Infected-Recovered model (SIR), Susceptible-Exposed-Infected-Recovered-Dead model (SEIRD), with each letter representing a state. For
example, SEIRD model represents susceptible, infected, exposed, recovered, and dead.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8453058

Wang et al. Review of COVID-19 Using AI

23

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


material (DNA/RNA) and its division into specific functional
segments. We can use Artificial Intelligence to extract some
Protein Fragment. And compared with SARS-COV genome
tissue. In experiments, Although the SARS-COV genome is
very similar to that of SARS-COV-2, we know that the DNA/
RNA of the two viruses are very different by measuring the
editing distance. Finally, The Protein Fragments (PF) such as PF1,
PF2, etc. were extracted and the amino acid (aa) numbers of bases
on different fragments was obtained. As shown in Figure 6,
different colors represent different PF, each PF contains a
different number of amino acids, for example, the red line is
the first Protein Fragment (PF1), which consists of 4,395 amino
acids. Using Artificial Intelligence to study the COVID-19
genome will help enhance our understanding of the virus’s
genes and speed up the development of specific drugs and
vaccines against COVID-19. In addition, we can also carry out
different experiments to screen different drugs, the effect of
clinical treatment, and get the best treatment drugs and methods.

ARTIFICIAL INTELLIGENCE PREDICTIONS
OF COVID-19 PANDEMIC

As we all know, the rapid spread of the COVID-19 has brought
public health departments in some countries to the brink of
collapse, with shortages of basic medical equipment such as
Intensive Care Unit (ICU) beds, ventilators, masks and
protective suits. Therefore, a reasonable AI prediction model
plays an important role in predicting the future development
trend of COVID-19, formulating scientific and reasonable
prevention and control measures, consolidating the existing
epidemic prevention achievements, maintaining the safety of
life and property of the public and stabilizing the social
development order (Foppa et al., 2017).

At present, the most important COVID-19 prediction models
at home and abroad mainly focus on traditional mathematical
models, such as Susceptible-Infected model (SI), Susceptible-
Infected- Susceptible model (SIS), Susceptible-Infected-
Recovered model (SIR), Susceptible-Exposed-Infected-
Recovered model (SEIR), Susceptible-Infected-Recovered-Dead
model (SIRD), Susceptible-Exposed-Infected-Recovered-Dead
model (SEIRD), etc., and popular machine learning models
(such as Linear Regression model, Polynomial Regression
model, Support Vector Machine model, Artificial Neural
Network model, etc.). The traditional mathematical model
refers to the mathematical analysis of the transmission mode,
transmission speed and transmission range of infectious disease
on the basis of population number, and expresses it in the form of
differential equations. Treating infectious diseases from a
mathematical perspective can reveal the internal model and
potential structure of epidemic control, and contribute to an
in-depth understanding of the transmission dynamics of
infectious diseases and the potential effects of different public
health intervention strategies (Rahimi et al., 2021). As the World
Health Organization puts it, real-time mathematical models play
a key role in responding to outbreaks. Supplementary Appendix
SA shows some basic mathematical models, their specific

differential equations and parameter meanings. Figure 7
shows some basic mathematical models.

Apparently, these are basic mathematical models, and because
COVID-19 is subject to so many uncertainties, cultural,
economic, political and sociological are critical to understand
the epidemic. Therefore, only by taking into account various
factors as much as possible, such as seasonal influence, in-and-out
rate of national population, infection rate of latent population,
ICU beds in hospital, efficiency of receiving and treating, etc. this
model can be closer to the actual situation and simulate the real
effect. Supplementary Appendix SB shows the current epidemic
prediction models and their respective strengths and weaknesses.
For example, Wang et al. (Jia et al., 2020) introduced an extended
SIR model, which combined real-time isolation measures and
expanded the SIR model to adapt to the real-time changing
transmission rate in the population, and covered the effects of
different epidemic prevention measures. Ivorra et al. (Ivorra et al.,
2020) proposed a new θ-SEIHRD model (not SIR, SEIR, or other
general models) to simulate the propagation of infectious
diseases. The model takes into account known characteristics
of COVID-19, such as the presence of undetected infectious cases
and the different infectious characteristics of hospitalized
patients. The method also takes into account the fraction θ of
detected cases relative to the total number of actual infections, the
need for hospital beds can be estimated, and so on. The SEIQR
model proposed by Mandal et al. (Mandal et al., 2020). They
introduced isolation levels and government interventions, such as
lockdown, media coverage of social distancing, and improved
public health, to reduce disease transmission. Since many people
had little information about the COVID-19 virus in the early
stages of the epidemic, Zhao et al. (Zhao et al., 2021) considered
that information could influence human behavior, thus
influencing the dynamic transmission process of the epidemic
layer. Therefore, the proposed SEIR/ V-UA model incorporates
an information mechanism to better fit the future development
trend of COVID-19.

In addition to mathematical models, the Machine Learning
model shown in Supplementary Appendix SC has also become
an important tool for researchers (Chimmula and Zhang, 2020;
Rustam et al., 2020). One application of Neural Network is for
time series prediction algorithm. Neural Network can learn the
behavior of time-related data, and can predict the future value.
Oliveira et al. (de Oliveira et al., 2021) proposed an Artificial
Neural Network model, in which an ANN model was applied to
predict the number of confirmed COVID-19 cases and deaths, as
well as the time series for the next 7 days in Brazil, Portugal and
the United States. Mohimont et al. (Mohimont and Chemchem,
2020) mainly studied a number of models based on CNN, and
also proposed a layered transfer learning scheme. Finally, good
national and regional accuracy is obtained, and the performance
of ordinary CNN is improved. It is now integrated into a COVID-
19 surveillance and prediction instrument. Leslie (Leslie and
Yeager, 2020) developed a predictive model for the outbreak
of COVID-19 in Canada using deep learning (DL) models. The
model uses recursive Long Short-Term Memory (LSTM)
networks to adapt to the nonlinearity of a given COVID-19
data set, which can overcome the limitations of traditional time
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series prediction techniques and produce the latest results on time
data. Bhimala et al. (Bhimala and Patra, 2021) assessed the
relationship between weather factors and COVID-19 cases,
and established a predictive model using deep learning model
LSTM. The results show that the multivariate LSTMmodel based
on temperature time series data performs well in the high
humidity regions of Kerala, Tamil Nadu and West Bengal. It
shows that certain high humidity areas are more conducive to the
outbreak of COVID-19.

The next, some classical time series prediction models are also
favored by researchers. Time series models Autoregressive
Integrated Moving Average (ARIMA) and Seasonal
Autoregressive Integrated Moving Average (SARIMA) were
used to predict COVID-19 pandemic trends in the top 16
countries with 70–80% of the global cumulative cases
(ArunKumar et al., 2021). The results showed that SARIMA’s
predictions were more realistic than ARIMA’s, confirming the
existence of seasonality in COVID-19 data. ARIMA, Brownian
exponential smoothing and RNN-LSTM were compared
(Guleryuz, 2021). It is found that the ARIMA model can fit
the new outbreak situation well. Molin et al. (Molin et al., 2020)
compared and analyzed many models, and found that in all
scenarios, the models ranked from the best to the worst in
accuracy were Support Vector Regression (SVR), Stacking
Ensemble Learning, ARIMA, CUBIST, RIDGE, and RF
models. Of course, these models have their advantages and
disadvantages. Mathematical model with the combination of
machine learning model could become a hotspot of research
on the future, Zhong team (Yang et al., 2020) considered each
province between the flow of population, and use the modified
SEIR model and LSTM model, proves the rationality of China’s
strict control measures, according to the analysis of China’s the
outbreak at its peak in late February 2020, By the end of April
2020, it showed a gradual decline. A 5-day delay would triple the
size of the outbreak in mainland China. Lifting quarantine in

Hubei will result in a second epidemic peak in Hubei province in
mid-March 2020 and extend the epidemic until late April, as
confirmed by Machine Learning predictions. The dynamic SEIR
model can effectively predict the peak and magnitude of the
COVID-19 epidemic. The control measures implemented on 23
January 2020 are essential to reduce the eventual scale of the
COVID-19 epidemic.

Finally, we proposed a T-SIRGAN model to predict the future
trend of the epidemic (Wang et al., 2022). Due to the lack of data
volume, we used Generative Adversarial Networks (GAN) to
amplify the data, and replaced the random noise of GAN with the
noise regulated by SIR model. Then, Transformers are used to
predict the future trends of COVID-19 based on the generated
synthetic data. We found that this model performs well compared
to LSTM, ARIMA, Decision Tree Regression, SVM, K Neighbors
Regression and other models. In addition, the development trend
of COVID-19 next month was successfully fitted with an error of
0.0035 MSE, as shown in Figure 8 and Figure 9 shows the model
structure of the Transformer model for predictive tasks.

To sum up, the fusion of classical mathematical model of
infectious diseases and deep learning model will be a research
direction in the future, and the advantages of both can be
combined to make a more accurate prediction of the future
trend of COVID-19. We also need to study the transmission

FIGURE 8 | Prediction results of our model. The vertical axis represents
the number of global confirmed cases. The red lines are fitted trends, the
purple lines are actual cases, and the orange lines are predicted trends over
the next month.

FIGURE 9 | Transformer model structure diagram. Transformer models
have Input, Output, Attention mechanisms and Encoder-Decoder
architecture. In our T-SIRGAN prediction module, the encoder models the
relationships among orders in the sequence, and the decoder learns the
variable representation vector.
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mechanism of COVID-19 from all angles, including season,
temperature, demographic, social, economic, medical,
educational and political. Make timely predictions and
implement the best control measures to stop the spread of
COVID-19.

ARTIFICIAL INTELLIGENCE
CONSTRUCTION OF TELEMEDICINE
PLATFORM
There are many ways of detecting COVID-19. In addition to
nucleic acid tests, clinical manifestations, CT images, etc. In
recent years, with the development of 5G technology,
telemedicine has gained great development space. We can
check our health status with some smart devices. This allows
us to see what’s going on in our bodies without leaving the house,
and if something goes wrong, we can treat it immediately and
prevent it from getting worse. Wosik et al. (Wosik et al., 2020)
introduced the role of telemedicine in three stages of American
medical service: 1) Home clinics 2) Mitigated the proliferation of
pandemic hospitals 3) Post pandemic recovery. The COVID-19
pandemic is forcing all health systems, hospitals and clinics to
quickly implement telemedicine services, and telemedicine’s time
has come. Due to the large gap between urban and rural medical
conditions, Hirko et al. (Hirko et al., 2020) pointed out that the
rapid implementation of telemedicine plan in rural areas in
response to the COVID-19 pandemic would solve the gap in
rural medical conditions to a great extent. In order to build a
telemedicine platform, it is necessary to obtain user information
in the data system of mobile phone suppliers. Leslie et al. (Leslie
and Yeager, 2020) proposed to promote the openness of data so as
to promote the construction of telemedicine platform. A full
spectrum of researchers will need to be mobilized to understand
and respond to the challenges posed by the epidemic.

Apparently, not only the germ of theory, but also Rao et al.
(Srinivasa Rao and Vazquez, 2020) proposed a Machine Learning
algorithm to collect travel history and common symptoms
through online surveys based on smartphones. The data
collected can be used to assist in the initial screening and early
identification of possible COVID-19 infections. Thousands of
data points can be collected and processed through an Artificial
Intelligence (AI) framework that can ultimately assess individuals
at risk of contracting the virus and categorize them into no risk,
lowest risk, medium risk, and high risk. Cases identified in high-
risk groups can be isolated earlier, reducing the chance of
transmission. Turer et al. (Turer et al., 2020) recommended to
use Electronic Personal Protective Equipment (EPPE) to protect
employees and preserve Personal Protective Equipment (PPE)
during the COVID-19 pandemic, as well as to provide rapid
emergency care to low risk patients. Tucker et al. (Tucker, 2020)
provided a remote patient monitoring solution for COVID-19
patients (Get Well Loop). Minimizing the exposure rate of
COVID-19 patients. Remote patient monitoring is an effective
way to manage COVID-19 patients at home.

Telemedicine platforms should provide users with the latest
epidemic trends, remind them to take appropriate prevention and

control measures, and help users check whether they have had
close contact with confirmed cases. If the user has physical
discomfort, can immediately call the police or emergency call,
so as to get the corresponding isolation and treatment. In the
future, the popularization of telemedicine can not only alleviate
the shortage of hospital resources during the epidemic, but also
monitor the activities of the incubation period population in real
time, facilitating screening and controlling the spread of the
epidemic. Of course, the premise is to get users’ permission,
and protect the security of users’ information, to prevent the use
of illegal elements (Islam et al., 2020).

DISCUSSIONS AND FUTURE RESEARCH
DIRECTIONS

Above all, Artificial Intelligence technology plays an extremely
important role in the prevention and control of COVID-19,
especially in the field of clinical medicine, it can quickly
identify the patient’s CT and X-ray images to diagnose the
type of pneumonia patients. To learn the clinical data of
patients, find out the clinical features of COVID-19 patients,
and predict the current severity level, so as to send a warning
message to the medical staff. However, this study argues that
there are still some challenges regarding the application of
Artificial Intelligence algorithms in the field of medicine
(Mohamadou et al., 2020).

First of all, the main challenge of COVID-19 detection
is the problem of data imbalance. Due to the scarcity of
lung image data of COVID-19 patients, the development
model cannot be evaluated and tested on a large number of
data sets, and the best Artificial Intelligence algorithm
cannot be selected. This requires us to establish an open
and shared data set for researchers to train and test models
(Islam and Islam, 2020). Secondly, there is still a lack of
available label data, and extending existing data sets or
using a small number of samples in model training are the
current strategies that must be chosen. However, most
current models are weakly supervised methods, because
manual tagging of imaging data is time-consuming and
expensive. In the future, we may need unsupervised deep
learning models and transfer learning methods to process
imaging data. It can not only ensure the accuracy of the
algorithm, but also break the limitation of labeled data.
Moreover, the diagnosis of medical imaging using artificial
intelligence requires sufficient evidence to prove its
correctness, because artificial intelligence is regarded as
a black box. Thus, the interpretability of artificial
intelligence models is of importance in the field of
medicine. Finally, medical images cannot fully reflect
whether COVID-19 is really infected or not, and a
model needs to be established from a multimodal
perspective. Artificial Intelligence can learn from Multi-
modal clinical data to introduce more intelligence to the
medical systems to capture the characteristics of disease,
so as to obtain reliable results for COVID-19 diagnosis. To
develop a more efficient and versatile system to achieve
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better clinical medical purposes (Alamo and Daniel, 2020),
(Rahman and Sarker, 2021).

In addition, Artificial Intelligence also plays an extremely
important role in the discovery of drugs, vaccines, choice of
treatment and the medical staff of risk assessment. In the future
work, we will not only go toward the direction of more intelligent
and precise, but also we need to explore other applications of
Artificial Intelligence and modeling for COVID-19 in healthcare
(Rahman and Sarker, 2021), (Ricci et al., 2021), (Bhargava and
Bansal, 2021). Only in this way, COVID-19 pandemic can be
conquered as soon as possible. Finally, we can also use Artificial
Intelligence technology to make reasonable predictions of the
future development trend of COVID-19, so as to formulate the
corresponding prevention and control measures. The British
statistician George E.P.Box once said, “All models are wrong,
but some models are useful.” The prediction models of the
COVID-19 epidemic are also the same, where simple models
of the early stages of the growing epidemic can still serve as
reference information and provide the basis for more complex
transmission models. However, it is not possible to say which
model fully matches the spread of COVID-19, so the prediction
model is only a way to provide us with early warning, and we
should treat it with caution (Ulhaq et al., 2020).

Regarding the development direction of infectious disease
dynamics models, this study believes that the combination of
mathematical model and machine model learning is the main
trend of future development, which can not only improve the
adaptability of the model, but also increase the scientific
rationality of simulation prediction. Secondly, it is necessary to
fully grasp themain factors affecting the development trend of the
epidemic, including population migration, seasonal factors,
isolation control measures, etc. (Ahmad et al., 2020), and they
should be integrated into the model, so as to better fit the spread
of the epidemic in reality. Finally, we will explore Multi-modal
integration, and future research should incorporate data from
other sources, such as social media, mass media.

CONCLUSION

One and a half years have passed since the COVID-19 outbreak.
During this period of time, vaccines and new treatments have been
come out one after another. However, the COVID-19 virus is very
cunning. It is constantly mutating in different countries and regions
based on local natural geographical environment, population
immunity and other factors, seriously threatening human life and
health. With the development of Artificial Intelligence technology,
more and more researchers are committed to fighting COVID-19
virus through Artificial Intelligence. This paper reviews five aspects of

Artificial Intelligence’s the interpretation ofmedical images,modeling
of patient clinical data, finding effective drugs to cure patients,
predicting the future development trend of epidemic, and building
a remote intelligent medical platform. It also introduces the Artificial
Intelligence algorithm used in five major aspects, the data sets used,
and evaluates the limitations and advantages of the model. Although
the current model has made some achievements, there are still great
challenges for the future, especially the openness of data sets and the
generalization ability ofmodels.Multimodalmodels will be one of the
main research models in the future. In the end, models just provide
some advice and information. The most important thing is to rely on
our concerted efforts to protect ourselves, cooperate with the
government’s epidemic prevention policies, and actively vaccinate.
Only in this way can we defeat COVID-19 at an early date.
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Representation Learning:
Recommendation With Knowledge
Graph via Triple-Autoencoder
Yishuai Geng1, Xiao Xiao2*, Xiaobing Sun1* and Yi Zhu1
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Yangzhou University, Yangzhou, China

The last decades have witnessed a vast amount of interest and research in feature
representation learning from multiple disciplines, such as biology and bioinformatics.
Among all the real-world application scenarios, feature extraction from knowledge
graph (KG) for personalized recommendation has achieved substantial performance for
addressing the problem of information overload. However, the rating matrix of
recommendations is usually sparse, which may result in significant performance
degradation. The crucial problem is how to extract and extend features from additional
side information. To address these issues, we propose a novel feature representation
learning method for the recommendation in this paper that extends item features with
knowledge graph via triple-autoencoder. More specifically, the comment information
between users and items is first encoded as sentiment classification. These features
are then applied as the input to the autoencoder for generating the auxiliary information of
items. Second, the item-based rating, the side information, and the generated comment
representations are incorporated into the semi-autoencoder for reconstructed output. The
low-dimensional representations of this extended information are learned with the semi-
autoencoder. Finally, the reconstructed output generated by the semi-autoencoder is
input into a third autoencoder. A serial connection between the semi-autoencoder and the
autoencoder is designed here to learn more abstract and higher-level feature
representations for personalized recommendation. Extensive experiments conducted
on several real-world datasets validate the effectiveness of the proposed method
compared to several state-of-the-art models.

Keywords: personalized recommendation, autoencoder, semi-autoencoder, representation learning, collaborative
filtering

1 INTRODUCTION

The success of machine learning algorithms and artificial intelligence methods heavily depends on
the feature representation learning of original data (Bengio et al., 2013; Zhuang et al., 2017a). In
recent decades, feature representation learning has attracted a vast amount of attention and research
from multiple disciplines, such as biomedicine and bioinformatics (Wei et al., 2019; Li et al., 2021),
computer vision (Kim et al., 2017), knowledge engineering (Liu et al., 2016), and personalized
recommendation (Zhuang et al., 2017b; Zhu et al., 2021). In real-world applications, feature
representation learning is considered to obtain the different explanatory factors of variation
behind the data (Locatello et al., 2019).
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For nearly three decades, effective computational methods
have accelerated drug discovery and played an important role in
biomedicine, such as predicting molecular properties and
identifying interactions between drugs/compounds and their
target proteins. In early years, quantum mechanics
(Hohenberg and Kohn, 1964), such as density functional
theory (DFT), was used to determine the molecular structure
and calculate properties of interest for a molecule. However, the
quantum computational method usually consumes tremendous
computational resources and takes hours to days to calculate the
molecular properties (Ramakrishnan et al., 2015), which hinders
their applications to the fields of high-throughput screening.
Nowadays, the powerful ability to learn representation and
efficiently recommend algorithms has received significant
attention. A key challenge is to learn useful molecular
representation information from the huge molecular dataset.

Among all the informatics-related application scenarios, with
the rapid development of the Internet, there is an urgent demand
for personalized recommendation to tackle the information
overload problem (Zhang et al., 2017). Notably, many
successful recommendations systems share aspects of feature
representation learning and have been widely applied in many
online services such as electronic commerce (Ma et al., 2020) and
social networks (Botangen et al., 2020). Existing methods for
recommendation systems can roughly be categorized into three
classes: content-based recommendation, collaborative filtering
(CF), and hybrid methods (Batmaz et al., 2019). The content-
based recommendation methods learn the descriptive features of
items, calculate the similarity between new items and user-liked
items based on these features, and generate the final
recommendation (Lops et al., 2019). The collaborative filtering
methods discover the inclinations of users by considering the
user’s historical behavior and produce recommendations (Dong
et al., 2021). Hybrid recommendation methods leverage multiple
approaches together and try to combine the advantages of these
approaches.

Recently, collaborative filtering methods have achieved
superior performance for the advantages of effectiveness and
efficiency, which have far-ranging consequences in practical
applications of recommendation systems (Su and
Khoshgoftaar, 2009). Most of the traditional collaborative
filtering methods are based on matrix factorization (MF),
which combines good scalability with predictive accuracy (Luo
et al., 2020). The main intuition behind these approaches is to
decompose the rating matrix into user and item-based profiles,
which allows the recommendation system to treat different
temporal aspects separately (Yehuda et al., 2009). However,
MF-based methods have inherent limitations in feature
representation learning for the recommendation, which
prevent further development of these approaches.

On the other hand, deep learning techniques have recently
achieved great success in the computer vision and natural
language processing fields. Such techniques show great
potential in learning feature representations. Therefore,
researchers have begun to apply deep learning methods to the
field of recommendations (Salakhutdinov et al., 2007). They use a
restricted Boltzmann machine instead of the traditional matrix

factorization to perform the CF, and Georgiev and Nakov,(2013)
expanded the work by incorporating the correlation between
users and between items. In addition, Wang et al. (2015),
proposed a hierarchical Bayesian model that uses a deep
learning model to obtain content features and a traditional CF
model to address the rating information. These methods, based
on deep learning techniques, more or less make
recommendations by learning the content features of items.
These methods are not applicable when we are unable to
obtain the contents of items. Therefore, enhancing the
effectiveness of feature learning is significant. Recent studies
have shown that deep neural networks can learn more abstract
and higher-level feature representations (Yi et al., 2018), which
has made remarkable progress in improving recommendation
performance (Chae et al., 2019). For example, He et al. (2017)
proposed a general recommendation framework called Neural
Network-based Collaborative Filtering, in which a deep neural
network is utilized for learning the interaction between user and
item features. As we can see, among all the deep neural network-
based recommendation methods, many frameworks are realized
on top of the autoencoder model, which is one of the most
successful deep neural networks and has also been actively
adopted as a CF model recently (Shuai et al., 2017; Zhuang
et al., 2017c; Chae et al., 2019; Zhong et al., 2020). For
example, Zhang et al. proposed a hybrid collaborative filtering
framework based on an autoencoder that incorporated auxiliary
information for semantic rich representations teaching (Shuai
et al., 2017).

Though the autoencoder-based methods have achieved fairly
good performance for personalized recommendation, there are
two main problems that prevent the further development of these
methods. The first is the utilization of auxiliary information from
users or items, since the rating matrix in real-world applications is
usually very sparse, which inevitably leads to a significant
recommendation performance degradation. Most existing
methods only introduce some obvious attributes, such as the
age, gender, and occupation of users, or the title, release date, and
genres of items. The key factors of collaborative filtering, such as
the reviews of items by users, have rarely been incorporated into
the autoencoder-based networks. The second problem is the
optimization of neural networks. When training models to
incorporate side information about items and users, the
dimensions of the input and output layers are required to be
equal in autoencoder-based networks, which greatly limits the
scalability and flexibility of networks.

To address these problems, we propose a feature
representation learning method for personalized
recommendation in this paper which extends items features
with knowledge graph via triple-autoencoder (KGTA for
short). Specifically, the comment information between users
and items is first encoded as sentiment classification. These
features are then applied as the input to the autoencoder for
generating the auxiliary information of items, which can be used
to introduce the comment information from users to items to
solve the incorporating problem of auxiliary information.
Secondly, the item-based rating, the side information, and the
generated comment representations are incorporated into the
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semi-autoencoder for reconstructed output. It aims to address the
second problem, that the dimensions of the input and output
layer are required to be equal. Finally, the reconstructed output
generated by the semi-autoencoder is input into a third
autoencoder for personalized recommendation. Experimental
results on several datasets demonstrate the effectiveness of our
proposed method compared to other state-of-the-art matrix
factorization methods and deep-based methods.

In summary, the main contributions of our work can be
distilled into the following:

• To incorporate the key information between users and
items, the comments from each user for item are
encoded and reconstructed as the auxiliary information

• To optimize the neural networks, a serial connection of
semi-autoencoders and autoencoders are designed to learn
more abstract and higher-level feature representations for
personalized recommendation

• Extensive experiments on several datasets were conducted
to confirm the effectiveness of the proposed method
compared to other state-of-the-art matrix factorization
methods and deep-based methods

2 RELATED WORK

In this section, we survey the related works of feature
representation learning, personalized recommendation
methods, and collaborative filtering1,2.

2.1 Feature Representation Learning
Feature representation learning refers to learning data
representations that make it easier to extract useful
information in downstream machine learning tasks (Bengio
et al., 2013). The last decades have witnessed a vast amount of
research and application on feature representation learning in
multiple disciplines. For example, in the field of biomedicine and
bioinformatics, Wei et al. (2019) developed a bioinformatics tool
for the generic prediction of therapeutic peptides. An adaptive
feature representation learning method is proposed for different
peptide types in the tool. Alshahrani et al. (2017) proposed a
knowledge representation learning method with symbolic logic
and automated reasoning, which can be applied to biological
knowledge graphs for tasks such as finding candidate genes for
diseases and protein-protein interactions. Li et al. (2021)
proposed a triplet message mechanism to learn molecular
representation based on graph neural networks, which can
complete molecular property prediction and compound-
protein interaction identification with few parameters and high
accuracy.

Besides the fields of biomedicine and bioinformatics, feature
representation learning has also been widely applied in other
fields such as computer vision (Kim et al., 2017), knowledge

engineering (Liu et al., 2016) and personalized recommendation
(Zhuang et al., 2017b). For example, Wang et al. proposed a high-
resolution representation learning network for visual recognition
problems (Wang et al., 2020), which can maintain the
representation being semantically strong and spatially precise.
Xu et al. (2018) proposed an aggregation method for node
representation learning that can adapt neighborhood ranges to
nodes. It is especially suitable for graphs that have subgraphs with
diverse local structures. Niu et al. (2020) proposed a rule and
path-based joint embedding method for representation learning
on knowledge graphs. The Horn rules and paths are leveraged in
this method to enhance the accuracy and explainability of
representation learning.

2.2 Personalized Recommendation
In recent decades, with the rapid development of the Internet,
personalized recommendations have provoked a vast amount of
attention and research (Qian et al., 2013). The advances in
personalized recommendation have far-ranging consequences
in many online services applications such as electronic
commerce (Ma et al., 2020) and social networks (Li et al.,
2017). For example, in Facebook, Gupta et al. (2020)
conducted a detailed performance analysis of recommendation
models on server-scale systems present in the data center.
Botangen et al. (2020) proposed a probabilistic matrix
factorization-based recommendation method that considers
geographic location information for designing an effective and
efficient Web service recommendation.

Good feature representations of data do contribute to many
machine learning tasks, such as personalized recommendation.
For example, Geng et al. (2015) proposed a deep method to learn
the unified feature representations for both users and images.
This representation from large, sparse, and diverse social
networks obviously improves the recommendation
performance. Liu et al. (2019) proposed a joint representation
learning method for multimodal transportation
recommendations, which aims to recommend a travel plan
that considers various transportation modes. Ni et al.
proposed a recommendation model based on deep
representation teaching (Ni et al., 2021). It contained
information preprocessing and feature representation modules
to generate the primitive feature vectors and the semantic feature
vectors of users and items, respectively.

2.3 Collaborative Filtering
In personalized recommendations, the collaborative filtering (CF)
methods aim to discover users’ preferences through the
interactions between users and items. Existing CF methods
can be roughly categorized into two classes: matrix
factorization methods and deep neural network methods.

In the matrix factorization methods, these methods have
difficulty in processing sparse data and have poor
generalization ability, but they have low time and space
complexity and good scalability. Lee et al. proposed the
classical non-negative matrix factorization (NMF) model (Lee
and Seung, 2001), which can decompose the rating matrix into
user and item profiles. Along this line, Sun et al. proposed a

1http://files.grouplens.org/datasets/movielens/ml-100k.zip.
2http://files.grouplens.org/datasets/movielens/ml-1m.zip.
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Probabilistic Matrix Factorization (PMF) model that scales
linearly with the number of observations and performs well on
very sparse and imbalanced datasets (Salakhutdinov and Mnih,
2007). In light of PMF, Salakhutdinov et al. also proposed a
Bayesian Probabilistic Matrix Factorization (BPMF) model
(Salakhutdinov and Mnih, 2008), which controlled model
capacity automatically by placing hyper-priors over the hyper-
parameters to avoid over-fitting. Koren proposed combining the
factor and neighborhood models for a more accurate
recommendation performance (Koren, 2008), which further
extends the model to exploit both explicit and implicit
feedback by the users. In recent years, to address the problem
that the attributes of users are often scarce for reasons of privacy,
Rashed et al. (2019) proposed a nonlinear co-embedding
GraphRec model, which treats the user-item relation as a
bipartite graph and constructs generic user and item attributes
via the Laplacian of the user-item co-occurrence graph.

Recently, due to the powerful ability of deep learning methods,
remarkable progress has been made in learning higher-level and
abstract representations for personalized recommendations
(Wang et al., 2015; Yu et al., 2019). These methods have
nonlinear transformation and powerful representation learning
ability, but poor interpretability, large data requirements, and
extensive hyper-parameter tuning. For example, He et al. (2017)
proposed a general recommendation framework that designs a
deep neural network to learn the interaction between a user and
item features. Meanwhile, to address the cold start problem and
improve performance for personalized recommendations, Ni et al.
(2022) proposed a two-stage embedding model to improve
recommendation performance with auxiliary information. In this
method, two sequential stages, graph convolutional embedding and
multimodal joint fuzzy embedding, are designed to fully exploit item
multimodal auxiliary information. Among all the deep learning
methods for personalized recommendation, we realize many
successful frameworks on top of the autoencoder, which is one of
the most successful deep neural networks and has also been actively
adopted as a CF model recently (Shuai et al., 2017; Zhuang et al.,
2017c; Chae et al., 2019; Zhong et al., 2020). For example, Zhuang et al.
(2017c) proposed a dual-autoencoder model for recommendation,
which simultaneously learns the user-based and item-based features
with the autoencodermodel. Zhu et al. (2021) proposed a collaborative
autoencoder model for personalized recommendation, which learns
the hidden features of users and items with two different autoencoders
for capturing different characteristics of the data.

3 PRELIMINARIES

3.1 Autoencoder
The autoencoder model aims to minimize the distance between
the input and the reconstructed output. The basic autoencoder
network (Bengio, 2009) generally consists of an input layer, an
output layer, and one or more hidden layers. Given the input as
x ∈ Rm×n, when there is only one hidden layer, the encoding and
decoding layer of autoencoder can be represented as follows:

ξ � f Wx + b( ), (1)

x′ � g W′ξ + b′( ), (2)
where W ∈ Rk×m, W′ ∈ Rm×k and b ∈ Rk×1, b′ ∈ Rm×1 are the
weighting matrices and bias vectors, respectively. f and g are the
nonlinear activation functions of the encode and decode layers,
respectively. In our experiments, the sigmoid and identity
functions are introduced as f and g. The objective function of
the autoencoder can be shown as follows:

min
W,b,W′,b′

Jr � x′ − x
���� ����2. (3)

3.2 Semi-Autoencoder
In recent years, many autoencoder-based recommendation
methods have achieved fairly good results with the advantages
of no labeling requirement and fast convergence speed. However,
the classic autoencoder model has the restriction that the
dimensions of the input and the output layer must be equal,
which has a great impact on introducing auxiliary information for
solving the sparse problem of the rating matrix.

To address this problem, a semi-autoencoder model was
proposed and generalized into a hybrid CF method for rating
prediction (Shuai et al., 2017). Compared with traditional
autoencoders, the input layer of semi-autoencoders is longer than
the output layer, so semi-autoencoders can be utilized to capture
different nonlinear feature representations and reconstructions flexibly
by extracting different subsets from the inputs, and it is easy to
incorporate side information into the input layer effectively to improve
the item feature representation for better recommendation
performance. The whole framework of the semi-autoencoder is
shown in Figure 1, the left and right parts of Figure 1 show the
two cases in which the output layer is longer than the input layer and
the output layer is shorter than the input layer, respectively. We
observe that the basic framework of a semi-autoencoder is the same as
that of a classical autoencoder model, which also includes an input
layer, an output layer, and one ormore hidden layers. Furthermore, in
the right part of Figure 1, we can observe that the shorter output layer
is the reconstruction of certain parts of the input, and the remaining
part in the semi-autoencoder model is auxiliary information to learn
better feature representations for addressing the sparse problem of the
rating matrix.

4 METHODOLOGY

The whole framework of our proposed recommendationmethodwith
knowledge graph via triple-autoencoder (KGTA for short) is illustrated
inFigure 2, which encompasses threemain components. The first one
is the representational learning of the comment information between
users and items. The comments from users on each item are divided
into positive and negative categories. Then the first autoencoder was
introduced to reduce the dimensionality of this comment information.
The second one is the learning of all the auxiliary information. A semi-
autoencoder is utilized to incorporate the side information, the
extended features from the knowledge graph, and the generated
comment features into the item-based rating. Finally, the low-
dimensional output of the semi-autoencoder is input into the
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third autoencoder. Different from the semi-autoencoder model that
only approximates the item-based rating; the third component tries to
reconstruct all the input for the recommendation3,4.

In the following, first, the commonly used notations in this
paper are listed in Table 1, and then, the model of KGTA is
described in detail.

4.1 Notations
Some important notations used in this paper and their
descriptions are listed in Table 1.

FIGURE 1 | Illustration of a semi-autoencoder where the input and output layers can be inconsistent. The length of the input layer is longer/shorter than the output
layer in the left/right part.

FIGURE 2 | Whole framework of the proposed KGTA

3http://www.librec.net/download.html.
4http://github.com/hoyeoplee/MeLU.
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4.2 Comment Information Features
The personalized recommendation is to predict the interest of a
user in an item based on the rating matrix information. Since
the rating matrix in real-world scenarios is usually very
sparse, many methods have introduced auxiliary
information to address this problem. However, most
existing methods only introduce some obvious attributes
and ignore the key factors, such as the comments from
users on each item, of collaborative filtering. To address
this problem, our method learns the comment information
features between users and items with the first autoencoder.
The details can be seen in the upper left of Figure 2.

In our method, we take natural language text as the input for
sentiment classification and output emotion score ∈ 1,−1{ }. −1
represents negative emotion and 1 represents positive emotion.
Our method has two stages from input sentence to output score,
which are described below.

In the first stage, we perform the following preprocessing
steps on the comment text before we feed it into the model.
First, we remove all the digits, punctuation symbols, and
accent marks, and convert everything to lowercase. Secondly,
we then tokenize the text using the WordPiece tokenizer
(Schuster and Nakajima, 2012). It breaks the words down into
their prefix, root, and suffix to better handle unseen words.
Finally, we add the [CLS] and [SEP] tokens at the appropriate
positions.

In the second stage, we build a simple architecture with just a
dropout regularization (Srivastava et al., 2014) and a softmax
classifier layer on top of the pretrained BERT layer. The upper
left corner of Figure 2 shows the overall architecture of our
sentiment classification model. There are four main stages.
The first is the processing step, as described earlier. Then we
compute the sequence embedding from BERT. We then apply
a dropout with a probability factor of 0.1 to regularize and
prevent over-fitting. Finally, the softmax classification layer
will output the probabilities of the input text belonging to
each of the class labels such that the sum of the probabilities is

1. The softmax layer is just a fully connected neural network
layer with the softmax activation function. The output node
with the highest probability is then chosen as the predicted
label for the input.

Given the rating matrix R ∈ Rm×n, where m and n denote the
number of users and items respectively. For each item, the
comments from each user are classified by sentiment using
BERT (Devlin et al., 2018) first, and then we obtain the
comment feature vector ci for each item. Since the
comment information from users to items is usually
sparse, just like the rating matrix, the first autoencoder
was introduced for feature dimensionality reduction and
representation learning. The process of the first
autoencoder can be shown as follows:

ξs � f WsC + bs( ), (4)
s � g Ws′ξs + bs′( ), (5)

where Ws ∈ Rk1×n and Ws′ ∈ Rn×k1 are the weighting matrices,
bs ∈ Rk1×1 and bs′ ∈ Rn×1 are the bias vectors, f and g are the
functions of nonlinear activation, and k1 is the feature
dimension of hidden units. The hidden features of the first
autoencoder, i.e., the low-dimensional representations of s,
are denoted as SI, which are incorporated into the second
semi-autoencoder for capturing different representations and
reconstructions by sampling different subsets from all the
inputs.

4.3 Co-Embeddings With the
Semi-Autoencoder
After obtaining the reconstructed comment features, a semi-
autoencoder is introduced to incorporate the item rating
vector ri and other auxiliary information such as attributes
vector ai, reconstructed comment features si, and the KG-
extended features li. The input of the semi-autoencoder can be
defined as con(ri, ai, si, li)

con ri, ai, si, li( ) � connection of ri, ai, si, and li. (6)
The con(RI, AI, SI, LI) ∈ Rn×(m+y+k1+k2) refers to the

connection of RI, AI, SI and LI, where RI ∈ Rn×m represents
the item-based rating vectors, AI ∈ Rn×y represents the
attribute vectors of all items, which are the obvious attributes
such as the title, release date, and genres in movie
recommendation datasets, SI ∈ Rn×k1 represents the
reconstructed comment features for all n items, LI ∈ Rn×k2

represents the language vectors collected from the knowledge
graph and autoencoder. Considering that the experiments are
conducted on MovieLens datasets, the languages of the movies
are obtained from open KGs such as DBpedia, and the languages
are encoded with the multi-hot method and input into the
autoencoder model for learning the hidden representations LI.
The process of LI learning is consistent with that of SI, the details
can be seen in the upper right of Figure 2.

Then the con(RI, AI, SI, LI) is input into the second
autoencoder, i.e. a semi-autoencoder, to learn the compressed

TABLE 1 | Important notations used in this article and their descriptions.

Notations Descriptions

R The rating matrix
A The attributes vectors of all items
S The reconstructed comment vectors of all items
L The language vectors of all items
R′ The prediction matrix R′ ∈ Rn×m

m The number of users
n The number of items
ru The column of rating matrix
ri The row of rating matrix
k The features dimension of hidden units
h The number of hidden units
xi The ith instance of original input
xi′ The reconstructed output of xi
ξ The hidden feature representation matrix
W, W′ The map and remap weight matrix
b, b′ The map and remap bias vectors
• The element-wise product of vectors or matrices
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reconstructed output, the encode stage of the semi-autoencoder
can be defined as (7)

ξ � f Wcon RI, AI, SI, LI( ) + b( ), (7)
where W ∈ R(m+y+k1+k2)×k and bI1 ∈ Rk are the weight
matrix and bias item, respectively, k is the feature
dimension of the hidden layer, and f is the sigmoid
function for nonlinear activation. Then, the decode stage
can be shown as follows:

Rsemi′ � g W′ξ + b′( ). (8)
Similarly, where W′ ∈ Rk×m and bI2 ∈ Rm are the weight

matrix and bias item of decoding layer respectively, g is the
identity function for the activation function. Notably, the SGD
(stochastic gradient descent) method is utilized in the semi-
autoencoder for model optimization. The details can be seen
in the bottom left of Figure 2.

4.4 Triple-Autoencoder for
Recommendation
From Eqs. 7, 8, we can obviously observe that the output of a
semi-autoencoder model is the reconstruction of a certain
part of the inputs. When computing the loss function, the
result of the semi-autoencoder is a reconstruction of the
rating matrix RI instead of the whole input
con(RI, AI, SI, LI), which may result in a performance
degradation for recommendation. To this end, we design
the third autoencoder model to learn the reconstruction of
the whole input, that is triple-autoencoder for the
recommendation. The encode and decode stage of the
triple-autoencoder can be shown as follows:

R′ � g Wt′f WtRsemi′ + bt( ) + bt′( ). (9)
To avoid over-fitting, the ℓ2 norm regularization of the weight

matrix Wt and Wt′ is added to the objective function, which can
be shown as follows:

Jr � Wt‖ ‖22 + Wt′
���� ����22( ). (10)

Thus, the objective function of the triple-autoencoder can be
shown as follows:

Jitem � R′ − Rsemi′( )���� ����2 + αJr, (11)
where α is the trade-off parameter that controls the balance
of regularization terms. To minimize the distance between
the input Rsemi′ and the output R′, the deviations are
minimized to obtain representations for the
recommendation. When the model converges, the output
layer of the triple-autoencoder is the prediction matrix R′
for the recommendation, the details can be shown in the
bottom right of Figure 2. Details of the proposed KGTA are
summarized in Algorithm 1.

Algorithm 1. Recommendation with knowledge graph via triple-
autoencoder (KGTA)

5 EXPERIMENTS

In this section, experiments are conducted on two datasets,
MovieLens 100K and MovieLens 1M, to evaluate the effectiveness
of our proposedKGTA. In the following, we first introduce the details
of two experimental datasets. Secondly, the compared methods,
including the MF-based and deep neural network-based methods,
are given. In addition, the evaluationmetrics such asMAE andRMSE
are also presented. Then, the comparative experimental results and
their observations are presented in detail. Finally, the main properties
such as parameter sensitivity are analyzed for certain datasets.

5.1 Datasets
The details of two real-world datasets used in the experiments are
listed in Table 2, including rating density, the number of users,
items, and ratings.

MovieLens 100K1: it is a well-known and most widely applied
dataset for evaluating recommendation performance. There are
943 users and 1,682 movies with 100,000 ratings on a scale of 1–5,
and each user rated at least 20 movies. In MovieLens 100K, item
attributes such as the title, release date, and genres of movies are
also provided for improving recommendation performance.

MovieLens 1M2: It is an enlarged version of the Movielens
100K dataset, which has also been widely applied in the
recommendation. It has 6,040 users and 3,706 movies with
1,000,209 ratings. Similar to Movielens 100K, the ratings are
scaled from 1 to 5, and auxiliary information such as movie title,
release date, and category are also provided.

5.2 Compared Methods and Evaluation
Metrics
5.2.1 Compared Methods
To evaluate the effectiveness of the proposed KGTA, the
following matrix factorization methods, meta-learning
methods, and deep neural network methods were conducted:

• Non-negative matrix factorization (NMF) (Lee and Seung,
2001). It is the basic matrix factorization method for the
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recommendation. In our experiments, we use the
generalized Kullback–Leibler divergence as the update
rules in NMF.

• Singular value decomposition plus (SVD++) (Koren, 2008).
It exploits explicit and implicit feedback from users to
combine the latent factor model and the neighborhood
model into a unified model for the recommendation.

• Meta-learned user preference estimator (MeLU) (Lee et al.,
2019). It estimates user preferences based on a small number
of items to alleviate the cold start problem for the
recommendation.

• Meta-learning method for cold start recommendation on
Heterogeneous Information Networks (MetaHIN) (Lu et al.,
2020). It creates a semantic-enhanced task constructor for
exploring rich semantics, and a co-adaptation meta-learner
with semantic- and task-wise adaptations within each task.

• Neural collaborative filtering (NCF) (He et al., 2017). It is a
general recommendation framework that uses designs a
deep neural network to learn the interaction between a
user and item features.

• Item-based recommendation via autoencoder (AutoRec)
(Sedhain et al., 2015). It is the first autoencoder
framework in the recommendation, which learns the
effective feature representations of items for collaborative
filtering.

• Hybrid Collaborative Recommendation via Semi-
Autoencoder (HCRSA) (Shuai et al., 2017). It is a hybrid

collaborative filtering framework based on the semi-
autoencoder, which incorporates auxiliary information
for semantic rich representation learning.

• Personalized recommendation with knowledge graph via
dual-autoencoder (PRKG) (Yang et al., 2021). The side
information of items is extracted from DBpedia and
encoded into low-dimensional representations in this
method, and a semi-autoencoder is introduced to
incorporate this auxiliary information for the
recommendation.

5.2.2 Implementation Details and Parameter Settings
The PREA toolkit (Lee et al., 2014) is adopted for the
implementation of MF-based methods such as NMF and
SVD++. For the methods of MeLU, MetaHIN, and HCRSA,
we re-compile the source code as 4, 5, and 6. The default
parameters of these three methods remain unchanged as
reported in the original paper in the MovieLens dataset. For
the method AutoRec, we select an item-based autoencoder that
can achieve better performance than the user-based autoencoder.
For fairness, the parameters of AutoRec and PRKG are consistent
with ours in all two datasets. In our experiments, we set α = 0.1
after some preliminary tests for all datasets. The maximum
number of iterations in gradient descent is set at 300. The
number of hidden units is set at 300 for all datasets5,6.

5.2.3 Evaluation Metrics
In the experiments, we introduced root mean square error
(RMSE) to measure the performance of our proposed KGTA
and all compared methods in the recommendation, which can be
shown as (12). It is worth mentioning that the smaller value of
RMSE indicates better results.

RMSE �

����������������∑
ru,i∈TestSet

ru,i − ru,i′( )2
TestSet| |

√√
, (12)

where ru,i and ru,i′ represent the original rating matrix and the
predication matrix, respectively.

5.3 Experimental Results
For each data set, the percentages of 50%, 60%, 70%, and 80% are
sampled into training data, respectively, and the rest are used for
test data. The experimental results of RMSE on the MovieLens
100K and MovieLens 1M datasets are recorded in Table 3 and
Figures 3, 4 respectively. Notably, all the results are obtained by

TABLE 2 | Details of the three datasets used in our experiments.

Dataset Number of users Number of items Number of ratings Rating density (%)

MovieLens 100K 943 1,682 100,000 6.3
MovieLens 1M 6,039 3,883 1,000,209 4.27

TABLE 3 | The performance of RMSE on MovieLens 100K and MovieLens 1M
datasets.

Datasets Methods Proportion of training data

MovieLens 100K - 50% 60% 70% 80%
NMF 0.991 0.976 0.965 0.960
SVD++ 0.943 0.927 0.915 0.909
MetaHIN 1.062 1.046 1.041 1.032
MeLU 1.154 1.144 1.132 1.121
AutoRec 1.023 1.003 0.981 0.964
HCRSA 0.948 0.937 0.923 0.919
PRKG 0.928 0.917 0.907 0.899
KGTA 0.859 0.847 0.840 0.832

MovieLens 1M NMF 0.928 0.925 0.921 0.918
MetaHIN 1.024 0.993 0.965 0.959
MeLU 1.082 1.038 1.008 0.973
NCF 0.914 0.911 0.909 0.907
AutoRec 0.914 0.905 0.896 0.888
HCRSA 0.903 0.892 0.884 0.874
PRKG 0.885 0.875 0.868 0.861
KGTA 0.823 0.814 0.807 0.8

The bold values provided in Table 3 represent the experimental results of our proposed
method (KGTA) and are the best results among all the comparison methods.

5https://github.com/rootlu/MetaHIN.
6https://github.com/cheungdaven/semi-ae-recsys.
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repeating the experiments 5 times and taking the average value.
From all the results, we have the following insightful observations:

• The performance of all recommended methods is improved
with the increase of training data. It is worth mentioning
that meta-learning methods such as MetaHIN and MeLU
have not changed much, which may be due to the meta-
learning methods being designed to alleviate the cold start
problem for the recommendation.

• Generally, among the three types of methods, meta-learning
methods perform the worst, probably because they are
primarily designed to address the cold start problem. The
methods for deep neural networks can achieve more
desirable performance in most cases than both meta-
learning and matrix factorization methods, which reveals
the powerful ability of deep neural networks in learning the
feature representations for personalized recommendation.

• Among all the deep neural network methods for
recommendation, our KGTA is significantly better than
NCF and AutoRec, which shows the superiority of
introducing auxiliary information for addressing the

problem of data sparsity and improving the performance
of personalized recommendations.

• In the method of HCRSA, attributes such as the title, release
date, and genre of a movie are introduced to the semi-
autoencoder model for prediction. From the results listed in
Table 3 and Figures 3, 4, we can observe that our KGTA
consistently outperforms HCRSA, which demonstrates the
superiority of incorporating the key factors of collaborative
filtering, such as the comments from users to items, to
improve the performance of personalized recommendation.

• Although both the methods introduce auxiliary
information, our KGTA outperforms PRKG by up to 7
RMSE points on two well-known datasets, which shows the
advantage of designing a serial connection of semi-
autoencoder and autoencoder for learning more abstract
and higher-level feature representations in the
recommendation.

• Overall, the proposed KGTA performs best in all groups,
which validates the effectiveness of incorporating the key
information between users and items and designing a serial
connection of semi-autoencoder and autoencoder for the

FIGURE 3 | RMSE of our KGTA and compared methods on the MovieLens 100K dataset.

FIGURE 4 | RMSE of our KGTA and compared methods on the MovieLens 1M dataset.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8912659

Geng et al. Recommendation With KG via Triple-Autoencoder

39

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 5 | The parameter influence of the number of hidden layer neurons on our KGTA. (A) The influence performance on MovieLens 100K. (B) The influence
performance on MovieLens 1M.

FIGURE 6 | The parameter influence of the number of epochs on our KGTA. (A) The influence performance on MovieLens 100K. (B) The influence performance on
MovieLens 1M.

FIGURE 7 | The parameter influence of the length of comments on our KGTA. (A) The influence performance on MovieLens 100K. (B) The influence performance
on MovieLens 1M.
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recommendation. It should be noted that KGTA can
achieve stable performance in both MovieLens 100K and
MovieLens 1M. These results demonstrate that our KGTA
can perform well even if the dataset is sparse.

5.4 Parameter Sensitivity
In this section, we investigate the influence of parameters in our
proposed method, including the number of hidden layer neurons,
the number of epochs, and the length of comments in the
training. When one parameter is changed, the others are fixed
in the experiments. The number of hidden layer neurons is varied
from 100 to 800, the number of epochs is altered from 100 to 500,
and the length of comments is sampled from the set {3, 5, 7, 9, 11,
13, 15, 17, 19, 21, and 23}. In the experiments, the validation was
conducted on MovieLens 100K and MovieLens 1M, respectively.
For the number of hidden layer neurons and the number
of epochs, the experiments are conducted with 50%–80% of
the training data. All the results are reported in Figures 5, 6,
and we set the number of epoch = 500 for both datasets, the
number of hidden layer neurons = 300 and
thenumberofhiddenlayerneurons = 400 for MovieLens 100K
and MovieLens 1M, respectively. For the length of comments,
experiments are conducted on 50% of the training data with the
best and most stable parameters configuration of the number of
hidden layer neurons and epoch, all the results are reported in
Figure 7, and we set the length of comments = 5 for both the
datasets.

6 CONCLUSION

In this paper, we propose a feature representation learning
method with a knowledge graph via triple-autoencoder for
personalized recommendation called KGTA. We propose a
serial connection between the semi-autoencoder and
autoencoder methods. In our method, we were able to
incorporate side information distilled from DBpedia for more
useful item feature representations, and the key factors of
collaborative filtering, such as comment information between
users and items, are incorporated into the autoencoder as

auxiliary information. Moreover, the item-based rating and all
the external information are incorporated into the semi-
autoencoder to obtain low-dimensional information
representation. Finally, the reconstructed output generated by
the semi-autoencoder is input into a third autoencoder to learn
better feature representations for personalized recommendation.
Extensive experiments demonstrate the proposed method
outperforms other state-of-the-art methods in effectiveness. In
future work, we will try to achieve superior performance by
incorporating less information and utilizing an attention
network to strengthen the feature integration or without
auxiliary information from the open knowledge base.
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Matching Biomedical Ontologies via a
Hybrid Graph Attention Network
Peng Wang1,2* and Yunyan Hu1

1School of Computer Science and Engineering, Southeast University, Nanjing, China, 2School of Cyber Science and Engineering,
Southeast University, Nanjing, China

Biomedical ontologies have been used extensively to formally define and organize
biomedical terminologies, and these ontologies are typically manually created by
biomedical experts. With more biomedical ontologies being built independently,
matching them to address the problem of heterogeneity and interoperability has
become a critical challenge in many biomedical applications. Existing matching
methods have mostly focused on capturing features of terminological, structural, and
contextual semantics in ontologies. However, these feature engineering-based techniques
are not only labor-intensive but also ignore the hidden semantic relations in ontologies. In
this study, we propose an alternative biomedical ontology-matching framework BioHAN
via a hybrid graph attention network, and that consists of three techniques. First, we
propose an effective ontology-enriching method that refines and enriches the ontologies
through axioms and external resources. Subsequently, we use hyperbolic graph attention
layers to encode hierarchical concepts in a unified hyperbolic space. Finally, we aggregate
the features of both the direct and distant neighbors with a graph attention network.
Experimental results on real-world biomedical ontologies demonstrate that BioHAN is
competitive with the state-of-the-art ontology matching methods.

Keywords: biomedical ontology, ontology matching, graph attention network, embedding, hyperbolic attention

1 INTRODUCTION

Ontology is an explicit, interoperable, extensible, scalable, and formal definition to describe
knowledge as a set of domain vocabularies that contain concepts, relations between concepts,
and individuals of concepts (Ramis et al., 2014). In past decades, various biomedical ontologies, such
as the National Cancer Institute Thesaurus (NCI) (Golbeck et al., 2003), Foundation Model of
Anatomy (FMA) (Rosse and Mejino, 2003), Systemized Nomenclature of Medicine (SNOMED-
Clinical Terms [SNOMED-CT]) (Donnelly et al., 2006), and Uberon (Mungall et al., 2012) have been
widely used for medical data format standardization (Cimino and Zhu, 2006), medical or clinical
knowledge representation and integration (Isern et al., 2012), and medical decision making (De
Potter et al., 2012) to provide standard semantics. With the continuous evolution of biomedical data,
biomedical vocabularies have become complicated and ambiguous, which leads to challenges in
developing biomedical applications. Moreover, new biomedical ontologies are constructed
independently with diverse ways of defining overlapping biomedical terminologies or
components, which also leads to more heterogeneity (Xie et al., 2016). As shown in Figure 1,
the entities are connected via the subClassOf relation, and the equivalent concepts are linked via
dotted lines. It can be found that for the same concept, “blood vessel” in the source and target
ontologies, they are organized and interpreted at different levels of granularity, named conceptual
heterogeneity. In addition, the concepts that share the same morphology “capillary” indicate
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different semantics in different ontologies, which is called
semiotic heterogeneity. To implement interoperability across
biomedical ontologies, discovering semantic relations between
them is critically important (Xue, 2020). Ontology matching is a
key technique to find semantic correspondences between the
elements of different ontologies to achieve interoperability
(Shvaiko and Euzenat, 2011).

Most existing ontology matching methods have focused on
extracting features from terminological, structural, extensional
(individuals of concepts) information, and external resources
(Nezhadi et al., 2011; Otero-Cerdeira et al., 2015; Babalou
et al., 2016; Chauhan et al., 2018). They use logical reasoning
and rule-based techniques to extract sophisticated features, which
are then used to compute the similarities of ontological elements
(i.e., concepts, properties, and individuals) that promote ontology
matching.

These feature-based methods (e.g., AML (Faria et al., 2013),
FCA_Map (Zhao et al., 2018), LogMap (Jiménez-Ruiz and
Cuenca Grau, 2011), and XMap (Djeddi and Khadir, 2014))
elaborate features of data to evaluate element similarity and
derive semantic correspondences. However, the features in one
ontology usually cannot be transferred to others. Consequently,
the effectiveness and generality of those ontology matching
methods vary significantly (Kolyvakis et al., 2018).

Recently, graph-based representation learning (Kipf and
Welling, 2016; Hamilton et al., 2017) has become a powerful
model for learning vector representations of graph-structured

data. In graph neural networks (GNNs), the representation of a
node is learned through recursively aggregating the
representations of its local neighboring structure and
propagation of features from neighboring nodes. Several
studies (Chen et al., 2017; Wang Z et al., 2018; Wu et al.,
2019; Sun et al., 2020) exploit GNNs for embedding-based
matching in knowledge graphs (KGs), and have achieved
promising results. However, existing GNN-based matching
models still face some problems in ontology matching. First,
ontology matching may face semantic imbalance because the
distributions and amounts of semantic descriptions in different
ontologies are generally different. We argue that if we can enrich
the ontologies by using the metadata, given axioms, and
auxiliary descriptions from external domain resources, and
incorporate a rich set of semantic relationships, the derived
ontologies can be matched with higher precision and recall. To
overcome this problem, we consider designing an ontology-
enriching method. Second, a distinguishable characteristic of
biomedical ontologies, compared to open-domain knowledge
bases such as YAGO (Suchanek et al., 2007), Wikidata
(Vrandečić and Krötzsch, 2014), and DBpedia (Lehmann
et al., 2015), is their domain specificity. These biomedical
ontologies often have rich hierarchical structures that
systematically organize biomedical concepts into categories
and subcategories from general to specific. Figure 2 shows
an example of a hierarchical structure in different biomedical
ontologies. The hierarchical structures of the corresponding

FIGURE 1 | Heterogeneity of biomedical ontologies.
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pairs in different ontologies are similar to some extent. For
example, the hierarchy (through subClassOf relation) of
“pulmonary vasculature” in UBERON and “Vasculature of
lung” in FMA is similar, whereas the terminologies are
morphologically different. Therefore, capturing such
hierarchical structures would be useful for identifying aligned
concepts and improving the matching performance. Finally,
since different ontologies usually have heterogeneous schemas
and incompleteness (Schneider and Šimkus, 2020), the
matching pairs usually have some dissimilar neighboring
structures. Even though we assume that the ontologies to be
matched are complete, because of the schema heterogeneity, the
non-isomorphism in the neighboring structures from different
ontologies is still inevitable. As shown in Figure 2, the one-hop
neighbors of the matching pair (“pulmonary vasculature” and
“Vasculature of lung”) are different, while they share the same
distant neighbor “anatomical structure.” Motivated by the
phenomenon that the relevant information could appear in
both direct and distant neighbors of matching concepts, the
aggregated structural semantics of a concept should include not
only its local neighbors, but also the related distant neighbors. In
addition, to keep the matching performance, we use an attention
mechanism to realize the semantic relatedness of different

neighbors, which could further discover and aggregate
important neighbors.

To address these issues, we propose a biomedical ontology
matching framework, BioHAN, with a hybrid graph attention
network. The underlying idea is to first enrich and refine the
ontologies to be matched with the given axioms and auxiliary
semantic descriptions from external resources, such as UMLS
(Bodenreider, 2004). Then, the neighborhood information is
aggregated within multiple hops in the enriched ontologies,
capturing both local and global features, into hyperbolic
representations that are complementary to each other. Both
representations are jointly optimized to improve ontology
matching performance. The main contributions of this study
are listed as follows:

• We propose a matching method BioHAN for biomedical
ontologies. BioHAN first enriches the ontologies for
matching via the axioms and logical rules. Then it
further learns the representations with the hierarchical
structure to realize ontology matching.

• We propose a lightweight and effective way to enrich and
refine ontology with the metadata, axioms, and auxiliary
semantic information from external resources, which is

FIGURE 2 | Hierarchical structure in biomedical ontologies UBERON (left) and FMA (right).
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helpful to discover and simplify the hidden and implicit
semantics in ontologies.

• To capture the hierarchical features in an ontology, we
leverage hyperbolic graph convolution layers to encode
the parent and child concepts in the hyperbolic space.

• To further address the heterogeneity and better capture the
semantics of concepts, we introduce an attention
mechanism to weigh different neighbors and incorporate
multi-hop neighbors to learn both the local and global
hierarchical structures.

• We implement our proposed matching method and
conduct systematic experiments on biomedical ontologies
datasets. The evaluation of the Ontology Alignment
Evaluation Initiative 2021 (OAEI 2021) shows that our
method achieves significantly promising results.

The study is structured as follows. In Section 2, we describe
relevant preliminaries of ontology matching and the overview of
our proposed method. In Section 3, we illustrate the ontology-
enriching operation, including ontology preprocessing and
augmenting. In Section 4, the implementation details of our
proposed matching method BioHAN are presented. Section 5
describes our experiments, the results, and the experimental
analysis and discussion. In Section 6, related work about
ontology matching is systematically reviewed and introduced.
Section 7 summarizes our main findings, and presents
perspectives on future work.

2 PRELIMINARIES AND METHOD
OVERVIEW

2.1 Ontology Matching
Let C be the set of concepts, R be the set of relations, and T �
C × R × C be the set of triples or statements, then a biomedical
ontology can be represented as O � (C,R, T ). The matching
between two ontologies Os and Ot isM � {mk|mk� <ei, ej, r, s> }
(Euzenat and Shvaiko, 2007), where M is an alignment; mk is a
correspondence < ei, ej, r, s> ; ei and ej are elements from Os and
Ot, respectively; r is the semantic relation between ei and ej; and
s ∈ [0, 1] is the confidence about a correspondence. Therefore, an
alignment M is a set of correspondences mk.

2.2 Graph Neural Networks
Graph neural networks (GNNs) are effective for various
applications with graph-structured data (Zhou et al., 2020). A
GNN framework usually has a graph encoder and a graph
decoder, and its input is an adjacency matrix and features
nodes and edges. The encoder uses the graph structure to
propagate and aggregate information across nodes, and learns
embeddings for local structure. A graph decoder is often used to
compute similarity scores for all node pairs. Depending on the
graph properties and aggregation strategies, some GNN
frameworks have been proposed.

The vanilla GCN is a popular variant of the GNN (Kipf and
Welling, 2016), in which the hidden representation of node i at
the l-th (l > 0) layer h(l)i is computed as

h l( )
i � σ ∑

j∈N i∪ i{ }

1
cij
W l( )

i h l−1( )
i

⎛⎝ ⎞⎠ (1)

where σ(·) is an activation function; W(l) is the weight matrix of
the l-th layer and cij is for normalization; and N i denotes the
neighbor set of node i. The vanilla GCN encodes node i as the
mean pooling of the representations of its neighbors and node i
itself from the last layer. The input vector fed to the first layer is
denoted as h(0)i .

A graph attention network (GAT) (Veličković et al., 2018) is a
novel convolution-style neural network with masked self-
attention layers. In contrast to the GCN, it allows for
implicitly setting different weights to nodes of the same
neighboring node. Moreover, analyzing the learned attention
weights could improve interpretability. Formally, the attention
weight α(l)ij ∈ R between i and j at the l-th layer is computed as
follows:

α l( )
ij � exp LeaklyReLU aT Whi‖Whj[ ]( )( )

∑j∈N i
exp LeaklyReLU aT Whi‖Whj[ ]( )( ) (2)

Here, ·T denotes transposition; a is an attention weight matrix; ‖ is
the concatenation operation; and LeaklyReLU is used to achieve
nonlinear transformation.

2.3 Method Overview
As shown in Figure 3, our proposed BioHAN comprises two
phases: ontology enriching and ontology matching. Given a
biomedical ontology, the ontology enriching phase first
preprocesses the ontology with the metadata and axioms,
which complements the informative representations hidden in
the ontology. It also explores matching seeds between the
processed ontologies by supplementing some missing
semantics through external resources. The ontology matching
phase takes as input the derived ontology. Structures of ontologies
are captured via graph attention networks for structural
representation learning. Moreover, the lexical semantics of the
concepts in ontologies are used, providing complementary clues
for ontology matching.

3 ONTOLOGY ENRICHING

In this section, we will discuss ontology preprocessing and
augmenting operation to enrich the initial ontology.
Specifically, we first preprocess the ontology to discover the
hidden semantics and represent them clearly. Then, we use
ontology augmentation strategies to enrich the ontologies.

3.1 Ontology Preprocessing
We notice that there are two common facts in biomedical
ontologies. On the one hand, some semantic information is
hidden or unclear, which is expressed by complex axioms or
ontology semantics. However, to further understand an
ontology, such information is useful. On the other hand,
some triples are used to describe the building and version
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information for an ontology. These statements simply
increase the size of the ontology and are useless for the
definitions of concepts and properties. Therefore, we
conduct a preprocessing operation to refine ontologies.
Specifically, we make the complex expressions of ontologies
much simpler and clearer.

For the ontology language RDFS and OWL, they provide
mechanisms for describing groups of related resources and the
relationships between these resources, where OWL is an
extension of RDFS, providing description logic-based
primitives with richer expressive ability and stronger
reasoning ability. In an ontology, containers (e.g., rdf:Bag,
rdf:Seq, and rdf:Alt) and collections (e.g., rdf:List) are used to
describe a set of resources in RDFS and OWL. They simplify the
ontology expressions but hide some indirect semantics. We
clearly define the semantics of the members in containers
and collections, and then delete those redundant and
complex statements. Table 1 shows the range of property
“physical state” through a collection rdf:List in RDFS format.
Through the RDFS description, we can know that for the
property “physical state” in the ontology “http://bioontology.
org/ontologies/fma,” its values could be one of “Gas,” “Liquid,”
“Semi-solid,” and “Solid.” Each value is represented via rdf:li.
However, the members would be represented as anonymous
nodes while parsing the ontology, such as
<physicalstate, range, BN> , <BN, range, Liquid> , where
BN denotes an anonymous node with no specific meaning.
These statements are difficult to understand directly.

Therefore, it is necessary to formulate this implicit
knowledge, such as <physicalstate, range, Liquid> .

In addition, to further mine the semantic descriptions in the
biomedical ontologies, a rule-based reasoning method is
proposed to discover the hidden information.

1) Enriching domain and range: given a property pa, let pb be the
sub-property of pa. Then we can infer that all semantics of the
domain and range of pa could be inherited by pb. According to
this rule, the semantics of sub-properties will be defined more
comprehensively.

2) Enriching the concept axioms: given a concept axiom (e.g. owl:
oneOf, owl:intersectionOf, owl: unionOf, owl:equivalentClass,
etc.), its equivalent semantics could be rewritten by following
rules. If a complex concept A l B is defined by the axiom owl:
intersectionOf, where the complex concept has a sub concept C,
A M C and B M C could be added to the ontology. If one
complex concept A k B is defined by the axiom owl:unionOf,
where the complex concept has a super concept C, so CM A and
C M B could be added to the ontology. Similarly, we can also
rewrite semantics of owl:oneOf and owl:equivalentClass.
Therefore, complex semantics of concept axioms could be
clearly defined.

3) Enriching the property axioms: given a property axiom (e.g.
owl:SymmetricProperty, owl: TransitiveProperty, owl:
equivalentProperty, etc.), relevant semantic extension could
be realized by following rules. If a property p is declared by
axiom owl:SymmetricProperty and there is a statement
<A, p, B> , a new statement <B, p, A> could be added to
the ontology. If a property p is declared by axiom owl:
TransitiveProperty and there are statements <A, p, B>
and <B, p, C> , then a new statement <A, p, C> could be
added to the ontology.

4) Enriching owl:sameAs axiom: given a statement
<A, owl: sameAs, B> , then the equivalent individuals A
and B could share their semantic information.

5) Enriching properties in the concept hierarchy: given
<p, rdfs: domain, A> and <B, rdfs: subClassOf, A> ,
we can infer an implicit statement <p, rdfs: domain, B> .
According to this rule, the property’s constraints about one
concept could be extended to its sub-concepts.

FIGURE 3 | Framework of BioHAN.

TABLE 1 | Example of ontology collection.

< rdf:Description rdf:about = “http://bioontology.org/ontologies/fma/physical
state”
< rdfs:range >
< rdf:List >
< rdf:li>Gas< /rdf:li>
< rdf:li> Liquid< /rdf:li>
< rdf:li>Semi-solid< /rdf:li>
< rdf:li>Solid< /rdf:li>
< rdf:List >
< /rdfs:range >
< /rdf:Description>
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3.2 Ontology Augmentation
Even though the derived ontologies have clearly specified the hidden
semantics, they are still insufficient to some extent. Some semantic
relationships are still missing, which may lead to the sparse problem
of ontology structure. To alleviate this problem, we introduce several
augmentation heuristics to enrich biomedical ontologies through the
external domain resources, that is, UMLS.

3.2.1 Concept Augmentation
We first explore the anchors between the ontologies to be
matched and the external resources, which is performed by
using a simple string-based technique. Then, for one concept
in ontologies, the relative semantics (e.g. rdfs:label, owl:
annotation, owl:equivalentClass, etc.) of its anchored concept
in external resources could be transferred and added to the
ontology. Concept augmentation can significantly enrich
ontologies with available information from external resources.

3.2.2 Neighborhood Augmentation
Relations between source and target concepts could also be
derived from the anchored concepts in external resources.
Specifically, if there is a relation between concepts i and j of
the external resource, their anchors i′ and j′ are also linked by this
relation. The goal is to reduce the semantic gap between
ontologies by adding the missing structural information and
solving the problem of sparse ontology graphs.

With the augmented ontologies, ourmatching framework enables
sufficient learning of ontology representations. To match the
concepts in ontology Os and ontology Ot, we use graph pooling to
obtain the embeddings of concepts. After investigating different
graph pooling methods (Hamilton et al., 2017; Ying et al., 2018),
we choose mean-pooling to capture information across concept
neighbors. Finally, the graph neural networks take the enriched
ontologies Os and Ot as input to find the alignments.

4 MATCHING METHOD

In this section, we first embed the elements in ontologies to low
dimension vectors, and then discuss the hyperbolic graph
attention mechanism. Subsequently, we elaborate on the
matching computation and the model training in detail.

4.1 Embedding
The terminological descriptions of concepts within a
biomedical ontology are generally represented by a
sequence of words. We leverage deep learning-based
embedding methods (Peters et al., 2018; Devlin et al., 2019)
to derive a fixed-size terminological description embedding
for each concept. In this study, we choose BioBERT, a high-
quality medical language model pre-trained on PubMed
abstracts and clinical notes (Lee et al., 2020), to encode
concepts. Considering the domain specificity of biomedical
ontology, the embedding models toward a specific task can
provide significant benefits (Alsentzer et al., 2019; Peng et al.,
2019), and are much more appropriate than the general pre-
training language model. The embeddings are used as the

initial states h0,E of concepts, where E indicates the low-
dimensional vectors in the Euclidean space.

4.2 Hyperbolic Graph Attention
Conventional GNNs typically capture the graph via message
propagation to embed nodes into the Euclidean space. However, it
could lead to the distortion of hierarchical structures (Nickel and
Kiela, 2017). Hence, we transfer the node representations to a
hyperbolic embedding space that can better capture the
hierarchical characteristics of tree-like ontologies. In this study, we
use a specific model, hyperbolic graph attention network (HGAT)
(Zhang et al., 2021), which jointly implements both the
expressiveness of a GAT and the superiority of hyperbolic
geometry in capturing the hierarchical features. Moreover, multi-
hop neighbors are also encoded into concepts, to comprehensively
consider a broader context of concepts and alleviate the heterogeneity
problem. The network architecture is shown in Figure 4.

4.2.1 Hyperbolic Feature Projection
The hyperbolic graph attention layer first establishes transformation
between the tangent (Euclidean) and Poincaré ball, which is carried
out by exponential and logarithmic maps. Specifically, we project the
vector in a tangent space to a hyperbolic manifold through the
exponential map, whereas the logarithmic map reverses the
hyperbolic representation back to the Euclidean space. The initial
hyperbolic embedding h0,Hi of node i is

h0,H
i � expK

o 0, h0,E
i( ) (3)

where K determines the constant negative curvature −1/K(K > 0)
and the tangent space is centered at point o. To transform the
hyperbolic features from one layer to the next layer, we follow the
following computation:

hl,H
i � W l⊗Kl−1hi−1,Hi( )⊕Kl−1bl (4)

where ⊗ and ⊕ are hyperboloid matrix multiplication and
addition, respectively.

4.2.2 Hyperbolic Attention Mechanism
To measure the importance of various neighbors and aggregate
the neighbors’ features to the center node according to their
semantic weights, a self-attentionmechanism is performed on the
nodes. To that end, one parameterized weight matrixW is applied
to all nodes to conduct the shared linear transformation. Then,
the attention coefficient can be represented with a self-attention
weight a on the nodes as follows:

eij � aT W hhi , h
h
i( )( ) (5)

eij indicates the importance of node j to node i.
In addition, GAT considers only the local neighbors (i.e., one-hop

neighbor nodes) for graph attention, while distant neighboring nodes
can also contribute semantics to the central node. To reduce the
effects of non-isomorphism in neighboring structures, we introduce
distant neighboring information. Without loss of generality, we
aggregate both the one-hop and two-hop neighboring information
in ontologies, obtaining a proximity matrix.
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P � B1 + B2( )/2 (6)
where B is the transition matrix and Bk denotes the adjacency
matrix of k-th hop. Bij = 1/di if there exists an edge between i and j
in the k-th hop, otherwise Bij = 0. Then, Pij denotes the topological
weight that node j exerts on i.

To make coefficients comparable across different concepts, the
attention weights are normalized via the softmax function.

αij � softmax eij( ) � exp eij( )
∑k∈N i

exp eij( ) (7)

Finally, using the topological weights P and applying the
LeakyReLU nonlinearity, the coefficients can be expressed as

α l( )
ij �

exp LeaklyReLU Pij · aT Whi
→‖Whj

→[ ]( )( )
∑k∈N i

exp LeaklyReLU Pij · aT Whi‖Whj[ ]( )( ) (8)

4.2.3 Hyperbolic Attention-Based Aggregation
Similar to GAT, the hyperbolic graph convolution layer
aggregates features from a node’s local neighbors. There is no
notion of a vector space structure in a hyperbolic space, while the
hyperboloidal aggregation requires multiplication by a weight
matrix along with a bias operation. The main idea is to leverage
the logarithmic projection to perform the Euclidean
transformation and aggregation in the tangent space, and then
transfer the obtained vectors back to the hyperbolic space. In
addition, an attention mechanism is applied to learn the semantic
relatedness between the neighboring nodes and the central node.
Then, the neighbors’ features are assembled in accordance with
the learned attention coefficients. The hyperbolic attention-based
aggregation is defined as follows:

AGGK hH( )i � exp ∑
j∈N i

αijlog
K
hHi

hl−1,H
j( )⎛⎝ ⎞⎠ (9)

To avoid semantic loss during the information propagation
and maintain its transitivity between different convolutional
layers, it is also necessary to incorporate the semantics of the
central node itself.

AGGK hH( )i � exp WAGG hH
i + ∑

j∈N i

αijlog
K
hHi

hl−1,H
j( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠

(10)
where WAGG is the aggregated weight matrix, and hHi is the

representation of the central node.
Finally, a non-linear activation function is used to increase the

nonlinear expression ability and further improve the
performance of the model. Specifically, BioHAN first applies
Euclidean non-linear activation in the tangent space and then
projects back to the hyperbolic space.

σ⊕Kl−1 ,Kl hH( ) � expKl
o σ logoKl−1 hH( )( )( ) (11)

The l-th layers of a hyperbolic graph attention layer are

hl,H
i � σ⊕Kl−1 ,Kl AGGKl−1 hl−1,H( )

i
( ) (12)

where −1/Kl−1 and −1/Kl are the hyperbolic curvatures at the (l-1)-th
and l-th layer, respectively. After iterative propagation and update of
representations between layers, the final hyperbolic vector
representations hH can be obtained to represent the concepts.

4.3 Matching
Based on the learned concept representations hH from the
hyperbolic graph attention layers, our matching module takes
as input pairs of concept embeddings from Os and Ot, and then
measures the semantic relatedness with a similarity metric
function, defined as follows:

sim ci, cj( ) � exp
1
t

dK hH
i , h

H
j( )2 − r( )[ ] + 1{ }−1

(13)

where dK (·, ·) is the hyperbolic distance, and r and t are hyper-
parameters. Then we iteratively match the concepts of two different
ontologies using the Stable Marriage algorithm (SM) (Gale and
Shapley, 1962) over the concepts’ pairwise similarities.

4.4 Training
To improve the matching performance of the proposed method,
we jointly consider the reconstruction performance of the

FIGURE 4 | Hyperbolic graph attention layers in BioHAN.
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hyperbolic graph attention network and the matching
performance of the matching module.

For the hyperbolic graph attention network module, the graph
transition matrix of the final output should be as close as possible
to the original graph structure. Therefore, the graph
reconstruction loss should be minimized.

LH � ∑
i,j( )∈E+

p ci, cj( ) + ∑
i,j( )∈E−

ω μ − p ci, cj( )[ ] (14)

where E+ is the set of adjacency concept pairs; E− represents
the corresponding negative samples; μ is the margin value; ω is a
trade-off factor; and [·]+ = max (0, ·).

Then, for the matching module, we minimize the
contrastive matching loss to actualize that the distances
between pre-aligned concepts (positive) are as small as
possible whereas the unmatched (negative) pairs have a
relatively larger distance.

LM � − ∑
i,j( )∈M+

logsim ci, cj( ) − ∑
i,j( )∈M−

log 1 − sim ci, cj( )( )
(15)

whereM+ is the set of seed correspondences between Os and Ot,
and M− denotes the corresponding opposite ones.

The final joint loss function is defined as follows:

L � LH + α · LM (16)
where α is positive hyper-parameters to control the trade-off

among these loss components. The model is trained by
minimizing the overall loss and optimized with an Adam
(Kingma and Ba, 2014) optimizer.

5 EXPERIMENTS

This section reports the experimental results. To verify the
effectiveness of BioHAN, we used Python to implement our
approaches in Pytorch and conduct the experiments on a
computer with an Intel Xeon 4110 CPU, Nvidia 2080Ti GPU,
and 64-GB memory.

5.1 Datasets
The experiments are performed on the biomedical evaluation
benchmark from the Ontology Alignment Evaluation
Initiative 2021 (OAEI 2021), which organizes annual
evaluation campaigns aiming at evaluating ontology
matching technologies. Biomedical ontologies are collected
from the Large Biomedical track in OAEI 2021, including the
Foundational Model of Anatomy Ontology (FMA),
SNOMED CT, and the National Cancer Institute
Thesaurus (NCI).

The FMA is an ontology for biomedical informatics that
symbolically represents the phenotypic structure of the human
body (Rosse and Mejino, 2003). FMA has 78,988 concepts
together with 78,985 isA triples.

The NCI provides reference terminologies for clinical care,
translational and basis research, public information, and
administrative activities (Golbeck et al., 2003). It comprises
66,724 concepts and 59,794 isA triples.

SNOMED CT is a systematically organized collection of
medical terms and provides comprehensive, multilingual
clinical healthcare terminology for clinical documentation and
reporting (Donnelly et al., 2006). It contains 1,22,222 concepts
and 1,05,624 isA triples.

The matching tasks are FMA-NCI, FMA-SNOMED, and
NCI-SNOMED. On account of the primary hierarchical
architecture of ontologies and the deficiency of some other
relations, except the hierarchical structure, we mainly
consider the SubClassOf relationship of these datasets. In
this study, we only focus on identifying one-to-one
equivalence correspondences between concepts. Seed
alignments are extracted from the UMLS (Bodenreider,
2004) and trained as positive samples. The negative
alignments are sampled by randomly modifying one of the
concepts in the positive sample pairs.

5.2 Evaluation Measures
We follow the standard evaluation criteria in OAEI 2021,
calculating the precision (P), recall (R), and F1-measure (F1)
for each matching task. Given a reference alignment set Ref and
mapping correspondences Map, the precision and recall are
calculated as follows:

P � |Map ∩ Ref|
|Map| (17)

R � |Map ∩ Ref|
|Ref| (18)

The F1-measure is the weighted harmonic average of precision
and recall, defined as

F1 � 2 × P × R

P + R
(19)

5.3 Experimental Settings
For our proposed BioHAN, each training takes 1,000 epochs with
the learning rates among {0.01, 0.001, 0.0001}. The embedding
dimension d is set to 128, and the initial input embedding has the
size (d) 512. By default, we stack two hyperbolic graph attention
layers in our model. For the hyperbolic graph attention decoder,
we set r = 2.0, t = 1.0, and apply trainable curvature, which refer to
the parameter configuration inMEDTO (Hao et al., 2021).We set
the trade-off hyper-parameters α1 to 1.0. In addition, for each
seed correspondence, we corrupt it and randomly replace it with
five additional concepts to generate negative mapping pairs.

5.4 Experimental Results
5.4.1 Ontology Matching Results
Table 2 shows the matching results of our proposed model
compared with several matching methods or systems based on
feature engineering and representation learning. The feature
engineering-based top-performing matching systems are
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selected according to the results published in the Large
Biomedical track by OAEI 2021. The comparative
representation learning models are several recent typical
embedding-based entity alignment models (MTransE, GCN-
Align) and ontology matching models (DAEOM, MEDTO).

Compared with the extensively developed feature-based
approaches such as AML, LogMap, and LogMapBio, our
method achieves competitive results across all three tasks. The
proposed BioHAN outperforms these rule-based approaches in
measure R in FMA-NCI and FMA-SNOMED. AML, LogMap,
and LogMapBio heavily rely on lexical features extracted from
ontologies, while using representation learning could better
capture some hidden semantics to discover more complex
matching pairs. We can also observe that entity alignment
models (MTransE, GCN-Align) designed for general
knowledge bases are insufficient for domain-specific ontology
matching. Compared to the representative matching methods
(DAEOM, MEDTO), BioHAN also achieves competitive
performance. The performance difference between MEDTO
and BioHAN validates the importance of hierarchical features.
BioHAN explicitly distinguishes and models the hierarchical
structure, taking into account both the local and global
hierarchical features, and obviously leads to promising results
in biomedical ontology matching.

5.4.2 Effectiveness of Ontology Enriching
To evaluate the effectiveness of the enriching phase, we
further compare the isA triple size during ontology
enriching. The detailed statistics concerning the size of
each ontology matching task are shown in Table 3. Here,
Nodes means the number of ontology entities, and isA is the
edges between nodes with the relation owl: subClassOf in the
ontology graph, while the origin and enriching represents the
change in isA triple size before and after the enriching
operation.

We can observe that the change in the triple size of both the
ontology NCI and SNOMED is explicit, while the FMA remains.
The structure of NCI and SNOMED is sophisticated, and contains

substantive owl:intersectionOf and owl:unionOf property links,
especially SNOMED. Specifically, the owl:intersectionOf
statement describes classes which contain precisely those
individuals that are members of the class extension of all class
descriptions in the list, while the owl:unionOf statement describes
an anonymous class containing those individuals occurring in at
least one of the class extensions in the list.

Moreover, we compare the matching performance between
the proposed BioHAN and its variation BioHAN (w/o OB),
which does not pay attention to ontology preprocessing and
enriching. Results are also shown in Table 2. It is obvious that our
model BioHAN consistently outperforms across these tasks, with
an average increase of 6.0% in the F1 measure. This is attributed
to the critically abundant structural features and implicit
semantics added to ontology, which indicates that hierarchical
information and implicit semantic descriptions contain
considerably representative and critical features for ontology
matching.

5.5 Discussion
5.5.1 Impact of Ontology Enriching
According to the intuition that there are some hidden informative
semantics in ontologies, especially for the complex one, we
propose to enrich the ontology through ontology
preprocessing and complementing. Through the statistics
described in Table 3, numerous relationship descriptions are
implicit but express a well-established role in ontology matching.
Particularly in SNOMED, there are nearly more than twice the
hierarchical relationships after enriching. Through the
comparison of matching performance between BioHAN and

TABLE 2 | Results of ontology matching.

Method FMA-NCI FMA-SNOMED SNOMED-NCI

P R F1 P R F1 P R F1

AML 0.958 0.910 0.933 0.923 0.762 0.835 0.906 0.746 0.818
LogMap 0.940 0.898 0.919 0.941 0.689 0.796 0.954 0.667 0.785
LogMapBio 0.904 0.920 0.912 0.911 0.711 0.799 0.909 0.696 0.88

MTransE 0.627 0.640 0.633 0.505 0.475 0.490 0.254 0.378 0.304
GCN-align 0.813 0.783 0.798 0.763 0.729 0.746 0.745 0.775 0.760
DAEOM 0.882 0.689 0.774 0.719 0.693 0.706 0.891 0.682 0.773
MEDTO 0.944 0.874 0.908 0.871 0.762 0.813 0.901 0.802 0.849

BioHAN 0.930 0.922 0.926 0.898 0.775 0.832 0.911 0.797 0.850
BioHAN (w/o OB) 0.930 0.922 0.926 0.782 0.731 0.756 0.788 0.709 0.746
BioHAN (w/o HB) 0.831 0.822 0.826 0.771 0.729 0.749 0.850 0.711 0.774
BioHAN (w/o AM) 0.860 0.842 0.851 0.819 0.726 0.770 0.864 0.719 0.785
BioHAN (w/o MN) 0.893 0.849 0.870 0.822 0.745 0.782 0.877 0.701 0.779

Bold values represents the best results for the column in which they are located.

TABLE 3 | Summary statistics of ontology enriching.

Ontology Nodes isA (origin) isA (enriching)

FMA 78,988 78,985 78,985
NCI 66,724 59,794 75,454
SNOMED 1,22,222 1,05,624 2,03,942
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BioHAN (w/o OB) shown in Table 2, we can draw the conclusion
that the enriching phase indeed contributes to ontology matching
with the sufficient complements of semantic and structural
information.

5.5.2 Performance Analysis of BioHAN
BioHAN uses the hyperbolic space projection to solve the
intrinsical limitation in encoding complex patterns by its
polynomial expanding capacity. In addition, it captures the
structure of the concept by iteratively aggregating multi-hop
neighborhoods with an attention mechanism. To gain an in-
depth analysis of these components, we further design three
variants of BioHAN: BioHAN (w/o HB), BioHAN (w/o AM),
and BioHAN (w/o MN). BioHAN (w/o HB) replaces the
hyperbolic projection with Euclidean space projection.
BioHAN (w/o AM) removes the attention mechanism and
regards all the neighboring nodes sharing the same weight.
BioHAN (w/o MN) only considers the direct local neighbors
and removes the multi-hop aggregation module in BioHAN.
From the matching results reported in Table 2, we observe
that the full model BioHAN achieves the best performance
across all three matching tasks. It is also worth noting that
both BioHAN (w/o AM) and BioHAN (w/o MN) perform
better than BioHAN (w/o HB), which indicates that the
hierarchical structure of the ontology captures much more
essential and representative semantics. The hyperbolic graph
convolutional layers can effectively encode such semantic
information. By comparing the results of BioHAN (w/o AM)
and BioHAN, it is obvious that the attention mechanism plays a
significant role in solving the hierarchical heterogeneity of
ontologies, which has improved the matching performance of
6.7% in F1 on average. For the multi-hop aggregation, by
contrasting the performances of BioHAN (w/o MN) and
BioHAN, it also exerts an important influence on capturing
the semantics much more precisely than the complex
hierarchical structures of biomedical ontologies. Multi-hop
neighboring aggregation can discover much more complex
matching pairs and has further improved the matching
performance, especially in the measure R with an increase of
5.8% on average.

6 RELATED WORK

6.1 Biomedical Ontology Matching
Traditional feature-based approaches have been investigated for
ontology matching, using terminological, structural, and
semantic features for the discovery of semantically similar
elements. LogMap (Jiménez-Ruiz and Cuenca Grau, 2011)
uses lexical and structural indexes to enhance its scalability.
AML (Faria et al., 2013) also uses various informative features
and domain-specific thesauri to complete ontology matching.
Feature-based matching systems mainly rely on hand-crafted
features to achieve specific tasks. Unfortunately, these methods
will be limited for a given scenario with weak informativeness.
Representation learning has an important impact on ontology
matching. OntoEmma (Wang L et al., 2018) proposes a novel

neural architecture for biomedical ontology matching, feeding
into amounts of definitions and contexts to encode the concepts.
It derives a variety of labeled data for supervised training and
augments entities with complementary descriptions from
external biomedical thesauri to improve the quality of
alignments. MultiOM (Li et al., 2019) models features in
ontologies from multiple views: lexical, structural, and
resource. Then, it optimizes the vectors by limiting the
sampling scope via structural relations in ontologies. Wang
et al. (2021) systematically analyze and verify the effectiveness
of multi-dimensions matching clues, subsequently aggregating
the representation learning clues to boost biomedical ontology
matching.

6.2 Graph Representation Learning
Recently, graph representation learning has gained great attention
as graph neural networks (GNNs) have achieved state-of-the-art
performance in various fields, such as community detection (Gargi
et al., 2011), link prediction (Liben-Nowell and Kleinberg, 2007),
graph alignment (Sun et al., 2018), and node classification (Bhagat
et al., 2011). Some studies (Chen et al., 2017; Wang L et al., 2018)
have used GNNs to achieve graph-embedded entity alignment, as
similar entities often have similar neighborhoods in knowledge
graphs (KG). Considering the attention mechanism, a graph
attention network (Veličković et al., 2018) is proposed to learn
the relatedness and importance propagated from the neighbors to
the centered node. Then the neighboring message is incorporated
with the measured weights. DAEOM (Wu et al., 2020) develops
Siamese graph attention mechanism-based autoencoders to
effectively integrate both the network structure and
terminological description for deep latent representation
learning in ontology matching. Recently, some researchers have
substantiated that data in the form of graphs exhibit a non-
Euclidean latent anatomy (Wilson et al., 2014; Bronstein et al.,
2017). In addition, some recent works (Bronstein et al., 2017;
Nickel and Kiela, 2017) have demonstrated the distinguished
representation ability of hyperbolic manifold to model datasets
with hierarchical layouts, as the hyperbolic geometry performs well
in reflecting hierarchical representations naturally. Inspired by this
insight, numerous research studies focus on investigating the
hyperbolic geometric graph models, such as those by Nickel
and Kiela (2017); Nickel and Kiela (2018); Ganea et al. (2018);
and Hao et al. (2021). MEDTO (Hao et al., 2021) encodes the
hierarchical features of concepts through hyperbolic graph
convolution layers and further captures both local and global
structural information of concepts via heterogeneous graph
layers to learn better concept representations for
ontology matching, and has achieved remarkably competitive
performance.

7 CONCLUSION

In this study, we propose BioHAN for biomedical ontology
matching, a hybrid graph neural network-based auto encoder
to effectively integrate hierarchical structures for latent
representation learning in biomedical ontology matching.
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The proposed framework BioHAN executes ontology
enriching to refine and complement the semantic
information and hierarchical structures. Then it encodes
the geometrical properties of concepts into a hyperbolic
space to capture the hierarchical information through
hyperbolic graph attention layers. We further implement
multi-hop neighboring aggregation to incorporate both the
local and global hierarchical structures with an attention
mechanism to learn better concept representations for
ontology matching. Our experiments conducted on a
variety of biomedical ontologies demonstrate the
effectiveness of BioHAN. Nonetheless, our approach only
considers the subClassOf relationship in the ontology,
which would restrict the capability of graph representation
learning. In the future, it is promising to investigate some
other types of non-isomorphism relations and incorporate the
heterogeneous features into biomedical ontology matching. In
addition, as for the large-scale biomedical ontology, the
matching efficiency would also be taken into account in
future research.
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MLEE: A method for extracting
object-level medical knowledge graph
entities from Chinese clinical records
Genghong Zhao1,2*, Wenjian Gu3, Wei Cai2, Zhiying Zhao4, Xia Zhang1,2* and Jiren Liu1,5*

1School of Computer Science and Engineering Northeastern University, Shenyang, China, 2Neusoft Research of Intelligent
Healthcare Technology, Shenyang, China, 3School of Computer Science and Technology, Harbin Institute of Technology, Harbin,
China, 4Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China, 5Neusoft
Corporation, Shenyang, China

As a typical knowledge-intensive industry, the medical field uses knowledge graph
technology to construct causal inference calculations, such as “symptom-disease”,
“laboratory examination/imaging examination-disease”, and “disease-treatment
method”. The continuous expansion of large electronic clinical records provides an
opportunity to learn medical knowledge by machine learning. In this process, how to
extract entities with a medical logic structure and how to make entity extraction more
consistent with the logic of the text content in electronic clinical records are two issues that
have become key in building a high-quality, medical knowledge graph. In this work, we
describe a method for extracting medical entities using real Chinese clinical electronic
clinical records. We define a computational architecture named MLEE to extract object-
level entities with “object-attribute” dependencies. We conducted experiments based on
randomly selected electronic clinical records of 1,000 patients from Shengjing Hospital of
China Medical University to verify the effectiveness of the method.

Keywords: knowledge graph (KG), medical entity extraction, natural language processing (computer science), EMR
data mining, Chinese clinical records

1 INTRODUCTION

Since Google proposed the concept of a knowledge graph in 2012, it has become one of the hottest
technologies in knowledge reasoning. An increasing number of researchers use the “entity-
relationship” approach to express the real world (Zheng et al., 2021). This kind of knowledge
representation has achieved perfect results in a search engine, question and answer (Q&A) format,
etc. Various vertical fields are building more innovative application scenarios based on knowledge
graphs. As a typical knowledge-intensive industry, healthcare is a popular vertical field that utilizes
knowledge graph technology (Shi et al., 2017).

The shortage of global medical resources caused by Coronavirus Disease 2019 (COVID-19) has
become a global disaster. Improving the medical efficiency of healthcare has become an urgent problem
that needs to be solved by researchers worldwide (Zhu et al., 2017). Historically, many researchers have
attempted to help doctors build a medical base and improve clinical efficiency (Jonnagaddala et al., 2015;
Li et al., 2020b). Knowledge graph technology is currently a popular research direction in this field.

In medical knowledge graph technology, the first and most crucial step is to build a high-quality
medical knowledge graph. In this step, researchers need to discuss the main issues from two
perspectives: the data source for constructing the medical knowledge graph and the algorithm for
extracting entities and relationships.
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Data sources are divided into two types: data sources that use
authoritative knowledge bases and data sources that use clinical
record data. Building a knowledge graph based on a traditional
knowledge base can usually ensure the accuracy of the data source
because its knowledge is neatly organized. Although building a
knowledge graph using such data is easy, due to the large
individual differences among patients in the real world, the
basis for judgment in clinical diagnosis is relatively complex.
Enumeration in authoritative knowledge bases is challenging
(Abhyuday et al., 2020). In addition, the lag in the update of
such knowledge bases is problematic for inference calculations
such as clinical decision support systems (CDSS). With the
development of medical informatization in recent years, an
increasing number of electronic medical records (EMRs),
laboratory information systems (LISs), and PACKS have been
established, providing a massive data foundation for the use of
clinical data analysis, modeling, and information extraction.
When using clinical records to build a knowledge graph, all
patient data are entered and updated in real time, ensuring the
validity and diversity of real-world data (Mykowiecka et al.,
2009). However, the use of clinical records to build a
knowledge graph has difficulties. When doctors write clinical
records in natural language, the complexity of the patient’s
condition is difficult for machines to understand (Louise et al.,
2010).

In the process of using algorithms to construct a medical
knowledge graph, in addition to using crawler technology to
obtain data from a medical knowledge base with a relatively
regular presentation structure (Li et al., 2020a), another technical
route mainly uses deep learning to achieve both entity extraction
and entity-relationship extraction. Relation extraction is a
classification calculation in most research processes, and deep
learning can usually achieve very high accuracy. However,
challenges still exist when extracting and calculating medical
entity recognition. First, when doctors write clinical records,
they are not recorded for analysis by algorithms. The content
of the records is usually complicated by the complexity of the
patient’s condition, which is a challenge for both feature
conversion and information extraction (Kang et al., 2017).
Second, the medical information cannot precisely express
medical entities through simple strings due to its particularity.
For example, for the “fever” entity, multiple factors, such as the
cause, occurrence time, duration, body temperature, and peak
heat of the patient’s fever, need to be shown. When describing a
patient’s fever, clinicians may even use only a description of the
above information without using the word “fever".

The main contributions of this study are presented as follows:
By analyzing the relationship between clinical records and

medical knowledge graphs, a set of methods for extracting
medical entities from clinical data and constructing knowledge
graphs is explored.

Through “punctuation correction”, the problem of entity
recognition boundary errors caused by irregular medical
records written by doctors is perfectly solved so that medical
entities appearing in medical records can be stored in a complete
semantic expression, avoiding information loss caused by the
source.

Through clinical practice and data experiments, the hidden
category attributes of sentences in medical records are verified,
minimizing the semantic space of each category of medical
entities during extraction, thereby improving the accuracy of
entity recognition.

Last, two layers of basic sequence annotation calculation are
used to extract medical entity fragments and entity attributes
from the text to complete the extraction of medical entities from
clinical medical records.

The clinical records are parsed by simulating how clinicians
write records, and then medical entities are extracted.

The medical entity extracted by this method is a solid entity
with “object attributes”. Such entities can be directly utilized to
construct medical knowledge graphs and can serve as input data
for knowledge graph reasoning calculations. By increasing the
diversity of information within entities, reasoning accuracy using
knowledge graphs is improved.

The remainder of this paper is organized as follows: The
second chapter introduces the current methods from
researchers to construct medical knowledge graphs and to
extract medical entities from various types of data. The third
chapter introduces the detailed process of extracting medical
entities from clinical record data in this study. The fourth chapter
introduces the experimental results of this method using actual
clinical data to extract medical entities. The fifth chapter
introduces the conclusions of this research and prospects for
future work. The source code is available at https://github.com/
cocojoe0220/MLEE.

2 RELATED WORK

Research on building knowledge graphs has become very popular
in recent years—researchers complete entity recognition and
entity-relationship recognition by constructing novel
computational architectures (Uzuner et al., 2010; Weng et al.,
2017; Zhao et al., 2017; Cheng et al., 2019; Qiu et al., 2019; Wu
et al., 2021). Related research on medical data to build knowledge
graphs is continually emerging. These studies focus on building
knowledge graphs based on clinical medical record data and
building knowledge graphs based on public medical health
datasets (Jiang et al., 2017; Jiang et al., 2021).

Liu and Xu (2021) attempt to build a knowledge graph from
real-world, “dirty” electronic medical records. In this study, after
extracting “symptom-disease"-related data from clinical medical
records, the medical record text itself is used to complete
disambiguation based on similarity calculation and to
construct a knowledge graph related to symptoms and
diseases. The disease prediction calculation based on patient
symptoms is completed based on the knowledge graph. Weng
et al. (2017) (Weng et al., 2017)used traditional Chinese medicine
(TCM) unstructured clinical text data, clinical protocol
guidelines, medical textbooks, and other data to construct a
TCM clinical knowledge graph based on the triad structure.
This research describes an entity through the Resource
Description Framework (RDF) and combines the relationship
between TCM and human body parts to construct an entity with
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upper and lower relationships and forms a complex network of
directed knowledge elements. This approach reflects the potential
logical relationship between knowledge elements in TCM. Wu
et al. (2021) used public medical quiz information and

encyclopedia data on the Internet. The researchers proposed
the co-training double word embedding conditioned
bidirectional long short-term memory (CTD-BLSTM)
computing architecture to improve the accuracy of medical

FIGURE 1 | Extract fever-related attributes from the fever description segment.

FIGURE 2 | From a sentence describing symptoms, separately extract segments describing fever and cough.

FIGURE 3 | Classify sentences in clinical record text into correct categories.
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named entities and entity relationships in the Chinese field and to
provide better support for constructing a Chinese medical
knowledge graph.

We have summarized and discussed the current related
research on the construction of medical knowledge graphs
and discovered that most researchers usually analyze the
problem from the perspective of computer practitioners
when conducting research. From the triad structure born
from the knowledge graph until now, researchers in the
industry have proposed the tuple data structure. These

studies always use algorithms to achieve better computational
accuracy and more diverse ways of reasoning. Just as doctors
need to obtain multidimensional information in evidence-based
medicine to diagnose diseases, medical entities also need
multidimensional information to be fully expressed. We do
not suggest that an ordinary triad can express the complete
relationship between two medical entities. For example, the
relationship between “fever-cough” and “fever-body
temperature” or “fever-duration” are not in the same
dimension. Building a knowledge graph from clinical data

FIGURE 4 | Correct misuse of punctuation in clinical record text.

FIGURE 5 | Punctuation correction computing architecture.
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requires deeper data structures and computational
architectures.

3 MATERIALS AND METHODS

The electronic clinical record covers the patient’s condition and
the diagnosis and treatment process. A point worthy of discussion
is whether different doctors follow fixed rules when recording
clinical records. Although we have not identified relevant rules
and regulations in the medical industry, we have noticed that in
the process of multidisciplinary treatment (MDT), clinicians
from different departments, hospitals, and even countries can
analyze a condition based on the same clinical record data.
However, different clinicians can read the same clinical
records, which also indicates that clinicians follow the rules of
a fixed pattern in the medical industry when recording clinical
records. Although this invisible rule should follow the basic logic
of clinical diagnosis and treatment, it also standardizes the
information presentation structure of clinicians when writing
clinical records. This rule is the logic by which we extract medical
entities from clinical records through algorithms.

By reviewing a numerous clinical records, we discovered that
the logic of clinicians in writing clinical records is very clear.

Consider the “Admission Record - Present Illness History”, which
records the patient’s condition when they are admitted to the
hospital as an example. Clinicians described the patient’s
symptoms, treatment methods, key indicators of laboratory
examinations, and imaging findings in several sentences in the
clinical record text. Proceeding to the next level of analysis, in the
description of the patient’s symptoms, the symptoms, degree,
physical indicators associated with symptoms (such as recording
body temperature during fever), cause of occurrence, time of
occurrence, duration, aggravating factors, and mitigating factors.
When describing the treatment method, for operation treatment,
the type and date of the operation will be recorded; for medication
treatment, the name of the drug, the dose, and the number of
times will be recorded. A recording laboratory test will record the
names and values of important indicators. The type of imaging
examination, examination site, and abnormal findings will be
recorded for imaging examination. These records can almost be
the record rules that any hospital, department, and clinician will
follow. The logical structure of these records is the same entity
structure employed when we extract information. To extract
medical entities from such clinical records, we can split them
into the following process:

We want to extract medical entities that need to conform to
medical logic and have an “object-attribute” structure. Therefore,

FIGURE 6 | Sentence classification computing architecture.
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we have to extract the entity’s attributes from the description
related to each medical entity, as shown below in Figure 1.

In the above example, the text on the left is a segment from the
clinical record text that describes the patient’s fever. Extracting
“body temperature” and “occurrence time” from this segment can
be performed by a sequence labeling algorithm. However, note
that “body temperature” is unique to the symptom “fever”. When
extracting this kind of information, it is necessary to know in
advance that the current segment describes “fever”. When doctors
describe patients’ symptoms, they usually make a centralized
record in the same sentence. To obtain the fever description
segment in the clinical records required for the above calculation,
we designed a calculation as shown in the following Figure 2.

The content shown in the above figure can be understood as the
need to segment the description of fever and cough from a sentence
describing a patient’s symptoms and to give corresponding symptom
labels. This process can be conducted by long entity recognition in
sequence labeling computation. The next problem then becomes
that we need to classify the sentences in the text clinical records into a
known category. As previously described, when recording the basic
condition, clinicians usually use several fixed sentence patterns
(symptoms, treatment methods, key indicators of laboratory
examinations, and imaging findings). Using text classification
computing to complete this task is a good choice as shown in
the following Figure 3.

As shown in the above figure, as long as the sentences in the
text clinical records are calculated through the classification
calculation, the corresponding categories of the sentences are
obtained, and entity recognition and entity attribute recognition
can be performed. However, in actual work, we discovered an
easily overlooked detail. When Chinese clinicians write clinical
records, punctuation is irregular, and even the entire clinical
records are separated by commas. For this kind of irregularity,
there is no hospital or relevant department to supervise. Although
this irregularity does not affect human reading, for computers,
this irregularity will produce low-precision classification
calculations due to unclear sentence boundaries. To solve this
problem, a punctuation correction calculation needs to be
prepended before the clinical record sentence classification
calculation as shown in the following Figure 4.

The above content describes the researcher’s final plan to
use four steps to extract medical entities after analyzing the
logic in the text clinical records. The four steps are arranged in
positive order based on data processing, namely, “punctuation
correction”, “sentence classification”, “medical entity
extraction”, and “entity object attribute extraction".

3.1 Punctuation Correction
We obtained a random sample of 500 medical records from the
EMRs of hospital departments. The count revealed that a total of

FIGURE 7 | Entity extraction computing architecture.
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16,764 punctuation marks were utilized in these cases. According
to the rules, we manually confirm the existing punctuation in the
clinical medical record and correct the incorrect punctuation in
the medical record. If manual correction was employed as the

standard, the punctuation correctness rate for clinicians writing
medical records was only 16.4%.

Based on this manually modified database, we plan to build
a sequence annotation model. An elementary and effective

FIGURE 8 | MLEE computing architecture.
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neural network was constructed to accommodate the
punctuation correction and subsequent information
extraction. In the embedding layer, we chose to use the
Bidirectional Encoder Representations from Transformers
(BERT) model (Devlin et al., 2018). Although we initially
tried to use Word2Vec for embedding based on a large
amount of data, the results were approximately 4% lower
than those based on BERT.

In building the actual sequence annotation, we made some
changes to the original BERT, which processed tokens by
slicing most characters. For example, we discovered that
slicing words could sometimes significantly impact the
meaning of Chinese expressions (Névéol et al., 2018). We
therefore reworked the token in BERT to slice and dice by
any individual character.

We tried to discard the long short-term memory (LSTM)
(Greff et al., 2016) during the calculation of the sequence
annotation of the correction markers. The transformer
performs much better than the recurrent neural network
(RNN) in many tasks. As Chinese words are stitched together
from multiple characters, the profession usually uses the
transformer’s output at the last encoder layer in BERT as
input for subsequent docking of bidirectional LSTM with a
conditional random field (Bi-LSTM + CRF) (Huang et al.,
2015). However, since the sequence information in the
transformer itself is sufficient, obtaining the sequence
information of the context by using RNN (LSTM) again is
unnecessary (Feng et al., 2018). We also wanted to give the
neural network as much information as possible by appending
a CRF after the last fully connected CRF. The computing
architecture is shown in Figure 5.

3.2 Sentence Classification
According to the information obtained through the EMR system, the
actual patient will generate 27 subcategories of clinical records.

After considering all types of clinical records, we discovered
that the same types of sentences occur in many different types of
medical record types. Treatment-related descriptions appear in
the “past history”, “treatment plan”, “discharge instructions and
rehabilitation instructions” and other types of medical records. If
one follows this pattern, there must be a range of sentence types
that can cover the semantic content of all types of medical records
(Frunza and Inkpen, 2010). The clustering of all statements in the
clinical records was calculated using the clustering calculation
(Rodriguez and Laio, 2014), and the validity of the current
clustering results was verified using the silhouette coefficient.

We then manually observed the clustering results, and after
merging the two smaller clusters based on the semantics of the
clinical history statements, we obtained 18 clusters. Afterward,
the content of the utterances in each cluster was again manually
and semantically confirmed, and medical semantic description
labels were associated with each of these 18 clusters. This labelling
includes a description of symptoms, treatment, signs and
symptoms, specialist examination, examination information, etc.

TABLE 1 | Medical knowledge graph schema label for information extraction.

Entity Type Entity Attributes

Symptom Fever Body Temperature
Occurrence
Duration

Cough Occurrence
Duration
Aggravating Factor
Relieving Factor
Cough Frequency
Situation

Treatment Medication Treatment Drug name
Drug dose
Duration of course of treatment

Operation Type of operation
Date of operation
Adverse reactions

Laboratory Test Laboratory Test Entity Test item
Value

Imaging Computed Tomography Body part
Abnormal seen

Magnetic Resonance Imaging Body part
Abnormal seen
T1WI
T2WIOther

TABLE 2 | Effect of each calculation step of MLEE.

Computational Procedure Precision Recall F1 value

Punctuation correction 0.9874 0.9529 0.9698
Sentence classification 0.9812
Medical entity extraction 0.9611 0.9438 0.9524
Entity object attribute extraction 0.9638 0.9611 0.9624
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We constructed a text classifier based on BERT + FC +
Softmax (Kim, 2014) as shown in Figure 6; the model was
validated in multiple rounds by cross-validation.

3.3 Medical Entity Extraction and entity
Object Attribute Extraction
After completing punctuation correction and sentence
classification, the final entity description segment extraction
and entity attribute extraction process can be understood as a
short text sequence annotation.

The semantic scope of entities and attributes in the medical
field is relatively small, and the semantic space of the text to be
extracted has been fixed through the above two steps, which is
a very simple calculation scenario for sequence labeling.

Since the entire computing architecture needs to be merged to
ensure the consistency of feature extraction, BERT + Bi-LSTM +
CRF is selected for sequence annotation, as shown in Figure 7.

3.4 Computing Architecture
We built the computing architecture, as shown in Figure 8. After
using BERT to complete the feature conversion of text data, we
realize the extraction and calculation of medical entities by
connecting four downstream tasks. The detailed process is
presented as follows:

1) Complete the punctuation correction calculation using a fully
connected layer and conditional random fields.

2) Use the CLS vector generated by BERT for the sentence and
complete the sentence classification through softmax.

3) Sequence annotation of medical entity segments using
bidirectional LSTM and CRF.

4) Perform the final medical entity attribute extraction using
bidirectional LSTM and CRF.

In this computing architecture, it is necessary to explain the
change in the loss function of BERT in the upstream computing
process in the multi-downstream task scenario.

Loss(θ, θ̃1, θ2) � Loss(θ, θ̃1) + Loss(θ, θ2) (1)
where θ represents the parameters of the Encoder part in BERT.
θ̃1 in the original BERT paper represents the parameters in the
output layer connected to the encoder in the masked-language
modeling (LM) task. This study represents the parameter
combination of three sequence annotations after being output
by the encoder. θ2 The original paper represents the classifier
parameters connected to the encoder in the sentence prediction
task. This study represents the classifier parameters in the
classification calculation of text medical record sentences.
Details are presented as follows:

Loss(θ, θ11) � −ΣM
i�1log P(m � mi|θ, θ11),mi ∈ [1, 2 . . . , |Punctuation Set|]

(2)

TABLE 3 | Labels for flat transformation using the schema.

Entity type Entity Attributes NER Label

Symptom Fever Body Temperature Fever-Body Temperature
Occurrence Fever-Occurrence
Duration Fever-Duration

Cough Occurrence Cough-Occurrence
Duration Cough-Duration
Aggravating Factor Cough-Aggravating Factor
Relieving Factor Cough-Relieving Factor
Cough Frequency Cough-Cough Frequency
Situation Cough-Situation

Treatment Medication Treatment Drug name Medication Treatment-Drug name
Drug dose Medication Treatment-Drug dose
Duration of course of treatment Medication Treatment-Duration of course of treatment

Operation Type of operation Operation-Type of operation
Date of operation Operation-Date of operation
Adverse reactions Operation-Adverse reactions

Laboratory Test Laboratory Test Entity Test item Laboratory Test Entity-Test item
Value Laboratory Test Entity-Value

Imaging Computed Tomography Body part Computed Tomography-Body part
Abnormal seen Computed Tomography-Abnormal seen

Magnetic Resonance Imaging Body part Magnetic Resonance Imaging-Body part
Abnormal seen Magnetic Resonance Imaging-Abnormal seen
T1WI Magnetic Resonance Imaging-T1WI
T2WI Magnetic Resonance Imaging-T2WI

The bold values indicate NER label, it represents the label used to annotation the real data.

TABLE 4 | Comparison of MLEE information extraction and traditional sequence
labeling.

Method F1 value

Bert + BiLSTM + CRF 0.9367
MLEE 0.9624

The bold values indicate experiment results of the method proposed in this paper.
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where θ11 represents the parameters in the output layer connected
to the encoder in the punctuation correction sequence labeling
task.

Loss(θ, θ12) � −ΣN
j�1log P(n � nj|θ, θ12), nj ∈ [1, 2 . . . , ∣∣∣∣Medical Entity Set

∣∣∣∣]
(3)

θ12 represents the parameters in the output layer connected to the
encoder in the medical entity description segment sequence
labeling task.

Loss(θ, θ13) � −ΣN
k�1log P(o � ok |θ, θ13), ok ∈ [1, 2 . . . , ∣∣∣∣Entity Attribute Set∣∣∣∣] (4)

θ13 represents the parameters in the output layer connected to the
encoder in the medical entity attribute sequence labeling task.

Loss(θ, θ̃1) � Loss(θ, θ11) + Loss(θ, θ12) + Loss(θ, θ13) (5)
The loss of the three downstream sequence labeling tasks is

added to obtain Loss(θ, θ̃1).
Loss(θ, θ2) � −ΣH

l�1log P(h � hl|θ, θ2), hl ∈ [label1, label2 . . . , labelx]
(6)

In the second part, Loss(θ, θ2) is the loss function of the
sentence classification task.

4 EXPERIMENT

This chapter introduces the experiment in three parts. The first
part concerns data sources, the definition of medical entities in
the schema, and data annotation. In the second, we introduce the
extraction of medical entities based on the computational
architecture proposed in this study. Since there is currently no
open-source text clinical record dataset in the Chinese field and
based on the diseases involved in the current clinical records
(pediatric respiratory diseases), there is no unified knowledge
map schema standard. This paper temporarily evaluates the effect
based on the data extraction accuracy of the in-hospital data
based on the data standard jointly constructed by the author and
the clinicians of Shengjing Hospital of China Medical University.
In the third part, we test all the entity attributes of the custom
schema by flattening to test whether the computational
architecture proposed in this study has an accuracy loss
comparable with the general sequence annotation.

4.1 Data Preparation
We randomly selected the current illness histories of
1,000 patients from the inpatient clinical records at Shengjing
Hospital of China Medical University. We discussed them with
clinicians and learned about their concerns about writing and
reading clinical records. Combined with the definition of medical
fields in the Snomed CT International Edition, the medical
entities and attribute labels in the schema are sorted, as shown
Table 1.

Based on the above labels, we use “entity type” as the
classification calculation label of medical record sentences,
“entity” as the sequence annotation label of medical entity

segments, and “attribute” as the sequence annotation label of
medical entity attributes. In the process of punctuation
correction, the “period” is corrected to ensure that these
sentences can be correctly split. The data were labeled
according to the table by clinicians and used as the gold standard.

According to the above rules, we manually marked
7,029 sentences (3,418 punctuation points were manually
corrected, and the error rate of punctuation used by doctors
reached 48.6%), 10,467 medical entities, and 29,478 medical
attributes based on the clinical medical records of
1,000 patients. entities with 2.82 attributes).

4.2 Description of Effect
The above data and the entity labels defined in schema model
training and effect verification are carried out based on the
computing architecture introduced in the previous chapter.
The calculation effect of all steps is presented as Table 2.

The experimental results exceeded our expectations, and we
subsequently analyzed the calculation results by decomposing
steps. Most of the miscalculated punctuation is concentrated in
the over segmentation of symptom-related descriptions in the
punctuation correction step. For example, “fever” and
“cough”, which should be listed in the same sentence, are
divided into two sentences. Such errors do not cause error
propagation in subsequent computations. In the sentence
classification step, because we built an “Other” category to
carry some content in the clinical record about the patient’s
general condition before admission, the patient’s body
temperature, mental state, appetite, and other related
information may be included. Some of these sentences are
divided into “symptom” labels for the last two sequence
annotation computations. Although the input of the final
entity attribute sequence annotation labeling is the output
of the previous layer of medical entity segment sequence
annotation labeling, the error propagation will be critical.
However, the results indicate that the accuracy of the lower
layer calculation is higher than that of the upper layer
calculation. The researchers determined that when
calculating the medical entity segment, precision and recall
may decrease due to the error of one character before or after.
However, as long as it contains all the characters required for
the lower-level sequence annotation labeling, the correct result
can still be obtained in the final entity attribute calculation.

4.3 Calculate Loss Assessment
To evaluate whether the superimposed computing architecture of
this study will lose accuracy through error transmission, we
compare the accuracy by flattening the labels in the schema.
The sequence annotation labels used for testing are shown in the
last column of Table 3.

The final comparison accuracy is shown as Table 4.
This conclusion also confirms that the method proposed in

this study improves the information extraction accuracy
compared with general sequence annotation and better
expresses medical entities through the “object-attribute”
structure. This finding provides a good data foundation for
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constructing medical knowledge graphs and reasoning
computations based on knowledge graphs.

5 CONCLUSION

In this paper, we propose a method for extracting medical entities
using real Chinese clinical medical records. A medical knowledge
graph based on clinical data can be constructed on this basis. We
discovered that the same medical record data, simply based on
entity co-occurrence, can be used as a high-quality relational to
connect entities. If many cases, the data can be utilized as the
research object, even directed probability edges can be obtained,
which is the follow-up research direction of the research team.
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Numerous varieties of life forms have filled the earth throughout evolution. Evolution

consists of two processes: self-replication and interaction with the physical

environment and other living things around it. Initiated by von Neumann et al.

studies on self-replication in cellular automata have attracted much attention,

which aim to explore the logical mechanism underlying the replication of living

things. In nature, competition is a common and spontaneous resource to drive self-

replications, whereasmost cellular-automaton-basedmodels merely focus on some

self-protectionmechanisms thatmay deprive the rights of other artificial life (loops) to

live. Especially, Huang et al. designed a self-adaptive, self-replicating model using a

greedy selection mechanism, which can increase the ability of loops to survive

through an occasionally abandoning part of their own structural information, for

the sakeof adapting to the restrictedenvironment. Though this passive adaptationcan

improve diversity, it is always limited by the loop’s original structure and is unable to

evolve or mutate new genes in a way that is consistent with the adaptive evolution of

natural life. Furthermore, it is essential to implement more complex self-adaptive

evolutionary mechanisms not at the cost of increasing the complexity of cellular

automata. To this end, this article proposes newself-adaptivemechanisms,which can

change the information of structural genes and actively adapt to the environment

when the arm of a self-replicating loop encounters obstacles, thereby increasing the

chance of replication. Meanwhile, our mechanisms can also actively add a proper

orientation to the current construction arm for the sake of breaking through the

deadlock situation. Our new mechanisms enable active self-adaptations in

comparison with the passive mechanism in the work of Huang et al. which is

achieved by including a few rules without increasing the number of cell states as

compared to the latter. Experiments demonstrate that this active self-adaptability can

bring more diversity than the previous mechanism, whereby it may facilitate the

emergence of various levels in self-replicating structures.
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self-replication, self-adaption, cellular automaton, gene mutation, biological
resources
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1 Introduction

A cellular automaton (CA) is a discrete dynamical system

that consists of a huge number of identical finite-state automata

(Abou-Jaoudé et al., 2016; Xiao et al., 2020). Self-replication is a

fundamental feature of life in biological resources, and it is a

process of biosynthesis in which the original structure is

replicated in the exact same structure (Cea et al., 2015; Baris

et al., 2022; Gemble et al., 2022). Research of self-replication on

CAs was founded by von Neumann (1966) and was viewed as one

of the origins of artificial life research (Marchal, 1998; Gindin

et al., 2014). In addition to reproducing offsprings with identical

structures, attempts at including self-adapting mechanisms into

the self-replicating models have been done (Suzuki and Ikegami,

2003; Sayama, 2004; Huang et al., 2013). In particular, Huang

et al. (2013) designed a self-adaptive, self-replicating model using

a greedy selection mechanism, which can increase the ability of

the loops to survive through an occasionally abandoning part of

their own structural information, for the sake of adapting to

the restricted environment. Although the greedy mechanism

is straightforward and sounds natural, it seems too passive. In

addition to the self-adaptation which helps organisms survive

(Williams and Burt, 1997), evolution and mutation are also

inherent abilities of living things for adapting to

environments in more active ways (Agrawal, 2001; Wilke

et al., 2001; Miles et al., 2020; Moore et al., 2021; Monroe et

al., 2022; Sasani et al., 2022), like the RNA virus (Domingo

and Holland, 1997).

Likewise, identification of multiple adaptive mutations turns

out to be essential for studying adaptation (Aminetzach et al.,

2005; Scott, 2013; Lawson et al., 2020; Zuko et al., 2021). And,

point mutations including insertions and replacements can help

perform edits in human cells, thereby, in principle, correcting up

to most of the known genetic variants associated with human

diseases (Poduri et al., 2013; Anzalone et al., 2019; Buisson et al.,

2019). Especially, changes in the self-replicating structure and

behavior are controlled via their genetic memory (Bilotta and

Pantano, 2006; Sha et al., 2020). As the living environment

becomes more and more hostile, living organisms may have

to change their own structures to survive. Self-adaptation

through gene mutation, therefore, provides a spontaneous

drive for natural life to survive against crucial competition

with other living things and evolve into more advanced forms

(Bilotta and Pantano, 2006; Sha et al., 2020). Moreover, self-

adaptation has gained much attention in other fields such as

knowledge architecture discovering (Edwards et al., 2009; Duan,

2019; Lei and Duan, 2021; Li et al., 2021) and edge computing

(Xia et al., 2015; Song et al., 2018), due to its promise of more

sophisticated and flexible computational paradigms (Duan et al.,

2019a,b).

Inspired by the gene mutation-based self-adaptability in

nature, this article endows two active mechanisms to the self-

replicating loops which can facilitate the dynamical adaption

of their structures to limited cellular regions. The new active

mechanisms only need to change some rules in the passive

model Huang et al. (2013), without increasing the number of

cell states. The self-replication progress also contains two

stages. In the first stage, the shape-encoding scheme is

utilized to generate genetic information (construction

signals), and the constructed arm receives the genetic codes

to stretch forward, rightward, or leftward. During this period,

collisions may occur at any moment and it seems urgently

necessary to find a way out of a stalemate. Similar to the gene

mutation process, we propose two solutions to resolve the

collision. One mechanism generates, rather than waiting , a

genetic code which resembles the insert mutation from single

point mutation (Bargmann et al., 1986; Shenhav and Zeevi,

2020). Especially, the insertion of a transposable element can

increase Drosophila’s resistance to an organophosphate

pesticide (Aminetzach et al., 2005), which helps Drosophila

to survive. In order to simplify the rules Huang et al. (2013), we

randomly change the direction of the construction arms’ head.

Another mechanism will choose to change following the

genetic code from the mother loop next to the construction

arm, which is similar to replace mutation (Vogel, 1972). The

method of replacing genetic codes is used in suppression of

tumorigenicity of human prostate carcinoma cells (Bookstein

et al., 1990). After finishing the first extension stage of the

construction arm, the mother loop will send a validation signal

to the arm for the sake of confirming whether there is a closed

loop or not. If it succeeds, the signal will cut off the link

between the child loop and mother loop; otherwise, the

construction arm will be drawn back. Finally, several typical

and initial configurations are selected for the numerical

experiments, which demonstrate that our new active

mechanisms can obtain more types of variation loops,

thereby increasing the opportunities of the organisms’

survival and expanding biodiversity (Klimentidis, 2012;

Becerra-Rodríguez et al., 2021).

This article is organized as follows: Section 2 reviews related

works. Section 3 gives an overview of the self-timed cellular

automata and describes self-replicating loops with two active

mechanisms which are capable of self-adapting their structures

when the space is not enough to replicate themselves completely.

Detailed comparison experiments are done in Section 4, followed

by discussions given in Section 5.

2 Related works

Self-reproduction is one of the fundamental features in

nature. Von Neumann was able to exhibit a universal Turing

machine embedded in a cellular space using 29-states per cell and

the 5-cell neighborhood. After that, many studies were done to

reduce the complexity of the machine (Codd, 2014), re-mold

signal-crossing organs (Buckley and Mukherjee, 2005), and
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realize self-replicating in the hardware (Merkle, 1992; Pesavento,

1995; Tempesti et al., 1998).

After ignoring the universality in computations, Langton

(1984) proposed a simple self-replicating loop based on the

periodic emitter (Codd, 2014) in a two-dimensional cellular

space. Langton’s loop uses 8-states and 5-cell neighborhood

(von Neumann neighborhood). After that, Langton’ loop

attracts much attention and various attempts have been

done, such as deleting the external sheath (Tempesti,

1995) or the inner sheath (Byl, 1989), producing

unsheathed loops with less states (Reggia et al., 1993), and

considering self-replication on asynchronous cellular

automata (Nehaniv, 2002). Likewise, Ibáñez et al. (1995)

introduced the ability of self-inspection, which allows the

genome to dynamically construct concomitantly with its

interpretation. Making full of the self-inspection ability,

Morita and Imai (1996b) proposed a shape-encoding

mechanism that depends on genetic codes from the loops’

phenotypical pattern to self-replication. Afterward, there

were many studies in two-dimensional (Morita and Imai,

1996a) or three-dimensional reversible cellular space (Imai

et al., 2002). In addition to self-replication, interacting

between different loops has been conjectured, including

self-protection with shielding, deflecting, and poisoning

(Sayama, 2004), settling collisions with inroad, counter,

defensive, and cancel methods (Suzuki and Ikegami,

2003). Such actions always harm the right of others to live.

All the aforementioned self-replicating models are based

on synchronous CAs, in which all the cells are iterated to

undergo state transitions simultaneously at every discrete

time step. In nature, living systems are characterized by

asynchronous timing modes, whereby studying self-

replication on asynchronous cellular automata (ACAs)

turns out to be crucial for a deeper understanding of the

underlying mechanisms Huang et al. (2013). In an ACA,

FIGURE 1
A transition rule according to the function f.

FIGURE 2
The normal process of self-replicating.
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cells are updated at random timings independently from

other cells, not needing a central clock signal to be

distributed to all cells at any time. On the other hand,

the unpredictable updating order of cells tends to bring

more difficulty into the construction and self-reproduction

on ACAs than on synchronous CAs. Nevertheless, Takada

et al. (2007) designed a self-replicating loop based on the

self-timed cellular automaton, which can self-reproduce

parallelly and cope with the deadlock caused by collisions

between self-replicating loops due to the asynchronous

updating sequence. Especially, they used a simple

mechanism that permits two colliding arms to fall back

simultaneously. Huang et al. (2013) endowed a self-adaptive

ability to the model, which allows two loops to not retract

their arms but continue to accomplish self-replication when

a collision occurs on occasion. In this case, the dead head

will wait for a construction signal that can move the head

into a direction away from the collision. More specifically,

the choice of using which signal is made locally at the

moment when the end of the constructing arm runs into

an obstacle, and hence, such a selection is greedy. As a result,

the passive self-adaptation can work in many situations

where the normal reproduction of a loop is disturbed by

some external constrain, thereby enabling the loop to

survive and reproduce in a wide variety of regions

(Huang et al., 2013).

3 Materials and methods

3.1 Self-timed cellular automata

Our self-replicating loops are implemented on a self-

timed cellular automaton (Peper et al., 2002; Takada et al.,

2007), which comprises of a two-dimensional asynchronous

cellular array of identical cells. Each cell is partitioned into

FIGURE 3
Transition rules of the greedy selection mechanism.

TABLE 1 The list of functions about various signals.

Name Pattern Function

Initiation signal • Y Initiate self-replicating

Trace signal Y • Trace the shape of a mother loop

Validation signal • • Validate whether the offspring and construction signals are replicated successfully

◦ ◦ Advance construction arm straight forward

Construction signals ◦ • Advance construction arm leftward

• ◦ Advance construction arm rightward
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four parts in a one-to-one correspondence with its

neighboring cells, and each part has a state taken from a

finite set of states at a time. Thus, a STCA may be deemed to a

partitioned cellular automaton (Imai et al., 2002). Each cell

undergoes transitions according to a transition function f

that operates on the four parts of the cell and the nearest part

of its four neighbors. The transition function f is defined as

follows:

f n, w, s, e, s1, e1, n1, w1( ) � n′, w′, s′, e′, s1′, e1′, n1′, w1′( ), (1)

where each value in parentheses denotes the new state of a

partition after updating (see Figure 1).

Also, transition rules of an STCA are rotation symmetric,

such that rotating both the left-hand side and the right-hand

side of a rule in a multiple of 90° simultaneously give rise to

equivalent rules of the original one. The transitions of cells in

an STCA occur randomly and are independent of each other,

i.e., an ACA. Because the update of a cell may change the

nearest sub-cells of its neighboring cells, to prevent a

write–conflict situation from occurring, we assume that all

neighboring cells never undergo transitions at the same time.

To this end, an effective scheme that can be used to iterate the

STCA’s global transition is called random choice, by which at

a time, only one cell is randomly selected with uniform

probability to undergo a transition.

3.2 Self-replicating loops with active self-
adaptability

Different from sheathed self-replicating loops in Suzuki

and Ikegami (2003), a self-replicating loop implemented on

our STCA model is unsheathed and needs the same number

of states as the passive model in Huang et al. (2013). Four-cell

states are used for each part of any cell, denoted by Y, ◦, • and
■, respectively. The state Y is often shown blank in the

figures for convenience. A cell is quiescent if all of its four

sub-cells are in the state Y. Transition rules are listed in

FIGURE 4
Transition rules of the adding mechanism.
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Supplementary Appendix A, excluding the rotational

symmetry equivalents.

3.2.1 Normal self-replicating based on shape-
encoding mechanism

When enough space is left, a loop can normally replicate

itself in the cell region. Several signals listed in Table 1 are

used to fulfill the self-replication according to the shape-

encoding mechanism.

Figure 2 illustrates a typical self-replicating process of a

loop, which is similar to Huang et al. (2013). An initiation

signal will transmit counterclockwise before the replication

starts. When the initiation signal arrives at a left-turn corner

of the loop, it generates an initial construct arm stretching out

from the corner, as well as an inspection head to trace the

shape of the mother loop. The inspection head •• will

sequentially encodes each cell into an appropriate

construction signals including going straight, turning right,

and turning left. The signals from the mother loop are

continuously transmitted to the head of the construct arm

and are decoded into the corresponding part. Moreover, as

soon as the shape-encoding process finishes, a validation

signal is generated to verify whether the sub loop is

constructed. If self-replicating succeeds, the signal will cut

off the umbilical cord between the mother and the child,

whereby both loops can start further replications individually.

FIGURE 5
Transition rules of the changing mechanism.
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FIGURE 6
The different results of the greedy selection mechanism, adding mechanism, and changing mechanism starting from the same initial
configuration where normal replication is limited by space.

FIGURE 7
Different initial configurations.
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FIGURE 8
All final loop structures starting from the configuration in Figure 7A by the greedy selection, adding, and changing mechanisms.

TABLE 2 Statistical numbers of the loops with various structures for the greedy selection mechanism on different cellular spaces starting from the
initial configuration in Figure 7A.

Loop
Size

Shape∖Amount∖Space 60*60 80*65 100*65 Loop
Size

Shape∖Amount∖Space 60*60 80*65 100*65

20 cells Figure 8A 55 63 104 10 cells Figure 8M 1 42 1

16 cells Figure 8D 0 1 1 Figure 8N 2 4 20

Figure 8E 13 7 2 8 cells Figure 8P 4 0 3

14 cells Figure 8H 0 13 0 Figure 8Q 3 5 11

Figure 8I 6 6 3 6 cells Figure 8S 2 33 16

12 cells Figure 8J 9 6 9 4 cells Figure 8T 2 19 0

Figure 8K 2 0 0

Value of H 0.68547 0.83363 0.59182

TABLE 3 Statistical numbers of the loops with various structures for the adding mechanism on different cellular spaces starting from the initial
configuration in Figure 7A.

Loop
Size

Shape∖Amount∖Space 60*60 80*65 100*65 Loop
Size

Shape∖Amount∖Space 60*60 80*65 100*65

20 cells Figure 8A 38 44 49 10 cells Figure 8N 0 1 0

18 cells Figure 8B 11 10 12 Figure 8O 0 0 2

Figure 8C 0 0 1 8 cells Figure 8P 12 18 19

16 cells Figure 8F 1 1 1 Figure 8R 1 2 5

Figure 8G 2 1 0 6 cells Figure 8S 63 163 212

12 cells Figure 8L 0 5 2 4 cells Figure 8T 58 82 103

10 cells Figure 8M 17 22 41

Value of H 0.72329 0.66301 0.65614

Frontiers in Genetics frontiersin.org08

Xu et al. 10.3389/fgene.2022.958069

75

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.958069


3.2.2 Adaptive self-replication with
mutations

What will happen if there is no extra space for normal self-

replication of a loop or if the space is taken up by the arms of

other loops? Huang et al. (2013) considered a greedy selection

mechanism to deal with the situation, which means only useful

information is retained during self-replication. And the details

are shown in Figure 3. After a collision occurs, the construction

arm’s head becomes a dead head waiting for the construction

signals coming from its mother. If the signal can work, then use it

and change the direction of the construction arm. Otherwise,

TABLE 4 Statistical numbers of the loops with various structures for the changing mechanism on different cellular spaces starting from the initial
configuration in Figure 7A.

Loop
Size

Shape∖Amount∖Space 60*60 80*65 100*65 Loop
Size

Shape∖Amount∖Space 60*60 80*65 100*65

20 cells Figure 8A 32 35 36 12 cells Figure 8K 0 1 0

18 cells Figure 8B 0 0 1 Figure 8L 3 0 3

16 cells Figure 8D 2 0 3 10 cells Figure 8M 4 1 9

Figure 8E 0 1 6 Figure 8N 2 2 4

Figure 8F 0 1 0 8 cells Figure 8P 32 6 54

Figure 8G 11 12 15 Figure 8Q 11 12 20

14 cells Figure 8I 2 3 5 6 cells Figure 8S 29 115 137

12 cells Figure 8J 23 14 22 4 cells Figure 8T 34 139 77

Value of H 0.91211 0.66984 0.85149

TABLE 5 Statistical numbers of the loops with various structures for the greedy selection mechanism on different cellular spaces starting from the
initial configuration in Figure 7B.

Loop
Size

Shape∖Amount∖Space 60*60 80*65 85*65 Loop
Size

Shape∖Amount∖Space 60*60 80*65 85*65

22 cells Figure 9A 66 36 60 8 cells Figure 9Z 8 108 3

16 cells Figure 9E 7 0 2 6 cells Figure 9AC 0 0 5

10 cells Figure 9U 8 0 47 4 cells Figure 9AD 29 52 51

Value of H 0.52218 0.43068 0.57119

TABLE 6 Statistical numbers of the loops with various structures for the adding mechanism on different cellular spaces starting from the initial
configuration in Figure 7B.

Loop
Size

Shape∖Amount∖Space 60*60 80*65 85*65 Loop
Size

Shape∖Amount∖Space 60*60 80*65 85*65

22 cells Figure 9A 38 52 43 12 cells Figure 9M 3 0 0

20 cells Figure 9B 0 4 1 Figure 9N 35 0 1

18 cells Figure 9C 0 1 1 Figure 9O 0 1 5

16 cells Figure 9E 0 1 0 Figure 9P 0 0 3

Figure 9F 0 1 0 10 cells Figure 9V 1 0 26

Figure 9G 0 0 1 Figure 9W 4 0 0

14 cells Figure 9I 1 0 1 8 cells Figure 9Z 1 16 2

Figure 9J 2 1 0 Figure 9A 6 0 8

Figure 9K 1 0 0 6 cells Figure 9AC 53 14 18

Figure 9L 0 1 0 4 cells Figure 9AD 103 106 142

Value of H 0.69327 0.57124 0.62362
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TABLE 7 Statistical numbers of the loops with various structures for the changing mechanism on different cellular spaces starting from the initial
configuration in Figure 7B.

Loop
Size

Shape∖Amount∖Space 60*60 80*65 85*65 Loop
Size

Shape∖Amount∖Space 60*60 80*65 85*65

22 cells Figure 9A 47 55 41 10 cells Figure 9V 1 0 0

16 cells Figure 9H 1 1 0 Figure 9X 1 4 56

12 cells Figure 9N 1 0 1 Figure 9Y 3 28 0

Figure 9Q 2 5 35 8 cells Figure 9Z 4 7 1

Figure 9R 31 0 0 Figure 9AA 1 0 0

Figure 9S 0 1 1 Figure 9AB 18 2 0

Figure 9T 0 0 1 6 cells Figure 9AC 9 6 13

10 cells Figure 9U 1 0 1 4 cells Figure 9AD 16 43 19

Value of H 0.81213 0.71099 0.70811

FIGURE 9
All final loop structures starting from the configuration in Figure 7B by the greedy selection, adding, and changing mechanisms.

TABLE 8 Statistical numbers of the loops with various structures for the greedy selection mechanism on different cellular spaces starting from the
initial configuration in Figure 7C.

Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100 Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100

28 cells Figure 10A 36 83 57 12 cells Figure 10AA 59 2 104

24 cells Figure 10C 0 6 25 8 cells Figure 10AG 7 2 83

20 cells Figure 10J 0 4 9 6 cells Figure 10AI 0 0 5

16 cells Figure 10Q 14 25 71 4 cells Figure 10AJ 1 63 47

Value of H 0.50862 0.55976 0.79217
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simply throw it away. Although such self-adaptation is simple

and straightforward, it is passive and weak, resulting in much

smaller child loops. In order to increase the adaptability and

diversity of self-replicating models, we propose two novel

mechanisms for active adaptation as follows:

Adding: add a different construction signal next to the head of

the construction arm. For simplicity, the direction is directly

changed at random.

Changing: change the construction signal following the head

of the construction arm to other construction signals that are

selected randomly.

Collisions are often inevitable due to the unpredictable

nature of asynchronous updating. If the construction arm of a

self-replicating loop perceives that the space is occupied, then it

cannot extend furthermore and the state of the construction arm

head will change from Y■ to ■■ (called dead end). There are

many situations when a collision occurs, such as an arm bumping

into another loop’s arm or an arm meeting the body of a loop.

Figure 4 elaborates the process of adding mechanisms for

active adaptation. When the arm under going straight collides

with an obstacle (Figures 4A,H), the current blocking state will be

changed by randomly selecting one of the two orientations,

namely turning left and turning right. Even a construction

TABLE 9 Statistical numbers of the loops with various structures for the adding mechanism on different cellular spaces starting from the initial
configuration in Figure 7C.

Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100 Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100

28 cells Figure 10A 42 86 141 16 cells Figure 10Q 2 0 0

26 cells Figure 10B 0 1 4 Figure 10R 1 0 0

24 cells Figure 10C 0 0 20 Figure 10S 1 0 0

Figure 10D 14 0 0 Figure 10T 0 0 1

22 cells Figure 10E 4 0 0 14 cells Figure 10V 1 0 0

Figure 10F 0 4 0 12 cells Figure 10AA 0 2 0

Figure 10G 0 0 2 Figure 10AB 1 1 0

Figure 10H 0 0 3 10 cells Figure 10AE 0 3 0

22 cells Figure 10I 0 0 1 Figure 10AF 0 0 2

20 cells Figure 10J 0 25 0 8 cells Figure 10AG 5 1 1

Figure 10K 0 1 0 6 cells Figure 10AI 0 1 1

18 cells Figure 10N 1 0 0 4 cells Figure 10AJ 16 8 83

Figure 10O 1 0 0

Value of H 0.71351 0.52249 0.50833

TABLE 10 Statistical numbers of the loops with various structures for the changing mechanism on different cellular spaces starting from the initial
configuration in Figure 7C.

Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100 Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100

28 cells Figure 10A 43 72 138 12 cells Figure 10AA 0 1 2

20 cells Figure 10J 2 2 5 Figure 10AC 0 1 1

Figure 10I 0 15 19 Figure 10AD 0 0 4

Figure 10M 0 0 1 10 cells Figure 10AF 1 69 0

18 cells Figure 10P 19 3 0 8 cells Figure 10AG 1 6 0

16 cells Figure 10U 0 7 0 Figure 10AH 0 0 1

14 cells Figure 10X 5 4 29 6 cells Figure 10AI 3 1 26

Figure 10Y 0 1 0 4 cells Figure 10AJ 1 44 2

Figure 10Z 0 1 0

Value of H 0.54088 0.74551 0.57765
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signal behind the dead head is a straight-going signal; the

mechanism will add a random direction (Figure 4G and

Figure 4J). Especially if the construction signal behind the

dead head is a left-turning signal, the dead head will turn left

and become normal after going straight is blocked (Figure 4B).

Similarly, if there is a right-turning signal, the head will turn right

(Figure 4I). Whatever a construction signal is behind the dead

head, if the head is blocked by turning left or right, then the head

will go straight.

The content of the changing mechanism is presented in

Figure 5. If an arm going straight meets an obstacle and the

construction signal behind the dead head is a straight-going

signal, then the straight-going signal will change to a left-turning

signal (Figure 5A) or a right-turning signal (Figure 5M) and the

head goes back. Such a state is not durable, and after which the

arm will turn left (Figure 5B) or turn right (Figure 5N). If the

construction signal behind the dead head can mitigate the

collision, the original signal remains constant (Figures 5C–E,

H, and I). When the arm is blocked to turn left and the

construction signal following the dead head is a left-turning

signal, the construction signal will randomly mutate to a right-

turning signal (Figure 5Q) or straight-going signal (Figure 5J).

Similarly, the aforementioned situation also happens on turning

right.

We can see from Figure 6 that the greedy selection

mechanism, adding mechanism, and changing mechanism can

produce different sub-loops from the same initial configuration.

Especially, the changing mechanism does not self-replicate at the

beginning.

4 Experiments

In order to testify that active adaptation can produce more

diversity of species than the previous passive adaptation, we set

up various initial configurations and different boundary values to

conduct the experiments. We used the trait distribution entropy

from Sayama (2004) to characterize the diversity of the

population, which shows as follows:

H � −∑
i

ni
N

log
ni
N

( ) � logN − 1
N

∑
i

ni p logni( ), (2)

where ni is a quantity of loops that are made of i cells and N the

number of loops in the current space. Moreover, the value of the

FIGURE 10
All final loop structures starting from the configuration in Figure 7C by the greedy selection, adding, and changing mechanisms.
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trait distribution entropy ranges from 0 to logN and log function

takes the logarithm base 10 instead of base e.H = 0means that the

space is filled with the same loop and H = logN can be obtained

when each loop in the current space differs from each other

(i.e., the value of each ni is 0 or 1 for all i). Especially, loops which

posses different manifestations belong to different species even if

the loops consist of the identical number of cells.

We use different initial configurations to do experiments as

shown in Figure 7, in which, the first three are common shapes

and the last two are irregular. For simplicity, all possible final

structures of replicated sub-loops starting from the initial

configuration in Figure 7A by either self-adaptation

mechanism are listed in Figure 8. In addition, the quantities

and distributions of each structure in the cellular spaces using

greedy selection mechanism, adding mechanism, and changing

mechanism are provided in Tables 2, 3, and 4, respectively. As a

result, compared with the other two active mechanisms, the

greedy selection (passive) mechanism has a highest value of H in

80*65 cellular space, because the space is not filled with one or

two identical and abundant small loops. However, on the whole,

the adding mechanism and changing mechanism have higher

values of H than the greedy selection mechanism.

Likewise, Tables 5, 6, and 7 provide the self-replication

results starting from the initial configuration in Figure 7B,

along with all possible final sub-loops given in Figure 9. The

value of H of the greedy selectionmechanism is lower than that of

adding mechanism and changing mechanism, which means that

the adding mechanism and the changing mechanism can give

rise to more diversity. Moreover, small loops appear later in the

changing mechanism than in the adding mechanism, leaving

more room for larger loops to self-replicate and bring more kinds

of species. In addition, Tables 8, 9, and 10 demonstrate the results

from the initial configuration in Figure 7C by eachmechanism, in

which the greedy selection mechanism can achieve the highest

value of H in 100*100 cellular space. All possible loop structures

are shown in Figure 10. Though the kinds of loops are the least

for greedy selection mechanism, there is the maximum number

of loops. Therefore, in the same biological environment, when

the kinds of species are relatively small and the population is

relatively large, the species also have a high diversity. Especially,

FIGURE 11
All final loop structures starting from the configuration in Figure 7D by the greedy selection, adding, and changing mechanisms.
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the adding mechanism can produce many loops with complete

quantity and different sizes.

All replicating results of the loop structures from the

configuration in Figure 7D are given in Figure 11. In this

case, the values of H using the adding mechanism and the

changing mechanism in Tables 12, 13, respectively are

obviously higher than that of the greedy selection mechanism

in Table 11. Furthermore, self-replications starting from the

irregular and symmetric shapes in Figure 7E are elaborated in

Tables 14, 15, and 16 with various types of sub-loops shown in

Figure 12. It can be verified that the loop that is the same as the

initial configuration quickly takes up the entire space, leaving

TABLE 11 Statistical numbers of the loops with various structures for the greedy selection mechanism on different cellular spaces starting from the
initial configuration in Figure 7D.

Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100 Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100

34 cells Figure 11A 30 34 43 12 cells Figure 11AT 19 0 0

30 cells Figure 11D 0 0 1 Figure 11AU 0 123 0

28 cells Figure 11H 5 0 9 10 cells Figure 11BB 4 0 0

24 cells Figure 11P 0 0 1 Figure 11BC 0 0 249

20 cells Figure 11W 0 2 0 8 cells Figure 11BF 0 34 20

Figure 11X 0 0 1 Figure 11BG 0 0 1

16 cells Figure 11AI 0 1 22 6 cells Figure 11BI 0 2 2

Figure 11AJ 0 0 1 4 cells Figure 11BJ 12 31 9

Value of H 0.59562 0.55587 0.49319

TABLE 12 Statistical numbers of the loops with various structures for the adding mechanism on different cellular spaces starting from the initial
configuration in Figure 7D.

Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100 Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100

34 cells Figure 11A 32 47 86 14 cells Figure 11AO 0 1 0

32 cells Figure 11B 2 1 0 Figure 11AP 0 1 0

Figure 11C 0 0 1 Figure 11AQ 0 0 7

30 cells Figure 11E 1 0 1 Figure 11AR 0 0 1

Figure 11F 0 0 2 12 cells Figure 11AT 0 4 0

Figure 11G 0 0 1 Figure 11AV 1 0 1

28 cells Figure 11J 4 0 2 Figure 11AW 1 0 0

Figure 11K 0 1 0 Figure 11AX 0 20 0

26 cells Figure 11L 0 0 1 Figure 11AY 0 1 0

Figure 11M 0 0 1 Figure 11AZ 0 2 0

24 cells Figure 11Q 1 0 0 Figure 11AB 0 0 1

Figure 11R 0 1 1 10 cells Figure 11BC 0 1 0

20 cells Figure 11Y 0 1 0 Figure 11BD 1 0 0

Figure 11Z 0 0 1 Figure 11BE 0 3 0

Figure 11AA 0 0 3 8 cells Figure 11BF 5 3 17

18 cells Figure 11AC 1 0 0 Figure 11BG 3 0 1

Figure 11AD 0 0 4 Figure 11BH 0 1 0

16 cells Figure 11AK 0 9 0 6 cells Figure 11BI 5 51 29

Figure 11AL 0 1 0 4 cells Figure 11BJ 4 33 30

Figure 11AM 0 0 1

Value of H 0.76886 0.85201 0.79910
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TABLE 13 Statistical numbers of the loops with various structures for the changing mechanism on different cellular spaces starting from the initial
configuration in Figure 7D.

Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100 Loop
Size

Shape∖Amount∖Space 60*60 80*80 100*100

34 cells Figure 11A 26 40 64 16 cells Figure 11AN 0 0 1

26 cells Figure 11N 0 0 1 14 cells Figure 11AS 0 3 0

Figure 11O 0 0 3 12 cells Figure 11AU 13 39 2

24 cells Figure 11S 0 0 2 Figure 11AV 0 0 3

22 cells Figure 11T 2 22 1 10 cells Figure 11BB 31 13 77

Figure 11U 2 0 0 Figure 11BC 10 0 0

Figure 11V 0 0 1 Figure 11BE 0 1 0

20 cells Figure 11AB 1 0 0 8 cells Figure 11BF 0 20 2

18 cells Figure 11AE 1 0 0 Figure 11BG 0 35 2

Figure 11AF 0 2 0 6 cells Figure 11BI 6 5 32

Figure 11AG 0 0 1 4 cells Figure 11BJ 3 14 187

Figure 11AH 0 0 1

Value of H 0.76923 0.88685 0.63472

TABLE 14 Statistical numbers of the loops with various structures for the greedy selection mechanism on different cellular spaces starting from the
initial configuration in Figure 7E.

Loop
Size

Shape∖Amount∖Space 60*46 80*65 85*65 Loop
Size

Shape∖Amount∖Space 60*46 80*65 85*65

48 cells Figure 12A 19 27 22 14 cells Figure 12W 0 0 4

46 cells Figure 12B 1 0 0 10 cells Figure 12AD 9 10 4

28 cells Figure 12E 1 0 0 8 cells Figure 12AH 2 4 0

22 cells Figure 12J 0 0 6 6 cells Figure 12AK 0 0 25

16 cells Figure 12R 0 4 0 4 cells Figure 12AL 1 8 0

Figure 12S 0 0 1

Value of H 0.50377 0.57922 0.59937

TABLE 15 Statistical numbers of the loops with various structures for the adding mechanism on different cellular spaces starting from the initial
configuration in Figure 7E.

Loop
Size

Shape∖Amount∖Space 60*46 80*65 85*65 Loop
Size

Shape∖Amount∖Space 60*46 80*65 85*65

48 cells Figure 12A 12 15 18 14 cells Figure 12X 3 1 8

40 cells Figure 12C 2 0 0 12 cells Figure 12Z 0 2 3

34 cells Figure 12D 0 2 2 Figure 12AA 0 2 1

24 cells Figure 12G 1 0 0 10 cells Figure 12AD 3 4 34

Figure 12H 0 0 2 Figure 12AE 0 2 2

Figure 12I 0 0 1 8 cells Figure 12AH 0 0 1

20 cells Figure 12K 1 0 0 Figure 12AI 3 1 0

Figure 12L 0 0 11 Figure 12AJ 69 108 12

18 cells Figure 12N 2 0 0 6 cells Figure 12AK 5 18 6

Figure 12O 0 1 0 4 cells Figure 12AL 12 21 53

16 cells Figure 12T 0 1 0

Value of H 0.62145 0.60756 0.85253
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little room for the smaller ones, which creates a smaller

population of loops and owns the lowest diversity of species.

Therefore, the aforementioned experiments show that the

adding mechanism and the changing mechanism can bring

higher diversity than the greedy selection mechanism.

Moreover, for those loops with the same number of cells, the

adding mechanism and the changing mechanism can obtain

more variable loops with different phenotypes. Phenotype

change is a sufficient factor for achieving such a functional

evolution Kampis and Gulyás (2008). In the process of self-

replicating, once a minimal loop is created, the loop will quickly

replicate itself, because the minimal loop can track its body much

faster. As a result, the minimal loops will become the vast

majority of the population after reaching saturation, thereby

reducing the diversity. Such a tendency is similar to the basic

orientation of the evolution paths in Sayama (2004).

Moreover, in order to further test the diversity that the active

mechanisms can bring, we conducted experiments on the initial

configuration in 7(d) with 60*60 cellular space using three

mechanisms. From Figure 13, we can see that the greedy

TABLE 16 Statistical numbers of the loops with various structures for the changing mechanism on different cellular spaces starting from the initial
configuration in Figure 7E.

Loop
Size

Shape∖Amount∖Space 60*46 80*65 85*65 Loop
Size

Shape∖Amount∖Space 60*46 80*65 85*65

48 cells Figure 12A 11 16 12 12 cells Figure 12AB 2 0 0

26 cells Figure 12F 0 0 1 Figure 12AC 0 1 0

24 cells Figure 12G 0 0 1 10 cells Figure 12AE 1 0 1

20 cells Figure 12M 0 1 0 Figure 12AF 11 47 50

18 cells Figure 12P 5 0 0 Figure 12AG 0 1 0

Figure 12Q 0 4 0 8 cells Figure 12AI 0 1 0

16 cells Figure 12U 24 0 1 Figure 12AJ 5 0 60

Figure 12V 0 1 0 6 cells Figure 12AK 11 44 4

14 cells Figure 12X 4 6 10 4 cells Figure 12AL 14 11 48

Figure 12Y 0 0 2

Value of H 0.88156 0.70506 0.70877

FIGURE 12
All final loop structures starting from the configuration in Figure 7E by the greedy selection, adding, and changing mechanisms.
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mechanism mostly can obtain the highest value on the total

quantity of loops, but significantly lower than the active

mechanisms in terms of species and diversity, which may

imply that the greedy mechanism tends to produce smaller

loops. Generally speaking, smaller loops can replicate

themselves rapidly and be more likely to survive.

However, mistakes may occur in the process of self-

replication and the details are shown in Figure 14. There are

several conditions for the error to occur (see also Huang et al.

(2013)): 1) Loop 1 is on the inner side of the arm of the loop 2 in

Figure 14A; 2) The arm of loop 1 contains no construction code,

which means the head of the arm is in the state ◦■; 3)The
construction arm of loop 2 has been scanned by a validation

signal, whichmeans the state about the part of the arm turns state

• to state ◦. Especially, there is a parallel arm that is made up of

state ◦ shown in Figure 14B. However, this error seldom

happens. Under these conditions, loop 2 may have an

erroneous cognition that it thinks of the arm of loop 2 as its

own; thereby it will cut off the umbilical cord at the arm head.

Fortunately, loop 1 is unaffected by this error and goes on self-

replicating. Loop 2, however, is not so lucky, and dies. What is

worse, the dead loop 2 and the discarded arm of loop 1 waste

many spaces. Nevertheless, enhancing the function of a

validation signal may seem reasonable to avoid erroneous

cognition. On the plus side, an erroneous cognition may

possibly be regarded as some non-trivial co-action between

loops Sayama (1999). Moreover, an erroneous cognition may

create an offspring the size of which is bigger than the mother

loop Salzberg (2003).

Furthermore, from Figure 15, we can see that Loop 2 takes up

the space thanks to the faster replication capability during the

process of generating Loop 1, and Loop 1 exactly forms a closed

FIGURE 13
Further results on the initial configuration in Figure 7D with 60*60 cellular space using the three mechanisms.

FIGURE 14
A dead loop caused by improperly cutting off an umbilical cord.
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loop that wraps around Loop 2. This situation is similar to the

phagocytosis of immune cell Stossel (1974). Luckily, Loop 1 and

Loop 2 are alive. Thus, if there are enough spaces, the loops can

self-replicate.

5 Discussion

Many studies have considered the self-replication on various

cellular automata to simulate the process of biological self-

replication, including the reversible cellular automata (Morita

and Imai, 1996b), polymorphic cellular automata (Sekanina and

Komenda, 2011), and graph automata (Tomita et al., 2002).

Moreover, self-replication on cellular automata has been applied

to several fields, such as worm propagation in smartphones (Peng

et al., 2013), artificial chemistry (Hutton, 2007), and image

processing (Sahin et al., 2015). In this article, we provided a

different approach to enhance the diversity of artificial self-

replicating structures, instead of abandoning partial structural

information or destroying the whole loop. In order to obtain

these effects better, on the basis of existing ordinary self-

replication, we change a greedy selection mechanism to two

active mechanisms when dealing with collision, which add an

orientation and change the construction signal under the dead

head. Experiments showed that active adaptations using our

schemes can actually improve the possibility of survival and

replication of any self-replicating structure in a wide variety of

environments than the passive one. In particular, the changing

mechanism involves abandoning one building-block from the

original structure of a mother loop when every collision happens,

even though the mechanism changes the construction signal.

Also, the adding mechanism does not seem to lose the block of

information coming from the parent, while some constructional

information is left for the offspring to complete the replication.

This may result in the shrinkage of both shape and size of the

offspring.

Although the adding and changing mechanisms enable more

active self-adaptation than the greedy selection mechanism, they

still look somewhat passive in the sense that the adaptation can

only be activated when collision occurs. In living organisms,

mutation on genes will occur in a probabilistic manner. As with

self-adaptation, self-recovery or self-healing is also an interesting

feature of organisms. In the future work, we will consider how to

endow self-replicating loops with a self-repairing ability

(Tempesti et al., 1998), use random inputs (Griffith et al.,

2005) to generate interesting patterns, and genetic algorithms

to automatically discover rules (Lohn and Reggia, 1997).
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Constructing a novel bioinformatic workflow by reusing and repurposing

fragments crossing workflows is regarded as an error-avoiding and effort-

saving strategy. Traditional techniques have been proposed to discover

scientific workflow fragments leveraging their profiles and historical usages

of their activities (or services). However, social relations of workflows, including

relations between services and their developers have not been explored

extensively. In fact, current techniques describe invoking relations between

services, mostly, and they can hardly reveal implicit relations between services.

To address this challenge, we propose a social-aware scientific workflow

knowledge graph (S2KG) to capture common types of entities and various

types of relations by analyzing relevant information about bioinformatic

workflows and their developers recorded in repositories. Using attributes of

entities such as credit and creation time, the union impact of several positive

and negative links in S2KG is identified, to evaluate the feasibility of workflow

fragment construction. To facilitate the discovery of single services, a service

invoking network is extracted form S2KG, and service communities are

constructed accordingly. A bioinformatic workflow fragment discovery

mechanism based on Yen’s method is developed to discover appropriate

fragments with respect to certain user’s requirements. Extensive experiments

are conducted, where bioinformatic workflows publicly accessible at the

myExperiment repository are adopted. Evaluation results show that our

technique performs better than the state-of-the-art techniques in terms of

the precision, recall, and F1.
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1 Introduction

With the wide-adoption of web service technology, recurring

data and computational resources are increasingly encapsulated as

web services or mashup APIs and assembled as scientific

workflows (Fischer et al., 2021; Coleman et al., 2022). Online

repositories, such as myExperiment1, are publicly accessible for

publishing and sharing of scientific workflows constructed by

scientists from various disciplines (Gkortzis et al., 2021).

Bioinformatics, for example, has seen a spectacular rise in the

availability of distributed services (Brandt et al., 2021) and allows

rapid and accurate analysis using bioinformatic workflows.

Examples of bioinformatic workflows from myExperiment are

illustrated in Figure 1.With an increasing number of bioinformatic

workflows available online, scientists can reuse and repurpose

legacy workflows, rather than developing from scratch, to satisfy

novel requirements which are examined to be completely or

partially satisfiable by legacy workflows in repositories (Brandt

et al., 2021; Rosa et al., 2021). As shown in Figure 1B, the workflow

“BiomartAndEMBOSSDisease” retrieves all genes on human

chromosome 22, which are associated with a disease, and aligns

upstream regions with mouse and rat homologues. This workflow

can be reused to reduce the cost when a scientist is willing to design

a similar experiment. In fact, considering knowledge-intensiveness

and error-proneness for constructing a novel bioinformatic

workflow, reusing or repurposing current workflows has been

evidenced as an error-avoiding and effort-saving strategy for

conducting reproducible bioinformatics experiments (Ren and

Wang, 2018; Almarimi et al., 2019). To facilitate the reuse and

repurposing of bioinformatic workflows, techniques for

discovering and recommending the most relevant fragments of

current workflows are fundamental (Yao et al., 2021).

Current techniques have been developed to support the

discovery of workflow fragments with similarity assessment.

Traditionally, these works evaluate structural similarities

between workflows (Bai et al., 2017; Zhang et al., 2018; Zhou

et al., 2018), where partial-ordering relations specified upon

services are concerned. Although the structure can well-

represent the execution semantics of individual workflow

fragments, semantic mismatches exist, due to domain

differences of workflow developers. To mitigate this problem,

annotation-based similarity computation techniques are

proposed to complement the structural similarity assessment.

Annotations are typically provided by developers to prescribe the

category and essential functionalities of certain workflows (Ni

et al., 2015; Zhong et al., 2016; Hao et al., 2017). Since workflows

may not be accompanied with annotations in certain scenarios

(Starlinger et al., 2014), annotation-based strategies with

inaccurate similarity calculations may not work as expected.

As a result, it may hardly recommend suitable fragments

when performing certain scientific experiments.

Considering the fact that developers themselves, who prescribe

the annotations, may provide insights about the execution

relations between workflows, this study proposes to explore

social relations between developers to facilitate recommending

appropriate workflow fragments. Figure 1 shows a motivating

example of two similar bioinformatic workflows, which are built by

two developers who are actually friends. Therefore, incorporating

the social relations of developers is promising to further improve

the recommendation performance. Discovering fragments from

bioinformatic workflows that are assembled by developers in social

relations is a promising research challenge. While workflow

repositories, such as myExperiment, have been constructed for

decades, there still have insufficient socially relevant data on

developers. As a result, current techniques focus on gathering

and applying certain social information, such as developer

reputation, to facilitate the discovery accuracy of appropriate

workflows and services (Qiao et al., 2019; Khelloufi et al., 2021;

Zhu et al., 2021). In fact, more relations between services (Herbold

et al., 2021), and their positive or negative links on workflow

fragments discovery and recommendation, have not been explored

extensively. Therefore, considering social relevance between

developers and services, for facilitating the reuse and

repurposing of current workflow fragments, is a challenge to be

explored further.

To address this challenge, this study proposes a novel

workflow fragment discovery mechanism, by exploring social

relations of developers and services that are formed in a

knowledge graph. Major contributions presented in this article

are summarized as follows:

• We constructed a social-aware scientific workflow knowledge

graph (S2KG) from the myExperiment repository, where

services and developers of bioinformatic workflows are

encapsulated as entities, and relevant attributes of entities,

such as topic, reputation, and domain, are obtained. In

addition, multiple relations between entities, including (i)

invocation relations between services, (ii) developer

relations between services and their developers, and (iii)

friend relations between developers, are captured.

• We proposed a novel bioinformatic workflow fragment

discovery mechanism leveraging S2KG. Specifically,

positive or negative links between services are identified

by analyzing their credits, co-invocation possibilities, and

co-developer relations (Ni et al., 2015). A service invoking

network (SINet) is formed based on invocation relations

between services in S2KG. Service communities are

generated from SINet using the fast unfolding method

(Blondel et al., 2008), to facilitate individual candidate

services discovery from a functional perspective.

Thereafter, services are pairwisely connected through

query operations upon S2KG. The Yen’s method (Yen,1 https://www.myexperiment.org/workflows
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1971) is adopted to construct and recommend appropriate

workflow fragments to satisfy user’s requirements.

Bioinformatic workflows in myExperiment are adopted

as the data set in our experiments, where social relations

between services and developers are discovered. Extensive

experiments are conducted, and evaluation results show

that our technique, which complements social relations,

outperforms the state-of-the-art counterparts in terms of

the precision, recall, and F1.

This study is organized as follows. Section 2 introduces

relevant concepts of S2KG and the attributes of entities.

Section 3 presents the process of workflow recommendation

based on S2KG. Section 4 evaluates our method and makes a

comparison with state-of-the-art techniques. Section 5 discusses

related works. Section 6 concludes this study.

FIGURE 1
Three bioinformatic workflows from Taverna 2 of the myExperiment repository with the title “BioMart and Emboss Analysis (T2)”,
“BiomartAndEMBOSSDisease”, and “BiomartAndEMBOSSDisease”, respectively, and a partial knowledge graph of the BioMart and Emboss Analysis
(T2) in S2KG.
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2 S2KG construction

This section introduces relevant concepts and presents the

construction procedure of S2KG.

2.1 Concepts of S2KG

myExperiment is an online research environment that

supports social sharing of developers’ workflows (Goble et al.,

2010), which consists of several services. According to these

characteristics, the knowledge graph constructed on this

repository in this study includes two types of entities, that is,

services and developers, as well as three types of relations

between them. The workflow is used to reflect the invocation

relation between services, so it is not used as a separate entity. The

specific definitions are as follows.

A service in S2KG is defined as follows:

Definition 1 (Service). A service is a tuple src = (tl, tpc, cr, t),

where:

• tl is the title of src;

• tpc is the topic vector that represents its functions;

• cr is its credit, which is calculated based on workflows

containing this src;

• t represents the created time of src.

A developer in S2KG is defined as follows:

Definition 2 (Developer). A developer is a tuple dvp = (dmn, crd),

where:

• dmn is the topic vector representing his research domains;

• crd is the reputation calculated by his rating and the credit of

his workflows.

A social-aware scientific workflow knowledge graph (S2KG)

is defined as follows:

Definition 3 (S2KG). S2KG is a tuple (V, LNK), where:

• V = SRC ∪DVP is a set of entities for services, SRC, and a set

of developers, DVP;

• LNK is a set of directed links which specify three kinds of

relations: (i) services and services (isInk), (ii) services and

developers (isDvp), and (iii) developers and developers

(isFrd).

A scientific workflow in S2KG is defined as follows:

Definition 4 (Scientific Workflow). A scientific workflow is a tuple

wkf = (crw, SRCw, LNKw, dscw, dvpw, TGw), where:

• crw is the credit calculated upon its download times, viewing

times, and rating;

• SRCw ⊂ SRC is a set of services in wkf;

• LNKw ⊂ LNK is a set of data links connecting services in

SRCw;

• dscw is the text description in the profile of wkf;

• dvpw ⊂ DVP is the developer of wkf;

• TGw is a set of tags provided by dvpw.

Figure 1D shows a snippet of S2KG, which includes several

services represented by blue ovals, developers represented by

orange ovals, and their relations are represented by arrows

with different colors. Specifically, for scientific workflow

BioMart and Emboss Analysis (T2) in myExperiment, which

is a bioinformatic workflow, as shown in Figure 1A, its

developer Katy Wolstencroft is represented by orange ovals.

Its services are represented by blue ovals; for example, the

service hsapiens_gene_ensembl. Blue rectangles in wavy

rectangles describe the properties of entities, such as the

dmn and crd of Katy Wolstencroft, and the tl, tpc, cr, and t

of hsapiens_gene_ensembl. According to the workflow

specification, relations between a developer and his services

are extracted as isDvp and represented by the orange dotted

line; for example, the relation between Katy Wolstencroft and

his services hsapiens_gene_ensembl. Based on data links in

workflows, relations between services are extracted as isInk

and represented by the gray lines; for example, the

relation between the service hsapiens_gene_ensembl and the

service getRNorSequence. Specially, GetUniqueHomolog and

CreateFasta are beanshells for cohesion, so they are not

regarded as services. Finally, the relation between

developers and their friends is extracted as isFrd and

represented by the yellow arrow in this figure. For

example, Katy Wolstencroft, the author of workflows

shown in Figures 1A,B, and Alan Williams, the author of

the workflow shown in Figure 1C, are friends, and

their relation is represented by a yellow arrow and labeled

as isFrd.

2.2 Topic of services

This section constructs topic vectors of services for

representing their functions and domains. For a service, the

title and text description in its profile prescribe its original

functionality. However, since services are constantly being

combined for new application scenarios, their profiles can

hardly reflect their new application scenarios and functions.

As is often the case, various workflow information sharing

platforms provide rich descriptions to describe their domains

and functions (Gu et al., 2021). Workflows can be regarded as

a set of interdependent services that implement complex

functions. Based on this observation, we argue that

workflows can be considered as the domain of relevant

services to provide their integrated functional description.

For a more comprehensive representation of service topics,
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these functions and domains are used to generate topic vectors

for the corresponding services. In total, three sample scientific

workflows are shown in Figure 1, and they contain similar

services but have different descriptions to represent novel

domain of services.

Algorithm 1. Service corpus construction

Algorithm 1 presents the construction procedure of

service corpus contained in workflows. To prescribe the

functionality of each service srci, its title srci.tl and text

description srci.dsc are assembled as a document doci (line

2). To present the novel domain of srci, the related description

in wfkj.dscw and tags in wfkj.TGw of each workflow wkfi
containing srci are added to doci (lines 3–14), where

contains () is a comparison function, snti is the ith

sentence of wfki.dscw, wdsi is the ith word of wrci.tl, srci.tl is

the title of srci, and wdti is the ith tag in wfkj.TGw. All

documents construct the corpus for generating topics for

services (line 15). Note that doci contains several

paragraphs, mostly, and could hardly be regarded as a

short text, which usually contains less than five words or

no more than 140 characters (Li et al., 2016). Therefore,

considering the size of DOC, the Latent Dirichlet

Allocation (LDA) model (Blei et al., 2003) is adopted to

generate topics for service corpus. Generally, LDA is a bag-

of-words model and widely used in general-scale long text

classification, where stop words are removed during the model

preprocessing phase.

The time complexity of Algorithm 1 is O (|SRC|*|WKF|*|

SRCw|*|SNT|), where |SRC| is the number of services in the

repository, |WKF| is the number of workflows in the

repository, |SRCw| is the number of services in the jth

workflow, and |SNT| is the number of sentences in the

description of wkfj. Note that line 9 should iterate fewer times

than line 4, and thus, the time complexity of Algorithm 1 is

determined by lines 1, 3, and 4.

Algorithm 2. Service topic model construction

Leveraging DOC generated by Algorithm 1, Algorithm 2

introduces the service topic vector construction procedure.

Specifically, the model is initialized and parameters are

generated leveraging the set of documents DOC, where nkt is

the count of a term for a certain topic, nmk is the count of a topic

for a certain document, nktS is the sum for the kth row in nkt,

nmkS is the sum for the mth row in nmk, and z is the generated

topic label array (line 1). During each iteration itt, we

continuously updated the parameters for topic–word

distribution ϕ (lines 3–5), as well as the parameters for

doc–topic distribution θ (lines 6–8), where tpn is the number

of topic; vb is the vocabulary; DOC.length is the size of DOC;

docl.length is the size of document docl; and tp, tr, andm are local

variables. The Gibbs sampling smpleTpcZ () is adopted to update

topic label array afterward, where l and p are local variables (lines

9–11). Please refer to (Blei et al, 2003) for the specific sampling

process. The time complexity of Algorithm 2 is O

(itt*DOC.length*docl.length). Note that lines 3 and 6 should

iterate fewer times than line 9, and thus the time complexity

of Algorithm 2 is determined by lines 2 and 9.

2.3 Reputation of services

This section constructs the credit of services through the

collective perception of workflows containing these services. A

service is applied in multiple workflows with some reputation

information representing their popularity. As components of a

workflow, the credit of every service contributes to an accurate

partial-execution of this workflow, which indicates that users

prefer to obtain a service with certain quality. To evaluate the

quality of services, the method described in Yao et al. (2014) is

used to calculate the credit (cr) of services leveraging the

workflows information as follows.

Generally, the credit crw of a workflow wkfi.crw reflects the

degree of adoption by developers, and it is calculated by three
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factors including viewing times (wkfi.nv), download times

(wkfi.nd), and rating (wkfi.nrt) by the following formula.

wkfi.crw � fcrd wkfi.nv, wkfi.nd, wkfi.nrt( ) (1)

Where fcrd is a monotonic increasing function to ensure that the

quality of a workflow is directly proportional to its popularity.

For each service in a workflow, its credit can be calculated by

adopting a fair-share method, as presented in Nepal et al. (2009).

Specifically, due to different importance, the credit of services in a

workflow wkfi.V should be assigned according to its importance

as follows.

wkfi.V � v1, v2, . . . , vn (2)

Where v ∈ [0, 1] and ∑ v = 1. Based on Eq. 2, the credit of each

service srcj.cr is computed using the formula below.

∀srcj ∈ wkfi.SRCw srcj.cr � vjwkfi.crw (3)

Since a service srcj may be adopted in several workflows, the

average credit is regarded as the credit srcj.cr.

srcj.cr � ∑WN
i�1 wkfi.srcj.cr

WN
(4)

WhereWN is the number of workflows containing srcj, and wkfi.

srcj.cr is the credit of srcj calculated by wkfi.

2.4 Domain and reputation of developers

This section constructs the topic vector of developers for

presenting their research domains which influence their services’

and workflows’ functionality and domains. Through examining

the information about developers in myExperiment, a developer

generally has four features describing his research domains,

including his introduction, interests, tags, and field (or

industry). These features are adopted to generate topic vectors

of corresponding developers leveraging Algorithm 3.

Algorithm 3. Developer topic model construction

Algorithm 3 shows the construction of topic vectors for

developers. To prescribe the domain of each developer dvpi
(line 1), the introduction dvpi.itd, interests dvpi.itr, field

dvpi.fld, and tags dvpi.TGd are assembled into a document doci
(line 2), and these documents construct the corpus for generating

topics of developers (line 3). Specifically, dvpi.itd and dvpi.itr are

texts with several functional paragraphs, and dvpi.fld and

dvpi.TGd are some concise words. As mentioned in Section

2.2, doci of each developer is not a short text. Thus, the LDA

model is adopted to generate topic vectors for developers (line 5).

Note that the number of iterations in line 1 should be less than

that in line 5, so the time complexity of Algorithm 3 is

determined by Algorithm 2, where DOC is the corpus of

developers involved in this algorithm.

The reputation is calculated to reflect the trust degree of a

developer. We use the method proposed in Yao et al. (2014) to

calculate this value using the developer’s rating and his services’

credit. Specifically, each developer in myExperiment has an

average rating to reflect his contribution. Hence, the rating is

considered as an important feature for calculating the reputation.

In addition, the credit of his previously developed services is

another feature that indicates his reputation. Therefore, the

reputation crd of a developer is calculated leveraging the

follow formula (Yao et al., 2014).

crd � frp rtdi, pdi{ }( ) (5)
Where the function frp is a monotonic increasing function, which

ensures that the reputation of a developer is high when his credit

is high and the quality of his services is high as well. rtdi is the

rating of a developer calculated by the platform. {pdi} is the credit
set of his services.

3 Bioinformatic workflow fragment
discovery

This section presents the identification of positive and

negative links between services to support bioinformatic

workflow fragment discovery, involving the selection of

candidate atomic services leveraging community detection,

and the discovery of their fragments in S2KG.

3.1 Union impact based on positive and
negative links

There exists positive or negative links between pairs of

services. Positive links specify correlations, collaborations, and

complementary relations between services, whereas on the

contrary for negative links. Based on S2KG, four types of

positive links are identified to guide service cooperation

(Ni et al., 2015). A service srci may compose with another

srcj, when

1) srcj has a good credit,

2) srcj has a highly similar topic with srci,

3) the developer of srcj is same as that of srci, or

4) the developer of srcj is a friend with similar topics to the

developer of srci.
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Specifically, the higher the credit of a service is, the higher the

possibility that this service is selected to compose a novel workflow.

Thus, the positive link Crij between srci and srcj is calculated to

reflect the impact of their credit srci. cr and srcj.cr as follows.

Crij � srci.cr × srcj.cr (6)

Where srci.cr and srcjcr are the credit of srci and srcj calculated by

Eq. 4.

• The second positive link Simij is identified to calculate the

similarity of srci and srcj by the following formula Eq. 7

leveraging the services’ topic vectors constructed in Section 2.2.

Simij �
∑tpn

k�1 srci.tpck × srcj.tpck( )													∑tpn
k�1 srci.tpck( )2√

×
														∑tpn

k�1 srcj.tpck( )2√ (7)

Where srci.tpck and srcj.tpck are the values of the kth feature in

srci.tpc and srcj.tpc.tpn is the total number of topics. The higher

the results are, the more similar the two topic vectors are. A

threshold trdt is prescribed to examine whether two services are

similar. Intuitively, when Simij ≥ trdt, the topic of two services are

similar, and not otherwise.

• The third positive link Sdij is identified by Eq. 8 to examine

whether the developers of srci and srcj are same.

Considering the stickiness of a developer’s domain, his

services should be similar in terms of his topics. These

services may be easier to adapt from the perspective of

structure, and their composition may match the functional

requirements more appropriately.

Sdij � 1 if ∃ dvpi, isDvp, srcj( )
0 otherwise

{ (8)

Where dvpi is the developer of srci, and dvpi, isDvp, and srcj
means that the developer of srcj is also dvpi. As shown in

Figure 1A and Figure 1B, these two workflows are constructed

by the same developer Katy Wolstencroft. Their structures are

similar, but they are adopted in different domains and have

different titles and introductions.

• The fourth positive link Sfij is identified, when two developers

are friends, their domains and interests may be similar. Thus,

the topic of services they developed should be similar.

Sfij � 1 if ∃ dvpi, isFrd, dvpj( )
0 otherwise

{ (9)

Where (dvpi, isFrd, and dvpj) means that the developer dvpi of srci
is a friend of the developer dvpj of srcj. As shown in Figure 1, the

developers of Figure 1B and Figure 1C are friends. As we can see,

they have constructed the similar workflows with the same title

and different functional description.

Negative links indicate functionality uncorrelations, conflicts,

or even competitions between services. Based on S2KG, a union

negative link TCij is identified leveraging Crij and Tmij. Specifically,

Tmij is a negative link specifying that services may cooperate with

very low feasibility if they have not cooperated in the same

workflow since their creation. Tmij is calculated as follows.

Tmij � now −max srci.t, srcj.t( ) (10)

Where now is the current time. The uncooperative duration of

two services is determined by the latest service. The larger the

value of Tmij is, the less likely that these two services are

cooperated to construct a novel workflow.

Based on Tmij, TCij can be formed as follows to present that

two services are unlikely to cooperate.

TCij � Tmij × Crij (11)

Generally, the larger the value of TCij is, the lower the

feasibility that srci and srcj can be cooperated.

As mentioned before, given two services, we adopted the

union impact Uij through integrating positive and negative links

to determine whether they can be cooperated, as follows.

Uij � α × Simij + β × Crij − γ × TCij,
if Sdij � 1 or Sfij � 1

(12)

Where α, β, and γ are the importance of each influencing factor,

and α + β + γ = 1.

3.2 Service discovery leveraging
community detection

Due to the different levels of users’ expertise, a requirement

in this study is composed of several sub-requirement descriptions

in an effort to express the requirement more clearly. Generally, it

can be formalized in terms of Q = {q1, q2, . . ., qm}. For each sub-

requirement, an appropriate service is discovered accordingly. To

facilitate single service discovery from the functional perspective,

services and isInk relations are extracted from S2KG and

construct a Service Invoking Network (SINet). For example,

the service hsapiens_gene_ensembl and the service

getRNorSequence in the workflow BioMart and Emboss

Analysis (T2) are divided into the same purple community

because of similar application scenarios. The fast unfolding

method (Blondel et al., 2008), which is heuristic based on

modularity optimization, is adopted to divide SINet into

several functional communities. This method adjusts the

division of communities by continuously optimizing the

modularity, where the modularity of a partition is a measure

of the density of links within the community and the density of

links between communities (Newman, 2006) as defined by

Eq. 13.

CM � 1
2m

× ∑
i,j

Aij − kikj
2m

[ ] × δ ci, cj( ) (13)
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ki � ∑
j

Aij (14)

m � 1
2
∑
i,j

Aij (15)

δ ci, cj( ) � 1 ci � cj
0 others

{ (16)

Where Aij represents the wight of the link between srci and srcj,

and the wight is Simij as calculated by Eq. 7. ki is the sum of

wights of links which connect to srci. m is the sum of link wights

in SINet. ci is the community to which srci is assigned. δ(ci, cj)

represents the fact that whether ci and cj are same. By dividing

SINet into communities, the entire network is a set CM of

communities, and each community ci in CM is a tuple ci =

{ct, CS}, where ct is the topic vector of the representative service of

ci and CS is a set of services in ci.

Algorithm 4. Candidate service discovery

Based on CM, the most relevant communities and

candidate services are discovered. Algorithm 4 represents

candidate communities and services discovery procedure.

First, SINet is divided into several communities leveraging

the fast unfolding method (Blondel et al., 2008) according to

service topics (line 1). A comparison variable k is set to 0 (line

2). For each sub-requirement qi and each community cj, the

functional similarity between them is calculated by the

comparison function Sim() and compared with k, where qi
is vectorized by embedding. The community cj with the most

similar functionality to qi is inserted into a set of candidate

communities CT (lines 3–7). For each candidate community

in CT, the similarity of each srcj.tpc and qi is calculated and

compared with the pre-specified threshold trdsc. If the

similarity is larger than trdsc, srcj is inserted into the set S

as candidate services (lines 8–12). The time complexity of

Algorithm 4 is O (|CT|*|CS|), where |CT| is the number of CT

and |CS| is the number of services in the community ci.

Note that line 3 should iterate fewer times than line 8, and

thus, the time complexity of Algorithm 4 is determined by

line 8.

3.3 Bioinformatic workflow fragment
discovery

Based on candidate services discovered by Algorithm 4, this

section proposes to discover appropriate workflow fragments,

where relations prescribed by S2KG are obtained to connect

candidate services for respective service stubs in the

requirement. The Yen’s method (Yen, 1971), which is a

heuristic method widely used in graph traversal, is adopted to

discover and compose relevant workflow fragments from various

workflows.

Algorithm 5. CFDY: Crossing-workflow fragment discovery

using Yen’s method

The Algorithm 5 (denoted CFDY) shows the procedure of

discovering appropriate bioinformatic workflow fragments. First,

the Dijkstra () is adopted to find the optimal combinatorial

fragment PH0 from the service srci to the service srcj leveraging

the union impact Uij (lines 1,2). Based on PH0, the kth

TABLE 1 Data set in Taverna 2.

Statistics Value

# of service 2,870

# of workflow 1,058

# of developer 175

# of isInk 2,516

# of isDvp 2,870

# of isFrd 271
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combinatorial fragment is found (lines 3–19). Above all, every

deviated service is traversed (lines 4–15). Specifically, srcsp is

retrieved from the (k-1)th best combinatorial fragment and Phrt
records the sequence of services from srci to srcsp (lines 4–6). The

links that belong to part of the previous best combinatorial

fragment of the same Phrt are removed from the S2KG (lines

7–11). The combinatorial fragment from srcsp to srcj is found by

the Dijkstra () and recorded to Phsp (line 12). Entire

combinatorial fragment is made up of Phrt and Phsp and

added to the set BPH (line 13). The links that were removed

before are added back to S2KG (line 14). If there are no other

combinatorial fragments, the method ends (lines 16–18). The

optimal combinatorial fragment in BPH is the kth combinatorial

fragment PHk (line 19). All paths in PH are added to the setMPS

(line 21). The time complexity of Algorithm 5 is O (|S|*k#*size

(PH)*|PH|), where |S| is the number of candidate services,

size(PH) is the value of size (PHi) minus 1, and |PH| is the

number of path.

4 Implementation and evaluation

This section presents our experiments and evaluation results.

Experiments are performed on a desktop computer with an Intel

i7 6,700 processor at 3.40 and 3.41 GHz, 8.00 GB of RAM and a

64-bit Windows 10 operating system. The prototype is

implemented by Python and Java.

4.1 Data set and preprocessing

This study adopts bioinformatic workflows in

myExperiment for our experiments, where workflows in the

Taverna 2 category by May 2019 are crawled. For each service,

its title, description, created time and developer are collected.

For each workflow, its title, description, tags, publishing date,

download times, viewing times, rating, developer, services and

data links are collected, where the data links reflect the control

flows between services (i.e., invocation relations). For each

developer, his name, introduction, interests, field, rating and

friends are collected. Note that services and workflows without

a title or description are deleted. As a summary, the numbers of

available services, workflows, developers and their relations are

shown in Table 1.

The data cleaning procedure is conducted, where stop words

are removed, and the stemming of words is extracted. Thereafter,

entities and relationships are extracted, and their attributes are

obtained by the techniques presented in Section 2. We adopt the

graph database Neo4j (Robinson et al., 2015) to store these

cleaned data.

To evaluate the efficiency of our technique, we have

generated 40 crossing-workflow fragments leveraging legacy

workflows as testing fragments based on S2KG. According to

the statistic reported in our previous work (Zhou et al., 2020),

roughly 86% of workflows contains no more than 11 services.

Therefore, 5 out of 40 testing fragments are set to contain over

11 services.

4.2 Measurement metrics

Three metrics are adopted to evaluate the accuracy and

effectiveness of our technique as follows:

• P: The precision (denoted P) indicates the percentage of the

number of correctly recommended services over the total

number of recommended services.

P � |CSpt ∩ CSrc|
|CSrc| (17)

• R: The recall (denoted R) refers to the percentage of the

number of correctly recommended services over the total

number of desired services.

R � |CSpt ∩ CSrc|
|CSpt| (18)

• F1: The F1 score is used for an overall evaluation based on

P and R.

F1 � 2 × P × R

P + R
(19)

Where CSpt is the expected service set, and CSrc is the set of

recommended services.

4.3 Baseline techniques

In this section, the following four state-of-the-art techniques

are chosen as baselines to evaluate the effectiveness of our

technique:

• CSBR (Gu et al., 2021) is a semantics-based model to

compose and recommend a set of complementary

services for workflow construction. By applying this

approach, we first construct a semantic service bundle

repository using experimental data. Then a bundle of

complementary services is recommended to fulfill the

sophisticated requirements. Finally, a more suitable

result is found using a greedy approximation method

considering the time complexity.

• ClstRec (Conforti et al., 2016) is a modularized clustering

algorithm to generate service clusters. We first identify

target clusters for each service stub, find their services or

fragments therein, and sort them into candidate services or

fragments. Then a series of fragments are constructed
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across workflows based on their relations. Based on their

similarity, these fragments are identified, ranked, and

recommended accordingly.

• CDSR (Xia et al., 2015) is a category-aware clustering and

distributed service recommending method to automatically

create fragments. First, we cluster the experimental data into

various categories based on the similarity of functionality and

popularity of their services. Then we map requirements to

relevant categories to find candidate services. Finally, these

candidate services in the most relevant categories construct

cross-workflow fragments to fulfill the requirements.

• Short Path (denoted SP) method is a classical heuristic

algorithm. First, we start to navigate from a service and

select the neighbors with the highest relevance, which have

a connection-aware relation with it, according to a given

probability distribution. Then a similar operation is

performed starting from that service to find a service

fragment.

4.4 Evaluation results

In this section, we first optimize the algorithm CFDY by

adjusting the following parameters tpn and k# and then use the

parameters sq# and trdU to discuss the evaluation results of CFDY

and baselines.

• tpn: The topic number. The semantic description is

susceptible to the topic number. Different number of

topics should lead to different partitions of services and

developers and recommend various results. Therefore,

determining an appropriate tpn is fundamental and crucial.

TABLE 2 Prp settings with various tpn.

tpns 10 20 30 40 42 43 44 45 46

Prps 196.860 149.406 135.332 132.726 132.176 131.505 131.757 132.750 132.752

tpnd 2 4 6 8 9 10 11 12 13

Prpd 654.289 509.672 468.705 468.485 465.883 454.085 463.771 479.020 479.157

FIGURE 2
Precision, recall, and F1 value for the fragment discovery when k# is set to 1, 2, 3, 4, and 5, respectively.

Frontiers in Genetics frontiersin.org10

Diao et al. 10.3389/fgene.2022.941996

97

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.941996


• k#: The number of paths. When it changes, it should affect

the number of path searches of CFDY. Different k# should

affect the number of services in results, thereby affecting

the efficiency of CFDY.

• sq#: The number of sub-requirements. With the increase of

sq#, the number of service and the complexity of fragments

should increase, thereby affecting the efficiency of the

fragment discovery.

• trdU: The connection-aware threshold of two services. It

should influence the efficiency of our method by changing

the scale of candidate services set.

4.4.1 Impact of tpn

To select the optimal tpn, a widespread perplexity is used to

calculate the quality of the LDA model, as shown below, which

describes the degree of uncertainty of the model about

documents and their topic. Therefore, the lower the perplexity

is, the better predictive effect.

Prp � exp −∑M
d�1 logp wd( )∑M

d�1Nd

{ } (20)

Where M is the number of DOC, Nd represents the number of

words in a doc, and p (wd) is the probability of that the word wd is

contained in the doc.

As shown in Table 2, the perplexities of services’ and

developers’ LDA models are calculated separately. For the

LDA model of services, with the increasing of topic number

(denoted as tpns), its perplexity (denoted as Prps) decreases.

When Prps is 131.505, tpns is selected to the optimal value as

43. For the LDA model of developers, its perplexities (denoted as

Prpd) are calculated when its topic number (denoted as tpnd)

ranges from 2 to 13. When tpnd is 10, Prpd is the smallest value as

454.085. Therefore, 43 and 10 are determined as the tpn of two

LDA models.

4.4.2 Impact of k#
The influence of different k# on P, R, and F1 is shown in

Figure 2 when k# is set to 1, 2, 3, 4 and 5, respectively. tpns is set to

43, tpnd is set to 10, and trdU is set to 0.8. Considering that

different sq#will affect the complexity of fragments discovery, the

efficiency of various k# is evaluated with test examples containing

2–11 sub-requirements. Considering that the number of test

examples containing 5–10 sub-requirements is small, these

examples are grouped into one category.

• Figure 2(1) and Figure 2(2) show that, as sq# gradually

increases, P, R and F1 as a whole gradually decrease. In

particular, in Figure 2(2), when sq# is 11, there is a sudden

change in R that has a higher value. The increase of sq#
leads to the increase of the number of services contained in

CSpt. Therefore, the fragment structure becomes more

complex. Generally, when sq# is larger, the single path

search can hardly fulfill the complexity requirement well.

Compared with Figure 2(1), our technique increases the

number of paths, and the number of services contained in

CSrc. Thus, R is increased to some extent.

• As shown in Figure 2(3)–2 (5), when k# is larger than 2,

their P, R and F1 have similar tends. With the gradual

increase in sq#, P and F1 gradually decrease, but R has

increased to a certain extent. In the same way, the decrease

in P and F1 is due to the increase in sq# and the complexity

of their structure. With the increase of k#, the number of

services in CSrc increases, which will lead to an increase in

R. However, as k# gets larger, too much exploration will

lead to a decrease in R when sq# is small. For example,

compared with R in Figure 2(1), R in Figure 2(5) is

significantly lower when k# equal to 2.

• Figure 2(6) shows the average values of P, R, and F1, at each

k#. Larger k# means that more fragments are constructed.

Due to the increase of fragments, more services are

selected. Hence, this result may lead to an increase of P.

However, since the number of expected services is fixed,

blindly increasing the number of recommended services by

adding too many paths may not maintain the increase in R.

F1 has a maximum value at 2. Therefore, 2 is finally

selected as the value of k# in subsequent experiments.

FIGURE 3
P, R, and F1 value for the fragment discovery, when the sub-requirements number is set to 2, 3, 4, 5–10 and 11, respectively.
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4.4.3 Comparison on sq#
We compare five methods and estimate the influence of

different sq# for fragment discovery. The results of P, R, and F1

are shown in Figure 3 when sq# is set to 2, 3, 4, 5–10, and 11,

respectively. tpns is set to 43, tpnd is set to 10, k# is set to 2, and trdU
is set to 0.8.

Figure 3(1) shows that P decreases with the increase of sq#,

and the overall performance of CFDY is better than other

methods.

• For CFDY, as sq# increases, its p decreases. When sq# is

small, its structure is relatively simple, and the expected

service can be selected more accurately by using the

relationship between services. With the increase of sq#,

the structure of the fragment becomes more complex and

contains more branches. Therefore, the selection of

candidate services brings certain difficulties, and thus

the accuracy rate is reduced.

• Compared with CFDY, SP only explores a single path and

lacks the exploration of branches. Its recommended

fragment does not contain some of the expected services

present in the branch. As a result, the number of expected

services in its recommendation set is less than CFDY,

which results in its P being lower than that of CFDY.

• In fact, CSBR pursues more semantic similarity matching,

and the consideration of structural similarity is not a

priority, which leads to the fact that most of the services

it recommends are not the expected ones. Therefore, its

overall performance is the lowest compared to others.

• CDSR uses category awareness to cluster services and

considers the impact of service coexistence time on its

relationship when considering historical combination

information. By considering the functional similarity

and relations, when sq# is less than 5, its P is relatively

high. But when sq# is too large and the fragment structure is

too complex, its consideration of semantics and structure

can hardly fulfill the requirement.

• Similarly, ClstRec uses the description of services to cluster

them, and selects candidate services from suitable clusters

for each sub-requirement. However, this method does not

pay too much attention to structural information and can

hardly guarantee the rationality of service composition.

This causes P to be lower when sq# is large and the

fragment structure is more complex.

Figure 3(2) shows R of five methods. Overall, the R of CFDY

is higher than that of other methods.

• For CFDY, as sq# increases, its R first decreases and then

increases. On the whole, its R is the highest compared to

other methods. When sq# is small, its structure is relatively

simple, and too many exploration branches will add some

unexpected services to the recommended fragment.

Therefore, its R decreases. As sq# becomes larger, the

structure of the fragment becomes more complex and

contains more branches. Therefore, further exploration

of branches will increase R to some extent.

• Similarly, since CSBR lacks consideration of structural

similarity, most of the services contained in its

recommended fragment are unexpected, so its R is the

lowest.

• Since SP has not further explored branches, its R is overall

lower than that of CFDY. When sq# is at 5–10, its R is

higher than that of CFDY. Because it only explores a single

path, in the case of more branches, the number of services

in the fragment it recommends is much smaller than

CFDY, which causes its R to be higher.

• For ClsRec, when sq# is smaller, it has a higher R. Because it

focuses on the similarity of functions, when sq# is small and

the fragment structure is simple, it can relatively accurately

find expected services. However, when the fragment

becomes complicated, this method can hardly effectively

find all expected functions, due to the lack of comparison of

structural similarity.

FIGURE 4
P, R, and F1 value for the fragment discovery when the connection-aware threshold is set to 0.78, 0.80, 0.82, 0.84, 0.86, and 0.88, respectively.
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• CDSR first finds candidate services according to functional

category, then uses historical usages and the coexistence

time of services to construct fragments. This method

considers the structure of fragments to a certain extent,

but can hardly guarantee the necessity of the recommended

services. Therefore, the recommended fragments contain a

large number of unexpected services, which leads to a

lower R.

As shown in Figure 3(3), the F1 of five method decreases as

sq# increases.

• Compared with other methods, CFDY has the highest F1.

Because it considers the structural similarity of fragments

while considering semantic similarity. As the sq# increases,

the requirement of a user becomes more and more

sophisticated, which leads to more complex selection of

candidate services, and more complex fragment discovery

and recommendation. Its F1 is the highest when sq# is 2,

indicating that its recommendation effect is the best when

the recommended fragment contains two services and their

relationships. This value does not reach 1, because the

function descriptions of some services are too similar,

resulting in too high similarity of their topic vectors, so

that they can hardly be accurately distinguished when

selecting candidate services. This is an inevitable

problem of LDA model.

• For SP, due to its low applicability when the fragment

structure is complex, its F1 is lower than that of CFDY. The

other three methods divide services into different

categories, clusters or packages according to their

functions, and use semantic similarity to select

candidate services. They lack the comparison of

structural similarity. In contrast, both CDSR and ClsRec

use historical relations between services to calculate the

similarity in fragment structure, while CSBR only considers

the feasibility of combinations in terms of functional

similarity, which leads to the lowest F1.

4.4.4 Comparison on trdU
We estimate the influence of different trdU for bioinformatic

workflow fragment discovery and the results of P, R and F1 are

shown in Figure 4 when trdU is set to 0.78, 0.80, 0.82, 0.84,

0.86 and 0.88, respectively. tpns is set to 43, tpnd is set to 10 and k#
is set to 2. Since the test set contains various samples with

different sq#, the final result is the average of all test results.

The results in Figure 4(1) show that P of CFDY is the highest

overall compared to other methods.

• Similarly, when semantic similarity is considered, CFDY

has more exploration branches compared to SP, so the

recommended fragment contains more expected services.

Specifically, when trdU is higher, the number of candidate

services that can be selected decreases, and the number of

expected services that are missing in the recommended

fragment increases. This results in P getting smaller and

smaller as trdU increases. Especially for CFDY, P at 0.8 is

greater than that at 0.78, which is caused by the uneven

distribution of service in S2KG and the large difference in

in-degree and out-degree of them.

• Since CSBR doesn’t consider the structural similarity

much, its P is the lowest among all methods. It only

relies on the functional similarity between services to

discover a crossing-workflow fragment. When trdU is

higher, the number of candidate services for selection

decreases, which affects its recommendation effect.

Compared with CSBR, although SP considers the

similarity of the fragment structure to a certain extent, it

does not further explore branches and its accuracy is only

higher than that of CSBR. Compared with the above two

methods, ClsRec and CDSR have higher P. Generally, they

adopt the clustering and classification to compare the

functional similarity of fragments, and also apply

historical usages to evaluate the structural similarity of

fragments. Therefore, they are more effective than the

methods that only consider semantic similarity.

However, lacking the exploration of social relations, they

are not as effective as CFDY.

Figure 4(2) shows the comparison of R. Similarly, R of CFDY

is the highest, while R of CSBR is much lower than the other four

methods. The difference is that, compared with P, as trdU
increases, the R of five methods increases.

• As the threshold increases, the candidate services become

more similar and these services are more likely to be

expected services. Some unexpected services are filtered

out and the expected services are more likely to be included

in the recommended fragment. For CFDY, the variation of

trdU affects the selection of its candidate services. However,

compared with other methods, the consideration of social

information on the discovery of crossing-workflow

fragments can ensure the functional similarity and

structural rationality of fragments to a certain extent

and a better effect can be obtained.

• For CSBR, since it pursues more semantic similarity without

considering the fragment structure, and does not consider

the structural matching between services, its recommended

fragment contains more unexpected services than other

methods, which leads to its R is the lowest. CDSR uses

historical usages information to ensure the rationality cross-

workflow fragment structure. As a result, the recommended

fragment contains a relatively high number of expected

services, which results in a higher R than that of CSBR.

• Similarly, because SP and ClsRec add the similarity

evaluation of the recommended cross-workflow
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fragment structure, their R are higher than that of CSBR.

The difference in the recommended effects of SP, ClsRec

and CDSR is caused by their different calculation methods

of functional similarity. In addition, the fragment

complexity recommended by SP is lower than other

methods and its fragment contains a relatively small

number of services, which is part of the reason for its

high R.

Finally, the comparison results of F1 of the five methods are

shown in Figure 4(3). This figure shows that the F1 of each

method decreases according to the changes of P and R. In general,

CFDY has the highest F1 and CSBR has the lowest one.

• For CFDY, as the trdU increases, there are fewer connections

that canmeet the requirements, which leads to some feasible

solutions to be ignored, thereby reducing P. At the same

time, the reduction of the candidate set can increase the

possibility of selecting the expected services, so that R

increases. However, in combination, the increase in R is

less than the decrease in P, so F1 decreases. Since the P of

CFDY at 0.8 is greater than that at 0.78, the F1 of CFDY at

0.80 is higher than that at 0.78.

• Due to the lack of comparison of structural similarity inCSBR,

its F1 is the lowest. It shows that structural similarity is an

important factor in cross-workflow fragment discovery and

recommendation. Blindly pursuing functional similarity while

ignoring structural similarity cannot achieve better

recommendation results. Compared with CSBR, the other

three methods leverage some structural information, thereby

obtaining better F1. But compared with CFDY, they lack the

exploration of the social relations between services, so F1 is

lower.

A higher F1 of CFDY indicates that reasonable social

information can improve the effectiveness of cross-workflow

fragment discovery and recommendation to some extent. In

fact, the representation of the functional domain of a service

can be enhanced by using social information. In addition, author

information can be used to reveal the hidden relationships

between services. Therefore, it has a positive impact on

fragment discovery and recommendation.

5 Related works

5.1 Social-aware workflow fragment
discovery

Workflow fragment recommendation is an important research

problem in the field of service computing (Coleman et al., 2022). It

can shorten development cycles and reduce the cost by

recommending suitable services and workflow fragments for

users (Almarimi et al., 2019) from an open, large-scale library

of Web services (Modi and Garg, 2019). In the past, profiles of

services and workflows were used as the only guide for users to

discover workflow fragments. However, with the development of

social network service (SNS), traditional service repositories have

become increasingly social, and contain a wealth of social

information reflecting the social connections of developers and

services (Bastami et al., 2019). This social information can also

have an impact on workflow fragment recommendation, whereas

existing approaches did not take full advantage of this complex

social information currently.

Authors (Gu et al., 2021) propose a service package

recommendation model (CSBR) based on a semantic service

package repository by mining existing workflows. Using the

degree of service co-occurrence, the correlation between service

and workflow is mined. Specifically, reusable service packages

composed of multiple collaborative services are annotated with

composite semantics instead of their original semantics. Based on

the semantic service pack repository, CSBR can recommend service

packs that cover the functional requirements of workflow fragments

as completely as possible. However, this approach discusses only

some social properties and lacks further exploration of social

relations, making it difficult to reveal the implicit relations

between services.

Xia et al. (2015) used the categories of services to construct

workflow fragments. They propose a category-aware distributed

service recommendation (CDSR) model based on a distributed

machine learning framework. Experiments on real data sets

prove that the proposed method not only achieves a

significant improvement in accuracy, but also enhances the

diversity of recommendation results. However, this method ignores

the relations between services and can hardly guarantee the structural

similarity of the recommended workflow fragments.

Yao et al. (2014) proposed a ReputationNet to facilitate the

workflow fragment discovery. Based on the ReputationNet, the

reputations of services and its developers are calculated and

represented. According to this, the services and workflows that

have better qualities can be recommended to users to satisfy their

sophisticated and complicated business requirements. This method

utilizes the social attribute reputation, which can improve the

efficiency of fragment recommendation to a certain extent.

However, many other social information, such as social relations

which can promote users to mine latent knowledge, have not been

considered.

Zhu et al. (2021) proposed a new model SRaSLR, which is a

type of social-aware service label recommendation model.

There are invocation and dependency relations between

services, and these relations make services naturally

constitute a service social network. The authors combine the

textual information in service profiles and the social network

relations between services. Based on the feature fusion of two

perspectives, a model based on deep learning is constructed.

Authors conduct a lot of experiments on real-world
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Programmable Web data set, and the experimental results show

that the use of social relations can improve the performance of

recommendation.

Khelloufi et al. (2021) argued that combining users’ social

characteristics can improve the efficiency of services

recommendation and help us provide context-aware services.

Therefore, they exploit the social relationships defined in SIoT to

build service recommendations among devices, and thus, to

enhance service discovery and composition. They propose a

SIoT-based service recommendation framework in which

devices inherit social relationships from their owners to

provide socially aware service recommendations. A boundary-

based community detection algorithm is proposed to form a

community of socially connected devices.

Kalaï et al. (2018) adopted the social information about the

users and the profiles about services to build a social-aware graph

for services recommendation. The widespread use of social media

provides a large amount of social information for service

repositories. Using social information, many user relationships

can be extracted for capturing implicit relationships between

services. For example, two users, who are friends with each

other, may be interested in similar service features. Based on

the interests of a user and his friends, personal service

recommendations can be provided. However, workflow

fragments that can accomplish complex requirements may be

preferable to users than recommending a single service that can

accomplish simple and specific tasks for them.

Liang et al. (2016) proposed a new framework to effectively

discover appropriate services by combining social media

information. Specifically, they propose different methods to

measure the four social factors collected from Twitter that

semantic similarity, popularity, activity and decay factors. Qiao

et al. (2019) proposed a recommendation algorithm based on

knowledge graph representation learning, which embeds the

entities and relations of knowledge graph into a low-dimensional

vector space. These methods consider some social attributes in

service recommendation, reflecting the importance of social

information in recommendation work. However, they mainly

recommend a single service to users, and can hardly be used to

discover workflow fragments to fulfill the complex requirements

prescribed by certain users.

Based on the various types of data in service repositories,

underlying logical relations among them can be found to

facilitate workflow fragment discovery and recommendation

(Wang et al., 2019). Authors propose a fine-grained knowledge

graph (DUSKG) to represent the information about users, services

and service value feature (VF) and their relations. Based on the

DUSKG, the VFs that a service has, the VFs which a user is

interested in, and the relations between users and services can be

expressed intuitively. Leveraging the DUSKG, five methods are

adopted to recommend reasonable single services. However, this

method also ignores the importance of workflows which can

accomplish complex tasks.

5.2 Semantics-based workflow fragment
discovery

Techniques have been developed to recommend workflow

fragments from a functional perspective (Hao et al., 2019).

Conforti et al. (2016) proposed a technique for automatically

discovering hierarchical workflow fragments containing

interrupted and non-interrupted boundary services markers.

This technique uses approximate functions and contains

dependency discovery techniques to extract the process-

subprocess hierarchy. Profiles and service invocation relations

are used for workflow fragment discovery. However, this

method has not yet considered the social information that has

an impact on the workflow fragment recommendation, and the

information in the repository is not considered comprehensively.

Since the profiles of services are static and the development

process is iterative (Huang et al., 2012), Modi and Garg (2019)

proposed amethod to update the profile of a single service leveraging

the description of related workflows. Supplementary information

can update the application scenario of a service and optimize its

profile. Using this approach, the accuracy of the functional

description of a service can be improved and the available

services can be recommended to the user. However due to the

limitations of functionality, a single service may not accomplish

sophisticated and complicated requirements. Wang et al. (2017)

proposed amethod to extract fine-grained service value features and

distributions for personalization service recommendation. By

analyzing comments, the most interest aspects of a user can be

learned. According to them, the similarity of these features and the

descriptions of services are calculated and services with high

similarity will be recommended to the user. However, the

application scenarios of a single service are limited, since a single

service can hardly satisfy the user’s requirement as well as implement

the user’s complex functions completely. This approach lacks to

explore the impact of social information and social association on

workflow fragment recommendation.

Zhong et al. (2016) and (Hao et al. (2017) extracted the valued

information from workflow description to narrow gaps between

developers and users. The application scenarios are adopted to

supply the description of services to emphasize their

functionalities. The LDA model is adopted to represent the

semantic functions of services. Based on reconstructed

descriptions of services, the similarity between services and

queries can be improved. However, the similarity is not the

only metric that should be considered. Other metrics (Sun

et al., 2019), for example, the quality of services (Li et al.,

2019), should also be considered in the workflow fragment

discovery procedure, so as to guarantee the reliability of the

workflow fragments.

Zhou et al. (2018) proposed a method for workflow fragment

recommendation which both consider the semantic information of

workflows and the hierarchical relations of services. The clustering

approach is adopted to cluster the hierarchical structure according to
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the semantic information, so that the services and workflows with

similar functions are in the same group as much as possible.

However, this method only considers the invoking relationship

between services and does not consider the impact of social

connections on workflow fragment recommendation. In fact,

these social relations emerge in large numbers in the repositories

and also affect the composition of services to a certain extent.

Many services can provide similar functionality, and it is

difficult for users to find the service they want (Ren and Wang,

2018). In the workflow fragment recommendation, whether two

services can cooperate is an important problem (Lissandrini

et al., 2018). The factors that affect service composition usually

include two types, positive and negative links. Ni et al. (2015)

leveraged tags and both positive and negative links to find

service patterns. In addition to positive links of services which

facilitate workflows fragment construction, several negative links

between services are found, which are strangling service

composition. The links between two credible services that have

never been cooperated and the links between two services that have

been created for a long time but never cooperated together are

negative links. Although the consideration of negative links can

guide whether two services can be combined, the consideration of

positive links is relatively simple. This method explores the

influence of social attributes and historical usage on workflow

fragment recommendation, but ignores the role of social

connections in recommendation work, and does not explore

the impact of social relations on workflow segment discovery

and recommendation.

5.3 Syntax-based workflow fragment
discovery

The syntax-based method focuses on the structure of

workflows and the problem of service composition is regarded

as a service matching problem. The matching of interface

parameters is adopted as the most important metric to

promote the composition. Niu et al. (2016) modeled the

workflow fragment discovery problem as an uncertain web

service composition planning problem. A total of two new

uncertain planning algorithms using heuristic search are

proposed, called UCLAO* and BHUC, which use the

similarity of service interface parameters to solve the U-WSC

planning problem of reduced state space, thereby improving the

efficiency of finding service portfolio solutions. Empirical

experiments are carried out based on running examples in

E-commerce applications and large-scale simulation data sets.

However, it does not take the level of expertise of different users

into account. In fact, there may exist users who do not know the

details of the interface, and may not be able to provide input or

output parameters. Moreover, the lack of considering service

semantics and social associations may not ensure the correctness

of the workflow from a functional point of view.

Due to the fast increase of web services over the Internet, Lin

et al. (2012) proposed a backward planning method to discover

reasonable workflow fragments in a large-scale web service

repository based on the lowest cost. The authors exploit the

similarity of input and output parameters to construct service

groups for facilitating service search. Also, a backward strategy

is used to reduce the search space, in order to improve the

computational efficiency during workflow construction.

However, this approach also neglects the important

functional semantics of services and lacks the exploration of

the impact about social association among services on their

combination.

Liu et al. (2014) proposed a workflow-based framework for

workflow fragments discovery. It not only uses the matching degree

of the interface parameters to facilitate service composition but also

employs a data-centric composition principle that the parameters

matching are based on the tag-based semantics. Also, the semantics

of service are determined by the folksonomy. The authors first used

the related tags to stand for parameters and then constructed

workflows based on them. This approach considers the semantic

information of the service as well and can better reflect the

functionality of the services. Therefore, it can facilitate the

combination of services and the recommendation of workflow

fragments from a functional perspective. In fact, besides labels,

there is other rich semantic information in the repository that

can facilitate the construction of workflow fragments. However,

these semantic information are not used. Meanwhile, social

repositories contain a rich variety of social information and

social correlations among items, and these social correlations are

not considered in this approach.

6 Conclusion

Considering the knowledge-intensiveness, effort-consuming,

and error-proneness when constructing a novel bioinformatic

workflow from scratch, discovering and reusing the best

practices in legacy workflows is promising when it comes to

accomplishing similar tasks. Traditional methods are proposed

to discover appropriate workflow fragments depending on their

profiles or partial social information in service repositories.

However, social relations between developers have not been

explored extensively. To capture these relations, this study

constructs a knowledge graph S2KG that includes two types

of entities and three types of relations. Based on S2KG, we

propose a bioinformatic workflow fragment discovery

mechanism, where we identify positive and negative links for
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service composition through analyzing their co-invocation

possibilities and co-developer relations. A SINet is formed by

isInk relations in S2KG to facilitate single service discovery.

Finally, the Yen’s method is adopted to construct bioinformatic

workflow fragments with respect to user’s requirements.

Experimental results demonstrate that our method performs

better than the state-of-the-art techniques with higher accuracy

and efficiency.

Data availability statement

Publicly available data sets were analyzed in this study. This

data can be found at: https://www.myexperiment.org/workflows.

Author contributions

JD: conceptualization, methodology, software, data curation,

and writing—original draft preparation. ZZ: supervision, formal

analysis, visualization, and writing—review and editing. XX:

resources, data curation, investigation, and writing—review

and editing. DZ: methodology, supervision, validation, and

writing—review and editing. SC: resources, supervision,

validation, and writing—review and editing.

Funding

This work was supported partially by the National Key R&D

Program of China (2019YFB2101803) and partially by the

National Natural Science Foundation of China (42050103).

Conflict of interest

SC was employed by Wuda Geoinformatics Co., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest

The handling editor (initials) declared a past coauthorship

with the authors (ZZ, XX).

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Almarimi, N., Ouni, A., Bouktif, S., Mkaouer, M. W., Kula, R. G., Saied, M. A.,
et al. (2019). Web service api recommendation for automated mashup creation
using multi-objective evolutionary search. Appl. Soft Comput. 85, 105830. doi:10.
1016/j.asoc.2019.105830

Bai, B., Fan, Y., Tan, W., and Zhang, J. (20172017). IEEE, 124–131.Sr-lda: Mining
effective representations for generating service ecosystem knowledge mapsIEEE Int.
Conf. Serv. Comput.

Bastami, E., Mahabadi, A., and Taghizadeh, E. (2019). A gravitation-based link
prediction approach in social networks. Swarm Evol. Comput. 44, 176–186. doi:10.
1016/j.swevo.2018.03.001

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation.
J. Mach. Learn. Res. 3, 993–1022.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Stat. Mech., P10008. doi:10.1088/
1742-5468/2008/10/p10008

Brandt, C., Krautwurst, S., Spott, R., Lohde, M., Jundzill, M., Marquet, M., et al.
(2021). porecov-an easy to use, fast, and robust workflow for sars-cov-2 genome
reconstruction via nanopore sequencing. Front. Genet. 12, 711437. doi:10.3389/
fgene.2021.711437

Coleman, T., Casanova, H., Pottier, L., Kaushik, M., Deelman, E., da Silva, R. F.,
et al. (2022). Wfcommons: A framework for enabling scientific workflow research
and development. Future Gener. Comput. Syst. 128, 16–27. doi:10.1016/j.future.
2021.09.043

Conforti, R., Dumas, M., García-Bañuelos, L., and La Rosa, M. (2016). Bpmn
miner: Automated discovery of bpmn process models with hierarchical structure.
Inf. Syst. 56, 284–303. doi:10.1016/j.is.2015.07.004

Fischer, M., Hofmann, A., Imgrund, F., Janiesch, C., andWinkelmann, A. (2021).
On the composition of the long tail of business processes: Implications from a
process mining study. Inf. Syst. 97, 101689. doi:10.1016/j.is.2020.101689

Gkortzis, A., Feitosa, D., and Spinellis, D. (2021). Software reuse cuts both ways:
An empirical analysis of its relationship with security vulnerabilities. J. Syst. Softw.
172, 110653. doi:10.1016/j.jss.2020.110653

Goble, C. A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman,
D., et al. (2010). myexperiment: a repository and social network for the sharing of
bioinformatics workflows. Nucleic Acids Res. 38, W677–W682. doi:10.1093/nar/
gkq429

Gu, Q., Cao, J., and Liu, Y. (2021). Csbr: A compositional semantics-based service
bundle recommendation approach for mashup development. IEEE Trans. Serv.
Comput., 1. doi:10.1109/TSC.2021.3085491

Hao, Y., Fan, Y., Tan, W., and Zhang, J. (2017). “Service recommendation based
on targeted reconstruction of service descriptions,” in 2017 IEEE international
conference on web services (IEEE), 285–292.

Hao, Y., Fan, Y., and Zhang, J. (2019). Service recommendation based on
description reconstruction in cloud manufacturing. Int. J. Comput. Integr.
Manuf. 32, 294–306. doi:10.1080/0951192x.2019.1571242

Herbold, S., Amirfallah, A., Trautsch, F., and Grabowski, J. (2021). A systematic
mapping study of developer social network research. J. Syst. Softw. 171, 110802.
doi:10.1016/j.jss.2020.110802

Huang, K., Fan, Y., and Tan, W. (2012). “An empirical study of programmable
web: A network analysis on a service-mashup system,” in 2012 IEEE 19th
international conference on web services (IEEE), 552–559.

Kalaï, A., Zayani, C. A., Amous, I., Abdelghani, W., and Sèdes, F. (2018). Social
collaborative service recommendation approach based on user’s trust and domain-
specific expertise. Future Gener. Comput. Syst. 80, 355–367. doi:10.1016/j.future.
2017.05.036

Khelloufi, A., Ning, H., Dhelim, S., Qiu, T., Ma, J., Huang, R., et al. (2021). A
social-relationships-based service recommendation system for siot devices. IEEE
Internet Things J. 8, 1859–1870. doi:10.1109/jiot.2020.3016659

Li, C., Wang, H., Zhang, Z., Sun, A., and Ma, Z. (2016). Noncoding RNAs in
human cancer: One step forward in diagnosis and treatment. Brief. Funct. Genomics
15, 165–166. doi:10.1093/bfgp/elw004

Li, S., Huang, J., Cheng, B., Cui, L., and Shi, Y. (2019). Fass: A fairness-aware
approach for concurrent service selection with constraints. In IEEE International
Conference on Web Services. (IEEE), 255–259.

Frontiers in Genetics frontiersin.org17

Diao et al. 10.3389/fgene.2022.941996

104

https://www.myexperiment.org/workflows
https://doi.org/10.1016/j.asoc.2019.105830
https://doi.org/10.1016/j.asoc.2019.105830
https://doi.org/10.1016/j.swevo.2018.03.001
https://doi.org/10.1016/j.swevo.2018.03.001
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.3389/fgene.2021.711437
https://doi.org/10.3389/fgene.2021.711437
https://doi.org/10.1016/j.future.2021.09.043
https://doi.org/10.1016/j.future.2021.09.043
https://doi.org/10.1016/j.is.2015.07.004
https://doi.org/10.1016/j.is.2020.101689
https://doi.org/10.1016/j.jss.2020.110653
https://doi.org/10.1093/nar/gkq429
https://doi.org/10.1093/nar/gkq429
https://doi.org/10.1109/TSC.2021.3085491
https://doi.org/10.1080/0951192x.2019.1571242
https://doi.org/10.1016/j.jss.2020.110802
https://doi.org/10.1016/j.future.2017.05.036
https://doi.org/10.1016/j.future.2017.05.036
https://doi.org/10.1109/jiot.2020.3016659
https://doi.org/10.1093/bfgp/elw004
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.941996


Liang, T., Chen, L., Wu, J., Xu, G., and Wu, Z. (2016). Sms: A framework for
service discovery by incorporating social media information. IEEE Trans. Serv.
Comput. 12, 384–397. doi:10.1109/tsc.2016.2631521

Lin, S.-Y., Lin, G.-T., Chao, K.-M., and Lo, C.-C. (20122012). A cost-effective
planning graph approach for large-scale web service composition. Math. Problems
Eng., 21. doi:10.1155/2012/783476

Lissandrini, M., Mottin, D., Palpanas, T., and Velegrakis, Y. (2018809). “Multi-
example search in rich information graphs,” in 2018 IEEE 34th international
conference on data engineering (IEEE)–820.

Liu, X., Huang, G., Zhao, Q., Mei, H., and Blake, M. B. (2014). imashup: a
mashup-based framework for service composition. Sci. China Inf. Sci. 57, 1–20.
doi:10.1007/s11432-013-4782-0

Modi, K. J., and Garg, S. (2019). A qos-based approach for cloud-service
matchmaking, selection and composition using the semantic web. J. Syst. Inf.
Technol. 21, 63–89. doi:10.1108/jsit-01-2017-0006

Nepal, S., Malik, Z., and Bouguettaya, A. (20092009). Reputation propagation in
composite services. IEEE Int. Conf. Web Serv., 295–302.

Newman, M. E. (2006). Modularity and community structure in networks. Proc.
Natl. Acad. Sci. U. S. A. 103, 8577–8582. doi:10.1073/pnas.0601602103

Ni, Y., Fan, Y., Tan, W., Huang, K., and Bi, J. (2015). Ncsr: Negative-connection-
aware service recommendation for large sparse service network. IEEE Trans.
Autom. Sci. Eng. 13, 579–590. doi:10.1109/tase.2015.2466691

Niu, S., Zou, G., Gan, Y., Zhou, Z., and Zhang, B. (2016). “Uclao* and bhuc: Two
novel planning algorithms for uncertain web service composition,” in 2016 IEEE
international conference on services computing (IEEE), 531–538.

Qiao, X., Cao, Z., and Zhang, X. (2019). Web service recommendation technology
based on knowledge graph representation learning. In Journal of Physics:
Conference Series, 1213. Bristol: IOP Publishing, 042015.

Ren, L., and Wang, W. (2018). An svm-based collaborative filtering approach for
top-n web services recommendation. Future Gener. Comput. Syst. 78, 531–543.
doi:10.1016/j.future.2017.07.027

Robinson, I., Webber, J., and Eifrem, E. (2015). Graph databases: New
opportunities for connected data. Sebastopol: O’Reilly Media, Inc.

Rosa, M. J., Ralha, C. G., Holanda, M., and Araujo, A. P. (2021). Computational
resource and cost prediction service for scientific workflows in federated clouds.
Future Gener. Comput. Syst. 125, 844–858. doi:10.1016/j.future.2021.07.030

Starlinger, J., Brancotte, B., Cohen-Boulakia, S., and Leser, U. (2014). Similarity
search for scientific workflows. Proc. VLDB Endow. 7, 1143–1154. doi:10.14778/
2732977.2732988

Sun, M., Zhou, Z., Wang, J., Du, C., and Gaaloul, W. (2019). Energy-efficient iot
service composition for concurrent timed applications. Future Gener. Comput. Syst.
100, 1017–1030. doi:10.1016/j.future.2019.05.070

Wang, H., Chi, X., Wang, Z., Xu, X., and Chen, S. (2017). “Extracting fine-
grained service value features and distributions for accurate service
recommendation,” in 2017 IEEE international conference on web services
(IEEE), 277–284.

Wang, H., Wang, Z., Hu, S., Xu, X., Chen, S., Tu, Z., et al. (2019). Duskg: A fine-
grained knowledge graph for effective personalized service recommendation.
Future Gener. Comput. Syst. 100, 600–617. doi:10.1016/j.future.2019.05.045

Xia, B., Fan, Y., Tan, W., Huang, K., Zhang, J., Wu, C., et al. (2015).
Category-aware api clustering and distributed recommendation for automatic
mashup creation. IEEE Trans. Serv. Comput. 8, 674–687. doi:10.1109/tsc.
2014.2379251

Yao, J., Tan, W., Nepal, S., Chen, S., Zhang, J., De Roure, D., et al.
(2014). Reputationnet: Reputation-based service recommendation for
e-science. IEEE Trans. Serv. Comput. 8, 439–452. doi:10.1109/tsc.2014.
2364029

Yao, L., Wang, X., Sheng, Q. Z., Benatallah, B., and Huang, C. (2021).
Mashup recommendation by regularizing matrix factorization with api co-
invocations. IEEE Trans. Serv. Comput. 14, 502–515. doi:10.1109/tsc.2018.
2803171

Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. Manag. Sci.
17, 712–716. doi:10.1287/mnsc.17.11.712

Zhang, J., Pourreza, M., Lee, S., Nemani, R., and Lee, T. J. (2018). “Unit of work
supporting generative scientific workflow recommendation,” in International
conference on service-oriented computing (Springer), 446–462.

Zhong, Y., Fan, Y., Tan, W., and Zhang, J. (2016). Web service recommendation
with reconstructed profile from mashup descriptions. IEEE Trans. Autom. Sci. Eng.
15, 468–478. doi:10.1109/tase.2016.2624310

Zhou, Z., Cheng, Z., Zhang, L.-J., Gaaloul, W., and Ning, K. (2018). Scientific
workflow clustering and recommendation leveraging layer hierarchical
analysis. IEEE Trans. Serv. Comput. 11, 169–183. doi:10.1109/tsc.2016.
2542805

Zhou, Z., Wen, J., Wang, Y., Xue, X., Hung, P. C., Nguyen, L. D., et al. (2020).
Topic-based crossing-workflow fragment discovery. Future Gener. Comput. Syst.
112, 1141–1155. doi:10.1016/j.future.2020.05.029

Zhu, Y., Liu, M., Tu, Z., Su, T., andWang, Z. (2021).Sraslr: A novel social relation
aware service label recommendation model. In 2021 IEEE international conference
on web services. IEEE, 87–96.

Frontiers in Genetics frontiersin.org18

Diao et al. 10.3389/fgene.2022.941996

105

https://doi.org/10.1109/tsc.2016.2631521
https://doi.org/10.1155/2012/783476
https://doi.org/10.1007/s11432-013-4782-0
https://doi.org/10.1108/jsit-01-2017-0006
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1109/tase.2015.2466691
https://doi.org/10.1016/j.future.2017.07.027
https://doi.org/10.1016/j.future.2021.07.030
https://doi.org/10.14778/2732977.2732988
https://doi.org/10.14778/2732977.2732988
https://doi.org/10.1016/j.future.2019.05.070
https://doi.org/10.1016/j.future.2019.05.045
https://doi.org/10.1109/tsc.2014.2379251
https://doi.org/10.1109/tsc.2014.2379251
https://doi.org/10.1109/tsc.2014.2364029
https://doi.org/10.1109/tsc.2014.2364029
https://doi.org/10.1109/tsc.2018.2803171
https://doi.org/10.1109/tsc.2018.2803171
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1109/tase.2016.2624310
https://doi.org/10.1109/tsc.2016.2542805
https://doi.org/10.1109/tsc.2016.2542805
https://doi.org/10.1016/j.future.2020.05.029
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.941996


A resource scheduling method
for reliable and trusted
distributed composite services in
cloud environment based on
deep reinforcement learning

Lei Yu1*, Philip S. Yu2, Yucong Duan3* and Hongyu Qiao1

1Department of Computer Science, Inner Mongolia University, Hohhot, China, 2Department of
Computer Science, University of Illinois at Chicago (UIC), Chicago, IL, United States, 3College of
Computer Science and Technology, Hainan University, Haikou, China

With the vigorous development of Internet technology, applications are

increasingly migrating to the cloud. Cloud, a distributed network environment,

has been widely extended to many fields such as digital finance, supply chain

management, and biomedicine. In order to meet the needs of the rapid

development of the modern biomedical industry, the biological cloud

platform is an inevitable choice for the integration and analysis of medical

information. It improves the work efficiency of the biological information

system and also realizes reliable and credible intelligent processing of

biological resources. Cloud services in bioinformatics are mainly for the

processing of biological data, such as the analysis and processing of genes,

the testing and detection of human tissues and organs, and the storage and

transportation of vaccines. Biomedical companies formadata chain on the cloud,

and they provide services and transfer data to each other to create composite

services. Therefore, our motivation is to improve process efficiency of biological

cloud services. Users’ business requirements have become complicated and

diversified, which puts forward higher requirements for service scheduling

strategies in cloud computing platforms. In addition, deep reinforcement

learning shows strong perception and continuous decision-making capabilities

in automatic control problems,whichprovides a new idea andmethod for solving

the service scheduling and resource allocation problems in the cloud computing

field. Therefore, this paper designs a composite service scheduling model under

the containers instance mode which hybrids reservation and on-demand. The

containers in the cluster are divided into two instancemodes: reservation and on-

demand. A composite service is described as a three-level structure: a composite

service consists of multiple services, and a service consists of multiple service

instances, where the service instance is theminimum scheduling unit. In addition,

an improved Deep Q-Network (DQN) algorithm is proposed and applied to the

scheduling algorithm of composite services. The experimental results show that

applying our improved DQN algorithm to the composite services scheduling

problem in the container cloud environment can effectively reduce the

completion time of the composite services. Meanwhile, the method improves

Quality of Service (QoS) and resource utilization in the container cloud

environment.
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1 Introduction

With the rapid development and popularity of the Internet,

the number of network users is also increasing, but the

resources of the data center decreased relatively. The

development of cloud computing technology has led to a

great convenience of information processing, and users can

obtain reliable services through the cloud platform on a large

number of data centers. However, as the composite service

requested by the users are complex and diversified, the number

of requests is increasing. Especially in the field of

bioinformatics, biomedical research relies on a large amount

of genomic and clinical data. Biomedical companies form a data

chain on the cloud, and they provide services and transfer data

to each other to form composite services. In such a dynamic

environment, resource management and performance

optimization have become a significant challenge for cloud

and application providers, who not only consider user

Quality of Service (QoS) but also consider the load balancing

of the data center, resource utilization and problems such as

energy consumption (Almansour and Allah, 2019). Therefore,

an efficient and reasonable service scheduling method becomes

essential for the cloud computing platform.

In addition, many cloud platforms currently use virtual

machines as the underlying virtualization technology.

Additional operating systems carried by virtual machines

will bring performance losses to the cloud platform, and the

startup speed of virtual machines is slow, so it is difficult for

them to make rapid scaling responses to service load (Barik

et al., 2016). As the virtualization technology at the operating

system level, the container technology has minimal additional

resource overhead, shorter startup and destruction time, and

the performance of disk IO and CPU of the container is even

close to that of the host (Joy, 2015). Therefore, it is considered

to be a better solution for application distribution and

deployment on the cloud platform (Bernstein, 2014). Most

of the research on service scheduling is based on virtual

machines, while the research on composite service

scheduling based on container cloud environment is in the

exploratory stage. Because the container has the characteristics

of fast startup, strong migration ability, low-performance cost,

and high resource utilization (Joy, 2015), it is of great value and

significance to take the container as the virtualized computing

resource of the cloud platform to solve the service scheduling

problem.We need a model and an algorithm that can be applied

to the container cloud environment to reduce the completion

time of the composite service, satisfy the user service quality as

much as possible, and improve the resource utilization target of

the cloud platform.

Therefore, we proposed a novel composite service scheduling

model and algorithm according to container instance mode

which mixed reservation and on-demand. In addition, the

DQN (Deep Q-Network) algorithm is improved by combining

the three algorithms Dueling-DQN (Wang et al., 2016), Double-

DQN (DDQN) (Van Hasselt et al., 2016), and Prioritized

Experience Replay (PER) (Schaul et al., 2016). DDQN

improved the training algorithm by decoupling action

selection and value function evaluation. Although it is not

entirely decoupled, it effectively reduced over-estimation and

made the algorithm more robust. PER introduced a new learning

mechanism to solve the sampling problem of experience replay

and innovatively took Temporal Difference (TD) deviation as an

essential consideration to ensure that important experience can

be replayed first, and the priority experience replay was applied to

DQN and DDQN. The learning efficiency is greatly improved.

Dueling DQN is an improvement of the neural network

structure, which can decouple the value and advantages of the

DQN. Although the value function and the advantage function

can no longer be perfectly represented as the value function and

the advantage function in semantics, the accuracy of the strategy

evaluation was improved, and it can be combined with other

algorithms due to the strong versatility. Thus, the management of

the DQN algorithm is improved. From the three levels of training

algorithm, learning mechanism, and neural network structure,

three improvements have been made based on DQN, but its

implementation is more complex than these three algorithms.

The improved DQN algorithm is used as the scheduling decision

method under our model to reduce the completion time of the

composite service and improve the user QoS and resource

utilization of the cloud platform.

The contributions of this paper include: A new composite

service scheduling model is built for container instance mode

which mixed reservation and on-demand. The model considers

many features, such as container storage, computing speed,

network bandwidths and data streams of service output, etc.

Furthermore, the model is suitable for Map-Reduce based

services in distributed environments.

A new composite service scheduling algorithm is proposed,

which can effectively reduce the completion time of the

composite services. Meanwhile, the method improves Quality

of Service (QoS) and resource utilization in the container cloud

environment.

2 Related work

Cloud computing technology has greatly promoted the

transformation of various industries and the development of
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technological innovation. With the advancement of medical

technology, the field of biomedicine has ushered in the era of big

data (Yang et al., 2021). The application of cloud computing in

biomedicine is becoming more and more perfect. Myers et al.

(2020) developed an R package, LDlinkR, which leverages the

computing resources of the cloud by harnessing the storage

capacity and processing power of the LDlink web server to

calculate computationally expensive LD statistics. Service

scheduling, as an effective method to satisfy Quality of

Service (QoS), which can rationally allocate resources and

reduce energy consumption in cloud environment, has

always been a research hotspot of scholars in various fields

(Kyaw and Phyu, 2020). At the same time, scheduling in the

cloud environment is a multi-constraint, multi-objective and

multi-type optimization problem (Chen et al., 2019). Some

traditional scheduling algorithms, such as Round-Robin (RR)

scheduling algorithm and Least Connection (LC) algorithm, do

not consider the actual load and connection status of the work

node. Scheduling problem can be regarded as the problem of

finding the optimal one or a group of computing resources in a

limited set of computing resources under the condition of

satisfying multiple constraint objectives. Heuristic algorithm

is the most widely used method to solve such combinatorial

optimization problems (Bernstein, 2014). The common ones

are Ant Colony (AC) algorithm, Particle Swarm Optimization

(PSO) algorithm, Genetic Algorithm (GA), etc. Therefore,

many scholars are solving the problem of service scheduling

in cloud platforms by optimizing and improving heuristic

algorithms.

Panwar et al. (2019) combined Technique for Order

Preference by Similarity to an Ideal Solution (TOPSIS)

algorithm and PSO algorithm to divide task scheduling into

two phases, which reduces the makespan of tasks and improves

resource utilization of cloud platform. Chen et al. (2019) modeled

the cloud workflow scheduling problem as a multi-objective

optimization problem that takes both execution time and

execution cost into account, and proposed a multi-objective

ant colony system based on the co-evolutionary multi-

population and multi-objective framework, in which two ant

colony algorithms were adopted to deal with the two objectives,

respectively. Cui and Xiaoqing (2018) proposed a workflow tasks

scheduling algorithm based on a genetic algorithm. It plays an

optimal role in the execution time of the optimal allocation

scheme. George et al. (2016) adopted the Cuckoo Search

algorithm to complete the assignment of tasks with the

optimization goal of minimizing the computation time of

tasks. Ghasemi et al. (2019) proposed a workflow scheduling

method based on the Firefly Algorithm (FA), aiming at

minimizing the processing time and transmission cost of

workflow.

Compared with traditional scheduling algorithms, heuristic

algorithms have a stronger ability for exploration and

optimization. The above improvements of heuristic not only

inherited the advantages of heuristic algorithms in solving

combinatorial optimization problems but also solved some

problems of heuristic algorithms themselves to some extent.

However, these algorithms still have some problems, such as

the weight coefficients of resources according to subjective

experiences, slow convergence, and easily falling into local

optimal solutions.

Considering the uncertainty of user requests, the dynamic

nature of computing resources, the heterogeneity of cloud

platforms, and many other factors, it has higher requirements

for cloud platform service scheduling strategy. In recent

years, with the development of artificial intelligence-related

technologies, Deep Reinforcement Learning (DRL) has

shown strong perception and continuous decision-making

ability when dealing with automatic control problems

(Orhean et al., 2018), and many scholars have begun to

apply it to resource allocation and service scheduling

strategies in cloud environments. Li and Hu (2019)

described job scheduling as a packing problem, used DRL

algorithm to calculate the fitness of jobs and machine nodes,

and selected reasonable machines for jobs according to the

fitness. Finally, through experiments, it proved the

superiority of deep reinforcement learning as a scheduling

algorithm. Cheng et al. (2018) designed a two-level scheduler

combining resource allocation and task scheduling based on

Deep Q-Learning, which greatly reduced the energy

consumption of the cloud platform while maintaining a

low task rejection rate. Wei et al. (2018) proposed an

intelligent QoS aware job scheduling framework based on

Deep Q-Learning algorithm, which can effectively reduce the

average response time of jobs under varying loads and

improve user satisfaction. Meng et al. (2019) designed an

adaptive online scheduling algorithm by combining

reinforcement learning with DNN, which significantly

improved the scheduling efficiency of server-side task

queues. Ran et al. (2019) used the Deep Determining

Policy Gradient (DDPG) algorithm to find the optimal

task assignment scheme meeting the requirements of the

Service Level Agreement (SLA). Zhang et al. (2019)

proposed a parallel execution multi-task scheduling

algorithm based on deep reinforcement learning. And

compared with least connection and particle swarm

optimization, this algorithm significantly reduces the

completion time of the job. Dong et al. (2020) proposed a

task scheduling algorithm based on DRL, which can

dynamically schedule tasks that have priority relationships

in the cloud server, thus minimizing the task execution time

and effectively solving the task scheduling problem in the

cloud manufacturing environment.

Based on the above work, both the heuristic algorithm and

deep reinforcement learning algorithm show their respective

advantages in solving scheduling problems in cloud

environments. However, there are still some problems that
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TABLE 1 Summary of reviewed papers related to the task scheduling in the cloud computing.

Algorithm Core issues to be
solved

Algorithm idea Advantage

Dueling-DQN Wang et al. (2016) Solved the problem that in some states,
action is of low importance to the overall
result, and distinguished the change of Q
value caused by action and state

Improved the architecture, the idea of
advantage was added to evaluate the
advantage function

Ensured that the relative ranking of the
dominant functions of each action in this
state remains unchanged

Analyzed the advantages and
disadvantages of state and action,
respectively

Narrowed the range of Q value. Removed
excess degrees of freedom. Improved the
stability of the algorithm

DDQN Van Hasselt et al. (2016) Solved the problem of overestimation in
DQN algorithm

The idea of Double Q-learning is to reduce
overestimations by decomposing the max
operation in the target into action selection
and action evaluation

More stable training results

Reduced the error caused by variance

PER Schaul et al. (2016) Changed the selection method of samples
in experience replay

Improved the experience buffer training
strategy

More robust

Solved the problem of local optimization More robust Improved the performance of DDQN

Offset the impact of sample distribution Added weight to the original gradient
update in SGD

Simple implementation

MOACS Chen et al. (2019) Optimized execution time and cost Two ant colonies are adopted to optimize
execution time and execution cost,
respectively

MOACS has better global search ability,
particularly when dealing with large-scale
workflows

A new pheromone update rule is designed.
The CHS is proposed to ensure the quality
of the other objective

MOACS can generate a solution with
similar WET but lower WEC than the
other approaches

TOPSIS–PSO Panwar et al. (2019) Improved the execution time, maximum
completion time, resource utilization,
processing cost, and transmission time in
the process of task scheduling

The task scheduling is performed in two
phases

Improved average resource utilization

TOPSIS method calculates the RC of VMs
with respect to each task

Low processing cost

The PSO algorithm receives the calculated
RC of each task which acts as FV of tasks
(particles)

Reduced makespan for tasks

Workflow tasks scheduling
optimization based on genetic
algorithm Cui and Xiaoqing (2018)

Applicable to cloud computing
environment combining task
characteristics and resource
characteristics

Assigned priority to each task Reduced workflow scheduling cost

Workflow tasks were divided into different
levels, and a two-dimensional coding
method was designed

Reduced the execution cost of workflow
task scheduling

A new genetic crossover and mutation
operation were designed to produce new
different offspring, so as to increase
population diversity

FA Ghasemi et al. (2019) Optimized the cost of executing the whole
workflow and load balancing among
workstations

The position of each firefly represents the
feasible solution to a problem to be solved,
and the brightness of the firefly represents
the fitness of the firefly’s position

Minimized the processing time

Each firefly flies towards a firefly that looks
brighter than itself

Reduced transmission cost of workflow

An intelligent QoS-Aware Job Wei
et al. (2018)

Met the QoS requirements of users Learnt to make appropriate online job-to-
VM decisions for continuous job requests
directly from its experiences without any
prior knowledge

Reduced the average response time of jobs
under different loads. Improved user
satisfaction

(Continued on following page)
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have not been considered in some references when solving

scheduling problems in cloud platforms. References

(Almezeini and Hafez, 2017; Li and Hu, 2019; Panwar

et al., 2019) only discussed a single service type without

discussing the diversity of services and the correlation

between services. References (Cui and Xiaoqing, 2018;

Xiaoqing et al., 2018) gave the corresponding weight

coefficients of each resource through subjective experience.

TABLE 1 (Continued) Summary of reviewed papers related to the task scheduling in the cloud computing.

Algorithm Core issues to be
solved

Algorithm idea Advantage

Scheduling and resource management
algorithm for multi-user mobile-edge
computing systems Meng et al. (2019)

The problem of delay-sensitive task
scheduling and resource (e.g., CPU,
memory) management on the server side
in multi-user MEC scenario

Built a system that learns to manage
resources directly from experience by
using reinforcement learning with
adaptive policy iteration represented
via DNN.

Reduced average slowdown and average
timeout period of tasks in the queue

Designed a new reward function to reduce
average slowdown and average timeout
period of tasks in the queue

Improved the scheduling efficiency of
server-side task queue

DDPG Ran et al. (2019) Model free strategy for learning
continuous action

DDPG combines the ideas of DPG
and DQN

DDPG can run in a continuous action
space

It used the experience replay and delayed
update target network in DQN

Solved the classical inverted pendulum
control problem

It can run in continuous action space
based on DPG

Met service level agreements

MDTS Zhang et al. (2019) The problem of scheduling jobs with
scalable parallel tasks in general parallel
computing systems, where there is a
demand to determine the task placement
plan with the goal of minimizing the job
completion time, the load imbalance
value, and the total cost

Within each task-specific branch, there is a
fully connected layer and an output layer

Reduced the job completion time and
optimized the load balancing problem.
Improved task scheduling performance.
MDTS is superior to the raw DRL
algorithm

Data-dependent tasks re-scheduling
energy efficient algorithm Xiaoqing
et al. (2018)

Reduced energy consumption in the data
center

Set the task priority to the sum of the
upper and lower values of the task

Reduced energy consumption in the data
center

Used the task priority to calculate the
critical path and critical resources of the
task graph

Calculated the energy efficiency of each
resource under the initial scheduling
scheme

DRL-based algorithms Islam et al.
(2021)

Satisfied generalization to optimize
multiple objectives while capturing or
learning the underlying resource or
workload characteristics

Two DRL-based agents (DQN and
REINFORCE) DQN: An ϵ-greedy policy
was used that selects the greedy action with
probability 1 − ϵ and a random action with
probability ϵ

Reduced both the total cluster VM usage
cost and the average job duration

REINFORCE: It worked by utilizing
Monte Carlo roll-outs. After the collection
step, the algorithm updates the underlying
network using the updated policy gradient

Trained them as scheduling agents in the
TF-agent framework

Sharer Liang et al. (2020) Improved the efficiency of resource
management in CMfg

The proposed model transformed metrics
generated from the individual needs of
multiple users into a multiobjective reward

Adapt to different conditions

Proposed a blacklist mechanism and a
narrow baseline to improve the learning
performance of RL

Converged quickly
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References (Zhang et al., 2019; Dong et al., 2020) did not take

into account the transmission cost between resource nodes of

the execution results of services in the actual scheduling

process of composite services. In the actual environment,

the data transmission time between sub-services affects the

completion time and operation cost of composite services to

some extent. With the increasing complexity of user requests

and the increasing granularity of services, each service can be

scheduled for parallel execution in multiple servers to reduce

the response time of services and improve the quality of

services for users. References (Orhean et al., 2018; Xiaoqing

et al., 2018; Chen et al., 2019; Dong et al., 2021) did not

consider the parallelism of services when discussing the

problem of service scheduling. We compared some

algorithms in Table 1.

In addition, most of the above studies took virtual

machines as virtualized computing resources to study the

problem of service scheduling, while containers have the

advantages of simple deployment and fast startup speed, so

it is of certain research significance and value to discuss the

problem of service scheduling based on the container cloud

environment.

3 System model

3.1 Problem description

Based on the container cloud environment, this section

focuses on the scheduling method of composite services. In

the initialization stage, a certain number of host nodes are set,

and each host node initializes: 1) a certain number of reserved

container instances with different configurations; 2) a certain

number of on-demand containers. In the reserved mode, the

container instance is in the startup state and uses the allocated

resources for the scheduled services at any time. The container in

on-demand mode is dormant initially and takes a period of time

to be started. The composite service is defined as the three-level

structure of “composite service, sub-service, instance.” As the

basic scheduling unit, the sub-service instance is scheduled to be

executed in the container, which in essence represents the

number of parallel execution of sub-services. In addition, the

scheduling of sub-service instances and the starting of containers

in on-demand mode are determined by the service scheduling

algorithm.

3.2 Problem constraints

A composite service consists of multiple sub-services

(hereinafter referred to as “Services”) that have an

association relationship, including the order of prior

execution and data dependencies among the services. In

addition, each service includes one or more service

instances, and each service instance of the same service has

the same physical performance requirements. A composite

service can be represented by a directed acyclic graph,

i.e., CS = (SVC, E), where the finite set SVC = {svc1, . . .,

svcm} indicates that a composite service containsm(m ≥ 1,m ∈
N+) services. Each service has n(n ≥ 1, n ∈ N+) service

instances, denoted as svci � {st1i , . . . , stni }(i ∈ m). The set of

directed edges E = {(svci, svcj)|1 ≤ i, j ≤ m, i, j ∈ N+} describes

the relationship between services, (svci, svcj) means that svci is

the predecessor service of svcj, and svcj is called the successor

service of svci. Only after all service instances of all precursor

services of svcj have been executed, svcj is allowed to be

scheduled and executed. The service without the precursor

service is called the start service svcstart, and each composite

services has at least one start service. Service without successor

services is called end service svcend. Similarly, each composite

service has at least one end service. Each Roman character

(e.g., I, II) represents the number of service instances

contained in the corresponding service. This scenario is

prevalent for Map-Reduce algorithms in distributed

environments.

Each service instance will be scheduled to a container, and

each service contains multiple service instances, which means

that each service can be executed by multiple containers

together. The characteristic definition of service svci can be

denoted by Eq. 1, where cpui, memi, diski represent the physical

performance requirements of service svci, such as CPU,

memory, and disk storage, respectively. lengthi denotes the

length of the result data after the completion of the service

execution; instnumi denotes the number of service instances of

service svci; durationi represents the expected execution time of

the subservice svci.

svci � cpui, memi, diski, lengthi, inst_numi, durationi{ } i ∈ n( )
(1)

As the smallest scheduling unit in a composite service, the

service instances have the same physical resource requirements

as the service it belongs to. All instances of the same service can

be executed in parallel, and instances of each service are able to

execute different binary files for Map-Reduce scenarios. Eq. 2

defines the kth service instance of svci.

stki � k, cpui, memi, diski, lengthi, durationi{ } i ∈ n, k ∈ m( )
(2)

3.3 Resource model

In the cloud platform, physical hosts are the infrastructure

that truly provides physical resources such as CPU and memory

for containers and services. All hosts in a host cluster are denoted
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as H = h1, . . ., hP, where p is the number of hosts in the cluster.

hx(x ∈ p) represents the xth host in the host cluster, and the

definition of hx is shown in Eq. 3.

hx � hid, cpu_capx,mem_capx, disk_capx, bw_capx,{
container_numx, cpux,memx, diskx, bwx} x ∈ p( ) (3)

where hid represents the unique ID of the host. And cpu_capx,

mem_capx, disk_capx, bw_capx, respectively represent the CPU

capacity, memory capacity, disk storage capacity, and bandwidth

capacity of the host. container_numx represents the maximum

number of containers that can be allocated by the host hx. cpux,

memx, diskx, bwx respectively represent the remaining amount of

the host’s CPU, memory, disk storage, and bandwidth.

In addition, all containers in the cluster can be represented by

the set C = {c1, . . ., cq}, where q is the number of containers. cy(y ∈
q) represents the physical performance state of the yth container,

and the definition of cy is shown in Eq. 4.

cy � cidy, hidy, cpu_capy,mem_capy, disk_capy{ ,

bwy, cpuy,memy, disky, acty, act_timey} y ∈ q( ) (4)

where cidy represents the container ID, which is the unique

identifier of the container. hidy represents the host ID to which

the container cy belongs. cpu_capy, mem_capy, disk_capy, bwy

respectively represent the CPU capacity, memory capacity, disk

capacity, and bandwidth capacity of the container cy. cpuy,memy,

disky, respectively represent the remaining amount of the

container’s CPU, memory, and disk during operation. acty is

the judgment flag, which indicates whether the container cy is

already in the state of the host. If acty = 1, means that the

container cy is in the running state, and acty = 0 means that the

container cy is in the dormant state. act_timey represents the

startup time of the container.

In order to compare and analyze resource utilization from

three dimensions of CPU, memory, and disk, USTk
i is defined as

the resource utilization after each service instance is scheduled.

The definition of average resource utilization AVUST is shown in

Eq. 5.

AVUST � ∑m
i�1∑n

k�1UST
k
i

number of service instances
(5)

3.4 Scheduling model

Before all composite services are scheduled, the hosts and

containers in the data center need to be initialized. In the

initialization phase, a series of physical hosts with different

configurations are first created, and each host is allocated with

container_numx containers, including different

configurations of reserved and on-demand containers. The

containers in the reservation mode can run the scheduled

service instances at any time based on the allocated resources.

The containers in the on-demand mode are in the dormant

state by default, which occupies a certain amount of physical

resources, but there are no remaining amount of resources.

The resource state of the containers in the on-demand mode is

shown in Eq. 6.

cpu_capy > 0
mem_capy > 0
disk_capy > 0
bwy > 0
cpuy � 0
memy � 0
disky � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

Constraints must be satisfied to schedule the service to the

container for execution. When the service instance stki is scheduled

to the container cy, the physical resource requirements of the service

instance stki must not be greater than the corresponding physical

resource capacity of the container cy, otherwise it will wait for the

right resources to execute. Therefore, the constraint condition that

needs to be met to dispatch the service instance stki to the container

cy is shown in Eq. 7.

cpuk ≤ cpu_capy

memk ≤mem_capy

diskk ≤ disk_capy

⎧⎪⎨⎪⎩ (7)

When a service svci is ready, all service instances of the service

can be scheduled to the containers for execution one by one

within the same scheduling time window. However, the resource

status of the container changes from time to time as the service

scheduling progresses. When the service instance is scheduled to

the appropriate container, it will not be executed immediately.

Because the following three steps are required:

(1) First, the status of the selected container needs to be

determined. If the container has already been started, that

is, acty = 1, then ignore this step. Otherwise, acty = 0, start the

container, which will consume the time of act_timey.

(2) After the completion of step one, it is necessary to wait for the

execution result of the precursor service to be transmitted to the

container. The data transmission time is related to the result

data length after the execution of the precursor subservice, the

bandwidth of the container, and the host. Since the precursor

service has multiple service instances, each service instance will

be scheduled to run in a container. It can be understood that

each service can be scheduled to run inmultiple containers, so it

is necessary to calculate the minimum transmission time of the

result data from the container scheduled by the precursor

service to the container where the current service instance is

located. The data transmission time between containers in the

same host is negligible. The data transmission time between

different hosts is directly related to factors such as container

bandwidth and data length. The data transmission time is

shown in Eq. 8.
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transTik cu, cv( ) � 0, u � v or hidu � hidv

ratio, other
{

ratio � lengthi
min bandwidthu, bandwidthv( )

(8)

(3) In addition to the data transmission time, it is necessary to

wait for the remaining amount of the physical resources of

the container to meet the physical resource requirements of

the service instance itself. Record the waiting resource time

of the service instance stki in the container cy as wrki .

Based on the above three steps, it can be concluded that after

the service instance stki is scheduled, the period before execution

is the total waiting time of the service instance TWk
i :

TWk
i � transTik + wrki , acty � 1

act_timey + transTik + wrki , acty � 0
{ (9)

As mentioned above, the execution of the service is

finished when all the instances of the service svci are

executed. Therefore, the response time Ti of the service svci
should be denoted as:

Ti � max
k

Tk
i( ) (10)

Taking the submission time of the composite services as the

earliest start execution time Tstart and the completion time Tend of

the last service instance in the sub-service as the completion time

of the composite service, thus the actual completion time TC of

the entire composite service is denoted by Eq. 11.

TC � Tend − Tstart (11)

In order to denote the expected completion time of the

composite services more conveniently, the composite service is

divided into layers according to the execution order of the

service. The start sub-service is placed in the first layer, and

the end sub-service is placed in the last layer.

The service completion time of each level is the response time

of the service with the longest response time in the level, as shown

in Eq. 12, where l represents the level and u represents the

number of services contained in the level.

TLl � max
u

Ti( ) (12)

Define the maximum expected completion time for an entire

composite service as:

TE � 2∑
v

TLl (13)

The interaction between the user and the cloud platform takes

the whole composite service as the unit, and the user can set the

desired QoS demand when sending the request. The completion

time of the composite service is an important QoS indicator for

users, so this paper takes themaximum expected completion time of

the composite servicesTE as the user’s QoS demand. Eq. 14 indicates

whether the user’s demand QoS can be met:

success CS( ) � 1, TC≤TE
0, else

{ (14)

For cloud and service providers, the goal of service scheduling is

to meet users’QoS requirements as far as possible while completing

service execution under the constraints of limited IaaS or PaaS

resources, which needs to be implemented through an efficient

online service scheduling algorithm.

4 Algorithm design and
implementaion

4.1 Prioritized 3-deep Q-network

In the process of using DQN (Deep Q-Network), there will be

a problem of overestimate (Liang et al., 2020). Therefore, in

recent years, many scholars have proposed improved algorithms

for DQN, including DDQN, Dueling DQN, distributed DQN,

PER, etc. This section combines DDQN, Dueling DQN, and

Prioritized Experience Replay three algorithms to improve DQN

at the same time to construct Prioritized Dueling-DDQN

(hereinafter referred to as Prioritized 3-DQN) algorithm. This

algorithm avoids overestimation of DQN to a certain extent. At

the same time, when updating the parameters of neural network,

PER algorithm is used to replace the random sampling method in

DQN and select the most effective learning samples from the

sample memory to achieve the purpose of efficient learning.

The Prioritized 3-DQN algorithm also uses two neural networks

with the same structure: the Eval network and the Target network.

The Eval network is used to calculate the estimatedQ value and can

be updated in real time. The Target network is used to calculate the

targetQ value, and it is a temporarily frozen network. This article has

made three improvements to DQN: two decoupling actions and one

sampling method improvement. The specific descriptions are as

follows:

(1) The output layer of the neural network is decoupled into two

output streams, which output the current state value V and

the action advantage function A, respectively, and then

combine the state value V and the advantage function A

to form the Q value. The advantage function refers to the

degree of merit of the value that can be obtained by taking an

action relative to the average value of the state for a particular

state. In order to calculate the advantage function value

corresponding to each action more conveniently, the

average value of the advantage function value of all

actions is set to 0. If the advantage function value

corresponding to a certain action is greater than the

average value in the state, then the advantage function
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value corresponding to the action is positive, and vice versa.

At this time, the calculation method of the Q value is shown

in Eq. 15, where θ represents the neural network parameter,

α and β represent the output flow neural network parameters

corresponding to the state value and the action advantage

function, and n is the action dimension.

Q s, a; θ( ) � V s; α( ) + A s, a; β( ) − ∑n
a′A s, a′; β( )

n
(15)

(2) Based on DQN, the overestimation problem is solved by

decoupling the selection of target action and calculating the

target Q value. When calculating the actual value of Q, the

Eval network provides the action in the next environment

state, and the Target network provides the Q value of this

action.

The Q value. At this time, the update process of the neural

network is shown in Eq. 16, where θ and θ− represent the Eval

network and the Target network, respectively.

Q st, at; θ( ) ← Q st, at; θ( )
+ ∝ rt + γQ s′, amax s′; θ( ); θ−( ) − Q st, at; θ( )[ ] (16)

(3) In the offline training phase of traditional DQN, the training

samples are randomly selected from the experience replay

pool without considering the priority relationship of the

samples. However, different samples have different values,

and the samples directly affect the training effect of the

neural network. In order to improve the training effect of the

neural network, it is necessary to determine a priority for

each sample and conduct sampling according to the priority

of the sample. As mentioned above, the Target network does

not have the function of real-time updates. Therefore, as the

Eval network is continuously updated, there will be a certain

gap between the two networks while calculating the Q value.

This gap is named the timing difference TD_Error.

TD_Error can be represented by Eq. 17. The larger the

TD_Error, the larger the gap between the currentQ function

and the targetQ function, the more the neural network needs

to be updated at this time, so TD_Error can be used to

measure the value of the sample. In order to prevent the

network from overfitting, samples can be drawn by

probability. At this time, the probability of samples being

drawn is shown in Eq. 18, where ϵ is a small value close to 0,

which guarantees Samples with TD_Error of 0 may also

have a chance to be drawn.

TD_Error � rt + γQ s′, amax s′; θ( ); θ−( ) − Q st, at; θ( ) (17)
P i( ) � pi∑pi

(18)

where, pi � |TDError + ϵ|. The process of our Prioritized 3-

DQN algorithm is as follows:

Algorithm 1. Prioritized 3-DQN.

4.2 State space

When the service svciis ready, the method selects an instance

of svci each time stki and schedules it to a certain container. The

environment status at this time is mainly determined by the

physical relevant factors of the service instance stki , such as

resource requirements, running status of the container cluster

are determined. Therefore, the state space can be denoted by

Eq. 19:

Ski � stki , c1, obsc1, pre
svci
c1

, . . . , cq, obscq, pre
svci
cq

[ ] (19)

where

obscy � [que_leny, cpu_leny, mem_leny, disk_leny], (y ∈ q)
Each value in the state space affects the scheduling decision of

DRL, where stki represents the current service instance to be

scheduled, which is represented by the aforementioned Eq. 2,

and cy represents the resource state of the yth container in the

cluster, as shown in Eq. 4. It should be noted that there is a one-to-

many relationship between service instances and containers. Each

service instance can only be completed by one container, but each

container can be assigned multiple service instances. When the

remaining physical resources of the container are insufficient and

the resource requirements of the service instance are required, the

newly scheduled service instance needs to be added to the services

queue to be executed in the container. obscy is the running status of

container cy, where que_leny represents the length of the service

instance queue to be executed in container cy, and cpu_leny,

mem_leny, and disk_leny respectively represent the sum of the

CPU, memory, and disk storage space requirements of the waiting

queue. The characteristic value presvcic1
represents the proportion of

the result data length of the predecessor service of the current

service instance in the container cy after execution. For example

svc3 has two predecessor services svc1 and svc2. Assume that the

length of the result data after the execution of these two precursor

services is 4 and 6, so only the service instance of svc1 is scheduled

to the container c1. The service instance of svc3 is st13. When being

scheduled, prec1 � 4/(4 + 6) � 0.4.
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4.3 Action space

During scheduling decision-making, a suitable container is

selected for the service instance as the action in DRL, and the

action space is all the containers that can be selected. Suppose that

the data center contains p hosts {h1, . . ., hp} at a certain time, host

hx can assign at most container_numx containers with different

configurations. When service instance stki is ready to be scheduled,

the agent in DRL can schedule it to any container in the cluster for

execution, including all containers in reserved and on-demand

modes. The action space at this time is shown in Eq. 20.

anum � hx × container_numx x ∈ p( ) (20)

4.4 Reward function

In order to enable the agent in DRL to learn effectively and

obtain an effective scheduling strategy that optimizes the goal, a

reasonable reward function needs to be designed to guide the

learning process of the agent. In our model, in order to minimize

the completion time and improve the user QoS and resource

utilization of the cloud platform, this paper uses the difference

between the expected execution time of the service instance and

the waiting time. It then uses the ratio of the expected execution

time as the reward for each scheduling. The value is as follows:

rki �
durtationi − TWk

i( )
durationi

� 1 − TWk
i

durationi
(21)

Based on Eq. 21, the interval of reward value can be deduced

as[ −∞, 1]. When the overall waiting time of the service instance

TABLE 2 Table of data relation comparison.

Fields
of batch_task table

Attributes
of class service

Description

task_name service_name Service name

inst_num inst_num The number of instances

job_name cs_name The name of composite service

Duration Duration Expected execution time

plan_cpu cpu CPU cores requirements

plan_mem mem Memory requirements

Disk Disk Disk storage requirements

Length Length The length of result

TABLE 3 Table of dataset settings.

Dataset name The number of
composite services

The number of services The number of
service instances

Training data set 1,036 5,832 38,586

Test data set1 345 1,500 12,320

Test data set2 426 2,200 18,020

Test data set3 512 2,780 25,200

TABLE 4 Resource node settings.

Hosts Containers Detailed description

(CPU cores; Memory
capacity; Disk capacity;
Bandwidth; Status)

Host 0 Container 0 4; 1.56; 10; 5; Running

Container 1 4; 1.56; 10; 5; Stopped

Container 2 8; 3.13; 18; 8; Running

Host 1 Container 3 4; 1.56; 10; 5; Stopped

Container 4 8; 3.13; 18; 3; Running

Container 5 8; 3.13; 18; 3; Stopped

Host 2 Container 6 4; 2.34; 12; 5; Stopped

Container 7 8; 3.13; 18; 3; Running

Host 3 Container 8 4; 2.34; 12; 3; Running

Container 9 8; 3.13; 18; 5; Stopped
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TWk
i is 0, the scheduling reward reaches the highest value of 1;

when the overall waiting time TWk
i is equal to the expected

execution time, the reward value is 0; when the overall waiting

time TWk
i is greater than the expected execution time, the reward

value begins to show a negative value. The longer the waiting

time for execution, the smaller the reward value, and the greater

the punishment. Through the reasonable design of the reward

function, DRL can learn an effective service scheduling policy.

5 Experimental results

5.1 Simulation experiment setup

This paper uses Alibaba Cluster Data V2018 (Alibaba,

2018) as the data set for the simulation experiment. The data

set contains six files in CSV format, describing the status

information of the physical machine cluster, container

cluster, and batch processing tasks. The original data set

has a huge amount of data. There is inevitably a problem

of missing data, and the data set is scattered and difficult to

operate. Therefore, it is necessary to preprocess the original

data set to obtain more targeted and valuable data. During the

experiment, the preprocessed batch job data needs to be

parsed and mapped into a composite service entity. The

comparison between the fields of the preprocessed

batch_task table and the attributes of the service class is

shown in Table 2.

This paper divides the experimental data set into two parts:

the training data set and the test data set, as shown in Table 3. In

this experiment, 5,832 pieces of data are selected as services from

the batch_task table, forming a total of 1,036 composite services,

including 38,586 service instances. At the same time, to fully

verify the effectiveness of Prioritized 3-DQN as a scheduling

algorithm, this paper sets up three test sets with different data

volumes.

In the initial stage of the simulation experiment, four hosts

with different configurations are set, and each host contains

container instances with different configurations and states.

The relevant configuration of each container is shown in

Table 4.

In implementing the Prioritized 3-DQN algorithm, the

parameter settings are shown in Table 5. Both the Eval

network and the Target network contain three fully

connected neural network hidden layers, the last layer of

which is divided into two output channels: state value and

action advantage function. The greedy coefficient ε is 0.9. Each

time the neural network parameters are updated, it will

increase by 0.0001. That is, when selecting the container

for the service instance, the container with the largest Q

value will be selected with a probability of 0.9, and the

container will be randomly explored with a probability of

0.1. After 1,000 updates, the value of ε becomes 1, and random

exploration is no longer performed when selecting a

container, but only the container corresponding to the

largest Q value is selected. ϵ is set to 0.001, which ensures

that samples whose timing difference TD_Error is 0 will also

have a chance to be sampled. The target network update

frequency C is set to 30, which means that every 30 times

the Eval network is updated, its network parameters are

copied to the Target network.

5.2 Prioritized 3-deep Q-network training
effect

The essence of deep reinforcement learning algorithm

learning is to maximize the cumulative reward of the round

as the optimization goal, so the training effect can be reflected

by the trend of the cumulative reward as the value changes

with the number of training rounds. In addition, the

Prioritized 3-DQN scheduling algorithm proposed in this

TABLE 5 Algorithm parameter setting.

Parameter name Value

The number of hidden layers 3

Activation function ReLU

Greed index ε 0.9

Experience replay pool size N 3,000

Number of sample sets N_b 200

Learning rate α 0.001

Discount factor γ 0.9

ϵ 0.001

Target network update frequency C 30

FIGURE 1
Training effect comparison chart.

Frontiers in Genetics frontiersin.org11

Yu et al. 10.3389/fgene.2022.964784

116

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.964784


paper is improved based on the DQN algorithm. In order to

evaluate the convergence and stability of the improved

Prioritized 3-DQN scheduling algorithm, it is compared

with the original DQN algorithm. After 2,500 rounds of

training using the training data set, they finally reached

their optimal training effects. Figure 1 is a comparison

chart of training effects.

It can be seen from Figure 1 that as the number of training

rounds increases, the cumulative reward values calculated by

the two algorithms show a gradual upward trend. After a

certain number of rounds, they have reached a stable trend,

indicating Prioritized 3-DQN and DQN are reasonable as the

scheduling algorithm of the composite service model

proposed in this paper. However, from the perspective of

convergence, our algorithm can obtain a higher cumulative

reward value under the same number of training rounds. In

addition, When the number of training epochs reaches around

1,600, the Prioritized 3-DQN scheduling algorithm starts to

converge. The DQN starts to converge when the number of

training rounds reaches about 2,200. Thus, the convergence

speed of our algorithm is faster, and a higher cumulative

reward value is obtained after the iteration is completed. This

is because each time the weight parameters of the neural

network are updated in our algorithm, the experience

samples with larger time-series differences are selected first,

so as to ensure the learning effect of the neural network. From

the perspective of stability, Prioritized 3-DQN decouples the

selection of the target Q value action and the target Q value

calculation, thereby avoiding the problem of overestimation.

Therefore, compared with the DQN rising trend, the upward

trend of our results is slightly smoother and more stable. In

general, our Prioritized 3-DQN is very suitable for composite

service scheduling strategies. Compared with DQN, it has

higher learning efficiency and can converge earlier to achieve

better results.

5.3 Makespan comparison

To verify the generalization ability of Prioritized 3-DQN

as a composite service scheduling algorithm, DQN and the

four common scheduling algorithms mentioned above are

respectively applied to the composite service model. In the

process of the comparative experiment, three test sets were

used for 20 experiments, the completion time of the

composite service was calculated, and the average results

were obtained. Figure 2 summarizes the average

completion time obtained after 20 experiments on each of

the three test data sets.

It can be seen from Figure 2 that the completion time

of Prioritized 3-DQN on different test data sets is shorter

than the results of the other four scheduling algorithms.

Among them, the difference in completion time between

DQN and Prioritized 3-DQN is smaller than the other

three scheduling algorithms. The completion time of

Prioritized 3-DQN on three data sets is about 3.32% less

than that of DQN on average. The number of service

instances in the three test sets increases sequentially. With

the increase in the number of service instances, the increase in

the completion time of the composite service under different

scheduling algorithms is different, and the gap in completion

time between Prioritized 3-DQN and the other four

scheduling algorithms is more prominent. This means

that the algorithm and DQN algorithm proposed in this

paper are more adaptable than other algorithms in terms

of completion time.

FIGURE 2
Comparison chart of average completion time of each test
set with standard error.

FIGURE 3
Comparison chart of composite services success rate with
standard error.
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5.4 Quality of service comparison

The degree of user satisfaction is also the main optimization

goal of this article. The degree of user satisfaction is closely

related to many factors, such as the number of requests for

composite services reached per unit time, the number of service

instances contained in each composite service, and the

processing capacity of the container cluster set in the

experiment. In this experiment, five scheduling algorithms are

used in the same experimental environment to simulate

simulation experiments on three composite service test sets,

and then the success rate of each composite service test set is

recorded, as shown in Figure 3.

By observing the above graph from a horizontal

perspective, our algorithm can achieve the highest success

rate compared to other scheduling algorithms. Vertically, with

the increase in the number of composite services and service

instances, the success rate of each scheduling algorithm after

the completion of the composite service allocation is

continuously reduced, but the reduction is different. Our

algorithm is compared with the other four algorithms. It

can be maintained in a relatively stable state, which ensures

that the success rate of composite services is about 80% under

different composite service test sets. The composite service

success rate of Prioritized 3-DQN on the three data sets is

about 4.82% higher than that of DQN. From the perspective of

diversified loads, the Prioritized 3-DQN is more capable of

making reasonable service scheduling decisions than other

scheduling algorithms, thereby it increases the success rate of

composite services and improves user QoS.

5.5 Resource utilization comparison

In addition to completion time and user QoS, the resource

utilization of a container cluster can also be used as one of the

criteria for evaluating the performance of scheduling algorithms.

This section compares and analyzes resource utilization from the

three dimensions: CPU, memory, and disk. During the simulation

experiment, the resource utilization rate of the container cluster

was recorded after each service instance was scheduled, and the

average result of each resource utilization rate was calculated after

one round of scheduling was completed. Figure 4 shows the

resource utilization results of the three composite service test sets.

The above three graphs show that our prioritized 3-DQN,

DQN, and Best-fit algorithms are significantly higher than the

FIGURE 4
Resource utilization results of the three composite service test sets with standard error. (A) Resource utilization of test set 1. (B) Resource
utilization of test set 2. (C) Resource utilization of test set 3.
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other two algorithms in terms of resource utilization in the three

dimensions, indicating that they can make full use of limited

resources when scheduling service instances to complete the

execution of composite services. When the Best-fit algorithm

schedules service instances, it does not consider the data

transmission relationship between services and the scheduling

of subsequent service instances. It only schedules the current

service instance to the container with the best performance and

the shortest execution time. Therefore, the resource utilization in

the three dimensions is lower than Prioritized 3-DQN and DQN.

On the three data sets, the resource utilization of Prioritized 3-

DQN on CPU, memory, and disk is about 1.39%, 1.11%, and

1.09% higher than that of DQN, respectively. The Prioritized 3-

DQN is also higher than DQN in terms of resource utilization,

indicating that Prioritized 3-DQN can make more reasonable

scheduling decisions compared to DQN and has a more stable

optimization capability under the same environment.

6 Conclusion

Cloud computing has brought great flexibility and cost-

effectiveness to end-users and cloud application providers, and it

has become a very attractive computingmode for various fields.With

the continuous development of biological technology, massive

biological data are continuously generated, and the requirements

for data processing operation speed, computing power, and stability

in practical applications also increase rapidly. Cloud computing has

the characteristics of high-speed computing power, high storage

capacity, and convenient use, which can meet the needs of

biological research. At the same time, cloud providers provide

security services to ensure the privacy and integrity of data. When

biological samples are processed, each step needs to be supported and

completed by cloud services. Between stages, biopharmaceutical

companies realize data isolation by transferring data between

services. Data quality plays a crucial role in the application effect

of data, and the problem of data timeliness is one of the main factors

affecting data quality. The timeliness of data can be improved

synergistically by combining timeliness rules with statistical

technical conditions or functional dependencies. How to use

service scheduling strategy to improve service quality and resource

utilization has become a key issue in cloud computing. This paper

focuses on the core problem of service schedulingmanagement in the

container cloud platform.We proposed the composite service model

under the modes of container instance (mixed reservation and on-

demand), and we proposed the improved DQN algorithm as the

scheduling algorithm of the composite service model in this paper.

The simulation results show that, under the model presented in this

paper, our 3-DQN algorithm is superior to the original DQN

algorithm in terms of reliability and convergence. In addition, the

algorithm can effectively reduce the completion time of the

composite service and improve the user QoS and resource

utilization in the container cloud environment.

The method proposed in this paper still has many defects for

the actual cloud environment. From the results represented in the

paper, the differences in completion time, composite service

success rate, and resource utilization between DQN and

Prioritized 3-DQN are small. The reason for the smaller

difference may be that the scale of our experiments is

relatively small. If the scale of the experiments is large, the

advantages of Prioritized-3DQN may be more prominent. We

also consider comparing Prioritized 3-DQN with the three

algorithms used in this paper in the future. In addition, in the

process of designing the composite service model in the container

cloud environment, the energy consumption and resource cost of

the cloud platform are not considered. We can do further

research in future work.
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in cloud service
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The rapid expansion of the cloud service market is inseparable from its widely

acclaimed service model. The rapid increase in the number of cloud services

has resulted in the phenomenon of service overload. Service recommendations

based on services’ function attributes are important because they can help users

filter services with specific functions, such as the function of guessing hobbies

on shopping websites and daily recommendation functions in the listening

app. Nowadays, cloud service market has a large number of services, which

have similar functions, but the quality of service (QoS) is very different. Although

the recommendation based on services’ function attributes satisfies users’ basic

demands, it ignores the impact of the QoS on the user experience. To further

improve users’ satisfaction with service recommendations, researchers try to

recommend services based on services’ non-functional attributes. There is

sparsity of the QoS matrix in the real world, which brings obstacles to service

recommendation; hence, the prediction of the QoS becomes a solution to

overcome this obstacle. Scholars have tried to use collaborative filtering (CF)

methods and matrix factorization (MF) methods to predict the QoS, but these

methods face two challenges. The first challenge is the sparsity of data; the

sparsity makes it difficult for CF to accurately determine whether users are

similar, and the gap between the hidden matrices obtained by MF

decomposition is large; the second challenge is the cold start of

recommendation when new users (or services) participate in the

recommendation; its historical record is vacant, making accurately

predicting the QoS value be more difficult. To solve the aforementioned

problems, this study mainly does the following work: 1) we organized the

QoS matrix into a service call record, which contains user characteristic

information and current QoS. 2) We proposed a QoS prediction method

based on GRU–GAN. 3) We used the time series data for quality predictions

and compared some QoS prediction methods, such as CF and MF. The results

showed that the prediction results based on GRU–GAN are far superior to other

prediction methods under the same data density. We aim to help the

engineering community promote their findings, shape the technological

revolution, improve multidisciplinary collaborations, and collectively create a

better future.
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1 Introduction

While massive web services bring convenience and

innovation, the coverage of web service resources is getting

wider and faster (Zhang Y. et al., 2020). The scale of the

cloud service market in the future should not be

underestimated. The explosive growth of the number of web

services in the cloud service community has become a new

challenge because it is difficult for users to select high-quality

services from many services. In recent years, more and more

people try to use deep learning (DL) models (Nath and Wu,

2020) to learn the functional properties of web services, such as

service operations, inputs, outputs, and prerequisites, to realize

user demand for functionality. Its advantage is that it can select

services with specific functions in a targeted manner according to

the specific functions of the services required. This technology is

now relatively mature. However, existing research has found that

when there are a large number of services with the same or

similar functions, filtering only based on the functional attributes

of the services is less effective. People began to try to introduce

QoS to measure the non-functional performance of a service. The

study found that although QoS-based service recommendations

can recommend higher quality services for people, the sparseness

of real-world data makes the recommendation results unreliable

for users. Therefore, people try to use the quality prediction of

web services (hereinafter referred to as quality prediction) to

solve the problem caused by data sparse. Quality prediction is an

essential link in service recommendation; however, most quality

predictions now use collaborative filtering (CF) and matrix

factorization (MF) methods. However, these two types of

methods only use the interaction information between the

user and the service as the main basis, ignoring the user’s

personalized feature information (Hamilton, 2022). Therefore,

when faced with the cold start problem, the reliability of the

predicted results is low due to the lack of the aforementioned

interactive information. Figure 1 shows a service

recommendation scenario where service users used a list of

services and intend to use more suitable services by automatic

recommendations.

Based on the aforementioned problems, this study

rearranged each call record to include the feature information

of the user under the service and uses a deep neural network to

analyze the nonlinear relationship between the feature

information and response time in each record so that the QoS

prediction value is reliable. The scale of the cloud service market

is growing rapidly (Sandhu, 2021). Although it brings more

choices to users, the dazzling array of services also makes

users dazzled. Cloud service recommendation can effectively

solve this problem, so the main work of this study is to use

deep learning to research cloud service recommendations and

explore more accurate cloud service recommendation methods

to recommend services with higher QoS values to users. The

purpose of this subject is to make its contribution in the field of

service recommendation, which has certain academic value and

research significance.With the promotion of personalized service

concepts and the wide application of service-oriented computing

(SOC), more and more enterprises provide users with

personalized products. Service-oriented architecture (SOA) is

the most recognized implementation, which makes service

invocation more convenient. Therefore, there is explosive

growth in the number of web services (WSs), and it is

difficult for conventional service recommendation methods to

efficiently process and utilize services (Zhang W. et al., 2020).

This phenomenon is also called service overload. People try to

use the service recommendation method to solve the problem of

service overload. Service recommendation is mainly divided into

two recommendation methods based on function and non-

function. Among them, the technology of mining users’

functional requirements is relatively mature. How to filter

service recommendation methods with higher service quality

became a hotspot in the field of service recommendation. To

solve our problems, this study mainly did the following work:

1) We organized the QoS matrix into a service call record, which

contains user characteristic information and current QoS.

This study used the public dataset WS-Dream as

FIGURE 1
Recommendation scenario.
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experimental data and found that there are a large number of

irrelevant and redundant information in the dataset, so we

used a variety of tools to extract feature information,

specifically including filtering fields, filling missing values,

morphological restoration, and converting lowercase, and

then performing feature extraction to generate time

series data.

2) We proposed a QoS prediction method based on GRU–GAN.

Compared with other service recommendation methods, this

method can overcome the drawbacks of linear operations

brought by collaborative filtering-based service

recommendation methods and matrix factorization-based

service recommendation methods by learning the

nonlinear relationship between eigenvalues in time series

data. Through the generative adversarial network, the real-

time series data and the predicted time series data are used for

adversarial training to improve the prediction performance of

the model.

3) We used the time series data for quality prediction and

compared some QoS prediction methods, such as CF and

MF. The results show that the prediction results based on

GRU–GAN are far superior to other prediction methods

under the same data density.

At present, there are roughly three solutions for QoS-based

service recommendation: CF-based service recommendation (Lo

et al., 2012a), MF-based service recommendation (Lo et al.,

2012b), and DL-based service recommendation (Hudson et al.,

2021). The CF-based method is an ancient algorithm in the field

of service recommendation. The main idea of the algorithm is to

use interaction records to find similar users (or services) and to

recommend services for users based on the view that similar users

have similar evaluations of services. CF-based methods are

further subdivided into two service recommendation methods:

memory-based and model-based methods. Among them,

memory-based methods can be subdivided into three types,

which are user-based (Shao et al., 2007), item-based

(Deshpande and Karypis, 2004), and a combination of the

two (Zheng et al., 2009). The memory-based CF method

calculates the similarity between users (or services) according

to the matrix of users calling services, then predicts the QoS of

similar users (or services) based on the similarity, and then sorts

the QoS in a certain order according to the prediction results, and

finally selects the top K services with the best service quality and

recommend them to users. Wu et al. (2012) proposed a

neighborhood-based CF method, which eliminated different

levels of the QoS by adjusting the similarity calculation

method, and then used a similarity fusion method to reduce

the impact of data sparsity. To improve prediction accuracy,

scholars have begun to pay attention to the impact of contextual

information such as time and space on the QoS. For example, Yu

and Huang (2014) proposed a time-aware CF algorithm to

predict the missing QoS; Liu et al. (2015) used a spatially

aware CF algorithm to improve the performance of service

recommendations. However, when the aforementioned

methods were not able to provide real-time recommendations

when faced with a large amount of data, Zhang et al. (2011)

proposed the WSPred model to improve prediction accuracy by

embedding temporal information. Although CF has achieved

more intentional results in the field of service recommendation in

the early stage (Wu et al., 2012; Liu et al., 2015), there are still the

following drawbacks: 1) data sparsity: CFmethods mainly rely on

the call records between users and services to calculate similarity;

these call records usually only provide some low-dimensional

and linear features, so when the data density is small, insufficient

learning of features limits the improvement of prediction

performance. 2) Cold start: when a new user (or service) is

the target user, the reliability of the similarity calculation result

is low.

To solve the interference caused by the aforementioned

problems, the MF method has been applied to service

recommendations by many scholars. For example, there is a

QoSmatrix Rm*n generated by a user calling service, and the “user

implicit matrix Um*k” and “service implicit matrix Sk*n” are

obtained through MF. These two matrices are used to describe

the characteristics of users and services, respectively. By

optimizing the objective function to make the product of the

“hidden matrix” closer to R, the missing data in R are also filled.

Tang N. et al. (2016) proposed a QoS prediction algorithm

ClustTD based on location clustering and tensor decomposition.

This method uses location information to cluster users and

services, and then performs tensor decomposition on the user

and service vectors. The results are weighted and combined to

finally obtain the predicted value of the QoS; Xu et al. (2013) used

the upper and lower information of the service and user location

to perform matrix decomposition, and proposed LE-MF for the

prediction of missing values, and user clustering and service

clustering, reduce the volume of the QoS matrix, and finally

complete the prediction task of vacancy values through matrix

decomposition; Yin et al. (2016) considered the impact of the

network environment on the QoS, and combined the

autonomous system into the judging network location

neighbor index. A QoS prediction method based on network

location-aware neighbor selection web service recommendation

was proposed, which improved the prediction performance by

reducing the solution space; Qi et al. (2020) considered from the

perspective of service security and concluded that although the

spatiotemporal information of users and services improved, it

improves the reliability of the recommendation but also reduces

the security, so they add the location-sensitive hashing

technology to the space-time information to enhance the

privacy protection of users and services. Matrix factorization

improves the reliability of quality prediction results by alleviating

the problem of data sparsity, but the number of features involved

in the calculation is limited, which makes it difficult to overcome

the challenges brought by a cold start.
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2 Related work

In SOA recommended systems (Nitu et al., 2021), the user’s

personalized needs are presented in the form of QoS (Tran and

Tsuji, 2009). QoS is an important indicator for evaluating service

performance, so it can be used as the most important factor to

distinguish the quality of web services. QoS includes

performance, reliability, security, and some other metrics. For

users, the level of the QoS value determines the QoS experience;

for services, the level of the QoS value indicates the quality of

service performance and also affects the popularity of the service.

Deep learning (DL) is an important subcategory of machine

learning, which trains and captures data features through neural

networks (Li et al., 2020). DL learns the abstract expression of the

data and the inherent laws between the data in the massive data,

and extracts the feature representation of the complex level from

it. Through the aforementioned process, the computer has the

ability to analyze and learn like a human. The early neural

network is similar to the combination of simple neural units

to form an artificial neural network. Since the DLmodel is widely

recognized, various sub-models are also derived, such as the

convolutional neural network (CNN) model, deep belief network

(DBN) model, belief network(BN) model, and stacked

autoencoder (SAE) model (Zhang et al., 2021).

The core of the RNN analysis problem is to find the invisible

connection between the input time series data. The RNN is used

to process time series data, and the effective information

contained in time series data at different times is different, so

the RNN can be regarded as a kind of a neural network with

short-term memory ability.

In the RNN, the current neuron can accept the information

of not only its previous and backward neurons but also its own

information, and finally form a network structure with loops.

Because of the characteristics of receiving neurons, the RNN has

a stronger memory ability. At present, RNNs have been widely

used in tasks such as computer vision, meteorology, and text

sentiment classification. However, due to the long training time

of the original RNN, the training will cause the gradient to be in

two extreme states, that is, explosion and disappearance.

Gated recurrent units (GRUs) are a variant of LSTM. The

structure of LSTM is relatively complex, and the number of

parameters it contains far exceeds that of GRU, which makes the

training difficulty of parameters sharply increased. In response to

the aforementioned situation, the GRU was proposed to reduce

the number of parameters in LSTM and ensure the effect of

training. The specific method is that the GRU combines the

forgetting gate and the input gate to reduce the complexity of the

neural network, which not only ensures the memory ability of the

RNN but also reduces the complexity of the neural network. It

improves the training efficiency of the network. The GRU

contains two gates. The update gate determines the degree to

which the information in the previous time series data is brought

into the future, and the larger the value, the greater the degree of

introduction; the reset gate determines the importance of the

information in the current time series, and the larger the value is,

the current time series data are less important (Qi et al., 2020a).

The GAN is a neural network that uses game thinking

(Creswell et al., 2018). The GAN is mainly composed of

generator G (Generator) and discriminator D (Discriminator).

Generator G learns the distribution of the given data, and when

the noise is input to the generator, it will generate “fake data”

similar to the real sample; discriminator Dmainly identifies “fake

data” from a sample set that is a mixture of real and fake. G and D

continuously update the loss function through adversarial

training to achieve the overall optimization goal. Through

multiple game processes, the generator can achieve the goal of

“mixing the fake with the real.” The optimal state is achieved

when discriminator D cannot distinguish the authenticity of the

data, that is, when the output probability of discriminator D

is 1/2.

3 Model design

The user-service call records are generated through the real

data set WS-Dream, and then a combination of the gated

recurrent neural network and the adversarial neural network-

based adversarial gated recurrent neural network (GRU–GAN) is

proposed in this study to predict the motivation and value of the

QoS-specific implementation process. This method can

effectively predict the QoS value when the data sparsity is low

and can also alleviate the impact of user cold start to a certain

extent. Figure 2 shows our methodological framework.

3.1 Generator model

In the generative adversarial network, the design of the

generator needs to be specifically designed according to specific

experiments. In the training phase of the GRU–GAN model, the

main purpose of G is to “cheat” D with the predicted QoS. The

generator uses the time series within the 0-t time series to train the

weight of each hidden neuron, and then whenever the noise data

converted from the user feature information at the next moment are

entered, it will predict the next moment when the user invokes the

service. This section will introduce the specific design scheme and

training process of the generator in the quality prediction model of

this study. Figure 3 shows the generatormodel in theQoS prediction

model proposed in this study.

The input of the generator is a time series and the output is

the QoS prediction value at the future time. The QoS of the

generator from input noise to output can be summarized as Eq. 1.

ŷu,t+1 � G(tu,t, xu,t+1), (1)

where ŷu,t+1 represents the QoS of user u at time t+1, tu,t
represents t real-time series generated by u users calling s
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services, and xu,t+1 represents the feature information of user u in

the t+1st time series. G () is to train the generator function using

the time series at time 0-t, which contains the weights for each

hidden neuron.

Since the data type used in this study are time series data,

RNN itself is a kind of neural network suitable for studying time

series data. In related research, it was found that GRU can better

deal with the gradient decay problem of RNN and can better

capture the relationship between time series. Considering the

applicability of GRU in this study, this article puts GRU into the

generator model. At the same time, to ensure the consistency of

the data dimensions of each connected part, the fully connected

neural network is also put into the generator model, and the

Leaky ReLU activation function is used in the fully connected

layer, where a = 0.02. In GRU–GAN, the loss function of the

generator is defined as the error between the predicted value of

the QoS and the real value of the QoS. This study uses the L1 loss

function to measure the error. The loss function calculation

formula of generator G is as shown in Eq. 2.

LossG � ∑n
t�1

∣∣∣∣∣∣yt − ŷt

∣∣∣∣∣∣. (2)

Among them, yt represents the real QoS value at time t and

ŷt represents the predicted QoS value at time t. By minimizing

the loss function of G, the error between the real data and the

predicted data can be reduced, thereby improving the prediction

performance of the generator.

In the generator network, the real data set is first input in

chronological order; then the fully connected layer is used to map

the dimension of the real data to the same dimension as the input

layer of the GRU network, and the distribution characteristics of

each feature in the real data and the QoS characteristics are

learned. The fitting process, which can be expressed as a

regression equation, constructs a function from a historical

variable to the current value of a variable in a certain

dimension. This fitting process can be expressed as Eq. 3.

ŷt � θnx
t
n + et. (3)

Among them, ŷt represents the predicted value of the QoS at

time t, θn is the 1*n-dimensional weight vector at time t, xt
n is the

feature vector of the n*1-dimensional user-service call record at

the current time, and et is the current time error.

Therefore, whenever the basic information of the current

state of the user is input, Eq. 3 will calculate the QoS value of the

service invoked by the user at the current moment. The more the

training samples are input, the better the fitting effect of the

function will be. The QoS will get closer and closer to the real QoS

as the number of iterations increases. The forward training

process and backpropagation process of GRU in this study

will be introduced separately in the following section.

The reset gate determines how much of the previously input

information is written on the candidate set. First, the product of

the weight matrix Ar and ht−1 and xt spliced into a matrix is

calculated, and then the gate to convert the calculation result of

Ar · [ht−1, xt] is reset between 0 and1 through the activation

function. The larger the value of rt, the more information is

FIGURE 2
Methodological framework.
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written in the previous state. The calculation method of the reset

gate is shown in Eq. 4.

rt � σ(Ar · [ht−1, xt] + er), (4)

where Ar represents the weight matrix of the reset gate, ht−1
represents the hidden state at time t-1, xt represents the sequence

input at time t (through the fully connected layer), er represents

the bias of the reset gate, and σ is the sigmoid function.

The rt value calculated by Eq. 4 will be used for the

calculation of the candidate hidden state ht−1; tanh converts

the calculation result of W~h · [rtpht−1, xt] into a value

between −1 and 1. From the calculation formula of h̃t Eq. 5,

it can be seen that when rt is smaller, the smaller is h̃t , that is,

more past information is needed.

h̃t � tanh(A~h · [rtpht−1, xt]), (5)

where A~h represents the weight of the candidate hidden state and

tanh represents the activation function.

The update gate zt determines the extent to which the state

information at time t-1 is brought into the current state. The

calculation of the update gate is similar to that of the reset gate,

and its calculation method is shown in Eq. 6.

zt � σ(Az · [ht−1, xt] + cz), (6)

where Az represents the weight of the update gate and cz
represents the bias of the update gate.

Based on the aforementioned calculation process, hidden

state ht at the next moment can be obtained. In Eq. 7, it can be

seen that when the value of zt is larger, memory data ztph̃t are

more, and forgotten data (1 − zt)pht−1 are less.

ht � (1 − zt)pht−1 + ztph̃t. (7)

After completing the forward propagation process, we obtained

relatively good neural network parameters. To optimize the

parameters of the neural network, we need to optimize the weight

parameters and bias parameters through backpropagation until the

upper limit of the number of iterations is reached. At this time, LossG
is lower; that is, the performance of the generator network is better.

The process of backpropagation will be described as follows.

ht obtained by Eq. 1 is ŷt in Eq. 1, and minimizing the loss

function of the entire QoS is the goal of the entire training period.

The loss function definition at this time can be expressed as Eq. 8.

⎧⎪⎪⎨⎪⎪⎩
l(t) �

∣∣∣∣∣∣ht − ŷt

∣∣∣∣∣∣
L � ∑T

1

(t)
, (8)

where l(t) represents the loss function value calculated at time t

and L represents the cumulative loss of the entire time series

during training.

3.2 Discriminator model

This section mainly introduces the discriminator model,

including the main tasks, model structure, and processing

process of the discriminator model. The main task of

discriminator D is to distinguish true from false from the real

data set and the predicted data set generated by the generator,

and give a probability value between 0 and 1 to the records in

input D. The loss function of D is shown in Eq. 9.

FIGURE 3
Generator model.
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LossD � ∑n
t�1
D(ŷt) −D(yt). (9)

The discriminator mainly consists of three fully connected

layers. The input time series is mapped to a probability value

between 0 and 1 through a fully connected neural network. The

larger the probability value, themore likely the current input time

series is to be true. Otherwise, the input is considered to be more

likely to be a predicted value. The structure of the discriminator

network is shown in Figure 4.

3.3 GRU–GAN

In the first two sections, the generator model and the

discriminator model are introduced, respectively. In this

subsection, the whole of the proposed GRU–GAN-based QoS

prediction model will be elaborated. In the initial GAN algorithm

network, the generator will introduce random noise, and the

random noise and the real data satisfy the same distribution and

have similar probability densities. The discriminator integrates

the input real samples and noise samples into a new sample

collection and obtains the distribution probability between

0 and1 through the fully connected layer, that is, the

probability that the sample includes the real data. The

generator is responsible for feeding the data, and the

discriminator is responsible for separating the data and using

constant comparison to complete the balance to achieve learning.

The input to the generator in a GAN is early data in the sequence,

and the output is the predicted sequence data. Therefore, the

input of the discriminator can be represented by two parts, which

are the real-time series and the future time series obtained by the

generator; the output of the discriminator is the probability

distribution of these two kinds of data.

For the data set in this study, the data output by the generator

need to meet the same distribution law as the real data, and the

generated data are also the time series. The difference from the

real data is the response time in the sequence.

In a general generative adversarial network, the generator

converts a set of input noises into a fake sample set, and then

through adversarial training, the predicted data generated by the

generator have the same distribution as the real data. In this

study, the output of the generator is the response time of a

specific time series, so the output of the generator has a one-to-

one correspondence with the input. Therefore, in the GRU–GAN

model, the input random noise z is a specific set of time

series data.

4 Experiment

4.1 Experiment data

This study conducts experiments on the WS-Dream dataset,

which is widely used by academia to study QoS prediction

problems. The dataset was originally collected by Zhang et al.

(QoS values for 5,828 services from 339 distributed computers in

PlanetLab’s 30 countries).

4.2 Evaluation criteria

To evaluate the performance of the QoS prediction model

based on GRU–GAN, we choose the two most widely used

metrics for continuous variables: mean absolute error (MAE)

and root mean squared error (RMSE).

4.2.1 MAE
MAE represents the mean of the absolute error between the

predicted value and the observed value, and it represents the

mean margin of error of the predicted value. It is also a

commonly used regression loss function, and its calculation

method is shown in Eq. 10.

MAE �
∑u,s

∣∣∣∣∣∣ru,s − r̂u,s
∣∣∣∣∣∣

N
. (10)

FIGURE 4
Discriminator model.
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4.2.2 RMSE
The formula for calculating the root mean square error is as

follows:

RMSE �

��������������
∑u,s(ru,s − r̂u,s)2

N

√√
. (11)

4.3 Contrast methods

For the prediction effect of this deep learning-based service

recommendation model, this study selects some representative

QoS prediction methods for comparison. These comparison

methods are described in detail next.

1. UPCC (Shao et al., 2007): this method is a memory-based

collaborative filtering algorithm that uses the Pearson

coefficient to find similar users and uses the QoS values of

similar users to predict the QoS value of the target user.

2. IPCC (Deshpande and Karypis, 2004): similar to method 1,

this method looks for similar services and uses the QoS values

of similar services to predict the QoS value of the target service.

3. UIPCC (Zheng et al., 2009): this method combines the

advantages of UPCC and IPCC to predict QoS values, and

add parameters to balance the roles of the two.

FIGURE 5
MAE comparison.

FIGURE 6
RMSE comparison.
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4. CMF (Koren, 2010): this method uses the classical matrix

factorization method to build a global model for quality

prediction.

5. NMF (Lee and Seung, 1999): although this method is also

based on matrix decomposition to solve the QoS value, this

method adds a non-negative factor to matrix decomposition to

improve the reliability of matrix decomposition.

6. PMF (Mnih and Salakhutdinov, 2008): this method introduces

a probability model for probability matrix decomposition and

optimizes the original matrix decomposition model.

7. NIMF (Zheng et al., 2013): this method calculates N(u)

through the Pearson coefficient and adds the user’s domain

information to the matrix decomposition.

8. NAMF (Tang et al., 2016a): this method adds basic user

information to matrix decomposition, filters domain users

according to geographic location, and adds neighborhood

information to matrix decomposition.

9. QoS prediction method based on GRU: this method is the

reference experiment of this experiment. The difference

between the two is that only the GRU network is included in

method 9, while themethod proposed in this study combines two

neural networks: GRU and GAN; with the same point, because

the input data of these two methods are the same, they can be

used to predict the QoS value of the vacancy.

Based on Figure 5 and Figure 6, we found that the prediction

accuracy based on MF is better than that based on the CF method,

and the GRU–GAN-based method proposed in this study has the

prediction accuracy of MF. Comparing the mean values of MAE

under the four densities, the values of models in this study are

decreased with a range from 0.325 to 0.044 and lower than UPCC,

IPCC, UIPCC, CMF, NMF, PMF, NIMF, NAMF, and GRU. The

decrement of the average value of RMSE ranges from 0.78 to 0.3, and

it is lower than the aforementioned 9 methods. Our method takes

longer periods to achieve better prediction results because ourmodel

has more parameters to be trained to better fit the training data,

which are the characteristics of GRU–GAN.

5 Conclusion

Although the recommendation based on the services’

function attributes satisfies users’ demands for service

function, it ignores the impact of the QoS on the user

experience. To further improve users’ satisfaction with service

recommendations, people try to recommend services based on

services’ non-functional attributes. There is sparsity of the QoS

matrix in the real world, which brings obstacles to service

recommendation; hence, the prediction of QoS becomes a

solution to overcome this obstacle. Scholars have tried to use

collaborative filtering (CF) methods and matrix factorization

(MF) methods to predict the QoS, but these methods face two

challenges. The first challenge is the sparsity of data; the sparsity

makes it difficult for CF to accurately determine whether users

are similar, and the gap between the hidden matrices obtained by

MF decomposition is large; the second challenge is the cold start

of recommendation when new users (or services) participate in

the recommendation; its historical record is vacant, making

accurately predicting the QoS value be more difficult. To solve

the aforementioned problems, this study mainly did the

following work: 1) we organized the QoS matrix into a service

call record, which contains user characteristic information and

current QoS. 2) We proposed a QoS prediction method based on

GRU–GAN. 3) We used the time series data for quality

prediction and compared some QoS prediction methods, such

as CF and MF. The results showed that the prediction results

based on GRU–GAN are far superior to other prediction

methods under the same data density.
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