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Editorial on the Research Topic

Inflammation and organic damage in COVID-19: what have we learned 2

years into the pandemic?

Acute coronavirus disease 2019 (COVID-19) presents a wide spectrum of clinical
manifestations, from asymptomatic infection to severe pneumonia or multisystemic failure.
In addition, nearly 3 years after the pandemic, now it is known that there are persistent
forms of COVID-19, known as long-COVID, with long-term effects in different organs and
systems. These complications related to SARS-CoV-2 infection, which significantly affect
the quality of life of many convalescent patients, are not restricted to severe presentations of
COVID-19; hence, many patients with persistent symptoms have never been hospitalized.
The mechanisms explaining long COVID are not yet well delimited. Recent findings
related to immunity alterations together with inflammation and endothelial damage induced
by the virus, along with certain predisposing factors, would favor the development of
these complications.

In this regard, the implication of the ABO blood group in the COVID-19 disease
was formulated early at the beginning of the pandemic, and it has now been established
that the A blood group is associated with more susceptibility and severe symptoms
of COVID-19, while the O blood group shows protection against viral infection (1).
Tamayo-Velasco et al. detail in a complete review how the presence of anti-antigen A
and B antibodies in group 0 patients confers a protective effect against protein S of the
virus, which could open new avenues for prognostic and therapeutic stratification. The
presence of a high viral load in some individuals determines the status of persistent
viraemia, which has also been shown to be an independent factor associated with bad
prognosis in COVID-19 (2). In this sense, in a short prospective study, Roy-Vallejo et al.
report how the presence of detectable viremia in some patients is associated with a greater
inflammatory response characterized by an increase in IL-6 levels and poor evolution.
Following this line, in an interesting prospective study, Melhorn et al. prove persistence
of inflammatory and vascular mediators 5 months after hospitalization in a cohort
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of COVID-19 patients compare with healthy and septic controls. In
fact, IL-6 again, along with TNF, SAA, CRP, Tie2, Flt-1, and PIGF,
was significantly increased in the post-COVID group.

The post-acute sequelae of COVID-19 (PACS) represent
a heterogeneous group of symptoms characterized by
cardiovascular, general, respiratory, and neuropsychiatric
sequelae. PACS can be classified into two categories: PACS
cardiovascular disease, characterized by a group of cardiovascular
conditions that develop during the chronic phase of the
disease, and PACS cardiovascular syndrome (PACS-CVS),
which lacks clear evidence of cardiovascular disease (3).
In this Research Topic, Aparisi et al. provide insights into
the role of the cardiopulmonary exercise test (CPET) in
evaluating PACS-CVS. However, it is important to note
that there is a lack of evidence-based recommendations for
managing this elusive condition. Nonetheless, CPET should be
implemented due to its ability to assess the pathophysiology of
exercise limitation.

In about 25% of patients with severe COVID-19 disease (WHO
Severity Grade 3 and 4), a restrictive ventilatory defect has been
revealed. This and other facts justify that a significant percentage
of COVID-19 patients present respiratory failure not only during
the acute illness of the disease but also chronically, months after
overcoming it. SARS coronavirus induces the upregulation of type
I collagen (4). At 1 year after ICU admission in a cohort of
105 critically ill patients from several Spanish hospitals, in an
interesting prospective multicenter study, González et al. have
found that 32.2% of these patients persisted with respiratory
alterations, 10% still had moderate/severe lung diffusion (DLCO)
involvement (<60%), and 53.7% had a fibrotic pattern on CT.
Moreover, patients had a mean (SD) number of symptoms of
5.7 ± 4.6, and 61.3% met the criteria for post-COVID syndrome
at 1 year. Thus, there is a compelling clinical need to identify
circulating fibrosis markers in COVID-19 leading to pulmonary
pro-fibrotic responses that can identify candidate patients suffering
from long-term COVID with respiratory alterations. In this
regard, Brusa et al. report another circulating biomarker, known
as the Targeting Matrix Metalloproteases Pathway-1 (TIMP-
1), which has been associated with disease severity and the
systemic inflammatory index, suggesting a promising non-invasive
prognostic biomarker for structural respiratory damage in COVID-
19 patients.

Beyond the local and systemic inflammatory response,
endothelial dysfunction (ED) or endotheliitis has been
demonstrated to play a critical role in COVID-19 acute
organ disfunction and may also be related to long-term
systemic symptoms. ED favors both inflammatory activation
and local coagulation, leading to hypercoagulability states
(HS), microthrombosis, and hypoperfusion, more markedly in
microcirculation (5). Due to this, cardiovascular pathologies such
as myocardial damage and thromboembolic events (TE) have

Abbreviations: COVID-19, acute coronavirus disease 2019; ED, endothelial

dysfunction; HS, hypercoagulability state; PACS, post-acute sequelae

of severe acute respiratory syndrome coronavirus 2 infection; CPET,

cardiopulmonary exercise test; RCT, randomized clinical trials; TE,

thromboembolic events.

been frequently related to COVID-19 (6). In a comprehensive

review, Izquierdo-Marquisá et al. detail how myocardial injury

is present in around one-third of hospitalized COVID-19
patients, and this condition is associated with worse in-hospital
outcomes, with over 50% mortality. Myocardial injury-related

mechanisms are varied (myocarditis related to viral infection,
ED, or HS), and quick identification is key to being able to treat

it early. Beyond the classic diagnostic tests of myocardial injury
(electrocardiogram and echocardiogram) and cardiac biomarkers

(such as troponin and natriuretic peptides), the identification of
new affordable and bedside biomarkers seems essential to identify

this potentially fatal situation. Recent studies have evaluated the
role of MR-proadrenomedullin (MR-proADM), a novel marker

of ED in sepsis and pneumonia (7, 8). It is a pro-hormone
with vasodilator properties synthesized by endothelial cells.
High levels of MR-proADM achieved an excellent accuracy to

predict mortality and poor outcome in patients with COVID-19
(9). In this sense, Spoto et al. demonstrate how this molecule

complements troponin, a canonical biomarker of myocardial

damage, improving its prognosis accuracy and risk stratification
in a cohort of COVID-19 patients with myocardial injury. Despite
the rationale that early antiplatelet therapy would lower the risk

of cardiovascular events on the basis of their antithrombotic and
anti-inflammatory properties, the effectiveness of this approach

remains controversial (10). In this regard, Zong et al. perform a

systematic review and meta-analysis, including early observational
studies and recent randomized controlled trials (RCTs) assessing
the effect of antiplatelet therapy in adult patients with COVID-19.

Based on 23 observational studies, including 87,824 COVID-19
patients, antiplatelet treatment has been found to favor a lower

risk of mortality (odds ratio: 0.72, 95% confidence interval:
0.61–0.85; p-value < 0.01). However, the narrative synthesis of

RCTs showed conflicting evidence, which did not support adding
antiplatelet therapy to the standard care. This discrepancy seems

to suggest that there are subgroups of COVID-19 patients who
could benefit from this therapy, while in others such a benefit
would not exist. It is necessary to carry out new and larger RCTs

that evaluate antiplatelets from an individualized or personalized
point of view based on the endotype of the candidate patient.
In this respect, biomarkers of TE can be useful. D-dimer has
shown to be a robust predictor associated with bad outcomes in
COVID-19 (11). Interestingly, in a multicenter study, Ronderos
Botero et al. demonstrate how the D-dimer prognostic value
has also not varied in successive pandemic waves. Thus, TE
biomarkers can be useful, not only at the prognostic level but also
to individualize treatments.

The association of COVID-19 with prevalent gastrointestinal
distress, characterized by the fecal shedding of SARS CoV
2 RNA or persistent antigen presence in the gut, has been
scarcely evaluated (12). In this Research Topic, Moon
present a review addressing gastrointestinal symptoms and
describing data on the gut–lung axis, viral transmission
to the gut, and its influence on gut mucosa and the
microbial community.

We hope that this Research Topic provides original
information to the scientific community on the “hot” topic
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of long COVID and the medium- and long-term effects of
SARS-CoV-2 infection.
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The implication of the ABO blood group in COVID-19 disease was formulated early, at the

beginning of the COVID-19 pandemicmore than 2 years ago. It has now been established

that the A blood group is associated with more susceptibility and severe symptoms of

COVID-19, while the O blood group shows protection against viral infection. In this review,

we summarize the underlying pathophysiology of ABO blood groups and COVID-19 to

explain the molecular aspects behind the protective mechanism in the O blood group.

A or B antigens are not associated with a different risk of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection than that of other antigens. In this case,

the cornerstone is natural anti-A and anti-B antibodies from the ABO system. They

are capable of interfering with the S protein (SARS-CoV-2) and angiotensin-converting

enzyme 2 (ACE2; host cell receptor), thereby conferring protection to patients with

sufficient antibodies (O blood group). Indeed, the titers of natural antibodies and the

IgG isotype (specific to the O blood group) may be determinants of susceptibility and

severity. Moreover, older adults are associated with a higher risk of bad outcomes due

to the lack of antibodies and the upregulation of ACE2 expression during senescence.

A better understanding of the role of the molecular mechanism of ABO blood groups in

COVID-19 facilitates better prognostic stratification of the disease. Furthermore, it could

represent an opportunity for new therapeutic strategies.

Keywords: ABO blood group, COVID-19, anti-A antibody, SARS-CoV-2 spike protein, ACE2 (angiotensin converting

enzyme 2)

INTRODUCTION

At 2 years since the beginning of the COVID-19 pandemic (1, 2), people worldwide continue to
suffer deaths and important changes in their lifestyles (3). Although vaccines are being encouraged
to hinder the spread of this pandemic (4, 5), the pathophysiology of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is not well understood. Many studies identified multiple
risk factors during the first wave to identify and treat susceptible patients early (6–8). Old age (9),
male (10), and comorbidities, such as hypertension (11), were related to severity. Some routine
biomarkers (12) and specific cytokines (13, 14) have also been proposed.
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Similarly, a possible implication of the ABO blood group was
formulated (15, 16). Currently, as multiple studies have reported
(17–22), it seems clear that the A blood group is associated with
more susceptibility and severe symptoms in COVID-19, while
the O blood group shows protection against viral infection.
Despite many descriptive studies on this tendency, few studies
have focused on the implicated molecular mechanisms. Several
studies have focused on angiotensin-converting enzyme 2
(ACE2) as the host cell receptor (23), S protein of the virus (24),
and antigens or antibodies of the ABO system (25). However, no
studies have specifically and directly deepened our understanding
of the implications of ABO blood groups and their possible
implications in developing future therapeutic strategies.

Therefore, we summarized the underlying pathophysiology of
ABO blood groups and COVID-19. We exhaustively analyzed
the role of A, B, AB, and O antigens in the disease and its
molecular aspects. The functions of natural anti-A and anti-B
antibodies are the cornerstone. We examined the importance of
immunoglobulin (Ig) isotypes and their plasma concentrations
by focusing on the consequences of immunosuppressive status
according to the ABO system in patients with COVID-19. We
examined how the complex interrelations between antibodies,
the virus, and the host cell receptor relate to the protective
molecular mechanism.

RELATIONSHIP BETWEEN ABO BLOOD
GROUP AND COVID-19 SEVERITY AND
SUSCEPTIBILITY

The Role of ABO Antigens in COVID-19
In 1901, Nobel Prize winner Karl Landsteiner discovered
the ABO system (26). Erythrocytes, endothelial and epithelial
respiratory cells, and digestive endothelial cells synthesize ABH
carbohydrate epitopes. The addition of N-acetylgalactosamine
or galactose to the H antigen (precursor chain) allows the
appearance of A and B antigens, respectively. Thus, the O blood
group only expresses the H antigen, whereas the AB blood group
expresses both the A and B antigens (27, 28). In the Caucasian
population, the O and A groups were the most frequent (45 and
40%, respectively), followed by the B group (11%) and AB group
(4%). In contrast, group B is overexpressed in black and Asian
populations (20 and 27%, respectively) (28). These differences in
the ABO system are associated with some peculiarities. Blood
group A is linked to hypercoagulability, cardiovascular events,
and a higher risk of colon and gastric cancer (29). Group B
is more susceptible to infections by Escherichia coli (30). The
O blood group showed reduced thrombotic risk due to lower
plasma vonWillebrand factor (VWF) and coagulation factor VIII
levels (29, 31).

Studies on COVID-19 also found more comorbidities in
patients with the A blood group than those with the other groups
(16, 17, 29). This subgroup of patients has a higher Charlson
comorbidity index (32) and more cardiovascular diseases,
especially hypertension (20), when infected with SARS-CoV-2.
Moreover, according to the ABO blood group, these innate
differences are not confounders. Multiple studies have confirmed

the increased susceptibility, severity, and death risk in the A
blood group, an independent risk factor for COVID-19 (17,
18, 20–22, 33). The implication of the ABO system was also
strongly evidenced in a genome-wide associated study (GWAS)
that identified a 3p 21.31 gene cluster related to the ABO blood
group and respiratory failure in COVID-19 (34). We can expect
new findings from genome-wide association analyses to explain
better the importance of the ABO system in the severity and
mortality of patients with COVID-19.

Descriptive and genetic studies based on ABO phenotypes
found clear evidence about the implication of the ABO system in
susceptibility and disease severity. However, no direct molecular
interrelation between ABO system antigens and the virus has
elucidated the mechanism involved in the susceptibility of the
ABO blood group.

Anti-A and Anti-B Antibodies Are the
Cornerstones
Antigens of ABO blood group are present in the cell membrane.
However, they do not directly modulate the SARS-CoV-2
infectious capacity. Natural anti-A or anti-B antibodies in
patients with the A, B, or O blood groups are freely present in
plasma, providing a decisive connection with the virus.

The Direct Connection Between Antibodies, S Protein

of SARS-CoV-2, and ACE2 Receptors in the Host Cell
The infectious capacity of SARS-CoV-2 has been characterized
previously. The virus binds to the cell surface via its S
protein, cell receptor-binding domains (RBDs), and virus-cell
membrane fusion domains (35). The S protein binds to the
host cell receptor’s ACE2 (36). ACE2 is present in virtually
all organs, but lung alveolar epithelial cells and enterocytes
of the small intestine (37) are important in this context.
Moreover, the transmembrane protease serine subfamilymember
2 (TMPRSS2), a cell surface protein expressed by endothelial
cells in the respiratory and digestive tracts, is used by the virus
for S protein priming (38). Enhanced entry correlated with
optimal functions of both TMPRSS2 and ACE2. Similarly, in
ACE2 expressing cells, dendritic-cell-specific ICAM3-grabbing
nonintegrin (DC/L-SIGN) facilitates the infectious capacity;
however, an adequate ACE2 correlation is required (39).
These mechanisms promulgated in SARS-CoV-2 have also been
confirmed in COVID-19 (40, 41). ACE2 is the main host cell
receptor for the viral S protein (no other receptor has been
discussed), and its function is probably improved by the proper
interaction between TMPRSS2 and DC/L-SIGN (42).

Immunoglobulins can bind to or block different proteins.
Anti-A and anti-B antibodies from the ABO system are natural
Igs in serum. It has been reported that the presence of
anti-A antibodies (and probably anti-B antibodies) prevents the
interaction between the viral S protein of the virus and ACE2
on the cell surface (Figure 1). The molecular mechanism is not
yet fully understood. However, several hypotheses have been
proposed. It seems that carbohydrates or glycosylated epitopes
are present in the cell membrane of both SARS-CoV-2 and ACE2
and it is known the strong binding between natural antibodies
from the ABO system and carbohydrate molecules, such as A or
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FIGURE 1 | Molecular mechanism that explains the susceptibility and severity of COVID-19 disease depending on the ABO blood group. The presence of anti-A

antibodies and probably anti-B antibodies inhibit the interaction between the S protein of the virus and the ACE2 on the cell surface in the O blood group (Left side).

The absence of antibodies in the A blood group facilitates the entrance of SARS-CoV-2 into the host cell and the consequent viral infection (Right side). ACE2:

angiotensin-converting enzyme 2. TMPRSS2: transmembrane protease serine subfamily member DC/L-SIGN; dendritic-cell-specific ICAM3-grabbing nonintegrin.;

Natural antibodies bind glycosylated or carbohydrate epitopes in the S protein of SARS-CoV-2 (on top) or ACE2 (below).

B antigens. On the one hand, the S protein could be decorated
with A or B carbohydrate epitopes able to be recognized by
the natural anti-A or -B antibodies from blood group O, B,
and A individuals (24). On the other hand, natural anti-A or -
B antibodies can directly bind to the ACE2 glycosylated region
(43). In this case, possible competitive inhibition of ACE2 by
both natural (anti-A/anti-B) antibodies and SARS-CoV-2 may
induce early ACE2 downregulation in blood group O, increasing
the production of multiple inflammatory cytokines (44) in the
first step of the infection. Patients with the O blood group
suffered a consequent cytokine drop during the hospital stay,
while non-O patients maintained their cytokine levels associated
with hyperinflammation. An early, effective, and moderate
cytokine release functions in immunocompetent patients, while
disease severity is linked to persistent immune dysregulation
after infection, associated with high cytokine levels for days or
weeks. These findings could explain the optimal activation of
the immune response and the effective viral clearance of SARS-
CoV-2 infection in the patients with the O blood group. In
any case, the interaction between natural antibodies and ACE2
or S proteins should prevent viral infection via transfusion
rules. Therefore, natural anti-A or -B antibodies protect patients
with the O blood group against severe disease and mortality
in COVID-19. Comparatively, antibodies operate via the same
mechanism as future specific treatments against SARS-CoV-2

(45). The more anti-A or-B antibodies present in the plasma (O
blood group), the reduced infectious capacity (19). In contrast,
the absence of antibodies (AB blood group) or one of them (A
or B blood groups) is associated with a higher risk for poor
outcomes in COVID-19 (20). Descriptive and epidemiological
studies have corroborated this tendency during the pandemic in
all populations (15, 17, 18, 20–22, 32, 33, 46).

Immunoglobulin Isotype of Anti-A and Anti-B

Antibodies
Natural anti-A or -B antibodies from the ABO system differ from
most naturally occurring antibodies because of their exclusive
expression in individuals lacking the corresponding antigen
(A or B antigen)(47). They exhibit high polyspecificity and
polyreactivity to multiple antigens, not only those included in
the ABO system (48). The main isotype of natural Ig is M (IgM)
in all ABO blood groups with specific natural antibodies (A, B,
and O blood groups), reaching all groups with similar plasma
concentrations of IgM antibodies. By cons, the presence of anti-
A/B antibodies with the IgG isotype was restricted to the O blood
group (Figure 2). Indeed, anti-A or anti-B IgG were found in
almost 90% (34/38) of O blood group donors (predominance
of IgG2). Meanwhile, only 14% of patients with the A blood
group had anti-B IgG, and 4% with B blood group had anti-A
IgG. None of the AB blood group samples contained anti-A
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FIGURE 2 | Specific isotype of immunoglobulin in each ABO blood group, expression of natural antibodies and receptors in immunosuppressive situations, and their

relationship with the infectious capacity of SARS-CoV-2. Ab: antibody. Rc: receptor. Ig: immunoglobulin. ACE2: angiotensin-converting enzyme 2. TMPRSS2:

transmembrane protease serine subfamily member. N; normal expression.

or anti-B antibodies of any isotype (IgM or IgG) (25). Until
now, there has been no explanation for this finding. It would
be relevant, for example, in hemolytic disease of the newborn
because only newborns of blood group O mothers develop the
hemolytic disease after ABO-incompatible pregnancies (49). In
COVID-19, studies have shown that patients with the O blood
group are under-represented, whereas patients with groups A, B,
and AB are over-represented (20). We previously explained that
the higher the plasma concentration of natural anti-A or anti-
B antibodies (O blood group), the higher the protective effect
against SARS-CoV-2 infection. Nevertheless, it is not only the
plasma level of natural antibodies but also the isotype of Ig.
IgG (restricted to the O blood group) may strongly avoid the
interaction between ACE2 and the S protein compared to the
IgM isotype.

Immunosuppressive Status and Plasma Antibody

Levels
A strong immune system is crucial for overcoming infections. It
includes both an optimal innate and adaptive immune response,
with adequate antibody production by B cells. Unfortunately,

many situations can weaken the immune system, reducing cell-
mediated immune function and humoral immune responses.
This decline in immune capacity is associated with reduced
antibody levels, making individuals more suitable for infections
and disease severity. Older individuals are one of the most
recognized cases (9). Aging reduces the production of B and
T cells in the bone marrow and thymus and diminishes the
function of mature lymphocytes in secondary lymphoid tissues
(50). Similarly, immunosuppressive treatments (glucocorticoids,
cytotoxic drugs, other immunomodulatory agents, or new
immunosuppressive therapies) can also compromise the immune
system (51). In addition, infections can have immunosuppressive
effects in the local environment (52), increasing susceptibility
and severity of infectious diseases and decreasing the efficacy
of vaccination (53). Moreover, different studies have revealed,
in severe cases of COVID-19, that the presence of immune
downregulation with profound immunosuppression was the
primary phenomenon. Immunological alterations vary and are
classified into different subsets or phenotypes. One of these
immunophenotypes is characterized by the coexisting alterations
in T cells’ numbers, subset composition, cycling, activation, and
gene expression (54, 55).
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It has been shown for SARS-CoV that the interference
between natural anti-A antibodies in the O blood group was
dose-dependent and still detected at a plasma dilution of up
to 1/32. Indeed, patients with the O blood group with low
anti-A antibodies were not inhibitory in the host cell adhesion
assay (24). The lack of or drop in antibodies due to any
immunosuppressive situation creates ABO discrepancies (56).
Therefore, it is of value to determine whether the ABO group
performed both forward (red blood cell antigen) and reverse
(anti-A and anti-B antibodies in plasma). Once we know the
importance of natural antibodies from the ABO system in
COVID-19, we should evaluate only the reverse type in terms
of protection against viral infection. Accordingly, patients with
the O, A, or B blood groups (forward type) that associate lack of
antibodies would behave as the AB blood group (reverse type).
The current situation favors infections and worsens outcomes for
a large number of people, especially older adults and patients who
are immunosuppressed.

While aging decreases plasma levels of antibodies, studies have
demonstrated increased ACE2 and TMPRSS2 expression in older
adults (10, 57). The first study described a significant expression
of ACE2 in older males in both mouse models and human
organs (10). The second study demonstrated the overexpression
of ACE2 and TMPRSS2 in the upper respiratory tract of aged
ferrets compared to young animals (57). Moreover, a recent
study found that ACE2 levels increase during aging in mouse
and human lungs due to telomere shortening or dysfunction
(58). It involves the transcriptional level, where ACE2 promoter
activity is dependent on DNA damage response (58). Therefore,
both the upregulation of ACE2 and the decrease in antibodies
make the elderly more susceptible to severe infection by
SARS-CoV-2 (Figure 2).

DISCUSSION

After this exhaustive assessment regarding the implications of
the ABO blood system in COVID-19, we make the following
key points: i) The presence or absence of any antigen of the
ABO system is related to different susceptibilities, presenting
more comorbidity in patients with antigen A (A blood group),
while the absence of antigens (O blood group) is associated
with lower thrombotic and cardiovascular risk. This is one of
the reasons why the number of patients infected with SARS-
CoV-2 who were hospitalized with worse outcomes belongs to
the non-O blood group. However, there is no direct molecular
relationship between ABO system antigens and the virus that can
explain the true mechanism involved in the susceptibility of the
ABO blood group. ii) Natural anti-A and -B antibodies from the
ABO system are capable of interfering with the S protein (SARS-
CoV-2) and ACE2 (host cell receptor). The presence of high
plasma concentrations of antibodies in the O blood group confers
greater protection to these patients. iii) The isotype of natural
antibodies would be decisive because the A, B, and O blood
groups present IgM, but only the O blood group presents anti-A
and anti-B IgG antibodies in the plasma. iv) Immunosuppressive
status, such as in older adults and patients with some diseases or
undergoing pharmacological treatments, is associated with a lack
of antibodies. This creates the ABO discrepancies. Patients with

the O, A, or B blood groups would behave as patients with the AB
blood group, making them more susceptible to infection.

Some questions might be interesting to consider and
could open future investigations in this area. The first is
related to the exact mechanism by which natural antibodies
from the ABO blood system avoid the interaction between
the S protein of the virus and ACE2 on the cell surface
(20, 24, 43, 44). An experimental model is required to
understand whether antibodies only block the S protein,
perhaps together with SARS-CoV-2, to competitively inhibit
ACE2 in host cells or whether both molecular mechanisms
are possible. These findings would help us to underline the
pathophysiology of the ABO blood groups in the same way
that the lower plasma von Willebrand factor (VWF) and
coagulation factor VIII levels in the O blood group are well
described (29, 31). For example, suppose our natural anti-A or
-B antibodies would constantly bind or block ACE2. In that
case, O blood group individuals could present persistent ACE2
downregulation, resulting in increased production of multiple
inflammatory cytokines (44). Furthermore, these antibodies
might be associated with protection against cardiovascular
diseases, similar to ACE inhibitors, conferring a lower risk in the
O blood group. Therefore, it would be necessary for anti-A and
anti-B antibodies to bind to the same proteins, or one of them
must demonstrate more affinity or interfere with SARS-CoV-2
more efficiently.

Another important issue is the antibody isotype. As
mentioned before, the IgM isotype is present in A, B, and O blood
groups, while anti-A and anti-B with IgG isotypes are almost
unique to the O blood group (25). The better outcome of the O
blood group is confirmed in COVID-19, but this effect depends
on the higher plasma level of natural antibodies compared to the
rest of the blood groups (24), or perhaps IgG isotypes confermore
protection or both. The IgG isotype interferes more strongly
than IgM, explaining the protective status of the O blood group.
However, elucidation would require complicated and specific
laboratory assays, COVID-19 cases, healthy donors, and all blood
groups and isotypes of Igs.

Finally, studying older patients might determine whether
the upregulation of ACE2 or the decrease in antibodies with
senescence is significant (10, 57). Moreover, the implications
of ACE2 upregulation would lead to specific studies based
on different symptoms in old and young patients. Patients
with ACE2 overexpression in the gastrointestinal tract are
associated with more diarrhea (59). In fact, there is evidence
demonstrating a direct association between endothelitis and
severe COVID-19 (60). Therefore, ACE2may be a relevant factor
in this phenomenon.

CONCLUSION

In conclusion, natural anti-A and B antibodies from the ABO
system interfere with the S protein (SARS-CoV-2) and ACE2
(host cell receptor), conferring protection to patients with
sufficient antibodies (O blood group). The titers of natural
antibodies and IgG isotype (specific to the O blood group)
are determinants of susceptibility and severity. Older adults are
associated with a higher bad outcomes risk due to the lack of
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antibodies and the upregulation of ACE2 expression. There is no
doubt that more investigations would be beneficial to understand
the role and molecular mechanism of ABO blood groups in
COVID-19 fully and help develop novel therapeutic strategies.
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COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is still a pandemic with high mortality and morbidity rates. Clinical manifestation is widely
variable, including asymptomatic or mild respiratory tract illness to severe pneumonia
and death. Myocardial injury is a significant pathogenic feature of COVID-19 and it is
associated with worse in-hospital outcomes, mainly due to a higher number of hospital
readmissions, with over 50% mortality. These findings suggest that myocardial injury
would identify COVID-19 patients with higher risk during active infection and mid-term
follow-up. Potential contributors responsible for myocardial damage are myocarditis,
vasculitis, acute inflammation, type 1 and type 2 myocardial infarction. However, there
are few data about cardiac sequelae and its long-term consequences. Thus, the optimal
screening tool for residual cardiac sequelae, clinical follow-up, and the benefits of a
specific cardiovascular therapy during the convalescent phase remains unknown. This
mini-review explores the different mechanisms of myocardial injury related to COVID-19
and its short and long-term implications.

Keywords: SARS CoV-2, infection, COVID-19, inflammation, organ failure, biomarkers, prognosis

INTRODUCTION

In December 2019, the first cases of pneumonia caused by a new virus called Severe Acute
Respiratory Syndrome 2 (SARS-CoV-2) were noted in Wuhan, China. This new infection was
named Coronavirus disease 2019 (COVID-19) (1) and it disseminated all over the world, being
declared as a global pandemic on March, 2020 by the World Health Organization (WHO).
It has overloaded many healthcare systems and has been considered the worst sanitary crisis
since the pandemics of Influenza in 1918. Despite substantial progress in clinical research,
new viral strains are still a challenge for the healthcare system. Therefore, understanding
the potential contributors of hospital readmissions after COVID-19 might improve long-term
outcomes (2).
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THE SARS-CoV-2 VIRUS

SARS-CoV-2 Origin
Human epidemiological data suggest a zoonotic origin of SARS-
CoV-2 from a Seafood Market in China. Early reports suggested
that bats were the most likely initial hosts and its transmission
to human involved an intermediate animal Once most of the
animal trading markets in China were closed, infected human
have become the main source of the infection (3–5).

SARS-CoV-2 Structure
SARS-CoV-2 is an enveloped ribonucleic acid (RNA) virus with
a double-layered lipid envelope. Its name refers to its core shell
with surface projections which features a solar corona (Latin:
corona = crown). There are four coronaviruses subfamilies:
alpha- and beta- subfamilies, originated from mammals (bats);
and gamma- and delta- subfamilies, from pigs and birds. While
alpha-coronaviruses cause asymptomatic or mildly symptomatic
infection, beta-coronaviruses may cause severe disease (6).

SARS-CoV-2 belongs to the beta-coronaviruses, such as
Middle East Respiratory Syndrome (MERS-CoV) and SARS-
CoV. SARS-CoV-2 and SARS-CoV share around the 80% of their
genome (7).

The most important envelope proteins in SARS-CoV-2 are:
Spike (S) protein that mediates the viral entry into the host
cell through ACE2 receptor; Membrane (M) and Envelope (E)
protein which are responsible for the membrane structure. The
nucleocapsid is mainly composed of the N protein (8).

SARS-CoV-2 Transmission Methods
SARS-CoV-2 predominant route of transmission from person-to-
person is through respiratory droplets and contact (3). While its
infectivity (R0) is around 2.2–2.7, the R0 for SARS-CoV was 3
and 2–5 for MERS-CoV (9).

Droplet transmission occurs when mucous membranes,
such as mouth, nose and eyes, are exposed to infectious
respiratory droplets of someone within 1 m who has respiratory
symptoms. Indirect transmission can occur through fomites on
surfaces in the environment around the infected person (e.g.,
Stethoscope) (10).

Airborne transmission may occur during procedures that
generate aerosols: e.g., endotracheal intubation, nebulized
treatments, bronchoscopy, tracheostomy, non-invasive positive-
pressure ventilation or cardiopulmonary resuscitation (10, 11).
Some evidence suggests a fecal-to-oral transmission, but to date
it has not been proven (12).

Pathogenesis
Extrapolations from knowledge about other similar beta-
coronaviruses, like SARS-CoV and MERS-CoV, are used to
understand SARS-CoV-2 pathogenesis (8, 13–15).

The entrance of the virus into the host cells is mediated by
the union between the Spike protein of SARS-CoV-2 and the
angiotensin-converting enzyme 2 (ACE2) and protein priming
by the serine protease TMPRSS2. TMPRSS2 transcription is

regulated by androgenic hormones which can explain, partially
(7) the higher mortality and incidence in men.

Previous studies about SARS-CoV showed that the
effectiveness of the virus banding to ACE2 could be an important
determinant of the virus transmissibility. Consequently, the
increased transmissibility of SARS-CoV-2 may be due to
its higher affinity of binding to the ACE2 receptor than
SARS-CoV (16).

Viral genome replication and translation is held after the cell
entry and RNA has been released into the cytoplasm. When this
replication occurs in the epithelial cells of the respiratory tract it
causes severe pneumonia or Acute respiratory distress syndrome
(ARDS) (17).

Proposed mechanisms for the pathophysiology of multi-
systemic injury secondary to SARS-CoV-2 infection are direct
cytotoxicity, endothelial cell damage and thrombo-inflammation,
dysregulation of the renin-angiotensin–aldosterone system
(RAAS) and dysregulation of the immune response (18, 19). The
role of each mechanism in the pathophysiology of COVID-19 is
still not fully delimited. Some of these mechanisms are unique
to COVID-19 (ACE2-mediated viral entry and dysregulation of
the RAAS). However, the microcirculation dysfunction and the
pathogenesis caused by the systemic release of cytokines are also
present in sepsis (20) (Figure 1).

MYOCARDIAL INJURY IN SARS-CoV-2

The ACE2 receptors are highly expressed in cardiovascular
cells and are involved in blood pressure regulation and
myocardial function (21). Cardiovascular manifestations
of COVID-19 are variable, including myocardial injury,
thromboembolism, arrhythmia, acute coronary syndrome,
heart failure or cerebrovascular accidents. These cardiovascular
complications have been associated with worse short and
long-term outcomes (22, 23). The mechanisms of cardiovascular
damage are not clearly understood and hypotheses are based on
SARS-CoV-2 resemblance to other coronaviruses.

Myocardial injury is diagnosed when serum levels of cardiac
troponin (cTn) are above the 99th percentile upper reference limit
(24). Initial studies suggested that myocardial injury was present
in around 20–30% of COVID-19 patients (23, 25–29). The
incidence of myocardial injury increases with COVID-19 severity
and has prognostic implications (30). The suggested mechanisms
for SARS-CoV-2-related cardiac damage are: (1) cardiomyocytes
injury; (2) endothelial cells injury and endothelialitis; (3) indirect
injury from hypercoagulability state; (4) ischemic myocardial
injury; and (5) indirect injury from cytokine storm (Figure 2).

Direct Cardiomyocytes Injury
Myocarditis related to viral infection is widely described (31).
Few studies about fulminant myocarditis in COVID-19 patients
have been published (32–36) and suggest that direct myocardial
infection is produced through the ACE2 receptor. Cardiomyocyte
apoptosis induced by SARS-CoV-2 has been proved in vitro (37).
However, the pathophysiology of this injury is not clearly defined
to date, only one study has displayed viral genome particles in
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FIGURE 1 | Pathophysiology of COVID-19 [adapted from Gupta et al. (18)]: (1) Direct virus-mediated cell damage. SARS-CoV-2 enters into host cells through the
union between the spike protein and ACE2 receptor in the presence of TMPRSS2 protease; (2) Downregulation of ACE2 leads to a dysregulation of the RAAS and
consequently to an increase of angiotensin I and angiotensin II; (3) Virus entrance to endothelial cell damage induces apoptosis and endothelialitis; (4) T-cell
lymphopenia, inhibition of interferon signaling and hyperactive innate immunity produces a dysregulation of the immune response and a cytokine storm syndrome.

the cardiomyocytes (38) while SARS-CoV-2 is principally found
inside macrophages or interstitial cells (32, 39, 40).

Endothelial Cells Injury
Endothelial cells infection by SARS-CoV-2 ends up into cell
injury of tissues supplied by the affected vasculature. Fibrin
deposition and activation of the terminal portion of the
complement cascade in the context of endothelial inflammation
has been confirmed in autopsies of COVID-19 patients (41).

Hypercoagulability State
Thrombotic events such as pulmonary embolism, venous
thromboembolism, vascular cerebral accident, and myocardial
infarction have been related to COVID-19 disease (42, 43),
as well as disseminated intravascular coagulopathy (DIC) in
71% of COVID-19 non-survivors (44). However, the precise
mechanisms which activates the coagulation system are not fully
understood and are partially attributed to the cytokine storm and
the dysregulation of the immune response. In addition to the
hypercoagulability and endothelial dysfunction, the immobility
of critical patients and the associated venous stasis complete
the 3 Virchow criteria for a high risk of venous thrombosis.

Finally, COVID-19 treatments would have interactions with
antiaggregant and anticoagulant therapies and increase the risk
of thromboembolic events (17).

Myocardial Ischemia
The hypercoagulability and inflammatory stage may lead to
myocardial ischemia because of a thrombotic event (type I
myocardial infarction) or because of a mismatch between
myocardial oxygen supply and demand (type II myocardial
infarction). Patients with previous history of cardiovascular
disease seem to have a higher risk of myocardial ischemia
during viral infections than those without cardiovascular disease
(45, 46).

Cytokine Storm Syndrome
SARS-CoV-2 infection has been related to a cytokine storm that
may end up to a systemic inflammatory reaction, sepsis, and
multiorgan failure (47). Few studies have suggested myocardial
injury in the setting of systemic inflammation but without
cardiomyocytes virus infiltration, implying that in this setting,
myocardial injury could be related to the cytokine storm (48).
Among all cytokines, interleukin-6 (IL-6) has an important
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FIGURE 2 | Mechanisms for myocardial damage in COVID-19 [adapted from Siripanthong et al. (72)].

position in COVID-19, not only because of its stimulating
effects in cytokine storm, but also because of its cardiovascular
effects. Some studies have revealed that IL-6 produces cardiac
dysfunction as a consequence of decreasing papillary muscles
contractility. In addition, IL-6 has been associated with
arrhythmic (49) events and higher levels of myocardial injury
biomarkers, as a consequence of its role in atherosclerotic events
(50–52), cardiac fibrosis (53), pulmonary hypertension (54) and
higher cardiovascular risk (55).

PROGNOSTIC IMPLICATIONS OF
MYOCARDIAL DAMAGE IN COVID-19
PATIENTS

Myocardial injury is present in around one-third of hospitalized
COVID-19 patients (23, 25–29, 56, 57). Higher cTn levels predict
worse outcomes in COVID-19 hospitalized patients, including a
higher risk of death and mechanical ventilation (Supplementary
Table 1). Consequently, the measurement of troponin levels
could be a useful tool to guide patient management during their
hospitalization (58, 59).

Myocardial injury in COVID-19 patients has been associated
with cardiovascular risk factors such as high blood pressure
or diabetes mellitus, with heart failure, ischemic cardiovascular
disease and chronic renal disease (26, 29, 60). In terms of

laboratory findings, it is associated with lower hemoglobin levels
and higher inflammatory markers (26, 29, 56).

Cardiovascular inflammation, microvascular dysfunction,
ischemia, and myocardial injury, usually found in COVID-
19 patients, are known precursors of cardiac arrhythmias and
prolonged QT intervals (61, 62). Sinus tachycardia is the most
frequently arrhythmia present in COVID-19, probably related
to many causes (hypoperfusion, hypoxia, fever. . .). New onset
or preexisting atrial fibrillation is the second most frequent
arrhythmia, being present in 10–14% of hospitalized patients and
22% of critical COVID-19 patients (63–65). Atrial fibrillation
and sinus tachycardia are independent predictors of severity,
myocardial injury, and worse outcomes of COVID-19 patients
(65). Regarding ventricular arrhythmias, Guo et al. reported
an incidence of malignant ventricular arrhythmias in 6% of
hospitalized patients. These findings are similar to those found
during influenza infection (66). Another report form Du et al.
found that arrhythmias were registered in a 60% of patients but
only two patients died because of a malignant arrhythmia (67).
Since the beginning of the pandemic, early reports proposed
hydroxychloroquine or azithromycin as effective drugs against
SARS-CoV-2, further studies found that cardiac arrest was more
frequent in patients who received these drugs (68).

To date, only few studies regarding the cardiovascular long-
term consequences after recovery fromCOVID-19 have been
published (Supplementary Table 1), suggesting worse long-term
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outcomes (69–72). In our previous published study of a cohort
with 172 patients who survived COVID-19 hospitalization,
myocardial injury was associated with poor prognosis, mainly
due to a higher number of readmissions (71). In the same
direction, Kini et al. (70) found that the risk of death at 30 days
was significantly increased in those patients who had myocardial
injury during the acute phase. Finally, Xie et al. (69) showed
that beyond 1 month after infection, COVID-19 patients have
higher risk of a cardiovascular event; consequently, specific
cardiovascular follow-up should be included in care pathways of
COVID-19 survivors.

Myocarditis and myocardial injury related to SARS-CoV-2
infection can produce functional and morphologic sequelae on
the heart, particularly in those with preexisting cardiac disease
(73–75). Cardiovascular magnetic resonance (CMR) imaging has
been used as a tool to assess cardiac involvement in patients who
survived COVID-19. A multicenter study with 148 recovered
COVID-19 patients (74) showed that myocardial injury was
associated with CMR abnormalities in around 50% of the
patients. Three different patterns of injury were observed: non-
infarct myocarditis-pattern injury (27%), ischemic pathology
(22%), and non-ischemic non-specific scar (5%). In a 6% of the
patients, dual pathology (ischemic and non-ischemic patterns)
were observed. No global functional ventricular consequences
were found. In addition, a German study that included patients
which were recently recovered from COVID-19, CMR revealed
cardiac abnormalities in 78% of patients, such as decreased left
ventricular ejection fraction and higher left ventricle volumes.
Endomyocardial biopsy in patients with cardiac involvement
found in CMR studies, showed active lymphocytic inflammation
(75). CMR studies in recovered COVID-19 patients have found

some disorders that could be responsible for future arrhythmias
or heart failure. Further investigation of long-term cardiovascular
consequences of COVID-19 is required.

CONCLUSION AND FUTURE
PERSPECTIVES

The COVID-19 pandemic is still causing significant morbidity
and mortality worldwide. Close monitoring of cardiovascular
system in patients with COVID-19 may help to identify
high- vs. low-risk patients. Patients with COVID-19 infection
and previous cardiovascular disease present a poor prognosis
and a higher risk of overall mortality. Further investigation
regarding the mechanism, manifestations, and prognosis of
myocardial injury in COVID-19 patients is required to improve
therapies and prognosis.
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Background: Interleukin 6 (IL6) levels and SARS-CoV-2 viremia have been correlated
with COVID-19 severity. The association over time between them has not been
assessed in a prospective cohort. Our aim was to evaluate the relationship between
SARS-CoV-2 viremia and time evolution of IL6 levels in a COVID-19 prospective cohort.

Methods: Secondary analysis from a prospective cohort including COVID-19
hospitalized patients from Hospital Universitario La Princesa between November
2020 and January 2021. Serial plasma samples were collected from admission until
discharge. Viral load was quantified by Real-Time Polymerase Chain Reaction and
IL6 levels with an enzyme immunoassay. To represent the evolution over time of both
variables we used the graphic command twoway of Stata.

Results: A total of 57 patients were recruited, with median age of 63 years (IQR [53–81]),
61.4% male and 68.4% Caucasian. The peak of viremia appeared shortly after symptom
onset in patients with persistent viremia (more than 1 sample with > 1.3 log10 copies/ml)
and also in those with at least one IL6 > 30 pg/ml, followed by a progressive increase
in IL6 around 10 days later. Persistent viremia in the first week of hospitalization was
associated with higher levels of IL6. Both IL6 and SARS-CoV-2 viral load were higher in
males, with a quicker increase with age.
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Conclusion: In those patients with worse outcomes, an early peak of SARS-CoV-2
viral load precedes an increase in IL6 levels. Monitoring SARS-CoV-2 viral load during
the first week after symptom onset may be helpful to predict disease severity in COVID-
19 patients.

Keywords: SARS-CoV-2, viremia, interleukin 6 (IL-6), prognosis, COVID-19

INTRODUCTION

One of the most feared complications of the disease caused by
the coronavirus SARS-CoV-2 (COVID-19), is the development
of an Acute Respiratory Distress Syndrome (ARDS), which
can affect 15.6–31% of patients (1). Siddiqui and Mehra
(2) proposed that ARDS is part of the final stage of the
disease, in which clinical features are mainly the consequence
of the host hyperinflammatory response and a cytokine
storm; whereas the stage I (early infection) is mainly
caused by viral replication and the early immune response.
However, to the best of our knowledge, this proposal has
not been validated.

Since the outbreak of the COVID-19 pandemic, many efforts
have been made to find early risk factors and biomarkers able
to predict the evolution toward the cytokine storm. In this
sense, older age, obesity and comorbidities such as hypertension,
diabetes and coronary heart disease have been associated with
higher risk of death (3, 4). On the other hand, increased levels
of C reactive protein (CRP), lactate dehydrogenase (LDH), and
D-dimer, among others, have been shown to be related to the
development of ARDS and mortality (3, 5, 6).

In this context, Interleukin 6 (IL6) has been described as
one of the most useful biomarkers (7). In a previous work,
we showed that IL6 could be a severity biomarker but also
a guide to select COVID-19 patients who could benefit from
treatment with tocilizumab, an inhibitor of the IL6 receptor (8).
Another important biomarker is the presence of SARS-CoV-2
RNA in peripheral blood (viremia), which has been associated
with disease severity and a hyperinflammatory state (9, 10).
Saji et al. (11) showed that the combination of SpO2/FiO2,
IL6 and the presence of SARS-CoV-2 viremia at admission had
the highest accuracy to predict fatal outcomes. Bermejo et al.
(12) and Myhre et al. (13) found that the presence of SARS-
CoV-2 viremia at admission correlated with increased levels of
IL6, CRP, and ferritin. In addition, a proteomic analysis showed
that the expression of viral response and interferon/monocytic
pathway proteins such as IL6 and one of its regulators,
the Nicotinamide phosporibosyl transferase (NAMPT), were
upregulated in patients with quantifiable SARS-CoV-2 viremia at
admission, compared to those with undetectable viremia (14).

In a previous study of our group, we found that viremia was
associated with Intensive Care Unit (ICU) admission and in-
hospital death, and it was a better biomarker than IL6 (10). In this
regard, since SARS-CoV-2 infection is involved in triggering IL6
expression, viremia as an indicator of the systemic viral shedding,
could be related with the IL6 response and be useful as an early
biomarker (phase of viral response). Nevertheless, the factors

determining an IL6 increase in COVID-19 patients have not been
well established yet and the association over time between SARS-
CoV-2 viremia and IL6, has not been assessed in a prospective
cohort with serial samples.

Considering our previous results, the aim of this study was to
evaluate the relationship between the presence of SARS-CoV-2
viremia and the time evolution and IL6 levels in a prospective
cohort of COVID-19 hospitalized patients.

MATERIALS AND METHODS

Study Design, Population, and Data
Collection
This work is a secondary analysis of samples from a prospective
observational cohort assembled to validate the predictive value
of SARS-CoV-2 viremia (ongoing manuscript). The study
included patients hospitalized for COVID-19 in Hospital
Universitario La Princesa (HUP) between November 1st 2020
and January 15th 2021.

The inclusion criteria were: (a) positive Real-Time Reverse
Transcription Polymerase Chain Reaction (rRT-PCR) for
SARS-CoV-2 in nasopharyngeal and throat swabs at most
48 h prior to hospitalization; (b) acceptance to participate
in the study and oral or written consent; (c) age older
than 18 years. The exclusion criteria were: (a) patients
without an initial viremia determination in the first 24–36 h
after admission; (b) patients unlikely to be followed-up
because they were candidates to be transferred to other
health facilities.

Clinical, laboratory and therapeutic data were collected from
electronic clinical records and included in an anonymized
database. Baseline clinical and laboratory data are to those
obtained at admission day.

The need for hospitalization was decided by the physicians
at the emergency room based on clinical criteria, without
the intervention of the research team. Patient’s treatment and
management was decided by each attending physician based on
the hospital protocols and their clinical judgment. Attending
physicians were blind to the viremia results.

Sample Size
The sample size was estimated in 49 patients to validate the
primary objective of the study “SARS-CoV-2 viremia as a
biomarker of disease severity” (ongoing manuscript) based on the
results of our previous retrospective studies (10, 15); nevertheless,
57 patients were finally included.
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Sample Collection
Serial plasma and serum samples were collected from admission
until discharge. In the first week, samples were collected every
48 h, with the first sample in the first 24–36 h. Thereafter, samples
were collected twice a week. All samples were frozen at –80◦C and
stored in the Microbiology Department facilities.

SARS-CoV-2 RNA Extraction and
Detection
Firstly, a nucleic acid extraction of samples was performed by the
automatic eMAG R© Nucleic Acid Extraction System (Biomerieux,
France). Detection of viremia was performed with rRT-PCR using
TaqPathTM COVID-19 CE81 IVD RT-PCR Kit [Thermo Fisher
Scientific, United States (TFS)], according to the manufacturer’s
instructions, by a QuantStudioTM 5 Real Time PCR System
(Applied Biosystems, United States). Amplification curves were
analyzed with QuantStudioTM Design and Analysis software
version 2.4.3 (Applied Biosystems, United States) and interpreted
by a clinical microbiologist. To increase sensitivity, two wells were
used for each sample. Two positive controls (one of 20,000 copies
and another of 200 copies) and two negative controls were added
in each run in duplicate.

Quantification of Viral Load
A standard curve was established using a positive control with a
known concentration (TaqPath Positive Control from TaqPathTM

COVID-19 Control Kit) of 10,000 copies/µl of the SARS-CoV-
2 genomic regions targeted by the TFS assay. Ten-fold serial
dilutions of the positive control were made up to 1 copy.
Nine wells of each of the concentrations and of the negative
control were added to the run. The rRT-PCR was performed
by QuantStudioTM 5 Real Time PCR System and a standard
curve was obtained plotting DNA concentration against cycle
threshold (Ct) values. The amplification curves were analyzed
with QuantStudioTM Design and Analysis software version 2.4.3
(Applied Biosystems, United States). The results of the nine wells
with 1 copy were omitted because they were widely dispersed.

Viral load was calculated from Ct values using the standard
curve as reference and was expressed as copies/ml and the
logarithm with base 10 (log10). Due to the variability and
lack of accuracy obtained with the lower levels of SARS-CoV-
2 viremia, only viremias > 1.3 log10 (20 copies/ml) were
considered quantifiable.

Interleukin 6 Measurement
Serum samples collected in the same extraction as the plasma
used for SARS-CoV-2 viremia determinations were used to assess
IL6 levels. IL6 levels were retrospectively quantified in triplicate
with the Human IL6 Duoset enzyme-immunoassay from R&D
Systems Europe Ltd. (Abingdon, United Kingdom), following the
manufacturer’s instructions.

Variables
For analysis using viremia as a quantitative variable, all values
were used. However, to define viremia as categorical, positive
viremia was considered when values were higher than 1.3 log10

(namely 20 copies/ml, which was the threshold for quantifiable
viremia) and negative when values were below this threshold.
Persistent viremia was defined as more than one positive viremia
in the first week of hospitalization.

Two different variables were used to evaluate IL6 levels: (a)
a quantitative variable defined as IL6 concentration, expressed
in pg/ml, (b) a dichotomic variable, which considered levels of
IL6 as high when at least one IL6 determination was higher than
30 pg/ml or low if all determinations were below 30 pg/ml. This
threshold was based on our previous study, where we showed that
IL6 > 30 pg/ml was associated with poor respiratory outcomes
(8). The average levels of IL6 and viral load were defined as the
arithmetic mean of all their determinations in each patient.

Statistical Analysis
We used Stata 14.0 for Windows (Stata Corp. LP, College
Station, TX, United States) for all the analysis described
below. Quantitative variables were represented as median and
Interquartile Range (IQR), and the Mann Whitney or Kruskall
Wallis tests were used to assess significant differences, since
all quantitative variables followed a non-normal distribution.
Qualitative variables were described as counts and proportions
and Chi square or Fisher’s exact test was used for comparisons.

In order to comparatively show levels of IL6 and viral load
through the two first weeks of follow-up, we used as time
variable the number of days from the beginning of symptoms to
collection of each sample. To represent the mean evolution over
time of both variables we used the graphic command twoway
from Stata with the option fractional polynomial prediction
with 95% confidence interval (CI). Since it is well known that
blockade of IL6 receptor with tocilizumab can result in an
increase of IL6 serum levels (16), we decided to carry forward the
last observation before tocilizumab treatment [last observation
carried forward (LOCF) strategy] to replace IL6 values in the
remaining visits of the first 2 weeks for those patients treated
with tocilizumab in order to avoid the bias of excluding this
important population (see comparative baseline characteristics in
Supplementary Table 1). Furthermore, we also applied LOCT
strategy for those patients who died or were discharged before
the 5th visit (14th day after admission), in order to obtain a more
homogeneous number of determinations all along the follow-up.

To determine which variables were associated with high levels
of IL6, we performed a multivariable logistic regression analysis
that was first modeled by adding all the variables with a p-value
lower than 0.15 in the bivariable analysis. The final model was
reached through backward stepwise removal of variables with
p-value higher than 0.15.

Ethics
This study was approved by the Research Ethics Committee
of Hospital Universitario La Princesa, Madrid (register number
4267; 22-10-2020), and it was carried out following the ethical
principles established in the Declaration of Helsinki. As proposed
by AEMPS (Agencia Española de Medicamentos y Productos
Sanitarios, The Spanish Agency for Medicines and Medical
Devices), only oral consent was required due to the COVID-19
emergency (17). However, a written information sheet was also
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offered to all patients. After being informed about the study,
all included patients (or their representatives) gave informed
consent, which was registered in the electronic clinical chart.

This article was written following the STROBE initiative
(Strengthening the Reporting of Observational studies
in Epidemiology).

RESULTS

Study Population and Sample
Characteristics
A total of 57 patients were recruited, with median age of
63 years (IQR 53–81), 61.4% were male, 68.4% Caucasian,
and 75.4% had previous comorbidities. The median time from
symptom onset to first sample was 8 days (IQR 4–10). Baseline
clinical characteristics according to IL6 levels are shown in
Table 1. During patients’ hospitalization, 301 serum samples
were collected, with a median number of 3 samples per
patient (IQR 2-5).

Nine patients were treated with tocilizumab, who on
average, showed data suggesting a more severe disease,
although differences did not reach statistical significance
(Supplementary Table 1).

Most patients who progressed to a severe disease started
this evolution 7–14 days after the symptoms onset. In addition,
patients with a more benign course were discharged at the
end of the first week after admission. For clinical consistency,
we decided to analyze only the samples corresponding to the
first 2 weeks of hospitalization, a maximum of 5 samples per
patient. Thus, IL6 levels were measured in 228 samples, with
a median of 3.6 pg/ml (IQR 0–21 pg/ml). Baseline clinical
characteristics of patients depending on IL6 status are shown in
Table 1. SARS-CoV-2 viremia was determined in 234 samples,
with the highest percentage of positive viremia (36.8%) at
admission (visit 1).

Time Course of Interleukin 6 and
SARS-CoV-2 Viremia
The average serum levels of IL6 and SARS-CoV-2 viral load were
moderately but significantly correlated (r = 0.41, p = 0.0014;
Supplementary Figure 1).

Figure 1A shows the evolution over time of IL6 and
viremia analyzed using data from the whole population
(including IL6 after tocilizumab treatment). The peak of
viremia appeared early, at the first days after symptom onset
(day 3–5), and quickly decreased. On the other hand, the
highest levels of IL6 were found at day 20. The wide
95% CI suggested a high heterogeneity, especially at both
extremes of the time course. Figure 1B shows the results
when the LOCF strategy (see Statistical section for further
information) was used to minimize the increase of IL6 induced
by tocilizumab (see Supplementary Figure 2 for raw data in
cases treated or not with tocilizumab). With LOCF strategy,
the peak of IL6 was smaller, but the time course of IL6
production was quite similar to that obtained from raw

data. Hereinafter, the relationship between IL6 and SARS-
CoV2 viral load shown corresponds to results obtained with
the LOCF strategy.

Relationship Between Interleukin 6 and
SARS-CoV-2 Viremia
A total of 19 patients had high IL6 (Table 1), of them 11 (57.9%)
had persistent viremia compared to 5 patients (13.2%) in the low
IL6 group (p = 0.001), with an odds ratio of 9.1 (95%CI 2.5–32.6)
(Figure 2E). In the graphic representation of IL6 and viral load
according to high/low IL6 (Figures 2A,B), an early and minor
peak of IL6 was found in the low IL6 group, together with a small
peak of viremia at day 4. On the other hand, patients with at least
one IL6 above 30 pg/ml had an early high viremia around day 3
and a progressive increase of IL6 especially after day 12.

When the prediction of IL6 and viral load was calculated
according to persistent viremia status, remarkable differences
were obtained (Figures 2C,D). In the persistent viremia group,
viral load showed a peak around day 4, whereas IL6 had a two-
phase increase: one at the first days from symptom onset and then
a subsequent progressive increase after day 5. Regarding non-
persistent viremia the increase of IL6 was slow from symptom
onset until day 20. The median of the average levels of IL6 were
3.6 pg/ml (IQR 1.0–9.2 pg/ml) in the non-persistent viremia
group and 21.4 pg/ml (IQR 12.3–44.9) in patients with persistent
viremia (p < 0.001).

Prediction of Interleukin 6 and
SARS-CoV-2 Viremia According to
Demographic Factors
The effect of demographic factors on IL6 levels and SARS-
CoV-2 viremia was also assessed. The median of the average
IL6 concentration was significantly higher in males (11.3 pg/ml
[IQR 3.3–27.5] than in females (2.5 pg/ml [IQR 0.7–9.2 pg/ml];
p = 0.005). In the group of patients with high IL6, 84.2% were
male compared to 50% in the group with low IL6 (p = 0.02).
No differences were found in the average viral load (11.1
copies/ml [IQR 0–197.3 copies/ml] vs. 2.3 copies/ml [IQR 0–
6.8 copies/ml]; p = 0.08) or in the percentage of patients with
persistent viremia (34.3% vs. 18.2%; p = 0.24) between males
and females, respectively. However, predicting curves for IL6
and viral load were substantially different depending on sex
(Figure 3A). In males, curves had a fast increase in viral
load with a peak around day 2 from symptom onset and a
later rise in IL6 levels until day 20, while women showed
a small increase in viral load and IL6 between day 2 and
7 approximately.

The effect of age on IL6 levels and viral load was also
considered. The average levels of IL6 and viremia did not
correlate with age (r = 0.21, p = 0.13; and r = 0.19, p = 0.16;
respectively). Moreover, no differences were found when age was
categorized as < 75 years and > 75 years (p = 0.57 and p = 0.88,
for IL6 and viral load, respectively). In the group with high IL6,
31.6% of patients were older than 75 years, the same percentage
as in the low IL6 group (p = 1). Regarding persistent viremia, the
proportion of patients older than 75 years was 29.3% in the group
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TABLE 1 | Baseline clinical characteristics of the study population according to IL6 levels.

Study population
(n = 57)

Low IL6
(n = 38)

High IL6
(n = 19)

P-value

Age; median (IQR) 63 (53–81) 60 (49–81) 72 (59–81) 0.21

Male sex; n (%) 35 (61.4) 19 (50) 16 (84.2) 0.02

Race/ethnicity; n (%)
-Caucasian
-Latin-American
-Asian

39 (68.4)
16 (28.1)

2 (3.5)

22 (57.9)
15 (39.5)

1 (2.6)

17 (89.4)
1 (5.3)
1 (5.3)

0.009

*0.01

Comorbidities; n (%) 43 (75.4) 30 (79) 13 (68.4) 0.5

Age-adjusted Charlson’s Comorbidity Index; median (IQR) 3 (1–5) 2.5 (1–5) 4 (1–5) 0.37

Days from symptom onset to first sample; median (IQR) 8 (4–10) 8 (4–12) 6 (3–8) 0.12

Persistent viremia; n (%) 16 (28.1) 5 (13.2) 11 (57.9) 0.001

Clinical progressionˆ; n (%) 12 (21.1) 3 (7.9) 9 (47.4) 0.001

Intensive Care Unit; n (%) 8 (14) 3 (7.9) 5 (26.3) 0.1

In-hospital mortality; n (%) 5 (8.8) 0 5 (26.3) 0.003

*Significant differences were only found between Caucasians and Latin-Americans. ˆClinical progression was defined as a worsening of at least one point on the WHO
COVID Ordinal Outcomes Scale (33) during a 14-day follow-up after admission.

FIGURE 1 | The peak of viral load precedes the IL6 increase. Graphic representation of time-course of IL6 levels and SARS-CoV-2 viral load from symptom onset.
(A) representation of raw data. (B) Representation of data after applying the LOCF strategy. The fractional polynomial prediction was performed using the twoway
command of Stata.

with non-persistent viremia and 37.5% in those with persistent
viremia (p = 0.55). In the prediction curves according to age and
sex, all parameters increased with age except for viral load in
males, which peaked between 40 and 50 years (Figure 3B).

Regarding ethnicity, there were only differences between
Caucasians and Latin-Americans in the average IL6 levels (11.9
[IQR 2.9–35.2] vs. 2.9 [IQR 1.0–4.3]; p = 0.005), and the
percentage of patients with high IL6 (89.5% vs. 5.3%, p = 0.01)
(Table 1). No differences were found depending on ethnicity
in the average viral load or the percentage of patients with
persistent viremia.

Finally, a multivariable analysis showed that the presence of
high IL6 was associated with persistent viremia (OR 10.0 [95%CI
2.0–49.5]; p = 0.005); conversely, female sex (OR 0.17 [0.03–0.9];
p = 0.04) and Latin-American origin (OR 0.06 [0.01–0.7];
p = 0.02) had a protective effect.

DISCUSSION

This study assessed the relationship between IL6 and
SARS-CoV-2 viremia. The most relevant finding was the

different time course of IL6 and viremia: the peak of viremia
appeared shortly after symptom onset in patients with persistent
viremia and also in those with at least one measure of IL6 > 30
pg/ml, in which it was followed days later by a progressive
increase in IL6. Moreover, the presence of persistent viremia
in the first week of hospitalization was associated with higher
levels of IL6. Both IL6 and SARS-CoV-2 viral load were higher
in males, with a progressive increase with age that occurred
earlier in males.

Our findings are consistent with the COVID-19 phases first
described by Siddiqui and Mehra (2). These authors described
an early stage characterized by a viral response (SARS-CoV-2
viremia) and a final stage caused by a hyperinflammatory state
characterized by increased levels of IL6. To date, only two studies
have evaluated SARS-CoV-2 viremia and systemic cytokines in
a longitudinal design, but none of them considered the different
time course of the increase in viremia and IL6 (18, 19). Van Riel
et al. (18) only included 20 patients and found that the levels of
IL6 were associated with critical disease but not with the presence
of viremia; while Brasen et al. (19) found and association between
maximum viral load and IL6. Neither of them assessed the
temporal course of both biomarkers. In our previous work (10),

Frontiers in Medicine | www.frontiersin.org 5 June 2022 | Volume 9 | Article 85563926

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-855639 June 14, 2022 Time: 8:29 # 6

Roy-Vallejo et al. SARS-CoV-2 Viremia and IL6

FIGURE 2 | Patients with worse outcomes have an early peak of SARS-CoV-2 viral load before a prominent increase in IL6 levels. Graphic representation of IL6
levels and SARS-CoV-2 viral load from symptom onset in: (A) patients with low IL6; (B) patients with at least one IL6 > 30 pg/ml (high IL6); (C) non-persistent
viremia; and (D) persistent viremia. (E) Represents the percentage of patients with persistent viremia according to IL6 levels (low vs. high). (A–D) The fractional
polynomial predictions were performed using the twoway command of Stata.

Frontiers in Medicine | www.frontiersin.org 6 June 2022 | Volume 9 | Article 85563927

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-855639 June 14, 2022 Time: 8:29 # 7

Roy-Vallejo et al. SARS-CoV-2 Viremia and IL6

FIGURE 3 | Males had more relevant increases of IL6 and viral load. (A) Represents the levels of IL6 and viral load from symptom onset by sex (both panels using
the same scale), while (B) shows levels of IL6 and viral load by age and sex (both panels using the same scale). The fractional polynomial predictions were performed
using the twoway command of Stata.

we described that the presence of relevant SARS-CoV-2 viremia
was associated with higher risk of death and ICU admission.
Furthermore, viremia was the most useful biomarker for these
outcomes, being superior to IL6, lymphopenia and LDH. In the
present study, we show that the SARS-CoV-2 viremia appears
early in the course of the disease, standing out as a relevant,
simple and early biomarker.

Since the beginning of the pandemic, CRP, and IL6 levels
have been used as prognostic biomarkers in COVID-19; in
addition, IL6 activity has been targeted for treatment by the
anti-IL-6 receptor antibody but also to guide treatment and
predict response to tocilizumab (8, 20, 21). Moreover, a previous
study of our group showed that high levels of IL6 (above
30 pg/ml) were associated with worse prognosis of COVID-
19, and also with a better response to tocilizumab, thereby
suggesting a role of IL6 levels in guiding treatment and
predicting response to this therapeutic agent (8). However,
Ong et al. (22) and Liu et al. (23) showed that IL6 in
COVID-19 patients peaked after the worsening of respiratory
function, suggesting that when proinflammatory biomarkers

rise, lung damage might be already established. In our cohort,
68.8% of patients with persistent viremia had at least one
IL6 > 30 pg/ml in the later hyperinflammatory phase of the
disease. Taking into account the high percentage of patients
with persistent viremia who develop an hyperinflammatory
response, these patients might be considered as candidates for
intensive treatment and surveillance, or even for early treatment
with IL6 blockade.

Nevertheless, these findings might not be extensive to all
patients. A more severe course of COVID-19 and higher levels
of IL6 have been previously described in older males (24). In
this sense, genetic and hormonal factors have been proposed
to be involved in age and sex related differences in COVID-
19 (24, 25). One of the most studied SARS-CoV-2 related
proteins is ACE2, the membrane receptor needed for the virus
internalization, which is encoded by the gen of the same name
located in the X chromosome (25, 26). ACE2 expression increases
with age and in male sex in COVID-19 patients (27, 28).
ACE2 expression also correlates with SARS-CoV-2 infectivity
in cells of the respiratory tract (29) and with higher viral
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loads in nasopharyngeal swabs (30). Whether endothelial and
vascular ACE2 is related to viral load in peripheral blood has
not been assessed yet, but it is plausible that higher levels of
systemic ACE2 lead to increased viremia. Another proposed
mechanism to explain sex differences is the effect of Toll
Like Receptor (TLR) pathways, especially TLR7. This receptor,
which recognizes viral single strain RNA and enhances IL6
production, is also located in X chromosome. TLR7 was one
of the most important susceptibility genes found in an Italian
cohort of COVID-19 patients, where 6.3% of young males
with life-threatening disease presented missense variants of this
gene (31).

Regarding ethnicity, patients with a Latin-American origin
had lower levels of IL6 in our cohort. In this sense, other
cytokines and chemokines such as MCP-1, IL-10, IL-15,
CXCL10, and CCL2 have been associated with SARS-CoV-
2 viremia (12, 18). It is possible that the immune response
of COVID-19 patients is enhanced by molecular pathways
different from IL6, which may play a relevant role in patients
without an IL6 increase. However, this hypothesis needs to
be further evaluated with studies with bigger sample size
than our cohort.

This study has several limitations. First of all, the sample
size of our cohort was small, although it was sufficient to find
different patterns in the kinetics of IL6 and viral load. Secondly,
all patients included were hospitalized and their first sample was
obtained at a median of 7 days after symptom onset, therefore,
data from the first days of the disease were limited. In addition,
information about different variants of SARS-CoV-2 in our
cohort could not be obtained because viral sequencing was not
available in our facilities. However, at the time our study was
performed, the most prevalent variant in Madrid was the original
strain (32).

In conclusion, in those patients with worse outcomes, an early
peak of SARS-CoV-2 viral load precedes around 5–10 days a
prominent increase in IL6 levels. This finding was very clear
in males older than 40 years. Therefore, monitoring SARS-
CoV-2 viral load during the first week after symptom onset
may be helpful to stratify the severity of patients and predict
those who are at high risk of developing hyperinflammatory
syndrome and ARDS.
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The long-term clinical management and evolution of a cohort of critical COVID-19
survivors have not been described in detail. We report a prospective observational
study of COVID-19 patients admitted to the ICU between March and August 2020.
The follow-up in a post-COVID consultation comprised symptoms, pulmonary function
tests, the 6-minute walking test (6MWT), and chest computed tomography (CT).
Additionally, questionnaires to evaluate the prevalence of post-COVID-19 syndrome
were administered at 1 year. A total of 181 patients were admitted to the ICU
during the study period. They were middle-aged (median [IQR] of 61 [52;67]) and
male (66.9%), with a median ICU stay of 9 (5–24.2) days. 20% died in the
hospital, and 39 were not able to be included. A cohort of 105 patients initiated
the follow-up. At 1 year, 32.2% persisted with respiratory alterations and needed
to continue the follow-up. Ten percent still had moderate/severe lung diffusion
(DLCO) involvement (<60%), and 53.7% had a fibrotic pattern on CT. Moreover,
patients had a mean (SD) number of symptoms of 5.7 ± 4.6, and 61.3% met
the criteria for post-COVID syndrome at 1 year. During the follow-up, 46 patients
were discharged, and 16 were transferred to other consultations. Other conditions,
such as emphysema (21.6%), COPD (8.2%), severe neurocognitive disorders
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(4.1%), and lung cancer (1%) were identified. A high use of health care resources
is observed in the first year. In conclusion, one-third of critically ill COVID-19 patients
need to continue follow-up beyond 1 year, due to abnormalities on DLCO, chest CT, or
persistent symptoms.

Keywords: COVID-19, CT abnormalities, intensive care unit (ICU), lung function, SARS, SARS-CoV-2, post-COVID
syndrome, sequelae

INTRODUCTION

Since the beginning of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection in December 2019, more
than 300 million COVID-19 cases have been confirmed globally,
and more than 5.7 million people have died (1). A far from
negligible proportion of hospitalized patients (20–67%) may
develop a more severe disease resulting in acute respiratory
distress syndrome (ARDS) (2, 3). This has generated a surge
of patients who require respiratory support with invasive or
non-invasive mechanical ventilation (IMV and NIMV) (3, 4),
overburdening ICUs worldwide.

COVID-19 continues to be a public health emergency of
international concern due to the enormous global disease burden.
As a result of this situation, there is growing interest in the long-
term sequelae after recovery from acute COVID-19. Previous
reports indicate that at 6 months of follow-up, at least three-
quarters of COVID-19 survivors discharged from the hospital
still had persisting symptoms (5–7). Importantly, patients with
more severe acute disease and those who were critically ill
during their hospital stay had a higher risk of lung diffusion
impairment (up to 56%) and radiological abnormalities (4, 6). To
date, the literature on 1-year outcomes after hospital discharge
is diverse (8, 9) and has not focused on critically ill COVID-19
survivors. Specifically, a study published recently (10) found that
those who were critically ill during the hospital stay presented
more pulmonary damage on chest CT (87%) and lung diffusing
impairment (54%) at the 12-month follow-up.

In this respect, we aimed to describe what happens to the
patients who needed ICU admission due to COVID-19 infection
1 year after their hospital discharge. We deeply describe the
clinical follow-up, which includes an evaluation of symptoms,
respiratory assessment (including lung volumes, DLCO, and 6-
minute walking test) and a chest CT scan 3, 6, and 12 months
after hospital discharge. Moreover, a questionnaire to evaluate
persistent symptoms and post-COVID syndrome was performed
at 1 year of follow-up in all patients.

MATERIALS AND METHODS

Study Design and Population
This was a prospective observational study performed in
patients who had a critical care admission due to COVID-
19 between March and August 2020 in Hospital Universitari

Abbreviations: CT, computed tomography; COVID-19, coronavirus disease 2019;
ICU, intensive care unit; ARDS, acute respiratory distress syndrome; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2; 6MWT, 6-minute walking test.

Arnau de Vilanova and Hospital Universitari Santa Maria
in Lleida (Spain). The study is a subset of the ongoing
multicenter study CIBERESUCICOVID (NCT04457505) and
follows the Strengthening the Reporting of Observational Studies
(STROBE) statement.

The study was approved by the Medical Ethics Committee
(CEIC/2273). Informed consent was acquired (written and/or
verbal) from all patients.

The main objective of this study was to describe the following
at 1 year after a critical COVID-19 infection: (1) a general
perspective of these patients, (2) the follow-up of the survivors in
the context of a clinical post-COVID unit, and (3) the prevalence
of post-COVID syndrome in these patients.

Inclusion and Exclusion Criteria
All patients were positive for SARS-CoV-2, were older than
18 years and had been admitted to the ICU. Follow-up of patients
who survived was based on the following exclusion criteria: (i)
treatment with palliative care, (ii) follow-up in another center,
and (iii) severe mental disability that made it impossible to assess
pulmonary function.

Clinical Data Collection
Clinical Data During Hospital Stay
Patient sociodemographic and comorbidity data and clinical,
vital, ventilator, and laboratory parameters were recorded at the
hospital and ICU admission. We also collected data on the length
of ICU and hospital stays, the duration of mechanical ventilation
and the need for and duration of prone positioning, treatments
received, complications during hospitalization and death.

Follow-Up Visit in the Post-COVID Unit
Patients were evaluated at 3, 6, and 12 months after hospital
discharge. General and respiratory symptoms, as well as quality
of life and anxiety and depression, were assessed as previously
described (11). The protocols for the pulmonary function tests,
6-minute walking test and chest CT scan of the thorax were also
previously described (9).

The post-COVID unit is a consultation based on the joint
evaluation of a pulmonologist (JG), two nurses (MA, SS), and
a physiotherapist (AM) with experience in the management
of post-COVID and chronic respiratory patients. Patients
were discharged when they had clinically recovered from
pulmonary damage due to COVID-19. Nevertheless, many others
were referred to other consultations due to previous existing
pulmonary conditions (such as COPD or emphysema) or other
comorbidities (neurological, cardiological, etc.).
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Post-COVID Syndrome
We aimed to describe post-COVID syndrome prevalence after
12 months of hospital discharge in all critical COVID-19
survivors. There have been several definitions of this condition
proposed in the last year (12). A recent study supported by
the World Health Organization (WHO) (13) suggested post-
acute COVID-19 as the presence of symptoms such as fatigue,
shortness of breath, and cognitive dysfunction that impact daily
quality of life after 3 months of probable or confirmed SARS-
CoV-2 infection, which are not explained by other alternative
diagnoses. Symptoms might be persistent or new onset within
at least 2 months.

We evaluated these domains (fatigue, shortness of breath,
and cognitive dysfunction) by using standardized and validated
questionnaires. The Functional Assessment of Chronic Illness
Therapy (FACIT) is a questionnaire that assesses self-conception
of fatigue and its impact on health-related quality of life in the
last 7 days. It contains 13 items from 0 (not very fatigued) to 4
(very fatigued), where a higher score indicates a better quality
of life (14, 15). The British Columbia Cognitive Complaints
Inventory (BC-CCI) is a 6-item scale that measures perceived
cognitive impairments such as problems with concentration,
memory, expressing thoughts, word finding, slow thinking, and
difficulty solving problems in the past 7 days (16). A higher score
reveals more severe cognitive complaints (17). Finally, we used
the modified Medical Research Council (mMRC) scale to define
the presence of dyspnea in routine clinical practice.

Statistical Analysis
Descriptive statistics of the mean (standard deviation) and
median (25th percentile; 75th percentile) were estimated

for quantitative variables with normal and non-normal
distributions, respectively. The absolute and relative frequencies
were calculated for qualitative variables. Relative frequencies were
calculated excluding missing data. Categorical variables were
compared using the chi-squared test or Fisher’s exact test,
whereas continuous variables were compared using the
non-parametric Mann–Whitney U test or t-test, depending
on whether the variable was normally distributed (Shapiro
Wilk test). The p-value for the trend was computed from
the Pearson test when the variable was normal and from
the Spearman test when it was continuous non-normally
distributed. For categorical variables, the p value for the trend
was computed from the Mantel–Haenszel test. The p value
threshold defining statistical significance in all analyses was
set at 0.05. Data management and statistical analyses were
performed using R (version 4.0.2; R Foundation for Statistical
Computing) (18).

RESULTS

General Description of Hospital Stay
A total of 181 patients were admitted to the ICU due to
COVID-19 between March and August 2020. Briefly, they were
predominantly middle-aged (median [IQR] 61 [52–67] years old)
males (66.9%) with obesity, hypertension and diabetes mellitus as
the most frequent comorbidities. Of the total cohort, 37 (20.4%)
patients did not survive hospital stay. As expected, the non-
survivors showed higher comorbidity, were more severe at ICU
admission and presented more frequently with acute renal failure
than survivors (Table 1; Supplementary Table 1).

TABLE 1 | Baseline characteristics.

ALL Survivors Non-survivors

n = 181 n = 144 n = 37 P-value n

Median [IQR], mean
(sd) or n (%)

Median [IQR], mean
(sd) or n (%)

Median [IQR], mean
(sd) or n (%)

Sociodemographic data

Age, years 61.0 [52.0;67.0] 60.0 [48.0;66.0] 67.0 [62.0;73.0] <0.001 181

Sex, female 60 (33.1%) 51 (35.4%) 9 (24.3%) 0.279 181

Smoking history 0.038 181

Non-smoker 90 (49.7%) 74 (51.4%) 16 (43.2%)

Former 57 (31.5%) 49 (34.0%) 8 (21.6%)

Current 12 (6.63%) 7 (4.86%) 5 (13.5%)

Unknown 22 (12.2%) 14 (9.72%) 8 (21.6%)

Time from symptoms to hospital admission, days 7.00 [5.00;9.00] 7.00 [5.00;9.00] 6.00 [4.00;8.00] 0.336 180

Time from symptoms to ICU admission, days 8.00 [6.00;11.0] 8.00 [7.00;11.0] 8.00 [5.00;11.0] 0.678 180

Comorbidities
Obesity 81 (45.5%) 60 (42.6%) 21 (56.8%) 0.174 178

Hypertension 78 (43.1%) 58 (40.3%) 20 (54.1%) 0.186 181

Diabetes mellitus (Type I/II) 42 (23.2%) 25 (17.4%) 17 (45.9%) 0.001 181

Chronic heart disease 22 (12.2%) 13 (9.03%) 9 (24.3%) 0.021 181

COPD/Bronchiectasis 14 (7.73%) 9 (6.25%) 5 (13.5%) 0.166 181

Chronic renal disease 11 (6.08%) 6 (4.17%) 5 (13.5%) 0.049 181

Asthma 10 (5.52%) 10 (6.94%) 0 (0.00%) 0.218 181

HIV 2 (1.10%) 1 (0.69%) 1 (2.70%) 0.368 181

Immunological disorders 1 (0.55%) 0 (0.00%) 1 (2.70%) 0.204 181

IQR, interquartile range [p25;p75]; sd, standard deviation; HIV, human immunodeficiency virus. Bold values are statistically significant p-values.

Frontiers in Medicine | www.frontiersin.org 3 July 2022 | Volume 9 | Article 89799034

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-897990 July 9, 2022 Time: 18:13 # 4

González et al. Critical Post-COVID Patients Follow-Up

Focusing on the survivors, the median (IQR) ICU stay
was 9 (5–24.2) days, and the overall hospitalization duration
was 22 (13–37) days. During the ICU stay, 50.7% of patients
required IMV with a median (IQR) duration of 17 (10–25)
days. Prone positioning was needed in 47.2% of the patients.
Patients were mostly treated with corticosteroids (79.2%),
hydroxychloroquine (59.7%), lopinavir/ritonavir (56.9%),
tocilizumab (49.3%), and remdesivir (25.0%). Moreover, 95.8%
of patients received thromboprophylaxis therapy, and 96.5%
received antibiotic therapy. The most frequent complications
were septic shock (25.7%) and acute renal failure (16.7%)
(Table 1; Supplementary Table 1).

Post-COVID Unit: Clinical Follow-Up
Figure 1 shows the flowchart of the study and the clinical
management during the clinical consultation. After hospital
discharge, of the 144 eligible patients, 36 were unreachable or
decided not to participate in the follow-up, one was severely
disabled, and two underwent follow-up in another center.
This left 105 patients who started the clinical follow-up in
the post-COVID unit at 3 months after hospital discharge.
Patients who did not attend the follow-up visit showed similar
sociodemographic and clinical characteristics (except smoking
habit and hospital duration) to the patients who did attend the
consultation (Supplementary Table 2).

Three-Month Follow-Up
Of the 105 patients, 97 and 93 were able to perform pulmonary
function tests and 6MWTs, respectively (Table 2). At this point,
the proportions of patients with abnormal TLC and DLCO were
38.6 and 82%, respectively. In general, the patients had exercise
test results that were lower than expected values (19) with a mean
(SD) percent predicted 6-minute walk distance (PP-6MWD) of
83.7% (26) and an average oxygen saturation of 95.3% (1.98).
The CT scans showed a high proportion of lung affectation,
most frequently with ground-glass opacities (56.6%), followed by
mixed ground-glass opacities (29.3%) and consolidation (17.2%).
Forty-three (43.4%) and 28 (28.3%) patients showed reticular and
fibrotic patterns, respectively, and the mean (SD) of pulmonary
lobes affected by ground-glass or consolidation was 3.0 (2.0) with
a mean (SD) TSS of 5.8 (4.6) (Table 2).

After the clinical and functional evaluations, 15 patients
were discharged and another 3 transferred for the following
consultations: 2 for virtual pulmonary nodules consultation and
1 for psychiatry consultation (Figure 1). Consequently, 83% of
patients required a second follow-up visit in the post-COVID
unit (Figure 2A).

Six-Month Follow-Up
Before this point, one patient died, and another was unreachable
and did not attend the follow-up, so 85 patients were evaluated
(Figure 1). Of these followed patients, 79 had available
pulmonary function tests, showing proportions of abnormal TLC
and DLCO of 31.5 and 83.6%, respectively. The PP-6MWD mean
(SD) was 91.4% (19.9). Chest CT showed a slight improvement
in some parameters regarding density, type of lesions, and
TSS (Table 2).

After the clinical assessment, the clinician decided to discharge
15 patients and to transfer another 13 for different consultations:
ten to other pulmonary consultations (five to COPD/emphysema
and the rest to asthma/vascular/ventilation/pulmonary nodules
and lung cancer fast diagnostic track [FDT] consultations), and
three to neurology, hematology, and cardiology (Figure 1).

This meant that two-thirds of the patients (67%) in this
consultation needed to continue with follow-up (Figure 2A).
Again, this was due to the high proportion of patients who did
not recover lung diffusion capacity to within the normal range
because of COVID-19 damage (Figure 2B).

Twelve-Month Follow-Up
Two patients died before the upcoming visit, and five were
unreachable and did not attend the follow-up (Figure 1). This left
50 patients evaluated in the consultation, of which 38 required a
pulmonary function test, and 41 also received a chest CT.

Of these patients, 40.9 and 70.2% had abnormal TLC and
DLCO values, respectively (Table 2). Forty-three, eight and 23
percent of patients did not recover normal values of DLCO,
TLC and distance in the 6MWT, respectively (Figures 2B–D).
Of these, nine patients (10% of the initial 105 patients) had
moderate/severe affectation of DLCO with values below 60%.
The mean (SD) PP-6MWD was 95.3% (21.3). The chest CT
of these more affected patients showed a high proportion of
abnormalities, with the most frequent finding being interlobular
septal thickening (100%) and bronchiectasis (90.2%), with all of
this in the context of the presence of reticular and fibrotic patterns
in 53.7 and 36.6% of patients, respectively. The number of lobes
affected by ground-glass or consolidation remained high (mean
[SD] of 3.5 [1.4]) (Table 2). Fifty-three percent of patients had
abnormal TSS values at this point (Figure 2E).

The pulmonary function, 6MWT and chest CT scan of
these 50 patients at 3, 6, and 12 months are depicted in
Supplementary Table 3.

After a careful evaluation, the clinician decided to discharge 16
patients. This decision meant that 32.2% of patients, based on the
clinical point of view, needed to continue to be monitored beyond
12 months after hospital discharge due to pulmonary sequelae of
critical COVID-19.

Symptoms Related to Post-COVID
Syndrome at 12 Months of Follow-Up
To assess the prevalence of post-COVID syndrome 1 year after
hospital discharge, a telephone survey was conducted of all 105
initial patients. Three patients had died, and five patients did not
respond, so we finally contacted 97 patients.

Thirty-seven percent of patients suffered from
mild/moderate/severe cognitive complaints based on the
BC-CCI scale, and 33 and 45% had abnormal values in the
fatigue and dyspnea scales, respectively. This results in 61.3% of
patients showing at least one altered domain. Additionally, the
patients had a mean (SD) number of symptoms of 5.7 (4.6), with
the most frequent being reduced fitness (700.1%), concentration
and/or memory problems (50.5%), muscle weakness (46.4%),
tingling and/or pain in the extremities (43.3%), and erectile
dysfunction (38.8%), among many others (Table 3).
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TABLE 2 | Description of pulmonary function, 6MWT, and chest CT findings of patients followed at 3, 6, and 12 months.

Three months Six months Twelve months
Mean (sd) or n (%) Mean (sd) or n (%) Mean (sd) or n (%) p for trend

Post-COVID consultation discharge n = 104 n = 105 n = 105 <0.001

Exitus 0 (0.00%) 1 (0.95%) 3 (2.86%)

None 87 (83.7%) 57 (54.3%) 32 (30.5%)

Loss to follow-up 0 (0.00%) 1 (0.95%) 6 (5.71%)

Yes 17 (16.3%) 46 (43.8%) 64 (61.0%)

Pulmonary function
FVC, % n = 97 n = 78 n = 38

78.1 (15.5) 79.8 (14.7) 86.5 (16.8) 0.009

FEV1, % n = 96 n = 78 n = 38

86.0 (17.4) 87.1 (16.5) 91.2 (17.7) 0.138

FEV1 to FVC ratio (categorical) n = 95 n = 77 n = 37 0.556

≥70% 92 (96.8%) 74 (96.1%) 35 (94.6%)

<70% 3 (3.16%) 3 (3.90%) 2 (5.41%)

TLC, % n = 96 n = 22

82.9 (18.6) 86.3 (18.5) 84.5 (15.6) 0.404

TLC, % (categorical) n = 96 n = 70 n = 22 0.679

≥80% 59 (61.5%) 48 (68.6%) 13 (59.1%)

≤50–80% 33 (34.4%) 20 (28.6%) 9 (40.9%)

<50% 4 (4.17%) 2 (2.86%) 0 (0.00%)

RV, % n = 96 n = 69 n = 22

90.2 (42.1) 88.3 (34.5) 88.8 (29.5) 0.793

DLCO, mL/min/mmHg n = 94 n = 79 n = 37

67.6 (14.7) 65.6 (13.3) 70.6 (13.9) 0.508

DLCO, mL/min/mmHg (categorical) n = 94 n = 79 n = 37 0.553

≥80% 17 (18.1%) 13 (16.5%) 11 (29.7%)

≤60–80% 51 (54.3%) 36 (45.6%) 17 (45.9%)

<60% 26 (27.7%) 30 (38.0%) 9 (24.3%)

Six-minute walking test
PP-6MWD*, % n = 93 n = 77 n = 37

83.7 (26.0) 91.4 (19.9) 95.3 (21.4) 0.005

Oxygen saturation, % n = 95 n = 77 n = 38

Initial 96.5 (1.26) 96.6 (1.32) 96.7 (1.10) 0.414

Final 95.1 (2.57) 95.1 (2.87) 95.1 (1.62) 0.941

Minimal 94.1 (2.71) 94.3 (2.89) 94.3 (2.15) 0.516

Average 95.3 (1.98) 95.6 (1.87) 95.5 (1.37) 0.374

Chest CT scan findings
Density n = 99 n = 81 n = 41

Ground-glass 56 (56.6%) 32 (39.5%) 20 (48.8%) 0.171

Mixed ground-glass 29 (29.3%) 33 (40.7%) 27 (65.9%) <0.001

Consolidation 17 (17.2%) 12 (14.8%) 3 (7.32%) 0.155

Internal structures n = 99 n = 81 n = 41

Interlobular septal thickening 81 (81.8%) 62 (76.5%) 41 (100%) 0.047

Bronchiectasis 76 (76.8%) 65 (80.2%) 37 (90.2%) 0.082

Atelectasis 22 (22.2%) 17 (21.0%) 11 (26.8%) 0.651

Solid nodule 31 (31.3%) 32 (39.5%) 18 (43.9%) 0.126

Non-solid nodule 2 (2.02%) 6 (7.41%) 0 (0.00%) 0.962

Lesions n = 99 n = 81 n = 41 0.989

Fibrotic 28 (28.3%) 25 (30.9%) 15 (36.6%)

None 28 (28.3%) 22 (27.2%) 4 (9.76%)

Reticular 43 (43.4%) 34 (42.0%) 22 (53.7%)

No. of lobes affected by ground-glass n = 98 n = 81 n = 41

or consolidative opacities 3.06 (2.02) 2.62 (1.95) 3.56 (1.43) 0.443

Total severity score n = 99 n = 81 n = 41

5.88 (4.60) 4.48 (3.68) 4.63 (2.26) 0.033

sd, standard deviation; FVC, forced vital capacity; FEV, forced expiratory volume; DLCO, diffusion capacity of the lungs for carbon monoxide; TLC, total lung capacity;
RV, residual volume; PP-6MWD, percent predicted 6-minute walk distance. *The PP-6MWD was calculated from standardized prediction equations using the formula
PP-6MWD = 6MWD/Predicted 6MWD × 100. Bold values are statistically significant p-values.
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FIGURE 1 | Flowchart of the study.

There were no differences in symptoms, including FACIT,
BC-CCI, and mMRC scores, between patients who needed
to complete the follow-up in the post-COVID unit vs.
discharged patients (Supplementary Table 4). Additionally,
no significant correlation was observed between objective
respiratory measurements and symptoms. Only the mMRC scale
showed a significant correlation with DLCO (r = −0.3; p = 0.027)
and the FACIT score with the 6MWT (r = 0.3; p = 0.04) and TSS
(r = 0.3; p = 0.04) (Supplementary Figure 1).

Additional Diagnosis and Health Care
Use During the 1-Year Follow-Up
During the follow-up, three patients died (Supplementary
Table 5). In the clinical context of this post-COVID unit, many

other conditions were diagnosed and treated (Supplementary
Table 6). Those other conditions included neurological/cognitive
problems, coagulation disorders, cardiological problems,
diaphragm elevation, and morbid obesity. More importantly,
in one patient, a new diagnosis of pulmonary adenocarcinoma
was made, and three had a high level of suspicion of either
a new diagnosis or a recurrence of lung cancer. Twenty-one
(20%) and eight (7.6%) patients were recently diagnosed with
emphysema and spirometric COPD, respectively. After careful
clinical evaluation, two patients were recruited and accepted into
a randomized clinical trial of antifibrotics in post-COVID-19
patients in another hospital.

The use of the national health system was high
(Supplementary Table 7). The mean (SD) number of outpatient
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FIGURE 2 | Overview of clinical decisions and percentage of recovered patients regarding post-COVID unit (A), DLCO (B), TLC (C), 6MWT (D), and TSS (E) over
time. P-values were computed using McNemar’s test. ne, not estimable.

clinic visits were 12.4 (9.25), with a mean of 5.8 (4.5) and 2.3 (2.7)
phone and emergency department visits, respectively. Thirteen
patients (13.4%) needed hospitalization, and one was admitted
to the ICU. Thirty-six patients (37.1%) attended a pulmonary
rehabilitation program.

DISCUSSION

Our report describes an overview of critically ill patients due
to COVID-19 between March and August 2020 and the clinical
follow-up of survivors in a single center post-COVID critical
care unit for 1 year. The most relevant findings of this study
are: first, 32% of patients needed to continue the follow-up in a
post-COVID unit beyond 1 year. A total of 10% of these patients

had moderate/severe affectation of DLCO (values below 60%),
and chest CT showed a high proportion of fibrotic (53.7%) and
reticular (36.5%) patterns. Second, during the follow-up period,
other conditions and comorbidities (related or not to COVID-
19), such as emphysema, COPD, neurocognitive disorders, and
lung cancer, were identified. Third, at the 12-month follow-up, a
highly variable number of symptoms and post-COVID syndrome
were very common (even in discharged patients). Fourth, a high
use of health care resources is observed in the first year.

There are numerous studies regarding pulmonary sequelae
after COVID-19 at 12 months (8, 10, 20). These prospective
cohorts of patients already point to a high prevalence of
pulmonary involvement represented by an abnormal DLCO and
many chest CT findings. This is especially important in those with
the most severe disease in the acute phase, where 54% of patients
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TABLE 3 | Prevalence of persistent symptoms and post-COVID syndrome at the
1-year follow-up.

Twelve-month follow-up

n = 97

Mean (sd) or n (%) n

Post-COVID syndrome
BC-CCI 96

None or minimal cognitive complaints 60 (62.5%)

Mild cognitive complaints 19 (19.8%)

Moderate cognitive complaints 13 (13.5%)

Severe cognitive complaints 4 (4.17%)

Total score 3.89 (4.76) 96

FACIT score 36.8 (12.3) 96

Score < 30 32 (33.3%)

Dyspnea 94

0 51 (54.3%)

1 31 (33.0%)

2 9 (9.57%)

3 3 (3.19%)

Post-COVID syndrome* 57 (61.3%) 93

Sequelae symptoms
Number of symptoms 5.77 (4.66) 97

Reduced fitness 68 (70.1%) 97

Concentration and/or memory problems 49 (50.5%) 97

Muscle weakness 45 (46.4%) 97

Tingling and/or pain in extremities 42 (43.3%) 97

Erectile dysfunction 26 (38.8%) 67

Sleeping problems 36 (37.1%) 97

Joint complaints 32 (33.0%) 97

Reduced vision 31 (32.0%) 97

Hoarseness 27 (28.1%) 96

Hair loss 26 (26.8%) 97

Smell or taste disorder 26 (26.8%) 97

Changes in menstruation 8 (26.7%) 30

Reduced hearing 24 (24.7%) 97

Headache 21 (21.6%) 97

Dizziness 20 (20.6%) 97

Palpitations 20 (20.6%) 97

Skin rash 17 (17.5%) 97

Sore throat or difficulty swallowing 14 (14.4%) 97

Chest pain 14 (14.4%) 97

Loss of appetite 8 (8.25%) 97

Diarrhea or vomiting 6 (6.19%) 97

Patient Global Impression of Severity (PGI-S) 97

None 48 (49.5%)

Mild 14 (14.4%)

Moderate 22 (22.7%)

Severe 12 (12.4%)

Very severe 1 (1.03%)

Vaccination
COVID-19 vaccination 79 (82.3%) 96

COVID-19 brand names 78

Pfizer 36 (46.2%)

Moderna 11 (14.1%)

AstraZeneca 27 (34.6%)

Janssen 4 (5.13%)

(Continued)

TABLE 3 | (Continued)

Twelve-month follow-up
n = 97

Mean (sd) or n (%) n

Administered doses 1.34 (0.48) 79

Time to first vaccination, days 317 (95.7) 79

SF-12 95

Physical score 45.7 (11.1)

Mental score 48.1 (13.3)

*Post-COVID syndrome is defined as alterations in fatigue, cognitive disorders,
and/or dyspnea. sd, standard deviation; BC-CCI, British Columbia Cognitive
Plain Inventory; FACIT, Functional Assessment of Chronic Illness Therapy; SF-12,
12-Item Short Form Survey.

have abnormal DLCO values and 87% have at least one abnormal
chest CT pattern at 1 year of follow-up (10). However, to date, the
literature focusing on the long follow-up of critically ill survivors
of COVID-19 is scarce (21). Gamberini et al. (21) described 51.5%
of patients with abnormal DLCO, with 70.3% of patients having
fibrotic changes on chest CT and 40.5% having ground-glass
opacities or consolidation at 1 year. These data are even more
worrisome than ours, probably because this group focused on
invasively ventilated patients. Further studies are needed to create
or validate scores to identify patients at high risk of pulmonary
sequelae on chest CT (22).

Although all of these studies assessed pulmonary sequelae after
COVID-19 at 12 months (8, 10, 20), none of them provided
information about the clinical management and follow-up in
a real post-COVID consultation. Our work demonstrates that
during follow-up, many comorbidities (related to COVID-19
or not) could be diagnosed and should be managed, such
as COPD, emphysema, lung cancer, or other non-respiratory
conditions. Moreover, the clinical nature of this consultation
allowed us to discriminate COVID-19 respiratory sequelae
from previous existing pulmonary conditions (and those not
previously diagnosed), such as COPD and emphysema.

Another important issue is persistent symptoms and post-
COVID syndrome in critically ill COVID-19 survivors. The
literature shows that a wide variety of symptoms and impairment
of health-related quality of life at 1 year are very frequent (21).
Our results go in line with others that shows a high proportion
of ongoing symptoms as well as a substantial new disability and
reduced health quality of life in critically ill COVID-19 survivors
(23). Moreover, our results show no differences in the prevalence
of symptoms or post-COVID syndrome between discharged
patients and those who needed to continue the follow-up in
the unit. This highlights the need for a more precise definition
of post-COVID syndrome (24). In our cohort, symptoms such
as dyspnea and fatigue were explained by DLCO and FACYT
score measurements, while the other symptoms were not. This
result should be interpreted with caution because it could be
explained by the overlap of ARDS sequelae (25, 26), the so-called
postintensive care syndrome (PICS) (27) and the post-COVID
syndrome (28). Interestingly, a study performed by Hodgson and
colleagues (29, 30) showed that COVID-19 and non-COVID-19
PICS at 6 months after ICU admission are at least phenotypically
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similar, with similar post-ICU care. Be that as it may and
consequently, these critical survivors have a high consumption
rate of health resources (31) that must be managed in an adequate
post-COVID care unit.

There are some limitations to our study. First, it is a small
cohort from a single city which may reduce the external validity
and generalizability of the findings. Second, due to the clinical
nature of this consultation, we were not able to describe the
pulmonary and functional evaluation of all patients who required
a critical COVID-19 admission at 12 months. However, we have
described the real clinical practice and the follow-up of these
patients in a post-COVID unit.

In conclusion, in a single center post-COVID critical care unit,
32% of patients need to continue follow-up beyond 1 year due
to the high proportion of patients with abnormal DLCO and
chest CT. Many comorbidities (related to COVID-19 or not) were
diagnosed during the follow-up. Finally, persistent symptoms and
post-COVID syndrome are very common, which leads to high
health care consumption.
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Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), with systemic organ damage in the

most severe forms. Long-term complications of SARS-CoV-2 appear to be restricted

to severe presentations of COVID-19, but many patients with persistent symptoms

have never been hospitalized. Post-acute sequelae of COVID-19 (PASC) represents a

heterogeneous group of symptoms characterized by cardiovascular, general, respiratory,

and neuropsychiatric sequelae. The pace of evidence acquisition with PASC has been

rapid, but the mechanisms behind it are complex and not yet fully understood. In

particular, exercise intolerance shares some features with other classic respiratory

and cardiac disorders. However, cardiopulmonary exercise testing (CPET) provides

a comprehensive assessment and can unmask the pathophysiological mechanism

behind exercise intolerance in gray-zone PASC. This mini-review explores the utility of

CPET and aims to provide a comprehensive assessment of PASC by summarizing the

current evidence.

Keywords: post-acute sequelae COVID-19, cardiopulmonary exercise testing, autonomic dysfunction, exercise

intolerance, hyperventilation

INTRODUCTION

Long Coronavirus disease 2019 (COVID-19) or post-acute sequelae of severe acute respiratory
syndrome coronavirus 2 infection (PASC) is expected to increase in prevalence and become a
public health problem (1, 2). PASC is a heterogeneous clinical syndrome. The growing scientific
evidence recognizes PASC as one of the conditions that cause exercise intolerance (2), but
the relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
exercise capacity remain unclear. A diminished exercise capacity has been associated with a poor
quality of life and higher mortality in other conditions. Therefore, understanding the mechanism
behind the limitation in exercise capacity of these patients is a fundamental step in improving
patient outcomes.

A hallmark of exercise intolerance is dyspnea and fatigue upon exertion. Although it is intuitive
to think that patients with PASCwould be limited primarily by the cardiopulmonary system, studies
indicate that most of these patients have (2) cardiac and pulmonary testing within normal values
(3, 4). Exercise is dependent on the balance between oxygen supply, oxygen consumption, and
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GRAPHICAL ABSTRACT |

clearance of toxic metabolites. These processes rely on the
cardiovascular and pulmonary systems to achieve optimal
exercise performance. Therefore, by studying external
respiration in response to exercise, it is possible to address
the functional competence of the organ systems by coupling
external adjustments to cellular respiration. Cardiopulmonary
exercise testing (CPET) offers the opportunity to study the
cellular, cardiovascular, and ventilatory systems’ responses
simultaneously, providing an objective evaluation of exercise
capacity (5, 6).

This contemporary review focuses on the essential role of
CPET in the evaluation of patients with PASC and the potential
mechanism behind exercise intolerance. Therefore, we explore
and summarize the currently available evidence to increase
awareness of this entity and improve the quality of care.

Post-Acute Sequelae of SARS-CoV-2
Infection
PASC represents the long-term sequelae of COVID-19 and it is
classified according to the time frame of symptom persistence
into a subacute (4–12 weeks) or chronic phase (>12 weeks) (1).
PASC occurs in a heterogeneous group of patients with different
clinical presentations (2), but it is characterized by a systemic

Abbreviations: COVID-19, coronavirus disease 2019; CPET, cardiopulmonary
exercise test; HR, heart rate; PASC, postacute sequelae of COVID-19; PASC-
CVS, postacute sequelae of COVID-19 cardiovascular syndrome; Vo2, oxygen
consumption; VT, anaerobic or ventilatory threshold; VE/VCO2, minute
ventilation/CO2 output.

involvement with the ability to impair patients’ quality of life (4).
Recent studies have looked at risk factors contributing to PASC
observing an association with symptom burden during an active
infection, female gender, and COVID-19 severity (7, 8).

The American College of Cardiology classifies PASC
into two groups whether there is objective evidence of
cardiovascular disease. Accordingly, PASC-cardiovascular
disease is characterized by myocardial, pericardial, vascular,
and/or arrhythmic conditions that appear beyond 4 weeks
from the initial SARS-CoV-2 infection. Whereas, the term
PASC-cardiovascular syndrome (PASC-CVS) is defined by the
absence of cardiovascular disease, but on the contrary, also
by the persistence of cardio-pulmonary symptoms. The two
most commonly reported symptoms are fatigue and dyspnea,
regardless of PASC time (9). Both are common in non-COVID
patients with other cardiopulmonary conditions (10, 11) and in
the convalescence phase of any critical illness (12), where exercise
intolerance is also a characteristic feature (10, 11). Therefore, we
should expect a high prevalence of exercise intolerance among
COVID-19 survivors. Data regarding the pathophysiologic
mechanism behind PASC-CVS are scarce, but it is not yet fully
understood how this translates into reduced exercise capacity.

Evidence of Exercise Capacity in
PASC-CVS
Despite there are no dedicated guidelines on the evaluation
of PASC-CVS, patients should undergo a CPET evaluation
to identify limiting factors for decreased maximal exertion
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that is usually found during the convalescence phase of any
critical illness (12). Otherwise, the lack of evidence of residual
cardiopulmonary damage may cause a delay in the diagnosis.
Exercise capacity is evaluated through the assessment of oxygen
consumption (Vo2) at peak exercise if a sustained maximal effort
has been reached. Maximal performance is also age-, sex- and
weight-adjusted to be reported as a percentage predictive of peak
Vo2. Moreover, ventilatory threshold (VT) is effort-independent
providing a more accurate assessment of aerobic efficiency and
reflecting the Vo2 at submaximal exercise levels when supply does
not match requirements triggering an anaerobic environment
(5, 6).

Follow-up studies on SARS-CoV survivors observed a
diminished exercise capacity (13, 14), but similar findings were
observed during hospital discharge because of COVID-19 (15).
To date, there is only scarce observational data on exercise
capacity with PASC-CVS during follow-up. A small single-
center retrospective study found during short-term follow-up a
diminished exercise capacity (16). Similar findings were reported
by a multi-center retrospective study of 200 patients, in which
those with PASC (56%) had a lower peak Vo2 (25.8 ± 8.1 vs.
28.8 ± 9.6 mL/min/kg; p = 0.017) and a smaller chance of
achieving the VT (OR: 0.38; 95% CI 0.20–0.72) (17). On the
contrary, mid-to-long-term retrospective studies identify border-
line exercise capacity in PASC patients (18) that was not different
from controls with unexplained dyspnea (19).

These data were reproduced by prospective studies during
short-term follow-up (20–24) and when stratified by COVID-
19 severity no differences were found between groups (25);
however, other studies reported that previous critical care unit
admission, need for mechanical ventilation and a longer hospital
stay were independently associated with peak Vo2 (26). The
incorporation of unexplained dyspnea in PASC-CVS into the
design and analysis of recent studies have yielded similar
findings during follow-up. A single-center prospective study
of 70 consecutive patients observed that PASC-CVS patients
with persistent dyspnea (59%) experienced a smaller exercise
capacity (78 vs. 99% of predicted peak Vo2; p < 0.001)
than asymptomatic COVID-19 survivors (27). Accordingly, a
multicenter prospective study that evaluated 156 patients also
reported among PASC patients with persistent dyspnea (47%) a
diminished exercise capacity (76 ± 16 vs. 89 ± 18% of predicted
peak Vo2; p= 0.009) (28).

An unexplored scenario is the possibility of an immediate
improvement in the functional capacity of PASC patients. A
prospective study that monitored the persistence of exercise
intolerance in PASC with serial CPET evaluation reported an
improvement between 3-and-6 months of peak Vo2 (18 vs. 20.5
mL/kg/min; p = 0.001) and VT (9.7 vs. 10.4 mL/min/kg; p
= 0.018). However, these improvements were not observed in
all patients and were less evident when compared to healthy
controls (29). Findings from other prospective studies confirm
that exercise intolerance is also observed during mid-to-long
term follow-up in PASC (30–35).

In general, low peak Vo2 is common among patients with
PASC-CVS during follow-up (Table 1), but application and
interpretation of CPET results are challenging. Peak Vo2 is

defined by the Fick equation as the product of cardiac output and
arteriovenous oxygen difference [C (a–v) O2]. This is important
because cardiac output is the product of stroke volume times
heart rate (HR) and arteriovenous oxygen difference reflects
the peripheral oxygen tissue extraction (5, 6). Consequently,
abnormalities in any of these variables can contribute to exercise
intolerance in PASC-CVS.

Contributors of Exercise Intolerance in
PASC-CVS
Identification of patterns during CPET may identify the
organ systems involved in the exercise intolerance referred by
PASC patients as we cannot rely exclusively on a decreased
peak Vo2 and VT (see Graphical Abstract). Therefore, CPET
can be combined with the invasive and non-invasive tests
to further phenotype more accurately PASC-CVS. However,
given the systemic nature of COVID-19, we may expect a
cardiac, ventilatory, peripheral, and/or pulmonary gas exchange
limitation at exercise.

Cardiovascular Limitation
Cardiovascular limitation to exercise intolerance in PASC-
CVS patients may be explained by several factors, but
electrocardiographic changes and a pathological blood pressure
response during exercise have not yet been reported. Moreover,
low CO could explain exercise intolerance inmost PASC patients;
however, no left ventricular dysfunction has been reported in
the studies that evaluated cardiac function at rest (15, 21, 26,
27, 29). Similarly, two prospective studies that evaluated cardiac
function at rest and during CPET concluded that cardiac function
was within normal values, regardless of previous COVID-19
severity (20, 31). However, Szekely et al. also observed a reduced
stroke volume with a blunted peak HR and a higher peak
arteriovenous difference among PASC patients (20), raising the
possibility of a cardiac autonomic dysregulation as a major cause
of exercise intolerance.

Modulation of the HR during exercise is a dynamic
process tightly regulated by the autonomic nervous system and
its imbalance may manifest during exercise as chronotropic
incompetence or inadequate HR recovery. Some of the studies
reported chronotropic incompetence (16, 20), while others
observed an abnormal HR recovery (29, 30, 32). Interestingly,
both were more commonly observed among PASC patients with
evidence of ventilatory inefficiency.

Ventilatory and Pulmonary Vascular
Limitation
Lung mechanical-related mechanism because of significant
reduction of pulmonary function should be, in theory, the
expected primary cause of exertional dyspnea in PASC. Contrary
to that, most of the studies did not observe a correlation between
abnormal lung functions and persistent dyspnea regardless
of COVID-19 severity. This is further supported by normal
breathing reserve among PASC patients (18, 19, 23, 27, 28, 30,
33). However, some studies reported a significant decrease in
DLCO showed some discordant findings concerning peak VO2

(21, 22, 26, 29, 31, 33).
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TABLE 1 | Most Relevant Studies evaluating exercise capacity in Post-acute sequelae of COVID-19 with cardiopulmonary exercise test.

References Study design Sample

size

Follow-up Main findings

Baratto et al. (15) Single center 36 Hospital

discharge

COVID-19 patients had at the time of discharge a smaller exercise capacity (59 vs. 90% of

predictive peak Vo2; p < 0.001) and peripheral oxygen extraction (0.66 vs. 0.81; p = 0.006)

compared to controlsa. COVID-19 patients had ventilatory inefficiency (VE/VCO2 slope 32 vs.

28 mmHg; p = 0.007) likely explained by hyperventilation. CaO2 (tau = 0.58, p = 0.012) and

hemoglobin (R = 0.46, p = 0.002) were positively correlated with peak Vo2. No differences

were found in cardiac echocardiography at rest between groups.

Mohr et al. (16) Single center

retrospective

10 3 months PASC patients with persistent dyspnea showed a mean 72.7% of predictive peak Vo2, 78.1 ±

7.3% of predictive heart rate, 96 ± 15.5% of predictive Vo2/HR and a mean lactate

post-exercise of 5.6 ± 1.8 mmol/L.

Barbagelata et al.

(17)

Multicenter

retrospective

200 3 months PASC patientsb showed a lower peak Vo2 (25.8 ± 8.1 vs. 28.8 ± 9.6 mL/min/kg; p = 0.017)

but with a similar % of predicted peak Vo2 (89.7 ± 19.9 vs. 92.9 ± 18.7 %; p = 0.257)

compare to asymptomatic post-COVID patients. Ventilatory efficiency was similar between

groups (VE/VCO2 slope 33.1 ± 5.9 vs. 32.5 ± 5.5; p = 0.521). Most common reported

symptom during CPET was dyspneac (93%), particularly in PASC patients (97 vs. 75%; p =

0.008). PASC was associated with smaller VT (OR: 0.38; 95% CI 0.2–0.72) and a greater

chance of symptoms during CPET (OR: 7.0; 95% CI: 3.5–16.2).

Debeaumont et al.

(18)

Single center

retrospective

23 6 months Persistent dyspneac was significantly associated with peak Vo2 (rho = −0.49). PASC was

associated with a diminished % of peak Vo2 (84 ± 19%), particularly in ICU survivors (77 ± 15

vs. 87 ± 20%). Ventilatory efficiency was low (VE/VCO2 slope 32 ± 5) in the global cohort, but

higher in ICU survivors (VE/VCO2 slope 34 ± 5). Hemoglobin and pulmonary function test were

within normal reference values.

Alba et al. (19) Single center

retrospective

36 8 months PASC patients with persistent dyspneab had comparable peak Vo2 (20 vs. 19.5 mL/min/kg; p
= 0.8), % of predicted peak Vo2 (85.5 vs. 85%; p = 0.9), anerobic threshold and ventilatory

efficiency (VE/VCO2 slope 29.8 vs. 28.4; p = 0.15) compare to controlsd. PASC patients with

abnormal CPET where mostly characterized by low O2 pulse with a normal cardiac function

suggestive of a peripheral limitation. One patient underwent iCPET that showed a high mixed

O2 venous content. Hemoglobin and pulmonary function test were within normal values.

Szekely et al. (20) Single center

prospective

106 3 months PASC patients (67%) had a lower VT (12.3 ± 3.6 vs. 15.4 ± 5.7 mL/min/kg; p = 0.02) and Vo2
(1.6 ± 0.5 vs. 2.24 ± 0.9 L/min; p = 0.03) compared to controlse (33%). PASC patients had a

smaller CO (9.8 ± 2.7 vs. 14 ± 4.2 L/min; p < 0.0001) and greater A-Vo2 difference (0.18 ±

0.05 vs. 0.13 ± 0.04; p = 0.004) compared to controlse suggesting a cardiac limitation. PASC

patients with persistent dyspnea showed ventilatory inefficiency (VE/VCO2 slope 30.5 ± 4

mmHg) and chronotropic incompetence.

Ribeiro Baptista

et al. (21)

Single center

prospective

105 3 months 35% of patients with previous severe COVID-19 had a diminished exercise capacity defined by

<80% of predicted peak Vo2. Impaired exercise capacity was associated with decrease lung

volumes and DLCO, but with a preserved breathing reserve at peak Vo2. Cardiac dysfunction at

rest was not observed at rest, but those with diminished exercise capacity had a smaller %

predicted Vo2 /HR (66 ± 9.6 vs. 96.6 ± 14.7; p < 0.0001) suggestive of peripheral limitation.

Clavario et al. (22) Single center

prospective

200 3 months 59% of patients complained about dyspnead and the global cohort showed a median of 85

(74–98) % of predicted peak Vo2. Main causes of exercise limitation were non-cardiopulmonary

(50.8%) among patients with <85% of predicted peak Vo2 (50.5%). Pulmonary lung function in

the entire cohort, but those <85% of predicted peak Vo2 showed a smaller % of predicted

DLCO (70 vs. 85%; p < 0.001). Predicted FEV1 (95% CI: 0.73–9.85, p = 0.023), DLCO (95% CI:

2.49–10.13, p = 0.001), and dominant leg extension maximal strength (95% CI: 3.83–24.35, p
= 0.008) were independently associated with peak Vo2.

Rinaldo et al.

(23, 25)

Single center

prospective

75 3 months Most common reported symptom was dyspneab (52%). Average peak Vo2 was 20 mL/min/kg

that corresponded to 83 ± 15% of the predicted peak Vo2, no differences were observed

irrespective of previous COVID-19 severity (p = 0.895). Average VE/VCO2 slope was 28.4 ±

3.1 and the median alveolar–arterial gradient for oxygen was 26 (18–31) mmHg. Pulmonary

lung function test was within normal mean values, but DLCO was diminished irrespective of the

exercise capacity (74 ± 14 vs. 69 ± 13% p = 0.175). Mean hemoglobin level was 15.0 ± 1.5

g/dL.

Jahn et al. (24) Single center

prospetive

35 3 months Pulmonary function and DLco were normal with values ≥80% of predicted in 66% of patients

despite previous severe COVID-19f. 46% of patients had ≥82% of predicted peak Vo2 and

54% had <81% of predicted peak Vo2. Patients with a < 82% of predicted peak Vo2 had a

smaller % of predicted DLCO (80 ± 13 vs. 96 ± 18%; p = 0.06). Exercise limitation due to

neuromuscular impairment was considered unlikely given the normal maximal inspiratory

(99.4% of predicted) and expiratory (79.9% of predicted) pressures.

(Continued)
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TABLE 1 | Continued

References Study design Sample

size

Follow-up Main findings

Motiejunaite et al.

(26)

Single center

prospective

114 3 months Most common reported symptom was dyspnea (40%) and fatigue (32%). Entire cohort had a

diminished exercise capacity (71% of predicted peak Vo2, but those with a DLCO ≤75% (42%)

had a smaller % of predicted peak Vo2 (16.2 vs. 19 mL/min/kg; p < 0.001) and VT (39 vs.

45%; p = 0.014). Median VE/VCO2 slope was 33, and irrespective of DLCO ≤ 75% (VE/VCO2

slope 34 vs. 32; p = 0.105), suggesting a ventilatory inefficiency. Inappropriate hyperventilation

was observed in 24% of all patients. No differences were observed in resting

echocardiography. Age, ICU admission, mechanical ventilation and length of hospital stay were

independently associated with % predicted peak Vo2.

Aparisi et al. (27) Single center

prospective

70 3 months Persistent dyspneag was associated with a diminished QoL (p < 0.001), exercise capacity

(77.8 vs. 99% of predictive peak Vo2; p < 0.001) and ventilatory inefficiency (VE/VCO2 slope

32 vs. 29.4 mmHg; p = 0.022). Need of hospital admission was not associated with a greater

rate of persistent dyspnea (p > 0.05) during follow-up. No differences were observed between

groups in resting echocardiography, laboratory makers and pulmonary lung function. No signs

of pulmonary embolism or fibrosis among those who underwent CT-scans.

Skjørten et al. (28) Multicenter

prospective

156 3 months Patients with persistent dyspneaa had a lower % of predictive peak Vo2 compared to

asymptomatic patients (76 ± 16 vs. 89 ± 18 %; p = 0.009), but without abnormalities in lung

function, breathing reserve, peripheral O2 and DLCO. Patients with persistent dyspnea were

characterized by ventilatory inefficiency mostly due to circulatory limitation (38%) and

dysfunctional breathing pattern (46%). Those with previous ICU admission showed during

follow-up a smaller exercise capacity (82 ± 15% vs. 90 ± 17% of predictive peak Vo2; p =

0.004) compared to non-ICU patients.

Cassar et al. (29) Single center

prospective

88 6 months (serial

assessment)

PASC patients (previous history of moderate-severe COVID-19) had a significant smaller

exercise capacity during 3 (peak Vo2 of 18 vs. 28 mL/kg/min; VT of 9.7 vs. 11.9 mL/min/kg)

and 6 (peak Vo2 of 20.5 vs. 28 mL/min/kg; VT of 10.4 vs. 11.9 mL/min/kg) months follow-up

compare to controlsh. Ventilatory response was abnormal (VE/VCO2 slope >30) regardless the

time-frame compare to controls. Heart rate recovery was impaired at 3 months (16.6 vs. 21.9

bpm; p = 0.018), but improve at 6 months (22.2 vs. 21.9 bpm; p = 0.67) compare to controls.

No differences during serial cardiac imaging were observed. Hemoglobin was within normal

values. There was no correlation between the extent of lung abnormalities on MRI, lung

function parameters and dyspnea.

Dorelli et al. (30) Single center

prospective

28 6 months Patients with ventilatory inefficiency (28.6%) had a smaller HR recovery (17.5 ± 7.6 vs. 24.4 ±

5.8; p = 0.015), but with similar peak Vo2 (32.9 ± 13.1 vs. 27.6 ± 5.2; p = 0.137) to those

without ventilatory inefficiency. No differences were observed in pulmonary lung function

between groups. Ventilatory inefficiency was inversely correlated with HR recovery (r = −0.537;

p = 0.003).

Vannini et al. (31) Single center

prospective

41 6 months Most common reported symptoms were dyspnea (56.1%) and fatigue (51.2%), with a similar

prevalence irrespective of exercise capacity. Mean % of predictive peak VO2 was 73.6 ± 15.6

%, without differences according to previous disease severity (p > 0.05) despite severe

pneumonia and ARDS presented lower DLCO in comparison to mild pneumonia (6.85 vs. 7.72

vs. 9.35 mmol/min*kPa; p = 0,04 and p = 0.033). Basal and stress test echocardiographic

findings were within normal values. 36.5% of the patients exhibit an abnormal ventilatory

response (VE/VCO2 slope >30) to exercise without significant desaturation or pathological

Vd/VT increase.

Ladlow et al. (32) Single center 205 6 months 25% of the patients met the criteria for dysautonomiai, this group had lower Vo2 at VT (12.6 ±

2.1 vs. 14.1 ± 3.2 mL/kg/min; p = 0.001) and peak exercise (30.6 ± 5.5 vs. 35.8 ± 7.6

mL/kg/min; p = 0.001). PASC patients with dysautonomia had a higher HR at rest (95 ± 12 vs.

81 ± 12 bpm; p < 0.001) and in the first VT (114 ± 15 vs. 107 ± 17 bpm; p = 0.017), but

smaller HR at peak exercise (170 ± 13 vs. 177 ± 15 bpm; p = 0.003) and attenuated HR

recovery (17 ± 4 vs. 31 ± 17 bpm; p < 0.001). Patients with dysautonomia showed a lower

ventilatory efficiency (VE/VCO2 slope 29.9 ± 4.9 vs. 27.7 ± 4.7 mmHg; p = 0.005) and a

higher breathing frequency.

Vonbank et al. (33) Single center

prospective

100 6 months Lung function was within normal values, but DLCO was lower in PASC with previous severe

disease (74.8 ± 18.2 vs. 85 ± 14.8; p = 0.01). Compared to controls, PASC with previous mild

and severe disease had a significant smaller % of predictive peak Vo2 and VT. Patients with

previous severe COVID-19 showed a smaller % of predictive DLCO (74.8 vs. 85%; p = 0.01),

but other lung function parameters were comparable and within normal values. Ventilatory

inefficiency (higher VE/VCO2 ) was evident among PASC compared to healthy controlsk at VT

and peak exercise. Younger age, male sex, lower BMI, higher DLCO and lower breathing

reserve were associated with a higher peak Vo2.

(Continued)
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TABLE 1 | Continued

References Study design Sample

size

Follow-up Main findings

Mancini et al. (34) Single center

prospective

41 9 months PASC patients had an average 77 ± 21% of predicted peak Vo2 and 10.6 ± 2.8% of predicted

Vo2 at VT. Those with peak Vo2 <80% of predicted had a circulatory limitation to exercise. 88%

of PASC patients had dysfunctional breathing, ventilatory inefficiency (increased VE/VCO2

slope) and/or hypocapnia (PetCO2 < 35 mmHg). 46% of the patients met the criteria for

myalgic encephalomyelitis/chronic fatigue syndrome.

Singh et al. (35) Single center

prospective

20 11 months COVID-19 survivors had a smaller exercise capacity (70 ± 11 vs. 131 ± 45% of predictive

peak Vo2; p = 0.001) and a greater degree of ventilatory inefficiency (VE/VCO2 slope 35 ± 5

vs. 27 ± 5 mmHg; p = 0.01) compared to controlsf. COVID-19 survivors showed a greater

peak exercise mixed venous oxygen saturation (50 ± 10% vs. 22 ± 5%; p < 0.0001) and peak

Vo2 content (33 ± 6 vs. 27 ± 5 mmHg; p = 0.01) suggesting a peripheral limitation to aerobic

exercise. No differences were observed in terms of right atrial pressure, left-side filling pressure

and total pulmonary. resistance at peak exercise between groups

BMI, body mass index; CT, computed tomography; FEV1, forced expiratory volume in 1 second; MRI, magnetic resonance imaging; CaO2, content of oxygen in arterial blood; CO,
cardiac output; CPET, cardio-pulmonary exercise test; DLCO, diffusion carbon monoxide capacity; ICU, intensive care unit; QoL, quality of life; V/Q, ventilation/perfusion; HR, heart rate;
Vo2, oxygen consumption; Vo2 /HR, oxygen pulse; VT , Ventilatory threshold; VE/VCO2 slope, slope of minute ventilation to CO2 production. a Matched age, sex and body mass index
healthy controls in 1:1 ratio with COVID-19 patients. b Defined as dyspnea or fatigue persisting for at least 45 days after symptom onset. c Defined as mMRC >1. d Matched controls
also complained about unexplained dyspnea. e Historical matched age, sex, weight, height, hypertension and diabetes controls. f Severe COVID-19 was defined if ≥2 of the following
criteria were met: respiratory rate >30 bpm, peripheral oxygen saturation <93% while breathing ambient air, C-reactive protein levels >75 mg/L, ground glass opacities or diffuse
infiltrates on CT scan, or rapid progression of CT findings >50% within 24–48 h. g Defined as NYHA > II. h Negative SARS-CoV-2 controls matched for age, sex, body mass index and
risk factors (smoking, diabetes, and hypertension) without previous hospitalization. i Patients with dysautonomia met the following criteria: (1) resting HR of >75 bpm; (2) increase in HR
during exercise of <89 bpm; and (3) HR recovery of < 25 bpm in the first 60 s after cessation of exercise. j Symptomatic normal individuals with a normal peak Vo2 and peak CO of
≥80% predicted in invasive CPET. k Healthy controls matched for age, sex, body mass index.

Under normal conditions, ventilation increases
proportionally to CO2 production (36) but a common
finding from the CPET of PASC patients is the ventilatory
inefficiency (increased VE/VCO2 slope) suggesting an
abnormal response (15, 17, 18, 20, 26–28, 30, 33, 35). Multiple
mechanisms can explain it, but PASC may present with
a characteristic pattern observed in pulmonary vascular
or interstitial diseases (36). Pulmonary hypertension is
typically seen with a diminished partial pressure of end-
tidal CO2 (37), which has also been reported in PASC
patients with ventilatory inefficiency (27, 34, 35). However,
several findings argue against this hypothesis. First, despite
COVID-19 being associated with pulmonary embolism
or right ventricular dysfunction (38), none of the studies
reported such findings in PASC patients (26, 27, 29, 31).
Second, those studies with stress test echocardiogram or
invasive CPET did not observe signs of exercise-induced
pulmonary hypertension with exception of a few isolated
cases (34, 35). Third, an increase in the physiological dead
space/tidal volume ratio was not observed (15, 18, 30, 31, 34, 35)
when a raise is expected with severe ventilation-perfusion
mismatching (37). Finally, no peripheral oxygen desaturation
was reported even in those with pathological DLCO

(21–26, 33).
More recently, hyperventilation syndrome has been

suggested to occur in PASC patients (26) given the increase
VE/VCO2 and low PETCO2 observe during exercise
without clear evidence of cardio-pulmonary diseases (39).
Therefore, dysfunctional breathing characterized by exercise-
induced hyperpnea may explain the persistence of symptoms
in PASC-CVS.

Peripheral Limitation
The peripheral limitation has also been postulated as
contributing to PASC. Alba et al. (19) found that a great
number of PASC patients with abnormal CPET showed a low
O2 pulse with a normal cardiac function, suggesting a peripheral
limitation. In the same way, Ribeiro Baptista et al. (21) didn’t
observe cardiac dysfunction at rest, but those with diminished
exercise capacity had a smaller predicted O2 pulse suggestive of
peripheral limitation. As already mentioned, according to the
Fick equation (peak VO2 is defined as the product of cardiac
output and arteriovenous oxygen difference), a depressed peak
VO2 can be the result of a blunted cardiac output response
(impair oxygen delivery), and impaired peripheral oxygen
extraction (diffusion defect) or both (5, 6).

In this sense, Singh et al. (35) performed invasive
cardiopulmonary exercise testing on 10 patients who had
recovered from COVID-19. These patients, in contrast to
the control group, showed an increased peak exercise mixed
venous oxygen saturation and peak venous O2 content.
The authors concluded that the impaired oxygen extraction
was attributed primarily to reduced oxygen diffusion in the
peripheral microcirculation, exhibiting a peripheral limitation to
aerobic exercise.

Underlying anemia can contribute to both reduced systemic
oxygen delivery and extraction (5, 6). Several studies collected
hemoglobin levels, with the mean being within normal ranges
(18–20, 23, 27, 35), ruling out the presence of anemia as a
contributing factor to reduced peak VO2 found in these patients.
However, one study from Baratto et al. (15) found underlying
anemia in patients who had recovered from COVID-19 at the
time of hospital discharge. This reduction in hemoglobin levels
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leads to reduced arterial O2 content and therefore to a lower O2

delivery and reduced peak VO2.

DISCUSSION

PASC is a disorder that occurs irrespective of previous disease
severity and is characterized by a myriad of conditions and
symptoms. Data suggest that dyspnea, fatigue, and exercise
intolerance are the most common referred symptoms during
outpatient follow-up. PASC cardiovascular disease is associated
with structural or functional cardiovascular abnormalities that
may explain the persistence of symptoms, but a non-negligible
number of patients have no objective evidence of organ
involvement. Therefore, PASC-CVS represents a heterogeneous
group of patients with persistent symptoms that generally present
a normal cardiopulmonary function (9). Because of a paucity
of data, not much attention has been given to CPET despite its
application can accurately evaluate PASC-CVS and improve the
quality of care for these patients.

PASC-CVS is associated with an objective reduction of the
exercise capacity during CPET (15–35). A long list of conditions
can lead to poor physical conditions referred by PASC-CVS
patients. Among all the potential causes and CPET variables,
the following stand out: chronotropic incompetence, abnormal
heart rate recovery, ventilatory inefficiency (high VE/VCO2 and
low PETCO2), and diminished peripheral oxygen extraction.
Patients presenting with pulmonary vasculopathy or interstitial
lung disease demonstrate similar findings during CPET (36).
PASC-CVS may share a common mechanism, but data from
follow-up studies do not support that hypothesis as most show
no evidence of cardio-pulmonary sequelae (15–35).

Therefore, given all key factors in determining oxygen
availability (5, 6), it seems that the cornerstone of PASC-CVS
may involve a peripheral limitation. This is further supported
by invasive CPET findings, where a diminished peripheral tissue
extraction during exercise led to a decreased exercise capacity
(35). Notably, hyperventilation leads to a leftward shift of the
hemoglobin oxygen affinity that is translated into a decreased O2

unloading and impaired diffusion (5, 6). However, such impaired
diffusion could also be explained by direct damage to the
endothelium (40) leading to exercise intolerance as observed in
chronic fatigue syndrome (41). Similarly, endothelial dysfunction
has been reported in PASC with and without chronic fatigue
syndrome (42). Interestingly, all the aforementioned factors may
be linked to autonomic dysregulation (43, 44).

Dysfunctional breathing has been widely described among
PASC patients (45), with hyperventilation being characterized
by a decreased exercise capacity and signs of ventilatory
inefficiency without evidence of cardio-pulmonary dysfunction.
Interestingly, a high respiratory rate causes sympathetic
activation and vagal withdrawal leading to exercise intolerance
not only through an impaired O2 diffusion but also through a
diminished O2 delivery (43). The impairment in O2 delivery is
supported by the evidence of cardiac autonomic dysfunction
among PASC patients (32, 46, 47), where ventilatory inefficiency
was also a common finding (16, 20). However, PASC-CVS

may also manifest as dysfunctional breathing with a chaotic
ventilatory pattern with normal peak VO2, PETCO2, and
VE/VCO2 during CPET (48).

Finally, evidence of autonomic dysfunction in PASC is
further supported by recent studies suggesting that some
patients present with signs and symptoms suggestive of
postural orthostatic tachycardia syndrome (49). Indeed, postural
orthostatic tachycardia syndrome can explain the CPET findings
as it is associated with sympathetic stimulation, vasoconstriction,
and hyperpnea (50).

Thus, the most appropriate hypothesis seems to be cardiac
and peripheral autonomic dysregulation creating a vicious cycle
that alters the exercise capacity in PASC-CVS. Nevertheless, it is
difficult to draw any definitive conclusions, as the observations
might be time-sensitive. In addition, none of the studies
reported the baseline physical activity and physiological status of
individuals before getting COVID-19, which raises the possibility
of a cause-effect bias.

Prognostic Utility of CPET in PASC-CVS
PASC-CVS is expected to become a major challenge as most
recent findings suggest that it shares some features with chronic
fatigue syndrome (50). Although younger age and shorter time
since COVID-19 have been recently described as potential
predictors of submaximal CPET in PASC (51), there are no
published studies examining the long-term prognostic value
unless some ideas are extrapolated from previous studies. In
particular, in heart failure patients a peak Vo2 >14 ml/kg/min
is associated with smaller 1-year mortality (52). Similarly, a
high VE/VCO2 slope is also associated with the worst clinical
outcomes among cardiac and pulmonary patients (53) with
recent studies suggesting that a high VE/VCO2 in PASC-
CVS is an independent predictor for endothelial dysfunction
(54). Endothelial dysfunction has been associated with the
worst outcomes in other medical conditions (44). Therefore,
the presence of a diminished peak Vo2 or high VE/VCO2

slope could be associated with an increased risk of death
during follow-up.

Interestingly, there is growing evidence that autonomic
dysfunction might a fundamental factor in the observed
symptoms in PASC-CVS (49). Theoretically, we could speculate
about the potential utility of HR dynamics assessment in
this group of patients during maximal effort and recovery.
Previous studies have noted that chronotropic incompetence is
associated with poor outcomes in heart failure patients (55).
Furthermore, the detection of a heart rate recovery of ≤12
beats per minute is a strong predictor of all-cause mortality
(RR: 2; 95% CI 1.5–2.7; p < 0.001) irrespective of previous
cardiovascular risk factors and even in the absence of heart
failure or myocardial perfusion defects (56). Nevertheless, risk
stratification for PASC-CVS is limited. Thus, future studies with
CPET both at baseline and follow-up are expected and will
provide amore reliable estimation of long-term clinical outcomes
in these patients with a special emphasis on previously known
prognostic factors.
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CONCLUSIONS

Our current understanding of PASC is vague, but exercise
limitation is a common finding despite the absence of objective
cardio-pulmonary sequelae in PASC-CVS. Physiological
assessment with CPET may provide valuable information
about the functional status of these patients and identify the
potential pathogenic mechanism. Autonomic dysfunction might
be the missing link. Future studies evaluating predictors of
exercise intolerance and long-term prognosis are warranted,

as it could have a positive effect on disease evolution and
clinical outcomes.
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Tianjin, China, 5Department of Clinical Laboratory, Yanda Hospital, Langfang, China, 6Medical

Security Center, The No. 983 Hospital of the Joint Service Support Force, Tianjin, China

Background: Hyperinflammation and coagulopathy are hallmarks of

COVID-19 and synergistically contribute to illness progression. Antiplatelet

agents have been proposed as candidate drugs for COVID-19 treatment

on the basis of their antithrombotic and anti-inflammatory properties. A

systematic review and meta-analysis that included early observational studies

and recent randomized controlled trials (RCTs) was performed to summarize

and compare evidence on this issue.

Methods: PubMed, Embase, and the Cochrane Central Register of Controlled

Trials (CENTRAL) were searched to identify studies published up to Nov 7,

2021, and the results of registered clinical trials were followed up to Mar

30, 2022. We included RCTs and observational studies assessing the e�ect of

antiplatelet therapy in adult patients with COVID-19. Data on baseline patient

characteristics, interventions, controls, and outcomes were extracted by two

independent reviewers. The primary outcomewasmortality. Data were pooled

using a random-e�ects model.

Results: Twenty-seven studies were included, of which 23 observational

studies were pooled in a meta-analysis, and the remaining four RCTs

(ACTIV-4B, RECOVERY, ACTIV-4a, and REMAP-CAP) were narratively

synthesized. Based on 23 observational studies of 87,824 COVID-19 patients,

antiplatelet treatment favors a lower risk of mortality [odds ratio (OR) 0.72,

95% confidence interval (CI) 0.61–0.85; I2 = 87.0%, P < 0.01]. The narrative

synthesis of RCTs showed conflicting evidence, which did not support adding

antiplatelet therapy to the standard care, regardless of the baseline illness

severity and concomitant anticoagulation intensity.

Conclusion: While the rationale for using antiplatelet treatment in COVID-19

patients is compelling and was supported by the combined result of early

observational studies, evidence from RCTs did not confirm this approach.
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Several factors that could explain this inconsistencywere highlighted alongside

perspectives on future research directions.

KEYWORDS

coronavirus disease 2019 (COVID-19), thromboembolism, antiplatelet therapy,

aspirin, clopidogrel, systematic review, meta-analysis

Introduction

Dysregulated inflammation and coagulopathy are hallmarks

of severe COVID-19 and contribute to an increased risk of

thromboembolic complications and mortality (1–4). Platelets

are anucleate cell fragments derived from megakaryocytes that

are not simply involved in thrombosis and immune response

but also exert a hub function bridging these two processes

as a new mechanism, termed immunothrombosis (5–7). The

multifaceted role of platelets in immunothrombosis has been

well-documented in previous literature and further highlighted

in the current COVID-19 situation (8–11). A hyperactive

platelet phenotype, as characterized by increased platelet

surface markers [e.g., P-selectin, platelet Factor 4 (PF4), and

CD40L], platelet-derived soluble mediators [e.g., thromboxane

B2 (TxB2) and 5-hydroxytryptamine (5-HT)], and platelet

homotypic and heterotypic aggregates, has been extensively

identified in COVID-19 patients (9, 12–16). Likewise, data

from transcriptome and proteome analyses indicate that platelet

hyperactivity is a predominant cellular signature in response

to SARS-CoV-2 infection (17, 18), thus suggesting a possible

role of platelets in this novel viral disease. Moreover, activated

platelets can trigger the formation of neutrophil extracellular

traps (NETs) (19, 20), which have recently been recognized

as pivotal players in thrombosis (21–23). Autopsy reports of

COVID-19 patients revealed microthrombi with platelet and

NET deposition in inflamed lung tissues, along with endothelial

disruption (23–25).

Given the possible role of hyperactive platelets in the

pathological mechanism of COVID-19, antiplatelet agents,

such as aspirin and P2Y12 inhibitors, have been proposed

as a potential treatment strategy for COVID-19 patients

on the basis of their antithrombotic and anti-inflammatory

properties (26–28). Additionally, significant thrombotic events

Abbreviations: 5-HT, 5-Hydroxytryptamine; CI, Confidence intervals;

COVID-19, Coronavirus Disease; GP Ib, Glycoprotein Ib; HR, Hazard

ratio; LMWH, Low-molecular-weight heparin; NETs, Neutrophil

extracellular traps; NOS, Newcastle–Ottawa Scale; OR, Odds ratio; PARs,

Protease-activated receptors; PF4, Platelet Factor 4; RCTs, Randomized

controlled trials; RR, Relative risk; SARS-CoV-2, Severe acute respiratory

syndrome coronavirus 2; SGLT2, Sodium-glucose cotransporter-2; TxB2,

Thromboxane B2.

have been observed despite anticoagulant treatment in clinical

trials, implying that antiplatelet agents could be potential

candidates for additional adjunctive antithrombotic therapy

(29–31). In fact, an association between antiplatelet drug use and

improved outcomes for COVID-19 patients has been reported

in early observational studies (32–34). However, recently

completed RCTs failed to confirm the effectiveness of antiplatelet

treatment in preventing COVID-19 progression. While RCTs

are considered to be more reliable than observational studies

in evaluating interventions, the latter has helped us establish an

initial foundation, which is particularly significant in an urgent

situation (35). In the present circumstances, there is a need

for findings to be assessed in the context of existing evidence

in order to ensure reasonable interpretation of all studies (36).

Here, we perform a systematic review and meta-analysis that

included both RCTs and observational studies to provide an

overview of existing evidence on antiplatelet therapy in patients

with COVID-19. Furthermore, several study elements (e.g.,

baseline illness severity, the timing of antiplatelet therapy, and

concomitant anticoagulation intensity) that might contribute to

discrepancies among current lines of evidence and should be

taken into consideration in future research are discussed.

Methods

This systematic review was performed following the

PRISMA statement (37). The study protocol is provided

in Supplementary material 1. Briefly, PubMed, Embase, and

Cochrane CENTRALwere searched to identify studies published

up to Nov 7, 2021, and the results of registered clinical

trials were followed up to Mar 30, 2022. Details of the

search strategies are provided in Supplementary material 1. The

inclusion criteria were adult COVID-19 patients confirmed

by laboratory testing, administration of antiplatelet therapy

at any time or dose, comparison between patients with and

without antiplatelet therapy, and availability of English or

Chinese full texts. Studies involving patients with a particular

illness or emergency conditions were excluded (e.g., cancer and

pregnancy). When studies had significant overlapping data, the

most comprehensive study was included.

The results of observational studies and RCTs were

separately synthesized and compared (35). For pooled analysis,

we selected all-cause mortality as the primary outcome for
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effect estimates. Considering that all the included studies for

quantitative pooled analysis were retrospective in design, the

odds ratio (OR) was used as the commonmeasure of association

across studies. Hazard ratios (HRs) and relative risks (RRs)

were directly considered as ORs. A random-effect model was

selected to account for clinical heterogeneity. Heterogeneity

across studies was assessed using the Q statistic with its P-

value and I2 statistic (38). Subgroup analyses were conducted

to investigate variation in estimates according to original effect

size, study center, illness severity, antiplatelet drugs, the timing

of drug administration, and concomitant anticoagulant use.

Sensitivity analysis was performed on the primary outcome by

omitting one study at a time to assess the robustness of the

results (39). A funnel plot was drawn to assess publication

bias. The quality of the included observational studies for

meta-analysis was evaluated following the Newcastle–Ottawa

scale (NOS) by two independent reviewers (40). Studies with

NOS scores of 8 or 9, 6 or 7, and < 6 were judged as

having a low, medium, and high risk of bias, respectively.

Discrepancies in data extraction and quality assessment were

resolved through discussion with a third author. Statistical

analyses were performed using RStudio software.

Results

Study identification

Our search yielded 1,228 records. After initial screening

and full-text review, 23 observational studies (41–63) and

4 RCTs (64–67) (ACTIV-4B, RECOVERY, ACTIV-4a, and

REMAP-CAP) were finally included for evidence synthesis

and comparison (Figure 1). Observational studies were mostly

performed in the first half of 2020, and RCTs were subsequently

conducted between late 2020 and early 2021. For observational

studies, the overall risk of bias was determined to be

FIGURE 1

Flowchart of the systematic review.
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medium (Supplementary Table 1). Adjusted estimates could

be determined for all observational studies even though the

adjusted factors were slightly different. Among all studies,

aspirin is the most common antiplatelet drug. Tables 1, 2

show details of the included observational studies and

RCTs, respectively.

Meta-analysis of observational studies

We first performed a meta-analysis of the 23 included

observational studies and obtained a combined OR of 0.72 (95%

CI: 0.61–0.85), suggesting that antiplatelet treatment favors a

lower risk of mortality in patients with COVID-19 (Figure 2).

Although significant heterogeneity was evident (P < 0.01,

I2 = 87%), the combined estimates were consistent in the

random- and fixed-effect models, and the sensitivity analysis

suggested that our result was stable (Supplementary Figure 1),

probably driven by a large number of participants (n = 87,824).

To investigate the variation of combined evidence among

observational studies and improve comparability with RCTs,

pre-specified subgroup analyses were further conducted. All

results of the subgroup analyses are summarized in Figure 3

(forest plots are shown in Supplementary Figures 2–7). The only

significant antiplatelet treatment-covariate interaction identified

in subgroup analyses was concomitant anticoagulant use,

with OR = 0.64 (95% CI: 0.50–0.83) among patients with

anticoagulant use (including partial use) andOR= 1.07 (95%CI:

0.94–1.21) among patients without anticoagulation treatment.

There was no evidence to suggest a differential treatment

effect for any other subgroups. The asymmetric shape of the

funnel plot shows some evidence of publication bias among the

evaluated studies (Supplementary Figure 8).

RCTs

Currently, one outpatient trial (ACTIV-4B) (64) and three

inpatient trials (RECOVERY, ACTIV-4a, and REMAP-CAP)

(65–67) have released their results. As there was obvious

heterogeneity in the study population, antiplatelet treatment

regimen, and concomitant anticoagulation intensity among

these studies, their results were narratively synthesized (Table 2).

The ACTIV-4B trial aimed to assess whether antiplatelet

therapy (aspirin 81mg) can safely reduce major adverse

cardiopulmonary outcomes among symptomatic but clinically

stable outpatients with COVID-19. The study was terminated

early because of an event rate (0.7%) lower than anticipated and

no evidence of efficacy when comparing aspirin with placebo.

RECOVERY (65) is the current largest randomized study

investigating the effect of antiplatelet therapy in COVID-19,

with 14,892 participants from 171 centers. This study found

that in a mixed population of patients with mild, moderate, and

severe COVID-19, adding 150mg aspirin to standard care did

not reduce 28-day mortality [relative risk (RR) = 0.96, 95% CI:

0.89–1.04] or the probability of progression to the composite

of invasive mechanical ventilation or death (RR = 0.96; 95%

CI: 0.90–1.03).

In recently completed multiplatform trials (ATTACC,

ACTIV-4a, and REMAP-CAP), therapeutic-dose heparin vs.

conventional thromboprophylaxis has been found to improve

organ support-free days in hospitalized non-critically ill patients

(30) but is not beneficial for critically ill patients (29).

Subsequently, the ACTIV-4a trial (66) tested whether the

addition of a P2Y12 inhibitor to anticoagulant therapy would

further change clinical outcomes in non-critically ill patients

hospitalized for COVID-19. After 562 patients completed the

trial, no significant differences were found in the primary

outcome (the composite of organ support-free days evaluated

on an ordinal scale combined with in-hospital death) or in the

secondary outcome (the composite of major thrombotic events

or death by 28 days).

In parallel with ACTIV-4a, the REMAP-CAP trial (67)

aimed to examine the add-on effect of antiplatelet therapy

[aspirin, 75–100mg; n = 565 or P2Y12 inhibitors (clopidogrel,

75mg; ticagrelor, 60mg; or prasugrel, 60mg); n = 455]

alongside prophylactic dose anticoagulation in severe COVID-

19 patients. First, this trial observed equivalence between the

aspirin and P2Y12 inhibitor groups (OR = 1.00; 95% CI,

0.8–1.27; >90% posterior probability of equivalence). In a

subsequent adaptive pooled analysis of the two antiplatelet

treatment groups in comparison with controls, the median for

organ support-free days was 7 in both the antiplatelet and

control groups (median-adjusted OR = 1.02; 95% CI, 0.86–

1.23; 95.7% posterior probability of futility). Although a modest

benefit on the secondary endpoint of 90-day mortality was

determined (HR = 1.22; 95% CI, 1.06–1.40; 99.7% posterior

probability of efficacy), the median number of organ support-

free days was again equal (14 days) among survivors in both

groups. Additionally, the authors reported a small but certain

increased risk of major bleeding in the antiplatelet group (2.1 vs.

0.4%; adjusted OR = 2.97; 95% CI, 1.23–8.28; 99.4% probability

of harm).

Discussion

This systematic review summarized and compared current

evidence regarding antiplatelet treatment for patients with

COVID-19. The combined effect estimates of observational

studies suggested that antiplatelet therapy favors a lower risk

of mortality, and the results were consistent in all pre-specified

subgroup analyses in addition to those based on anticoagulant

use. Nevertheless, subsequent RCTs did not confirm this

association. A series of well-conducted randomized studies

found no additional effect when adding antiplatelet therapy
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TABLE 1 Details of observational studies included in this meta-analysis of the association between antiplatelet treatment and mortality.

References Time of patient

inclusion

Region Center Population N Age (year) Male sex Drugs Endpoint Events

rate

Adjusted factors NOS

Aydinyilmaz et al.

(41)

Mar to Dec 2020 Turkey S Severely ill

Inpatients

373 E: 73.9± 0.9

C: 69.1± 1.9

E: 72.9%

C: 58.0%

Aspirin In-hospital mortality – Male gender, diabetes,

hypertension

7

Chow et al. (42) Feb to Apr 2020 United States M Inpatients 17,347 E: 72 (64–80)

C: 72 (64–80)

E: 54.5%

C: 53.3%

Multiple* In-hospital mortality 20.5% Age, male, race, BMI,

comorbidities, medications

8

Corrochano et al.

(43)

Mar to May 2020 Spain S Inpatients 1,443 66.5± 17.1 53.2% Multiple 28 d mortality 19.3% Sex, age, comorbidities 8

Fröhlich et al. (44) Feb to Apr 2020 Germany M Inpatients 5,971 E:79 (69–84)

C: 65 (52–79)

E: 63.8%

C: 51.1%

Multiple All-cause mortality or

ventilation

27.5% Age, gender, and

comorbidities

8

Gupta et al. (45) Feb to May 2020 United States S Inpatients 2,626 – – P2Y12

inhibitor

30 d mortality – Age, sex, BMI, comorbidity,

medications

7

Haji Aghajani et al.

(46)

Mar 2019 to Jul 2020 Iran S Severely ill

inpatients

991 61.6± 17.0 54.9% Aspirin In-hospital mortality 25.8% Age, sex, BMI, comorbidity,

medications

7

Ho et al. (47) Feb to Jul 2020 United States M Outpatients 27,824 E: 66 (55–77)

C: 41 (30–53)

E: 53.0%

C: 48.0%

Multiple Mortality 3.3% Age, sex, race, BMI,

comorbidities

8

Izzi-Engbeaya et al.

(48)

Mar to Apr 2020 UK M Inpatients 889 65.8± 17.5 60.1% – Death and/or ICU admission 36.0% Age, sex, race, comorbidity,

Laboratory and clinical

parameters, and medications

6

Liu et al. (49) Jan to Mar 2020 China S Inpatients 48 E: 69 (61–76)

C: 74 (65–79.5)

E: 58.3%

C: 70.8%

Aspirin 30 d mortality 16.7% Age, sex, comorbidities,

Laboratory and clinical

parameters, and medications

8

Matli et al. (50) Apr 2020 to Jan 2021 Lebanon S Inpatients 146 E: 66.2± 13.8

C: 59.6± 17.0

E: 67.4%

C: 58.8%

Multiple In-hospital mortality 14.1% Age, sex, smoking, weight,

comorbidity, medications

8

Meizlish et al. (51) Mar to Jun 2020 United States M Inpatients 638 – 63.3% Aspirin In-hospital mortality – Age, sex, max D-dimer,

comorbidities, medications

8

Merzon et al. (52) Feb to Jun 2020 Israel M Inpatients 112 – – Aspirin In-hospital mortality 6.3% Age, sex, smoking,

comorbidity, medications

7

Mura et al. (53) – 30 countries M Severely ill

inpatients

527 – – Aspirin Mortality 31.3% Age, gender 6

Osborne et al. (54) Mar to Aug 2020 United States M Inpatients 12,600 E: 67.4± 10.7

C: 67.2± 11.1

E: 95.2%

C: 96.6%

Aspirin 30 d mortality 7.4% Age, gender, and Care

Assessment Needs (CAN)

score

8

(Continued)
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TABLE 1 (Continued)

References Time of patient

inclusion

Region Center Population N Age (year) Male sex Drugs Endpoint Events

rate

Adjusted factors NOS

Pan et al. (55) Mar to Apr 2020 United States S Inpatients 762 E: 69.6± 12.5

C: 58.5± 16.2

E: 60.3%

C: 54.3%

Multiple 28 d mortality ∼20% Age, sex, BMI, smoking,

comorbidities

8

Russo et al. (56) Feb to Apr 2020 Italy M Inpatients 192 67.7± 15.2 59.9% Multiple In-hospital mortality 18.5% Age, smoke, comorbidities 8

Sahai et al. (57) Mar to May 2020 United States M Outpatients 496 E: 68.5± 13.6

C: 69.5± 14.1

E: 56.5%

C: 59.5%

Aspirin In-hospital mortality 14.3% Age, sex, race, smoking,

platelets, and comorbidities

7

Santoro et al. (58) Jan to May 2020 7 countries M Inpatients 7,716 64± 17 58.0% Multiple In-hospital mortality 18.0% Age, sex, comorbidities,

invasive ventilation,

medications

8

Sisinni et al. (59) Feb to Apr 2020 Italy M Inpatients 984 72 [62–81] 69.0% Multiple 30 d mortality or respiratory

support upgrade

72.0% Age, male gender,

hypertension, glucocorticoid

therapy

8

Soldevila et al. (60) Mar to Jun 2020 Spain M Inpatients 1,306 86.7± 7.3 28.7% Multiple 30 d mortality 24.4% Age, gender, comorbidities,

Barthel score, frailty score,

medications

8

Terlecki et al. (61) Mar to Oct 2020 Poland S Inpatients 1,729 63 [50–75] 51.2% Multiple In-hospital mortality 12.9% Age, gender, comorbidities,

medications

8

Tremblay et al. (62) Mar to Apr 2020 United States M Inpatients 1,064 E: 61.2± 10.9

C: 63.0± 12.2

54.9%

57.5%

– In-hospital mortality 15.0% Age, sex, race, Charlson

comorbidity index and obesity

8

Zhao et al. (63) Feb 2020 to Mar 2021 United States M Severely ill

inpatients

2,070 65± 16 58.8% Aspirin In-hospital mortality 29.0% Age, sex, smoking, BMI,

comorbidity, laboratory

indices, vital signs,

medications

8

*Two ormore antiplatelet drugs were together defined as exposure, with aspirin plus P2Y12 inhibitors beingmost common among studies. The ages of the study populations were expressed as themean± standard deviation ormedian [interquartile range].

BMI, body mass index; E, exposure group; C, control group; –, Data not reported or not calculable; NOS, Newcastle–Ottawa Scale.
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to standard care, regardless of baseline illness severity and

concomitant anticoagulation intensity. The reason for this

inconsistency may be multiple. First, since all observational

studies included for pooled analysis were retrospective in design,

selection bias might have occurred in the selection of exposed

subjects according to an antecedent prescription of antiplatelet

medication. Additionally, while adjusted estimates could be

determined for all studies, potential cofounding associated

with both exposure and outcome cannot be definitively

excluded (68, 69).

In addition to the limitations ascribed to the study design

per se, another noteworthy factor is the timing of antiplatelet

treatment. For most observational studies (41–45, 47, 52,

54–57, 59–62) included for evidence synthesis, antiplatelet

therapy was initiated before COVID-19 diagnosis in contrast to

during hospitalization in RCTs (65–67). Possibly, the baseline

suboptimal platelet reactivity due to prior chronic antiplatelet

therapy restrains illness progression and aggravation. At the

time of hospitalization because of moderate or severe illness,

platelet activation may have already reached a maximum level,

for which antiplatelet treatment is too late (66). Additionally,

as mentioned above, the rationale for antiplatelet medication

in COVID-19 is based on the antithrombotic and anti-

inflammatory properties. However, there is evidence that the

distribution of platelets is not limited only to intravascular

compartments but also to alveolar translocation (70–73).

Moreover, platelets differentially bind to neutrophils and Treg

cells at distinct time points to orchestrate both the initiation

and resolution of pulmonary inflammation. These interactions

prevent excessive lung damage after infection (70). In sum,

platelets still offer a candidate treatment target for infection-

related thrombosis, yet the treatment timing may be of great

relevance and warrant further investigation at the clinical level.

Among currently completed RCTs, ACTIV-4B is the only

outpatient trial. In addition to its negative finding, this trial

also reported a markedly low rate of events (a composite of

all-cause mortality, thromboembolism, myocardial infarction,

stroke, or hospitalization for cardiovascular or pulmonary

cause), namely, 0.7% among the study populations, which

is much lower than that reported by early epidemiological

data (64). The significant decline in adverse event incidence

among mildly ill outpatient populations could partially be

attributed to aggressive vaccination and progress in medical

care since the pandemic outbreak (74, 75). Correspondingly, the

recently updated COVID-19 treatment guidelines recommend

against the use of anticoagulants and antiplatelet therapy in

the outpatient setting, unless the patient has other indications

for the therapy (76). Another ongoing trial (OLA COVID;

NCT04937088) (77) that tests whether a novel, liquid aspirin

formulation can reduce COVID-19-related hospitalizations in

old populations will provide more evidence on this issue.

For hospitalized patients with COVID-19, thrombotic

complications have been reported to be common
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FIGURE 2

Forest plot of the 23 included observational studies.

despite conventional thromboprophylaxis and therapeutic

anticoagulation (31). In this setting, the RECOVERY, ACTIV-

4a, and REMAP-CAP trials sought to examine the additional

effect and risk of antiplatelet treatment on the basis of

thromboprophylaxis and anticoagulation therapy. Overall, the

results of these well-conducted trials found no additional effect

when antiplatelet therapy was added to anticoagulation (mostly

Low-molecular-weight heparin, LMWH) in hospitalized

patients with COVID-19, despite a slightly increased risk of

bleeding. The reason for these negative results is not obvious.

A possible explanation is that the anticipated antithrombotic

effect of antiplatelet drugs was partially masked by LMWH (78).

While the mechanism of COVID-19-related coagulopathy

has not yet been elucidated, a major cause is tissue factor

overexpression on the surface of damaged endothelial cells

and immune cells, which further initiates coagulation cascades

and leads to thrombin generation (8). This opinion can be

supported by anticoagulation trials that found the superiority

of heparin/LMWH by targeting thrombin. However, thrombin

is not only a central enzyme involved in coagulation cascades

but also a potent inducer of platelet activation (78, 79). In a

more recent study, the TF/thrombin pathway was found to be

pivotal for platelet activation in an ex vivo SARS-CoV-2 infection

model (80). The authors concluded that TF activity from

SARS-CoV-2-infected cells activates thrombin, which signals

to protease-activated receptors (PARs) on platelets (80). Taken

together, it is plausible to speculate that the key upstream

pathway that promotes platelet activation during SARS-CoV-2

infection is inhibited by heparin through disturbing thrombin

ligation to platelet Glycoprotein Ib (GP Ib) and PARs (78, 80),

whereby the anticipated antithrombotic effects of aspirin and

P2Y12 inhibitors in the above trials were diluted.

To date, our successful experience in the combined use of

heparin and antiplatelet agents is almost confined to thrombotic

disease, with most valid evidence in arterial thrombosis, yet,

under the premise that antiplatelet treatment per se is effective

(81). Whether antiplatelet therapy alone can prevent illness

progression for hospitalized patients with COVID-19 is still

unclear. This question is difficult to clarify in future trials, as

it is unethical to abrogate proven beneficial anticoagulation for

patients to measure the effect of single antiplatelet therapy.

Alternatively, early observational studies could shine a light on

this issue. In the subgroup analysis of observational studies by

anticoagulant intensity, we identified four studies (43, 44, 47,

62) including 36,302 patients without anticoagulant use. The

combined OR of 1.07 (95% CI, 0.94–1.21; I2 = 0%, P = 0.32)
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FIGURE 3

Summary of the subgroup analyses in observational studies.

suggested that single antiplatelet treatment is not associated

with lower mortality (see Figure 3). However, this result may be

limited by the lack of sufficient direct comparisons and should be

regarded with extreme caution. In contrast to targeting platelets

per se, there is an ongoing arm of the ACTIV-4a trial that aims

to test whether inhibiting the cross-talk between platelets and

immune as well as endothelial cells, by using Crizanlizumab

(82, 83) or sodium-glucose cotransporter-2 (SGLT2) inhibitor

(84), will further improve the hypercoagulable state of patients

with COVID-19, and the results are eagerly anticipated.

Conclusion

This paper provides an overview of existing evidence on

antiplatelet therapy for patients with COVID-19. In summary,

while the rationale for using antiplatelet drugs to prevent

COVID-19 progression is compelling and was supported by

combined evidence from early observational studies, recently

completed RCTs do not support this approach. The consistent

negative results of such RCTs have supplied more valid evidence

against adding antiplatelet therapy to standard care for COVID-

19 patients in either community or hospital settings. In terms of

directions for future study, the optimal antithrombotic regimen

for patients with COVID-19 should be individualized (85) and

guided by biomarkers, such as urinary 11-dehydrothromboxane

B2, platelet reactivity, platelet-platelet aggregates, and platelet-

leukocyte aggregates detected by new microscopic techniques

(16, 31). Moreover, several factors that could explain the

inconsistency among the current evidence and advocate for

further investigation were highlighted in the current review.
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Objective: Coronavirus disease 2019 (COVID-19) is a systemic disease

induced by SARS-CoV-2 causing myocardial injury. To date, there are few

data on the correlation between mid-regional proAdrenomedullin (MR-

proADM) and myocardial injury. The aim of this study was to evaluate

whether the association of myocardial injury and elevated mid-regional

proAdrenomedullin values could predict mortality of SARS-CoV-2 patients, to

offer the best management to COVID-19 patients.

Materials and methods: All patients hospitalized for SARS-CoV-2 infection at

the COVID-19 Center of the Campus Bio-Medico of Rome University were

included between October 2020 and March 2021 and were retrospectively

analyzed. Myocardial injury was defined as rising and/or fall of cardiac hs

Troponin I values with at least one value above the 99th percentile of the upper

reference limit (≥15.6 ng/L in women and ≥34.2 ng/L in men). The primary

outcome was 30-day mortality. Secondary outcomes were the comparison of

MR-proADM, CRP, ferritin, and PCT as diagnostic and prognostic biomarkers

of myocardial injury. Additionally, we analyzed the development of ARDS, the

need for ICU transfer, and length of stay (LOS).
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Results: A total of 161 patients were included in this study. Of these, 58 (36.0%)

presented myocardial injury at admission. An MR-proADM value ≥ 1.19 nmol/L

was defined as the optimal cut-off to identify patients with myocardial

injury (sensitivity 81.0% and specificity 73.5%). A total of 121 patients (75.2%)

developed ARDS, which was significantly more frequent among patients with

myocardial injury (86.2 vs. 68.9%, p = 0.015). The overall 30-day mortality was

21%. Patients with myocardial injury presented significantly higher mortality

compared to those without the same (46.6 vs. 6.8%, p < 0.001). When

dividing the entire study population into four groups, based on the presence of

myocardial injury and MR-proADM values, those patients with both myocardial

injury and MR-proADM ≥ 1.19 nmol/L presented the highest mortality

(53.2%, p < 0.001). The combination of myocardial injury and MR-proADM

values ≥ 1.19 nmol/L was an independent predictor of death (OR = 7.82, 95%

CI = 2.87–21.30; p < 0.001).

Conclusion: The study is focused on the correlation between myocardial

injury and MR-proADM. Myocardial injury induced by SARS-CoV-2 is strongly

associated with high MR-proADM values and mortality.

KEYWORDS

myocardial injury, mid-regional proAdrenomedullin, COVID-19, Troponin I (tni),
SARS-CoV-2

Introduction

Coronavirus disease 2019 (COVID-19) is a systemic disease
induced by Severe Acute Respiratory Distress Syndrome
Coronavirus 2 (SARS-CoV-2) causing widespread endothelial
damage primarily involving the pulmonary and cardiovascular
systems (1–4).

Acute cardiac injury in COVID-19 patients is present
in upto 15–50% of critically ill patients and is represented
by myocardial injury, endothelitis, heart failure, Takotsubo
cardiomyopathy, acute coronary syndromes, pulmonary
thromboembolism, and arrhythmias (2, 5–8).

Myocardial injury is defined as an increase in myocardial
enzyme levels (Troponin) with at least one value above the
99th percentile upper reference limit in absence of myocardial
ischemia and can be caused by several mechanisms (9).
Myocardial injury occurs due to indirect or direct myocardial
damage with a mortality of 60% (8).

Indirect myocardial injury evidenced by the increase of
Troponin is present in up to 36% in the early course of SARS-
CoV-2 infection and it is associated with an increased risk of

Abbreviations: ADM, adrenomedullin; ARDS, acute respiratory distress
syndrome; AUC, areas under the curve; COVID-19, coronavirus
disease 2019; CRP, C-reactive protein; MR-proADM, mid-regional-
proAdrenomedullin; PCT, procalcitonin; ROC, receiver operating
characteristic; SARS-CoV-2, severe acute respiratory distress syndrome
coronavirus 2; SOFA, sequential organ failure assessment.

requiring mechanical ventilation, fatal ventricular arrhythmias,
and a 59.6% of risk mortality (10–15).

A direct myocardial injury affects hs Troponin I in case
of acute coronary syndrome and could affect adrenomedullin
expression that is expressed by cardiomyocytes, pericytes,
cardiofibroblasts, endothelial cells, epicardial adipose cells,
vascular endothelial cells, smooth muscle cells, and migratory
angiogenic cells (16, 17).

Currently, the understanding of the underlying
physiopathological mechanisms of the onset of myocardial
injury is still limited and there are only little data on the
correlation between myocardial injury and MR-proADM. This
biomarker helps clinicians in identifying those patients with
severe disease and at higher risk of death (4, 18–22).

The aim of this study was to evaluate whether the
association of myocardial injury and elevated mid-regional
proAdrenomedullin values could predict mortality of SARS-
CoV-2 patients, to offer the best management to COVID-
19 patients.

Materials and methods

Patient selection and characteristics

All patients hospitalized with SARS-CoV-2 infection
at the COVID-19 Center of the Campus Bio-Medico of
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TABLE 1 Normal range and methodology for biomarkers assessment.

Biomarker Sample Methodology Sex Normal range values Unit

hs Troponin I Plasma Chemiluminescence Female 0–15.6 pg/mL

hs Troponin I Plasma Chemiluminescence Male 0–34.2 pg/mL

MR-proAdrenomedullin Plasma TRACE* assay 0.00–0.50 nmol/L

C-reactive protein Plasma Turbidimetric Female/Male ≤0.5 mg/dL

Ferritin Serum Chemiluminescence Female 4.63–204 ng/mL

Ferritin Serum Chemiluminescence Male 21.81–264.66 ng/mL

Procalcitonin Plasma TRACE* assay 0.00–0.50 ng/mL

Neutrophils-absolute value Whole blood Flow cytometric 2.00–7.00 ×103/µL

Lymphocytes-absolute value Whole blood Flow cytometric 1.00–3.00 ×103/µL

*TRACE, time-resolved amplified cryptate emission technology assay.

TABLE 2 Characteristics of patients.

Variable Overall population
(n = 161)

Myocardial injury
(n = 58)

Absence of myocardial
injury (n = 103)

P-value

Age [years (IQR)] 73 (62–81) 79 (73–83) 67 (58–80) <0.001

Male sex [n (%)] 99 (61.5) 32 (55.2) 67 (65.0) 0.216

Cardiovascular risk factors [n (%)]

Diabetes mellitus 48 (29.8) 20 (34.4) 28 (27.2) 0.331

Hypertension 106 (65.8) 44 (75.9) 62 (60.2) 0.044

Dyslipidemia 61 (37.9) 26 (44.8) 35 (34.0) 0.173

Smoking habit 26 (16.1) 12 (20.6) 14 (13.6) 0.240

BMI > 30 kg/m2 25 (15.5) 13 (22.4) 12 (11.7) 0.070

Coronary artery disease [n (%)] 34 (21.1) 18 (31.0) 16 (15.5) 0.021

Chronic pulmonary disease [n (%)] 30 (18.6) 16 (27.6) 14 (13.6) 0.029

Chronic kidney disease [n (%)] 27 (16.8) 16 (27.9) 11 (10.7) 0.006

Chronic liver disease [n (%)] 9 (5.6) 2 (3.4) 7 (6.8) 0.375

Active cancer [n (%)] 24 (14.9) 9 (15.5) 15 (14.6) 0.870

Laboratory [median (IQR)]

hs Troponin I [ng/l] 11 (10–49) 83 (42–226) 10 (10–10) <0.001

MR-proADM [nmol/l] 1.12 (0.78–1.91) 1.90 (1.24–3.83) 0.88 (0.66–1.29) <0.001

CRP [mg/dl] 6.6 (2.3–11.9) 10.9 (6.8–15.7) 3.6 (1.4–8.0) <0.001

Ferritin [ng/ml] 802 (279–1540) 1403 (621–2230) 635 (247–1299) <0.001

PCT [ng/ml] 0.07 (0.04–0.37) 0.21 (0.07–0.83) 0.06 (0.03–0.10) <0.001

Leukocytes [unit/µl] 9800 (7120–12300) 12275 (8440–16040) 9080 (6470–11420) <0.001

Neutrophils [unit/µl] 8230 (5280–10920) 10275 (7110–13960) 6910 (4510–9490) <0.001

Lymphocytes [unit/µl] 930 (560–1460) 765 (430–1110) 1020 (610–1560) 0.013

Neutrophil/Lymphocyte ratio 9.68 (4.22–15.58) 12.97 (7.00–26.50) 7.98 (3.33–13.07) <0.001

PaO2/FiO2 216 (108–327) 145 (85–281) 252 (130–357) <0.001

ICU admission [n (%)] 41 (25.5) 17 (29.3) 24 (23.3) 0.401

Median hospital stay [days (IQR)] 14 (7–23) 15 (8–26) 12 (7–21) 0.387

ARDS [n (%)] 121 (75.2) 50 (86.2) 71 (68.9) 0.015

Rome University were included between October 2020 and
March 2021 and were retrospectively analyzed. The COVID-
19 Center includes the Medicine Department with a sub-
intensive care unit.

We included all patients with a positive reverse transcription
polymerase chain reaction test (RT-PCR) for SARS-CoV-2, with

hs Troponin I and MR-proADM assessment. We excluded
patients < 18 years old and pregnant women.

The study was approved by the Ethical Committee of the
University Campus Bio-Medico of Rome.

All methods were performed in accordance with the relevant
guidelines and regulations available at that moment.
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The control group consisted of patients with SARS-CoV-
2 infection without increased hs Troponin I or acute coronary
syndrome (ACS), pericarditis, or myocarditis admitted to the
COVID-19 center in the same period.

Clinical outcomes and definitions

Primary outcome of the study was 30-day mortality.
Secondary outcomes were the comparison of MR-proADM,
CRP, ferritin, and PCT as diagnostic and prognostic
biomarkers of myocardial injury. Additionally, we analyzed
the development of ARDS, the need for ICU transfer, and
length of stay (LOS).

Myocardial injury was defined by the rise and/or fall of
cardiac hs Troponin I values with at least one value above the
99th percentile of the upper reference limit; ARDS was defined
according to the Berlin definition (9, 10, 23).

The following data were collected at inclusion: demographic
characteristics (age and gender), onset symptoms, relevant
comorbidities, immune status (active malignancy or other
causes of immunosuppression), concomitant antimicrobial, use
of antiretroviral medication, immunosuppressive treatments,
and clinical presentation.

All patients received a complete physical examination
including body temperature, blood pressure, heart and
respiratory rate, cardiac, pulmonary, abdominal, and
neurological evaluation, electrocardiogram, and chest
tomography, while an echocardiogram was performed only if
clinically needed.

Laboratory tests performed at inclusion were complete
blood count (CBC), hs Troponin I, MR-proADM, CRP, ferritin,
PCT, D-Dimer, INR, TTPA, liver function test, creatinine,
arterial blood gases, and serum lactate.

All patients received standard of care based on disease
severity and need for oxygen support. When needed, patients
received low-molecular weight heparin, remdesivir, and
steroid therapy.

All included patients were followed until death or 30-day
follow-up, whichever came first.

Laboratory markers

Diagnosis of COVID-19 was performed by molecular
testing through RT-PCR on a nasopharyngeal swab and/or
endotracheal aspirate, detecting spike three SARS-CoV-2 genes
(S, N, and E or S, RdRP, and N genes) (4).

Myocardial injury was considered when hs Troponin I
was ≥15.6 ng/L in women and ≥34.2 ng/L in men.

Ferritin, hs Troponin I, and CRP were measured by Alinity
c (Abbott, diagnostics) following the manufacturer’s instruction.
Normal ranges are shown in Table 1. CBC was performed

on a whole blood sample by Sysmex XE-9000 (Dasit, Italy)
following the manufacturer’s instruction. NLR was calculated
by the ratio between absolute values of neutrophils and
lymphocytes. MR-proADM and PCT plasma concentrations
were measured on an automated Kryptor analyzer, using a
time-resolved amplified cryptate emission (TRACE) technology
assay (Kryptor PCT; Brahms AG; Hennigsdorf, Germany), with
commercially available immunoluminometric assays (Brahms)
(24–27).

Statistical analysis

As appropriate, continuous variables were reported
as mean (standard deviation) or as median (interquartile
range). Categorical variables were reported as frequencies
and percentages. Comparisons between continuous variables
were performed using Student’s t-test or the Mann-Whitney
U-test. Comparison between categorical variables was evaluated
using the Fisher exact test or the Pearson chi-square test, as
appropriate. The normal distribution of continuous variables
was tested with the Shapiro-Wilk test. Correlation between
continuous variables was assessed using the Spearman rank
test. A receiver operating characteristic (ROC) curve analysis
was used to test the ability of laboratory values to discriminate
between patients with and without myocardial injury and
patients who died and did not during the hospital stay. The
optimal cutoff point was calculated by determining the value
that provided the greatest sum of sensitivity and specificity. All
baseline clinical features were evaluated in univariate analysis
for the association with myocardial injury and death using
logistic regression. Only variables with a p-value < 0.05 were
considered for the final multivariable logistic regression models,
providing odds ratios (ORs) and 95% confidence intervals (CI).
Statistical analysis was performed using Stata/IC version 14.0
(STATA Corp., College Station, TX, USA), and p-values < 0.05
(2-tailed) were considered significant.

Results

Study population

A total of 161 patients were included in this study. Of these,
58/161 (36%) presented myocardial injury at admission. The
characteristics of the patients are shown in Table 2. A total of
99/161 (61.5%) patients were males. Among them, 32/99 (32%)
developed myocardial injury (p = 0.21).

Patients with myocardial injury were significantly older (79
[IQR = 73–83] vs. 67 [IQR = 58–80] years old, p < 0.001)
than those without myocardial injury. These patients had
a more frequent history of Hypertension (75.9 vs. 60.2%,
p = 0.044), coronary artery disease (31 vs. 15.5%, p = 0.021),
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FIGURE 1

Receiver operating characteristic curves (ROC) of biomarkers in patients with myocardial injury.

chronic pulmonary disease (27.6 vs. 13.6%, p = 0.029), and
chronic kidney disease (27.9 vs. 10.7%, p = 0.006). Among
the patients with myocardial injury, 3/58 (5.17%) had acute
coronary syndrome.

In the overall population, 41/161 patients (25.5%) were
admitted to the intensive care unit during the hospitalization,
and the median hospital stay was 14 (7–23 IQR) days. A total
of 121/161 patients (75.2%) developed ARDS, which was
significantly more frequent among patients with myocardial
injury (86.2 vs. 68.9%, p = 0.015). In-hospital mortality was 21%
(34/161 of the overall population) and 46.6% (27/58 of patients
with myocardial injury).

Myocardial injury

A significant correlation was found between hs Troponin I
and MR-proADM levels (Spearman r = 0.569, p < 0.001). An
MR-proADM value ≥ 1.19 nmol/L was defined as the optimal
cut-off to identify patients with myocardial injury. This cut-off
had 81.0% of sensitivity and 73.5% of specificity.

As reported in Table 2, patients with myocardial injury at
admission showed significantly higher values of MR-proADM,
CRP, ferritin, PCT, and neutrophil/lymphocyte ratio. At ROC
curve analysis, all laboratory markers were able to discriminate
between patients with and without myocardial injury (Figure 1
and Table 3). However, MR-proADM showed the greatest
area under the curve ([AUC] 0.818, 95% CI = 0.750–0.875;

p < 0.001). Pairwise comparison showed that the AUC of MR-
proADM was significantly greater than the AUC of ferritin
(p = 0.010) and neutrophil/lymphocyte ratio (0.021), but similar
to that of CRP and PCT.

Predictors of myocardial injury

At univariate analysis (Table 4), age, hypertension, a
history of coronary artery disease, chronic pulmonary disease,
chronic kidney disease, and MR-proADM ≥ 1.19 nmol/L were
significantly associated with an increased risk of myocardial
injury. In the multivariate analysis (Table 4), an MR-proADM
value of ≥1.19 nmol/L was an independent predictor of
increased risk of myocardial injury (OR = 7.25, 95% CI = 2.93–
17.9, p < 0.001).

Predictors of death

Overall, 30-day death occurred in 34 (21.1%) patients and
was significantly more frequent among those with myocardial
injury (46.6 vs. 6.8%, p< 0.001). In the ROC curve analysis, MR-
proADM was able to discriminate between patients who died
and those who did not (AUC = 0.822, 95% CI = 0.751–0.877;
p < 0.001; optimal cut-off ≥ 1.19 nmol/L). Among patients
with MR-proADM values ≥ 1.19 nmol/L (n = 72), the incidence
of death was significantly higher compared with those patients
with low MR-proADM values (40.3 vs. 5.9%, p < 0.001). Also,
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TABLE 3 Receiver operating characteristic (ROC) curves of laboratory markers for myocardial damage and pairwise comparison between
mid-regional proAdrenomedullin (MR-proADM), C-reactive protein, ferritin, procalcitonin, and neutrophil/lymphocyte ratio.

AUC 95% CI P-value (vs MR-proADM) Optimal cut-off

MR-proADM 0.818 0.750–0.875 – 1.19 nmol/L

CRP 0.786 0.713–0.858 0.386 5.67 mg/dL

Ferritin 0.669 0.578–0.761 0.010 1,403 ng/mL

PCT 0.752 0.672–0.832 0.131 0.1 ng/mL

Neutrophil/Lymphocyte ratio 0.698 0.611–0.783 0.021 12.67

TABLE 4 Logistic regression analysis for myocardial injury.

Univariate analysis Multivariate analysis

OR 95%CI P-value OR 95%CI P-value

Age 1.06 1.03–1.10 < 0.001 1.03 0.99–1.07 0.123

Hypertension 2.08 1.01–4.27 0.046 1.07 0.42–2.76 0.882

Coronary artery disease 2.45 1.13–5.29 0.023 1.18 0.45–3.10 0.743

Chronic kidney disease 3.19 1.36–7.45 0.008 1.28 0.47–3.51 0.631

Chronic pulmonary disease 2.42 1.08–5.42 0.031 1.54 0.56–4.26 0.400

MR-proADM ≥ 1.19 nmol/l 11.4 5.21–25.14 < 0.001 7.25 2.93–17.9 < 0.001

OR, odds ratio; CI, confidence interval.

when only considering patients with myocardial injury, MR-
proADM was able to discriminate between patients who died
and those who did not (AUC = 0.690, 95% CI = 0.551–0.820;
p = 0.007; optimal cut-off ≥ 4.01 nmol/L). This cut-off had
40.7% of sensitivity and 89.7% of specificity.

When dividing the entire study population in four groups
based on the presence of myocardial injury and MR-proADM
values, 75 patients (46.6%) had no myocardial injury and MR-
proADM < 1.19 nmol/L, 11 patients (6.8%) had a myocardial
injury and MR-proADM < 1.19 nmol/L, 28 patients (17.4%)
had no myocardial injury and MR-proADM ≥ 1.19 nmol/L,
and 47 patients (29.2%) had a myocardial injury and MR-
proADM ≥ 1.19 nmol/L. Death occurred in 3/75 (4.0%), 2/11
(18.2%), 4/28 (14.2%), 25/47 (53.2%), respectively (p < 0.001;
Figure 2).

In the univariate analysis (Table 5), age, ARDS, myocardial
injury, MR-proADM values of ≥1.19 nmol/L, and the
combination of myocardial injury and MR-proADM values
of ≥1.19 nmol/L were significantly associated with an increased
risk of death.

When myocardial injury and MR-proADM values of ≥1.19
nmol/L were entered separately in the same multivariate model,
myocardial injury (OR = 4.87, 95% CI = 1.63–14.52, p = 0.005)
and ARDS (OR = 10.58, 95% CI = 1.26–88.95, p = 0.030) were
independent predictors of increased risk of death (Table 5). In a
separate model, the combination of myocardial injury and MR-
proADM values ≥ 1.19 nmol/L was an independent predictor
of death with an OR of 7.82 (95% CI = 2.87–21.30, p < 0.001;
Table 5).

FIGURE 2

Incidence of in-hospital death according to the presence of
myocardial injury and mid-regional proAdrenomedullin
(MR-proADM) values of ≥1.19 nmol/L.

Discussion

The epidemiological data on myocardial injury in the
literature is discordant. In the same way, the pathophysiological
mechanism of myocardial injury onset is still unclear.

Consistent with the published data, 36% of the study
population developed myocardial injury (11, 12). Among this
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TABLE 5 Logistic regression analysis for death.

Univariate analysis Multivariate analysis Multivariate analysis

OR 95%CI P-value OR 95%CI P-value OR 95%CI P-value

Age 1.06 1.02–1.10 0.003 1.03 0.98–1.08 0.317 1.04 0.99–1.09 0.122

ARDS 14.93 1.97–113.21 0.009 10.58 1.26–88.95 0.030 10.74 1.27–91.10 0.029

Myocardial injury 12.50 4.93–31.68 < 0.001 4.87 1.63–14.52 0.005

MR-proADM ≥ 1.19 nmol/L 10.79 3.90–29.89 < 0.001 3.39 0.96–12.02 0.058

MInj/MR-proADM ≥ 1.19 nmol/L 14.31 5.82–35.18 < 0.001 7.82 2.87–21.30 < 0.001

OR, odds ratio; CI, confidence interval; MInj, myocardial Injury.

group of patients, 27/58 (46.6%) died, in comparison with the
60% described in the literature (11, 12).

The mortality of patients with myocardial injury
with both elevated values of hs Troponin I and MR-
proADM ≥ 1.19 nmol/L reached 53.2% vs. mortality of
14.8% in the case of the elevated value of hs Troponin I
only. Furthermore, the elevation of both biomarkers allowed
the identification of patients with myocardial injury at
higher mortality risk. In fact, if they were both negative the
mortality was only 4%, but if both of them were positive, the
mortality reached 53.2%.

These results agree with previous reports, where MR-
proADM ≥ 2 nmol/L identified those patients affected by
moderate/severe COVID-19 with high mortality risk related to
multiple organ dysfunction syndrome, while values ≥3 nmol/L
were predictive for ARDS development (4).

While an MR-proADM value of ≥1.19 nmol/L allows
identifying patients with myocardial injury with high sensitivity
and specificity, an MR-proADM value of ≥4.01 nmol/L allows
identifying patients with myocardial injury at high risk of death
with high specificity.

Therefore, the dosage of MR-proADM allows stratifying
patients with myocardial injury at high risk of death by
identifying patients who may also benefit from therapy
with adrecizumab.

The median value of hs Troponin I in case of myocardial
injury resulted in 83 vs. 11 ng/L of the overall population. Some
studies had reported an optimal cut-off of 17 ng/L for Troponin
T to predict mortality and of 0.03 µg/L for Troponin I in
COVID-19 patients with cardiovascular disease (15, 28). These
data suggest a role of hs Troponin I, not only as a marker of
ischemia but also as a relevant biomarker of global stress for
myocardial injury. In this way, hs Troponin I could be used to
guide the prognosis and clinical management of the patients.

Our study shows that MR-proADM ≥ 1.19 nmol/L expresses
myocardial injury with high diagnostic accuracy (sensitivity 81%
and specificity 73.5%) when compared to ferritin and NLR ratio.

Of all bio-markers, MR-proADM was found to be
the most specific of myocardial injury and SARS-CoV-2-
related mortality.

MR-proADM ≥ 1.19 nmol/L has been shown to be an
independent predictor of increased risk of myocardial injury
and it has been significantly associated with risk factors of
myocardial injury such as age, hypertension, history of coronary
artery disease, and chronic pulmonary or kidney disease.

Age ≥ 65 years, male sex, and multicomorbidities increase
the possibilities for developing severe SARS-CoV-2 infection,
while pre-existing cardiovascular diseases, such as hypertension,
diabetes mellitus, coronary artery disease, and heart failure, are
associated with a worse prognosis (10, 14, 29–31).

Myocardial injury and MR-proADM ≥ 1.19 nmol/L were
independent predictors of death (p < 0.001).

According to the literature, myocardial injury was also a
predictor of in-hospital mortality.

Also, considering that acute cardiac injury in patients
who died of COVID-19 has been reported in 35%, with
detection of SARS-CoV-2 within the myocardium in 47%
of post-mortem studied hearts (2, 5–7). Furthermore,
one-third of severely ill COVID-19 patients develop
acute kidney failure. Many of them require hemodyalitic
procedures. This complication could weaken the diagnostic
accuracy of Troponin value in the assessment of cardiac
injury (10). It would be desirable to evaluate in further
studies the combined dosage of hs Troponin I and MR-
proADM, which could allow us to estimate with greater
accuracy the real incidence of myocardial injury also in the
absence of chest pain, troponin assessment, or evaluation of
myocardial contractility.

The study has the limitation of being a single-center study
and therefore the data obtained should be further confirmed by
multicentric studies.

To our knowledge, this is one of the few studies that
focused on the correlation between myocardial injury and MR-
proADM. Values of MR-proADM ≥ 1.19 nmol/L correlate with
myocardial injury and widespread endothelitis severity.

A myocardial injury might occur during SARS-CoV-2
infection as a consequence of myocardial, pulmonary, and
endothelial damage. The mechanisms involved are represented
by hypoxia that induces a decreased oxygen supply to the heart,
causing modest or massive elevation of Troponin concentration,
which is not necessarily correlated with deterioration of systolic
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left ventricular function but could be associated with right
ventricular dysfunction due to acute right ventricular overload
secondary to parenchymal or vascular lung disease resulting
in subendocardial damage of the right ventricular myocardium
in 19% of cases and by cytokine-induced injury (10, 15, 28,
32–35).

Adrenomedullin (ADM) is a protein that is released
by endothelial and vascular smooth muscle cells following
volume overload with the aim to preserve the endothelial
barrier function. It binds to receptors prevalently found
in cardiovascular and pulmonary systems (36–38).
ADM induces vasodilatation, with consequent blood
flow increase by reducing vasoconstriction acting as an
inhibitor of the renin–angiotensin–aldosterone system
(RAS). Furthermore, ADM contributes to endothelial
integrity decreasing vascular permeability and acts as
a bronchodilator.

Hypoxia, inflammatory cytokines, bacterial or viral
products, shear stress, and vascular leakage represent stimuli
for ADM up-regulation as it happens during SARS-CoV-2
infection, contributing to the failure of the ADM regulation (4,
39–41).

Disruption of the ADM system leads to (1) decrease of
vascular resistance and capacitance vessels determining blood
flow increase with hypoxic cardiac ischemia. (2) RAS activity
reduces vasoconstriction, which leads to vascular leakage,
increasing inflammation, and activation of the coagulation
cascade. Additionally, RAS activation increases edema,
oxidation, proliferation, and fibrosis, resulting in hypoxic
cardiac ischemia and diffuse endothelitis that can lead to
multiorgan failure (4, 42–50).

The mid-regional proAdrenomedullin (MR-proADM) is a
peptide derived from ADM in a 1:1 ratio that can be used as
a biomarker of organ failure, disease severity, and mortality in
patients with COVID-19 (4, 51).

The alterations in endothelial cell lining are adaptive or
maladaptive depending on disease extension, the time elapsed
from disease onset, long-lasting viral shedding, and the host’s
genetic heritage that expresses more or less ADM receptors,
determining the extent of the immune-metabolic-inflammatory
response. Instead, SARS-CoV-2 loads or variants have not
so far indicated to influence the extent of organ damage (1,
52, 53).

Therefore, the role of ADM in COVID-19-related organ
damage might suggest the use of new therapeutic agents,
such as monoclonal antibodies. Adrecizumab, a humanized,
monoclonal, non-neutralizing ADM-binding antibody could
be used to improve vascular integrity, tissue congestion, and
thereby clinical outcomes (18, 19).

Furthermore, the high incidence of myocardial injury
caused by SARS-CoV-2 corresponds to that observed
in other viral infections, such as Influenza, in which
myocardial damage was detected as asymptomatic cardiac

involvement in 0–53% of cases, with the presence of
electrocardiogram alterations on roughly 50% of patients
or highlighted post-mortem by the presence of myocarditis,
pericarditis or acute coronary syndrome (14, 15, 54–58). Viral
infections, indeed, can determine endothelial dysfunction
up to apoptosis rousing coronary vasoconstriction and
procoagulant state causing activation of plaque to hemodynamic
instability (59).

Vaccination represents the best preventive method for both
adults and children with effectiveness rates of 65–95 vs. 50–
60% for Influenza, respectively, mostly in high-risk patients
(>65 years, young children, presence of comorbidities, and
immunocompromised patients), and it could be useful to
prevent cardiovascular damage reducing mortality (59–65).

Conclusion

Myocardial injury induced by SARS-CoV-2 is relevant.
The elevation of hs Troponin I and MR-proADM allows

the identification of patients with myocardial injury at
higher mortality risk.

An MR-proADM value of ≥1.19 nmol/L identifies
patients with myocardial injury, and a MR-proADM value
of ≥4.01 nmol/L identifies patients with myocardial injury at
high risk of death.

Therefore, the dosage of MR-proADM allows stratifying
patients with myocardial injury at high risk of death to offer the
best management to critically ill COVID-19 patients.
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Circulating tissue inhibitor of
metalloproteinases 1 (TIMP-1) at
COVID-19 onset predicts
severity status
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Valeria Valente1, Ivan Gentile3, Antonio Cittadini1,
Ilaria Mormile1, Mauro Mormile3 and Giuseppe Portella1

1Department of Translational Medical Science, University of Naples Federico II, Naples, Italy,
2Department of Public Health, University of Naples Federico II, Naples, Italy, 3Department of Clinical
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Background: Systemic biomarkers for severity of SARS-CoV-2 infection are

of great interest. In this study, we evaluated a set of collagen metabolites

and extracellular matrix remodeling biomarkers including procollagen type

III amino terminal propeptide (PIIINP), tissue inhibitor of metalloproteinases

1 (TIMP-1) and hyaluronic acid (HA) as prognostic indicators in COVID-

19 patients.

Methods: Ninety COVID-19 patients with the absence of chronic liver diseases

were enrolled. Serum PIIINP, TIMP-1, and HA were measured and correlated

with inflammatory indices and clinical variables. Patients were stratified for

disease severity according to WHO criteria in two groups, based on the

requirement of oxygen support.

Results: Serum TIMP-1, but not PIIINP and HA was significantly higher in

patients with WHO score ≥5 compared to patients with WHO score <5

[PIIINP: 7.2 (5.4–9.5) vs. 7.1 (4.5–9.9), p = 0.782; TIMP-1: 298.1 (20.5–460)

vs. 222.2 (28.5–452.8), p = 0.01; HA: 117.1 (55.4–193.7) vs. 75.1 (36.9–141.8),

p = 0.258]. TIMP-1 showed moderate correlation with CRP (r = 0.312,

p = 0.003) and with LDH (r = 0.263, p = 0.009). CRP and serum LDH levels

were significantly higher in COVID-19 patients with WHO score ≥5 compared

to the group of patients with WHO score < 5 [15.8 (9–44.5) vs. 9.3 (3.4–33.8),

p = 0.039 and 373 (282–465) vs. 289 (218–383), p = 0.013, respectively].

Conclusion: In patients with COVID-19, circulating TIMP-1 was associated

with disease severity and with systemic inflammatory index, suggesting that
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TIMP-1 could represent a promising non-invasive prognostic biomarker in

COVID-19 patients. Interestingly, our results prompted that serum TIMP-1

level may potentially be used to select the patients for therapeutic approaches

targeting matrix metalloproteases pathway.

KEYWORDS

COVID-19, fibrosis, TIMP-1, collagen metabolites, extrcellular matrix remodelling
biomarkers

Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) is the infective agent responsible for Coronavirus
Disease 2019 (COVID-19). SARS-CoV-2 stimulates the immune
system leading to cytokine storm (1) with markedly increased
levels of several cytokines as IL–1α, IL-1β, IL-6, and TNF-
α (2). In addition, an increase of neutrophils count and
decreased count of lymphocytes have been observed (3).
COVID-19 infection also leads to ROS generation (4) and
coagulation cascade favoring the risk of thrombosis (5). Some
subjects infected by SARS-CoV-2 developed a broad range of
pathologies including not only pneumonia, acute respiratory
distress syndrome (ARDS), respiratory failure but also systemic
inflammation and multiorgan failure (1). Severe COVID-19
was associated with massive alveolar damage with loss of
lung architecture, leading to ventilatory failure. A recently
published article (6) reported two types of lung fibrosis after
COVID-19. The first with a diffuse fibrotic alveolar damage
is characterized by extracellular matrix deposition resulting
in fibrosis; these patients require intubation, mechanical
ventilation and/or extracorporeal membrane oxygenation
(ECMO). The second is the post-COVID pulmonary fibrosis,
diagnosed by the combination of clinical, radiological, and
pathological information. In about 25% of patients with severe
COVID-19 disease (WHO Severity Grade 3 and 4), a restrictive
ventilatory defect was revealed. Thus, there is a compelling
clinical need to identify circulating fibrosis markers in COVID-
19. Ideally, these markers should be non-invasive, able to mirror
the extent of fibrosis and to reflect disease progression and
therapeutic response. SARS coronavirus induced up-regulation
of Type I collagen, leading to pulmonary pro-fibrotic responses
(7). Thus, collagen metabolism plays a key role in COVID-19
clinical picture. Several blood parameters have been evaluated
as predictors of COVID-19 severity. However, at present,
still no validated biomarkers are reliably used in routine
clinical practice.

Procollagen type III amino terminal propeptide is the
peptide released during the biosynthesis and depositing of
type III collagen (8). TIMP-1 is an inhibitor specific for

extracellular matrix (ECM) degradation enzymes (9). HA is a
glycosaminoglycan engaged in the formation of ECM (10).

Elevated serum levels of PIIINP, HA or TIMP-1 were found
to be increased in other diseases, such as in patients with
systemic sclerosis (SSc) (11). High levels of PIIINP and HA were
demonstrated to be unfavorable predictors for survival in SSc
suggesting that these markers could be useful to predict other
fibrotic lesions (12).

In this study we investigated the potential role of PIIINP, HA
and TIMP-1 as prognostic markers in COVID-19 patients.

Materials and methods

Patients

We enrolled 90 adult hospitalized patients with a diagnosis
of SARS-CoV-2 infection, confirmed by molecular analysis (RT-
PCR) of the nasopharyngeal swab (13).

Patients were stratified for COVID-19 disease severity based
on WHO scale (14). According to this classification patients
were classified as: (1), asymptomatic, not hospitalized (2),
symptomatic, not hospitalized, independent; (3), symptomatic,
not hospitalized, assistance needed; (4), hospitalized, not
requiring supplemental oxygen; (5), hospitalized, requiring
oxygen by non-invasive mechanical ventilation (mask or nasal
prongs); (6–9), hospitalized, requiring high-flow oxygenation
and/or invasive mechanical ventilation; and 10, death.

Our study population was divided according to the severity
of COVID-19 at the time of sampling into the following
groups: (1) hospitalized COVID-19-positive patients requiring
no respiratory support or oxygen support only (WHO ≤5); (2)
hospitalized COVID-19-positive patients requiring invasive or
non-invasive mechanical ventilation (WHO > 5).

The study was conducted in compliance with the
Declaration of Helsinki. The protocol was approved by
the Ethical Committee of the University Federico II of Naples
(prot. no. 140/20). Informed consent was obtained from all
individuals. At the time of sampling, laboratory parameters,
clinical and demographic data were recorded.

Frontiers in Medicine 02 frontiersin.org

74

https://doi.org/10.3389/fmed.2022.1034288
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1034288 November 23, 2022 Time: 17:57 # 3

Brusa et al. 10.3389/fmed.2022.1034288

Biomarkers

Fasting blood samples were obtained. Sera were frozen and
stored at −80◦C until measurements. Samples were assayed
in an automated analyzer that performs magnetic separation
enzyme immunoassay tests (ADVIA Centaur; Siemens
Healthcare Diagnostics, Tarrytown, NY, United States) for
Hyaluronic acid (HA), amino-terminal propeptide of type-III-
procollagen (PIIINP) and tissue inhibitor of metalloproteinase
type-1 (TIMP-1).

Statistical analysis

All statistical analyses were performed using the R
platform version 4.1.2. Standard descriptive statistics were
used to describe the cohort: mean ± standard deviation
(range) or median (25th; 75th percentile) (range) in case of
numerical variables and absolute frequency with percentages for
categorical factors. Accordingly, between-group comparisons
were assessed using the t-test for independent samples,
the Mann-Whitney U-test and the Chi-square test (or the
Fisher exact test when appropriate). Median regression with
bootstrapped standard errors was used to adjust the analysis for
potential confounding factors.

Results

A total of 90 COVID-19 patients (43 female and 47 male)
were enrolled and classified for disease severity based on World
Health Organization (WHO) stage. 68 (75.6%) COVID-19
patients with a WHO score <5 and 22 (24.4%) with a WHO
score >5. Demographic and clinical features are showed in
Table 1. Mean age was 58.6 ± 15.4 (range: 38–62) years, patients
with WHO score >5 were significantly older than patients with
WHO score <5 (p = 0.013); no differences in comorbidities at
baseline were observed between the two groups. Median disease
duration (time length to negativization) was 23 days (range 5–
72 days) days with a longer disease duration in patients with a
WHO score >5. In the overall cohort, 37 (41.6%) patients had a
time length of negativization <21 days and 52 (58.4%) >21 days.

Patients were classified also for High-Resolution Computed
Tomography (HRCT) score, resulting in 54 subjects (60%) with
a score <10 and 36 (40%) >10. Of note, lymphocyte number
was significantly lower in patients with HRCT score >10 [670
(270–2540) vs. 880 (260–3350); p = 0.026).

Serum TIMP-1 levels were significantly higher in patients
with WHO score >5 than in those with a WHO score ≤5
[TIMP-1: 222.2 (20.5–460) vs. 298.1 (28.5–452.8), p = 0.010] and
the difference was confirmed after adjusting the analysis for the
age of patients through median regression (p = 0.003). On the
contrary, no statistically significant difference was observed in

serum PIIINP and HA between patients with severe and mild
disease [PIIINP: 7.2 (1.1–18.4) vs. 7.1 (1.2–47.5), p = 0.782; HA:
117.1(4.7–331.1) vs. 75.1 (8.3–1345.9), p = 0.258; Figure 1].

As shown in Table 2, LDH and CRP values were significantly
higher in patients with severe disease [LDH: 373 (193–670) vs.
289 (111–741), p = 0.013; CRP: 15.8 (1.3–222.5) vs. 9.3 (0.3–
132.6), p = 0.039]. Table 3 showed that serum PIIINP, HA and
TIMP-1 positively correlated with LDH levels (PIIINP: r = 0.264,
p = 0.009, HA: r = 0.267, p = 0.008; TIMP-1: r = 0.263, p = 0.009).

Serum PIIINP and HA negatively correlated with albumin
values (PIIINP: r = −0.362, p < 0.001; HA: r = −0.387,
p < 0.001); circulating TIMP-1 levels positively correlated with
CRP values (r = 0.312, p = 0.003).

Discussion

Our study highlighted the significant positive correlation
between changes of TIMP-1 and disease severity based on WHO
classification, suggesting that TIMP-1 could serve as a non-
invasive biomarker for prognosis in COVID-19.

Metzemaekers et al. (15) reported significantly higher
levels of plasmatic tissue inhibitor of metalloproteinase 1
(TIMP-1) and of TIMP-1/MMP-9 complexes and significantly
lower circulating total MMP activity in COVID-19 patients at
intensive care unit (ICU) admission.

Our data showed that serum TIMP-1 in SARS-CoV-2
infected patients correlates with the WHO score and the
CRP values, but not with HRCT score and time length
of negativization.

These findings may reflect peculiar aspect of the
involvement of TIMP-1 in the fibrotic process: TIMP-1
represent decreased collagen degradation and was a strong
predictor of early fibrosis (16).

Considering the short disease duration and moderate
disease severity of most of our study population, our data
indicated that TIMP-1 could be a useful marker of fibrotic
burden and disease prognosis in patients with COVID-19
at initial diagnosis. Several molecular mechanisms involving
matrix metalloproteases pathway have been identified as
relevant players in the clinical picture of COVID-19 (17). It has
been recently shown that matrix metalloproteinase-9 (MMP-9)
gene expression is increased in subjects infected with SARS-
CoV-2 (18) and circulating MMP-9 levels were significantly
associated with the risk of respiratory insufficiency (19) and
with severity in COVID-19 patients (20). In fact, some authors
previously demonstrated that metalloproteinases (MMPs) seem
to play a key role in lung disease (21, 22). Severe COVID-19
shared many characteristics with sepsis (23) and plasma MMP-
9 and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1)
have been also proposed as septic biomarkers (24, 25).

Other authors showed that periodontitis and diabetes have
been associated with COVID-19 poor outcomes and both these

Frontiers in Medicine 03 frontiersin.org

75

https://doi.org/10.3389/fmed.2022.1034288
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1034288 November 23, 2022 Time: 17:57 # 4

Brusa et al. 10.3389/fmed.2022.1034288

TABLE 1 Clinical and demographical characteristics of the study cohort stratified according to the World Health Organization (WHO)
score at baseline.

Overall (n = 90) WHO score ≤5 (n = 68; 75.6%) WHO score >5 (n = 22; 24.4%) P-value

Age (years) 58.6 + −15.4 (20.6–93.9) 57.3 + −16.1 (20.6–86.9) 65.8 + −12.6 (39.3–93.9) 0,013

COPD 8 (11.9) 5 (10) 3 (17.6) 0,684

Diabetes 17 (25.4) 12 (24) 5 (29.4) 0,749

Hypertension 17 (25.4) 12 (24) 5 (29.4) 0,749

Arhythmias 3 (4.5) 2 (4) 1 (5.9) 1

Time to negativization; days 23 (19; 33) (5–72) 22 (18; 31) (5–72) 30 (21; 41) (9–51) 0,045

HRCT score 0,176

≤10 54 (60) 44 (64.7) 10 (45.5) −

>10 36 (40) 24 (35.3) 12 (54.5) −

Data are expressed as mean ± standard deviation (range); median (25th; 75th percentile) (range) or absolute frequency (percentage). COPD, chronic obstructive pulmonary disease;
HRCT, High Resolution Computed Tomography. Bold values indicate the strong correlation.

FIGURE 1

Box-plot showing serum procollagen type III amino terminal propeptide (PIIINP), Hyaluronic acid (HA), and tissue inhibitor of metalloproteinases
1 (TIMP-1) levels in patients with Coronavirus Disease 2019 (COVID-19) stratified according to the WHO score at baseline. Boxes are defined by
Q1, Median (bold line) and Q3. Whiskers reach the minimum and the maximum of the distribution except for the presence of outliers, defined as
data points below Q1–1.5*IQR or above Q3 + 1.5*IQR. To avoid overlapping a small amount of horizontal jitter was added. Q1, First quartile; Q3,
Third quartile; IQR = Q3–Q1.

diseases have been correlated with elevated MMP-8 levels (26,
27), further highlighting the role of MMPs as key players in
COVID-19 risk and escalation.

Tissue damage during SARS-CoV-2 lung infection is
associated with activation of members of the MMPs family
(28, 29). Targeting MMPs pathway has been proposed as
therapeutic strategy to counterbalance the host marked pro-
inflammatory response to the SARS-CoV-2 infection (30). In
addition of being MMP-inhibitor, TIMP-1 is independently
proinflammatory and pro-growth-factor (31–33). Thus,
the measurement of circulating TIMP-1 levels could be
useful to assess the prognosis and to adopt a personalized
treatment approach.

Serum PIIINP, TIMP-1, and HA are combined to calculate
the Enhanced Liver Fibrosis (ELF) score, initially developed

from a chronic liver disease cohort (34–36). Thus, it was
expected that the algorithm was not readily applicable to
COVID-19. Nevertheless, our results suggest the need to derive
a COVID-specific algorithm based on the clinical performance
of single analytes markers in SARS-CoV-2 infected subjects.

It should also be considered that serum collagen metabolites
may be affected by age, diet and disease duration (16, 37). Thus,
to prevent results misinterpretation, they could be better used
for within-individual changes during follow-up.

This study has several limitations. First, the study population
is small, second, data on the correlation of TIMP-1 levels and
specific treatment are lacking, third, serial measurements to
assess longitudinal modifications of serum collagen markers
according to fibrotic changes are not available. Thus, larger
samples are needed to obtain a better evaluation of TIMP-1
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TABLE 2 Distribution of blood parameters in patients stratified according to their World Health Organization (WHO) score at baseline.

WHO score ≤5 (n = 68; 75.6%) WHO score >5 (n = 22; 24.4%) P-value

Hb g/dL 12.7 + −2.1 (7.7–18.1) 12.6 + −2.5 (7.6–16.1) 0,839

WBC (cells/µl) 6,565 (4,660; 9212.5) (2,380–17,090) 7,765(5682.5; 10147.5) (4210–21,150) 0,131

Neutrophils (N/mmc) 5,525 (3,545; 7,735) (1,000–13,600) 6,200 (4,385; 8007.5) (3,680–19,200) 0,064

Lymphocytes (N/mmc) 845 (602.5; 1267.5) (260–2,970) 635 (465; 1037.5) (270–3,350) 0,069

Platelets (cell/µL) 225,000 (185,500; 282,000) (55,000–363,000) 234,000 (134,750; 295,250) (31,000–607,000) 0,974

Fibrinogen (mg/dl) 581.7 + −173.2 (283–1,000) 563.2 + −187.2 (260–1,000) 0,685

INR 1.1 (1.04; 1.22) (0.8–3.84) 1.1 (1.03; 1.19) (0.8–1.33) 0,622

D-Dimer (mg/l) 1.02 (0.56; 1.69) (0.04–18.99) 0.94 (0.43; 2.38) (0.18–25.56) 0,794

Albumin (g/dl) 3.5 + −0.5 (2.6–4.5) 3.6 + −0.5 (2.5–5) 0,562

Total bilirubin mg/dl 0.65 (0.45; 0.85) (0.21–5.09) 0.74 (0.5; 1.06) (0.26–1.54) 0,289

Direct bilirubin mg/dl 0.29 + −0.13 (0.1–0.76) 0.34 + −0.17 (0.1–0.69) 0,255

Ferritin (ng/ml) 533.5 (267.8; 744.5) (40–2,000) 488 (149; 820) (39–2,000) 0,816

AST U/L 25 (20; 33.5) (9–141) 29 (23.5; 35.5) (8–176) 0,135

ALT U/L 27 (19; 42) (7–177) 35 (21.5; 55) (9–474) 0,318

LDH U/L 289 (218; 383) (111–741) 373 (281.8; 465) (193–670) 0,013

hsCRP mg/L 9.3 (3.4; 33.8) (0.3–132.6) 15.8 (9; 44.5) (1.3–222.5) 0,039

IL-6 (pg/ml) 13.2 (7.2; 28.5) (2.3–63.4) 19.6 (6.3; 59.9) (3.5–258) 0,276

Data are expressed as mean ± standard deviation (range); median (25th; 75th percentile) (range) or absolute frequency (percentage). Hb, haemoglobin; WBC, white blood cells; INR,
international normalized ratio; AST, aspartate transaminase; ALT, alanine transaminase; LDH, Lactate dehydrogenase; hsCRP, high sensitive C-reactive protein; IL-6, interleukin-6. Bold
values indicate the strong correlation.

TABLE 3 Correlation among procollagen type III amino terminal propeptide (PIIINP), Hyaluronic acid (HA), and tissue inhibitor of
metalloproteinases 1 (TIMP-1) with inflammatory markers.

HA PIIINP TIMP-1

Fibrinogen −0.162 (0.124) −0.05 (0.638) 0.151 (0.152)

hsCRP 0.147 (0.175) 0.162 (0.134) 0.312 (0.003)

Ferritin −0.028 (0.816) 0.084 (0.48) −0.053 (0.657)

IL-6 −0.003 (0.986) 0.008 (0.959) 0.082 (0.61)

albumin −0.387 (<0.001) −0.362 (<0.001) −0.177 (0.079)

LDH 0.267 (0.008) 0.264 (0.009) 0.263 (0.009)

Bold values indicate the strong correlation.

levels circulating levels as a prognostic biomarker in COVID-
19 patients and to investigate its potential role in monitoring
therapeutic response in different treatment subgroups of
COVID-19 patients.

In conclusion, our study shed new light on the potential
clinical utility of serum collagen metabolites and extracellular
matrix remodeling as suitable markers of disease severity in
COVID-19 patients. We unveil that changes in serum TIMP-
1 significantly correlate with changes in clinical outcome.
Collagen metabolites and extracellular matrix remodeling
markers are worthy of further studies to assess their potential
as prognostic and predictive biomarkers in COVID-19 patients.
The identification of a COVID-specific index reflecting the
fibrotic process in SARS-CoV-2 patients is strongly encouraged
for its potential as a disruptive tool for clinical management.
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Background and aim: In acute severe COVID-19, patients present with lung

inflammation and vascular injury, accompanied by an exaggerated cytokine

response. In this study, our aim was to describe the inflammatory and vascular

mediator profiles in patients who were previously hospitalized with COVID-19

pneumonitis, months after their recovery, and compare them with those in patients

recovering from severe sepsis and in healthy controls.

Methods: A total of 27 different cytokine, chemokine, vascular endothelial injury and

angiogenic mediators were measured in the plasma of forty-nine patients 5.0 ± 1.9

(mean ± SD) months after they were hospitalized with COVID-19 pneumonia, eleven

patients 5.4 ± 2.9 months after hospitalization with acute severe sepsis, and 18

healthy controls.

Results: Compared with healthy controls, IL-6, TNFα, SAA, CRP, Tie-2, Flt1, and

PIGF were significantly increased in the post-COVID group, and IL-7 and bFGF were

significantly reduced. While IL-6, PIGF, and CRP were also significantly elevated in

post-Sepsis patients compared to controls, the observed differences in TNFα, Tie-2,

Flt-1, IL-7 and bFGF were unique to the post-COVID group. TNFα levels significantly

correlated with the severity of acute COVID-19 illness (spearman’s r = 0.30, p < 0.05).

Furthermore, in post-COVID patients, IL-6 and CRP were each strongly negatively

correlated with gas transfer factor %predicted (spearman’s r = –0.51 and r = –0.57,

respectively, p < 0.002) and positively correlated with computed tomography (CT)

abnormality scores at recovery (r = 0.28 and r = 0.46, p < 0.05, respectively).

Conclusion: A unique inflammatory and vascular endothelial damage mediator

signature is found in plasma months following acute COVID-19 infection. Further

research is required to determine its pathophysiological and clinical significance.
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Introduction

Clinical outcomes in acute coronavirus disease 2019 (COVID-
19) are highly dependent upon the cytokine response in the
host (1). The entry of SARS-Cov-2 virions into pulmonary
epithelial cells via the angiotensin converting enzyme (ACE2),
triggers a wave of pro-inflammatory cytokines and chemokines
(2). In the healthy immune response infected cells are cleared
and this inflammatory cascade recedes. In patients with more
severe disease, however, an exaggerated elevation of these mediators
has been observed, termed “cytokine release syndrome” (1, 3–5),
which may lead to immunopathogenesis by causing tissue damage.
These inflammatory pathways are the target of several successful
treatments in the acute setting, such as dexamethasone and the
anti-IL6R monoclonal antibody tocilizumab (6, 7). In addition, the
vascular endothelium is also dysregulated in acute COVID-19 and
microvascular thrombosis and endothelial inflammation contribute
significantly to the pathology (8–10).

Contrary to the acute effects, our understanding of the longer-
term effects of COVID-19 on inflammatory mediators and vascular
function remains opaque, and other follow-up studies often have
lacked an appropriate control group (11, 12). In this study, we
examine levels of cytokine, chemokine and markers of vascular injury
and angiogenesis in the peripheral blood of patients recovering from
COVID-19 pneumonia many months after their acute infection, and
compare their profiles to those of patients recovering from severe
sepsis and to those of healthy controls.

Methods

Our post-COVID cohort consisted of 49 patients [aged
60 ± 9 years (mean ± SD), 13 females] from whom venous blood was
collected 5.0 ± 1.9 months after hospitalization with acute COVID-19
pneumonia. These patients were recruited from a post-COVID-
19 follow-up respiratory clinic, having previously been hospitalized
with acute COVID-19 pneumonia in the period between March
2020 and Jan 2021. For comparison, blood was obtained from a
group of 11 patients 5.4 ± 2.9 months after hospitalization with
severe sepsis (age 66 ± 17 years, seven females) (13) and 18 healthy
control participants (age 47 ± 16 years, two females). Plasma was
obtained by centrifugation of blood collected in EDTA-lined tubes
and stored at –80◦C prior to measurement of 27 different cytokine,
chemokine, angiogenic and vascular injury markers [Meso Scale
Discovery (MSD) V-PLEX multiplex assays using a Meso-Scale
Discovery SQ120 device]: Interferon gamma, Interleukin 1B (IL-
1B), IL-4, IL-6, IL-10, Tumor Necrosis Factor alpha (TNF alpha),
Granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-
17A, Interleukin 12 (IL-12/23p40), IL-7, Macrophage Inflammatory
protein 1A (MIP-1A), MIP-1B, Monocyte Chemoattractant Protein 1
(MCP-1), MCP-4, Interferon-inducible protein 10 (IP-10), Thymus
and activation regulated chemokine (TARC), Vascular Endothelial
Growth Factor A (VEGF-A), VEGF-C, VEGF-D, Placental Growth
Factor (PIGF), Vascular Endothelial Growth Factor Receptor 1
(Flt-1), Angiopoietin 1 receptor (Tie-2), basic Fibroblast Growth
Factor (bFGF), Serum Amyloid A protein (SAA), C-reactive protein
(CRP), Vascular Cell Adhesion Molecule 1 (VCAM-1), Intercellular
Adhesion Molecule 1 (ICAM-1) (see Table 1 for more details). All
participants provided informed written consent. The studies were

approved by the North-West Preston (20/NW/0235) and Oxford C
(19/SC/0296) Research Ethics Committees.

Statistical comparisons between groups were performed using
Kruskal-Wallis tests for non-normally distributed data and one-
way ANOVA for normally distributed data. To allow for multiple
testing, false discovery rate (FDR) correction was performed
using the Benjamini Hochberg method (FDR-adjusted q-value of
0.05). Where appropriate, pair-wise comparisons were undertaken
using Dunn’s (or Tukey’s) multiple comparison tests. Associations
between variables are given as Spearman correlation coefficients.
Analyses were undertaken using Prism (version 8) and RStudio
(version 1.2.5033).

Results

Table 1 summarizes the assay results for all the mediators tested
in the three participant groups, showing a three-way comparison
between groups.

In keeping with previous reports of abnormal cytokine profiles
months after COVID-19 infection (11, 12, 14), we demonstrate
persistent significant elevation of IL-6, TNFα, Tie-2, Flt-1, PIGF,
SAA, and CRP in our post-COVID cohort, compared with healthy
controls, and persistent significant suppression of IL-7 and bFGF, as
shown in Figure 1.

We are unable to determine whether these mediators are markers
of previous disease in these patients or mediators of ongoing
pathology. However, in a recent UK study of >2,000 patients, only
26% of patients felt fully recovered 5 months after COVID-19
infection, and IL-6 and CRP were among the cytokines persistently
upregulated in those with more significant impairment (12). In our
study, IL-6 and CRP levels in the post-COVID patients correlated
positively with the thoracic computed tomography (CT) abnormality
score (r = 0.28, p < 0.05 for IL-6, r = 0.46, p < 0.002 for CRP)
and negatively with gas transfer factor (DLCO %predicted; r = –
0.51, p < 0.002 for IL-6, r = –0.57, p < 0.0005 for CRP), which
were performed at around the same time that blood was obtained
for this study. Details of thoracic CT scores and lung function test
results (DLCO and spirometry) are shown in Table 2. However,
there was no correlation between breathlessness measured by the
MRC dyspnea score (defined in Table 2) and levels of these or
other measured mediators. Within the post-COVID group, we
found a significant correlation between the severity of the acute
illness (as defined in Table 2) and levels of TNFα (r = 0.30,
p < 0.05).

Importantly, our study also significantly adds to previous
findings by identifying mediators for which expression is persistently
abnormal in patients recovering from COVID-19, but not in
those recovering from another pathology characterized by acute
inflammation, namely severe sepsis. This group of mediators, which
therefore constitutes a specific post-infection inflammatory/vascular
injury signature of COVID-19, include the angiogenic factors Tie-2,
Flt-1, and bFGF, and the inflammatory markers IL-7 and TNFα, as
shown in Figure 1 and Table 1.

Discussion

In this study we found persistent elevation of multiple
mediators – IL-6, TNFα, SAA, Tie-2, Flt1, PIGF, and CRP – and
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TABLE 1 Multiplex assay results.

Plasma marker Healthy
pg/ml, (median,
IQR)

Post-Sepsis
pg/ml, (median,
IQR)

Post-COVID
pg/ml, (median,
IQR)

Between
three

groups

COVID vs.
Healthy

COVID vs.
Sepsis

Sepsis vs.
Healthy

Pro-inflammatory

Interferon gamma 10.18 [7.81, 14.13] 10.24 [9.01, 14.68] 10.41 [7.50, 18.89] ns

IL-1B 0.049 [0.013, 0.160] 0.290 [0.074, 0.364] 0.104 [0.053, 0.141] p < 0.05 ns ns +

IL-4 0.070 [0.044, 0.099] 0.082 [0.040, 0.112] 0.076 [0.050, 0.102] ns

IL-6 0.972 [0.696, 1.607] 2.264 [1.300, 4.058] 1.934 [1.295, 2.834] p < 0.0005 + ns +

IL-10 0.654 [0.446, 0.798] 0.558 [0.442, 0.760] 0.630 [0.491, 0.941] ns

TNF alpha 1.405 [0.754, 2.566] 1.616 [1.393, 1.938] 3.146 [2.109, 5.294] p < 0.0001 + + ns

Cytokine

GM-CSF 0.634 [0.329, 1.190] 0.409 [0.260, 1.244] 0.608 [0.340, 0.975] ns

IL-17A 6.366 [2.890, 13.330] 8.000 [4.521, 26.170] 8.015 [3.637, 16.320] ns

IL-12/23p40 283.1 [198.6, 344.3] 408.4 [297.1, 632.7] 325.0 [197.7, 478.4] ns

IL-7 9.805 [6.689, 11.810] 7.785 [4.533, 33.360] 5.023 [3.263, 7.026] p < 0.005 – – ns

Chemokine

MIP-1beta 136.8 [110.3, 184.8] 229.9 [143.3, 336.7] 132.8 [97.8, 182.4] p < 0.005 ns – ns

TARC 140.5 [112.5, 329.1] 340.7 [146.4, 550.3] 122.3 [81.7, 189.7] p < 0.005 ns – ns

IP-10 585.9 [460.0, 820.1] 1,077.0 [455.7, 1325.0] 770.0 [520.3, 1117.0] ns

MIP-1alpha 50.39 [35.81, 335.20] 122.00 [48.67, 274.10] 45.43 [39.61, 57.28] ns

MCP-1 125.8 [184.5, 245.2] 208.5 [178.7, 328.8] 261.3 [214.7, 318.1] ns

MCP-4 119.2 [97.4, 155.5] 236.7 [125.6, 309.0] 134.3 [114.1, 184.2] ns

Angiogenesis

VEGF-A 48.31 [34.02, 83.91] 76.94 [51.08, 152.20] 49.01 [30.09, 73.96] ns

VEGF-C 1129 [921, 1482] 1716 [1102, 2974] 1063 [782, 1668] ns

VEGF-D 726.8 [554.9, 944.3] 861.1 [702.8, 1127.0] 819.2 [684.4, 1092.0] ns

Tie-2* 3434 ± 300 3245 ± 302 3923 ± 784 p < 0.005 + + ns

Flt-1 93.49 [82.81, 109.60] 97.10 [65.96, 113.80] 124.40 [97.24, 157.90] p < 0.005 + + ns

PIGF 3.010 [2.548, 3.177] 3.968 [2.577, 5.888] 4.260 [3.593, 5.360] p < 0.0001 + ns +

bFGF 22.17 [14.03, 41.34] 49.59 [9.19, 117.00] 2.06 [1.38, 4.23] p < 0.0001 – – ns

Vascular injury

SAA 1266741 [832641,
2592227]

2616109 [1540017,
8354912]

2720091 [1382324,
5395892]

p < 0.02 + ns ns

CRP 633598 [418901,
1559464]

3550592 [1632105,
6856682]

2253276 [1117127,
5794106]

p < 0.005 + ns +

VCAM-1 493133 [457268, 538105] 657406 [491048, 878164] 552729 [434409, 729479] p < 0.05 ns ns +

ICAM-1 305599 [253191, 381896] 576237 [449555, 743289] 385068 [287088, 480021] p < 0.005 ns – +

Five different MSD assay panels, each containing a set of mediators as shown, were used: (i) pro-inflammatory panel, (ii) cytokine panel (cytokines related to immune differentiation and growth),
(iii) chemokine panel (cytokines related to monocyte chemotaxis), (iv) angiogenic, and (v) vascular injury panels (related to vascular injury and repair). Between-group analysis was performed by
the Kruskal-Wallis test. Values are given as median and interquartile range (25th centile, 75th centile). Statistical significance was achieved if p < 0.05 and p < Benjamini-Hochberg critical value,
with an FDR-adjusted q-value of 0.05. Where the three-way comparison between groups was significant, pairwise analysis was performed (Dunn test) for “post-COVID vs. healthy,” “post-COVID
vs. post-sepsis,” and “post-sepsis vs. healthy.” + denotes significantly higher in 1st vs. 2nd group; – denotes significantly lower in 1st vs. 2nd group. Individual markers shown in bold and italic
denote “COVID different from healthy control and different from post-Sepsis.” * for SAA, values are given as mean ± SD, and ANOVA test was used for between-group analysis (and Tukey’s test
for pairwise comparisons) as data were normally distributed.

persistent depression of IL-7 and bFGF in patients recovering
from COVID-19 several months following their acute infection.
Importantly, we also showed for the first time that persistent changes
in Tie-2, Flt-1, bFGF, IL-7, and TNFα were uniquely seen in
patients following recovery following COVID-19, but not in patients
recovering from severe sepsis.

Our findings suggest that processes of endothelial injury and
repair persist months after acute COVID-19 infection. The soluble
angiopoietin 1 receptor (Tie-2), which has been previously reported
increased following COVID-19 infection (11), is nearly exclusive
to endothelial cells and has a critical role in antithrombotic
signaling (15). Higher circulating levels of this receptor may reflect
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FIGURE 1

(A) Plasma markers elevated in both post-COVID and post-Sepsis groups, compared to healthy controls: IL-6, PIGF, SAA, and CRP. (B) Plasma markers
uniquely different in post-COVID patients but not in post-Sepsis patients compared with healthy controls: TNFα, Tie-2, and Flt-1 are elevated while bFGF
and IL-7 are depressed in post-COVID patients compared to healthy controls and compared to post-Sepsis patients. Horizontal bars indicate medians.
+p < 0.01, *p < 0.05, **p < 0.005, ***p < 0.0005.

a homeostatic response to increased levels of its prothrombotic
antagonist, angiopoietin-2 (15). Alternatively, it may reflect loss
or cleavage of Tie-2 from the endothelial surface during ongoing
inflammatory states. It could be a consequence of ongoing
downregulation and shedding of angiotensin converting enzyme 2
(ACE2), the receptor for SARS-CoV-2, and a resulting accumulation
of angiotensin 2 which has inflammatory and thrombotic effects
when bound to the endothelial receptor AT1R (8, 16, 17). This final
suggested mechanism may also explain our finding of increased levels
of soluble vascular endothelial growth factor receptor (Flt1). Flt-
1, an inhibitor of the vascular endothelial growth factor pathway
which promotes endothelial dysfunction, has been shown to be
increased acutely in COVID-19 (18) but its persistent elevation
in the post-COVID setting is a novel finding of our study. The
interaction between angiotensin 2 and the receptor AT1R has
also been found to promote local Flt-1 upregulation in hypoxia
(19). Therefore, dysregulation of the renin/angiotensin system is a
potential unifying mechanism for our findings of increased Tie-2
and Flt-1 in post-COVID-19 patients. Unfortunately, we do not have
data on tissue expression of ACE2, angiopoietin-2 or angiotensin 2 to
explore this further.

Detrimental inflammatory and cytotoxic effects of angiotensin 2
binding to AT1R might also play a role in our finding of reduced levels
of the basic fibroblastic growth factor (bFGF) in post-COVID-19
patients. BFGF is present in basement membranes, activated during

wound healing, and has mitogenic effects on endothelial cells (20).
Reduced levels of bFGF after COVID-19 could represent reduced
production or increased consumption during healing from COVID-
19 pneumonitis, or other endothelial injuries. This result, reported
also by (11), shows an interesting contrast with the finding of elevated
levels of bFGF in a large cohort of young adults with acute COVID
who did not require hospitalization (21). It is possible that reduced
levels of bFGF in our post-COVID-19 are a finding specific to
more severe disease requiring hospitalization and post COVID-19
pneumonitis. It is noted, however, that no correlation is found here
between reduced bFGF with raised inflammatory mediators IL-6 or
CRP (which are associated with reduced gas transfer factor) or with
TNF alpha (which correlates with severity of acute illness within our
hospitalized cohort). Further exploration of the role and utility of
bFGF in patients with post-COVID syndrome would be of interest.

We also found a persistent elevation of PIGF in post-COVID
patients, which in the acute setting has been shown to correlate with
in-hospital mortality (22), but did not see any differences (between
COVID-19 patients and healthy controls) in levels of the vascular
intercellular adhesion molecules ICAM-1 and VCAM-1 (important
in inflammatory cell recruitment to the lung), nor in the endothelial
growth factors VEGF-A, VEGF-C, or VEGF-D. The acute phase
inflammatory proteins serum amyloid A and CRP are elevated in
our post-COVID-19 cohort, in common with post-sepsis patients;
but there are no differences in the levels of the leukocytic pyrogen

Frontiers in Medicine 04 frontiersin.org83

https://doi.org/10.3389/fmed.2023.1056506
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1056506 February 6, 2023 Time: 13:18 # 5

Melhorn et al. 10.3389/fmed.2023.1056506

TABLE 2 Severity scores of acute coronavirus disease-2019 (COVID-19)
pneumonia and details of follow-up thoracic computed tomography (CT)
and lung function tests in the post-COVID patients.

Severity of acute
COVID-19
pneumonia

Severity = 0
(n = 24)

Severity = 1
(n = 14)

Severity = 2
(n = 11)

FEV1% predicted
(Mean ± SD)

94.2 ± 26.5 93.3 ± 18.7 93.3 ± 19.3

FVC% predicted
(Mean ± SD)

94.7 ± 23.3 96.7 ± 23.8 89.3 ± 17.7

DLCO% predicted
(Mean ± SD)

76.5 ± 14.4 80.0 ± 14.8 73.8 ± 21.0

CT score
No. of patients (%)
0
1
2

13 (54)
9 (38)
1 (4)

5 (36)
5 (36)
3 (21)

0 (0)
3 (27)
8 (73)

MRC dyspnea score
Median, IQR

2 [1, 2] 2 [2, 2] 2 [1.5, 3]

Severity of acute coronavirus disease-2019 (COVID-19) pneumonia was classified according
to requirement for respiratory support, where 0 indicates simple oxygen therapy, 1 indicated
non-invasive respiratory support (e.g., continuous positive airway pressure or high-flow nasal
oxygen therapy) and 2 indicates invasive mechanical ventilation. Lung function tests reported
were performed at follow-up in the post-COVID clinic, around the same time that blood was
obtained for this study. The forced expiratory volume in 1 s (FEV1), forced vital capacity
(FVC) and gas transfer factor i.e., diffusing capacity of the lungs for carbon monoxide (DLCO)
were expressed as a percentage of the predicted value, using the equations provide by the
Global Lung Initiative. The CT thorax abnormality score was based on a review of CT imaging
performed around the same time that blood was obtained for this study, and images were
classified according to residual abnormality where 0 indicates normal images, 1 indicates mild
residual ground glass change, and 2 indicates ground glass changes with additional lung fibrosis.
Medical Research Council (MRC) Dyspnea Score is defined as: 1, not troubled by breathlessness
except with strenuous exercise; 2, troubled by breathlessness when hurrying on the level or
walking up a slight hill; 3, walks slower than most people of same age on the level because of
breathlessness or has to stop for breath when walking at own pace on the level; 4, stops for
breath after walking 100 yards or after a few minutes on the level; 5, too breathless to leave the
house or breathless when dressing or undressing.

and component of the inflammasome complex, IL-1β, from healthy
control patients, in contrast with the findings of another study of
patients reporting post-acute sequelae of COVID-19 (23).

The observed persistent suppression of IL-7 in our post-COVID
cohort is also in keeping with previous reports (11), but contrasts
the elevation of IL-7 in the acute setting (24, 25). IL-7 is critical
for the development, maturation and survival of lymphocytes, and
prevents memory cell apoptosis (26). In a recent study, recombinant
IL-7 increased CD8+ and CD4+ T cell proliferation (ex vivo) in
critically ill COVID-19 patients (27), and IL-7 has been suggested as
immunotherapy and/or a vaccine adjuvant for COVID-19 (27–29).
Reduced IL-7 after COVID-19 could reflect persistent lymphocyte
exhaustion, contributing to inefficient viral clearance and chronic
immune stimulation.

Tumor necrosis factor alpha, a pro-inflammatory cytokine, is
elevated both in acute COVID-19 and acute sepsis and is linked to
more severe disease and worse prognosis (4, 30, 31). In addition to
its persistent elevation in our post-COVID patients, we identified
a positive correlation between TNFα plasma levels after discharge
and acute COVID-19 disease severity score (p < 0.05). No such
correlation was identified for any other mediator in the current study.
Others have found elevated TNFα in those with persistent symptoms
many months after mild COVID-19 (14), and suggested it has a role
in sustaining macrophage activation and cellular inflammation (14).
These findings, as well the distinct TNFα elevation in post-COVID

but not in post-Sepsis patients in our study, merit further study and
consideration given the availability of established anti-TNF therapies.

Finally, of particular interest is the observation that elevation of
IL-6 seen in our post-COVID cohort, and reported by others (11, 12,
14), is not specific to post-COVID but is also seen in a post-sepsis
cohort. This has implications when considering anti-IL6 therapies in
the post-COVID setting.

As noted above, a strength of our study is the control group
consisting of patients recovering from sepsis, as well as a second
group of healthy controls. Limitations include the relatively small
numbers in the post-sepsis group, and the fact that patients were
recruited early in the pandemic, prior to the emergence of later
variants of the SARS-CoV-2 virus, such as the omicron variant.
Notwithstanding these limitations, our key finding is that COVID-
19 appears to be associated with a post-inflammatory signature
that persists for at least 5 months, and that is distinct from
the profile seen in patients recovering from sepsis. Understanding
this signature may be important both for understanding the
pathophysiology of the long-term effects of COVID-19, and for
development or targeting of effective therapy. Further, more targeted
study is required, for example in those who may suffer with
prolonged symptoms (post-COVID syndrome), to understand the
pathophysiological significance and potential clinical utility of theses
uniquely persistent mediators.
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Introduction: Variable D-dimer trends during hospitalization reportedly result in

distinct in-hospital mortality. In this multinational case series from the first and

second waves, we show the universality of such D-dimer trends.

Methods: We reviewed 405 patients with COVID-19 during the first wave admitted

to three institutions in the United States, Italy, and Colombia, and 111 patients

admitted to the U.S. site during the second wave and 55 patients during the third

wave. D-dimer was serially followed during hospitalization.

Results: During the first wave, 66 (15%) patients had a persistently-low pattern,

33 (8%) had early-peaking, 70 (16%) had mid-peaking, 94 (22%) had fluctuating, 30

(7%) had late-peaking, and 112 (26%) had a persistently-high pattern. During the

second and third waves, similar patterns were observed. D-dimer patterns were

significantly di�erent in terms of in-hospitalmortality similarly in all waves. Patterns

were then classified into low-risk patterns (persistently-low and early-peaking),

where no deaths were observed in both waves, high-risk patterns (mid-peaking

and fluctuating), and malignant patterns (late-peaking and persistently-high).

Overall, D-dimer trends were associated with an increased risk for in-hospital

mortality in the first wave (overall: HR: 1.73) and stayed the same during the second

(HR: 1.67, p < 0.001) and the third (HR: 4.4, p = 0.001) waves.

Conclusion: D-dimer behavior during COVID-19 hospitalization yielded universal

categories with distinct mortality risks that persisted throughout all studied waves

of infection. Monitoring D-dimer behavior may be useful in the management of

these patients.
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Introduction

Coronavirus disease 2019 (COVID-19) has been reportedly
associated with a hypercoagulable state (1). An increase in fibrin
degradation products (D-dimer) linked to a thrombotic state is
an integral part of the COVID-19 laboratory signature (2). While
clinical trials evaluating the benefit of anticoagulation are underway
(3), strategies to prevent or mitigate thrombosis in these patients
are currently based on limited evidence. COVID-19, however, has
a wide range of symptoms and severity, and is demographically,
clinically, and pathologically heterogeneous (4). One aspect of such
heterogeneity can be represented by the behavior of the D-dimer
levels throughout the hospitalization with COVID-19. We recently
reported that the variation in D-dimer trends during the hospital
course involves specific trends that resulted in distinct patterns of
in-hospital mortality. Here, we report amulticenter case series from
infection waves during different time points in which we show the
universality of such D-dimer trends and their risk (5).

Methods

In a retrospective study protocol, we defined different waves
of increased infection rates during the pandemic according to the
Center for Disease Control and Prevention statistics as published
on their website (6). The curves reported by the CDC for the
total number of weekly newly reported cases in New York State
were examined. The first three peaks with stable plateaus of low
reported number in-between were identified, and the onset and
offset of each of these curves were identified as the time threshold
for each wave. Figure 1A shows the curves for the first three waves
as produced by the CDC website and the time thresholds for
each wave. Accordingly, the first wave was defined as the period
between 25 March 2020 and 31 June 2020. The second wave of
the pandemic was defined as the period between 1 November 2020
and 30 April 2021. The third wave of the pandemic was defined as
the period between 1 July 2021 and 31 October 2021. We scanned
patients admitted with PCR-confirmed COVID-19 in the first wave
period admitted to three different institutions representing three
different continents (North America, Europe, and South America)
[BronxCare Health System, New York, USA (New York site);
IRCCS Istituto Auxologico Italiano, Milan, Italy (Milan Site); and
Hospital San Ignacio, Bogota, Colombia (Bogota site)]. Patients
who had their D-dimer followed during hospitalization (≥4 levels)
until the outcome of the hospitalization (death or discharge) were
included in the study. Moreover, patients admitted to the New York
site in the second and third wave periods were also included in the
study if they had their D-dimer followed during the hospitalization
similar to those described earlier.

D-dimers were classified into six different trend categories
(Figure 1B) based on the behavior during hospitalization: (a)
persistently-low: if D-dimer levels during admissions were
≤1,000 ng/ml and stayed below 1,000 ng/ml throughout the
hospitalization, (b) early-peaking: D-dimer on admissions was
>1,000 ng/ml and immediately or progressively normalized
to levels <1,000 ng/ml and stayed low for the rest of
the hospitalization, (c) mid-peaking: D-dimer levels were
<1,000 ng/ml on admission, however, peaked to levels

>1,000 ng/ml during the hospitalization, and then immediately
decreased and stayed low for the rest of the hospitalization, (d)
fluctuating: D-dimer levels were either low or normal during
admission, however, with multiple rises and falls >1,000 ng/ml
during the hospital course, (e) late-peaking: D-dimer levels that
were <1,000 ng/ml on admission and stayed low throughout
the hospitalization, however, exhibited sudden rise to levels
>1,000 ng/ml at the end of the encounter, and (f) persistently-high:
D-dimer levels >1,000 ng/ml on admission that stayed high
throughout the hospitalization. Figure 2 illustrates examples of
patients’ D-dimer trends.

Statistical analyses

Categorical data are presented as numbers (%) and were
compared using the chi-square test. Continuous data are presented
as mean ± SD. Data were tested for normality using the
Kolmogorov–Smirnov and Shapiro–Wilk tests, and accordingly,
continuous data were compared using the t-test or analysis of
variance (ANOVA) if they were normally distributed or the
Mann–Whitney U-test if they were not normally distributed. Cox
regression models and Kaplan–Meier survival curves were used to
test the difference in cumulative in-hospital mortality. Differences
were considered statistically significant at p< 0.05. All analyses will
be performed with commercially available software (SPSS, version
23.0; SPSS, Inc).

Results

During the first wave, 3,203 patients were reviewed (New York
site: 1,207, Milan site: 1,160, Bogota site:836 patients) of whom
405 patients had serial D-dimer measurements and were included
from the first wave from the three institutions (149 from New York
site, 161 from Milan site, and 95 from Bogotá site). Moreover, 700
patients were reviewed from the New York Site during the second
wave, with 111 patients having serial D-dimer measurements and
being included, and 104 patients were reviewed from the New York
Site during the third wave, with 55 patients having serial D-dimer
measurements and being included.

Comparisons between the patients from the first, second, and
third waves and the populations from the three institutions are
summarized in Tables 1, 2. Briefly, patients in the second wave
were more likely to be women, had less anticoagulation, more
mechanical ventilation, and in-hospital deaths, while admission D-
dimer was not different between the three waves. When patients
from different institutes included in the first wave were compared,
it was found that patients from the New York site had the
highest BMI, highest mechanical ventilation, and in-hospital death.
In contrast, patients from the Milan site were the oldest, most
frequently male subjects, with the longest symptom onset to
hospital admission and the longest hospital stay; while patients
from Bogota were younger and more frequently female subjects,
with the shortest symptom onset to hospital admission, the shortest
hospital stay, and the most frequent anticoagulation use. It is
important to note that the admission D-dimer from the three sites
was not different.
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FIGURE 1

Study timelines and protocol. (A) Number of patients involved in the study at each center according to the defined time points in the first, second,

and third waves. (B) Schematic representation of in-hospital D-dimer patterns observed in our study. Persistently-low: if D-dimer levels during

admission were below 1,000ng/ml and stayed below 1,000ng/ml throughout the hospitalization. Early-peaking: D-dimer levels on admissions were

>1,000ng/ml and immediately normalized to levels <1,000ng/ml and stayed low for the rest of the hospitalization. Mid-peaking: D-dimer levels

were <1,000ng/ml on admission, however, peaked at levels >1,000ng/ml during the hospitalization, and then immediately decreased and stayed

low for the rest of the hospitalization. Fluctuating: D-dimer levels were either low or normal during admission, however, with multiple rises and falls

>1,000ng/ml during the hospital course. Late-peaking: D-dimer levels were <1,000ng/ml on admission and stayed low throughout the

hospitalization, however, exhibited a sudden rise to levels >1,000ng/ml at the end of the encounter. Persistently-high: D-dimer levels were

>1000ng/ml on admission which stayed high throughout the hospitalization.
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FIGURE 2

Examples of in-hospital D-dimer patterns observed in our study from di�erent patients. Each curve represents D-dimer behavior measured from

repeated samples during the hospitalization time for a separate patient.
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TABLE 1 Comparisons between di�erent waves.

First wave (n = 405) Second wave (n = 111) Third wave (n = 55) p-value

Age, year 64.8± 16.3 64.1± 17 64.4± 19.5 0.681

Females, n (%) 192 (45) 79 (71) 22 (40) <0.001

BMI, n (%) 29.7± 8.4 31± 9.8 32± 8.7 0.071

Diabetes miletus, n (%) 130 (32) 57 (51) 26 (47) <0.001

Hypertension, n (%) 255 (63) 89 (80) 45 (82) <0.001

Asthma, n (%) 28 (7) 2 (2) 6 (11) 0.002

COPD, n (%) 55 (14) 1 (1) 10 (18) 0.003

Admission D-dimer, ng/ml 2,714± 6,646 3,962± 15,685 1,455± 2,912 0.253

Length of stay, days 16.2± 12.8 15.3± 10.6 13.4± 7.4 0.467

Therapeutic anticoagulation, n (%) 267 (62) 57 (51) 45 (82) 0.003

Mechanical ventilation, n (%) 124 (29) 78 (70) 20 (36) <0.001

In-hospital death, n (%) 120 (28) 67 (60) 17 (31) <0.001

D-dimer trends 0.003

Persistently-low, n (%) 66 (15) 22 (20) 12 (22)

Early-peaking, n (%) 33 (8) 12 (11) 5 (9)

Mid-peaking, n (%) 70 (16) 7 (6) 13 (24)

Fluctuating, n (%) 94 (22) 24 (22) 6 (11)

Late-peaking, n (%) 30 (7) 20 (18) 8 (15)

Persistently-high, n (%) 112 (26) 26 (23) 11 (20)

BMI, body mass index; COPD, chronic obstructive pulmonary disease.

D-dimer trends

According to our definitions for D-dimer trends, of the 405
patients included during the first wave, 66 (15%) patients had a
persistently-low pattern, 33 (8%) patients had an early-peaking
pattern, 70 (16%) patients had a mid-peaking pattern, 94 (22%)
patients had a fluctuating pattern, 30 (7%) patients had a late-
peaking pattern, and 112 (26%) patients had a persistently-high
pattern (Table 1). During the second wave, 22 (11%) patients had
a persistently-low pattern, 12 (11%) patients had an early-peaking
pattern, 7 (6%) patients had a mid-peaking pattern, 24 (22%)
patients had a fluctuating pattern, 20 (18%) patients had a late-
peaking pattern, and 26 (23%) patients had a persistently-high
pattern (Table 1). During the third wave, 12 (22%) patients had
a persistently-low pattern, 5 (9%) patients had an early-peaking
pattern, 13 (24%) patients had a mid-peaking pattern, 6 (11%)
patients had a fluctuating pattern, 8 (15%) patients had a late-
peaking pattern, and 11 (20%) patients had a persistently-high
pattern (Table 1).

During the first wave, patients from the Milan site had
the highest number of early-peaking and fluctuating patterns,
and patients from the Bogota site had the highest number
of persistently-low and persistently-high patterns. Compared to
the first wave, the second wave patients showed more frequent
persistently-low and late-peaking D-dimer patterns, while the third
wave showed more frequent late-peaking patterns (Table 2).

Comparisons between di�erent D-dimer
patterns

Comparisons between the different D-dimer trends in all
waves are shown in Table 3. In brief, there was no significant
difference between the different trends regarding age, sex, BMI,
or symptom onset to hospital admission. D-dimer levels on
admission were significantly different between groups as can be
expected from the classification. Moreover, the longest hospital
stay was noted in the fluctuating and late-peaking groups,
and the shortest was found for the persistently-low trend.
Importantly, the lowest use of AC and mechanical ventilation
were observed in the persistently-low pattern. Importantly, no
in-hospital deaths were recorded in the persistently-low or
the early-peaking groups, while the highest deaths occurred
in the late-peaking and the persistently-high groups. Similar
results were also observed in the second and third waves
(Table 3).

Kaplan–Meier curves revealed that different patterns
of D-dimer were highly significantly different in terms of
in-hospital mortality (Figure 3). Importantly, the patterns
of risk observed were similar in all waves. Based on
the curves, we found that the patterns can be classified
according to in-hospital mortality risk into low-risk patterns
(persistently-low and early-peaking), where no deaths were
observed in all waves, high-risk patterns (mid-peaking
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TABLE 2 Comparisons between di�erent study sites during the first wave.

First wave New York N = 149 Italy N = 161 Colombia N = 95 p-value

Age, year 63.7± 14.8 68.6± 15.2 59.8± 18.8 <0.001

Females, n (%) 72 (48) 58 (36) 62 (65) <0.001

BMI, n (%) 31.3± 9.3 26.9± 4.5 26.9± 11 <0.001

Symptom onset till admission, days 7± 6.1 11.4± 10 5.8± 4.1 <0.001

Admission D-dimer, ng/ml 3,441± 9,122 2,316± 4,520 1,863± 1,743 0.168

Diabetes millitus, n (%) 92 (62) 26 (16) 12 (13) <0.001

Hypertension, n (%) 119 (80) 96 (60) 40 (42) <0.001

Asthma, n (%) 24 (16) 3 (2) 1 (1) <0.001

COPD, n (%) 24 (16) 18 (11) 13 (14) 0.558

Length of stay, days 16.5± 13 18.6± 13.1 11.6± 11 <0.001

Therapeutic anticoagulation, n (%) 113 (76) 66 (41) 88 (93) <0.001

Mechanical ventilation, n (%) 81 (54) 20 (12) 23 (24) <0.001

In-hospital death, n (%) 64 (43) 41 (25) 15 (16) <0.001

D-dimer trends <0.001

Persistently-low, n (%) 22 (15) 25 (16) 19 (20)

Early-peaking, n (%) 11 (7) 16 (10) 6 (6)

Mid-peaking, n (%) 29 (19) 23 (14) 18 (19)

Fluctuating, n (%) 21 (14) 63 (39) 10 (11)

Late-peaking, n (%) 16 (11) 5 (3) 9 (9)

Persistently-high, n (%) 50 (34) 29 (18) 33 (35)

BMI, body mass index; COPD, chronic obstructive pulmonary disease.

and fluctuating), and malignant patterns (late-peaking and
persistently high).

Cox-regression analysis revealed that, overall, D-dimer trends
are associated with an increased risk for in-hospital mortality
in the first wave (overall: HR: 1,73, p < 0.001; New York site:
RR: 1.58, p < 0.001; Milan site: RR: 1.82, p < 0.001; Bogota
site: 1.9, p = 0.008) and stayed the same during the second
wave (HR: 1.67, p < 0.001) and the third wave (HR: 2, p

= 0.002).
Compared to low and high risk (Figure 4), the malignant

risk patterns were associated with a significant RR of in-
hospital mortality in the first wave (RR:3.64, p < 0.001, New
York site: RR: 2.87 p < 0.001; Milan site: RR: 3.85, p <

0.001; Bogota site: 7.4, p = 0.009) as well as the second
wave (RR: 3.83, p < 0.001), and the third wave (RR: 9.5, p

= 0.001).
Univariate Cox-regression models were initiated for

predictors of in-hospital mortality in all patients from all
sites and across all waves (Table 4). It was found that age,
hypertension, diabetes, mechanical ventilation, and D-dimer
trends were all associated with increased risk for in-hospital
mortality. Multivariate regression showed that only D-dimer
trends and mechanical ventilation were associated with increased
risk for mortality; however, D-dimer trends were a stronger
predictor compared to mechanical ventilation (Table 4). When

patients were stratified based on mechanical ventilation and
malignant D-dimer trends, it was found that patients with
malignant D-dimer trends were associated with a higher risk
of in-hospital mortality both in those who were mechanically
ventilated and those who did not require mechanical ventilation
(Figure 4).

Discussion

In this case series, we report D-dimer patterns during
hospitalization in patients with COVID-19 that show distinct
mortality behavior. Six different patterns were observed
(persistently-low, early-peaking, mid-peaking, fluctuating, late-
peaking, and persistently-high). While we noted a progressively
increasing risk of in-hospital death in these patterns, we also
noted that the persistently-low and early-peaking are benign
patterns associated with no mortality in our report. Mid-
peaking and fluctuating patterns, in contrast, are patterns
associated with elevated risk for in-hospital mortality, and

late-peaking and persistently-high D-dimer were malignant

patterns associated with the highest in-hospital mortality.

Patients with the malignant D-dimer trends were noted to have
an elevated risk of in-hospital mortality after adjustment for
co-variates and regardless of the requirement of mechanical
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TABLE 3 Comparisons between di�erent trends in all waves.

Persistent-
low

Early-
peaking

Mid-
peaking

Fluctuating Late-
peaking

Persistent-
high

p-value

1st wave

Number 66 30 70 94 30 112

Age, years 62.3± 15.8 65.8± 15.8 60.7± 16.6 66.8± 17.4 65.1± 18.9 66.7± 14.9 0.116

Females, n (%) 32 (48) 19 (63) 39 (56) 56 (60) 13 (43) 60 (54) 0.711

BMI, kg/m2 31± 11.8 26.7± 4 29.7± 7.1 28.8± 7 31.4± 6 30.3± 9.9 0.444

Symptoms onset till
admission, days

8.6± 10.5 7.6± 6 8.1± 6.6 9.8± 9.3 9.6± 10.7 6.5± 4.9 0.178

Admission D-dimer, ng/ml 926.2± 1,387 2787.8± 6,825 873± 838 2,031± 4,169 1,110± 1,143 6,388± 11,155 <0.001

Length of stay, days 12.7± 10 15.5± 13 15.9± 13 24.2± 13.8 17.8± 13.2 13.6± 11.6 <0.001

Therapeutic anticoagulation,
n (%)

24 (36) 22 (73) 52 (74) 59 (63) 22 (73) 82 (73) <0.001

Mechanical ventilation 8 (12) 1 (3) 22 (31) 32 (34) 14 (47) 39 (35) <0.001

In-hospital death, n (%) 0 (0) 0 (0) 13 (19) 32 (34) 14 (47) 51 (46) <0.001

2nd wave

Number 22 12 7 24 20 26

Age, years 57.6± 15.4 65.7± 13 69± 11.5 67.4± 15 65± 19 68.3± 15 0.215

Females, n (%) 10 (45) 6 (50) 3 (43) 14 (58) 11 (55) 18 (69) 0.614

BMI, kg/m2 28.8± 8.7 30.5± 6.6 31.9± 7 31.6± 5.9 33.8± 12.4 33.9± 10.7 0.441

Admission D-dimer, ng/ml 390± 247 4,080± 4,455 468± 242 4,121± 10,782 404± 182 13,033±
32,596

<0.001

Length of stay, days 13.5± 8.6 16.4± 5.9 16.8± 3.6 23.2± 12.5 13.4± 6.5 17.8± 13.2 0.014

Therapeutic anticoagulation,
n (%)

3 (14) 7 (58) 6 (86) 16 (67) 7 (35) 11 (42) 0.001

Mechanical ventilation 7 (32) 4 (33) 1 (14) 18 (75) 16 (80) 22 (85) <0.001

In-hospital death, n (%) 0 (0) 0 (0) 1 (14) 17 (71) 17 (85) 24 (92) <0.001

3rd wave

Number 12 5 13 6 8 11

Age, years 69.2± 19.6 74± 11.7 60.3± 15 53± 26.6 69.5± 13.9 61.7± 14.1 0.248

Females, n (%) 7 (58) 2 (40) 3 (23) 1 (17) 5 (63) 3 (27) 0.216

BMI, kg/m2 32± 8.1 25± 3.4 29.3± 4.9 33.8± 11 38.3± 10 31.4± 9.1 0.09

Admission D-dimer, ng/ml 339± 109 2,002± 882 426± 232 516± 231 398± 179 5,025± 5,255 <0.001

Length of stay, days 16.5± 14.9 23.2± 19.1 18.6± 14.7 12.1± 8.6 13.9± 5.1 13.4± 6.7 0.612

Therapeutic anticoagulation,
n (%)

5 (42) 4 (80) 12 (92) 5 (83) 7 (88) 11 (100) 0.009

Mechanical ventilation 0 (0) 0 (0) 4 (31) 5 (83) 5 (63) 5 (45) 0.002

In-hospital death, n (%) 0 (0) 0 (0) 3 (23) 1 (17) 6 (75) 6 (55) 0.002

ventilation. Importantly, these patterns and their associated risk
seem to be universal among patients from different institutes
with expected different genetic and ethnic backgrounds, and
similar patterns were also observed in different waves of
the pandemic.

D-dimer behavior as an example of
COVID-19 heterogeneity

Our observation confirms the clinical and pathological
heterogeneity in patients with COVID-19 (4, 7) and provides
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FIGURE 3

Kaplan–Meier curves for in-hospital mortality overall as well as during the first, second, and third waves.

an example of such heterogeneity through in-hospital D-dimer
behavior. The laboratory signature of hospitalized patients with
COVID-19 indicated that increased D-dimer levels are an integral
part of the disease that is associated with worse outcomes and
may be linked to a thrombotic state (9). Several studies have
suggested the predictive ability of D-dimer in COVID-19 for worse
outcomes; however, such studies focused on point measurement
of D-dimer, especially during admission (10, 13). Our observation
here suggests that elevated D-dimer on admission is not a pre-
requisite for poor outcomes in patients with COVID-19. In fact,
elevated D-dimer during admission may be associated with benign
outcomes if the D-dimer decreases and stays low, while low D-
dimer on admission may be associated with worse outcomes
if D-dimer elevates once or more during the hospital stay. As
such, our observation suggests that worse outcomes of COVID-
19 are associated with specific patterns of D-dimer behavior
during hospitalization rather than point-timemeasured values. The
patterns observed suggest that worse outcomes are linked to a “later

elevation” of D-dimer (during the hospitalization or toward the
end of the encounter) or “delayed normalization” of D-dimer, and,
vice versa, better outcomes are linked to earlier and continuous
normalization of D-dimer.

Clinically, these findings seem of interest at least to guide the
decisions in hospitalized patients with COVID-19. The role of D-
dimer in the course of management of COVID-19 in all stages
(pre-hospitalization, during hospitalization, and after discharge)
is expanding, and its use to guide medical therapeutics such as
anticoagulation is progressing despite early suspicion (8). In one
prior study, it was found that the rate and the magnitude of the
rise in D-dimer within the first 10 days in hospitalized patients
with COVID-19 are associated with poor outcomes. In that study,
this D-dimer behavior was found to be associated with venous
thromboembolism but not mortality (12).

Moreover, D-dimer levels during hospitalization have been
recently reported to be associated with the risk of worse
outcomes in patients with COVID-19 (11). In a recent study,
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FIGURE 4

Kaplan–Meier curves for overall in-hospital mortality for patients stratified based on D-dimer trends, mechanical ventilation, and both.

the patterns of D-dimer during hospitalization were associated
with higher risk than static measurements (11) indicating that
an increasing D-dimer trend during hospitalization is associated
with worse risk compared to stable or decreasing D-dimer
levels. It is to be noted, however, that a clear differentiation
of a normal cutoff value was not identified, and the inclusion
criteria involved ≥3 D-dimer levels within 21 days of hospital
admission which may have led to significant variation in D-
dimer levels that can pass undetected between measured samples.
Comparatively, in our report, patients were classified based on
the lowest cutoff value reported in previous studies (1,000 ng/ml).
The in-hospital D-dimer trends noted in our study somewhat
differed in patterns and significance. First, because of the
more frequent sampling in our study, more changes could
be captured allowing for the identification and differentiation

of the increasing D-dimer during hospitalization into three
different groups (fluctuating D-dimer, mid-peaking, and late-
peaking) compared to “increasing levels” in the aforementioned
study. Second, in our study, we differentiated stable patterns
into persistently-low and persistently-high. Third, the decreasing
pattern in our study was a low-risk pattern compared to a
higher risk for the same group in the aforementioned study
and that can be explained by the immediate normalization
of D-dimer in our report. Finally, the group of patients
with “persistently increased” D-dimer was the sickest group of
patients and was associated with the worst risk of outcomes.
While it is unclear whether differences between both studies
are reproducible, similarities in patterns do exist, pointing
toward a level of heterogeneity among patients with COVID-19
previously underappreciated.
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TABLE 4 Overall predictors of in-hospital mortality.

Univariate Multivariate

HR p-value 95%CI HR p-value 95%CI

Age, years 1.01 0.015 1.01–1.02 1.01 0.178 0.99–1.02

Females, n (%) 0.79 0.117 0.59–1.06 - - -

Diabetes mellitus, n (%) 1.43 0.012 1.09–1.95 1.21 0.216 0.89–1.6

Hypertension, n (%) 1.6 0.007 1.14–2.24 1.36 0.101 0.94-2

Asthma, n (%) 0.8 0.481 0.42–1.5 - - -

COPD, n (%) 0.82 0.454 0.49–1.38 - - -

Admission D-dimer, ng/ml 1.01 0.09 0.99–1.02 - - -

Therapeutic anticoagulation, n (%) 0.96 0.681 0.68–1.29 - - -

Mechanical ventilation 2.6 <0.001 1.85–3.56 1.9 <0.001 1.4–2.7

DD trends

Overall 3.8 <0.001 2.9–5 3.4 <0.001 2.6–4.6

High risk 4.2 <0.001 3.1–5.7 3.6 <0.001 2.6–5

We acknowledge the limitation of the observational nature
of our case series report with small sample size, and conclusions
should not be drawn until our findings are confirmed in large
randomized clinical trials. Moreover, the effect of vaccination
on the noted D-dimer trends was not conducted, and the
expected taming effect of vaccination on the trends cannot be
seen in the current report. It should also be emphasized that
D-dimer behaviors noted in our study do not seem to be the
governing factor behind the disease’s extensive heterogeneity, as
a large number of co-variates are suspected. D-dimer behavior
is rather just a representation of how stratifying patients in such
a manner may uncover previously under-detected effects such
as the stratification done for the mechanical ventilation done in
our study. While studying the nature and explanation of such
heterogeneity is beyond the scope of the current report, it seems
that such heterogeneity involves all demographic, clinical, and
laboratory aspects of the disease. Accordingly, more in-depth large
systematic prospective studies and retrospective meta-analyses
taking into consideration the reported finding of D-dimer behavior
in addition to other factors contributing to heterogeneity are
needed to support our hypothesis. Finally, it is unknown whether
the current observations are specific to patients with COVID-19,
and further studies should compare D-dimer levels followed in
patients between COVID-19 and other causes of elevated D-dimer
in hospitalized patients.

Conclusion

Coronavirus disease 2019 is a thrombo-inflammatory disease
that is both dynamic and heterogeneous. D-dimer behavior during
hospitalization is an important example of such heterogeneity and
yielded categories with a distinct risk of in-hospital mortality.
Such patterns seem to be universal between different hospitals
from different geographic locations despite the use of different
anticoagulation approaches and occurred in similar fashions in
all pandemic waves. Monitoring D-dimer behavioral categories
may be useful in the management of these patients regardless of
the need for mechanical ventilation. Further studies are needed

to determine whether D-dimer category-guided management
improves outcomes in patients with COVID-19.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, upon reasonable written request.

Ethics statement

The studies involving human participants were reviewed
and approved by BronxCare Hospital Center IRB. Written
informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

Author contributions

DB, AO, and MP: conceptualization, hypothesis generation,
data collection, statistical analysis, manuscript preparation, and
revision. SH, HL, GP, VP, AA, MD, CV-T, JC, and SC: statistical
analysis, manuscript preparation, and supervision. All authors
contributed to the article and approved the submitted version.

Funding

For the Italian cohort, the study was supported by grants
from the Italian Ministry of Health (Ricerca Corrente Reti 2020-
RCR-2020-23670065 and Ricerca Corrente Reti 2021-RCR-2021-
23671212).

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be construed as a potential conflict
of interest.

Frontiers inMedicine 10 frontiersin.org95

https://doi.org/10.3389/fmed.2023.1103842
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ronderos Botero et al. 10.3389/fmed.2023.1103842

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-
19): the epidemic and the challenges. Int J Antimicrob Agents. (2020)
55:105924. doi: 10.1016/j.ijantimicag.2020.105924

2. Ronderos Botero DM, Omar AMS, Sun HK, Mantri N, Fortuzi K, Choi Y, et al.
COVID-19 in the healthy patient population: demographic and clinical phenotypic
characterization and predictors of in-hospital outcomes.Arterioscler Thromb Vasc Biol.
(2020) 40:2764–75. doi: 10.1161/ATVBAHA.120.314845

3. NIH ACTIV Trial of blood thinners pauses enrollment of critically ill COVID-19
patients. (2020). Available online at: https://www.nih.gov/news-events/news-releases/
nih-activ-trial-blood-thinners-pauses-enrollment-critically-ill-covid-19-patients
(accessed December 22, 2020).

4. The Lancet Rheumatology. High-stakes heterogeneity in COVID-19. Lancet
Rheumatol. (2020) 2:e577. doi: 10.1016/S2665-9913(20)30310-6

5. Ronderos D, Salem Omar AM, Haider SW, Rahmani A, Garcia Arenas
A, Urlapu K, et al. D-dimer trends in patients hospitalized with covid-19:
patterns and in-hospital prognostic significance. J Am Coll Cardiol. (2021)
3:3031. doi: 10.1016/S0735-1097(21)04386-2

6. Centers for Disease Control and Prevention. COVID Data Tracker. Atlanta,
GA: US Department of Health and Human Services, (CDC) (2023). Available online
at: https://covid.cdc.gov/covid-data-tracker/#trends_weeklycases_select_00 (accessed
February 08, 2023).

7. Cheng Q, Liu Z, Cheng G, Huang J. Heterogeneity and effectiveness
analysis of COVID-19 prevention and control in major cities in China
through time-varying reproduction number estimation. Sci Rep. (2020)
10:21953. doi: 10.1038/s41598-020-79063-x

8. Lippi G, Mullier F, Favaloro EJ. D-dimer: old dogmas, new (COVID-19) tricks.
Clin Chem Lab Med. (2022) 3:633. doi: 10.1515/cclm-2022-0633

9. Khan IH, Savarimuthu S, Leung MST, Harky A. The need to manage the
risk of thromboembolism in COVID-19 patients. J Vasc Surg. (2020) 72:799–
804. doi: 10.1016/j.jvs.2020.05.015

10. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission
to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. (2020)
18:1324–9. doi: 10.1111/jth.14859

11. Naymagon L, Zubizarreta N, Feld J, van Gerwen M, Alsen M, Thibaud S, et al.
Admission D-dimer levels, D-dimer trends, and outcomes in COVID-19. Thromb Res.
(2020) 196:99–105. doi: 10.1016/j.thromres.2020.08.032

12. Creel-Bulos C, Liu M, Auld SC, Gaddh M, Kempton CL, Sharifpour M,
et al. Trends and diagnostic value of D-dimer levels in patients hospitalized with
coronavirus disease 2019. Medicine. (2020) 99:e23186. doi: 10.1097/MD.00000000000
23186

13. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for
mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort
study. Lancet. (2020) 395:1054–62. doi: 10.1016/S0140-6736(20)30566-3

Frontiers inMedicine 11 frontiersin.org96

https://doi.org/10.3389/fmed.2023.1103842
https://doi.org/10.1016/j.ijantimicag.2020.105924
https://doi.org/10.1161/ATVBAHA.120.314845
https://www.nih.gov/news-events/news-releases/nih-activ-trial-blood-thinners-pauses-enrollment-critically-ill-covid-19-patients
https://www.nih.gov/news-events/news-releases/nih-activ-trial-blood-thinners-pauses-enrollment-critically-ill-covid-19-patients
https://doi.org/10.1016/S2665-9913(20)30310-6
https://doi.org/10.1016/S0735-1097(21)04386-2
https://covid.cdc.gov/covid-data-tracker/#trends_weeklycases_select_00
https://doi.org/10.1038/s41598-020-79063-x
https://doi.org/10.1515/cclm-2022-0633
https://doi.org/10.1016/j.jvs.2020.05.015
https://doi.org/10.1111/jth.14859
https://doi.org/10.1016/j.thromres.2020.08.032
https://doi.org/10.1097/MD.0000000000023186
https://doi.org/10.1016/S0140-6736(20)30566-3
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


TYPE Review

PUBLISHED 17 April 2023

DOI 10.3389/fpubh.2023.1098774

OPEN ACCESS

EDITED BY

David Andaluz Ojeda,

HM University Sanchinarro Hospital, Spain

REVIEWED BY

Rezvan Hosseinzadeh,

Babol University of Medical Sciences, Iran

Zhilong Jia,

Chinese PLA General Hospital, China

*CORRESPONDENCE

Yuseok Moon

moon@pnu.edu

SPECIALTY SECTION

This article was submitted to

Infectious Diseases: Epidemiology and

Prevention,

a section of the journal

Frontiers in Public Health

RECEIVED 15 November 2022

ACCEPTED 27 March 2023

PUBLISHED 17 April 2023

CITATION

Moon Y (2023) Gut distress and intervention via

communications of SARS-CoV-2 with mucosal

exposome. Front. Public Health 11:1098774.

doi: 10.3389/fpubh.2023.1098774

COPYRIGHT

© 2023 Moon. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Gut distress and intervention via

communications of SARS-CoV-2
with mucosal exposome

Yuseok Moon1,2,3*

1Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences,

Pusan National University, Yangsan-si, Republic of Korea, 2Biomedical Research Institute, Pusan National

University, Busan, Republic of Korea, 3Graduate Program of Genomic Data Sciences, Pusan National

University, Yangsan-si, Republic of Korea

Acute coronavirus disease 2019 (COVID-19) has been associated with prevalent

gastrointestinal distress, characterized by fecal shedding of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA or persistent antigen

presence in the gut. Using a meta-analysis, the present review addressed

gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, and

diarrhea. Despite limited data on the gut–lung axis, viral transmission to the gut

and its influence on gut mucosa and microbial community were found to be

associated by means of various biochemical mechanisms. Notably, the prolonged

presence of viral antigens and disrupted mucosal immunity may increase gut

microbial and inflammatory risks, leading to acute pathological outcomes or

post-acute COVID-19 symptoms. Patients with COVID-19 exhibit lower bacterial

diversity and a higher relative abundance of opportunistic pathogens in their

gut microbiota than healthy controls. Considering the dysbiotic changes during

infection, remodeling or supplementation with beneficial microbial communities

may counteract adverse outcomes in the gut and other organs in patients

with COVID-19. Moreover, nutritional status, such as vitamin D deficiency,

has been associated with disease severity in patients with COVID-19 via the

regulation of the gut microbial community and host immunity. The nutritional

and microbiological interventions improve the gut exposome including the host

immunity, gut microbiota, and nutritional status, contributing to defense against

acute or post-acute COVID-19 in the gut–lung axis.

KEYWORDS

COVID-19, SARS-CoV-2, meta-analysis, gastrointestinal symptoms, gut-lung axis,

microbiota, nutritional intervention

1. Introduction

The coronavirus disease-19 (COVID-19) first occurred in 2019 and is now a
worldwide pandemic with more than 15 million deaths (1). Typically, the presence
of gastrointestinal signs or symptoms during COVID-19 has been associated with
approximately 35–50% of COVID-19 cases. In a meta-analysis examining 4,243
patients, the pooled prevalence of gastrointestinal symptoms was 17.6% (2). Frequently
observed gastrointestinal symptoms include anorexia, diarrhea, vomiting, and
abdominal pain (3). With increasing COVID-19 severity, gastrointestinal symptoms
were more apparent (4). The pathogenesis of COVID-19, including gastrointestinal
symptoms, remains elusive, despite tissue-specific immunofluorescence detection of
SARS-CoV-2 binding to a specific receptor such as angiotensin-converting enzyme
2 (ACE2), predominantly expressed in the gastrointestinal tract (5, 6). Numerous
cohort studies have reported that patients with COVID-19 and gastrointestinal
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symptoms might exhibit an increased risk for worse clinical
outcomes (7, 8). Disruption of the intestinal mucosal immune
barrier can result in gut commensal microbes and pathogens
entering local inner tissues and the vascular system, leading to
septicemia and acute respiratory distress syndrome (ARDS) (9).
Immune cells induced by various antigens can move between the
gut and lungs via the lymphatic system or blood vessels, thereby
regulating the immune response of target organs. Moreover,
humoral factors, including cytokines and hormones, contribute to
inter-organ communication (10).

The “gut–lung axis” is defined as the cross-talk between
intestinal and pulmonary tissues mediated by microbes, immune
cells, immune mediators, and other endogenous humoral
regulators (11). SARS-CoV-2-induced distress in the gut–lung
axis can be elucidated by several potent mechanisms: 1. Viruses
directly cause gastrointestinal distress, resulting in symptoms, such
as diarrhea, abdominal pain, and vomiting. 2. Viral infection may
excessively trigger tissue injury factors, including proinflammatory
cytokines, during a cytokine storm, increasing the risk of sepsis,
ARDS, and multiorgan failure. 3. Viral infection may dysregulate
the intestinal microbiota, increasing the risk of immunological
disorders in the gut–lung axis and the systemic impact. Considering
the gut–lung axis, we compared the gastrointestinal exposure and
underlying pathogenesis mechanisms, including gut barrier
distress, mucosal immune dysregulation, and disruption of
the microbial community in the gut. Accordingly, the present
review addressed the potential role of the gut–lung axis in the
pathogenesis of COVID-19 and microbiota alteration in the
immune response to establish effective dietary interventions.
Inter-organ communication could provide new insights into
gut-based interventions against SARS-CoV-2 infection.

2. Clinical symptom-based association
between viral infection and
gastrointestinal adverse outcomes

First, we evaluated the clinical evidence using the literature-
based symptoms of gut distress in patients with COVID-19. The
literature search for this association was performed according
to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guideline. To address the clinical
association between SARS-CoV-2 infection and gut distress,
we performed the meta-analysis by collecting studies reporting
the gastrointestinal symptoms or clinician-observed features in
patients using laboratory-confirmed methods. To obtain an
evidence-based minimum set of items according to the PRSIMA
guideline, the gastrointestinal symptom-based case-control studies
were selected from PubMed and LitCovid (n= 244), ScienceDirect
(n = 759), and Google (n = 140). After de-duplication, all unique
citations were independently screened by reviewers. In particular,
articles that failed to meet established inclusion criteria were
excluded by screening titles and abstracts, scrutinizing, and the
consensus decision-making. We included studies with adequately
available data on both control and case groups, but excluding
case reports and studies of patients with symptoms other than
gastrointestinal symptoms or underlying diseases such as cancer,

autoimmune disease, and metabolic diseases. Finally, eight articles
were evaluated in the meta-analysis (Figure 1). The selected articles
covered events in 14,188 patients, comprising 2,800 COVID-19-
positive patients and 11,388 control patients from five countries,
including the USA, Portugal, China, Italy, and Australia. For
efficient data extraction, we combined symptoms of “abdominal
pain” and “abdominal distension” into the more prevalent and
widely reported symptoms of “abdominal discomfort”. Where
studies reported one symptom “or” another (e.g., nausea or
vomiting), we extracted the prevalence of both. We extracted
grouped symptoms (e.g., any gastrointestinal symptoms) without
further description or definition, rather than using the sum of all
gastrointestinal symptom data to prevent data overlapping between
symptoms. The pooled prevalence of each symptom was estimated
using the Metaprop package and the variance was normalized
using a random-effects model such as Freeman-Tukey arcsine
transformation of the prevalence. Statistical heterogeneity was
assessed by I2, the proportion of total variation due to inter-
study heterogeneity.

2.1. Association of gastrointestinal
symptoms with COVID-19

In study ID 1, the pooled odds ratio (OR) was 1.91 (95%
confidence interval [Cl]: 1.17–3.12), with a weight of 15.18% (12).
In study ID 2, the pooled OR was 2.34 (95% Cl: 1.94–5.23), with
a weight of 13.64% (13). In study ID 3, the pooled OR was 1.28
(95% Cl: 0.30–5.48), with a weight of 9.30% (14). In study ID 4, the
pooled OR was 1.56 (95% Cl: 1.40–1.73) with a weight of 16.10%
(15). In study ID 5, the pooled OR was 1.5 (95% Cl: 0.95–2.56),
with a weight of 15.14% (16). In study ID 7, the pooled OR was
2.59 (95% Cl: 1.55–4.32), with a weight of 15.08% (17). In study
ID 8, the pooled OR was 1.49 (95% Cl: 1.02–2.17), with a weight
of 15.56% (18). Collectively, the pooled OR of 1.76 (95% CI: 1.61–
1.93) indicated a significant association between COVID-19 and GI
symptoms, while the random-effect meta-analysis revealed a large
heterogeneity among studies (I2 = 98.1%; Figure 1A).

2.2. Association of diarrhea with COVID-19

In study ID 1, the pooled OR was 5.03 (95% Cl: 1.44–17.53),
with a weight of 11.16% (12). Study ID 2 was not included (13).
In study ID 3, the pooled OR was 1.28 (95% Cl: 0.30–5.48), with
a weight of 9.65% (14). In study ID 4, the pooled OR was 1.67
(95% Cl: 1.45–1.93) with a weight of 16.66% (15). In study ID 5, the
pooled OR was 0.96 (95% Cl: 0.54–1.72), with a weight of 15.33%
(16). In study ID 6, the pooled OR was 2.69 (95% Cl: 1.59–4.56),
with a weight of 15.58% (19). In study ID 7, the pooled OR was 2.37
(95% Cl: 1.47–3.82), with a weight of 15.78% (17). In study ID 8, the
pooled OR was 1.42 (95% Cl: 0.89–2.24), with a weight of 15.85%
(18). Overall, the pooled OR of 1.88 (95% CI: 1.68–2.11) indicated a
significant association between COVID-19 and diarrhea, while the
random-effect meta-analysis revealed a large heterogeneity among
studies (I2 = 96.2%; Figure 1B).
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FIGURE 1

Forest plot from random e�ects analysis: OR for presenting any gastrointestinal symptom (A), diarrhea (B), nausea and vomiting [N/V, (C)], abdominal

discomfort (D) in the COVID-19 group vs. the control group. CI, confidence interval; COVID-19, coronavirus disease 2019; OR, odds ratio.

2.3. Association of nausea and vomiting
with COVID-19

In study ID 1, the pooled OR was 1.53 (95% Cl: 0.27–8.50), with
a weight of 9.02% (12). Study IDs 2 and 3 were not included in this
analysis (13, 14). In study ID 4, the pooled OR was 1.36 (95% Cl:
1.16–1.61), with a weight of 19.27% (15). In study ID 5, the pooled
OR was 0.64 (95% Cl: 0.32–1.28), with a weight of 17.09% (16).
In study ID 6, the pooled OR was 2.93 (95% Cl: 1.65–5.23), with
a weight of 17.80% (19). In study ID 7, the pooled OR was 1.26
(95% Cl: 0.78–2.01), with a weight of 18.31% (17). In study ID 8, the
pooled OR was 1.22 (95% Cl: 0.80–1.87), with a weight of 18.51%
(18). Overall, the pooled OR of 1.59 (95% CI: 1.40–1.87) indicated a
significant association between COVID-19 and diarrhea, while the
random-effect meta-analysis revealed a large heterogeneity among
studies (I2 = 97.9%; Figure 1C).

2.4. Association of abdominal discomfort
with COVID-19

In study ID 1, the pooled OR was 2.30 (95% Cl: 0.24–22.38),
with a weight of 8.60% (12). In study ID 2, the pooled OR was
2.34 (95% Cl: 1.04–5.23) with a weight of 27.98% (13). Study ID
3 was not included (14). In study ID 4, the pooled OR was 1.17
(95% Cl: 0.96–1.42) with a weight of 32.80% (15). Study IDs 5 and
6 were not included in this analysis (16, 19). In study ID 7, the
pooled OR was 1.24 (95% Cl: 0.84–2.52), with a weight of 30.62%
(17). Study ID 8 was absent (18). Overall, the pooled OR of 1.24
(95% CI: 1.04–1.48) indicated a significant association between
COVID-19 and abdominal discomfort, while the random-effect

meta-analysis revealed a large heterogeneity among studies (I2 =

96.0%; Figure 1D).
Owing to the high levels of heterogeneity (96.0–98.1%)

among studies, additional subgroup analysis, meta-regression, or
sensitivity analysis could clarify the underlying causes behind
high heterogeneity between studies. The Newcastle-Ottawa Scale
may afford an alternate tool for assessing the quality of case-
control studies in meta-analyses (20). Taken all symptoms
and prevalence, all pooled OR (95% CI: 1.04-2.24) indicated
notable positive associations between COVID-19 and gut distress-
associated symptoms despite the heterogeneity between studies.
Based on the literature-based assessment of the clinical outcomes,
we further evaluated the pathological processes and mechanisms of
the lung-gut communications in patients with COVID-19.

3. Viral entry and translocation into
the gut–lung axis

3.1. Airway entry and reverse translocation
to gut

Coronaviruses are enveloped single-stranded RNA viruses
characterized by club-like spikes projecting from their surfaces,
with a remarkably large RNA genome. The SARS-CoV-2 genome
encodes four major structural proteins: spike (S), nucleocapsid
(N), membrane (M), and envelope (E), each of which is essential
for composing the viral particle (21). Phylogenetic analysis of
the complete genome sequence of SARS-CoV-2 revealed that the
new virus shares 89.1% nucleotide sequence identity with SARS-
like coronaviruses detected in bats (22). ACE2, the functional

Frontiers in PublicHealth 03 frontiersin.org99

https://doi.org/10.3389/fpubh.2023.1098774
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Moon 10.3389/fpubh.2023.1098774

receptor of SARS-CoV-1 and SARS-CoV-2, plays a crucial role in
the pathogenesis of COVID-19, as it allows viral entry into human
cells (23). Similar to SARS-CoV-1, the viral S protein of SARS-CoV-
2 binds to ACE2 as a cellular receptor. Importantly, SARS-CoV-
2 is more pathogenic, partly owing to its 10-to-20-fold increased
binding affinity for ACE2 (24). This binding leads to viral host cell
entry, in parallel with S protein priming by the host cell protease,
transmembrane serine protease 2 (TMPRSS2). The S glycoprotein
contains two functional domains: an S1 receptor-binding domain
(RBD) and a second S2 domain that mediates the fusion of viral and
host cell membranes (25). The SARS-CoV-2 S protein initially binds
to the ACE2 receptor on the host cell through the S1 RBD. The

FIGURE 2

Forest plot from random e�ects analysis: Vitamin D status (Low

serum 25OHD, daily dietary intake) and COVID-19 infection rate.

ORs of having vitamin D deficiency in the COVID-19 group vs. the

control group. 25OHD, 25-hydroxyvitamin D; COVID-19,

coronavirus disease 2019; ORs, odds ratio.

S1 domain is shed from the viral surface, allowing the S2 domain
to fuse with the host cell membrane. This process depends on the
activation of the S protein by cleavage at two sites (S1/S2 and S2’)
via the proteases furin and TMPRSS2. Furin-induced cleavage leads
to conformational changes in the viral S protein, exposing the RBD
and S2 domains. TMPRSS2-mediated cleavage of the SARS-CoV-
2 S protein facilitates the fusion of the viral capsid with the host cell
to permit viral entry (26). Exposure of the RBD in the S1 protein
subunit results in an unstable subunit conformation; thus, during
binding, this subunit undergoes conformational rearrangement
between two states, known as the up- and down-conformations.
The down-state transiently hides the RBD, whereas the up-state
exposes the RBD but temporarily destabilizes the protein subunit
(27–29). Within the trimeric S protein, only one of the three
RBD is present in an accessible conformation for binding with the
ACE2 receptor.

ACE2 is detected in the nasal and bronchial epithelial cells.
In addition to the upper respiratory tract, ACE2 is abundantly
expressed on the surface of alveolar type II pneumocytes, which
co-express several other genes involved in the regulation of
viral reproduction and transmission, including TMPRSS2. Type
II pneumocytes are well-known to produce surfactants, maintain
their self-renewal ability, and exert immunoregulatory functions.
Importantly, these cells share the same basement membrane as the
closely juxtaposed capillary endothelial cells, which also express
high ACE2 levels. Therefore, type II pneumocytes, along with
the neighboring capillary endothelium, could be primary sites for
SARS-CoV-2 entry, resulting in damage to the alveolocapillary
membrane with reactive hyperplasia of type II pneumocytes.
As type II pneumocytes are known targets of viral entry and
replication, this may lead to a vicious cycle of persistent
alveolar wall destruction and repair, eventually culminating in

FIGURE 3

Postulated scheme of vitamin D-induced intervention against SARS-CoV-2 infection in the gut mucosa via modulation of microbiota and subsequent

immune regulation.
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progressive, severe diffuse alveolar damage. Upregulated ACE2
expression has been documented in the airways of patients
with chronic respiratory disease who are smokers, which,
together with disturbed ciliary movement and abnormal mucus
viscosity, may increase disease vulnerability (30). However, clinical
evidence indicates that smoking does not necessarily lead to
increased vulnerability (31). Recently, a healthy human donor-
based evaluation suggested that the virus could exploit goblet and
ciliated cells in the nasal epithelia as entry portals, a plausible
primary infection site (32). Considering the variant-mediated
adverse outcomes, Omicron is known to cause relatively mild
symptoms compared with other variants of concern. The Omicron
variant can enter epithelial cells through different binding proteins
such as cathepsins and display lower replication competence than
other variants (33), potently contributing to attenuated severity of
the clinical outcomes.

Airway particles, including viral particles, are entrapped in the
airway mucosa and cleared via mucociliary transport. However,
the clearance system can be damaged following SARS-CoV-2
infection via dedifferentiation of multiciliated cells and subsequent
attenuation of cilial movement, as shown in a reconstructed
human bronchial epithelium model (34). As guardians of the
airway, alveolar macrophages can play crucial roles in removal
via phagocytosis or translocation from the peripheral lung to the
larynx, with subsequent passage through the gut and fecal excretion
(35). In addition to gastrointestinal translocation from the airway,
the virus can enter the water and food supply systems directly,
ultimately reaching the gastrointestinal tract in humans (36, 37).
Viral particles that successfully reach the alveolar vasculature or
translocate into the gut can systematically affect extra-airway tissues
including the gut if they escape the immune system in circulation.

3.2. Vascular translocation and circulation
of SARS-CoV-2

ACE2 receptors are also expressed in endothelial cells. It
remains unknown whether vascular derangements in COVID-19
can be attributed to endothelial cell involvement mediated by
the virus. Intriguingly, SARS-CoV-2 can directly infect engineered
human blood vessel organoids in vitro (38). In this in vitro

experiment, to verify the possibility of COVID-19 transmission
through the endothelial tissue, the authors used human capillary
organoids from induced pluripotent stem cells infected with SARS-
CoV-2 (39). Notably, human recombinant secretory ACE2 could
inhibit infection in organoids mimicking human capillaries with
CD31 and PDGFR.

An initial study has suggested that the SARS-CoV-2 S protein
can bind to CD147 on the cell surface and subsequently enter
blood cells, such as platelets and megakaryocytes. Megakaryocytes
and platelets actively take up SARS-CoV-2 virions, possibly
through an ACE-2-independent mechanism. Based on in vitro

antiviral tests, meplazumab, an anti-CD147 humanized antibody
that blocks the interaction between the S protein and the CD147
cell surface receptor, could significantly inhibit viral cell entry
into circulation. CD147 is a SARS-CoV-2 surface entry receptor,
leading to inflammation and thrombosis, which differs from the

common cold coronavirus. Moreover, given that elevated blood
sugar levels could upregulate CD147 expression, diabetes could be a
potential risk factor for poor prognosis in patients with COVID-19
(40). Vasculature-translocated surviving viral particles are available
for the secondary tissue infection and subsequent inflammatory
outcomes in the gut.

3.3. Gut entry via fecal–oral transmission

Owing to intestinal viral RNA shedding, there have been
growing concerns that SARS-CoV-2 could be transmitted via the
fecal–oral route, given that viral RNA has been detected in patient
stool samples (41). It has been suggested that the presence of
gastrointestinal symptoms is a likely indicator of viral RNA in
the stool (2, 42). In contrast, studies have failed to establish a
statistically significant correlation between viral RNA and increased
gastrointestinal symptom intensity (41, 43). However, it has been
suggested that stool samples may be positive for viral RNA even
when the virus is undetectable in respiratory samples (2, 44). It
is well-established that viruses can enter the gut, but most cannot
survive in the digestive tract, owing to the low pH of gastric
fluid and the harsh intestinal environment comprising bile and
digestive enzymes. Therefore, no infectious virus was recovered
from the fecal samples of patients with COVID-19. Although
stool is unlikely to contain infectious viruses (45), confirmative
assessments are warranted to comprehensively establish the risk of
fecal–oral transmission during infection and its significance in the
food system (46).

Theoretically, SARS-CoV-2 directly invades the gastrointestinal
epithelium through ACE2 receptor. ACE2 is highly expressed
in the esophageal upper and stratified epithelium, as well as in
absorptive enterocytes derived from both the ileum and colon
(5). In approximately 50% of COVID-19 cases, viral RNA was
detected in fecal samples, even in the absence of gastrointestinal
tract manifestations and after clearance of respiratory infection,
thereby suggesting an asymptomatic SARS-CoV-2 infection in the
gut and the possibility of fecal–oral transmission (47). However,
considering the limited data available, a fecal–oral transmission
route clarifying enteric symptoms in patients with COVID-19 is
yet to be proposed. Moreover, it is also challenging to rationalize
that SARS-CoV-2, as an enteric virus, passes through the stomach
and reaches the intestine to infect the intestinal cells. For successful
infection via fecal–oral transmission, the virus must overcome
biological barriers, such as stomach acid and intestinal bile salts
after ingestion. Coronavirus can undergo complete inactivation at
pH 2.26 and 4.38 at 37 ◦C (48). Although the virus can survive
under wet or dry conditions for up to 3 days, it was found to survive
at pH 2.2 for up to 1 h only at high concentrations (49). Bile salts are
one of the various mechanisms that mediate host defense, exerting
detergent action against the lipid layer integrity of infectious agents
(50). SARS-CoV-2 contains an outer lipid-containing membrane
and is an enveloped virus (23). Bile acid is known to be effective
against viruses with lipoproteins, but envelope-deficient variants
are resistant to its detergent action. Considering all the evidence, in
addition to the airway viral infection, the oral ingestion of surviving
viral particles contributes to the gastrointestinal distress.
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4. Impact of SARS-CoV-2 on mucosal
defense

4.1. SARS-CoV-2-mediated gut barrier
distress

The gut is divided into several anatomical barriers, each of
which plays a vital role in serving as a barrier against foreign
materials, such as pathogens and other noxious stimuli. The mucus
layer is the first line of defense, composed of mucus, antibodies, and
other antimicrobial factors (51). It functions as a physical barrier
protecting epithelial cells frommicrobes (bacteria, fungi, and virus)
and large molecules, such as food particles (52). The second
layer, beneath the mucus layer, comprises highly glycosylated
proteins, glycocalyx, lining the epithelial cell surface. These cell
membrane-bound glycoproteins, such as the mucus layer, act as
a physical barrier that prevents pathogenic microorganisms from
communicating with the gut epithelial cellular monolayer and
invading the submucosal tissues (53). The epithelial cell barrier
is another defense mechanism against gut microbes and luminal
antigens via modulation of the epithelial junctional molecules or
transmitting danger signals to the underlying mucosal immune
system while facilitating the transport of nutrients and water (54).
Epithelial cells have pattern recognition receptors (PRRs), such as
Toll-like receptors (TLRs), which allow the recognition ofmicrobial
antigens. Enterocytes (or intestinal epithelial cells) are the most
common cell type in the mucosal epithelial layer, accounting for
90% of cells (55). Enterocytes are well-known absorption sites
and important components of the gut barrier. Gut epithelial cells
can also interact with SARS-CoV-2 through the highly expressed
ACE2 (24, 56, 57). SARS-CoV-2 has been shown to infect intestinal
organoids (58). Furthermore, TMPRSS2, which is also highly
expressed in enterocytes in the ileum and colon (57, 59), reportedly
participates in priming the SARS-CoV-2 S protein and facilitates
viral entry into cells (24). Accordingly, ACE2 and TMPRSS2
are promising targets for intervention against SARS-CoV-2 (60)
despite limited evidence on the efficacy of blockers targeting the two
proteins (61). Intestinal viral infections may damage the epithelial
barrier. For example, Middle East respiratory syndrome-related
coronavirus was shown to disrupt the gut epithelial barrier in
an animal model (62). Mechanistically, SARS-CoV infection can
lead to the redistribution of the PALS1 protein, a tight junction
protein, and subsequent disruption of epithelial integrity in the gut
and lungs. Moreover, SARS-CoV-2 RNA and viral nucleocapsid
protein were persistent in mucosal tissues and cells, including the
gut epithelium and CD8+ T cells of patients with inflammatory
bowel disease nearly 7 months after SARS-CoV-2 infection (63).
Consistent with the airway infection, the Omicron variants showed
reduced levels of cytotoxicity- and damage-associated markers in
infected gut organoids, compared with the wild type virus and delta
variants (33). In contrast, delta variant-infected mini-gut exhibited
active clustering of infected gut cells and relatively high levels of the
replication efficacy. Since active invasion by the Omicron variant
was extremely scarce and lumen-restricted in the gut model, the
variant is not assumed to affect the submucosa parts. Therefore,
different strains may have different relative tissue tropisms and
invasiveness, potently leading to strain-specific clearance rates and
clinical symptoms in the gut.

Fecal SARS-CoV-2 RNA has been detected in 50% of patients
experiencing gastrointestinal symptoms, such as abdominal pain,
nausea, and vomiting, within the first week after diagnosis (64). In
particular, 12.7% (8.5–18.4%) of subjects displayed persistent fecal
shedding of SARS-CoV-2 RNA even after 4 months of diagnosis,
without ongoing shedding of oropharyngeal SARS-CoV-2 RNA.
Although the above-mentioned study failed to link mucosal viral
antigens with the severity of acute COVID-19, it is necessary
to address the roles of mucosa-persistent antigens in mucosal
defense, recurrence, and disease progression as post-acute sequelae
of COVID-19 (PASC). After acute COVID-19, most patients with
inflammatory bowel disease presented persistent presence of SARS-
CoV-2 antigens in their gut mucosa, irrespective of inflammation
levels, potentially contributing to PASC symptoms (63). Despite the
lack of mechanistic evidence, it has been proposed that SARS-CoV-
2 may increase intestinal permeability, potentially by damaging
enterocytes and the epithelial layer (65), necessitating further
molecular investigation.

4.2. Mucosal and systemic innate immunity
to SARS-CoV-2

Coronaviruses are known to cause airway damage and lead
to pneumonia with imbalanced and hyper-immune responses
(22). Increased proinflammatory cytokines and lymphocytopenia
have been associated with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection (66). An unbalanced
immune response and excessive inflammatory cytokine secretion,
known as a “cytokine storm,” have been associated with disease
severity and worse prognosis in patients with COVID-19, including
multiorgan failure (67, 68). Of 197 patients, approximately
34.5% presented neutrophilia (69), which is known to trigger
ARDS and sepsis growth in patients with COVID-19. Secondary
hemophagocytic lymphohistiocytosis (SHLH), an underrecognized
hyperinflammatory syndrome, could also be a significant factor
in the development of COVID-19, given that SHLH can
cause hypercytokinemia-related fatal and fulminant multiorgan
failure (70).

SARS-CoV-2 can spread via respiratory droplets, contact,
and the fecal–oral route. Viral replication commences in the
nasopharynx and upper respiratory tract and continues through the
lower respiratory tract and gastrointestinal mucosa (5). Monocytes,
macrophages, and dendritic cells (DCs) can serve as primary
hallmarks of SARS-CoV-2 infection, given that they link innate
and adaptive immunity and play an important role in the antiviral
response (71–73). Although the precise correlation between DCs
and SARS-CoV-2 in the mucosa has been poorly explored, SARS-
CoV-2 accelerates the activation of PRR-linked signaling, including
NLRP3 inflammasome or occasionally leads to the cytokine
release syndrome (CRS) via robust production of proinflammatory
mediators, such as interleukin (IL)-6, granulocyte-macrophage
colony-stimulating factor, IL-1β, and tumor necrosis factor (TNF)-
α during the CRS (74). Therapeutic agents, such as anti-IL-6R,
which can target macrophage-related activity, could be crucial
interventions against the cytokine storm that occurs during severe
SARS-CoV-2 infection (33). In addition to the phagocytic system,
natural killer (NK) cells have been associated with a severely
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poor prognosis of SARS-CoV-2 infection in the presence of
functional exhaustion. Among the various cytokines produced
during early severe COVID-19, interferon (IFN)-α expression
markedly correlated with the severity of COVID-19 (75, 76).
According to single-cell transcriptomic analysis based on two
COVID-19 cohorts, IFN-α directly suppressed IFN-γ production
by NK cells (76). Moreover, exhausted NK cells reportedly express
CD94/NK group 2 member A(NKG2A), which functions as an
inhibitory receptor that reduces the production of CD107a, IFN-
γ, IL-2, granzyme B, and TNF-α. Therefore, improving NK cell-
mediated defense might be a promising defense mechanism during
early severe cases of SARS-CoV-2 infection (77, 78). Active NK
cells recognize viral infection and transmit death signals into the
infected cells in the mucosa. Moreover, NK cells may facilitate
mucosal phagocyte-induced viral clearance via production of anti-
virus cytokines including type I interferons. However, exhausted
NK cells would fail to defend against SARS-CoV-2 in the mucosa.

4.3. Acquired immunity and mucosal
vaccination against SARS-CoV-2

In addition to direct infective actions of SARS-CoV-2,
respiratory virus-responsive mucosal and systemic acquired
immune responses would affect the disease progression in the
extra-airway tissues. Cytotoxic CD8+ T cells directly neutralize
infected cells or CD4+ T cells initiate a humoral response by
cooperating with B cells (79, 80). During severe SARS-CoV-2
infection, lymphopenia is accompanied by a marked reduction
in CD4+ T and CD8+ T cells, along with elevated neutrophil
counts (81–83). An increased neutrophil-to-lymphocyte ratio and
elevated levels of IL-6 can indicate poor prognosis and disease
severity. Increased serum levels of proinflammatory cytokines, such
as IL-6, IL-7, IL-1β, IL-2, and IL-10, can induce a cytokine storm
and cause serious damage, more destructive than the coronavirus
itself. Elevated proinflammatory cytokine levels have been linked
to viral sepsis, respiratory failure, shock, and even death if severe
(84). Therefore, addressing lymphopenia and cytokine storm could
prevent severe complications associated with coronavirus.

Following the appearance of COVID-19 symptoms, the
antibody response increases after 4–8 days, and IgM becomes
predominant (85), followed by 10–18 days of persistent IgA and
IgG production. IgA is crucial in mucosal defense by neutralizing
SARS-CoV-2 and weakening the inflammatory risk (86). The
antigen can attach to intestinal epithelial cells or microfold (M)
cells, followed by transport into lymph nodes and IgA-secreting
B cell activation in the lymphoid tissue (87, 88). Considering
SARS-CoV-2, the antigen amount and quality critically impact
neutralization. Antibodies should be specific to the S protein
and must be detected in the serum for 2–3 weeks post-infection
(89, 90). Human convalescent serum transfer has been proposed
as a potential strategy to prevent and treat severe cases of
COVID-19, with its therapeutic value documented in several
clinical trials (84, 91–94). An important challenge in overcoming
COVID-19 is viral elimination from the mucosa through antibody-
associated shedding. Given that infectious agents trigger mucosal
immunity (95), mucosal vaccination could be a promising strategy

to evoke IgA antibodies at both the mucosal surface and the
systemic immune system (96). Importantly, mucosal vaccination
may facilitate IgA-virus complex formation in the mucosa of
respiratory and intestinal tissues (97). As currentmodes of COVID-
19 vaccination are predominantly based on systemic antigen
exposure, efficient strategies are needed to develop promising
mucosal vaccination against continuously evolving SARS-CoV-2.

5. Involvement of gut microbial
community in SARS-CoV-2
pathogenesis

Following initial lung infection, SARS-CoV-2 invades the
gut mucosal immune barrier, directly impacting the intestinal
physiology. Moreover, intestinal tissue damage may facilitate
gut dysbiosis. It has been reported that commensal microbiota
in the lung and gut can counterbalance viral infection by
modulating immune responses in a homeostatic manner (98,
99). For instance, viral infection-induced changes in pulmonary
tissues and other microenvironments may alter the structure and
function of the gut microbiota (98). In a mouse model, seasonal
influenza infection of the respiratory tract increased the number
of Enterobacteria in the gut microbiota and decreased the number
of Lactobacillus and Lactococcus (99). Furthermore, intestinal
dysbiosis has been associated with increased mortality following
respiratory infections, probably due to deregulated airway immune
responses. Inflammatory dysbiosis of the gut microbiota and
epithelial damage reportedly enhance ACE2 levels, increasing the
risk of SARS-CoV-2 infection in the gastrointestinal tract, as well as
dissemination to other sites via circulation (5, 100).

5.1. Microbiota-linked prediction of
adverse outcomes

Various studies have revealed how SARS-CoV-2 infection can
alter gut microbiota and its association with adverse outcomes in
humans. In particular, viral infection-altered gut communities were
shown to be associated with inflammatory status in patients with
COVID-19. Serum-based proinflammatory biomarkers positively
correlated with increased levels of some consortia, including
Ruminococcus gnavus, during viral infection, whereas Clostridia

was negatively correlated (101). Moreover, disease severity could
be correlated with the abundance of Coprobacillus, Clostridium
ramosum, and Clostridium hathewayi (102). It has been reported
that approximately 50% of patients with COVID-19 display stool
positivity for SARS-CoV-2 even in the absence of gastrointestinal
manifestations and after recovery of respiratory SARS-CoV-2
infection (47), indicating the presence of persistent gut infection.
Based on viral infectivity prediction using metagenomic analysis
of the fecal SARS-CoV-2 genome, patients with COVID-19
demonstrate an increased functional capacity for nucleotide and
amino acid biosynthesis and carbohydrate metabolism (47). An
in-depth assessment demonstrated an evident correlation between
viral infection signatures and the enrichment of gut pathogens,
including Collinsella aerofaciens, Collinsella tanakaei, Streptococcus
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infantis, and Morganella morganii, even in the absence of
gastrointestinal manifestations (47). Although the Omicron variant
is known to cause relatively mild symptoms with marginal
invasiveness in humans and gut models, all SARS-CoV-2 variants
of concerns remarkably disrupted the mouse gut microbiota
(103). Surprisingly, the Omicron variant infection led to long-
lasting instability in the gut microbiota and a notable depletion
in Akkermansia muciniphila, even in the absence of severe lung
pathology. In addition to host markers or disease severity, the
fecal viral footprint was notably associated with dysbiosis-linked
alterations in gut bacterial communities, paving the way for novel
diagnostic tools for potent relapse or chronic adverse outcomes
in post-COVID or long-term COVID conditions, potently with
differential responses to SARS-CoV-2 variants.

In addition, SARS-CoV-2 infection can alter the gut virome
community. Although patients with COVID-19 presenting reduced
abundance exhibit an under-representation of RNA virus and
multiple bacteriophage lineages (DNA viruses), they have notable
gut enrichment of environment-derived eukaryotic DNA viruses,
mainly including crAs-like phages, Myoviridae, and Siphoviridae

families, even after of 30 days of symptom resolution (104,
105). Viral genes involved in bacteriophage integration, DNA
repair, metabolism, and virulence are predicted to contribute
to host stress and inflammation; however, some viral consortia
are inversely associated with blood levels of proinflammatory
proteins, white cells, neutrophils, and disease severity (104, 105).
These resident enteric viruses maintain a low level of immune
stimulation and are responsible for protective and regulatory
effects in the intestine (106). However, given the limited data
on the effects of viral composition on microbiota composition
and activity during SARS-CoV-2 infection, advanced interkingdom
associations need to be addressed to improve the integrated
prognosis and intervention against adverse outcomes in patients
with post-COVID or long COVID.

5.2. Microbiota-based probiotic
counteraction against infection

In patients with COVID-19, reduced beneficial commensals
were directly correlated with disease severity and complications
(107). It is speculated that a decline in probiotic intestinal
microbiota would fail to effectively control excessive
proinflammatory immune reactions, leading to the subsequent
progression of SARS-CoV-2 infection. Considering the
immunomodulatory cytokine production in response to beneficial
commensal bacteria, the abundance of Lactobacillus species
decreased in correlation with anti-inflammatory IL-10 levels
during SARS-CoV-2 infection (108). Therefore, serum IL-10
can be employed as a diagnostic indicator to assess disease
progression and severity in high-risk patients with COVID-19
(108). Moreover, disease severity is inversely correlated with the
abundance of Faecalibacterium parusnitzii, an anti-inflammatory
bacterium (102) and subjects with low levels of viral infectivity
features presented a relatively high abundance of short-chain
fatty acid-producing beneficial bacterial communities, including
Parabacteroides, Bacteroides, Alistipes, and Lachnospiraceae,

even in the absence of gastrointestinal manifestations (47).
Furthermore, several gut immune-modulating commensal
bacteria, including Faecalibacterium prausnitzii, Eubacterium

rectale, and bifidobacteria, were inversely associated with
levels of proinflammatory mediators, tissue injury markers
(lactate dehydrogenase, aspartate aminotransferase, and gamma-
glutamyl transferase), and disease severity (109). Accordingly,
these immune-modulating bacteria can potentially counteract
proinflammatory and toxic insults during viral infection, providing
novel insights into interventions against adverse outcomes during
PASC conditions. Patients with PASC tended to display high
levels of Ruminococcus gnavus and Bacteroides vulgatus and low
levels of Bifidobacterium pseudocatenulatum and Faecalibacterium

prausnitzii (110). Considering the inflammatory states due to
reduced levels of probiotic commensal community, patients
with COVID-19 are speculated to be remarkably susceptible to
infection by opportunistic bacteria, such as Klebsiella pneumoniae,
Streptococcus, and Ruminococcus gnavus, particularly during the
hospitalization period (102). Likewise, patients with PASC were
found to be markedly susceptible to nosocomial gut pathogens,
such as Clostridium innocuum and Actinomyces naeslundii (110).
These opportunistic bacteria can potentially trigger the production
of proinflammatory cytokines, such as IFN-γ and TNF-α (102).
Overall, the reduced abundance of probiotic gut bacteria can be
associated with severe inflammatory responses via the excessive
production of proinflammatory cytokines and severe complications
in high-risk patients with COVID-19. Therefore, remodeling or
supplementation with beneficial microbial communities are
promising interventions against the gut mucosal distress in
patients with COVID-19.

6. E�ects of nutritional status on
susceptibility to COVID-19

6.1. Association of nutritional deficiency
with disease severity during viral infection

Considering the gastrointestinal involvement in SARS-CoV-
2 infection, dietary components, including nutrients, bioactive
natural products, and probiotics, were assumed to contribute to
immune regulation in response to viral infections. In the French
NutriNet-Santé cohort study assessing 7,766 adult patients with
anti-SARS-CoV-2 antibodies, dietary intake of vitamin C, vitamin
B9, vitamin K, fibers, and fruit vegetables was associated with lower
susceptibility to SARS-CoV-2 infection, whereas dietary intake of
calcium and dairy products did not contribute to the infection
risk (111). The beneficial effects of vitamin C have been well-
documented in various in vitro and in vivo studies. Exposure to
high doses of vitamin C can induce antiviral actions against various
viruses (112). In clinical trials, treatment with a high dose of
intravenous (IV) vitamin C decreased vasopressor requirements
and improved mortality in patients with septic shock (113).
In addition to intervention against non-communicable chronic
diseases via regulation of inflammation and complications, various
dietary components, including vitamin C treatment, can contribute
to the supportive clinical management of infectious diseases, such
as COVID-19 (114).
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In addition to vitamin C, multiple lines of evidence suggest a
potential link between vitamin D and SARS-CoV-2 infection (115–
118). Vitamin D is an essential lipid-soluble nutrient absorbed from
dietary sources in the proximal small intestine, contributing to
skeletal management, intestinal calcium absorption, and immune
regulation (119). Although vitamin D deficiency was associated
with respiratory distress in patients hospitalized for pneumonia
(120), the association between low vitamin D intake and disease
severity in COVID-19 cases remains poorly explored (121). A
retrospective cohort study revealed that vitamin D deficiency status
was positively associated with an increased COVID-19 risk (115).
Another retrospective case-control study assessed the possible
influence of vitamin D status on disease severity in hospitalized
patients with COVID-19 (116). Serum 25-hydroxyvitamin D
(25OHD) levels were lower in hospitalized patients with COVID-
19 than those in population-based controls, and these patients
presented a higher prevalence of vitamin D deficiency (116).
Severe vitamin D deficiency (based on a cut-off of ≤10 ng/dL)
was noted in 24.0% of patients in the COVID-19 group when
compared with 7.3% in the control group (117). Another
study by the University of Florida revealed that patients with
vitamin D deficiency were five times more likely to be infected
with COVID-19 than those without deficiency after adjusting
for age groups (118). Taken together, dietary status, such as
vitamin D deficiency, may present a risk factor for COVID-19
susceptibility and severity (Figure 2). Moreover, the association
of the amount, duration, and interval of nutrient intake with
disease severity and prevalence needs to be examined. In addition,
specific pathophysiological mechanisms of dietary factor-linked
protection should be examined to clarify adverse outcomes
in patients.

6.2. Nutritional intervention against gut
defense deterioration during viral infection

Vitamin D may counteract gut distress by improving the
mucosal and epithelial barriers. Vitamin D supplementation
and activation of its nuclear receptor (vitamin D receptor
[VDR]) can improve epithelial barrier integrity by enhancing
the expression of VDR-associated intracellular junction proteins,
including occludin, claudin, and zonula occludens, in the
distressed gut (122, 123). Conversely, vitamin D deficiency
may compromise the mucosal barrier (124), leading to an
increased susceptibility to mucosal damage and infection
risk in patients with COVID-19. Moreover, the synthesis
and secretion of antimicrobial peptides were elevated via

vitamin D metabolite-linked VDR activation or subsequent
activation of TLR1/2 signaling in the mucosa (125, 126), thereby
regulating the excessive commensal bacteria and pathogens by
the epithelium or mucosal immune system. Moreover, vitamin D
supplementation can activate non-canonical pathways involving
the aryl hydrocarbon receptor (AhR), facilitating epithelial tight
junctions and mediating anti-inflammatory and antioxidant
actions in the injured gut barrier (127). Collectively, vitamin D
and the activation of its nuclear receptors, including VDR or
AhR, could improve the gut mucosal and epithelial barrier during
SARS-CoV-2 infection.

6.3. Nutritional intervention against gut
dysbiosis during viral infection

In addition to the direct effects of vitamin D on gut cell
physiology, nutritional supplementation is speculated to
act on the gut microbial community as another mucosal
exposome during SARS-CoV-2 infection. In various experimental
models and human studies, notable correlations have been
documented between vitamin D and gut microbiota (128, 129).
Vitamin D supplementation in healthy individuals significantly
increases gut microbial diversity, with an increased ratio of the
phylum Bacteroidetes to Firmicutes (128). Moreover, vitamin
D supplementation could remarkably enhance the abundance
of health-promoting probiotic taxa, including Akkermansia,

Bifidobacterium, Ruminococcaceae, Faecalibacterium, and
Coprococcus, while a significant decrease in Bacteroides acidifaciens

was observed in non-responders. In particular, some probiotic
genera, such as Lactobacillus reuteri, can metabolize vitamin
D to 7-dehydrocholesterol via bile salt hydrolase, subsequently
contributing to the pools of circulating 25OHD (130). Moreover,
supplementation with 25OHD reportedly attenuates inflammatory
responses in experimental models of inflammatory bowel disease,
accompanied by gut microbial regulation (131). Mechanistically,
compared with vitamin D-deficient subjects, vitamin D-sufficient
animals displayed enhanced levels of gut microbe-responsive
RORγt/FoxP3+ regulatory T cells in the colon. Notably, the
number of anti-inflammatory regulatory T cells positively
correlated with the abundance of Bacteroides and Clostridium
XIVa. Overall, vitamin D status was predicted to shape the
gut microbial community, which can facilitate the bioactive
metabolic conversion of vitamin D and regulatory responses
against inflammation during SARS-CoV-2 infection (Figure 3).

7. Conclusions

Gastrointestinal symptoms are reportedly associated with poor
outcomes in patients with acute and post-acute COVID-19.
Moreover, persistent remaining viral antigens in the gut mucosal
tissue present a risk of recurrent, chronic COVID, and post-acute
COVID complications. Based on the findings of a meta-analysis,
gastrointestinal symptoms, such as diarrhea, nausea, vomiting, and
abdominal discomfort, were notably associated with SARS-CoV-
2 infection. In addition to gastrointestinal translocation from the
airway in the gut–lung axis, the virus can transmit to water and food
supply systems directly and ultimately reaches the gastrointestinal
tract in humans via fecal–oral transmission. Despite the lack of
mechanistic evidence, SARS-CoV-2 could disrupt the mucosal and
epithelial barrier and reach the circulation and systemic immune
system. Moreover, the prolonged presence of viral antigens and
disruption of mucosal immunity may increase gut microbial and
inflammatory risks, leading to pathological outcomes and post-
acute COVID-19 symptoms. In addition to host immune cell
regulation, SARS-CoV-2 infection may alter the gut microbial
community, potentially shaping the immunological profile during
infection. Generally, patients with COVID-19 exhibit lower
bacterial diversity and a higher relative abundance of opportunistic
pathogens, such as Klebsiella pneumoniae, Streptococcus, and
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Ruminococcus gnavus in their gut microbiota than healthy controls.
Despite the dysbiotic changes during infection, enhancing specific
bacterial communities, such as Lactobacillus and Faecalibacterium

parusnitzii, may counteract adverse inflammatory outcomes in
the gut and other organs. Moreover, nutritional status, such as
vitamin D deficiency, has been associated with disease severity
in patients with COVID-19 via regulation of the gut microbial
community and mucosal immunity. Vitamin D is predicted to
improve the gut mucosal and epithelial barrier by activating
its nuclear receptors during SARS-CoV-2 infection. Moreover,
vitaminD status is predicted to shape the gutmicrobial community,
which can facilitate the bioactive metabolic conversion of vitamin
D and immune regulatory responses against infection-induced
inflammatory storms. Herein, the collated evidence provides
systemic insights into nutritional andmicrobiological interventions
against acute or post-acute COVID-19 in the gut–lung axis.
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