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Editorial on the Research Topic 
Epigenetic regulation and non-histone post-translational modification in cancer


Epigenetic changes are essentially involved in both normal organism function and disease progression (Deans and Maggert, 2015). Epigenetic regulation includes DNA methylation or demethylation, chromatin remodeling, histone modifications and non-coding RNAs, which are broadly reported to dysfunction in cancer. Of noted, it is increasingly clear that epigenetic regulation parallels with gene expression modulation. Currently, significant progress has been made in the development of drugs targeting key enzymes involved in epigenetic regulation and post-translational modification without histone. Several drugs have been approved for therapeutic application, and many more are in clinical and preclinical testing (Ferreira and Esteller, 2018; Lu et al., 2020). The aim of this Research Topic is to provide an overview of the current understanding and fundamental findings in the field of epigenetic regulation and non-histone post-translational modifications in cancer. We collected 14 articles including the effects of m6A modifications, non-coding RNAs and SELENBP1 in cancer progression.
DNA methylation is strongly associated with cancer, and hypermethylation of some genes in the promoter region interferes with the reading of DNA information thereby altering epigenetics, thus it has the potential to be a promising target for cancer therapy (Smith and Meissner, 2013). Liexi Xu et al. used the methylation and clinical data of lung adenocarcinoma (LUAD) patients from TCGA. They found 11 differential methylation genes and established a methylation scoring model to assess prognosis, suggesting that these genes could be used as biomarkers of methylation in LUAD. Dong-Mei Hu et al. focused on the relationship between Forkhead box P (FOXP) family DNA methylation and immune-related factors in non-small cell lung cancer (NSCLC) patients. FOXP family is widely involved in regulating immune molecules and influencing immune infiltration in NSCLC, and FOXP family DNA methylation is associated with NSCLC prognosis. In addition to lung cancer, immunosuppression and immune cells dysfunction are critical to the development of colonic adenocarcinoma (COAD) (Gatenbee et al., 2022). Salem Baldi et al. analyzed the relationship between ARID1B expression, DNA methylation and prognosis in COAD patients based on TCGA, and found that differences in immune cell infiltration were associated with ARID1B expression, and that ARID1B was hypermethylated in COAD tissues. Since the ARID1B methylation levels were negatively associated with mRNA levels, low ARID1B expression was an important indicator of poor prognosis, and ARID1B hypermethylation could be an early diagnostic biomarker in COAD. Furthermore, Xingyu Liu et al. obtained 4 alcohol-related cancer samples from TCGA and GEO databases, and identified a total of 193 differentially methylated probes. By enrichment analysis of differential genes, they concluded that the alcohol might facilitate transcriptional dysfunction via inducing the methylation status of transcriptional regulators, leading to tumor development. They also identified the hypermethylated CpG island (chr19:58220189-58220517), which regulated the transcriptional activity of zinc-finger protein 154 as a potential therapeutic biomarker.
In addition to DNA modifications, RNA modifications are prevalent in mammalian cells, and provide a new dimension to regulate gene expression. Among them, N6-methyladenosine (m6A) modifications are the most common in eukaryotic mRNA. Shaojie Li et al. obtained sample data of head and neck squamous cell carcinoma (HNSCC) from TCGA and GEO databases. Via analyzing the correlation between m6A regulator expression and immune scores, they found that the HNSCC patients could be divided into 2 groups based on m6A reader genes (IGF2BP2 and YTHDF1). Low YTHDF1 and IGF2BP2 expressing patients have more immune cells enriched in TME and better prognosis. Mengying Zhou et al. reviewed the role of different m6A-related enzymes in breast cancer, and concluded that m6A-related genes could be used as not only markers for diagnosis and prognosis prediction, but also effective targets for breast cancer treatment.
Moreover, non-coding RNA transcriptional modifications are also crucial (Yao et al., 2022). With the continuous researches on long non-coding RNA (lncRNA), it was found that lncRNA play important roles in various biological regulatory processes. Jing Huang et al. downloaded mRNA expression data from the TCGA database of HNSCC patients, identified 1,117 lncRNAs associated with necrosis, of which 55 ones were associated with patient survival. They selected 24 genes that positively regulated necroptosis to establish a new risk scoring model for assessing HNSCC patient prognosis. Jing Hu et al. obtained information about autophagy-related genes in NSCLC patients from TCGA and HADb, and identified 7 autophagy-related lncRNAs whose composition of risk models could accurately predict the prognosis of NSCLC patients. ABALON deficiency in A549 and NCI-H292 significantly inhibited the proliferation and metastasis of NSCLC cells and promoted autophagy. Wei Yu et al. identified 298 lncRNAs associated with cuproptosis using TCGA data of gastric adenocarcinoma patients, including 13 lncRNAs associated with survival, and further identified 9 lncRNAs by LASSO regression method. Based on these 9 lncRNAs, they established a risk assessment model to evaluate the prognosis and sensitivity of patients to therapeutic drugs.
Immunotherapy combined with radiotherapy is one of the best combinations for oncotherapy. Increasing researches suggested that lncRNA might be associated with the responses to immunotherapy and radiotherapy. Chuanhao Zhang et al. acquired RNA-seq data and clinical characteristics of 594 LUAD patients from TCGA, identified 2,093 N7-methylguanosine related lncRNAs, and finally constructed a risk-prognosis model via screening 6 prognosis-related lncRNAs, which not only accurately predicted the patient survival, but also reflected the immune characteristics of LUAD patients and provided better guidance for individualized patient treatment. Jianqing Zheng et al. screened 26 immune-related lncRNAs (ir-lncRNAs) differentially expressed in radiation-resistant esophageal squamous cell carcinoma by the GEO database and paired the differentially expressed lncRNA with each other in the GSE45670 dataset to construct 325 ir-lncRNA pairs, they established a prognostic risk model based on 3 pairs of ir-lncRNA, and suggested that macrophage infiltration and differential expression of ir-lncRNA are potential mechanisms of resistance to radiotherapy. Moreover, Linghui Jia et al. collected 58 patients with oral squamous cell carcinoma, and found that the expression of CircPUM1 (a circular RNA) was significantly increased in oral squamous cell carcinoma. CircPUM1 downregulation induced mir-580, which inhibited STAT3 expression, induced apoptosis and enhanced radiosensitivity.
Histones, as essential components of nucleosomes, play an important role in the structure of chromosomes. Histone modifications are considered important epigenetic mechanisms for gene expression regulation, and small molecule inhibitors have been developed to detect the effects of these modifications on cellular proteins (Buuh et al., 2018). SETD2 is the major methyltransferase catalyzing histone H3K36. Zihang Zeng et al. collected data on LUAD patients from GEO and TCGA, and through multi-omics analysis identified that SETD2 was associated with radiosensitivity. SETD2 downregulation attenuated proliferation and migration, and enhanced the apoptosis and radiosensitivity of LUAD cells. They also found that reducing m6A-related genes (RBM2 or YTHDF15) could enhance the protective effect of SETD2 on patient prognosis. Yue Zhang et al. reviewed the function and regulatory mechanisms of SELENBP1 (a selenium-binding protein) during cancer progression, and also discussed potential cancer treatment strategies targeting SELENBP1 epigenetic modifications.
Cancer is not only a genetic disease, but also an epigenetic disease. Epigenetic mechanisms are engaged in the regulation of many aspects of cancer biology (Garcia-Martinez et al., 2021). With the development of mass spectrometry-based proteomics technologies, some non-histone modifications (e.g., lysine acetylation, lactylation) also play key roles in cell growth, metabolism, and signal transduction (Narita et al., 2019; Yang et al., 2023). This Research Topic focused on the regulation of epigenetic and non-histone post-translational modifications, as well as their impacts on cancer development and progression. Patterns of epigenetic regulation and non-histone modifications may be potential predictors of cancer patient prognosis and survival, providing novel insights into the oncotherapy. We hope more researches devote to this field in the future and look forward to their early translation into clinical treatments.
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Background: N6-methyladenosine (m6A) is the most abundant internal modification pattern in mammals that a plays critical role in tumorigenesis and immune regulations. However, the effect of m6A modification on head and neck squamous cell carcinoma (HNSCC) has not been clearly studied.
Methods: We screened m6A regulators that were significantly correlated with tumor immune status indicated by ImmuneScore using The Cancer Genome Atlas (TCGA) dataset and obtained distinct patient clusters based on the expression of these m6A regulators with the R package “CensusClusterPlus.” We then performed gene set enrichment analysis (GSEA), CIBERSORT, and single-sample gene set enrichment analysis (ssGSEA) to assess the differences in gene function enrichment and tumor immune microenvironment (TIME) among these clusters. We further conducted differently expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) and constructed a protein–protein interaction (PPI) network to determine hub genes among these clusters. Finally, we used the GSE65858 dataset as an external validation cohort to confirm the immune profiles related to the expression of m6A regulators.
Results: Two m6A readers, YTHDF1 and IGF2BP2, were found to be significantly associated with distinct immune status in HNSCC. Accordingly, patients were divided into two clusters with Cluster 1 showing high expression of YTHDF1 and IGF2BP2 and Cluster 2 showing low expression levels of both genes. Clinicopathologically, patients from Cluster 1 had more advanced T stage and pathological grades than those from Cluster 2. GSEA showed that Cluster 1 was closely related to the RNA modification process and Cluster 2 was significantly correlated with immune regulations. Cluster 2 had a more active TIME characterized by a more relative abundance of CD8+ T cells and CD4+ T cells and higher levels of MHC I and MHC II molecules. We constructed a PPI network composed of 16 hub genes between the two clusters, which participated in the T-cell receptor signaling pathway. These results were externally validated in the GSE65858 dataset.
Conclusions: The m6A readers, YTHDF1 and IGF2BP2, were potential immune biomarkers in HNSCC and could be potential treatment targets for cancer immunotherapy.
Keywords: YTHDF1, IGF2BP2, HNSCC, m6A modification, immune microenvironment, immunotherapy
INTRODUCTION
M6A is a critical and abundant internal epigenetic modification on both messenger RNA (mRNA) and non-coding RNAs in mammals. M6A modification is mainly found in the 3′ untranslated regions of the RNA. The reversible and dynamic regulation of m6A is mainly mediated by three different kinds of regulators, namely, writers, erasers, and readers (Roundtree et al., 2017; Nombela et al., 2021). Writers and erasers are methyltransferases (such as METTL3, METTL16, and WTAP) and demethylases (such as ALKBH5 and FTO) that methylate and demethylate RNA adenosine at specific N6 positions, respectively. Readers are a group of RNA binding proteins that recognize m6A sites and initiate downstream events such as RNA splicing, maturation, degradation, and translation (Li Y et al., 2019; Zaccara et al., 2019). These proteins include members of the EIF3, IGF2BP family and YTH family. By modulating RNA export, RNA stability, protein expression, and other biological activities, m6A modification plays an essential role in cancer development. In line with these findings, emerging drugs targeting m6A modification, such as a selective inhibitor of FTO, METTL3, and YTHDF2 have shown promising anti-cancer effects (Huang et al., 2015; Visvanathan et al., 2018; Dixit et al., 2021).
The detailed mechanism by which m6A modification impacts cancer pathogenesis remains unclear. A recent study indicated that m6A also has a dual role in tumorigenesis. Liu et al. reported that YTHDF1 promoted ovarian cancer progression via augmenting EIF3C translation (Liu et al., 2020). Li et al. reported that IGF2BP2 prevented SOX2 degradation, leading to colorectal cancer pathogenesis and progression (Li T et al., 2019). Meanwhile, Zhong et al. reported that m6A helped suppress hepatocellular carcinoma through YTHDF2-directed degradation of EGFR (Zhong et al., 2019). Importantly, m6A modification also has a nonnegligible impact on anti-tumor immunity. Overexpression of YTHDF1 enhanced the stability of RNA lysosomal proteases, which led to the degradation of tumor antigens in dendritic cells, disabled CD8+ T cells to bring about immunosurveillance and abolished the effect of immune checkpoint inhibitors (ICIs) (Han et al., 2019). Suppression of METTL3 and METTL14 increased infiltration of CD8+ T cells and secretion of IFN-γ, CXCL9, and CXCL10 in TIME and promoted the response to ICIs in melanoma and pMMR-MSIlow colorectal cancer (Wang et al., 2020). However, research aiming to explore the effect of m6A modification on immune profiles in HNSCC is inadequate.
HNSCC is the sixth most common malignant tumor worldwide. Its occurrence is closely linked to carcinogen exposure and viral infection, especially human papillomavirus (HPV) and Epstein–Barr virus (EBV) (Siegel et al., 2021). HNSCC is a group of heterogeneous cancers, and the majority of patients are presented with locally advanced or metastatic stage, leading to poor prognosis (Argiris et al., 2008; Chow, 2020). ICIs-based immunotherapy has prominently improved the efficacy and survival of advanced HNSCC. However, only a small subset of patients could benefit from immunotherapy. Although a combined positive score (CPS) of PD-L1 expression is mostly used to guide immunotherapy, currently no satisfactory predictive biomarker is available for HNSCC.
Here, we attempted to explore the role of m6A regulators in the immune modulation of HNSCC and tried to identify potential m6A-associated biomarkers of immunotherapy in HNSCC. This study might provide a new way to improve the effect of immunotherapy in HNSCC.
METHODS AND MATERIALS
Data Sources and Processing
We downloaded the transcriptomic data (HTSeq-FPKM and HTSeq-Counts) and clinical information of an HNSCC cohort from the TCGA-database (https://portal.gdc.cancer.gov/). Data of HTSeq-Counts was used to analyze DEGs, and HTSeq-FPKM was used to conduct ESTIMATE, clustering, CIBERSORT, ssGSEA, and WGCNA. Mann-Whitney U test was performed to compare age and gene expression between two groups. Chi-square test was utilized to compare gender, T stage, N stage, and pathologic stage. Spearman’s coefficient was used to conduct correlation analysis. And a p-value < 0.05 (two-sided) was considered statistically significant. Meanwhile, we conducted an external validation dataset by downloading the expression profiling data of the GSE65858 array from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
Estimation of Stromal and Immune Cells
We employed the ESTIMATE tool embedded in the R package “estimate” that used gene expression signatures to infer the fraction of stromal and immune cells in the tumor samples and to estimate the elements of tumor microenvironment (TME), including StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity (Yoshihara et al., 2013).
Consensus Clustering
To explore the influence of m6A modification on immune profiles of HNSCC, we calculated the correlation between the expression of m6A modification regulators and ESTIMATE results with Spearman’s coefficient. And then we performed consensus clustering of tumor samples based on the expression of YTHDF1 and IGF2BP2. We accomplished consensus clustering and result visualization with the R package “ConsensusClusterPlus” (Wilkerson and Hayes, 2010). And we examined the efficacy of the above consensus clustering by principal component analysis (PCA) with the R package “factoextra.” The Kaplan–Meier method and log-rank test were utilized to compare overall survival between the two clusters.
Gene Set Enrichment Analysis
We employed the software GSEA (https://www.gsea-msigdb.org/gsea/) to determine different pathways enriched in the two clusters based on the default defined set of genes (Mootha et al., 2003; Subramanian et al., 2005). We selected “c5.go.cc.v7.4.symbols.gmt” from MSigDB Collection as pre-defined ontology gene set, and considered a pathway as significantly enriched pathway with the absolute normalized enrichment score > 1 (|NES| >1) and p value < 0.05.
Immune Microenvironment Analysis
CIBERSORT, a method excelling in decreasing noise and unknown mixtures and identifying similar cell types, was conducted to recognize the cell composition of solid tumors by using gene expression profiles (Newman et al., 2015). ssGSEA, an extension of GSEA, was used to calculate separate enrichment scores for each pairing of a sample and gene set (Hänzelmann et al., 2013). We applied both strategies to explore the difference and relation of TIME among the clusters of patients with HNSCC.
DEGs and Weighted Gene Co-Expression Network Analysis
In order to explore the hub genes that contributed to biological divergences among different patient clusters, we performed an analysis of DEGs and WGCNA successively. First, the R package “limma” enabled us to compare transcriptome data (HTSeq-Counts) to locate DEGs. The screening thresholds were set as |log2FoldChange | > 0.6 and p-value of < 0.05, and the results were visualized by volcano plot and heat map. Then, we conducted WGCNA on the DEGs with the R package “WGCNA,” which was a system biology method to gather closely related genes in special modules and calculate the relationship between the modules and external sample traits (Zhang and Horvath, 2005; Langfelder and Horvath, 2008). We explored the connection of DEGs with clustering and four aspects of ESTIMATE. Finally, we selected the module of genes tightly related to both clustering and ImmuneScore for subsequent analysis.
Functional Enrichment and Protein–Protein Interaction Network Analysis
In order to investigate the above module of genes ulteriorly, we uploaded the gene list to Metascape (http://metascape.org/) for pathway and process enrichment analysis and PPI enrichment analysis (Zhou et al., 2019). Functional enrichment analysis was carried out in various ontology sources, including GO Biological Processes, Reactome Gene Sets, KEGG Pathway, Canonical Pathways, and WikiPathways. PPI enrichment analysis was also performed, and if the number of proteins in the network fell between 3 and 500, the Molecular Complex Detection (MCODE) algorithm would be carried out to separate proteins to build interaction networks more precisely (Bader and Hogue, 2003).
RESULTS
Identification of m6A Regulators Associated With HNSCC Immune Profiles
After excluding repeated samples and those without adequate survival information, we got 499 patients of HNSCC with unique samples for the following analysis. To explore whether the expression of m6A regulators impacted HNSCC immune profiles, we extracted the expression of 21 m6A modification regulators (Table 1) and applied the ESTIMATE tool and CIBERSORT algorithm to calculate the ESTIMATE scores and immune cells infiltration of 499 HNSCC patients. By analyzing the correlation between m6A regulators’ expression and the ImmuneScore, we found that YTHDC2 and RBM15 were positively correlated with ImmuneScore, while YTHDF1, YTHDC1, METTL3, METTL16, IGF2BP1-3, HNRNPC, and HNRNPA2B1 were negatively correlated with ImmuneScore (Figure 1). Next, we sorted the absolute values of the ImmuneScores correlated with the 21 m6A regulators (Supplementary Material S1). We selected the first two regulators with the highest ImmuneScores, YTHDF1 and IGF2BP2, to construct an immune-associated signature.
TABLE 1 | Summary of common m6A regulators.
[image: Table 1][image: Figure 1]FIGURE 1 | The correlation of m6A regulators with the results of ESTIMATE and CIBERSORT.
Consensus Clustering of Patients With HNSCC Based on YTHDF1 and IGF2BP2
We extracted the expression data of YTHDF1 and IGF2BP2 of the 499 HNSCC patients and performed consensus clustering, and obtained two clusters of patients (Figure 2A). There were 294 patients in Cluster 1 and 205 patients in Cluster 2. After excluding 106 patients without tumor stage and tumor grade information, the clinical characteristics of the remaining 393 patients were summarized in Table 2. PCA plot indicated the above clustering had good efficiency of distinction (Figure 2B). Cluster 1 had higher expression of YTHDF1 and IGF2BP2 (Figure 2C), and a more advanced T stage and pathological grade than Cluster 2 (Table 2). Expression levels of YTHDF1 and IGF2BP2 were also compared between tumor tissue and normal tissue, and we found that both of them were higher expressed in tumor tissue (Figure 2D). Kaplan–Meier curve (Figure 2E) showed that patients in Cluster 2 had better overall survival than their counterparts in Cluster 1 (HR = 0.65, 95%CI [0.50–0.85], p = 0.0023).
[image: Figure 2]FIGURE 2 | Clustering of patients with HNSCC in TCGA cohort based on expression of YTHDF1 and IGF2BP2. (A) Consensus clustering matrix for k = 2. (B) The results of PCA of clustering based on 21 m6A regulators as well as YTHDF1 and IGF2BP2. (C) Comparison the expression levels of YTHDF1 and IGF2BP2 between Cluster 1 and Cluster 2. (D) Comparison of the expression levels of YTHDF1 and IGF2BP2 between tumor samples and normal samples. (E) Kaplan–Meier curves of the overall survival in two clusters. ****p < 0.0001.
TABLE 2 | Summary of clinical characteristics of patients in the two clusters.
[image: Table 2]Immune Profiles of YTHDF1- and IGF2BP2-Based Clusters
GSEA was performed to compare pathway enrichment between the two clusters. We found that biological pathways related to m6A modification including negative regulation of DNA repair, regulation of mRNA catabolic progress, and nuclear export, were enriched in Cluster 1. On the other side, immune-related biological pathways, such as humoral immune response, positive regulation of NK cell-mediated cytotoxicity, and regulation of inflammatory response to an antigenic stimulus, were more enriched in Cluster 2 (Figure 3A). These results indicated that Cluster 2 was closely associated with immune modulation of head and neck cancers. In order to comprehend the difference in immune infiltration profiles between Cluster 1 and Cluster 2, we performed CIBERSORT, ssGSEA, and compared the expression of immune-related genes. The results of CIBERSORT indicated that CD4+ T memory resting cells, resting NK cells, M0 macrophages, and activated mast cells had higher percentages in Cluster 1. Cluster 2 highly expressed plasma cells, CD8+ T cells, regulatory T cells, and resting mast cells (Supplementary Figure S1). Furthermore, the results of ssGSEA were in parallel with the results of CIBERSORT and demonstrated the majority of immune cell types, including activated CD8+ T cells, activated CD4+ T cells, activated B cells, and natural killer cells, were enriched in the TIME of Cluster 2. Therefore, Cluster 2 manifested more active anti-tumor immune cell gathering (Figure 3B). Next, we compared the expression of critical immune-related molecules. Both MHC I and II molecules played a central role in the adaptive immune response. MHC I molecule were encoded by HLA-A and HLA-B genes, and MHC II molecules were encoded by HLA-DP, HLA-DQ, and HLA-DR genes. Cluster 2 had higher levels of MHC I and II molecules compared with Cluster 1. TGFB1 encoded transforming growth factor-β (TGF-β) and FAP coded fibroblast activation protein alpha (FAP), both of which took part in disabling anti-tumor immune cells and impeding infiltration of immune cells. Cluster 2 had lower levels of TGF-β and FAP than Cluster 1 (Figure 3C). These results showed that Cluster 2 had a more immune-stimulatory TIME than Cluster 1.
[image: Figure 3]FIGURE 3 | Differences of GSEA and immune cells infiltration between two clusters. (A) The tendency of enrichment of biological pathways between two clusters. (B) ssGSEA indicated different immune cells infiltration between two clusters. (C) Comparison of immune-related molecules between Cluster 1 and Cluster 2. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
ASSOCIATION OF YTHDF1- AND IGF2BP2-BASED CLUSTERING WITH HNSCC-RELATED GENES
Several genes were known to influence biological behavior and response to immunotherapy of HNSCC (Supplementary Material S2). We compared their expression levels between Cluster 1 and Cluster 2 in the TCGA cohort (Figure 4A) and the GEO cohort (Figure 4B). PDCD1, CTLA4, and TNFRSF4 (encoding OX40) were higher expressed in Cluster 2, while the expression of CD276 and EGFR were higher in Cluster 1. But there was no significant difference in the expression of CD274 (encoding PD-L1) between the two clusters. The higher expression of CD276 and EGFR suggested that the HNSCC of Cluster 1 might connect with worse biological behavior.
[image: Figure 4]FIGURE 4 | Expression level comparison of HNSCC-related genes. (A) TCGA cohort and (B) GEO cohort. ***p < 0.001, ****p < 0.0001.
Identifying Hub Genes by DEG Analysis and WGCNA
After removing duplicated samples and extracting mRNA expression from original transcriptome data (HTSeq-Counts), we got a matrix of 499 tumor patients with a unique sample and 18,192 gene expression data. We performed DEG analysis between the two clusters and obtained 1127 DEGs (671 upregulated and 456 downregulated). A volcano plot and heatmap were used to visualize the DEG results (Figures 5A,B). We set 3 as the soft power (Supplementary Figure S2) and then divided the 1127 DEGs into 11 modules by conducting WGCNA (Supplementary Figure S3), and we found that the turquoise module, containing 416 genes, was the most relevant with both clustering (R = 0.38, P = 7e−19) and ImmuneScore (R = 0.86, P = 1e−146) (Figure 5C). These results suggested that DEGs of the turquoise modules played an important role in influencing clustering and immune profiles.
[image: Figure 5]FIGURE 5 | Screening of hub genes related to clustering and ImmuneScore in two clusters. (A) The volcano plot for results of differentially expressed genes. (B) The heatmap of differentially expressed genes. (C) Correlation of gene modules with results of clustering and ESTIMATE.
Functional Enrichment Analysis and PPI Network Analysis of Hub Genes
In order to better understand genes in the turquoise model, we uploaded them to Metascape for functional enrichment analysis and constructed the PPI network. The most significant pathways in the functional enrichment analysis were related to immune modulation, including lymphocyte activation, positive regulation of immune response, regulation of immune effector process, and B cell activation (Figures 6A,B). In the PPI network analysis, the MCODE algorithm further divided the whole PPI network into two major MCODEs. The MCODE 1 was related to G alpha (i) signaling events and GPCR ligand binding. The MCODE2 contained 16 genes (PDCD1, CD28, CD247, CD3D, CD3E, CD3G, CD8A, CD8B, HLA-DPB1, HLA-DQA2, HLA-DQB2, GRAP2, TRAT1, SKAP1, ZAP70, and ITK) was tightly correlated with the generation of second messenger molecules and T-cell receptor signaling pathway (Figure 6C).
[image: Figure 6]FIGURE 6 | Analysis of functional enrichment and construction of PPI network. (A) Selected enriched terms for a network, colored by cluster group ID. (B) Functional enrichment analysis in various ontology sources. (C) Protein-protein interaction network analysis for whole selected genes and two highlighted MCODE components.
Verification of Immune Characteristics of Clustering Based on YTHDF1 and IGF2BP2 in the GEO Database
To externally validate the significance of the m6A reader-based clustering, we obtained the expression profiling data of the GSE65858 array from the GEO database. The GSE65858 array involved 270 patients with HNSCC. Similarly, we performed consensus clustering in the 270 patients using the R package “ConsensusClusterPlus,” and found that the optimal number of clustering was 2 (Figure 7A). PCA plot indicated the above clustering had good efficiency of distinction (Figure 7B). There were 137 patients in Cluster 1 and 133 patients in Cluster 2, and the latter had significantly lower expression of YTHDF1 and IGF2BP2 (Figure 7C). We also performed CIBERSORT and ssGSEA to estimate TME composition. The results of CIBERSORT showed that, compared with Cluster 1, Cluster 2 had significantly more plasma cells, CD8+ T cells, regulatory T cells, gamma delta T cells, and less activated dendritic cells and activated mast cells (Supplementary Figure S4). In addition, results obtained from ssGSEA indicated that Cluster 2 highly expressed activated CD8+ T cells, activated CD4+ T cells, T helper cells (Type 1 and 17), and activated B cells, indicating that Cluster 2 had a more favorable TIME than Cluster 1 (Figure 7D). A comparison of immune-related molecules was also performed, and we found Cluster 2 had higher expression of MHC II molecule and lower levels of TGF-β and FAP (Figure 7E). The above results from the GEO database confirmed that YTHDF1- and IGF2BP2-based patient clustering showed distinct immune profiles.
[image: Figure 7]FIGURE 7 | Validation of clustering based on YTHDF1 and IGF2BP2 in GSE65858. (A) Consensus clustering matrix for k = 2. (B) The results of PCA of clustering based on 21 m6A regulators as well as YTHDF1 and IGF2BP2. (C) Comparison of expression level of YTHDF1 and IGF2BP2 between Cluster 1 and Cluster 2. (D) ssGSEA indicated different immune cells infiltration between two clusters. (E) Comparison of immune-related molecules between Cluster 1 and Cluster 2. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
DISCUSSION
m6A methylation on mRNA is an abundant internal epigenetic modification that has attracted great attention in recent decades, especially in the tumor research area. Exiting research studies had revealed the complex roles of m6A in cancer by regulating the expression of oncogenes and tumor suppressor genes. This effect was cancer-dependent and also varied among different types of m6A regulators. For instance, the m6A writer, METTL3 was found to promote the translation of c-MYC and BCL2 to accelerate leukemia progression by suppressing differentiation and apoptosis in acute myelocytic leukemia (Vu et al., 2017). On the other hand, the m6A eraser, FTO was found to promote the degradation of BNIP3 and inhibited the proliferation and invasion of breast cancer cells (Niu et al., 2019). And the readers, including EIF3, YTH family, and IGF2BP family, mainly regulated the translation and degradation of targeted RNA to participate in m6A modification. Recent studies demonstrated that m6A modification played an important role in regulating the immune response. Targeting and disabling IGF2BPs through circNDUFB2 could prevent the progression of non-small cell lung cancer and activate anti-tumor immunity (Li et al., 2021). YTHDF1 mediated the increase of lysosomal proteases and tumor antigen degradation in dendritic cells and could weaken anti-tumor response and disable CD8+ T cells (Han et al., 2019). However, research about the effect of m6A modification on HNSCC was inadequate.
We utilized transcriptomic data from the TCGA dataset and GEO dataset to establish an m6A regulator-based immune phenotype of HNSCC. Specifically, we found that two readers of m6A, IGF2BP2, and YTHDF1 could effectively indicate immune-stimulatory and immune-suppressive HNSCC. To this end, we scored every patient in the TCGA cohort with the ESTIMATE tool and CIBERSORT algorithm to calculate the correlation of m6A regulators with ESTIMATE scores and immune cells infiltration. The absolute Spearman’s coefficient of ImmuneScore of IGF2BP1, IGF2BP2, IGF2BP3 and YTHDF1 were above 0.2. We selected two with the highest absolute coefficients, IGF2BP2, and YTHDF1 for the following analysis. We found patients with HNSCC could be divided into two clusters with different immune profiles based on the expression of IGF2BP2 and YTHDF1. TME was roughly categorized into three types, namely “infiltrated,” “excluded” and “desert” (Hegde and Chen, 2020). The infiltrated type was characterized by sufficient infiltration of CD8+ T cells and a high level of MHC I molecule. Desert type was featured by the absence of CD8+ T cell infiltration, low level of MHC I molecule, and high level of FAP. According to the expression profiles of immune cells and immune molecules, we tended to consider Cluster 1 as excluded or desert type and Cluster 2 as infiltrated type. In addition, GSEA demonstrated that a number of signal pathways related to immune response were enriched in Cluster 2. Therefore, it was speculated that the TME of Cluster 2 was more favorable for ICIs-based immunotherapy.
Overexpression of EGFR could be detected in over 90% of HNSCC, which was an important signal receptor that brings about tumorigenesis, proliferation, and metastasis through downstream pathways, including PI3K/AKT and MAPK (Nicholson et al., 2001; Citri and Yarden, 2006). CD276, also named B7-H3, was one of the immune checkpoint molecules, which was upregulated in HNSCC and helped tumor cells evade immunological surveillance. High expression of CD276 was related to the occurrence, progression, and metastasis of HNSCC(Wang et al., 2021). Both EGFR and CD276 were found highly expressed in Cluster 1, indicating that HNSCC of Cluster 1 were more likely to correlate with worse biological behavior, poorer clinical result, and insensitivity to ICIs-based immunotherapy. However, EGFR antibodies or CD276 blockade could be considered for HNSCC of Cluster 1.
To further investigate internal influencing factors between the two clusters, we screened DEGs and performed WGCNA to find the module closely related to clustering and ImmuneScores. Successively, we constructed a PPI network, we finally obtained 16 genes (PDCD1, CD28, CD247, CD3D, CD3E, CD3G, CD8A, CD8B, HLA-DPB1, HLA-DQA2, HLA-DQB2, GRAP2, TRAT1, SKAP1, ZAP70, and ITK). These 16 hub genes were all upregulated in Cluster 2. PDCD1 was a receptor of immunosuppression usually expressed in activated T cells. CD28 played an essential role in T cells proliferation, and survival, and provided the second signal for T cell activation (Esensten et al., 2016). CD247, CD3D, CD3E, and CD3G participated in constituting T-cell receptor-CD3 complex (TCR-CD3) to recognize antigens and deliver the first signal for T cell activation (Kuhns et al., 2006). CD8A and CD8B acted as co-receptors for TCR (Rudolph et al., 2006). MHC II molecule was encoded by HLA-DPB1, HLA-DQA2, and HLA-DQB2 and played an important role in antigens binding and cross-presentation. Proteins encoded by ZAP70 and ITK belonged to the tyrosine kinase family, which were critical for signal transduction in T cells (Berg, 2007; Au-Yeung et al., 2018). And proteins encoded by GRAP2, TRAT1, and SKAP1 also played an important role in signal transduction (Raab et al., 2010). It was, therefore, suggested that most of these DEGs were highly relevant to immune response and might contribute to different immune profiles between the two clusters.
There were several limitations in our study. We performed the study based on TCGA and GEO databases without verification using a clinical dataset. Only correlation analysis on phenotype level was conducted. There lacked a demonstration on the protein level. Last but not least, there was a lack of mechanistic study.
In conclusion, our study divided HNSCC into two clusters based on IGF2BP2 and YTHDF1, which provided a simple and feasible tool to identify HNSCC with different immune profiles and helped estimate sensitivity to ICIs-based immunotherapy. We preliminarily explore the possible mechanisms, combined with the previous research works about IGF2BP2 and YTHDF1, and we speculated that they might hamper the expression of specific genes, which were related to antigen recognition, signal transduction, proliferation, and activation of effector T cells. Meanwhile, they might increase the stability of tumorigenic genes, such as EGFR and CD276, and excessively activated downstream signal pathways. The joint effect led to different biologic behavior and immune profiles in the two clusters. The existing study had found knocking down YTHDF1 could enhance the therapeutic efficiency of ICIs in mice (Han et al., 2019). It would be important to determine whether suppressing the expressions of IGF2BP2 and YTHDF1 could modulate the sensitivity to ICI-based immunotherapy. Specific molecular mechanisms awaited further exploration.
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Purpose: The prognosis of head and neck squamous cell carcinoma (HNSCC) is poor. Necroptosis is a novel programmed form of necrotic cell death. The prognostic value of necroptosis-associated lncRNAs expression in HNSCC has not been explored.
Methods: We downloaded mRNA expression data of HNSCC patients from TCGA databases. Prognostic lncRNAs were identified by univariate Cox regression. LASSO was used to establish a model with necroptosis-related lncRNAs. Kaplan-Meier analysis and ROC were applied to verify the model. Finally, functional studies including gene set enrichment analyses, immune microenvironment analysis, and anti-tumor compound IC50 prediction were performed.
Results: We identified 1,117 necroptosis-related lncRNAs. The Cox regression showed 55 lncRNAs were associated with patient survival (p < 0.05). The risk model of 24- lncRNAs signature categorized patients into high and low risk groups. The patients in the low-risk group survived longer than the high-risk group (p < 0.001). Validation assays including ROC curve, nomogram and correction curves confirmed the prediction capability of the 24-lncRNA risk mode. Functional studies showed the two patient groups had distinct immunity conditions and IC50.
Conclusion: The 24-lncRNA model has potential to guide treatment of HNSCC. Future clinical studies are needed to verify the model.
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INTRODUCTION
Head and neck squamous cell carcinomas (HNSCCs) arise from squamous cells in the oral cavity, pharynx and larynx. The most common risk factors for HNSCC include alcohol drinking, smoking and HPV infection (Fakhry et al., 2008). Athough HNSCC can be treated with surgery, radiotherapy and chemotherapy, patients with HNSCCs still suffer from poor survival. To improve patient survival, novel therapeutic targets and effective prognostic tools are needed.
Necroptosis is another mode of regulated cell death mimicking apoptosis and necrosis. Necroptosis is associated with a range of pathological conditions and diseases, including cancer. It is mediated by Fas, TNF, LPS, and death receptors (Vanden Berghe et al., 2014). Binding of ligands and receptors activates RIP3, which phosphorylates MLKL (Sun et al., 1999). Phosphorylated MLKL then translocates to and ruptures cellular membranes, leading to cell swelling and release of intracellular components (Dondelinger et al., 2014; Hildebrand et al., 2014; Wang et al., 2014).
A plethora of evidence shows necroptosis of tumor cells is often associated with tumor aggressiveness and metastasis. RIP3, a molecular marker of necroptosis, is an independent factor associated with survival in breast cancer (Koo et al., 2015). RIP3 expression was also decreased in colorectal cancer and was an independent prognostic factor of survival (Feng et al., 2015). In acute myeloid leukemia, RIP3 expression was reduced in most samples and overexpression of RIP3 in DA1-3b leukemia cells induced necroptosis (Nugues et al., 2014). Li et al. reported that necroptosis was associated with survival of HNSCC patients (Li et al., 2020).
Long non-coding RNAs (lncRNAs) regulate gene expression and are involved in tumorogenesis (Kumar and Goyal, 2017; Peng et al., 2017). Specially, Jiang et al. reported dysregulation of lncRNAs was involved in HNSCC(Jiang et al., 2019). Although necroptosis plays an important role in patient survival of a variety of tumors, the role of necroptosis-related lncRNAs in HNSCC has not been reported.
We thus explored the potential roles of different necroptosis-related lncRNAs on the survival of HNSCC patients. We developed a novel risk-score model with necroptosis-related lncRNAs according to their expression levels. The results might further our understanding of necroptosis in HNSCC.
MATERIALS AND METHODS
TCGA Data Acquisition
The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/repository) has transcriptomic data of more than 20,000 cancer and normal samples. In the present study RNA sequencing (RNA-seq) data of tumor tissues of 487 HNSCC patients and 42 matched normal tissues was downloaded from TCGA database. Our study was conducted by reviewing public database and ethical approval was not required.
Identification of Necroptosis-Related lncRNAs
The expression data of 67 necroptosis-associated genes was used for analysis (Supplementary Table S1). Correlation analysis was performed among 67 necroptosis-related genes and differentially expressed lncRNAs in the combined matrices. 1,117 lncRNAs with Pearson correlation coeffi-cients >0.4 and p < 0.001 were identified to be necroptosis-related lncRNAs.
Establishment and Validation of the Risk Signature
The clinical data of HNSCC patients was downloaded from TCGA data portal. The univariate Cox proportional hazard regression analysis was used to screen prognostic genes. Least absolute shrinkage and selection operator (Lasso) regression was conducted with 10-fold cross-validation and a p value of 0.05. After identification of the prognostic lncRNAs, the risk scores were determined as follow (X: coefficients, Y: expression level of lncRNAs):
[image: image]
HNSCC patients were allocated into either low- or high-risk groups according to the median risk score (Meng et al., 2019; Hong et al., 2020). The Chi-square test was used to determine the prognostic significance value of the risk model, and overall survival (OS) time was compared between the two groups via Kaplan-Meier analysis. The “survival”, “survminer” and “timeROC” R packages were used to plot the 1-, 3-, and 5-years receiver operating characteristics (ROC) curves. The risk scores were also evaluated as an independent risk factor with other clinical parameters by Cox regression with rms R package. Then a nomogram for prediction of the 1-, 3-, and 5-years OS was set up using risk score and clinical parameters. The ROC, calibration curves and Hosmer-Lemeshow test of the nomogram were assessed in the validation set.
GSEA
To explore the biological pathways that might be responsible for poor patient survival, we employed R (Bioconductor package gsea) to perform gene set enrichment analyses (GSEA). Potential biological mechanisms of the prognostic model were also explored. KEGG gene sets in the GSEA database were downloaded. We chose gene sets with a FDR value < 0.05 and a FDR <0.25.
The Investigation of the TME and Immune Checkpoints
CIBERSORT, EPIC, MCPcounter, QUANTISEQ, TIMER, and XCELL were used to evaluate cells in the tumor microenvironment (TME) (http://timer.cistrome.org/). ggplot2, ggtext, limma, and scales R packages and Wilcoxon signed-rank test were performed to analyze cell types in TME (Hong et al., 2020). TME scores and immune checkpoint were compared between the two groups with ggpubr R package.
Prediction of Clinical Treatment Response
To predict therapeutic response, the R package pRRophetic was utilized to measure the half-maximal inhibitory concentrations (IC50) of each HNSCC sample on Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/) (Geeleher et al., 2014).
RESULTS
Extraction of lncRNAs
Figure 1 shows the flow diagram depicting the present study. We compared the expression levels of 67 necroptosis-associated genes (Supplementary Table S1) between 42 healthy samples and 487 HNSCC cancer samples from the TCGA data and identified 14,086 lncRNAs. Among these lncRNAs, 1,117 lncRNAs met the criteria (Pearson correlation coefficients >0.4 and p values <0.001) (Figure 2A). We identified 717 differentially expressed necroptosis-related lncRNAs (|Log2FC| > 1 and p < 0.05) (Figure 2B); 697 were upregulated and 20 were downregulated. Univariate Cox regression showed 55 lncRNAs were significantly correlated with OS (p < 0.05 for all) (Figures 2C,D).
[image: Figure 1]FIGURE 1 | Workflow diagram of data analysis.
[image: Figure 2]FIGURE 2 | Necroptosis-related lncRNA prognostic signature identified in HNSCC. (A) Correlation network of necroptosis-related genes and necroptosis-related lncRNAs. (B) The volcano plot of 717 lncRNAs. Red dots represented upregulated lncRNAs and black dots represented down-regulated lncRNAs. (C,D) The expression and univariate Cox regression of 55 prognostic lncRNAs. *p < 0.05; **p < 0.01; ***p < 0.001.
Risk Model Construction and Verification
To avoid overfitting and to quantify the impact of necroptosis-related lncRNAs on the prognosis of each HNSCC patient, we constructed a 24 lncRNAs prognostic signature by LASSO regression analysis (Figures 3A,B). All 24 lncRNAs positively regulated necroptosis genes in the Sankey diagram (Figure 3C).
[image: Figure 3]FIGURE 3 | Construction of prognostic signature in HNSCC. (A) LASSO with 10-fold cross-validation. (B) Coefficient profile plots. (C) The Sankey diagram shows the connection degree between the 24 prognostic lncRNAs and the necroptosis-related genes.
We established the following formula to calculate the risk score of every HNSCC patient.
Risk score = AC008764.8×(-0.2393)+AC104083.1×(-0.0743)+AC127521.1×(-0.9739)+LINC00539×(-1.2625)+AC243829.2×(-0.4868)+AL121845.4×(-0.2809)+AC020911.1×(-0.6943)+AC007347.1×(0.4674)+ALMS1-IT1×(0.6387)+PLS3-AS1×(0.3155)+ZNF197-AS1×(0.4949)+LINC00942×(0.0017)+AC068790.2×(0.3482)+AC139256.3×(-0.9441)+LINC00861×(-0.8428)+WDFY3-AS2×(1.1448)+AC116025.2×(1.0996)+AC007128.1×(0.0713)+RAB11B-AS1×(-0.0588)+AC009121.3× (-1.6935)+POLH-AS1×(0.4292)+AC021016.1×(-0.0412)+CDKN2A-DT×(-0.2129)+PCED1B-AS1×(0.1493) (Meng et al., 2019).
In the training set, test set and entire set, the distribution of risk scores and survival times were compared between the high-risk group and the low-risk group (Figures 4A–C). More patients died in the high-risk group (Figures 4D–F). The heat maps of 24 lncRNAs are shown in Figures 4G–I. Survival curves show the high-risk groups of the three sets had poor prognoses (Figures 4J–L). Besides, some typical clinicopathologic parameters were identified to be prognostic factors (Figure 4M).
[image: Figure 4]FIGURE 4 | The prognosis analysis of the three sets (training set: A, D, G, J; test set: B, E, H, K; entire set: C, F, I, L). (A–C) Risk scores of the high-risk and low-risk groups in the respective three sets. (D–F) Comparison of survival between the two groups in the respective three sets. (G–I) The heat maps of 24 lncRNAs. (J–L) Kaplan–Meier survival curves of patients in the two groups in the respective three sets. (M) Kaplan–Meier survival curves of OS stratified by clinicopathologic parameters between the two groups.
Nomogram
In both the training set and the test set, risk score, age and tumor stage were identified to be independent prognostic factors. The hazard ratios (HR) of these factors are shown in Figures 5A–D). A nomogram was established to predict the 1-, 3-, and 5-years OS (Figure 5E). The predicted survival showed close agreement with observed actual survival (Figure 5F).
[image: Figure 5]FIGURE 5 | Nomogram of the model. (A,B) Tumor stage and risk score were risk factors in the training set. (C,D) Only risk score was risk factor in the test sets. (E) The nomogram that integrated the risk score, age, and tumor stage to predict OS. (F) The calibration curves for OS. (G–I) ROC curves of the three sets (training set: A, C, G; test set: B, D, H; entire set: I).
Assessment of the Risk Model
The ROC curves showed the sensitivity and specificity of the model were high (Figures 5G–I).
GSEA
GSEA results showed that nine of top ten pathways were involved in carcinogenesis. For example, pentose and glucuronate interconversions, aldarate metabolism, and starch and sucrose metabolism were significantly enriched in the high-risk group. On the other hand, eight pathways enriched in the low-risk group were related to immunity (p < 0.05; FDR <0.25; |NES| > 1.9), such as T cell receptor signaling pathway and natural killer (NK) cell-mediated cytotoxicity (Figure 6A; Supplementary Table S2). Therefore, the low-risk group had a favorable TME. On the contrary, the high-risk group had an unfavorable TME.
[image: Figure 6]FIGURE 6 | TME and immunotherapy. (A) Top 10 pathways identified by GSEA (B)The heat maps of immune cells. (C) Risk scores were corrected with immune cells. (D) ssGSEA scores of immune functions. (E) Comparison of immune-related scores between the two groups. (F) The expression of 34 checkpoints. (G)Twelve targeted and immunotherapeutic drugs with different IC50 between the low-risk group (green) and the high-risk group (red).
Cold and Hot Tumors
Single sample GSEA (ssGSEA) was performed to calculate numbers for different types of immune cells. Tumors of the low-risk group were infiltrated by more immune cells as exhibited in the heatmap (p < 0.05 for all) (Figure 6B; Supplementary Table S3). Correlations between risk scores and activities of immune cell types are shown in Figure 6C. All of the 13 immune-related pathways had higher activity in the low-risk group (Figure 6D).
ESTIMATE was used to generate immune scores and stromal scores. Figure 6E shows both immune scores and stromal scores (microenvironment) were higher in the low-risk group. Besides, the immune checkpoint expression was lower in the low-risk group (Figure 6F).
Finally, we found IC50 of the anti-tumor compounds, such as AKT inhibitors, JNK inhibitor and sunitinib, was usually lower in the low-risk group (Figure 6G).
DISCUSSION
The human genome produces a large amount of RNA transcripts that do not encode for proteins (Djebali et al., 2012). lncRNAs are among those transcripts. They are usually longer than 200 nucleotides and have many functions, including regulating cancer development (Huarte, 2015; Marchese et al., 2017; Mattick, 2018).
Necroptosis is mediated by RIP1 and RIP3 (Chan and Baehrecke, 2012; Pasparakis and Vandenabeele, 2015). RIP1 phosphorylates RIP3, which phosphorylates MLKL. In necrosomes phosphorylation of MLKL leads to MLKL oligomerization. Oligomerized MLKL causes cell death by breaking down cell membranes (Sun et al., 2012; Guicciardi et al., 2013). Although necroptosis may cause cancer cell death, cell death may inhibit immune response (Pasparakis and Vandenabeele, 2015; Wang et al., 2017). Necroptosis may elicit necrosis-associated inflammation. Inflammation could contribute to progression of cancer and promote resistance to anticancer treatments. In addition necroptosis may also fail to elicit strong immunogenic reactions.
Massively parallel RNA sequencing has identified large amounts of novel lncRNAs. However, functional annotation of lncRNAs is lagging behind. In the present study, we explored the prognostic values of necroptosis-related lncRNAs in HNSCC. We found that several necroptosis-related lncRNAs were closely related to HNSCC prognosis. More specifically, AC007347.1, ALMS1-IT1, PLS3-AS1, ZNF197-AS1, AC068790.2, WDFY3-AS2, AC116025.2, POLH-AS1, and PCED1B-AS1 were risk factors. On the other hand, AC008764.8, AC127521.1, LINC00539, AC243829.2, AL121845.4, AC020911.1, AC139256.3, LINC00861, AC009121.3 and CDKN2A-DT were protective factors for HNSCC patients.
Further analysis showed that AC007347.1, ALMS1-IT1, PLS3-AS1, ZNF197-AS1, AC068790.2, WDFY3-AS2, AC116025.2, POLH-AS1, and PCED1B-AS1 are positive regulators of BRAF, SIRT1, FLT3, FASLG, TRAF2, ATRX, TERT, SPATA2, and TNFRSF1B. BRAF is a proto-oncogene that encodes for the B-Raf protein, a kinase of the RAF protein family (Rebocho and Marais, 2013). The Ras/Raf/MAPK pathway regulates cell growth, differentiation, cell motility and apoptosis (Rebocho and Marais, 2013; Schettini et al., 2018). Abnormal activation of the pathway is responsible for many tumors (Bouchè et al., 2021).
SIRT1 is a member of the HDAC family. Aberrant SIRT1 expression has been found in many tumors (Bradbury et al., 2005; Hida et al., 2007; Stünkel et al., 2007; Chen et al., 2014). ATRX is a member of the SWI-SNF protein family (Stayton et al., 1994; Picketts et al., 1996; Argentaro et al., 2007). SWI-SNF proteins are involved in DNA recombination and repair (Picketts et al., 1996), which are crucial for both development and cancer (Watson et al., 2015). SPATA2 is a TNF receptor modulator. TNF-α pathway modulates immune responses (Swann et al., 2008). TNF-α and IL-1β induced SPATA2 expression in ovarian cancer cells and that increased SPATA2 expression was associated with poor prognosis of ovarian cancer patients (Wieser et al., 2019). Our study suggested SPATA2 expression is also associated with poor prognosis of HNSCC patients. ZBP1 is expressed in many tissues (Fu et al., 1999; Rothenburg et al., 2002) and is a interferon stimulated gene (Fu et al., 1999; Kuriakose and Kanneganti, 2018). ZBP1 expression in tumors is elevated. ZBP1 deletion blocks tumor necroptosis during tumor development and inhibits tumor metastasis (Baik et al., 2021). TNF-α is a pro-inflammatory cytokine mainly secreted by macrophages. There are two receptors for TNF-α, i.e., TNFRSF1A and TNFRSF1B. Although TNF can kill tumor cells, it also contribute to tumorigenesis (Aggarwal, 2003).
On the other hand, AC008764.8, AC127521.1, LINC00539, AC243829.2, AL121845.4, AC020911.1, AC139256.3, LINC00861, AC009121.3 and CDKN2A-DT were protective factors for HNSCC patients. Further analysis showed these lncRNAs were positive regulators of p16INK4a, SPATA2, FLT3, FASLG, TRAF2, ATRX, TERT, BRAF, SIRT1, TNFRSF1B, and BCL2L11. p16INK4a is a tumor suppressor protein encoded by CDKN2A (Witcher and Emerson, 2009). p16INK4a is a negative regulator of cell cycle (Serrano et al., 1993). CDKN2A also encodes for another tumor suppressor protein, which interacts with p53 (Pomerantz et al., 1998). Inactivation of p16INK4a has been observed in various cancers via various mechanisms (Zhao et al., 2016). FLT3 is a receptor tyrosine kinase that is expressed in hematopoietic cells. Activation of FLT3 leads to autophosphorylation and mediates proliferation and differentiation of hematopoietic progenitor cells. However its role in tumorogenesis has not been reported. FASLG is a tumor suppressor and a member of the tumor necrosis factor superfamily (Magerus et al., 2021). FASLG/FAS signaling could induce apoptosis in various cancers (Liu et al., 2009; Kadam and Abhang, 2016; Magerus et al., 2021). TRAFs are intracellular adaptor signaling molecules of immune cells (Rothe et al., 1995; Ye et al., 2002; Park, 2018). TRAF2 promotes p53-dependent apoptosis by activating the JNK signaling cascade in cancer cells (Tsuchida et al., 2020). BCL2L11 is a member of BCL-2 family and regulates function of mitochondria (Concannon et al., 2010; Kilbride et al., 2010). BCL2L11 deletion/downregulation is found in many neoplasms and contribute to acquired drug resistance (Zhang et al., 2016).
By our model, we found pathways such as TNF, RAF and BCL-2 and FASLG/FAS are closely related to HNSCC. Although the protective lncRNAs are positive regulators of several tumor suppressors, they are also associated with several oncogenes. We propose that the prognostic value of a specific lncRNA is determined by the net effect of its multiple target genes.
Tumors have been described as “hot” or “cold” according to infiltration degree by T cells rushing to fight the cancerous cells. Hot tumors typically respond well to immunotherapy treatment using checkpoint inhibitors. Checkpoint inhibitors block signalling through checkpoint receptors to prevent the loss of T cell response to tumors. In contrast, nonimmunogenic “cold” tumors have not yet been infiltrated with T cells. The lack of T cells makes it difficult to provoke an immune response with immunotherapy drugs. IN addition, the microenvironment surrounding cold tumors contains myeloid-derived suppressor cells and T regulatory cells, which are known to dampen the immune response. In our model the patients in the high-risk group were more likely to have cold tumors, which may partially explain why the patients in the high-risk group had poor prognosis.
There were some limitations of our model. As a retrospective study, inherent biases might affect the model. We had performed internal validation by the test set, but we did not perform external validation.
In conclusion, we established a novel necroptosis-associated lncRNA signature for the prognosis of HNSCC. The established signatures suggest that lncRNAs might be associated with responses to targeted therapy and immunotherapy of HNSCC. The potential of this signature in predicting patient survival and treatment responses need to be validated in future tests.
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Lung cancer is a major cause of cancer-related deaths globally, with a dismal prognosis. N7-methylguanosine (m7G) is essential for the transcriptional phenotypic modification of messenger RNA (mRNA) and long noncoding RNA (lncRNA). However, research on m7G-related lncRNAs involved in lung adenocarcinoma (LUAD) regulation is still limited. Herein, we aim to establish a prognostic model of m7G-related lncRNAs and investigate their immune properties. Eight prognostic m7G-related lncRNAs were identified using univariate Cox analysis. Six m7G-related lncRNAs were identified using LASSO-Cox regression analysis to construct risk models, and all LUAD patients in The Cancer Genome Atlas (TCGA) cohort was divided into low-risk and high-risk subgroups. The accuracy of the model was verified by Kaplan-Meier analysis, time-dependent receiver operating characteristic, principal component analysis, independent prognostic analysis, nomogram, and calibration curve. Further studies were conducted on the gene set enrichment and disease ontology enrichment analyses. The gene set enrichment analysis (GSEA) revealed that the high-risk group enriched for cancer proliferation pathways, and the enrichment analysis of disease ontology (DO) revealed that lung disease was enriched, rationally explaining the superiority of the risk model. Finally, we found that the low-risk group had higher immune infiltration and checkpoint expression. It can be speculated that the low-risk group has a better effect on immunotherapy. Susceptibility to antitumor drugs in different risk subgroups was assessed, and it found that the high-risk group showed high sensitivity to first-line treatment drugs for non-small cell lung cancer. In conclusion, a risk model based on 6 m7G-related lncRNAs can not only predict the overall survival (OS) rate of LUAD patients but also guide individualized treatment for these patients.
Keywords: lung adenocarcinoma (AC), m7G, lncRNA, model, immune signature, treatment
INTRODUCTION
Lung cancer is the second most common type of cancer worldwide and the leading cause of cancer mortality, accounting for approximately 11.4% of diagnosed cancers and 18.0% of deaths (Sung et al., 2021). Currently, the 5-years survival rate for lung cancer is still very low, only 10–20% in most countries (Allemani et al., 2018). Lung adenocarcinoma (LUAD) is the most commonly diagnosed subtype of lung cancer, accounting for approximately 40% of all cases (Travis et al., 2015). With the development of surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy, the 5-years survival rate of lung cancer has improved, but the performance remains unsatisfactory. There is an urgent need to develop a convenient and fast prognostic model that can accurately judge patient prognosis and guide individualized treatment, which could be very useful for both patients and clinicians.
In humans, the methyltransferase like 1 (METTL1)/WD repeat domain 4 (WDR4) complex catalyzes N7-methylguanosine, one of the most common tRNA modifications in the tRNA variable loop (Alexandrov et al., 2005; Lin et al., 2018). METTL1 is an m7G catalytic enzyme and WDR4 is important in the methyltransferase complex stabilization (Alexandrov et al., 2002). Recently, it was found that METTL1 and WDR4 were significantly up-regulated in lung cancer tissues and played an oncogenic role in lung cancer via mediating m7G tRNA modification and modulated the translation of mRNAs, especially METTL1-mediated m7G tRNA modification and m7G codon usage promoted mRNA translation and lung cancer progression (Ma et al., 2021). This suggests that METTL1 and WDR4 may play a significant role in tumor progression. Therefore, screening m7G-related genes is essential.
Long non-coding RNAs (lncRNAs) are defined as non-coding RNAs of more than 200 nucleotides in length. They are not generally considered to encode proteins but are involved in the regulation of different levels (epigenetic regulation, transcriptional regulation, and post-transcriptional regulation) of genes encoding proteins in the form of RNA (Juhling et al., 2009; Spizzo et al., 2012). Several lncRNAs, including ferroptosis-related lncRNAs (Chen et al., 2022), pyroptosis-related lncRNAs (Xu et al., 2022), and autophagy-related lncRNAs (Luo et al., 2022), have recently been implicated in prognosis in cancer patients, while m7G-related lncRNAs have rarely been reported.
Herein, we identified 6 prognostic risk models of m7G-related lncRNAs and the correlation between the risk model and immune characteristics. As expected, our model well predicted survival in LUAD patients and showed greater efficacy in terms of immune cell invasion and immune checkpoint expression.
MATERIALS AND METHODS
Data Set
RNA sequencing data and associated clinical characteristics of 594 LUAD patients were extracted from The Cancer Genome Atlas (TCGA) database, including 59 normal tissues and 535 LUAD tissues. Forty m7G-related genes were obtained from the gene set enrichment analysis (GSEA) website (http://www.gsea-msigdb.org/gsea/login.jsp) and published articles. Patients lacking clinical information were deleted from subsequent analyses.
Selection of m7G-Related lncRNAs
LncRNAs were screened from 594 patients with LUAD using Strawberry Perl (version 5.30.0). A total of 2093 m7G-related lncRNAs were identified using the limma R package with the following criteria: Pearson correlation coefficient >0.4 and p < 0.001. A total of 990 differentially expressed lncRNAs (DELs) were identified in normal lung tissues and LUAD tissues with the following criteria: log2 fold change (FC) > 1 and false discovery rate <0.05.
Development and Validation of m7G-Related lncRNA Prognostic Model
To rigorously screen out prognostic lncRNAs, the p-value was set to 0.01 and univariate Cox analysis was used to identify prognostic lncRNAs. Next, the TCGA cohort was randomly divided into a training and a validation group, each accounting for 50%. Based on these prognostic lncRNAs, Lasso-Cox regression analysis was used to select genes to minimize the risk of overfitting and a risk prediction model was constructed. The risk score was calculated using the following formula: 
[image: image]
where coefi represents the coefficients of each lncRNA and expri represents the expression level of each lncRNA. Based on the median value of the risk score, patients were divided into low-risk and high-risk groups. Survival curves were drawn between low-risk and high-risk groups using the survival and survminer packages of the R software. The stability of the risk score was performed using the validation group. Clinical information (including age, gender, and stage) of TCGA-LUAD patients was extracted and combined with the risk score for univariate and multivariate Cox regression analysis to evaluate whether the risk score is an independent prognostic factor for overall survival (OS), and compared predictive results of different factors using receiver operating characteristic (ROC) curve analysis.
Nomogram and Calibration
The rms R package was utilized to construct nomograms. Calibration curves were used to quantify the agreement between the predicted and the actual results for 1-, 3-, and 5-years survival rates.
Gene Set Enrichment Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed, and significantly enriched pathways in different risk subgroups were identified using GSEA software (p < 0.05 and FDR <0.25).
Assessment of Immune Cell Infiltration and Immune Checkpoints
All TCGA tumor immune cell infiltration files were downloaded from TIMER 2.0 and the correlation between the explored immune infiltrating cells and the risk score was analyzed using limma, scales, ggplot2 and ggtext R packages. Additionally, immune cell infiltration, immune-related signaling pathways, tumor microenvironment (TME) scores, and immune checkpoints were compared between low-risk and high-risk groups using the ggpubr package.
Prediction of Drug Susceptibility
The pRRophetic R package was utilized to predict the half-maximal inhibitory concentration (IC50) value of cancer drugs in different risk subgroups, which represents the effectiveness of a substance in inhibiting a specific biological or biochemical process.
Statistical Analysis
All statistical analyses were performed using R software (version 4.0.4). The Wilcoxon signed-rank test was used to investigate differences in the composition of immune infiltrating cells. The correlation between m7G-related genes and m7G-related lncRNAs was investigated using Spearman correlation analysis. Kaplan-Meier analysis was used to estimate survival curves. p values <0.05 (∗), 0.01 (∗∗), and 0.001 (∗∗∗) were considered statistically significant.
RESULTS
Workflow of Study
The study flowchart is shown in Figure 1. The precise procedure is as follows: First, we obtained RNA sequencing from the TCGA database for 594 lung adenocarcinoma patients, as well as 40 m7G-associated genes from the GSEA database and relevant literature. Furthermore, a 6-lncRNA prognostic model was developed, and its stability was validated using multiple techniques. Finally, GSEA and DO enrichment analysis validated the superiority of the model, while immunological correlation analysis and drug sensitivity analysis extended on the idea of clinical treatment.
[image: Figure 1]FIGURE 1 | Workflow of this study. The TCGA database was utilized to screen 990 differentially expressed lncRNAs (DELs) in LUAD, which were analyzed with LASSO-COX regression to develop a prognostic model for m7G-related lncRNAs. The prognostic model had been validated in multiple ways and proved to be stable and reliable. Therefore, based on this model, we also performed disease ontology enrichment analysis (DO), gene set enrichment analysis (GSEA), immune-related analysis and drug sensitivity analysis to determine the potential function of prognostic signatures.
Identification of Differentially Expressed m7G-Related lncRNAs
Data for 594 LUAD samples were obtained from the TCGA database, and 14,056 lncRNAs and 19,573 mRNAs were detected. Forty m7G-related genes were obtained from published articles and the GSEA website (Letoquart et al., 2014; Trotman and Schoenberg, 2019; Galloway et al., 2021; Ma et al., 2021). The co-expression network between m7G-related genes and lncRNAs is shown in Figure 2A. A total of 990 DELs were screened from 59 normal tissues and 535 LUAD tissues (|Log2 FC| > 1 and p < 0.05). Of these, 903 lncRNAs were up-regulated and 87 were down-regulated (Figure 2B).
[image: Figure 2]FIGURE 2 | Identification of m7G-related lncRNAs in LUAD patients. (A) Co-expression network of m7G-related lncRNAs and mRNAs. (B) 990 differentially expressed lncRNAs.
Development and Validation of Prognostic Gene Models
Patients from the TCGA-LUAD database were randomly split into two groups: a training set and a validation set. To strictly screen prognosis-related DELs, the p-value was set to 0.01, and performed univariate Cox regression analysis was performed on the training group. Eight prognosis-related lncRNAs met the conditions, including AC092718.3, LINC01352, AP000695.1, AC018647.1, AL355472.3, AC026355.2, SALRNA1 and AL157895.1 (Figure 3A). These prognosis-related lncRNAs are shown in Figure 3B. Furthermore, these lncRNAs were positively regulated by corresponding genes in the Sankey diagram (Figure 3E). LASSO regression analysis was then performed on these prognosis-associated lncRNAs. Cross-validation was also performed to obtain the best λ value from the smallest partial likelihood bias (Figures 3C,D), to further identify lncRNAs significantly associated with prognosis in LUAD patients. Moreover, multivariate Cox regression analysis was used to screen six prognosis-related lncRNAs and calculate the respective coefficients of these lncRNAs. Finally, six candidates, including LINC01352, AP000695.1, AC018647.1, AL355472.3, AC026355.2, SALRNA1, were selected to construct a risk model. The risk score was calculated using the following formula: LINC01352∗(-1.42486) + AP000695.1∗(0.37854) + AC018647.1∗(-2.19905) + AL355472.3∗(1.05547) + AC026355.2∗(-0.38520) + SALRNA1∗(-1.39428).
[image: Figure 3]FIGURE 3 | Development of a new prognostic model for m7G-related lncRNAs in LUAD. (A) 8 prognosis-related lncRNAs screened by univariate Cox regression analysis (p < 0.01). (B) Differential expression of prognosis-related lncRNAs in lung normal tissues and adenocarcinoma tissues. (C) LASSO coefficient distribution of 8 m7G-related lncRNAs. (D) The tuning parameter (λ) in the LASSO model is chosen by the minimum criterion. (E) The Sankey diagram depicts the detailed connections between eight prognosis-related lncRNAs and m7G-related genes. *p < 0.05, **p < 0.01, ***p < 0.001.
The median score was calculated based on the above formula, and the TCGA-LUAD cohort, training group, and validation group were classified into low-risk and high-risk subgroups, and the principal component analysis, risk score distribution, and survival status distribution were visualized, respectively (Figures 4A–C). The results revealed that the sample distribution of the two risk groups was reasonable. Kaplan-Meier survival analysis showed that the OS was shorter in the high-risk group than in the low-risk group (Figures 4D–F).
[image: Figure 4]FIGURE 4 | Validation of prognostic models for six m7G-related lncRNAs. (A–C) Principal component analysis, risk score distribution, and survival status distribution for training, validation, and TCGA-LUAD. (D–F) Kaplan-Meier curves of training group, validation group and TCGA-LUAD at different risk groups. (G–I) ROC curves for 1 year, 3 years and 5 years.
Independent Prognostic Value of Risk Models
Univariate and multivariate Cox regression analyses were performed on the TCGA-LUAD cohort to evaluate the accuracy of the risk model and determine whether risk score could serve as an independent prognostic factor for patient survival. Univariate Cox regression analysis showed that both the risk score and the stage were significantly related to the prognosis of the patient (Figure 5A). After controlling for other confounding factors, multivariate analysis revealed that risk score and stage were independent prognostic factors (Figure 5B). To expand the applicability of the risk model, the stage was divided into two subgroups: early-stage (Stage I and Stage II) and late-stage (Stage III and Stage IV). The survival curves are shown in Figures 5C,D. Patients with advanced Stage had a very poor prognosis, which is completely consistent with the clinical data.
[image: Figure 5]FIGURE 5 | Clinical value of risk characteristics in TCGA-LUAD. (A) Univariate Cox regression analysis of risk scores and clinical factors. (B) Multivariate Cox regression analysis of risk scores and clinical factors. (C,D) Pathological stage was stratified between low- and high-risk groups in the entire collection. (E) Nomogram combining gender, age, stage, and risk score predicts 1-, 3-, and 5-years overall survival. (F) Clinicopathological features and the predictive accuracy of risk models. (G) Calibration curves test the agreement between actual and predicted results at 1, 3, and 5 years. *p < 0.05, **p < 0.01, ***p < 0.001.
A time-dependent ROC curve was generated in the TCGA-LUAD cohort, and the area under the curve (AUC) reached 0.705, 0.686, and 0.723 at 1, 3, and 5 years, respectively (Figure 4I). In addition, ROC curves confirmed that the risk signature had better prognostic accuracy compared with other clinicopathological features (Figure 5F). Time-dependent ROC curves also showed excellent predictive power in both the training and validation sets (Figures 4G,H).
Construction of Nomogram
Based on the TCGA-LUAD cohort, risk scores and clinical factors were integrated to create a nomogram (Figure 5E) to improve the predictive power of survival in LUAD patients. Calibration plots for 1-, 3- and 5-years OS revealed good agreement between nomogram prediction and actual observations (Figure 5G).
GSEA and DO
GSEA software was used to explore KEGG pathways in the entire collection to investigate differences in signaling pathways in different risk subgroups. It was found that pathways related to cancer proliferation, such as cell cycle, DNA replication, mismatch repair, proteasome, homologous recombination, etc., were enriched in the high-risk groups. In addition, the low-risk group was mainly enriched in pathways such as autoimmune thyroid disease, asthma, primary bile acid biosynthesis, arachidonic acid metabolism, and alpha linolenic acid metabolism (Figure 6A). The majority of enriched pathways in the high-risk group were closely related to radiotherapy (Azzam et al., 2012; Haro et al., 2012). Hence, we speculate that radiotherapy may have unexpected effects on patients in the high-risk group, providing foundations for future research directions. Immune-related pathways were enriched in the low-risk group, implying that the low-risk group may be closely related to immune characteristics. Disease differences of differentially expressed genes (DEGs) between the two risk subgroups were further investigated. First, DEGs (|Log2 FC| > 1 and p < 0.05) between the two risk subgroups were screened, followed by enrichment analysis of disease ontology (DO). DEGs were enriched in lung diseases, adenoma, coronary artery disease, and myocardial infarction (Yu et al., 2012; Yu et al., 2015). This confirms once again that our risk model is very superior. Surprisingly, DEGs are also involved in coronary artery disease and myocardial infarction (Figures 6B,C).
[image: Figure 6]FIGURE 6 | Enrichment analysis of different risk subgroups. (A) Five pathways were significantly enriched in each of the high-risk and low-risk groups. (B,C) DO enrichment analysis of DEGs based on different risk subgroups.
Relationship Between Risk Model and Immune Characteristics
Because GSEA revealed that the low-risk group was enriched in immune-related pathways, we hypothesized that the m7G-related lncRNA-based risk model was strongly tied to immunity. Therefore, the relationship between the risk model and the immunological signature was investigated further. The relationship between immune cells and the risk score is shown in the bubble diagram. The majority of immune cells were negatively correlated with the risk score, especially hematopoietic stem cells of XCELL, tumor-related fibroblasts, stroma score, granulocyte-monocyte progenitor cells, and activated mast cells of CIBERSORT-ABS, resting memory CD4 + T cells, M2 macrophages, and Treg cells of QUANTISEQ and myeloid dendritic cells and endothelial cells of MCPCOUNTER (Figure 7A). Moreover, single sample gene set enrichment analysis (ssGSEA) was used to examine the enrichment fraction of 16 different types of immune cells as well as the activity of 13 different immune-related pathways. Interestingly, the low-risk group had more immune cell infiltration, particularly activated dendritic cells, B cells, immature dendritic cells, mast cells, neutrophils, T helper cells, and tumor-infiltrating lymphocytes (Figure 7C). The activity of type 2 interferon signaling pathway and human leukocyte antigen was higher in the low-risk group than in the high-risk group (Figure 7D). Differential analysis was used to detect differences in the tumor microenvironment between the high-risk and low-risk groups, and the results showed that the low-risk group had higher immune, stromal, and estimate scores (Figure 7B). It is possible to conclude that the low-risk group had greater immune cell infiltration and lower tumor purity. Furthermore, most immune checkpoints were highly expressed in low-risk groups (Figure 7E). Therefore, low-risk patients may benefit more from immune checkpoint inhibitor therapy in our risk model.
[image: Figure 7]FIGURE 7 | Immune signatures of different risk groups. (A) Correlation between risk scores and immune cells. (B) Comparison of immune-related scores between low-risk and high-risk groups. (C,D) Enrichment scores for 16 immune cells and 13 immune-related pathways. (E) Differences in the expression of 22 checkpoints in different risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
Clinical Application of Risk Model
Differences in drug sensitivity of different risk subgroups were analyzed to investigate the clinical application value of the risk model. Results showed that docetaxel, paclitaxel, etoposide, gemcitabine, erlotinib, and crizotinib had good effects on patients in high-risk groups (Figures 8A–E). Patients in low-risk groups were more susceptible to drugs such as CDK4/6 inhibitors (PD.0332,991) and PI3K inhibitors (GDC0941); however, these drugs are currently used only for scientific research and may be promising in the future (Figures 8F,G). Reviewing the GSEA and DO enrichment analysis, it was found that the high-risk group in the TCGA-LUAD cohort had pathway enrichment such as cell cycle and DNA replication. The sensitive medications in the high-risk group are all first-line anti-tumor drugs for non-small cell lung cancer, among which chemotherapy drugs include docetaxel, paclitaxel, etoposide and gemcitabine, and their anti-tumor mechanisms are mainly directed against cell cycle and DNA replication. Erlotinib and crizotinib are two targeted medications, with erlotinib acting as an Epidermal Growth Factor Receptor (EGFR) inhibitor and crizotinib acting as an Anaplastic lymphoma kinase (ALK) inhibitor. Both EGFR and ALK targets are crucial for cancer proliferation. Presumably this is why the high-risk group is susceptible to the six antitumor drugs. The sensitive medications in the low-risk group have not been utilized in clinical practice. Fortunately, we discovered that the low-risk group had stronger immune infiltration and immune checkpoint expression, and it is expected that immunotherapy will be effective.
[image: Figure 8]FIGURE 8 | Prediction of drug susceptibility in different risk groups. (A–F) Sensitive drugs in high-risk groups. (G,H) Sensitive drugs in low-risk groups.
DISCUSSION
Numerous studies have recently revealed that m7G-related genes are closely linked to the development of cancer (Dai et al., 2021; Ma et al., 2021). A new class of lncRNAs has gradually become a research hotspot in various cancer fields in recent years. Some studies have found that abnormal expression of lncRNAs is associated with the occurrence and progression of LUAD and some lncRNAs may be highly correlated with prognosis (Spizzo et al., 2012; Cao et al., 2022; Xia et al., 2022). However, studies on m7G-related lncRNA predicting LUAD survival are scanty. The present study attempted to build a prognostic model of lncRNA in LUAD patients to test its clinical utility, and systematically explored the differences of risk models in immune cell infiltration, immune checkpoints, and drug sensitivity.
Forty publicly reported m7G-related genes were collected. First, lncRNAs that were differentially expressed in normal and LUAD tissues were explored. Univariate Cox regression was used to analyze the DELs, and 8 prognostic-related lncRNAs were screened out. Lasso-Cox regression analysis was then performed on these lncRNAs, and 6 prognosis-related lncRNAs (LINC01352, AP000695.1, AC018647.1, AL355472.3, AC026355.2, and SALRNA1) were finally identified and a risk prognosis model was constructed. The Sankey diagram showed that AC018647.1, AL355472.3, and SALRNA1 are related to DCP2. DCP2 is a decapping enzyme that plays a significant role in the regulation of the cell cycle and proliferation (Mugridge and Gross, 2018). DCP2 was found to promote lung cancer proliferation (Zhang et al., 2021). Our data also showed that AC026355.2 was highly correlated with four mRNAs (ACO2, DCP2, EIF4E, and NCBP1). Although AC026355.2 is rarely reported, we speculate that it plays a significant role in tumor development, but its precise role requires further investigation. EIF4E3 can promote translation, mRNA export, proliferation, and oncogenic transformation, and its related lncRNA LINC01352 was found to affect the growth and metastasis of hepatoma cells (Osborne et al., 2013). Bioinformatics analysis showed that AP000695.1 is closely related to immunity, and its related gene NUDT10, could be a potential immunotherapy target for LUAD in addition to promoting cell proliferation, inhibiting apoptosis, and causing tumor suppressor gene loss (Jin et al., 2020; Chen et al., 2021).
GSEA was performed on patients in both risk subgroups to reveal differences in biological function. Immune-related pathway enrichment was discovered in the low-risk group but not in the high-risk group. Immune cell bubble plots showed that low-risk groups had higher levels of immune infiltration. It has been reported that the high immune infiltration state tends to have a better immunotherapeutic effect (Guo et al., 2022; Luo et al., 2022). Interestingly, immune scores and immune checkpoint expression levels were also higher in the low-risk group, which is consistent with the results of Yu et al. (2021). Furthermore, susceptibility to antitumor drugs in different risk subgroups was assessed, and it found that the high-risk group showed high sensitivity to first-line treatment drugs for non-small cell lung cancer (including docetaxel, paclitaxel, etoposide, gemcitabine, erlotinib, and crizotinib) (Schiller et al., 2002; Zhou et al., 2011; Liang et al., 2017; Wu et al., 2018a; Wu et al., 2018b). Collectively, these results suggest that patients in the low-risk group will respond better to immunotherapy, while those in the high-risk group will respond better to chemotherapy and targeted drugs, which has important implications for individualized tumor therapy.
Although we verified the stability of the risk model from multiple aspects, there are still some limitations. First, the model was not externally validated because other databases lacked lncRNA information; thus, it was only be validated internally by TCGA. Further studies with a large sample size are required to draw definitive conclusions. Future studies will further explore the six lncRNAs.
CONCLUSION
In summary, this study conducted a comprehensive bioinformatics analysis and developed a risk model for six m7G-related lncRNAs, which not only accurately predicts patient survival but also reflects the immune characteristics of LUAD patients. This may provide important clues for the development of clinical individualized treatments and promote the progress of immunotherapy.
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Lung adenocarcinoma (LUAD) has high morbidity and mortality worldwide, and its prognosis remains unsatisfactory. Identification of epigenetic biomarkers associated with radiosensitivity is beneficial for precision medicine in LUAD patients. SETD2 is important in repairing DNA double-strand breaks and maintaining chromatin integrity. Our studies established a comprehensive analysis pipeline, which identified SETD2 as a radiosensitivity signature. Multi-omics analysis revealed enhanced chromatin accessibility and gene transcription by SETD2. In both LUAD bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq), we found that SETD2-associated positive transcription patterns were associated with DNA damage responses. SETD2 knockdown significantly upregulated tumor cell apoptosis, attenuated proliferation and migration of LUAD tumor cells, and enhanced radiosensitivity in vitro. Moreover, SETD2 was a favorably prognostic factor whose effects were antagonized by the m6A-related genes RBM15 and YTHDF3 in LUAD. In brief, SETD2 was a promising epigenetic biomarker in LUAD patients.
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1 INTRODUCTION
Lung cancer is one of the main causes of cancer-related deaths worldwide (Ferlay et al., 2019; Sung et al., 2021). Approximately 85% of lung cancers are non-small cell lung cancers (NSCLC), of which around half are lung adenocarcinomas (LUAD) (Behrend et al., 2021). The prognosis of lung cancer is still unsatisfactory (Goldstraw et al., 2016). Radiotherapy has clear benefits for patients unsuitable for surgery, and is widely used in the radical and palliative treatment of LUAD patients (Ettinger et al., 2021). Radioresistance is a major cause of lesion recurrence and metastasis (Pollom et al., 2016). In the era of precision medicine, research is gradually shifting from the population level to the individual level. Radiosensitivity is not only determined by tumor histology, but also affected by gene pathways (Césaire et al., 2022).
With the development of sequencing technology, a large amount of omics sequencing data have been documented (Hanash et al., 2002). Multi-omics data provided unparalleled dimensions of information and reflected the inherent features of individuals (Xu et al., 2021). Previous studies have successfully developed a genome-based model for adjusting radiotherapy dose (GARD) (Scott et al., 2017). Therefore, the identification of potential biomarkers is conducive to the development of precision radiotherapy.
Epigenetic regulation affects tumor heterogeneity, and is involved in radiosensitivity (Peng et al., 2021). On the post-transcriptional level, N6-methyladenosine (m6A) modification transferase METTL3 increases radioresistance via promoting the stability of target RNAs in multiple cancers (Huang et al., 2021). For histone modifications, histone deacetylase (HDAC) inhibitors demonstrate radiosensitization of various cancers in preclinical studies via targeting DNA damage responses (DDR) (Shirbhate et al., 2020). Moreover, Xue et al. (2015); Wu et al. (2020) found upregulated DNA methyl-transferase DNMT3B in radioresistant nasopharyngeal and prostate cancer cells. However, the impact of epigenetics on radiosensitivity is still not well understood, and the identification of novel epigenetic markers has a substantial clinical interest.
SETD2 is the sole transferase of histone H3 trimethylation on lysine 36 (H3K36me3) in humans. SETD2 is involved in DNA repair and maintaining chromatin integrity (Carvalho et al., 2014; Pfister et al., 2014). SETD2 is necessary to recruit DDR factors 53BP1 and RAD51 (Carvalho et al., 2014). In the Mayo cohort, renal carcinoma patients without H3K36me3 had worse cancer-specific survival (Ho et al., 2016). Moreover, SETD2 mutation promotes MLL-AF9-induced leukemia progression and chemoresistance (Mar et al., 2017). Our previous studies found that SETD2 knockdown triggers DNA double-strand breaks (DSB) and activates the cGAS-STING pathway (Zeng et al., Forthcoming 2022). On the other hand, SETD2-mediated H3K36me3 guides m6A modifications on nascent RNA transcripts (Kumari and Muthusamy, 2020). However, studies on the roles of SETD2 in LUAD are still lacking. Therapeutical values and possible mechanisms of SETD2 remain to be investigated in LUAD.
Here, we utilized comprehensive omics-data analysis to determine that SETD2 was a key radiosensitivity-related signature. Our results indicated that SETD2 enhanced chromatin opening and transcription, especially in the DDR-related pathways. In vitro experiments indicated that SETD2 knockdown upregulated tumor cell apoptosis, attenuated proliferation and migration of LUAD cells, and enhanced their radiosensitivity. Furthermore, SETD2 was a prognostic protection factor whose effect interacted with m6A-related genes. Our finding suggested SETD2 as a potential epigenetic marker in LUAD patients.
2 MATERIALS AND METHODS
2.1 Collection and processing of omics data
A total of 11 datasets were included in this study (Supplementary Table S1). The survival fraction at 2 Gy (SF2) was a common index to describe cellular radiosensitivity. In this study, the determination of SF2 was based on previous studies, which reported colony formation with irradiation (Supplementary Table S2) (Torres-Roca et al., 2005; Eschrich et al., 2009; Gao et al., 2012; Oleinick et al., 2016; Zhong et al., 2016). For Microarray data, GEO datasets were standardized by the default method. When multiple probes corresponded to the same gene, the maximum value of the probes was selected. GSE20549 contained 42 samples of H460 and H1299 cells at six time points (0, 2, 4, 8, 12, and 24 h) after 2 Gy ionizing radiation (IR). We collected 10 NSCLC cell samples from GSE32036 and 16 samples from GSE57083 (Byers et al., 2013), which were normalized and integrated with Z-score. GSE5949 contained 59 pan-cancer cell samples (Reinhold et al., 2010). We collected SETD2 expression data for survival analysis in GSE50081 (Der et al., 2014) and GSE3141 (Bild et al., 2006). For RNA-seq data, we collected RNA-seq (standardized by RPKM) of the 16 HepG2 cell samples treated with shSETD2 from GSE121949 (Huang et al., 2019). The clinical data of The Cancer Genome Atlas (TCGA) cohorts were downloaded by R TCGAbiolinks package (Colaprico et al., 2016). Xena was used to obtain omics data of TCGA (Goldman et al., 2020). The RNA-seq data were normalized by log2 (TPM +1). ChIP-seq data was annotated by R ChIPseeker package (Yu et al., 2015). H3K36me3 ChIP-seq of HepG2 cells with/without shSETD2 was obtained from GSE110318 (Huang et al., 2019). The lung cancer ChIP-seq data (H3K36me3, H3K27me3, H3K9me3, H3K27ac, H3K4me3, and H3K4me1) were downloaded from Roadmap (ID: EN96) (Kundaje et al., 2015). Moreover, we collected scRNA-seq for 43,704 cells from tumor tissues of 11 LUAD patients in GSE131907 (Kim et al., 2020). ATAC-seq data of TCGA was obtained from NCI GDC (https://gdc.cancer.gov/about-data/publications/ATACseq-AWG). The R ChIPseeker package was also used for annotation (Yu et al., 2015). To compare the expression of SETD2 in different NSCLC cell lines, we collected SETD2 RNA-seq in the Cancer Cell Line Encyclopedia (CCLE) database (Barretina et al., 2012).
2.2 Cell culture and radiation
The Type Culture Center of the Chinese Academy of Sciences (Shanghai, China) provided the LUAD A549 and H1299 cells, cultivated in RPMI-1640 media (HyClone, United States) containing 10% fetal bovine serum. The cells were grown in a standard tissue culture incubator at 37°C, with 95% humidity and 5% CO2. Radiation was conducted using a small animal radiation research platform (6 Gy, PXI X-RAD 225Cx, Gulmay, CT, United States).
2.3 Cell transfection
Small interfering RNAs (siRNAs) and negative control (NC) were transfected at 20 nM via jetPRIME® transfection reagent. SETD2 siRNA (siSETD2) 2 sequences were as follows: sense, CCUUCAGGCUCAGAGUUAATT, and anti-sense, UUAACUCUGAGCCUGAAGGTT; siSETD2 3 sequences were as follows: sense, CCGGAAACCUGACUGCAAATT, and anti-sense, UUUGCAGUCAGGUUUCCGGTT.
2.4 RNA isolation and quantitative real-time PCR
Using the TRIzol reagent, total RNA was isolated from cells (Vazyme, China). We used HiScript® Q RT SuperMix (Vazyme, China) to transcribe RNA and ChamQTM SYBR® qPCR Master Mix (Vazyme, China) for qRT-PCR. The relative mRNA levels were calculated with the 2−ΔΔCt method. All experiments were performed in triplicates.
2.5 Wound healing and colony formation assays
For wound healing assays, we seeded the transfected cells into 6-well plates. A straight line was scratched with a pipette tip. The migration rate was calculated using the following formula: wound closure rate (%) = (area of initial scratch—the area of final imaged cell-free area)/area of initial scratch * 100. For colony formation assays, we subjected the transfected cells to radiotherapy, and they were seeded into 6-well plates at 1,000 cells/well 48 h later. After 2 weeks, the medium was aspirated, and 4% paraformaldehyde was added and fixed for 30 min. Then after PBS washing, they were stained with 0/5% crystal violet for 30 min and finally washed with water, dried, and photographed.
2.6 Flow cytometry for cell apoptosis
After 48 h, the treated cells were collected and washed twice with PBS. We suspended the cells in binding buffer with Annexin V-FITC staining solution and propidium iodide (PI) solution on ice. The samples were detected by flow cytometry (Beckman, China).
2.7 Immunohistochemistry from the human protein atlas database
We collected SETD2 immunohistochemistry images from the HPA database (https://www.proteinatlas.org/) (Karlsson and Zhang, 2021), including available 5 LUAD and 3 normal lung tissues. All images were made of antibody HPA042451. SETD2 staining score was calculated as intensity times quantity. The intensity score consisted of 0 (Negative), 1 (Weak), 2 (Moderate), and 3 (Strong). The quantity score consisted of 0 (None), 1 (<25% cells), 2 (25–75% cells), and 3 (>75% cells).
2.8 Analysis of single-cell RNA sequencing
The Seurat workflow was adopted to analyze scRNA-seq data (Satija et al., 2015). Cells with less than 200 genes (min.features = 200) and genes with less than 3 cells (min.cells = 3) were screened out. Only the cells with less than 15% of mitochondrial genes were retained. A total of 2,000 hypervariable genes were selected with the vst method. An Elbow diagram was drawn to select the best number of principal components. The resolution parameter was set as 0.5. Uniform manifold approximation and projection were used to visualize single-cell atlas (McInnes et al., 2018), which was realized by Seurat DimPlot and FeaturePlot functions. Cell types were identified using marker genes from the previous study (Lambrechts et al., 2018). Specifically, tumor cell markers were EPCAM and KRT19; T/NK cell markers were NKG7, CD3E, CD3G, and CD3D; B cell markers were CD79A and CD79B; myeloid cell marker was LYZ; mast cell markers were TPSB2 and TPSAB1; fibroblast markers were COL1A1 and COL1A2; endothelial cell marker was CLDN5; normal epithelial cell marker was CAPS. GSVA was used to calculate the gene set enrichment score of individual cells (Hanzelmann et al., 2013).
2.9 Principal component analysis
PCA was a classic linearly dimensionality reduction algorithm. We used the R FactoMineR package to perform PCA (Lê et al., 2008). The first principal component was considered to be the vector with the largest variance. In this study, since gene clusters contained a large number of genes, we used the first principal component as the eigenvalue to characterize the gene clusters.
2.10 Short time-series expression miner analysis
Short time-series expression miner analysis was an algorithm to cluster, compare and visualize time-course gene expression (Ernst and Bar-Joseph, 2006). Genes with similar time expression patterns were grouped into the same clusters. We extracted eigenvalue of time-course clusters using PCA. Next, we performed Spearman’s correlation between the eigenvalue of gene clusters and SF2 to recognize SF2-related clusters.
2.11 Random forest
The RF was the ensemble methods with multiple decision trees. We used R randomForest packages to train RF model for SF2 fitting (Breiman, 2001). The mean-square error was used to calculate importance of genes.
2.12 Single-gene liner quadratic model
The Linear-Quadrac (LQ) model proposed by Kellerer and Rossi was a classical model widely used in the field of radiotherapy (Kellerer and Rossi, 1978). The LQ model estimated the survival fraction (SF) of cells exposed to radiation:
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Which e represents the natural logarithm, α and β represent radiation-specific parameters describing the radiosensitivity of tumor cells, D is the radiation dose.
However, the equation for fitting SF using gene expression was still unclear. We next analyzed a gene expression data set exposed to different doses (0, 2, 5, 6, and 7 Gy) of radiation (GSE102971, n = 100) (Park et al., 2017). Compared with quadratic equation and cubic equation, linear equation (dose-gene expression) has the smallest Akaike information criterion in the analysis of each gene, suggesting that gene expression was linearly related to radiation dose (Supplementary Figure S1). In order to establish a simulation model of gene expression and SF, we constructed a single-gene linear-quadratic (SGLQ) model inspired by the LQ model:
[image: image]
Here, α is the linear radiosensitivity parameter of a single gene i, and β represents the quadratic radiosensitivity parameter of gene i. Ei is the expression value of gene i. The SGLQ contributed to modeling the relationship between gene expression and SF in the era of omics.
2.13 The 4-omics system biological network
Gene regulations were the complex systems biology networks. Analysis of nodes in the network helped to identify key genes. The 4-omics system biological networks consisted of mutation, copy number alteration (CNA), mRNA co-expression and protein interaction sub-networks. The gene interaction of protein interaction sub-network was formed by STRING database (Szklarczyk et al., 2017). The mutation and CNA sub-networks were constructed by HotNet diffusion-oriented subnetworks (HotNet2) algorithm, which was based on random walk with restart (Leiserson et al., 2015). The HotNet2 included not only the topology of gene interaction networks from STRING, but also the heat values. Here, mutation frequency and copy number were set as heat values of the mutation and CNA sub-networks. Finally, HotNet2 identified sub-networks with close topology structure and high overall thermal diffusivity. The mRNA co-expression sub-network was formed by weight gene co-expression analysis (WGCNA) (Langfelder and Horvath, 2008). In this study, we used multi-omics data in TCGA pan-cancer cohorts to build the 4-omics system biological networks. Network analysis and visualization were realized by Cytoscape (Shannon et al., 2003). The innovation of this network was the inclusion of multi-omics data.
2.14 The maSigPro algorithm
Differential expression analysis of time-course transcriptome was performed by maSigPro using a 2-step regression strategy (Conesa et al., 2006). Since GSE121949 contained gene expression data at 4 time points (0, 1, 3, and 6 h) (Huang et al., 2019), we constructed the cubic equation in the maSigPro algorithm to identify treatment group related genes.
2.15 Binding and expression target analysis
BETA was a tool to integrate ChIP-seq and gene differential expression list from transcriptome (Wang et al., 2013). In this study, we explored the transcriptional activation or inhibition of H3K36me3, and identified the motif of H3K36me3 and its collaborators by combining H3K36me3 ChIP-seq (GSE110318) and RNA-seq (GSE121949) via BETA (Huang et al., 2019). BETA was realized by cistrome (http://cistrome.org/ap/root) (Liu et al., 2011).
2.16 Enrichment analysis
Gene set enrichment analysis (GSEA) was used to identify GO terms that were activated or inhibited in a predefined list of gene differential expression via permutation test (Ashburner et al., 2000). Over-representation analysis (ORA) was performed to identify GO terms associated with a predefined gene set via a hypergeometric test. GSEA and ORA were realized by R clusterProfiler packages (Yu et al., 2012).
2.17 Weighted gene co-expression network analysis
WGCNA clustered genes into different modules according to expression similarity through kmeans clustering and dynamic branch cutting (Langfelder and Horvath, 2008). In this study, we correlated the eigenvalues of the modules with the SETD2 expression to identify SETD2-related modules.
2.18 Statistical analysis
Most statistical analysis was analyzed in R software 4.1.0. The basic statistical analysis was performed by the R stats package. Cox proportional hazards regression was realized by the R survival package. When the survival curve crossed, landmark analysis was used to assess the prognostic value of SETD2 at different time periods (Der et al., 2014). The landmark analysis was realized by R jskm package (https://rdrr.io/cran/jskm/). Gene expression plots for TCGA data were implemented by GEPIA (Tang et al., 2017a) and TIMER (Li et al., 2017). p values less than 0.05 were considered statistically significant. All the p values were two-sided.
3 RESULTS
3.1 Comprehensive analysis suggested a critical role of SETD2 in radiosensitivity
3.1.1 Identification of radiosensitivity related transcriptome patterns
Gene expression induced by temporal changes in radiation may be related to radiotherapy response and sensitivity. We collected 42 NSCLC cell samples from GSE20549 (Clough and Barrett, 2016) with six time points (0, 2, 4, 8, 12, and 24 h) after 2 Gy IR. The ANOVA identified 3,337 genes variously expressed at different time points (p < 0.05). We next explored IR time-dependent gene patterns using Short Time-series Expression Miner method (Ernst and Bar-Joseph, 2006). A total of 11 time-course gene clusters reached statistical significance (false discovery rate, FDR q < 0.01, Supplementary Figure S2).
To determine the radiosensitivity-related time-course clusters, we collected 26 untreated NSCLC cell samples from GSE32036 and GSE57083 (Byers et al., 2013), whose SF2 were provided by colony formation assays from previous studies (Supplementary Table S2, see Methods). There were 5 first principal component of clusters correlated with SF2 (cor >0.1, Figures 1A,B), which were considered as SF2-related clusters. Gene ontology (GO) enrichment analysis suggested that the 832 genes in these 5 clusters were linked to cell cycle, DDR and histone methylation (all, FDR p < 0.05, Figure 1C).
[image: Figure 1]FIGURE 1 | SETD2 functions as a radiosensitivity signature. (A) Radiosensitivity-related time-course clusters by the short time-series expression miner method. (B) Correlation between SF2 and the first principal component (PC1) of each time-course cluster. (C) GO enrichment analysis of the 832 genes in 5 SF2-related clusters. (D) RF analysis of single gene on SF2 in GSE32036 and GSE57083. (E) SGLQ analysis of single gene on SF2 in GSE32036 and GSE57083. (F) The 4-omics biological networks included mutation, CNA, mRNA co-expression, and protein interaction sub-networks. (G) Venn diagram for screening key genes. (H) GO enrichment analysis of the 280 hub genes. (I) Correlation between gene expression and SF2.
3.1.2 SETD2 was a radiosensitivity signature at the single-gene scale
Since the above analysis was performed at the gene cluster level, we subsequently determined the SF2-related signatures at the single-gene level. Here we used the RF (Breiman, 2001) and SGLQ model to quantitate the importance of a single gene on SF2 in GSE32036 and GSE57083. A total of 289 (34.7%) genes did not perform well both in the RF and SGLQ models (Figures 1D,E), suggesting that these genes were unlikely to be SF2-related signatures.
In the remaining 543 (65.3%) genes, we next identified the hub ones. We constructed the “4-level network” (see Methods), containing the mutation, CNA, RNA, and protein subnetworks from TCGA pan-cancer data (Figure 1F). The 3 subnetworks were identified in the 4-level biological network, representing histone methylation, cell cycle, and DNA damage checkpoint (Supplementary Figure S3). Considering the topological structure of networks, the 280 genes were selected as irradiation-related genes (Figure 1G) with a high degree, betweenness, and closeness centrality (all, > median value). The significant enrichment of histone H3K36 methylation, cell cycle, DDR were observed in these 280 genes (Figure 1H), containing ATM, ERCC4, H2AFX, DTX3L, CCNA2, RAD9A, POLE3, BRSK1, CLOCK, CNOT3, CNOT4, CNOT6, BRD4, CAMK2A, EZH2, RB1, ACTR1A, AURKB, RBX1, NSD1.
We next validated the relationship between H3K36 methylation regulatory genes (SETD2, SETD3, NSD1, PAXIP1, BRD4, IWS1, SETMAR, SMYD2, ASH1L) and SF2 in the dataset GSE5949 (pan-cancer cell lines, n = 59) (Reinhold et al., 2010). SETD2 was the only gene linked to SF2 via Spearman correlation analysis (p = 0.04, Figure 1I).
3.2 SETD2 enhanced transcription and chromosomal accessibility
SETD2 was the main methyltransferase that specifically trimethylated “Lys-36” of histone H3 in mammals. The H3K36me3 signals decreased in the whole genome after SETD2 knockdown in GSE110318 (Huang et al., 2019) (Figure 2A), which affected both H3K36me3 coverage and average peak signals (Figure 2B).
[image: Figure 2]FIGURE 2 | SETD2 and H3K36me3 enhanced transcription. (A) The H3K36me3 signals of shSETD2 vs. control in GSE110318. (B) The quantitative H3K36me3 signals. (C) Expression profile of GSE121949. (D) Gene different expression analysis between shSETD2 and control groups using maSigPro algorithm. (E) GSEA of shSETD2 vs. control in GSE121949. (F) Gene expression of shSETD2 vs. control in GSE121949. (G) Binding and expression target analysis (BETA) of H3K36me3 Chip-seq (GSE110318) and RNA-seq (GSE121949). (H) Motif analysis of H3K36me3 Chip-seq.
GSE121949 (Huang et al., 2019) provided RNA-seq of HepG2 cells with or without shSETD2 at 4 time points (0, 1, 3, and 6 h, Figure 2C). We performed gene differential expression analysis between the shSETD2 and control groups using the maSigPro algorithm (Conesa et al., 2006) (Figure 2D). Enrichment analysis showed inhibited transcriptiona in the shSETD2 groups (Figure 2E). Compare with the control group, more genes were downregulated in the shSETD2 group at all time points (Figure 2F). Furthermore, binding and expression target analysis (BETA) (Wang et al., 2013) of integrating H3K36me3 ChIP-seq (GSE110318) and RNA-seq (GSE121949) demonstrated that H3K36me3 enhanced transcription (Figure 2G). Motif analysis of H3K36me3 ChIP-seq suggested that H3K36me3 regulated transcription factors (NFIC, ELF2, ELF4, EHF, Figure 2H).
Open chromatin facilitates transcription. Next, we investigated the relation between SETD2/H3K36me3 and chromosomal accessibility. We collected ChIP-seq data for the six histone modifications (H3K36me3, H3K27me3, H3K9me3, H3K27ac, H3K4me3, and H3K4me1) of lung cancer sample from Roadmap (Sample ID: EN96) (Kundaje et al., 2015). Correlation analysis and PCA showed that H3K36me3 had the similar patterns to open-chromosome-related histone modifications (H3K27ac, H3K4me3), but was distant from closed histone modifications (H3K27me3, H3K9me3, Figures 3A,B). Figure 3C showed a specific example of peak distributions in chromosome 17: 1-6850845. Furthermore, ATAC-seq of TCGA cohorts demonstrated that expression and promoter methylation of SETD2 were associated with chromosomal accessibility in TCGA LUAD (Figures 3D,E). The combined analysis of ATAC-seq and RNA-seq showed that the expression of SETD2 was positively correlated with the openness of the promoter region of the extensive genes in TCGA NSCLC (n = 76, Figures 3F,G). These results indicated that SETD2 enhanced transcription and chromosomal accessibility.
[image: Figure 3]FIGURE 3 | SETD2 and H3K36me3 enhanced chromosomal accessibility. (A) Correlation analysis of H3K36me3 and other histone modifications. (B) PCA of H3K36me3 and other histone modifications. (C) Peak distributions in chromosome 17: 1-6850845 of H3K36me3 and other histone modifications. (D,E) Correlation between SETD2 and ATAC signals in TCGA LUAD. (F) Correlation between SETD2 expression and the accessibility of the whole gene promoters. (G) The left side shows the location of the ATAC-seq signal of genes whose promoter region accessibility is positively correlated with SETD2 on the chromosome; The right side shows the position of the ATAC-seq signal of the negatively related gene on the chromosome.
3.3 SETD2 positively regulated transcriptional patterns associated with DNA damage responses
The next question was whether the enhanced transcription by SETD2 was gene-specific. We analyzed SETD2-related co-expression genes in bulk RNA-seq. In the TCGA LUAD cohort, WGCNA (Langfelder and Horvath, 2008) identified 35 co-expression modules (Figure 4A, Supplementary Figures S4, S5). Correlation analysis of module eigenvalues with SETD2 expression revealed the 4 SETD2 positive correlation modules (Turquoise, Green, Midnightgreen, and Blue modules, Figure 4B). GO enrichment analysis showed that genes of the above 4 modules enriched in DDR, DNA repair, RNA splicing, and histone modification signals (Figure 4C).
[image: Figure 4]FIGURE 4 | SETD2 regulated transcriptional patterns in bulk RNA-seq. (A) Visualization of topological overlap matrix in TCGA LUAD. (B) WGCNA revealed the gene clusters related to SETD2 in TCGA LUAD. (C) GO enrichment analysis of SETD2-related clusters in TCGA LUAD. (D) Visualization of topological overlap matrix in TCGA LUSC. (E) WGCNA revealed the gene clusters related to SETD2 in TCGA LUSC. (F) GO enrichment analysis of SETD2-related clusters in TCGA LUSC.
In the TCGA lung squamous cell carcinoma (LUSC) cohort, we repeated the WGCNA (Figure 4D, Supplementary Figures S6, S7). Similarly, we identified 50 modules, the 5 of which were positively correlated with SETD2 (Turquoise, Brown, Blue, Darkgreen, and Royalblue Figure 4E). DNA damage repair, cell cycle, RNA splicing, and histone modification signals were enriched in genes of these 5 modules (Figure 4F).
3.4 Single-cell analysis validated the co-expression patterns of SETD2 in lung adenocarcinoma
We next investigated 43,704 single-cell RNA profiles of the 11 primary LUAD patients in scRNA-seq GSE131907 (Kim et al., 2020). Through Seurat workflows, we identified the 8 cell types: tumor cells, fibroblasts, endothelial cells, epithelial cells, T/NK cells, B cells, myeloid cells, and mast cells (Figure 5A). SETD2 was widely distributed in different cell types (Figure 5B, Supplementary Figure S8). Overall, The SETD2 positive rate in tumor cells was lower than that in normal epithelial cells (15.2 vs. 20.2%, p = 0.2, Figure 5C), but higher than that in immune cells, including T/NK cells (10.7%, p < 0.0001), B cells (8.4%, p < 0.0001), and myeloid cells (12.1%, p < 0.0001). Moreover, in log2 (TPM+1) normalized profiles, we found that SETD2 was positively associated with the expression of more genes (Figure 5D), especially in tumor cells (positive rate: 78.7%) and myeloid cells (positive rate: 73.7%), while the opposite was observed in mast cells (positive rate: 46.4%) and epithelial cells (positive rate: 44.1%). This finding was consistent with Section 3.2. Next, we compared the gene expression of SETD2-positive and negative tumor cells. Genes highly expressed in SETD2-positive tumor cells were enriched in DDR, RNA splicing, and histone modification signals (Figure 5E).
[image: Figure 5]FIGURE 5 | Analysis of SETD2 in LUAD scRNA-seq. (A) UMAP of the 43,704 cells in LUAD scRNA-seq. (B) Marker gene expressions in scRNA-seq. (C) Positive rate of SETD2 for each cell type. (D) The number of genes positively or negatively correlated with SETD2 expression. (E) GSEA of positive SETD2 vs. negative cells in scRNA-seq.
3.5 Knockdown of SETD2 upregulated apoptosis, attenuated proliferation and migration of tumor cells, and enhanced the radiosensitivity in lung adenocarcinoma
SETD2 was downregulated in TCGA LUAD and LUSC tissues than normal ones (Supplementary Figure S9). In immunohistochemistry of 5 LUAD and 3 normal lung tissues from the HPA database (Karlsson and Zhang, 2021), we compared SETD2 staining scores of tumor and alveolar cells. The results showed that SETD2 staining scores were low but not significantly different between tumor and alveolar cells, and that the staining was mainly concentrated in the nuclear (Supplementary Figures S10A,B).
We next investigated the effects of SETD2 on tumor malignant behaviors and radiosensitivity in vitro. According to our preliminary studies (Zeng et al., Forthcoming 2022), the expression levels of SETD2 in H1975 and A549 cells were high. In this study, we collected RNA-seq for NSCLC cells in the CCLE dataset. SETD2 expression remained higher in H1975 and A549 cells than H1299, PC9, and H460 cells (Supplementary Figure S11). Therefore, we cultured LUAD A549 and H1975 cells and divided them into six groups: negative control, siNC; siSETD2-2, si2; siSETD2-3, si3; negative control plus 6 Gy IR, IR-NC; siSETD2-2 plus 6 Gy IR, IR-s2; siSETD2-3 plus 6 Gy IR, IR-s3. With or without IR, siSETD2 showed high knockdown efficiency in A549 and H1975 (Figures 6A,B). Colony formation assays indicated attenuated tumor proliferation after SETD2 knockdown (Figures 6C–E). Cell proliferation was diminished after 6 Gy IR, and cells were more sensitive to radiation upon siSETD2 treatment. Moreover, SETD2 knockdown decreased cell migration (Figures 6F–H). Due to the severe killing of tumor cells by IR after transfection with siSETD2, we did not perform wound healing assays in the IR groups. Next, we performed flow cytometry for cell apoptosis in H1975 cells. SETD2 knockdown significantly upregulated LUAD cell apoptosis (Figures 6I,J).
[image: Figure 6]FIGURE 6 | Flow cytometry, wound healing assays and clone formation experiments treated with siSETD2 or radiation. (A) The qRT-PCR of SETD2 in A549 cells. (B) The qRT-PCR of SETD2 in H1975 cells. (C) The six well plate image of clone formation experiment. (D) Clone formation rate of A549 cells. (E) Clone formation rate of H1975 cells. (F) Wound healing assay image. (G) Wound closure rate of A549 cells. (H) Wound closure rate of H1975 cells. (I) Flow cytometry for cell apoptosis in H1975. (J) Quantitative results of apoptosis.
3.6 SETD2 interacted with N6-methyladenosine-related genes RBM15 & YTHDF3 statistically and was associated with a favorable prognosis
Previous studies reported the possible association between SETD2 and m6A (Kumari and Muthusamy, 2020). We comprehensively analyzed m6A-related genes, including 8 “writer” genes, 9 “reader” genes, and 2 “eraser” genes (Gu et al., 2020) in TCGA LUAD dataset. SETD2 was positively related to “writer” and “reader” genes (r > 0.4 & p < 0.01): METTL14, ZC3H13, RBM15, YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 (Figure 7A, Supplementary Figure S12). SETD2 was linked to a favorable prognosis in multiple LUAD datasets (Figure 7B). However, the landmark analysis showed that patients with high SETD2 expression changed from favorable prognosis to unfavorable prognosis after more than 50–80 months. We next investigated the interaction effects of m6A-related genes with SETD2 on prognosis. Using multivariate Cox regression with interaction terms (Survival ∼ SETD2 + SETD2 *m6A gene + age + gender + stage), we identified that RBM15 (interaction term HR = 1.15, p = 0.02) and YTHDF3 (interaction term HR = 1.06, p = 0.18) interacted with SETD2 (Supplementary Tables S3, S4). The protective effects of SETD2 on prognosis were enhanced with the reduction of RBM15 or YTHDF3 (Figures 7C,D). The prognostic effects of SETD2 may be explained with low microsatellite instability and frequency of mutations (Liu et al., 2015; Zeng et al., Forthcoming 2022).
[image: Figure 7]FIGURE 7 | SETD2 was linked to favorable prognosis whose effect was negatively affected by the interaction of m6A-related genes RBM15 and YTHDF3. (A) Correlations between SETD2 and m6A-related genes. (B) Kaplan-Meier survival curves of SETD2 in the Kmplot database. (C) Visualization of interaction effect of RBM15 on Cox regression coefficient of SETD2. (D) Visualization of interaction effect of YTHDF3 on Cox regression coefficient of SETD2.
4 DISCUSSION
Our work demonstrated that SETD2 as a radiosensitivity signature positively regulated DDR-related transcriptional patterns. Possibly due to inhibition of DDR, SETD2 knockdown upregulated the radiosensitivity of LUAD cells. Clinically, SETD2 was a promising epigenetic biomarker for prognosis and radiotherapy in LUAD.
Previous studies identified radiosensitivity-related genes based on regression. Torres-Roca et al. (2015) identified 10 genes associated with SF2 by linear regression models (Eschrich et al., 2009). Tang et al. (2017b) identified 65 radiosensitivity-related genes by logistic regression models in soft tissue sarcoma. In this study, we implemented a novel gene identification pipeline. Through pattern analysis of radiation time-associated transcriptomes, machine learning algorithms, and 4-omics networks, we successfully identified SETD2 as a key gene for radiosensitivity, which was validated in other omics datasets and cell experiments. Our novel pipeline can provide a case for other gene identification related studies.
Poly (ADP-ribose) polymerase (PARP) inhibitors targeted DNA damage repair, induced further DNA damage, and had a synthetic lethal effect in DNA repair-deficient tumors (Slade, 2020). PARP inhibitors improved progression-free survival in recurrent ovarian cancer patients with BRCA1/2 mutation and platinum-sensitive by 13.6 months (Pujade-Lauraine et al., 2017). PARP inhibitors also had a higher response rate in BRCA mutant triple-negative breast cancer (Pahuja et al., 2014). In addition to BRCA, other DNA repair-related genes also affected PARP inhibitor responses, such as RAD51 (Liu et al., 2017). Due to the important roles of SETD2 in homologous recombination repair (Skucha et al., 2019), the application of PARP inhibitor in SETD2-deficient tumors may achieve favorable curative effects, which needed to be confirmed by further studies.
SETD2 also played important roles in m6A RNA modification (Huang et al., 2019), which was related to prognosis and radioresistance. Li et al. (2020) found that low expression of FTO and METTL14 and high expression of METTL3, HNRNPA2B1, and YTHDF3 were related to the poor prognosis of osteosarcoma. The m6A “writer” METTL3 was demonstrated to promote radioresistance in pancreatic cancer (Taketo et al., 2018), hypopharyngeal squamous cell carcinoma (Wu et al., 2021), and glioma stem-like cells (Visvanathan et al., 2018). Radiosensitization caused by SETD2 knockdown may be related to both DDR and m6A.
LUAD and LUSC were highly heterogeneous for radiotherapy. Previous studies found that LUSC shrunk faster than LUAD after stereotactic body radiotherapy (Miyakawa et al., 2013). However, the local control rates of LUAD were not inferior to LUSC (Miyakawa et al., 2013; Hörner-Rieber et al., 2017; McAleese et al., 2019; Katagiri and Jingu, 2021). Moreover, LUSC was more likely to relapse locally, while LUAD was more likely to metastasize after radiation (McAleese et al., 2019; Katagiri and Jingu, 2021). For the overall survival of LUAD and LUSC after radiotherapy, there was some seemingly contradictory evidence (Nakayama et al., 1997; Holgersson et al., 2011), possibly due to the heterogeneity of the included populations. Despite the controversy, based on current evidence, the radiocurability of LUAD was not inferior to that of LUSC.
In the bulk transcriptome, SETD2 was associated with a favorable prognosis. However, it was unclear whether the favorable prognosis of SETD2 in LUAD was determined by the tumor or microenvironmental cells. Previous studies found that SETD2 histological staining scores of tumor cells were linked to good survival in gastric cancer (Chen et al., 2018) and nonmetastatic clear-cell renal cell carcinoma (Liu et al., 2015), possibly because lack of SETD2 increased microsatellite instability and frequency of spontaneous mutations (Liu et al., 2015; Zeng et al., Forthcoming 2022). Moreover, we collected 7 LUAD single-cell-derived metastasis-associated genes (PRSS3, GPI, CCL20, KRT18, TCN1, SLCO1B3, and GNPNAT1) from a previous study (He et al., 2021). However, in GSE131907, the results of GSVA analysis showed no significant difference in the scores of 7 metastasis-associated genes between SETD2-positive and negative tumor cells (Supplementary Figure S13). We expected further clinical studies to investigate the prognostic implications of SETD2 in cancer.
There were still some open issues. One focus was to identify genomic signatures associated with radioresistance and explore their mechanisms. Although acquired small deletion mutations were suggested as possible causes of radioresistance (Kocakavuk et al., 2021), further studies were required to investigate the complexity of tumor heterogeneity. The landmark analysis showed that the protective effects of SETD2 were reversed at more than 50–80 months, however the mechanism was not clear. Moreover, SETD2 also plays important roles in RNA splicing (Bhattacharya et al., 2021). Other mechanisms by which SETD2 affected therapeutic effectiveness also remained to be investigated. In addition, preclinical studies investigating the toxicity and efficacy of interventions targeting SETD2 were lacking.
In this study, we mainly analyzed various genomics data supplemented by a limited amount of in vitro cell data. This study had some limits: 1) Since SETD2 expression was not high in various cells, we expected further studies to confirm the implications of SETD2 over-expression in LUAD; 2) The role of SETD2 regulated m6A in radiosensitivity remains unclear; 3) More clinical evidence was needed to use SETD2 as a prognosis and radiotherapy marker.
5 CONCLUSION
Our comprehensive analysis pipeline demonstrated that SETD2 was a key radiosensitivity signature. SETD2 enhanced chromatin accessibility and gene transcription which focused on DDR, DNA damage repair, and histone modification. Knockdown of SETD2 attenuated the proliferation and migration of LUAD cells, and enhanced cell apoptosis and radiosensitivity in vitro. Furthermore, SETD2 was a positively prognostic factor whose effects were negatively affected by the interaction of m6A-related genes RBM15 and YTHDF3.
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Breast cancer (BC) has continued to be the leading cause of cancer deaths in women, accompanied by highly molecular heterogeneity. N6-methyladenosine (m6A), a methylation that happens on adenosine N6, is the most abundant internal mRNA modification type in eukaryotic cells. Functionally, m6A methylation is a reversible modification process and is regulated by 3 enzymes with different functions, namely “writer”, “reader”, and “eraser”. Abnormal m6A modifications trigger the expression, activation, or inhibition of key signaling molecules in critical signaling pathways and the regulatory factors acting on them in BC. These m6A-related enzymes can not only be used as markers for accurate diagnosis, prediction of prognosis, and risk model construction, but also as effective targets for BC treatment. Here, we have emphasized the roles of different types of m6A-related enzymes reported in BC proliferation, invasion, and metastasis, as well as immune regulation. The comprehensive and in-depth exploration of the molecular mechanisms related to m6A will benefit in finding effective potential targets and effective stratified management of BC.
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1 INTRODUCTION
Breast cancer (BC) has continued to be the leading cause of cancer deaths in women, and its incidence rates are still increasing globally (Sung et al., 2021). BC is a highly molecularly heterogeneous tumor type and is continually associated with headaches, such as recurrence, metastasis, and drug resistance (Yau et al., 2022) (Derose et al., 2011). These features cause certain bottlenecks in the diagnosis and treatment of BC. Therefore, exploring the molecular mechanism of the occurrence and development of BC, as well as the capability for the early diagnosis of BC, treatment monitoring, or the search for effective potential targets, is of great significance for the effective stratified management of BC and the development of new diagnosis and treatment methods (Ellis and Perou, 2013).
Epigenetic regulation, represented by N6-methyladenosine (m6A) modification, histone modification, DNA methylation, chromatin remodeling, and non-coding RNA (ncRNA) regulation, plays an overwhelming role in almost all biological behaviors, including cell differentiation and tissue development, and tumor progression (Wiener and Schwartz, 2021). M6A, a methylation that happens on adenosine N6, is the most abundant internal mRNA modification type in eukaryotic cells (Hu et al., 2022). There is a lot of evidence that m6A modification is an emerging important molecular modulation for tumors. In mammals, m6A modifications are known as a reversible dynamic process to influence different dimensions of RNA expression, including regulation of mRNA stability, splicing, translation efficiency, nuclear export, and degradation (Dierks et al., 2021). Functionally, this reversible m6A methylation modification is regulated by 3 enzymes with different functions, namely “writer”, “reader”, and “eraser” (Uddin et al., 2021). Among them, m6A can be installed by the methyltransferase complex, namely, writers, which include METTL3, METTL14, WTAP, RBM15/RBM15B, HAKAI, ZC3H13, and VIRMA/KIAA1429 (Huang et al., 2020). M6A eraser is able to remove methylation from m6A-modified RNA, mainly including FTO, ALKHB5, and ALKHB3 (Zhou et al., 2020). M6A reader is a selective RNA-binding protein that is responsible for catalyzing for recognizing m6A to activate downstream pathways, including YTH domain family 1-3 (YTHDF1, YTHDF1-2, YTHDF1), eIF3, IGF2BP1-3, hnRNPC, and hnRNPA2B1 (Dai et al., 2021) (Figure 1).
[image: Figure 1]FIGURE 1 | Overview of the classification and molecular mechanisms of m6A methylation. m6A RNA methylation is regulated by 3 different key enzymes, corresponding writers, erasers, and readers, which perform the functions of adding, deleting, or recognizing m6A, respectively. The consequences of m6A methylation lead to multiple processes in RNA metabolism and expression, including RNA splicing, miRNA processing, nuclear export, translation, stability, and RNA decay.
The enzymes involved in m6A modifications have been implicated in the regulation of gene expression and tumor evolution, including carcinogenesis, metastasis, and progression, especially in BC. For example, YTHDF1 overexpression is a not desirable signature for BC patients and is linked to lower immune infiltrate and poor clinical outcomes, while YTHDF1 inhibition promotes the proliferation, migration, and invasion in BC cell lines (Li et al., 2022). The results of sequencing data mining showed that m6A and its target genes have corresponding changes at the gene and protein levels in tumors, endowing the potential to indicate the prognosis of BC. In a bioinformatics analysis, high expression of IGF2BP1, a key m6A regulator, was often associated with shorter overall survival (OS) in BC patients. This suggests that IGF2BP1 is an independent prognostic factor in BC (Zhong et al., 2021). Besides, Chen et al. confirmed that METTL3 methylation is involved in KRT7-mediated m6A-induced BC lung metastasis (Chen et al., 2021). Furthermore, the expression profile of m6A regulators in BC is also prominently related to tumor malignancy, tumor immune score, anti-tumor immune response, and therapeutic effect (He et al., 2021). Gong et al. reported that METTL14 and ZC3H13 were positively correlated with the abundance of CD8+ T cells, neutrophils, macrophages, and dendritic cells (DCs) in BC.
Therefore, the systematic elucidation of the exact molecular mechanisms of m6A epigenetic regulation in BC progression is highly warranted. Here, we have reviewed and highlighted the roles of different types of m6A-related enzymes reported in BC proliferation, invasion, and metastasis, as well as immune regulation. Continued focus on the molecular mechanisms associated with m6A will benefit in finding effective potential targets and effective stratified management of BC.
2 THE ROLE OF N6-METHYLADENOSINE MODIFICATION IN BREAST CANCER PROGRESSION
2.1 N6-methyladenosine writer in breast cancer progression
2.1.1 METTL3
At present, METTL3 is the most studied methylation-modified protein that plays a broad regulatory role in BC progression. METTL3 mainly participates in the biogenesis, decay, and translation control of mRNA through m6A modification (Lin et al., 2016). Both METTL3 and METTL14 have methyltransferase activity, and the methyltransferase complex formed by the two performs catalytic function during the m6A process (Yankova et al., 2021).
In TNBC, METTL3 is an important collaborator in regulating metastasis, and low expression of METTL3 is implicated in the poor prognosis of triple-negative breast cancer (TNBC) (Shi et al., 2020). As Shi et al. confirmed, this metastasis-suppressing function of METTL3 was achieved by suppressing the expression of COL3A1 and its m6A function (Shi et al., 2020). METTL3 could accelerate the protein levels of SOX2, CD133, and CD44 to maintain or promote BC cell stemness, which was triggered by the m6A modification of SOX2 mRNA by METTL3, ultimately leading to the alteration in enhanced BC invasion and migration capabilities (Xie et al., 2021). In BC lung metastasis cell lines, m6A and methyltransferase METTL3 expression was enhanced, while the expression level of demethylase FTO was reduced (Chen et al., 2021). M6A was capable of regulating lung metastasis in BC cells by regulating m6A/KRT7/KRT7-AS. The study by Wang et al. revealed a similar conclusion that METTL3 was a tumor promoter and its knockdown could inhibit tumor progression by reducing methylation levels (Wang H. et al., 2020). This mechanism of action was achieved through the Bcl-2 pathway targeted by METTL3. In addition, hepatitis B X-interacting protein (HBXIP) was identified to promote METTL3 expression by repressing miRNA let-7g, while METTL3 was simultaneously able to induce HBXIP expression (Cai et al., 2018). This mechanism caused a positive correlation between the expression of METTL3 and HBXIP in BC tissues and a positive feedback regulation phenomenon.
In the process of BC cell behavior, ncRNAs represented by miRNAs, lncRNAs, and circRNAs have been identified as very important direct regulators of METTL3. Therefore, interactions mediated by METTL3 and ncRNAs regulate the expression levels of post-transcriptionally regulated genes that determine tumor fate. METTL3 was capable of influencing the malignant behavior of BC EMT. Specifically, inhibition of METTL3 diminished the m6A modification of MALAT1, subsequently downregulated the MALAT1 expression to suppress EMT in BC by sponging miR-26b to reduce the expression of HMGA2 (Zhao et al., 2021). Fan et al. demonstrated that LINC00675 was a tumor protective factor, and its low expression was associated with higher tumor grade, lymphovascular invasion, and shorter survival (Fan and Wang, 2021). Furthermore, in vitro studies indicated that LINC00675 inhibited BC progression by suppressing miR-513b-5p in a METTL3-related m6A-dependent manner. From clinical, cellular, and tumor-bearing mouse levels, Xu et al. demonstrated that zinc finger protein 217 (ZNF217) silencing or miR-135 elevation inhibited BC cell migration, invasion, and EMT initiation (Xu et al., 2022). This was mediated by a mechanism that, ZNF217 could upregulate NANOG by reducing m6A levels through METTL3, thereby forming a miR-135/ZNF217/METTL3/NANOG axis.
LINC00958 was an overexpressed lncRNA that promoted the malignant progression of BC tumors (Rong et al., 2021). And, LINC00958 bound to miR-378a-3p to regulate YY1 expression, on the other hand, METTL3-mediated m6A modification promoted LINC00958 expression upregulation. In TNBC cell lines, the overexpressed METTL3 was an accelerator to suppress the proliferation and invasion (Ruan et al., 2021). Further validation showed that circMETTL3 served as a sponge for miR-34c-3p and exerted tumor-promoting functions by upregulating the expression of METTL3. METTL3-derived circRNAs contributed to the proliferation and invasion of BC cells, through the competitive endogenous RNA (ceRNA) effect of miR-31–5p with upregulated CDK1 (Li et al., 2021). This function was also affected by the m6A modification mechanism of circMETTL3, which included METTL3.
2.1.2 METTL14
METTL14 is an important RNA methyltransferase that serves an essential and significant role in the growth of tumors by regulating RNA expression. METTL14 has been demonstrated to be a core component of the m6A methyltransferase complex and is implicated in the dynamic and reversible process of m6A modification (Zhu X. et al., 2021).
LINC00942 (LNC942) might function as an oncogene that promotes BC cell proliferation, and colony formation and inhibits apoptosis (Sun et al., 2020). In BC cells, LINC00942 increased the METTL14-mediated m6A methylation and its associated mRNA stability, as well as the CXCR4 and CYP1B1 expression of CXCR4 and CYP1B1, revealing a novel LNC942-METTL14-CXCR4/CYP1B1 regulatory axis. Zhao et al. demonstrated that silencing of lncRNA UCA1 suppressed DNA methylation of RNA methyltransferase METTL14 (Zhao et al., 2022). This event promoted m6A modification of miR-375, leading to reduced SOX12 expression and eventually restrained BC proliferation and invasion. METTL14 is also an m6A methyltransferase that is significantly elevated in BC tissues. When METTL14 was overexpressed or its activity was inhibited, the invasive ability of tumor cells becomes enhanced or weakened, accordingly (Yi et al., 2020). The abnormal expression of METTL14 reconstructed the miRNA expression profile of BC cells, and mainly regulated the cell adhesion and invasion ability by regulating the expression of Hsa-miR-146A-5p.
2.1.3 methyltransferase-like 5
Methyltransferase-like 5 (METTL5), can catalyze mA modification of 18S rRNA at adenosine 1832 (mA) in a critical position in the decoding center, possing the ability in regulating mRNA translation for impacting on cell growth (Sepich-Poore et al., 2022). In BC, METTL5 also exhibited a pattern of elevated expression and was required for the maintenance of BC cell lineage growth, reproduction, and S6K activation (Rong et al., 2020). The study by Rong et al. demonstrated that METTL5 was an 18S rRNA A1832-specific methyltransferase and was capable of regulating ribosome function via multiple models.
2.1.4 KIAA1429
KIAA1429, also known as VIRMA, is recognized as the largest m6A methyltransferase and is employed as a scaffold for the catalytic core component of the bridging m6A methyltransferase complex (Lan et al., 2019). KIAA1429 plays an instrumental function in m6A modification and has previously been found to be dysregulated in a variety of cancer types. KIAA1429 is considered to be involved in BC carcinogenesis and progression. Zhang et al. showed that KIAA1429 was a significant promoter of tumor invasion and metastasis in vitro and in vivo, and affected the course of BC in a non-m6A-regulated manner (Zhang et al., 2022). KIAA1429 failed to interfere with m6A levels of SMC1A mRNA, implying that m6A modifications did not affect the interplay between KIAA1429 and SMC1A mRNA. KIAA1429 directly bound to the 3′-UTR of SMC1A mRNA, leading to the stability enhancement of SMC1A mRNA. KIAA1429 showed an interesting expression pattern with high expression in tumor entities but low expression in nontumorous tissues (Qian et al., 2019). In terms of prognosis, the high expression of KIAA1429 was often associated with a lower OS. Mechanistically, KIAA1429 plays a carcinogenic role in BC progression by regulating CDK1 in an m6A-independent manner. The detailed mechanisms of m6A writer in regulating BC progression could be seen in Table 1.
TABLE 1 | The mechanisms of m6A writer in regulating BC progression.
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2.2.1 Fat mass and obesity-associated
The fat mass and obesity-associated (FTO) gene is a well-known prominent factor in predicting obesity and is the first m6A eraser to be discovered in eukaryotic cells. FTO is responsible for controlling fatty acid transport, adipogenesis, fat metabolism, and obesity susceptibility. Single nucleotide polymorphisms (SNPs) of the FTO gene might be associated with various functions in different BC subtypes (Montazeri et al., 2022). It has been demonstrated that FTO expression is deregulated in a variety of tumors, including acute myeloid leukemia (AML), gastric cancer (GC), cervical squamous cell carcinoma (CSCC), ovarian cancer (OC), and BC (Deng et al., 2018).
As a key m6A demethylase, FTO is usually and aberrantly expressed up-regulated in BC tissues. High expression of FTO implies poor BC patient prognosis. Niu et al. determined that FTO remarkably contributed to BC cell proliferation and metastasis via the downregulation of tumor suppressor BNIP3, which involved FTO-mediated m6A demethylation in the 3′UTR of BNIP3 mRNA. Xu et al. demonstrated that in HER2-positive BC, the high FTO expression was linked to tumor progression, lymph node metastasis, TNM staging, and poor prognosis (Xu et al., 2020). In vitro experiments have similarly shown that FTO is a tumor-promoting factor that activates miR-181b-3p/ARL5B signaling leading to tumor migration.
2.2.2 AlkB homolog 5
AlkB homolog 5 (ALKBH5) is another key m6A demethylase for gene transcription, translation, and metabolism, and is regarded as an effective biomarker for various diseases, especially cancers (Zhang et al., 2017). ALKBH3 preferentially acts on m6A in tRNA sites.
For instance, Wang et al. have previously reported that ALKBH5 could specifically regulate the function of AML leukemia stem cells without affecting normal hematopoietic stem cells (HSCs) (Wang J. et al., 2020). This highlighted the crucial role of ALKBH5 in maintaining cancer stem cell (CSC) renewal and cancer occurrence and development through the KDM4C-ALKBH5-AXL Signaling Axis. Hypoxia induces a series of stress changes to support the stable viability of cells, including changes in cytokine secretion profiles, and post-transcriptional and translational regulation. Reprogramming of the mA epitranscriptome is vital for the formation of the transcriptome and proteome in the setting of hypoxia (Wang et al., 2021). Similarly, Zhang et al. showed that hypoxia-induced an enhancement of NANOG mRNA and protein expression and breast CSC phenotype in a HIF- and ALKBH5-dependent manner, and that ALKBH5 deficiency was a debilitating factor for the hypoxia-induced BC CSC enrichment (Zhang et al., 2016).
2.3 N6-methyladenosine Reader in breast cancer progression
2.3.1 YTHDF1
YTHDF1-3 are the three major m6A binding proteins and the most widely studied and versatile m6A readers (Chen et al., 2019). YTHDF1-3, containing special YTH domains, possess the capabilities of targeting and recognizing m6A-modified RNAs and mediating their degradation. YTHDF1 is a typical and highly expressed m6A reader protein in BC tissues and cell lines, and its high expression status is thought to be indicative of tumor size, metastasis, poor prognosis, and chemotherapy resistance (Anita et al., 2020). YTHDF1 is involved in almost the whole process of tumor biological behavior, and plays an important role in regulating transcription, translation, protein synthesis, angiogenesis, and EMT. Intriguingly, YTHDF1 as a target of tumor immune regulation has also attracted much attention.
Chen et al. showed that YTHDF1 promoted YTHDF1/FOXM1 to enhance FOXM1 expression, which in turn intensified the proliferation, invasion, and EMT phenotype of BC cells (Chen et al., 2022). Another 2022 similar study showed that a series of cascade reactions triggered by YTHDF1 were important molecular events in driving BC. Specifically, HIF1α expression could be induced and miR-16-5p levels were suppressed in a hypoxic microenvironment, resulting in upregulated YTHDF1 expression (Yao et al., 2022). Also, inhibition of YTHDF1 was able to promote the down-regulation of the glycolytic gene PKM2 to reduce BC glycolytic activity and lead to tumorigenicity and metastasis inhibition. These studies suggest that YTHDF1 can be used in a variety of regulatory pathways to modulate BC progression, and that depletion or targeted inhibition of YTHDF1 is a potentially efficient BC therapeutic strategy.
2.3.2 YTHDF2
YTHDF2 is an N-methyladenosine-binding protein and can modulate mRNA stability, thus impacting central nervous system responses, embryonic development, and tumor evolution. Tumor biology studies have shown that YTHDF2 can modulate m6A modification to regulate downstream signaling molecules to regulate tumor cell proliferation, invasion, and migration (Shen et al., 2021). For instance, SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity to m6A-modified mRNA (Hou et al., 2021). Einstein et al. uncovered a mechanism associated with RNA-binding proteins (RBPs), that the suppression of YTHDF2 initiated proteotoxic cell death pattern in MYC-driven TNBC (Einstein et al., 2021). This work not only demonstrated that YTHDF2, aberrantly expressed RBP and its mode of interaction with RNA were essential for BC cell growth, but that targeting YTHDF2 and specific RBP possessed outstanding BC therapeutic potential. The important mechanism of post-translational protein modification of YTHDF2, fully confirmed that YTHDF2 has a delicate manipulation between the regulation of protein post-translational modification and RNA chemical modification.
2.3.3 YTHDF3
YTHDF3, in combination with YTHDF1 and YTHDF2, has a crucial effect in enhancing the synthesis of m6A-modified mRNAs in the cytoplasm (Shi et al., 2017). In TNBC subtypes, YTHDF3 expression was associated with poorer disease-free survival (DFS) and overall survival (OS) in patients (Lin et al., 2022). YTHDF3 could intensify the ZEB1 mRNA stability in an m6A-dependent manner, consequently leading to BC cell growth and EMT (Lin et al., 2022).
Intriguingly, the high expression level of YTHDF3 was also closely related to the prognosis of patients with breast cancer brain metastases (BCBMs). By enhancing the translation of m6A-enriched transcripts of ST6GALNAC5, GJA1, and EGFR, YTHDF3 promoted the communication between BC cells, endothelial cells, astrocytes, and tumor metastasis phenotypes represented by angiogenesis (Chang et al., 2020). Therefore, YTHDF3 could affect cascade steps in the BCBM, and then domesticate the evolution of BC cell changes in TME toward inducing brain metastatic polarity.
Totally, different binding proteins selectively recognize m6A-modified RNAs for achieving gene expression regulation. YTHDF1 is conducive to the enhanced mRNA translation, YTHDF2 is responsible for mRNA degradation, and YTHDF3 precipitates in the translation and degradation via the reciprocity actions with YTHDF1 and YTHDF2. This means that YTHDF3 can both collaborate with YTHDF1 to catalyze the translation of methylated RNAs, or directly engage with YTHDF2 to accelerate the decay of mRNAs. Thus, YTHDF1, YTHDF2, and YTHDF3 exert irreplaceable functions to foster BC progression and potentially even become robust therapeutic targets for prognostic stratification and effective treatment of BC.
2.3.4 IGF2BP1
As a post-transcriptional fine regulator, IGF2BP1 plays a role in remodeling tumor growth, chemotherapy resistance, and macroscopically, OS and recurrence of tumor patients. GF2BP1 potentiates tumor malignant progression in a variety of solid tumors and exhibits a poor prognostic indicative value (Glaß et al., 2021). The principal action of IGF2BP1 in oncogenic cells is to stabilize mRNA encoding oncogenic factors. In pan-cancer studies, the high expression and tumor-promoting characteristics of IGF2BP1 in specific tumors make it a promising therapeutic target, but it is also inhibitory in some tumors (Huang et al., 2018).
Zhu et al. identified a hypoxia-induced lncRNA KB-1980E6.3, that exhibited abnormal BC tissue upregulation and was associated with a poor prognosis (Zhu P. et al., 2021). LncRNA KB-1980E6.3 increased the stability of c-Myc mRNAs by binding to m6A reader IGF2BP1 and consequently maintained the stemness of BCSCs. Interrupting this mechanism was of the potential to provide a therapeutic strategy for hypoxic tumors. MIR210HG acts as an oncogenic lncRNA highly expressed in BC tissue, and could promote BC metastasis, by inhibiting its encoded miR-210 (Shi et al., 2022). Moreover, MYCN directly activated IGF2BP1, and both IGF2BP1 and ELAVL1 strengthened the MIR210HG stability, resulting in a MYCN/IGF2BP1/MIR210HG regulatory axis.
3 N6-METHYLADENOSINE MODIFICATION IN IMMUNE REGULATION
Immune cells, secreted factors, and the tumor immune microenvironment in which they are intertwined are indispensable key links in the anti-tumor response (Liu et al., 2021). Considerable evidence suggests that m6A is involved in processes that regulate innate and adaptive immune cells, which in turn have been assigned roles in anti-inflammatory, anti-infective, and anti-tumor immunity (Ma et al., 2021). There is also much literature based on the existing reported m6A regulators, mining the correlation and prognostic scoring model of m6A regulators and immune infiltrating cells, for providing a novel evaluation tool for the diagnosis, prognosis, and immune status of BC (Yuan et al., 2022).
The immunomodulatory role of METTL3 in BC has been frequently reported. Yin et al. found that knockdown of METTL3 in bone marrow cells triggered malignant tumor proliferation and metastasis and exhibited an elevated abundance of M1/M2-like tumor-associated macrophages (TAMs) and Treg infiltration (Yin et al., 2021). Mechanistic studies suggested that deletion of METTL3 disrupted YTHDF1-mediated SPRED2 translation, thereby enhancing NF-kB and STAT3 activation via the ERK pathway, leading to tumor progression. Meanwhile, as the therapeutic benefit of programmed cell death receptor 1 (PD-1) inhibitor was weakened in Mettl3−/− mice, METTL3 could be a potential target for tumor immunotherapy. In addition, it has been reported that the expression of programmed cell death 1 ligand (PD-L1) was positively linked to the expression of METTL3 and IGF2BP3 in BC tissues (Wan et al., 2022). Since METTL3-mediated m6A modification could enhance PD-L1 mRNA stability through the METTL3-IGF2BP3 axis, tumor immune cell infiltrations and CD8+ T cell functions were enhanced forcefully when METTL3 or IGF2BP3 is inhibited. Ou et al. identified a specific C5aR1+ neutrophil subpopulation that potentiated BC cell glycolysis through ERK1/2-WTAP-ENO1 signaling, indicating that C5aR1+ neutrophils and the associated WTAP-ENO1 axis contribute to potential BC therapeutic target (Yin et al., 2021).
Another study reported that the co-expression network of YTHDF1 is critical in shaping immune responses, including antigen processing and presentation (Hu et al., 2021). YTHDF1 may act as a hopeful pan-cancer immune biomarker, as well as a novel promising marker for tumor immunotherapy. These results provide strong evidence that m6A modification is involved in the complex immune regulation of BC. M6A modifications can reshape antitumor immune responses by affecting immune cell state and function, and post-transcriptional regulation of specific cytokines and proteins.
4 DISCUSSION
Based on these current developments, it is evident that m6A plays a dual role in shaping tumor progression. Specifically, m6A regulates the expression of its target genes to influence tumor progression, and whether the target genes act as tumor promoters or tumor suppressors determines the tumor-promoting or tumor-suppressing function of m6A. The presence of m6A modifications contributes to the promotion/suppression of various cellular functions, such as precursor mRNA splicing, nuclear translocation, stability, translation, and microRNA biogenesis, as the modification represented by tumor cells and immune cells, thus remodeling the BC progression.
In terms of BC diagnosis, m6A enzymes have also demonstrated good predictive efficacy. This is due to the fact that m6A enzymes show a characteristic pattern of differential expression in different BC subtypes and BC staging classifications. There have been more than 20 risk models based on these screened m6A regulators in BC research. For example, the overexpression of YTHDF1, YTHDF3, and KIAA1429 predicted a poor prognosis in terms of overall survival (OS), and the upregulation of YTHDF3 was an independent prognostic factor for OS in BR patients (Liu et al., 2019). There is even a strong performance of m6A enzymes in the treatment efficacy and recurrent metastasis of BC.
Aberrant expression of m6A regulators, are potential indicators for BC prediction, individually or synergistically. Other reported factor-based (such as ferroptosis, autophagy, lncRNA, m6A regulator-mediated immune Genes) models are also of huge value that have been confirmed in multiple studies. He et al. constructed an m6A regulator pattern, which could be effective for predicting malignancy, outcomes, and antitumor immune response (He et al., 2021). Moreover, the established models based on both m6A and other factors are attracting more and more attention. For instance, we previously constructed a risk signature based on 6 screened m6A-related lncRNAs, including Z68871.1, AL122010.1, OTUD6B-AS1, AC090948.3, AL138724.1, EGOT (Lv et al., 2021). This model could identify the prognosis and immune state in BC. Zhang et al. also adopt 21 m6A-related lncRNAs to establish a predictive model for predicting prognostic situations and BC subtypes with different immunogenicity (Zhang et al., 2021). Most of these models tend to build more accurate and extensive prediction models based on the inclusion of M6A-related indicators, thus providing rich information on tumor malignancy, tumor metastasis and recurrence, immune microenvironment, efficacy monitoring, and drug resistance evaluation.
Moreover, m6A-related models may have superior diagnostic value by associating with other models, including death (necroptosis, autophagy, and ferroptosis) genes, immune genes, glycosylation genes, and so on. However, since most of these are studies based on database excavation, they are retrospective studies. There are still relatively few prospective studies that can actually be performed in a large sample of realistic cohorts, and need to be further corroborated in actual clinical practice to prove their credibility. Overall, as a single regulator included in the model can offer many disease information, more gene combination models potentially provide a more comprehensive for breast cancer diagnosis and therapeutic outcomes. We must first admit that the reported single or the risk models based on these screened m6A regulators, is not the replacement for traditional and classical methods such as serology, pathology, and imaging. To be more precise, the traditional multi-method routine is the gold standard for diagnosis and prediction, while the risk models based on these screened m6A regulators are potential multifactorial predictors, which can be used as a useful supplement to clinical routine evaluation methods.
In terms of m6A-targeted BC tumor therapy, the following points still deserve in-depth consideration. First, m6A can regulate tumor progression through multiple mechanisms, which has been confirmed in BC. How m6A modification dysregulation is regulated by affecting tumor stem cells, immune environment, tumor cell fate, and other multiple ways is an important theoretical basis for strengthening m6A as tumor therapy. However, the role of m6A is dual in tumors, and a comprehensive assessment of how to regulate m6A-related enzymes by inhibition or activation requires specific BC subtypes, tumor microenvironment, and other underlying diseases. Moreover, ncRNA is an important player involved in tumor regulation, and how m6A RNA modification affects ncRNA function deserves further exploration.
Secondly, the primary prerequisite for targeting m6A-modified enzymes is the resolution of the protein crystal complexes of these enzymes in order to mine and design docked high-affinity small molecules and antibodies by conformational relationships (Oerum et al., 2021). These inhibitors and antibodies, in turn, will be considered to provide a good pre-requisite for clinical targeting only after effective validation in cellular and animal experiments (You et al., 2022). Finally, numerous studies have explained the critical role of m6A recognition proteins in BC, but a considerable number of m6A regulators have not been fully validated, including RBM15/RBM15B, HAKAI, ZC3H13, ALKBH3, eIF3, hnRNPC, and hnRNPA2B1. Multi-omics information mining based on single-cell sequencing, proteomics, RNA-seq, and m6A methylation sequencing will provide comprehensive information mining for BC tumor sites and cellular models. This unreported regulator in BC is a research gap and therefore has considerable research value, including the relationship between expression abundance and prognosis, diagnostic and therapeutic potential. These can provide a more profound complement to the discovery of new molecules or previous regulatory networks. Thus, continued research is still needed to fully elucidate the role of m6A regulators in mRNA and ncRNA biology.
Finally, aberrant regulation of m6A regulatory proteins is involved in BC drug resistance and tumor immune response. Targeted m6A-based therapies will contribute to the oncological treatment of BC. However, it is worth mentioning that because the regulatory network of m6A modifications is complex and involves multiple signaling molecules and pathways, inhibition of a single molecule may lead to unintended responses. Therefore, for targeted therapies of m6A, or combination strategies with other tumor-targeting drugs, the optimal combination will lead to the best efficacy.
5 CONCLUSION
Overall, m6A is an important mechanism for epigenetic modifications that regulate BC progression. Abnormal m6A modifications trigger the expression, activation, or inhibition of key signaling molecules in critical signaling pathways and the regulatory factors acting on them in BC. M6A-related proteins and their targets show differentially expressed patterns in BC tissue and blood. These m6A-related genes can not only be used as markers for accurate diagnosis, prediction of prognosis, and risk model construction, but also as effective targets for BC treatment.
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Background: CircPUM1 acts as an oncogene in a variety of tumors, and there is no related research on oral squamous cell carcinoma. This study aimed to evaluate the clinical significance of CircPUM1 in oral squamous cell carcinoma radiotherapy.
Methods: Radio-resistant cell lines were established by increasing the X-ray dose. Analysis of CircPUM1 expression in oral squamous cell carcinoma was carried out using bioinformatics tools. Cell proliferation was analyzed with CCK-8 and colony formation. Protein and gene expressions were detected by Western blotting and qPCR. RNA interference inhibits endogenous gene expression. A luciferase reporter system and immunoprecipitation were used to validate the target of CircPUM1.
Result: CircPUM1 was highly expressed in OSCC. The higher the expression level of CircPUM1 in OSCC, the worse the clinical features and prognosis. Knockdown of CircPUM1 enhances the sensitivity of OSCC cells to X-rays, and expression of exogenous CircPUM1 makes OSCC cells acquire radiation resistance. The absence of CircPUM1 blocked the cells in the G0/G1 phase and triggered apoptosis. The prediction of mir-580-binding site, luciferase reporter system, and immunoprecipitation confirmed that mir-580 is the binding site of CircPUM1. In addition, STAT3 was predicted and confirmed as the binding site of mir-580. Overexpression of STAT3 partially attenuated the radiosensitivity of OSCC cells to knockdown of CircPUM1.
Conclusion: CircPUM1 has the oncogene expression profile in oral squamous cell carcinoma; patients with high expression of CircPUM1 have less benefit from radiotherapy and need more frequent follow-up. In addition, CircPUM1 may be a potential therapeutic target for oral squamous cell carcinoma. The CircPUM1/mir-580/STAT3 axis has a certain effect on the radiosensitivity of OSCC. These results suggest that patients with low expression of CircPUM1 may gain more benefits.
Keywords: oral squamous cell carcinoma, radiosensitivity, CircPUM1, mir-580, STAT3
INTRODUCTION
Oral squamous cell carcinoma is one of the most common malignant tumors in oral and maxillofacial regions (Müller, 2017; Kennedy, 2018). Oral squamous cell carcinoma has poor clinical prognosis and low survival rate (Al-Sarraf, 2007). Currently, the combined treatment of surgery plus radiotherapy and chemotherapy can significantly improve the overall survival rate of patients with oral squamous cell carcinoma (Aslam et al., 2012). Radiotherapy, one of the curative treatments for oral squamous cell carcinoma, can be used with surgery, chemotherapy, or alone (Pentenero et al., 2005). Radiotherapy, an important part of comprehensive sequential therapy for advanced oral squamous cell carcinoma, can improve the local control rate (Berdugo et al., 2019). However, improving the effect of radiotherapy for oral squamous cell carcinoma is the main problem that we are facing currently.
Studies have shown that circular RNA (circRNA) is a kind of non-coding RNA, which has high stability due to its closed circular molecule (Zheng et al., 2019). Studies have shown that circRNA can inhibit its expression by acting as a sponge molecule of microRNA (miRNA), thus regulating the biological processes of tumor cell proliferation, apoptosis, migration, and so on (Lee et al., 2021). However, there are relatively few studies on circRNAs in oral squamous cell carcinoma. Circular RNA pum1 (circular RNA pum1) is highly expressed in lung cancer, ovarian cancer, colon cancer, and other tumors and can promote the occurrence and development of tumors (Jeck et al., 2013; Salzman et al., 2013; Rybak-Wolf et al., 2015). CircPUM1 (circ_0000043) is highly expressed in endometrial adenocarcinoma (Deng et al., 2020), ovarian adenocarcinoma (Guan et al., 2019), and lung adenocarcinoma (Chen et al., 2019) and plays a role as an oncogene, but it has not been reported in oral squamous cell carcinoma. Circinteractome predicted that CircPUM1 targeted mir-580 (the highest predicted score was 99). starBase predicted that mir-580 targeted Stat3. STAT3 has been reported to be involved in radiosensitivity of oral squamous cell carcinoma (Yu et al., 2020).
However, it is not known whether CircPUM1 affects the malignant biological behavior of oral squamous cells by targeting the expression of mir-580/Stat3. Therefore, this study mainly explored the expression of CircPUM1 and mir-580/STAT3 in oral squamous cell carcinoma and analyzed whether CircPUM1 regulates radiosensitivity through mir-580/STAT3. Therefore, we believe that our findings will provide a theoretical basis for improving the radiosensitivity of OSCC.
MATERIALS AND METHODS
Patients and Sample
A total of 50 OSCC and matched normal tissues were collected. All samples were independently confirmed by two pathologists. Immediately after operation, the specimens were frozen in liquid nitrogen and then stored in the refrigerator at − 80 C for future use. Patients who received any neoadjuvant therapy and had a history of cancer were excluded from the study. Prior to the start of the study, informed consent was obtained from the participants, and the study was conducted in strict accordance with the Helsinki declaration.
Cell Culture
Human oral squamous cell carcinoma cell lines Cal-27 and hsc3 were cultured in DMEM medium containing 10% fetal bovine serum, 100 units/ml penicillin–streptomycin, and 100% glucose at 37°C and 5% CO2.
Irradiation of Cells and Development of Radio-Resistant Cell Lines
The cells were irradiated using the Faxitron cabinet X-ray system 43855d (Faxitron X-ray Company, IL, USA). Mcf-7r and mda-mb-231r were established on their parent cell lines. In short, the initial dose was 2 Gy, then the dose increased by 0.5 per week, and the total radiation dose reached 57 Gy in 12 weeks. After that, 5 Gy per week was used for further maintenance.
Cell Transfection
The shRNA was synthesized and subcloned into a plko.1-trc-puro plasmid. The sequence of shRNA is shown in Table 1. We used the Lipofectamine 2000 system to transfect the plasmid. In short, 8 × 105 cells were seeded in a six-well dish for 24 h, and then Liposome 2000 was mixed with 5 μg plasmid. Using Opti-MEM, the mixture was successively incubated at room temperature for 30 min, then the mixture was added to each well, supplemented with Opti-MEM to 1 ml, and incubated for 6 h. After 6 h, DMEM containing 20% FBS was added to each well and 2 ml medium and then cultured for 48 h for mRNA extraction and protein collection. According to the results predicted by Circinteractome, in order to overexpress CircPUM1, the whole coding sequence 5 ‘GACUUUUUGACUACAAUUCUCAA3′ of CircPUM1 was subcloned into the pZsG vector.
TABLE 1 | Patient information and clinicopathological characteristics of 58 patients with OSCC *P < 0.05 or **P < 0.01 was considered significant (chi‐square test between 2 groups).
[image: Table 1]RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR) Analysis
According to the manufacturer’s protocol, TRIzol reagent (Invitrogen, Carlsbad, CA) was used to extract total RNA. The first-strand cDNA was synthesized by a reverse transcription kit (Takara, Dalian, China). GAPDH is used as an internal control. PCR primers for CircPUM1 and 18S RNA were found in starBase prediction. The relative expression of CircPUM1 was expressed with the 2-ΔΔCT method. All samples are in triplicate.
Cell Proliferation Assay
Cell proliferation test: Cal-27 and HSC3 cells were seeded onto a 96-well plate (Müller, 2017) and cultured for 24, 48, and 72 h. The incubation time was 37 h. μ CCK8 was injected into each well and incubated at 37°C. The absorbance at 480 nm was measured using the Rayto-6000 system (Rayto, China) after 2 h of storage of C and normalized to DMEM medium as control.
Flow Cytometry Analysis
In cell cycle analysis, the cells were harvested after 6 h of starvation, fixed overnight with cold ethanol, and then incubated in the dark with propidium iodide and ribonuclease (BD, USA) for 15 min. In apoptosis analysis, after 6 h of starvation, the cells were washed twice with cold PBS, stained with FITC-binding Annexin V for 20 min, and stained with propidium iodide for 15 min. The stained cells were detected by flow cytometry (FACSAria III, BD, USA) and analyzed by FlowJo vx 0.7 software.
Western Blot Analysis
Protein was extracted with RIPA lysis buffer containing protease inhibitor (Roche). Quantitative analysis of protein was conducted using BCA ™ protein analysis kit (Pierce, Appleton, Wisconsin, USA). After that, protein (30 μg/sample) was transferred to a poly (vinylidene fluoride two fluoroethylene) membrane by 10% alkyl sulfate-polyacrylamide gel electrophoresis.
The antibody was prepared in 5% blocking buffer with a dilution of 1:1,000, incubated with the membrane at 4 °C overnight, washed twice with TBST, then cultured with a secondary antibody (1:2000), and labeled with horseradish peroxidase for 2 h at room temperature. Immuno Western chemiluminescence HRP substrate (Millipore) was used to cover the film surface. Finally, the signal was captured, and the concentration of the band was quantified by Image Lab ™ software (Bio-Rad Laboratories, Hercules, CA, USA).
Luciferase Report Analysis
Methods: circPUM1-WT and circPUM1-Mut were subcloned into pGL3 vectors (Promega, Madison, WI) to construct plasmids. The plasmids were further transfected with designated mimics or siRNA for 48 h. The PCR products were cloned into the polyclonal sites of the recombinant pGL3 expression vector. Finally, the luciferase activity was detected by Dual Luciferase Report Analysis kit (Promega, Madison, Wisconsin, USA).
Statistical Analysis
All statistical analyses were performed using GraphPad Prism version 8.0 (GraphPad Software, La Jolla, California). The significant differences between groups were estimated using Student’s t-test. A p-value less than 0.05 was considered statistically significant. The results are reported as average ± standard deviation. All experiments were carried out in triplicate.
RESULTS
CircPUM1 Was Highly Expressed in OSCC
First, we analyzed the expression of CircPUM1 in patients. QRT-PCR was used to detect the expression level of CircPUM1 in 58 pairs of OSCC cancer tissues and corresponding adjacent tissues. It was found that the expression level of CircPUM1 in OSCC was significantly increased (p < 0.001, Figure 1A). At the same time, 58 OSCC patients were divided into two groups: low-expression group (n = 29) and high-expression group (n = 29) according to the cut-off value of median expression of CircPUM1 in Figure 1A. Chi square test was used to analyze the relationship between the expression of circpum1 and the clinicopathological data of OSCC, p < 0.05, but not related to the patient's age, gender and tumor differentiation. The Kaplan–Meier survival curve was used to evaluate the overall survival rate of the two groups. It was found that the prognosis of high-expression group of CircPUM1 was poor, and the difference was statistically significant (p = 0.0089, Figure 1B). Subsequently, the expression levels of CircPUM1 in radiosensitive (n = 20) and radio-resistant (n = 38) were detected by QRT-PCR. The expression of CircPUM1 in radio-resistant OSCC was significantly increased (p < 0.001, Figure 1C). As mentioned previously, we successfully established the expression level of CircPUM1 in two radiation-resistant OSCC cell lines (Cal-27, FaDu, OECM1, SAS, and HSC3) and the human oral mucous fibroblasts (HMFs). The expression level of CircPUM1 in OSCC cell lines was higher than that in normal tissues (p < 0.001, Figure 1D).
[image: Figure 1]FIGURE 1 | Expression of CircPUM1 in OSCC carcinoma and adjacent tissues (A); overall survival rate of low-expression group and high-expression group of CircPUM1 (B); expression of CircPUM1 in OSCC tissues with different radiation doses (C); expression of CircPUM1 in different OSCC cells (D). p < 0.01 (∗∗) and p < 0.001 (∗∗∗).
Knockdown of CircPUM1 Enhances Radiosensitivity of OSCC Cells
We transfected the CircPUM1 siRNA and expression plasmid into Cal-27 and hsc3 cells (p < 0.005, Figures 2A,B). The cells were exposed to different doses of ionizing radiation (0 and 4 Gy), and the expression level of CircPUM1 increased after 4 Gy; the difference was statistically significant. QRT-PCR was used to detect the expression level of CircPUM1 in Cal-27 and hsc3 cells of different groups (Si-nc, si-CircPUM1 # 1, si-CircPUM1 # 2, and si-CircPUM1 # 3). Colony formation assay was used to detect the colony survival fraction of Cal-27 and hsc3 cells in different groups (Si-nc and si-CircPUM1 # 1) under different radiation doses (0, 2, 4, and 8 Gy). Compared with the Si NC group, the colony survival fraction of si-CircPUM1 # 1 cells gradually decreased with the gradual increase in radiation dose Gy (p < 0.005, Figure 2C). The results confirmed that radiosensitivity was a dose-dependent inhibitory effect. The loss of function of CircPUM1 induced more apoptosis when exposed to 4 Gy X-ray.
[image: Figure 2]FIGURE 2 | QRT-PCR was used to detect the expression of CircPUM1 in Cal-27 and hsc3 cells(A); expression of CircPUM1 in different groups of OSCC cells (B); colony survival fraction of Cal-27 and hsc3 cells in different groups under different radiation doses(C); optical absorption values of Cal-27 and hsc3 cells in different groups at 450 nm at different time periods were measured(D); apoptosis was observed in different groups of Cal-27 and hsc3 cells(E). p < 0.01 (∗∗) and p < 0.001 (∗∗∗).
CCK8 was used to detect the light absorption values of Cal-27 and hsc3 cells in different groups (Si-nc, si-CircPUM1#1, Si-nc + 4Gy, and si-CircPUM1#1 + 4Gy) at the wavelength of 450 nm at 0h, 24h, 48h, and 72 h. Compared with the Si NC group, the light absorption values of si-CircPUM1#1 and Si-nc + 4Gy groups were lower at the wavelength of 450nm; compared with the Si NC + 4Gy group, the optical absorption value of si-CircPUM1 # 1 + 4Gy at 450 nm wavelength decreased, and the difference was statistically significant (p < 0.01, Figure 2D). The apoptosis level of Cal-27 and hsc3 cells in different groups (Si NC, si-CircPUM1 # 1, Si NC + 4Gy, and si-CircPUM1 # 1 + 4Gy) was detected by flow cytometry. Compared with the Si NC group, the apoptosis level of si-CircPUM1 # 1 and Si-nc + 4Gy groups was high; compared with the Si NC + 4Gy group, the apoptosis level of si-CircPUM1 # 1 + 4Gy group was significantly high (p < 0.01, FIG.2E). The results showed that the low expression of CircPUM1 could promote the radiosensitivity and apoptosis of OSCC tumor cells.
CircPUM1 Targets mir-580 and Inhibits Its Expression in OSCC Cells
Next, we want to know how CircPUM1 plays its biological function in radiation-resistant cells. Through the analysis of the Circinteractome online database, we found that there was a mir-580-binding site in CircPUM1. Luciferase reporter gene experiments were carried out in Cal-27 and hsc3 cells, respectively. The results showed that overexpression of mir-580 could inhibit the luciferase activity of wild-type CircPUM1 vector in Cal-27 and hsc3 cells, compared with mir-nc. After mutating the predicted mir-580-binding site, the inhibitory effect disappeared (Figures 3A,B); compared with the NC probe, the mir-580 probe enriched more CircPUM1 in Cal-27 and hsc3 cells (Figure 3C). QRT-PCR was used to detect the expression level of mir-580 in Cal-27 and hsc3 cells in different groups (Si-nc, si-CircPUM1 # 1). Knockdown of CircPUM1 increased the level of mir-580 in cells, and the difference was statistically significant (p < 0.01, Figure 3D). The results showed that the activity of CircPUM1 was negatively correlated with the expression of mir-580. QRT-PCR was used to detect the expression of mir-580 in OSCC cell lines (Cal-27, FaDu, OECM1, SAS, and HSC3) and the human oral mucous fibroblasts (HMFs). The expression of mir-580 in OSCC cell lines was low, and the difference was statistically significant (p < 0.01, Figure 3E). QRT-PCR was used to detect the expression level of mir-580 in Cal-27 and hsc3 cells in different groups (0gy, 4Gy). After 4Gy radiation, the expression level of mir-580 decreased, and the difference was statistically significant (p < 0.001,Figure 3F).
[image: Figure 3]FIGURE 3 | Binding site of CircPUM1 and mir-580 (A); effect of mir-580 on the activity of CircPUM1 (B,C); relationship between knockdown of CircPUM1 and mir-580 expression (D); expression level of mir-580 in the OSCC cell line (E); expression of mir-580 in OSCC cells after 4 Gy radiation (F). p < 0.01 (∗∗) and p < 0.001 (∗∗∗).
STAT3 Is a Downstream Target Gene of miR-580
After that, we analyze the target of CircPUM1 through starBase. Among the targets found, STAT3 scored higher, which predicted that mir-580 and STAT3 had binding sites, as shown in Figure 4A. Luciferase reporter gene experiments were carried out in Cal-27 and hsc3 cells to verify the targeting relationship. Compared with mir-nc, overexpression of mir-580 could inhibit the activity of luciferase in cells, and the inhibition disappeared after mutating the predicted STAT3-binding site (p < 0.001, Figures 4B,C). Our samples showed that the mir-580 expression level was negatively correlated with STAT3 expression. WB detected the protein expression level of STAT3 after overexpression of mir-580 in Cal-27 and hsc3 cells. Compared with mir-nc, mir-580 overexpression downregulated the protein expression of STAT3, and the difference was statistically significant (p < 0.001, Figure 4D). WB was used to detect the protein expression level of STAT3 in Cal-27 and hsc3 cells of different groups (Si NC and si-CircPUM1 # 1). Knockdown of CircPUM1 downregulated the protein expression of STAT3, and the difference was statistically significant (p < 0.01, Figure 4E). WB method was used to detect the expression level of STAT3 in Cal-27 and hsc3 cells after different doses of ionizing radiation (0gy and 4Gy groups). The expression level of STAT3 increased after 4Gy radiation, and the difference was statistically significant ( p < 0.05,Figure 4F).
[image: Figure 4]FIGURE 4 | Binding site of mir-580 and STAT3 (A); luciferase reporter gene assay verified the targeting relationship between mir-580 and STAT3 (B,C); protein expression level of STAT3 after mir-580 overexpression (D); knockdown of CircPUM1 and STAT3 protein expression in the OSCC cell line (E); expression of STAT3 in OSCC cells after 4 Gy irradiation (F). p < 0.05 (∗), p < 0.01 (∗∗), and p < 0.001 (∗∗∗).
Overexpression of STAT3 Can Partially Reverse the Effect of Knockdown of CircPUM1 on Radiosensitivity of OSCC Cells
The target of CircPUM1 is analyzed continuously by starBase. The predicted binding sites of CircPUM1 and STAT3 are shown in Figure 5A, p < 0.001. In addition, studies have shown that upregulation of STAT3 can promote radiotherapy tolerance. Therefore, this study investigated whether STAT3 affects the stability of CircPUM1 protein by regulating the expression of STAT3 in OSCC cells. First, we found that STAT3 was elevated in OSCC tissues and radiation-resistant cells (p < 0.001, Figures 5B,C). As mentioned previously, CircPUM1 deficiency can make cells sensitive to radiation. Knockdown of si-CircPUM1 # 1 increased the level of apoptosis. After cotransfection with the STAT3 plasmid, the level of apoptosis was partially decreased (p < 0.001, Figure 5D). Therefore, high expression of STAT3 could partially inhibit the effect of knockdown of CircPUM1 on radiosensitivity of OSCC cells.
[image: Figure 5]FIGURE 5 | Overexpression of STAT3 protein in OSCC cells (A); grouping of Cal-27 and hsc3 cells at 4Gy: the optical absorption values of Si-nc, si-CircPUM1#1, and si-CircPUM1#1 + STAT3 at 0h, 24h, 48h, and 72 h (B,C) at 450 nm wavelength of different groups of cells under different time periods of radiation; knockdown of si-CircPUM1#1 and cotransfection of STAT3 plasmid induced apoptosis (D). p < 0.01 (∗∗) and p < 0.001 (∗∗∗).
DISCUSSION
Recent studies have shown that lncRNA plays a key regulatory role in the pathogenesis, progression, and phenotype development of oral squamous cell carcinoma (Xu et al., 2020). Accumulating data suggest that lncRNA plays a role in oral squamous cell carcinoma (Liu et al., 2017). As mentioned previously, CircPUM1 plays a role in the treatment of various cancers. In our review of published articles, CircPUM1 may be closely associated with the prognosis of colon cancer (Ju et al., 2019), ovarian cancer (Zhang et al., 2019), and gastric cancer (Li et al., 2019a). Scholars have expounded on the different mechanisms of CircPUM1 in different cancers, including regulating the mir-524-5p axis of colon cancer, circc3p1/mir-21, tumor-suppressor gene PTEN, and NF-κB and PI3K/Akt pathways (Zhao et al., 2016; Su et al., 2020). However, the role of CircPUM1 in oral squamous cell carcinoma is rare.
CircRNAs are a group of non-coding RNAs with stable closed-loop structures that prevent them from being broken down by enzymes (Li et al., 2019b). Accumulating data suggest that circRNAs are closely related to the progression of NSCLC (Yu et al., 2019). For example, inhibition of circRNA VANGL1 can inhibit bladder cancer progression (Yang et al., 2020). Circ_000984 promotes cell proliferation and metastasis in NSCLC by regulating the Wnt/β-catenin pathway (Li et al., 2019c). Some researchers found that (Pang et al., 2020) the expression of circ_0072309 was downregulated in NSCLC tissues and cells, and the overexpression of circ_0072309 significantly prevented the proliferation, migration, and invasion of cells, which indicated that circ_0072309 played a tumor-suppressor role in NSCLC.
The circular PUM1 RNA (circPUM1, has_circ_0000043) is derived from exon backsplicing of the PUM1 gene. Recent studies have shown that circPUM1 is highly expressed in endometrial cancer, lung adenocarcinoma, and ovarian cancer tissues (Chen et al., 2019; Guan et al., 2019; Zong et al., 2020). Furthermore, circPUM1 can inhibit tumor development through cavernous microRNAs. These studies suggest that circPUM1 may play an important role in the development of diseases such as tumors. Related studies have reported that circPUM1 can promote the proliferation, invasion, and migration of HCC in vitro, and studies have shown that circPUM1 can act as an oncogene of HCC (Zhang et al., 2021). In conclusion, circPUM1 may function as an oncogene in human cancers. In our data, we found that reduction of CircPUM1 induced apoptosis of OSCC cells and enhanced their radiosensitivity.
Aberrant expression of miR-580 in many tumors, such as glioma and breast cancer, has been investigated (Loberg et al., 2006). Also, studies have shown that the level of miR-580 in tumor tissue is significantly higher than that in adjacent normal tissue, which can promote the proliferation, invasion, and migration of HCC (Wang et al., 2021). Mir-580 was identified as a potential target of CircPUM1. Among the discovered targets, mir-580 and CircPUM1 had higher binding sites and predicted values. Furthermore, our data suggest that CircPUM1 can competitively adsorb mir-580 to enhance STAT3 expression in OSCC cells. After we blocked the function of STAT3, OSCC cells triggered the apoptotic pathway and restored their radiosensitivity. This phenotype can be obtained by exogenous mir-580 expression or STAT3 deletion.
Many studies have shown that constitutive STAT3 is activated in a variety of human tumors (Grandis et al., 2000). Evidence suggests that abnormal STAT3 signaling promotes the occurrence and development of human cancers by inhibiting apoptosis, inducing cell proliferation, angiogenesis, invasion, and metastasis (Melinda et al., 2000; Leong et al., 2003; Bollrath et al., 2009; Zhu et al., 2019; Chen et al., 2020), as well as inducing inflammation and immunosuppression (Leaman et al., 1996; Mohan et al., 2022; Tse et al., 2022). In OSCC studies, STAT3 is the most common signal transducer and activator of transcription. STAT3 plays a variety of biological effects in the degree of invasion, lymph node metastasis, and different clinical grades of oral squamous cell carcinoma. It is of great value for early diagnosis and can be used as an important biological indicator for judging prognosis.
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Background: Abnormal DNA methylation of gene promoters is an important feature in lung adenocarcinoma (LUAD). However, the prognostic value of DNA methylation remains to be further explored. Objectives. We sought to explore DNA methylation characteristics and develop a quantifiable criterion related to DNA methylation to improve survival prediction for LUAD patients.
Methods: Illumina Human Methylation450K array data, level 3 RNA-seq data and corresponding clinical information were obtained from TCGA. Cox regression analysis and the Akaike information criterion were used to construct the best-prognosis methylation signature. Receiver operating characteristic curve analysis was used to validate the prognostic ability of the DNA methylation-related feature score. qPCR was used to measure the transcription levels of the identified genes upon methylation.
Results: We identified a set of DNA methylation features composed of 11 genes (MYEOV, KCNU1, SLC27A6, NEUROD4, HMGB4, TACR3, GABRA5, TRPM8, NLRP13, EDN3 and SLC34A1). The feature score, calculated based on DNA methylation features, was independent of tumor recurrence and TNM stage in predicting overall survival. Of note, the combination of this feature score and TNM stage provided a better overall survival prediction than either of them individually. The transcription levels of all the hypermethylated genes were significantly increased after demethylation, and the expression levels of 3 hypomethylated proteins were significantly higher in tumor tissues than in normal tissues, as indicated by immunohistochemistry data from the Human Protein Atlas. Our results suggested that these identified genes with prognostic features were regulated by DNA methylation of their promoters.
Conclusion: Our studies demonstrated the potential application of DNA methylation markers in the prognosis of LUAD.
Keywords: DNA methylation, integrative analysis, lung adenocarcinoma, prognosis, TCGA
1 INTRODUCTION
Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer, accounting for approximately 50% of all lung cancer cases in most countries (Goldstraw et al., 2011; Bray et al., 2018). Previous studies have revealed that in addition to cigarette smoking, risk factors such as age, environmental pollution, occupational exposure, race, sex, and preexisting lung disease are also substantially involved in lung cancer. With the development and popularization of public databases in recent years, an increasing number of researchers have tried to identify prognostic biomarkers for LUAD by analyzing clinical characteristics and molecular information (Edge and Compton, 2010). The TNM staging system of the American Joint Commission on Cancer (AJCC) was reported to have great value in LUAD prognosis (Folkman, 1971). Liu et al. stated that conventional staging alone was not enough to predict prognosis and guide treatment decisions. They analyzed large cohorts from The Cancer Genome Atlas (TCGA) database and developed a 4-gene feature related to glycolysis (Kaishang et al., 2018). Su et al. identified an RNA sequencing network of 29 key lncRNAs, 72 mRNAs and 24 miRNAs as potential biomarkers to optimize the diagnosis and prognosis of LUAD patients by using the TCGA database (Li et al., 2017). The findings from these studies indicate that it is feasible to use different molecular markers and clinical features in public databases to establish practical models that have great application potential. Although the effectiveness of these prediction models has not been tested in clinical practice, it is necessary to continue to mine and improve the gene signatures related to the prognosis of LUAD.
Epigenetic disorders, especially abnormal DNA methylation in gene promoters, are a fundamental feature of human malignant tumors (Liu et al., 2019). As one of the most well-studied epigenetic modifications, DNA methylation mainly occurs at 5′-cytosine-phosphate-guanine-3' (CpG) dinucleotides and is regulated by DNA methyltransferases and DNA demethylases (Yang et al., 2022). Methylation and cancer formation are associated in 2 main ways: one is the regulation of tumor suppressor gene expression by gene hypermethylation in the promoter, and the other is genome-wide hypomethylation, which plays an important role in the stability of the heterochromatin structure (Feinberg, 2007). In virtually every step of tumor progression, there is abnormal promoter methylation regulation (Sui et al., 2016). APC, CDH13, MLH1 and IRX1 have hypermethylation in promoter CpG islands (CGIs). The hypermethylation of the APC and CDH13 genes in LUAD is associated with cancer cell adhesion, and the loss of MLH1 and IRX1 expression is associated with poor tumor survival (Goto et al., 2009; Küster et al., 2020). The hypomethylation of LINE-1 and ELF3 induces protein overexpression in LUAD. The overexpression of ELF3 can stimulate the carcinogenic phenotype of LUAD cells and reduce the survival time of patients, suggesting that the hypomethylation of LINE-1 is a prognostic marker of LUAD development and progression (Ikeda et al., 2013; Enfield et al., 2019).
TCGA has disclosed the clinical information of more than 10,000 patients and the molecular phenotype information of their tumor tissues. This information covers 33 different types of tumors and multiple data from different sources, including transcriptomic, methylomic and proteomic sources (Mazor et al., 2016). By integrating data from different sources, we can identify specific events in the carcinogenic process and identify potential biomarkers associated with patient survival.
In this study, we obtained the TCGA Illumina Human Methylation 450K microarray data, RNA-seq data, and clinical data of LUAD patients and performed an integrative analysis to identify a set of DNA methylation features for 11 genes. We performed area under the receiver operating characteristic curve (AUC-ROC) analysis to verify the ability of the identified DNA methylation feature to predict the survival of LUAD. In addition, we performed qPCR, and the results suggested that these identified genes with prognostic features were regulated by DNA methylation in their promoters.
2 MATERIALS AND METHODS
2.1 Data preparation
The steps of data acquisition and analysis, as well as methylation feature acquisition and verification, are shown in the flow chart (Figure 1). Illumina Human Methylation 450K array data were obtained from TCGA, and a total of 24,587 DMSs from 478 pretreated methylation arrays were screened using the camp and Minfi R software packages. After that, 478 samples (449 LUAD samples and 29 normal samples) were included after being filtered, inspected, and standardized with the ChAMP R package. Level 3 RNA-seq data from TCGA were normalized and log2 transformed by the edgeR package. For the preprocessing of clinical information corresponding to the sample, patients with nonsurvival status or survival time less than 1 month were excluded because of other disease-related deaths.
[image: Figure 1]FIGURE 1 | Flow chart for obtaining and verifying methylation feature.
2.2 Differential methylation analysis and differential expression analysis
In total, 449 LUAD samples and 29 normal samples were subjected to differential methylation analysis with the ChAMP R package and the Minfi R package (Li et al., 2019). Principal component analysis was used to detect the sample quality. The ChAMP DMP function and the Minfi R package defined the methylation loci with an average methylation difference >0.2 and a false discovery rate <0.05 as differentially methylated sites (DMSs), and the final DMSs were obtained through the intersection of the two (Li et al., 2018). Differentially expressed genes (DEGs) between the 526 LUAD samples and the 59 normal samples were analyzed with the Limma R package (p < 0.05 and |log2FC| ≥ 1). Metascape (https://metascape.org/gp/index.html#/main/step1) was used to analyze the pathway enrichment of the hyper-down and hypo-up methylated related differential expression genes (mrDEGs) groups.
2.3 Survival model construction process
A prognosis prediction model was established according to the DNA methylation β value of mrDEGs and matched prognostic data of patients. According to the methylation β value, univariate Cox regression analysis was used to screen mrDEGs (p < 0.01) that were significantly associated with overall survival (OS). Then, mrDEGs identified in the univariate Cox regression analysis were subjected to multivariate Cox regression analysis (Lian et al., 2019). At the same time, the Akaike information criterion (AIC) was used to screen out the genes with subtly individual but significantly synergistic effects to determine the most appropriate gene feature (Tozzi et al., 2020). A Kaplan‒Meier (K-M) curve with a log rank test was used to validate the survival difference of patients (Zhao et al., 2020). Harrell’s concordance index (C-index) and the corresponding 95% confidence intervals (CIs) were calculated to determine the prognostic model’s ability. These steps were performed by R with the survival and survcomp R packages (Schröder et al., 2011).
2.4 Consensus clustering analysis
We selected 155 LUAD samples with complete clinical information. For our standard, we considered the standard deviation of the β value in tumor samples to be greater than 0.2 and the average β value in normal tissues to be less than 0.05. With this approach, we selected 641 methylation probes according to the standard. According to the PAM algorithm and Euclidean distance, we then performed unsupervised consistent clustering on 641 probes of 155 samples. The Consensus Cluster Plus R package was used for the clustering analysis (Wilkerson and Hayes, 2010). The Kruskal‒Wallis test was used to validate the significance of clinical features among clusters.
2.5 Validation experiments in cell lines
qPCR was used to verify the changes in gene transcription levels upon methylation. A549, PC9 and H1975 cells were purchased from the Canadian Standards Association (CSA). All cell lines were cultured in RPMI 1640 with 10% fetal bovine serum. All experimental cells were treated with 5-Aza-2′- deoxycytidine (5-aza, Aladdin) for 96 h at 1 µM. qPCR analyses of all cell lines were repeated at least 3 times (Christman, 2002). All primer sequences used in qPCR are listed in Attachment 1: Table 1.
TABLE 1 | All primer sequences used in qPCR.
[image: Table 1]2.6 Statistical analysis
The correlation between feature scores and clinical factors was analyzed by the chi square or Fisher exact test (Jung, 2014; Pandis, 2016). Multivariate Cox regression combined with hierarchical data analysis was used to evaluate the predictive power of the clinical features, TNM stage, and methylation feature score for prognosis. The forest map was drawn by Prism, and other statistical tests were performed by R using the corresponding R packages.
3 RESULTS
3.1 Differential methylation and the identification of mrDMGs
Illumina Human Methylation 450K array data were obtained from TCGA. We screened a total of 24,587 DMSs from data from 478 pretreated methylation arrays using the camp and Minfi R software packages. We then divided DMSs into 15,387 hypermethylated and 9,200 hypomethylated sites and evaluated their distribution in the genome. Compared to 63% in the whole genome, hypermethylated sites increased significantly in the promoter, CGIs, and CGI promoters (71%, 96% and 99%, respectively, Figure 2A). At the same time, most DMSs on CGIs were hypermethylated (96%), and most DMSs on shelf CpG positions were hypomethylated (Figure 2B). When we detected the distribution of DMSs around the gene, we found that the hypermethylation of CpGs was higher near the transcription start site (TSS). For example, the proportions of hypermethylated CpGs in the 5′UTR, tss200 and first exon were 70%, 77%, and 76%, respectively (Figure 2C). Next, we located DMSs on the gene and obtained 5,900 differentially methylated genes (DMGs) (Figure 2D). Next, we identified 1,887 DEGs based on the RNA-seq data. Then, 406 mrDEGs were determined through the intersection of the DMGs and the identified DEGs (Figure 2E). Among them, 43 mrDEGs were in the hypermethylation downregulation group (hyper-down group), and 126 mrDEGs were in the hypomethylation upregulation group (hypo-up group) (Figure 2F).
[image: Figure 2]FIGURE 2 | Distribution of DMSs and obtain mrDEGs of LUAD. (A) Distribution of DMSs across various genomic regions, including CpG islands (CGI), promoters, CGI promoter, and the whole genome (all). (B) Distribution of DMSs in various areas related to CGI distance, including CpG shelves, CpG shores and CpG islands. (C) Distribution of DMSs in gene location, including 3′ UTRs, gene bodies, first exons, 5′ UTRs, TSS200 and TSS1500. (D) Distribution of DMGs across various genomic regions. (E) Scatter plot shows mean methylation difference versus log2 expression change, and each point represents a pair of methylation site and gene. (F) Venn diagrams shows the intersection between DEGs and hypermethylated genes (left) and between DEGs and hypomethylated genes (right).
3.2 mrDEGs involved in biological processes
The Metascape website was used to analyze the pathway enrichment of the hyper-down and hypo-up mrDEGs. In the hypo-up group, the genes showed a significant abundance in fatty acid degradation, cyclic adenosine monophosphate (cAMP)-mediated signaling, glycolysis/gluconeogenesis, etc. (Figure 3A). Cancer is usually accompanied by nutritional metabolic imbalances, such as abnormal glucose and lipid metabolism (Li and Liao, 2021). cAMP was the first second messenger to be discovered, and it plays key roles in physiological defects caused by metabolic disorders (Zhang et al., 2020; Chi et al., 2021). Interestingly, in the hyper-down group, there was also gene enrichment related to fatty acid degradation (Figure 3B). The effects of lipid metabolism disorders on cancer have attracted increasing attention in recent years (Karagiota et al., 2022). There is no doubt that to reprogram their metabolic state and ensure cell survival, tumor cells need epigenetic modifications to regulate gene expression. For example, brother of the regulator of imprinted sites can mediate the Warburg effect and promote breast cancer by regulating the methylation of pyruvate kinase M1/2 (PKM) exons (Singh et al., 2017; Huo et al., 2021). Our results suggest that abnormal lipid metabolism in LUAD may be closely mediated by DNA methylation (Figure 3B).
[image: Figure 3]FIGURE 3 | Pathway enrichment analysis of mrDEGs in LUAD. (A) The pathway enrichment analysis of the upregulated mrDEGs. Each node represents a gene group. The node size is proportional to the total number of genes in each gene set. The width of the line between nodes represents the proportion of genes shared among gene sets. (B) The pathway enrichment analysis of the downregulated mrDEGs.
3.3 Identification of prognostic mrDEGs
We established a prognosis prediction model according to the methylation data of mrDEGs and the matched prognostic data. We first analyzed 406 mrDEGs in 453 patients by univariate Cox regression and identified 32 mrDEGs related to prognosis (p < 0.05). Next, multivariate Cox regression analysis was performed on the 32 mrDEGs. The AIC, as the indicator for model fitness, determined the most suitable prognostic model. Finally, we identified 11 mrDEGs (MYEOV, KCNU1, SLC27A6, NEUROD4, HMGB4, TACR3, GABRA5, TRPM8, NLRP13, EDN3 and SLC34A1) to be included in a DNA methylation feature prognostic model. There were 5 genes (MYEOV, KCNU1, SLC27A6, NEUROD4 and HMGB4) with statistically nonsignificant p values in multivariate Cox regression analysis (Table 2). However, the AIC of this prognostic model was the lowest (AIC = 1733.8, p = 2e-05), indicating that this model was the most suitable, and the overall effect of the model was significant. The C-index of the identified DNA methylation feature model was 0.666 (95% CI = 0.641–0.690), indicating great discrimination ability. The correlation between methylation level and gene expression of these 11 genes is shown in the appendix (Supplementary Figure.S1).
TABLE 2 | Eleven mrDEGs identified as a DNA methylation signature prognostic model.
[image: Table 2]3.4 DNA methylation feature model for predicting the OS of LUAD patients
According to the correlation coefficients of the eleven mrDEGs obtained by multivariate Cox regression analysis, we established a feature score formula.
[image: image]
The LUAD patients were ranked according to their calculated methylation-related feature scores and divided into higher-risk (n = 226) and lower-risk groups (n = 227) according to the median. The K-M curve showed that the median OS of the higher-risk group was significantly shorter than that of the lower-risk group (log rank test p < 0.0001) (Figure 4A). We also analyzed the distribution of the methylation feature scores, patient survival statuses and methylated β values in LUAD patients, as well as the methylation β value spectra of 11 DNA methylation feature genes (Figures 4B–E).
[image: Figure 4]FIGURE 4 | The DNA methylation feature for predicting OS prediction in LUAD patients. (A) K-M assessed OS based on the DNA methylation feature. The LUAD patients were divided into the lower-risk (n = 226) and higher-risk (n = 227) subgroups according to the median of the methylation scores. Log rank test was used between curves (p < 0.0001). (B) The distribution of feature scores for DNA methylation feature of patients. (C–D) The distribution of survival status of LUAD patients in the lower- and higher-risk groups (Chi-square test, p < 0.0001). (E) The methylation β value spectrum of 11 DNA methylation feature genes.
3.5 DNA methylation feature model with clinicopathological features
First, we attempted to validate the correlation between DNA methylation levels and clinicopathological features in LUAD. We then performed unsupervised consistent clustering of the 641 most variable DNA methylation probes in 155 samples (with complete clinical information) into 4 clusters: CGI Methylator Phenotype (CIMP) high, CIMP medium high, CIMP medium low and CIMP low (Figure 5A). The average methylation levels among the different clusters were significant (p < 2.2e-16) (Figure 5B). DNA methylation was significantly correlated with tumor subtype (X-squared = 31.457, p = 2.073e-05) (Figure 5C). Most of magnoid tumors were enriched in the CIMP low and CIMP medium low clusters, while the CIMP high group had more squamoid tumors Furthermore, DNA methylation showed a trend related to tumor recurrence; however, there was no statistical Figure 5A Significance (p = 0.2864) (Figure 5D).
[image: Figure 5]FIGURE 5 | The DNA methylation feature with clinicopathological features. (A) Unsupervised cluster analysis of the methylation levels in LUAD. A total of 155 samples are presented in rows, and 641 CpG loci with the largest variation (mean methylation level β < 0.05 in normal samples and standard deviation σ > 0.20 in tumor samples) are listed. The 4 identified clusters are represented as CIMP high (n = 28), CIMP medium high (n = 45), CIMP medium low (n = 52) and CIMP low (n = 30). (B) Significant differences (p < 0.0001) in the methylation levels of the 4 clusters. (C) The sample distributions in terms of tumor subtype (Chi-square test, p < 0.0001). (D) The sample distributions in terms of recurrence (Chi-square test, p = 0.2864). (E) Forest map: multivariate Cox regression analysis was used to analyze the prognostic values of age, gender, smoking, tumor expression subtype, tumor recurrence, TNM stage, feature score and other clinicopathological features in 391 cases.
Then, we analyzed the correlation between DNA methylation feature scores and clinicopathological features. The results showed that the methylation feature score was significantly correlated with tumor subtype (Table 3, p = 0.032). In addition, the DNA methylation feature score was associated with smoking history in LUAD patients (Table 3, p = 0.004). Previous studies have shown that smoking is associated with methylation levels. For example, hypomethylation at cg05575921 in the aryl hydrocarbon receptor repressor gene was strongly associated with the smoking behavior of an individual (Jamieson et al., 2020). Therefore, the hypothesis that prognostic signals are related to smoking is reasonable. To delve into the effects of DNA methylation and clinicopathological features on prognosis, 391 patients with complete clinicopathological features were analyzed in a Cox regression model. The forest map showed that the feature score (HR = 1.69, 95% CI = 1.17–2.45, p = 0.006), the TNM staging system, and tumor recurrence (HR = 2.58, 95% CI = 1.79–3.72, p < 0.0001) were independent prognostic factors for LUAD, while smoking history and tumor subtype were not (Figure 5E). DNA methylation is closely related to tumor immune microenvironment (Chiappinelli and Baylin, 2022; Li et al., 2022). We investigated the relationship between methylation feature scores and tumor immune infiltration. In the group with low methylation feature scores, we observed an increase in monocyte, dendritic cell (resting) and mast cell (resting) infiltration, as well as a decrease in macrophage (M0) cell infiltration. However, there is no changes of immune effector cells observed (Supplementary Figure S2).
TABLE 3 | The correlation between DNA methylation feature scores and clinicopathological feature.
[image: Table 3]3.6 Prognostic value of the DNA methylation feature score is independent of TNM stage and cancer recurrence
Since a high feature score, tumor recurrence and a high TNM stage were independent adverse prognostic factors for LUAD (Figure 5D), we performed a combined analysis between DNA methylation features and the other 2 influencing factors. We found that the prognosis of patients in the higher-feature score group was poorer, whether in the recurrence (log rank test, p < 0.0009) or nonrecurrence subgroup (log rank test, p = 0.02) (Figure 6A). In the combined analysis of TNM stages and DNA methylation features, we found that patients in the lower TNM stage (I and II) subgroups had a notably worse prognosis when they were also in the high-feature score subgroups (p = 2e-05) but not in the higher TNM stage (III and IV) subgroups (p = 0.3) (Figure 6B). We further classified patients at low TNM stages and found that the p value of the K-M curve in the stage I subgroup (p = 9e-04) was more significant than that in the stage II subgroup (p = 0.01) (Figures 6C,D). These results suggested that the DNA methylation feature score was more valuable in patients at a lower TNM stage. AUC-ROC analysis was used to evaluate the sensitivity and specificity of the prediction model (Figure 6E). The combination of this feature score and TNM stage was significantly superior to that of TNM stage alone (0.697 vs 0.658, p = 0.0275) or feature score alone (0.697 vs 0.603, p = 0.0001). These results suggested that the combination of the DNA methylation feature score and TNM stage might help to improve OS prediction in LUAD patients.
[image: Figure 6]FIGURE 6 | The prognostic value of DNA methylation feature score was not associated with tumor recurrence status and TNM stage. (A) K-M analysis of OS based on the DNA methylation feature and recurrence status. The LUAD patients were divided into the lower- and higher-risk subgroups according to the median of the methylation feature scores, with or without recurrence. Log-rank test (p < 0.0001). (B) K-M analysis of OS based on the DNA methylation feature and TNM stage. The LUAD patients were divided into the lower- and higher-risk subgroups according to the median of the methylation feature scores, and divided into the low (stage I+ II, n = 350) and high (stage III+IV, n = 98) stages according to the TNM stage (Log-rank test, p < 0.0001). (C) K-M curves for patients in the TNM stage I subgroup (n = 350). (D) K-M curves for patients in the TNM stage II subgroup (n = 98). (E) ROC analysis assessed the sensitivity and specificity of DNA methylation feature score, TNM stage and the combination of the 2 factors in predicting OS.
3.7 The expression of the eleven identified genes
The prognostic methylation signature consists of 11 genes. Three of them are hypermethylated in LUAD (TACR3, EDN3 and SLC27A6). We selected the broad-spectrum demethylation drug 5-aza-2′-deoxycytidine (5-aza) to treat LUAD cells (A549, PC9 and H1975) and measured the mRNA levels of TACR3, EDN3 and SLC27A6 by qPCR 4 days after treatment. The results showed that, compared with the control group, the transcription levels of these 3 genes were significantly increased after treatment with 5-aza (Figures 7A–C), suggesting that the transcriptional regulation of TACR3, EDN3 and SLC27A6 was related to promoter methylation. The other 8 genes showed low methylation and high mRNA expression in LUAD cells (MYEOV, NLRP13, SLC34A1, NEUROD4, HMGB4, KCNU1, GABRA5 and TRPM8). Since there is no broad-spectrum drug to improve DNA methylation, we used the Human Protein Atlas (HPA) (https://www.proteinatlas.org/) to verify the expression of the proteins encoded by these genes in LUAD and normal tissues. Five of them (MYEOV, NLRP13, SLC34A1, NEUROD4 and HMGB4) had protein expression data in the database, and MYEOV, NLRP13 and SLC34A1 were highly expressed in tumor tissues (Figure 7D), while NEUROD4 and HMGB4 showed no significant difference (Figure 7E).
[image: Figure 7]FIGURE 7 | The expression of TACR3, EDN3 and SLC27A6 is related to promoter region methylation. (A–C) qPCR was used to detect the mRNA levels of TACR3, EDN3 and SLC27A6 in A549, PC9 and H1975 cells before and after the 5-Aza-2′-deoxycytidine treatment. (D–E) Immunohistochemistry images obtained from the HPA database demonstrated the protein expression of the 5 hypomethylated genes.
4 DISCUSSION
DNA methylation, as one of the most studied epigenetic alterations related to tumor phenotype, is of great significance for tumor research (Mazor et al., 2016; Biswas S Rao, 2017). Previous research showed that the overall DNA methylation pattern in tumor cell genomes is hypomethylation, while many CGIs associated with promoters showed focal hypermethylation (Hansen et al., 2011). Promoter hypermethylation was associated with tumor suppressor-related gene silencing, while the hypomethylation of the tumor cell genome could increase genomic instability (Feinberg and Vogelstein, 1983; Goelz et al., 1985; Pfeifer, 2018). Abnormal DNA methylation can be used not only as a target for tumor therapy but also as a biomarker for diagnosis and prognosis (Yamashita et al., 2018; Szejniuk et al., 2019). With the public information provided in TCGA, we conducted a comprehensive analysis and identified 11 methylation-related genes (TACR3, SLC27A6, EDN3, TRPM8, MYEOV, NLRP13, KCNU1, NEUROD4, GABRA5, SLC34A1 and HMGB4) to predict the prognosis of LUAD. These genes not only were differentially methylated and expressed in LUAD tumor tissues from TCGA but also were related to the prognosis of patients. The survival curves showed that there was a significant difference in the survival curve between the higher-risk and lower-risk groups, especially in patients with early LUAD. Some of the 11 identified methylation-related genes have been shown to be abnormally expressed and important in cancer or other diseases. For example, TRPM8 is a calcium permeability channel abnormally expressed in multiple malignant tumors. There is evidence that TRPM8 plays a major role in promoting cell invasion and preventing replicative senescence (Yee, 2016). In the present study, TRPM8 showed hypermethylation and low RNA expression in LUAD samples from TCGA, and the hypermethylation and low expression of TRPM8 were associated with long survival. Previous studies have shown that decreased expression or inactivation of EDN3 can inhibit the migration of cancer cells and improve survival (Wang et al., 2013; Kim et al., 2017). Our results revealed that EDN3 was hypermethylated and expressed at low levels in LUAD, which was associated with longer OS. Another gene, MYEOV, is a region of cancer-associated genomic amplification. The amplification of this gene was reported to promote the progression of NSCLC pancreatic ductal adenocarcinoma and colorectal cancer (Lawlor et al., 2010; Fang et al., 2019). Subsequent mechanistic studies showed that the overexpression of MYEOV might be regulated by promoter hypomethylation (Liang et al., 2020). In accordance with the above results, our studies showed that MYEOV was hypermethylated and expressed at low levels in LUAD and that hypermethylation was positively correlated with survival time. As for other genes in the DNA methylation feature. TACR3 was found to be highly elevated in endometrial carcinoma. Although the role of TAC1-TACR3 axis is not clear. Haixu et al. found that highly methylated TAC1 promoted the development of endometrial carcinoma through the deregulation of TAC (Xu et al., 2018). Kyoichi Obata et al. found that TACR3 protein showed significant and significant overexpression at the onset of bone matrix invasion in oral squamous cell carcinoma (Obata et al., 2016). SLC27A6 is used as a predictor in the genetic analysis of colorectal cancer, prostate cancer, pancreatic cancer, and other tumors (Mohammed et al., 2019; Uhan et al., 2020; Verma et al., 2020; Zhong et al., 2021). However, basic research on this topic is still very limited. As a neuron differentiation factor, NEUROD4 has been reported overexpressed in neuroendocrine tumors. Studies have shown that the continuous expression of NEUROD4 in neuronal cells may be related to the regeneration of neural cells, and its expression level gradually decreases with the maturation of neurons (Masserdotti et al., 2015; Cecil et al., 2016). SLC27A1 is rarely studied in tumors, but in recent years, some articles have pointed out that SLC27A1 is highly expressed in melanoma and breast cancer and enhances tumor invasion, migration, and growth (Kwaepila et al., 2006; Zhang et al., 2018). The expression of GABRA5, which encodes the α 5-GABAA receptor, has a synthetic lethal role in MYC-driven medulloblastoma (Sengupta et al., 2014). NLRP13, KCNU1, and HMGB4, although not as studied in tumors compared to the other genes in the model, need further exploration. Many articles verify the effectiveness of their own prediction formulas by comparing them with TNM staging (Peng et al., 2020; Zhu et al., 2021; Qiu et al., 2022). In our research, the DNA methylation feature score is an independent predictor and is not associated with the TNM stage. ROC curve analysis showed that the combination of the DNA methylation feature score and TNM stage was better for prognosis than TNM stage alone, suggesting that the combination of the 2 might help to improve the prediction of OS in LUAD patients. In addition, we found that the transcription levels of TACR3, EDN3 and SLC27A6 in LUAD cells were significantly increased by treatment with broad-spectrum demethylating drugs. These results suggested that the low expression of these genes was related to promoter hypermethylation. At the same time, the expression of some hypomethylated genes (MYEOV, NLRP13 and SLC34A1)in immunohistochemical sections of LUAD was significantly stronger than that in lung tissues. These results showed that the identified genes are worthy of further study as biomarkers of methylation in LUAD.
Because of its noninvasive and fast characteristics, detecting circulating tumor DNA (ctDNA) in blood to monitor epigenetic changes in tumor DNA has become a very promising technology. Although this technology is not sufficiently mature, blood testing based on a single DNA methylation biomarker has been approved (Frankell and Jamal-Hanjani, 2022). Our study shows that the methylation signals of these 11 genes may be used as candidate markers to detect ctDNA methylation in LUAD patients. This model can predict the prognosis of patients with low cost and high efficiency.
However, our research still has several limitations. First, DNA methylation biomarkers are not effective in predicting advanced LUAD. Considering the small sample size of the advanced LUAD group, the results will have a certain deviation. Second, because it was difficult to obtain data with a sufficient sample size and consistent methylation detection platform, we did not use other datasets to verify the methylation formula. However, considering the large sample size of this study, this model was less likely to be an accidental feature of methylation noise but more likely to be a determinant of LUAD survival. Finally, our basic experiments were limited. We did not regulate the specific methylation site of genes. Further experimental studies on these genes will help to determine further their therapeutic potential.
5 CONCLUSION
In conclusion, we explored the characteristics of DNA methylation in LUAD. Furthermore, we confirmed a DNA methylation feature consisting of 11 genes. DNA methylation is associated with the survival of LUAD patients and can provide a better OS predictive ability when combined with TNM stage. Unfortunately, it was difficult for us to obtain a sufficient sample size and consistent methylation detection platform data to verify this methylation formula. However, our experiments indicated that the transcription of the hypermethylated genes was increased after demethylation with 5-aza, suggesting the validity of these results and indicating the potential value of these 11 genes in the study of LUAD prognosis.
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Long non-coding RNAs (lncRNAs) can influence the proliferation, autophagy, and apoptosis of non-small cell lung cancer (NSCLC). LncRNAs also emerge as valuable prognostic factors for NSCLC patients. Consequently, we set out to discover more autophagy-associated lncRNAs. We acquired autophagy-associated genes and information on lncRNAs from The Cancer Genome Atlas database (TCGA), and the Human Autophagy Database (HADb). Then, the prognostic prediction signature was constructed through using co-expression and Cox regression analysis. The signature was constructed including 7 autophagy-associated lncRNAs (ABALON, NKILA, LINC00941, AL161431.1, AL691432.2, AC020765.2, MMP2-AS1). After that, we used univariate and multivariate Cox regression analysis to calculate the risk score. The survival analysis and ROC curve analysis confirmed good performances of the signature. GSEA indicated that the high-risk group was principally enriched in the adherens junction pathway. In addition, biological experiments showed that ABALON promoted the proliferation, metastasis and autophagy levels of NSCLC cells. These findings demonstrate that the risk signature consisting of 7 autophagy-associated lncRNAs accurately predicts the prognosis of NSCLC patients and should be investigated for potential therapeutic targets in clinic.
Keywords: autophagy, lncRNAs, NSCLC, TCGA, prognostic signature
INTRODUCTION
Lung cancer is the most common malignant disease. Among these cases, 84% are classified as NSCLC with the remaining 16% classified as small cell lung cancer (SCLC) (Torre et al., 2012). Because of the advent of new targeted drugs and advances in therapy, clinical treatment of lung cancer has made great progress. However, the attendant problems also increased, such as inherent resistance to both chemotherapy and radiation therapy (Hirsch et al., 2017); (Yang et al., 2019), and it is becoming increasingly challenging to assess the prognosis of NSCLC patients. Therefore, it is imperative to confirm biomarkers of prognosis in NSCLC.
As an intracellular catabolic degradation process, autophagy contributes to normal cell physiology by eliminating damaged proteins and other cell components (Li et al., 2020). There is a great deal of studies showing that autophagy also participates in various pathological processes, for example liver disorders and infectious diseases (Ueno and Komatsu, 2017); (Levine and Kroemer, 2019); (Choi et al., 2018). Moreover, a growing body of research suggests autophagy plays a dual role in cancer. Autophagy can suppress chronic tissue damage to inhibit tumorigenesis. It could promote longevity of normal cells via regulating the quality of proteins and organelles, promoting the stability of the genome, or a combination of these factors (Barnard et al., 2016); (Mizushima and Levine, 2020). However, autophagy can also maintain the function of mitochondria and reduce DNA damage to enhance the ability to resist stress and apoptosis in cancer cells (White et al., 2015); (Bravo-San Pedro et al., 2017). Many studies have also shown that modulators of autophagy can prevent NSCLC from developing (Bai et al., 2019). However, other research shows that upregulation of autophagy can promote tumorigenesis and immune escape of cancer cells (Ma et al., 2020). Ma et al. (2013) SKIL promoted tumorigenesis and immune escape of NSCLC cells through upregulation of TAZ/autophagy axis and inhibition on downstream STING pathway. Therefore, it is important to find autophagy-associated transcripts which are considered as valuable biomarkers for diagnosis and prognosis in NSCLC.
LncRNAs, more than 200 nucleotides, is a class of RNA transcripts and does not code proteins. LncRNAs participate in some fundamental cancer-related processes through transcriptional for or post-transcriptional regulation, such as proliferation, migration, survival, and metastasis (Fang and Fullwood, 2016); (Slack and Chinnaiyan, 2019). Furthermore, a great number of studies identified that lncRNAs regulated autophagy (Xu et al., 2019); (Wu et al., 2021); (Kopp and Mendell, 2018). For example, Wang et al. (2019a) proved the lncRNA LINRIS could block the degradation of IGF2BP2 and suppress the proliferation of CRC via the ubiquitination-autophagy pathway. The lncRNA NBAT1 inhibits autophagy by inhibiting ATG7 in NSCLC (Zheng et al., 2018). Hence, it is meaningful to confirm major lncRNAs connected with autophagy and prognosis of NSCLC.
In our study, we systematically analyzed lncRNAs data of NSCLC patients in TCGA. We also founded an accurate prognostic signature of 7 autophagy-associated lncRNAs and assessed their ability to precisely predict the prognosis. It was verified that the downregulation of ABALON affected proliferation, metastasis, and autophagy of NSCLC cells by experimental validation. We provide a novel prognostic signature consisting of 7 autophagy-associated lncRNAs, which may also be potential therapeutic targets.
MATERIALS AND METHODS
Patient data sets
The transcriptome profiles and corresponding clinical date of 1,145 NSCLC patients (1,037 cases NSCLC patients and 108 healthy controls) were extracted from TCGA (https://portal.gdc.cancer.gov/), and all genes ID were transformed. LncRNAs and protein-coding genes were annotated and classified via the Ensembl human genome browser. We acquired data of autophagy-associated genes from the HADb (https://www.autophagy.lu/). We extract potential autophagy-associated lncRNAs via pearson correlation analysis, |R2| > 0.3 and p-value < 0.001 were defined as thresholds.
Construction and evaluation of an autophagy-associated long non-coding RNAs prognostic signature
We combined the expression level of autophagy-associated lncRNAs with the corresponding survival results in TCGA. Autophagy-associated lncRNAs were confirmed by univariate Cox regression analysis. The calculation formula of risk score for every patient was: risk score = [image: image], where coef (k) and lncRNA (k) respectively represent the regression coefficient and expression level of corresponding autophagy-associated lncRNA. These lncRNAs data were divided into two groups based on the median risk score. Then we constructed the best prognostic risk model of autophagy-associated lncRNAs via multivariate Cox regression analysis. Subsequently, we evaluated the survival difference in these two groups via Kaplan-Meier (KM) survival analysis. We explored the correlation between clinical factors and risk score. R packages “survival” and “forestplot” were performed to visualize the forest plot respectively. Finally, we draw ROC curves to estimate the predictive value of different clinical pathological factors.
Establishment of the long non-coding RNA-mRNA co-expression network
The relationship between autophagy-associated lncRNAs and their corresponding mRNAs was explored through a co-expression network and Sankey diagram. We extracted the mRNAs that were associated with autophagy-associated lncRNAs via Pearson correlation coefficients, the absolute threshold coefficient value >0.3. The network was visually analyzed by cytoscape software (v 3.7.1) and ggalluvial R package.
Estimation and construction of nomogram
A nomogram survival prediction model of NSCLC patients was constructed using the “survival” and “rms” packages by combining risk score and expression of autophagy-associated lncRNAs. We then constructed the ROC curves and calculated the AUC values of this nomogram.
Functional enrichment analysis
Perform GSEA to find expression changes in predefined genomes, rather than individual genes. We verified the enrichment of differentially expressed gene sets between the low- and high-risk groups by GSEA (v4.1.0). These two groups were enriched in different signaling pathway.
Cell culture
Beas-2B, A549, NCI-H292, NCI-H460, and NCI-H1299 cell lines were acquired from American Tissue Culture Collection (Beijing, China). Beas-2B cells were cultured in Leibovitz’s L-15 medium with 10% fetal bovine serum (FBS, Corning Incorporated) at 37°C in a 5% CO2 incubator. Other cell lines were cultured in RPMI 1640 with 10% FBS at 37°C in 5% CO2 incubator.
RNA extraction and qRT-PCR
Total RNA was isolated from cells using the TRIzol reagent (Beyotime, Shanghai, China). The total RNA was reversed to cDNA by the PrimeScript RT reagent Kit (Takara, Japan). QRT-PCR was performed to detect the expression of ABALON using SYBR Green Mixture (Tli RNaseH Plus) (Takara, Japan) and gene specific primers. We collected data from a Roche LightCycler 480 PCR system. The results were normalized with GAPDH as an internal control. The primer sequences were as follows: GAPDH (forward: CGGAGTCAACGGATTTGGTCGTAT; reverse: AGCCTTCTCCATGGTGGTGAAGAC), ABALON (forward: CTCTCTCTTGCACGCCCCTTG; reverse: CCTGGGCTGGTGCTTAAATAGA).
Transient transfection and small interfering RNAs
The siRNA targeting ABALON and Control were purchased from RiboBio (Guangzhou, China). When the cell confluency reaches 35%, we use FuGENE HD Transfection Reagent (Promega) to transiently transfect siRNAs (100 nm) in the cells. The medium containing 10% FBS was refreshed after 12 h.
Proliferation and metastasis assays
EDU, MTT and colony formation assays were used to detect cell proliferation. Transwell and wound healing/scratch assays were used to estimate cell metastasis. Detailed procedures were listed in the Supplementary Material.
Western blot analysis
Cellular protein was extracted using RIPA lysis buffer (Solarbio, China). Proteins were measured by the BCA method (Thermo scientific, United States) and separated on the SDS-PAGE gels. The protein bands were then transferred into PVDF membranes. Then the bands were blocked with 5% skim milk at room temperature for 1 h and incubated with primary antibodies overnight at 4°C. The bands were incubated with a corresponding secondary antibody for 1 h at room temperature. The protein bands were then detected using the ECL reagent (Millipore, United States). The antibodies were listed in the Supplementary Material.
Statistical analysis
Data are presented as the means [image: image] SD. Each experiment has a minimum of 3 replicates. Statistical analyses were executed using R Studio (version 4.0.3) and SPSS software (IBM Corp, United States). p-values < 0.05 were regarded as statistically significant.
RESULTS
Identification of prognostic autophagy-associated long non-coding RNAs in non-small cell lung cancer patients
The analysis framework of this research is performed in Figure 1. We extracted 141432 lncRNAs data sets from TCGA and 232 autophagy-associated genes from HADb in NSCLC. Then, we identified 1,496 autophagy-associated lncRNAs via conducting pearson correlation analysis (p < 0.001). Within them, 12 autophagy-associated lncRNAs were closely correlated with the survival of NSCLC patients from TCGA via univariate Cox regression analysis (p < 0.005; Table 1). Multivariate Cox regression analysis further revealed 7 autophagy-associated lncRNAs were good candidates for constructing the diagnostic signature. Among these 7 autophagy-associated lncRNAs, AC020765.2, MMP2-AS1, and AL691432.2 were regarded as protective factors [hazard ration (HR) < 1], while the remaining 4 lncRNAs, NKILA, LINC00941, ABALON, and AL161431.1, were considered to be risk factors (HR > 1) (Figure 2A). The relationships between these autophagy-associated lncRNAs and mRNAs are displayed in Figures 2B,C.
[image: Figure 1]FIGURE 1 | The comprehensive prognostic analysis framework of autophagy-associated lncRNAs in NSCLC based on the TCGA database.
TABLE 1 | The prognostic effect of autophagy-related lncRNAs by univariate Cox analysis.
[image: Table 1][image: Figure 2]FIGURE 2 | Identification of prognostic autophagy-associated lncRNAs in NSCLC patients. (A) Multivariate Cox analysis to establish the prognostic signature. (B) Establishment of the co-expression network in NSCLC. Blue represents lncRNAs and pink represents mRNAs. (C) The Sankey diagram shows the connection degree between 26 mRNAs and 7 autophagy-associated lncRNAs.
Prognosis evaluation of the autophagy-associated long non-coding RNA signature in non-small cell lung cancer
We used the prognostic risk scoring method to construct a model consisting of 7 autophagy-associated lncRNAs. The formula of the risk score was as follows: risk score= (0.0674 × NKILA) + (−0.1483 × AC020765.2) + (−0.1896 × MMP2-AS1) + (−0.0692 × AL691432.2) + (0.0555 × LINC00941) + (0.3039 × ABALON) + (0.0049 × AL161431.1) (p < 0.05; Table 2). Subsequently, we figured out the risk score for NSCLC patients. These samples from 1,145 NSCLC were divided into high- and low-risk groups via this median risk score as the cutoff. KM survival curve analysis revealed the OS of high-risk NSCLC patients was obviously shorter than of low-risk NSCLC patients (p < 0.001). The 3-year OS rates of the high and low-risk groups were 51.6% and 65.9%. Similarly, the 5-year OS rates of these two groups were 36.2% and 46.9% (Figure 3A), respectively. We next evaluated the prognostic power of the autophagy-associated lncRNAs model by ROC analysis. The AUC values were respectively 0.658, 0.625, and 0.581 for 1-, 3-, and 5-year OS (Figure 3B). Thus, the signature demonstrated a precise prognostic value. The risk curve of the prognostic signature and scatterplot indicated that the mortality was correlated with the risk score. The heatmap showing the expression of 7 autophagy-associated lncRNAs in NSCLC samples exhibited that NKILA, LINC00941, ABALON, and AL161431.1 were high in the high-risk group, whereas AC020765.2, MMP2-AS1, and AL691432.2 were low in the low-risk group. The risk curve, the scatterplot, and the heat map were shown in Figure 3C.
TABLE 2 | Correlation between autophagy genes and lncRNAs in NSCLC.
[image: Table 2][image: Figure 3]FIGURE 3 | Risk score analysis of the prognostic model of these seven autophagy-associated lncRNAs. (A) KM survival analysis for high- and low-risk groups. Red, high risk. Green, low-risk. (B) ROC analysis to evaluate the predictive ability of the model. (C) Risk score distribution (top), survival status distribution (middle), and heat map of 7 autophagy-associated lncRNAs (bottom).
To establish an accurate prognosis for NSCLC patients, we evaluated the survival rate about 7 autophagy-associated lncRNAs at 1, 2, and 3 years via calculating a nomogram. And the nomogram may help specialists make individualized clinical therapy for NSCLC patients (Figure 4A).
[image: Figure 4]FIGURE 4 | Evaluation of the prognostic risk model of the 7 autophagy-associated lncRNAs in NSCLC. (A) Nomogram of the 7 autophagy-associated lncRNAs. (B,C) The univariate (B) and multivariate (C) Cox analysis of risk score model and clinical features. (D) The ROC curve analysis displays the prognostic accuracy of clinical features such as age, gender, T stage, M stage, N stage, and risk score.
Clinical value of the prognostic autophagy-associated long non-coding RNAs signature
To assess its clinical value, we calculated risk scores about the autophagy-associated lncRNAs model and clinical data from TCGA, including age, gender, grade, and TNM stage. Then, we used univariate and multivariate Cox regression analyses (Figures 4B,C, respectively). The univariate analysis displayed that stage, T stage, N stage, M stage, and the prognostic risk score were closely associated with OS. Then the multivariate analysis revealed that age and risk score were closely associated to OS. We performed multiple ROC curve to assess the accuracy of prediction about the signature. The results displayed that the AUC value of the prognostic risk-related model was 0.660, which was higher than other clinic factors (Figure 4D). In general, the ROC curves indicated that the predictive accuracy of the prognostic lncRNAs model in NSCLC was acceptable.
Then, to determine the correlation between autophagy-associated lncRNAs and OS, we drew Kaplan Meier curves. And we identified the seven lncRNAs (AC020765.2, MMP2-AS1, NKILA, LINC00941, ABALON, AL691432.2, and AL161431.1). These results determined the seven autophagy-associated lncRNAs were closely related to the OS of NSCLC patients (Figures 5A–G).
[image: Figure 5]FIGURE 5 | The KM survival curves and GSEA analysis of 7 prognostic autophagy-associated lncRNAs. (A) AL691432.2, (B) MMP2-AS1, and (C) AC020765.2 were favorable prognostic factors. (D) NKILA, (E) ABALON, (F) AL161431.1, and (G) LINC00941 were harmful prognostic factors. (H) Top ten primarily enriched categories of 7 autophagy-associated lncRNAs in the high-risk group by GSEA.
GSEA enrichment
According to the prognostic model of autophagy-associated lncRNA, GSEA divided the gene set into high-risk and low-risk groups (FDR q-value < 0.05). The result displayed that the high-risk group was primarily enriched in stromal pathways, such as ECM receptor interaction and regulation of actin cytoskeleton. Furthermore, the O-glycan biosynthesis pathway was also important. It is worth noting that the adherens junction pathway was closely associated with the autophagy-associated lncRNAs. These results further confirmed that these autophagy-associated lncRNAs could regulate NSCLC and autophagy by some special pathways, which may inspire new approaches of therapy in NSCLC (Figure 5H).
Downregulation of apoptotic BCL2L1-antisense long non-coding RNA inhibited proliferation and metastasis in non-small cell lung cancer cells
Survival analysis displayed the ABALON was a risk factor with a poor prognosis. We explored the biological signaling pathways by GSEA, and the adherens junction pathway showed a crucial enrichment score (NES = 2.08, FDR q-val = 0.020). Consequently, we select ABALON for experimental validation. Based on the result of qRT-PCR, we chose two representative NSCLC cell lines (NCI-H292 and A549) to carry out experiments in vitro (Figure 6A).
[image: Figure 6]FIGURE 6 | Downregulation of ABALON suppressed the proliferation and metastasis in A549 cells. (A) The expression of ABALON in corresponding cell lines identified by RT-qPCR. (B) RT-qPCR for the expression of ABALON in siControl and siABALON A549 cells. (C–E) Colony formation (C), MTT (D), and EDU (E) assays identified proliferation was suppressed. (F,G) Cell metastasis suppression was identified by wound healing (F), and transwell (G) assays. **p < 0.01, ***p < 0.001.
First, the siRNA of ABALON and Control were transfected into NCI-H292 and A549 cells. The results of MTT, colony formation, and EDU assays showed low-expression of ABALON inhibited the proliferation of NCI-H292 and A549 cells (Figures 6C–E, 7B–D). The results of transwell and wound healing assays further displayed low expression of ABALON inhibited the metastasis of A549 cells (Figures 6F,G). GSEA analysis indicated that ABALON may influence the behavior of NSCLC via the adherens junction pathway (Figure 7E). Therefore, the results of western blotting displayed knockdown of ABALON led to decrease expression of ß-catenin and increase expression of E-cadherin (Figure 7F). In summary, these results show that depletion of ABALON can inhibit NSCLC progression.
[image: Figure 7]FIGURE 7 | Downregulation of ABALON suppressed the proliferation and metastasis in NCI-H292 cells and promoted autophagy level. (A) RT-qPCR for the expression of ABALON in siControl and siABALON NCI-H292 cells. (B–D) Colony formation (B), MTT (C), EDU (D) assays revealed cell proliferation promotion via downregulation of ABALON in NCI-H292 cells. (E) A significant enrichment results between ABALON-high and ABALON-low groups in NSCLC. (F) Western blotting to illustrate the expression levels of LC3-Ⅱ, P62, E-cadherin and β-catenin. (G) Tandem mRFP-GFP fluorescence microscopy to illustrate the levels of autophagy. **p < 0.001.
Downregulation of apoptotic BCL2L1-antisense long non-coding RNA inhibits autophagy in non-small cell lung cancer cells
To assess changes of autophagy after depletion of ABALON, we used western blotting and tandem mRFP-GFP fluorescence microscopy as the most common approaches. Western blotting was performed to evaluate protein levels of autophagy markers, including LC3 and p62. Depletion of ABALON compared with siControl significantly reduced the LC3-II/LC3-I ratio and simultaneously increased the level of the autophagy substrate p62 (p < 0.05) (Figure 7F).
However, the changes in the abundance of these proteins as assessed by western blot analysis cannot fully reflect real alteration of the autophagic flux alterations, which are mainly reflected in autophagosome docking and fusion with lysosomes. Hence, we transferred NSCLC cells with the mRFP-GFP-LC3B plasmid to visualize phagosome-lysosome fusion via fluorescence microscopy. Under the acidic and/or proteolytic conditions of the lysosomal cavity, GFP signal becomes sensitive, while mRFP becomes more stable. Hence, when autophagosomes fuse with lysosom, the index of PH in cells would down and the GFP signal is quenched. Colocalization of GFP and mRFP fluorescence in cells means autophagosomes have not fused with lysosomes, indicating that autophagy is blocked. Conversely, if only mRFP fluorescence is visible, there is highly active autophagy. NCI-H292 and A549 cells transfected siABALON only exhibited yellow fluorescence, which confirmed the results of western blotting (Figures 7F,G). These results indicated that siABALON restrained autophagy in NSCLC cells in vitro.
DISCUSSION
Autophagy is the process in which damaged proteins and organelles are engulfed and transported to lysosomes for degradation and circulation. The effect of autophagy seems to be extremely complicated and is difficult to summarize in cancer (Mizushima, 2007; Morel et al., 2017). It can play a tumor suppressor as well as an oncogenic effect. Through regulating functions of proteins and organelles, autophagy can keep the genome stable, reduce normal cell death and prevent tumorigenesis. For example, autophagy can remove senescent organelles and defective proteins (Wang and Klionsky, 2011; Wu et al., 2012). However, autophagy also maintains cancer cell metabolism, promotes tumor genesis and development, and resistance to therapeutic drugs (White, 2012; Poillet-Perez and White, 2019). Hence, we consider that autophagy can improve the therapeutic effects of tumor-targeting drugs and reduce drug resistance.
In this study, we determined 27 autophagy-associated mRNAs in NSCLC, which were associated with the 7 autophagy-associated lncRNAs. Among them, only ATG12, MTOR, ATG7, and PTEN are known to be related to autophagy in NSCLC. Autophagy-related (ATG) proteins play crucial roles in cancer. The numerous ATG proteins and their core complexes including the ULK/Atg1 kinase core complex, ATG9A/Atg9 trafficking system, ATG12/Atg12-conjugation system and LC3/Atg8-conjugation system, exert multiple activities in the autophagy pathway and take part in all processes of autophagy (Li et al., 2020). Among the 4 autophagy-associated genes identified in this study, ATG7, which acts as an essential protein to promote autophagy, was informed to attenuate the proliferation, invasion, and metastasis of NSCLC (Zheng et al., 2018; Cao et al., 2020). He et al. (2020) identified ATG12 was a target of miR-372-3p. ATG12 can promote autophagy and radiosensitivity in lung adenocarcinoma by suppressing miR-372-3p. Furthermore, we found that PTEN and mTOR exhibited a high correlation coefficient with autophagy. PTEN is an important tumor suppressor and the main antagonist of PI3K, which can promote the degradation of AKT (Lim et al., 2015; Jamaspishvili et al., 2018). In addition, miR-181 was found to mediate cisplatin-resistance and attenuate autophagy through the PTEN/PI3K/AKT pathway in NSCLC (Liu et al., 2018). However, the roles of other autophagy-associated mRNAs in NSCLC remain unclear.
Additionally, we identified 7 autophagy-associated lncRNAs in NSCLC patients from TCGA. Notably, lncRNAs have become a key regulatory factor in various cellular processes. Studies show that lncRNAs can also regulate autophagy in cancer. The specific mechanisms through which lncRNAs regulate autophagy can be segmented into three classes: 1) LncRNAs familiarly modulate autophagy through regulating the expression of ATG proteins. 2) LncRNAs regulate tumor genesis through the AKT/mTOR signaling pathway. mTOR forms two different signal complexes, mTOR complex 1(mTORC1) and mTORC2, by binding to a variety of companion proteins. mTORC1 inhibits the initiation of autophagy by phosphorylating ATG13 and autophagy activating kinase (ULK) (Kim and Guan, 2015). 3) LncRNAs can also act as competing endogenous RNAs to modulate miRNAs. Many studies investigated the effect of autophagy and lncRNAs in other cancers, but less research has been done in NSCLC.
Further bioinformatics analysis confirmed that these 7 autophagy-associated lncRNAs were associated with the OS of NSCLC patients. Among them, NKILA, LINC00941, ABALON, and AL161431.1 were risk factors for prognosis of NSCLC, and other lncRNAs (AC020765.2, MMP2-AS1, and AL691432.2) had the opposite effect. Previous studies have shown that LINC00941, also called MSC upregulated factor (lncRNA-MUF), was negatively associated with OS and phosphorylation of the PI3K/AKT signaling pathway in lung adenocarcinoma patients (Wang et al., 2019b). Another study also found that depletion of LINC00941 inhibited EMT and activated Wnt/ß-catenin signaling in hepatocellular carcinoma (Yan et al., 2017). Additionally, Ren et al. informed that LINC00941 promoted the progression of NSCLC through the miR-877-3p/VEGFA axis (Ren et al., 2021). AL161431.1 facilitated the proliferation and metastasis by regulating miR-1252-5p in endometrial carcinoma (Gu and Liu, 2020). Similarly, Qiang et al. found that AL161431.1 was also negatively associated with the OS of patients in lung squamous cell carcinoma (Ju et al., 2020). Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, and some studies indicated MMP2 promotes invasion and metastasis of NSCLC cells (Hsieh et al., 2019). Thus, we speculate that MMP2-AS1, encoding MMP2 antisense RNA1, may restrain the function of MMP2 in NSCLC. Consistent with our finding, LINC00941 tended to be a high-risk factor and AL691432.2 tended to be a low-risk factor in the construction of a prognostic model for NSCLC.
E-cadherin is an important cyctomembrane component and plays an important role in adherhens junction. E-cadherin and the Catenins (β-catenin, α-catenin, p120-catenin) are the substates of important kinases and phosphatases for regulating adherens junction (Coopman and Djiane, 2016). In this study, we demonstrated that apoptotic BCL2L1-antisense LncRNA (ABALON) acts as an oncogene in NSCLC via adherens junction pathway. We also confirmed that ABALON promoted autophagy by western blotting and fluorescence microscopy. However, the mechanisms of ABALON need further study. In summary, the results reveal the 7 identified autophagy-associated lncRNAs have a prognostic value in NSCLC.
However, our study has certain limitations. First, we applied traditional statistical analysis methods to establish and evaluate prognostic risk models for 7 autophagy-associated lncRNAs. Although these methods have been applied and validated in many studies, we need to refine our further studies with more advanced methods and techniques in the future. In the study, we confirmed ABALON promotes the proliferation, metastasis and autophagy in NSCLC cells via biological experiments. However, the mechanism by which ABALON regulates NSCLC cells remains unclear. To further verify our prediction results, in-depth studies about the molecular mechanisms are needed.
CONCLUSION
In conclusion, this study identified 26 autophagy-associated genes in NSCLC, and constructed a prognostic risk signature of 7 autophagy-associated lncRNAs. The signature was accurate to predict prognosis of NSCLC patients with high reliability. Moreover, experimental validation confirmed that ABALON promotes the proliferation, metastasis, and autophagy in NSCLC cells. This signature provides a basis for further studies on the clinical application of these autophagy-associated lncRNAs. In the future, with prospective validation, the 7 autophagy-associated lncRNAs signature may improve predictive accuracy and guide individualized therapy for non-small cell lung cancer patients.
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Background and purpose: Radioresistance remains a major reason of radiotherapeutic failure in esophageal squamous cell carcinoma (ESCC). Our study is to screen the immune-related long non-coding RNA (ir-lncRNAs) of radiation-resistant ESCC (rr-ESCC) via Gene Expression Omnibus (GEO) database and to construct a prognostic risk model.
Methods: Microarray data (GSE45670) related to radioresistance of ESCC was downloaded from GEO. Based on pathologic responses after chemoradiotherapy, patients were divided into a non-responder (17 samples) and responder group (11 samples), and the difference in expression profiles of ir-lncRNAs were compared therein. Ir-lncRNA pairs were constructed for the differentially expressed lncRNAs as prognostic variables, and the microarray dataset (GSE53625) was downloaded from GEO to verify the effect of ir-lncRNA pairs on the long-term survival of ESCC. After modelling, patients are divided into high- and low-risk groups according to prognostic risk scores, and the outcomes were compared within groups based on the COX proportional hazards model. The different expression of ir-lncRNAs were validated using ECA 109 and ECA 109R cell lines via RT-qPCR.
Results: 26 ir-lncRNA genes were screened in the GSE45670 dataset with differential expression, and 180 ir-lncRNA pairs were constructed. After matching with ir-lncRNA pairs constructed by GSE53625, six ir-lncRNA pairs had a significant impact on the prognosis of ESCC from univariate analysis model, of which three ir-lncRNA pairs were significantly associated with prognosis in multivariate COX analysis. These three lncRNA pairs were used as prognostic indicators to construct a prognostic risk model, and the predicted risk scores were calculated. With a median value of 2.371, the patients were divided into two groups. The overall survival (OS) in the high-risk group was significantly worse than that in the low-risk group (p < 0.001). The 1-, 2-, and 3-year prediction performance of this risk-model was 0.666, 0.702, and 0.686, respectively. In the validation setting, three ir-lncRNAs were significantly up-regulated, while two ir-lncRNAs were obviouly down-regulated in the responder group.
Conclusion: Ir-lncRNAs may be involved in the biological regulation of radioresistance in patients with ESCC; and the prognostic risk-model, established by three ir-lncRNAs pairs has important clinical value in predicting the prognosis of patients with rr-ESCC.
Keywords: radioresistance, esophageal squamous cell carcinoma, lncRNA, prognostic model, bioinformatics
INTRODUCTION
Esophageal cancer (EPC) is one of the most lethal tumors in China and worldwide (Sung et al., 2021). Esophageal squamous cell carcinoma (ESCC) is the major pathologic type in Chinese population, accounting for more than 90% cases, and more than 45%–60% of them were diagnosed at an advanced stage (Yang et al., 2018). In general, the prognosis of EPC is very poor, the cancer-specific mortality rate ranks fourth, and the 5-year overall survival rate is less than 30% (Chen et al., 2016; Zeng et al., 2018). Radiotherapy is one of the main treatments for EPC, especially in patients at an advanced stage. However, after radiotherapy with/without chemotherapy, the total objective response rate (ORR) is only 60%–76%, and radiotherapy resistance is an important reason for the local failure of radiotherapy for EPC (Chen et al., 2021). Although multiple factors may affect the radiosensitivity, the specific mechanisms of long non-coding RNA (lncRNAs) in radioresistance are still worth exploring. The outcomes of radiotherapy are heterogeneous, and no clinical or pathological method could predict tumor response of radiotherapy.
LncRNA referred to a type of RNAs whose length is greater than 200 bp and does not encode or translate proteins after transcription. LncRNAs are involved in various physiological and pathological processes, such as the cellular replication, transcription, translation and so on. In the process of gene expression and transcription, about 70% of human genes are regulated by lncRNAs (Batista and Chang, 2013; Shi et al., 2013). It’s reported that lncRNAs are widely involved in the biological processes of cancer, including tumor radioresistance (Li and Chen, 2013). Many studies believed that the prognosis of tumors is closely related to the tumor microenvironment (TME), and lncRNAs may participate in the regulation of TME through molecular biological functions such as chromatin modification, transcription, and post-transcriptional processing (Sounni and Noel, 2013; Singh et al., 2016). In addition, some lncRNAs are also involved in the regulation of immune function in the TME, where may involve various types of cells and cytokines. Such lncRNAs are often referred to as immune-related lncRNAs (ir-lncRNAs) (Bremnes et al., 2016; Chen M. M. et al., 2020). In order to explore whether ir-lncRNAs are involved in the biological process of radio-resistance in patients with ESCC, our study analyzed the differences in the expression of ir-lncRNAs between ESCC-patients with radioresistance and complete tumor remission based on gene expression profiling data in the Gene Expression Omnibus (GEO) database. Ir-lncRNA pairs, which had high correlation with immune genes, were selected to establish a prognostic risk-model to explore the value of ir-lncRNAs in predicting the prognosis of ESCC patients with radioresistance, and further to find potential biomarkers of radioresistance.
MATERIALS AND METHODS
Dataset collection and preparation
Using “esophageal cancer, esophagus cancer, and radioresistance” as keywords, mRNA and lncRNA expression profiling data related to radioresistance of esophageal cancer was searched in the GEO database (https://www.ncbi.nlm.nih.gov/). Two public esophageal cancer microarray profiling datasets (GSE45670 and GSE53625) were downloaded from GEO and were finally selected for data mining. The GSE45670 microarray profiling datasets were provided by Wen et al., where gene expression analyses were performed on pretreatment cancer biopsies from 28 ESCCs who received neoadjuvant chemoradiotherapy (CRT) and surgery and 10 normal esophageal epithelia using Affymetrix U133 Plus 2.0 arrays (Wen et al., 2014). After preoperative chemoradiotherapy among 28 ESCCs, complete remission of tumor occurred in 11 patients, who were divided into responder group, while no obvious tumor regression occurred in the other 17 patients, who were considered to be radioresistant and divided into non-responder group. The average age of the patients in the non-responder group was (55.65 ± 5.53) years old, of whom 16 patients were male (accounting for 94.11%); four patients were in T2N1M0 stage, and 13 patients were in T3N1M0 stage; while average age of the patients in the responder group was (57.45 ± 6.80) years old, of whom nine patients were male (accounted for 81.82%); four patients were in T2N1M0 stage and seven patients were in T3N1M0 stage.
The GSE53625 microarray profiling datasets were provided by Li et al.(Shi et al., 2016; Li et al., 2017; Liu et al., 2020), including 179 patients with esophageal cancer. The profiling datasets were derived from cancer tissue and adjacent normal tissue. The dataset contained detailed clinical information of 179 ESCC patients that can be used for prognostic validation analysis. Both datasets were annotated with the platform files provided by GEO to obtain Ensemble ID, and then were annotated with the “org.Hs.eg.db” package to obtain gene symbols, thus ensuring that the two datasets have similar annotation conditions.
Screening, differential expression analysis and matched pairs of ir-lncRNAs
The immune gene list was download from the ImmuPORT database (https://www.immport.org/). Subsequently, the subsets of immune genes or lncRNAs were extracted from the GSE45670 dataset and GSE53625, respectively. The correlation test was performed on the immune gene expression matrix and the lncRNA expression matrix, and the related lncRNAs were screened as ir-lncRNAs. The screening criteria were: correlation coefficient ρ ≥ 0.4 or ρ ≤ −0.4 and p ≤ 0.0001. Differential expression analysis (DEA) was performed on eligible ir-lncRNAs via the “limma” and “SVA” packages, and the expression difference was defined as: the absolute value of the log2 value (fold change) of the difference fold was greater than (mean ± 2 times the standard deviation of expression); p value ≤ 0.05. The differentially expressed lncRNAs were paired for each other. Taking the LINC01121|FAM167A-AS1 gene as an example, if the expression of LINC01121 gene was greater than that of FAM167A-AS1 gene, the matched index was recorded as 1, otherwise as 0. The ir-lncRNA pairs were introduced as independent variables into the COX prediction model to establish a prognostic risk-model.
Construction of the predictive model
The clinical survival data of ESCC samples were extracted from the GSE53625 dataset, and the ir-lncRNA pairs at the common intersection between the GSE45670 dataset and the GSE53625 dataset were considered as components of the survival data.
Univariate and multivariate Cox regression survival analyses were performed using the “survival” package in R 4.1.2 software to screen ir-lncRNAs with significant impact on prognosis. The least absolute shrinkage and selection operator (LASSO) regression analysis was carried out to narrow down the prognostically significant ir-lncRNA pairs. An ir-lncRNAs pairs-based risk prediction model was established with ir-lncRNAs of statistically significant differences in both univariate and multivariate Cox regression survival analysis.
The model building formula is (Huang et al., 2021):
[image: image]
Where n is the counts of ir-lncRNA pairs, and [image: image] and [image: image] represent the related matched results (values of 1 or 0) and coefficients of modeled ir-lncRNA pairs, respectively.
After the riskscores of all the included samples in GSE53625 dataset were calculated, the samples were divided into low-risk group and high-risk group according to the median value of riskscores. Furthermore, the Kaplan-Meier survival curve was applied to analyze the difference of survival prognosis between the high- and low-risk groups with Survival package. The ROC curves of 1-, 2-, and 3-year of overall survival were plotted with ROC package. Univariate and multivariate Cox regression survival analyses were performed with ESCC baseline data and riskscores via the “survival” package in R 4.1.2 software, respectively, to explore the independent prognostic factors of ESCC.
Differential analysis of riskscore for different clinical characteristics
The clinical characteristics such as gender, age, tumor TNM stage, etc. of ESCC samples were extracted from GSE53625 dataset and combined with the corresponding risk scores. Wilcoxon rank sum test was performed via the “ggpubr” package and the boxplots was drawn to show the correlations between risk scores and clinical characters.
Differential expression analysis of immune-related genes in different radiosensitivity groups
Based on those ir-lncRNAs screened from the GSE53625 dataset with prediction model, the immune-related genes in the GSE45670 dataset were reversely extracted, and the differential expression analysis of immune-related genes were compared between the non-responder group and the responder group. A heat map and a volcano plot were drawn.
Gene ontology, Kyoto encyclopedia of genes and genomes functional enrichment analysis
For the purpose of exploring the molecular mechanism of ir-lncRNAs and ir-genes related to radio-resistance in ESCC, we implemented gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) functional enrichment analysis via the “clusterProfiler” R package. In these analyses, a p value < 0.05 was considered statistically significant. GO enrichment analysis was composed of cellular components (CC), molecular functions (MF), and biological processes (BP), which showed the biological functions of genes at different levels, respectively. KEGG pathway enrichment analysis was used to evaluate the enrichment degree of genes in different pathways. The function of selected ir-genes whose expression were significantly different between the non-responder group and the responder group could indirectly speculate on the biological roles and mechanisms of immune-related lncRNAs.
lncRNAs isolation, cDNA synthesis, and RT-qPCR
Cellular total RNAs were isolated via TRIzol reagent (Thermo, United States) from ECA-109 cell lines and ECA-109R cell lines, where ECA-109R were identified as non-responder esophageal cancer and ECA-109 was identified as responder esophageal cancer. To increase the specificity of the real-time quantitative PCR (RT-qPCR), first-strand cDNA was synthesized from 1 mg total RNA via RevertAid First Strand cDNA Synthesis Kit (Invitrogen, China). The relative expression level of the target lncRNAs was detected by three-step RT-qPCR via the Fast SYBR Green Master Mix (Applied Biosystems Inc., CA, United States). The cycling conditions were 5 min of pre-degeneration at 95°C and 30 s of denaturation (polymerase activation) at 95°C followed by 40 cycles of annealing of primers at 95°C for 5 s and extension of primers at 60°C for 30 s. GAPDH was applied as an internal reference control. The relative expression level was calculated by the relative quantification 2−ΔΔCT method. The experiment was repeated three times and the primer sequences were listed in Supplementary Table S1.
Statistical analysis
All statistical analyses were performed via R software (version 4.1.2). The R packages involved the “Biobase” package, the “GEOquery” package, the “survival” package, the “ggpubr” package, and so on. The one-way ANOVA, Student’s t-test (2-tailed) methods or Wilcoxon rank sum test were applied to assess the statistical significance. Quantitative data were shown as the mean ± SE. A p value < 0.05 was considered statistically significant.
RESULTS
Screening results of ir-lncRNAs in GSE45670 and GSE53625 datasets
Flow chart of data collection and analysis is shown in Figure 1. According to the screening criteria, a total of 681 ir-lncRNAs were screened in the GSE45670 dataset. Further DEA showed that 12 ir-lncRNAs were up-regulated and 14 ir-lncRNAs were down-regulated in the non-responder group (p < 0.05). The results are indicated in Table 1 and Figure 2.
[image: Figure 1]FIGURE 1 | Flow chart of data collection and analysis.
TABLE 1 | Differential expression results of immune-related lncRNAs in GSE45670.
[image: Table 1][image: Figure 2]FIGURE 2 | Differential expression results of immune-related lncRNAs in GSE45670 cohort. (A) Heatmap, (B) Volcano map.
The 26 differentially expressed ir-lncRNAs genes constituted 325 ir-lncRNA pairs, of which 180 ir-lncRNA pairs were extracted according to the matching rate [pairRaito in the range of (0.2–0.8)], and the data are shown in Supplementary Table S2. Subsequently, we used the same method to construct the ir-lncRNA pairs in the GSE53625 dataset. Finally, 74 ir-lncRNA pairs successfully matched between the GSE45670 and the GSE53625 dataset after intersection. The detailed information of the 74 ir-lncRNA pairs is shown in Supplementary Table S3.
Clinical characteristics of esophageal squamous cell carcinoma samples in the GSE53625 dataset
The detailed clinical characteristics of GSE53625 ESCC are shown in Table 2.
TABLE 2 | Clinical characteristics of esophageal squamous cell carcinoma samples in GSE53625.
[image: Table 2]Univariate and multivariate COX regression analysis of differential ir-lncRNAs
The results of univariate COX analysis showed that there were six ir-lncRNA pairs of statistical significance associated with survival outcomes (p < 0.05). In order to verify the positive variables obtained by univariate COX regression, LASSO regression (Least absolute shrinkage and selection operator) was further used to screen significant ir-lncRNAs as independent variables for multivariate COX analysis. As a result, five ir-lncRNA pairs, that is, LINC01121|FAM167A-AS1, ADAMTS9-AS2|MGC12916, MIR124-2HG|FAM167A-AS1, LINC00942|ADAMTS9-AS2, and PURPL|FAM167A-AS1, were the most powerful explanatory set of ir-lncRNAs as potential independent variables in multivariate COX model. A further multivariate COX regression was performed, and the results showed that three ir-lncRNA pairs were statistically significant (p < 0.05), namely LINC01121|FAM167A-AS1, ADAMTS9-AS2|MGC12916, and MIR124-2HG|FAM167A-AS1. The above analysis revealed that the three ir-lncRNA pairs could serve as independent prognostic factors for ESCC. Since the hazard ratios of the three ir-lncRNAs were all greater then 1, they were considered to be risk factors for the prognosis of ESCC (as shown in Table 3 and Figure 3). Lasso regression road map and selection map were shown in Supplementary Figures S1, S2. ROC curves were used to assess the predictive ability and accuracy of the predictive models based on the three ir-lncRNA pairs. The results showed that the best cut-off point was 2.371 and the area under the curve (AUC) at 1-, 2-, and 3-year were 0.666, 0.702, and 0.686, respectively, as shown in Figures 4A,B.
TABLE 3 | Univariate and multivariate COX regression analysis of differential ir-lncRNAs.
[image: Table 3][image: Figure 3]FIGURE 3 | Forest plots of Cox regression analysis for ir-lncRNA pairs: (A) Univariate Cox regression analysis, (B) Multivariate Cox regression analysis.
[image: Figure 4]FIGURE 4 | Time ROC curves on overall survival prediction in the GSE53625 cohort (A) Time ROC curves with cutoff value, (B) Time ROC curves at one year, two year and three year.
Additionally, Supplementary Figure S3 provides differential distribution of riskscore with different clinical characters.
Construction of ir-lncRNAs-based risk model and survival analysis of high- and low-risk groups
The model formula obtained from multivariate COX regression analysis was:
[image: image]
The median riskscore was 1.989, and according to the median riskscore, 179 cases were divided into the high- (N = 76) and low-risk (N = 103) groups in the GSE53625 cohort. The Kaplan-Meier survival curves shows that patients in the high-risk group had a worse OS than patients in the low-risk group with more death (p < 0.001, Figure 5). The 1-, 3-, and 5-year survival rates in the low-risk group were higher than those in the high-risk group.
[image: Figure 5]FIGURE 5 | Kaplan-Meier curves for the overall survival of patients in the high- and low-risk group.
Differential expression analysis of ir-lncRNAs in high- and low-risk groups
Based on the aforementioned results, independent sample t-test were further applied to assess the expression of ir-lncRNAs in different riskscore groups. The distribution of risk scores is presented in Figure 6. Among the five significant lncRNAs, only FAM167A-AS1 had a decreased expression in the high-risk group, suggesting that FAM167A-AS1 is a protective factor.
[image: Figure 6]FIGURE 6 | Different expression of five ir-lncRNAs between the low- and the high-risk group.
Univariate and multivariate COX regression analysis of clinical characteristics
The clinical characteristics parameters in Table 2 combined with riskscore were selected to perform univariate and multivariate COX regression analysis. Univariate COX regression analysis demonstrated that age (HR = 1.681, 95% CI = 1.147–2.463, and p = 0.008), N-stage (Lymph node staging, N2 vs. N0, HR = 2.051, 95% CI = 1.137–3.702, and p = 0.017; N3 vs. N0, HR = 2.973, 95% CI = 1.426–6.200, and p = 0.004), TNM-stage (Stage III vs. Stage I, HR = 3.626, 95% CI = 1.138–11.548, and p = 0.029) and risk score (HR = 1.394, 95% CI = 1.225–1.587, and p < 0.001), which were all negative prognostic factors of OS in the GSE53625 cohort (Supplementary Table S4; Figure 7A). After adjusting for age, tumor grade, N-stage and TNM-stage, multivariate Cox analysis demonstrated that only risk score was a negative prognostic factor of OS (HR = 1.305, 95% CI = 1.139–1.495, and p < 0.001) (Supplementary Table S5; Figure 7B).
[image: Figure 7]FIGURE 7 | Forest plots of clinical characteristics and risk score for univariate and multivariate COX regression analysis (A) Univariate Cox regression analysis, (B) Multivariate Cox regression analysis.
CIBERSORT immune infiltration analysis
To explore the difference of tumor immunity landscape between patients in the non-responder group and patients in the responder group, the CIBERSORT algorithm was utilized to evaluate immunity infiltration in the GSE 45670 dataset. The main results are shown in Figures 8A,B. According to the 22-classification method (Newman et al., 2019), the proportions of infiltrating activated mast cells were significantly higher in the responder group (p < 0.05). In addition, the proportions of infiltrating macrophages. M0 were also increased in the responder group, although the difference was not statistically significant (p > 0.05). The 4-classification method showed that the infiltration level of macrophages in the responder group was significantly higher than that in the non-responder group (p < 0.05) (Li B. et al., 2019).
[image: Figure 8]FIGURE 8 | Differences of infiltrating immune cell types between the non-responder group and the responder group of CIBERSORT in GSE45670 cohort. (A) 22-classification method, (B) 4-classification method.
Differential expression analysis of immune genes
The correlation coefficient ρ = ±0.4 and p < 0.05 were used to screen the immune genes related to the above five ir-lncRNAs, and a total of 137 immune genes were screened, of which 11 genes had significant differences in expression levels between the non-responder group and the responder group (p < 0.05). Six genes (IL12RB2, IL32, MMP9, NGF, OASL, and TNFRSF12A) were down-regulated and 5 genes (BMP4, CHP2, OSGIN1, PAK5, and POMC) were up-regulated. The distribution of immune genes expression was presented in Figures 9 and 10. Further, we analyzed the expression differences of 5 ir-lncRNAs from GSE45670 cohort. The distribution of ir-lncRNAs expression was presented in Figure 11. Among the above five ir-lncRNAs, ADAMTS9-AS2, and FAM167A-AS1 were up-regulated in the non-responder group, while LINC01121 and MIR124-2HG were down-regulated (p < 0.05).
[image: Figure 9]FIGURE 9 | Differential expression results of immune genes in GSE45670 cohort. (A) Heatmap, (B) Volcano map.
[image: Figure 10]FIGURE 10 | Differential expression analysis of immune genes in GSE45670 cohort.
[image: Figure 11]FIGURE 11 | Differential expression analysis of five ir-lncRNAs in GSE45670 cohort.
Functional gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis of immune genes
The GO and KEGG enrichment analysis results are shown in Table 4 and Figure 12. In the GO molecular function enrichment analysis, the differentially expressed immune genes were mainly enriched in receptor ligand activity, signaling receptor activator activity, growth factor activity, and other pathways. In biological process enrichment analysis, differential immune genes were mainly enriched in extrinsic apoptotic signaling pathway, regulation of apoptotic signaling pathway, regulation of extrinsic apoptotic signaling pathway, etc. In the cellular component enrichment analysis, the differential immune genes were mainly enriched in endosome lumen, tertiary granule lumen, and Golgi lumen, but the corrected p value was not statistically significant, suggesting that these pathways were not significant. In the KEGG enrichment analysis, the differential immune genes were mainly enriched in Cytokine-cytokine receptor interaction, Estrogen signaling pathway, Fluid shear stress and atherosclerosis. The immune genes mainly involved in enrichment analysis included NGF, IL32, BMP4, TNFRSF12A, and IL12RB2.
TABLE 4 | Main results of GO and KEGG enrichment analysis for significantly expressed immune genes.
[image: Table 4][image: Figure 12]FIGURE 12 | Functional GO and KEGG Enrichment Analysis of Immune Genes. (A) GO biological process enrichment, (B) GO cellular component enrichment, (C) GO molecular function enrichment, (D) KEGG pathway enrichment.
lncRNAs isolation, cDNA synthesis, and RT-qPCR
The expression levels of ADAMTS9-AS2, FAM167A-AS1, LINC01121, MIR124-2HG, MGC12916 and the internal reference RNA were detected by RT-qPCR using three of the above-mentioned cell lines. Compared with those lncRNAs in the non-responder group, expression levels of ADAMTS9- AS2, FAM167A-AS1, and MGC12916 lncRNA in the responder group were significantly up-regulated, while expression levels of LINC01121 and MIR124-2HG were down-regulated. The results are shown in Supplementary Figure S4 and Supplementary Table S6.
DISCUSSION
Many recent studies have focused on establishing the signatures of coding genes with or without non-coding RNAs to assess prognosis in patients with malignancies (Zhu et al., 2016; Qu et al., 2018; Hong et al., 2020). This research strategy divides prognostic groupings based on the absolute expression level of certain genes of interest, of which the simplicity of operation is an important advantage, as the prognostic model was set up on quantifying the expression levels of transcripts (Hong et al., 2020). However, the shortcomings are also obvious, because the expression of most genes varies greatly, especially for non-coding RNAs. This means that some basic experiments (such as rt-qPCR) should be used for practical verification to ensure that the genes of interest had sufficient expression (Zhu et al., 2021). To overcome the shortcomings of the above model, new prognostic models based on the strategy of the relative expression of immune-related gene pairing were proposed, which became a mainstream bioinformatics research method (Sun et al., 2020; Wu et al., 2020; Wang Y. et al., 2021). In this study, we were inspired by the new strategy and attempted to construct a reasonable model with ir-lncRNA pairs assess the prognostic value of ir-lncRNAs. Therefore, we did not apply rt-qPCR to verify their exact expression levels in the signatures in our study. To the best of our knowledge, there are no similar studies investigating the radioresistance of esophageal cancer.
First, we explored the expression level of ir-lncRNAs between non-responder ESCC patients and responder ESCC patients to investigate the potential mechanism of radioresistance in ESCC after chemoradiotherapy. We first screened 26 differentially expressed ir-lncRNAs from the GEO45670 dataset. The differential expression of these lncRNAs indicates that ir-lncRNAs had played an important role in the radioresistance of ESCC. Second, previous studies have shown that lncRNAs achieve biological functions through a variety of target genes, which may involve immune-related genes (Wang Y. et al., 2021). Therefore, we further explored the differential expression of immune genes, which were not only differentially expressed in esophageal cancer tissues with different response characteristics of radiotherapy, but also correlated with the expression of immune lncRNAs, and thus could be considered as target genes of ir-lncRNAs. Third, differential co-expression analyses were performed to classify ir-lncRNAs and immune genes, and the prognostic performance of ir-lncRNAs were validated via single-pairing approach along with a 0 or 1 matrix by cyclical calculation. Fourth, we performed univariate analysis combined with Lasso penalized regression to identify the significant irlncRNA pairs. Next, multivariate regression was used to identify ir-lncRNAs with independent effects. Fifth, the best model was set up by calculating AUC value with ROC, where the best cut-off point was applied to distinguish high- or low-risk groups of EPC patients. Sixth, we further evaluated this new model in a variety of clinical settings, including survival, clinical or pathological characters. At last, tumor-infiltrating immune cells between different radioresistance of esophageal cancer.
Radiotherapy is one of the main and effective treatments for advanced EPC, but the therapeutic outcomes of which are still unsatisfactory (Li et al., 2016; Yan et al., 2022), because the complete response rate of radiotherapy is less than 35%–40% (Mori et al., 2021). Radioresistance is the biggest problem and obstacle faced by radiotherapy in esophageal cancer, as poor response to radiotherapy could result in local failure after radiotherapy (Chen H. et al., 2020). Therefore, it is particularly important to search for radioresistance-related molecular markers and new radiosensitizers to enhance radio-sensitivity in ESCC cells and improve the survival of ESCC patients with radioresistance. Radioresistance is the focus and difficulty in cancer radiobiology research, which is also a clinically urgent issue (Wang et al., 2019; Yu et al., 2020; Sun et al., 2021; Liu et al., 2022). Genes are an intrinsic determinant of tumor radioresistance, and studies have shown that multiple genes can affect the radioresistance of esophageal cancer (Huang et al., 2019; Wang et al., 2019; Hua et al., 2020; Yu et al., 2020; Han et al., 2021; Sun et al., 2021; Liu et al., 2022). Practice has shown that it is common in clinical practice that even patients with esophageal cancer of the same stage and the same pathological type have great differences in the effect of radiotherapy after receiving the same radiotherapy regimen. The fundamental reason is the genetic differences between different individuals (Huang et al., 2019; Wang et al., 2019; Hua et al., 2020; Yu et al., 2020; Han et al., 2021; Sun et al., 2021; Liu et al., 2022). If the decisive genes of radioresistance can be screened out, it is of great significance for the study of radiosensitization, targeted therapy, and prediction of radiotherapy effect to guide individualized therapy. Although more molecular studies have been reported on the radioresistance or radiosensitivity of ESCC, the clinical significance of most molecular markers remains unclear and inconsistent due to the complexity and variability of detection methods.
Recent studies had found that a variety of lncRNAs can affect the radiosensitivity of EPC by regulating gene expression and key signal transduction pathways (Liu et al., 2021). Many lncRNAs are involved in the regulation of the tumor immune microenvironment, which are often referred to as immune-related lncRNAs (Huang et al., 2018). However, there is few reports on the relationship between ir-lncRNAs and radioresistance and prognosis of ESCC. Furthermore, the mechanism of ir-lncRNAs involved in the radioresistance is still unclear. In recent years, the use of bioinformatics methods for data mining at the molecular level provides new ideas for the study of molecular pathogenesis of various diseases including tumors (Zheng et al., 2020). Our present study used bioinformatics methods to re-analyze the radioresistance-related microarray data of esophageal cancer from GEO, and screened for differentially expressed ir-lncRNA genes. Through biological process annotation and signal pathway enrichment analysis, we have excavated some ir-lncRNA genes and immune-genes and potential signal pathways related to radioresistance to investigate the mechanism of radioresistance at the molecular level in ESCC. Zhu et al. (2021) had identified that a total of 111 immune-related lncRNAs were different expressed in ESCC, in which,14 lncRNAs markedly related to prognosis of ESCC were identified via univariate analysis. Finally, a model based on the 8-lncRNA signature was identified in the multiple regression model, which demonstrated that the 8-lncRNA signature has certain power in predicting the prognosis of ESCC patients (Zhu et al., 2021). Since the expression abundance of ir-lncRNAs is extremely low, which is different from the expression of protein genes, we used the relative expression status between different ir-lncRNAs to explore the biological functions of lncRNAs. Based on 26 differentially expressed ir-lncRNAs, we constructed 325 ir-lncRNA pairs in the GSE45670 dataset, and 180 of which were extracted to further study. As seen in our study, we found that there were differences in gene expression between non-responder ESCC and responder ESCC in terms of LINC01121, FAM167A-AS1, ADAMTS9-AS2, MGC12916, MIR124-2HG. ADAMTS9-AS2 and FAM167A-AS1 were up-regulated in the non-responder group, while LINC01121 and MIR124-2HG were down-regulated (p < 0.05). Among the five lncRNAs we identified; some studies have demonstrated their prognostic effects on malignant tumors. Shen et al. (2020) had found that a worse 5-year overall survival was detected in ESCC-patients with low-expressed ADAMTS9-AS2. Similar results were seen in clear cell renal cell carcinoma and bladder cancer (Song et al., 2019; Zhang et al., 2020), which indicates that ADAMTS9-AS2 is a tumor suppressor gene. However, the opposite results were found in patients with tongue squamous cell carcinoma, where high-expression of LncRNA ADAMTS9-AS2 promotes proliferation, migration and epithelial-mesenchymal transition (EMT) with poor prognosis, and low-expression was detected in patient with lymph node metastasis (Li Y. et al., 2019). In our study, the expression of ADAMTS9-AS2 was increased in non-responsive EPC patients, suggesting that ADAMTS9-AS2 was involved in the radioresistance of EPC, but the specific mechanism has not been reported. Some scholars have found that ADAMTS9-AS2 have been shown to play essential roles in temozolomide (TMZ) resistance in glioblastoma (GBM) (Yan et al., 2019). It should be mentioned that, although multiple lncRNAs, such as HOTAIR (Lv et al., 2013), CCAT2 (Zhang et al., 2015) and MALAT1 (Deng et al., 2016), have shown potential prognostic value in ESCC, the role of immune-related lncRNA signatures in prognosis has not been elucidated in the literature.
A few studies had addressed the role of immune-related lncRNAs in survival and prognosis of ESCC. A previous study had established an immune gene-based prognostic model for ESCC and esophageal adenocarcinoma (EAC) (Fei et al., 2021). Prognosis-related immune-gene-based model based on BMP1, EGFR, S100A12, HLA-B, TNFSF18, IL1B, and MAPT had proved to be useful for prognosis in ESCC (Fei et al., 2021). To verify the relationship between ir-lncRNA pairs and survival from ESCC, we adopted the GES53625 dataset as validation cohort. We constructed a novel prognostic prediction model consisting of three ir-lncRNA pairs, including LINC01121|FAM167A-AS1, ADAMTS9-AS2|MGC12916, and MIR124-2HG|FAM167A-AS1, which involved five ir-lncRNAs. We further confirmed by Wilcoxon rank sum test that there were significant differences in the expression levels of the above ir-lncRNAs in different risk score groups in the GES53625 cohort. In addition, the prognostic value of the novel model was confirmed by the multivariate Cox analysis. The overall survival in the high-risk group was significantly worse than that in the low-risk group (p < 0.001). The 1-year, 2-year, and 3-year prediction performance of this risk-model was 0.666, 0.702, and 0.686, respectively. Univariate and multivariate Cox analysis confirmed that prognostic riskscores based on three ir-lncRNA pairs were important prognostic factors for ESCC. Univariate and multivariate COX regression analysis indicated that the three ir-lncRNA pairs were associated with the prognosis of ESCC, and in the high-risk group ADAMTS9-AS2, LINC01121, MGC12916, and MIR124-2HG was up-regulated, FAM167A-AS1 was up-regulated. All the three ir-lncRNA pairs were markers of poor prognosis with worse overall survival for ESCC. A previous research showed that ADAMTS9-AS2 is a prognostic biomarker correlated with immune infiltrates and predicted a poorer overall survival when it was low expressed in lung adenocarcinoma (Lin et al., 2021). Li W. et al. (2020) had identified the expression levels of eight lncRNAs to establish a signature for predicting the survival of patients with ESCC. Li Z. Y. et al. (2020) found that the expression of lncRNA Rpph1 in patients with EPC was significantly higher than that in healthy participants (p < 0.05), and was positively correlated with cancer tissues (r = 0.681, p < 0.05). In vitro experiments confirmed that silencing lncRNARpph1 could up-regulate radio-induced pro-apoptotic-related proteins such as Bax, down-regulate anti-apoptotic-related proteins such as Bcl-2, thereby increasing radiotherapy-induced apoptosis of EPC cells. In addition, silencing lncRNA Rpph1 can also improve the radiosensitivity of EPC cells by reducing radiation-induced G2/M phase arrest and epithelial-mesenchymal transition (EMT) (Li Z. Y. et al., 2020). Wang et al. found that lncRNA CCAT2 was highly expressed in EPC cells, which can negatively regulate the expression of miR-145 and inhibit the phosphorylation of Akt, ERK, and p70 s6K1 to increase radioresistance. In vitro experiments confirmed that knockout of lncRNA CCAT2 can significantly increase radiation-induced apoptosis, thereby increasing radiosensitivity in EPC (Wang et al., 2020). In addition to mediating radioresistance, some lncRNAs also have radiosensitizing effects. Lin et al. reported that compared with the radioresistant ESCC cell line TE-1-R, the expression of lncRNA GAS5, and RECK was higher in the radiosensitive cell line TE-1, while the expression of miR-21 was lower in cell line TE-1 (Lin et al., 2020). Further research found that up-regulation of lncRNA GAS5 can increase the expression of RECK by inhibiting miR-21, reduce the viability and colony formation ability of EPC cells under radiation exposure, and increase radiation-induced apoptosis of cancer cells (Lin et al., 2020). All these evidences had suggested that lncRNAs play an important role in radioresistance or radiosensitivity of ESCC. In general, high-abundance lncRNAs have significant biological functions, especially lncRNAs with significant differences in expression (Yan et al., 2021). Different from the above studies, we focused on the ir-lncRNAs related to the immune environment or immune regulation of radioresistance. As expected, we found that ir-lncRNAs are involved in the bidirectional regulation of radiosensitivity, that is, some lncRNAs could promote radioresistance, while others may increase radiosensitivity.
In recent years, the study of the tumor immune microenvironment has taken a leading role in field of cancer research (Wang et al., 2022). The differential expression of immune genes is an important molecular mechanism leading to changes in the tumor immune microenvironment (Anderson, 2020; Peña-Romero and Orenes-Piñero, 2022). Several previous studies reported the prognostic value of a single immune-related gene in EPC or lung cancer, such as FGFR1, TNFRSF10B, and IL1B (Schabath et al., 2013; Takase et al., 2016; Zhang Y. et al., 2021). However, the study focused on the prognostic role of the ir-lncRNAs with microenvironment and immune cells in ESCC is lacking, especially for ESCC with radioresistance. Identification of prognostic value of the tumor microenvironment in esophageal cancer is necessary (Tan et al., 2021). In our study, we identified 11 immune genes with differential expression in the GSE 45670 cohort, and our findings further confirmed the involvement of immune alterations in the biological process of radiation resistance in ESCC. To further explore the changes and biological pathways in the immune microenvironment between patients in the non-responder group and patients in the responder group, CIBERSORT was carried out in this study as well, which was an analytical tool developed by Newman et al. (2015) to provide an estimation of the abundances of member cell types in a mixed cell population via gene expression data, and provided the possibility of identifying immune biomarkers for diagnosis and prognosis. The GSE 45670 dataset was utilized to evaluate immunity infiltration via the CIBERSORT algorithm. Growing evidence pointed to the underlying mechanisms by which the local immune microenvironment and immune cells drive tumorigenesis in many cancers (Greten and Grivennikov, 2019; Wang Q. et al., 2021; Kumar et al., 2022). Previous studies have shown that DNA damage repair-related genes, apoptosis-related genes, cellular hypoxia-related genes, cell cycle-related genes, and autophagy genes play important roles in radiosensitivity by changing the microenvironment (Chen et al., 2017; Tang et al., 2018; Zhang H. et al., 2021). Tumor-infiltrating immune cells (TIICs) in esophageal cancer tissue may be an important determinant of prognosis and therapy response (Lu et al., 2020). In our study, we found that there were some differences in infiltrating immune cells between the non-responder group and the responder group, which mainly manifested in differences in infiltration of activated mast cell and macrophage. Mast cells are an important member of innate immune cells. Circulating mast cells contribute to the growth and metastasis of many tumors, while mast cell infiltration in tumor tissue is closely related to tumor survival in some cancer (Welsh et al., 2005). In a study of lung cancer, it has been shown that more human mast cells infiltrated in cancer tissue improved the survival of cancer, suggesting that mast cells can participate in the antitumor immune process (Welsh et al., 2005). In ESCC cases with tumor complete remission, the number of mast cells infiltrated was higher, indicating that mast cells were involved in the therapeutic effect of radiotherapy.
There are a large number of tumor-associated macrophages (TAMs) in the tumor microenvironment, which have a high degree of interaction with tumor cells, tumor stem cells, epidermal cells, fibroblasts, T/B cells, and NK cells (Welsh et al., 2005). Although macrophages theoretically have the ability to destroy tumors, there is growing experimental evidence that TAMs promote tumor progression (Mantovani and Allavena, 2015). Resilience and diversity are two characteristics of macrophages, which means that macrophages have dual effects in tumor development (Cassetta and Pollard, 2020). According to the activation type of macrophages and their different roles in the tumor microenvironment, TAMs are generally classified into two functionally opposite subtypes, classically activated M1 macrophages and alternately activated M2 macrophages, both of which represent one of the main tumor-infiltrating immune cell types (Cassetta and Pollard, 2020). Basic research has found that a large number of TAMs proliferate after radiation, and at the same time release a large number of inflammatory signals (IL-1) and immunosuppressive signals (TGF-b). Unfortunately, the massive accumulation of macrophages can lead to tumor recurrence, which is very similar to TAMs-guided tissue damage repair after chemotherapy. M1 macrophages have antitumor effects, while M2 macrophages mainly play a role in promoting tumor growth, invasion and metastasis. Our study found that macrophages infiltrated more in esophageal cancer tissues in responder group, among which M0 macrophages were the main infiltrating cells. The infiltrating number of M2 macrophages was more often in the non-responder group, although there was no statistical difference compared with that in responder group. It is worth noting that both M1 and M2 macrophages have high degree of plasticity, which makes it possible to design appropriate methods to re-induce and re-educate them, thereby becoming an effective weapon against tumors. Different types of macrophages can be converted into each other upon tumor microenvironment changes or therapeutic interventions. In view of the important role of macrophages in tumor radioresistance, it needs to do in-depth research on the realization of their functions and their regulatory mechanisms, in order to find new anti-tumor targets.
Some limitations should be mentioned in our study. First, the prognostic model based on ir-lncRNA pairs was established through bioinformatics analyses from data available in the GEO databases. Hence, some further prospective trials or experimental data should be performed to validate the findings of this study. Second, our study found that most of clinical characters were not correlated with the riskscore, and tumor grade had a weak correlation with the riskscore. We speculate that preoperative adjuvant therapy altered gene expression status, resulting in clinical factors not correlated with gene expression. In addition, insufficient sample size may also be an important reason. Third, our study only initially explored the potential relationship between ir-lncRNAs risk signatures and immune cell infiltration, so further studies are needed to reveal the underlying mechanisms. Fourth, the effect of ir-lncRNAs on the immune microenvironment was indirectly speculated through immune genes, and there is currently a lack of direct evidence. More experiments are needed to confirm the impact of ir-lncRNAs on the radioresistance-related microenvironment of ESCC. Finally, as a preliminary exploratory study, it only has a qualitative role in the identification of ir-lncRNAs and the prognosis risk of ESCC patients. The relationship between ir-lncRNAs and the prognosis of ESCC patients has not been accurately quantified, which still needs to be further verified by multicenter studies with large samples.
In conclusion, ir-lncRNAs may be involved in the biological regulation of radioresistance in patients with ESCC. Changes in macrophage infiltration and immune gene expression are potential mechanisms of radiotherapy resistance, which are worthy of further study. This study had successfully established a prognostic risk model based on three ir-lncRNAs pairs, which is an important attempt to identify and predict the prognosis of ESCC. More importantly, it is a useful supplementary method to predict the prognosis of patients with esophageal squamous cell carcinoma based on TNM staging.
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Background: Forkhead box P (FOXP) family was introduced as a double-edged sword in tumorigenesis and influenced immunotherapy response by modulating host immunity. This study aimed to summarize the involvement of the FOXP family in non-small cell lung cancer (NSCLC).
Methods: The UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA), and Reverse transcription-quantitative polymerase chain reaction (RT‒qPCR) were used to analyse the expression levels of the FOXP family in NSCLC. The prognostic impact was evaluated using Kaplan-Meier Plotter. MethSurv, UALCAN, and cBioPortal were applied to analyse the DNA methylation and mutation status of the FOXP family respectively. COEXPEDIA, STRING, and GeneMANIA were used to explore the interaction mechanism. Finally, TISIDB was used to investigate all of the immune-related characteristics regulated by the FOXP family.
Results: The expression levels of FOXP1/3/4 were dysregulated in NSCLC tissues than that in normal tissues. Groups with low expression levels of FOXP1/4 and high expression levels of FOXP2/3 were associated with poor prognosis in NSCLC. The transcriptional levels of FOXP2/3/4 were correlated with DNA methylation in NSCLC. FOXP1/3/4 DNA methylation were correlated with prognosis. Pathway enrichment analysis indicated the FOXP family was mainly related to immune-related pathways. After DNA methylation, the correlations between FOXP family and immune factors were opposite to that before alteration in NSCLC.
Conclusion: This study elucidated FOXP family could serve as vital diagnostic and prognostic biomarkers in NSCLC. Our study highlighted novel potential functions of FOXP family DNA methylation in regulation of immune-related signatures in NSCLC.
Keywords: non-small cell lung cancer, FOXP family, prognostic value, immune infiltration, DNA methylation
INTRODUCTION
Lung cancer accounts for a large proportion of malignant tumours in the world, of which non-small cell lung cancer (NSCLC) accounts for approximately 85% (Hirsch et al., 2017). According to diverse histological subtypes, NSCLC can be divided into lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) (Ruiz-Cordero and Devine, 2020). At present, surgery, cisplatin-based therapy, stereotactic body radiation therapy, definitive concurrent chemotherapy, and radiation therapy have significantly reduced the risk of death in NSCLC. However, these treatments are only suitable for a very small proportion of NSCLC patients. Meanwhile, according to data from recent years, the long-term survival rate of NSCLC patients is still very poor (Evison and AstraZeneca, 2020). Most recently, immune checkpoint inhibitors (ICIs), including inhibitors of the programmed cell death receptor 1 (PD-1) axis, have apparently altered the NSCLC management landscape (Camidge et al., 2019). However, effective biomarkers for guiding NSCLC patients to use ICI drugs are still lacking (Zhang et al., 2021). Therefore, investigating the molecular mechanisms that drive NSCLC initiation and progression, searching for more sensitive biomarkers, and identifying biomarkers for ICI efficacy are the current research hotspots. The forkhead box P (FOXP) family consists of four members, including FOXP1, FOXP2, FOXP3, and FOXP4 (Kim et al., 2019). The FOXP family is responsible for the occurrence of many tumours. For example, FOXP1 is related to the occurrence of drug resistance in patients with ovarian cancer during treatment (Hu et al., 2020). FOXP1 also has a function in the occurrence of cancer cachexia that causes weakness (Neyroud et al., 2021). FOXP2 promotes tumour progression in triple-negative breast cancer through the mechanisms of targeting specific molecules (Wu et al., 2018). FOXP3 is involved in the regulation of autophagy-related proteins in gastric cancer (Li et al., 2020a). Overexpression of FOXP4 is closely implicated in the malignant prognosis of breast cancer by promoting the biological process of EMT (Ma and Zhang, 2019). Therefore, we know that the FOXP family plays a role in tumour suppressor genes and oncogenes in tumours (Kim et al., 2019). However, the roles of the FOXP family in the effect and mechanism of immune infiltration have not yet been determined. In this article, we comprehensively analysed FOXP family mRNA expression/DNA methylation signatures, mutations, functional pathways of coexpression networks, survival value, epigenetic alterations, and relationships with immune-related factors. Furthermore, we performed real-time quantitative PCR (RT‒qPCR) to detect the expression levels of the FOXP family.
MATERIALS AND METHODS
UALCAN
UALCAN (http://ualcan.path.uab.edu/), an online website was used to compare the difference in the mRNA expression levels of the FOXP family between NSCLC tissues and normal tissues obtained from The Cancer Genome Atlas (TCGA) (Chandrashekar et al., 2017). Then, we explored the changes in FOXP family expression levels in different pathological stages with this tools. In addition, we used UALCAN to analyse the effect of DNA methylation on the translational levels of the FOXP family.
Gene expression profiling interactive analysis
GEPIA (http://gepia.cancer-pku.cn) was used to analyse the mRNA levels of the FOXP family in NSCLC tissues compared to normal tissues using the open public data from TCGA (Tang et al., 2017). Under the condition of selecting the corresponding cancer species, the website can automatically output the corresponding scatter diagrams, bar charts, and box plots according to the input gene name.
Kaplan–Meier plotter
Kaplan‒Meier plotter (http://kmplot.com/analysis/) provided data and algorithms for analysing the prognostic significance of patients with expression imbalances of the FOXP family (Peng et al., 2017). All the patients were divided into two groups according to the median expression levels of FOXP family genes to measure the difference in survival time between the above two groups. Kaplan‒Meier curves were plotted to explore the overall survival (OS) analysis by the log-rank test. p values < 0.05 were defined as statistically significant.
MethSurv database
The MethSurv database (https://biit.cs.ut.ee/methsurv/) was used to perform survival analysis of DNA methylation of the FOXP family in NSCLC by selecting a specific gene name and cancer type using the TCGA dataset. The “Region-based analysis” module was used by choosing “LUAD TCGA March 2017” and “LUSC TCGA March 2017”.
R/Bioconductor package
We visualized the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results of coexpressed genes of the FOXP family using R/Bioconductor packages (“BiocManager,” “DOSE,” “cluster Profiler,” “org.Hs.eg.db,” “enrichplot” and “ggplot2”) which were downloaded from Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/). The enrichment analysis results with a p value < 0.05 were demonstrated to have great significance.
TISIDB
TISIDB (http://cis.hku.hk/TISIDB/index.php) was applied to infer the relative abundance of immune-related characteristics of 28 tumour-infiltrating lymphocyte (TIL) types, immunomodulators, chemokines, and receptors regulated by the FOXP family in NSCLC tissues. On the foundation of the mRNA expression of the FOXP family profiles, gene set variation analysis (GSVA) examined which types of immune-related characteristics were regulated by the current genes with epigenetic alterations (copy number alteration and DNA methylation). In addition, TISIDB provided data on the degree of infiltration of immune-related characteristics in NSCLC tissues to infer the regulatory effect of the FOXP family. Finally, TISIDB was applied to explore the expression of the FOXP family in different immune subtypes (Ru et al., 2019).
Cancer single-cell state atlas
Cancer single-cell state atlas (CancerSEA) (http://biocc.hrbmu.edu.cn/CancerSEA/) provided datasets that was applied to assess the functional roles of the FOXP family in NSCLC. The CancerSEA supported the evaluation of 14 functional states at the single-cell level using public datasets including epithelial-mesenchymal transition (EMT), DNA damage, and so on.
COEXPEDIA
COEXPEDIA (https://www.coexpedia.org) is an online database. The corresponding predicted target genes were obtained according to the coexpression trend of consistency and the common pathways involved in the regulation of the occurrence and development of disease. COEXPEDIA offered a network reflecting clear interactions between the members of the FOXP family and the corresponding coexpressed genes.
cBioPortal
cBioPortal (https://www.cbioportal.org/) was used to ascertain the consequence of alteration frequency and mutation type of the FOXP family in NSCLC (Gao et al., 2013). cBioPortal precisely presented the details of all forms of mRNA dysregulation, gene amplification, and deep deletion with the FOXP family in NSCLC patients by the OncoPrint module.
STRING
STRING (https://string-db.org) was used to construct a protein‒protein interaction (PPI) network for the retrieval of interacting genes (Szklarczyk et al., 2017). In this article, STRING was used to examine the interactions among the FOXP family and determine the hub regulatory genes. The genes not only required a minimum interaction score ≥ 0.4, but were also imported into Cytoscape (version 3.7.2) with the cytoHubba app to screen the modules of the top 10 hub genes.
GeneMANIA
GeneMANIA (http://www.genemania.org) administers data on protein and genetic interactions, pathways, and coexpression to predict gene clusters with similar functions (Warde-Farley et al., 2010). This site relies on credible evidence sources of literature to forecast functionally identical genes of the FOXP family to clarify the interaction mechanism of the FOXP family.
Cell lines and culture conditions and reverse transcription-quantitative polymerase chain reaction
A human lung epithelial cell line (BEAS-2B Cell Article: No. CL-0496), LUAD cell lines (A549 Cell Article: No. CL-0016, NCI-H1299 Cell Article: No. CL-0165, and PC9 Cell Article: No. CL-0298), and LUSC cell line (NCI-H226 Cell Article: SNL-388) were purchased from Procell Life Science & Technology Co. Ltd. (Wuhan, China) on 10 December 2021. All cell lines were identified by short tandem repeat (STR) analysis. The human lung epithelial cell line BEAS-2B and the LUAD cell line PC9 were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco). NSCLC cell lines (A549, NCI-H1299, and NCI-H226) were cultured in RPMI 1640. The two types of culture media both contain 10% heat-inactivated foetal bovine serum (FBS). The gas concentration in the incubator was set to 5% CO2, and the temperature was set to 37°C. The method of evaluating the gene expression was RT‒qPCR. TRIzol reagent (Invitrogen) was applied to extract total RNA. After the concentration of extracted RNA reached the appropriate standard, we used miRNA reverse transcription and complementary DNA (cDNA) reverse transcription kits to carry out reverse transcription. Then, RT‒qPCR was performed on a Bio-Rad after the corresponding steps were executed according to the manufacturer’s instructions for TB Green Premix Ex Taq II (Takara). Finally, we used the 2−ΔΔCt method to calculate relative mRNA expression. The reference gene was glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and the sequences of the primers for the GAPDH and FOXP family are listed in Supplementary Table S1.
Statistical analysis
The statistical data were analysed using GraphPad Prism 9.3.1 by Student’s test and ordinary one-way ANOVA to evaluate the differential expression. The statistical data are presented as the mean ± SEM. Kaplan‒Meier Plotter was used to explore the overall survival (OS) analysis by the log-rank test. The prognostic values of single CpGs in DNA methylation analysis were assessed via the likelihood-ratio test. p values < 0.05 obtained from all the above analyses were defined as statistically significant.
RESULTS
The mRNA expression levels of the forkhead box P family in NSCLC
A flowchart was created to illustrate our study (Figure 1A). UALCAN was used to compare the difference in the mRNA expression levels of the FOXP family between normal samples and NSCLC samples. The summary of the transcriptional levels of the FOXP family is shown in the form of heatmaps (Figures 2A,B). Moreover, the GEPIA database was applied to verify the expression of the FOXP family between NSCLC tissues and normal tissues (Figures 2C–J). Compared to normal tissues, there were lower expression levels of FOXP1 in LUAD and LUSC, a lower expression level of FOXP2 in LUAD, higher expression levels of FOXP3 in LUAD and LUSC, a higher expression level of FOXP4 in LUAD, and a lower expression level of FOXP4 in LUSC. In addition, the expression level of FOXP2 was not significantly different in LUSC. We examined the mRNA expression levels of the FOXP family in cell lines (BEAS-2B, A549, NCI-H1299, PC9, and NCI-H226) (Figures 2K–N). The outcomes of RT-qPCR showed that the mRNA expression levels of FOXP1, FOXP3, FOXP4 did have statistical differences between LUSC cell line (NCI-H226) and normal human lung epithelial cell line (BEAS-2B). However, when tested individually to verify the differential expression levels of FOXP family between LUAD cell lines and normal control, we found that only two members (FOXP1 and FOXP3) were statistically significant between LUAD cell lines (A549, PC9, and NCI-H1299) and normal human lung epithelial cell line (BEAS-2B), which were consistent with analysis of GEPIA database. In order to find the source of this difference, we conducted meta-analysis to explore the expression difference of FOXP family from different database using LUNG CANCER EXPLORER (https://lce.biohpc.swmed.edu/lungcancer/index.php#page-top) database. The results showed that the different expression trends of FOXP2 and FOXP4 objectively existed in LUAD among different data sets. After meta-analysis, it was more likely that the expression of FOXP2 was no statistically significant, and the expression of FOXP4 was upregulated in LUAD patients compared with normal controls (Supplementary Figure S1). Therefore, we concluded that FOXP1 was downregulated, and FOXP3 was upregulated between LUAD patients compared with normal controls, while the expression levels of FOXP2 and FOXP4 in LUAD compared with normal controls need to be verified by more clinical samples. Besides, FOXP1 and FOXP4 were downregulated, FOXP3 was upregulated, and FOXP2 was not statistically significant between LUSC patients with normal controls.
[image: Figure 1]FIGURE 1 | Analysis explanation with a detailed flow diagram of this study. (A) The study comprised eight parts: Ⅰ The mRNA expression levels of FOXP family in NSCLC; Ⅱ The relationship between the transcriptional levels of FOXP family and clinicopathological stages in NSCLC; Ⅲ The prognostic features of FOXP family in NSCLC patients; Ⅳ The coexpression networks of the FOXP family and GO and KEGG pathway analyses of coexpressed genes; V Analysing the functional states of the FOXP family at single-cell level; VI The degree of immune factors infiltration regulated by FOXP family in NSCLC; VII Genetic alteration and interaction analyses of FOXP family in NSCLC; VIII DNA methylation analysis of FOXP family.
[image: Figure 2]FIGURE 2 | The differential expression of FOXP family in NSCLC. (A) The heatmap represented the transcriptional levels of FOXP family in patients with LUAD compared with normal samples using UALCAN. (B) The heatmap represented the transcriptional levels of FOXP family in patients with LUSC compared with normal samples using UALCAN. (C–J) The compare the mRNA expression of FOXP1/2/3/4 between LUAD/LUSC and normal tissue samples by using GEPIA dataset; The box plot showed the relative expression levels of family in normal tissue and NSCLC tissue. p < 0.05 was defined as statistically significant. (K–N) The mRNA levels of FOXP family between LUAD cell lines (A549, NCI-H1299, and PC9)/LUSC cell line (NCI-H226) and normal human lung epithelial cell line (BEAS-2B) by RT-qPCR. (Legend: ***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05; ns. p > 0.05; LUAD, Lung adenocarcinoma; LUSC, Squamous cell carcinoma of lung; FOXP, Forkhead box P; RT-qPCR, Reverse transcription-quantitative polymerase chain reaction).
Relationship between the transcriptional levels of the forkhead box P family and clinicopathological stages in non-small cell lung cancer
Next, the inconsistency of the transcriptional expression levels of the FOXP family members among the clinicopathological parameters of NSCLC patients was analysed by UALCAN (Supplementary Figures S2–S5). The clinicopathological parameters included histological subtypes, individual cancer stages, patient age, patient smoking habits, nodal metastasis status, and TP53 mutation status. As shown in the histograms in Figures 3A,B, the transcriptional levels of FOXP1/3/4 were basically markedly correlated with the above six clinicopathological stages in LUAD. However, there was no discernible difference in the relationship between the transcriptional level of FOXP2 and the six clinicopathological stages in LUAD (Figure 3A). The transcriptional levels of FOXP1/2/3 were markedly correlated with the above six clinicopathological stages in LUSC, while the difference in FOXP4 was unremarkable (Figure 3B). In brief, the above results preliminarily suggested that the FOXP family was involved in characteristics that included age factors, inducements, progression, metastasis, and mutation types in NSCLC patients.
[image: Figure 3]FIGURE 3 | The relationship between the expression levels of FOXP family and clinicopathological stages. (A) The Bar graphs showing the expression of FOXP family differences between the clinicopathological stages of LUAD and normal tissues. (B) The Bar graphs showing the expression of FOXP family differences between the clinicopathological stages of LUSC and normal tissues.
Prognostic features of the forkhead box P family in non-small cell lung cancer patients
In this step, Kaplan‒Meier Plotter was used to explore the prognostic value of the FOXP family in NSCLC. Survival curves were generated to present the association between the overall survival (OS) rate of NSCLC patients and the corresponding gene expression levels of the FOXP family. All results are shown in Figures 4A–H; Supplementary Figure S6. Upon stratification according to the median expression level, higher FOXP1 expression was correlated with better prognosis of LUAD (Figure 4A, n = 336, hazard ratio (HR) = 0.66, 95% CI 0.52–0.84, log-rank p = 0.00075). Higher FOXP1 expression was correlated with better prognosis of NSCLC (Figure 4B, n = 572, HR = 0.69, 95% CI 0.58–0.81, log-rank p = 9e-06). Lower FOXP2 expression was correlated with better prognosis of LUAD (Figure 4C, n = 348, HR = 1.31, 95% CI 1.03–1.67, log-rank p = 0.027). Lower FOXP2 expression was correlated with better prognosis of NSCLC (Figure 4D, n = 596, HR = 1.38, 95% CI 1.17–1.63, log-rank p = 0.00012). Lower FOXP3 expression was correlated with better prognosis of LUAD (Figure 4E, n = 372, HR = 1.37, 95% CI 1.09–1.73, log-rank p = 0.0072). Lower FOXP3 expression was correlated with better prognosis of NSCLC (Figure 4F, n = 984, HR = 1.25, 95% CI 1.1–1.41, log-rank p = 0.00065). Higher FOXP4 expression was correlated with better prognosis of LUAD (Figure 4G, n = 336, HR = 0.71, 95% CI 0.56–0.9, log-rank p = 0.0053). Higher FOXP4 expression was correlated with better prognosis of NSCLC (Figure 4H, n = 569, HR = 0.77, 95% CI 0.65–0.91, log-rank p = 0.0017). Groups with FOXP1/2/3/4 expression were not associated with prognosis in LUSC patients (Supplementary Figure S6). Overall, groups with low FOXP1/4 and high FOXP2/3 expression were associated with poor prognosis (p value < 0.005). Both the high mRNA expression of FOXP1/4 and the low mRNA expression of FOXP2/3 were related to improved prognosis (p value < 0.05) in NSCLC patients.
[image: Figure 4]FIGURE 4 | The relationship between the expression of FOXP family and survival. (A) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP1 in LUAD. (B) he survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP1 in NSCLC. (C) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP2 in LUAD. (D) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP2 in NSCLC. (E) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP3 in LUAD. (F) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP3 in NSCLC. (G) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP4 in LUAD. (H) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP3 in NSCLC.
Coexpression networks of the forkhead box P family and gene ontology and kyoto encyclopedia of genes and genomes pathway analyses of coexpressed genes
Genes coexpressed with the FOXP family were investigated by the COEXPEDIA website. The coexpression networks of the FOXP family are displayed in Figures 5A–D. The log-likelihood score (LLS score) was used to evaluate the correlations between the FOXP family and its linked genes. The larger the LLS score, the more relevant the coexpression trend of the FOXP family member and its linked genes. The LLS scores of all coexpressed genes are summarized in Supplementary Table S2. GO and KEGG enrichment analyses for coexpressed genes related to the FOXP family were implemented to analyse biological functions and pathways associated with the FOXP family. The biological process (BP), molecular function (MF), and cellular component (CC) of GO enrichment analysis are displayed in Figures 6A,C, 7A,C. In addition, the 20 most relevant KEGG pathways for coexpressed genes are presented in Figures 6B,D, 7B,D. Notably, GO enrichment results showed that the coexpressed genes of the FOXP family mainly acted on the immune process in MF, such as differentiation of immune cells (lymphoid, monocyte, and T cell), fucosyltransferase activity, phosphatidylinositol phosphate kinase activity, transcription coactivator activity, and transcription costimulatory factor regulation. KEGG pathway analysis results showed that coexpressed genes clusters of the FOXP family acted on typical cancer- and immune-related signalling pathways including the T cell receptor, sphingolipid, cGMP-PKG,and phospholipase D signalling pathway. These results strongly implied that the FOXP family was involved in the process of immune regulation in NSCLC.
[image: Figure 5]FIGURE 5 | The coexpression network of FOXP family. (A) The coexpression network presented the coexpressed genes of FOXP1. (B) The coexpression network presented the coexpressed genes of FOXP2. (C) The coexpression network presented the coexpressed genes of FOXP3. (D) The coexpression network presented the coexpressed genes of FOXP4.
[image: Figure 6]FIGURE 6 | GO functional and KEGG pathway enrichment analyses were performed on the coexpressed genes. (A) The GO functional enrichment analysis result on the coexpressed genes of FOXP1 using three annotation systems (BP; CC; MF). (B) The KEGG pathway enrichment analysis result on the coexpressed genes of FOXP1. (C) The GO functional enrichment analysis result on the coexpressed genes of FOXP2. (D) The KEGG pathway enrichment analysis result on the coexpressed genes of FOXP2. (BP, Biological process; MF, Molecular function; CC, Cellular component).
[image: Figure 7]FIGURE 7 | GO functional enrichment analysis and KEGG pathway enrichment analysis are performed on the coexpressed genes. (A) The result of GO functional enrichment analysis on the coexpressed genes of FOXP3. (B) The result of KEGG pathway enrichment analysis on the coexpressed genes of FOXP3. (C) The result of GO functional enrichment analysis on the coexpressed genes of FOXP4. (D) The result of KEGG pathway enrichment analysis on the coexpressed genes of FOXP4.
Analysing the functional states of the forkhead box P family at the single-cell level
Enrichment analysis results showed that coexpressed gene clusters of the FOXP family acted on several typical cancer pathways. To better understand the relevance and underlying mechanisms of the FOXP family in NSCLC, we investigated the 14 functional states of the FOXP family at the single-cell level via the CancerSEA database (Figure 8). The results indicated that FOXP1 was mainly positively correlated with differentiation and hypoxia, FOXP2 was mainly negatively correlated with cell cycle, DNA damage, DNA repair, invasion, metastasis, proliferation, and FOXP4 was mainly positively correlated with hypoxia, invasion, stemness (Figure 8A). Besides, the single-cell analysis result related to FOXP3 were not stated here for the CancerSEA database lacked the FOXP3 data at the single-cell level. we need to supplement this part in the future. In terms of functional relevance in different T cell groups, Kim (Exp0068) showed that FOXP1 had positive correlations with angiogenesis, apoptosis, metastasis, and stemness (Spearman’s coefficients, 0.74, 0.91, 0.34, and 0.36 respectively; p value < 0.05) and a negative correlation with EMT (−0.88, p value < 0.01) in NSCLC. Kim (Exp0066) showed that FOXP2 had negative correlations with cell cycle, DNA damage, proliferation, DNA repair, metastasis, and invasion(Spearman’s coefficients, −0.53, −0.53, −0.52, −0.48 and −0.41 respectively; p value < 0.05) in NSCLC. Kim (Exp0068) reported that high FOXP4 expression was positively correlated with metastasis, angiogenesis, inflammation, stemness and hypoxia, (Spearman’s coefficients, 0.71, 0.64, 0.59, 0.59, and 0.25 respectively; p value < 0.05) and negatively associated with cell cycle (Spearman’s coefficients, −0.65, p value < 0.01) in NSCLC. These discoveries indicate that the FOXP family may crucially affect the tumour progression of NSCLC.
[image: Figure 8]FIGURE 8 | The correlation between the FOXP family and 14 functional states at single-cell level. (A) The result of the correlation between expression of the FOXP1/2/4 with functional states (including angiogenesis, apoptosis, invasion, EMT, differentiation, proliferation, DNA damage, metastasis, hypoxia, inflammation, cell cycle, DNA repair, stemness, and quiescence). (B) The sample Kim (Exp0068) showed the result of the correlation between the FOXP1 with functional states. (C) The sample Kim (Exp0066) showed the result of the correlation between the FOXP2 with functional states. (D) The sample Kim (Exp0068) showed the result of the correlation between the FOXP4 with functional states. (EMT, epithelial-mesenchymal transition).
The degree of immune factor infiltration regulated by the forkhead box P family in non-small cell lung cancer
To augment the understanding of the relationship between the FOXP family and immune infiltration, the connection between the FOXP family and various immune signatures, which included the immune-related characteristics of 28 TIL types, immunomodulators (immunoinhibitor, immunostimulator, and MHC molecules), chemokines and receptors, was investigated. All the heatmaps showing the correlation results are presented in Figures 9, 10; Supplementary Figure S7. It was obvious from the heatmaps that the FOXP family was related to immune signatures. To further analyse the relevant mechanisms of the FOXP family in regulating immunity, we selected two modules, the one with the most relevant expression and the other with the most relevant infiltration after copy number alteration and DNA methylation as representatives (the rho of the Spearman correlations test was the highest). When different immune molecules showed upregulation and downregulation trends under the same conditions, two modules were chosen to represent the upregulation and downregulation molecular clusters. The representative immune signatures regulated by FOXP1 were Act CD4 and Tem CD8 in LUAD, NK cells, and neutrophils in LUSC. The infiltration abundances of Act CD4 and Tem CD8 in LUAD tumour tissue were negatively correlated with the expression of FOXP1, and FOXP1 was low in LUAD tissue. That is, the abundances of Act CD4 and Tem CD8 infiltration increased in LUAD tissue. The correlation scores of the two were −0.258 and −0.042, respectively, and there were positive correlations due to copy number alteration and DNA methylation of FOXP1. The representative lymphocytes regulated by FOXP1 in LUSC were NK cells and neutrophils. As we confirmed above, FOXP1 was expressed at low levels in LUSC tissues and was positively correlated with the abundance of NK cells and neutrophil infiltration. The relative rho scores were 0.526 and 0.312, respectively, so NK cells and Neutrophil infiltration were abundant. The degree of decrease in LUSC and was negatively correlated due to the variations in copy number alteration and DNA methylation. By analogy, the regulation of copy number alteration and DNA methylation is shown in the Figures 11A–F. The downregulation of FOXP1 affected the results, including ActCD4, TemCD8, TGFBR1, TIGIT, TNFRSF25, ICOS, TAP1, TAP2, CCL14, CXCL10, CCL5, CX3CR1, CCR5, NK, neutrophils, KDR, ADORA2A, ENTPD1, TMEM1730, HLA-DOA, TAPBP, CCL12, CCL28, CCL26, CXCR4, and CXCR1. The immune infiltration coefficient of FOXP2 in NSCLC tissue was less than those of FOXP1/3/4. The upregulation of FOXP3 mainly affected TemCD8, ActCD4, TIGIT, CTLA4, ICOS, IL2RA, HLA-B, HLA-DPB1, HLA-DOB, CCL19, CCL11, CCR8, ImmB, ActB, TIGIT, IDO1, ICOS, CD27, HLA-DPB1, CCL5, CCL19, CCR8, and CCR7. The downregulation of FOXP4 was mainly associated with ActCD4, Th1, PDCD1LG2, HAVCR-2, TNFSF4, CD40, B2 M, HLA-B, CCL26, CCL14, CCR1, CD56bright, Eosinophil, PVRL2, ADORA2A, ICOSLG, CXCR4, TAPBP, HLA-DOA, CCL26, CCL28, CCR10, and CCR6. We also constructed rate scores to compare the influence of copy number alteration and DNA methylation on the FOXP family (Figures 11G–L). The results presented that both copy number alteration and DNA methylation on the FOXP family play effects on the infiltration correlation results of immune factors in NSCLC, and it was obvious that the changes of immune infiltration correlation after DNA methylation on the FOXP family were significant than those after FOXP family copy number alteration. The multiple influences were different due to different pathological types of NSCLC. Therefore, we could infer that the corresponding conclusion that copy number alteration and DNA methylation regulated the infiltration of corresponding immune factors by the FOXP family. In addition, except for FOXP2 in LUAD and FOXP4 in LUSC, the remaining FOXP family members had significantly different effects on immunophenotyping C1-C6 in NSCLC (Figure 12). Therefore, it was confirmed that the FOXP family participated widely in modulating various immune molecules to affect immune infiltration in NSCLC progression.
[image: Figure 9]FIGURE 9 | The relationship between the degree of immune factors infiltration in NSCLC and the expression of FOXP family. (A) The hotmap presented the correlations between the FOXP family and immune-related characteristics of 28 TIL types. (B) The hotmap presents the correlations between the FOXP family and immunoinhibitor.
[image: Figure 10]FIGURE 10 | The relationship between the degree of immune factors infiltration in NSCLC and the expression of the FOXP family. (A) The heatmap presented the correlations between the FOXP family and immunostimulator. (B) The heatmap presented the correlations between the FOXP family and MHC molecule.
[image: Figure 11]FIGURE 11 | The effects of FOXP family expression, copy number alteration, and DNA methylation on immune factors. (A–F) These histograms present the correlation scores of the top two most relevant immune infiltration module and correlation scores modified by copy number alteration and DNA methylation. (G–L) These histograms present the fold relationship between copy number alteration and DNA methylation correlation scores of the FOXP family in NSCLC. (CNA, Copy number alteration; MET, DNA Methylation).
[image: Figure 12]FIGURE 12 | The relationship between immune types and the FOXP family. (A) The violins plot showed statistical relationships between FOXP1 and immune types C1–C6 in LUAD. (B) The violins plot showed statistical relationships between FOXP1 and immune types C1–C6 in LUSC. (C) The violins plot showed statistical relationships between FOXP2 and immune types C1–C6 in LUAD. (D) The violins plot showed statistical relationships between FOXP2 and immune types C1–C6 in LUSC. (E) The violins plot showed statistical relationships between FOXP3 and immune types C1–C6 in LUAD. (F) The violins plot showed statistical relationships between FOXP3 and immune types C1–C6 in LUSC. (G) The violins plot showed statistical relationships between FOXP4 and immune types C1–C6 in LUAD. (H) The violins plot showed statistical relationships between FOXP4 and immune types C1–C6 in LUSC. [C1 (wound healing); C2 (IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte depleted); C5 (immunologically quiet); C6 (TGF-b dominant)].
Genetic alteration and interaction analyses of the forkhead box P family in non-small cell lung cancer
Upon analysis of the FOXP family in the OncoPrint module on cBioPortal, the results revealed that gene alterations in FOXP1/2/3/4 occurred in 3%, 3%, 2.2%, and 2.7% of the NSCLC samples, respectively (Figure 13A). The genetic alterations of structural variants, mutations, amplifications, deep deletions, and copy number alterations of the FOXP family all occurred in NSCLC (Figure 13B). The details of all mutations in NSCLC are summarized in Supplement Figure 6. FOXP1 had 15 missense mutations, 3 splice mutations, and one fusion mutation. FOXP2 had one missense mutation and one Fusion mutation. FOXP3 had one missense mutation. FOXP4 had no mutation. Only FOXP1 had domain mutations (Figure 13C), while the remaining FOXP2/3/4 had no domain mutations (Figure 13D). The abovementioned multiple alterations of the FOXP family might partially explain the mechanism of occurrence and progression in NSCLC. In addition, we conducted a PPI network analysis of the FOXP family by STRING to investigate the feasible interactions in their internal and related genes. Multiple nodes (34) and edges (212) are shown in the PPI network (Figure 13E). The STRING results mainly displayed the functions connected with immunity, including regulation of T cell homeostatic proliferation, the activity of T-helper 17 cells, the signalling pathway mediated by interleukin-2, and the adjustment of regulatory T cell differentiation. We further investigated the results of STRING in Cytoscape and then curtained and locked out 10 hub genes (IL2, IFNG, FOXP3, CTLA4, STAT3, IRF4, JUN, SMAD3, FOS, TP53), as shown in Figure 13F. The FOXP family was input to the GeneMANIA website to link genes with similar functions. Functionally similar genes surrounded the outside of the FOXP family in the presentation (Figure 13G). The GeneMANIA results affirmed that the functions of the FOXP family and their related clusters were chiefly related to the differentiation of lymphocytes and T cells and the regulation of leukocytes. The above results support that the FOXP family participates in the immune process of NSCLC under the condition of interaction.
[image: Figure 13]FIGURE 13 | Genetic alteration, and interaction analyses of the FOXP family in NSCLC patients. (A) The heatmap showed the respective frequencies of Gene alterations occurring in the sequenced cases by the FOXP family in the data obtained from the OncoPrint schematic of cBioPortal. (B) The mutation types of NSCLC in three datasets. (C) The chromosomal structure of FOXP1 with domain mutations. (D) The chromosomal structure of FOXP2/3/4 without domain mutation. (E) The protein-protein interaction PPI network analysis of the FOXP family using STRING. (F) The top 10 hub genes were exported by Cytoscape (version 3.7.2) with the cytoHubba app. (G) The result of GeneMANIA reveals functionally similar genes of the FOXP family.
DNA methylation analysis of the forkhead box P family
In the process of using TISIDB to study the effect of the FOXP family on immune infiltration, we found that the FOXP family significantly changed the correlation degrees between immune signatures after undergoing epigenetic alterations of copy number alteration and DNA methylation. These cBioPortal findings suggested that copy number alteration of the FOXP family played a role in the progression of NSCLC. Therefore, we used DNA methylation as a representative epigenetic alteration to evaluate its effect on the expression levels of the FOXP family and patients prognosis. We first applied the UALCAN database to determine the relationship between DNA methylation and the expression of the FOXP family in NSCLC. The DNA methylation level of FOXP1 was no statistically significant in NSCLC than those in normal samples (Figures 14A,E). The DNA methylation level of FOXP2 was higher in LUAD but lower in LUSC (Figures 14B,F). The DNA methylation levels of FOXP3/4 in NSCLC were lower than those in normal samples (Figures 14C,D,G,H). According to these data, the expression levels of FOXP2/3/4 were significantly associated with DNA methylation in NSCLC. In addition, the results showed that 20 CpGs of FOXP1, 1 CpGs of FOXP3, and 12 CpGs of FOXP4 presented important statistical significance related to prognosis. Moreover, with the occurrence of different CPG sites, FOXP family members’ DNA methylation statuses were related to different prognoses. Specific details of the results including the types of CpG, RefGene groups, relationship to CpG islands, HRs, and p values, are listed in Table 1.
[image: Figure 14]FIGURE 14 | The DNA methylation analysis of FOXP family in NSCLC. (A–H) the promoter methylation levels of the FOXP family in LUAD/LUSC compared with normal samples.
TABLE 1 | The prognostic value of single CpG of FOXP family in NSCLC by MethSurv (p < 0.05).
[image: Table 1]DISCUSSION
The treatment of NCSLC with immunotherapy including ICIs, has improved the clinical benefits for patients and greatly innovated the traditional chemotherapy regimen (Cogdill et al., 2017). Nonetheless, many patients are still rejected for immunotherapy due to not meeting the inclusion criteria. As a result, research on advanced and effective modulators at immune-related critical points is in full swing. To further understand the molecular regulatory mechanism of the immune system in the management of NSCLC. Our article elaborates on the specific regulatory details of specific immune molecules from the perspective of the FOXP family.
At present, the FOXP family is observed to play negative or positive roles in particular cancers. For example, FOXP1 drives the occurrence of malignant behaviour by dominating the expression level of PKLR in gallbladder cancer (Wang et al., 2019). FOXP2 participates in the process of invasion and metastasis of breast cancer via the TGFβ/SMAD pathway (Chen et al., 2018). Aberrant expression of FOXP3 in colorectal cancer is related to immune overdrive in a high-risk subpopulation (Cui et al., 2021). FOXP4 directly acts on LEF-1 and gives impetus to the occurrence of laryngeal squamous cell carcinoma (Shi et al., 2021). At the same time, many recently published works in the literature show that the FOXP family participates in the process of immune system reconstruction of tumour tissue by activating or inhibiting the specific function of immune molecules (Fleskens and van Boxtel, 2014). The FOXP family, as a major contributor, can regulate tumour-associated inflammation and immune responses in tumour progression. For example, FOXP1 inhibits the behaviour of immune activation and the expression of MHC class II in diffuse large B-cell lymphomas (Brown et al., 2016). FOXP3 is defined as a manager to administer the immunosuppressive response of T cells (Klimenko, 2011). FOXP3 directly restrains CD44 breast cancer by participating in the corresponding regulatory role (Zhang et al., 2015). Furthermore, increasing evidence unambiguously confirms that epigenetic alteration plays a role in the process of cancer, and various epigenetic alterations can be used as maker molecules to evaluate the risk of tumour prognosis (Richardson et al., 2018; Zhang and Zhang, 2020). For instance, the regulation of immune cells is closely related to the copy number alteration of TRPV1 in renal cell carcinoma (Zheng et al., 2020). Abnormal DNA methylation impacts gene expression and survival time in breast cancer patients (Gyorffy et al., 2016). Therefore, the underlying mechanism of FOXP family expression/copy number alteration/DNA methylation in the regulation of immune-related signatures was initially elucidated in this paper.
Previous studies have shown that FOXP3 is overexpressed to facilitate the invasion and metastasis of NSCLC (Li et al., 2021). Our results showed there were different expression levels of the FOXP family according to different pathological types in NSCLC compared with normal tissue. UALCAN presented that the expression levels of the FOXP family had significant effects on the clinical parameters, including patient age, smoking habits, histological subtypes, individual cancer stages, nodal metastasis status, and TP53 mutation status. The Kaplan‒Meier Plotter showed that the overexpression levels of FOXP1/4 were involved in the better prognosis, and the overexpression levels of FOXP2/3 were associated with poor prognosis of NSCLC. It may be an option to analyse the mRNA expression levels of the FOXP family members in NSCLC patients to provide powerful markers to define prognosis.
GO and KEGG pathway analyses of coexpressed genes of the FOXP family indicated that the FOXP family possessed roles in activating the Wnt, PI3K/AKT/mTOR, and FOCAD-FAK pathways to regulate tumourigenesis and the progression of relevant immune responses in NSCLC. Combined with previous research, the above typical pathways were associated with NSCLC progression (Heavey et al., 2014; Stewart, 2014; Liu et al., 2020). Our study further clarified the role of the FOXP family in the development of NSCLC. Likewise, CancerSEA showed the functional states of the FOXP family have a necessary relationship with the activity of the cell cycle, differentiation, apoptosis, angiogenesis, invasion, EMT, proliferation, hypoxia, inflammation, and stemness at the single-cell level. The results validated previous evidence that the FOXP family was involved in the progression of a variety of cancers. For example, the FOXP family regulates β cell proliferation in concert with NFATC2 (Simonett et al., 2021). Furthermore, FOXP2 targets GRP78 in breast cancer to promote tumour proliferation and metastasis (Wu et al., 2018). In addition, FOXP1 inhibits guidance proteins to promote angiogenesis in cell activity (Grundmann et al., 2013). Taken together, the functional states of the FOXP family accurately revealed that the FOXP family might crucially affect the progression of NSCLC. The results of PPI interaction and GeneMANIA analyses further demonstrated the occurrence of cooperation and interaction between FOXP members. These results implied that FOXP members could function through alliance mechanisms in NSCLC. Our study showed that the FOXP family was prominently dysregulated in NSCLC, and we then carried out the an analysis of genetic alterations. Unsurprisingly, there was the evidence of fusion, mutation, and amplification of the FOXP family in NSCLC. These genetic alterations were undoubtedly involved in the molecular malignant behaviour of NSCLC.
The DNA methylation process of specific genes mediates different biological results of cancer. For example, DNA methylation is related to the occurrence of drug resistance in patients with glioblastoma during treatment (Lu et al., 2020). In addition, the absence of DNA methylation can cause immune evasion in various cancers (Jung et al., 2019). To explore the particular mechanism of the FOXP family in NSCLC, we investigated the connection between the promoter methylation levels and the expression levels of the FOXP family using UALCAN databases. The outcomes showed that the expression levels of FOXP2/3/4 were correlated with their promoter methylation levels in NSCLC. In addition, we analysed the relationship between DNA methylation modification behaviour at different sites of the FOXP family and patient survival time. Significant prognostic values (p value < 0.05) were observed for FOXP1/3/4. In short, analysis of FOXP family DNA methylation provides a new approach to the prognosis of NSCLC.
Data from recent years have shown that the combined use of ICIs has improved the survival time of NSCLC patients by blocking the checkpoint inhibition process. Our study presented the correlations between FOXP family expression/copy number alteration/DNA methylation and immune signatures. The results showed that the FOXP family without epigenetic alterations mainly controlled the degrees of infiltration of immune-related factors (Tem CD8, TXNDC5, TAP1, TAP2, CCL5, NK, KDR, ENTPD1, and HLA-DOA) in NSCLC. Previous studies have confirmed that Tem CD8 inhibits tumour growth in mouse models and plays a vital role in cancer immune surveillance and treatment (Wang et al., 2020). TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signalling through TGFBR1 stabilization (Lee et al., 2020). TAP1 and TAP2 are typical tumour predictors (Gostout et al., 2003; Henle et al., 2017). CCL5, as a receptor antagonist, plays a positive role in the process of tumour progression by attracting macrophages (Van Damme et al., 2004). The activation of NK cells is related to immune dysfunction and a harmful tumour microenvironment (Li et al., 2020b). There is currently a small-molecule tyrosine kinase inhibitor (Moulder, #137) for KDR that is effective for lung cancer (Dai et al., 2019; Song et al., 2020). FOXP3 regulates the expression and infiltration of ENTPD1 to promote the occurrence of tumours (Sun et al., 2010). HLA-DOA has confirmed that the degree of infiltration in the tissue is directly proportional to the degree of inflammation (Okada et al., 2016). After copy number alteration and DNA methylation, our results revealed that the correlations between the FOXP family and immune parameters were opposite to those before alteration in NSCLC. In addition, the influence of DNA methylation was stronger than that of copy number alteration. In addition, due to the different pathological types of NSCLC, the multiples of the influence intensity were also different. Altogether, our results partly showed that FOXP family expression/copy number alteration/DNA methylation regulated the infiltration of corresponding immunity in NSCLC. This paper provided more detailed molecular mechanisms for the development of new immune checkpoints from the perspective of FOXP family.
Our research has many details that need to be further verified. The data required for the content of bioinformatics analysis in this paper are from public databases. Further basic and clinical trials are still required to explore the detailed molecular mechanism of the FOXP family in NSCLC.
CONCLUSION
This paper systematically analysed molecular mechanism of FOXP family member regulation, including the expression levels, correlation with clinicopathological stages, DNA methylation levels, epigenetics alterations, prognostic values, relationship with immune regulation and functional analysis based on coexpression in NSCLC. Activation of FOXP family-related pathways could significantly change the patient’s response to tumour immunity. Our article showed that the FOXP family members, as diagnostic and prognostic biomarkers, provide new information for the development of ICI drugs for patients with NSCLC.
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SUPPLEMENTARY FIGURE S1 | The meta-analysis results of the expression difference of FOXP family from different data sets using LUNG CANCER EXPLORER database. The meta-analysis result of the expression level of FOXP1 from different LUAD/LUSC data sets. (B,F) The meta-analysis result of the expression level of FOXP2 from different LUAD/LUSC data sets. (C,G) The meta-analysis result of the expression level of FOXP3 from different LUAD and LUSC data sets. (D,H) The meta-analysis result of the expression level of FOXP4 from different LUAD and LUSC data sets.
SUPPLEMENTARY FIGURE S2 | The relationship between the expression levels of FOXP family and clinicopathological stages. (A-L) AuthorAnonymous, The Box plots show the differential expression of FOXP1 between different staged tissues of LUAD/ LUSC and normal tissues.
SUPPLEMENTARY FIGURE S3 | The relationship between the expression levels of FOXP family and clinicopathological stages. AuthorAnonymous, (A-L) The Box plots show the differential expression of FOXP2 between different staged tissues of LUAD/ LUSC and normal tissues.
SUPPLEMENTARY FIGURE S4 | The relationship between the expression levels of FOXP family and clinicopathological stages. AuthorAnonymous,(A-L) The Box plots show the differential expression of FOXP3 between different staged tissues of LUAD/ LUSC and normal tissues.
SUPPLEMENTARY FIGURE S5 | The relationship between the expression levels of FOXP family and clinicopathological stages. AuthorAnonymous,(A-L) The Box plots show the differential expression of FOXP4 between different staged tissues of LUAD/ LUSC and normal tissues.
SUPPLEMENTARY FIGURE S6 | The relationship between the expression of FOXP family and survival in LUSC.(A) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP1 in LUSC. (B) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP2 in LUSC. (C) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP3 in LUSC. (D) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP4 in LUSC.
SUPPLEMENTARY FIGURE S7 | The relationship between the degree of immune factor infiltration in NSCLC and the expression of FOXP family.(A) The hotmap presented the correlations between FOXP family and chemokine. (B) The hotmap presented the correlations between FOXP family and receptor.
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Identification of cuproptosis-associated IncRNAs signature and establishment of a novel nomogram for prognosis of stomach adenocarcinoma
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Purpose: Stomach adenocarcinoma (STAD) is one of the common cancers globally. Cuproptosis is a newly identified cell death pattern. The role of cuproptosis-associated lncRNAs in STAD is unknown.
Methods: STAD patient data from TCGA were used to identify prognostic lncRNAs by Cox regression and LASSO. A nomogram was constructed to predict patient survival. The biological profiles were evaluated through GO and KEGG.
Results: We identified 298 cuproptosis-related lncRNAs and 13 survival-related lncRNAs. Patients could be categorized into either high risk group or low risk group with 9-lncRNA risk model with significantly different survival time (p < 0.001). ROC curve and nomogram confirmed the 9-lncRNA risk mode had good prediction capability. Patients in the lower risk score had high gene mutation burden. We also found that patients in the two groups might respond differently to immune checkpoint inhibitors and some anti-tumor compounds.
Conclusion: The nomogram with 9-lncRNA may help guide treatment of STAD. Future clinical studies are necessary to verify the nomogram.
Keywords: risk score, prognosis, cuproptosis, immune, tumor
1 INTRODUCTION
Stomach adenocarcinoma (STAD) is frequently found in the digestive tract (Bray et al., 2018). It is mostly reported in eastern Asia and South America. There are several risk factors for STAD, including Helicobacter pylori infection, adenomatous gastric polyps, diet low in fruits and vegetables and diet high in cured or smoked foods (Wroblewski et al., 2010; Rawla and Barsouk, 2019; Akshatha et al., 2021). Although STAD is treatable surgically in its early stages, advanced STAD has a poor prognosis. Innovative therapeutics and prognostic models are both needed to improve prognosis of advanced STAD (Ajani et al., 2017; Ivey et al., 2022).
Metal micronutrients, especially iron (Fe), zinc (Zn), and copper (Cu), are essential for life. For example, Zn is involved in regulation of gene expression, and approximately 2,800 proteins may bind Zn in vivo (Andreini et al., 2006). Cu is catalyst or structural cofactor in many cellular activities, including mitochondrial respiration, immune function, and free radical scavenging (Festa and Thiele, 2011; Cobine et al., 2021). Despite its role for normal life, high serum copper level has been linked to increased risk of cancer (Brady et al., 2014; Tsang et al., 2020) and atherosclerotic diseases (Reunanen et al., 1992; Ford, 2000; Chen et al., 2015).
Mostly recently Tsvetkov et al. (2022) demonstrated a novel mechanism of Cu-induced cell death that is related to mitochondria dysfunction. This novel form of regulated cell death was termed “cuproptosis”. Cuproptosis may happen when mitochondrial enzymes aggregate and leads to mitochondrial stress. Cuproptosis is different from apoptosis, ferroptosis, or necroptosis. This discovery suggests mitochondrial Cu homeostasis may be exploited for cancer therapy.
Here we explored whether cuproptosis-related lncRNAs may be involved in STAD patient prognosis. The results might help understand the roles of cuproptosis in the development and progression of STAD.
2 MATERIALS AND METHODS
2.1 TCGA data
We downloaded RNA sequencing (RNA-seq) and expression files and mutation files from the Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/repository). The data included tumor tissues of 343 STAD patients and 30 matched normal tissues. Data were downloaded and handled according to TCGA guidelines.
2.2 Identification of cuproptosis-related lncRNAs
According to the study by Tsvetkov et al. (2022), 19 cuproptosis-associated genes were evaluated (Supplementary Table S1). Correlation between cuproptosis-related genes and differentially expressed lncRNAs was evaluated. Pearson’s correlation coefficients (R) of gene expression patterns were used as a measure of gene coexpression. The PCC threshold to retrieve cuproptosis-related lncRNAs was 0.4 (|R| > 0.4), with a p value < 0.001.
2.3 Cuproptosis-related lncRNAs signature for STAD prognosis
The downloaded clinical and demographic data of STAD patients were analyzed with univariate Cox regression analysis to identify lncRNAs associated with patient overall survival (OS) and those associated with cuproptosis were further identified as candidate lncRNAs for the construction of prognostic signature. Lasso regression was performed to screen lncRNAs that were truly correlated with a patient’s survival on the basis of 10-fold cross-validation. Based on the nine optimal lncRNAs identified, the risk scores of patients were calculated according to the following formula:
[image: image]
Where X was regression coefficient and Y was expression level of cuproptosis-related lncRNAs.
A total of 343 STAD patients were allocated to either the training cohort or the test cohort randomly in a 1:1 ratio for constructing and validating the cuproptosis-related lncRNAs signature. Patients in each cohort were classified into either low--risk group or high-risk group according to the cut-off value, which was the median risk score (Meng et al., 2019; Hong et al., 2020). The Chi-square test and the receiver operating characteristics (ROC) curves were used to help determine if observed OS was in line with expected OS, and the 1-year, 3-years, and 5-years OS rates were compared between the low-risk group and the high-risk group by Kaplan–Meier analysis. We further constructed a nomogram with cuproptosis-related lncRNA risk score and established clinical risk factors to calculated patient survival time. Then concordance index (C-index) and calibration curves were used to evaluate the prediction power of the nomogram. Finally, stratified analysis was used to assess whether the signature retained its predictive ability in subgroups of patients (stages I–II and stages III–IV). The “survival”, “rms”, “survminer” and “timeROC” R packages were used.
2.4 Principal component analysis, gene ontology and gene set enrichment analysis
We used principal component analysis (PCA) to characterize cuproptosis-related lncRNAs expression patterns. PCA is a common unsupervised method for the analysis of gene expression data. 3D scatter plots were used to visualize the relationship between the three variables of samples. The analysis of differentially expressed genes (DEGs) was performed with the glm method of the “edgeR” R package. We set the threshold value of log fold change (log2FC) at |log2FC| ≥ 1, with a false discovery rate (FDR) < 0.05, to identify important DEGs. Gene Ontology (GO) was used to interpret DEGs for the relevant cellular components, biological processes, and molecular functions. Differential Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between the high-risk group and the low-risk group were screened using Gene Set Enrichment Analysis (GSEA), with a FDR <0.25.
2.5 Immune function
Single-sample GSEA (ssGSEA), an extension of GSEA, was used to calculate separate enrichment scores for immunological pathways by the normalized enrichment score (NES) (Subramanian et al., 2005). Each ssGSEA enrichment score represents the degree to which the genes are coordinately upregulated or downregulated within a sample.
2.6 Tumor mutation burden
We downloaded the somatic mutation file and calculated each patient’s tumor mutation burden (TMB) score. The influence of TMB on patient OS was evaluated by Kaplan–Meier analysis and compared between the high- and low-risk groups by t-test. Maftools R package was used.
2.7 Tumor immune dysfunction and exclusion score and drug sensitivity prediction
To predict treatment response of immune checkpoint blockades (ICBs), tumor immune dysfunction and exclusion (TIDE) algorithm was used to identify signatures of T cell dysfunction and signatures that exclude T cell infiltration into tumors (Jiang et al., 2018). To predict treatment response of the most important groups of drugs again STAD, the half-maximal inhibitory concentrations (IC50) were calculated using pRRophetic as described in Genomics of Drug Sensitivity in Cancer (GDSC) (Geeleher et al., 2014).
3 RESULTS
3.1 lncRNAs data
Figure 1 illustrates the results of the search and the process of screening. A total of 16,773 lncRNAs that may be associated with 19 cuproptosis-associated genes were found. Among these lncRNAs, 298 lncRNAs met the pre-defined criteria ((|R| > 0.4). All 298 lncRNAs upregulated the expression of cuproptosis genes in the Sankey diagram (Figure 2A. Univariate Cox regression analysis found that 13 lncRNAs were prognostic factors of patient survival (Figure 2B).
[image: Figure 1]FIGURE 1 | The process of the study.
[image: Figure 2]FIGURE 2 | Identification of prognostic cuproptosis-related lncRNAs in STAD. (A) The Sankey diagram demonstrates correlation between cuproptosis-related lncRNAs and cuproptosis-related genes. (B) The prognostic lncRNAs identified by uni-Cox regression analysis. (C) LASSO model, with a 10-fold cross-validation. (D) The coefficient profile of nine lncRNAs screened by the LASSO model. (E) Correlations between lncRNAs in the risk model and cuproptosis-related genes.
3.2 Risk model
To construct a risk model with cuproptosis-related lncRNAs in STAD, we randomly allocated 343 STAD cases into the training set and the test set at 1:1 ratio. The chi-square test showed that the two groups were comparable in terms of both clinicopathologic and demographic parameters (Table 1).
TABLE 1 | Clinicopathologic and demographic characteristics of STAD patients in the training and test cohorts.
[image: Table 1]To avoid overfitting, nine lncRNAs were further identified by LASSO regression method (Figures 2C,D. A formula was established with the expression levels of nine lncRNAs:
Risk score = LINC01094 × (0.5250) + AC022182.1 × (2.02146) + AC011747.1 × (0.1655) + LINC02476 × (0.1295) + AC005014.2 × (−0.6903) + AC090809.1 × (0.2959) + AC084781.2 × (0.3942) + SENCR × (0.6958) + AC010422.4 × (−0.8166) (Meng et al., 2019).
As expected, the high-risk group had worse survival in each sample set (Figure 3).
[image: Figure 3]FIGURE 3 | Prognosis capability of the model in the three patient sets. (A–C) Distribution of patient with different scores. (D–F) Distribution of patient survival time. (G–I) The heatmap of nine lncRNAs expression. (J–L) Comparison of OS curves of patients between the two groups of each set. (M,N) OS curves of stratified by clinicopathologic characteristics in the entire set.
3.3 Assessment of the risk model
The areas under the l-, 3- and 5-years ROC curves (AUC) were 0.719, 0.773, and 0.755 respectively (Figure 4A). The AUC of risk score was 0.719 and the C-index in the risk model was 0.726, indicting a perfect predictive ability (Figures 4B,C). In the uni-Cox regression, the hazard ratios (HR) of the risk score was 1.0726 (p < 0.001), and in the multi-Cox regression, HR of the risk score was 1.092 (p < 0.001) (Figures 4D,E).
[image: Figure 4]FIGURE 4 | Validation of the model. (A) Time-dependent ROC curve analyses for survival of all patients based on the risk score model. (B) Comparision of the ROC curves of risk score, patient age, patient gender, tumor grade and tumor stage. (C) The C-index curves of risk score, patient age, patient gender, tumor grade and tumor stage. (D,E) Uni-Cox and multi-Cox analyses of overall survival for risk score, patient age, patient gender, tumor grade and tumor stage.
3.4 Nomogram
A nomogram model was drawn to predict OS of patients (Figure 5A). The calibration plots showed the predicted l-, 3- and 5-years OS was consistent with the actual OS (Figure 5B). Thus the nomogram was well calibrated, with good prediction of patient survival. The high value of C index (0.726) indicated that the nomogram has excellent discriminative ability.
[image: Figure 5]FIGURE 5 | Nomogram for survival prediction (A), the calibration curves (B) and the decision curves (C).
The results of decision curve analyses to compare the performance of the nomogram are shown in Figure 5C. The nomogram has greater net benefit than other clinical parameters in all patients.
3.4 PCA and biological pathways analyses
The 3D scatter diagram showed the low-risk group and the high-risk group had distinct aggregation features of PCA (Figures 6A–C). GO analysis indicated related biological processes included B cell activation signaling pathway, antigen receptor−mediated signaling pathway, and immune response−regulating signaling pathway; related cellular components included immunological synapse, endocytic vesicle membrane, endocytic vesicle, T cell receptor complex, and immunoglobulin complex, and related molecular functions included immune receptor activity, heparin binding, glycosaminoglycan binding, sulfur compound binding, immunoglobulin receptor binding, and antigen binding (Figures 6D,E). GSEA identified genes involved in PI3K−Akt signaling pathway, cell adhesion, cytokine−cytokine receptor interaction and chemokine signaling pathway were differentially expressed between the low--risk group and high-risk group (Figures 6F,G).
[image: Figure 6]FIGURE 6 | PCA, GO, and KEGG analyses. (A–C) 3D scatter plots of sample distribution. (D,E) GO analysis of biological processes, cellular components and molecular functions. (F,G) KEGG analysis of PI3K−Akt signaling pathway, cell adhesion, cytokine−cytokine receptor interaction and chemokine signaling pathway.
3.5 Correlation analysis between risk scores and gene mutations
Somatic mutations between the two groups were compared. The ten most mutated genes were TP53, TTN, PCLO, ZFHX4, CSMD3, SYNE1, ARID1A, LRP18, MUC16, and ACVR2A. The high-risk group had more frequent TP53 mutation (Figures 7A,B) but overall lower TMB (Figure 7C). Patients with higher scores and lower TMB had the worst prognosis among the four groups (Figures 7D,E).
[image: Figure 7]FIGURE 7 | Tumor mutation burden (TMB). (A,B) The waterfall plots illustrates the frequencies of mutations of genes with different colors representing different types of mutations. (C) There were significantly higher TMB in the low-risk group compared to the high-risk group. (D) K-M survival curves show similar patient survival between the high- and the low-TMB groups. (E) K-M survival curves show different patient survival among the four groups.
3.6 TIDE, immune functions and prediction of clinical treatment response
The TIDE scores were significantly higher in the high-risk group compared to the low-risk group. This indicated that TIDE could be used to evaluate sensitivity to ICB therapy for STAD patients (Figure 8A). Indeed, several immune-related pathways had different activities between the two groups. Patients in the high-risk group had higher activities in terms of T cell co−inhibition and check−point (Figure 8B). Drug sensitivity comparison showed most drugs have similar IC50 between the two groups, and there were eight drugs that had lower IC50 in the high-risk group: PD−173,074, AZD8055, BEZ235, CGP-60474, Dasatinib, Pazopanib, TGX221, and HG-6-64-1 (Figure 8C).
[image: Figure 8]FIGURE 8 | Immune functions and prediction of clinical treatment response. (A)TIDE scores. (B) Immune function heat maps. (C) IC50 of eight drugs.
4 DISCUSSION
STAD is a common malignancy worldwide. Although the mortality of STAD has declined due to earlier detection and treatment advancement including targeted therapy, the OS of STAD patients remains low due to delayed diagnoses that makes tumor unresectable. The copper level has been reported to be increased in cancer patients, which could promote tumor angiogenesis, progression and metastasis. Recently Tsvetkov et al. reported cuproptosis, a novel form of regulated cell death (Tsvetkov et al., 2022). Investigation of cuproptosis-related genes in cancer could help understand mechanisms of tumor development. The identification of cuproptosis may also promote innovations in the development new anti-cancer agents.
Biomarkers, including genetic and epigenetic ones, are playing a crucial role in cancer treatment and prognosis (Mishra and Verma, 2010). For example, the TCGA project classify STAD into four major subtypes with different genomic profiles to guide targeted therapy (2014). Non-coding RNA transcripts, such as lncRNAs, can also be used as biomarkers because lncRNAs might regulate cancer development (Djebali et al., 2012; Lee, 2012; Huarte, 2015; Marchese et al., 2017; Mattick, 2018). With the abundant novel lncRNAs identified recently, the annotation of these lncRNAs is urgently needed. We found that nine cuproptosis-related lncRNAs were related to survival of STAD patients. On one hand, LINC01094, AC022182.1, AC011747.1, LINC02476, AC090809.1, AC084781.2, and SENCR were risk factors for STAD patients. On the other hand, AC010422.4 and AC005014.2 were protective factors for STAD patients. The underlying mechanisms for the relationship between STAD prognosis and expression levels of LINC01094, AC022182.1, AC011747.1, LINC02476, AC090809.1, AC084781.2, SENCR, AC010422.4 and AC005014.2 are unknown presently.
Several studies have reported that LINC01094 was associated with diverse tumors. Jiang et al. (2020) found that LINC01094 expression was upregulated in clear cell renal cell carcinoma (ccRCC) in the TCGA database and ccRCC cell lines. LINC01094 knockdown inhibited ccRCC cell growth and metastasis via binding miR-224-5p. Increased expression of LINC01094 was also found in glioma, and was associated with glioma grade. LINC01094 bound to miR-330-3p in glioma (Zhu et al., 2020). In ovarian cancer, LINC01094 expression was elevated and was related to FIGO stage and lymph node metastasis. LINC01094 expression was also a risk factor for ovarian cancer patient survival. In ovarian cancer cells, LINC01094 bound to miR-577 and increased cell proliferation, migration, and the expressions of β-catenin, c-Myc and cyclin D1 (Xu et al., 2020). In colorectal cancer, LINC01094 was also highly expressed and correlated with lymph node metastasis and TNM stage. LINC01094 promoted proliferation, invasion, and migration of colorectal cancer cells by sponging miR-1266-5p (Zhang et al., 2022). Thus LINC01094 is an oncogene in an array of tumors.
SENCR (Smooth Muscle And Endothelial Cell Enriched Migration/Differentiation-Associated LncRNA) is a super enhancer lncRNA originally reported to be overexpressed in smooth muscle cells and endothelial cells. SENCR promoted proliferation, differentiation, and migration of endothelial cells (Bell et al., 2014; Boulberdaa et al., 2016; Sun et al., 2018). Studies have found that SENCR is closely related to the progress of several human cancers. Non-small cell lung cancer (NSCLC) had higher expression of SENCR. Knockdown of SENCR inhibited the growth and metastasis of NSCLC through miR-1-3p. SENCR increased CDK4 and CDK6 expression by binding to miR-1-3p (Cheng et al., 2021). Knockdown of SENCR in cisplatin-resistant A549 cell reduced cell proliferation, accompanied by decreased levels of proteins PCNA, MDMX, and P-gp and increased apoptosis. Overexpressing SENCR could increase FLI1 expression (Shen et al., 2022).
When we compared somatic mutations between the two groups, we found mutations were more frequent in the high-risk group. TP53 mutations are very common in cancers, ranging from 38% to 50% in a variety of solid tumors and in about 5% of primary leukemia. Germline mutations of TP53 are the underlying cause of Li-Fraumeni syndrome with early-onset cancers. TP53 (Correa, 2016) mutations may caused by chemical damage induced by particular mutagens, including environmental agents. We propose that higher level of Cu in cancer patients may induce TP53 mutations, which may related to cuproptosis.
GSEA identified genes of PI3K−Akt signaling pathway might be differentially expressed between the low-risk group and the high-risk group. The PI3K/AKT signaling pathway regulates cell survival and proliferation. Aberrant activation of the pathway is often associated with tumor progression and resistance to cancer therapies (LoRusso, 2016). Thus the relationship between PI3K−Akt signaling pathway and cuproptosis deserves further studies.
We predicted treatment response of the drugs again STAD using pRRophetic (Geeleher et al., 2014) and found that cuproptosis may be related to drug sensitivity. Indeed, Tsvetkov et al. (2022) reported the hydrophilic antioxidant glutathione (GSH) blocked the toxicity of elesclomol (ES)-Cu by chelating intracellular Cu. They also found that NCIH2030 lung cancer cells that rely on galactose-mediated mitochondrial respiration were much more sensitive to ES-Cu-induced growth inhibition than cells that rely on glucose-induced glycolysis. The depletion of GSH by buthionine sulfoximine also increased susceptibility to cuproptosis in A549 lung cancer cells. Thus it is reasonable to expect that drugs involved in galactose regulation pathways may have different effects on cancer cells with different expression of cuproptosis-related genes.
To conclude, we constructed a nomogram exploiting cuproptosis-associated lncRNA expression to predict survival of patients with STAD. Cu is a crucial metal with redox properties. Depending on it’s concentration in cells, Cu may be either beneficial or toxic to the cell. Further studies of the roles of Cu in cancer development will lead to more innovative therapies (Ge et al., 2022). The usefulness of this nomogram in predicting patient survival and in treatment decision-making need to be explored in the future studies.
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Aberrantly hypermethylated ARID1B is a novel biomarker and potential therapeutic target of colon adenocarcinoma
Salem Baldi1*, Yun He1, Igor Ivanov1, Hassan Khamgan2, Mohammed Safi3, Mohammed Alradhi4, Abdullah Shopit5, Abdullah Al-Danakh6, Murad Al-Nusaif7, Yaping Gao8* and Hui Tian1*
1Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co.,Ltd, Shenzhen, Guangdong, China
2Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
3Department of respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
4Department of Urology, The Affiliated Hospital of Qingdao Binhai University, Qingdao, China
5Academic Integrated Medicine and Collage of Pharmacy, School of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
6Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
7Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
8Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China
Edited by:
Yingming Sun, Fujian Medical University, China
Reviewed by:
Manisha Sachan, Motilal Nehru National Institute of Technology Allahabad, India
Shihai Liu, The Affiliated Hospital of Qingdao University, China
* Correspondence: Salem Baldi, salimlaboratory@gmail.com; Yaping Gao, gaoyp@tsinghua-sz.org.cn; Hui Tian, tianhui@axbio.cn
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 06 April 2022
Accepted: 21 July 2022
Published: 14 October 2022
Citation: Baldi S, He Y, Ivanov I, Khamgan H, Safi M, Alradhi M, Shopit A, Al-Danakh A, Al-Nusaif M, Gao Y and Tian H (2022) Aberrantly hypermethylated ARID1B is a novel biomarker and potential therapeutic target of colon adenocarcinoma. Front. Genet. 13:914354. doi: 10.3389/fgene.2022.914354

Background and Objective: Understanding the tumor microenvironment (TME) and immune cell infiltration (ICI) may help guide immunotherapy efforts for colon cancer (COAD). However, whether ARID1B is truly regulated by hypermethylation or linked to immune infiltration remains unknown. The current work focused on the ARID1B gene expression and methylation in COAD, as well as its relation with ICI.
Methods and Results: Multiple tools based on TCGA were used to analyze the differences in the expression of the ARID1B gene, DNA methylation, and its association with various clinicopathological features, somatic mutations, copy number variation, and the prognosis of patients with COAD. According to the analysis results, patients with high mRNA, low methylation levels showed better overall survival than patients with low mRNA, high methylation levels. The correlation analysis of immune cell infiltration and immune checkpoint gene expression showed that the infiltration rates of the main ICI subtypes, cancer-associated fibroblast, and myeloid cells were significantly enriched and correlated with ARID1B in COAD. An association between ARID1B expression and immune infiltration in COAD was found by correlating ICI indicators with ARID1B expression in the immune cell composition of the COAD microenvironment. Notably, M2 chemokines were related to ARID1B expression, while M1 chemokines were not.
Conclusion: This study provided evidence that ARID1B may have a role in the pathogenesis of COAD. The specific underlying mechanisms that could be responsible for ARID1B’s downregulation in COAD will need to be investigated in the future.
Keywords: ARID1B, DNA Methylation, RNA expression, Immune Cell Infiltration, Colon adenocarcinoma, TCGA
INTRODUCTION
Colon cancer is a prevalent and worldwide malignant tumour due to the late diagnosis (Wang et al., 2020; Siegel et al., 2022). Colon adenocarcinoma (COAD) is also one of the most cancers that are affected by intertumoral heterogeneity due to immunosuppression factors, and, immune cell subset dysfunction such as M2 macrophage polarization, CD8+ T cells, B cells, and natural killer cells (Zhang et al., 2020a). The main epigenetic modifications of gene expression include DNA methylation, histone modification, chromatin remodelling, and RNA regulation that can influence gene transcription processes related to cell activity, which ultimately produce tumours (Han and Yoon, 2012; Cheng et al., 2021; Zebley et al., 2021). DNA methylation leads to changes in chromatin structure, DNA conformation, DNA stability, and the way that DNA interacts with proteins, thereby controlling gene expression and cause cancer (Li et al., 2014) As mentioned in the literature review, colon cancer is diagnosed in the middle or late stage and an effective early diagnosis of COAD is limited, therefore, it represents a major cause of death worldwide (Li et al., 2014; Zhou et al., 2019). The important analysis of DNA aberrant methylation comes from its frequent and early occurrence during the initial stage of the tumour that can be used as a potential biomarker for cancer detection, monitoring, and timed treatment (Watts et al., 2008; Salta et al., 2018). The tumor microenvironment (TME) is mainly composed of tumour cells, tumour-infiltrating immune cells, and matrix components (Trikha et al., 2016; Jiang et al., 2020). Based on recent studies, tumour immune cell infiltration (ICI) is related to the sensitivity of immunotherapy and the prognosis of cancers including colon cancer (Oda et al., 2018; Zhang et al., 2020b; Sato et al., 2020). Defects in the chromatin remodelling factor, ARID1B, cause extensive dysregulation across different cancer types (Kadoch et al., 2013; Aso et al., 2015; Tessier-Cloutier et al., 2020). However, the prognosis significance of ARID1B and its methylation in colon cancer need to be clarified. Multiple tools based on TCGA were used, and correlation analysis was performed to assess ARID1B expression, CpG methylation, and its association with various clinicopathological features, somatic mutation, copy number variation, and the prognosis of patients with COAD. The correlation analysis was also carried out between ARID1B and the tumour immune infiltration level in COAD.
MATERIALS AND METHODS
ARID1B gene expression and its DNA methylation analysis
The expression level of ARID1B mRNA and protein in normal and tumor COAD tissues was first estimated using the TNMplot online database (https://www.tnmplot.com/) and The Human Protein Atlas (https://www.proteinatlas.org/), respectively (Á and Győrffy, 2021; Uhlen et al., 2017). UALCAN provides promoter DNA methylation data from the TCGA for most of the genes http://ualcan.path.uab.edu/. UALCAN was also used to determine the association between ARID1B methylation and clinicopathological variables in COAD patients, including age, gender, tumor stage, and lymph metastasis (Chandrashekar et al., 2017). MethSurv (https://biit.cs.ut.ee/methsurv/), the third online way, is a web tool to perform multivariable survival analysis using DNA methylation data (Modhukur et al., 2018). Subsequently, the significantly identified probes were tested by univariate and multivariate analysis-based on clinical variables. Additionally, we also explored the expression of DNA methyl transferases (DNMT1and DNMT3A) between ARID1B high and ARID1B low based on TCGA database.
Cell culture and qPCR analysis
Human colonic epithelial cells (HCoEpiC) and colon adenocarcinoma cell lines (HCT116 and LoVo) were cultured, supplied with 5% CO2, and incubated at 37°C. Extraction of total RNA, synthesis of cDNA, and qPCR conditions using SYPR green analysis reagent were previously published (Baldi et al., 2021). ARID1B forward (CAATGCCACAGGAAAGAGGTTT) and reverse (CTGTCTGTTGAGGTCCATACTGA) primers were utilized.
Survival analysis and clinical value of ARID1B methylation
CanEvolve is a public online tool used to analyze and visualize TCGA clinical and phenotype data. Three gene expression TCGA COAD datasets, including overall survival (OS), disease-free survival (DFS), and disease-specific survival (DSS) were selected from the CanEvolve online tool (http://www.canevolve.org/) (Samur et al., 2013). According to the median cut-off, patients in each dataset were divided into high and low expression groups to reveal the correlation between ARID1B expression and overall survival (OS). Whereas the clinical role of ARID1B methylation in COAD and the relationship between ARID1B methylation and the above-mentioned clinical elements were estimated using UALCAN. Besides, MethSurv [MethSurv-A web tool to perform multivariable survival analysis using DNA methylation data (ut.ee)] also contributed to the connection between position distribution around CpG islands and the prognosis of COAD patients.
Epigenetic analysis of gene promotor regions of ARID1B
SMART tools were used to explore the relationship between ARID1B methylated sites, somatic mutation and copy number variation (Li et al., 2019).
TIMER analysis
The reliability and validity of TIMER2 website in the study of immune cell infiltration are supported by previous researches enabled us to estimate the correlation between ARID1B expression and immune subset infiltration levels in the COAD microenvironment (http://timer.cistrome.org/) (Li et al., 2017). TIMER2 was also conducted to determine the power of correlation between ARID1B and immune cell markers, chemokines, and immunomodulator levels in the TCGA COAD microenvironment.
ARID1B related pathway analysis
GSCAlite using TCGA data was conducted to identify ARID1B pathways in COAD tumor http://bioinfo.life.hust.edu.cn/web/GSCALite/(Liu et al., 2018). On the other hand, UALCAN identified potentially associated and co-expressed genes of ARID1B in the TCGA COAD. The heat map of the top 50 upregulated and downregulated genes was created. To identify ARID1B-associated functions in COAD, we performed Gene Set Enrichment Analysis (GSEA) for each set using OmicBeans tool, (http://www.omicsbean.cn/).
RESULTS
TCGA analysis of the clinical prognostic value of ARID1B
The first set of questions aimed to measure ARID1B expression levels from the TCGA database. Differential analysis of total of 82 RNA-Seq data using TNMplot database showed that ARID1B had a lower mRNA level in tumor COAD tissues (41 patient) compared to normal tissues (41 patient) (Figure 1A). Furthermore, the HPA tool was used for protein expression analysis and ARID1B protein was decreased in colon tumor cells than endothelial cells and glandular cells (Figure 1B).
[image: Figure 1]FIGURE 1 | ARID1B mRNA analysis results. (A) ARID1B expression from TCGA, (B) ARID1B protein expression from HPA, (C–E) Kaplan Meir blot of Overall Survival, Disease Free Survival, and Disease Specific Survival. (F) qPCR results, ARID1B is downregulated in cancer cell line compared to normal cell line. HPA, Human Protein Atlas; OS, overall survival; DFS, disease-free survival, DSS; disease-specific survival; Med, Medium; Mod, Moderate; Neg, Negative; Non, None.
ARID1B is associated with poor prognosis in colon adenocarcinoma
The next question we asked whether ARID1B low expression has a clinical value for COAD patients. The significance of ARID1B gene expression in determining the overall survival (OS), disease-free survival (DFS), and disease-specific survival (DSS) of COAD patients were assessed, and a low level of ARID1B expression was associated with poor prognosis in all three survival analysis datasets (Figures 1C–E). Colon cancer cell lines showed a low mRNA ARID1B expression compared to colon normal cell line (Figure 1F).
ARID1B is hypermethylated in colon cancer
To explore the reasons for the low expression of ARID1B in colon cancer, the methylation level of the ARID1B gene was analyzed with UALCAN web tool. The expression of the ARID1B gene in colon cancer was hypermethylated in cancer samples (313) than normal samples (Mu et al., 2018) (Figure 2A). Differentially methylated regions were identified and a heat map was created (Figure 2B). Interestingly, hypermethylation of ARID1B was correlated with the downregulation of ARID1B expression. Additionally, the expression of ARID1B was positively correlated with the expression of three methyl transferases (DNMT1, DNMT3A, and DNMT3L) in colon cancer, although the difference was not significant (Figures 2C–E).
[image: Figure 2]FIGURE 2 | ARID1B methylation level analysis. (A) ARID1B methylation level from UALCAN (B) Different CpG probs of ARID1B from Methsurv (C–E) The positive correlation of ARID1B and methyltransferases. N, Normal; T, Tumor; S, Stage; Cau, Caucasian; Afr-Amr, African, American; Asi, Asian; M, Male, F, Female; y, year; N-W, Normal Wight; E-W, Extreme Wight; Ob, Obese; E-B, Extreme Obese; Ad, Adenocarcinoma; Muc, Mucinous Adenocarcinoma.
ARID1B methylation is related to the clinicopathological variables and prognosis of COAD
We analyzed the differences in DNA methylation levels in the TCGA COAD cohort and determined the association between ARID1B methylation and clinicopathological variables, including age, gender, tumor stage, lymph metastasis, distant metastasis, and clinical stage. Compared with the normal group, ARID1B was hypermethylated and was associated with all indicated variables as well as clinical with each stage (Figure 3). Significantly, the hypermethylation of ARID1B predicted a shorter overall survival, thus hypomethylation of the ARID1B gene is conducive to survival (Figure 4). This is an interesting consistent result. Univariate and multivariate Cox regression was performed and the data presented in Tables 1, 2 showed that the prognostic significance of hypermethylation was an independent factor of clinicopathological characteristics including age, gender, race, and stage.
[image: Figure 3]FIGURE 3 | The methylation level of ARID1B across different clinicopathological parameters in COD patients. There is a significant difference between the defined subgroups containing gender, age, race, histological subtype, tumor grade, and nodal metastasis status of patients.
[image: Figure 4]FIGURE 4 | ARID1B hypermethylation impacts the prognosis of COAD patients.
TABLE 1 | Univariate analysis.
[image: Table 1]TABLE 2 | Multivariate analysis.
[image: Table 2]Functional enrichment and PPI analysis
Based on the functional enrichment and correlation analysis with the representative molecules of the pathway, the expression of the ARID1B gene was related to the PI3k/AKT, RTK, NA damage response, Hormone AR, RAS/MAPK, and TSC/mTOR pathways while it was inhibited in apoptosis, cell cycle, and EMT pathways (Figure 5A). Furthermore, the ARID1B gene exhibits high expression when the driving genes (APC and FBXW7) are mutated (Figure 5B). Contrary, there was a list of mutated gene decreased ARID1B expression in COAD (Figure 5C).
[image: Figure 5]FIGURE 5 | Enrichment pathways of ARID1B. (A) ARID1B is inhibited and activated in pathways indicated with green and red colors, respectively (B) A permutation test p-value of ARID1B between driver mutated and non-mutated samples (C) Analysis correlation between ARID1B expression and some mutated genes that cause a low level of ARID1B was explored.
ARID1B methylated sites are associated with somatic variations
The association was evaluated between somatic mutation, CNV, and DNA methylation. Results showed a number of CpG sites associated with somatic mutation and copy number variations (Figure 6A,B).
[image: Figure 6]FIGURE 6 | A number of CpGs are associate with ARID1B alterations (A) CpGs associated with somatic mutation, (B) CpGs associate with CNA.
T lymphocyte infiltrates are associated with ARID1B expression
Surprisingly, as presented in Figure 7, there was a negative correlation of immune cells through TIMER analysis, including T cell, CD8+, T cell, CD4+, and NK cells and a positive correlation with B cells, macrophages, and neutrophils as well as tumor-associated fibroblast, dendritic cells, and cell regulatory cell in COAD. These data indicate that T cells CD8+ tend to be depleted in the COAD microenvironment and that ARID1B may play a role in the COAD microenvironment. To verify these results, we performed a Pearson correlation between markers and ARID1B expression. Strong evidence of correlation analysis was found between a variety of the biomarkers and ARID1B expression in the COAD microenvironment (Table 3). These findings emphasized that ARID1B may regulate immune cell infiltration in COAD. Dendritic cells (DCS) are key participants in the antigen-specific immune response. Two different DC subsets (XCR1, CADM1, cDC1, and CD1A) and (CD172A+ cDC2) have been identified, which interact with CD8+ and CD4+ T cells, respectively. The current study detected evidence for some DCs including XCR1, CADM1, and CD1A in COAD.
[image: Figure 7]FIGURE 7 | The correlation between ARID1B and immune cell infiltration. The significant negative-positive correlation between ARID1B and immune cell subtypes.
TABLE 3 | Correlation between ARID1B and immune cell biomarkers in COAD.
[image: Table 3]ARID1B is associated with M2 macrophages, chemokines
Since the positive correlation was found between ARID1B and TAMs biomarkers, particularly M2-macrophages, and verified these findings, we immediately studied the correlation between ARID1B and the classical chemokines of both M1-macrophages (IL-12, IL-23, TNF, IFNG) and M2 macrophages (IL-10, TGF-b, IL-4, IL-13). The analysis whose reported positive results also reported a significant positive correlation with M2 chemokines (TGF-B1, TGF-B3). Whereas none of the M1 macrophage chemokines were associated with ARID1B expression in the COAD microenvironment (Table 3). Therefore, these results support that ARID1B is closely related to M2-macrophages in the microenvironment of COAD.
Checkpoint inhibitors are significantly correlated with ARID1B in the colon adenocarcinoma tumor microenvironment
A previous study reported that tumors may achieve immune escape by inhibiting the activity of CTLs. This is achieved by immunoinhibitory molecules that bind T cell surface ligands and inactivate its function. Therefore, we evaluated the immunomodulators level related to ARID1B expression in COAD and found a positive correlation of different immunosuppressors, including HAVCR2 (TIM3), LAG3, PDCD1 (PD-1), TIGIT, CD27, CTLA-4, and TNFRSF9 (markers of T cell failure) (Table 3). These results indicate that T cells may tend to be inactivated in the COAD microenvironment.
ARID1B is related to the signal pathway that regulates immune cells
To better understand the transcriptomic phenotype associated with infiltrated COAD tumors, ARID1B gene expression data were obtained via UALCAN online tool and applied gene set enrichment analysis of positive and negative correlated genes. Interestingly, RNA-seq data validated that ARID1B upregulated several immune pathways in colon cancer tissue. The enrichment results show that in ARID1B positively correlated genes, the main enrichment pathways are: (Wang et al., 2020) NF-κB signaling pathway; (Siegel et al., 2022) TNF signaling pathway; (Zhang et al., 2020a) TGF-beta signaling pathway; (Cheng et al., 2021) VEGF signaling pathway; (Han and Yoon, 2012) Wnt signaling pathway; (Zebley et al., 2021) Rap-1 signaling pathway; (Li et al., 2014) PI3K-Akt signaling pathway; (Zhou et al., 2019) mTOR signaling pathway; (Watts et al., 2008) JAK-STAT signaling pathway innate immune response; (Salta et al., 2018) ECM receptor interaction. The main enrichment pathways in ARID1B negatively associated genes were: (Wang et al., 2020) metabolic pathway; (Siegel et al., 2022) RNA polymerase, Huntington disease, Parkinson disease, Alzheimer disease; (Zhang et al., 2020a) Thermogenesis; (Cheng et al., 2021) non-alcoholic fatty liver disease; (Han and Yoon, 2012) spliceosome; (Zebley et al., 2021) oxidative phosphorylation; (Li et al., 2014) retrograde endocannabinoid signaling; (Zhou et al., 2019) oxidative phosphorylation (Figures 8A–D).
[image: Figure 8]FIGURE 8 | Shows gene set enrichment analysis of cooccurred genes. (A) Positively correlated genes (B) Negatively regulated genes (C) KEGG pathway (D) GO analysis.
DISCUSSION
Among the different types of molecule abnormalities, mRNA changes and DNA methylation, which are reported widely in almost all cancers. The main purpose of this study was to analyse the promotor methylation of ARID1B through preliminary difference analysis, correlation analysis, and prognosis analysis. Despite very little was found in the literature on the analysis of ARID1B expression and its DNA methylation in cancer, none of these studies was related to colon cancer (Aso et al., 2015; Cui et al., 2019; Tessier-Cloutier et al., 2020). Previous studies observed an increased expression of ARID1B in triple-negative breast cancer and breast invasive ductal carcinoma (Shao et al., 2015; Cui et al., 2019). In the current study, we evaluated DNA methylation and gene expression profiles of ARID1B in colon cancer samples from TCGA. The expression of ARID1B in TCGA COAD and normal tissues were first analysed using the TNMplot platform. To confirm the observed results experimentally, RNA from the colon cell line was extracted and detected by qPCR analysis. This method was repeated three times to ensure reliable results. Consistent with the significant downregulation of ARID1B expression in colon cell lines and TCGA tissues, ARID1B was hypermethylated in COAD tissues. Comparison of these findings with those of previous studies confirmed silenced expression of genes, especially ARID1B by aberrant methylation of DNA in cancer (Chuang and Jones, 2007; Khursheed et al., 2013; Liu et al., 2020; Tan et al., 2020). AKR1C2 mRNA, a gene previously identified as a Nrf2-target, was not found in HCT116 cells (Ebert et al., 2011). Importantly, survival analysis showed that the overall survival rate of patients in the low mRNA expression group was significantly shorter than that in the low-level group. ARID1B methylation level was related to clinicopathological characteristics and showed a significant negative correlation with its mRNA level in COAD. Besides, the prognostic analysis of a number of methylated sites was significantly associated with the patients’ outcome in COAD patients. These consistent results of aberrantly silenced ARID1B provide strong evidence that low ARID1B expression is an important indicator of the poor prognosis of COAD and the epigenetic changes might be a potentially increased risk of colon cancer-related death. Knowing that DNMTs enzymes are responsible for establishing, maintaining, and mediating DNA methylation, we performed correlation analysis, and ARID1B was positively correlated with DNMTS in COAD (Chuang and Jones, 2007). The third question in this research aimed to determine the pathways of ARID1B expression on the basis of TCGA database. GSEA revealed that ARID1B is involved in multiple cancer-related pathways, among others PI3K-AKT and mTOR pathways, suggesting that ARID1B regulates these pathways and functions as a tumour suppressor in COAD.
Tumour infiltrates immune cells are an important immune cell type in the tumor microenvironment and have been reported to affect patients’ overall survival (Kryczek et al., 2016; Yang et al., 2018). For this and to further determine the association between ARID1B and COAD, we used TIMER database to analyse the correlation between the expression of ARIDIB and immune cell infiltration. Immune cells and fibroblast infiltration demonstrated a link with ARID1B in the COAD microenvironment. Consistent with the obtained results, ARID1B showed a positive correlation with immune cell markers. It was reported that CD8+ T cells could be inhibited by immunoinhibitory molecules via binding to the receptor PD-1 on the surface of CD8+ T cells (Yang et al., 2018). TIMER analysis revealed a positive correlation between ARID1B and T-exhausted cell immunoinhibitory molecules. The positive correlation of ARID1B and macrophages and depleted CD8+ markers indicates the contribution of macrophages to the formation of the immunosuppressive microenvironment in COAD. Recently, The M2-polarization of TAMs was recognized as an immunosuppressive phenotype (Mu et al., 2018). Moreover, scientists found that monocytes recruited to tumour regions are reprogrammed to become tumour-associated macrophages. And the activity of motifs MAF, STAT1, STAT2 leads to M2 polarization, which provides potential targets for inhibiting or reversing the information of the immunosuppressive microenvironment (Zheng et al., 2021). In addition to TILs, ARID1B was positively correlated with TIM, including LAMP3, cDCs, LYVE1, resident tissue macrophages (RTMs), and FOLR2, TAM. In accordance with this result, recent work reported multiple tumour types of TIM cell subpopulations across the pan-cancer analysis (Cheng et al., 2021).
Finally, we explored the signal pathways that might regulate the immune cell infiltration and polarization of M2 macrophages in COAD. TGF-β signalling pathway is a cytokine signalling pathway involved in the development and progression of COAD. Hu et al. found that the transcription factors STAT3, HIVEP, NFAT, and other regulated genes are upregulated in depleted CD8+ T cells. This result provides clues for identifying new candidate transcription factors for T cell dysfunction. Furthermore, STAT3 not only participates in the polarization of macrophages to M2 but also participates in the depletion of T cells, suggesting that STAT3 inhibition can be used as a new therapeutic strategy for the treatment of cancer (Hu et al., 2020). A pathway enrichment analysis of ARID1B-correlated genes also indicated the involvement of the STAT-JAK signalling pathway, which suggest that the TGF-β1/STAT-JAK pathways are associated with aggressive pathological features and poor clinical outcomes in COAD. While this report describes the function of ARID1B and its methylation in COAD, it also provides preliminary evidence about the role of ARID1B in the microenvironment of COAD immune cell infiltration, and M2 polarization and suggests that ARID1B may influence COAD immunotherapy. Our study has some limitation. The involvement of ARID1B in COAD was identified via bioinformatics. Even though the association between ARID1B and DNMTS expressions in COAD was not statistically significant, it remained unknown whether ARID1B was regulated by DNTMs enzymes. However, future experimental studies on the current topic are therefore recommended. In conclusion, the article comprehensively analysed ARID1B abnormalities (mRNA changes, DNA aberrant methylation) and its association with the immune cell infiltration of COAD. The analysis revealed that ARID1B hypermethylation could serve as an early diagnostic biomarker for COAD treatment, and the difference in immune cell infiltration was found to be related to the ARID1B expression of the COAD tumour. In conclusion, the article comprehensively analysed ARID1B abnormalities (mRNA changes, DNA aberrant methylation) and its association with the immune cell infiltration of COAD. The analysis revealed that ARID1B hypermethylation could serve as an early diagnostic biomarker for COAD treatment, and the difference in immune cell infiltration was found to be related to the ARID1B expression of the COAD tumour.
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The initiation and progression of cancer is modulated through diverse genetic and epigenetic modifications. The epigenetic machinery regulates gene expression through intertwined DNA methylation, histone modifications, and miRNAs without affecting their genome sequences. SELENBP1 belongs to selenium-binding proteins and functions as a tumor suppressor. Its expression is significantly downregulated and correlates with carcinogenic progression and poor survival in various cancers. The role of SELENBP1 in carcinogenesis has not been fully elucidated, and its epigenetic regulation remains poorly understood. In this review, we summarize recent findings on the function and regulatory mechanisms of SELENBP1 during carcinogenic progression, with an emphasis on epigenetic mechanisms. We also discuss the potential cancer treatment targeting epigenetic modification of SELENBP1, either alone or in combination with selenium-containing compounds or dietary selenium.
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INTRODUCTION
Cancer incidence and mortality rate are increasing at an alarming rate worldwide, with an estimated 19.3 million new cases and almost 10.0 million deaths having occurred in 2020 (Sung et al., 2021). Both genetic and epigenetic modifications contribute to carcinogenic progression. Epigenetics refers to heritable changes in the chromatin structure and gene expression during post-transcriptional and translational stages without DNA sequence alterations, including DNA methylation, histone modification, and RNA-based mechanism, which lead to silencing or enhanced expression of the gene or protein (Haig, 2004; Waddington et al., 2012; Zhang et al., 2021; Hussain et al., 2022; Zaib, 2022). DNA methylation that occurs in cytosine–guanine (CpG) islands of the gene promoter regions is associated with gene silencing (Jones and Baylin, 2002; Feinberg, 2018). Histone post-translational modifications (PTMs) include methylation, phosphorylation, acetylation, ubiquitination, glycosylation, and chromatin remodeling, and also could be regulated by non-coding RNAs such as microRNAs (miRNAs), siRNAs, and long-non-coding RNAs (lncRNAs). (Hussain et al., 2022; Zhang et al., 2021; Millan-Zambrano et al., 2022). Epigenetic changes are closely associated with regulation of tumor suppressors and/or oncogenes via DNA hypermethylation, histone modification, and non-coding RNAs (Jones and Baylin, 2002; Hussain et al., 2022).
The study of epigenetics in cancer epidemiology is emerging in the recent 2 decades, and its role in oncogene/tumor suppressor regulation and cancer progression is being emphasized increasingly. Epigenetic changes have opened the way to innovative diagnostic and treatment strategies for a variety of cancers in clinics (Laird, 2003). Epigenetic drugs targeting to inhibit epigenetic modifiers, such as DNA methyltransferase and histone deacetylase (DNMTi and HDACi), have been approved to treat different malignant cancers and showed promising outcomes (Hussain et al., 2022).
STRUCTURAL AND BIOCHEMICAL CHARACTERISTICS OF SELENBP1
Mammalian selenium-containing proteins can be divided into three groups: specific selenium-binding proteins, specific incorporation proteins (also called selenoproteins), and non-specific incorporation proteins (Behne and Kyriakopoulos, 2001; Kryukov et al., 2003). The human SELENBP1 (also known as Sbp1, human 56 kDa selenium-binding protein/hSP56, EHMTO, HEL-S-134P, LPSB, MTO, and SBP56 or hSBP) belonging to the specific selenium-binding protein is located at chromosome 1q21–22. The neighbor-joining phylogenetic tree of SELENBP1 has been reported in a previous study (Pol et al., 2018). Its mouse homolog is the SP56 gene (also known as SLP-56, Lp56, Lpsb, MTO, or SBP56) (Bansal et al., 1990; Lanfear et al., 1993; Chang et al., 1997; Porat et al., 2000). The gene sequences of mouse and human SELENBP1 are shown in Figure 1 (A, B) using GSDS2.0 (Hu et al., 2015). The degree of homology between mouse and human SELENBP1 is 86% (Flemetakis et al., 2002), which means many mechanisms apply to both. Selenbp2, as a highly homologous isoform of Selenbp1 differing by only 14 residues, exists in mice but not in humans (Lanfear et al., 1993). Both Selenbp1 and Selenbp2 mRNA levels are downregulated in liver cell lines but remain high in diethylnitrosamine (DEN)-induced mouse liver tumors in vivo (Lanfear et al., 1993). This may be due to the redundant role of each other. However, the expressions or functions of Selenbp2 in cancers are scarcely published yet. Both mouse and human SELENBP1 are ubiquitously expressed in the colon, lung, and 17 other tissues (Fagerberg et al., 2014; Yue et al., 2014). Selenium (Se), as the sixth main group of the periodic table of elements, displays both metallic and non-metallic properties (Minich, 2022) and has been widely reported to possess antitumor effects and exert its inhibitory effects (Bansal et al., 1990). SELENBP1 is also implied in cancer prevention. The downregulation and anti-carcinogenic effects of SELENBP1 are assessed in numerous cancers, including kidney/lung/thyroid/stomach/esophagus/liver/breast/prostate/colon/pancreatic/head and neck/skin/bladder/uterine/nerve and ovary cancer. SELENBP1 is highly expressed in the brain (Pol et al., 2018) and is also associated with inflammatory/degenerative central nervous system (CNS) diseases (neuromyelitis optical spectrum and Alzheimer’s disease) and schizophrenia (Scz) (Elkjaer et al., 2021; Seelig et al., 2021). In addition, SELENBP1 also plays a role in multiple sclerosis (MS) subtypes, corona virus disease 2019 (COVID-19), extraoral halitosis, and so on (Adam et al., 2011; Pol et al., 2018; Stukalov et al., 2021).
[image: Figure 1]FIGURE 1 | Schematic diagram of the SELENBP1 gene. (A) Nucleic acid sequences of mouse SELENBP1. (B) Nucleic acid sequences of human SELENBP1. Boxes and intervening lines represent exons and introns, respectively. Several CpG sites were found in the 5′-untranslated region and promoter. Methylation occurred at −95 to +90, the 5′-UTR, 3′-UTR, enhancer, promoter as well as in the gene body. The histone acetylation also exists with unknown sites. 5' flanking promoter is repressed by HBx. Nkx2-1 binds to the enhancer and promoter regions of Selenbp1 through methylation and acetylation. miR-4786-3p targets at the 3′ UTR of SELENBP1.
The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to identify the interaction partners of human SELENBP1, as shown in Figure 2. One of the interactors of SELENBP1 is ubiquitin-specific peptidase 33 (USP33), also known as von Hippel–Lindau protein (pVHL)-interacting deubiquitinating enzyme 1 (VDU1), which is a deubiquitinating enzyme. The interaction between USP33 and SELENBP1 was detected by a two-hybrid assay in human prostate cancer cells (Jeong et al., 2009), indicating SELENBP1 may play a role in epigenetics regulation. The other mammalian selenium-containing proteins, such as selenium-binding protein and glutathione peroxidase 1 (GPX1), also play important roles in cancers. SELENBP1 regulates GPX1 expression in hepatocellular carcinoma (HCC) (Huang et al., 2012), breast cancer (Fang et al., 2010), colon cancer (Fang et al., 2010), and skin cancer (Schott et al., 2018). In addition, SELENBP1 was identified to interact with tandem BRCA1 carboxyl-terminal (BRCT) domain–mediated proteins, which is frequently present in proteins involved in the damage response (DDR), and bind to phosphorylated peptides. Defects in this network can lead to cancer, while the mechanism of SELENBP1 in DDR during cancer was still unknown (Woods et al., 2012).
[image: Figure 2]FIGURE 2 | Involvement of human SELENBP1 in protein–protein interaction (PPI) databases. SELENBP1, highlighted in red, is shown in the standard human protein–protein association network in STRING 11.5 (https://string-db.org/). The network includes 11 nodes and 25 edges, and the average node degree was 4.55, with a PPI enrichment P-value of 9.81e-05. Nodes represent proteins. Edges represent PPIs.
EXPRESSIONS AND FUNCTIONS OF SELENBP1 IN VARIETIES OF CANCERS
Kidney cancer: SELENBP1 could be a useful prognostic factor in renal cell carcinoma (RCC). Using 139 specimens of primary RCC and 59 specimens of control kidney tissues, the mRNA level of SELENBP1 is significantly downregulated in the RCC tissues than in normal adjacent kidney tissues (p < 0.001) and is correlated with pathologic (T-stage and Fuhrman grade), prognostic variables (progression and cancer-specific death) as well as cancer-specific death (log-rank test, p = 0.014) (Ha et al., 2014). SELENBP1 is downregulated by hepatocyte nuclear factor 4 alpha (HNF4alpha), a tissue-specific transcription factor in RCC microarray studies (Lucas et al., 2005). However, the exact mechanism of SELENBP1 still needs to be elucidated.
Lung cancer: SELENBP1 is downregulated in basaloid carcinoma, large cell carcinoma, lung squamous cell carcinoma (LSCC), and adenocarcinoma (Li et al., 2004). Using quantitative two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), two isoforms of SELENBP1 are significantly decreased in lung adenocarcinomas at both mRNA and protein levels. Its expression correlates with poor survival, and downregulation of SELENBP1 may increase cell proliferation and decreased differentiation (Chen et al., 2004). The protein level of SELENBP1 is significantly lower in LSCC tissues than in the corresponding normal bronchial epithelium (NBE) tissues (p = 0.000) and is associated with higher lymph node metastasis and lower overall survival rate (p < 0.05) (Tan et al., 2016). Knockdown of SELENBP1 can increase benzo(a)pyrene (B[a]p)-induced human NBE cell transformation to participate in NBE carcinogenesis (Zeng et al., 2013).
Thyroid cancer: Proteomic analysis of papillary thyroid carcinoma (PTC) compared with normal thyroid tissue using difference gel electrophoresis (DIGE), and mass spectrometry confirmed lower expression of SELENBP1 (p = 0.00097) (Brown et al., 2006). More studies are needed to examine its function in thyroid tissue and thyroid cancer progression.
Stomach cancer: SELENBP1 was significantly decreased in a proteomic analysis of gastric cancer specimens. Its expression is correlated with differentiation, TNM stage, and lymph node metastasis (p < 0.05). It can serve as a potential novel prognostic biomarker (He et al., 2004; Zhang et al., 2011a; Xia et al., 2011), and its level is associated with a poor survival rate in gastric carcinoma (Zhang et al., 2011b). SELENBP1 promotes proliferation, colony formation, and senescence in vitro and in vivo. In addition, it suppresses tumor growth and metastasis and increases the chemoresistance of gastric cancer cells via apoptotic signaling pathways (Zhang C. et al., 2013). The exact mechanism is not known yet.
Esophagus cancer: SELENBP1 is decreased significantly in esophageal adenocarcinoma (EAC) tissues. Downregulation of SELENBP1 in Barrett’s esophagus to adenocarcinoma progression could enhance apoptosis, cellular senescence, and cisplatin cytotoxicity in EAC cells (Silvers et al., 2010).
Liver cancer: The protein level of SELENBP1 is decreased in HCC (Raucci et al., 2011). Decreased expression of SELENBP1 could promote tumor invasiveness by increasing GPX1 activity and diminishing hypoxia-inducible protein-1alpha (HIF-1α, a tumor suppressor) expression in HCC; SELENBP1 could be a novel biomarker for predicting prognosis and guiding personalized therapeutic strategies, especially in patients with advanced HCC (Huang et al., 2012). However, in another study, SELENBP1 mRNA is downregulated in liver cell lines in vitro but upregulated in DEN-induced mouse liver tumors compared with the normal tissues in vivo, though the function is not known for certain at present. They hypothesized that binding of selenium or acetaminophen metabolites in hepatoxicity might play a role in the processes (Lanfear et al., 1993). Downregulation of SELENBP1 could increase C-X-C motif chemokine receptor 4 (CXCR4) expression and results in epithelial–mesenchymal transition (EMT) of HCC cells (Gao et al., 2018). The 3D model of human protein SELENBP1 was reported to have one cysteine residue, which binds the selenium in HCC and can be used as a therapeutic target (Raucci et al., 2011).
Breast cancer: SELENBP1 remains low in mammary carcinoma (Lanfear et al., 1993). Lower SELENBP1 expression in breast cancer tissues compared to normal control is significantly associated with poor survival (p < 0.01). SELENBP1 expression is regulated by estrogen in vitro. Supplemental dietary selenium could inhibit cell proliferation in cells expressing high level of SELENBP1 (Zhang S. et al., 2013). SELENBP1 is likely to play roles in modulating selenite-mediated cytotoxicity and the extracellular microenvironment by regulating the levels of extracellular glutathione (GSH) (Wang et al., 2015). The interaction between SELENBP1 and GPX1 is found in MCF-7 breast carcinoma cells (Fang et al., 2010). SELENBP1 can also interact with the retinoid-receptor RARα in the nuclear material, whose interaction is reduced by all trans-retinoic acid (ATRA, a cancer drug) in the breast cancer cell line (Gianni et al., 2019). SELENBP1 interacts with the nuclear receptor estrogen receptor 2 (ESR2, ERβ) to modulate cell proliferation and tumor growth in breast cancer (Giurato et al., 2018).
Prostate cancer: SELENBP1 is observed to be at lower levels in prostate cancer (Yang and Sytkowski, 1998; Ansong et al., 2015). As to energy metabolism, SELENBP1 produces H2O2 and H2S and consequential activation of AMP-activated protein kinase (AMPK), a major regulator of energy homeostasis as well as inhibited oxidative phosphorylation (OXPHOS) in prostate cancer cells. In addition, HNF4 alpha, a novel transcriptional inhibitor of SELENBP1, plays a role in prostate cancer by binding to the SELENBP1 promoter region (Elhodaky et al., 2020). SELENBP1 may influence the plasma selenium levels and may be associated with the risk of advanced prostate cancer (Xie et al., 2016). GPx enzyme activity is inversely correlated with SELENBP1 levels in prostate cancer tissue (Jerome-Morais et al., 2012). SELENBP1 is found to coprecipitate with the androgen receptor (AR) in prostate tumor cells (Veldscholte et al., 1992). In prostate cancer, expressed prostatic secretions (EPS), proximal fluids of the prostate, can be utilized for diagnostic and prognostic assays. SELENBP1 is found in the EPS according to a shotgun proteomics (Principe et al., 2013).
Colon cancer: SELENBP1 is downregulated in the proteomic analysis of colorectal cancer (CRC) (Wang et al., 2012). Both mRNA and protein levels of SELENBP1 are downregulated in CRC, which are correlated with the degree of differentiation, and its levels are higher in benign polyps than in CRC tissues (Kim et al., 2006; Li et al., 2008; Wang et al., 2014). SELENBP1 induces H2O2-mediated apoptosis in colon cancer cells and inhibits cancer cell migration in vitro and tumor growth in vivo (Pohl et al., 2009). SELENBP1 can also inhibit CRC through lipid/glucose metabolic signaling pathways (Ying et al., 2015a) and participate in mitochondrial function in the HCT116 human colorectal carcinoma cell line through cysteine 57 in SELENBP1 (Ying et al., 2015b). The interaction between SELENBP1 and GPX1 is found in colon-derived HCT116 cells (Fang et al., 2010).
Pancreatic cancer: SELENBP1 is downregulated in pancreatic ductal adenocarcinoma (PDAC) patients with skin rash (SR) treated with erlotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (Caba et al., 2016). SELENBP1 interacted with anterior gradient 2 (AGR2), with the latter promoting phosphorylation of RICTOR (T1135), leading to pancreatic tumor metastasis (Tiemann et al., 2019).
Head and neck cancer: SELENBP1 is downregulated in head and neck squamous cell carcinoma (HNSCC) including nasopharyngeal carcinoma (NPC), laryngeal cancer (LC), oral cancer (OC), tonsil cancer (TC), and hypopharyngeal cancer (HPC), which have no association with tumor T-stage, N-stage, and tumor grade. NPC patients with low expression of SELENBP1 have a poor survival rate. Therefore, SELENBP1 could be a novel biomarker for predicting NPC prognosis (Chen et al., 2016). SELENBP1 downregulation in both mRNA and protein levels is also positively correlated with poor prognosis for oral squamous cell carcinoma (OSCC) patients.
Skin cancer: SELENBP1 concentration remains low in skin carcinoma (Lanfear et al., 1993). SELENBP1 is identified to be downregulated in cutaneous melanoma influenced by glutathione peroxidase 1 (GPX1) to regulate proliferation and tumor microenvironment (Schott et al., 2018). An in vivo mouse study shows that HIF-1α can transactivate SELENBP1 during murine skin chemical carcinogenesis (Scortegagna et al., 2009).
Bladder cancer: SELENBP1 is significantly downregulated in bladder cancer (Wang et al., 2020).
Uterine cancer: Decreased protein expression of SELENBP1 is found in uterine leiomyoma than in normal myometrium (Zhang C. et al., 2010).
Nerve cancer: SELENBP1 is found at the growing tips of the neurites in SH-SY5Y neuroblastoma cells/T98G glioma cells involved in the initial sequential events in rapid cell outgrowth; however, the exact expression change is still unknown (Miyaguchi, 2004).
Malignant pleural mesothelioma (MPM): Gene expression analyses from MPM patients show that SELENBP1 might be associated with the risk of having MPM (Pass et al., 2004).
Uveal melanoma tumor: SELENBP1 expression is induced in uveal melanomas that subsequently develop distant metastases compared with those that do not (Linge et al., 2012).
Ovary cancer: In a membrane proteome profiling analysis, SELENBP1 is decreased in ovary cancer through the selenium/androgen pathway (Huang et al., 2006). In addition, high anti-SELENBP1 levels are also observed in patients with serous ovary cancer, which suggests SELENBP1 participates in an autoimmune process during ovary cancer development (Yu-Rice et al., 2017). Downregulation of SELENBP1 also increases epithelial proliferation and papillary complexity in tumorigenesis of ovarian serous borderline tumor, micropapillary serous borderline tumor, and low-grade serous carcinoma (Zhang P. et al., 2010). SELENBP1 is identified as one of the candidate stromal epithelial cross-talk genes by analyzing common single-nucleotide polymorphisms (SNPs) for their association between the risk of serous ovarian cancer and telomerase reverse transcriptase (TERT), a cancer susceptibility “hot-spot” (Johnatty et al., 2010).
SELENBP1 also displays high expression in other tissues, such as the fetal and adult heart, spleen, thymus, and other tissues (Pol et al., 2018); however, no studies have been reported whether SELENBP1 also participates in their carcinogenesis.
EPIGENETIC MECHANISMS OF SELENBP1
The expression of SELENBP1 is downregulated in almost all cancers, indicating some suppressing functions of SELENBP1 in cancers. Epigenetic changes are likely to account for reduction of SELENBP1 expression.
Epigenetic modification of SELENBP1 through promoter methylation in cancer has been demonstrated in many studies: DNA methylation at CpG islands in promoter regions is regulated by the DNA methyltransferase (DNMT) enzyme. This phenomenon often occurs at an early stage and is a common mechanism of gene silencing during carcinogenesis (Jones and Baylin, 2002; Laird, 2003; Nazemalhosseini et al., 2013; Huss+6ain et al., 2022). Several CpG sites were found in the 5′-untranslated region of SELENBP1 (Pohl et al., 2009; Silvers et al., 2010). Gene hypermethylation in the “epidermal differentiation complex” is located within 700 kb of the SELENBP1 locus (Marenholz et al., 2001; Elder and Zhao, 2002). So, it is possible that the SELENBP1 promoter may be methylated in tumors and results in low expression levels of SELENBP1. Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins to control substrate activity and/or abundance. SELENBP1 is the bait of USP15 (ubiquitin-specific proteases 15, a Dub) in a global proteomic analysis of Dubs and their associated protein complexes in 293T cells, indicating SELENBP1 levels might also be regulated by USP15 (Sowa et al., 2009). PLEKHA4 sequester E3 ubiquitin ligase adapter controls disheveled polyubiquitination at the plasma membrane to tune sensitivities of cells. SELENBP1 interacts with PLEKHA4 in HEK293 cells, which further directs the crucial function of epigenetic modification in modulating SELENBP1 expression (Shami et al., 2019).
Lung cancer: Nkx2-1 is a transcription factor that suppresses malignant progression of lung adenocarcinoma. SELENBP1 is regulated by Nkx2-1 in lung adenocarcinoma in both the human lung adenocarcinoma and mouse lung cancer model. Nkx2-1 binds to the promoter regions of SELENBP1, which are associated with H3K4me3 and H3K27ac; Nkx2-1 binds to the enhancer regions at H3K4me1 and H3K27ac, which collectively indicate that Nkx2-1 likely regulates the expression of SELENBP1 through epigenetics regulation. In addition, they function in a positive feedback loop during the suppression of malignant progression of lung adenocarcinoma (Caswell et al., 2018).
Esophageal adenocarcinoma: Several CpG sites are found near the predicted promoter region of SELENBP1, where hypermethylation occurred at −95 to +90 and in the 5′-untranslated region of SELENBP1 (Silvers et al., 2010). A histone deacetylase inhibitor trichostatin A (TSA)/valproic acid (VPA) alone and/or the demethylating agent 5-Aza could increase SELENBP1 mRNA expression but not the protein level in EAC cell line Flo-1 cells. In addition, demethylating and acetylase-enhancing agents increased sensitivity of Flo-1 cells to apoptosis with cisplatin, which all indicate that inducible SELENBP1 expression may be regulated at the epigenetic level and play an important role during drug resistance in EAC (Silvers et al., 2010). However, the histone acetylation sites remain unknown.
Liver cancer: Human hepatitis B virus (HBV) is a leading cause of HCC (Beasley et al., 1981). SELENBP1 is decreased in HCC cells expressing the HBV X protein (HBx), and the SELENBP1 promoter is repressed by HBx. In addition, the stepwise deletion of 5′ flanking promoter sequences resulted in a gradual decrease in basal promoter activity and inhibition of SELENBP1 expression by HBx (Lee et al., 2020), which indicates the potential epigenetic regulation of SELENBP1 by HBx; however, whether the promoter hypermethylation exists has not been confirmed yet.
Prostate cancer: SELENBP1 could induce phosphorylation of the p53 tumor suppressor at serine 15 to suppress carcinogenesis (Ansong et al., 2015). In human prostate cancer cells, SELENBP1 interacts with von Hippel–Lindau protein (pVHL)-interacting deubiquitinating enzyme 1 (VDU1), and VUD1 incorporates selenium into SELENBP1. These findings imply the role of SELENBP1 in ubiquitination/de-ubiquitination-mediated protein degradation pathways dependent of selenium. However, the specific mechanism has not been elucidated (Jeong et al., 2009). SELENBP1 also interacted with VDU2, a closely related isoform of VDU1 (Jeong et al., 2014). VDU2 can interact with HIF-1α, a tumor suppressor, to deubiquitinate and stabilize HIF-1α (Li et al., 2005). SELENBP1 inhibits HIF-1α protein levels and downregulates its stabilization in prostate cells without affecting the mRNA levels of HIF-1α, which indicates SELENBP1 may affect epigenetic regulation of other genes. Whether HIF-1α is regulated by the interaction between SELENBP1 with VDU 1 and/or 2 is unknown (Jeong et al., 2014). SELENBP1 can downregulate HIF-1α protein levels without altering mRNA levels in the human lung carcinoma cell line as well (Jeong et al., 2014). The downregulation of HIF-1α by SELENBP1 also exists in liver cancer (Huang et al., 2012); however, the mechanism is not quite clear yet. SELENBP1 serves as the target gene of HIF-1α in skin squamous carcinogenesis (Scortegagna et al., 2009). SELENBP1 interacts with embryonic ectoderm development (EED), a core component of polycomb group proteins in the nuclear material of VCaP (vertebral cancer of the prostate) cells, a prostate cancer cell line (Cao et al., 2014). EED is a core component of polycomb repressive complexes 2 (PRC2) and is critical for PRC2 to methylate histone H3 at lysine 27 (H3K27me3). Then, EED recruits polycomb repressive complexes 1 (PRC1) directly to the tri-methylated H3K27 loci and enhances PRC1-mediated H2A ubiquitin E3 ligase activity, indicating a potential role for SELENBP1 as an epigenetic exchange factor in prostate cancer (Cao et al., 2014).
Colon cancer: In colon cancer, the promoter of SELENBP1 was methylated in both human colon tissues and cell lines (HCT116, SW480, Caco-2, and HT-29 cells), while it was mostly unmethylated in LS174T cells (Pohl et al., 2009). Treating HCT116 with 5-Aza-dC (5′-Aza-2′-deoxycytidine), a DNA methylation inhibitor (DNMTi), could decrease methylation of the SELENBP1 promoter, increase SELENBP1 promoter activity, and rescue SELENBP1 mRNA and protein expression levels (Pohl et al., 2009). However, very little methylation in the SELENBP1 promoter was detected in the colon cancer cell line SW480 in another study (Silvers et al., 2010). Treating SW480, SW620, and HT-29 cells with 5-Aza-dC alone did not significantly alter SELENBP1 protein and mRNA levels (Wang et al., 2014). However, TSA alone or in combination with 5-Aza-dC could upregulate SELENBP1 expression in the SW480 and SW620 cells, indicating its regulation by histone modification, while no significant change was observed in HT-29 cells (Wang et al., 2014). There are no consistent results about the DNA methylation in colon cancer. NACHT, LRR, and PYD domain-containing protein 7 (NLRP7) are potential biomarkers of CRC. NLRP7 is deubiquitinated by ubiquitin-specific protease 10 (USP10), leading to increased NLRP7 protein stability (Li et al., 2021). SELENBP1 physically interacts with NLRP7, indicating the potential impact of SELENBP1 in epigenetic regulation; however, the specific mechanism remains unknown (Li et al., 2021).
Head and neck cancer: miRNA belongs to the non-coding RNAs (Hussain et al., 2022). SELENBP1 can be epigenetically modified through miRNA in cancer. SELENBP1 downregulation in OSCC is induced by miR-4786-3p binding to the 3′ untranslated region (UTR) of SELENBP1. Nuclear factor erythroid 2-related factor 2 (NRF2, an oncogenic transcription factor) is a downstream responder upon SELENBP1 downregulation. SELENBP1 reduces NRF2 protein levels by promoting its polyubiquitination and degradation. Kelch-like ECH-associated protein 1 (KEAP1) binds to NRF2 to promote ubiquitin–proteasomal degradation of NRF2 (Itoh et al., 1999; Adam et al., 2011). SELENBP1 also acts as a transcriptional factor to induce KEAP1 transcription by binding the KEAP1 promoter (Zeng et al., 2021). Targeting at the miR-4786-3p–SELENBP1–KEAP1–NRF2 signaling axis may enhance the efficacy of chemotherapy for OSCC (Zeng et al., 2021).
Bladder cancer: By using the MEXPRESS tool (http://mexpress.be/), SELENBP1 expression in bladder cancer was found to relate to DNA hypermethylation in its promoter region located close to the transcription start site (TSS) and the first exon. Gene body methylation is negatively associated with SELENBP1 expression; however, DNA methylation in its 3′UTR was positively associated with SELENBP1 expression, which highlights that multiple DNA methylation sites may be differentially involved in regulating SELENBP1 expression. DNA hypermethylation, especially in the gene body, accounts for the reduction of SELENBP1 expression in bladder cancer. While p53-responsive elements are located in − 1,394 bp and − 2,285 bp regions of cyclin-dependent kinase inhibitor 1A (CDKN1A; also known as p21) promoter, SELENBP1-responsive elements are located within approximately ∼ 1,300 bp to ∼ 200 bp region of the p21 upstream promoter, and SELENBP1 upregulates p21 expression through a p53-independent mechanism transcriptionally and through phosphorylation attenuation of c-Jun and STAT1, leading to the G0/G1 phase cell cycle arrest, thereby inducing attenuation of cancer cell growth (Wang et al., 2020).
The epigenetic regulation of SELENBP1 during carcinogenesis is listed in Table 1 and described in Figure 3. In esophageal adenocarcinoma and colon cancer, histone deacetylase inhibitors or demethylating agents could target SELENBP1 expression (Pohl et al., 2009; Silvers et al., 2010). This leads to the usage of DNA methyltransferase and histone deacetylase to treat cancers targeting SELENBP1.
TABLE 1 | List of SELENBP1 regulated by epigenetic modifications during carcinogenesis.
[image: Table 1][image: Figure 3]FIGURE 3 | Different SELENBP1 epigenetic functions during carcinogenesis. (A) Lung cancer: Nkx2-1 binds to the promoter and enhancer regions of SELENBP1 through methylation and acetylation. They also function in a positive feedback loop. SELENBP1 can downregulate HIF-1α protein levels. (B) Esophageal adenocarcinoma, methylation occurred at −95 to +90 as well as in the 5′-untranslated region of SELENBP1. The histone acetylation also exists with unknown sites. (C) Liver cancer: SELENBP1 is decreased in HCC and the SELENBP1 5' flanking promoter is repressed by HBx. (D) Prostate cancer: SELENBP1 inducts phosphorylation of p53. SELENBP1 interacted with VDU1 and VDU2. VDU2 can deubiquitinate HIF-1α. Sub, potential substrates of VDU1. SELENBP1 inhibits HIF-1α protein levels. SELENBP1 interacts with EED. EED is critical for downstream methylation and ubiquitinoylation. (E) Colon cancer: whether SELENBP1 promoter hypermethylation or histone acetylation exists in human colon cancer cells remain controversial. NLRP7 is deubiquitinated by USP10 in colon cancer. SELENBP1 interacted with NLRP7. The specific mechanism between SELENBP1 and NLRP7 remains unclear. (F) Head and neck cancer: downregulation of SELENBP1 is induced by miR-4786-3p targeting at the 3′ UTR of SELENBP1. SELENBP1 reduces NRF2 protein levels by promoting its polyubiquitination and degradation. SELENBP1 induces KEAP1 transcription by binding to KEAP1 promoter. (G) Bladder cancer: SELENBP1 expression was inversely associated with DNA methylation in the promoter and gene body, but positively correlates with DNA methylation in the 3′-UTR region. SELENBP1-responsive elements located in the upper region of the p21 upstream promoter than p53’s to increase p21 expression. SELENBP1-mediated transcriptional induction of p21 protein through combined phosphorylation suppression of c-Jun and STAT1. Ub, ubiquitin; P, phosphorylation; Ac, acetylation.
SELENIUM AND TREATMENT STRATEGIES
Se has been widely known to play a role in tumor prevention (Bansal et al., 1990). Studies regarding effects of Se on DNA methylation, DNMT expression or activity, and histone acetylation have been reported in various tissues and cells (Speckmann and Grune, 2015; Jablonska and Reszka, 2017). High Se exposure leads to inhibition of DNMT expression/activity in prostate cancer (Xiang et al., 2008; Lee et al., 2009), breast carcinoma (de Miranda et al., 2014), and human colon cancer (Uthus et al., 2011). In addition, Se causes demethylation in LNCaP prostate cancer cells (Xiang et al., 2008) and human colon cancer Caco-2 cells (Uthus et al., 2011) and HDAC inhibition in prostate (Xiang et al., 2008; Lee et al., 2009), lymphoma (Kassam et al., 2011), and skin melanoma (Gowda et al., 2012). The epigenome changes influenced by Se may provide potential disease therapies and prevention strategies in cancers (Jablonska and Reszka, 2017).
Since SELENBP1 belongs to specific selenium-binding protein and its potential regulation in epigenetics during carcinogenesis, combined treatment targeting SELENBP1 and selenium might be a potential treatment strategy. In prostate cancer, SELENBP1 may play a role in controlling plasma selenium levels (Xie et al., 2016). For diseases such as prostate cancer, both SELENBP1 and selenium levels should be further examined for better treatment outcomes. The 3D model of human protein SELENBP1 with four cysteine residues was reported to have an alpha–beta structure characterized by four short alpha-helices, one 310 helix (residues 207–210), and 30 antiparallel beta-strands. Only one cysteine (Cys57) is able to bind the selenium in hepatocellular carcinoma, which may serve as a treatment target too (Raucci et al., 2011). The selenium-containing HDAC inhibitor or organic selenium compound becomes the novel inhibitor for cancer treatment (Lee et al., 2009; Desai et al., 2010; Kassam et al., 2011), which merits favorable outcomes in vitro and in vivo.
There is no evidence of a dose–response relation between selenium status and cancer risk (Vinceti et al., 2018). Whether supplemental dietary selenium should be considered as an adjuvant therapy for cancers still lacks certainty of evidence. Epigenetic drugs such as DNMTi and HDACi targeting SELENBP1 need further investigation before approval to treat different cancers clinically. In addition, microRNA has been reported for years as a potential target in cancers, such as lung, breast, prostate, colon, and liver carcinomas (Szczepanek et al., 2022). In OSCC, SELENBP1 is downregulated by miR-4786-3p through binding to the 3′UTR of SELENBP1 (Zeng et al., 2021). The antagomir of miR-4786-3p implies a potential treatment target of SELENBP1 in OSCC. Since the the number of studies about microRNAs’ role in regulating SELENBP1 in other cancers is still limited, more studies should be performed to discover the role of microRNAs on SELENBP1 and develop potential treatment strategies.
CONCLUSION AND FUTURE PROSPECTS
The expression of SELENBP1 is significantly downregulated in various cancers, which means SELENBP1 plays an important role in cancer progression. Although the molecular aspect of epigenetic changes of SELENBP1 in cancer remains largely unexplored and has not been used clinically in the diagnosis and treatments of patients with cancer yet, the prospects of novel discoveries and potential application of SELENBP1 are promising. Ongoing studies and tremendous progresses in the field of epigenetics have been made through transcriptome analysis and in vitro/in vivo experiments to unravel the potential epigenetic markers for future cancer therapeutics and prognosis. So, with the limited published articles, we summarize recent findings on the function and regulatory mechanisms of SELENBP1 during carcinogenic progression, with emphasis on epigenetic mechanisms.
There are still some crucial questions that should be addressed but can be easily neglected. 1) Whether the epigenetics change of SELENBP1 is one of the most important mechanisms for its expression and function during carcinogenesis. Many other mechanisms, such as metabolic signaling pathways (Ying et al., 2015a; Elhodaky et al., 2020), estrogen (Lanfear et al., 1993; Zhang C. et al., 2013), also effect the role of SELENBP1 in carcinogenesis. 2) If targeting only one specific epigenetic change at individual loci of SELENBP1 is enough to rescue its levels and activity during carcinogenesis, such as DNA methylation and protein ubiquitination. 3) Could the regulatory role of SELENBP1 epigenetic modification lead to therapy or prognosis? Further investigation is needed to identify novel epigenetic modifications of SELENBP1 through new technologies and dissect out the fundamental roles of these modifications on SELENBP1 expression and activities. Pharmacologic inhibition of epigenetic modifications could be key to reducing carcinogenic progression. Using specific inhibitors to target SELENBP1 might serve as therapeutic targets and lead to the desired clinical outcome (Table 2, Table 3) (Waddington, 1942; Porat et al., 2000; Haig, 2004; Feinberg, 2018; Millan-Zambrano et al., 2022).
TABLE 2 | List of differentially expressed SELENBP1 during carcinogenesis and their functions.
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Background: The role of alcohol in carcinogenesis has received increasing attention in recent years. Evidence shows its impacts on various aspects, including epigenetics alteration. The DNA methylation patterns underlying alcohol-associated cancers are not fully understood.
Methods: We investigated the aberrant DNA methylation patterns in four alcohol-associated cancers based on the Illumina HumanMethylation450 BeadChip. Pearson coefficient correlations were identified between differential methylated CpG probes and annotated genes. Transcriptional factor motifs were enriched and clustered using MEME Suite, and a regulatory network was constructed.
Results: In each cancer, differential methylated probes (DMPs) were identified, and 172 hypermethylated and 21 hypomethylated pan-cancer DMPs (PDMPs) were examined further. Annotated genes significantly regulated by PDMPs were investigated and enriched in transcriptional misregulation in cancers. The CpG island chr19:58220189–58220517 was hypermethylated in all four cancers and silenced in the transcription factor ZNF154. Various biological effects were exerted by 33 hypermethylated and seven hypomethylated transcriptional factor motifs grouped into five clusters. Eleven pan-cancer DMPs were identified to be associated with clinical outcomes in the four alcohol-associated cancers, which might provide a potential point of view for clinical outcome prediction.
Conclusion: This study provides an integrated insight into DNA methylation patterns in alcohol-associated cancers and reveals the corresponding features, influences, and potential mechanisms.
Keywords: alcohol consumption, alcohol-associated cancer, pan-cancer differentially methylated probe, CpG island, transcription factor motifs
1 INTRODUCTION
A strong association has been established between alcohol consumption and carcinogenesis in multiple cancers, including head and neck squamous carcinoma, esophageal squamous carcinoma, hepatocellular carcinoma, breast cancer, and colorectal cancer (Scoccianti et al., 2015). Alcohol consumption is also suspected to associate with pancreatic and lung cancers (Boffetta and Hashibe, 2006). Previous studies have demonstrated a dose-dependent effect of alcohol consumption on survival in head, neck (Lee et al., 2019), and colorectal cancer patients (Cai et al., 2014) and have also demonstrated that alcohol affected tumor development during gene-encoding enzyme alterations for alcohol metabolism, folate metabolism, DNA repair, and oxidative stress (Boffetta and Hashibe, 2006; Seitz and Stickel, 2007). Relationships between alcohol and cancers deserved extensive investigations.
DNA methylation alterations are one of the most frequently identified events in various malignant tumors (Kodach et al., 2010; Lee et al., 2013; Dong et al., 2019) and play important roles in cancer initialization, progression, and recurrence (Ehrlich, 2006; Pellacani et al., 2014; Tahara and Arisawa, 2015; Chen et al., 2016; Das et al., 2019). A group of enzymes known as DNA methyltransferases (DNMTs) are the key regulators that catalyze the methylation process. DNMT1 functions as the maintenance DNMT completing the methylation of the partially methylated DNA, while DNMT3A and DNMT3B catalyze de novo methylation. The abnormal expression of DNMTs can silence numerous tumor suppressor genes and affect important biological functions in multiple cancers (Sharma et al., 2010; Fattahi et al., 2018; Zhang et al., 2020). Accumulating evidence has shown that alcohol consumption may cause epigenetic changes, particularly abnormal DNA methylation, which could be important contributory factors to alcohol-induced carcinogenesis (Schernhammer et al., 2010; Boycott et al., 2022; Zhao et al., 2022; Zhou et al., 2022). Alcohol could regulate the expression of DNMTs in mouse models (Mukhopadhyay et al., 2013; Miozzo et al., 2018) and affect DNA methylation-associated pathways via reprogramming S-adenosylmethionine (SAMe) metabolism or disturbing the intake of vitamins B6 and B12 (Voigt, 2005; Varela-Rey et al., 2013; Na and Lee, 2017). According to several methylome-wide analyses, a robust association was established between the methylation of specific sites and the clinical outcomes of cancer patients with alcohol consumption (Villanueva et al., 2015; Zhou et al., 2019). Nonetheless, most studies focused on a limited number of CpG sites or genes in a single cancer type, and few analyses rely on the common patterns of alcohol-induced methylome changes. The underlying molecular mechanisms of these aberrant alterations remain elusive, and further explorations are required to uncover their possible effects on tumor biological behaviors.
In this study, we investigated whether a common methylation pattern existed in alcohol-associated neoplasms. The methylome, transcriptome, and clinical information on four alcohol-associated tumors, including esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSCC), liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD), was downloaded from The Cancer Genome Atlas (TCGA) portal. The differentially methylated probes (DMPs) were identified between tumors developed due to alcohol consumption and normal tissues. A total of 172 hypermethylated and 21 hypomethylated pan-cancer DMPs (PDMPs) were extracted. The PDMP-annotated genes were investigated and mostly enriched in transcriptional misregulation of cancer pathways. A CpG island chr19:58220189–58220517 was significantly hypermethylated in all four cancer types and strongly correlated with the downregulation of transcription regulator zinc finger protein 154 (ZNF154), which could serve as a potential epigenetic therapeutic biomarker. Transcription factor (TF) motifs enriched in PDMP regions were clustered into five groups and were significantly associated with multiple tumor hallmarks, on which a TF network was constructed. Furthermore, our studies also identified 11 hypermethylated PDMPs that may be used to predict the overall survival of alcohol-associated cancer patients.
2 METHODS
2.1 Data acquisition
The clinical and transcriptome data on ESCA, HNSCC, LIHC, and PAAD were obtained from TCGA data portal (https://portal.gdc.cancer.gov/). The methylome data were downloaded from the UCSC Xena browser (https://xenabrowser.net/datapages/), which was based on the Illumina HumanMethylation450 BeadChip. GSE123781 is a dataset of oral squamous cell carcinoma patients under alcohol consumption documented in clinical information (Nemeth et al., 2019). The methylation data and clinical data were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
2.2 Data preprocessing
We extracted 129 ESCA, 352 HNSCC, 118 LIHC, and 102 PAAD patients with a clear alcohol consumption history. After samples with no methylation data or gene expression data were excluded, 102 ESCA, 328 HNSCC, 117 LIHC, and 101 PAAD patients were finally applied for further investigation.
Several criteria were used to filter out inappropriate DNA methylation data in this study, including 1) probes having a ‘Not Applicable’ (NA) beta value in more than 50% samples; 2) probes containing no greater than three beads in a minimum of 5% samples; 3) probes with a detection p-value ≥ 0.01; 4) multiple-location-hitting probes; 5) probes that are non-CpG; 6) probes associated with single nucleotide polymorphism (SNP) sites; and 7) sex chromosome-specific probes. The k-nearest neighbors (KNNs) method was then applied to estimate the missing value, followed by type II probe normalization using the BMIQ method (Fortin et al., 2017). Using the ChAMP package, the aforementioned steps were performed to preprocess raw methylation data (Morris et al., 2014).
2.3 DMP and PDMP definitions
The Limma method in the ChAMP package was applied to identify DMPs in each cancer. The threshold of a significant probe is the fold change (FC) of a beta value > 1.2 and p-value < 0.05. A DMP with a higher methylation level (beta value) in the tumor sample was defined as hypermethylated DMP, while a DMP with a lower methylation level was defined as hypomethylated DMP. A probe is defined as PDMP if it can be identified as DMP in all four cancer types and has the same methylation status (hypermethylated or hypomethylated).
2.4 Regional methylation status assessment
Using probe beta values for one cancer type in a specific region, we investigated the methylation status of various chromosomes and functional CpG regions. The formula is as follows:
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For a given cancer type, the median beta value M of probe p in region r of all tumor samples T or normal samples N was calculated. A hypermethylated region was defined as having a p-value < 0.05 and MS > 0, while a hypomethylated region was defined as having a p-value < 0.05 and MS < 0.
2.5 Correlation between PDMPs and gene expression
We calculated the Pearson coefficient correlations (PCCs) between PDMPs and their annotated genes. A significant correlation was defined as having |PCC| > 0.2 and p-value < 0.05. Because the positions of CpG probes in different regions may have a different effect on genes (Yang et al., 2015), probe regions were divided into two groups: a) the promotor region, consisting of TSS200, TSS1500, 5′UTR, and 1stExon, and b) the body region, consisting of Body, 3′UTR, and IGR. Upstream and downstream genes that may potentially be regulated by enhancers located on specific probes were investigated using the ELMER package (Silva et al., 2019). A significant correlation was defined as having |PCC| > 0.1 and p-value < 0.05.
2.6 Motif enrichment analysis
As a measurement of TF-binding motifs enriched in PDMP regions, we generated sequences of 500 bp between 250 bp upstream and 250 bp downstream of each probe and divided them into hypermethylated and hypomethylated groups, followed by motif enrichment analysis using the AME function on the MEME website (http://meme-suite.org/tools/ame) (Buske et al., 2010; Bailey et al., 2009; Kulakovskiy et al., 2018). The TF-enriched motif was obtained with a E-value < 10−5, which was subsequently clustered using STAMP (http://www.benoslab.pitt.edu/stamp/index.php) (Mahony and Benos, 2007). clusterProfiler was used to explore pathways enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Yu et al., 2012).
2.7 Construction of the TF-regulated network
The TRRUST database (https://www.grnpedia.org/trrust/) is a practical website for TF-gene interaction prediction, collecting 8,444 TF-target regulatory relationships derived from 11,237 experiment-based articles (Han et al., 2018), which was used to screen and filter high-reliability TF-gene pairs. Subsequently, 40 TFs and their target genes were selected to construct a TF-regulated network in each cancer based on the adjacent matrix created by the weighted method (Langfelder and Horvath, 2008). Each cancer regulatory network’s top 10% weighted edges, which represent TF-gene interaction intensity, were combined into one pan-cancer regulatory network (Yu, 2020). Genes were clustered based on the greedy algorithm (Girvan and Newman, 2002).
2.8 Survival analysis
To evaluate the prognostic ability of PDMPs for each cancer type, a univariate Cox regression model was applied. Probes with p-value < 0.1 in at least three cancer types were extracted and considered prognosis-related PDMPs, followed by multivariate Cox analysis. For each cancer, we evaluated the methylation prognosis index (MPI) of each sample and divided them into high- and low-risk groups by the following formula:
[image: image]
For a given sample i, the beta value of prognosis-related PDMP p to the index coefficient p was summed. To evaluate the survival difference between two groups of patients, Kaplan–Meier survival analysis was performed. AUC was calculated using the timeROC package of R software to validate the predictive ability of the MPI model (Blanche et al., 2013).
2.9 Statistical analysis
The statistical significance of continuous variables was estimated using the Wilcoxon rank-sum test. Univariate and multivariate Cox regression analyses were performed to construct the MPI model using the survival package (Holleczek and Brenner, 2013). All the aforementioned statistics were analyzed by R software (version 4.0.2).
3 RESULTS
3.1 Characteristics of alcohol-associated DNA methylation patterns
The clinical information on each alcohol-associated aforementioned cancer was downloaded from TCGA database. ESCA, HNSCC, LIHC, and PAAD were included in further studies, and other alcohol-related cancer types, such as lung and colon cancer, were excluded due to the absence of a documented history of alcohol consumption. We identified a set of DMPs in four cancers, with 6,436 in ESCA, 10,891 in HNSCC, 31,620 in LIHC, and 3,592 in PAAD patients (Figure 1A), and the proportion of hypermethylated or hypomethylated DMPs distributed on each normal chromosome to all probes in that region was measured (Figure 1B). Given the number of DMPs in each cancer, DNA methylation alterations in pancreatic cancer might be affected slightly by alcohol consumption, whereas liver cancer was more affected. The methylation status of chromosomes in ESCA and PAAD separately was more hypermethylated or hypomethylated and that of HNSCC and LIHC was in an intermediate status (Figure 2A). Most DMPs tended to be located in non-promotor regions (Supplementary Figure S1A, S1B) and an approximately equal percentage of the CpG island and open-sea regions (Supplementary Figure S1C, S1D). Functional regions were categorized based on the methylation status into two groups, namely, the promotor (TSS200, TSS1500, 5′UTR, and 1stExon) and body region (Body, 3′UTR, and IGR) or CGI (CpG island), and non-CGI region (CpG shore, shelf, and opensea) (Figures 2B,C), each of which was annotated with biological functions.
[image: Figure 1]FIGURE 1 | DMPs were investigated in four alcohol-associated cancers. (A) Combined plot showed the number of DMPs in each cancer type and that of multiple cancer types. The number of the same DMPs between different cancer types was calculated and shown as the intersection size. (B). Proportion of hypermethylated and hypomethylated DMPs located in chromosomes of each cancer type. The proportion was determined as the ratio of the number of identified DMPs to the total number of CpG probes on each chromosome.
[image: Figure 2]FIGURE 2 | Heatmap showed the methylation status of chromosomes (A), feature regions (B), and CpG regions (C) in four alcohol-associated cancers.
We computed DMPs with the same methylation status in all four types of cancers and obtained 172 hypermethylated and 21 hypomethylated PDMPs (Supplementary Figure S2A, S2B). The highest proportion of hypermethylated PDMPs was found on chromosome 19, while the highest proportion of hypomethylated PDMPs was found on chromosome 8. (Figure 3). Interestingly, there was no PDMP located in chromosomes 9, 21, and 22. One of the possible explanations could be that DMPs in these chromosomes exhibit biological behaviors that are specific to cancer. Compared with distribution of the functional region of DMPs, PDMPs located in promotor or body regions showed an almost equal percentage distribution (46.7% and 53.3%) (Supplementary Figure S3A, S3B). In addition, 72% of PDMPs were located in the CGI region (Supplementary Figure S3C, S3D). We also validated the PDMPs in GSE123781, and 182 of 193 probes were found significantly differentially methylated (Supplementary Table S1). Taken together, alcohol-associated aberrant pan-cancer methylation changes were more likely to exert biological effects in promotor and CGI regions.
[image: Figure 3]FIGURE 3 | Proportion of hypermethylated (A) and hypomethylated (B) PDMPs located in chromosomes. The proportion was determined as the ratio of the number of identified PDMPs to the total number of CpG probes on each chromosome.
Aging was suggested to be associated with the increase of methylation at a global level (Maegawa et al., 2017). To identify whether aging contributed to the alcohol-associated methylation alterations in our study, we investigated the DMPs between the young group (<65 years old) and the old group (≥65 years old). We found that there was only a total of 26 CpG probes with an adjusted p-value < 0.05, with 21 in ESCA, 1 in HNSCC, 4 in LIHC, and none in PAAD patients (Supplementary Table S2). Interestingly, none of these probes reached the DMP-defined threshold of fold change > 1.2. These results suggest that aging has a very slight impact on our findings.
3.2 PDMPs regulated the expression of annotated genes
To better understand the potential biological effect of these PDMPs, PCCs were used to evaluate the correlation between PDMPs and their annotated downstream genes. Since probes with different relative locations may have a different regulatory effect on expression, 193 PDMPs were defined into four groups: HeP = hypermethylated probe in the promotor region, HeB = hypermethylated probe in the body region, HoP = hypomethylated probe in the promotor region, and HoB = hypomethylated probe in the body region. Thirty-seven PDMP–gene pairs were identified in at least three cancer types, and nine PDMP–gene pairs were found in all cancers (Figure 4A; Supplementary Table S3). These 37 PDMP-annotated genes were enriched in several cancer hallmarks, among which transcriptional misregulation in cancer (q-value = 5.35e−3) stood out as the most significant one (Figure 4B). There was a surprising outcome that four of nine aforementioned PDMPs (cg01268824, cg11294513, cg21790626, and cg27049766) belonged to the same CpG island chr19:58220189-58220517 and correlated with the same gene ZNF154. The role of this CpG island required further exploration.
[image: Figure 4]FIGURE 4 | Exploration of the PDMP-annotated genes. (A) Heatmap revealed the Pearson coefficient correlations between PDMPs and annotated genes. PDMPs were defined into four groups: HeP, hypermethylated probe in the promotor region; HeB, hypermethylated probe in the body region; HoP, hypomethylated probe in the promotor region; HoB, hypomethylated probe in the body region. (B). KEGG enrichment analysis of 33 PDMP-annotated genes.
3.3 Hypermethylated CpG island chr19:58220189-58220517 silenced downstream gene expression
We checked all probes in chr19:58220189–58220517 and found a total set of 11 probes, among which six probes were PDMPs (cg11294513, cg05661282, cg21790626, cg27049766, cg08668790, and cg01268824). cg03142586 was excluded from further analysis since its beta value was NA in most samples. Probes in this region were remarkably hypermethylated (Figure 5A; Supplementary Figure S4), which were validated in GSE123781 (Supplementary Figure S5). It has been shown that exposure to alcohol increases methylation levels at certain loci in normal tissues (Lee et al., 2011). To obtain an overall view of the methylation status of the region, we investigated the beta values of samples exposed or not exposed to alcohol. Significant differences were observed between alcohol-associated tumor samples and non-alcohol-associated tumor samples (Supplementary Figure S6). A strong negative correlation was found between the beta values of these PDMPs and the expression of ZNF154 (Figure 5B), suggesting a potential silence effect. Recently, the methylome and transcriptome-based algorithm has been developed to identify cancer-specific enhancers (Yao et al., 2015). The CpG probes located on these enhancers possess the potential ability to regulate the expression of upstream and downstream genes. We then applied this method and explored the relationship between these PDMPs and the closest 10 upstream and downstream genes (Supplementary Figure S7). Together with ZNF154, zinc finger protein interacting with K protein 1 (ZIK1, the seventh closest upstream gene) and ZNF418 (the ninth closest downstream gene) was also found to have a negative correlation with six PDMPs (Figure 5B), suggesting the hypermethylation status of the CpG island chr19:58220189–58220517 could potentially mediate transcription activity of these three genes. All three genes were associated with DNA-binding activity, suggesting that the disorder of DNA recognition might be involved in alcohol-associated tumor behaviors.
[image: Figure 5]FIGURE 5 | Exploration of the CpG island chr19:58220189–58220517. (A) Whole view of CpG probes in the CpG island chr19:58220189–58220517 demonstrated its hypermethylation status. The bottom dot plots from left to right represent the beta values of cg1129451, cg0566128, cg21790626, cg27049766, cg03234186, cg08668790, cg12506930, cg26465391, cg01268824, and cg27324426, respectively. cg03142586 was excluded from further analysis since its beta value was NA in most samples. (B) Heatmap revealed the correlation between the beta value of six PDMPs and the expression of ZNF154, ZIK1, and ZNF418 in four cancer types.
3.4 Different pathways are correlated with TF motifs in PDMP regions
Based on 500-bp sequences generated from PDMPs, possible TF-binding motifs were scanned, enriched, and divided into hypermethylated and hypomethylated groups. Thirty-three and seven motifs located in hypermethylated and hypomethylated regions, respectively, were identified, followed by the grouping of these motifs into five clusters with STAMP. (Figure 6A; Supplementary Table S4). POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) showed the most significant enrichment in the hypermethylated group (E-value = 3.36e−17), and among hypomethylated groups, JUN was identified as the most significant motif (E-value = 6.47e−17). All seven hypomethylated motifs shared a close relatedness and were clustered into one group, suggesting a similar regulatory mechanism among them. The motif clusters exhibited distinct biological pathways, and several pathways appeared to be involved in the development and differentiation of cancers. (Figure 6B). Cluster I was significantly enriched in the cell cycle (q-value = 2.80e−2), and Cluster IV was associated with signaling pathways regulating the pluripotency of stem cells (q = 7.00e−3). Additionally, Cluster IV was associated with the IL-17 signaling pathway (q-value = 1.10e−7) and TNF signaling pathway (q-value = 7.28e−4), which is possibly involved in modulation of the immune response. According to the TRRUST database, we further explored the target genes associated with the aforementioned TF motifs and constructed a transcriptional regulatory network, which was recognized as six distinct modules (Figure 7).
[image: Figure 6]FIGURE 6 | TF motifs enriched in hypermethylated and hypomethylated PDMPs. (A) TF motifs were divided into five clusters based on the sequence similarity. (B) KEGG enrichment analysis of five clusters. The top two enriched pathways of each cluster were visualized.
[image: Figure 7]FIGURE 7 | Construction of the combined TF-gene regulatory network. For each cancer, a regulatory network was constructed from the adjacent matrix. The top 10% of TF-gene interactions were considered significant and combined into one network.
3.5 The prognostic potential of PDMPs
To evaluate the prognostic value of specific PDMPs, we performed univariate Cox regression analyses in each cancer separately (Figure 8A). We screened 11 PDMPs as they were associated with prognosis in at least three types of cancer, and these PDMPs were all hypermethylated (Figure 8B; Supplementary Table S5). Seven out of 11 PDMPs (63.6%) were found in promoter regions, while 10 out of 11 (90.1%) were found in CGI regions, which confirmed the aforementioned findings that alcohol-associated PDMPs were more likely to exert biological effects on these regions. Patients were classified into low- and high-MPI groups in each cancer based on the MPIs. High-MPI groups were significantly associated with a worse outcome than low-MPI groups by Kaplan–Meier survival analysis (Figure 8C). The ROC curves were obtained, and the AUC of 3-year OS (range from 0.705 to 0.859) and 5-year OS (range from 0.621 to 0.881) was calculated separately, revealing the reliability of MPIs (Figure 8D).
[image: Figure 8]FIGURE 8 | Survival analysis of PDMPs. (A) Volcano plot showing the survival-related PDMPs in each cancer. (B). Characteristics of 11 survival-related PDMPs. (C) Kaplan–Meier analysis of high- and low-MPI group patients in each cancer type. (D). ROC curve validating the predictive ability of MPIs.
4 DISCUSSION
The purpose of this study was to investigate PDMPs in four cancers that were associated with alcohol consumption and the distribution of PDMPs within these cancers. Promotor and CGI regions were the two main regions that PDMPs were more likely to enrich. Thirty-seven PDMPs were found to show a close regulatory relationship with annotated genes and correlate with transcriptional misregulation. Furthermore, we observed a hypermethylated CpG island chr19:58220189–58220517, showing a strong correlation with transcription regulatory genes. Thirty-three hypermethylated and seven hypomethylated TF motifs were clustered into five groups and exerted various biological effects. Finally, 11 PDMPs were reported to be associated with overall survival, providing valuable prediction of clinical outcomes.
Many DMPs were found in each of the four alcohol-associated cancers, and only a small percentage of DMPs were shared, suggesting the presence of cancer-specific methylation patterns. A study by Fan et al., for instance, revealed that preferred genomic DNA sequence patterns were observed between different DNMTs in hepatocellular carcinoma cells, which might promote to the formation of a hepatocellular carcinoma-specific methylation landscape (Fan et al., 2016). Cancer-specific methylation patterns have not been explored here due to the limited scope of our studies on common patterns of altered DNA methylation, which requires further study.
The genome methylation landscape is wholly poor of CpG and locally rich (in CpG islands). CGIs could be found in more than half of the genes in the vertebrate genome and commonly maintain a low methylated level (Jones, 2012). We reported a hypermethylated CpG island chr19:58220189–58220517 in all four alcohol-associated cancers, and this finding is consistent with that of Ruike Y et al., who also found that CGI regions tend to be hypermethylated in cancers (Ruike et al., 2010). The expression of ZNF154 was significantly downregulated by the CpG island chr19:58220189–58220517, which has been partially demonstrated by previous studies. Based on a computational algorithm, we also found that the transcription activity of ZIK1 and ZNF418 might be regulated by hypermethylation of the CpG island chr19:58220189–58220517. According to a blood-based diagnostic model, hypermethylation of the ZNF154 CpG island was identified as a relevant biomarker for detecting circulating solid tumor DNA (Margolin et al., 2016). Epigenetic silencing of ZNF154 was associated with multiple cancers and could serve as a biomarker predicting the recurrence of alcohol-associated pancreatic cancer (Yamada et al., 2016; Mishra et al., 2019; Wiesmueller et al., 2019), as well as non-alcohol-associated prostate cancer (Nahar et al., 2018) and bladder cancer (Reinert et al., 2012). Hu et al. showed that ZNF154 might serve as a tumor suppressor, and overexpression of ZNF154 significantly inhibited cell migration and invasion in vivo, as well as lung nodule formation in vitro, via suppressing Wnt/β-catenin signaling pathway activation (Hu et al., 2017). ZIK1 was identified as a transcriptional repressor blocking a gene promotor bearing Gal4-binding elements via interacting with heterogeneous nuclear ribonucleoprotein particle K protein (Denisenko et al., 1996). Silenced ZIK1 was observed in noncancerous esophageal mucosae (Oka et al., 2009), suggesting low expression of ZIK1 occurred at the early stages of cancer. Only a few studies documented that ZNF418 negatively regulated transcription and the MAPK signaling pathway (Li et al., 2008) and that lower expression of ZNF418 was associated with poorer prognosis in gastric cancer (Hui et al., 2018). As our scope was limited to methylation alterations, the role of associated genes was not identified, which required further investigation.
Thirty-three and seven TF motifs located in hypermethylated and hypomethylated PDMP regions, respectively, were identified as transcription regulators in alcohol-associated cancers, of which PATZ1 and JUN were most notable. PATZ1, containing an A–T hook DNA-binding motif, binds to other DNA-binding structures to participate in chromatin modeling and transcription regulation. PATZ1 is involved in the inhibition of the mesenchymal-to-epithelial transition via disturbing the combination between p53 gene and its response elements (Chiappetta et al., 2015; Keskin et al., 2015) and could be an independent prognostic factor in multiple cancers (Guadagno et al., 2017; Zhao et al., 2018; Passariello et al., 2019). Jun was involved in a number of biological processes that were triggered by oxidants and toxic stimuli when combined with other members of the Fos family (Angel and Karin, 1991; Shaulian and Karin, 2002). An in vitro experiment showed that alcohol promotes the direct recruitment of c-Jun to TATA-binding protein, Brf1, and tRNA gene promotors, inducing RNA polymerase III-dependent transcription, thus contributing to liver tumor development (Zhong et al., 2011). We established a TF-gene regulatory network in our article that might assist in understanding the regulatory functions and mechanisms of alcohol and carcinogenesis.
Aging may also contribute to methylation changes. Several studies indicated that aging was closely linked to global hypermethylation. In normal breast tissues, age acceleration was observed (Hofstatter et al., 2018).The methylation level of highly variable sites increased from a mean of 3% in the newborn to 20% in the old, and these age-related hypermethylation cases were found to be enriched in the CGI region (Maegawa et al., 2017). A large-scale methylation study revealed that cancer risks and mortality increased with aging epigenetic changes, ranging from 4% to 9% and 2% to 6%, respectively, with 5 years of age acceleration (Dugue et al., 2018). According to Zheng et al., most epigenetic drifts were nonfunctional, while some might randomly affect TF expression or the binding affinity, resulting in an abnormality in tissue homeostasis (Zheng et al., 2016). In light of the complex function and mechanism underpinning aging and tumor epigenetics, the effect of aging on PDMPs identified in this article has been difficult to estimate and remove.
This study only examined a small part of methylation sites. Although the Illumina HumanMethylation450 array provided coverage of 98.9% UCSC RefGenes, the coverage rate of total genome CpG sites was only 2% (Bibikova et al., 2011; Plongthongkum et al., 2014), leading to incomplete exploration of alcohol-associated genome-aberrant CpG patterns. Non-coding RNAs also play significant roles in cancer initiation, progression, and metastasis (Gupta et al., 2010; Li et al., 2015; Ferreira and Esteller, 2018). The function and correlation of CpG sites annotated in these regions were not explored. Due to a lack of alcohol consumption documents in TCGA database, other alcohol-associated cancers such as colorectal and lung cancers were not included in this study.
5 CONCLUSION
Based on multi-omics data on pan-cancer, this study explored the global DNA methylation alterations of ESCA, HNSCC, LIHC, and PAAD patients with alcohol consumption documents from TCGA database. A total of 193 PDMPs were identified, and the preference patterns of alcohol-associated DNA methylation changes were located in promotor and CGI regions. PDMP-annotated genes were enriched in multiple pathways, especially transcriptional misregulation in cancer, demonstrating that alcohol might contribute to transcriptional disorder by inducing the methylation status of transcription regulators, thus leading to tumor development. A hypermethylated CpG island chr19:58220189–58220517 was identified, and it regulated the transcription activity of downstream genes, serving as a potential therapeutic biomarker. Five sets of enriched TF motifs were involved in numerous cancer hallmarks including tumorigenesis and immunoregulation, and a TF-gene regulatory network was constructed for a better understanding of potential regulation mechanisms. Additionally, 11 PDMPs were reported to be associated with the overall survival of patients. Estimated MPIs are reliable and provide a potential point of view for clinical outcome prediction.
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