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Hierarchy is a central feature in the 
organisation of complex biological 
systems and particularly the structure 
and function of neural networks. 
While other aspects of brain 
connectivity such as regionalisation, 
modularity or motif composition 
have been discussed elsewhere, no 
detailed analysis has been presented 
so far on the role of hierarchy and 
its connection to brain dynamics. 
Recent discussions among many 
of our colleagues have shown an 

increasing interest in hierarchy (of spatial, temporal and dynamic features), and this is an 
emerging key question in neuroscience as well as generally in the field of network science, due 
to its links with concepts of control, efficiency and development across scales (e.g. Hilgetag 
et al. Science, 1996; Ravasz et al. Science, 2002; Bassett et al. PNAS, 2006; Mueller-Linow et al. 
PLoS Comp. Biol., in press). The proposed Research Topic will address recent findings from 
a theoretical as well as experimental perspective including contributions under the following 
four headings: 1) Topology: Detecting and characterizing network hierarchy; 2) Experiments: 
Neural dynamics across hierarchical scales; 3) Dynamics: Activity spread, oscillations, and 
synchronization in hierarchical networks; 4) Dynamics: Stable functioning and information 
processing in hierarchical networks.
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Hierarchy is a central feature in the organization of complex 
 biological systems and particularly the structure and function of 
neural networks. While other aspects of brain connectivity such 
as regional specialization, modularity, or motif composition have 
already been discussed extensively (Sporns et al., 2004; Bullmore 
and Sporns, 2009), no comprehensive analysis has been presented 
so far on the role of hierarchy and its connection to brain dynam-
ics. Nonetheless, recent discussions among many of our colleagues 
have shown an increasing interest in the subject of hierarchy. This 
topic is an emerging key question in neuroscience, as well as gener-
ally in the field of network science, due to its links with concepts 
of control, efficiency, and development across scales (Ravasz and 
Barabasi, 2003; Barthélemy et al., 2004; Breakspear and Stam, 2005; 
Zhou et al., 2006; Dehmer et al., 2008). 

“Hierarchy” may be understood in several different ways, and 
can apply to topological, spatial, temporal as well as functional 
properties of neural networks. The papers of this Special Topic on 
hierarchy and dynamics reflect this conceptual diversity. 

One interpretation of hierarchy is that of a processing sequence. 
For example, the popular organizational scheme of the primate 
visual system (Felleman and van Essen, 1991) implies a sequential 
ordering of visual cortical areas from the visual sensory periphery 
to “higher-level” areas involved in abstract aspects of vision. This 
hierarchical concept is formalized by Krumnack, et al. (“Criteria 
for optimizing cortical hierarchies with continuous ranges”) and 
expanded from a recent paper by Reid et al. (2009). The authors 
re-analyze the anatomical constraints for the hierarchical sorting of 
visual areas, using linear optimization and mixed integer program-
ming, and demonstrate that there are multiple optimal solutions for 
visual hierarchies, as well as several alternative definitions of opti-
mality. For instance, optimal hierarchies can be based on minimiz-
ing the number of violated constraints, or minimizing the maximal 
size of a constraint violation (cf. Hilgetag et al., 2000), broadening 
the perspective for the interpretation of the anatomical data. 

Another widely used definition of hierarchy is that of a repeated 
encapsulation of smaller elements in larger ones (Kaiser et al., 2007a; 
Robinson et al., 2009), an organization which may also be charac-
terized as recursive or fractal (Sporns, 2006). In that sense, neural 
networks show a self-similar hierarchical organization across a wide 
range of metric or non-metric scales. These scales may be spa-
tial, ranging from the lobes of the brain to cortical mini-columns; 
temporal, stretching from plasticity and learning processes taking 
days and longer to neuronal firing at the millisecond scale; or topo-
logical, containing small functional elements such as “canonical 
circuits” (Douglas and Martin, 2004) in larger modules such as 
the “visual cortex.” 

The Special Topic contains several examples of such encapsu-
lated hierarchies.

For instance, Meunier, et al. (“Hierarchical modularity in human 
brain functional networks”) present techniques for the rapid detec-
tion of a hierarchy of encapsulated modules in resting-state fMRI 
data. They analyzed networks composed of 1,800 regional nodes, 
extracted from neuroimaging data for 18 human subjects, and 
found a good degree of similarity between the network hierarchies 
for different brains. Moreover, out of five modules at the highest 
level, the occipital modules demonstrated less sub-modular organi-
zation than modules comprising regions of multimodal association 
cortex. Connector nodes and hubs, with a key role in inter-modular 
connectivity, were also concentrated in cortical association areas. 
The study demonstrates the feasibility of extracting large-scale 
hierarchical networks from experimental imaging data, and pre-
pares the ground for characterizing brain function by advanced 
network analyses. 

Modules in hierarchical networks may be overlapping, rather 
than be cleanly delineated. Moreover, the individual nodes may 
differ by the topological “reach” that they have across the network. 
While most nodes have relatively few connections, some regions 
(such as amygdala and hippocampus in the cat, or the lateral intra-
parietal area (LIP) and area 7 in the macaque brain) are connected 
to many nodes of the network and thus form hubs (Kaiser et al., 
2007b). Such hubs can be further distinguished into provincial 
(intra-modular) hubs or connector (inter-modular) hubs (Sporns 
et al., 2007). Zamora-López, Zhou, and Kurths (“Cortical hubs form 
a module for multisensory integration on top of the hierarchy of 
cortical networks”) expand such previous approaches, and identify a 
new element in the cat cortical connectivity network, a hub module, 
which consists of network nodes that possess many connections 
with the rest of the network as well as each other. This set of nodes 
forms a topologically central module of the cortex that appears to 
be essential for integrating multisensory information (Figure 1). 

Several articles in the Special Topic explore the dynamic impli-
cations of hierarchical modular network architectures. Kaiser and 
Hilgetag (“Optimal hierarchical modular topologies for producing 
limited sustained activation of neural networks”) investigate the 
influence of the number of hierarchical levels (scales), as well as 
sub-modules at each level (granularity), on the spreading of activity 
in hierarchical modular networks of different sizes, using a minimal 
dynamic node model. In particular, they characterize the conditions 
leading to the biologically relevant case of limited sustained activ-
ity in which activity persists between the extremes of dying out or 
activating the whole network (Kaiser et al., 2007a). For different 
network sizes, limited sustained activity is best supported when the 
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 seizures). In a  previous paper, Müller-Linow et al. (2008) observed 
that two different dynamic behaviors may emerge from hierarchical 
networks: waves propagating from central nodes and module-based 
synchronization. In the present issue, Hütt and Lesne (“Interplay 
between topology and dynamics in excitation patterns on hier-
archical graphs”) analyze more formally how excitable systems 
can switch from one of such states to the other. In addition to a 
mean-field model simulation, a formalism is introduced in which 
excitation waves are described as avalanches. 

Shifting the perspective from network dynamics to network func-
tion, the flow of information in hierarchical networks is used in the 
brain for the processing of external or internal signals. Rodrigues 
and Costa (“Signal propagation in cortical networks: a digital signal 
processing approach”) show that signal flow among network nodes 
can be characterized by a finite impulse response (FIR) filter. With 
such an approach, filters underlying the cat and macaque cortical 
organization are found to be low-pass, allowing signal process-
ing to be summarized through respective cut-off frequencies. 
Furthermore, filtering intensity varies between network modules, 
and regions involved in object recognition tend to present the high-
est cut-off frequencies for both the cat and macaque networks. 

Hierarchies can also be seen in temporal aspects of brain activity. 
Natural stimuli, such as speech, possess features at different tempo-
ral scales. Therefore, models of speech recognition should be able to 
represent slowly changing neuronal states that encode trajectories 
of faster signals. Kiebel et al. (“Perception and hierarchical dynam-
ics”) present a mathematical approach that assumes that sensory 
input is generated by a hierarchy of attractors in a dynamic system. 
Future applications of this approach might emerge from modeling 
perception as non-autonomous recognition dynamics enslaved by 
autonomous hierarchical dynamics in the sensorium. 

The papers presented here offer an exciting glimpse into future 
directions of the field of hierarchical neural networks. But they also 
demonstrate that we still need a better understanding of the differ-
ent kinds of network hierarchies, paralleled by the development of 
suitable analysis techniques. Most importantly, an improved under-
standing is required of how the different aspects of topological, spa-
tial, temporal, and functional hierarchy in the brain are related to 
each other.

average number of connections per node remains similar, and the 
number of hierarchical levels or modules per level increases. This 
observation indicates that dynamic constraints may contribute to 
the evolution of network complexity in brain architecture. 

In their work, Jarvis et al. (“Extending stability through hier-
archical clusters in Echo State Networks”) also find that increased 
intricacy of network structure aids network dynamics. They dem-
onstrate that the stability of Echo State Networks (Jaeger and Haas, 
2004) is potentially enhanced, as indicated by the range of spectral 
radius values, when the networks are structured in a multi-modular, 
hierarchical way. The more clearly the ESNs are structured, the 
larger the range of spectral radius values, while increasing inter-
cluster connectivity decreases the maximal spectral radius. The 
finding suggests that insights into the organization of biological 
networks also have the potential to improve the functioning of 
networks for technical applications. 

An important feature of neural systems is the occurrence of 
sudden changes in their dynamics (a drastic example of such phase 
transitions is the shift from normal brain activity to  epileptic 

Figure 1 | The cartoon illustrates two important features of 
hierarchical brain networks: modules and hubs. Adapted from 
Zamora-López et al. (2010).

Figure 1 | The cartoon illustrates two important features of 
hierarchical brain networks: modules and hubs. Adapted from 
Zamora-López et al. (2010).
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level, and introduced the measurement of deviation from a con-
straint as a cost function for optimization, rather than a count 
of discrete violations. Although this method does not produce a 
unique optimal hierarchy – an indeterminacy problem similar to 
that reported by Hilgetag et al. (1996) – it does always produce an 
optimal hierarchy. The method is also easily implemented, such 
that an optimal hierarchy can be calculated for any arbitrary set 
of cortical areas with tract tracing information, and easily updated 
if new data are produced.

A further question which emerges from this process is that of 
suitable optimization criteria. Whether a hierarchy is considered 
optimal depends on the notion of optimality that is employed, 
and there are many options for defi ning optimality. In Reid 
et al. (2009), we utilized the sum of deviations as an objective 
function to be minimized, but it is uncertain whether this is the 
best choice of criterion, and to what extent the addition of fur-
ther objectives might improve the resulting hierarchy. This also 
introduces the related issue of how sensitive the optimization is 
to this choice of criteria. In the present article we explore these 
possibilities, investigating in particular the effects of adding (1) 
the number of violations, and (2) the maximal deviation, to the 
objective function.

INTRODUCTION
In 1991, Felleman and Van Essen formalized the idea of a visual 
cortical hierarchy using a large number of tract tracing results 
obtained from macaque monkeys. Their general premise was that 
the laminar source and termination patterns of corticocortical 
projections contained information about their hierarchical direc-
tionality, which allowed projections to be labelled as ascending, 
descending, or lateral. Using this information as a constraint, the 
authors presented a cortical hierarchy in which most of these direc-
tion relationships were satisfi ed (see Figure 4, Felleman and Van 
Essen, 1991).

Since the publication of this article, the question emerged: what 
is the optimal visual cortical hierarchy? Using the same set of criteria 
and notion of optimality, Hilgetag et al. (1996) demonstrated that 
there are at least 100,000 hierarchies which are even more optimal 
than that introduced by Felleman and Van Essen (i.e., having less 
constraint violations). In Reid et al. (2009), we introduced a new 
approach to calculating hierarchies, which combined the laminar 
data from Felleman and Van Essen (1991) with new concepts from 
Vezoli et al. (2004) that permitted the additional representation of 
the hierarchical distance of a projection. Our approach utilized a 
continuous, rather than discrete scale for describing  hierarchical 
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In a recent paper (Reid et al., 2009) we introduced a method to calculate optimal hierarchies in 
the visual network that utilizes continuous, rather than discrete, hierarchical levels, and permits 
a range of acceptable values rather than attempting to fi t fi xed hierarchical distances. There, 
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With these inequalities we allow a deviation of Δ
(u,v)

 from the 
constraints assigned to an edge (u, v) by the interval [x, y]. The Δ

(u,v)
 

is specifi c for every edge (u, v) which means one distinct variable 
Δ

(u,v)
 for every edge is needed. Ideally, the value of these Δ

(u,v)
 should 

be kept as small as possible, preferable 0. Since all Δ
(u,v)

 measure a 
deviation, their values are always non-negative. Also note that at 
most one of the two conditions for an edge (u,v) can require an Δ

(u,v)
 

larger than 0. The objective is now to fi nd a hierarchy that best fi ts 
the data, i.e., with as little overall deviation as possible. To accom-
plish this the sum of all deviations Δ

(u,v)
 should be minimal.

To calculate such an hierarchy we use a well known method 
called linear programming. A detailed introduction on linear pro-
gramming can be found (for example) in the book of Papadimitiou 
and Steiglitz (1998). In brief the aim of linear programming is the 
optimization of a linear objective function, subject to linear equality 
and inequality constraints. Those linear problems have the follow-
ing form, which is also called linear program:

Maximize/minimize the expression

c x c x c xn n1 1 2 2+ + +, ,K  (3)

subject to constraints

a x a x a x b

a x a x a x b

a x a

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2

+ + ≤
+ + ≤

+

, ,

, ,

K

K

M

 

 

xx a x bmn n m2 + ≤, ,K  

Here x
1
,x

2
,…,x

n
 are variables, for which values need to be found. 

All other elements are constants.
There are different ways to solve these kinds of problems. The 

oldest and most widely used is the simplex algorithm which was 
developed in 1947 by Dantzig (see for example Dantzig, 1963). It 
has an exponential worst case run time but most instances can 
be solved much faster. Today the inner point method invented by 
Karmarkar (1984) is often used as well, which has a polynomial 
runtime. For this work the optimization procedure was performed 
using the Gnu Linear Problem Kit1 which can be used for linear 
programming as well as mixed integer programming.

EXAMPLE
Consider the example in Figure 1. We are looking for a hierarchy func-
tion h: V → R with h (v

1
) = 0 and for all (u, v) ∈E with edge value [x, y] 

the conditions h(u) + y + Δ
(u,v)

 ≥ h (v) and h (u) + x − Δ
(u,v)

 ≤ h (v) 
should hold (compare to Eq. 2).

From these inequalities we receive the following two conditions 
for every edge:

h v h u y h v h u xu v u v( ) ( ) ( ) ( ) .( , ) ( , )− − ≤ − + ≥Δ Δand
 

(4)

Since we want to calculate the values of the hierarchy function 
h for every v ∈V we also include h(v) as a variable in the linear 
program. To make the notation easier these variables will receive 
the names of the vertices in the linear program. So for every v 
∈V there is a variable v that represents the function value h(v) 
in the program.

MATERIALS AND METHODS
GRAPH REPRESENTATION AND THE HIERARCHY FUNCTION
Consider a network representing a hierarchy given as a directed 
graph G = (V, E), where V is a set of vertices and E a set of directed 
edges. Each edge in the graph is assigned a weight that signifi es the 
possible range of distances of its endpoints within the hierarchy 
(see Figure 1 for an example).

If the edge runs from vertex u to vertex v then an interval [x, y], 
x, y ∈R is assigned to that edge and the hierarchical distance 
between u and v should lie within this interval (see Figure 2). A 
positive distance value implies the edge is going up and v is above u 
in the hierarchy. A negative value means that the edge is descending 
with regard to the hierarchy and v is below u in the hierarchy. The 
value 0 signifi es that the edge does not cross levels in the hierarchy 
and u and v are on the same level.

To fi nd the hierarchy implied by these edge values we are looking 
for a function h: V → R so that for every edge (u, v) with assigned 
interval [x, y], x, y ∈R the following conditions hold:

h u x h v h u y h v( ) ( ) ( ) ( ).+ ≤ + ≥and  (1)

This function h is called the hierarchy function.
However for the example in Figure 1 it is not possible to fi nd 

such hierarchy functions because the distance information is not 
consistent. The alternative is to fi nd a hierarchy function that “best” 
fi ts the data. To do so it is necessary to allow some deviations from 
the given data. To measure this deviation we introduce a variable 
Δ

(u,v)
 for every edge (u, v). A variable Δ

(u,v)
 measures for the two 

conditions defi ned by the edge (u, v) how much the hierarchy vio-
lates these conditions. This alters the condition for the hierarchy 
function resulting from an edge (u, v) with a range [x, y] in the 
following way (compare Figure 2 and Eq. 1):

h u x h v h u y h vu v u v( ) ( ) ( ) ( ).( , ) ( , )+ − ≤ + + ≥Δ Δand
 

(2)
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FIGURE 1 | A directed graph with vertices v
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,v
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7
 and edge 
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FIGURE 2 | Vertices u and v with the hierarchical distance [x,y].
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With this replacement the conditions in the program look 
like this

v u y v u xu v u v− − ≤ − + ≥Δ Δ( , ) ( , ) .and
 

(5)

With those inequalities we can create a linear program to 
calculate an optimal hierarchy for the example in Figure 1. The 
objective of the program is to minimize the sum of all devia-
tions. (see Figure 3, left: the variable sumΔ is the sum of all 
deviations.)

The node v
1
 is supposed to be the starting point of the hierarchy, 

and therefore its value is fi xed at 0. The variables v
1
 to v

7
 are not 

limited by the optimization objective (c20), and thus can become 
as big or small as necessary to attain the optimal value for sumΔ.

ADDITIONAL OBJECTIVES
So far our objective for fi nding an optimal hierarchy is to keep the 
sum of deviations as small as possible for the given edge values. 
But since there is normally more than one hierarchy that fulfi ls this 
objective, it can be useful to employ additional secondary objectives. 
We will illustrate this by an example.

Consider graph A of Figure 4. Since the sum of all edge values in 
that circle is 1 the minimal sum of deviations of any hierarchy for 
this graph is 1. The question is how that sum is best distributed on 
the involved edges. One option is to concentrate the deviation on as 
few edges as possible. That does not change the sum of deviations 
but it keeps the number of violated conditions small (see Figure 4B). 

Another possibility can be seen in Figure 4C, there the deviation is 
distributed on all edges. This keeps the maximum deviation small 
and therefore all distances imposed by the hierarchy close to the 
original edge weights. Figures 4B,C are not the only options for an 
optimal hierarchy. Note that there is an infi nite number of other 
hierarchies with a minimal sum of deviations for this example.

The question is: which hierarchy describes the information given 
by the edge values best? The advantage of minimizing the number of 
violations is that most of the original distance information is preserved 
in the hierarchy, and we ideally disregard only the information that fi ts 
the model the least. Minimizing the maximum deviation, alternatively, 
has the advantage that all the information is treated equally and non 
is disregarded completely. The rationale for this is that it is better to 
change many distances a little than few distances a lot.

To implement these additional objectives, additional variables 
are needed in the program. In the fi rst case it is necessary to count 
and minimize the number of violations, which can not be done 
with just linear programming, but rather requires the use of mixed 
integer programming. For the second option we need to minimize 
the maximal deviation, which can easily be integrated in the linear 
program, so it will be discussed fi rst.

Maximal deviation
To calculate the maximal deviation of the hierarchy we introduce 
a variable Δ

max
 which measures the maximal deviation from any 

constraints. To implement this every constraint of the original 

Minimize
objective: sumΔ

Subject to
c01: v3 − v1 − Δ1 ≤ 3
c02: v3 − v1 + Δ1 ≥ 1
c03: v3 − v2 − Δ2 ≤ 1
c04: v3 − v2 + Δ2 ≥ −2
c05: v5 − v2 − Δ3 ≤ 1
c06: v5 − v2 + Δ3 ≥ 0
c07: v4 − v3 − Δ4 ≤ 2
c08: v4 − v3 + Δ4 ≥ 1
c09: v6 − v3 − Δ5 ≤ 2
c10: v6 − v3 + Δ5 ≥ 0
c11: v7 − v4 − Δ6 ≤ 2
c12: v7 − v4 + Δ6 ≥ 1
c13: v2 − v5 − Δ7 ≤ 1
c14: v2 − v5 + Δ7 ≥ 0
c15: v6 − v5 − Δ8 ≤ −1
c16: v6 − v5 + Δ8 ≥ −3
c17: v3 − v7 − Δ9 ≤ 1
c18: v3 − v7 − Δ9 ≤ 0
c19: v1 = 0
c20: -sumΔ + Δ1 + Δ2 + Δ3 + Δ4

+Δ5 + Δ6 + Δ7 + Δ8 + Δ9 = 0

1 12

12 1

0

0−1

1

0
000
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sum of deviations: 2
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FIGURE 3 | Left: The linear program to calculate an optimal hierarchy for the graph from Figure 1. The objective is to minimize the sum of all deviations (defi ned 
by constraint c20). Right: The resulting hierarchy. Red numbers are the hierarchy levels of nodes, blue numbers the actual distances in the hierarchy.
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program is doubled and in the second version the specifi c Δ
(u,v)

 
for the edge is replaced by the global Δ

max
. So we now have four 

conditions in the program for an edge (u,v) with edge value [x,y] 
(compare Eq. 5):

v u y v u y

v u x v u x

u v

u v

− − ≤ − − ≤
− + ≥ − + ≥

Δ Δ
Δ Δ

( , )

( , )

, ,

, .

max

max  
(6)

If one of the original constraints only holds if Δ
(u,v)

 is greater than 
0, then Δ

max
 needs to be as least as big as Δ

(u,v)
 for the doubled 

constraints to hold as well. Since this is true for every constraint it 
means Δ

max
 needs to be at least as large as the largest edge specifi c 

deviation. If Δ
max

 is included in the objective to be minimized it 
will take exactly the value of the maximal edge specifi c deviation 
Δ

(u,v)
.

Since the prime objective is still to minimize the sum of all 
deviations we introduce a factor in the objective to give the sum 
of deviations a bigger weight than the maximal deviation Δ

max
. 

The factor needs to be large enough that the smallest edge-specifi c 
deviation Δ

(u,v)
 multiplied by the factor is considerably larger than 

Δ
max

. This ensures that Δ
max

 is not of the same magnitude as the 
sum of deviations with regard to the optimization and therefore 
does not infl uence the primary optimization goal. The result is 
a hierarchy with a minimal sum of deviations, but among those 
hierarchies one with the smallest possible Δ

max
 is chosen.

As factor we used 100 which proved to be large enough that the 
resulting hierarchy is still one with a minimal sum of deviations, 
so it fulfi lled the requirements outlined in the previous paragraph. 
The results for the graph from Figure 1 are shown in Figure 5A 
(compare to Figure 3).
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FIGURE 4 | (A) A graph with edge values. (B) One possible hierarchy obtained by optimizing for the number of constraint violations. (C) Another possible hierarchy 
obtained by optimizing for the maximum deviation. Both (B) and (C) red numbers are the hierarchy levels of nodes, blue numbers the actual distances in the hierarchy.
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FIGURE 5 | (A) An optimal hierarchy for the graph from Figure 1 given the 
objective to minimize primarily the sum of all deviations and in addition the 
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the hierarchy levels of nodes, blue numbers the actual distances in 
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http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/Neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 7 | 11

Krumnack et al. Criteria for optimizing cortical hierarchies

Number of violations
To minimize the number of violations in a hierarchy it is necessary 
to count them within the program. To accomplish this we introduce 
an edge-specifi c integer variable B

(u,v)
 which assumes the value 1 if 

Δ
(u,v)

 > 0 and 0 if Δ
(u,v)

 = 0. The sum of these violation counters can 
then be included in the objective to be minimized along with the 
sum of the deviations. These variables are not reals but integers, so 
it is necessary to use mixed integer programming. Mixed integer 
problems look like the linear problems we have seen so far (com-
pare again to Eq. 3), but some of the variables can only take integer 
values. This gives the optimization problem a higher complexity: 
other than linear optimization problems, mixed integer problems 
can in general not be solved effi ciently, they are NP-hard. While 
there are well-known algorithms to solve these problems, one of the 
fi rst was developed by Land and Doig (1960), this does not mean 
that solutions can actually be found for all mixed integer problems 
as there are limitations of computer memory and time.

A problem with the implementation is that an integer variables 
B

(u,v)
 could take any non-negative integer value, but we want them 

to only take the values 0 and 1. To ensure this we use a trick: For 
the program we double every constraint from the original program 
and get four conditions for an edge (u,v) with edge value [x,y] 
(compare Eqs 5 and 6):

v u y v u B y

v u x v u B

u v u v

u v u v

− − ≤ − − ⋅ ≤
− + ≥ − + ⋅ ≥

Δ
Δ

( , ) ( , )

( , ) ( , )

, ,

,

100

100 xx.
 (7)

The two original conditions measure once again the size of a 
deviation from a constraint and the two new conditions test if there 
actually is a deviation. The factor 100 in front of the B

(u,v)
 is much 

bigger than any number that actually occurs in the calculation. If 
we look at one of the conditions from Eq. 7, say v − u − 100·B

(u,v)
 ≤ y 

then if v − u ≤ y the variable B
(u,v)

 can assume the value 0. If on the 
other hand v − u > y then the variable B

(u,v)
 needs to be at least 1 

for the second inequality in Eq. 7 to hold. (Remember, unlike Δ
(u,v)

 
the variable B

(u,v)
 is an integer and does not take values between 0 

and 1.) Since the factor 100 is chosen to be a lot bigger than |v − u − y| 
the inequality v − u − y − 100·1 ≤ 0 always holds. Therefore, with 
B

(u,v)
 = 1 the constraint is fulfi lled, and there is no need for any B

(u,v)
 to 

be bigger than 1. By the same argument as above for Δ
max

 we get

B Bu v u v u v u v( , ) ( , ) ( , ) ( , )= ⇔ = = ⇔ >0 0 1 0Δ Δand

if the sum of all B
(u,v)

 is included in the objective to be minimized. 
The results for the graph from Figure 1 is shown in Figure 5B 
(compare to Figure 3).

Note that all three examples have the same sum of all deviations 
since it is primarily being optimized in all three cases. The differ-
ences lie in the second part of the objective, i.e. the maximal devia-
tion and the number of deviations. Also note that the hierarchies 
shown here are again not the only optimal hierarchies that can be 
found for these criteria.

EMPIRICAL DATA
We use the data set described by Felleman and Van Essen (1991) 
for the visual system of the macaque monkey (FV91). As regions 
MDP and MIP had no constraints defi ned, they are not included 
here. The projections in this network were assigned ranges 
according to a modifi cation of the original relationship clas-
sifi cation scheme, which incorporates ideas presented in sub-
sequent publications (Kennedy and Bullier, 1985; Barone et al., 
2000; Batardiere et al., 2002), and permits a richer representation 
of hierarchical distance and the assignment of refi ned ranges 
(compare to Reid et al., 2009). As in Reid et al. (2009) we use 
the notation A+ for strongly ascending, A for ascending, L for 
lateral, D for descending and D+ for strongly descending projec-
tions. To investigate the effect of range sizes upon the resulting 
optimal hierarchies, ranges were varied from disjoint intervals 
with clear gaps between the fi ve connection types to intervals 
that overlap so that the connection types are merging into one 
another. To implement this ranges were systematically expanded 
by 0.1 at each limit, resulting in 10 range sets, as presented in 
Table 1. The outer bounds for these hierarchies were chosen as 
32, which is the total number of regions; this ensures that no 
individual projection can have a hierarchical distance greater 
than the total number of regions.

We employed two different optimization meth-
ods: For the fi rst we minimized the objective 1,000·sum
Δ

(u,v)
 + sumB

(u,v)
. For the second we minimized the objective 

1,000,000·sumΔ
(u,v)

 + 1,000Δ
max

 + sumB
(u,v)

.

Table 1 | The borders of the ranges for the different constraint sets.

 D+ D L A A+

 From To From To From To From To From To

Set 0 −32 −2.0 −1.0 −1.−0   0.0 0.0 1.0 1.0 2.0 32

Set 1 −32 −1.9 −1.1 −0.9 −0.1 0.1 0.9 1.1 1.9 32

Set 2 −32 −1.8 −1.2 −0.8 −0.2 0.2 0.8 1.2 1.8 32

Set 3 −32 −1.7 −1.3 −0.7 −0.3 0.3 0.7 1.3 1.7 32

Set 4 −32 −1.6 −1.4 −0.6 −0.4 0.4 0.6 1.4 1.6 32

Set 5 −32 −1.5 −1.5 −0.5 −0.5 0.5 0.5 1.5 1.5 32

Set 6 −32 −1.4 −1.6 −0.4 −0.6 0.6 0.4 1.6 1.4 32

Set 7 −32 −1.3 −1.7 −0.3 −0.7 0.7 0.3 1.7 1.3 32

Set 8 −32 −1.2 −1.8 −0.2 −0.8 0.8 0.2 1.8 1.2 32

Set 9 −32 −1.1 −1.9 −0.1 −0.9 0.9 0.1 1.9 1.1 32
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RESULTS
The two optimization methods produced similar, but not identi-
cal results. Table 2 shows the values for the sum of deviations, the 
maximal deviation and the number of violations for the optimal 
hierarchies. For comparison the values from Reid et al. (2009) are 
also included. There only the sum of deviations was minimized and 
the optimization was performed using the QS-Opt Linear Problem 
Solver2. Note that the sum of deviations is the same for each set for 
all optimizations, since this was always the fi rst objective.

With the exception of number of violations for set 0 the opti-
mized values are getting smaller when the size of the constraining 
intervals is getting bigger. The sum of deviations goes down from 
60.0 for set 0 to 8.8 for set 9, the maximal deviation is reduced 
from 3.0 for set 0 to 0.7 for set 9 with optimization method 2, the 
number of violations decreases from 49 for set 1 to 13 for set 9 with 
optimization method 1 and from 50 for set 1 to 17 for set 9 with 
optimization method 2.

For three sets (0, 5 and 6) we get exactly the same optimal values 
for both optimization methods, but only for one of these sets (set 0) 
are the calculated hierarchies identical. For set 5 and set 6 the two 
calculated hierarchies are not identical. However, for each set both 
hierarchies have the same number of violations and maximal devia-

tions, which means that they are both optimal hierarchies for both 
optimization methods. The corresponding hierarchies from Reid et al. 
(2009) all have the same maximal deviation but larger numbers of 
violations, so regarding the number of violations these hierarchies are 
not optimal. In general the number of violations for the hierarchies 
from Reid et al. (2009) are higher than for the new optimization meth-
ods, but since the violations were not minimized before this is not 
surprising. However the maximal deviations tend to be small, often 
minimal (as seen in comparison with optimization methods 2), for 
these hierarchies, even though they were not minimized.

For all other sets than 0, 5 and 6, we see differences in values 
between the two new optimization methods, therefore there is a 
trade-off between the number of violations and the maximal devia-
tions. Therefore these values cannot both be at their minimum for 
7 of the 10 sets.

When we look at the violated constraints we fi nd only a total 
number of 54 of the 386 constraints being violated by either of the 
two optimization methods. Of those nine constraints were violated 
by every set for both methods (see Table 3). Note that everything is 
counted as a constraint violation that does not exactly fi t the clas-
sifi cation of a connection. For example, if a  connection is classifi ed 
as ascending (A) but ends up being strongly ascending (A+) in the 
calculated hierarchy this counts as a violation. Also note that for all 
the connections listed in Table 3 there are reciprocal connections 

Table 3 | The 9 constraints that are violated by all 10 sets for both objectives. The number 1 means the corresponding connection is classifi ed as D+, D, L, 

A or A+.

Origin V4 AITd STPp STPp V2 V2 PO PO FST

Termination V1 7a FEF FST V3 VP MSTd LIP TF

D+ – – – 1 – – – – –

D 1 1 1 – – – – – –

L – 1 – – – – – – 1

A – 1 – – – – – – –

A+ – – – – 1 1 1 1 –

Table 2 | The results of the optimization.

Set Sum of deviations Optimization  Optimization  Data from Reid

 (1st obj.)  method 1 method 2 et al. (2009)

  Number of  Maximal  Number of  Maximal  Number of  Maximal 

  violations deviation violations deviation violations deviation

  (2nd obj.) (not opt.) (3rd obj.) (2nd obj.) (not opt.) (not opt.)

0 60.0 42 3.0 42 3.0 49 3.0

1 51.8 49 2.7 50 2.6 57 2.6

2 43.8 42 2.4 45 2.2 54 2.2

3 36.2 42 2.1 45 1.8 53 1.8

4 29.2 38 1.8 40 1.6 42 1.6

5 22.5 25 1.5 25 1.5 27 1.5

6 18.0 26 1.4 26 1.4 27 1.4

7 14.4 19 1.3 20 1.2 22 1.3

8 11.6 13 1.4 18 0.9 20 1.0

9 8.8 13 1.1 17 0.7 19 1.0

2http://www.isye.gatech.edu/∼wcook/qsopt/
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that were not consistently violated. This means that the classifi ca-
tion of these reciprocal  connections is not complementary. For 
example the connection V2 to V3 is classifi ed A+, but the connec-
tion V3 to V2 is classifi ed D (not D+).

The two optimization methods generally violated the same con-
straints: For the fi rst optimization method 53 and for the second 
optimization method 52 different constraints (of 386) were violated 
over the 10 sets and of those 51 constraints were violated by both 
methods. In addition constraint V1 to V3 (A+), was violated by the 
second optimization in four sets and constraints LIP to V4 (D), and 46 
to TH (L), were each violated by the fi rst optimization in one set.

For comparison between sets we normalized the resulting hier-
archies: by defi nition V1 always had the hierarchical value 0, the 
region with the highest hierarchical level was assigned the value 1, 
the hierarchical levels of the other areas were transformed accord-
ingly. Figure 6 shows the average hierarchical levels over the 10 sets 
for the fi rst optimization method. The equivalent fi gure for the 
second optimization method looks very similar and is therefore 
not included here.

DISCUSSION
While the parameters for the hierarchies do show some differ-
ences between the optimization methods, the resulting hierarchies 
were remarkably similar. This does not mean that all hierarchies 
that are optimal for the two optimizations are similar: since we 
only have one possible solution per optimization method per set 
there might also be solutions that differ substantially. What it does 

mean is that there are examples for optimal hierarchies for the 
two optimization methods for which the differences between the 
optimized values seem to be accomplished through minor changes 
within the hierarchies.

The boundaries chosen for the optimization constraints (set 
0 to 9) seem to have a big infl uence on the optimization results. 
All optimized values for set 0 are several times as big as the 
corresponding values for set 9. The “looser” the boundaries are 
(i.e., the larger the defi ning intervals) the smaller the optimized 
values. This is because in the bigger intervals for the connec-
tion classes more values can be assumed in the optimization 
without violating the constrains. For example, if an ascending 
connection is assigned the value 1.5, this is a violation in sets 0 
through 4, but not in sets 5 through 9. Therefore there are fewer 
violations and, as a result, smaller optimized values for sets that 
use bigger intervals for connection classes. However in Reid et al. 
(2009) we found that the resulting hierarchies are very compa-
rable across sets after normalization. There were only minimal 
changes in the order of the areas in the calculated hierarchies 
for the different conditions.

The similarity in the violated constraints across methods sug-
gest that these constraints may be erroneous. In particular, of the 
nine constraints that are violated in this study by all constraint 
sets, and for both objectives, eight were violated in the calculations 
of Reid et al. (2009) for all constraint sets as well. [The last of the 
nine constraints, PO to LIP (A+), was violated by eight sets in 
Reid et al. (2009)]. While it is possible that a solution exists where 

FIGURE 6 | Geometrical distribution of hierarchy levels in the FV91 visual 

network of the macaque, both as three-dimensional cortical surface 

renderings (left), and as a two-dimensional “fl at map” representation of 

the cortical sheet (right). Regions are coloured by their mean normalized 
hierarchical position, obtained by the fi rst optimization method over the 10 

constraint sets described in Table 1. Directed edges in the fl at map illustration 
represent interregional connections, and are coloured according to projection 
class: A+ (purple, opaque), A (purple, transparent), L (black), D (green, 
transparent), and D+ (green, opaque). Compare this representation to 
Figures 2 and 4 in Felleman and Van Essen (1991).
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none of these constraints are violated, this consistency suggests a 
pattern which is worth further investigation. The fact that all of 
these connections have reciprocal connections whose constraints 
are not consistently violated seems to suggest that the classifi cation 
of the reciprocal connections fi ts an optimal hierarchy better than 
the classifi cation of the nine violated connections. Since the clas-
sifi cation of the reciprocal connections is not complementary at 
most one of the classifi cations (the one for the connection or the 
one for the reciprocal connection) can be correct. This does not 
necessarily mean that the classifi cation is better for the reciprocal 
connection since in some cases this classifi cation is very broad, 
spanning several of our fi ve classes.

The classical optimization problem of minimizing the number 
of violations [as done by Felleman and Van Essen (1991) as well 
as Hilgetag et al. (1996)] can theoretically be solved by the method 
presented here, where it was only used as an secondary objective. 
In practical terms, solving for number of violations as a primary 
objective has proven too computationally expensive, whereas using 
it only as a secondary objective made the calculation easier, since the 
solutions were already limited by the minimal sum of deviations. 
However, we were able to minimize just the number of violations for 
sets 8 and 9, which produced the smallest optimal values for all the 
other optimization methods. The results (12 violated constraints 
with a sum of deviation of 13.4 for set 8, and 11 violated constraints 
with a sum of deviations of 10.7 for set 9) are only slightly below 
the number of violated constraints for optimization method 1.

The hierarchies calculated here are of course also solutions for the 
original optimization problem from Reid et al. (2009), since they have 
the same minimal sum of deviations. Additionally, however, they also 
have either a minimal number of violations or a minimal maximum 
deviation, and in some cases even both. This added optimality does 
not seem to be especially advantageous, however, given that the result-
ing hierarchies remained for the most part unchanged, which suggests 
that they are not highly sensitive to the addition of these criteria. 
Other objectives are also conceivable, of course, which may result in 
more strongly altered hierarchies than we report here. For instance, 
it is conceivable that further knowledge about the reliability of the 
anatomical data underlying our constraints may yield more informa-
tive objective criteria, that would allow a Bayesian approach to this 
problem. Another option is not to allow any deviation for connections 

that are classifi ed with a great certainty, ensuring that the connection 
appears as classifi ed in the hierarchy. However, this cannot be done 
for all connections since the resulting constraints are not consistent 
and some deviation needs to be allowed to fi nd an hierarchy.

In the choice of the optimization method the data quality should 
be considered. If we expect that most of the connections are cor-
rectly classifi ed but there might be some classifi cations that are 
erroneous then minimizing the number of violations is the better 
option. Most of the distance information of the classifi cation should 
then be preserved in the hierarchy. Assuming that the wrongly 
 classifi ed connections are the ones that do not fi t the hierarchy 
these would be the ones that are disregarded. They would be “taken 
out” of the hierarchy. If on the other hand, we expect all the clas-
sifi cations to be equally correct or faulty (or just an approximation 
of the true value), then we want to consider all the information to 
the same degree. This can imply changing many classifi cations a 
little to “squeeze” the information into a hierarchy, such that, ideally, 
none of the information is disregarded completely, while many of 
the classifi cations might be “corrected” a little.

Since our results produced highly similar hierarchies across 
a variety of constraint sets for the two optimization methods 
presented here, both appear equally suited for the calculation of 
optimal hierarchies. It is thus a matter of personal preferences 
which one to employ, and this choice is one that can conceivably 
be expanded to accommodate alternative defi nitions of optimal-
ity. This leads us to conclude that there is no unique optimal 
hierarchy, not only because of the quality of the empirical data 
and the freedom to choose boundaries for the defi ning intervals, 
but also because there is more than one way to defi ne optimality. 
While the method described does not provide a unique optimal 
hierarchy, it can produce hierarchies that are optimal in more 
than one way.
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systems and thereby to feedback on theoretical considerations 
(Strogatz, 2001; Amaral and Ottino, 2004). Many complex sys-
tems can be represented using tools drawn from graph theory as 
networks of nodes linked by edges. Such networks have been used 
to represent a broad variety of systems, ranging from genetic and 
protein networks to the World Wide Web. The huge size of some 
of these systems (∼10 billion nodes in the WWW) has driven the 
development of new statistical tools in order to characterize their 
topological properties (Newman, 2003).

A quantity called modularity has been introduced in order to 
measure the decomposability of a network into modules (Guimerà 
et al., 2004; Newman and Girvan, 2004). Modularity can be used 
as a merit function to fi nd the optimal partition of a network. The 
resulting partition has been shown to reveal important network 
community structures in a variety of contexts, e.g. the global air 
transportation network (Guimerà et al., 2005) and gene expression 
interactomes (Oldham et al., 2008) are two diverse examples of 
complex systems with topological modularity. However, in sys-
tems having an intrinsic hierarchical structure, fi nding a single 
partition is not satisfactory. Several approaches have therefore been 
proposed in order to allow for more fl exibility and to uncover com-
munities at different hierarchical levels. Among those multi-scale 
approaches, there are algorithms searching for local minima of 

INTRODUCTION
Almost 50 years ago, Herbert Simon wrote an essay entitled “The 
architecture of complexity” (Simon, 1962). In this prescient analysis, 
he argued that most complex systems, such as social, biological and 
physical symbolic systems, are organized in a hierarchical manner. He 
introduced the notion of “nearly-decomposable systems”, i.e. systems 
where elements have most of their interactions (of any kind) with 
a subset of elements in some sense close to them, and much less 
interaction with elements outside this subset. In mainstream contem-
porary parlance, Simon’s near-decomposability is closely analogous 
to the concept of topological modularity: nodes in the same module 
have dense intra-modular connectivity with each other and sparse 
inter-modular connectivity with nodes in other modules (Newman, 
2004, 2006). Simon argued that near-decomposability was a virtually 
universal property of complex systems because it conferred a very 
important evolutionary or adaptive advantage. Decomposability, 
or modularity, accelerates the emergence of complex systems from 
simple systems by providing stable intermediate forms (component 
modules) that allow the system to adapt one module at a time without 
risking loss of function in other, already-adapted modules.

Our understanding of complexity has progressed considerably 
since that time, partly due to the availability of large data-sets that 
now allow us to explore empirically the architecture of complex 
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the modularity landscape (Sales-Pardo et al., 2007) or modifying 
the adjacency matrix of the graph in order to change its typical 
scale (Arenas et al., 2008). Another class of methods consists in 
modifying modularity by incorporating in it a resolution param-
eter (Reichardt and Bornholdt, 2006). This allows one to “zoom 
in and out” of a modular hierarchy in order to fi nd communities 
on different levels; for example, the resolution parameter can be 
interpreted as the time scale of a dynamical process unfolding on 
a network (Lambiotte et al., 2009).

There is already strong evidence that brain networks have a 
modular organization; see Bullmore and Sporns (2009) for review. 
Some support comes from non-human data, like the anatomical 
networks in felines and primates (Hilgetag et al., 2000) or func-
tional networks in rodents (Schwarz et al., 2008). Recently, human 
neuroimaging studies have also provided evidence for comparable 
modular organization in both anatomical (Chen et al., 2008) and 
functional (Ferrarini et al., 2009; Meunier et al., 2009) brain net-
works. However, a limitation of these previous neuroimaging stud-
ies has been the computational time required to derive a modular 
decomposition (Brandes et al., 2006), thus limiting the size of the 
networks under study. In addition, these studies were limited to 
studying modularity at one particular level of community structure, 
neglecting consideration of possible sub-modular communities at 
lower levels. Finally, it has been a taxing problem to quantify the 
topological similarity between two or more modular decomposi-
tions, with most investigators simply examining modularity on the 
basis of an averaged connectivity matrix estimated from a group 
of individuals.

In this study, we report on progress towards addressing each 
of these issues. We applied a recently developed, computationally 
effi cient algorithm (Blondel et al., 2008) to derive a hierarchical, 
modular decomposition of human brain networks measured using 
functional magnetic resonance imaging (fMRI) in 18 healthy vol-
unteers. By providing rapid decomposition, the algorithm enabled 
us to study the modular structure of whole brain networks on a 
larger scale (thousands of equally sized nodes) than previously pos-
sible (tens of differently sized nodes), with concomitant improve-
ments in the spatial or anatomical resolution of the network, while 
simultaneously avoiding biases associated with using a priori ana-
tomical templates that are inevitably somewhat arbitrary in their 
 defi nition of regions-of-interest (Tzourio-Mazoyer et al., 2002). 
Thus, the method enabled rapid, high-resolution, hierarchical 
modular decomposition of brain functional networks constructed 
from individual fMRI datasets. In addition, we present a method 
for comparing the similarity or mutual information between two 
modular community structures obtained for different subjects, and 
use it to identify the single, “most representative” subject whose 
brain network modularity was most similar to that of all the other 
networks in a sample of 18 healthy participants.

MATERIALS AND METHODS
EXPERIMENTAL DATA
Study sample
Eighteen right-handed healthy volunteers (15 male, 3 female) 
were recruited from the GlaxoSmithKline (GSK) Clinical Unit 
Cambridge, a clinical research facility in Addenbrooke’s Hospital, 
Cambridge, UK. All volunteers (mean age 32.7 years ± 6.9 SD) had a 

satisfactory medical examination prior to study enrolment and were 
screened for any other current Axis I psychiatric disorder using the 
Structured Clinical Interview for the DSM-IV-TR Axis I Disorders 
(SCID). Participants were also screened for normal radiological 
appearance of structural MRI scans by a consultant neuroradiolo-
gist, and female participants were screened for pregnancy. Urine 
samples were used to confi rm abstinence from illicit drugs and 
breath was analysed to ensure that no participant was under the 
infl uence of acute alcohol intoxication. All volunteers provided 
written informed consent and received monetary compensation 
for participation. The study was reviewed and approved by the 
Cambridge Local Research Ethics Committee (REC06/Q0108/130; 
PI: TW Robbins).

Functional MRI data acquisition
Whole-brain echoplanar imaging (EPI) data depicting BOLD con-
trast were acquired at the Wolfson Brain Imaging Centre, University 
of Cambridge, UK, using a Siemens Magnetom Tim Trio whole 
body scanner operating at 3 T with a birdcage head transmit/
receive coil. Gradient-echo, EPI data were acquired for the whole 
brain with the following parameters: repetition time = 2000 ms; 
echo time = 30 ms, fl ip angle = 78°, slice thickness = 3 mm plus 
0.75 mm interslice gap, 32 slices parallel to the inter-commissural 
(AC-PC) line, image matrix size = 64 × 64, within-plane voxel 
dimensions = 3.0 mm × 3.0 mm.

Participants were asked to lie quietly in the scanner with eyes 
closed during the acquisition of 300 images. The fi rst four EPI 
images were discarded to account for T1 equilibration effects, 
resulting in a series of 296 images, of which the fi rst 256 images 
were used to estimate wavelet correlations.

Functional MRI data preprocessing
The images were corrected for motion and registered to the 
standard stereotactic space of the Montreal Neurological Institute 
EPI template image using an affi ne transform (Suckling et al., 
2006). Time series were then extracted using a whole brain, high 
resolution, regional parcellation of the images, implemented in 
the following manner; see Figure 1A. First, a binarized version 
of a commonly used template image (Tzourio-Mazoyer et al., 
2002) was used as a broad grey matter mask. Second, each 8 mm3 
voxel in this mask was downsampled by a factor of 4 such that 
each equally sized region in the parcellation comprised 4 × 4 × 4 
voxels of the original image. This initial parcellation included 
some regions of the image which were not largely representa-
tive of grey matter: these were excluded from further analysis 
by applying the criteria that each region must be at least 50% 
overlapping with the grey matter mask and must contain at least 
80% voxels having BOLD signal (defi ned operationally as mean 
signal intensity >50). To be included in the defi nitive parcella-
tion scheme (which comprised 1808 regional nodes), a region 
had to satisfy these two inclusion criteria for every individual 
dataset in the sample.

The mean time series of each region was extracted and wave-
let-fi ltered using Brainwaver R package1 (Achard et al., 2006; 
Achard and Bullmore, 2007). The wavelet correlation coeffi cient 

1http://cran.r-project.org/web/packages/brainwaver/index.html
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partition P of a network. In its original defi nition, an unweighted 
and undirected network that has been partitioned into communi-
ties has modularity (Newman and Girvan, 2004):
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where A is the adjacency matrix of the network; m is the total 
number of edges; and k Ai j ij= ∑  is the degree of node i. The indices 
i and j run over the N nodes of the graph. The index C runs over 
the modules of the partition P. Modularity counts the number 
of edges between all pairs of nodes belonging to the same com-
munity or module, and compares it to the expected number of 
such edges for an equivalent random graph. Modularity therefore 
evaluates how well a given partition concentrates the edges within 
the modules.

A popular method for discovering the modules of a network 
consists in optimizing modularity, namely in fi nding the partition 
having the largest value of Q. However, it is typically impossible 
computationally to sample modularity exhaustively by enumer-
ating all the possible partitions of a network into communities. 
Several heuristic algorithms have therefore been proposed to pro-
vide good approximations, and so to allow for the analysis of large 
networks in reasonable times. The computational expediency of 
the algorithm has become a crucial factor due to the increasing size 
of the networks to be analysed.

More recently, methods to study hierarchical modularity, also 
called nested modularity, have been introduced (Sales-Pardo et al., 
2007; Arenas et al., 2008; Rosvall and Bergstrom, 2008). In this 
case, each module obtained at the partition of the highest level 
can further be decomposed into sub-modules, which in turn can 
be decomposed into sub-submodules, and so on. Here, we will use 
a multi-level method which was introduced very recently in order 
to optimize modularity (Blondel et al., 2008); see Figure 1B. The 
primary advantages of this method are that it unfolds a complete 

was  estimated for each of four wavelet scales between each pair 
of nodes, resulting in a {1808 × 1808} association matrix, or fre-
quency-dependent functional connectivity matrix, for each wavelet 
scale in the  overall frequency range 0.25–0.015 Hz. In what follows, 
we will focus on results at wavelet scale 3, subtending a frequency 
interval of 0.06–0.03 Hz.

This choice of frequency interval was guided by the fact that 
prior work on resting-state fMRI functional connectivity has found 
that the greatest power in connectivity occurs in frequency bands 
lower than 0.1 Hz (Cordes et al., 2001). However, analysing very 
low frequency scales in limited time series such as those acquired 
with fMRI can reduce precision in estimating inter-regional wave-
let correlations (Achard et al., 2006). So scale 3 was chosen for 
the focus of this study as representing a reasonable compromise 
between retaining suffi cient estimation precision while measuring 
low frequency network properties.

Each association matrix was thresholded to create an adjacency 
matrix A, the a

i,j
th element of which is either 1, if the absolute value 

of the wavelet correlation between nodes i and j, w
i,j
, exceeds a 

threshold value τ; or 0, if it does not. We have chosen here to take 
a high threshold, leading to very sparse networks comprising 8000 
edges, i.e. with a connection density of 0.5% of all possible edges 
in a network of this size. Modularity of neuroimaging networks is 
typically greater (Meunier et al., 2009), and computational costs 
are lower, when the networks are more sparsely thresholded. Up 
to 10% of nodes were disconnected from the rest of the network 
at this threshold.

GRAPH THEORETICAL ANALYSIS
Hierarchical modularity
In recent years, many methods have been proposed to discover 
the modular organization of complex networks. A key step was 
taken when Girvan and Newman popularized graph-partitioning 
problems by introducing the concept of modularity. Modularity is 
by far the most widespread quantity for measuring the quality of a 

FIGURE 1 | Methods. (A) Downsampled template. Starting from a binary 
version of the AAL template (left), the downsampling procedure will produce a 
template of small (64 voxels), equal size regions covering the original template 
(right). (B) Illustration of the Louvain method on a simple hierarchical graph. The 
algorithm starts by assigning a different module to each node (16 modules of 
single nodes). The method then consists of two phases that are repeated 
iteratively. The fi rst phase is a greedy optimization (GO) where nodes adopt the 
community of one of their neighbours if this action results in an increase of 

modularity (typically, the community of the neighbour for which the increase is 
maximal is chosen). The second phase builds a meta-network (MN) whose 
nodes are the communities found in the fi rst phase. We denote by “pass” a 
combination of these two phases. The passes are repeated until no 
improvement of modularity is possible and the optimal partition is found. When 
applied on this graph, the algorithm fi rst fi nds a lowest non-trivial level made of 
four communities. The next level is the optimal level and is made of two 
communities.
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 hierarchical  community structure for the network and outperforms 
previous methods with respect to computation time. This so-called 
“Louvain method” takes advantage of the hierarchical organization 
of complex networks in order to facilitate the optimization. The 
algorithm starts by assigning a different module to each node of the 
network. The initial partition of the network is therefore made of 
N communities. It then consists of two phases that are repeated itera-
tively. The fi rst phase consists in a greedy optimization where nodes 
are selected sequentially in an order that has been randomly assigned. 
When a node is selected, it may leave its community and adopt a com-
munity which is in its direct neighbourhood, but only if this change 
of community leads to an increase of modularity (GO on Figure 1B). 
The second phase builds a new network whose meta-nodes are the 
communities found in the fi rst phase (MN on Figure 1B). Let us 
denote by “pass” a combination of these two phases. These passes 
are repeated iteratively until a maximum of modularity is attained 
and an optimal partition of the network into communities is found. 
By construction, the meta-nodes, or intermediate communities, are 
made of more nodes at subsequent passes. The optimization is there-
fore done in a multi-scale way: among adjacent nodes at the fi rst pass, 
among adjacent meta-nodes at the second pass, etc. The output of 
the algorithm is a set of partitions, one for each pass. The optimal 
partition is the one found at the last pass. It has been shown on sev-
eral examples that modularity estimated by this method is very close 
to the optimal value obtained from slower methods (Blondel et al., 
2008). Intermediate partitions can also be shown to be meaningful 
and to correspond to communities at intermediate resolutions (see 
Section “Discussion”). In the following, we will call “lowest non-
trivial level” the partition found after the fi rst pass.

Node roles
Once a maximally modular partition of the network has been iden-
tifi ed, it is possible to assign topological roles to each node based on 
its density of intra- and inter-modular connections (Guimerà and 
Amaral, 2005a,b; Guimerà et al., 2005; Sales-Pardo et al., 2007).

Intra-modular connectivity is measured by the normalized 
within-module degree,
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where κni
 is the number of edges linking the ith node to other nodes 

in the nth module, and k
i
 is the total degree of the ith node. Thus 

P
i
 will be close to 1 if the ith node is extensively linked to all other 

modules in the community and 0 if it is linked exclusively to other 
nodes in its own module.

The two-dimensional space defi ned by these parameters, the 
{P, z} plane, can be partitioned to assign categorical roles to the 
nodes of the network. Contrarily to our previous study (Meunier 
et al., 2009), where we used a simplifi ed defi nition of node roles, 
the higher number of nodes examined in the current study allowed 
us to adopt the original defi nitions of node roles as described for 
large metabolic (Guimerà et al., 2005) and transportation networks 
(Guimerà and Amaral, 2005b):

• The hubness of a node can be defi ned by its within-module 
degree: If a given node i has a value of z

i
 > 2.5. It is classifi ed as 

a hub, otherwise as a non-hub.
• The limits for the participation coeffi cient are different 

for hubs and non-hubs. For non-hubs, if a given node 
has value 0 < P

i
 < 0.05, the node is classifi ed as an ultra-

 peripheral node, 0.05 < P
i
 < 0.62 corresponds to a peripheral 

node, 0.62 < P
i
 < 0.80 corresponds to a connector node, and 

0.80 < P
i
 < 1.0 is a kinless node. For hubs, 0 < P

i
 < 0.30 corre-

sponds to a provincial hub, 0.30 < P
i
 < 0.75 corresponds to a 

connector hub, and 0.75 < P
i
 < 1.0 is a kinless hub.

These different categories allowed us to classify the nodes 
according to their topological functions in the network. For 
example, a provincial hub is a hub with greater intra- vs inter-
modular connectivity, thus having a pivotal role in the function 
realized by its module, whereas a connector hub will play a central 
role in transferring information from its module to the rest of 
the network.

The results of modular decomposition were visualized in ana-
tomical space using Caret software for cortical surface mapping2, 
and in topological space using Pajek software3.

Similarity measure
To compare the different modularity partitions obtained at differ-
ent hierarchical levels in the same subject, or at the same hierar-
chical level in different subjects, we used the normalized mutual 
information, as defi ned in Kuncheva and Hadjitodorov (2004). 
For two given partitions A and B, with a number of communities 
denoted C
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where N
ij
 is the number of nodes in common between modules i 

and j, the sum over row i of matrix N
ij
 is denoted N

i
, and the sum 

over column j is denoted N
.j
. If the two partitions are identical then 

I(A,B) takes its maximum value of 1. If the two partitions are totally 
independent, I(A,B) = 0.

The initial application of this quantity was to evaluate different 
modularity partition algorithms (Danon et al., 2005). The similar-
ity index was used to compute how closely the partitions obtained 

2http://brainmap.wustl.edu/register.html
3http://vlado.fmf.uni-lj.si/pub/networks/pajek
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from different algorithms matched the “target” partition of a given 
test network, i.e. a network whose modular structure was known 
a priori. Here the application was different, since we wanted to 
compare partitions obtained for different subjects in a group. Since 
the equation is symmetric in A and B, it is however possible to use 
the index without a target partition.

The networks constructed for each individual had the same 
number of nodes N, so the partitions of each subject have the same 
number of nodes. However, due to the high threshold applied 
to construct the adjacency matrix, the number of disconnected 
nodes in the networks can be different for each subject. One solu-
tion is to consider each disconnected node as a single module. In 
this case, each node (disconnected or not) of the network will be 
in the set of modules of each subject. However, it introduces artifi -
cially high values in the similarity values, especially if the networks 
of two subjects have similar sets of disconnected edges. So we have 
chosen to remove the disconnected nodes from the partitions 
and study only the partitions obtained on the giant component 
of each network, but keeping the value of N in the equation as 
the total number of nodes. This leads to a value of similarity 
slightly lower than if the disconnected nodes were included in 
the partitions, but is more representative of the relevant set of 
connected modules.

RESULTS
SIMILARITY AND VARIABILITY OF MODULAR DECOMPOSITIONS
It was possible to defi ne a hierarchical modular decomposition 
for each of the 18 subjects in the sample. At the highest hierarchi-
cal level, the mean brain functional network modularity for the 
group was 0.604, with SD = 0.097. By comparison, modularity 
at the highest level for 18 random networks with an equivalent 
number of nodes (1808) and edges (8000) was 0.303 (SD = 0.003). 
There was a signifi cant increase in brain network modularity com-
pared to random network modularity (Kolmogorov–Smirnov test, 
D = 1, P ∼ 2−10).

The similarity of network community structure between each 
pair of subjects, at each level of the hierarchy, was calculated 
using Eq. 4. The resulting similarity matrices for level 3 (the 
highest level) and level 1 (the lowest non-trivial level) are shown 
in Figure 2.

The average pairwise similarity was 0.57 at level 3 and 0.63 at 
level 1, indicating a reasonable degree of consistency between sub-
jects in modular organization of functional networks. The similarity 
between subjects was highly correlated over levels of the modular 
hierarchy: for example, if a pair of networks had a similar modular 
partition at the highest level, the sub-modular organization at lower 
levels was also similar.

Simply by summing the pairwise similarity scores for each row 
of the similarity matrix, it was possible to identify the individual 
subject (number 2) that was most similar to all other subjects in 
the sample, i.e. the most representative subject, and the subject (4) 
that was least similar to the rest of the sample. In what follows, we 
will focus attention on the modular decomposition of the most 
representative subject.

HIERARCHICAL MODULARITY
The hierarchical modular decomposition of the most representa-
tive subject’s brain functional network is shown in Figure 3. At 
the highest level of the hierarchy (level 3), there were eight large 
modules, each comprising more than 10 nodes. At the lowest level 
of the hierarchy (level 1), there were 57 sub-modules. The largest 
fi ve modules (with putative functional interpretations) and their 
sub-modular decomposition are briefl y described below; some 
additional details are provided in Table 1.

• Central module (somatosensorimotor): The largest high level 
module comprised extensive areas of lateral cortex in premo-
tor, precentral and postcentral areas, extending inferiorly to 
superior temporal gyrus, as well as to premotor and dorsal cin-
gulate cortex medially. At a lower hierarchical level, medial and 

FIGURE 2 | Variability and similarity of brain functional network 

community structure between 18 different subjects. (A) Matrix showing 
the between-subject similarity measure for community structure at the 
highest level of the modular hierarchy. The pairwise similarity scores for the 
most representative subject are highlighted by a black rectangle. (B) Matrix 

showing the between-subject similarities for community structure at the 
lowest level of the modular hierarchy. (C) Scatter plot showing strong 
correlation of between-subject similarities at high and low levels of the 
modular hierarchy. Red points are similarities for the most 
representative subject.
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lateral cortex were segregated in different sub-modules and, 
within lateral cortex, precentral and postcentral areas were 
segregated from superior temporal cortex.

• Parieto-frontal module (default/attentional): This module 
 comprised medial posterior parietal and posterior cingulate cor-
tex, extending to medial temporal lobe structures inferiorly, and 

FIGURE 3 | Hierarchical modularity of a human brain functional network. 

(A) Cortical surface mapping of the community structure of the network at the 
highest hierarchical level of modularity, showing all modules that comprise more 
than 10 nodes. (B) Anatomical representation of the connectivity between nodes 
in colour-coded modules. The brain is viewed from the left side with the frontal 

cortex on the left of the panel and the occipital cortex on the right of the panel. 
Intra-modular edges are coloured differently for each module; inter-modular edges 
are drawn in black. (C) Sub-modular decomposition of the fi ve largest modules 
(shown centrally) illustrates that the medial occipital module has no major sub-
modules whereas the fronto-temporal modules has many sub-modules.

Table 1 | The fi ve largest modules of the human brain functional network in a representative normal volunteer, indicating the number and type of 

nodes and sub-modules.

Module description # Nodes Connector nodes Provincial hubs Connector hubs Sub-modules Size of sub-modules

Central (sensorimotor) 239 8 1 4 11 115, 96, 8, 4, 3 (2), 2 (5)

Parieto-frontal (default/attention) 138 10 1 0 10 115, 3 (5), 2 (4)

Medial occipital (primary visual) 132 3 0 0 1 132

Lateral occipital (secondary visual) 101 7 0 1 1 101

Fronto-temporal (symbolic) 89 0 2 3 24 19, 8, 6, 5 (2), 4, 3 (6), 2 (12)
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areas of inferior parietal and dorsal prefrontal cortex laterally.
• Medial occipital module (primary visual): This module 

 comprised medial occipital cortex and occipital pole, inclu-
ding primary visual areas.

• Lateral occipital (secondary visual): This module comprised 
dorsal and ventral areas of lateral occipital cortex, including 
secondary visual areas.

• Fronto-temporal module (symbolic): This module comprised 
dorsal and ventral lateral prefrontal cortex, medial prefrontal cor-
tex, and areas of superior temporal cortex. It was less  symmetrically 
organized than most of the other high level modules and was 
decomposed to a larger number of sub-modules at lower levels.

Note that most high level modules are bilaterally symmetrical, 
comprise both lateral and medial cortical areas, and tend to be spa-
tially concentrated in an anatomical neighbourhood. Sub- modular 
decomposition sometimes resulted in a dominant sub-module, 
comprising most of the nodes in the higher level module, with some 
much smaller sub-modules each comprising a few peripheral nodes. 
For example, this was the pattern for the occipital modules. An 
alternative result was a more even-handed decomposition of a high 
level module into multiple sub-modules; this was the pattern for the 
prefronto-temporal module. In Simon’s terminology, the number of 
sub-modules into which a module can be decomposed is its span of 
control, and so we can describe occipital modules as having a greater 
span of control than, say, the fronto-temporal module.

NODE ROLES
On the basis of the highest level (level 3) of modular decomposi-
tion, we assigned topological roles to each of the regional nodes. 
A node was defi ned as a hub or non-hub (more or less highly con-
nected) with a provincial, connector or kinless role (depending on 
its  balance of intra- vs inter-module connectivity). Provincial hubs 
will play a key role in intra-modular processing; connector hubs 
will play a key role in inter-modular processing.

Figure 4 displays an example of the node roles obtained from the 
most representative subject. Figure 4A shows the participation coef-
fi cient (P, our measure of inter-modular connectivity) vs the intra-
modular degree (z, our measure of hubness) for each regional node 
in the network. Most nodes (416, 53%) have no inter-modular con-
nections P = 0, but some (28, 4%) have a high proportion of inter-
modular connections, qualifying for connector status. Figure 4B 
is a spatial representation of the node roles, the locations of the 
nodes corresponding to their position in three-dimensional stere-
otactic space. Figure 4C is a topological  representation obtained 
by applying the Fruchterman–Reingold algorithm (Fruchterman 
and Reingold, 1991) to the network displayed in Figure 4B. In this 
representation, the distances between the nodes are not related to 
their spatial location, but to how strongly linked connected they 
are to their neighbours. The main idea is to start from an initial 
random placement of the nodes, and replace the edges by springs, 
letting the equivalent mechanical system evolve until it reaches a 
stable mechanical state. Thus, this representation locates nodes with 
similar connectivity patterns closer together in space.

We can see that most nodes (743, i.e. 95% of the nodes) have 
either the role of ultra-peripheral nodes or peripheral nodes and 
a small minority (39, i.e. 5% of the nodes) have the topologically 

important roles of hubs and/or connector status. Inter-modular 
connections, and the connector nodes and hubs which mediate 
them, are most numerous in posterior modules containing regions 
of association cortex; the fronto-temporal module is sparsely con-
nected to other modules and the medial occipital module also has 
relatively few connector nodes.

METHODOLOGICAL ISSUES
This work is a fi rst attempt to uncover the hierarchical organiza-
tion of brain functional networks and to compare the stability of 
hierarchical modular decompositions across individuals. There are, 
however, three possible weaknesses in our analysis that we would 
like to address in this section.

Validation of the algorithm
A fi rst consideration concerns the choice of the Louvain method 
(LM) in order to uncover nested modules in the brain networks. 
LM was fi rst proposed in order to uncover optimal partitions of a 
graph by maximising modularity. This is a greedy method which is 
known to be very fast and very precise (Blondel et al., 2008), albeit 
less precise than much slower methods such as simulated annealing 
(SA). It is interesting to note, however, that this lack of precision 
may be an advantage, in practice, as it may avoid some of the pitfalls 
of modularity analysis such as its resolution limit (Fortunato and 
Barthélemy, 2007). For instance, it has been recently shown that LM 
performs much better than SA when applied to benchmark networks 
with unbalanced modules comprising different numbers of nodes 
(Lancichinetti and Fortunato, 2009). We therefore believe that there 
is good evidence that the top level partitions uncovered by LM are 
valid. The validity of the intermediate hierarchical levels identifi ed 
by the algorithm is, however, more arguable, as it has not been stud-
ied in detail yet. In order to show the validity of these intermediate 
levels, we need to verify that the method uncovers all the signifi cant 
partitions present in the network and only those.

To do so, we have tested LM on a benchmark network with 
known hierarchical structure (Sales-Pardo et al., 2007); Figure 5A). 
This benchmark network is made of 640 nodes with three levels 
of organization: small modules comprising 10 nodes, medium-
size modules comprising 40 nodes and large modules comprising 
160 nodes. The cohesiveness of the hierarchy between levels is tuned 
by a single parameter σ, i.e. the larger the value of σ, the more dif-
fi cult it is to fi nd the sub-modules. When applied on this benchmark 
network, the algorithm fi nds with an excellent precision the fi rst 
two levels (16 modules and 64 modules), but does not uncover the 
partition into 4 modules. This result is to be expected because this 
partition into four modules is sub-optimal in terms of modularity 
and can therefore not be uncovered by an aggregative method. This 
shows that the method can at best uncover the partition optimis-
ing modularity and fi ner partitions. In order to uncover coarser 
partitions, one needs to decrease the resolution of the method, 
which can be done by following Reichardt and Bornholdt (2006), 
or Sales-Pardo et al. (2007), for instance.

On the same benchmark network, the algorithm typically fi nds 
two levels (one corresponding to 64 modules and one corresponding 
to 16 modules) but it may occasionally fi nd three levels (one level 
corresponding to 64 modules and two levels similar to the partition 
into 16 modules). When σ = 1.0, for instance, over 100 realizations 
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of the graph, the algorithm fi nds two levels on 86 realizations, 
and three levels on 14 realizations. This result is encouraging as it 
suggests that the algorithm only produces signifi cant partitions. 
However, it is possible to fi nd situations where it is not the case, 
e.g. random graphs. It is therefore still necessary to verify the sig-
nifi cance of intermediate partitions, as we will discuss below.

Comparison with a random graph
A second consideration concerns the comparison of the partition 
of the original network with randomized data, as the algorithm 
also gives a hierarchical decomposition for randomly generated 
networks. To show that the representative brain network under 
study (subject ID 2) displays a non-random hierarchical modular 
structure, we have randomized the original data and processed 

the hierarchical structure of randomized networks, with two kind 
of randomization. First, by computing 100 randomizations of the 
time points in the original time-series (in green on Figure 5B) and, 
second, by randomising the original adjacency matrix 100 times (in 
blue on Figure 5B). Note that the two kinds of randomization lead 
to networks with different sizes: in the randomized time-series net-
works, almost all the nodes are connected, thus leading to networks 
with 1808 nodes and 8000 edges. Whereas starting from the original 
adjacency matrix leads to networks of 844 nodes and 8000 edges. 
The modularity obtained for the lowest and highest partitions of 
the original network are displayed in Figure 5B. The modularity 
values are clearly reduced in the randomized networks, relative to 
the original data, indicating that our results on real brain networks 
are not trivially reproduced in random networks.

FIGURE 4 | Topological roles of network nodes in intra- and inter-modular 

connectivity. (A) All nodes are plotted in the {P − z} plane of intra-modular 
degree z vs participation coeffi cient P; the solid lines partition the plane 
according to criteria for hubs vs non-hubs and connector, provincial, peripheral 
or kinless nodes. (B) Anatomical representation of the provincial hubs 
(circles), connector hubs (large squares) and connector nodes (small squares) 

of each of each of the fi ve largest modules at the highest level of the 
modular hierarchy. (C) Topological representation of the network in using 
Fruchterman–Reingold algorithm (Fruchterman and Reingold, 1991) to 
highlight topological proximity of highly connected nodes; colour and shape 
of the nodes represent their modular assignment and topological role as 
above and in Figure 2.
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In order to show that the intermediate levels considered in this 
paper are signifi cant, we have followed the argument that signifi cant 
partitions should be robust, in the sense that they should only be 
weakly altered by a modifi cation of the optimization algorithm. As 
argued by Ronhovde and Nussinov (2009), comparing the optimal 
partitions found by the algorithm for different orders of the nodes 
is a way to test their robustness and therefore their validity. We 
have therefore optimized the modularity of the representative brain 
network 100 times by choosing the nodes in a different order, and 
focused on the fi rst non-trivial partition found by the algorithm. 
The mutual information between pairs of partitions obtained for 
each different order is then computed. The average mutual infor-
mation among those pairs is very high (0.89) compared to what is 
obtained for a comparable random network (0.44), thereby sug-
gesting that partitions obtained at the lowest non-trivial levels are 
relevant for the network under study.

Dependence on the number of edges
A third consideration concerns the number m of edges that we have 
chosen in order to map the correlation matrices onto unweighted 
graphs. This is a known problem when dealing with fMRI data and 
building brain networks. If m is too small, i.e. keeping the top most 
signifi cant links, the network will be so sparsely connected that it 
will be made of several disconnected clusters. If m is too large, in 
contrast, the network will be very densely connected, but mainly 
made of unsignifi cant links. In these two extremes, the network 
structure is a bad representation of the correlation matrix. This 
is still an open problem that requires the right trade-off between 
these two competing factors. In order to show the robustness of 
our results, we propose to look at the resilience of the hierarchi-
cal modular organization under the tuning of the value of m. 
Meaningful values of m are identifi ed by intervals over which the 
structure of the network is preserved. We have applied this scheme 

FIGURE 5 | Methodological issues in analysis of hierarchical modularity. 

(A) Validation of the Louvain method for hierarchical decomposition on a 
benchmark network defi ned in Sales-Pardo et al. (2007). The network is naturally 
made of 64, 16 and 4 modules of 10, 40 and 160 nodes respectively. The 
separability of different levels of the benchmark network is controlled by the 
parameter ρ. We calculate the normalized information between the lowest non-
trivial level partition and the natural partition of 64 modules (solid curve), and 
between the second level partition and the natural partition of 16 modules 
(dashed curve). After averaging over 20 different realizations of the network, our 

simulations show an excellent agreement as mutual information is above 0.95 
for values of ρ up to 1.5 for the lowest non-trivial and intermediate levels. 
(B) Modularity values at the highest and lowest levels of hierarchical community 
structure in a representative brain network (Subject ID 2, in red) and for 
networks obtained from 100 randomizations of the original time-series (in 
green), and for networks obtained by 100 randomizations of the original 
adjacency matrix. (C) Similarity measures between highest level partitions (left) 
and non-trivial lowest level partitions (right) obtained by thresholding the original 
network to retain different number of highest correlations as edges.
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to the optimal partitions of the most representative subject (Subject 
2), over a wide range of threshold (2000–14000 edges, with a step 
of 200 edges). Our results show that partitions are very similar 
(in terms of mutual information) over the range (6000–11000) 
for both highest level (left on Figure 5C) and non-trivial lowest 
level (right on Figure 5C), indicating our results are robust to the 
specifi c choice of threshold.

DISCUSSION
In this study, we have applied recently developed tools for char-
acterizing the hierarchical, modular structure of complex systems 
to functional brain networks generated from human fMRI data 
recorded under no-task or resting state conditions. Where previ-
ous comparable work was limited by the computational expense 
of available modularity algorithms, meaning that only one or a 
few relatively low resolution networks (comprising 10 s of nodes) 
could be analysed, here we were able to obtain modular decom-
positions on a larger number of higher resolution networks (each 
comprising 1000s of nodes). In addition, we used an information-
based measure to quantify the similarity of community structure 
between two different networks and so to fi nd a principled way 
of focusing attention on a single network that is representative 
of the group.

HIERARCHICAL MODULARITY
There was clear evidence for hierarchical modularity in these 
data and the community structure of the networks at all levels 
of the hierarchy was reasonably similar across subjects (I ∼ 0.6), 
suggesting that brain functional modularity is likely to be a rep-
licable phenomenon. This position is further supported by the 
qualitative similarity between the major modules identifi ed at the 
highest level of the hierarchy in this study and the major modules 
or functional clusters identifi ed in comparable prior studies on 
independent samples (Salvador et al., 2005; Meunier et al., 2009). 
As previously, the major functional modules comprised function-
ally and/or anatomically related regions of cortex and this pattern 
was also evident to some extent at sub-modular levels of analysis. 
For example, the central module comprising areas of somatosen-
sorimotor and premotor cortex was segregated at a sub-modular 
level into a medial component, comprising supplementary motor 
area and cingulate motor area, and a lateral component, com-
prising precentral and postcentral areas of primary motor and 
somatosensory cortex.

Another plausible aspect of the results was the clear evidence 
for a symmetrical posterior-to-anterior progression of cortical 
modules. This was seen most clearly on the medial surfaces of 
the cerebral hemispheres in terms of their division into medial 
occipital, parieto-frontal and central modules. A posterior-to-ante-
rior organization of cortical modules in adult brain functional 
networks is arguably compatible with the abundant evidence from 
neurodevelopmental studies which have shown rostro-caudal 
modularity of the spinal cord, brain stem, hind brain and dien-
cephalon defi ned by segmented patterns of gene expression (Redies 
and Puelles, 2001). This speculative link between the topological 
modularity of adult brain networks and the embryonic modular-
ity of the developing nervous system presents an interesting focus 
for future studies.

NODE ROLES IN INTER-MODULAR CONNECTIVITY
One important potential benefi t of a modular analysis of complex 
networks is that it allows us to be more precise about the topo-
logical role of any particular node in the network. For example, 
rather than simply saying that a particular region has a high 
degree we may be able to say that it has a disproportionately 
important role in transfer of information between modules, 
rather than within a module. In these data, the location of con-
nector nodes and hubs with a prominent role in inter-modular 
communication was concentrated in posterior areas of associa-
tion cortex. The fronto-temporal module, on the other hand, 
was rather sparsely connected to other modules. One possible 
explanation for these anatomical differences in inter-modular 
communication may relate to the stationarity of functional con-
nectivity between brain regions. Our measure of association 
between brain regions (the wavelet correlation corresponding 
to a frequency interval of 0.03–0.06 Hz) provides an estimate 
of functional connectivity “on average” over the entire period of 
observation (8 min 35 s). If there is signifi cant variability over 
time in the strength of functional connections between modules 
this may be manifest in terms of reduced connectivity on aver-
age over a prolonged period. Thus one possible explanation for 
the sparser inter-modular connections of the fronto-temporal 
module is that the interactions of this system with the rest of 
the brain network may be more non-stationary or labile over 
time. This interpretation could be tested by future studies using 
time-varying measures of functional connectivity, such as phase 
synchronization (Kitzbichler et al., 2009).

DEALING WITH MORE THAN ONE SUBJECT
One of the challenges in analysis of network community struc-
ture is the richness of the results (every node will have a modular 
 assignment and a topological role) and the diffi culties attendant 
on properly managing inter-individual variability in such novel 
metrics. In previous work, we estimated a functional connectivity 
matrix for each subject, then thresholded the group mean associa-
tion, and explored the community structure of the group mean 
network. This allows us to focus attention on a single network but it 
neglects between-subject variability and, like any use of the mean in 
small samples, it is potentially biased by one or more outlying values 
for the functional connectivity. Here we have explored an alterna-
tive approach, using an information-based measure of similarity to 
quantify between subject differences in network organization and 
to identify the most representative subject in the sample. One can 
imagine that this measure could be combined with resampling based 
approaches to statistical inference in order to estimate, for example, 
the probability that the community structure identifi ed in a single 
patient is signifi cantly dissimilar to a reference group of brain net-
works in normal volunteers. However, it fair to say that there are a 
number of technical challenges to be addressed in using modularity 
measures for statistical comparisons between different groups.

RETURNING TO SIMON’S HYPOTHESIS
As this is the fi rst study to attempt a hierarchical modular decompo-
sition of human brain functional networks, there is little guidance 
in the existing literature as to what the correct structure of the net-
work should resemble. Our results are encouraging in that they have 
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been able to identify well defi ned neuroanatomical  systems, but 
they remain empirical and require further validation in appropriate 
animal models. However, our analysis of simulated data (Section 
“Discussion”) indicates that our algorithm does indeed identify the 
correct structure of a hierarchical, modular network, which lends 
confi dence to our results.

In Simon’s theoretical analysis, near-decomposability was con-
sidered to be a ubiquitous property of complex systems because it 
conferred advantages of adaptive speed in response to evolutionary 
selection pressures as well as shorter-term developmental or envi-
ronmental contingencies. In relation to the modularity of human 
brain systems, this view prompts a number of questions. Perhaps the 
most immediately addressable, at least by functional neuroimaging, 
is the question of how the modularity of brain  network organization 
relates to cognitive performance and the capacity to shift attention 
rapidly between different stimuli or tasks. According to Simon’s the-
ory, this key aspect of the brain’s cognitive function should depend 
critically on modular or sub-modular components and the rapid 
reconfi guration of inter-modular connections between them. Future 
studies, applying graph theoretical techniques to modularity analysis 
of fMRI data recorded during task performance (rather than in no-
task state) may be important in testing this prediction.

CONCLUSION
We have described graph theoretical tools for analysis of  hierarchical 
modularity in human brain functional networks derived from fMRI. 
Our main claims are that these techniques are  computationally fea-
sible and generate plausible and  reasonably consistent descriptions 
of the brain functional network  community structure in a group 
of normal volunteers. The potential importance theoretically of 
this analysis has been highlighted by reference to Simon’s seminal 
theory of hierarchy and decomposability in the design of informa-
tion processing systems.
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2007; Zhou et al., 2007; Hagmann et al., 2008). While the organisa-
tion of cortical areas into clusters permits the segregated processing 
of information of different modality, the large number of connec-
tions involves that sensory information is highly accessible to all 
cortical areas, regardless of its modal origin. A detailed analysis of 
the corticocortical communication substrate has revealed the central 
role of the cortical hubs, by facilitating the communication between 
the different sensory modalities (Zamora-López et al., 2009).

Whether the cortical hubs act as passive transmitters of informa-
tion, or they perform a more active function is a relevant question 
that we try to answer in the present paper. We start by summarising 
principles of complex network analysis and information theory in 
Section “Materials and Methods”. Section “Topological Capacity 
of Integration” contains a thorough application of graph theo-
retical measures which reveal that the cortical hubs form an addi-
tional module, expressed as a higher hierarchical level. In Section 
“Functional Capacity of Integration”, we challenge the intuitively 
assigned integrative properties of this central module by means of 
dynamical and information theoretical measures. On the one hand, 
we fi nd that only simultaneous lesion of particular hubs leads to 
a dynamical segregation of the sensory modules (visual, auditory, 
somatosensory-motor and frontolimbic). On the other hand, the 
same hubs form a dynamical cluster after simultaneous excitation of 
primary sensory areas, a clear sign of their integrative capacities.

MATERIALS AND METHODS
GRAPH ANALYSIS
We fi rst introduce basic concepts of graph theory. A network is 
an abstract manner to represent different aspects of a real system, 
providing it with a form (topology) which can be  mathematically 

INTRODUCTION
The mammalian nervous system is responsible for collecting and 
processing of information, and for providing adaptive responses 
which permit the organism to survive in a permanently changing 
environment. Sensory neurones encode environmental information 
into electrical signals which propagate in a “bottom-up” manner 
through different processing stages (Kandel et al., 2000; Bear et al., 
2006). Each level provides responses of increasing complexity and at 
different time scales, e.g. refl ex arcs, emotional responses and more 
elaborate cognitive responses. Information of the same modality (e.g. 
visual, auditory, somatosensory, etc.) traverses the body together, 
typically separated from the processing paths of other modalities. 
This permits that particular regions of the cortex specialise in detect-
ing different features of the sensory stimuli, e.g. orientation, velocity 
and colour of the visual input; or frequency and pitch of the audi-
tory stimuli. However, in order to generate a coherent perception of 
the reality, the brain needs to combine (integrate) this multisensory 
information at some place (Robertson, 2003) and during some time 
(Fahle, 1993; Singer and Gray, 1995; Engel and Singer, 2001). For that, 
the paths of information need to converge.

It has been argued that the functional capacity of the NS to bal-
ance between segregation (specialisation) and integration might be 
facilitated by its structural organisation (Sporns and Tononi, 2001). 
Analysis of the connectivity between regions of the cerebral cortex 
in macaque monkeys and cats has revealed the following character-
istics: (i) clustered organisation of the cortical areas (Scannell and 
Young, 1993; Scannell et al., 1995; Hilgetag et al., 2000; Hilgetag 
and Kaiser, 2004) (see Figure 2), (ii) a large density of connections, 
and (iii) a broad degree distribution containing highly connected 
areas which are referred as hubs (Zemanová et al., 2006; Sporns et al., 

Cortical hubs form a module for multisensory integration on 
top of the hierarchy of cortical networks
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tractable. A network G  (N, L), composed of N nodes interconnected 
by L links, is described by an adjacency matrix A with entries A

ij
 = 1 

when there is a link pointing from node i to node j, and A
ij
 = 0 

otherwise. The density of G is the fraction between the number 
of links L and the total number of links possible: ρ = −

L
N N( )1 . In 

order to characterise the topological scales of networks, there exist 
many statistical descriptors, all measurable from the information 
encoded in the adjacency matrix. The output degree k i Ao j

N
ij( ) = ∑ =1  

of a node i is the number of efferent connections that it projects to 
other nodes, and its input degree k i Ai j

N
ji( ) = ∑ =1 , is the number of 

the afferent connections it receives. The degree distribution p(k) 
is the probability that a randomly chosen node has degree k. One 
of the key discoveries that triggered a renewed interest in graph 
theory is that the distribution p(k) of many empirical networks 
approximately follows a power-law p(k) ∼ k−γ (Newman, 2003), 
where γ is the degree exponent. In such scale-free(-like) networks 
the majority of nodes possess a small number of neighbours, and 
few nodes (the hubs) are highly connected.

Distance and centrality
The distance d

ij
 between two nodes i and j is the length of the short-

est path between them, i.e. the minimal number of links crossed 
to travel from i to j. If there is a link i → j, then d

ij
 = 1. If there is 

no other choice than going through an intermediate node k such 
that i → k → j, then d

ij
 = 2, and so on. When there exists no path 

from i to j then d
ij
 = ∞. The average pathlength l is the average 

distance between all pairs of nodes. The shortest path between two 
nodes is usually not unique and there are several alternative shortest 
paths. In order to characterise the infl uence of individual nodes 
on the fl ow and the spread of information through a network, the 
betweenness centrality C

B
(i), is defi ned as the fraction of all shortest 

paths passing through i (Anthonisse, 1971; Freeman, 1977):

C i
i

B
st

sts i t i

N

( )
( )

,

=
≠ ≠
∑ σ

σ  
(1)

where σ
st
(i) is the number of shortest paths starting in s, running 

through i and fi nishing in t, and σ
st
 is the number of all shortest 

paths from s to t.

Matching index
The topological similarity of two nodes can be characterised as the 
number of common neighbours they share. In the extreme case, 
two nodes are topologically identical if both have the same set of 
connections. The neighbourhood of node i is defi ned as the set of 
nodes it connects with, Γ(i) = {j : A

ij
 = 1}. In graphs without mul-

tiple links the size of the neighbourhood |Γ(i)| equals the degree 
of i. The matching index of two nodes i and j is thus the overlap 
of their neighbourhoods: MI(i,j) = |Γ(i) ∩ Γ(j)|. Defi ned in this 
manner MI(i,j) depends on the degrees of i and j, and the values for 
different pairs are not comparable. Imagine two nodes with degrees 
k(i) = k(j) = 3 which are connected to the same neighbours. As 
Γ(i) = Γ(j) their matching is MI(i,j) = 3. Imagine other two nodes 
with degrees k(i′) = 3 and k(j′) = 4. Maximally, they could share 
three neighbours and have MI(i′,j′) = 3 as well, despite i and j 
are topologically equivalent but i′ and j′ are not. In order to com-
pare the values for different pairs the measure can be normalised by 

the number of distinct neighbours of the two nodes, i.e. the union 
of the two neighbourhoods |Γ(i) ∪ Γ(j)| as illustrated in Figure 1. 
The normalised matching index can be computed as:

MI i j
i j

i j

A A

k i k j A A

in jmn m

N

in

( , )
| ( ) ( )|

| ( ) ( )| ( ) ( )

,= ∩
∪

=
+ −

=∑Γ Γ
Γ Γ

1

jjmn m

N

, =∑ 1  

(2)

Now, MI(i,j) = 1 only if i and j are connected exactly to the 
same nodes, Γ(i) = Γ(j), and MI(i,j) = 0 if they have no common 
neighbours.

Reference surrogate networks
Graph theoretical measures help understand the topological organ-
isation of networks. Equally relevant is to uncover the features 
which are characteristic to the underlying system and the funda-
mental properties of its development. In this sense, the question 
is not whether a graph measure takes a specifi c numerical value, 
but whether this value distinguishes the empirical network G

emp
 

from others of similar characteristics. For that, the formulation 
of appropriate null-models is required. A typical such null case is 
to generate surrogate networks with the same size N, number of 
links L and degree distribution p(k) as in G

emp
. The link switching 

method (Katz and Powell, 1957; Holland and Leinhardt, 1977; Rao 
et al., 1996; Kannan et al., 1999; Roberts, 2000) consists of the fol-
lowing iterative process: starting from G

emp
, at each iteration two 

links are chosen at random (i
1
 → j

1
) and (i

2
 → j

2
). The links are 

rewired as (i
1
 → j

2
) and (i

2
 → j

1
) provided that the new links do not 

already exist and do not introduce self-loops, i.e. i → i. Repeating 
the process suffi cient times the resulting surrogate network con-
serves the initial degree distribution but any higher order structure 
is destroyed.

DATA
The classical textbook illustration of the cerebral cortex as a sur-
face (grey matter) which can be subdivided into functional or 
cytoarchitectonic regions is only a limited picture. Additionally, 
long-range fi bres link the cortical areas via the white matter forming 

FIGURE 1 | Schematic representation of the normalised matching index, 

computed as in Eq. 2. For proper comparison between pairs, the measure is 
normalised by the number of different neighbours of v and v′.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 1 | 29

Zamora-López et al. Cortical module for integration

a  complex network which is neither regular nor completely random. 
This intricated structure enhances the richness and complexity of 
information processing capabilities of the cerebral cortex. In this 
paper we focus on the analysis of the cortical connectivity of the 
cat because it is, up to date, the most complete and reliable dataset 
of this kind.

Corticocortical connectivity of the cat
The dataset of the corticocortical connections within the cortex of 
cats was created after an extensive collation of literature reporting 
anatomical tract-tracing experiments (Scannell and Young, 1993; 
Scannell et al., 1995). It consists of a parcellation into 53  cortical 
areas and 826 fi bres of axons between them as summarised in 

Figure 2. The connections are weighted according to the axonal 
density of the projections. After application of data mining methods 
(Scannell and Young, 1993; Hilgetag and Kaiser, 2004), the network 
was found to be organised into four distinguishable clusters which 
closely follow functional subdivisions: visual (V), auditory (A), 
somatosensory-motor (SM) and frontolimbic (FL).

Surrogate data
In order to perform signifi cance tests of the graph measures, an 
ensemble of 1000 surrogate networks has been created following 
the link switching method (see Section “Graph Analysis”). All the 
resulting networks have the same size N = 53, the same number of 
links L = 826 and the same degree distribution as the  corticocortical 

FIGURE 2 | Weighted adjacency matrix W of the corticocortical connectivity 

of the cat comprising of L = 826 directed connections between N = 53 cortical 

areas (Scannell and Young, 1993; Scannell et al., 1995). For visualisation 

purposes, the non-existing connections (0) have been replaced by dots. The 
network has clustered organisation, refl ecting four functional subdivisions: visual 
(V), auditory (A), somatosensory-motor (SM) and frontolimbic (FL).
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network of the cat. To assure that any further internal structure is 
destroyed, each surrogate network is the product of 10 × L itera-
tions. In the following, this set will be referred as the rewired ensem-
ble {G

1n
}, and the original corticocortical network of the cat as G

cat
. 

The ensemble average of graph measures applied on the surrogate 
set {G

1n
} will be considered as the expected values.

INFORMATION THEORY AND INTEGRATION
Information theory has been very successful to describe transmis-
sion of information, encoding and channel capacity. At the root 
of this success lies the original idea of Shannon to apply concepts 
of statistical physics to represent the nature of communication. 
Consider a system A with M possible states. That is, a measurement 
made on A yields the values a

1
,a

2
,…,a

M
, with a probability p(a

i
). 

The average amount of information gained from a measurement 
that specifi es one particular value a

i
 is given by the entropy of the 

system (Shannon, 1948; Cover and Thomas, 1991):

H A p a p ai i
i

M

( ) .= − ( ) ( )
=
∑ log

1  
(3)

The entropy can be interpreted as the amount of surprise one 
should feel upon reading the result of a measurement (Faser and 
Swinney, 1986). It vanishes when the system has only one accessible 
state because the value a is always obtained, i.e. there is no surprise. 
H(A) is maximum when all the states are equally likely, i.e. there 
are no preferred states.

The statistical dependence between two systems x
1
 and x

2
 is quan-

tifi ed by their mutual information:

MI x x H x H x H x x1 2 1 2 1 2, , .( ) = ( ) + ( ) − ( )
 

(4)

By defi nition, the joint entropy is H(x
1
,x

2
) ≤ H(x

1
) + H(x

2
). The 

equality is only fulfi lled if x
1
 and x

2
 are statistically independent, 

hence MI(x
1
,x

2
) = 0, and otherwise MI(x

1
,x

2
) > 0.

Integration
In a series of papers Tononi and Sporns proposed a particular meas-
ure of integration (Tononi and Sporns, 1994; Tononi et al., 1996, 
1998). Given a system X composed of N subsystems x

1
, integration 

is defi ned as:

I X H x H X
i

N

i( ) ( )= ( ) −
=
∑

1  
(5)

where H(x
i
) is the entropy of one subsystem and H(X) = H(x

1
,x

2
,…,x

n
) 

is the joint entropy of the system considered as a whole. I(X) = 0 
only if all x

i
 ∈ X are statistically independent of each other, and posi-

tive otherwise. After this defi nition, integration is the extension of 
mutual information for more than two systems. In other words, I(X) 
measures the internal level of statistical dependence among all the 
subsystems x

i
 ∈ X.

Linear dynamical systems
The steady-state of a linear system whose N subsystems 
x = (x

1
,x

2
,…,x

n
) are driven by a Gaussian noise ξ = (ξ

1
,ξ

2
,…,ξ

N
), 

is described by x g A xi j ij
t

j i= ∑ + ξ , where g is the coupling strength 

and At is the transpose of the adjacency matrix. Otherwise the 
dynamics of x

i
 would be characterised by its own outputs, not 

by the inputs it receives. Written in matrix form:

x A x= +g t �. (6)

In practical terms the variable x
i
 might be interpreted as the 

activity level of the cortical area i (Kötter and Sommer, 2000; Young 
et al., 2000), or as the mean fi ring rate of the neurones in the area i 
(Graben et al., 2007). The entropy of such a multivariate Gaussian 
system can be analytically calculated out of its covariance matrix 

such that H X e COV XN( ) ( ) | ( )|= ⎡⎣ ⎤⎦
1
2 2log π , where |·| stands for 

the determinant (Papoulis, 1991; Tononi and Sporns, 1994). The 
entropy of an individual Gaussian process is H x ei i( ) ( ),= 1

2 2log π ν  
where ν

i
 is the variance of x

i
, say, the ith diagonal element of the 

COV(X) matrix. Replacing H(X) and H(x
i
) into Eq. 5 and apply-

ing basic algebra, we reduce the integration of such a multivariate 
Gaussian system as:

I X
COV X

ii

N

( )
( )

.=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=∏1

2
1log
ν

| |
 

(7)

This expression shows that I(X) of the linear system is prop-
erly normalised and is independent of system size N. The covari-
ance matrix can be analytically computed by solving the system 
such that x = ⋅ = ⋅

−
1

1 Atg
ξ ξQ , and averaging over the states pro-

duced by successive values of ξ one fi nds: COV(X) = 〈x · xt〉=
〈(Q · ξ)·(ξt · Qt)〉 =Q · Qt.

Comparing different systems
To compare I(X) of different systems, the matrix At needs to be 
adequately normalised because application of the same coupling 
strength g to different networks might set them into different 
 dynamical states. Hence, they might not be comparable. The lin-
ear System (6) has several poles depending on g. The smallest pole 
corresponds to g1

1= λmax
 where λ

max
 is the largest eigenvalue of the 

transposed adjacency matrix At. The solutions only have physical 
meaning for g < g

1
, otherwise the stationarity condition does not 

hold. In Figure 3 the poles corresponding to the corticocortical 
network of the cat are shown. Notice that at the poles, both entropy 
and integration diverge. To make the comparison of the dynamics 
of different networks possible, we normalise the adjacency matrices 
as ˆ .A At At

max
= =g1 λ  In this manner, all systems have the smallest 

pole at g = 1.
Finally, a proper coupling strength g needs to be chosen. For 

that, we have estimated the covariance matrices of the cat cortical 
network under different coupling strengths (Figure 4). They are 
similar to the correlation patterns arising from more complex 
models (Zemanová et al., 2006; Honey et al., 2007; Zhou et al., 
2006, 2007). This similarity indicates the validity of the simple 
linear System (6) for the exploratory purposes here intended. 
All networks considered in Section “Functional Capacity of 
Integration” are normalised by their fi rst pole and a coupling 
strength of g = 0.5 is applied. Unless otherwise stated, the noise 
level is set to ξ

i
 = 1.0.
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A

B

C

FIGURE 3 | Parametric study of the linear System (6) using the cortical 

network of the cat. (A) Integrability range. When the determinant |1 − gÂ| = 0 
the system has a pole. Negative values lead to non-physical solutions. (B) 
Entropy and (C) Integration diverge around the poles.

A B C

FIGURE 4 | Covariance matrix of the cat cortical network as a linear system. The adjacency matrix has been previously normalised by 1/λmax and the noise level 
set to ξi = 1.0. Coupling strengths are: (A) g = 0.52, (B) g = 0.84 and (C) g = 0.92.

RESULTS
TOPOLOGICAL CAPACITY OF INTEGRATION
In order to characterise the connectional organisation of the nervous 
system and to understand its functional implications, the complex 
network approach has been applied in the recent years, particu-
larly at the level of the cerebral cortex. This analysis has revealed 
several  organisation properties, e.g. the clustering of cortical areas 
according to their sensory modality (visual, auditory, somatosen-
sory-motor and frontolimbic). Recently, it has been reported that 
communication paths between cortical areas in different sensory 
modules are not random, but mediated by the hubs of the network 
(Zamora-López et al., 2009). In this section we present a more 
detailed graph analysis aiming to characterise the potential func-
tion of the cortical hubs.

Inter-modal communication
The betweenness centrality C

B
(ν) quantifi es the relevance of a node 

v within the communication paths in a network. As represented 
in Figure 5A, we observe that within each of the sensory systems, 
few cortical areas possess a large betweenness. With C

B
(ν) > 500 we 

fi nd: visual areas 20a, 7 and AES; auditory area EPp;  somatosensory-
motor areas 6m and 5Al; and frontolimbic areas Ia, Ig, CGp, 35 
and 36. On the contrary, only the visual primary cortex (area 17) 
and the hippocampus have C

B
(ν) = 0. In general, we observe that 

cortical regions known to perform highly specialised sensory func-
tion have few connections and very low centrality, e.g. primary and 
secondary visual or auditory areas, and early somatosensory-motor 
areas. These areas typically contain ordered mappings of the sen-
sory stimuli such as retinotopic or tonotopic maps, see Appendix 
of Scannell et al. (1995).

The centrality of a node usually correlates with its degree, 
hence, it is trivial to find out that precisely the hubs have larger 
centrality. Drawing any further conclusion requires performing 
a proper significance test. For comparison, the average C

B
(ν) 

of the nodes in all the 1000 rewired networks of the surrogate 
ensemble {G

1n
} has been computed. The ascending line in Figure 

5B shows the expected dependence of the betweenness centrality 
on the degree of the nodes. As a node receives k

i
(ν) inputs and 

projects k
o
(ν) outputs, the number of shortest paths passing 

through v is linearly proportional to k
i
(ν)k

o
(ν) in the surrogate 

networks. The most prominent observation is that, while C
B
 of 

the low degree areas follow the expected centrality, the centrality 

Subsets of elements
The entropy of a subset of systems S ⊆ X can be obtained by 
fi rst computing COV(X) as indicated above, and then extracting 
the covariance submatrix COV(S) out of COV(X) by consider-
ing only the elements x

i
 ∈ S. The entropy of the subset is then 

H S e COV SNS( ) ( ) | ( )|= ⎡⎣ ⎤⎦
1
2 2log π , and its integration I(S) is:

I S H x H S
COV Sj

jj

N

x S

S

j

( ) ( )
( )

.= ( ) − =
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=

∈

∏∑ 1

2
1log
ν

| |
 

(8)
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φ( ) ,k
L

N N
k

k k

′ ′

′ ′

=
−( )1

 

(9)

where Nk ′ is the number of nodes with k(v) ≥ k′ and Lk ′ is the 
number of links between them. Notice that φ(k) is an increasing 
function of k. As φ( ) ( )0 1= −

L
N N  is the density of the network, after 

the nodes with low degrees are removed the remaining reduced 
network contains more links per node. Thus, a plain measure of 
φ(k) is not very informative because hubs have a higher intrinsic 
chance of being connected to each other. Again, a conclusive inter-
pretation requires the comparison to random networks with the 
same degree distribution. The question is then whether φ(k) of 
the real network grows faster or slower with k than the expected 
k-density φ

1n
(k) out of the surrogate networks {G

1n
}. If φ(k) grows 

faster than φ
1n

(k), it means that the hubs are more connected than 
expected and form a dense module (a rich-club). On the contrary, 
if φ(k) grows slower than φ

1n
(k), the hubs are more independent 

of each other than expected.
In Figure 6A the k-density φ

cat
(k) of G

cat
 is presented together 

with the ensemble average φ
1n

(k). For low degrees, φ
cat

(k) follows 
very close the expectation, but for degrees k(v) > 15, φ

cat
(k) starts to 

grow faster showing that the hubs of the network form a rich-club. 
The largest difference occurs for k = 23, comprising of 11 cortical 
hubs from all the four sensory systems (Figure 6B). Compared to 
the internal density of the four modules of the network, we fi nd 
that the hubs form an even denser module (Table 1).

Topological similarity of cortical hubs
A central assumption in systems neuroscience is that the func-
tion of brain regions are specifi ed by their afferents and efferents 
(Passingham et al., 2002). Under this assumption, it is to be expected 
that cortical areas of similar function, i.e. specialised in the process-
ing of same modal information, should display a similar pattern of 

FIGURE 6 | Rich-club organisation. (A) k-density of the corticocortical 
network of the cat φcat, compared to the expectation out of the surrogate 
ensemble {G1n}. The largest difference occurs at k = 23 (vertically dashed line) 
giving rise to (B) a rich-club composed of 11 areas.

A

B

FIGURE 5 | Centrality of cortical areas. (A) Betweenness of cortical areas 
shows that at each sensory system few areas are very central. (B) Comparison 
between CB of cortical areas and the expected centrality due to their degree 
(brown line). As a consequence of the modular and hierarchical organisation of 
the network, low degree areas closely follow the expected centrality but hubs 
are signifi cantly more central than expected. Communication paths between 
sensory systems are centralised through the hubs.

of the hubs is largely significant. This is an  evident consequence 
of the modular organisation of the network and the particular 
role of the cortical hubs for the inter-modal communication. 
Communication paths running between low-degree areas of dif-
ferent modules are usually mediated through the hubs (Zamora-
López et al., 2009).

This signifi cance test permits us to uncover the most likely candi-
dates to be a hub of the network, not only in terms of their number 
of links, but considering their contribution for the corticocortical 
communications. The hubs found here are potential candidates 
to perform high level integration because they have access to the 
information of different modalities. However, with the current 
results we can only affi rm with certainty that the hubs are useful 
for the transmission of information from one modality to another. 
Concluding whether they perform any further function or not, it 
requires a more careful analysis.

Collective organisation of cortical hubs
A relevant question is now whether the cortical hubs are func-
tionally independent of each other, i.e. each hub has a specialised 
function, or they perform some collaborative function. A graph 
measure to characterise the relation between the hubs of a net-
work is the rich-club phenomenon. The k-density φ(k), is defi ned 
as the internal density of links between the nodes with degree 
larger than k′:
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projections. In the case of the cortical hubs, it has been shown in 
the previous section that they form a tightly connected module. 
Whether this module could be regarded as a functional module, at 
least from a topological point of view, is the goal of the following 
analysis. The matching index MI(v,v′) is a graph measure to estimate 
the topological similarity of two nodes, by counting the number of 
common neighbours of v and v′ (Section “Graph Analysis”). In order 
to compare the values obtained for different pairs, the measure is 
normalised such that MI(v,v′) = 1 only if all the neighbours of node 
v are also all the neighbours of v′. See the example in Figure 1.

We have computed the matching index for all pairs of cortical 
areas and the result is shown in matrix form, Figure 7A. Visual 
inspection reveals the modular organisation of the network. This 
is refl ected by the fact that MI(v,v′) is typically larger if both v 
and v′ belong to the same anatomical module, than if they belong 
to different modules. To highlight this difference, in Figure 7B 
the  distribution of the matching values is shown: when the areas 
belong to the same module (internal matching), or to different 
modules (external matching). The external matching has a broad 
skewed distribution but peaking near MI = 0.15. The internal 
 matching displays a more constrained distribution with maximum 
at approximately MI = 0.55. In Table 1 the average matching of the 
network is compared to the average internal matching for each of 
the anatomical modules V, A, SM and FL. The internal averages are 

FIGURE 7 | Topological similarity of cortical areas. (A) Pairwise matching 
index MI(v,v ′) for all areas summarised in matrix form. Self-matching MI(v,v) is 
ignored for visualisation. (B) Distribution of the MI values in (A) if the areas v 
and v′ are in the same anatomical module V, A, SM or FL (dashed line), and if 

they belong to different modules (solid line). (C) Recomputed distribution of MI 
if the areas belong to different modules, but cortical hubs are discarded (solid 
line). And distribution of MI(v,v ′) only if v and v′ are hubs in the Rich-Club 
(dotted line).

Table 1 | Comparison between the anatomical modules and the Rich-Club. Both the internal density of links and the average matching of the areas in each of 

the functional modules V, A, SM and FL are larger than the whole network averages. The same happens for the areas in the Rich-Club, with values comparable to, 

or larger than those for the anatomical modules.

always larger than the global average despite the broad deviations, 
confi rms the expected functional cohesiveness of the modules; not 
only in terms of their internal density of connections, but also in 
terms of their common connectivity.

As pointed out, the distribution of external matching is skewed 
and contains some larger values up to MI ≈ 0.6. We fi nd that most of 
these larger values are contributed precisely by the links between the 
cortical hubs which lie in different modules. We have recomputed 
the distribution of external matching, but ignoring the matching 
between the cortical hubs (solid line in Figure 7C). The distribution 
decays now faster than in Figure 7B. Finally, the distribution of the 
internal matching for the 11 hubs forming the rich-club is displayed 
(dotted line of Figure 7C). It appears clearly separated from that of 
the distribution of external matching and peaking near MI = 0.55. 
Its average is 0.52 ± 0.10, comparable to, or larger than, the internal 
matching of the anatomical modules, Table 1. These observations 
support the idea that the cortical hubs form a functional module 
on their own, as the anatomical modules do.

Hierarchical organisation and integration capacity
The two structural properties of the cortical hubs here presented, (i) 
hubs are densely connected with each other and (ii) they are func-
tionally interrelated in terms of their inputs and outputs, extend the 
current understanding of cortical networks by uncovering that the 
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multisensory hubs form yet another module which lies at a higher 
level in the hierarchical organisation. In the complex networks liter-
ature one fi nds two types of hierarchical topologies. The model after 
Arenas et al. (2006) considers hierarchies as the agglomeration of 
modules, say, small modules join to form larger modules, Figure 8A. 
Another type of hierarchy after Ravasz and Barabási (2003) can be 
regarded as a tree-like fractal structure which produces modular 
networks with scale-free degree distribution. At each level, there 
is a central community connecting to all the modules at the same 
level, and to all modules in the hierarchies below. Such centralised 
patterns are repeated through different scales, Figure 8B.

The organisation that we uncover here is none of these two, but 
it might be regarded as a combination of them. Notice that in the 
model by Arenas et al. (2006), the small communities are randomly 

linked to each other such that their union forms a larger commu-
nity. In the present case, the inter-community links are not random, 
but centralised. Therefore, the highest hierarchical level is formed 
by a partial overlap of the underlying modules. See Figure 8C for 
a schematic representation.

The functional implications of the topological fi ndings 
described in this section, necessarily arise from intuitive inter-
pretation of the intrinsic relationship between structure and func-
tion in neural systems. To provide a more solid ground to these 
intuitive interpretations, in the following section we challenge 
them by means of dynamical and information theoretical meas-
ures. We focus in a very simple dynamical model which has the 
benefi t of being analytically solvable, although its validity for our 
purposes is confi rmed by comparison to the dynamical output 
of more complex models, see Section “Information Theory and 
Integration”.

FUNCTIONAL CAPACITY OF INTEGRATION
The structural organisation described in the previous section 
supports the idea that the cortical hubs might be responsible for 
combining the multisensory information hence facilitate the emer-
gence of a global (integrated) perception. In this sense, we aim for 
a defi nition of integration which characterises the capacity of one 
or more nodes to receive information of different character and com-
bine it to produce new useful information. Certainly, this defi nition 
involves crucial theoretical problems, e.g. what the character of 
information is, or what are the rules under which information is 
combined. Nevertheless, within a networked system, the nodes with 
a capacity to integrate information should obey certain measurable 
conditions. We propose the following:

1) Accessibility to information: A node can perform an integra-
tive function only if it has general access to the information 
contained within the system.

2) Sharing of information: Two or more nodes can perform 
integrative function in a collaborative manner only if they are 
suffi ciently connected with each other.

3) Segregation after selective damage: If a node has an integra-
tive function, its removal should lead to a decrease of the inte-
grative capabilities of the whole system.

From the structural point of view, the hubs listed in Figure 
6B obey these three conditions. They are the most central areas 
and they are densely connected to each other. Besides, robust-
ness studies (Kaiser et al., 2007) have shown that intentional 
lesion of the highly connected cortical areas largely affect the 
communication within the network. In the following, we intro-
duce a framework to characterise the integrative function of the 
hubs by means of dynamical systems and information theory. 
Additionally, we perform a probabilistic analysis of the compo-
sition of the dynamical core, rather than a deterministic one. 
The reason is that even if the corticocortical networks of the 
cat is the most complete and reliable dataset of its kind up to 
date, it is not free of experimental errors. For example, some of 
the real connections might still be absent in the data. We aim 
to discriminate those hubs which, grouped together, possess 
a larger potential to integrate multisensory information from 
those groups which might have lesser capacities. For that, we 

FIGURE 8 | Hierarchical organisation of complex networks. (A) Hierarchies 
as agglomeration of modules (Arenas et al., 2006). (B) Centralised and fractal 
hierarchical model (Ravasz and Barabási, 2003). (C) Illustrative representation 
of the modular and hierarchical structure found in the corticocortical 
connectivity of the cat. The highest hierarchical level is formed by a densely 
interconnected overlap of the modules.
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arbitrarily choose all the areas with output degree k
o
(ν) ≥ 20 as 

potential members of the integrator module giving rise to a set 
of N

S
 = 19 areas:

S
hubs

 = {20a, 7, AES, EPp, 6l, 6m, 5Am, 5Al, 5Bm, 5Bl, SSSAi, 
SSAo, PFCL, Ia, Ig, CGa, CGp, 35, 36}.

The statistical analysis consists in measuring the integrative 
capacities of all the 524,097 combinations of sizes N

S
 = 1 to N

S
 = 19 

out of the 19 hubs in S
hubs

.

Integration capacity after sensory stimulation
Consider the linear System (6) with Â being the transposed and 
normalised adjacency matrix of the cat G

eat
. All areas are driven 

by a small Gaussian noise level ξ
i
 = 1.0 and coupled by g = 0.5. 

This case might be regarded as the activity of the network in the 
 resting-state because all x

i
 are driven by noise of small intensity 

and there is no sensory input. Now, we intend to illustrate the 
joint capacity of a group of areas to integrate information of 
 different character. Even if it is unclear how to defi ne the  character 
of information, in the case of cortical networks it is known that 
sensory information enters the cortex through specifi c regions 
termed as primary sensory areas: primary visual cortex (area 
17), primary auditory cortex (area AI) and primary somato-
sensory cortex (areas 1, 2 and 3b). According to Scannell et al. 

(1995) the cortical areas 1, 2 and 3b are subregions of the primary 
somatosensory area, named by some authors as SI. Hence, we 
simultaneously excite all the primary sensory areas {17, AI, 1, 2, 
and 3b} by assigning them a larger noise level ξ

j
 = 10.0) and we 

measure the integration I(S) of all the subsets S of hubs out of 
S

hubs
. Because of the excited condition, we denote the integration 

of the subsets as Ie(S).
The results depicted in Figure 9A show that Ie(S) can largely dif-

fer. For example, among all the subsets of size N
s
 = 10, the integra-

tion of some of them is very small, Ie(S) ∼ 0.1, while the integration 
of others becomes much larger, Ie(S) ∼ 0.5. These differences permit 
us to identify those cortical hubs which, grouped together, become 
more statistically dependent among them as a consequence of the 
multisensory stimulation. Considering only those subsets whose 
Ie(S) lies within the largest 10% (red crosses in Figure 9A) a co-
participation matrix C is constructed such that C

ij
 is the number 

of times (given in frequency) that two cortical hubs participate 
together in one of the maximal sets, Figure 9B. It is observed that 
areas {7, AES; EPp; 6m; Ia, Ig, CGp, 35, 36} participate together in 
over 75% of all the maximal sets. Visual area 20a and the soma-
tosensory-motor area 6l participate only in 50% of the occasions 
with those areas in the core. The remaining areas, {5Am, 5Al, 5Bm, 
5Bl, SSSAi, SSSAo and PFCL}, can be discarded as members of the 
dynamical core.

FIGURE 9 | Functional segregation and integration. (A) Local 
integration I(S) of cortical hubs after stimulation of the primary sensory areas. 
(B) Co-participation matrix of cortical hubs within the subsets leading to large 
Ie(S) (red dots). (C) Modular integration IP4

 of the sensory modules V, A, SM and 

FL after simultaneous lesion of cortical hubs. NS is the number of hubs removed. 
(D) Co-participation matrix of the hubs within the subsets S which lead to a 
larger decrease in the dynamical dependence IP4

( )( )S  of the sensory modules 
(marked by red dots).
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Dynamical segregation after multiple lesions
Within a networked system the removal of critical nodes should 
lead to a decrease in its integrative capacities. In the following, we 
study the impact of targeted lesions of the corticocortical network 
of the cat, G

cat
. For all the possible subsets S composed of hubs in 

S
hubs

, we perform a lesion to the network by simultaneously remov-
ing the nodes x

i
 ∈ S and characterise the consequent functional 

segregation of the network G
S
 = G

cat
 − S as the change in statistical 

dependence between the four modules (V, A, SM and FL). Lesion 
of areas critical for the integration capacities of the system should 
lead to a dynamical segregation of the modules, i.e. a decrease in 
their statistical dependence.

Recall that integration I(X) as defi ned in Eq. 7 is an extension 
of the mutual information for more than two systems. It repre-
sents the limit case in which the statistical dependence among 
all the elements x

i
 in the system X is quantifi ed. To cover differ-

ent scales of organisation we propose to characterise the statisti-
cal dependence between groups of elements. Imagine a partition 
P = {S

1
,S

2
,…,S

n
} into n groups (modules) of the elements x

i
 such 

that X = S
1
 ∪ S

2
 ∪…∪ S

n
. Then, we defi ne the modular integration 

of the partition P as:

I X H S H Xj
j

n

P( ) ( ).= ( ) −
=

∑
1  

(10)

Note that when n = N, then IP(X) = I(X).
Considering the partition P

4
 = {V, A, SM, FL} and the cortico-

cortical network of the cat, then IP G
4
( ) = 0.292cat . The modular inte-

gration of each lesioned network G
S
 is computed for the partition 

P
4
. Notice that (a) the nodes are also removed from the partition 

and (b) every G
S
 is adequately normalised by its largest eigenvalue 

such that the measured observables are comparable across reali-
sations (see Section “Information Theory and Integration”). The 
results in Figure 9C permit us again to discriminate between sub-
sets of hubs whose simultaneous removal lead to a large segrega-
tion of the network, while removal of other subsets has barely no 
effect. For example, among all the possible lesions of size N

S
 = 10, 

some trigger a large segregation of the modules, IP SG
4

0 05( ) ∼ .  
while other lesions do even increase their dynamical dependence: 
I IP S PG G

4 4
0 35( ) ∼ > ( ). cat .

Selecting only those subsets whose lesion leads to a larger 
segregation of the modules, i.e. IP G

4
( )S  lies among 10% of 

the minimal modular integration for each size N
S
 (red dots 

in Figure 9A), a co-participation matrix C is constructed, 
Figure 9D. The entries C

ij
 are the number of times (given in 

frequency) that two areas participate together in one of the 
minimal subsets. A core of cortical areas is found which par-
ticipate together in over 70% of these cases: {7, AES; EPp; Ia, 
Ig, CGp, 35, 36}. Somatosensory-motor areas 6m, 5Al and 5Bl 
join them in over 50% of the cases.

In summary, both the multiple lesion and the multisensory 
excitation analysis performed in this section lead to the identi-
fi cation of the same cortical hubs as responsible for the integra-
tion of multisensory information in the corticocortical network 
of the cat. Moreover, this set largely coincides with the top hier-
archical level found by the graph analysis in Section “Topological 

Capacity of Integration”, corroborating the integrative function 
assigned to the hubs by intuitive interpretation of their topologi-
cal characteristics.

SUMMARY AND DISCUSSION
In this paper we have analysed the modular and hierarchical organi-
sation of the corticocortical network of the cat and its relationship 
to the intrinsic necessities of the brain to simultaneously segregate 
and integrate multisensory information. From the topological point 
of view, we have extended the current understanding of cortical 
organisation with the fi nding that the cortical hubs form a central 
module on top of the cortical hierarchy; which is expressed as the 
partial overlap of the four anatomical modules (visual, auditory, 
somatosensory-motor and frontolimbic). By means of dynamical 
and information theoretical measures, we have corroborated its 
capacity to integrate multisensory information, i.e. after simultane-
ous excitation of visual, auditory and somatosensory primary areas, 
a particular set of hubs becomes statistically dependent forming a 
dynamical cluster. Additionally, the simultaneous lesion of these 
hubs leads to a largest decrease in the integrative capacities of the 
network. Both structural and functional results indicate that visual 
areas 7 and AES, auditory area EPp and frontolimbic areas Ia, Ig, 
CGp, 35 and 36 are the most likely candidates to form the top 
hierarchical module. The participation of somatosensory-motor 
areas is less clear, although area 6m is the strongest candidate of 
them. Visual area 20a and somatosensory-motor areas 5Al and 5Bl 
are also potential candidates.

The modular and hierarchical organisation here detected agrees 
with the behaviour observed in dynamical simulations of cortical 
networks. The resting state dynamics are typically governed by the 
formation of dynamical clusters which closely relate to the anatomi-
cal modules, but the infl uence of the hierarchical organisation is 
also expressed. In Zemanová et al. (2006) and Zhou et al. (2006, 
2007) it was shown that the correlation between the dynamical 
clusters is mediated by the cortical hubs. In Honey et al. (2007) the 
centrality of the hubs was found to oscillate in time. Simulation 
of excitable dynamics on hierarchical networks (Müller-Linow 
et al., 2008) has shown that the dynamical behaviour of the corti-
cal  network of the cat may be dominated either by the modular 
structure or by the hubs, depending on the time scales.

SEGREGATION, INTEGRATION AND LOCALISATION
The separation of modal information paths is a relevant charac-
teristic of organisation in the nervous system that permits simul-
taneous (parallel) processing of sensory input and detection of 
its features. Cortical regions containing neurones specialised in 
similar function, e.g. in processing information of the same sen-
sory modality, lie  geographically close to each other (Figure 10A). 
However, a coherent perception and the emergence of mental 
states such as awareness and consciousness require that infor-
mation is integrated at different levels: the binding of sensory 
features into entities, the combination of entities with memo-
ries (personal experiences) into events, etc. While experimental 
techniques have led to a deep understanding about the basis of 
sensory perception, the nature of integration and the localisation 
of brain regions involved in it, is still under the subject of debate. 
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As stated by Fuster (2003), simple extrapolation of the principles 
of sensory organisation do not lead to the identifi cation of the 
substrate for cognition.

Several models have proposed that high-level functions are rep-
resented by distributed, interactive and overlapping networks of 
neurones, which transcend any of the traditional subdivisions of 
the cortex by structural (cytoarchitecture) or functional criteria 
(Damasio, 1989; Fuster, 2003, 2006; Tononi, 2004). During the 
recent years increasing experimental evidence has confi rmed this 
hypothesis and the networked perspective has gained the favour 
against the assumption of a single brain region fully responsible 
for integration (Stam and Reijneveld, 2007; Bullmore and Sporns, 
2009; Knight, 2009). The anatomical networked connectivity may 
serve as the basis in which localised and distributed functional 
networks rapidly emerge and dissolve governed by coordination 
dynamics according to the sensory stimulation and the ongoing 
activity (Bressler and Kelso, 2001).

As a further evidence, our results resolve the anatomical organi-
sation substrate that supports the capacity of the cerebral cortex 
to simultaneously segregate and integrate information. In the 
light of this organisation, it could be envisioned that  multisensory 
 integration emerges from the collaborative function of the  cortical 
hubs. While early sensory cortical regions perform specialised 
processing of the sensory input, the hubs of the network may 
work together to combine the multisensory information. A relevant 
organisation difference is that the cortical hubs form a module 
which is densely connected by axonal paths through the white mat-
ter, but is geographically delocalised (Figure 10B).

LIMITATIONS AND OUTLOOK
The current paper focuses in the corticocortical connectivity 
of cats because it is, up to date, the most complete and reliable 
dataset of its kind. Hence, it is the most suitable for a detailed 
and statistically consistent analysis. The main limitation is that 
it comprises of interconnection between cortical areas in only 
one cerebral hemisphere. Because of the known inter-hemisfere 
differences in many mammals, particularly in humans, it will 
be very valuable in the future to acquire the connectivity within 
and between both hemispheres in animal and human models. 
Based on current literature in which the cortical networks of the 
macaque and cat models display similar features, we expect that 
the general organisation principles here exposed to be valid in a 
wide range of mammals.

An interesting challenge is now to explain the emergence of 
this modular and hierarchical organisation in terms of evolution 
and development, in particular how the delocalised cluster of 
hubs could have evolved if, apparently, areas of similar function 
tend to be grouped close to each other. Very likely, the balancing 
between short wiring requirements (leading to minimisation of 
energy costs) and short processing paths allowing for robustness 
and fast responses (Kaiser and Hilgetag, 2006) plays a major role. 
It would also be of relevance to fi nd out whether similar hierarchi-
cal patterns are repeated across smaller scales within the cortex, 
i.e. the interconnections between cortical columns and micro-
columns. This would imply an underlying fractal-like complex 
architecture which can emerge from simple rules of assembly 
during development.

FIGURE 10 | Spatial location of the areas according to their modality: visual (yellow), auditory (red), somatosensory-motor (green) and frontolimbic (blue). 

While areas of similar modality tend to lie close to each other (A), the hubs form a topological cluster which is spatially delocalised (B).
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Finally, we should remind that current non-invasive techniques 
such as EEG, MEG and fMRI reveal only the presence of brain 
activity. They permit to identify which brain regions are associated 
with certain experimental condition. However, at the current stage 
it is very diffi cult, if not impossible, to understand what is exactly 
an activated region doing. Is it fi ltering a signal? Is it integrating 
information? Is an activation detected only because that particular 
region contains memories which are being retrieved and passed to 
other regions for processing? In our opinion, it would be highly 
interesting to further develop concepts of information theory as 
the modular and local capacity of integration here presented which 

applied to the time series of regional activity might help understand 
the particular function of individual brain regions within a given 
experimental task.
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A necessary precondition for attaining a critical point in intricate 
neural systems, such as the mammalian cerebral cortex, is that initial 
network activations result in neuronal activation patterns that neither 
die out too quickly nor spread across the entire network. Without 
this feature, activation patterns would not be stable, or would lead to 
a pathological excitation of the whole brain. What are the essential 
structural and functional parameters that allow complex neural net-
works to maintain such a dynamic balance of sustained yet limited 
activity? Most current models of neural network dynamics focus on 
maintaining the right balance of network activation and rest through 
functional interactions among populations of inhibitory and excita-
tory nodes (Beggs and Plenz, 2003). Alternative balancing mechanisms 
may be provided by broad external input from neuromodulatory sys-
tems or self-sustained neuronal activity (Muresan and Savin, 2007). 
However, the topology of neural networks may also contribute to 
critical network dynamics, even in the absence of explicit inhibition. 
For this reason, we are particularly interested in the relationship of 
different kinds of neural network topology to the condition of limited 
sustained activation (LSA). The involvement of inhibitory neuronal 
populations and other dynamic control mechanisms may then further 
extend the parameter range for LSA that is provided by principal 
topological features of the neural network architecture.

INTRODUCTION
Complex systems operate within a critical functional range (Bak 
et al., 1987), sustaining diverse dynamical states on the basis of their 
intricate system architecture. Criticality is associated with the phase 
transition between ordered and chaotic dynamics, and systems tuned 
to the critical point produce power-law distributions in their dynam-
ics. Recent studies indicate that brain networks also operate close 
to a critical point. Evidence for this comes, for example, from the 
observation of neuronal avalanches (i.e., bursts of activity separated 
by longer periods of relative rest) with a power-law size distribution in 
cortical slices (Beggs and Plenz, 2003), and from time series analysis 
of EEG data (Freeman et al., 2000) showing that the power spectral 
density of background activity follows a power law. Critical activity 
has also been demonstrated in human brain functional networks 
(Kitzbichler et al., 2009). While its functional signifi cance is still not 
well understood, it has been suggested that critical dynamics may 
enhance information processing capabilities of neuronal networks 
(e.g., Bertschinger and Natschläger, 2004). This idea is supported 
by work showing that the dynamic range in an excitable network is 
optimized at criticality (Kinouchi and Copelli, 2006). Given these 
fi ndings, it is desirable to obtain a better understanding of the condi-
tions for criticality in complex excitable networks.
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Two central topological features of brain networks, in particular 
of the cerebral cortex, are their modular and hierarchical organi-
zation. A modular hierarchical organization of cortical architec-
ture and connections is apparent across many scales, from cellular 
microcircuits in cortical columns (Mountcastle, 1997; Binzegger 
et al., 2004) at the lowest level, via cortical areas at the mesoscopic 
scale, to clusters of highly connected brain regions at the global 
systems level (Hilgetag et al., 2000; Breakspear and Stam, 2005; 
Kaiser, 2007). The precise organization of these features at each 
level is still sketchy, and there is exists controversy about the exact 
organization or existence of modules even at the level of cortical 
columns (Rakic, 2008; Smith, 2010). Nonetheless, current data and 
concepts suggest that at each level of neural organization clusters 
arise, with denser connectivity within than between the modules. 
This means that neurons within a column, area or cluster of areas 
are more frequently linked with each other than with neurons in 
the rest of the network.

The spreading of activity has been modeled for cortical net-
works (Kötter and Sommer, 2000) and other complex networks 
with a non-random organization (Pastor-Satorras and Vespignani, 
2001). In a previous study of activity spreading through different 
topologies of excitable networks (Kaiser et al., 2007a), we showed 
that patterns of limited but sustained activity are well supported 
by the organization of hierarchical multi-modular networks, but 
not random or simple small-world networks (Watts and Strogatz, 
1998) of the same size. In addition, such properties arose without 
the need for explicit inhibitory feedback or external input, dem-
onstrating the signifi cant role of network topology in sustaining 
and limiting neural activation (Latham and Nirenberg, 2004; Roxin 
et al., 2004).

While our previous study (Kaiser et al., 2007a) demonstrated 
that a wide range of initial parameters in hierarchical modular 
networks could result in LSA, it did not clarify whether this range 
was due mainly to the multi-modular organization of the network 
or its hierarchical structure. In the present study, we investigated 
the relation of different hierarchical network confi gurations to the 
range of LSA more extensively. The principal type of  hierarchical 

structure, an interconnected set of modules with encapsulated 
sub-modules without explicit hub nodes, as well as the settings 
for the dynamic mechanisms were preserved from our previous 
model. A fi xed number of nodes was activated at the beginning of 
each dynamical simulation. Other nodes became activated when 
at least k of their directly connected node neighbors were active at 
the same time. Each active node deactivated in the following time 
step with probability v. Note that this model only assumes initial 
activation at time step 0, but no ongoing external input or internal 
random activation.

Our hierarchical topological model refl ects general features of 
brain connectivity at the large and mesoscopic scale, in particular 
the modularity of neural networks across scales. Nodes in the model 
are intended to represent cortical columns (Mountcastle, 1997) 
rather than individual neurons. Connections between columns 
are modeled as exclusively excitatory, since it is appears to hold 
that there are no long-distance inhibitory connections within the 
cerebral cortex (Latham and Nirenberg, 2004). However, nodes can 
also deactivate (controlled via the model’s deactivation probability) 
due to intrinsic inhibition or exhaustion, as observed for corti-
cal tissue after prolonged fi ring, for instance in epileptic seizures 
(Milton and Jung, 2003).

Two main parameters were explored in the hierarchical 
networks, the number of hierarchical levels and the number 
of sub-modules at each level (cf. Figure 1). These parameters 
were varied, while other topological features, such as the prob-
ability that any two nodes are connected, or alternatively, the 
average number of connections per node, were kept constant. 
We explored whether optimal hierarchical confi gurations 
existed, in which the proportion of tested cases with LSA was at 
a maximum. In addition, we tested whether the parameters for 
such optimal confi gurations changed with network size; that is, 
whether small networks, representing the approximate number 
of columns as in a small rodent (rat) brain, had different opti-
mal settings than larger cortical networks that might refl ect the 
number of column nodes in larger mammalian (cat) and primate 
(macaque) brains.

FIGURE 1 | Overview of variation of granularity and scales in the 

explored hierarchical modular networks. The plots show the outcome of 
100 realizations of networks with 128 nodes and 4,096 directed edges. Gray 
level shading of the adjacency matrix indicates the frequency with which an 
edge was established (white: never established; black: established in all 100 
generated networks). (A) Random networks without hierarchical structure, 

resulting from h = 0 (number of hierarchical levels) and m = 0 (number of sub-
modules); (B) Flat modular networks with four modules, resulting from h = 1, 
m = 4; (C) Hierarchical modular networks with h = 2, m = 4. Note that each 
hierarchical level contains the same number of edges, resulting in 16 modules 
at the lowest hierarchical level in (C), which possess the highest 
edge density.
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The network was generated beginning with the highest level 
and adding modules to the next lower level with random con-
nectivity within modules. The resulting networks were similar to 
the ones produced by an alternative procedure (Sporns, 2006), 
but differed in the generating algorithm (we present pseudocode 
here, the actual Matlab algorithm is available online at http://
www. biological- networks.org):
for i from 0 to h − 1 for all hierarchical levels

A
i
 = (m − 1)/mi+1  proportion of the adjacency 

matrix occupied by one module 
at the current hierarchical level

p
i
 = E

i
/(N2 A

i
) edge density within a module

N
i
 = N × (1/m)i number of nodes in a module

N
c
 = N/N

i
  number of modules at the current 

level
for j from 1 to N

c

c
i
 =  random graph with N

i
  random N

i
×N

i
 graph with 

and edge density p
i  

edge density p
i

r
0
 = 1 + (j − 1) N

i
 fi rst node of the module

r
1
 = r

0
 + N

i
 − 1 last node of the module

CIJ(r
0
 to r

1
, r

0
 to r

1
) = c

i
  part of the matrix CIJ is replaced 

with c
i

for i from 1 to N
CIJ(i, i) = 0  remove connections across the 

diagonal (loops)
The algorithm involves the following steps: Starting with an 

empty adjacency matrix CIJ, modules at hierarchical level i are 
added starting with modules at the hierarchical level h = 0 (global 
network). The ratio of matrix elements that represent potential 
connections within any module A

i
 depends on the hierarchical 

level i and the number of sub-modules per module m. Based 
on A

i
 and the number of edges at that hierarchical level, E

i
, we 

can determine the probability p
i
 that any two nodes within a 

module are connected (edge density within modules). Next, the 
number of nodes in each module N

i
 is calculated leading to the 

total number of modules N
c
 at that level. Then, each module 

given as a random graph with edge density p
i
 is inserted in the 

adjacency matrix CIJ. Finally, edges along the diagonal (loops) 
are removed from the network. Due to this removal, the total 
number of edges might be slightly lower than the desired number 
of edges. In these cases, additional edges are added randomly to 
the network to generate the desired total number of edges and 
edge density (not shown in the pseudocode; however, see Matlab 
routine online).

We explored hierarchical networks with different numbers 
of hierarchical levels, h (scales), and numbers of sub-modules at 
each level, m (granularity). A network without hierarchical levels 
forms a random network, with one level a “fl at” modular net-
work, two levels a network with modules and sub-modules, and 
so on (Figure 1).

SPREADING MODEL
A basic spreading model (Newman, 2005) was modifi ed to simulate 
the propagation of activity through the network. This dynamic 
model was identical to the one used in Kaiser et al. (2007a).

The simulation operated in discrete time steps, with nodes being 
in one of two states, active or inactive.

MATERIALS AND METHODS
Calculations were performed on a 16-core HP ProLiant server using 
the Linux version of Matlab R2009a (Mathworks Inc., Natick, MA, 
USA). Scripts are available at http://www. biological-networks.org 
and are part of CARMEN (http://www.carmen.org.uk).

ANATOMICAL CONSTRAINTS
We investigated if the topology of optimal hierarchical net-
works, leading to a maximum parameter range of LSA, varied 
with brain size. For this approach, the number of nodes was 
set to the number of columns estimated to exist in one cortical 
hemisphere in different species. The number of columns was 
estimated from the surface size of one cortical hemisphere in rat 
(Nieuwenhuys et al., 1998), cat (Nieuwenhuys et al., 1998), and 
macaque (Felleman and van Essen, 1991) under the assumption 
of each (macro-)column occupying 1 mm2. Real columns might 
be smaller and we elaborate on the role of column size differ-
ences across areas and species in the Section “Discussion”. We 
explored three networks with different surface sizes for one hemi-
sphere, rat-like (300 nodes; 3 cm2 surface), cat-like (4,150 nodes; 
41.5 cm2 surface), and macaque-like (11,000 nodes; 110 cm2 sur-
face). Note that these are very simple estimates based on the 
assumption that columns in different species are comparable 
in the basic circuit layout even though the absolute number of 
neurons may vary (Herculano-Houzel et al., 2008). Either edge 
density or average number of edges per node (average degree 
〈k〉) was kept constant across network sizes. The edge density 
was set to 1.2%, corresponding to the one chosen in a previous 
study (Kaiser et al., 2007a) and is close to values of 0.48% for a 
model of the rat cortex.

The constraint of a constant average node degree was motivated 
by comparative studies showing largely constant numbers of con-
nections per neuron across many species (Hellwig, 2000; Schüz and 
Braitenberg, 2002; Binzegger et al., 2004; Striedter, 2004; Changizi 
and Shimojo, 2005; Schüz et al., 2006). At the column level, it can 
also be reasoned that columns are mostly connected with adjacent 
columns on the cortical surface (short-distance; intra-areal) and 
only a few columns in different areas (long-distance; inter-areal 
connections). Due to this presumed homogenous arrangement of 
cortical networks, the number of connections per column should 
be independent of the total number of columns in the network. 
The average degree was set to the arbitrary but fi xed number of 50. 
Note that the actual values for edge density or average degree might 
differ from the ones chosen here without changing the principal 
conclusions of this study, as results across different networks were 
compared qualitatively.

GENERATING HIERARCHICAL NETWORKS
Alternative approaches exist for generating a hierarchical net-
work with m sub-modules per module and a total number of 
levels h. As a default, we settled on a strategy in which the total 
number of edges E was distributed to the different levels (see 
Figure 1) with E

i
 edges on level i, so that each level received 

the same number of edges: E
i
 = E/(h + 1). This model, which 

was used throughout the study, preserved a constant number of 
edges when the number of levels or sub-modules within modules 
was varied.
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We used a simple threshold model for activity spreading where 
a number i of randomly selected nodes was activated in the fi rst 
step. At each subsequent time step, inactive nodes became acti-
vated if at least k neighbors were currently active (neighbors of a 
node are nodes to which direct connections exist). Activated nodes 
could become inactive with probability v in the next time step, or 
otherwise stayed active.

An additional parameter was the extent of localization of the ini-
tial activation, i

0
. For initialization, i (i ≤ i

0
) nodes among the nodes 

1 to i
0
 were selected randomly and activated in the fi rst time step. 

The networks nodes were numbered consecutively. For instance, for 
a network where the largest modules at the highest level contained 
100 nodes and where each module contained 10 sub-modules with 
10 nodes each, by setting i

0
 to 10, 20 or 100, the fi rst sub-module, the 

fi rst two sub-modules, or the fi rst module, respectively, were activated 
during initialization. Thus, i determined the number of initially active 
nodes while i

0
 controlled the localization of initial activations, with 

smaller values resulting in more localized initial activity.

CALCULATING THE AVERAGE RANGE OF LIMITED SUSTAINED ACTIVITY
We systematically explored the network activation resulting from 
different settings of the initial node activation and localization 
parameters. Persistent contained activity in hierarchical networks 
(e.g., intermediate-level trace in Figure 2A) existed for a wide range 
of initial localization and activation parameters (indicated by gray 
fi lled circles in Figure 2B).

We also explored if the results were robust for variations in 
the dynamic model parameters k and v, by using a Monte Carlo 
approach in which, for each pair of k and v, spreading simulations 
with randomly chosen parameters i (number of initially activated 
nodes) and i

0
 (localization) were tested (Figure 2B). A trial was 

considered to show sustained activity if at least one but at most 50% 
of the nodes were activated at the end of the simulation (after 200 
steps). In our experience, activity did not further die out or spread 
through the whole network if such an activity level was reached at 
the end of the simulation. For each pair of spreading parameters k 

and v, the average proportion of cases for which sustained activity 
occurred was charted (Figure 2C). This proportion is specifi ed by 
the ratio of gray fi lled circles relative to all data points in Figure 2B. 
The threshold k ranged from 1 to 9 (step size 2), while the deactiva-
tion probability v ranged from 10 to 90% (step size 20%). Therefore, 
the average ratio over all entries in Figure 2C refl ected the size of 
the parameter space for a given network topology which could give 
rise to LSA, taking into account the initialization parameters i and 
i

0
 as well as the dynamic model parameters v and k.

We tested the proportion of cases with sustained activity for 
different hierarchical confi gurations. These confi gurations varied 
in the number of hierarchical levels, from 0 for random networks 
to 4, and the number of sub-modules into which each module 
was divided for creating the next-lower hierarchical level. For each 
confi guration, different values for the threshold k and the deactiva-
tion probability v were tested, in that for each (k, v) pair, 200 runs 
were performed and the network state was observed after 200 time 
steps leading to a classifi cation as dying-out, sustained, or spreading 
activity. For these 200 runs, the number of initially activated nodes 
i and the localization parameter i

0
 was chosen randomly (see range 

in Figure 2B). The average proportion of sustained activity cases 
for each confi guration was plotted as gray-scale value for Figure 4 
and the subsequent fi gures.

INACCESSIBLE PARAMETER RANGE
For all network sizes, a variety of hierarchical confi gurations could 
not be realized, due to the limited network size (regions indicated by 
horizontal lines in Figure 3 and subsequent fi gures). Inadmissible 
confi gurations were those where the smallest module at the bottom 
level would have contained more edges than there were edges possible 
between module members; that means where N

c
 (N

c
 − 1) < E

c
 (N

c
: 

number of nodes; E
c
: number of edges in the smallest module). Note 

that the number of sub-modules per module was varied in steps of 
two (2, 4, 6, 8,…). Variations by a different step size might have pro-
duced more clearly apparent differences in inaccessible confi gurations 
between small (300 nodes) and large (11,000 nodes) networks.

FIGURE 2 | Determining the parameter range of limited sustained activity 

(schematic overview). (A) For several trials (shown here: 30 runs), it was tested 
whether activity spread through the whole network (here: activating 80% of all 
nodes), died out (all nodes becoming inactive), or was sustained at an 
intermediate level (here: activating 10 or 20% of all nodes). Note that even 
during complete spreading, not all the nodes were constantly active, due to the 
inactivation probability v specifi ed in the dynamic model. (B) Simulations were 
run for different combinations of the number of initially activated nodes i and the 
localization parameter i0. For each run, the simulated activity died out (•), spread 

through the whole network (o) or was sustained within a limited compartment 
of the network (•). (C) The parameter space of simulations was further explored 
for different combinations of deactivation probability v and activation threshold k. 
Gray levels for each parameter combination in the diagram refl ect the 
percentage of cases giving rise to LSA (from subplot B). The average value 
across all entries was taken as the fi nal measure of the parameter range of LSA 
for a particular network topology. It refl ects the average proportion of limited 
sustained activation cases obtained across all parameter settings for a given 
hierarchical modular network.
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RESULTS
EXPIRING, LIMITED SUSTAINED AND COMPLETELY SPREADING 
ACTIVITY PATTERNS
How does activity change over time for different parameter settings? 
In Figure 3 we give examples for different outcomes in a network 
with 512 nodes, two hierarchical levels, and eight modules with 
eight sub-modules per module. Each sub-module contains eight 
nodes. Modules are represented by gray shading where the indi-
vidual gray levels represent sub-modules. Blue dots indicate that a 
node is active at a certain time step.

For expiring activity (Figure 3A), initial activity quickly died out 
as active nodes became de-activated and not enough active neighbors 
existed to sustain the activity. For LSA (Figure 3B), modules and 
sub-modules became activated indicating that a critical number of 
neighbors of a node were active and able to (re-) activate a node. For 
completely spreading activity (Figure 3C), activity that was initially 
contained in one module or several sub-modules managed to spread 
to other parts of the network and quickly led to complete network 
activation. This time-course of an early focus of activity with a rapid 
spread to the whole network may be compared to the generalizations 
of seizures in epilepsy patients. Note that the blue lines in Figure 3A as 
well as the large blue areas in Figures 3B,C also contain nodes which 
are not active (see inset of Figure 3B); however, these nodes are not 
visible in the fi gure due to the dot size and image resolution.

TOPOLOGICAL AND SMALL-WORLD PROPERTIES OF HIERARCHICAL 
NETWORKS
For all tested network sizes, the generated hierarchical networks 
(h ≥ 1) possessed characteristics of small-world networks (Watts 
and Strogatz, 1998), in that the clustering coeffi cients (the average 
frequency with which neighbors of a node are directly connected) 
were much higher than for same-size Erdös–Rényi random networks 
(Erdös and Rényi, 1960), whereas the characteristic path lengths (the 
average number of connections on the shortest path between any two 
nodes) remained comparable to those for random networks of the 
same size (Tables 1 and 2). Note that networks with only one hierar-
chical level represent the special case of simple modular networks.

The characteristic path length for the case of constant edge 
density (Table 1) was particularly high for the 300-node network. 
This is due to the low edge density of 1.2%; small networks 
with low edge density exhibit fewer alternative pathways than 
larger random networks with the same edge density. Therefore, 
the path length decreases when more edges are added, as for 

FIGURE 3 | Examples of neural dynamics for different simulation outcomes. 

Gray shading represents modules and individual gray levels represent different 
sub-modules. Nodes which are active at a time step are represented as blue dots. 

(A) Expiring (dying-out) activity. (B) Limited sustained activity. Although some 
modules appear completely activated, nodes can be inactive at various time steps 
due to the inactivation probability (inset). (C) Completely spreading activity.

Table 1 | Graph and small-world characteristics of hierarchical networks 

with constant edge density.

N E C C
rand

 L L
rand

 SW

300 1,080 0.025 0.012 23.6 25.0 2.21

512 3,146 0.024 0.012 5.1 4.6 1.80

4,150 206,670 0.023 0.012 2.6 2.5 1.84

11,000  1,452,000 0.023 0.012 2.3 2.2 1.83

The number of edges E for a given number of nodes N was chosen such that 
the edge density remained 1.2%. Networks with two hierarchical levels and 
four sub-modules per module are shown (cf. Figure 1C). C and Crand: clustering 
coeffi cients of the hierarchical and random networks. L and Lrand: Characteristic 
path lengths of the hierarchical and random networks. SW: small-world index 
(C/Crand)/(L/Lrand).

Table 2 | Graph and small-world characteristics of hierarchical networks 

with constant node degree.

N E C C
rand

 L L
rand

 SW

300 15,000 0.227 0.167 1.8 1.8 1.36

512 25,600 0.163 0.098 1.9 1.9 1.66

4,150 207,500 0.023 0.012 2.6 2.5 1.84

11,000 550,000 0.009 0.005 2.8 2.8 1.80

The number of edges E for a given number of nodes N was chosen such that 
the average number of connections (node degree) was 50. C and Crand: clustering 
coeffi cients of the hierarchical and random networks. L and Lrand: Characteristic 
path lengths of the hierarchical and random networks. SW: small-world index 
(C/Crand)/(L/Lrand).
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the larger  networks. This behavior resembles the behavior of 
random networks where the characteristic path length L ∼ ln 
N/ln 〈k〉, where N is the number of nodes and 〈k〉 is the aver-
age node degree (Albert and Barabási, 2002; Costa et al., 2007). 
All networks, however, show features of small-world networks 
(Watts and Strogatz, 1998). The clustering coeffi cient for random 
networks, C

rand
, was the same for all network sizes. For random 

networks, the clustering coeffi cient is the same as the edge den-
sity; that means, the probability that neighbors of a node are 
connected is the same as the probability that any two nodes are 
connected. As the edge density is kept constant for all network 
sizes, C

rand
 remains constant at that value as well. The extent of 

a small-world organization can be characterized by the small-
world coeffi cient SW = (C/C

rand
)/(L/L

rand
) (Humphries et al., 

2006; Humphries and Gurney, 2008). The index SW is around 2 
indicating a small-world organization of these networks. Whereas 
SW is 2.2 for a small network size of 300 nodes, it remains at a 
lower level of 1.8 for larger networks.

For constant average node degree 〈k〉 (Table 2), the average path 
length increases with network size. Smaller networks with 300 and 
512 nodes show a considerably lower path length compared to 
constant edge density. Again, all networks displayed features of 
small-world networks (Watts and Strogatz, 1998). The small-world 
index SW, however, was lower for small network sizes of 300 and 
512 nodes compared with the scenario of constant edge density.

OPTIMAL HIERARCHICAL CONFIGURATIONS FOR LSA IN 
A SMALL NETWORK
Variation of sustained activity and topological measures
As a fi rst test, we explored the link between hierarchical organiza-
tion and the parameter range of LSA for different confi gurations 
of a network with 512 nodes and, on average, 50 connections per 
node (Figure 4A). The parameter range for LSA tended to increase 
with the number of sub-modules at each hierarchical level (along 
rows in Figure 4A). The maximum range of LSA occurred for one 
hierarchical level and the largest possible number of sub-modules 
per module.

In this and all following plots (Figures 5 and 6), regions with 
horizontal lines indicate hierarchical confi gurations that cannot 
be realized, as some modules would need to contain more edges 
than can be fi tted between members of that module. These cases 
were detected whenever N

c
 (N

c
 − 1) < E

c
 (N

c
: number of nodes; E

c
: 

number of edges in the smallest module); that means the number E
c
 

of edges that needed to be established was higher than the number 
of possible edges in a module, N

c
 (N

c
 − 1). Note also that the gray 

levels indicating proportion of cases were normalized so that white 
regions represent the minimum and black regions the maximum 
value for each plot.

Due to the network generation algorithm, modules at the low-
est level of the hierarchy had the largest edge density (cf. Figure 1). 
We used this effect to test if LSA patterns were facilitated by more 
densely connected bottom modules in the network (Figure 3B). 
Interestingly, there existed no clear relation of the density with 
sustained activation: whereas both maximum edge density and 
sustained activity probability increased with the number of sub-
 modules for a network with two hierarchical levels (Figures 4A,B), 
the relation was less clear for larger numbers of hierarchical levels.

How are small-world properties linked to the different hierar-
chical confi gurations? The characteristic path length (Figure 4C) 
appeared to show lower values when two or more hierarchical 
levels existed in the network, but the values were in a narrow 
range of 1.91–1.92 for one hierarchical level. The clustering coef-
fi cient (Figure 4D) increased with the number of levels and the 
number of sub-modules per module. The characteristic path 
lengths of the hierarchical networks were comparable to those of 
Erdös–Rényi random networks (Figure 4E) whereas the cluster-
ing coeffi cient was higher than in random networks (Figure 4F). 
As the normalized path length is around 1, the SW index has 
a similar value as the normalized clustering coeffi cient. Given 
large SW indices, the networks possessed features of small-world 
networks (Watts and Strogatz, 1998).

FIGURE 4 | Range of limited sustained activity for different hierarchical 

confi gurations of a small network. Shown is the parameter range of limited 
sustained activation and of topological features for a network with 512 nodes 
and average node degree of 50. Regions blocked by horizontal lines indicate 
confi gurations that were not admissible (see Materials and Methods). 
Parameters were explored for 1,000 runs of each set of spreading parameters 
k and v, while the number of initially activated nodes i and the localization 
parameter i0 varied for each run. (A) Average of the number of parameter 
settings leading to LSA. (B) Maximum edge density based on the most highly 
connected modules (modules at the lowest level of the respective hierarchy). 
(C) Characteristic path length of the networks. (D) Average clustering 
coeffi cient of the networks. (E) Normalized characteristic path length (divided 
by the value for Erdös–Rényi random networks). (F) Normalized average 
clustering coeffi cient (divided by the value for Erdös–Rényi random 
networks).
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higher  hierarchical levels (“decreasing parcellation”) or (b)  creating 
more sub- modules for higher hierarchical levels (“increasing par-
cellation”). Confi gurations with a high proportion of LSA cases for 
decreased as well as increased numbers of sub-modules for each 
hierarchical level remained comparable with the original calcula-
tion. However, for the “increasing parcellation” type, the overall 
proportion of LSA cases increased, extending the maximum prob-
ability of sustained activity from 0.23 to 0.42 (cf. Figure 8).

Number of cases close to 50% activation threshold for classifi ca-
tion as sustained. In additional simulations, we tested how close the 
fi nal activity was to the threshold used for classifi cation as a case of 
LSA. Indeed, fi nal activity levels close to the 50% threshold could 
occur. However, fi nal activity levels were around 10–20% for most 
confi gurations producing a high number of LSA cases. This indi-
cates that confi gurations leading to a high proportion of LSA cases 
were not substantially affected by the threshold (cf. Figure 9).

Topologies leading to expiring, limited sustained, and completely 
spreading activity. As a default, we investigated the distribution 
of LSA cases depending on the hierarchical network organization. 
In additional simulations, we also explored the distribution of the 
other two possible simulation outcomes: activity dying out before 

Control calculations
We tested several parameters that were used for generating hierar-
chical networks. Networks consisted of 512 nodes and, on average, 
50 connections per node. The Appendix contains a full description 
of these control calculations including additional fi gures.

Varying the number of edges for different hierarchical levels. By 
default, the number of edges for each hierarchical level was set to 
be equal, that means, E

i
 was the same for each hierarchical level 

i. Here, we tested sustained activity patterns for varying numbers 
of edges per level. We considered two cases: (a) a decrease of the 
number of edges with each hierarchical level or (b) an increase of 
the number of edges with each hierarchical level. The absolute level 
of sustained activity was lower in case (a) and higher in case (b) 
compared to the original setting (cf. Figure 7).

Varying the parcellation for different hierarchical levels. By 
default, we used the same parcellation of modules at each level; 
that means if a module consisted of two sub-modules for the 
highest level, this condition would be the same for all other lev-
els of the network hierarchy as well. Here, we also tested varying 
the parcellation into sub-modules depending on the hierarchical 
level. Again, we tested two cases: (a) creating fewer sub-modules for 

FIGURE 5 | Scaling of optimal confi gurations with network size for constant global edge density. Proportion of cases showing LSA (averaged over 200 
generated networks for each confi guration) in (A) “rat-size” networks with 300 columns, (B) “cat-size” networks with 4,150 columns, (C) “macaque-size” networks 
with 11,000 columns.

FIGURE 6 | Scaling of optimal confi gurations with network size for constant average node degree (〈k 〉 = 50). Proportion of cases showing LSA (averaged over 
200 networks generated for each confi guration) in (A) “rat-size” networks with 300 columns, (B) “cat-size” networks with 4,150 columns, and (C) “macaque-size” 
networks with 11,000 columns.
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FIGURE 7 | Varying the number of edges per hierarchical level. (A) Decreasing number of edges for higher hierarchical levels [Ei ∼ (2/3)i]. (B) Number of edges 
independent from hierarchical level (Ei = const.). (C) Increasing number of edges for higher hierarchical levels [Ei ∼  (3/2)i].

FIGURE 8 | Varying the parcellation (number of sub-modules per module) for hierarchical levels. (A) Decreasing number of sub-modules mi for higher 
hierarchical levels (mi ∼ 0.9i). (B) Parcellation into sub-modules independent from hierarchical level (mi = m = const.; see main text). (C) Increasing number of sub-
modules mi for higher hierarchical levels (mi ∼ 1.1i).

FIGURE 9 | Final activity for n = 20 runs classifi ed as sustained activity. (A) Minimal fi nal activity level. (B) Average fi nal activity level. (C) Maximum fi nal 
activity level.
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the end of the simulation and fi nal activation of more than 50% 
of the nodes, which was classifi ed as complete spreading. For a 
random network (zero hierarchical levels), both dying-out and 
complete spreading occurred in 50% of the cases. However, when 
more than one hierarchical level was present, complete spreading 
activity occurred more often than dying-out. For one hierarchical 
level, outcomes depended strongly on the number of sub-modules 
per module. The cases with expiring activity formed 50% of the 
cases for two sub-modules, but decreased with the number of sub-
modules (cf. Figure 10).

Varying the edge density. The pattern of sustained activity remained 
comparable to the default settings even when the edge density dif-
fered from the original value of 10% for a network with 512 nodes 
and an average node degree of 50. The maximum proportion of 
cases with LSA varied between 0.172 for decreased edge density 
(5%) to 0.238 for increased edge density (20%). The relative distri-
bution of case for networks with one hierarchical level was similar 
across edge densities (cf. Figure 11).

SCALING OF OPTIMAL HIERARCHICAL CONFIGURATIONS FOR LSA WITH 
NETWORK SIZE
Two different scaling scenarios were explored. In the fi rst one, the 
global edge density of the networks was kept constant (at 1.2%) 
while the average number of connections per node varied; in the 
second scenario, the average node degree was kept constant (at 50 
connections per node) while the networks’ edge density varied.

Constant edge density
In the fi rst approach, the probability that any two nodes (represent-
ing cortical columns) in the network were connected was, on aver-
age, 1.2%. Connection density was larger within modules and lower 
between modules; however the global average remained constant, 
independent of the hierarchical confi guration.

Given a constant setting for testing neural activation across 
network sizes, the “rat-size” network showed sustained activ-
ity for a wide variety of hierarchical confi gurations (Figure 5A). 
Surprisingly, for the larger “cat-size” network, a smaller variety of 
hierarchies existed that could generate LSA (Figure 5B). However, 

FIGURE 10 | Proportion of cases resulting in one of three scenarios of fi nal activity level. (A) Activity dying out. (B) Limited sustained activity. (C) Activity 
spreading through the network (above 50% activation threshold).

FIGURE 11 | Varying the edge density in a network with 512 nodes. (A) Decreased edge density d = 5%, average node degree 〈k〉 = 25. (B) Original edge 
density d = 10%, average node degree 〈k〉 = 50. (C) Increased edge density d = 20%, average node degree 〈k〉 = 100.
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for these confi gurations, sustained activity occurred in up to 25% 
of the explored parameter settings, whereas it occurred only in up 
to 3% of the tested settings for the rat-like network (cf. scale of 
activation range). For the even larger “macaque-size” network, the 
maximum range of LSA (up to 4% of tested parameter settings) 
was as low as for the “rat-size” network (Figure 5C), while overall, 
the variety of hierarchical confi gurations that resulted in LSA was 
also lowest for the macaque-like network.

These results indicate that the number of possible hierarchi-
cal confi gurations (resulting from combinations of the number 
of levels and number of sub-modules) leading to LSA decreased 
with increasing network size. Only a few hierarchical confi gura-
tions appeared suitable for producing LSA in all network sizes. 
Such confi gurations typically combined an intermediate number 
of levels with a large number of sub-modules (Figures 4C and 5B). 
Interestingly, the combination of a large number of hierarchical 
levels with a small number of sub-modules proved ineffective for 
supporting LSA in the larger-size network (Figure 5C). For large 
networks the best strategy for achieving sustained activity was pro-
vided by an arrangement of two hierarchical levels containing the 
largest possible number of modules and sub-modules.

Constant average node degree
The results obtained under the constraint of a constant edge density 
(see section Constant edge density) suggested that confi gurations 
for LSA were harder to attain in large as well as small networks. 
Only networks of an intermediate size appeared to result in a large 
variety of hierarchical networks possessing a wide parameter range 
for LSA. In an alternative approach, we also tested optimal con-
fi gurations of networks of different sizes under the constraint that 
the average number of connections per column, rather than the 
probability that any two columns are connected (edge density), was 
kept constant. For this approach, the number of edges was set to 50 
times the number of nodes, leading to an average node degree of 50 
in all networks, albeit with variation for individual nodes.

Under these conditions, LSA in the “rat-size” networks arose 
mostly in networks with one hierarchical level, and for an increasing 
number of sub-modules (Figure 6A). Both the “cat-size” and the 
“macaque-size” networks possessed a similar, large range of hier-
archical confi gurations showing sustained activity (Figures 6B,C). 
All networks demonstrated that cases of LSA increased with the 
number of sub-modules per module. Whereas the range of hier-
archical confi gurations differed between the “rat-size” and the 
“cat-size” or “macaque-size” networks, the maximum range of 
sustained activity was comparable for all sizes with 15–30%. A 
constant number of connections per node, therefore, permitted a 
wide range of optimal hierarchical confi gurations for LSA even if 
the network size increased.

DISCUSSION
This study investigated an essential precondition of criticality 
in neural systems, the capability of neural networks to produce 
LSA patterns following an initial activation. We addressed this 
question by simulating the spreading of neural activity and sys-
tematically varying model parameters and network topology in 
hierarchical modular networks, which are inspired by the organi-
zation of biological neural networks across scales. Our previous 

study (Kaiser et al., 2007a) demonstrated that hierarchical cluster 
 networks  possess a large parameter range leading to LSA, in con-
trast to random and non-hierarchical small-world networks. Here 
we expanded this analysis by varying the number of levels and 
sub-modules in hierarchical networks and scaling their size within 
two alternative scenarios, constant edge density or constant aver-
age node degree. This study demonstrated, fi rst, that LSA patterns 
are supported by a variety of parameter settings for hierarchical 
modular networks, combining different numbers of hierarchical 
levels with varying numbers of sub-modules per level; second, that 
for the same network size and the same number of sub-modules, 
networks with a larger number of levels resulted in a wider range 
of LSA, while for the same number of hierarchical levels a larger 
activity parameter range was produced by increasing the number 
of sub-modules; and third, that a high level of sustained activity 
was attainable across network sizes for a constant average node 
degree, but not for constant edge density.

The present results provide a proof of concept for three points. 
First, hierarchical network confi gurations lead to different levels 
of sustained activity independent of global topological proper-
ties, such as characteristic path length or clustering coeffi cient. 
Therefore, the identifi cation of an optimal network confi guration 
associated with a maximum level of LSA is a suitable target for 
evolutionary graph optimization. Second, only specifi c hierarchi-
cal network arrangements can be realized for a limited network 
size. Even for the human brain with an estimated number of 
125,000 columns per hemisphere (Jones and Peters, 1984) under 
the assumptions made in section “Anatomical constraints”, only a 
small fraction of potential hierarchies can be realized within the 
current framework. For the “human-size” network, three hierarchi-
cal levels with up to 18 sub-modules and four levels with up to 8 
sub-modules are possible. These limits are beyond the ones of the 
“macaque-size” network which maximally allowed six and four 
sub-modules for three and four hierarchical levels, respectively. 
Therefore, simple combinatorics suggest that it is easier to vary 
the number of modules at each level than to increase the number 
of levels for larger brains. Third, the number of confi gurations 
which lead to sustained activity decreases with network size if the 
edge density remains constant, but remains large even for large 
network sizes if the average number of connections per node is kept 
constant. This model fi nding corresponds to the observation from 
comparative studies that the number of connections of a neural 
node (e.g., the number of synapses of a neuron) rather than the 
ratio of connections (e.g., being connected to 10% of all neighbors) 
largely remains constant across species with different brain sizes 
(Ringo, 1991; Schüz and Demianenko, 1995; Zhang and Sejnowski, 
2000; Striedter, 2004). Moreover, for constant average node degree, 
the optimal confi gurations in larger networks tended to possess 
more hierarchical levels, suggesting a benefi cial contribution of 
the more intricately structured topology in larger neural networks 
to dynamical stability. There are indications from compilations of 
biological neural connectivity (e.g., www.cocomac.org) that sup-
port this model fi nding. For example, cluster analyses suggest that 
primate cortical connectivity is structured on more levels than con-
nectivity in smaller brains, if one considers that there exist primate 
visual “streams” (Young, 1992; Hilgetag et al., 2000), that is, sub-
divisions of the visual network module that are apparently absent 
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2008), potentially leading to additional constraints on  hierarchical 
network organization. Moreover, the internal organization of 
 columns (self-loops) was not explicitly part of the modeled net-
works. However, it was represented through the node activation 
rule: an active node could remain active for the following time 
step given a suffi cient number of active neighbors and poten-
tial collaterals going back to the neuron itself. For each time 
step, the deactivation probability determined whether an active 
node became inactive. The strength of self-loops was therefore 
implicitly represented in this deactivation probability with lower 
likelihood of deactivation for more frequent self-loops. Second, 
specifi cally organized populations of inhibitory neurons within 
columns might additionally infl uence global network dynamics. 
Thus, future models could incorporate more detailed biologically 
realistic mechanisms for reducing activity at the neuronal level, 
instead of the presently employed phenomenological deactivation 
probability. Third, the parcellation of modules into sub-modules 
for each level was treated as symmetric, that means, when a mod-
ule is split into sub-modules, each module has the same size. It 
will be important to test asymmetric parcellation of a module 
into smaller and larger sub-modules in future studies. Finally, 
the model considered neural network behavior in the absence of 
external inputs, except for the initial activation. Therefore, the 
current fi ndings may particularly apply to situations where there 
is limited external input to the brain, such as during sleep or early 
development. The results also relate to the organization of neural 
dynamics associated with the “default mode” or “resting state” of 
the brain (e.g., Raichle and Snyder, 2007). The role of external 
inputs should be addressed in future studies, which could also 
investigate if there is a difference in the processing of external 
stimuli by networks that are optimal for LSA and those that are 
not. In addition, the edge density at the lowest level (Figure 4B) 
could in some cases be higher than 50% which is unlikely in 
biological neuronal networks.

In this study, we varied the network size to represent networks 
of columns of a hemisphere in a “rat-size” (300 nodes), “cat-size” 
(4,150 nodes), and “macaque-size” brain (11,000 nodes). For large 
networks and constant edge density, two hierarchical levels with the 
maximum possible number of sub-modules per module appeared 
to provide the best strategy for achieving sustained activity (cf. 
Figure 5). These multi-level confi gurations often resulted in a high 
density of connectivity within modules at the lowest level. Such high 
edge densities are theoretically possible, but only realized to some 
extent in biological neural systems. At the global level of human 
fi ber tract connectivity between brain regions, for example, edge 
densities around 46% can be reached (Honey et al., 2007). Within 
columns, the connection frequency between any two neurons is 
around 16% (Douglas and Martin, 2007) but around 35% for neu-
rons from the same cell lineage (Yu et al., 2009). Given constant 
edge density, the range of feasible hierarchical confi gurations – that 
is, the degrees of freedom for evolving neural network architec-
tures – appeared to decrease with larger network sizes. This was 
due to the fact that the number of neighbors of a node increased 
with network size. Since the probability for connecting a node to 
other nodes (the edge density) remained constant, nodes were con-
nected to a larger number of nodes when the number of poten-
tial neighbors increased with network size. The larger number of 

in the rat (Burns and Young, 2000) or cat network (Scannell et al., 
1999; Zamora-López et al., 2010) Moreover, there are generally 
more modules in larger brains, if cortical areas can be considered 
as modules.

The fi nding of increased hierarchical structure in larger net-
works may appear counterintuitive given that there are limits on 
the number of hierarchical levels even in large networks, as dis-
cussed above. However, an appropriately large number of levels may 
be a necessary constraint for sustaining activity. If the number of 
modules in a large network was increased without increasing the 
number of levels, then, in principle, it would be easy to activate 
each module. However, activation of the global network may be 
prevented by dispersion of the activity across the entire network, 
which means that there may not exist enough projections into each 
of the individual modules to activate them. Similarly, if there are 
few large modules, activity may be dispersed within the modules. 
In order to establish a balance between the number and size of 
modules in large networks, additional levels need to be created, as 
confi rmed by the modeling results.

The hierarchical network topology we explored refl ects the 
distributed multi-level modularity that is considered a central 
feature of biological neural networks. Neural networks show 
strong modularity across many levels of scale, ranging from 
cellular neuronal circuits and neural populations organized in 
cortical columns (Mountcastle, 1997) to communities of closely 
linked areas at the systems level (Hilgetag et al., 2000; Breakspear 
and Stam, 2005). Smaller modules are nested within larger ones, 
such as columns within an area, which itself is a module in a 
large-scale brain division, such as the visual system. Another 
important feature of complex networks that has been discussed 
widely is the existence of hub, that is, nodes possessing a sig-
nifi cantly larger number of links than the majority of nodes 
in a network (Albert and Barabási, 2002; Ravasz et al., 2002). 
However, it is diffi cult to identify nodes in the brain that integrate 
modules across scales (with the potential exception of unspecifi c 
neuromodulatory systems, such as the serotonergic system) and 
act as global hubs. While there are hub-like nodes in neural net-
works (Kaiser et al., 2007b; Sporns et al., 2007), they may not 
act globally, such that most projections in the network originate 
from, or converge on, a central node. This topology is differ-
ent from “centralistic” networks where most nodes are linked 
to hubs (Ravasz et al., 2002) and which may be more suitable 
for representing large-scale biochemical networks. However, the 
detailed investigation of biological neural topologies needs to be 
continued, since modeling studies have shown a strong impact 
of topology on network dynamics. For instance, networks which 
contain hubs may support different modes of activity propaga-
tion than hub-less modular networks (Müller-Linow et al., 2008; 
Hütt and Lesne, 2009).

The present study was set up under several simplifying assump-
tions, in order to provide general insights into the relationship 
between hierarchical neural topology and activation patterns. 
This approach resulted in a number of model limitations. First, 
nodes representing columns were assumed to be uniform build-
ing blocks, whereas actual column organization (layer structure 
and number of neurons) in the brain might differ across regions 
(Hutsler et al., 2005) as well as species (Herculano-Houzel et al., 
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 connected  neighbors in larger networks also meant that the (abso-
lute)  threshold for activating a node was more easily reached. In 
such cases, activity was harder to contain and more likely spread 
through the whole network.

Using the constraint of a constant average degree, on the other 
hand, enabled a wider range of hierarchical confi gurations with up 
to 30% sustained activity cases across network sizes (cf. Figure 6). 
Such scalability with network size might be benefi cial both for 
ontogenetic and phylogenetic development. Using a constant 
number of connections per node, rather than a constant edge 
ratio, across species appears to have several benefi ts (Changizi, 
2001). First, reducing edge density is necessary due to the limited 
volume available for white matter fi ber tracts (Ebbesson, 1980; 
Karbowski, 2001; Striedter and Northcutt, 2006). For constant edge 
density, a brain with two times as many columns would contain 
four times as many connections, quickly increasing brain volume. 
Second, the setting of a constant number of connections per node 
provided a setup for sustained activity in different brain network 
sizes. This might mean that sustained activity can occur for differ-
ent brain sizes during evolution, if they are appropriately hierarchi-
cally structured. Third, hierarchical structuring may also provide 
the functional stability of LSA in the developing brain. At early 
stages of ontogenetic development, neural networks generally have 
few modules and few nodes. During development, more modules, 
nodes, and hierarchical levels are established (Robinson et al., 2009). 
Therefore, sustained activity can occur continuously through dif-
ferent stages of development and brain network growth. However, 
the hierarchical organization is not the only mechanism that can 
sustain activity during development; early neuronal mechanisms 
include, for example, spontaneous activity such as retinal waves 
(Sernagor et al., 2006; Hennig et al., 2009) or the early excitatory 
function of  gamma aminobutyric acid (GABA).

Finally, whereas several earlier studies have explored spatial 
(e.g., brain volume) or topological (e.g., characteristic path length, 
Kaiser and Hilgetag, 2006) constraints on brain organization, the 
present study focused on dynamic constraints, specifi cally the 
necessity of brain dynamics to subsist at a sustained yet limited 
level of activity. Alternative or additional dynamic constraints 
that may be relevant for this phenomenon could be synchro-
nous activity (König et al., 1995; von der Malsburg, 1995; Masuda 
and Aihara, 2004), or functional attributes such as multi-modal 
integration, functional complexity (Sporns et al., 2000), informa-
tion propagation, or processing speed. An accessible parameter 
range for sustained limited activity is a necessary condition for 
criticality, but does not in itself guarantee it. Criticality has been 
interpreted as an abolishing of length scales, that is, the coexist-
ence of dynamical processes at all scales. We saw examples for 
this phenomenon in activation patterns at LSA where modules 
and sub-modules of different sizes were activated together. Non-
LSA conditions, by contrast, produced only the trivial states of 
activating all or none of the network nodes. It will be particularly 
interesting to see how networks optimized with respect to func-
tional diversity are related to networks having optimal range for 
LSA. A possible link between these two properties was suggested 
by an earlier analysis showing that the number of signifi cantly 
repeating activation patterns is maximized at the critical point 
(Haldeman and Beggs, 2005).

APPENDIX
CONTROL EXPERIMENTS
We tested several additional simulation parameters in the follow-
ing sections. As in section “Optimal hierarchical confi gurations for 
LSA in a small network”, networks consisted of 512 nodes and 50 
connections per node.

Varying the number of edges for different hierarchical levels
In the default settings, the number of edges E

i
 was set to be the 

same for each hierarchical level i. Additionally, we tested sustained 
activity patterns where the number varied. We considered two cases: 
(a) a decrease of the number of edges with each hierarchical level 
or (b) an increase of the number of edges with each hierarchical 
level. The change followed a function where the number of E

i
 at 

level i was given by E
i
 = si E

c
/C, where s is a scaling factor of 2/3 

for decreased and 3/2 for increased number of edges per level. The 
parameter E

c
 = E/L is the number of edges in a network with E 

edges and L levels, which was used for the original calculation and 
C = L (sL+1 − s)/(s − 1) is a normalization factor to ensure that the 
total number of edges remains E.

As shown in Figure 7, confi gurations with a high proportion of 
LSA for decreased as well as increased numbers of edges per hier-
archical level remained comparable with the original calculation. 
The absolute level of sustained activity was lower in case (a) and 
higher in case (b) compared to the original settings. In addition, 
sustained activity cases also occurred for two or more hierarchical 
levels when the number of edges was increased (Figure 7C).

Varying the parcellation for different hierarchical levels
In the default settings, we used the same split-up of modules for 
each level; that means, if a module consisted of two sub-modules at 
the highest network level, this condition would be the same for all 
other levels of the network hierarchy as well. Here, we tested varying 
the parcellation into sub-modules depending on the hierarchical 
level. Again, we tested two cases: (a) creating fewer sub-modules for 
higher hierarchical levels (“decreasing parcellation”) or (b) creat-
ing more sub-modules for higher hierarchical levels (“increasing 
parcellation”). The change followed a function where the number 
of parcellations, sub-modules per module, m

i
 at level i was given 

by m
i
 = si m where s is a scaling factor of 0.9 for decreased and 1.1 

for increased parcellation. The parameter m was the same as for 
the original calculation.

As can be seen from Figure 8, confi gurations with a high prob-
ability of sustained activity for decreased as well as increased 
number of sub-modules for each hierarchical level remained 
comparable with the original calculations. However, whereas the 
absolute proportions for decreased parcellation were similar, for 
increased parcellation the overall probabilities increased, extending 
the maximum proportion of sustained activity cases from 0.23 to 
0.42. Therefore, the absolute parameter range of sustained activ-
ity was the same for case (a) and almost twice as high for case (b), 
compared to the original setting.

Note that both an increased parcellation and a larger number 
of edges led to a higher edge density of modules at the highest 
(fi ne-grained) level (maximum edge density, Figure 3B). This could 
explain why the ratio of sustained activity cases was higher for 
these confi gurations.
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Number of cases close to 50% activation threshold for classifi cation 
as sustained
In these simulations, we tested how close the fi nal activity after 200 
time steps came to the threshold used for classifi cation as sustained 
activity case.

As seen in Figure 9, levels close to the 50% threshold did occur. 
However, fi nal activity levels were around 10–20% in all cases for 
which a high number of sustained activity cases was reported. This 
observation indicates that confi gurations with high proportions of 
sustained activity cases were not affected by the threshold. On the 
other hand, confi gurations with a high proportion of cases with 
complete spreading only had few cases of sustained activity. Due 
to higher activity levels for such confi gurations, sustained activ-
ity cases were close to the 50% threshold for classifying sustained 
activity (black regions in Figure 9).

Topologies leading to expiring, limited sustained and completely 
spreading activity patterns
The main simulations of this project investigated the proportion of 
LSA cases depending on hierarchical network organization. Here, 
we also considered the distribution of the other two possible simu-
lation outcomes: activity dying out before the end of the simulation 
and fi nal activity in more than 50% of the nodes, which was classi-
fi ed as complete spreading. Figure 10 shows the dependence of all 
three outcomes on hierarchical network organization.

For confi gurations resulting in a small number of LSA cases 
(white regions in Figure 10B), both dying-out and complete spread-
ing occurred in 50% of the cases (note the different gray level setting 
due to re-scaling). However, when more than one hierarchical level 
was present, complete spreading occurred more often than dying-
out. For one hierarchical level, outcomes depended strongly on the 
number of sub-modules per module. The cases in which activity 
expired formed 50% of cases for two sub-modules, but decreased 

with the number of sub-modules. The maximum proportion of 
complete spreading, around 70% of the cases, occurred for 4–10 
sub-modules per module. The maximum values for LSA occurred 
for 12–20 sub-modules per module.

Varying the edge density
In the main simulations, the edge density for a network with 
N = 512 nodes and an average node degree 〈k〉 of 50 was 0.098, 
that means, around 10%. Both parameters, edge density and aver-
age node degree are related: the edge density in a directed network 
is given by d = E/[N (N − 1)] whereas the average node degree is 
〈k〉 = E/N, meaning that d = 〈k〉/(N − 1). How does variation of edge 
density for the same network size infl uence the range of LSA? To 
answer this question, we compared edge densities which were half 
(5%) of or twice (20%) of the value of the original calculations.

As shown in Figure 11, the pattern of sustained activity 
remained comparable to the original calculations even when the 
edge density varied. The maximum level of LSA varied between 
0.172 (for decreased edge density) to 0.238 (for increased edge 
density; original maximum level: 0.238). The relative distribution 
for one hierarchical level was similar across different edge densities. 
For two and three hierarchical levels, two additional confi gura-
tions with high levels of sustained activity occurred for decreased 
edge density. These additional confi gurations were impossible for 
higher numbers of edges to be realized when edge densities were 
around 10% or above.
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presented to a network where the reservoir consisted of laterally 
inhibited clusters. They observed that each cluster attenuated to a 
subcomponent of the input signal, improving performance. The 
Scale-Free Hierarchical ESNs (SHESN) of Deng and Zhang lack 
explicit decoupling and instead employ a hierarchically clustered 
reservoir architecture. These SHESNs perform better in predicting 
the Mackey-Glass sequence, which is often used as a benchmark 
for non-linear systems.

Deng and Zhang further noted that SHESNs appeared to be 
more robust to the choice of spectral radius as they remained stable 
for a larger range of spectral radius values. They observed stable 
behavior for r = 6, much higher than in similar ESNs that only 
displayed stable responses for r < 1. While this does not imply that 
the echo state property has been violated by increasing r > 1, it does, 
however, indicate that clustered ESNs may extend the range of per-
missible values for stable and transient states. In their report, only 
one set of reservoir parameters was examined for SHESNs and so 
how r varied with reservoir architecture was not quantified. Thus, 
it is unclear how the transition from a homogeneous reservoir to a 
hierarchically clustered network affects the stability of the system; 
in particular, is stability affected more by the presence of hierarchy 
or of clusters, or by a combination of both? Furthermore, is the 
transition from stable to unstable behavior independent of the 
degree of clustering and does the activity transition through an 
intermediate regime, such as those observed elsewhere (Ozturk 
and Principe, 2005)?

To address these issues, we use hierarchical ESNs (HESNs), a 
modified version of SHESNs, as a case study. We begin with a con-
ventional ESN and introduce hierarchical clusters, charting how sta-
bility depends on both reservoir architecture and the spectral radius 

IntroductIon
Echo State Networks (ESN) are a type of reservoir networks that 
have been demonstrated to be successful at predicating non-linear 
signals, especially those with strong spatiotemporal components 
(Skowronski and Harris, 2007; Tong et al., 2007; Verstraeten et al., 
2007). Proposed by Jaeger (2001), they exploit a reservoir of analog 
units with random but fixed connections where training affects 
only weights that project from the reservoir to the output popula-
tion units. This makes reservoir networks computationally cheap 
to train in comparison to methods such as backpropagation. The 
stability of ESNs is assured by fulfilling the echo state property, which 
ensures that the initial conditions are washed out at a rate independ-
ent of the input and prevents the accumulation of activity (Jaeger, 
2001). Criteria for fulfilling the echo state property are outlined 
for a specific subclass of ESNs in Buehner and Young (2006) and 
for leaky integrator units (Jaeger et al., 2007).

Although their strength derives from the homogeneity of the 
reservoir and its ability to generate rich non-linear dynamics, 
the connectivity of ESN reservoirs is random and therefore sub-
optimal. Previous reports investigated the idea of optimizing the 
network by modifying the reservoir connections, either by pruning 
connections (Dutoit et al., 2009) or training connections within 
the reservoir (Sussillo and Abbott, 2009). Other work has focused 
instead on modifying network architecture by either including a 
hierarchy of ESNs to extract features (Jaeger, 2007) or introducing 
reservoir substructures (Deng and Zhang, 2007; Xue et al., 2007). 
Both of the latter papers reported an improvement in perform-
ance against conventional ESNs for specific tasks with interesting 
additional properties: For the decoupled ESNs (DESN) presented 
by Xue et al., an input signal composed of sinusoidal terms was 
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to determine the relative influence of each. To identify the relative 
contribution of clusters and hierarchy, we compare reservoirs that 
are clustered but lack hierarchy against those that have both.

MaterIals and Methods
network Model
We first consider a generic ESN (Jaeger, 2001), which consists of an 
input population u, reservoir population x and output population 
y. These populations are coupled by connection weight matrices 
Win for input to reservoir units, sparse connection matrix Wres for 
connections between reservoir units and Wout for reservoir to out-
put units. Note that all matrices are directed, so generally W

ij
 ≠ W

ji
. 

Additionally, ESNs can include feedback connections projecting 
from y back to x as well as connections directly from the input to 
output populations. Here, we chose to exclude both as we wanted 
to consider only the dynamics of the reservoir and their impact on 
the output population.

The governing equations, modified from the original description 
in Jaeger (2001), are given by

x n f u n x n n na( ) ( ) ( ) ( )+ = + + +( )1 1W Win res

 
(1)

y n g x n( ) ( )= ( )Wout

 
(2)

where f and g represent activation functions which are typically 
monotonic and bounded, such as sigmoidals. We chose both f and 
g as tanh and scaled and shifted the incoming signal from the input 
population in order to place it into the optimal operating range of 
the network. Here, the input signal always consisted of a sequence 
of impulses, each of unit amplitude. Noise n

a
 is added to the res-

ervoir units in order to stabilize the network during the training 
process. Unless otherwise stated, noise was uniformly distributed 
for | | .na ≤ −10 6

The input and output populations were chosen to consist 
of 5 units each. The reservoir populations were set to be of size 
50–1000 units (see following subsection for more details). These 
sizes were chosen for computational tractability. Connections in 
both Win and Wres were randomly and independently assigned with 
connection probabilities conn

in
 and conn

res
, respectively. The con-

nectivities were set as Win being fully connected with weights drawn 
with uniform probability from [−1, 1]. Since this study is concerned 
with reservoirs for feedforward ESNs, training was only performed 
for tasks where the output units were relevant, such as the calcu-
lation of memory capacity. As for all ESNs, Win and Wres remain 
fixed for the duration of the network simulation so training, when 
performed, did not affect the structure of the reservoir.

IntroductIon of hIerarchy
Different models of hierarchical networks exist which focus on dif-
ferent aspects of their structure: a clustered or modular architecture 
(Ravasz et al., 2002), existence of hubs (Sporns et al., 2007; Mueller-
Linow et al., 2008), repetition of motifs across different scales (Ravasz 
and Barabasi, 2003; Sporns, 2006) or a combination of these features. 
For this study, we focus on a network model based on the SHESNs 
(Deng and Zhang, 2007), where sigmoidal units were replaced by 
ESN reservoirs. The resulting reservoir architecture differs from flat 
modular networks due to the presence of backbone units, which 

are units within a cluster that connect to backbone units in other 
clusters, in contrast to intracluster (local) units that only make con-
nections within their own cluster (Figure 1A). Although no univer-
sally accepted definition of hierarchy exists, the majority of models 

Figure 1 | (A) Example of a HESN network with four clusters (light gray). 
Each cluster contains four local units (white circles) that only project within the 
cluster and one backbone unit (dark gray circles) that provide connections 
between clusters. Dashed lines indicate trainable weights. Each unit has a 
sigmoidal transfer function, bounded on [−1, 1]. (B) Non-hierarchical HESN 
with similar topology and two backbone units per cluster. By increasing the 
number of backbone units per cluster, the HESN becomes non-hierarchical 
and increasingly more homogeneous. (C) Average out-degree distribution 
Pout(k) for HESN with arbitrary configuration (200 units, 20 clusters, 
conninter = connintra = 0.7) against different values for backbone unit per cluster 
(bbpc), calculated over 50 independent realizations of reservoir. The 
connectivity does not follow a power law distribution and so is not scale-free, 
unlike the original SHESN model.
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a fixed total number of intercluster connections while changing 
their distribution. This was possible by specifying a larger number 
of backbone units per cluster and then decreasing the intracluster 
connectivity to compensate.

In conventional ESNs, the largest eigenvalue of Wres (spectral 
radius r) is used as an indicator of stability of network dynamics. 
Traditionally, r less than unity is sufficient for zero-input networks 
to ensure stable dynamics; Buehner and Young (2006), however, 
outlines an additional criterion necessary to ensure stability, as sta-
bility is also observable for ESNs when r > 1 (Ozturk and Principe, 
2005; Verstraeten et al., 2007). We examined the effect of increas-
ing r on stability and during our simulations the spectral radius 
was varied from 0.05 to 2 in increments of 0.05. For each cluster 
configuration, we determined r

max
, which we defined as the largest 

permissible r for which the network remained stable under the 
criteria outlined in the following subsection.

IdentIfIcatIon of network behavIor
Different possibilities exist for characterizing a specific reservoir 
configuration (see Lukosevicius and Jaeger, 2007; Schrauwen et al., 
2007 for discussion). Of specific interest to us was how sensitive the 
system was to noise and how reproducible its dynamics were. Here, 
we considered an approximation of the maximal Lyapunov expo-
nent to determine stability, and the distribution of reservoir activity 
values upon multiple stimulation with the same sparse stimulus 
to assess reproducibility. We also calculated the network memory 
capacity to provide a measure for the functional performance.

A measure of stability is the Lyapunov exponent λ, which relates 
the divergence ∆ between two trajectories after introducing a small 
perturbation δ to the elapsed time via ∆ = eλt. For stable systems, 
the deviation between the two trajectories should converge to 0, 
corresponding to a negative Lyapunov exponent. The existence of a 
positive Lyapunov exponent signifies that the trajectories exponen-
tially diverge from each other with time, indicating that the system is 
sensitive to initial conditions and is thus likely to be chaotic. While 
the Lyapunov exponent cannot be easily calculated analytically for 
non-autonomous systems, different approaches for determining 
approximations of Lyapunov exponents for reservoir networks 
have been outlined, either based on experimental observation of a 
trajectory’s divergence following a perturbation (Skowronski and 
Harris, 2007) or theoretically by considering the deformation of an 
infinitesimally small hypersphere as the center follows a trajectory 
(Verstraeten et al., 2007). Here, we implemented an approximate 
numerical method, using the former approach (Wolf et al., 1985; 
Skowronski and Harris, 2007) and estimated the pseudo-Lyapunov 
exponent by introducing a perturbation δ to the reservoir state at 
time tδ. Two identical networks, f and p, were created and driven 
with identical input and n

a
 = 0. At tδ, only the second network p 

was perturbed, after which the simulation continued to run until 
t

end
. The resulting divergences was then measured as the Euclidean 

distance d x t x ti i
f

i
p= ∑ −( ( ) ( )) .end end

2  The Lyapunov exponent λ̂ 

was calculated as ˆ /( )log .λ δ= −1 2t t dend  The networks were always 
driven by input consisting of a train of impulses, whose average 
rate was set to be equal to the rate used for the reservoir activity 
distribution task below. The perturbation δ was applied to the entire 
reservoir state, uniformly distributed with |δ| = 10−6 with t

end
 = 100 

timesteps. As this technique does not lend itself to estimating the 

 examined in the literature focus on structures with a minimum of 
two levels of hierarchy. However, our aim was to establish the impact 
of hierarchy within a reservoir and contrast this effect against a struc-
tured but non-hierarchical architecture. Thus our modified SHESNs 
are minimally hierarchical networks, a property that is lost when the 
number of backbone units per cluster exceeds 1.

Four important changes were made in our networks as com-
pared to the generation process outlined originally by Deng and 
Zhang to avoid some of the limitations present in their model 
with respect to the purpose of this case study: (1) Backbone units 
were originally detailed as being fully connected to one another. To 
enable us to decouple the intercluster and intracluster connectivities 
and examine the effect of varying them independently, we allowed 
the network of backbone units to have sparse connectivity; (2) To 
ensure that our network was topology independent, we did not 
assign a spatial location to the reservoir units; (3) To predetermine 
the network connectivities and cluster sizes, we kept the number of 
units per cluster constant within a network, using a seeding method 
outlined in more detail below; (4) To examine the transition from 
highly clustered to homogeneous architectures, we allowed more 
than one backbone unit per cluster which additionally allowed us 
to inspect non-hierarchically clustered networks (Figure 1B). These 
changes introduced three new parameters: intracluster connectivity 
conn

intra
, intercluster connectivity conn

inter
 and number of backbone 

units per cluster bbpc.
The degree-distributions P

out
(k) and P

in
(k) (Albert and Barabási, 

2002) followed a bimodal (Figure 1C) rather than the scale-free 
distribution observed for SHESNs. This can be attributed to 
our restriction of uniform cluster sizes and the fixed values for  
conn

intra
 and conn

inter
. For this reason, we differentiate from SHESNs 

and instead refer to our model as hierarchically clustered ESNs 
(HESN).

A network was generated by first specifying the total reservoir 
size R, the number of clusters n, and the number of backbone 
units per cluster b. Each cluster was then created for size R/n and 
connectivity probability conn

intra
, followed by the generation of the 

intercluster connectivity matrix. This was performed by identi-
fying the first b units within each cluster as backbone units and 
then defining a matrix of size (bR/n) with connection probability 
conn

inter
. The connectivity weights were drawn randomly from a 

uniform probability on [−1, 1]. The connectivity matrix of the 
reservoir Wres was then rescaled to set the largest eigenvalue to be 
equal to the defined spectral radius.

To establish the effect of reservoir size on cluster configuration, 
we defined several configurations of cluster number and size while 
keeping the total number of units within the reservoir constant. 
Reservoir size was limited to 1000 units for computational tractabil-
ity. Note that a conventional ESN is obtained when cluster size is 
equal to either 1 or the total reservoir size. As a default configura-
tion for HESNs, we assumed bbpc = 1 and conn

inter
 = conn

intra
 = 0.7. 

Connection probabilities were always incremented in steps of 0.05. 
bbpc was generally set to be multiples of 5, except if cluster size was 
below 10. In these instances, all possible values for bbpc were tested. 
These additional criteria allowed us to manipulate the reservoir 
structure and independently vary its degree of hierarchy and clus-
tering. Importantly, we were able to test hierarchically clustered res-
ervoirs against non-hierarchically clustered reservoirs by  retaining 
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sparse input sequence repeated every 50 timesteps, and observed three 
response types across all simulations: (i) the network showed some 
activation, but this quickly died with exponential decay (Figure 2A). 
The corresponding reservoir activity values had both low mean and 
low standard deviation. (ii) The network either never stabilized or was 
unstable after the presentation of the first stimulus (Figure 2C), with 
large mean reservoir activity values with low standard deviation; or 
(iii) transient behavior, which was similar to stable behavior except 

Lyapunov exponent by combining estimates of the same system 
(Wolf et al., 1985), we classified each network configuration by 
 calculating the Lyapunov exponent for 100 independent realiza-
tions and determining the mean.

To relate this somewhat abstract notion of stability to a quantita-
tive description of reservoir dynamics, the distribution of reservoir 
activity values in response to a sparse stimulus was also considered. 
This was determined by first defining a stimulus consisting of fixed 
pattern of input impulses presented multiple times at a constant 
interstimulus interval of either 10, 50, 100, or 1000 timesteps. We 
calculated the total reservoir activity for each timestep and normal-
ized it by the number of reservoir units before computing the mean 
and standard deviation. This was repeated for 100 independent 
realizations of the same network configuration with n

a
 = 0.

 The memory capacity MC for different HESN configurations 
was determined by presenting input signals to the network to be 
reproduced with increasingly longer delays between presentation 
and retrieval. MC is obtained by summing the correlation coeffi-
cient between the output signal and the input signal for each delay 
k, MC = ∑

k=1
MC

k
, where MCk

x t k y t
x t y t= −cov ( ( ), ( ))

var( ( ))var( ( )) ,
2

 as described in Jaeger 
(2002) and Verstraeten et al. (2007). Here, we calculated MC for 
k = 1–20 timesteps for an input signal consisting of train of exactly 
one delta input present at each timestep, distributed equally across 
all five input channels.

results
The aim of the current study was to establish the impact of reservoir 
substructures – particularly hierarchical clustering – on the stability 
of ESNs. We begin by analyzing the effect of hierarchical clustering 
within reservoirs for a fixed spectral radius, considering underly-
ing factors such as the number of backbone units per cluster and 
intercluster connectivity. We then test whether clustering by itself 
is sufficient to alter the upper bound of permissible values for the 
spectral radius. Lastly, we consider the memory capacity for various 
network configurations.

Impact of clusters on stabIlIty
We aim to determine the effect of hierarchical clustering on the lim-
its for spectral radius values for stability and began by systematically 
examining the impact of cluster on dynamics for different cluster 
configurations while the spectral radius remained constant. We con-
sidered a simple HESN with a fixed r = 1.2, conn

inter
 =  conn

intra
 = 0.7 

and assumed only one backbone unit per cluster.
Various network configurations were examined by first fixing 

the total reservoir size and then increasing the number of clusters 
(Table 1). We determined the reservoir activity distribution, using very 

Figure 2 | responses of reservoirs to a repeated stimulus pattern for 
networks with R = 100 and different values of r. (A) For n = 2 clusters, 
stable dynamics occur where responses fade within a highly reproducible and 
fixed time-period, illustrating that the dynamics are input driven only. Shown is 
for both the normalized total activity rate (top) and reservoir activity (bottom). 
(B) With n = 20, transient dynamics were similar to stable but were 
characterized by activity decaying to a non-zero baseline. Baseline activity 
values for identical network configurations displayed high variability across 
trials. (C) Unstable dynamics for n = 50, where the system never returns to 
zero activity after the first input.

Table 1 | Cluster configurations tested for different reservoir sizes.

reservoir size Number of clusters

50 1, 2, 5, 10, 25

100 1, 2, 4, 5, 10, 20, 25, 50

200 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100

500 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250

750 1, 3, 5, 6, 10, 15, 25, 30, 50, 75, 125, 250

1000 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500
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The pseudo-Lyapunov exponent λ̂ was also calculated for the 
same set of network configurations (Figure 3C). Only negative 
values were observed, indicating that all configurations were non-
chaotic for r = 1.2. However, the magnitude of the exponent var-
ied and revealed that configurations of intermediate cluster size 
had the lowest value for λ̂ . This result also demonstrates that the 
responses of networks with a negative maximum pseudo-Lyapunov 
exponent do not necessarily decay to 0, and that ongoing activity 
in feedforward ESNs (Figures 2B,C) does not necessarily imply a 
chaotic regime.

To examine how these trends for stability and chaoticity developed 
as the spectral radius increased, we analyzed different cluster configura-
tions for a HESN with a fixed reservoir size and considered both dis-
tribution of reservoir activity values and the largest  pseudo-Lyapunov 

that the reservoir activity does not return to 0, but rather to some non-
zero baseline activity (Figure 2B). Although the non-zero baseline 
remained more or less constant within a trial, its value varied between 
trials, leading to a standard deviation of normalized reservoir activity 
values that was far higher than of either stable or unstable reservoirs, 
where the standard deviation of reservoir activity was <0.05.

The stability of a network did not depend on absolute reser-
voir size, absolute cluster size or the number of clusters alone, but 
rather on the combination of these factors (Figures 3A,B). Unstable 
responses occurred in large networks with a small number of larger 
clusters, while stable responses were observed for configurations 
with smaller clusters. Transient responses occurred in a broad 
region between stable and unstable responses and for configura-
tions of intermediate cluster size.

Figure 3 | (A–C) Six different reservoir sizes were examined (R = 50, 100, 200, 
500, 750, 1000) with varying number of clusters. All other network parameters 
were kept constant with r = 1.2, connintra = conninter = 0.7, and bbpc = 1. Mean 
and standard deviation of normalized reservoir activity (A,B) were determined 
for 100 realizations of each network configuration, with red dots indicating the 
location of each network configuration in parameter space and white lines 
indicating networks with identical reservoir size. The area between tested 
network configurations was interpolated to visualize the trend. Unstable 
responses are characterized by a high value for the mean reservoir activity and 
occurred for networks with a small number of large clusters. Transient 

responses can be distinguished by large fluctuations of normalized reservoir 
activity, while stable responses have low mean activity. The same network 
configurations were also used to calculate the pseudo-Lyapunov exponent λ̂ (C). 
Negative values were observed for all networks, indicating that networks tested 
were non-chaotic. (D–F) Distributions of normalized reservoir activity values and 
the pseudo-Lyapunov exponent were calculated as the spectral radius r was 
varied between 0.05 and 4 in HESNs for R = 200 with different cluster 
configurations. rmax increased with increasing number of clusters up to n = 40, 
while the region of networks that generate transient responses also increases 
with increasing n.
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exponent r
max

 for three different parameters related to reservoir 
architecture: reservoir size R, the number of backbones per cluster 
bbpc and intercluster connectivity conn

inter
.

To determine how the span of r for stable networks was affected 
by total reservoir size, the simulation was repeated for R = 100, 200, 
and 500 (Figure 4A). As the reservoir size increased, r

max
 strongly 

decreased. The location of the peak value for r
max

, however, remained 
relatively constant when plotted against relative cluster size (n/R) 
and occurred for clusters sizes 2–5% of the total reservoir size.

Increasing the number of backbone units per cluster makes the 
reservoir more homogeneous, which should have a greater impact 
on the spectral radius range for networks with smaller clusters. 
Increasing the number of backbone units per cluster to bbpc = 5 
for R = 200 (Figure 4B) yielded a decrease in r

max
 and caused 

the distribution to become progressively more uniform. The loca-
tion of the peak value for r

max
 appeared to remain unchanged for 

bbpc ≤ 2. To test whether increasing bbpc affects reservoir activ-
ity and the pseudo-Lyapunov exponent, we examined the various 
size networks previously tested using a fixed r = 1.2 and bbpc = 5 
(Figures 5A–C). We observed that many previously stable networks 
now displayed higher values for both mean reservoir activity and 
the pseudo-Lyapunov exponent, confirming that this effect was a 
general property of increasing bbpc.

exponent λ̂ (Figures 3D–F). We set R = 200 and kept all other param-
eters identical to those used in the previous task, but increased r from 
0.05 to 4 in 0.05 increments. Our results clearly demonstrate that both 
the mean reservoir activity value and the pseudo-Lyapunov exponent 
were lower for the same spectral radius value when clusters were present, 
with the lowest values occurring for reservoirs with 20–50 clusters. This 
confirms that the addition of hierarchical clusters extends the permis-
sible range of spectral radius values and is consistent with the trend 
observed in Figure 3C, with cluster configurations of intermediate size 
displaying the largest range of negative Lyapunov exponents.

Increasing the input population from 5 to 50 units for bbpc = 1 
led to more network configurations with unstable responses (not 
shown), corresponding to an extension of the region of instability 
in Figure 3A toward networks with a larger number of clusters. 
We hypothesize that the larger input population provides more 
activation to the reservoir, which saturates network activity. Thus, 
networks with larger clusters are able to resist network activity 
saturation better than networks with smaller clusters.

spectral radIus range
To establish the effect of other network parameters on the range 
of permissible spectral radius values, we determined the maximal 
spectral radius value that resulted in a negative pseudo-Lyapunov 

Figure 4 | (A–C) Range of rmax as a function of relative cluster size for three 
different reservoir sizes (A), different number of backbone units per cluster 
(B) and different intercluster connectivities (C). (A) Increasing the reservoir size 
decreases rmax, while the location of the peak value remains unchanged. 

(B) Increasing bbpc drastically decreases the peak value of rmax, while (C) 
decreasing conninter only slightly increases rmax across different relative cluster 
sizes. Note that the default network configuration for this task is signified by red 
in all plots.

Figure 5 | Mean and standard deviation of normalized reservoir activity values (A,B) and the pseudo-Lyapunov exponent λ̂ (C) when the number of 
backbone units per cluster bbpc is increased to 5. This leads to an increase in the number of configurations with unstable responses. Details as for Figure 3.
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The cumulative memory capacity ∑ =k
t

kMC1  was determined for 
increasing delays t from 1 to 20 while r was fixed at 0.7 (Figure 8). 
MC increased with decreasing the number of clusters, with a maxi-
mum of 8.04 for n = 1. The higher plateau level indicates that there 
was no contribution to MC for delays higher than 10 timesteps.

It has been observed for ESNs that sparser connectivity results in 
lower error rates. If we treat each cluster as being comparable to a 
single unit within an ESN reservoir, then the performance of HESNs 
should increase with lower intercluster connectivity conn

inter
. Since 

high performance requires stable network configurations, we expect 
some dependence of r

max
 on conn

inter
. Our findings reflect this, with 

r
max

 increasing for network configurations with larger numbers of 
clusters as conn

inter
 was decreased (Figure 4C). The location of peak 

r
max

 at n = 20, however, remained unchanged by decreasing conn
inter

.
As varying the spectral radius only changed the values but not 

the structure of the distribution of eigenvalues, we expected that 
any change in r

max
 for increasingly clustered networks is likely due 

to differences in the eigenvalue distribution, rather than the spec-
tral radius itself. We therefore analyzed the eigenvalue spectra of 
20 realizations of each cluster configuration previously examined. 
Eigenvalue spectra for configurations with a small number of clus-
ters were homogeneous (Figure 6A), similar to those obtained for 
ESNs. The spectra became increasingly more focused around the 
origin as clustering was increased (Figure 6B). However, the eigen-
value spectra partially dispersed again for reservoirs with a high 
number of clusters, e.g., n = 500, and appears similar to Figure 6A, 
but now with approximately 40% of the eigenvalues located at the 
origin. The distribution of eigenvalues sorted by distance from the 
origin summarizes this for all cluster configurations (Figure 6C). 
The distributions increasingly deviated from a homogeneous distri-
bution as the number of clusters increased, due to the progressively 
more significant contribution of the intercluster connections.

hIerarchIcal clusters
Hierarchy is determined by the degree distribution while clustering 
is determined by the degree count. To establish the relative influ-
ence of each on network dynamics, we compared four network 
configurations with varying bbpc and conn

inter
 values. Specifically, 

we chose values for both parameters that would lead to identical 
degree counts but different degree distributions (Table 2).

Our results in the previous section demonstrate that r
max

 is 
decreased by increasing bbpc (Figure 4B) or decreasing the interclus-
ter connectivity. These trends were confirmed while testing the degree 
counts of networks (Figure 7). While we observed no significant 
difference for reservoirs with five clusters or less, as the number of 
clusters increased, so did the difference between r

max
 for hierarchical 

and non-hierarchically clustered networks. The range of r
max

 was 
higher for the hierarchically clustered networks than for the non-
hierarchically clustered networks. We can conclude therefore that it is 
the degree distribution and thus hierarchy, rather than degree count 
and clusters, that exerts the larger influence on the range of r

max
.

MeMory capacIty
So far, we considered only measures related to the stability using 
measures related to reservoir dynamics. To reconcile the affect of 
clustering with measures related to the performance of a ESN, we 
calculated the memory capacity MC of HESNs while varying the 
number of clusters n, intercluster connectivity conn

inter
, and bbpc 

separately to establish their individual influence as r is increased 
(R = 200, conn

intra
 = conn

inter
 = 0.7, and bbpc = 1, unless otherwise 

specified). For each network configuration, MC was calculated as 
the mean of twenty independent realizations.

Figure 6 | eigenvalue spectra for 20 realizations of a reservoir with 
R = 1000 and 2 clusters (A) or 125 clusters (B). To visualize how the 
distribution of eigenvalues varied as clustering was increased, eigenvalues were 
sorted by their distance from the origin and plotted for r = 1 (C), with each curve 
representing the mean of 20 realizations for each cluster configuration. 
Reservoirs with n > 25 have a non-uniform eigenvalue distribution with more 
than 30% of their eigenvalues concentrated at the origin.

Table 2 | Network configurations tested for the effect of varying both 

intercluster connectivity conninter and number of backbones per cluster 

bbpc. Degree count is calculated as the product of bbpc and conninter.

bbpc conninter Degree count 

1 0.2 0.2 Hierarchical

1 1 1 Hierarchical

5 0.2 1 Non-hierarchical

5 1 5 Non-hierarchical
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to 9.8 (bbpc = 5) for n = 40. Overall, increasing bbpc led to a 
more homogeneous distribution of MC values, reflecting that a 
network with n = 1 can be approximated by networks with high 
n and high bbpc values.

MC was compared for conn
inter

 = 0.2, 0.3, 0.7, and 1, which 
were chosen for comparison with previous simulations. Here 
we examined MC across the four cluster configurations with r 
increasing from 0.05 to 4 in increments of 0.05 (Figure 9B). MC 
was maximal for both n = 1 and 5 when r was slightly larger than 
1. As expected, MC was independent of conn

inter
, since conn

inter
 

has little to no influence in networks with few clusters. While 
MC was low in networks with n = 25 and 40, their MC was 
also maximal for r > 1 but, importantly, decreased as conn

inter
 

increased. This is likely because intercluster connections became 
more significant as the number of clusters increased and thus 
the dominance of intracluster connections decreased in favor of 
intercluster connections.

dIscussIon
ESNs with structured reservoirs have been suggested to perform 
better in predicting non-linear signals (Deng and Zhang, 2007; Xue 
et al., 2007). Furthermore, clustered reservoirs appear to extend 
the range of permissible spectral radius values and result in more 
robust reservoir networks. Our results demonstrate that the addi-
tion of clusters within a reservoir does increase the range of spectral 
radius values that can be chosen, but that this increase does not 
occur uniformly. Specifically, we charted how the upper limit for 
the range of the spectral radius r that resulted in stable dynamics 
depended on the reservoir structure and showed: (1) r

max
 varied 

with the number and size of clusters; (2) the range of r
max

 was 
flattened as the number of backbones per cluster was increased 
and the reservoir becomes more homogeneous; (3) decreasing the 
intercluster connection probability conn

inter
 increased r

max
 but did 

not affect the location of the peak value for r
max

. These findings 
demonstrate that several factors interact to set the upper limit for 
spectral radius within HESNs. As we could examine only a small 
subset of all possible combinations of parameter values, however, 
varying multiple parameters simultaneously may have unpredicted 
effects on reservoir dynamics.

The criterion for stability within ESNs is that the echo state 
property is fulfilled; for purely feedforward ESNs, r < 1 is a suf-
ficient but not necessary condition as it ensures that the eigenvalues 
are scaled such that the system always contracts for any possible 
input (Jaeger, 2001). This property is evident in our plots, as the 
estimated Lyapunov exponent and the activity levels are independ-
ent of clusters when r < 1. However, increasing r beyond 1 does not 
directly violate the echo state property and there has been recent 
interest in methods to identify the upper bound (Buehner and 
Young, 2006). As our results and those from others (i.e., Ozturk 
and Principe, 2005; Verstraeten et al., 2007) demonstrate, it is eas-
ily possible to choose r to be larger than 1 and still avoid unstable 
states. Understanding the interaction between different structural 
properties should assist in the identification by quantifying bounds 
for the spectral radius for different reservoir structures, although 
we were unable to determine a universal criterion for the echo state 
property in the networks we examined,

We examined the effect of varying bbpc and conn
inter

 for four 
cluster configurations with n ≤ 40 to ensure we could use the same 
cluster configurations with bbpc = 5. Based on curves obtained 
for Figure 8, we selected n = 1, 5, 25, and 40 as a representative 
cross-section. For 0.05 ≤ r ≤ 4 using bbpc = 1, 2, and 5 and the 
cluster configurations as described above (Figure 9A), increasing 
bbpc had no difference for networks where n ≤ 5. The effect of 
increasing bbpc, however, was most obvious for networks with 
larger n, with the maximum MC increasing from 7.4 (bbpc = 1) 

Figure 7 | rmax for increasing number of clusters for four different 
combinations of values for bbpc and conninter. The corresponding increases 
in rmax are consistent with trends described above. The relative influence of 
hierarchy and clustering can be observed by considering the two networks 
with the same degree count but different distributions: bbpc = 1, conninter = 1, 
and bbpc = 5, conninter = 0.2. For n > 5 clusters, the former configuration has 
higher values of rmax, indicating a greater dependence of rmax on hierarchy 
rather than clustering.

Figure 8 | ∑ =k
t

kMC1  was calculated for a collection of clustered 
reservoirs with total reservoir size R = 200 and for delay t ranging from 1 
to 20 timesteps.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org July 2010 | Volume 4 | Article 11 | 62

Jarvis et al. Hierarchy in Echo State Networks

hierarchically clustered reservoirs against cluster configurations 
that had the same number of intercluster connections that were, 
however, distributed over more than one backbone unit per clus-
ter. Our findings indicate that, while the choice of cluster con-
figuration does influence the value of r

max
, the range of spectral 

radius values for stable ESNs is affected more by the distribution 
of intercluster connections onto cluster units, rather than their 
number. Therefore, we conclude that the presence of hierarchy, 
rather than clustering per se, is responsible for the extended range 
of permissible r values.

This characteristic is likely due to the ability of hierarchically 
clustered networks to reduce the impact of unstable behavior: if 
one cluster becomes unstable, its influence on other clusters is 
minimized by a low number of backbone units, which act as bot-
tlenecks. This behavior has been observed for tri-state networks 
(Kaiser et al., 2007). Consistent with this, increasing the number 
of intercluster connections decreased network stability. This is sup-
ported by analysis of reservoir unit activity traces in networks with 
transient responses, where the activity trace showed one cluster 
that was strongly active.

One question of special interest was whether there was “golden 
ratio” of cluster sizes: Given a total reservoir size, is there an opti-
mal cluster size for that will maximize r

max
? For the reservoir sizes 

we examined, the configuration that resulted in the maximal r
max

 
for R = 200 was 25 clusters of 8 units each, corresponding to 
cluster sizes of 4% of reservoir size. For R = 100 and 500, these 
values were 20 clusters of 5 each (5%) and 50 clusters of 10 units 
(2%), respectively. These results suggest that cluster sizes of 2–5% 
of the total reservoir size are optimal. The benefit of having such 
small cluster sizes can be seen by considering a network with only 
a few large clusters: if one cluster becomes unstable, the instabil-
ity of that cluster drives the baseline activity rate higher, reduc-
ing the elasticity of the reservoir. As successive clusters become 
unstable, the baseline rises and the computational potential of the 
reservoir decreases. For large cluster sizes, this increase happens 
quite quickly; in contrast, the loss of a small cluster results in 
smaller increments and therefore a slower transition to instabil-
ity. Importantly, this interpretation holds true only when clus-
ters have little impact on the activity of other clusters and so is 

In homogeneous ESNs, larger r values result in a slower decay 
of the network’s response to an impulse (Jaeger, 2001) and strongly 
affect performance (Venayagamoorthy and Shishir, 2009). It is 
thus important to choose r appropriately. For example, a HESN 
with 200 units and four clusters was unstable when r = 1.2, but 
was stabilized when the number of clusters was increased. Thus, 
configurations that would previously have been dismissed due to 
instability can now be reconsidered, allowing greater flexibility in 
the design of clustered reservoirs. We were also able to demonstrate 
that the presence of clusters is reflected in the memory capacity 
MC. Clustered reservoirs displayed lower peak MC values; impor-
tantly however, MC values decreased more slowly as r increased 
for clustered reservoirs when compared to non-clustered reservoirs 
for r > 1.5. These factors together imply that clustered ESNs are 
more robust over a broader range of spectral radius values than 
traditional ESNs.

We were also able to map the transition between stable to unsta-
ble responses through an intermediate regime, where the reservoir 
activity decayed to a non-zero baseline after the first stimulus was 
presented, resembling the transient activity identified by Ozturk 
and Principe (2005). The baseline of reservoir activity was generally 
constant for each realization of an HESN. For all reservoir con-
figurations, the mean reservoir activity increased as r grew larger. 
The level of ongoing activity can be thought of as corresponding 
to the elasticity of the system: as the ongoing activity increases, the 
potential energy of the system decreases. The gradient at which this 
transition to instability occurs as the spectral radius is increased, 
therefore, greatly affects the maximal spectral radius that can be 
chosen. Our findings indicate that this transition was slowest for 
40–50 clusters in reservoirs with 200 units (Figures 4D,E), which 
is reflected in the slow decrease in MC for the corresponding 
network configurations.

effect of hIerarchIcal clusters on dynaMIcs
One question raised implicitly following the original observation 
of an extended range of r

max
 was whether it was increased by the 

introduction of hierarchy, or whether merely a clustered topology 
was sufficient. As hierarchically clustered reservoir are character-
ized by having only one backbone unit per cluster, we compared 

Figure 9 | MC was calculated for four different cluster configurations as r was increased from 0.05 to 4 (R = 200, connintra = 0.7 with conninter = 0.7 and 
bbpc = 1, unless otherwise stated). The effect of increasing bbpc (A) and varying conninter (B) was most noticeable for networks where n ≥ 25 where MC was high 
over a broader range of r.
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allows us to conclude that, although the location of the transition 
to a chaotic regime depends on input and perturbation magnitude, 
reservoir stability remains strongly determined by not only the 
presence but also the size of clusters within the reservoir.

conclusIon
The total reservoir size, number of clusters, backbone clusters per 
unit, and intercluster connectivity all affect the range of permissible 
spectral radius values and we demonstrated that their interplay 
determines the upper boundary for the spectral radius. Specifically, 
the range of permissible spectral radius values strongly depended 
on the ratio of cluster size to total reservoir size. Hierarchy, rather 
than clustering alone, had the largest impact on the range of spectral 
radius values for stable networks. Furthermore, increasing the inter-
cluster connectivity extended the range of spectral radius values 
for stable ESNs, while increasing the number of backbone units 
per cluster had the opposite effect.

The transition from stable to unstable dynamics was charac-
terized by responses with varying levels of ongoing activity, even 
in the absence of any stimulus. The amount of ongoing activity 
increased as the spectral radius was raised, leading to progressively 
more unstable reservoir dynamics. Importantly, the rate at which 
this transition occurred was slowest for hierarchically clustered 
reservoirs with clusters of size in the range 2–5% of the total res-
ervoir size. We suggest that this is due to backbone units acting as 
bottlenecks that partition the reservoir, which minimizes the influ-
ence of any unstable units by limiting their impact to their own 
cluster. This effect is optimal when clusters sizes are small enough 
that the loss of any single cluster does not greatly affect the overall 
reservoir dynamics, leading to a graceful degradation of reservoir 
performance, but large enough for them to still contribute to res-
ervoir dynamics. We conclude that hierarchy is a crucial feature for 
extending the range of permissible spectral radius values within 
feedforward ESNs.
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only observed in hierarchically clustered networks, due to the 
presence of bottlenecks which allow the HESN’s performance to 
degrade gracefully.

QuantIfyIng esns
One problem that has often been discussed is how to measure the 
“goodness” of a given ESN (Lukosevicius and Jaeger, 2007). While 
more primitive measures, such as the error rate, can be easily applied, 
they are task dependent and therefore highly subjective. Most impor-
tantly, they do not supply any additional information as to how the 
reservoir structure impacts on performance. Other measures that 
examine reservoir activity, such as cross-correlation of reservoir unit 
activity or entropy of reservoir states (Ozturk et al., 2007), have been 
used to relate performance to reservoir dynamics. Here, we used the 
normalized reservoir activity, a metric based on mean reservoir acti-
vation following a sparse input applied at a fixed frequency. While 
this measure has limited use, it was well-suited to indicate the level 
of ongoing activity, which was of particular interest to us.

A more sophisticated measure is the Lyapunov exponent, 
which indicates how chaotic a system is. However, this measure 
has strong shortcomings associated with it. Generally, Lyapunov 
exponents are difficult to estimate for non-autonomous systems, 
such as stable feedforward ESNs, which must be externally driven. 
Correspondingly, any estimate of the Lyapunov exponent is sensi-
tive to the input used, making generalization difficult. On the other 
hand, there is no clearly better method to estimate the Lyapunov 
exponent: while the theoretical approach used by Verstraeten et al. 
(2007) allows for simultaneous consideration of all trajectories 
in the vicinity of the operating point, it can only estimate posi-
tive Lyapunov exponents. As we explicitly wanted to observe how 
quickly a network configuration moved from stable to chaotic 
behavior, we chose to approximate the Lyapunov exponent numeri-
cally. However, the disadvantage of numerically approximating the 
Lyapunov exponent is that it is inexact and time-consuming to 
calculate. Furthermore, determining the Lyapunov exponent by 
applying a reservoir perturbation is also subjective to the magnitude 
of the applied perturbation. We were able to demonstrate that for 
perturbations both two orders of magnitude larger and smaller than 
δ = 10−6, the same dependency of stability on the number of clusters 
was still present and with the same structure. This observation 
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hierarchical networks has been studied (Arenas et al., 2006, 2008). 
In particular, it has been shown that the hierarchical levels of nodes 
in the network prescribe a cascade-like sequence toward a fully 
synchronized state (Arenas et al., 2006).

In general, the shaping of dynamic processes by network topol-
ogy can also be characterized as a correlation between network 
properties and properties of the dynamics (Müller-Linow et al., 
2008). Qualitatively speaking, a dynamic process typically groups 
statistically identical nodes into different functional categories. 
Understanding the impact of the network topology on the func-
tioning of a dynamic process therefore starts by explaining the 
topological systematics of these node categories induced by the 
dynamical process.

Within the simple model of excitable dynamics on graphs, which 
we also use here (see Materials and Methods), two types of correla-
tion between network topology and dynamics have been analyzed 
by numerical simulation: waves propagating from central nodes 
and module-based synchronization (Müller-Linow et al., 2008). 
These two dynamic regimes represent a graph-equivalent to clas-
sical spatiotemporal pattern formation.

In order to quantify such modes of pattern formation, one can 
analyze properties of the matrix of simultaneous excitations, which 
for example can be studied using a clustering analysis. When ana-
lyzing these dynamics on a modular graph, the clusters obtained 
from the matrix of simultaneous excitations coincide well with the 
topological modules of the graph. Similarly, when analyzing the 
dynamics on a scalefree graph, the clusters essentially match groups 
of nodes with the same distance to the main hub of the graph.

Surprisingly, certain networks, e.g. hierarchical modular net-
works, contain enough topological cues for allowing both types of 
patterns to emerge: The dynamic behavior of such networks can 
switch from one of these modes to the other as the level of sponta-
neous node activation increases (Müller-Linow et al., 2008).

INTRODUCTION
The question, how network architecture systematically shapes 
dynamic processes on the network, has become one of the key 
topics of research in a range of disciplines – from systems biol-
ogy (Barabási and Oltvai, 2004; Alon, 2007; Brandman and Meyer, 
2008) and ecology (Uchida et al., 2007) to logistics (Armbruster 
et al., 2005; Guimera et al., 2005) and sociology (Kearns et al., 
2006). In neuroscience this question is of particular importance, 
as functional properties of the brain can be expected to emerge 
from the organization of (essentially excitable) dynamics on the 
network of neurons.

Network research employs the formal view of graph theory to 
understand the design principles of complex systems. For many 
biological and technical networks, a large-scale system-wide per-
spective of the network architecture (the ‘topology’ of such graphs) 
has yielded some unexpected universal features, e.g., the ubiqui-
tousness of heavy-tail degree distributions (Barabási and Albert, 
1999; Barabási and Oltvai, 2004), the presence and possible func-
tions of modularity in enhancing the robustness of a network and in 
organizing network tasks (Ravasz et al., 2002; Guimera and Amaral, 
2005) and a similarity in motif content of functionally similar net-
works (Milo et al., 2004; Alon, 2007), where motifs are groups of 
few nodes with a specifi c link pattern.

Discrete dynamics, and in particular binary and three-state 
dynamics, have proven helpful in the past for studying, how dynam-
ical processes depend on graph topology (Bornholdt, 2005; Marr 
and Hütt, 2005; Müller-Linow et al., 2006; Drossel, 2008).

Here we follow this line of thought and study the interplay of 
topology and dynamics for an important class of dynamical proc-
esses, namely excitable dynamics currently used as a minimal model 
of neuron fi ring, and for an important graph class, namely hierar-
chical networks. A hierarchical organization is an important feature 
of many complex networks in biology. Recently,  synchronization on 
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Here we attempt to understand this switching behavior 
 analytically using a combination of mean-fi eld techniques with 
the notion of an effective network accessible to excitation.

In Section ‘Materials and Methods’ we briefl y describe the hier-
archical network model we use and the model of excitable dynam-
ics, together with a short summary of previous results obtained 
within the same model. In Section ‘Results’ we fi rst reproduce the 
fi ndings from Müller-Linow et al. (2008) in a simpler context, 
then we discuss the failure of the straightforward mean-fi eld as 
well as pair-correlation descriptions to account for the organi-
zation of the dynamics on graphs (see Materials and Methods). 
A suitable incorporation of graph topology into a mean-fi eld 
framework is proposed with the notion of effective networks, 
which at each moment in time are accessible to the dynamics 
due to an interplay of spontaneous activity and recovery rate. 
Excitation patterns can then be viewed as avalanches comprising 
the accessible effective network. This avalanche model is described 
in Section ‘Results’.

MATERIALS AND METHODS
NETWORK ARCHITECTURE
A hierarchical system is intuitively defi ned by a multi-layered 
organization, where few top-level elements are related to several 
elements on intermediate levels, which are in turn related to a large 
number of bottom-level elements. Several parameterizations and 
generative rules of hierarchical graphs coexist in the literature. 
Typical variants rely on a modules-within-modules view (Ravasz 
et al., 2002; Kaiser et al., 2007), others focus on the coexistence 
of modules and central nodes (hubs) (Han et al., 2004; Guimera 
and Amaral, 2005) or relate the concept of hierarchies to fractality 
(Sporns, 2006).

Even though our formalism is applicable to any network, here 
we analyze a specifi c model of hierarchical graphs, namely the one 
introduced by Ravasz et al. (2002) and Ravasz and Barabási (2003). 
In each iteration step four copies of the current network are set 
up and interlinked in a specifi c pattern: the central node is linked 
to all outside nodes; then the local hubs are interlinked among 
themselves (see Figures 1 and 2). The fi rst iteration step leads to 
four fully connected nodes. At the fourth iteration, the network has 

N = 256 nodes linked by 780 edges, parted in 4 shells according to 
their distance from the hub, containing respectively S

0
 = k

hub
 = 120, 

S
1
 = 54, S

2
 = 72 and S

3
 = 9 nodes.

DYNAMICS
For discussing the link between topology and dynamics we use 
a simple three-state model of an excitable medium. The model 
consists of three discrete states for each node (susceptible s, excited 
e, refractory r), which are updated synchronously in discrete time 
steps according to the following rules: (1) A susceptible node 
becomes an excited node, if there is at least one excited node in 
its direct neighborhood. If not, spontaneous fi ring occurs with the 
probability f , which is the rate of spontaneous excitation; (2) an 
excited node enters the refractory state; (3) a node regenerates 
with the recovery probability p (the inverse of which is the aver-
age refractory time of a node). This minimal model of an excit-
able system has a rich history in biological modeling. It has been 
fi rst introduced in a simpler variant under the name ‘forest fi re 
model’ (Bak et al., 1990) and subsequently expanded by Drossel 
and Schwabl (1992) who also introduced the rate of spontane-
ous excitation (the ‘ lightning probability’ in their terminology). 
In this form it was originally applied on regular architectures in 
studies of self-organized criticality. Other variants of three-state 
excitable dynamics have been used to describe epidemic spreading 
(see, e.g., Bailey, 1975; Anderson and May, 1991; Hethcote, 2000; 
Moreno et al., 2002) or to investigate the impact of topology on 
the dynamics (Carvunis et al., 2006). Note that in Carvunis et al. 
(2006) the recovery is deterministic (p = 1) and there is no spon-
taneous excitation (f = 0). In contrast, there is no refractory state 
in the SIS model of epidemic spreading, and no recovery (p = 0) 
in the SIR model (Pastor-Satorras and Vespignani, 2004). As dis-
cussed previously (Graham and Matthai, 2003; Müller-Linow 
et al., 2006), this general model can readily be implemented on 
arbitrary network architectures. In Graham and Matthai (2003) it 
has been shown that short-cuts inserted into a regular (e.g., ring-
like) architecture can mimic the dynamic effect of spontaneous 
excitation. Using a similar model setup we have shown (Müller-
Linow et al., 2006) that the distribution pattern of excitations is 
regulated by the connectivity as well as by the rate of spontaneous 
excitations. An increase of either of the two quantities leads to a 
sudden increase in the excitation density accompanied by a drastic 
change in the distribution pattern from a collective, synchronous 
fi ring of a large number of nodes in the graph (spikes) to more 
local, long-lasting and propagating excitation patterns (bursts). 
Further studies on the activity of integrate-and-fi re neurons in 
the classical small-world model from Watts and Strogatz (1998) 
also revealed a distinct dependency of the dynamic behavior on 
the connectivity of the system (Roxin et al., 2004).

In order to study the pattern of joint excitations on a hierarchical 
graph, we consider for all nodes the individual time series describ-
ing their successive states and for each pair of nodes (i, j) compute 
the number C

ij
 of simultaneous fi ring events. When applied to the 

whole network the resulting matrix C (which in the following will 
be called the similarity matrix, as it captures the similarity of time 
series of two nodes) essentially represents the distribution pattern 
of excitations. This pattern can now be compared with a corre-
sponding distribution pattern of some topological property.

FIGURE 1 | Iteration step in the recursive construction of the hierarchical 

graphs from Ravasz et al. (2002) and Ravasz and Barabási (2003).
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Previous numerical studies (Müller-Linow et al., 2008) have 
shown that different topological features of complex networks, 
such as node centrality and modularity, organize the synchronized 
network function at different levels of spontaneous activity. These 
fi ndings serve as a starting point of our investigation.

RESULTS
CORRELATIONS OF THE SIMILARITY MATRIX WITH GRAPH TOPOLOGY
In Müller-Linow et al. (2008) clustering trees derived from the 
matrix of simultaneous excitations (the similarity matrix C) have 
been compared with groups of nodes derived from topological 
properties. These properties are modularity and node centrality 
and they have been represented by a topological-modularity-based 
reference and a central-node-based reference, respectively. Here we 
analyze the correlations more directly by comparing the similarity 
matrix C with matrices designed to capture the topological feature 
of interest, because the quantities introduced by Müller-Linow et al. 
(2008), while suitable for experimental studies of dynamics on 
graphs, have no direct analytical counterpart.

Two topological features are discussed here: (i) modularity, rep-
resented by the topological overlap matrix (Ravasz et al., 2002) 
T

ij
 = (N

ij
 + A

ij
)/min (k

i
,k

j
), where N

ij
 is the number of common 

neighbors of nodes i and j, A is the graph’s adjacency matrix and 
k

i
 is the degree of node i; (ii) the distance d

i
 of node i from the 

graph’s central hub; for comparison with the similarity matrix C 

this distance is cast into a matrix D, where D
ij
 = 1, if nodes i and j 

have the same distance to the hub and D
ij
 = 0 otherwise.

As a measure of correlation of two matrices (where one typically 
is the similarity matrix and the other one of the matrices derived 
from topology) we use the mutual information M (m(1),m(2)) of the 
two binary matrices m(1) and m(2):

M m m p
p

p pa b
ab

ab

a b

( ) ( )
( ) ( )

log1 2

0 1
1 2

, =
⎛

⎝
⎜

⎞

⎠
⎟ ,⎛

⎝⎜
⎞
⎠⎟

, = ,
∑

 

(1)

where p
ab

 denotes the relative frequency of encountering the 
element a in matrix m(1) and b at the same position in matrix 
m(2)(with a,b = 1,0) and pa

k( ) is the relative frequency of a in matrix 
m(k). An alternative quantifi cation is the correlation coeffi cient 
Corr (m(1),m(2)) of the two matrices:

Corr m m
m av m m av m

ij

ij ij
( , )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 2

=
−⎡⎣ ⎤⎦ −⎡⎣ ⎤⎦∑ σ(( ) ( )( ) ( )m m1 2σ

,
 

(2)

where av (m(k)) and σ (m(k)) denote the average and standard devia-
tion over all values in matrix m(k), respectively. However, neither 
for the topological case nor for a typical similarity matrix at inter-
mediate f the distribution of matrix elements follows a Gaussian 
distribution, so that mutual information better captures the cor-
relation than the correlation coeffi cient Corr. It should be noted 

FIGURE 2 | Hierarchical graph with N = 1024 nodes obtained from the iterative scheme described in Ravasz et al. (2002) and sketched on Figure 1.
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that the quantitative comparison of graphs (and matrices derived 
from graphs) is, in itself, a broad area of research. Distances between 
graphs can differ in the topological feature they emphasize or the 
length scale(s) considered. One alternative to the correlation coef-
fi cient and the mutual information used here could be the spec-
tral distance method from Ipsen and Mikhailov (2002). Here we 
preferred the other two methods, because the dynamics are not 
directly coupled to spectral features (although this in itself may 
be an interesting investigation).

Figure 3 shows the correlation of the similarity matrix with 
the two matrices derived from topology, namely T (measuring 
modularity; full curves) and D (measuring similarity in their 
distance to the hub; dashed curves) as a function of the rate of 
spontaneous excitations f. These curves reproduce the fi nding from 
Müller-Linow et al. (2008): at low f the distribution of excitations is 
predominantly explained by ring structures around the hub (CN, 
central node reference), while at higher f the distribution becomes 
dominated by the modular structure of the graph (TM, topological 
module reference).

It should be noted that these results differ from Müller-Linow 
et al. (2008, Figure 8A), because in Müller-Linow et al. (2008) a 
sparser graph has been used in order to keep the average number of 

excitations at a comparable level for all the graphs discussed there 
(see Methods section in Müller-Linow et al., 2008 for a detailed 
description of this procedure). Here we wanted to use the original 
graph from Ravasz et al. (2002) instead. Figure 4 shows the same 
mutual information curves as in Figure 3B, but with the 1024-node 
network depicted in Figure 2. With increasing network size the 
two patterns seem to become more pronounced. In both cases, 
Figures 3 and 4, the two domains in f are clearly visible, each of 
which is dominated by a specifi c type of correlation between topol-
ogy and dynamics.

MEAN-FIELD MODEL
Following the lines of Graham and Matthai (2003) and Müller-
Linow et al. (2006) we formulate a mean-fi eld description of the 
three-state excitable dynamics introduced in Section ‘Materials and 
Methods’. As we are interested in the rate of simultaneous excita-
tions of two nodes, we include pair correlations in this model.

Denoting pα(t) the density of nodes in state α = e,r,s and 
qα,β(t) the probability that a pair of nodes is in state (α,β) at 
time t [ obviously ∑ =α αp t( ) 1 and ∑ =α α β αq t p t, ( ) ( )], mean-fi eld 
 evolution equations write:

p t p t p p tr e r( ) ( ) ( ) ( )+ = + −1 1  (3)
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We can fi rst make use of the mean-fi eld description by  discussing 
the average excitation density, which has been in the focus in 
Müller-Linow et al. (2006), as a function of the connectivity c (i.e., 
the number of links divided by the number N(N − 1)/2 of possible 
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FIGURE 3 | Correlation between the similarity matrix C(f ) and the 

topological matrices T (full curve) and D (dashed curve) as a function of f 

for the hierarchical graph with N = 256 nodes. The correlation is measured 
(A) by the correlation coeffi cient of the two matrices, Eq. 2, and (B) by the 
mutual information, Eq. 1.
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links). Figure 5 shows the excitation density p
e
 obtained in the 

mean-fi eld description, Eqs 3–7, as a function of the connectivity c. 
It is seen that this refi ned mean-fi eld model (i.e., including pair 
correlations) nicely reproduces the increase of average excitation 
with connectivity.

The joint excitation matrix (i.e., our prediction for the similarity 
matrix C) is then computed as the conditional correlation func-
tion Q(f, p) that two nodes are simultaneously excited knowing 
that they belong to the same topological class – shells around a 
central node, or modules. We performed the computation in two 
limiting regimes, fi rst assuming that the dominant contribution 
comes from excitation of the central node (CN case) or from exci-
tation from the middle node of even shortest paths (of length 2) 
within modules (TM case). In this computation, we can ignore 
the  contribution of independent sources of excitation of the two 
nodes, and consider only the joint excitation initially caused by a 
unique remote fi ring event.

In the fi rst case, the probability of excitation of the central node 
cannot be computed within the above mean-fi eld approach due to 
the specifi c hub status of this node. Excitation of the hub comes 
from either the spontaneous fi ring of this node or the propagation 
of an excitation occurring at some node, with stationary probability 
p

e
, leading to:

p
f k p f

f k p f
e

e

p
p e

hub

hub

hub

,

inf , ( )

inf , ( )
=
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∗

+ ∗
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1 1 11
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where k
hub

 is the degree of the hub; it has to be multiplied by (1 − f) 
to ensure that the hub has not fi red at the previous step and the 
excitation does not encounter a refractory hub. We compute the 
contribution Q fn

( )( )CN  of shell n to Q(CN)(f )

Q f p p p
p p

pn e s
n

e

n

e( )
, ,( )

( )CN
hub hub= = − +⎡

⎣
⎢

⎤

⎦
⎥

2

2

1
1

 

(9)
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where S
n
 is the number of nodes in shell n.

In the second case, all the shortest even paths between two 
nodes in the same module play the same role; the 2-step paths 
presumably give the dominant contribution. The network topol-
ogy is involved through the average number ν of such paths, with 
roughly, ν = C(〈k〉 − 1) where C is the clustering coeffi cient. The 
analog quantity q

ee
 obtained for two nodes chosen at random has 

then to be subtracted. It then comes

Q f
p q q

q
e ss ee

ee

( )( )TM = −ν

 
(11)

Figure 6 shows Q(CN) and Q(TM) as a function of f. Comparing 
these curves with Figures 3 and 4, it is obvious that we fail to account 
for any of the important features of the numerical results. In particu-
lar, Q(CN) does not decrease rapidly enough with f and Q(TM) does not 
show a peak at higher values of f. The switching of the two modes 
of organizing excitations on graphs is absent in this Figure.

These two expressions Q(CN) and Q(TM) could be refi ned by 
introducing the precise number of loopless paths computed from 
reduced iterates of the adjacency matrix, but this does not change 
signifi cantly the results.

Qualitatively, we can already say that the presence of large cor-
related events (dynamic heterogeneities in space and time) contra-
dicts a mean-fi eld view on the problem. We expect the approach 
to be fully valid only at large f, when the system reaches a station-
ary state (the behavior is then trivial, consisting in uncorrelated 
dynamics, with characteristic time scale 1 + 1/f + 1/p ≈ 2 + 1/p and 
no impact of the network topology).

The above equations account for pair correlations in the dynamic 
state (e.g. q pee e≠ 2). This improves the plain mean-fi eld approach 
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FIGURE 4 | Same as Figure 3B, but for N = 1024. The full curve shows the 
mutual information obtained from the similarity matrix C(f) and the matrix T; 
the dashed curve is the mutual information for C(f) and D.
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and leads to a proper prediction of the average excitation density. 
But this model dramatically fails to reproduce the actual excitable 
dynamics and excitation patterns because it ignores large correlated 
spatio-temporal fl uctuations, mainly transient and synchronized 
waves of excitation (‘avalanches’) spanning the effective network 
of susceptible nodes and shaped by network topology. Note that 
our approach does not account for pair correlations in the degree: 
Introducing the conditional degree distribution p(k′|k) and consid-
ering degree-dependent densities (averages over subsets of nodes 
with a given degree) in order to account for degree heterogeneity 
and correlation between neighbors (see e.g. Pastor-Satorras and 
Vespignani, 2004), instead of the approximation using 〈k〉, would 
yield more complicated (analytically untractable) equations but still 
miss the essential dynamic correlation between neighboring nodes. 
It would not cure the failure of the mean-fi eld approach to reproduce 
the correlation between excitation pattern and network topology. 
We rather turn to another formalism, explicitly describing the ava-
lanches of excitation and how they refl ect network topology.

AVALANCHE MODEL
The challenge is to combine a mean-fi eld description of the 
dynamics with a suitable representation of topology in order to 
identify the typical effective network accessible to the dynamics 
as a function of the parameters f and p and the architecture of 
the network itself. This is the key idea proposed here for under-
standing the distribution of excitations as pattern on the graph. 
For random graphs (Erdös–Renyi graphs) the fl uctuations in p

e
 

are distributed randomly across the graph. As soon as we provide 
a topological feature the fl uctuations can exploit, these fl uctua-
tions lock onto the topological features. This is clearly seen when 
looking at the correlation between the above topological matrices 
T and D and the matrix C of simultaneous node excitations 
(Figure 3).

We thus propose to understand the distribution of excita-
tions as avalanches on the accessible parts of the network. A 
competition between p and f regulates the size of the effective 
networks and therefore the avalanche size and, more importantly, 
the topological features available to the dynamics. Avalanches 
have been discussed on abstract graphs (Lee et al., 2004) and, in 

the context of self-organized criticality, in neural networks (see, 
e.g. Levina et al., 2007b). While we are not discussing self-organ-
ized criticality here, we nevertheless employ the formal concept 
of avalanches as groups of excitation events correlated by the 
graph’s topology. In particular when the graph has a very het-
erogeneous degree distribution (and, more specifi cally, contains 
hubs) an avalanche of excitations propagating in the graph can 
be regarded as a two-step process: (1) the transportation of the 
excitation to the seed of the real avalanche, (2) the (amplifi ed) 
spreading of the avalanche from the seed towards the accessible 
part of the graph.

Step (1), reminiscent of the coalescent view on a tree, is 
accounted for by considering the gathering of excitations at the 
seed i of an avalanche, yielding a factor equal to the degree k

i
 of 

the seed. Step (2), close to the viewpoint adopted in branching 
processes, is accounted for by considering nested shells around the 
avalanche seed. To delineate the seed nodes, we might compute for 
each node i the multiplicative factor µ

i
 = k(i)S

2
(i): the probability 

that a node is a seed is identifi ed with the weight μ μi q q/∑ . The 
density of susceptible nodes in shell n around i is computed in a 
mean-fi eld approximation as:
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and the number of nodes in shell n is S i Bn j ij
n( ) ( )= ∑  where the 

matrices B(n) are computed recursively as B(0) = Id, B(1) = A, 
B H A H An n

q
n q( ) ( ) [ ( )]= ∏ −=

−
0
1 1  where H is the Heaviside function. 

The overall excitation amplifi cation factor at node i is thus:
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The largest integer n for which [ ] ( )( )∑ ∏ , ,=j ij
n

q
nB p f q1 Θ  is appreci-

able gives the depth d
i
(p, f) of an avalanche initiated at node i. The 

correlation (as regards their joint excitation) between two nodes j 
and l is fi nally given by:
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and the average size of an avalanche can be computed as:

A B p f q
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(15)

Avalanches size and duration reveal the effective connectiv-
ity, while their location and frequency depend on f and the actual 
connectivity.

The idea of an effective graph is relevant only if recovery time 
is smaller than spontaneous fi ring period, namely p >> f. Also, 
speaking of avalanches makes sense only at low and moderate f 
(typically 1/f > 3): observing distinct avalanches (well-separated in 
space and time) requires slow driving: f << 1, a threshold dynamics 
(here all-or-none spontaneous excitation with probability f), and 
a rapid relaxation (diameter D << 1/f).

The distribution of weighting factors μ
i
/Σ

q
 μ

q
 depends strongly 

on the detailed topological features of the graph. Essentially, the 
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FIGURE 6 | Q(CN) (from Eq. 10; dashed curve) and Q(TM) (from Eq. 11; full 

curve) as a function of f.
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graph, we compute the matrices Q(f) also for a scalefree graph (for 
which a dominance of a central-node type organization of excita-
tions throughout a large regime of f is known from Müller-Linow 
et al. (2008) and for a modular, non-hierarchical graph (for which 
a dominance of the module-based organization of excitations has 
been observed across a broad range in f). Figure 9 summarizes these 
results. The predicted similarity  matrices reproduce the numerical 
fi nding that on a scalefree graph (left) the central node-based pat-
tern dominates and on a modular graph (right) the module-based 
pattern dominates across essentially the whole range of f.

The systematic contribution to the correlations between topol-
ogy and dynamics we observed comes from synchronized nodes. 
The amplifi cation factor M(i) given above regulates the amount 
of simultaneously excited nodes in a particular topological class 
(a ring around the hub or a module) and therefore the strength of 
the synchronous signal.

For a given topological class an optimal duration T* of an ava-
lanche as a function of f and p can be computed as the solution to 
T*mfR(p, f, T*) = 1 with R p f T f pp

p f
T T( ) [( ) ( ) ], , = − − −− 1 1  (effec-

tive recovery rate, defi ned as the probability that a site excited at 
time t = 0 has recovered and not yet experienced a spontaneous 
excitation at time T + 1). This time T*(p, f) is expected to be the 
relevant ‘recovery time’, separating two avalanches. Comparing 1/f 
(i.e., the typical time scale available to an avalanche) with T* should 
give the expected peak in the correlation of the similarity matrix 
to this topological class.

Our main fi nding is that we can explain the qualitative feature of 
the switching from central node dominated to a module dominated 
organization of the dynamics, as the rate of spontaneous excitation 
f is increased.

It should be pointed out that this switching is not a dynamic 
phase transition. In particular, we do not observe the switching to 
become sharper with increasing graph size.

The main motivation for our use of avalanches is that  excitations 
spread on the effective network (consisting of the nodes in the 
 susceptible state at a given moment in time), whose topological 
properties depend on f and in turn on the previous history of the 
dynamics.

A random excitation will trigger a certain cascade of joint 
excitations of other nodes. The sizes of these contributions to the 
 similarity matrix (and the nodes involved in these  contributions) 
depend strongly on the effective network. At large f, random 
 excitations follow so rapidly one after another that only few nodes 
in the graph are susceptible, leading to only few and small-scale 
contributions to the similarity matrix. At small f, on the other hand, 
the graph has enough time to recover between consecutive random 
 excitations, allowing each random excitation to essentially trigger 
a whole  avalanche of joint excitations.

In Figure 10 the average shortest path length of the effective 
networks as a function of f. According to our avalanche concept, we 
believe that this decrease of the average path length with f, which 
is clearly discernible in Figure 10, is the main driving force of the 
switching behavior.

DISCUSSION
We are mainly interested in understanding the global interplay 
and network effect, not only the local consequences of a node 

weighting factor μ
i
/Σ

q
 μ

q
 gives the probability that a node i can 

trigger an avalanche of excitations. The actual size of the avalanche 
will then be determined by the effective (i.e. accessible) network 
of susceptible elements.

Figure 7 shows the correlation between the predicted similarity 
matrix Q and the matrices T and D derived from topology, together 
with the corresponding curves from Figure 3B. The overall fea-
tures of the numerical fi ndings (red curves) are explained by the 
predictions (black curves), in particular the dominance of the hub 
distance captured in D at low f over the modules accounted for 
in T, the decrease of the correlation with D as a function of f and 
the increase of the correlation with T at high f.

When computing the matrix elements Q
ij
 giving the probability 

of the two nodes i and j being simultaneously excited, we assume 
that even for small f the observation time is long enough for 
the potential joint excitations of the two nodes to really unfold. 
Alternatively, we could have required some spontaneous excita-
tion to have taken place (by inserting an additional factor of f). 
In the results from the numerical simulations we often observe 
a decrease of the correlation between the similarity matrix and 
topological matrices when going to small values of f. The above 
argument clearly identifi es this behavior as a consequence of the 
fi nite simulation time. To support this interpretation we per-
formed a longer simulation run for small f and found a systematic 
increase of the mutual information with simulation time, thus 
reducing the discrepancies between the numerical and  analytical 
curves.

The results from Figure 7 have been obtained for the 64-node 
hierarchical graph. Figure 8 shows the corresponding results for 
the larger graph, N = 256. The lower two plots in Figure 8 com-
pare these predictions with the relevant segments of the numerical 
curves (dashed) from Figure 4. Again, the predictions clearly repro-
duce the increase of the one and the decrease of the other curve. In 
order to further assess, whether the predicted similarity matrices 
reproduce the actual distribution features of excitations on the 
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FIGURE 7 | Mutual information as a function of f, measuring the 

correlation of the predicted similarity matrix Q with modularity (matrix T; 

black; full) and with distance to the central node (matrix D; black; 

dashed), compared to similar correlation measure between the 

simulated similarity matrix C and matrices T and D (red; respectively full 

and dashed); in all cases the 64-node hierarchical graph has been used.
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or motif topological specifi city. Accordingly, we analyzed the 
relation between topology and dynamics with methods from 
spatiotemporal pattern formation. When the carrier space is no 
longer a regular lattice, it becomes relevant to investigate the 
origin of the pattern and the shaping of the patterns by net-
work topology. This can be achieved by studying correlations 
between topological properties and properties of the dynamics. 
The results refl ect the exploitation of certain topological features 
by dynamics. In particular, by computing the mutual information 
between the respective matrices, we show the f-dependence of the 
correlation between topology and dynamics and re-discover the 

dependence as discussed previously with other means (Müller-
Linow et al., 2008).

Here we have been able to understand the dominant features of 
these patterns from Müller-Linow et al. (2008) analytically using a 
combination of a mean-fi eld approach and avalanche viewpoint: on 
a hierarchical graph, the core feature is the switching from a ‘central-
node’ to a ‘topological-module’ mode of organization of simultane-
ous excitations as a function of f; on scalefree and modular graphs, it 
is the dominance of one of the modes across the whole range of f.

We have also shown that the mean-fi eld model reasonably 
well explains the increase of the average excitation density as a 
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FIGURE 8 | Upper fi gure: Mutual information as a function of f, measuring the correlation of the predicted similarity matrix Q
ij
 with modularity 

(matrix T; dashed curve) and with distance to the central node (matrix D; full curve). Compared to Figure 7 (N = 64) the graph size is now N = 256. The 
lower two fi gures compare each of these curves (left-hand side: modularity; right-hand side: central node; full curve: prediction; dashed curve: result from 
numerical simulation).

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org September 2009 | Volume 3 | Article 28 | 73

Hütt and Lesne Excitation patterns on hierarchical graphs

 function of connectivity, which was reported in Müller-Linow et al. 
(2006).

Due to its very principles and associated approximations, the 
mean-fi eld model can describe average properties of the excitations, 
but not the interplay between topology and dynamics (i.e., how 
topological features regulate the distribution patterns of excita-
tions on the graph). In fact, the validity of the mean-fi eld approach 
depends on the investigated feature. For instance, when looking at 
the curve of average excitation as a function of connectivity, only 
a very small dependence on graph topology is seen (Müller-Linow 
et al., 2006), and the mean-fi eld description is here in good agree-
ment with the numerical data. But it fails to account for the two 
regimes of correlation between topology and dynamics observed 
as a function of f, whose origin is unraveled and quantitatively 
captured in our avalanche description.

Several important steps are left for future work: In order to 
develop a global picture of this interplay between topology and 
dynamics one needs to study the topological properties of the effec-
tive networks and, therefore, the size distribution of the avalanches 
as a function of topology and system parameters. As discussed at 
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FIGURE 9 | Top row: scalefree (BA) graph (left) and modular graph (right), 

each consisting of 256 nodes. Bottom row: For each of the graphs, mutual 
information as a function of f, measuring the correlation of the predicted similarity 
matrix Qij with modularity (matrix T; dashed curve) and with distance to the 
central node (matrix D; full curve). In both cases, numerical results are shown as 
well (red curves) based on a single 5000 time step simulation of the system on 

the graphs shown in the top row. In the case of the numerical result for the 
scalefree graph, two additional points should be noted: (1) as in Müller-Linow 
et al. (2008) due to the high connectivity, the dynamics are re-scaled by requiring 
a certain percentage of neighbors (20%) to be active in order to activate a node; 
(2) at such small size, the population of scalefree graphs is very heterogeneous 
and therefore the curve can only be seen as a single-graph representative.
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by susceptible elements at each time step of the numerical simulation of 

the dynamics. In order to compute this curve for each value of f we used a 
10,000 time step simulation of the dynamics on the 256-node hierarchical 
graph, for each effective network averaged over the shortest paths between all 
nodes and, fi nally, averaged over the effective networks from 1000 time steps.
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the end of the results section, our current formalism already leads 
to some predictions for the time scales relevant for avalanches of 
 excitations, as well as for the avalanche size and duration distribu-
tions. An extension of this formalism may help us link the obser-
vations from this simple model of excitations to the formalisms 
discussed in Levina et al. (2007a,b).

We also believe that the distribution of weighting factors µ
i
 and 

amplifi cation factors M(i) may provide interesting characteriza-
tions of a network for dynamical purposes. This certainly needs 
further exploration.
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This work reports a digital signal processing approach to representing and modeling transmission 
and combination of signals in cortical networks. The signal dynamics is modeled in terms of 
diffusion, which allows the information processing undergone between any pair of nodes to be 
fully characterized in terms of a fi nite impulse response (FIR) fi lter. Diffusion without and with 
time decay are investigated. All fi lters underlying the cat and macaque cortical organization are 
found to be of low-pass nature, allowing the cortical signal processing to be summarized in 
terms of the respective cutoff frequencies (a high cutoff frequency meaning little alteration of 
signals through their intermixing). Several fi ndings are reported and discussed, including the 
fact that the incorporation of temporal activity decay tends to provide more diversifi ed cutoff 
frequencies. Different fi ltering intensity is observed for each community in those networks. 
In addition, the brain regions involved in object recognition tend to present the highest cutoff 
frequencies for both the cat and macaque networks.

Keywords: cortical networks, digital signal processing, graphs, networks
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Several linear approximations to non-linear problems have been 
reported in the literature, most of which related to linear synchroniza-
tion dynamics (e.g. Zemanova et al., 2008; Zhou et al., 2006, 2007) and 
active media (e.g. Biktasheva et al., 2009; Ermentrout and Edelstein-
Keshet, 1993; Hramov et al., 2005), yielding valuable insights about 
information transmission and processing. One element of particu-
lar importance in such investigations regards the interplay between 
structure and function. For instance, it has been established that the 
neural systems seem to form networks whose structures lie at the criti-
cal regime between local and global synchrony (Percha et al., 2005). 
In this way, the appearance of connections in damaged regions may 
lead to the onset of epileptic seizures (Nadkarni and Jung, 2003). It 
should be also observed that, as in the present work, linear approaches 
can be applied to model the collective dynamics of whole cortical 
regions, defi ning a more macroscopic investigation. In such cases, 
the explicit non-linearity of individual neuronal fi ring are averaged 
among several cells, yielding signals which are more graded and more 
propitious to being represented by linear approximations, especially 
during short periods of time. This property is ultimately one of the 
main justifi cations for the relatively large number of works in the 
literature in which brain activity is approached in terms of linear 
synchronization. It is also possible that the macroscopic propagation 
of cortical activation amongst different cortical regions could exhibit 
dynamics similar to traditional diffusion. Nevertheless, it should 
always be borne in mind that linear models of cortical activations 
may not refl ect all the important dynamical features, especially those 
involving longer time intervals.

While synchronization is inherently important in the sense of 
being related to the brain workings, other linear approaches can 
be equally applied in order to reveal complementary aspects of 
the relationship between structure and function in the brain. One 

INTRODUCTION
Brains are modular, interconnected structures optimized for trans-
mission and processing of information at a level compatible with the 
survival and reproduction of each particular species (Hilgetag and 
Kaiser, 2004; Koch and Laurent, 1999; Sporns, 2002; Sporns et al., 
2004). Information is progressively altered as it fl ows through the 
brain as a consequence of: (i) the processing performed by each indi-
vidual neuron; (ii) the interconnection between the neurons along 
the path of the information fl ow, which implements the mixture of 
different signals; and (iii) interferences at the neurons or intercon-
nection links (e.g. noise and cross-talk). While great attention has 
been focused on information processing in the brain, specially at 
the neuronal level, relatively fewer investigations have addressed 
the equally important issue of how signals are disseminated, while 
being integrated, through the several brain areas. Indeed, a great 
deal of the brain hardware (Sporns and Kötter, 2004), especially the 
white matter, is responsible for conveying signals along considerable 
distances from their origin, typically to several destinations, where 
they are modifi ed, blended, and transmitted further.

Brain connectivity can be effectively represented, modeled and 
simulated in terms of graphs (e.g. Barabási and Albert, 2002). 
More specifi cally, each neuron or cortical region can be mapped 
as a node of a graph, while the synaptic or inter-regional connec-
tions are represented as directed links. Though a more complete 
understanding of information processing in the brain ultimately 
requires the integration of the non-linear processing taking place 
at each neuron, valuable insights can be nevertheless obtained by 
adopting some simpler (e.g. linear) dynamics and focusing on the 
interconnectivity and signal modifi cation between neurons or 
cortical areas, as represented by graphs and networks (Watts and 
Strogatz, 1998).
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 particularly interesting possibility which has been mostly over-
looked is the investigation of signal transmission and processing 
in terms of signal processing approaches. Founded on a well-
 established, sound mathematical framework, signal processing 
research (e.g. McClellan et al., 2002; Proakis and Manolakis, 2006) 
focuses on the representation and analysis of signals and systems in 
terms of frequencies and fi lters. The generality of such an approach 
stems from the fact that any real-world signal can be represented in 
terms of its respective Fourier series, namely a linear combination 
of basic harmonic components (sines and cosines) with different, 
well-defi ned frequencies. Linear systems typically modify such sig-
nals by changing the intensity of each component, such as in fi lters. 
For instance, a low-pass fi lter will attenuate the high- frequency 
harmonic components, while allowing the lower frequency compo-
nents to pass with little or no alteration. The application of such an 
approach to signal transmission and processing in the brain paves 
the way to a series of promising possibilities. For instance, the altera-
tions undergone by information as it proceeds from a specifi c origin 
neuron or cortical region to a specifi c target can be approximated 
as a kind of fi lter. Provided the properties of such a fi lter can be 
obtained, this approach allows modeling of the alterations under-
gone by the information while going from origin to destination. In 
other words, such a fi lter would replicate the functionality of the 
whole portion of brain hardware comprised between the origin 
and destination. In addition to its simplicity and elegance, such a 
fi lter modeling approach would also clearly characterize the way 
in which the information is altered in an intuitive and meaningful 
way, i.e. in terms of the alterations of the magnitudes of specifi c 
harmonic components. For instance, in case a specifi c portion of 
the brain is found to correspond to a low-pass fi lter, it becomes 
immediately clear that the high-frequency content of the signal 
is being attenuated, which corresponds to a smoothing operation 
implying loss of its details, therefore suggesting that that particular 
processing is focusing on the slower variations of the signal. In 
addition, low-pass fi lters are immediately related to the operation 
of integrating signals along time. In this respect, the smoothing 
could be a consequence of too intense mixing of several delayed 
versions of the signal, therefore providing valuable information 
about the level of blending of the signals as they passed through the 
network topology. Interestingly, the dynamical effect of low- and 
high-pass fi lters can be to a large extent summarized in terms of 
their respective cutoff frequency, namely the frequency where the 
attenuation reaches 1 2/  of the amplitude of the largest harmonic 
component. Such an approach allows the function of the whole 
portion of brain in question to be effectively summarized in terms 
of a single real value. In the case of a low-pass fi lter, the higher 
the cutoff frequency, the smaller the alteration and intermixing 
undergone by the signal.

The current work describes a signal processing approach to the 
integration of brain structure and functionality which relies on 
the adoption of linear dynamics, namely diffusion. This type of 
dynamics underlies several natural systems and also participates 
in a large variety of non-linear dynamics (e.g. reaction-diffusion 
Giordano and Nakanishi, 2005). More specifi cally, at each time step, 
the signals arriving at each cortical region are added and redistrib-
uted among the respective outgoing links. The specifi c way in which 
such alterations take place are intrinsically related to the specifi c 

topology of the portion of the network comprised between the 
origin and destination nodes. In this way, the signals are blended 
as they are propagated along the brain in a way that is analogue 
to several sources of sound going through an environment as the 
sound signals reverberate and intermix, giving rise to construc-
tive and destructive interferences. As such, this approach provides 
a nice complementation of other linear approximations to brain 
functionality, such as synchronization, by emphasizing the inter-
mixing of signals as they progress through specifi c pathways along 
the intricate brain topology. Though we focus on cortical networks, 
this approach is immediately extensible to neuronal networks.

As reported recently (Rodrigues and da Fontoura Costa, 2009), 
non-conservative diffusion dynamics, more specifi cally the situa-
tion where each outgoing edge produces unit activation, in cortical 
networks can be effectively modeled in terms of fi nite impulse 
response digital fi lters (FIR). Interestingly, the coeffi cients of the 
FIR associated to a given network undergoing that type of dynamics 
are completely defi ned by the number of walks between the origin 
and destination areas, therefore establishing a clear-cut relation-
ship between network structure and dynamics. The present work 
extends and explores these possibilities much further by assuming 
conservative diffusion with and without time decay in the cat and 
macaque cortical networks.

The manuscript starts by presenting the concepts of complex 
networks and digital signal processing, as well as the adopted cor-
tical databases. Next, results obtained with respect to macaque 
and cat cortical networks are presented and discussed. The text 
concludes by reviewing the main contributions and identifying 
possibilities for further investigations.

CONCEPTS AND METHODS
NETWORKS AND DIFFUSION
A directed complex network, composed by a set of N nodes con-
nected by E edges, can be represented by its adjacency matrix A, 
whose elements a

ij
 are equal to unity if the node j sends a con-

nection to node i, and equal to zero otherwise. Two nodes i and 
j are said to be adjacent or neighbors if aij ≠ 0. Two non-adjacent 
nodes i and j can be connected through a sequence of m edges 
( ) ( ) ( ).i n n n n jm, , , , , ,−1 1 2 1…  Such a set of edges between i and j is called 
a walk of length m. The special case of a walk where no nodes are 
repeated is called a path.

A particular property of most complex networks is their com-
munity or modular structure. Communities are modules of densely 
interconnected nodes (Girvan and Newman, 2002). There are many 
methods for community identifi cation and their choice depends 
on specifi c needs, e.g. accuracy against fast execution (da Fontoura 
Costa et al., 2007). In the current work, we considered the method 
based in random walks called Walktrap (Pons and Latapy, 2005), 
because such approach is intrinsically related to diffusion dynamics, 
which also underlies our modeling approach.

The characterization of the properties of a given network can 
be performed in terms of structural (e.g. da Fontoura Costa et al., 
2007) and dynamical measurements (e.g. da Fontoura Costa and 
Rodrigues, 2008). Structural measurements includes, for instance, 
the node degree, clustering coeffi cient, average shortest path length 
and assortativity coeffi cient (da Fontoura Costa et al., 2007). On 
the other hand, dynamical measurements depend on the specifi c 
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dynamic process that is being executed in the network, such as 
synchronization (e.g. Pikovsky et al., 2002), random walks (e.g da 
Fontoura Costa and Sporns, 2006; da Fontoura Costa and Travieso, 
2003), opinion formation (e.g Rodrigues and da Fontoura Costa, 
2005) and epidemic spreading (e.g Newman, 2002). The structure 
and dynamics of complex networks are intrinsically inter-related 
(Boccaletti et al., 2006).

As shown in the current work, the relationship between structure 
and function of networks can also be addressed by using signal 
processing approaches. Signals are assumed to spread throughout 
the network by random walks initiating from a given source node 
(e.g. Barber and Ninham, 1970; Giordano and Nakanishi, 2005). 
Such a dynamical process, which is inherently related to diffusion 
(Barber and Ninham, 1970), involves the progressive dissemina-
tion and intermixing of the signals along time and network space, 
closely refl ecting the specifi c topology of the network. Therefore, 
the signal arriving at a given destination node depends strongly on 
the structure of the portion of the network comprised between the 
source and destination nodes (da Fontoura Costa and Rodrigues, 
2008). It has been shown recently (Rodrigues and da Fontoura 
Costa, 2009), with respect to a specifi c non-conservative diffusion 
dynamics, that such a strong interplay between network structure 
and dynamics can be fully modeled in terms of fi nite impulse 
response fi lters (FIRs). More specifi cally, the coeffi cients of such 
digital fi lters are given by the number of walks between the source 
and destination nodes.

The diffusion of activations in complex networks can be obtained 
by considering the transition matrix S, which can be calculated from 
the adjacency matrix A as

S i j
A i j

A i j
j

N( )
( )

( )
, = ,

,
=∑ 1

 (1)

Each element S(i,j) gives the probability of moving from the 
node i to node j. In this way, if a given signal is injected into a 
network, we can determine its diffusive propagation by repeatedly 
applying the transition matrix. More specifi cally, the probability 
of transition between the source and a destination at n edges of 
distance can be immediately obtained from the matrix

H Sn
n=  (2)

Similarly, the number of walks of length n between two nodes 
can be determined by the elements of the matrix D An

n= . The above 
dynamics is conservative, as there is no loss in the activations (all 
signals in the present work are formed by zeroes and ones). On 
the other hand, it is also possible to adopt a decay parameter that 
reduces the amplitude of the received activation along time. In 
this case, the matrix H

n
, which gives the probability of transition 

between the source and destination nodes separated by walks of 
length n, is given as

H n Sn
n= +ε( )1  (3)

where ε α ε( ) ( ) ( )n n+ = −1 1 , ε( )1 1=  and 0 1≤ ≤α . The coeffi cient 
α can be understood as the rate of decay according to the distance 
from the source of signal propagation. Such a dynamics, which is no 
longer conservative, has biological backing in the sense that sensory 

brain activations tend to diminish with time. In the current work, 
we show that the FIR approach to modeling the cortical networks 
can easily incorporate time decay, allowing the investigation of the 
diffusion dynamics without and with decay.

DISCRETE SIGNALS AND THEIR PROCESSING
A discrete-time signal is a time series consisting of a sequence of 
discrete values. The process of converting a continuous-valued 
discrete-time signal into a digital (discrete-valued discrete-time) 
signal is known as quantization (Orfanidis, 1996). A time-invariant 
system is a system that remains unchanged along time. This implies 
that if a given input is inserted into the system and causes a defi nite 
output, if we repeat the same process at another time, an equally 
delayed version of the previous output will be obtained. A linear, 
time-invariant system (LTI) can be fully classifi ed in terms of its 
fi nite impulse response (FIR) and infi nite impulse response (IIR), 
depending on whether the inserting signal has fi nite or infi nite 
duration. More specifi cally, given the impulse response, the out-
put produce for any input signal can be immediately calculated in 
terms of the convolution between the input signal and the impulse 
response.

A fi lter can be defi ned as any medium that can modify the signal 
in some way (Smith, 2007). A digital fi lter operates on discrete-
time signals by taking a sequence of values (the input signal) and 
producing a new discrete-time signal (the fi ltered output signal). 
The main objective underlying the current work is to model the 
dynamics of signal transmission and integration between pairs of 
nodes in terms of digital signal processing concepts (McClellan 
et al., 2002; Orfanidis, 1996; Proakis and Manolakis, 2006). More 
specifi cally, the signal processing between pairs of nodes (source 
and destination of signal) is modeled as a FIR digital fi lter structure 
whose coeffi cients correspond to the total probability of transition 
of walks of different lengths between the source and destination 
(see Figure 1). This approach extends and complements a prelimi-
nary investigation assuming non-conservative diffusion dynamics, 
where the signals were propagated by using the adjacency, instead 
of transition, matrix (Rodrigues and da Fontoura Costa, 2009).

If a signal is injected into a network from a given source node 
i, the activation of each node at time t implied by the diffusion 
dynamics can be represented in terms of the system state vector 
(da Fontoura Costa, 2008)

G
y t y t y t y tN( ) ( ( ) ( ) ( ))= , , ,1 2 …  (4)

where y
j
(t) represents the state of the node j at the time t. Given 

the state of a network at time t, the subsequent state can be cal-
culated by

G G G
y t Sy t s t( ) ( ) ( )+ = +1  (5)

where 
G
s t s t s t s tN( ) ( ( ) ( ) ( ))= , , ,1 2 …  is the vector representing the 

forcing signal injected at each node i. Note that in the case where 
only one node i receives activation at each time t, we have s ti ( ) ,= 1  
while all the other elements of 

G
s  are equal to zero. The forcing 

signal 
G
x injected into the network is assumed to have length L and 

be composed of elements which are equal to zero or one. At each 
time step, one element of this vector is injected into the source 
node i, i.e. s t x ti( ) ( )= . Thus, by considering this dynamics, signals 
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are diffused, distributed and intermixed along the network. More 
specifi cally, the signal arriving at a node j after t time steps is a 
linear combination of the original signal values after undergoing 
all possible delays (smaller or equal to t) and combinations along 
the portion of the network comprised between the source and des-
tination nodes, i.e.

y t h x t h x t h t xj ( ) ( ) ( ) ( ) ( ) ( ) ( )= + − + +0 1 1 0…  (6)

where y
j
(t) is the activation of the node j at the time t and the 

elements h(n) represent the probability of transition between the 
source i and the destination j, considering all random walks of 
length t between the source and destination.

It can be easily verifi ed that Eq. 6 corresponds to a FIR fi lter-
ing structure, such as that illustrated in Figure 1. Indeed, this 
equation is equivalent to the convolution between the injected 
signal and the fi nite impulse response sequence 

G
h of a digital 

fi lter considering some initial period of time. Therefore, the 
dynamic of signal transmission between each pair of nodes i 
and j is effectively summarized, for a given fi nite period of time, 
by the respective FIR structure, which is completely specifi ed in 
terms of the coeffi cients of 

G
h, respectively given by Eq. 2. Thus, 

the coeffi cients defi ning the FIR structure are fully specifi ed by 
the transition matrix describing the diffusion dynamics for each 
specifi c network topology.

The convolution above can be conveniently evaluated in terms of 
the z-transform. The z-transform converts a discrete time-domain 
signal, which is a sequence of real or complex numbers, into a com-
plex domain representation. The z-transform is closely related to 
the Laplace transform, from which it can be obtained through the 
variable change z est=  (McClellan et al., 2002). As a consequence, 
the z-transform is also related to the Fourier transform. Given a 

discrete time signal 
G
x t( ), its z-transform is defi ned as corresponding 

to the following series (Sirovich, 1988),

X z x n z n

n

L

( ) ( )= −

=
∑

0

 (7)

We can recover 
G
x t( ) from X(z) by extracting the coeffi cient of 

the n-th power of z−1 and placing that coeffi cient in the t-th posi-
tion in the sequence x(t). Note that the inverse z-transform may 
not be unique unless its region of convergence is specifi ed. The 
inverse z-transform can be computed using the contour integral 
(McClellan et al., 2002)

x n
j

X z z zn

C

( ) ( )= −∫
1

2
1

π
dv  (8)

Among the main features of the z-transform that facilitate the 
analysis of linear systems we have: (i) linearity, (ii) delay repre-
sentation, and (iii) the convolution property. In the case of the 
cortical networks, the FIR representation makes it clear how the 
existence of several paths of different lengths between the source 
and destination nodes, by defi ning distinct transition probabilities, 
completely specifi es the functionality of the FIR as well as of the 
respective cortical network (Rodrigues and da Fontoura Costa, 
2009). The convolution property is fundamental in FIR analysis, 
since it can be easily calculated by a simple multiplication in the 
transformed space, i.e.

y t h t x t Y z H z X z( ) ( ) ( ) ( ) ( ) ( )= ⇒ =∗  (9)

where h(t) is the impulse response sequence of a digital fi lter.
As the z-transform of a time-delay function δ(t − p) is known to 

be z−p, we have that the system function H(z) (i.e. the z-transform 
of the fi nite impulse response) for the network modeled as a FIR 
structure is given as

H z h n z n

n

( ) ( )= −

=
∑

0

Γ

 (10)

where Γ is the FIR size and h(n) represents the probability of transi-
tion between the source and the destination for walks of length n, 
i.e. the elements of H Sn

n= . Figure 2 illustrates the dynamics in a 
network as modeled by the FIR approach.

Mathematically, the numerator of H(z) has M roots (corre-
sponding to the zeros of H) and the denominator has Q roots 
(corresponding to poles). The roots and poles of the system func-
tion H(z) determine it to within a constant. In particular, as the 
FIR always have multiple poles at zero, the system is always stable 
(McClellan et al., 2002). The poles are the values of z at which 
H(z) is undefi ned (infi nite). The transfer function can be written 
in terms of poles and zeros

H z
q z q z q z

p z p z p z
M

Q

( )
( )( ) ( )

( )( ) (
= − − −

− − −

− − −

− −

1 1 1

1 1 1
1

1
2

1 1

1
1

2
1

"
" −−1)

 (11)

where q
n
 is the n-th zero and p

n
 is the n-th pole. The zeros and poles 

are commonly complex and, when plotted on the complex plane 
(z-plane), they defi ne the so-called pole-zero plot (see Figure 5, 
for instance).

probability of
transition for

walks of length 0

probability of
transition for

walks of length 1

probability of
transition for

walks of length 2

h1

h2

+

X(n-2)

y(3)

t=3
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FIGURE 1 | The FIR model of the dynamics between a pair of nodes in a 

given network. The signal 
G
x t( ) is injected into the network until t = 3. The 

signal at each time instant in the destination 
G
y t( ) corresponds to a linear 

combination of the input signal and the coeffi cients h(n) given by the 
probability of transition for walks of varying lengths between the source and 
destination.
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It follows from the above results that all the intricacies of the 
diffuse dynamics in complex networks can be summarized in terms 
of the respective poles and zeroes of the system function. Moreover, 
the frequency response of the system, as well as the respective cut-
off frequencies, can be immediately obtained from the pole-zero 
representation. The cutoff frequency, summarizes to a great extent 
the overall function of the respective low- or high-pass fi lter. The 
frequency response is highly dependent of the network structure, 
as shown in Figure 3. Indeed, the mixture of signals tends to reduce 
the amplitude of the frequency response and therefore the cut-
off frequency. The frequency response is defi ned as the spectrum 
of the output signal divided by the spectrum of the input signal 
(Orfanidis, 1996; Smith, 2007). Observe that such formulations 
refer to the stationary state of the system, which is henceforth 
approximated by using several periods of a given input signal. The 
frequency response is typically characterized by the magnitude and 
phase of the system’s response in terms of frequency. The frequency 
response magnitude is given by the transfer function H(z) evaluated 
along the unit circle in the z-plane. In other words, the frequency 
response of a linear time-invariant system is equal to the Fourier 
transform of the impulse response (Smith, 2007).

CORTICAL NETWORKS
We investigate the cortical networks of macaque and cat, which con-
tain predominantly isocortical brain regions (Sporns et al., 2007). 
All data sets consist of binary matrices describing the interconnec-
tivity between the brain regions given by inter-regional pathways. 
The macaque network, including 47 nodes connected by 505 links, 
incorporates the visual, somatosensory and motor cortical regions 
(Felleman and Van Essen, 1991). The cat cortical network is derived 
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FIGURE 2 | Example of FIR modeling of the dynamics between a pair of 

nodes in the network (A). The signal 
G
x = , , ,( )1 0 1 0  is injected into the red node 

and the output is observed at the yellow node along the fi rst 8 time steps. The 
output, 

G
y = , , . , . , . , . , . ,( )0 0 0 111 0 166 0 216 0 166 0 104 0 , can be obtained by 

considering the FIR structure, as illustrated in (B).

–3 –2 –1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ag

ni
tu

de

Frequency

A

B

FIGURE 3 | Two different topologies that result in specifi c frequency 
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from the matrix published by Scannell et al. (1999), and excludes 
the hippocampus, all thalamic regions and the thalamo-cortical 
pathways (Sporns et al., 2007). This network contains 52 nodes and 
818 links. All connections in these networks are directed.

The communities were identifi ed by using the Walktrap method 
(Pons and Latapy, 2005), which is founded on random walk dynam-
ics. Both cat and macaque cortical networks were split into four 
communities characterized by modularity (e.g Newman and 
Girvan, 2004) equal to Q = 0.25 for the cat, and Q = 0.28 for the 
macaque. The adjacency matrices of cat and macaque with the 
highlighted community connections are shown in Figure 4. We 
named the communities in terms of their main functions. In the 
case of the cat, the identifi ed communities are formed by the fol-
lowing cortical regions:

• Cognitive: area 20b, area 7, anterior ectosylvian sulcus, poste-
rior part of the posterior ectosylvian gyrus, medial area 6, 

 lateral area 5B, infralimbic medial prefrontal cortex, dorsal 
medial prefrontal cortex, lateral prefrontal cortex, agranular 
insula, granular insula, anterior cingulate cortex, posterior 
cingulate cortex, retrosplenial cortex, area 35 of the perirhinal 
cortex, area 36 of the perirhinal cortex, presubiculum, parasu-
biculum and postsubicular cortex, subiculum, and entorhinal 
cortex;

• Visual: area 17, area 18, area 19, posterolateral lateral suprasyl-
vian area, posteromedial lateral suprasylvian area, anterome-
dial lateral, surpasylvian area, anterolateral lateral suprasylvian 
area, ventrolateral suprasylvian area, dorsolateral suprasylvian 
area, area 21a, area 21b, area 20a, and posterior suprasylvian 
area;

• Auditory: primary auditory fi eld, secondary auditory fi eld, 
anterior auditory fi eld, posterior auditory fi eld, ventroposte-
rior auditory fi eld, and temporal auditory fi eld;

• Sensory system: area 3a, area 3b, area 1, area 2, second somato-
sensory area, fourth somatosensory area, area 4γ, areas 4f, 4sf 
and 4d; lateral area 6, medial area 5A, lateral area 5A, medial 
area 5B, inner (deep) suprasylvian sulcal region of area 5, outer 
suprasylvian sulcal region of area 5.

The communities identifi ed in the macaque cortical network 
are:

• Memory: area 35, area 36, area 46, area 5, insular cortex, area 6, 
area 7a, area 7b, anterior inferotemporal (dorsal), frontal eye 
fi eld, insular cortex (granular), medial dorsal parietal, medial 
intraparietal, retroinsular cortex, superior temporal polysen-
sory (anterior), superior temporal polysensory (posterior), TF, 
and TH;

• Visual: anterior inferotemporal (ventral), central inferotem-
poral (dorsal), central inferotemporal (ventral), posterior infe-
rotemporal (dorsal), posterior inferotemporal (ventral), visual 
area 4, and ventral occipitotemporal;

• Motor: area 1, area 2, area 3a, area 3b, area 4, secondary soma-
tosensory area, and supplemental motor area;

• Detection of movement: dorsal preluneate, fl oor of superior 
temporal, lateral intraparietal, medial superior temporal (dor-
sal), medial superior temporal (lateral), middle temporal, 
posterior intraparietal, parieto-occipital, visual area 1, visual 
area 2, visual area 3, visual area V3A, v4 transitional, and ven-
tral intraparietal.

RESULTS AND DISCUSSION
We start by illustrating the several concepts of the digital signal 
processing approach to the cortical networks. A signal of length 
20 was injected into the largest hub of the cat (posterior cingulate 
cortex, CGp) and macaque (Visual area 4, V4) networks. Such hubs 
were chosen for this fi rst experiment because they tend to act as 
connectors between different cortical regions (Sporns et al., 2007). 
The length of the signal was chosen so as to be larger than the 
diameter of the cortical networks, which is equal to four in both 
cat and macaque. Figure 5 presents the zeros and poles obtained 
with respect to having the destination at each of the nodes in the cat 
and macaque, given this specifi c signal length, without time decay. 
The nodes in Figure 5 are color-coded according to the respective 
community to which they belong. Recall that the values of the zeros 

FIGURE 4 | The adjacency matrix of (A) cat and (B) macaque. For the cat 
cortical network, the colors represent the following communities: (i) black: 
cognitive, (ii) blue: visual, (iii) green: auditory, and (iv) red: sensory system. 
For the macaque, (i) black: memory, (ii) blue: visual, (iii) green: motor, and 
(iv) red: detection of movement. Connections between communities are 
shown in gray.
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and poles depend only of the FIR size and the network topology 
between the source and destination, and not of the specifi c con-
tent of the injected signal. Though the positions of the zeroes are 
similar in both cat and macaque, a wider dispersion is observed for 
the latter case. Interestingly, the zeroes found for each community 
tend to have similar positions in the complex plan, implying that 
those regions receive versions of the original signal modifi ed in 
similar ways.

Figure 6 shows the frequency response curve (magnitude) 
obtained for one of the pairs of nodes of the macaque network, 
together with the respective zeroes, which are internal to the unit 
radius circle. The fact that such curves are determined by the zeroes 

and poles is clear from this fi gure, where each low valley along the 
frequency response is associated to a respective zero in the complex 
plan (Im, Re). After all, by defi nition the zeroes are the values of z 
for which the system function H(z) becomes zero. The maximum 
magnitude along the unit circle is obtained between the two most 
spatially separated zeroes, at the lowest frequencies.

Figure 7 shows the frequency response curves (magnitude) 
obtained for the previous confi guration, i.e. with the signal injected 
at the largest hubs of each network. The frequency responses 
obtained for the cat (Figure 7A) are remarkably similar to one 
another. This is to a great extent a consequence of the intense 
uniformity and high density of the connections characterizing this 
specifi c network. A much more varied set of curves is observed for 
the macaque (Figure 7B), suggesting a greater diversity of corti-
cal organization and functioning. The curves obtained for each 
community tend to appear clustered, refl ecting their similar zeroes 
positions. Both networks are characterized by intense low-pass 
fi ltering, revealing strong smoothing and mixing of the original 
signal.

In order to analyze a more realistic situation, we considered a 
decay parameter that reduces the amplitude of the system state 
along time. In this case, the matrix H

n
, which gives the probability of 

transition between the source and destination separated by walks of 
length n, and therefore defi nes the coeffi cient of the system function 
H(z), is given by Eq. 3. The parameter α specifi es the intensity of the 
decay. It is henceforth adopted that α = 0.25. Figure 8 presents the 
zeroes and poles obtained for the cat and macaque after injecting a 
signal of length 20 into the CGp and V4 regions of cat and macaque, 
respectively. Observe that this corresponds to the same situation as 
above, but now with time decay. The obtained results are similar 
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to those obtained previously (e.g. Figure 5), except that the zeroes 
were displaced towards the center of the complex plan. Figure 9 
shows the obtained frequency response curves (magnitude) for the 
cat and macaque cortical networks. It is clear from these curves 
that the time decay promotes diversity of fi lter action, as revealed 
by the more diverse curve shapes. Note that the time decay makes 
the zeroes to move away from the unit circle towards the origin in 
the zero-pole plot (compare Figures 5 and 8), therefore changing 
the respective gain magnitude.

The outlier in Figure 9B, which presents the highest magnitudes, 
corresponds to the central inferotemporal (dorsal) region, which 
happens to be connected to the input region (v4) and two other 
hubs, i.e. posterior inferotemporal (ventral) and anterior infero-
temporal (dorsal).

From each of the frequency response (magnitude) curves, we can 
determine the respective cutoff frequency. For generality’s sake, we 

assume signals being injected from all vertices of the networks (one 
at each simulation), instead of only from the largest hubs. Figures 10 
and 11 present the distribution of the cutoff frequencies without 
and with decay, respectively. The cutoff frequencies obtained for 
both the cat and macaque networks without decay are rather simi-
lar, agreeing with the similar zeroes positions identifi ed previously. 
However, the cutoff frequencies obtained in presence of time decay 
exhibit greater diversity, which is a consequence of the displace-
ment of the zeros inwards the unit circle. As shown in the insets of 
Figure 11, although the shape of the cutoff distributions obtained 
for the cat and macaque are visually similar, only a clear power-law 
degree distribution has been verifi ed only for the cat. This result 
was obtained by applying the method proposed by Clauset et al. 
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(2009), which combines maximum-likelihood fi tting methods with 
goodness-of-fi t tests based on the Kolmogorov–Smirnov statistic 
and likelihood ratios. In this way, we used a maximum likelihood 
estimators for fi tting the power-law distribution of the cutoff fre-
quencies obtained for the cat and macaque networks and calculated 
the p-value through the Kolmogorov–Smirnov test. The obtained 
p-value for the cat was equal to p = 0.2 and for the macaque, p = 0 
(values larger than 0.05 indicates a power-law distribution). Thus, 
while the cat cortical networks present cutoff frequencies that 
follows a power law (P x x( ) ∼ −γ) with coeffi cient γ = 3.72), the 
macaque does not present such feature. In fact, we tested other 
distributions, including exponential, log-normal, stretched expo-
nential, and power law with cutoff, and none of the revealed to 
be a suitable fi tting to the distribution of the cutoff frequencies 
of the macaque. Though the macaque and cortical networks dif-
fer with respect to the distribution of the cutoff frequencies, both 

networks present a high variability in the cutoff frequency values. 
More specifi cally, most nodes present small cutoffs, while a few of 
the present high cutoffs. Therefore, the majority of the cortical areas 
receive signals with a high degree of modifi cation.

In order to perform a more detailed analysis of the cutoff fre-
quencies characterizing each community, we determined their 
cumulative distribution in the macaque and cat networks. Several 
simulations were performed while injecting signals from all nodes 
in the network and monitoring the response for nodes inside each 
community. Figure 12A shows the cumulative distributions of cut-
off frequencies obtained for the cat cortical network with respect 
to each community, considering time decay (the situation without 
decay is not discussed here because of its uniform response). The 
signals arriving at the sensory system, which include the somatosen-
sory areas, are heavily fi ltered, indicating greater respective modifi -
cations and blending of differently delayed versions of the original 
signal. This suggests that signals coming from sensory modalities 
such as touch, temperature, proprioception (body position), and 
nociception (pain) are strongly intermixed, eliminating higher fre-
quencies. The community involved in cognition, which includes 
the ectosylvian gyrus, prefrontal cortex, insula, cingulate cortex, 
perirhinal cortex and entorhinal cortex also presents small cutoff 
frequency and therefore receives strongly mixed versions of the 
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original signal. On the other hand, communities 2 and 3, involved 
in perception of complex motion (Rudolph and Pasternak, 1996) 
and representing the auditory fi eld, respectively, tend to receive 
signals with the overall smallest modifi cations, and therefore small-
est degrees of modifi cations and blending.

In the case of the macaque cortical network, shown in Figure 12B, 
the visual community, representing the inferotemporal and ventral 
occipitotemporal areas, receives signals with the lowest level of 
changes, with the highest cutoff frequencies. The inferotemporal 
area is thought to be the fi nal visual area in the ventral stream of 
cortical areas responsible for object recognition (Tanaka, 1996). The 
same effect is observed in the occipitotemporal cortical areas of the 
macaque, which are known to be important for normal object rec-
ognition and for selective attention (Walsh and Perrett, 1994). On 
the other hand, the motor area community, i.e. motor and soma-
tosensory areas, which are highly integrated one another (Kaas, 
2004), tends to receive highly modifi ed versions of the original 
signal. The movement detection community, which incorporates 
the somatosensory cortex, perirhinal cortex, insular cortex, parietal 
cortex, intraparietal cortex, polysensory and frontal eye fi eld, also 
receives signals with high levels of alterations and intermixing.

In addition to the analysis of signal transmissions and inter-
mixing with respect to communities, we can also systematically 

investigate the transmission of signals between different cortical 
areas. The cutoff frequencies were determine between all pairs of 
nodes in the cat and macaque networks. We determined the 20 con-
nections that result in the highest cutoff frequencies for the cat and 
macaque cortical networks, therefore corresponding to the small-
est levels of signal alternations and intermixing. Table 1 presents 
the input and output nodes, as well as the respective communi-
ties that they are included, yielding the highest cutoff frequencies 
among all combinations of nodes for the cat cortical network. The 
suprasylvian area (localized in the visual community) is the domi-
nant motion-processing region of the parietal cortex (Shen et al., 
2006), being sensitive to texture and the distance between edges 
defi ned by motion (Robitaille et al., 2008). Areas in the cognitive 
community are involved in cognitive performance (infralimbic 
medial prefrontal cortex (van Aerde et al., 2008)), specifi c roles 
in the cognitive functions and pathological defi cits of the hippoc-
ampal formation (subiculum area de la Prida et al., 2006), as well 
as spatial memory which helps to reduce errors when navigating 
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in the dark ( retrosplenial cortex Cooper et al., 2001). The highest 
cutoffs are therefore observed for transmissions between regions 
involved mainly in visual, cognitive and audio processing.

Table 2 shows the 20 connections that result in the highest cutoff 
frequencies for the macaque cortical network. These regions are 
mainly related to object recognition and movement detection. Areas 

in communities 1 and 2, which include the visual, occipitotemporal 
and inferotemporal areas, are involved in image processing and 
object detection and recognition (DiCarlo and Maunsell, 2003; 
Felleman et al., 1997). The areas in the movement detection com-
munity are also related to visual tasks. For instance, the posterior 
intraparietal area is involved in visually guided, object-related and 

Table 1 | The 20 connections with the highest cutoffs (cf) in the cat cortical network.

Input Com. Output Com. cf

Posterolateral lateral suprasylvian area Visual Dorsolateral suprasylvian area Visual 2.74

Presubiculum, parasubiculum and postsubicular cortex Cognitive Subiculum Cognitive 1.94

Subiculum Cognitive Area 35 of the perirhinal cortex Cognitive 1.94

Presubiculum, parasubiculum and postsubicular cortex Cognitive Entorhinal cortex Cognitive 1.86

Ventrolateral suprasylvian area Visual Dorsolateral suprasylvian area Visual 1.84

Posterior auditory fi eld Auditory Retrosplenial cortex Cognitive 1.84

Dorsolateral suprasylvian area Visual Ventrolateral suprasylvian area Visual 1.64

Subiculum Cognitive Infralimbic medial prefrontal cortex Cognitive  1.54

Area 21b Visual Dorsolateral suprasylvian area Visual 1.45

Ventroposterior auditory fi eld Auditory Anterior auditory fi eld Auditory 1.34

Dorsolateral suprasylvian area Visual Anterolateral lateral suprasylvian area Visual 1.25

Secondary auditory fi eld Auditory Temporal auditory fi eld Auditory 1.24

Anterior auditory fi eld Auditory Primary auditory fi eld Auditory 1.16

Anterior auditory fi eld Auditory Secondary auditory fi eld Auditory 1.16

Anterior auditory fi eld Auditory Ventroposterior auditory fi eld Auditory 1.16

Ventroposterior auditory fi eld Auditory Primary auditory fi eld Auditory 1.16

Anterior auditory fi eld Auditory Posterior auditory fi eld Auditory 1.04

Ventroposterior auditory fi eld Auditory Posterior auditory fi eld Auditory 1.04

Secondary auditory fi eld Auditory Primary auditory fi eld Auditory 1.04

Secondary auditory fi eld Auditory Ventroposterior auditory fi eld Auditory 1.04

Table 2 | The 20 connections with the highest cutoffs (cf ) in the macaque cortical network.

Input Com. Output Com. cf

Insular cortex Memory Secondary somatosensory area Motor 3.14

Medial superior temporal (lateral) det. movement Superior temporal polysensory (posterior) Memory 3.14

Anterior inferotemporal (dorsal) Memory Area 7a Memory 2.74

Anterior inferotemporal (dorsal) Memory Area 46 Memory 2.66

Dorsal preluneate det. movement Posterior intraparietal det. movement 2.56

Central inferotemporal (ventral) Visual Superior temporal polysensory (posterior) Memory 2.54

Ventral Posterior det. movement Posterior inferotemporal (dorsal) Visual 2.46

Posterior inferotemporal (ventral) Visual Central inferotemporal (ventral) Visual 2.46

Visual area 4 Visual Posterior inferotemporal (dorsal) Visual 2.46

Ventral occipitotemporal Visual Posterior inferotemporal (ventral) Visual 2.46

Central inferotemporal (dorsal) Visual Anterior inferotemporal (ventral) Visual 2.36

Anterior inferotemporal (ventral) Visual TH Memory 2.16

Area 35 Memory Insular cortex Memory 2.06

Ventral occipitotemporal Visual Ventral Posterior det. movement 2.04

Anterior inferotemporal (dorsal) Memory Central inferotemporal (ventral) Visual 1.96

Anterior inferotemporal (dorsal) Memory Posterior inferotemporal (ventral) Visual 1.94

Ventral occipitotemporal Visual Posterior inferotemporal (dorsal) Visual 1.64

Posterior inferotemporal (dorsal) Visual Anterior inferotemporal (dorsal) Memory 1.56

Ventral Posterior det. movement Ventral occipitotemporal Visual 1.54

Medial dorsal parietal Memory Area 7a Memory 1.54
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hand movements (Shikata et al., 2003). The ventral posterior areas 
are also related to visual processing. At the same time, areas in 
memory community participate in object recognition and memory 
(e.g. the insular cortex (Bermudez-Rattoni et al., 2005)). Therefore, 
interconnections between visual processing-related regions in the 
macaque cortex tend be characterized by the smallest low-pass 
fi ltering modifi cations. This fact is related to a relatively small mix-
ture of signals between the source and visual reals. A given corti-
cal region presents a high cutoff frequency because there are little 
alterations of signals going from the source to such region. The 
alterations are mainly caused by dependent walks, where signals 
tend to mix. Therefore, the more independent the walks between 
the source and destination, higher the frequency cutoff.

CONCLUSIONS
The relationship between brain organization and function cor-
responds to one of the most fundamental and challenging issues 
in neuroscience currently. Linear dynamics approaches, such as 
synchronization (e.g. Zemanova et al., 2008; Zhou et al., 2006, 
2007), have been extensively considered in order to investigate the 
structure-function paradigm in the brain. For instance, it has been 
observed that the onset of epileptic seizures can be induced by 
addition of random connections that tend to decrease the small-
world character of the brain (e.g. Nadkarni and Jung, 2003; Percha 
et al., 2005).

In the current work, we described a methodology to investigate 
diffusive signal propagation and blending between pairs of areas 
in cortical networks in terms of digital signal processing concepts 
and methods. Under these assumptions, the whole dynamics of 
brain propagation between each pair of nodes (source and destina-
tion) can be described by the convolution between the input signal 
and the probabilities of transition for walks of different lengths 
between the respective source and destination, a processing which 
can be neatly summarized in terms of fi nite-impulse-response 
fi lters (FIRs). We applied the z-transform in order to effectively 
perform these convolutions in terms of products. This approach 

also paves the way to the recovery, under certain conditions, of 
the original signal given the respective FIR structure. In addition, 
the z-transform approach allows the identifi cation of the zeroes 
and poles of the system function (the z-transform of the fi nite 
impulse response). This is important because the zeroes and poles 
defi ne completely the system response, and therefore can be used 
for the characterization of the functionalities implemented by the 
diffusion in the respective cortical topologies.

The obtained dynamics for the cat and macaque cortical net-
works was found to correspond to low-pass fi ltering, which tends 
to attenuate high-frequency harmonic components and allow the 
lower frequency components to pass with little or no alteration. In 
this way, the signal alterations undergone between the source and 
destination node can be summarized in terms of their respective 
FIR cutoff frequency. By analyzing signals received at each com-
munity, it was found that the areas involved in object recogni-
tion tended to suffer the smallest modifi cations in both the cat 
and macaque networks. In addition, in the cat, the areas related to 
sound processing were also verifi ed to receive signals with smaller 
modifi cations than the other regions.

The extension of the current work to other cortical networks, 
such as human and rat, is immediate. In addition, it would be 
interesting to investigate how failures and attacks to the original 
networks induce changes in the respective fi ltering. The valida-
tion of the proposed approach involves monitoring several specifi c 
brain regions while a known input is fed into a giver region. For 
instance, a known stimulus can be applied in the auditory system of 
a macaque and be measured at different brain regions by electrode 
insertion. A comparison between the input and output signals in 
such experiments could be used to validate our theory.
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Perception and hierarchical dynamics
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In this paper, we suggest that perception could be modeled by assuming that sensory input is 
generated by a hierarchy of attractors in a dynamic system. We describe a mathematical model 
which exploits the temporal structure of rapid sensory dynamics to track the slower trajectories of 
their underlying causes. This model establishes a proof of concept that slowly changing neuronal 
states can encode the trajectories of faster sensory signals. We link this hierarchical account to 
recent developments in the perception of human action; in particular artifi cial speech recognition. 
We argue that these hierarchical models of dynamical systems are a plausible starting point 
to develop robust recognition schemes, because they capture critical temporal dependencies 
induced by deep hierarchical structure. We conclude by suggesting that a fruitful computational 
neuroscience approach may emerge from modeling perception as non-autonomous recognition 
dynamics enslaved by autonomous hierarchical dynamics in the sensorium.

Keywords: dynamic systems theory, recognition, perception, birdsong, speech, biological movement, environment, 

Bayesian inversion

The question we address in this paper is whether these develop-
ments in hierarchical, trajectory-based perception models point to 
a computational principle which can be implemented by the brain. 
In Kiebel et al. (2008) we developed a simple recognition system, 
based on a specifi c functional form of hierarchical dynamics. We 
reprise the approach here to show it affords schemes for perception 
that are both robust to noise and can represent deep hierarchical 
structure in the sensory streams.

We consider three constraints on perception that the brain has 
to contend with. The fi rst is that our environment and sensations 
are dynamic processes. This places computational demands on the 
speed of recognition and makes perception, at fi rst glance, more 
formidable than recognizing static scenes or objects. However, 
a dynamic environment has temporal structure and regu-
larities, which can be learned and may be benefi cial for robust 
perception.

The second constraint is that the brain performs perception 
online, because it has no access to future sensory input and can-
not store the details of past sensations (we assume here that the 
brain does not have the equivalent of computer memory, which 
could faithfully store the sensory stream for off-line processing). 
This means that transient sensory information must be used to 
represent the dynamic state of the environment. This constraint 
renders perception distinct from other analyses of time-series 
data, where timing is not critical and stored data can be analyzed 
off-line.

The third constraint is that we assume that the perception 
conforms to the free-energy principle (FEP); i.e., the percep-
tual system dynamically minimizes its free-energy and implicitly 
makes inferences about the causes of sensory input (Friston et al., 
2006). To minimize its free-energy, the agent uses a generative 
model of how the environment produces sensory input. This for-
mulation leads to the question ‘what generative model does the 
brain use?’ (Dayan et al., 1995; Lee and Mumford, 2003). Here, 

INTRODUCTION
Although there have been tremendous advances in the development 
of algorithms and devices that can extract meaningful informa-
tion from their environment, we seem still far away from building 
machines that perceive as robustly and as quickly as our brains. For 
example, in artifi cial speech recognition, Deng et al. (2006) sum-
marize current technology with: ‘The machine would easily break if 
the users were to speak in a casual and natural style as if they were 
talking with a friend.’ The situation is similar in machine vision: 
Although highly specialized recognition devices exist; e.g., for face 
recognition (Tan et al., 2006; Zhao et al., 2003), there is no generally 
accepted computational principle for robust perception.

In artifi cial speech recognition, the conventional approach is to 
approximate the acoustic expression of speech by hidden Markov 
models (Bilmes, 2006; O’Shaughnessy, 2008). This scheme and 
its variants do not seem, by construction, to capture effi ciently 
the long-range temporal and contextual dependencies in speech 
(O’Shaughnessy, 2008). However, a novel approach is emerging 
that suggests a fundamental computational principle: the idea is 
to model fast acoustic features of speech as the expression of com-
paratively slow articulator movement (Deng et al., 2006; King et al., 
2007; McDermott and Nakamura, 2006). These models describe 
speech as a hierarchy of dynamic systems, where the lowest (fastest) 
level generates auditory output. Although this approach, due to its 
complexity, is still at an early stage of development, the premise 
is that hierarchical dynamics may provide valuable constraints on 
speech recognition. These could make artifi cial speech recogni-
tion systems more robust, in relation to conventional approaches, 
which do not embody hierarchical constraints effi ciently. In the 
visual domain, similar hierarchical models have been considered for 
making inference on dynamic human behavior, such as those used 
in robot-human interaction or surveillance technology (Kruger 
et al., 2007; Moeslund et al., 2006; Oliver et al., 2004; Robertson 
and Reid, 2006; Saenko et al., 2005; Yam et al., 2004).
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we will review and discuss a hierarchical model for perception, 
where higher levels (further away from sensory input) encode 
the shape of attractors which contain faster, lower level dynamics 
(Kiebel et al., 2008). Previously we have shown in simulations, 
that this hierarchical model enables agents to recognize states 
causing sensory input, at two time scales. In this paper, we focus 
on the implications of hierarchical attractor models for arti-
fi cial agents, for example speech recognition devices, and real 
brains. In particular, we introduce neurocomputational models 
of perception that emerge when one describes the dynamics of 
two systems (the environment and the agent) that are coupled 
via sensory input.

THEORY
In the following, we summarize a generative model based on a 
hierarchy of attractors and its variational inversion. In Kiebel et al. 
(2008), we used simulations to show that the inversion of these 
models shows a range of features which reproduce experimental 
fi ndings in systems neuroscience. Here, we relate this model to 
research in artifi cial speech recognition.

A MODEL OF PERCEPTUAL INFERENCE
Human speech perception has been construed as the output of a 
multi-level hierarchical system, which must be decoded at different 
time-scales (Chater and Manning, 2006; Poeppel et al., 2008). For 
example, while a spoken sentence might only last for seconds, it 
also conveys information about the speaker’s intent (an important 
environmental cause) that persists over much longer time-scales. 
To illustrate these points, we will simulate the recognition of bird-
songs. We use this avian example to illustrate that communica-
tion entails (i) embedding information at various time-scales into 
sound-waves at a fast time-scale and (ii) that the recipient must 
invert a hierarchical dynamic model to recover this information. 
Our objective is to show that communication can be implemented 
using hierarchical models with separation of temporal scales. In 
the following, we describe a two-level system that can generate 
sonograms of synthetic birdsong and serves as a generative model 
for perception of these songs.

There is a large body of theoretical and experimental evidence 
that birdsongs are generated by dynamic, nonlinear and hierar-
chical systems (Glaze and Troyer, 2006; Sen et al., 2001; Vu et al., 
1994; Yu and Margoliash, 1996). Birdsong contains information 
that other birds use for decoding information about the singing 
bird. It is unclear which features birds use to extract this informa-
tion; however, whatever these features are, they are embedded in 
the song, at different time-scales. For example, at a long time-scale, 
another bird might simply register the duration of a song, which 
might belie the bird’s fi tness. At short time-scales, the amplitude 
and frequency spectrum of the song might refl ect attributes of the 
bird or imminent danger.

A GENERATIVE BIRDSONG MODEL
In Kiebel et al. (2008), we described a system of two coupled Lorenz 
attractors, whose output was used to construct a sonogram and 
associated sound wave, which sounds like a series of chirps. The key 
point of this model is that, when generating output, the states of 
a Lorenz attractor at a slower time scale act as control parameters 

for another Lorenz attractor at a faster time scale. The model can 
be expressed as
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where, v(i) represent inputs to level i (or outputs from level i + 1), 
which perturb the possibly autonomous dynamics among that lev-
el’s states x(i). The nonlinear function f encodes the equations of 
motion of the Lorenz system:
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For both levels, we used a = 10 (the Prandtl number) and c = 8/3. 
The parameter T controls the speed at which the Lorenz attractor 
evolves; here we used T(1) = 0.25 s and T(2) = 2 s; so that the dynam-
ics at the second level are an order of magnitude slower than at the 
fi rst. At the second-level we used a Rayleigh number; v(2) = 32. We 
coupled the fast to the slow system by making the output of the slow 
system ν( ) ( )1

3
2 4= −x  the Rayleigh number of the fast system. The 

Rayleigh number is effectively a control parameter that determines 
whether the autonomous dynamics supported by the attractor are 
fi xed point, quasi-periodic or chaotic (the famous butterfl y shaped 
attractor). The sensory signals generated are denoted by y, which 
comprises the second and third state of x(1) (Eq. 1). We will call the 
vectors x(i) hidden states, and the scalar v(1) the causal state, where 
superscripts indicate model level and subscripts refer to elements. 
At each level we modeled Gaussian noise on the causes and states 
(w(i) and z(i)) with a log-precision (inverse variance), of eight (except 
for observation noise z(1), which was unity). We constructed the son-
ogram (describing the amplitude and frequency of the birdsong) 
by making y1  the amplitude and y

2
 the frequency (scaled to cover a 

spectrum between 2 and 5 kHz). Acoustic time-series (which can be 
played) are constructed by an inverse windowed Fourier transform. 
An example of the system’s dynamics and the ensuing sonogram 
are shown in Figures 2A,B. The software producing (and playing) 
these dynamics and the sonogram can be downloaded as Matlab 
7.7 (Mathworks) code (see software note).

This model can be regarded as a generative or forward model 
that maps states of the singing bird to sensory consequences (i.e., 
the sonogram). For human listeners, the resulting song sounds 
like a real birdsong. Given a generative model of birdsong, we can 
generate (different) songs and ask: How could a synthetic bird 
recognize these songs?

The online inversion of this forward model; i.e., the online 
reconstruction of the hidden and causal states, corresponds to per-
ception or mapping from the sonogram to the underlying states 
of the singing bird. In this example, perception involves the online 
estimation of states at the fast and slow level. Although, at the 
fast fi rst-level, two of the states (those controlling amplitude and 
frequency of the acoustic input) are accessed easily, the third x1

1( ) 
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describes a completely hidden trajectory. It is important to estimate 
this state correctly because it determines the dynamics of the others 
(see Eq. 2). Model inversion also allows the listening bird to perceive 
the slowly varying hidden states at the second level, x(2), which can-
not be heard directly but must be inferred from fast sensory input. 
The second-level hidden states encode the high-order structure of 
the song by specifying the shape of the attractor at the fi rst level. The 
ensuing inversion problem is diffi cult to solve because the bird can 
only infer states at both levels through the nonlinear, continuous 
and stochastic dynamics of the Lorenz attractor at the fi rst level.

PERCEPTION USING VARIATIONAL INVERSION
In Kiebel et al. (2008), we showed how inversion of this hierarchical 
model can be implemented using the free-energy principle (Friston 
et al., 2006). This variational online inversion can be conceptualized as 
shown in Figure 1. The environment, here a synthetic bird, generates 
output using a hierarchical system with coupled slow and fast dynam-
ics (Eqs 1 and 2). This generates sensory input that is recognized by 
the receiving bird. It does this by passing top-down messages (predic-
tions) and bottom-up messages (prediction errors) between the levels 
of its generative model. When top-down messages from the fi rst level 
predict sensory input, the hidden and causal states of the generative 
model become representations of the corresponding states of the 
singing bird and perceptual inference is complete. For mathematical 
details, we refer the interested reader to Friston et al. (2008).

SIMULATIONS OF BIRDSONG PERCEPTION
Here, we describe the result of a single simulation to show that 
the online inversion can successfully recognize songs and track 

the  trajectories of the states at all levels. In Friston and Kiebel 
(2009) and Kiebel et al. (2008) we present more simulations, and 
discuss and relate them to perception, categorization and omission 
responses in the brain. In Figure 2A we plot the hidden and causal 
states, which produce sensory output corresponding to synthetic 
birdsong generation. One can see immediately that the two levels 
have different time-scales due to their different rate constants (Eqs 1 
and 2). The resulting sonogram is shown in Figure 2B.

The results of online inversion (i.e., song recognition) are shown 
in Figure 3. At the fi rst level, the uncertainty about the states was 
small, as indicated by narrow 90% confi dence intervals, shown in 
grey. At the second level, the system tracks the hidden and causal 
states veridically. However, as these variables are inferred through 
the sensory data, uncertainty about the hidden state reaches, inter-
mittently, high values. The uncertainty about the hidden states at 
the second-level is very high, because these variables can only be 
inferred via the causal state v(1). In particular, note the increased 
period of uncertainty at about 0.3 s, at both levels. This uncertainty 
is caused by the hidden state of the fi rst-level switching between the 
‘wings’ of the Lorenz attractor. At this point, the hidden state at the 
fi rst level is less identifi able than when it is on the outer reaches of 
a wing. This is because of nonlinearities in the generative model, 
which mean, at this point, the motion of the state is a weaker func-
tion of the states per se. This uncertainty (i.e., will the state cross to 
the other wing or not?) is part of inference.

In summary, these results show that the hierarchical model can 
not only generate birdsong dynamics but, using the free-energy 
principle, it can be used as a generative model to decode incoming 
sensory input with relatively high precision. Critically, at the second 
level, the decoding (listening) bird infers hidden states that evolve 
slowly over time. This is an important result because the values of 
the hidden states at the second level specify the attractor manifold, 
and therefore the trajectory of states at the fi rst. In other words, 
one location in state space at the higher level specifi es a sequence of 
states at the lower. Moreover, because the states at the second level 
also follow a slowly varying trajectory, the attractor manifold at the 
fi rst level keeps changing slowly over time. It is this slow modula-
tion of the fi rst-level manifold that expresses itself in the variations 
of the fast moving fi rst-level state, which enable the perception to 
track hidden trajectories at the second level.

A key aspect of this model rests on the nonlinearity of the genera-
tive model. This is because the only way for slowly varying causes 
to be expressed as faster consequences is through nonlinear mecha-
nisms (Eq. 2). It is this nonlinearity that allows high-level states to act 
as control parameters to reconfi gure the motion of faster low-level 
states. If the equations of motion at each level were linear in the 
states, each level would simply convolve its supraordinate inputs 
with an impulse response function. This precludes the induction 
of faster dynamics because linear convolutions can only suppress 
various frequencies. However, the environment is nonlinear, where 
long-term causes may disclose themselves through their infl uence on 
the dynamics of other systems. To predict the ensuing environmen-
tal trajectories accurately, top-down effects in the agent’s genera-
tive model must be nonlinear too. We suggest that this principle of 
separation of time scales in a nonlinear hierarchy is not only used in 
avian but also in human communication, because both birdsong and 
speech share the common feature that information is transmitted 

FIGURE 1 | Birdsong generation and its recognition using variational 

inversion. Environment (left): In this two-level birdsong model, sonograms are 
generated by the autonomous, coupled dynamics of two Lorenz attractors 
(see Eqs 1 and 2). The states of the fi rst Lorenz attractor evolve at a slow time 
scale and act as control parameters for the faster Lorenz attractor. Perception 
system (right): The implicit variational dynamic inversion is a recurrent 
message passing scheme, where top-down predictions are sent from the 
slow level to the fast level, while the fast level receives sensory input and 
generates bottom-up prediction errors. The resulting recognition dynamics are 
non-autonomous and try to ‘mirror’ the environmental dynamics.
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via rapidly modulated sound waves. In the following, we will review 
evidence which suggests that human speech can be appropriately 
modeled and recognized by a hierarchy of attractors.

ARTIFICIAL SPEECH RECOGNITION
How are our simulations related to artifi cial perception systems 
that solve ‘real-world’ recognition tasks? Here, we focus on artifi cial 
speech recognition (ASR) but note that there are similar mod-
eling initiatives in other areas of artifi cial perception; e.g., vision 
(Moeslund et al., 2006; Oliver et al., 2004; Yam et al., 2004).

An intuitive approach to speech recognition is to consider speech 
as a sequence of phonemes; i.e., speech sounds are like ‘beads on a 
string’, which form syllables, words and sentences (Ostendorf, 1999). 
The idea here is that when one knows the ‘single beads’, one just needs 
to read out the sentence. This intuition leads naturally to models 
that treat speech as a sequence of states, which can be recognized, 
given the auditory input, using hidden Markov models (Bilmes, 
2006; O’Shaughnessy, 2008). However, speech does not seem to work 
like this: Speech exhibits all kinds of contextual effects, at various 
time-scales, leading to cross-temporal dependencies. For example, 
co-articulation induces a dependence of the acoustic expression of 
speech-sounds on the sound’s temporal neighbors (Browman and 
Goldstein, 1992). These temporal dependencies introduce a tremen-
dous amount of variations in the ‘single beads’. In  conventional  hidden 

Markov models these can be modeled by increasing the number of 
states and parameters, which can lead to serious model identifi cation 
issues: Various reviews discuss why the hidden Markov model and its 
extensions, as conventionally used in ASR, are probably not appro-
priate to model and recognize speech with human-like performance 
(Bilmes, 2006; King et al., 2007; O’Shaughnessy, 2008).

Although ignored as a main-stream modeling assumption in the 
ASR fi eld, the acoustic stream is the consequence of hidden state-
space trajectories: the vocal tract (VT) dynamics, i.e. tongue, mouth 
and lips and other VT components, generate articulatory gestures, 
which are understood to be the basic elements of speech (Browman 
and Goldstein, 1997; Deng et al., 2006; Liberman and Whalen, 2000; 
McDermott and Nakamura, 2006). A novel modeling approach, 
which seems to be emerging from the ASR fi eld, focuses on two cru-
cial points: First, the specifi cation of a generative hierarchical speech 
model for recognition, which models VT dynamics as hidden tra-
jectories. Second, these VT dynamics form speech ‘gestures’, whose 
perception is the goal of artifi cial speech recognition. There are many 
interesting variants of this approach, e.g. (Deng et al., 2006, 2007; Hofe 
and Moore, 2008; King et al., 2007; Livescu et al., 2007; McDermott 
and Nakamura, 2006; Rose et al., 1996; Saenko et al., 2005).

Such hierarchical generative models place fast acoustics at the 
lowest level, whereas (various levels of) VT dynamics causing 
the acoustics through top-down infl uences (Deng et al., 2006). 

FIGURE 2 | Data and states, over 2 s, generated by a two-level 

birdsong model. (A) At the fi rst level, there are two outputs (i.e., sensory 
data) (left: blue and green solid line) and three hidden states of a Lorenz attractor 
(right: blue, green, and red solid line). The second level is also a Lorenz attractor 
that evolves at a time-scale that is one magnitude slower than the fi rst. At 
the second level, the causal state (left: blue solid line) serves as control 

parameter (Rayleigh number) of the fi rst-level attractor, and is governed by the 
hidden states at the second level (right: blue, green, and red solid line). The 
red dotted lines (top left) indicate the observation error on the output. 
(B) Sonogram (time-frequency representation) constructed from 
model output. High intensities represent time-frequency locations with greater 
power.
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Importantly, VT dynamics tend to be slower than the changes in 
acoustics they cause and the function which maps VT to acous-
tic dynamics can be highly nonlinear. Naturally, development of 
these generative models is slow because of their complexity and 
the ongoing development of novel schemes for inverting dynamic 
nonlinear hierarchical models. It may be that recent developments 
(Friston et al., 2008) in the inversion of these models, particularly 
in a neurobiological setting (Friston, 2008a), may play a useful role 
in the recognition of generative speech models used in ASR.

DISCUSSION
We have suggested that a simple model of birdsong perception, 
motivated by computational neuroscience and ongoing devel-
opments in artifi cial speech recognition share a critical feature: 
Generative models for human and avian communication seem to 
be based on a hierarchy of dynamical systems, where high levels 
display slow variations and provide contextual guidance for lower 
faster levels. The principle of hierarchical inference, using appropri-
ate inversion schemes, with separation of time-scales, could be an 
inherent part of the computations that underlie successful artifi cial 
recognition of human action and behavior.

A hierarchical inference has several implications for cortical 
structure as well as for artifi cial and human perception. For corti-
cal structure, these are:

• Cortical areas are organized hierarchically (Felleman and Van 
Essen, 1991; Fuster, 2004).

• Macroscopic neuroanatomy recapitulates hierarchical sepa-
ration of time-scales; see Kiebel et al. (2008) for a discussion 
of the evidence that the cortex is organized as an anatomic-
 temporal hierarchy.

• Extrinsic forward connections convey prediction error (from 
superfi cial pyramidal cells) and backward connections mediate 
predictions, based on hidden and causal states (from deep 
pyramidal cells) (Friston, 2005; Mumford, 1992; Sherman and 
Guillery, 1998).

In the following we discuss the implications for artifi cial and 
human perception.

A COMPUTATIONAL PRINCIPLE FOR PERCEPTION
The conjecture that the brain inverts hierarchical generative models 
may lead to a deeper understanding of the computational principles 

FIGURE 3 | Dynamic online inversion of the data presented in Figure 2. 

Observed data (see Figure 2) are now shown as black, dotted lines, and the 
model predictions as solid, coloured lines. The 90% confi dence interval 

around the conditional means is shown in grey. The prediction error (i.e. 
difference between observation and model prediction) is indicated by red 
dotted lines.
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behind perception. As described above, a hierarchical approach 
has also been adopted in the engineering and artifi cial perception 
literature (Deng et al., 2006; Kim et al., 2008; Moeslund et al., 2006; 
Yam et al., 2004). It is worth noting that these developments seem 
to have made minimal reference to neuroscience but were driven 
by the insight that conventional non-hierarchical models do not 
capture the deep hierarchical structure of sensory data (Bilmes, 
2006; Deng et al., 2006; Oliver et al., 2004).

What are the advantages and disadvantages of using hierarchical 
models as the basis of artifi cial perception? A clear disadvantage 
is that, for real-world applications like speech recognition, the 
dynamics of movements may take complicated forms, at various 
time scales. It is therefore not surprising that the best working solu-
tions for artifi cial speech recognition rather rely on  learning large 
 numbers of free parameters in less constrained models (McDermott 
and Nakamura, 2006). In addition, the inversion of nonlinear sto-
chastic hierarchical dynamic models is a non-trivial challenge 
(Budhiraja et al., 2007; Friston et al., 2008; Judd and Smith, 2004). 
However, in principle, hierarchical dynamics can be parameterized 
by rather low-dimensional systems, in comparison to the high-
dimensional sensory stream. This means that relatively few param-
eters are required to track acoustic trajectories. This might make 
dynamic speech identifi able, leading to robust perception schemes. 
Interestingly, for speech, prior research has already investigated 
the dynamics of articulation but is embraced with reluctance by 
the artifi cial speech recognition fi eld (McDermott and Nakamura, 
2006).

A hierarchical model may also be useful in robust perception 
of motor behavior, because human movements seem to be more 
invariant than the sensory features which they cause (Todorov 
and Jordan, 2002). This means that movements, which are on a 
comparatively slower time-scale than their sensory expressions, 
may be expressed naturally at a higher level in hierarchical models. 
This is consistent with neuroscience fi ndings that higher cortical 
levels show invariance over greater time scales than lower levels 
(Giese and Poggio, 2003; Hasson et al., 2008; Koechlin and Jubault, 
2006). Furthermore, the relative slowness of human movements, in 
comparison to consequent variations in the sensory stream, may 
also enable the prediction of fast sensory features, increasing the 
robustness of perception (King et al., 2007; Yam et al., 2004). We 
have demonstrated this by showing that a hierarchical scheme can 
out-perform a non-hierarchical scheme, see Figure 5 in Kiebel et al. 
(2008).

In addition, speech trajectories could be modelled at time-scales 
beyond single speech-sounds and syllables, e.g. covering words and 
sentences. At this level, long-range hierarchical and cross- temporal 
dependencies are subject of active research in computational lin-
guistics and natural language (Bengio et al., 2003; Huyck, 2009; 
Smits, 2001). The inversion of models with temporal hierarchies 
may provide a framework for computational models of language 
processing. For example, they are in a position to explain how 
uncertainty about the meaning of the early part of a sentence is 
resolved on hearing the end: i.e., increases in conditional certainty 
about hidden states, based on current sensory input confi rms 
their predictions. In other words, the long-range or deep tempo-
ral dependencies in speech might lend themselves to hierarchical 
temporal modelling. The resulting inference, using serial speech 

input, may appear to be non-serial because decisive evidence for 
hidden states at different levels arrives at different times. To our 
knowledge, a fully dynamical hierarchical scheme that maps from 
sound waves to the semantics is still beyond the current abilities 
of artifi cial speech recognition (Deng et al., 2006).

SIMPLE NETWORK OPERATIONS
Although the variational inversion of hierarchical dynamic mod-
els might appear too unwieldy for a simple theory of perception, 
the actual operations needed to implement recognition dynam-
ics are rather simple (Friston et al., 2008). By ‘simple’ we mean 
that all operations are instantaneous and just involve message-
passing among neurons in a network and associative plasticity of 
their connections. This renders the approach neurobiologically 
plausible. The message-passing scheme is not the only possible 
 implementation, there may be others, each with their own approxi-
mations and simplifi cations to compute the free energy. Irrespective 
of the optimization scheme used, the requisite update equations 
are determined by the generative model, which is specifi ed by the 
likelihood and priors. This means that the identifi cation of the 
brain’s generative model of the environment is the key to under-
standing perception (Friston, 2008a; Rao and Ballard, 1999; Yuille 
and Kersten, 2006).

The variational inversion using generative models is just a recipe 
to construct a system of differential equations, which recognize 
sensory input, i.e., optimise a free-energy bound on the log evidence 
for some model. This means the scheme shares many formal simi-
larities with dynamical systems used in computational neuroscience 
to describe neuronal systems (Rabinovich et al., 2006). As noted by 
one of our reviewers, it may be that such schemes have evolved to 
exploit natural or universal phenomena that appear when dynami-
cal systems are coupled (Breakspear and Stam, 2005). Indeed, in an 
evolutionary setting, the emergence of effi cient coupled dynamical 
systems that optimise free-energy may exploit these phenomena. 
For example, coupled nonlinear systems naturally evolve towards 
a synchronous state, even with relatively weak coupling. It would 
be very interesting if these synchronised states could be associated 
with optimised free-energy states that are mandated by perception 
in particular and the free-energy principle in general.

In short, the variational approach entails fi nding a dynamic 
system (the generative model), which describes the generation 
of sensory input. Variational learning principles are then applied 
to derive differential equations, which decode hidden states from 
sensory input. The use of generic inversion systems as proposed 
in Friston et al. (2008) enables one to focus on the fi rst challenge, 
which may be informed by the study of coupled dynamical systems, 
in a more general setting.

COUPLING BETWEEN TIME-SCALES
The variational inversion of temporal hierarchies describes how 
fast sensory input can infl uence inferred states at slow time-scales. 
There are recent studies that suggest this sort of coupling may be 
a generic feature of coupled dynamical systems: Fujimoto and 
Kaneko describe how to exploit a bifurcation cascade to couple 
slow high-level states to fast low-level dynamics. Crucially, they 
fi nd that coupling is seen only in a narrow regime of time-scale 
ratios, around two to three (Fujimoto and Kaneko, 2003a,b). 
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As shown in Kiebel et al. (2008), dynamical systems based on 
 variational inversion schemes operate in a broader regime: one 
can construct systems where fast dynamics infl uence slow dynam-
ics at much higher time-scale ratios. In the present work, we use a 
ratio of eight, which is beyond the limit identifi ed by Fujimoto and 
Kaneko (2003b). However, dynamics based on variational inver-
sion have a natural lower limit on the time-scale ratio: When the 
ratio approaches one, the changes in the manifold of the fast sys-
tem, caused by the slow system, evolve nearly as fast as the states 
themselves. This means that the changes in the manifold cannot 
be separated from the dynamics of the states. This suggests that 
robust inversion of temporal hierarchies rests on a separation of 
temporal scales, which may impose a lower bound on the relative 
time-scales.

Although we have not emphasized it in this paper, the fact that 
one can formulate the inversion of dynamic models with deep or 
hierarchical temporal structure as a dynamical system rests on recent 
technical advances in Bayesian fi ltering (Friston, 2008b; Friston 
et al., 2008). In brief, these advances use generalised coordinates of 
motion to represent the trajectories of hidden states. Generalised 
coordinates cover position, velocity acceleration etc. Although this 
increases the number of implicit hidden states it greatly simplifi es 
inversion, in comparison with conventional schemes like particle 
and extended Kalman fi ltering. This simplifi cation reduces fi ltering 
(i.e., inversion) to a gradient descent, which can be implemented 
in a neurobiologically plausible fashion. The use of generalised 
coordinates is formally similar to temporal embedding in the char-
acterisation of dynamical systems: Taken’s theorem (Takens, 1981) 
states that it is possible to embed (i.e. geometrically represent) the 
structure of a vector-fi eld in a higher dimensional space. This means 
that one can reconstruct the structure of the manifold, on which 
dynamics unfold, by using a Taylor expansion of the vector-fi eld. 
This is very close to the idea of projecting the system into general-
ized coordinates. In essence, this projection allows the observer to 
encode the structure of the fl ow-fi eld at each point in time.

A GENERAL MECHANISM FOR PERCEPTION AND ACTION IN THE BRAIN?
In a recent paper, we reviewed some compelling experimental 
 evidence for temporal hierarchies in the brain. We argued that 
these hierarchies may refl ect a general form of generative models 
that the brain uses to recognize causes beyond the temporal support 
of elemental percepts (e.g., formants in audition and biological 
motion in vision, Kiebel et al., 2008). We have shown previously 
that the inversion of these generative models lead to robust and 
accurate inferences about the causes of sensory input. Hierarchical 
models are approximations to the environmental processes that 
generate sensory data (Todorov et al., 2005); so one might ask 
why evolution selected temporal hierarchies? Intuitively, there is 
something fundamentally correct about generative models based 
on temporal hierarchies; in the sense that the content of our sen-
sorium changes more quickly than its context. However, for com-
munication and biological motion there may be additional reasons 
to suppose temporal hierarchies afford just the right model; this is 
because our brains may use the same architecture to generate and 
recognise movements (Kilner et al., 2007). This means that, during 
co-evolution with our conspecifi cs, temporal hierarchies may have 
been subject to selective pressure, precisely because they enable 

generation and recognition of communicative stimuli over multiple 
time-scales (i.e., with deep temporal structure) (Rauschecker and 
Scott, 2009; von Kriegstein et al., 2008).

PERCEPTION MIRRORS THE ENVIRONMENT
The role of non-autonomous recognition dynamics is to mirror or 
track autonomous dynamics in the environment. If this tracking 
is successful, the recognition system ‘inherits’ the dynamics of the 
environment and can predict its sensory products accurately. This 
inheritance is lost when the sensory input becomes surprising, i.e. 
is not predicted by perception. In this case, the recognition system 
uses prediction error to change the predictions and make sensory 
input unsurprising again. This heuristic explains how the agent’s 
dynamics manage to switch rapidly between different attractor 
regimes. This switching, e.g. see Figure 3 in Kiebel et al. (2008), 
is caused by the interplay between the system’s attempt to mini-
mize surprise (which is bounded by free-energy) and (surprising) 
sensory input.

IDENTIFICATION OF THE ENVIRONMENTAL MODEL
Explicit modeling of environmental dynamics and their inversion 
may be a useful approach to model perception for several rea-
sons: most current research in computational neuroscience focuses 
on modeling a single neuronal system, which generates neuronal 
dynamics just as the brain does. This ‘single system’ approach, 
which does not model the environmental dynamics explicitly, is 
very useful for identifying neuronal mechanisms and relating them 
to applied sensory input and neuronal or behavioral observations 
(Rabinovich et al., 2006). However, this approach does not address 
how these neuronal mechanisms (and not others) come about in 
the fi rst place.

An alternative approach may be to model neuronal dynamics 
‘from scratch’: Such a full forward model would comprise three 
components: (i) A model of the environment with autonomous 
dynamics, which, using the free-energy principle, prescribes (ii) 
non-autonomous recognition dynamics, which are implemented 
by (iii) neuronal dynamics (Figure 4, left panel). In other words, 
appropriate models of the environment may be requisite to make 
strong predictions about observed neuronal dynamics. Given the 
complexity and detail of neuronal dynamics, one might argue 
that the identifi cation of appropriate environmental models is a 
daunting task. However, the ‘dual-system’ approach of modeling 
both environment and the brain would essentially rephrase the 
question ‘How does the brain work?’ to ‘What is a good model of 
the environment that discloses how the brain works?’ (see, e.g., 
Chiel and Beer, 1997; Proekt et al., 2008). This approach has the 
advantage that environmental models, which cannot be inverted, 
disqualify themselves and are unlikely to be used as generative 
models by the brain. For example, in artifi cial speech recognition, 
the conventional hidden Markov model has been found diffi cult to 
invert for casual speech. Moreover, this model is also a poor gen-
erative model of speech, i.e. speech generated by this model yields 
barely intelligible speech (McDermott and Nakamura, 2006). 
Given that one can identify appropriate models of the environ-
ment; e.g., for audiovisual speech, the recognition performance 
can be directly compared to human performance. Furthermore, 
one could use established model selection schemes to evaluate 
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environmental models in the context of their  neuronal inversion 
(Friston et al., 2008). This dual-system modeling approach may 
also allow one to ask whether simulated recognition produces 
the same kind of predictions and prediction errors as humans, 
e.g. when exposed to sensory input that induces the McGurk 
effect (Cosker et al., 2005). Such experiments would enable us 
to explain the McGurk effect and similar perception phenomena 
in a causal fashion, as the consequence of our brains’ generative 
environmental model. In addition, one may be able to couple 
simulated recognition dynamics with models of neuronal dynam-
ics and relate these to observed neuronal dynamics (Figure 4, 

right). This would enable us to make predictions about observed 
neuronal responses under specifi c assumptions about the gen-
erative model used by the brain, and how neuronal dynamics 
implement recognition.

The value of this dual-system approach is that neuroscience 
and artifi cial perception have a common interest in these models 
(Scharenborg, 2007). Not only would such an integrative approach 
provide a constructive account of brain function, at multiple levels 
of description, but also enable machines to do real-world tasks, (see, 
e.g., Rucci et al., 2007) for a spatial localization example at the inter-
face between artifi cial perception, robotics and neuroscience.

CONCLUSIONS
We have demonstrated that the recognition of environmental 
causes from sensory input can be modeled as the inversion of 
dynamic, nonlinear, hierarchical, stochastic models. We have 
discussed relevant developments in artifi cial perception, which 
suggest that perception models the environment as a hierarchy 
of autonomous systems, evolving at various time-scales, to gen-
erate sensory input. In this view, the computational principles of 
perception may be accessed by considering variational inversion 
of these models.
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SUPPLEMENTARY MATERIAL
All procedures described in this note have been implemented as 
Matlab (MathWorks) code. The source code is freely available in 
the Dynamic Expectation Maximization (DEM) toolbox of the 
Statistical Parametric Mapping package (SPM8) at http://www.fi l.
ion.ucl.ac.uk/spm/.

FIGURE 4 | Modeling neuronal dynamics caused by environmental 

dynamics. Brain system (left): In this dual-system model, neuronal dynamics 
(bottom) correspond to inversion or recognition dynamics (middle) induced by 
environmental dynamics (top). We assume that the environmental and 
neuronal dynamics can be partially observed, while the recognition dynamics 
are hidden. Simulated system (right): The full generative model of neuronal 
dynamics; starting with environmental dynamics, which specify recognition 
dynamics, which predict neuronal dynamics.

REFERENCES
Bengio, Y., Ducharme, R., Vincent, P., and 

Jauvin, C. (2003). A neural probabil-
istic language model. J. Mach. Learn. 
Res. 3, 1137–1155.

Bilmes, J. A. (2006). What HMMs can do. 
IEICE Trans. Inf. Syst. E89d, 869–891.

Breakspear, M., and Stam, C. J. (2005). 
Dynamics of a neural system with 
a multiscale architecture. Philos. 
Trans. R. Soc. Lond. B, Biol. Sci. 360, 
1051–1074.

Browman, C. P., and Goldstein, L. (1992). 
Articulatory phonology – an overview. 
Phonetica 49, 155–180.

Browman, C. P., and Goldstein, L. (1997). 
The gestural phonology model. Speech 
Prod. Motor Control Brain Res. Fluency 
Disord. 1146, 57–71.

Budhiraja, A., Chen, L. J., and Lee, C. 
(2007). A survey of numerical meth-
ods for nonlinear fi ltering problems. 
Physica D 230, 27–36.

Chater, N., and Manning, C. D. (2006). 
Probabilistic models of language 

processing and acquisition. Trends 
Cogn. Sci. 10, 335–344.

Chiel, H. J., and Beer, R. D. (1997). The 
brain has a body: adaptive behavior 
emerges from interactions of nervous 
system, body and environment. Trends 
Neurosci. 20, 553–557.

Cosker, D., Paddock, S., Marshall, D., 
Rosin, P. L., and Rushton, S. (2005). 
Towards perceptually realistic talk-
ing heads: models, metrics, and 
McGurk. ACM Trans. Appl. Percept. 
2, 270–285.

Dayan, P., Hinton, G. E., Neal, R. M., 
and Zemel, R. S. (1995). The 
Helmholtz machine. Neural Comput. 
7, 889–904.

Deng, L., Yu, D., and Acero, A. (2006). 
Structured speech modeling. IEEE 
Trans. Audio Speech Lang. Processing 
14, 1492–1504.

Deng, L., Lee, L. J., Attias, H., and Acero, A. 
(2007). Adaptive Kalman filtering 
and smoothing for tracking vocal 
tract resonances using a continuous-

Fujimoto, K., and Kaneko, K. (2003a). 
How fast elements can affect slow 
dynamics. Physica D 180, 1–16.

Fujimoto, K., and Kaneko, K. (2003b). 
Bifurcation cascade as chaotic itiner-
ancy with multiple time scales. Chaos 
13, 1041–1056.

Fuster, J. M. (2004). Upper processing 
stages of the perception-action cycle. 
Trends Cogn. Sci. 8, 143–145.

Giese, M. A., and Poggio, T. (2003). 
Neural mechanisms for the recogni-
tion of biological movements. Nat. 
Rev. Neurosci. 4, 179–192.

Glaze, C. M., and Troyer, T. W. (2006). 
Temporal structure in zebra finch 
song: implications for motor coding. 
J. Neurosci. 26, 991–1005.

Hasson, U., Yang, E., Vallines, I., 
Heeger, D. J., and Rubin, N. (2008). 
A hierarchy of temporal receptive 
 windows in human cortex. J. Neurosci. 
28, 2539–2550.

Hofe, R., and Moore, R. (2008). Towards 
an investigation of speech energetics 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 20 | 96

Kiebel et al. Perception and hierarchical dynamics

for acoustic and audio-visual speech 
recognition: Summary from the 2006 
JHU summer workshop. 2007 Proc. 
IEEE Int. Conf. Acoust. Speech Signal 
Process. IV(Pts 1–3), 621–624.

McDermott, E., and Nakamura, A. 
(2006). Production-oriented models 
for speech recognition. IEICE Trans. 
Inf. Syst. E89d, 1006–1014.

Moeslund, T. B., Hilton, A., and Kruger, V. 
(2006). A survey of advances in vision-
based human motion capture and 
analysis. Comput. Vis. Image Underst. 
104, 90–126.

Mumford, D. (1992) . On the 
Computational Architecture of 
the Neocortex.2. The Role of 
Corticocortical Loops. Biol. Cybern. 
66, 241–251.

O’Shaughnessy, D. (2008). Invited paper: 
automatic speech recognition: his-
tory, methods and challenges. Pattern 
Recognit. 41, 2965–2979.

Oliver, N., Garg, A., and Horvitz, E. (2004). 
Layered representations for learning 
and inferring offi ce activity from mul-
tiple sensory channels. Comput. Vis. 
Image Underst. 96, 163–180.

Ostendorf, M. (1999). Moving beyond the 
‘beads-on-a-string’ model of speech. 
Proc. IEEE Automat. Speech Recognit. 
Underst. Workshop 1, 5.

Poeppel, D., Idsardi, W. J., and van, W. V. 
(2008). Speech perception at the inter-
face of neurobiology and linguistics. 
Philos. Trans. R. Soc. Lond. B, Biol. Sci. 
363, 1071–1086.

Proekt, A., Wong, J., Zhurov, Y., Kozlova, N., 
Weiss, K. R., and Brezina, V. (2008). 
Predicting adaptive behavior in the 
environment from central nervous sys-
tem dynamics. PLoS ONE 3, e3678.

Rabinovich, M. I., Varona, P., Selverston, A. I., 
and Abarbanel, H. D. I. (2006). 
Dynamical principles in neuroscience. 
Rev. Mod. Phys. 78, 1213–1265.

Rao, R. P., and Ballard, D. H. (1999). 
Predictive coding in the visual cortex: 
a functional interpretation of some 
extra-classical receptive-fi eld effects. 
Nat. Neurosci. 2, 79–87.

Rauschecker, J. P., and Scott, S. K. (2009). 
Maps and streams in the auditory cor-
tex: nonhuman primates illuminate 

using ‘AnTon’: an animatronic model 
of a human tongue and vocal tract. 
Connect. Sci. 20, 319–336.

Huyck, C. R. (2009). A psycholinguistic 
model of natural language parsing 
implemented in simulated neurons. 
Cogn. Neurodyn. (in press).

Judd, K., and Smith, L. A. (2004). 
Indistinguishable states II – the 
imperfect model scenario. Physica D 
196, 224–242.

Kiebel, S. J., Daunizeau, J., and Friston, K. J. 
(2008). A hierarchy of time-scales 
and the brain. PLoS Comput. Biol. 4, 
e1000209.

Kilner, J. M., Friston, K. J., and Frith, C. D. 
(2007). The mirror-neuron system: a 
Baynesian perspective. Neuroreport 
18, 619–623.

Kim, M., Kumar, S., Pavlovic, V., and 
Rowley, H. (2008). Face tracking and 
recognition with visual constraints 
in real-world videos. 2008 Proc. IEEE 
Comput. Soc. Conf. Comput. Vis. 
Pattern Recognit. 1–12, 1787–1794.

King, S., Frankel, J., Livescu, K., 
McDermott, E., Richmond, K., and 
Wester, M. (2007). Speech produc-
tion knowledge in automatic speech 
recognition. J. Acoust. Soc. Am. 121, 
723–742.

Koechlin, E., and Jubault, T. (2006). Broca’s 
area and the hierarchical organiza-
tion of human behavior. Neuron 50, 
963–974.

Kruger, V., Kragic, D., Ude, A., and Geib, C. 
(2007). The meaning of action: a 
review on action recognition and 
mapping. Adv. Robot. 21, 1473–1501.

Lee, T. S., and Mumford, D. (2003). 
Hierarchical Bayesian inference in the 
visual cortex. J. Opt. Soc. Am. A Opt. 
Image Sci. Vis. 20, 1434–1448.

Liberman, A. M., and Whalen, D. H. 
(2000). On the relation of speech 
to language. Trends Cogn. Sci. 4, 
187–196.

Livescu, K., Cetin, O., Hasegawa-
Johnson, M., King, S., Bartels, C., 
Borges, N., Kantor, A., Lal, P., Yung, L., 
Bezman, A., Dawson-Haggerty, S., 
Woods, B., Frankel, J., Magimai-
Doss, M., and Saenko, K. (2007). 
Articulatory feature-based methods 

human speech processing. Nat. 
Neurosci. 12, 718–724.

Robertson, N., and Reid, I. (2006). 
A general method for human activ-
ity recognition in video. Comput. Vis. 
Image Underst. 104, 232–248.

Rose, R. C., Schroeter, J., and Sondhi, M. M. 
(1996). The potential role of speech 
production models in automatic 
speech recognition. J. Acoust. Soc. Am. 
99, 1699–1709.

Rucci, M., Bullock, D., and Santini, F. 
(2007). Integrating robotics and 
neuroscience: brains for robots, 
bodies for brains. Adv. Robot. 21, 
1115–1129.

Saenko, K., Livescu, K., Glass, J., and 
Darrell, T. (2005). Production domain 
modeling of pronunciation for visual 
speech recognition. 2005 Proc. IEEE 
Int. Conf. Acoust. Speech Signal Process. 
1–5, V473–V476.

Scharenborg, O. (2007). Reaching over 
the gap: a review of efforts to link 
human and automatic speech recog-
nition research. Speech Commun. 49, 
336–347.

Sen, K., Theunissen, F. E., and Doupe, A. J. 
(2001). Feature analysis of natu-
ral sounds in the songbird audi-
tory forebrain. J. Neurophysiol. 86, 
1445–1458.

Sherman, S. M., and Guillery, R. W. (1998). 
On the actions that one nerve cell can 
have on another: distinguishing “driv-
ers” from “modulators”. Proc. Natl. 
Acad. Sci. U.S.A. 95, 7121–7126.

Smits, R. (2001). Hierarchical categori-
zation of coarticulated phonemes: 
a theoretical analysis. Percept. 
Psychophys. 63, 1109–1139.

Takens, F. (ed.) (1981). Detecting Strange 
Attractors in Turbulence. Berlin/
Heidelberg, Springer.

Tan, X. Y., Chen, S. C., Zhou, Z. H., and 
Zhang, F. Y. (2006). Face recognition 
from a single image per person: a sur-
vey. Pattern Recognit. 39, 1725–1745.

Todorov, E., and Jordan, M. I. (2002). 
Optimal feedback control as a theory 
of motor coordination. Nat. Neurosci. 
5, 1226–1235.

Todorov, E., Li, W., and Pan, X. (2005). 
From task parameters to motor 

 synergies: a hierarchical framework 
for approximately-optimal control of 
redundant manipulators. J. Robot. Syst. 
22, 691–710.

von Kriegstein, K., Patterson, R. D., and 
Griffi ths, T. D. (2008). Task-depend-
ent modulation of medial geniculate 
body is behaviorally relevant for 
speech recognition. Curr. Biol. 18, 
1855–1859.

Vu, E. T., Mazurek, M. E., and Kuo, Y. C. 
(1994). Identifi cation of a forebrain 
motor programming network for 
the learned song of zebra fi nches. J. 
Neurosci. 14, 6924–6934.

Yam, C. Y., Nixon, M. S., and Carter, J. N. 
(2004). Automated person recognition 
by walking and running via model-
based approaches. Pattern Recognit. 
37, 1057–1072.

Yu, A. C., and Margoliash, D. (1996). 
Temporal hierarchical control 
of singing in birds. Science 273, 
1871–1875.

Yuille, A., and Kersten, D. (2006). Vision as 
Bayesian inference: analysis by synthe-
sis? Trends Cogn. Sci. 10, 301–308.

Zhao, W., Chellappa, R., Phillips, P. J., and 
Rosenfeld, A. (2003). Face recognition: 
a literature survey. ACM Comput. Surv. 
35, 399–459.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential confl ict 
of interest.

Received: 19 March 2009; paper pending 
published: 20 May 2009; accepted: 23 July 
2009; published online: 20 July 2009.
Citation: Kiebel SJ, Daunizeau J and 
Friston KJ (2009) Perception and hierarchi-
cal dynamics. Front. Neuroinform. (2009) 
3:20. doi: 10.3389/neuro.11.020.2009
Copyright © 2009 Kiebel, Daunizeau and 
Friston. This is an open-access article subject 
to an exclusive license agreement between 
the authors and the Frontiers Research 
Foundation, which permits unrestricted 
use, distribution, and reproduction in any 
medium, provided the original authors and 
source are credited.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive

	Cover.pdf
	First pages.pdf
	Table of Contents

	01_fninf_2010_00112.pdf
	02_fninf_2010_00007.pdf
	03_037_2009.pdf
	04_001_2010.pdf
	05_fninf_2010_00008.pdf
	06_fninf.2010.00011.pdf
	07_028_2009.pdf
	08_024_2009.pdf
	09_020_2009.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




