About this Research Topic
Today, as the focus in data analysis is moving from univariate to multivariate procedures, the statistical modeling of test data is becoming more complex involving item response theory, generalizability theory, or structural equation modeling. Fitting a complex psychometric model relies on the ability to accurately estimate the model parameters, which can be realized with the availability of enhanced computational technology and the emergence of advanced statistical estimation methods, such as the iteratively re-weighted least squares, the maximum likelihood estimation, the EM algorithm, and the Markov chain Monte Carlo simulation techniques.
This Research Topic seeks to create a forum for psychometricians and researchers to (1) discuss issues associated with fitting or estimation of an existing psychometric model so that a set of guidelines can be provided when it comes to the application of the test theory and models, and (2) propose new test models or estimation methods that offer advantages not realized with existing ones.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.