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Editorial on the Research Topic

Extracellular vesicles as modulators of cancer cell adaptive responses
linked to therapy resistance
Cancer still ranks as the leading cause of death, with approximately 20 million new

cases per year worldwide (1). The main obstacle to cancer eradication is that anticancer

approaches are often hindered by innate or acquired resistance to treatments (2). Cancer

cells escape toxicity of therapeutics via genetic heterogeneity, enhanced pro-survival

signals, metabolic reprogramming and improved detoxification and antioxidant

scavenging, among other mechanisms (3–5). The crosstalk between tumor cells and

the surrounding tumor microenvironment (TME) through the extracellular vesicle (EV)-

based communication system plays a major role in influencing the behavior and

phenotype of cancer cells through a wide array of molecular cargoes, such as proteins,

nucleic acids, lipids, and metabolites (6, 7).

Unfortunately, a comprehensive view of the molecular mechanisms through which

EVs affect resistance to anticancer treatments is yet to be depicted. Some evidence

suggests that key roles might be played by regulatory RNAs (namely, lncRNAs and

miRNAs) and drug efflux pumps (8, 9), metabolism reprogramming in cancer cells and in

the TME (10), changes in mitochondrial function, bioenergetics, reactive oxygen species

production and disposal, as well as in genomic stability and epigenetic control of gene

expression (11–13).

The aim of this Research Topic was to collect contributions focused on how EVs

affect molecular phenotype and behavior of cancer cells, in terms of their response to

anticancer interventions.
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Pompili et al. summarized the current state of knowledge on

the most important cellular pathways involved in the

cytoprotective effects of EVs in cancer cells, which can gain

resistance to chemotherapy via EV-dependent extrusion of

therapeutics, or even through the uptake of diverse molecular

cargoes, including ABC transporter proteins, inhibitors of

apoptosis, phase II detoxification enzymes, proliferation

enhancers and non-coding RNAs. Similarly, Palazzolo et al.

reviewed how EV molecular cargoes can change the response

profile of cancer cells to chemotherapeutics, for example by

inducing epithelial-mesenchymal transition (EMT) and cancer

stem cell (CSC) phenotypes, by stimulating the expression of

ATP-dependent efflux pumps, such as P-gp, or even impairing

caspase 3-dependent apoptosis. Pompili et al. and Palazzolo et al.

also discussed how natural or modified EVs may serve as drug

delivery systems, and how the EV-dependent cell-to-cell

communication may be targeted to reduce chemoresistance

in cancer.

Studies provided evidence for an EV-mediated cell-to-cell

transmission of drug-resistance traits in malignancies (14–16).

The ability of EVs to transfer resistance to recipient cells was

investigated by Lombardi et al., who observed that (TMZ)-

sensitive glioblastoma multiforme cells became less responsive

to TMZ after internalization of cyclooxygenase-2-containing

EVs derived from TMZ-resistant cancer cells.

The involvement of the redox milieu in the EV-dependent

modification of cancer cell behavior was investigated by some of

us. Ponzetti et al. showed that osteoblast-derived EVs (OB-EVs)

reduced osteosarcoma cells’ aggressiveness and viability by

impairing the redox balance of glutathione, a critical

endogenous antioxidant molecule with key functions in

detoxification and reactive oxygen species (ROS) scavenging

within cells (17). Interestingly, OB-EVs did not alter the

energy-related metabolic balance or mitochondrial dynamics.

NF-kB plays a major role in the execution of redox cellular

responses. As reviewed by Di Vito Nolfi et al., NF-kB, whose
expression governs key pro-survival pathways, is positively

regulated by the EV-dependent release of specific tumor-

promoting factors in the TME. A reciprocal regulation exists

between EVs and NF-kB signaling, with NF-kB being directly

involved in EVs trafficking and EVs-mediated chemoresistance,

along with EVs playing a role in the activation of NF-kB. The
authors discussed also how other proteins, molecules, molecular

mechanisms and pathways possibly play a role in chemoresistance.

The EV-mediated intercellular communication contributes to

pathway activation, immune escape, and drug resistance Di Vito

Nolfi et al. Beyond its important role in the redox response, NF-kB
regulates an array of genes involved in immune and inflammatory

responses (18). Mezzasoma et al. summarized how EVs and the

pro-inflammatory TME could lead to cancer drug resistance, for
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example by modulating the activity of the NLRP3-dependent

cascade, thus altering the inflammasome activation in cancerous

recipient cells, as well as stimulating immune-escape or immune-

stimulation, depending on the nature of the EV-releasing and

-receiving cells. The authors also discussed how potential inhibitors

of the inflammasome machinery could be effectively exploited to

develop new anti-cancer strategies. Simón et al. also discussed how

the proinflammatory TME elicits pro-survival effects through EV

release. These authors summarized the role of hypoxia and

chemotherapy in promoting release of EVs. Moreover, they

described how macrophages and adipocytes, main contributors

to pro-inflammatory disorders, can also induce release of EVs

eventually leading to increased chemoresistance. Finally, the

authors also provided an interesting picture of the pro-survival

molecular pathways activated by CSC- and cancer associated

fibroblast (CAF)-derived EVs. CAFs promote cancer progression

by facilitating metastasization, angiogenesis, immunosuppression

and drug resistance (19). In this context, Giusti et al. clearly

demonstrated that tumor-derived EVs activate fibroblasts into a

CAF-like phenotype, supporting their proliferation, motility,

invasiveness and enzyme expression.

Increasing evidence underlines a crucial role for EVs within

the TME as one of the main determinant for the immune

function of neutrophils in malignancies (20). Zippoli et al.

reviewed how tumor-derived EVs promote the differentiation

of a pro-tumoral immune-suppressive sub-population of tumor

associated neutrophils (TANs) and suppress T cell-mediated

immunity by increasing the expression of programmed death-

ligand 1 (PD-L1) in neutrophils. Interestingly, the authors

reviewed also literature that suggests that neutrophil-derived

EVs may serve as predictors of cancer outcome.

Lu et al. experimentally demonstrated that exosomes (EXOs)

from dendritic cells infected with Toxoplasma gondii inhibited

tumor growth in a mouse model of colorectal cancer (CRC), thus

providing insights of how parasite-based anticancer strategies

may achieve interesting results. Further research should identify

the specific components of the exosomes involved in this effect.

The regulatory RNAs shuttled by EXOs may be involved in

modulating the response to anticancer drugs (21). Wu et al.

described the role of circRNAs shuttled by EVs as either

suppressors or promoters of resistance to radiation in various

cancer models. Accordingly, circRNAs could serve as novel

clinical radiosensitizers, and as biomarkers to predict the effect

of radiotherapy on tumors, thus providing a basis for targeted

precision treatment in the future. In addition to the direct effect

of radiation on irradiated cells, the authors also observed a

process known as the radiation-induced bystander effect (RIBE),

in which non-irradiated cells are also indirectly affected by

radiation. RIBE appears to play a major role in determining

the success of cancer radiotherapy. Further research is needed to
frontiersin.org
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identify if circRNAs can also induce RIBE through EXOs. As

discussed in the mini-review from Zelli et al., exosomal miRNAs

are highly biocompatible, scarcely immunogenic, and have the

ability to cross the blood-brain barrier, thus representing

potential therapeutic delivery agents to suppress or prevent

further tumor progression.

EVs cargo also include lipids, such as cholesterol, ceramide,

sphingomyelin, and phosphatidylserine. Interestingly, in the

original article from Chen et al. atorvastatin was found to

reduce the release of EVs and their lipid content in ovarian

adenocarcinoma cells, while promoting the release of

cholesterol-enriched EVs. These effects were linked to reduced

cell proliferation, migration, invasion, and to an increase in

chemosensitivity to paclitaxel.

Acquired resistance to drugs is a major cause for hepatocellular

carcinoma (HCC) being a highly relapsing disease and a leading

cause of cancer mortality (22). Wang et al. reviewed how specific

HCC-derived cargoes promote the conversion of hepatic stellate

cells to CAFs, induce a pro-angiogenic effect and reduce endothelial

integrity, eventually promoting tumor invasion. In addition, the

authors discussed how specific EVs-associated miRNAs could be

used as valuable biomarkers for HCC diagnosis.

This guest editorial board hopes that the contributions here

collected offer innovative and interesting mechanistic insights on

the decisive role of EVs as key regulators of critical aspects of

cancer cell phenotype and behavior, in terms of their capacity to

stimulate the cellular stress response upon treatment, as well as

in terms of their ability to enable cancer cells to escape death

upon exposure to antitumor agents.

We wish to thank all the Authors for sharing novel findings

and interesting views of the current state of understanding on

this Research Topic. We also greatly appreciated the valuable

support given by the independent experts during the peer-review

of all the submitted manuscripts.
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Tumor-Derived Extracellular Vesicles
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Like Phenotype, Sustaining a Pro-
Tumorigenic Microenvironment
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Sandra D’Ascenzo and Vincenza Dolo*

Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy

Fibroblasts in the tumor microenvironment have been proven to actively participate in
tumor progression; they can be “educated” by cancer cells acquiring an activated state
and, as such, are identified as cancer-associated fibroblasts (CAFs); CAFs, in turn,
remodel tumor stroma to be more advantageous for cancer progression by modulating
several processes, including angiogenesis, immunosuppression, and drug access,
presumably driving the chemoresistance. That is why they are believed to hamper the
response to clinical therapeutic options. The communication between cancer cells and
fibroblasts can be mediated by extracellular vesicles (EVs), composed of both exosomes
(EXOs) and microvesicles (MVs). To verify the role of different subpopulations of EVs in this
cross-talk, a nearly pure subpopulation of EXO-like EVs and the second one of mixed
EXO- and MV-like EVs were isolated from ovarian cancer cells and administered to
fibroblasts. It turned out that EVs can activate fibroblasts to a CAF-like state, supporting
their proliferation, motility, invasiveness, and enzyme expression; EXO-like EV
subpopulation seems to be more efficient in some of those processes, suggesting
different roles for different EV subpopulations. Moreover, the secretome of these
“activated” fibroblasts, composed of both soluble and EV-associated molecules, was,
in turn, able to modulate the response of bystander cells (fibroblasts, tumor, and
endothelial cells), supporting the idea that EVs sustain the mutual cross-talk between
tumor cells and CAFs.

Keywords: extracellular vesicles, cancer-associated fibroblasts, CAFs, ovarian cancer, tumor microenvironment,
vesicles subpopulations
Abbreviations: a-SMA, a-smooth muscle actin; ABs, apoptotic bodies; CAFs, cancer-associated fibroblasts; CM, conditioned
medium; ECGF, endothelial cell growth factor; EGFs, epidermal growth factors; EVs, extracellular vesicles; EXOs, exosomes;
FAP, fibroblast activation protein; FBS, fetal bovine serum; FGFs, fibroblast growth factors; HGF, hepatocyte growth factor;
HUVECs, human umbilical vein endothelial cells; lEVs, large extracellular vesicles; MMPs, matrix metalloproteinases; MVs,
microvesicles; NCS, newborn calf serum; NHDF, normal human dermal fibroblasts; PDGFs, platelet-derived growth factors;
SEM, scanning electron microscopy; sEVs, small extracellular vesicles; TGF-b, transforming growth factor b; VEGF, vascular
endothelial growth factor.
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INTRODUCTION

The term “extracellular vesicles” (EVs) is used to describe all
spherical and membrane-enclosed vesicles released into the
extracellular space by both normal and tumor cells (1). When
their size and cellular origin are considered, it is possible to
distinguish three subpopulations of EVs: exosomes (EXOs),
microvesicles (MVs), and apoptotic bodies (ABs) (2).

ABs are released from the plasma membrane as blebs when
cells undergo apoptosis and have a size ranging between 1 and 4
µm in diameter. EXOs andMVs are released, instead, from viable
cells; EXOs are the smallest EVs, ranging from 40 to 150 nm in
diameter, and originate from the formation of an early endosome
at the plasma membrane and the subsequent maturation into
multivesicular bodies, where intraluminal vesicles (ILVs) form in
the lumen by inward budding of the membrane; their final fusion
with the plasma membrane results in the release of the ILVs into
the extracellular space originating EXOs. MVs are larger than
EXOs, being around 100 nm to 1 µm in size, and originate
directly from the outward budding of the plasma membrane (2).

To date, EVs are considered as an intercellular communication
mechanism acting as molecular shuttles packaged with a bioactive
cargo of proteins, lipids, and nucleic acids that are used by cells to
interact with the neighboring ones to modulate their environment
(3, 4); once released, indeed, they can interact with target cells,
releasing their content into extracellular space following EV lysis,
interacting with their receptors, by fusion, or other mechanisms yet
to be identified (3–5).

As such, EVs are involved in many physiological and
pathological processes (6–9); among the latter, cancer has been
the focus in the past years given the cancer-derived EV
involvement in many tumor-related processes such as
angiogenesis induction, invasion, motility, evasion from
immune surveillance, apoptosis escape, and drug resistance
promotion (10–17).

Over the last few years, some evidence has emerged
suggesting that, during cancer progression, EVs are also able to
support the creation of a microenvironment encouraging cancer
growth, progression, and metastasis by conveying messages to
nearby stromal cells, including the so-called “cancer-associated
fibroblasts” (CAFs) (18, 19).

CAFs, along with the extracellular matrix and several cell
types (including endothelial cells, immune cells, and adipocytes),
constitute the tumor stroma in many types of cancer, including
ovarian cancer. In this kind of tumor, the stroma could account
for a large percentage of tumor tissue (up to 83%), leading to
hypothesize a relevant role for CAFs (20, 21). CAFs have been
demonstrated to actively participate in cancer progression, being
involved in cancer metastasis, angiogenesis stimulation,
immunosuppression induction, and drug resistance (22–24).

Our previous study has demonstrated that the human ovarian
cancer cell line CABA I releases different EV subpopulations in a
time-dependent mode; starved CABA I cells, indeed, once
stimulated with fetal bovine serum (FBS), released a first nearly
pure population of EXO-like EVs (mean size ~100 nm) and a
second one mix of EXO- and MV-like EVs (size > 100 nm) (25).
These data highlighted that different time intervals lead to the
Frontiers in Oncology | www.frontiersin.org 210
release of different subpopulations of EVs, in terms of not only
size but also amount and molecular composition, suggesting
possible different cargoes and, consequently, different biological
roles for the different subpopulations.

This work aimed to verify if specific EV subpopulations
released from CABA I were able to activate normal human
fibroblasts into CAF-like cells and to verify the effect of such
activation on surrounding cells (cancer cells, endothelial cells,
and not activated fibroblasts).

Our present findings support the idea that ovarian cancer
cells can modulate fibroblast behavior through the release of EVs,
activating them to a CAF-like state that is able, in turn, to
stimulate the nearby cells. However, the different subpopulations
of EVs show a different ability to stimulate these processes: the
EXO-like EVs rather than the mixed population of EXO- and
MV-like EVs seem to be more efficient in some activation
processes. Overall, these findings suggest that EVs, particularly
EXOs, can be considered pivotal targets of novel anticancer
therapies to hamper fibroblast activation.
MATERIALS AND METHODS

Cell Cultures
CABA I cell line was established from the ascitic fluid of an
ovarian carcinoma patient not undergoing drug treatment (26).
Cells were grown as monolayers in Roswell Park Memorial
Institute-1640 (RPMI-1640) supplemented with 5% (v/v) heat-
inactivated FBS, 1× penicillin/streptomycin, and 2 mM of
L-glutamine.

Normal human dermal fibroblasts (NHDF) cell line was
purchased from Lonza (Walkersville, MD, USA) and grown as
a monolayer in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% (v/v) heat-inactivated FBS, 2 mM of
L-glutamine, penicillin, and streptomycin. Cells were subcultured
and used within the 15th doubling, as suggested by
Lonza’s protocols.

Human umbilical vein endothelial cells (HUVECs) were
isolated from human umbilical cord veins; the study was
conducted in accordance with the Declaration of Helsinki,
approved by the Internal Review Board of L’Aquila University
(protocol code 07/2018, February 2018), and informed consent
was obtained from all subjects involved. Endothelial cells were
grown on 1% gelatin-coated flasks in DMEM supplemented with
10% (v/v) heat-inactivated FBS, 10% (v/v) heat-inactivated
newborn calf serum (NCS), 20 mM of HEPES [N- (2-
hydroxyethyl) piperazine-N′- (2-ethane sulfonic acid)], 6 U/ml
of heparin, 2 mM of L-glutamine, 50 µg/ml of endothelial cell
growth factor (ECGF), penicillin, and streptomycin. These cells
were used within the fifth passage.

All cell lines were cultured at 37°C in a humidified
atmosphere with 5% CO2, and experiments were carried out
on sub-confluent (except for wound-healing assays) and
mycoplasma-negative cells.

FBS, RPMI, DMEM, glutamine, penicillin, and streptomycin
were purchased from Euroclone (Euroclone SpA, Milan, Italy);
Hepes and ECGF were from Sigma-Aldrich (St. Louis, MO, USA);
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and NCS was from Gibco (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA).

Extracellular Vesicle Isolation From
Culture Media
The protocol to isolate the two different EV subpopulations, used
to stimulate NHDF, had been previously set (25). Briefly, CABA I
cells were starved in serum-free medium for 24 h to avoid EV
release and subsequently stimulated with 5% of 40-nm-filtered
FBS HyClone (Thermo Scientific, Rockford, IL, USA) in RPMI-
1640; conditioned media (CMs) containing EVs were collected in
sterile working conditions after 30 min and 18 h from the
HyClone supplement.

To isolate EVs, these CMs were firstly centrifuged at 4°C at
600×g for 15 min and then at 1,500×g for 30 min to remove cells
and large debris, respectively. The resulting supernatants were
centrifuged at 100,000×g (Rotor 70Ti, Quick-Seal Ultra-Clear
tubes, kadj 221, brake 9) for 2 h at 4°C in an Optima XPN-110
Ultracentrifuge (Beckman Coulter, Brea, CA, USA). For each
preparation, the EVs were derived from a starting cell number of
4,500,000–5,000,000 cells for 30-min collection and 7,500,000–
9,000,000 for the 18-h collection. Isolated vesicles were
resuspended in Dulbecco’s phosphate-buffered saline (PBS)
(EuroClone, Milan, Italy), and the determination of vesicle
quantification was carried out by measuring the vesicle-
associated protein levels using the Bradford method (27) (Bio-
Rad, Milan, Italy) with bovine serum albumin (BSA; Sigma-
Aldrich, St. Louis, MO, USA) as the standard.

The EV subpopulations obtained with this experimental
protocol have already been previously characterized by
markers, NanoSight assay, and transmission electron
microscopy (25). Hereinafter, EVs from CMs collected after 30
min and 18 h from the HyClone supplement will be indicated,
respectively, as EVs30′ and EVs18h.

Fibroblast Treatments With EVs30′
and EVs18h
NHDFwere administered with EVs30′ and EVs18h by supplying 1 µg
of EVs/ml every day for up to 5 days, in a cumulative way: EVs were
added every 24 h without replacing the medium for the entire
duration of the treatment, so as to mimic the continuous release of
EVs by cancer cells within the tumor microenvironment and the
persistent exposure of fibroblasts to EVs. Treatments were
performed by adding the EVs to culture media supplemented
with a reduced percentage of FBS (2%) to limit the serum
stimulatory effect while ensuring fibroblast survival.

Hereinafter, NHDF treated with EVs30′ and EVs18h will be,
respectively, indicated as NHDF30′ and NHDF18h. Untreated
fibroblasts will be indicated as NHDF.

Western Blotting
To verify the NHDF activation into a CAF-like state, 48 h after
the end of a 5-day treatment with EVs, NHDF, NHDF30′, and
NHDF18h were washed three times with PBS and lysed in
radioimmunoprecipitation assay (RIPA) Lysis Buffer,
containing 50 mM of Tris-HCl, pH 7.5, 150 mM of NaCl,
0.5% sodium deoxycholate, 1% Triton-X, 0.1% sodium dodecyl
Frontiers in Oncology | www.frontiersin.org 311
sulfate (SDS), 5 mM of EDTA, 100 mM of sodium fluoride
(NaF), 2 mM of sodium orthovanadate (Na3VO4), 10 mM of
sodium pyrophosphate (NaPPi), 1 mM of phenylmethylsulfonyl
fluoride (PMSF), 1 mg/ml of leupeptin, 1 mg/ml of aprotinin, and
100 mg/ml of trypsin inhibitor (Sigma, St. Louis, MO, USA).
Fibroblasts’ protein content was determined by the Bradford
method, as described above. Fibroblast activation protein (FAP)
and a-smooth muscle actin (a-SMA) expression were
identified in samples containing 12 and 15 µg of protein (for
FAP and a-SMA, respectively) resolved by 7.5% and 12.5%
SDS–polyacrylamide gel electrophoresis (SDS-PAGE) (for FAP
and a-SMA, respectively) under reducing conditions and with
heating. Separated proteins were then blotted onto a
nitrocellulose membrane (Whatman-GE Healthcare Life
Sciences, London, UK), and non-specific binding sites were
blocked for 2 h in 10% non-fat dry milk in TBS containing
0.5% Tween-20 (TBS-T) at room temperature.

Blots were then probed with the specific primary antibody at
4°C overnight: FAP (rabbit monoclonal, 1:1,000 dilution,
ab207178, Abcam, Cambridge, UK) and a-SMA (rabbit
monoclonal, 1:5,000 dilution, ab32575, Abcam, Cambridge,
UK). GAPDH (mouse monoclonal, 1:5,000 dilution; MA5-
11114; Thermo Scientific) was used as a normalizer. After
several washes in TBS-T, the membranes were incubated in
appropriate horseradish peroxidase (HRP)-conjugated
secondary Abs: goat anti-mouse IgG-HRP, dilution 1:10,000
(sc-2005, Santa Cruz Biotechnology, Dallas, TX, USA) or goat
anti-rabbit IgG-HRP, dilution 1:7,500 (sc-2204, Santa Cruz
Biotechnology) for 1 h. All the antibodies were diluted in
blocking buffer (TBS-T containing 1% non-fat dry milk). After
being washed in TBS-T, the reactive bands were visualized with a
chemiluminescence detection kit (SuperSignal West Femto
Chemiluminescent Substrate, Thermo Scientific).

Images were recorded and analyzed with the gel
documentation system Alliance LD2 (Uvitec, Cambridge, UK).
Collection of Normal Human Dermal
Fibroblast Conditioned Media
To verify if treated NHDF modify their secretome, after the 5
days of cumulative treatment with 1 mg of EVs/ml, cells were
washed with serum-free DMEM and then incubated for 24 h in a
complete medium in which FBS was replaced with 0.2%
Lactalbumin Enzymatic Hydrolysate (LEH; Sigma, St. Louis,
MO, USA) to remove the contribution of enzymes/growth
factors from the serum. Parallelly, CM was prepared in the
same manner from untreated fibroblasts (controls). Cells and
cell debris were removed by centrifugation at 600–1,550×g from
all the CMs. Then, CMs were concentrated using Centricon
Ultracel YM-10 filters (Amicon Bioseparations; Millipore
Corporations, MA, USA; cutoff, 10 kDa) to be analyzed by
casein–plasminogen zymography assays or were used
unconcentrated for tests such as proliferation, migration, and
invasion assays, in addition to gelatin zymography assays.

Hereinafter, CMs obtained from NHDF, NHDF30′, and
NHDF18h will be indicated, respectively, as CM NHDF, CM
NHDF30′, and CM NHDF18h.
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Proliferation Assay
NHDF (1,000 cells/well) were seeded onto a 96-well plate,
incubated for 24 h in complete medium to enable cell adhesion
and spreading, and then treated with EVs30′ and EVs18h as
explained above (1 µg of EVs/ml every day for 5 days). The
effects of EVs on NHDF proliferation were evaluated by the XTT
assay on the 5th day, i.e., at 96 h from the beginning of the EV
treatment, while treatment was still in progress. Untreated
fibroblasts, grown in the same medium but without EVs, were
used as control.

For experiments with CM, NHDF (1,000 cells/well), ovarian
cancer cells CABA I (1,500 cells/well), and HUVECs (1,000 cells/
well) were seeded into 96-well plates (gelatin-coated for HUVECs),
allowed to adhere and spread for 24h at 37°Cand5%CO2, and then
cultured for 96 h (NHDF) or 72 h (CABA I andHUVECs) with the
CM NHDF30′ and CM NHDF18h. At the end of each specified
interval, the proliferation was assessed with the XTT assay.

CMs for experiments on NHDF were supplemented with 1%
FBS to ensure fibroblast survival, without stimulating their
growth; for the same reason, CMs for HUVEC experiments
were supplemented with 5% FBS, 5% NCS, HEPES, heparin, and
ECGF; CABA I cells were incubated with unsupplemented CM.
Cells incubated with CM NHDF were used as controls.

For the proliferation assay, 1 mg/ml of XTT [2,3-bis(2-methoxy-
4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxamide] (Sigma, St.
Louis, MO, USA) and 1.53 mg/ml of phenazine methosulfate (PMS;
Sigma-Aldrich) were mixed, and 50 ml of this solution was added to
each well. Plates were incubated for 4 h at 37°C, 5% CO2; after this
interval, the optical density (OD) of the colored, non-toxic, water-
soluble formazan originated by the metabolic reduction of XTT
mixed with PMS bymitochondria of living cells wasmeasured by an
ELISA reader at 450 nm. Values obtained in the absence of cells
were considered as background and subtracted from the OD values
of the samples. XTT tests were performed before the cells reached
confluence to prevent any possible artifact decrease in the results
due to contact inhibition.

Each experiment was performed in triplicate and repeated at
least twice. The data are expressed as the means ± SDs.

In Vitro Scratch Wound-Healing Assay
The wound-healing assay is one of the earliest developed tests to
study directional cell migration in vitro, and it is based on the
observation of cell migration into a scratch “wound” created on a
cell monolayer.

NHDF were cultured in 24-well microplates and treated as
previously explained. The scratch was performed at 48 h after the
end of 5 days’ treatment with EVs30′ and EVs18h when the cells
had reached the full confluency; a previously sterilized 200-µl
plastic tip was drawn across the cellular stratum to produce a
wound, floating cells were removed, and wells were washed 3
times with PBS to remove debris and to smooth the edge of the
wound. During the migration into the wound, cells were
maintained in an FBS reduced culture medium (2% FBS) that
avoided scratch closure by means of cell growth.

The status of the scratch wounds was monitored up to 48 h
using a contrast-phase microscope; representative images were
Frontiers in Oncology | www.frontiersin.org 412
collected at the beginning of the assay and at regular intervals.
The surface of the wounded area in each image was quantified
with the ImageJ software, and the data were reported as % of
wound closure (compared to 100%, conventionally assigned to
the original scratch area).

Invasion Assay
The study of cell invasiveness was accomplished using modified
Boyden chambers, separating the upper and lower
compartments with filters (8-mm pore size polycarbonate
polyvinylpyrrolidone-free Nucleopore filters) coated with a
thin layer of Matrigel® Growth Factor reduced (Beckton
Dickinson, Franklin Lakes, NJ, USA) diluted in serum-free
medium to a concentration of 0.5 mg/ml.

Briefly, NHDF, NHDF30′, and NHDF18h (1,000 cells/well)
were added to the upper chamber in 45 ml of serum-free medium,
and their motility abilities were tested using as chemoattractant
some DMEM containing 10% FBS, which was added into the
lower chamber; NHDF were used as controls.

In experiments with ovarian cancer cells, CABA I cells (1,000
cells/well) were added to the upper chamber in 45 ml of serum-
free medium, and in the lower chamber were added the serum-
free CM NHDF30′ and CM NHDF18h to test their effect as
chemoattractant; cells invading in response to CM NHDF were
used as controls.

The cells were allowed to invade the Matrigel® for 24 h at
37°C, 5% CO2. The non-invading cells on the upper surface of
the 8-mm pore filters were removed with a cotton swab. The
invading cells on the filters’ lower surface were fixed and stained
in 1% crystal violet in methanol. Invading cells in five random
microscope fields for each well were counted at 20× magnifications.

Zymography Assays
Serum-free CM NHDF, CM NHDF30′, and CM NHDF18h were
subjected to both gelatin and casein–plasminogen zymography
assays. Gelatin zymography was performed using 7.5% SDS-
PAGE copolymerized with 1 mg/ml of gelatin type B (Sigma, St.
Louis, MO, USA); the CMs were diluted in SDS-PAGE sample
buffer and analyzed under non-reducing conditions without
heating. After electrophoresis, the gels were washed three times,
15 min each, at room temperature, in a washing buffer containing
50 mM of Tris-HCl (pH 7.4) and 2.5% Triton X-100 (Sigma-
Aldrich); they were, then, incubated overnight in an activation Tris
buffer (50 mM of Tris-HCl, pH 7.4, 5 mM of CaCl2, and 120 mM
of NaCl) at 37°C. To visualize the lytic bands, the gels were stained
with Coomassie Blue R 250 (Bio-Rad, Hercules, CA, USA)
dissolved in a mixture of methanol:acetic acid:water (4:1:5) for
30 min and then destained in the same solution without dye.

The plasminogen activators (PAs) in the concentrated culture
CM were examined using the casein–plasminogen zymography
under non-reducing conditions and without heating. Proteins
were separated by electrophoresis in 10% SDS-PAGE
copolymerized with 0.2% casein (Sigma-Aldrich, St. Louis,
MO, USA) and 10 mg/ml of human plasminogen (Sigma-
Aldrich, St. Louis, MO, USA). After electrophoresis, the gel
was washed in the same buffer used for the gelatinase assay
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and then incubated for 48 h at 37°C in 50 mM of Tris-HCl, pH
7.4 + 0.02% NaN3. Staining and destaining were performed as
previously described. Activities of gelatinases and PAs appeared
as clear and distinct bands, which indicated proteolysis of the
substrate, on a blue background: those digestion bands were
quantified by ImageJ software.

Electron Microscopy
Scanning electron microscopy (SEM) analysis was performed on
fibroblasts treated with EVs30′ and EVs18h for up to 5 days. Forty-
eight hours after the end of this treatment, NHDF, NHDF30′, and
NHDF18h were detached, washed, and allowed to grow to
subconfluence on coverslips for an additional 96 h; then cells
were fixed in 2% glutaraldehyde (Electron Microscopy Sciences,
Hatfield, PA, USA) in PBS for 3 min.

After being dehydrated with a graded scale of ethanol (30% to
100%) and critical point-dried, the samples were glued onto
stubs, coated with gold in an SCD040 Balzer Sputterer, and
detected with Philips 505 SEM at 20 kV.

Migration Assay
The migration of normal fibroblasts and CABA I cells was tested
in response to CM NHDF30′ and CM NHDF18h (added as a
chemoattractant in the lower chambers, the same volume for
each sample). Cells migrated in response to CM NHDF were
used as controls. Briefly, cells were detached, washed three times
in serum-free medium, and seeded on the upper wells (5,000
cells/wells in serum-free medium) of the modified Boyden
chamber. Gelatin-coated polycarbonate membranes with 8-µm
pores were used to separate the upper wells from the lower ones.
Each condition to be tested was analyzed in triplicate. The
Boyden chambers were incubated for 24 h at 37°C in a CO2

incubator, and then migrated cells were visualized as described
for the invasion assay. The number of cells, migrated to the lower
surface of the polycarbonate membrane, was counted in five
random 20× fields within each well, under a microscope. The
mean number of cells per field was calculated as cell counts.

Tube Formation Assay
This in vitro test measures the ability of endothelial cells to
invade, migrate, organize, and differentiate into capillary-like
tubular structures within a three-dimensional matrix constituted
by Matrigel® Growth Factor Reduced 10 mg/ml (BD56230,
Franklin Lakes, NJ, USA). Briefly, Matrigel® was plated on the
bottom of 96-well plates and allowed to gel at 37°C for 1 h.
HUVECs were detached, counted, washed in serum-free
medium, and resuspended in serum-free CM NHDF, CM
NHDF30′, and CM NHDF18h. Then, 20,000 cells/well were
seeded on Matrigel® and incubated at 37°C, 5% CO2; the tube
formation was observed at 7 h after cell seeding. Several images
were acquired per well and processed using the Angiogenesis
Analyzer plugin with ImageJ software (28) downloadable from
the National Institutes of Health website. The total length of the
capillary-like structures, the number of nodes, and the number of
segments normalized per area were used for data analysis.
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Statistical Analysis
Data are expressed as the mean ± standard error. Comparisons
between the means of control groups and treated groups were
performed using the one-way ANOVA followed by Tukey’s post-
test; results were considered statistically significant when p < 0.05 (*),
p < 0.01 (**).
RESULTS

Normal Fibroblasts Treated With
Extracellular Vesicles Acquire
Cancer-Associated Fibroblast-Like
Morphologyand Express Their Markers
Potential NHDF morphological changes, a typical signature of
fibroblast activation, induced by EVs30′ and EVs18h were
observed by an inverted optical microscope.

EVs30′ and EVs18h are EVs isolated from CMs collected after
30 min and 18 h, respectively. As mentioned above and discussed
further below, in previous work (25), we highlighted that the
human ovarian cancer cell line CABA I releases two specific
subpopulations of sEVs “(EVs30’) and lEVs+sEVs (EVs18h).

Such morphological changes were visible in NHDF treated
with ovarian cancer EVs30′ and EVs18h starting after 72 h at the
beginning of treatment (Figure 1), whilst untreated fibroblasts
exhibit typical elongated and spindle-shaped morphology, some
NHDF30′ and NHDF18h underwent a morphological change,
acquiring the typical morphology of activated fibroblasts
(NHDF30′ and NHDF18h are, respectively, NHDF treated with
EVs30′ and EVs18h): they appeared very spread with many visible
stress-contractile fibers inside the cytoplasm.

To confirm the cell activation, at the end of the EV treatment,
NHDF, NHDF30′, and NHDF18h were lysed as described, and
protein extracts were analyzed to detect the expression of typical
markers of CAFs: FAP and a-SMA (Figure 2).

The quantitative analysis detected a statistically significant
increase in the expression of a-SMA (calculated molecular
weight: ~44 kDa) in both NHDF30′ and NHDF18h when
compared to NHDF (1.44 and 1.35, respectively) (Figure 2).
FAP was also increased in both NHDF30′ and NHDF18h when
compared to NHDF (3.3 and 4.5, respectively).

Extracellular Vesicle Subpopulations
Differently Affect Fibroblast Proliferation,
Motility, Invasiveness, Enzyme Expression,
and Microvesicle Release
Proliferation rate alteration induced by EV treatments was
evaluated. It was tested while the treatment was still ongoing
on the 5th day of the EV treatment (96 h from the beginning of
treatments) (Figure 3): EVs18h did not induce any significative
increase, while the treatment with EVs30′ resulted in a significant
increase when compared to the untreated cells NHDF (+15%).

The motility induced by EVs30′ and EVs18h treatments was
tested with the scratch wound assay (Figure 4). Migration was
observed at different time intervals (24, 32, and 48 h), and the
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most significant changes were captured after the beginning point
(time zero); the observation of the wounded area showed that
NHDF30′ and NHDF18h have a greater tendency to close the
wound by migrating inside it compared to NHDF (Figure 4A);
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to quantify this ability to close the wound, the wounded area (i.e.,
the area uncovered from the cells) was measured with ImageJ
software at the intermediate time intervals, 24 h (Figure 4B) and
32 h (Figure 4C). The 100% value was conventionally assigned to
the wounded area of the original scratch (time zero). NHDF18h
migrated with the same trend as NHDF, while NHDF30′
exhibited higher motility: indeed, after 24 h, the area not yet
covered was quite comparable in NHDF and NHDF18h
(respectively 69% and 71% with respect to the original wound),
but it was significantly lower (53% with respect to the original
wound) in NHDF30′. After 32 h, the scratch area of NHDF and
NHDF18h was again comparable (respectively 61% and 60% with
respect to the original wound), but it was significantly lower in
NHDF30′ (44% compared to the original wound). After 48 h, the
trend was substantially maintained, but since proliferative effects
could begin to occur at this time interval, it was not considered
(despite that the experiment conducted in the presence of a low
concentration of serum has certainly avoided the scratch closure
by means of cell growth) (data not shown).

The invasion assay performed with the modified Boyden
chamber showed that both fibroblasts treated with EVs30′ and
EVs18h showed a trend to a greater invasiveness capacity
(respectively +101% and +30%) as compared to NHDF
(Figure 5A), but only NHDF30′ had a statistically significant
greater ability if compared to NHDF. To estimate if the invasion
ability induced by the EV treatment could be supported by an
increased secretion of proteolytic enzymes, CMs from EV-
treated fibroblasts were normalized according to the same
volume and assayed to evaluate the gelatinolytic and PA
activities by employing zymographic techniques. The gelatinase
assay (Figure 5B) revealed that both EVs30′ and EVs18h induced
in NHDF the expression of pro-MMP-2: +41% and +24%,
respectively, in NHDF30′ and NHDF18h compared to NHDF
(calculated molecular weight 70 kDa). The casein–plasminogen
zymography (Figure 5C) similarly highlighted a trend to a
FIGURE 2 | Western blotting identification of a-smooth muscle actin (a-SMA)
and fibroblast activation protein (FAP). The expression of a-SMA and FAP was
increased in NHDF30′ and NHDF18h. Band intensity was analyzed by ImageJ
and presented in the graph on the right as ratio a-SMA/GAPDH or FAP/
GAPDH, in which 1 is the ratio conventionally attributed to NHDF. For a-SMA,
the image on the left is representative of 1 of 3 independent experiments (all of
them represented in the graph as mean ± SD; *p < 0.05). FAP assay was
performed once.
FIGURE 1 | Optical images of fibroblasts showing morphological changes induced by extracellular vesicle (EV) subpopulations EV30′ and EV18h. Representative
images of untreated control fibroblasts (NHDF) and fibroblasts treated with the two EV-subpopulations (NHDF30′ and NHDF18h). The scale bar is 1,000 nm in the top
row and 500 nm in the bottom row. Images were captured with 5× and 10× objectives of an inverted optical microscope.
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higher release of the high-molecular-weight urokinase-type PA
(HMW-uPA) (calculated molecular weight 48–55 kDa),
particularly in NHDF30′ (+51% in NHDF30′ compared
to NHDF).

NHDF30′ and NHDF18h cell surface was also observed by
SEM to verify if EV-mediated activation stimulated, in turn, the
EV release, particularly of MVs from the cell surface, whilst the
shedding of MVs was very sporadic in untreated NHDF; in EV-
treated fibroblasts, the extent of the MV release was more evident
and involved large membrane areas (Figure 6).

Secretome of NHDF30′ and NHDF18h
Affects Bystander Cells
After the end of the EV treatment, the CMs of NHDF30′ and
NHDF18h (representing the cell secretome and containing both
EV-associated and soluble molecules) were used as stimuli to
evaluate their effect on the cells normally present in the
tumor microenvironment, such as fibroblasts, endothelial cells,
and tumor cells. CM from untreated NHDF was used as
a control.

Fibroblast proliferation rate was not at all affected by CM
(Figure 7A). On the contrary, CM NHDF30′ and CM NHDF18h
exerted a considerable chemotactic effect, stimulating the migration
ability of normal fibroblasts (Figure 7B): migration of fibroblasts
toward the secretome of EV-treated fibroblasts was almost 2-fold
increased with respect to the migration toward the CM NHDF
(+93% and + 81%, respectively for CM NHDF30′ and CM
NHDF18h), even if no differences were appreciable between CM
NHDF30′ and CM NHDF18h.

The effects of activated fibroblasts’ secretome on ovarian
cancer cells were also analyzed evaluating the migration and
invasion abilities, in addition to their proliferative capacity
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(Figure 8). CABA I cells cultured in the presence of CM
NHDF, CM NHDF30 ′, and CM NHDF18h showed no
significant change in their proliferation (Figure 8A). On the
contrary, their motility (Figure 8B) and invasiveness
(Figure 8C) were significantly promoted: they were higher in
response to CM NHDF30′ and CM NHDF18h than in response to
CM NHDF, with no significant differences between CM
NHDF30′ and CM NHDF18h (motility, +140% and +116%
compared to CM NHDF in CM NHDF30′ and CM NHDF18h,
respectively; invasion, +158% and +176% compared to CM
NHDF in CM NHDF30′ and CM NHDF18h, respectively).

HUVECs, too, were stimulated by CM NHDF, CM NHDF30′,
and CM NHDF18h to assess their proliferation response
(Figure 9): although the cell number appeared to increase in
endothelial cells treated with CM from EV-treated fibroblasts,
this increase was not statistically significant (Figure 9A). On the
contrary, the tube formation assay highlighted the pro-
angiogenic potential of CM. The test revealed that the
differentiation of HUVECs into primitive capillary-like
structures occurred in response to both CM NHDF30′ and CM
NHDF18h; the number of nodes, the total length of formed tubes,
and the number of segments were significantly higher in
HUVECs treated with CM NHDF30′ and CM NHDF18h than
with CM NHDF (Figure 9B) (number nodes/area: 14.6 in
HUVECs treated with control NHDF CM; 56.7 and 39.6 in
CMNHDF30′- and CMNHDF18h-treated HUVECs, respectively.
Total length/area: 1,078 pixels in HUVECs treated with control
CM NHDF; 1,751.6 and 1545.8 pixels in CM NHDF30′ and CM
NHDF18h treated HUVECs, respectively. Number segments/
area: 2.12 in HUVECs treated with control CM NHDF; 19.7
and 14 in CM NHDF30 ′ and CM NHDF18h treated
HUVECs, respectively).
FIGURE 3 | Effects of EVs30′ and EVs18h on fibroblasts’ proliferation. Proliferation was evaluated by XTT assay, on the 5th day of treatment, i.e., at 96 h from the
beginning of the EV treatment. Values were calculated as mean ± SD and are expressed as percentages with respect to 100% proliferation, conventionally attributed
to untreated NHDF. Experiments were performed three times in triplicate. The asterisk on the bar indicates the statistical significance with respect to NHDF, and the
horizontal line refers to the statistical significance between the NHDF30′ and NHDF18h (*p < 0.05).
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DISCUSSION

Ovarian cancer is one of the deadliest gynecological malignancies
and is characterized by a poor prognosis, with an overall 5-year
survival rate lower than 40%, which increases when the cancer is
diagnosed at an early stage—while still confined to the ovary—
and treated by surgery and chemotherapy (29, 30). Many cases of
ovarian cancer, unfortunately, are diagnosed when already in an
advanced stage, with metastasis to bladder, uterus, or abdomen,
as ovarian cancer symptoms typically resemble gastrointestinal
problems (abdominal discomfort, nausea, and bloating) (20).
The traditional clinical approach to ovarian cancer relies on a
combination of surgery and platinum/taxane-based
chemotherapies. While initially sensitive to chemotherapeutic
drugs, unfortunately, most patients develop a resistance to these
pharmacological therapies (30).

So far, the used therapeutic drugs predominantly targeted the
tumor cells, without taking proper account of the role of the
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tumor microenvironment. The latter, instead, is composed of an
extracellular matrix and many cells that could actively participate
in tumor progression and may serve as novel therapeutic targets
for ovarian cancer patients (20, 21, 31). Among the stromal cells
—besides adipocytes, endothelial cells, and immune cells—
fibroblasts have been strongly reconsidered, as their ability to
create a loop of intercellular communications that strengthen the
cancer progression has been revealed (31).

It has been highlighted, indeed, that within the tumor
microenvironment, fibroblasts, which usually constitute the
most abundant population, can acquire a perpetually
“activated” state, making them able to support, in turn, the
cancer progression; these activated fibroblasts were identified as
CAFs (20, 32–34). Besides, CAFs’ supportive role in ovarian
cancer has been already proved (21, 35, 36).

Generally, the activation of resident fibroblasts, induced by
the cross-talk with tumor cells, may be sustained by growth
factors released from tumor cells, the most important being the
A

B C

FIGURE 4 | Effects of EVs30′ and EVs18h on fibroblasts’ motility. Motility was assessed by the scratch wound assay (A); the panel reports representative images
recorded 24 and 32 h after the scratch creation (0 h); dotted lines represent the size of the original wound. Graphs at the bottom show the percentage of the still
wounded area at 24 h (B) and 32 h (C) with respect to the original wound (conventionally set as 100%). Only the migration of fibroblasts treated with EVs30′ resulted
in statistical significance compared to the migration of control fibroblasts. Data derived from three biological replicates tested individually due to scarcity of the
material and are shown as mean ± SD; the asterisk on the bar indicates the statistical significance with respect to NHDF, and the horizontal line refers to the
statistical significance between the NHDF30′ and NHDF18h (*p < 0.05).
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TGF-b, even if many other molecules seem to be involved in the
CAFs activation, such as HGF, PDGFs, FGFs, EGFs, and
interleukin-1b (18, 30, 37, 38). Once activated from cancer
cells, CAFs’ secretome, in turn, remodels tumor stroma to
become more advantageous for tumor progression, thus deeply
contributing to the malignant behavior of cancer cells. CAFs,
indeed, can enhance the invasive properties of cancer cells
releasing several tumor-promoting growth factors and
chemokines (for example, TGF-b, HGF, FGF1, and FGF2) and
also molecules (like VEGF) that strongly induce angiogenesis,
further supporting proliferative, migratory, and invasive abilities
of cancer cells (29, 33, 35, 39–41). They can migrate along with
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cancer cells in the bloodstream, secreting cytokines that sustain
invasive properties and growth of tumor cells at distant sites,
supporting the hypothesis that they can contribute to the pre-
metastatic niche formation; they also support immunosuppression
and drug resistance (22–24, 37, 38, 41–43).

As for the latter, the key role of CAFs and how they exploit
several mechanisms to sustain the resistance to antineoplastic
drugs have emerged: they can modify the composition of the
extracellular matrix so to increase the intratumoral interstitial
fluid pressure, resulting in a physical barrier that prevents an
efficient delivery of anticancer drugs (22, 44). CAFs can also
activate signaling pathways that revert the therapeutic outcome,
A

B C

FIGURE 5 | Invasion ability and proteolytic enzymes. (A) In an invasion assay with a modified Boyden chamber, NHDF30′ and NHDF18h invaded through the Matrigel®-
coated membrane significantly more than NHDF. Data derive from 5 measures from each replicate (3 replicates in total) and are shown as mean ± SD; the asterisk on the bar
indicates the statistical significance with respect to NHDF, and the horizontal line refers to the statistical significance between the NHDF30′ and NHDF18h (*p < 0.05; **p < 0.01).
(B) Gelatin zymography assay was performed to detect gelatinolytic activity in the serum-free conditioned media of NHDF, NHDF30′, and NHDF18h. EVs30′ induced a more
marked increase in pro-MMP-2 (~72 kDa) release than the EVs18h. (C) Casein–plasminogen zymography assay was performed to detect plasminogen activator (PA) activity in
the serum-free conditioned media of NHDF, NHDF30′, and NHDF18h. The bands represent the high-molecular-weight PAs (~48-55 kDa), whose release resulted in higher
fibroblasts treated with EVs30′. In both zymography assays, the densitometric values of the bands were calculated with ImageJ and reported in the graphs below as a ratio of
the band NHDF30′ or NHDF18h vs. NHDF, which have been conventionally assigned the value 1. The images shown in panels B and C are representative of 3 independent
experiments (all of them being reported in the graphs).
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driving tumor cells to a more chemoresistant phenotype by
different mechanisms (45): they can release growth factors
involved in the therapy resistance (among the growth factors
released from CAFs, for example, the HGF has been correlated to
therapeutic resistance occurrence in melanoma) (22, 46) or
factors that, stimulating tumor cells to undergo epithelial-to-
mesenchymal transition, increase the resistance to chemotherapy
(24, 45); they have also been shown to promote the
chemoresistance by promoting the metabolic reprogramming
or maintaining the stemness of cancer stem cells (23).
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Being increasingly demonstrated that CAFs contribute to
cancer progression and drug resistance, they are more and
more considered as a pivotal target of novel anticancer
therapies. In parallel, the understanding of biological processes
involved in CAFs activation into the tumor microenvironment is
critical to reveal mechanisms underlying cancer progression and
drug resistance as well.

Since EVs are known for their role as mediators of cell-to-cell
communication (3, 47–49), we wondered if EVs released from
human ovarian cancer cells could activate normal fibroblasts into
FIGURE 6 | Scanning electron microscopy (SEM). SEM images highlighted the intense shedding of microvesicles from the plasma membrane of NHDF30′ and
NHDF18h. On the other hand, NHDF cells showed an extremely sporadic production of microvesicles. The first row shows images at low magnification; the second
row shows details of the first row at higher magnification, as highlighted by the boxes; row 3 shows other independent and representative images at higher
magnification. The scale bar is 10 µm in all images.
A B

FIGURE 7 | Effect of NHDF, NHDF30′, and NHDF18h secretome on normal fibroblasts. (A) Normal fibroblasts were cultured for 96 h with conditioned media from
NHDF, NHDF30′, and NHDF18h. Cell proliferation rate was tested using XTT assay. Data were derived from experiments performed twice in triplicates and are shown
as mean ± SD. No significant differences in the proliferation percentage were revealed. (B) Normal fibroblast migration assay performed twice in duplicates with
modified Boyden chamber. Data are expressed as mean ± SD and are shown as a percentage with respect to 100% migration, conventionally attributed to
fibroblasts migrated in response to conditioned medium of NHDF (*p < 0.05).
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CAFs, as is the case with other types of cancer (18, 50–54) and
found out that when EVs isolated from human ovarian CABA I
cancer cells were administered to normal fibroblasts, they
induced their activation into a CAF-like state (55).

Moreover, we had already demonstrated that it is possible to
isolate two EV subpopulations from CABA I cells in a time-
dependent way: starved CABA I cells, once stimulated with FBS,
released a nearly pure population of EXO-like EVs or sEVs
(mean size ~100 nm) after 30 min and a second population
consisting of a high amount of MVs-like EVs or lEVs (size > 100
nm) combined with a low EXO-like EV contribution, i.e., lEVs
+sEVs after 18 h (25). Those data highlighted that different time
intervals lead to the release of different subpopulations of EVs, in
terms of not only size but also amount and molecular composition,
suggesting possible different cargoes and, consequently, a different
biological role for the different subpopulations.

Hereinafter, these subpopulations will be indicated,
respectively, as EVs30′ and EVs18h and the NHDF cells
obtained by their administration as NHDF30′ and NHDF18h;
untreated fibroblasts will be indicated as NHDF.

Based on those previous results, in the present work, we
aimed to verify if the two specific subpopulations of sEVs and
lEVs+sEVs released from the human ovarian cancer cell line
CABA I could differentially activate fibroblasts, so as to verify if
they could induce different biological processes (maybe related to
a different cargo). To this purpose, NHDF were treated daily with
the EV subpopulations for 5 days, in a cumulative way (i.e.,
adding the new dose of EVs to the previous one without
replacing medium throughout the treatment), to reproduce, in
vitro, continuous stimulation from cancer cells–EVs on stromal
fibroblast that, supposedly, takes place in vivo.

When administered to fibroblasts, the EVs modified their
morphological and molecular features, supporting the idea that
EVs can induce the activation offibroblasts into a CAF-like state:
in fact, untreated cells displayed the usual elongated and spindle-
shaped aspect of normal quiescent fibroblasts, while some
NHDF30′ and NHDF18h acquired the typical “spread”
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phenotype of CAFs, which is similar to that of myofibroblasts
involved in the wound-healing process (Figure 1) (33, 41); at the
same time, there was an increase in the a-SMA levels (Figure 2),
a common marker for CAFs [along with SDF-1, FSP-1, vimentin,
desmin, tenascin, and FAP (20, 33, 41, 56)]. To further confirm
the activation into a CAF-like state, FAP was also analyzed,
highlighting an increase in its level in EV-treated NHDF.

Even if both EV subpopulations affected the morphology and
marker expression in NHDF, we found out that EVs30′, but not
EVs18h, also enhanced the proliferative, migratory, and invasive
abilities of NHDF (Figures 3–5); all these processes are typically
increased in CAFs (30, 54). Since NHDF30′ releases a higher
content of proteolytic enzymes as compared to NHDF18h and
NHDF, we can suppose that both invasion and motility were
sustained by the increased levels of gelatinases and PAs
(Figures 5B, C). The release of proteolytic enzymes could also
sustain the drug resistance: CAFs have been demonstrated to be
actively involved in the secretion of uPA, which can cleave and
activate several MMPs that, in turn, could facilitate cancer cells
migration and invasion, by degrading the extracellular matrix, as
well as drug resistance (18, 24, 33, 34, 57–59). So our data
confirm that EV-activated fibroblasts release both the MMPs
required for these processes, in an active pro-MMP form, and
their activators PAs.

The activated state of NHDF30′ and NHDF18h also seems to
result in an increased release of EVs (specifically MVs) from the
cell surface (Figure 6); it is not possible to quantify the extent of
MVs’ release from activated NHDF through the SEM images, but
the observation clearly revealed an increase in membrane
shedding. It has been previously reported that the extensive
production of MVs by CAFs is used as a way to move lipids and
proteins to target cancer cells to support tumor growth (60). This
evidence led to hypothesize that activated fibroblasts are more
prone to communicate with neighboring cells; after all, several
studies already suggested that CAFs can actively modulate
bystander cells in the tumor microenvironment by means of
soluble or EV-associated mediators [fibroblasts-derived EXOs,
A B C

FIGURE 8 | Effect of NHDF, NHDF30′, and NHDF18h secretome on CABA I cells. (A) CABA I cells were cultured for 72 h with conditioned media (CMs) of NHDF,
NHDF30′, and NHDF18h. Data, derived from experiments performed twice in triplicates, are expressed as mean ± SD and shown as a percentage, and 100%
proliferation was assigned to CABA I cells proliferating with CM of untreated NHDF. (B) CABA I cell migration was measured twice in duplicate in response to serum-
free CM NHDF, CM NHDF30′, and CM NHDF18h, by modified Boyden chamber (*p < 0.05). Data (mean ± SD) are expressed as a percentage with respect to 100%
migration, conventionally attributed to CABA I cells migrating toward CM NHDF. (C) CABA I cell invasion was tested twice in response to CM NHDF, CM NHDF30′,
and CM NHDF18h with a modified Boyden chamber coated with Matrigel® (*p < 0.05). Data (mean ± SD) are expressed as a percentage, and 100% invasion was
attributed to CABA I cells migrating toward CM NHDF.
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for example, stimulate motility in breast cancer cells (61), while
CAF-derived EXOs can lead to higher drug resistance (62)].

This considered, we wondered whether our EVs30′- and
EVs18h-activated fibroblasts were actually able to modulate the
response of some cells usually present in the tumor
microenvironment, such as tumor and endothelial cells as well
as still quiescent fibroblasts. For purely technical problems, due
to material shortage, we have not used the EVs isolated from
activated fibroblasts but their CM (which represents their whole
secretome, containing both soluble and EV-associated
molecules). CMs obtained from NHDF, NHDF30′, and
NHDF18h are indicated, respectively, as CM NHDF, CM
NHDF30′, and CM NHDF18h.
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CM NHDF30′ and CM NHDF18h did not significantly affect
the proliferation, neither of normal fibroblasts (Figure 7A) nor
tumor (Figure 8A) or endothelial cells (Figure 9A); on the other
hand, instead, both CMs significantly affected the motility of
fibroblasts (Figure 7B) and motility and invasiveness of CABA I
tumor cells (Figures 8B, C). The CM from activated fibroblasts
also exhibited a pro-angiogenic behavior, being able to stimulate
the tube formation assay of HUVECs (Figure 9B).

These assays indicated that the secretome released by
fibroblasts, being previously activated by cancer EVs, may
deeply affect the behavior of neighboring cells through
paracrine mechanisms; this observation parallels what is
already known for tumor-derived secretome/EVs. Indeed, the
A

B

FIGURE 9 | Effect of NHDF, NHDF30′, and NHDF18h secretome on HUVECs. (A) The effect of conditioned media (CM) NHDF, CM NHDF30′, and CM NHDF18h on
endothelial cell growth was assessed using the XTT assay. Proliferation was expressed as a percentage, conventionally attributing 100% proliferation to HUVECs
treated with CM NHDF. Data derived from experiments performed twice in triplicates. (B) Representative pictures showing the formation of capillary-like structures
formed by HUVECs seeded on Matrigel®-coated plates in a serum-free condition and treated with CM NHDF, CM NHDF30′, and CM NHDF18h; the graphs at the
bottom show the number of nodes or total length of tubes or number of segments normalized per area. Data derive from experiments performed twice in duplicate
and are expressed as the mean ± SD (*p < 0.05; **p < 0.01).
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role of cancer cells in inducing the reprogramming of other
neighboring cells (such as epithelial cells or mesenchymal stem
cells) toward a tumor-like phenotype possibly sustaining cancer
progression has been already shown (63–69).

Likewise, it is widely demonstrated that tumor EVs canmove in
the blood, thus contributing to the formation of the pre-metastatic
niche (19, 68–70); among the processes involved in the formationof
the pre-metastatic niche, a critical role is sustained by the cross-talk
between cancer cells and resident fibroblasts, resulting in the
activation of the latter ones (18, 71). While many studies
dissected the role of tumor-derived EVs in metastatic niche
modulation (70–72), only sporadic studies have explored the
ability of CAF-derived EVs to promote the pre-metastatic niche
formation (73), and their role remains to be further elucidated.
Given that the EVs30′- and EVs18h-activated fibroblasts showed an
increased ability to produce MVs and to stimulate, in turn, other
normal fibroblasts, our data could support the hypothesis, to be
verified, that also the EVs released by the activated fibroblasts in the
primary site of the tumor, aswell as those releasedby the tumor cells
themselves, can move through the blood and prepare the pre-
metastatic niche by stimulating the resident cells.

The disclosed data, overall, support the idea that ovarian
cancer cells could initially modulate fibroblast behavior within
the tumor microenvironment through the release of EVs,
activating them to a CAF-like state, and then, in turn, these
CAF-like cells can stimulate the surrounding normal and tumor
cells to acquire a cancer-supportive behavior and, maybe, distant
fibroblasts in the pre-metastatic niche.

It is interesting to note that the population EVs30′ is the
strongest in the activation of all described processes, aligning
with some proteogenomic assays that have previously shown that
EXOs and MVs are functionally distinct (74), with EXOs being
more oncogenic than MVs (75); it looks like in the EVs18h
population, being the EXOs diluted by the simultaneous
presence of MVs, oncogenic stimuli are weakened. The higher
ability of EVs30′ to activate fibroblast could rely on their higher
content in TGF-b with respect to the EVs18h, as demonstrated by
Western blotting and ELISA (data not shown); TGF-b, along
with other several molecules, is required for the induction and
maintenance of CAFs by cancer cells (54, 76, 77).

That the EXOs play a crucial role in cancer biology andmetastasis
has widened their possible applications for cancer detection and
medical diagnostics; indeed, there is a continuous evolution of
techniques and applications in these fields based on EXO use,
ranging from liquid biopsy to EXO-based biosensors (78–80).
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There is no doubt that to understand more fully the molecular
protagonists of this virtuous (from the tumor point of view)
cross-talk, it will be necessary to dissect the content of the EVs30′
and EVs18h and the composition of the CAFs secretome;
regarding the latter, understanding whether the molecules
involved in the stimulation of neighboring cells are soluble or
EV-associated could help in identifying involved pathways as
well as possible specific therapeutic targets to improve clinical
approaches aimed to slow down cancer progression and
overcome CAF-supported drug resistance.
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6. Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al.
Biological Properties of Extracellular Vesicles and Their Physiological
Functions. J Extracell Vesicles (2015) 4:27066. doi: 10.3402/jev.v4.27066
February 2022 | Volume 12 | Article 839880

https://doi.org/10.1038/nrm.2017.125
https://doi.org/10.1038/nrm.2017.125
https://doi.org/10.1146/annurev-cellbio-101512-122326
https://doi.org/10.1038/s41556-018-0250-9
https://doi.org/10.1038/s41556-018-0250-9
https://doi.org/10.1016/j.tcb.2016.11.003
https://doi.org/10.1371/journal.pbio.3000363
https://doi.org/10.3402/jev.v4.27066
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Giusti et al. EV-Activated CAFs
7. Stahl PD, Raposo G. Extracellular Vesicles: Exosomes and Microvesicles,
Integrators of Homeostasis. Physiol (Bethesda) (2019) 34:169–77.
doi: 10.1152/physiol.00045.2018

8. Delpech J-C, Herron S, Botros MB, Ikezu T. Neuroimmune Crosstalk
Through Extracellular Vesicles in Health and Disease. Trends Neurosci
(2019) 42:361–72. doi: 10.1016/j.tins.2019.02.007

9. Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G,
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World Health Organization (WHO) data show that of the top 20 factors that threaten
human life and health, cancer is at the forefront, and the therapeutic approaches for
cancer consist of surgery, radiotherapy, chemotherapy and immunotherapy. For most
highly metastatic and recurrent cancer, radiation therapy is an essential modality to
mitigate tumor burden and improve patient survival. Despite the great accomplishments
that have been made in clinical therapy, an inevitable challenge in effective treatment is
radioresistance, the mechanisms of which have not yet been completely elucidated. In
addition, radiosensitization methods based on molecular mechanisms and targets, and
clinical applications are still inadequate. Evidence indicates that circular RNAs (circRNAs)
are important components in altering tumor progression, and in influencing resistance and
susceptibility to radiotherapy. This review summarizes the reasons for tumor radiotherapy
resistance induced by circRNAs, and clarifies the molecular mechanisms and targets of
action. Moreover, we determine the potential value of circRNAs as clinical indicators in
radiotherapy, providing a theoretical basis for circRNAs-based strategies for
cancer radiotherapy.

Keywords: circRNAs, radiotherapy, malignant tumor, biomarkers, clinical application
Abbreviations: DDR, DNA damage repair; EMT, Epithelial–mesenchymal transition; ICFs, Intron-containing fragments;
RBPs, RNA-bind proteins; ADAR1, Adenosine deaminase acting on RNA 1; EGFR, Epidermal growth factor receptor; ATM,
ataxia telangiectasia-mutated; ATR, ATM and Rad3 related protein; DNA-PK, DNA-dependent protein kinase; H2AX, H2A
histone family member X; ZEB1, Zinc finger E-box binding homeobox 1; PDGFRa, Platelet derived growth factor a; PTEN,
phosphate and tension homology on chromosome ten; CDKs, cyclin-dependent kinases; MVEs, multivesicular endosomes;
RIBE, Radiation-induced bystander effect; IFG1R, Insulin-like growth factor receptor; IR, irradiation; RT, radiotherapy; CSCs,
Cancer stem cells; APC, Adenomatous polyposis coli; Axin, axis inhibition; TME, Tumor microenvironment; HIF-1a,
Hypoxia inducible factor-11a (HIF-1a); NPC, Nasopharyngeal Carcinoma; HPSCC, hypopharyngeal squamous cell
carcinoma; NSCLC, non-small cell lung cancer; OSCC, oral squamous cell carcinoma; GBM, glioblastoma multiforme; 2-
DG, 2-deoxy-d-glucose.
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INTRODUCTION

Radiation therapy is one of the conventional methods in cancer
treatment. It is utilized in more than 50% of oncology patients and
can be applied alone or in combination with immunotherapy and
chemotherapy (1). Radiation-induced DNA double-strand breaks
are one of the most lethal causes of cell death. When exposed to
radiation, DNA double-strands break directly or cells generate
surplus free radicals that indirectly damage DNA (2).
Synchronously, radiotherapy can also induce apoptosis,
autophagy and cell cycle changes, thereby altering tumor cell
proliferation, invasion and other properties. However, there are
still some unavoidable problems in radiotherapy, for example,
how to reduce side effects and implement precision radiotherapy
strategies. Of these problems, radiation tolerance is a common
and intertwined phenomenon that impedes therapeutic efficacy,
resulting in the neoplasm recrudescence or poor prognosis after
radiotherapy (3, 4). Consequently, it is of great significance to
uncover the mechanisms of radiation resistance, predict
sensitivity to radiotherapy in patients and formulate strategies
to overcome radioresistance.

CircRNAs, a naturally occurring event of widespread and
multitudinous single-stranded RNAs, were initially misinterpreted
as useless products of splicing in the 1970s. Subsequently, their
structures and functions have been broadly expounded by high-
throughput RNA sequencing. The distribution of circRNAs is
diverse, with a small fraction located in the nucleus, and they
intervene in the transcription of parental genes by RNA polymerase
II (5) or U1 small nuclear ribonucleoprotein (snRNP) (6). UAP56
and URH49 are responsible for the nuclear transport of circRNAs
(7), and these molecules transported into the cytoplasm act as
competing endogenous RNAs (ceRNAs) by sponging miRNAs.
Accumulating evidence demonstrates that circRNAs have emerged
as one of the central regulators of human diseases (8). In tumors,
circRNAs are linked to radiation resistance and radiosensitivity.
When receiving radiation, altered circRNAs regulate the
radiotherapy response by activating signal pathways and targeting
genes, inducing cellular process changes, such as DNA damage
repair (DDR), epithelial–mesenchymal transition (EMT),
apoptosis, autophagy, cell cycle, metabolism (9).

Previous studies have stated that dysregulated circRNAs are
involved in chemotherapy (10, 11), showing good prospects and
clinical value. However, the current systematic generalization of
circRNAs in radiotherapy is limited. Here, we describe the origin
and characterization of circRNAs, and systematically review the
regulation mechanisms of circRNAs in radiotherapy. We also
discuss targeted therapy strategies and other potential clinical
values of circRNAs in irradiation (IR).
BACKGROUNDS OF CIRCRNAS:
CLASSIFICATION, BIOGENESIS AND
FEATURES

Classification and Biogenesis
CircRNAs, single-stranded covalently closed continuous loop
RNA without a 5′ cap and 3′ poly A tail, were first reported in
Frontiers in Oncology | www.frontiersin.org 225
models of viroid in 1976 (12). Subsequently, advanced
bioinformatic technology identified and classified different
types of circRNAs, which are ubiquitous in various cells and
tissues (13). These circRNAs are also unique in terms of their
origin and structure. Previous studies have identified the
following four categories based on various combinations of
exons and/or introns (14): (1) Exonic circRNAs (ecRNAs) are
generally thought to be products of canonical spliceosomes.
When pre-mRNA splicing removes introns and retains exons
(15, 16), the downstream 3′ splicing site binds to the upstream 5′
splicing site in reverse order (17). Several studies have suggested
that exon-only circRNAs can act as regulators in the cytoplasm
(18); (2) Exon-intron circRNAs (EIciRNAs), which are nuclear
retained and can promote the transcription of parental genes (6);
(3) Intron circRNAs (ciRNAs), unlike most introns that are
degraded immediately after excision, some introns have the
capacity to escape branching and form circRNAs containing
introns instead (19, 20). CiRNAs predominantly exist in the
nuclear region, indicating that they may interact with host gene
transcription (19); (4) Transfer RNA intronic circular RNAs
(tricRNAs). Pre-tRNA removes 5’ leader and 3’ trailer by
tRNA splicing endonuclease, and then modifies the CCA
structure on 3 tail ends to form mature tRNA. RtcB ligase is
not only responsible for the splicing of tRNA, but also the
circularization process of tricRNAs (21, 22). Interestingly, some
scholars discovered a new type of circRNAs named intergenic
circRNAs. Intron-containing fragments (ICFs) flanking GT-AG
splicing signals, act as splice donors and splice acceptors to
conduct intergenic circRNAs through circularization (23). In
Figure 1, we briefly describe the formation and functions of
circRNAs, whose functions are determined by their sequence,
post-transcriptional modification, and location. Commonly
proposed functional mechanisms of circRNAs include miRNA
sponges, protein interactions, translation, and regulation of
parental genes.

The regulation mechanisms engaged in the formation of
circRNAs transcripts include cis- and trans-acting factors (24).
One of the essential cis-acting elements is the external reverse
complementary sequences flanking exon splicing introns (25).
Alu repeats (short repetitive sequence), the first determined
elements that modulate back-splicing by tightly connecting to
the splice sites (26), result in multiple circRNAs produced from a
single gene locus (25). The existence of Alu repeats in flanking
introns is an important basis for predicting and analyzing the
formation of circRNAs (25). Additionally, RNA-binding
proteins (RBPs) act as activators or inhibitors to regulate the
production of circRNAs, respectively. Studies have showed that
some RBPs can bind to intronic regions and improve back-
splicing efficiency by homo- or hetero-dimerization (27, 28) to
facilitate circularization. For instance, Sam68 can interact with
the Alu-rich introns in the survival of motor neuron gene (SMN)
pre-mRNA to promote circRNAs biogenesis (29). On the other
hand, a few proteins may inhibit the formation of circRNAs by
disrupting the base pairing of introns. Adenosine-to-inosine(A-
to-I) edited by adenosine deaminase acting on RNA 1 (ADAR1)
antagonizes circRNAs expression through weakened inverted
Alu repeats (30). Similarly, nuclear RNA helicase DHX9
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threatens circRNAs processing by untwisting the reverse
complementary of Alu elements flanking exons (31).

The Features of circRNAs
The alternative translation of the same genetic locus produces
multiple RNA isoforms, endowing the isoforms with unique
functions (32). CircRNAs and homologous linear mRNAs are
derived from the same splicing precursor. Compared with the
linear mRNAs, circRNAs not only have special structures, but also
have independent characteristic. (1) stability: The spliced
products of precursor RNAs include linear RNAs, circular
RNAs and others, of which linear RNAs are completely
degraded, whereas lariat and circRNAs can resist RNase R-
digestion (33), owing to the lack of accessible ends. Yehoshua
et al. confirmed that the great majority of circRNAs were long-
lived compared with linear mRNAs (34), as the half-life of
circRNAs exceed 48 h while that of linear is less than 20 h (26);
(2) abundance: Next-generation RNA sequencing corrected the
early false assumption that circRNAs were errors with non-
function and low expression during transcription. Numerous
studies have been devoted to considering the expression and
function of circRNAs (26, 30, 35, 36). Generally, the expression
level of most circRNAs is only 5-10% of its linear transcript (37).
However, some circRNAs possess special features. In human
fibroblasts, more than 14% of transcribed genes have the ability
to express circRNAs, under certain circumstances, which are
more abundant than the corresponding mRNAs (26). Julia
Salzman et al. clarified approximately 50 circRNAs that were
highly expressed compared with their parental linear transcripts
Frontiers in Oncology | www.frontiersin.org 326
in all tested cell lines (38), especially in neuronal organs (28, 39,
40). Moreover, the relative percentage of circRNAs to their
canonical linear RNAs shows a higher average in human blood
(41). Analysis of circRNAs genome characteristics documented
that alternative back-splicing (ABS) allows a single gene to
produce diverse circRNAs with the same reverse splicing site
(42). This may be one of the reasons for the diversity and
specificity of circRNAs; (3) unique function: CircHIPK3 is
derived from exon2 of the HIPK3 gene and impairs human cell
growth while being silenced. However, the linear molecule HIPK3
mRNA has no similar biological functions (43). A genome-wide
analysis of 144 prostate cancer specimens identified 7,232
circRNAs; 11.3% of which were highly expressed and were
related to cell proliferation; approximately 90% of their linear
counterparts were not necessary for proliferation (44). In
addition, circRNAs and mRNA sometimes exhibit antagonistic
relationships. The Zbtb7a gene generates coding mRNAs and
exerts its tumor suppressive role, but the non-coding product of
Zbtb7a, circPOK, acts as an oncogene in mesenchymal cancers
(32). The E-cadherin variant protein (C-E-Cad) encoded by circ
E-cadherin represents antithetical functions with E-cadherin. C-
E-Cad accelerates glioma stem cell tumorigenicity through the
independent activation of the oncogenic epidermal growth factor
receptor (EGFR) signal pathway and EGFRviii by the exceptional
C -terminal (45). Studies have shown that the association between
circRNAs and parental gene is weak, suggesting that circRNAs are
largely independent and not just byproducts of aberrant splicing.
In a word, the unique expression pattern of circRNAs suggest that
they likely possess functional significance.
FIGURE 1 | The formation and functions of circRNAs. (A) Exon-intron circRNAs (EIciRNA) are the nuclear retained and promote the transcription of parental genes.
(B) Exonic circRNAs (ecRNAs) are generally supported as products of canonical spliceosome. When pre-mRNA splicing removes introns while retaining exons, the
downstream 3′splicing site binds to upstream 5′splicing site in reverse order. (C) Intron circRNAs (ciRNAs). The sequence close to the 5′ splicing site containing a 7
nt GU-rich element (red box) and an 11 nt C-rich element near the branch point (blue box) are essential to stable ciRNAs. (D) TRNA intronic circular RNAs (tricRNAs),
the production of tricRNAs requires conserved tRNA sequence and several processing enzymes, such as RtcB ligase and TSEN endonuclease. (E) Intergenic
circRNA. Intron-containing fragments (ICFs) flanking GT-AG splicing signals, acting as splice donors and splice acceptors to conduct intergenic circRNAs through
circularization. The main functions of circRNAs include miRNA sponges, protein interactions, protein translation and regulation of parental gene.
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THE ROLE AND MECHANISMS OF
CIRCRNAS IN RADIOBIOLOGY

CircRNAs have emerged as significant regulators in the progress of
tumors. Radiation is a linchpin of cancer treatment, which can
alleviate sufferings or even completely cure tumor patients.
Notwithstanding the advances in circRNAs research, the hidden
mechanisms of how circRNAs contribute to radiotherapy remain
largelyunexplored.Here,we generalized the currentmechanismsof
action of circRNAs in modulating radiotherapy (Figure 2), aiming
to foster new insights into circRNAs therapeutic strategies.

CircRNAs Participating in DNA Damage
Repair
Correct DNA repair is one of the basic methods of maintaining
cell homeostasis. Inducing DNA strand damage is the pivotal
biological function of radiotherapy, while activating the DNA-
repair signaling pathway may attenuate the efficacy of anticancer
therapy. ATM, ATR kinase, and DNA-PK are the key indicators
in detecting DNA damage. Cell cycle checkpoint kinases CHK1,
CHK2 are phosphorylated and activated by ATM and ATR after
DNA damage, and play an important role in S phase and G2
phase (46). It has been proved that ATM-, ATR-, and DNA-PK
inhibitors benefit tumor sensitivity to IR (46). In addition,
gH2AX, TP53BP1 (47), and RAD51 (48) have been identified
as sensitive candidates to predict radiation damage and repair. In
particular, ATM has a central role in the perception of DNA
damage and initiates a series of responses to cell cycle activation
and apoptosis (Figure 3).

Zinc finger E-box binding homeobox 1 (ZEB1) is an EMT-
inducing transcription factor, and a well-known DDR regulator,
responsible for chemo- or radio-resistance (49). Previous studies
have shown that ZEB1 participated in radiation response with
ATM kinase. For example, miR-875-5p increased radiation
reaction by suppressing ZEB1, which impeded CHK1-mediated
Frontiers in Oncology | www.frontiersin.org 427
DNA homologous recombination repair (50). Similarly, down-
regulation of circZEB1 reduced ZEB1 protein expression, thereby
inhibiting CHK1 protein (51).

H2AX is a member of the histone H2A family. Within a few
minutes after DNA double-strand breaking, H2AX is
phosphorylated by ATM, ATR and DNA-PKcs to form
gH2AX, which then rapidly recruits DNA repair proteins and
apoptotic proteins to the injury site. H2AX phosphorylation
modification is one of the cellular DNA double-strand break
stress responses, and is also the most prominent DNA-associated
marker (52). When absorbed in radiation, numerous circRNAs
predispose the formation of gH2AX and maintain DNA repair,
which is a critical component of radioresistance in cancer.
Several circRNAs were reported to respond to IR-mediated
H2AX regulation. Research has disclosed that inhibiting some
circRNAs could effectively reduce the recruitment of gH2AX,
thereby improving the sensitivity of radiotherapy. Si-circ-
METRN (53) in glioblastoma as well as si-circ_0086720 (54) in
non-small cell lung cancer (NSCLC) reversed circRNAs-
mediated gH2AX activation. Mechanically, circ-METRN was
regulated via the miR-4709-3p/GRB14/PDGFRa interaction
network and circ_0086720 depletion reinforced radiation
sensitivity by regulating the miR-375/SPIN1 axis. Conversely,
circ-AKT3 overexpression increased the number of H2AX foci.
As one of the AKT transcript variants, circ-AKT3 was under-
expressed in glioblastoma and had the ability to encode AKT-
174aa protein. AKT thr-308 phosphorylation was blocked by
AKT-174aa, which interfered with downstream signal
transmission. AKT-174aa acted as a negative regulator of the
PI3K/AKT pathway and ultimately increased the radiosensitivity
of glioblastoma multiforme (55). This research innovatively
discovered the protein translation function of circRNAs.
Although generally classified as non-coding RNAs, there is
growing evidence that circRNAs have the ability to translate
proteins. To sum up, delineation of exact signals which induce
FIGURE 2 | The mechanisms of circRNAs in radiobiology. The main mechanisms of cicRNAs in radiation inculde EMT, Wnt signaling, apoptosis, DNA damage
repair, autophagy, cancer stem cell, and cell cycle arrest.
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DDR during tumor treatment will undoubtedly help to provide a
broader picture of how circRNAs exert their action.

CircRNAs Are Involved in IR-Mediated
Apoptosis
Apoptosis is proactive spontaneous death that maintains the
stability of the intracellular environment. One of the main tasks
of apoptosis is cleaning up precancerous cells and arresting the
development of malignancy (56). However, dysregulation of
apoptosis not only leads to unchecked cell proliferation and
tumor occurrence, but also resistance to therapy. Therefore, the
modulation of apoptosis signaling pathways is one of the key
factors in optimizing cancer treatment.

The intrinsic apoptotic pathway is started by intracellular
signals at the mitochondrial level in order to overcome various
stresses, such as radiation and chemotherapy. Activation of the
apoptotic pathway is closely associated with the B-cell lymphoma
2 family, which contains pro-apoptotic proteins (Bax) and anti-
apoptotic proteins (Bcl-2). P53, a classic tumor suppressor gene,
inhibits Bcl-2 activity by increasing the transcriptional
expression of pro-apoptotic proteins Bax and Bak, thereby
promoting apoptosis. In addition, the caspases are a family of
cysteine-dependent endoproteases that regulate cell apoptosis
(57). In this regard, several circRNAs have been proved to
participate in IR-mediated apoptosis by affecting the above-
mentioned pathways. CircRNA CBL.11 modulated YWHAE
and varied equally to YWHAE in colorectal cancer cell (CRC)
under carbon ion irradiation (58). A previous study reported that
YWHAE was conducive to P53 signal activation. The up-
regulated YWHAE indeed increased P53-mediated Bax
expression and promoted apoptosis. However, this study only
briefly introduced that circRNACBL.11 is involved in IR-
mediated apoptosis, and functional research is still unclear.
Frontiers in Oncology | www.frontiersin.org 528
PI3K/AKT signaling represents one of the most influential
signaling pathways that inhibit cell apoptosis and promote cell
survival. The high activation of PI3K/AKT is related to
radiotherapy tolerance in various cancer types (59). The
expression of circPVT1 in NSCLC cells following radiotherapy
was higher than that previous to radiation. Down-regulated
circPVT1 promoted apoptosis by blocking the PI3K/AKT/mTOR
pathway and improved the radiosensitivity (60). The above studies
further consolidated the role of circRNAs in radiotherapy.

Phosphatase and tension homology on chromosome 10
(PTEN) acts as a tumor suppressor, and governs a plethora of
cellular processes, such as survival, proliferation, apoptosis. PTEN
antagonizes PI3K activity by dephosphorylating PIP3 and inhibits
the PI3K/AKT pathway, thereby preventing IR-mediated cell
apoptosis. CircVRK1 heightened radiation sensitivity by
adjusting the miR-624-3p/PTEN axis and inactivating the PI3K/
AKT signaling pathway by upregulating PTEN (61). CircATRNL1
decreased in oral squamous cell carcinoma (OSCC) patients
treated with radiation. Over-regulated circATRNL1 intensified
OSCC radiosensitivity by directly binding to miR-23a-3p and
relieving endogenous inhibition of the target gene PTEN, which is
essential for apoptosis and cell-cycle arrest. Furthermore,
adjustment of the PI3K/Akt signaling pathway was accompanied
by the alteration of circATRNL1 (62). However, it is not yet
certain whether the PI3K/Akt signaling pathway is a key process in
circATRNL1 affecting OSCC radiotherapy. These corresponding
results show that circRNAs can be utilized as a therapeutic target
of radiation-mediated apoptosis in cancer.

CircRNAs Regulate the Autophagy
Response to Radiotherapy
Autophagy is a process which maintains cell homeostasis and
responds to various stresses. When the cell is under external
FIGURE 3 | The main reaction of cells to DNA damage and the mechanism of several circRNAs on radiotherapy. DNA double-strand breaks (DSBs) are most
cytotoxic injuries in respond to radiation, leading to cells death. When receiving radiotherapy, cells produce a series of repair mechanisms to deal with these
damages, resulting in resistance to radiation.
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pressure, it will initiate an autophagy program against the
damaged intracellular substances (63, 64). During this process,
some damaged proteins or organelles are encapsulated by
autophagic vesicles with a double-layer membrane structure,
and then transferred to lysosomes for degradation and
recycling. Accruing reports show that circRNAs facilitate
radiotherapy and chemotherapy tolerance by inducing
autophagy (65, 66). The crosstalk between circRNAs and
radiation-mediated autophagy provides a new strategy for the
regulation of tumors.

Microtubule-associated protein light chain 3 (LC3) and p62
play essential roles in the formation of autophagy.
circRNA_102115 promoted the insensitivity of CRC through
the endogenous competitive combination of miR-338-3p,
increasing the level of LC3II/I and reducing p62 (67).
Correspondingly, circCCNB2 knockdown inhibited autophagy
of prostate cancer cells by up-regulating p62 but reducing
Beclin1 and LC3II/I, thus increasing radiosensitivity. This
effect relied on an interaction between circCCNB2 and miR-
30b-5p as shown by rescue experiments. KIF18A was identified
as a direct target of miR-30b-5p, and its ectopic expression
restored radioresistance and restrained autophagy upon miR-
30b-5p overexpression (68). From the current reports, different
kinds of circRNAs exert different roles in tumor. Some inhibit
autophagy and some promote autophagy. This shows that
multiple circRNAs are involved in autophagy, but it is
necessary to further clarify whether more circRNAs are
participated in autophagy-related radiotherapy regulation. In
the future, targeting autophagic pathway may become a new
and potential mean of changing radiosensitivity.

CircRNAs Adjust the Cell Cycle
Cell cycle regulation, a large and sophisticated network involving
multiple factors, is essential in order to maintain normal cell
growth. It includes cyclins and cyclin-dependent kinases (CDKs)
that drive the cell cycle, as well as the brake system that exists to
avoid unrestricted proliferation, such as CDKs inhibitory
proteins (CDKIs) (69). Following damage of DNA molecules
by radiotherapy (RT), related genes initiate cell cycle regulation
mechanisms and retard cell cycle progression at the G1/S and
G2/M checkpoints, with the G2/M period being the most
sensitive to radiation, while the S phase exhibits radiation
resistance. Cell cycle arrest enables damaged DNA more time
to repair, or induces apoptosis on damaged cells that cannot be
repaired, thus escaping IR killing effects and increasing radiation
resistance (70). Several studies have shown that circRNAs affect
cell cycle progression by alternatively binding to cell cycle
proteins or acting on miRNA to regulate proteins. A study
found that, compared with normal cells, the expression of
circFIP1L1 decreased and the proportion of S phase increased
in 5-8F-IR cells (radiotherapy-resistant nasopharyngeal
cancer cell lines). Overexpression of circFIP1L1 rendered
nasopharyngeal carcinoma (NPC) cells more sensitive to RT
and resulted in accumulation of the cell cycle in G2/M phase
(71). This effect on radiation and the cell cycle was mediated by
the miR-1253/SFN pathway. SFN plays a negative role in the cell
cycle and blocks the cell cycle at G2/M, acting as a key protein
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that maintains the stability of the genome (72). Similarly, in
circATRNL1-increased OSCC cells, the percentage of G2 was
higher and intensified OSCC radiosensit ivi ty (61) .
CircRNA_014511 overexpression blocked the G2 phase and
down-regulated the expression of P53 by coexisting with miR-
29b-2-5p, affecting the cell cycle and apoptosis of bone marrow
mesenchymal stem cells, and reducing sensitivity to RT (73).
Inhibition of circPRKCI repressed viability, colony formation,
cell cycle progression of esophageal cancer and elevated cell
radiosensitivity through the miR-186-5p/PARP9 axis (74),
showing that circPRKCI played a suppressor role in RT of
esophageal cancer. As to how these circRNAs influence the
biological effects of radiation, how they interfere with their
expression to benefit clinical RT, etc., are attracting the
attention of researchers.

CircRNAs Manipulate Wnt Pathway in
IR-Response
Wnt/b-Catenin, is an indispensable signaling pathway
controlling development, differentiation, homeostasis, and
stemness of tissues, and is closely associated with cancer
progression. Further, a growing body of evidence has
demonstrated that Wnt/b-Catenin signaling pathway in clinical
therapy is a critical modulator driving cell phenotypic resistance
to various types of anticancer treatment (75). The expression
level of circRNAs in tumor cells changes after IR, which helps to
initiate or inhibit the Wnt signaling, thereby altering the
sensitivity of tumor cells to radiotherapy. For instance,
circRNA-microarray identified 57 increased circRNAs and 17
decreased circRNAs in radioresistant esophageal cancer cell
(ESCC) compared with the parental cell line. KEGG and GO
analysis found that Wnt signals may be related to radioresistance
(76). In this study, circRNA microarray was used to detect
differentially expressed circRNAs, providing a basis for
radiotherapy biology. CircRNA ZNF292 can be induced in
hypoxia-responsive human hepatoma cell. By interfering with
the nuclear translocation of SOX9 protein, circRNA ZNF292
eventually activated the Wnt signaling pathway and led to
radioresistance (77). Knockdown of circRNA ZNF292 caused
cell cycle arrest, proliferation inhibition, decreased angiogenesis
and increased DNA fragmentation levels, accompanied by a
decrease in Wnt/b-catenin pathway-associated proteins,
including b-catenin, adenomatous polyposis coli (APC), and
axis inhibition (Axin). Equally, the Wnt signaling pathway was
found to be implicated in the regulation of circRNA_100367,
with a higher expression of circRNA_100367 was observed in
radiation-resistant ESCC cells (78). These studies suggest that
there is a close relationship between circRNAs, Wnt/b-catenin
signaling and RT, and extensive testing is needed to reveal the
mechanism of circRNAs in radiotherapy-related Wnt/b-
catenin signaling.

CircRNAs Affect EMT in Radiobiology
Epithelial–mesenchymal transition is a biological process in
which epithelial cells transform into cells with a mesenchymal
phenotype, and plays a key role in cell biological behavior. After
tumor cells are irradiated, the cells lose polarity, as well as tight
March 2022 | Volume 12 | Article 854678

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. CircRNAs in Tumor Radiotherapy
junctions and adhesion. The invasion, migration and
carcinogenicity of tumor cells are enhanced, and the ability of
cells to resist apoptosis is also increased. Li et al. discovered that
circMTDH.4/miR‐630/AEG‐1 axis contributed to the
improvement of radioresistance in NSCLC cells. Previous
research illustrated that AEG-1 induce EMT remolding by
Wnt/b‐catenin signaling pathway. Li et al. indeed confirmed
that AEG-1 silencing blocked Slug and Snail gene. In addition,
knocking down circMTDH.4 or overexpressing miR‐630 can
improve radiosensitivity (79). In line with this, deprivation of
circRNA_100367 enhanced the radiation sensitivity of
radioresistant ESCC cells through competitively binding to
miR-217/Wnt3 ax i s and media t ing EMT process .
CircRNA_100367 silencing increased E‐cadherin, accompanied
by a decrease in mesenchymal markers (78). Taking into
consideration the conclusions presented, it is clear that
circRNAs are involved in the EMT process as biomarkers of
radiation response in different cancer types.

CircRNAs Modulate Glycolysis in
Response to IR
Glycolysis is a universal method of carbohydrate catabolism in all
life. In glycolysis, glucose is degraded to generate ATP, which
provides energy for organisms. Studies have indicated that the
accumulation of lactic acid is an indication for tumor
development, and the aggravation of IR resistance in tumor
cells (80). Compared with normal tissues and cells, circABCB10
was up-regulated in breast cancer (BC) samples. When
circABCB10 was silenced, the proliferation, colony formation
and radioresistance of BC cells were limited. This was because it
sponged miR-223-3p to regulate profilin-2 (PFN2), exerting a
facilitating role on glycolysis and contributing to the
enhancement of glucose consumption and lactate production
(81). A similar effect was shown in glioma cells where circPITX1
knockdown decreased glucose consumption and lactate
production through the miR-329-3p/NEK2 axis, thereby
increasing the sensitivity to RT (82). From the evidence shown
above, it is therefore plausible that glycolysis might be the major
reason for the decreased benefit of RT. This conclusion opens
new avenues to better understand the hidden aspects of
circRNAs modulating glycolysis in response to IR.

CircRNAs Influence Cancer Cell Stemness
Cancer stem cells (CSCs) are a group of heterogeneous cells with
stem cell characteristics in the tumor. CSCs are endowed with the
ability to self-renewal and infinite proliferation; thus, they can
evade effective treatment and develop antitumor properties (83).
Zhu et al. found that CD133+ cells increased after exposure to
radiation in NPC CNE-2 cells, suggesting tumor stem-like cells
were associated with NPC radiotherapy. They hypothesized that
some dysregulated circRNAs induced NPC cells to differentiate
into stem cells after irradiation. Bioinformatics suggested that the
“hsa_circRNA_102115-hsa-miR-335-3p-MAPK1” interaction
network was associated with CSCs, thus changing radiation
sensitivity (84). The CSC-mediated mechanisms of
radiotherapy resistance are multifactorial, including high DNA
damage repair ability, cell cycle arrest, autophagy. Unfortunately,
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Zhu et al. have not yet clarified which mechanism CSC plays in
NPC. The presence of CSCs has been largely demonstrated in
therapy resistance. However, information on the involvement of
circRNAs in CSCs research is scarce. In future, we may be able to
focus more attention on the relationship between circRNAs
and CSCs.

CircRNAs Are Linked to the Tumor
Microenvironment
The tumor microenvironment (TME) is the location between
tumor cells and adjacent normal tissues. It is mainly composed of
tumor cells, surrounding stromal cells and infiltrating
inflammatory cells. Emerging evidence shows that external
pressure has the ability to remold physiological conditions and
metabolism of cancer and stromal cells. Altering the TME may
have an impact on radiotherapy outcome (85).

Inflammatory cells or cytokines are in involved in the
formation of inflammatory TME. Inflammation has been
shown to be a risk factor for the occurrence and development
of cancers. Radiation can induce DNA damage while stimulating
the release of pro-inflammatory mediators and remolding the
tumor immune microenvironment (86). To date, two circular
RNAs have been shown to respond to tumor radiotherapy
through inflammatory signal activation. Research has revealed
that methyltransferase like 3 (METTL3) was related to m6A of
circCUX1 in Hypopharyngeal squamous cell carcinoma
(HPSCC), which was favorable for circCUX1 expression. In
radiation-resistant HPSCC samples, circCUX1 was higher and
negatively correlated with Caspase1. Caspase1 inhibition
reduced the release of inflammatory factors IL-1b and IL-18,
conferring tolerance to radiotherapy in HPSCC (87). Silencing
circTUBD1 in irradiated hepatic stellate cells (HSC) decreased
the release of the pro-inflammatory cytokines IL-1b, IL-6,
thereby reducing radiation-induced liver disease. The
mechanism showed that circTUBD1 adsorbed miR-146a-5p to
regulate the expression TLR4, IRAK1, TRAF6, and pNF- kB (88).
Understanding how radiotherapy affects inflammation is critical
if we are to effectively modulate these cytokines to benefit
oncology treatments.

Hypoxia is a classic feature of malignant tumors. Rapid
proliferation of tumor cells will accelerate the consumption of
oxygen. Under hypoxic conditions, tumor cells secrete a variety
of vascular growth factors to promote the formation of abnormal
blood vessels. In parallel, the invasive and metastatic ability of
tumor cells are further improved. Eventually, the malignant
degree of the tumor is further increased, resulting in the tumor
cells being counteractive to treatment. Hypoxia inducible
factor-11a (HIF-1a) is the key controller in tumor hypoxic
microenvironment. Su demonstrated that HIF-1a was
positively correlated with circDENND2A which was essential
for hypoxia-induced migration and invasion of glioma cells (89).
Yang found circRNA cZNF292 was hypoxia-responsive, and its
expression gradually increased with the extension of hypoxia
culture time. Highly expressed circRNA ZNF292 represented
radioresistance in hepatoma cell (77).

These findings provide important information to better
understand the hidden aspects of circRNAs and TME.
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However, research on the role of circRNAs in the TME related to
radiotherapy resistance is in its infancy. A series of issues such as
the impact of circRNAs on other cells in the microenvironment
and how the TME in turn affects circRNAs remain to be resolved.

Roles of Exosomal circRNAs in Cancer
Radiotherapy
Exosomes are derived from endolysosomal microparticles and
are released by fusion with multivesicular endosomes (MVEs)
(90). As important bridges for intercellular communication
between cells, exosomes are naturally shed by various types of
cells and circulate in biofluids such as blood, saliva, urine, as well
as cerebrospinal fluid, ascites (91), and carry organ-specific
bioactive molecules, including proteins, nucleic acids, growth
factor, lipids, and non-coding RNAs (Figure 3).

Radiation affects the content and prosperity of exosomes, as
well as their biological functions. There is significant growing
data to show that radiation-derived exosomes accelerate tumor
progression and decrease the curative rate, and is emerging as an
increasingly pivotal field in the clinic. For instance, circRNAs
isolated from extracellular vesicles were markedly diverse
between radioresistant glioma cells and the control group, of
which RNA−sequencing and bioinformatics identified 63
upregulated circRNAs and 48 downregulated circRNAs. Chen
et al. identified exosomal circRNAs expression profiles of
pancreatic cancer cells upon radiation, and found that
circ_0002130 was highly expressed in irradiated mice plasma,
and facilitated tumor cells proliferation by accelerating DNA
damage repair. This effect was dependent on the interaction
between circ_0002130, miR_4482-3p and targeted NBN gene
(92). NBN is a member of the MRN complex family and is
crucial in sensing of DNA strand break and checkpoint
activation (93) (Figure 3). However, the above-mentioned
regulat ion mechanism is only a predict ion of the
bioinformatics network and the underlying mechanism has yet
to be verified by experiments. Meanwhile, the molecule has not
been validated on clinical specimens. Future in-depth clinical
trials will further strongly support their research. Zhao et al.
found that circATP8B4 and downstream molecule miR−766
might be the decisive components in adjusting radiotherapy in
glioma cells. Interestingly, circATP8B4 stems from EVs of
radioresistant glioma cells and can be transferred to adjacent
cells, thus promoting radioresistance of normal glioma (94).
CircKIRKOS-71 and KIRKOS-73 are derived from endothelial
cell exosomes and exhibit varying degrees of responsiveness
following radiation in different cell lines, with a time-
dependent effect. After receiving 0.25 Gy and 2.5 Gy for 24 h,
KIRKOS-71 and KIRKOS-73 were down-regulated in
neuroblastoma cells exosomes. In contrast, in the osteosarcoma
cell line U2OS, elevated transcript levels were measured in
exosomes irradiated for 24 h with low-dose irradiation and 4 h
of medium-dose irradiation (95). This provides a theoretical
basis for the diagnostic strategy of exosomal circRNAs in clinical
radiation. The expression level of exosomal circ_0067835 was
upregulated in CRC patients after radiation, while knockdown
diminished CRC deterioration and enhanced radiosensitivity by
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down-regulating insulin-like growth factor receptor (IFG1R)
expression through decoying miR-296-5p (96). However, the
real mechanism between miR-296-5p/IFG1R and circ_0067835
in CRC radiotherapy is unclear. For example, it is unknown
whether PI3K/Akt and MAPK pathways were mediated
by IFG1R.

Of note, the mechanism of action of exosomes is different in
various conditions. The studies by Dai (97) and Wang (96)
indicated that aberrant expression of exosomes was linked to
carcinogenesis, malignant behavior and radioresistance of
glioblastoma. Nevertheless, Farias (98) proposed that the
exosomes released by irradiated mesenchymal stem cells have
systemic effects and could delay the growth and metastasis of
melanoma. In a word, clearer mechanisms of circRNAs and
further understanding of exosomes in radiation are needed.
THE CLINICAL APPLICATION OF
CIRCRNAS IN RADIOTHERAPY

Data from previous studies proposed that circRNAs exhibited
tissue and organ specificity, and were dysregulated in numerous
human cancers. Intriguingly, the expression profiles of circRNAs
are also divergent in different stages within the same type of
tumors, as well. Owing to the signatures of stability, specificity
and availability, circRNAs have irreplaceable potential in clinical
oncology strategies. At this stage, the clinical research of
circRNAs in tumor radiotherapy mainly focuses on the
following two strategies: (1). Different expression patterns of
circRNAs in patients, that is, to analyze the differential
expression of circRNAs in radiation-sensitive or radiation-
resistant patients, as the object of further research (99–101).
For example, the expression of circRNA_0000285 and circCUX1
in radiotherapy-resistant patients is higher than that in
radiosensitive patients. Therefore, the feasibility of
radiotherapy can be predicted by analyzing circRNA
expression. (2). Analysis of circRNAs expression level after
irradiation (62, 102, 103). With the help of high-throughput
sequencing, Yu et al. analyzed 153 differentially expressed
circRNAs between control group and HeLa cells accepted
radiotherapy, identified 76 increased circRNAs and 77
decreased (104). Similarly, compared with the parental cell
line, 57 circRNAs were elevated and 17 circRNAs decreased in
radiation-resistant esophageal cancer cells identified by cirRNA
microarray (76). These altered circRNAs may participated in the
regulation of radiation resistance at the transcriptional level. The
above research strategies both suggest that circRNAs have
differential expression profiles in radiotherapy. These circRNAs
are expected to become sensitive indicators in the treatment of
cancer patients and provide a basis for clinicians to formulate
individualized treatments.

CircRNAs Are Expected to Become a
Targeted Therapy Point in Radiation
Radiosensitizers are drugs or methods that are used
simultaneously with radiotherapy to increase the sensitivity of
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radiotherapy, by regulating signal pathways or target molecules
involved in radioresistance. The above-mentioned studies
indicate that circRNAs have the potential to become new
clinical radiosensitizers. The following three methods can be
utilized to regulate the radiation response involving circRNAs,
thereby improving the efficacy of RT: 1. For circRNAs that act as
suppressors (radiotherapy tolerance) or promotors
(radiotherapy sensitivity) (Table 1), regulating their expression
level seems to be an effective strategy. Circ_0055625 knockdown
sensitized colon cancer to irradiation and inhibited tumor
malignancy (109). Silencing circRNA_000543 improved
radiosensitivity in NPC, impeding proliferation and invasion,
while promoting apoptosis (99). On the contrary, circ_000128
showed low expression in NSCLC cells and tissues.
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Circ_0001287 overexpression could up-regulate PTEN to
repress the multiplication, metastasis, and radioresistance of
NSCLC cells through endogenous competition with miR-21
(107). 2. In addition to directly interfering with circRNAs,
focusing on the targets or pathways is another idea of
improving radiotherapy. It has been demonstrated that
circABCB10 and circPITX1 participated in radiation response
via glycolysis. Hence, the glycolytic inhibitor 2-deoxy-D-glucose
(2-DG) constrains radiation resistance caused by these two
circRNAs. Application of the autophagy inhibitor chloroquine
reversed the differential expression of LC3II/I and p62 in LoVo/R
cells, and the radiotherapy sensitization ratio was higher than
before. It also antagonized the autophagy of circBANP in the
colon cancer RT. CircRNA_000543 could regulate the
TABLE 1 | The dysregulated circRNAs in radiotherapy of malignant tumors.

System Cancer Type of circRNAs Dysregulation
(after RT)

Target/pathway Functions Impact on
RT

Ref

Respiratory
system

NPC circRNA_000543 up
(compare to
radiosensitive)

miR-9/PDGFRB apoptosis,
invasion,
proliferation

radioresistant (99)

exosomal circMYC up
(compare to
radiosensitive)

miR-20b-5p (predict)
let-7e-3p (predict)

proliferation radioresistant
(105)

circRNA_0000285 up
(compare to
radiosensitive)

– – radioresistant
(100)

circRNA_001387 up – – radioresistant
(106)

circFIP1L1 down miR-1253/SFN cell cycle radiosensitivity (71)
circRNA_102115 up miR-335-3p/MAPK1 cancer stem cell radioresistant (84)

HPSCC circCUX1 up
(compare to
radiosensitive)

Caspase1 inflammatory factors radioresistant (87)

NSCLC circ_0086720 up miR-375/SPIN1 cell apoptosis,
DNA damage repair

radioresistant (54)

circMTDH.4 up
(compare to normal)

miR‐630/AEG‐1 proliferation,
migration,
invasion,
apoptosis

radioresistant (79)

circ_0001287 down miR-21/PTEN proliferation,
migration

radiosensitivity
(107)

circPVT1 up miR-1208
PI3K/AKT/mTOR

apoptosis radioresistant (60)

Digestive system OSCC circATRNL1 down miR23a-3p/PTEN apoptosis,
cell cycle

radiosensitivity (62)

Esophageal
cancer

circPRKCI up
(compare to normal)

miR-186-5p/PARP9 cell cycle,
colony formation,
cell viability

radioresistant (74)

circVRK1 down miR-624-3p/PTEN/
PI3K/AKT pathway

apoptosis radiosensitivity (61)

hsa_circ_0000554 up miR-485-5p/Fermt1 proliferation,
migration,
invasion,
apoptosis

radioresistant
(108)

circRNA_100367 up miR-217/wnt3 proliferation,
migration

radioresistant (78)

Liver cancer circRNA ZNF292 up
(under hypoxia)

SOX9 protein proliferation,
angiogenesis

radioresistant (77)
Wnt/b-catenin

circTUBD1 up miR-146a-5p inflammatory factors radioresistant (88)
TLR4 Pathway

(Continued)
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radioresistance of NPC cells by targeting the miR-9/platelet-
derived growth factor receptor B(PDGFR)axis. The PDFGRB
inhibitor imatinib sensitized radioresistance in NPC cells (99). 3.
Some well-known bioactive compounds can enhance
radiosensitivity by modulating circRNAs. Curcumin, a
traditional Chinese medicine herb, has been widely studied in
the field of cancer treatment in recent years. Zhu et al. discovered
curcumin restored the increased expression of circRNA_102115
in NPC cells after irradiation. Adding curcumin during radiation
could recover radiosensitivity through the circRNA_102115/
miR-335-3p/MAPK1 axis (84).

Numerous experiments in vivo/vitro have shed light on the
interference or overexpression of circRNAs that can antagonize
tumor progression. Hence, a series of targeting circRNAs
Frontiers in Oncology | www.frontiersin.org 1033
techniques as therapeutic approaches may have clinical value.
The loss-of-function strategy of circRNAs includes CRISPR/
Cas9 or CRISPR/Cas13-mediated knockdown, and the RNA
interference (RNAi) mechanism based on short interfering
RNA (siRNA) or short hairpin RNA (shRNA). In addition to
lentiviral or adenoviral vectors, chemical synthesis and
purification are used to overexpress circRNAs. The delivery of
target circRNAs in vivo focuses on exocrine and nanoparticles
(112). For instance, in a mouse model of nonalcoholic steatosis,
the author injected high-fat diet mice with nanoparticles
encapsulated circRNA SCAR, which notably alleviated
symptoms of liver cirrhosis (113). Recently, some scientists
synthesized novel tools named small circular interfering RNAs
(sciRNAs) which are sense strands functionalized with GalNAc
TABLE 1 | Continued

System Cancer Type of circRNAs Dysregulation
(after RT)

Target/pathway Functions Impact on
RT

Ref

Colorectal
cancer

exosomal
circ_0067835

up miR-296-5p/IGF1R proliferation,
apoptosis,
cell cycle

radioresistant (96)

circRNA CBL.11 up miR-6778-5p/YWHAE proliferation,
apoptosis

radioresistant (58)
P53 signaling pathway

circ_0055625 up miR-338-3p/MSI1 proliferation,
migration,
invasion,
apoptosis

radioresistant
(109)

hsa_circ_0001313 up miR-338-3p cell viability,
colony formation

radioresistant
(110)

circBANP up miR-338-3p autophagy radioresistant (66)

Urinary system Prostate Cancer circ_0062020 down miR-615-5p/TRIP13 proliferation,
metastasis,
apoptosis,
colony formation

radioresistant
(103)

circZEB1 up TR4-mediated QKI/miR-141-3p/
ZEB1

DNA damage repair radioresistant (51)

circ_CCNB2 up
(compare to normal)

miR-30b-5p/KIF18A autophagy radioresistant (68)

Central
nervous system

Glioma circCPA4 up
(compare to normal)

miR-760/MEF2D proliferation,
apoptosis,
migration,
invasion

radioresistant
(111)

circ_VCAN down miR-1183 proliferation,
migration,
invasion,
apoptosis

radioresistant
(102)

circPITX1 up
(compare to normal)

miR-329-3p/NEK2 glycolysis radioresistant (82)

circular AKT3 down
(compare to normal)

AKT3-174aa/PDK-1 proliferation,
apoptosis

radiosensitivity (55)
PI3K/AKT signal

circ-METRN up
(in low-dose radiation)

miR-4709-3p/GRB14/PDGFRa DNA damage repair radioresistant (53)

Endocrine
system

Cervical cancer hsa_circ_0009035 up
(compare to
radiosensitive)

miR-889-3p/HOXB7 proliferation,
apoptosis,
migration,
cell cycle

radioresistant
(101)

Pancreatic
cancer

circ_0002130 up miR_4482-3p/NBN DNA damage repair radioresistant (92)

Breast cancer circABCB10 up
(compare to normal)

miR-223-3p/PFN2 axis glycolysis radioresistant (81)
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ligand then annealed into antisense strands after chemical
modification. The effect of sciRNAs in vivo/vitro is equivalent
to that of clinically used siRNA (114). However, the targeted
therapy of circRNAs is still in its infancy. The safety and efficacy
of circRNA-based therapeutics are yet to be ensured.

CircRNAs Are Used to Predict the Effect of
Radiotherapy
Predicting tumor response to radiotherapy, recurrence, and
prognosis are necessary to improve the cure rate of patients. In
order to study the clinical value of circRNAs in predicting NPC
radiotherapy, Shuai detected the expression of circRNA_001387
in RT patients and cell lines. The patients who were tolerant to
RT had higher expression of circRNA_001387 than those who
were sensitive to radiotherapy. Surprisingly, the expression of
circRNA_001387 in cells was apparently increased with the
frequency of irradiation enforced (106). Highly expressed
exosomal circMYC is related to clinicopathological parameters
in NPC, such as survival rate and recurrence. Gain-functional
experiments indicated that overexpression of circMYC reduced
radiosensitivity, suggesting that circMYC might afford vital
characteristics as a target for radiotherapy efficacy (105), to
some extent. Circ_0062020 functioned as a competing
endogenous RNA to restrain the radiosensitivity by
modulating miR-615-5p/TRIP13 axis in prostate cancer (PCa)
cells. The upregulation of circ_0062020 was detected in PCa
tissues including radiosensitive and radioresistant tissues in
contrast to adjacent normal tissues, especially in radioresistant
tissues (103). Chen et al. found circRNA_000543 expressed at
high levels in radioresistant NPC compared to radiosensitive
samples (99). CircRNAs isolated from extracellular vesicles were
markedly diverse between radioresistant glioma cells and the
control group, of which RNA−sequencing and bioinformatics
Frontiers in Oncology | www.frontiersin.org 1134
analyzed 63 upregulated circRNAs and 48 downregulation (94).
It is becoming increasingly difficult to ignore the significant roles
of circRNAs play in radiotherapy. Therefore, if further validated
in larger-scale clinical research, circRNAs are expected to be
complementary to traditional clinical assessment indicators.
CONCLUSIONS AND FUTURE
PERSPECTIVES

With the development of bioinformatics and experimental
techniques, the characteristic and functions of circRNAs have
been widely elaborated. Particularly in the field of cancer, these
remarkable new molecules exert their unparalleled status in all
aspects of tumor biology. To data, only a few studies have been
carried out on the actions of circRNAs in RT responses. In this
article, we summarized the different underlying mechanisms
involved in the multiple aspects of cellular response to IR.
CircRNAs are a double-edged sword in radioresistant tumors,
as they can not only promote radioresistance but also inhibit
radioresistance. Functional experiments have demonstrated that
regulation of circRNAs can obviously benefit radiotherapy,
implying the great potential of targeting circRNAs. Research
on the regulatory mechanisms of circRNAs in tumor radiation
therapy will be the future research trend.

At present, the research on the role of circRNAs in tumor
radiotherapy is still in its infancy, and plenty of aspects regarding
their regulatory mechanisms remain undefined. Currently, the
mainstream research on radiotherapy-related circRNAs is still
focused on ceRNAs, and mechanisms to determine other models
are strongly required. In this review, it was evident that most
circRNAs acted as miRNA sponges to activate or inhibit signal
FIGURE 4 | The production of exosomes and exosome-mediated RIBE. Exosomes are derived from endolysosomal microparticles and are released by fusion with
MVEs. The contents of exosomes include proteins, nucleic acids, growth factor, lipids, non-coding RNAs. RIBE is mediated by gap junction or substances released
into extracellular environment. As bystander effect mediators, exosomes induce recipient cells present the same outcomes as directly exposed cells, such as
proliferation, metastasis, therapy resistance.
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pathways, except for circCUX1 (87) and circRNA ZNF292 (77),
which functioned as regulatory proteins, and circular AKT3 (55),
which played translational functions. We believe that further
research can focus more on other molecular mechanisms, such as
post-transcriptional modifications and translation machinery. A
thorough understanding of the molecular mechanism of
circRNAs will help to identify novel and effective diagnostic
and therapeutic targets.

In addition to the direct effects of radiation on irradiated cells,
studies have found that non-irradiated cells are also indirectly
affected by radiation, a process known as radiation-induced
bystander effect (RIBE) (115). RIBE is a major factor in
determining the success of radiotherapy, not only because of
the damage to irradiated cells, but also because it can induce
cancer cells to become resistant to radiotherapy (116). Exosomes
are important mediators in the bystander effect (Figure 4). It has
been reported that miRNAs in exosomes can alter radiotherapy
efficacy through RIBE (117, 118). To the best of our knowledge,
circRNAs research on the benefits of RIBE has not yet been
reported so far. Therefore, we infer that circRNAs can also
induce RIBE through exosomes. Further research may help to
discover the association between circRNAs and RIBE, and
establish early interventions against RIBE to improve the
efficacy of radiotherapy.

As of now, no circRNA has really been applied in clinical
practice. Targeting circRNAs as a therapeutic strategy remains
obstacles and bewilderments. Meanwhile, the studies of
circRNAs in radiotherapy are limited to only a few solid
tumors. To date, there have been no reports on the RT of
hematological malignancies. The potential clinical value of
Frontiers in Oncology | www.frontiersin.org 1235
circRNAs in tumor progression and drug resistance has been
highlighted. Expanding the research field of circRNAs will
undoubtedly broaden our horizon. These deficiencies will
continue to be overcome in the future, and the value of
circRNAs as biomarkers in radiotherapy is worthy of attention.
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Regulator of Cell Plasticity, DNA Damage Response, and Therapy
Resistance. Front Mol Biosci (2020) 7:36. doi: 10.3389/fmolb.2020.00036

50. El Bezawy R, Cominetti D, Fenderico N, Zuco V, Beretta GL, Dugo M, et al.
miR-875-5p Counteracts Epithelial-to-Mesenchymal Transition and
Enhances Radiation Response in Prostate Cancer Through Repression of
the EGFR-ZEB1 Axis. Cancer Lett (2017) 395:53–62. doi: 10.1016/
j.canlet.2017.02.033

51. Chen D, Chou FJ, Chen Y, Tian H, Wang Y, You B, et al. Targeting the
Radiation-Induced TR4 Nuclear Receptor-Mediated QKI/circZEB1/miR-
141-3p/ZEB1 Signaling Increases Prostate Cancer Radiosensitivity. Cancer
Lett (2020) 495:100–11. doi: 10.1016/j.canlet.2020.07.040

52. Giglia-Mari G, Zotter A, Vermeulen W. DNA Damage Response. Cold
Spring Harb Perspect Biol (2011) 3(1):a000745. doi: 10.1101/cshperspect.
a000745

53. Wang X, Cao Q, Shi Y, Wu X, Mi Y, Liu K, et al. Identification of Low-Dose
Radiation-Induced Exosomal Circ-METRN and miR-4709-3p/GRB14/
PDGFRalpha Pathway as a Key Regulatory Mechanism in Glioblastoma
Progression and Radioresistance: Functional Validation and Clinical
Theranostic Significance. Int J Biol Sci (2021) 17(4):1061–78. doi: 10.7150/
ijbs.57168

54. Jin Y, Su Z, Sheng H, Li K, Yang B, Li S. Circ_0086720 Knockdown
Strengthens the Radiosensitivity of Non-Small Cell Lung Cancer via
Mediating the miR-375/SPIN1 Axis. Neoplasma (2021) 68(1):96–107. doi:
10.4149/neo_2020_200331N333

55. Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, et al. A Novel Tumor Suppressor
Protein Encoded by Circular AKT3 RNA Inhibits Glioblastoma
Tumorigenicity by Competing With Active Phosphoinositide-Dependent
Kinase-1. Mol Cancer (2019) 18(1):131. doi: 10.1186/s12943-019-1056-5

56. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as
Anticancer Mechanism: Function and Dysfunction of Its Modulators and
Targeted Therapeutic Strategies. Aging (Albany NY) (2016) 8(4):603–19. doi:
10.18632/aging.100934

57. Van Opdenbosch N, Lamkanfi M. Caspases in Cell Death, Inflammation, and
Disease. Immunity (2019) 50(6):1352–64. doi: 10.1016/j.immuni.2019.05.020

58. Li H, Jin X, Liu B, Zhang P, Chen W, Li Q. CircRNA CBL.11 Suppresses Cell
Proliferation by Sponging miR-6778-5p in Colorectal Cancer. BMC Cancer
(2019) 19(1):826. doi: 10.1186/s12943-019-1056-5
March 2022 | Volume 12 | Article 854678

https://doi.org/10.1016/j.molcel.2013.08.017
https://doi.org/10.1093/nar/gkz311
https://doi.org/10.1261/rna.052944.115
https://doi.org/10.1186/s13045-018-0643-z
https://doi.org/10.1186/s13045-018-0643-z
https://doi.org/10.3389/fcell.2020.00389
https://doi.org/10.1016/j.cell.2014.09.001
https://doi.org/10.1261/rna.035667.112
https://doi.org/10.1016/j.molcel.2018.06.034
https://doi.org/10.1016/j.molcel.2018.06.034
https://doi.org/10.1016/j.cell.2015.02.014
https://doi.org/10.1093/nar/gkz1117
https://doi.org/10.1016/j.celrep.2014.12.019
https://doi.org/10.1016/j.celrep.2014.12.019
https://doi.org/10.1038/nature21715
https://doi.org/10.1038/s41422-019-0192-1
https://doi.org/10.1093/nar/gkl151
https://doi.org/10.1093/nar/gkv1367
https://doi.org/10.21037/atm-21-1247
https://doi.org/10.21037/atm-20-7929
https://doi.org/10.1038/srep08057
https://doi.org/10.1371/journal.pgen.1003777
https://doi.org/10.1016/j.molcel.2015.03.027
https://doi.org/10.1016/j.molcel.2015.03.027
https://doi.org/10.1038/nn.3975
https://doi.org/10.1371/journal.pone.0141214
https://doi.org/10.1371/journal.pone.0141214
https://doi.org/10.1093/nar/gkaa005
https://doi.org/10.1093/nar/gkaa005
https://doi.org/10.1038/ncomms11215
https://doi.org/10.1038/ncomms11215
https://doi.org/10.1016/j.cell.2019.01.025
https://doi.org/10.1038/s41556-021-00639-4
https://doi.org/10.1007/s11912-021-01077-z
https://doi.org/10.3390/jpm11020140
https://doi.org/10.1016/j.semcdb.2020.08.010
https://doi.org/10.3389/fmolb.2020.00036
https://doi.org/10.1016/j.canlet.2017.02.033
https://doi.org/10.1016/j.canlet.2017.02.033
https://doi.org/10.1016/j.canlet.2020.07.040
https://doi.org/10.1101/cshperspect.a000745
https://doi.org/10.1101/cshperspect.a000745
https://doi.org/10.7150/ijbs.57168
https://doi.org/10.7150/ijbs.57168
https://doi.org/10.4149/neo_2020_200331N333
https://doi.org/10.1186/s12943-019-1056-5
https://doi.org/10.18632/aging.100934
https://doi.org/10.1016/j.immuni.2019.05.020
https://doi.org/10.1186/s12943-019-1056-5
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. CircRNAs in Tumor Radiotherapy
59. Fresno Vara JA, Casado E, De Castro J, Cejas P, Belda-Iniesta C, Gonzalez-
BaronM. PI3K/Akt Signalling Pathway and Cancer. Cancer Treat Rev (2004)
30(2):193–204. doi: 10.1016/j.ctrv.2003.07.007

60. Huang M, Li T, Wang Q, Li C, Zhou H, Deng S, et al. Silencing Circpvt1
Enhances Radiosensitivity in Non-Small Cell Lung Cancer by Sponging
microRNA-1208. Cancer Biomark (2021) 31:263–79. doi: 10.3233/CBM-
203252

61. He Y, Mingyan E, Wang C, Liu G, Shi M, Liu S. CircVRK1 Regulates Tumor
Progression and Radioresistance in Esophageal Squamous Cell Carcinoma
by Regulating miR-624-3p/PTEN/PI3K/AKT Signaling Pathway. Int J Biol
Macromol (2019) 125:116–23. doi: 10.1016/j.ijbiomac.2018.11.273

62. Chen G, Li Y, He Y, Zeng B, Yi C, Wang C, et al. Upregulation of Circular
RNA Circatrnl1 to Sensitize Oral Squamous Cell Carcinoma to Irradiation.
Mol Ther Nucleic Acids (2020) 19:961–73. doi: 10.1016/j.omtn.2019.12.031

63. Mizushima N, Levine B. Autophagy in Human Diseases. N Engl J Med
(2020) 383(16):1564–76. doi: 10.1056/NEJMra2022774

64. Levine B, Kroemer G. Biological Functions of Autophagy Genes: A Disease
Perspective. Cell (2019) 176(1-2):11–42. doi: 10.1016/j.cell.2018.09.048

65. Kim J, Lee S, KimH, Lee H, Seong KM, Youn H, et al. Autophagic Organelles
in DNA Damage Response. Front Cell Dev Biol (2021) 9:668735. doi:
10.3389/fcell.2021.668735

66. Zhou Z, Zhang Y, Gao J, Hao X, Shan C, Li J, et al. Circular RNAs Act as
Regulators of Autophagy in Cancer. Mol Ther Oncolytics (2021) 21:242–54.
doi: 10.1016/j.omto.2021.04.007

67. Zhu M, Xu Y, Chen Y, Yan F. Circular BANP, an Upregulated Circular RNA
That Modulates Cell Proliferation in Colorectal Cancer. BioMed
Pharmacother (2017) 88:138–44. doi: 10.1016/j.biopha.2016.12.097

68. Cai F, Li J, Zhang J, Huang S. Knockdown of Circ_CCNB2 Sensitizes Prostate
Cancer to Radiation Through Repressing Autophagy by the miR-30b-5p/
KIF18A Axis. Cancer Biother Radiopharm (2020). doi: 10.1089/cbr.2019.3538

69. Gao SW, Liu F. Novel Insights Into Cell Cycle Regulation of Cell Fate
Determination. J Zhejiang Univ Sci B (2019) 20(6):467–75. doi: 10.1631/
jzus.B1900197

70. Yang Y, Luo J, Chen X, Yang Z, Mei X, Ma J. CDK4/6 Inhibitors: A Novel
Strategy for Tumor Radiosensitization. J Exp Clin Cancer Res (2020) 39
(1):188. doi: 10.1186/s13046-020-01693-w

71. Guo YM, Chen JR, Feng YC, Chua MLK, Zeng Y, Hui EP, et al. Germline
Polymorphisms and Length of Survival of Nasopharyngeal Carcinoma: An
Exome-Wide Association Study in Multiple Cohorts. Adv Sci (Weinh)
(2020) 7(10):1903727. doi: 10.1002/advs.201903727

72. Hammond NL, Headon DJ, Dixon MJ. The Cell Cycle Regulator Protein 14-
3-3sigma is Essential for Hair Follicle Integrity and Epidermal Homeostasis.
J Invest Dermatol (2012) 132(6):1543–53. doi: 10.1038/jid.2012.27

73. Wang Y, Zhang J, Li J, Gui R, Nie X, Huang R. CircRNA_014511 Affects the
RadiosensitivityofBoneMarrowMesenchymalStemCellsbyBindingtomiR-29b-2-
5p. Bosn J Basic Med Sci (2019) 19(2):155–63. doi: 10.17305/bjbms.2019.3935

74. Ma Y, Zhang D, Wu H, Li P, Zhao W, Yang X, et al. Circular RNA PRKCI
Silencing Represses Esophageal Cancer Progression and Elevates Cell
Radiosensitivity Through Regulating the miR-186-5p/PARP9 Axis. Life Sci
(2020) 259:118168. doi: 10.1016/j.lfs.2020.118168

75. Zhang Y, Wang X. Targeting the Wnt/beta-Catenin Signaling Pathway in
Cancer. J Hematol Oncol (2020) 13(1):165. doi: 10.1038/jid.2012.27

76. Su H, Lin F, Deng X, Shen L, Fang Y, Fei Z, et al. Profiling and
Bioinformatics Analyses Reveal Differential Circular RNA Expression in
Radioresistant Esophageal Cancer Cells. J Transl Med (2016) 14(1):225. doi:
10.1186/s12967-016-0977-7

77. Yang W, Liu Y, Gao R, Xiu Z, Sun T. Knockdown of Cznf292 Suppressed
Hypoxic Human Hepatoma SMMC7721 Cell Proliferation, Vasculogenic
Mimicry, and Radioresistance. Cell Signal (2019) 60:122–35. doi: 10.1016/
j.cellsig.2019.04.011

78. Liu J, Xue N, Guo Y, Niu K, Gao L, Zhang S, et al. CircRNA_100367
Regulated the Radiation Sensitivity of Esophageal Squamous Cell
Carcinomas Through miR-217/Wnt3 Pathway. Aging (Albany NY) (2019)
11(24):12412–27. doi: 10.18632/aging.102580

79. Li YH, Xu CL, He CJ, Pu HH, Liu JL, Wang Y. circMTDH.4/miR-630/AEG-
1 Axis Participates in the Regulation of Proliferation, Migration, Invasion,
Chemoresistance, and Radioresistance of NSCLC. Mol Carcinog (2020) 59
(2):141–53. doi: 10.1186/s12967-016-0977-7
Frontiers in Oncology | www.frontiersin.org 1437
80. Hirschhaeuser F, Sattler UG,Mueller-KlieserW. Lactate: AMetabolic Key Player in
Cancer. Cancer Res (2011) 71(22):6921–5. doi: 10.1158/0008-5472.CAN-11-1457

81. Zhao Y, Zhong R, Deng C, Zhou Z. Circle RNA Circabcb10 Modulates PFN2
to Promote Breast Cancer Progression, as Well as Aggravate Radioresistance
Through Facilitating Glycolytic Metabolism Via miR-223-3p. Cancer
Biother Radiopharm (2021) 36(6):477–90. doi: 10.1089/cbr.2019.3389

82. Guan Y, Cao Z, Du J, Liu T, Wang T. Circular RNA Circpitx1 Knockdown
Inhibits Glycolysis to EnhanceRadiosensitivity of GliomaCells bymiR-329-3p/
NEK2 Axis. Cancer Cell Int (2020) 20:80. doi: 10.1186/s12935-020-01169-z

83. Paul R, Dorsey JF, Fan Y. Cell Plasticity, Senescence, and Quiescence in
Cancer Stem Cells: Biological and Therapeutic Implications. Pharmacol Ther
(2021) 107985. doi: 10.1158/0008-5472.CAN-11-1457

84. Zhu D, Shao M, Yang J, Fang M, Liu S, Lou D, et al. Curcumin Enhances
Radiosensitization of Nasopharyngeal Carcinoma via Mediating Regulation
of Tumor Stem-Like Cells by a CircRNA Network. J Cancer (2020) 11
(8):2360–70. doi: 10.7150/jca.39511

85. Ozpiskin OM, Zhang L, Li JJ. Immune Targets in the Tumor
Microenvironment Treated by Radiotherapy. Theranostics (2019) 9
(5):1215–31. doi: 10.7150/thno.32648

86. Mclaughlin M, Patin EC, Pedersen M, Wilkins A, Dillon MT, Melcher AA,
et al. Inflammatory Microenvironment Remodelling by Tumour Cells After
Radiotherapy. Nat Rev Cancer (2020) 20(4):203–17. doi: 10.1038/s41568-
020-0246-1

87. Wu P, Fang X, Liu Y, Tang Y, Wang W, Li X, et al. N6-Methyladenosine
Modification of Circcux1 Confers Radioresistance of Hypopharyngeal
Squamous Cell Carcinoma Through Caspase1 Pathway. Cell Death Dis
(2021) 12(4):298. doi: 10.1038/s41419-021-03558-2

88. Niu H, Zhang L, Chen YH, Yuan BY, Wu ZF, Cheng JC, et al. Circular RNA
TUBD1 Acts as the miR-146a-5p Sponge to Affect the Viability and Pro-
Inflammatory Cytokine Production of LX-2 Cells Through the TLR4
Pathway. Radiat Res (2020) 193(4):383–93. doi: 10.1667/RR15550.1

89. Su H, Zou DF, Sun YK, Dai Y. Hypoxia-Associated Circdennd2a Promotes
Glioma Aggressiveness by Sponging miR-625-5p. Cell Mol Biol Lett (2019)
24:24. doi: 10.1186/s11658-019-0149-x

90. Raposo G, Stoorvogel W. Extracellular Vesicles: Exosomes, Microvesicles,
and Friends. J Cell Biol (2013) 200(4):373–83. doi: 10.1083/jcb.201211138

91. Boriachek K, Islam MN, Moller A, Salomon C, Nguyen NT, Hossain MSA,
et al. Biological Functions and Current Advances in Isolation and Detection
Strategies for Exosome Nanovesicles. Small (2018) 14(6):1702153. doi:
10.1002/smll.201702153

92. Chen YY, Jiang MJ, Tian L. Analysis of Exosomal circRNAs Upon
Irradiation in Pancreatic Cancer Cell Repopulation. BMC Med Genomics
(2020) 13(1):107. doi: 10.1186/s12920-020-00756-3

93. Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 Complex Alterations
and DNA Damage Response: Implications for Cancer Treatment. Mol
Cancer (2019) 18(1):169. doi: 10.1186/s12943-019-1100-5

94. Zhao M, Xu J, Zhong S, Liu Y, Xiao H, Geng L. Expression Profiles and
Potential Functions of Circular RNAs in Extracellular Vesicles Isolated From
Radioresistant Glioma Cells. Oncol Rep (2019) 41(3):1893–900. doi: 10.3892/
or.2019.6972

95. O'leary VB, Smida J, Matjanovski M, Brockhaus C, Winkler K, Moertl S,
et al. The circRNA Interactome-Innovative Hallmarks of the Intra- and
Extracellular Radiation Response. Oncotarget (2017) 8(45):78397–409. doi:
10.18632/oncotarget.19228

96. Wang P, Sun Y, Yang Y, Chen Y, Liu H. Circ_0067835 Knockdown
Enhances the Radiosensitivity of Colorectal Cancer by miR-296-5p/IGF1R
Axis. Onco Targets Ther (2021) 14:491–502. doi: 10.2147/OTT.S281011

97. Dai X, Liao K, Zhuang Z, Chen B, Zhou Z, Zhou S, et al. AHIF Promotes
Glioblastoma Progression and Radioresistance via Exosomes. Int J Oncol
(2019) 54(1):261–70. doi: 10.3892/or.2019.6972

98. De Araujo Farias V, O'valle F, Serrano-Saenz S, Anderson P, Andrés E,
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Extracellular vesicles (EVs) are membrane enclosed spherical particles devoted to
intercellular communication. Cancer-derived EVs (Ca-EVs) are deeply involved in tumor
microenvironment remodeling, modifying the inflammatory phenotype of cancerous and
non-cancerous residing cells. Inflammation plays a pivotal role in initiation, development,
and progression of many types of malignancies. The key feature of cancer-related
inflammation is the production of cytokines that incessantly modify of the surrounding
environment. Interleukin-1b (IL-1b) is one of the most powerful cytokines, influencing all the
initiation-to-progression stages of many types of cancers and represents an emerging
critical contributor to chemoresistance. IL-1b production strictly depends on the activation
of inflammasome, a cytoplasmic molecular platform sensing exogenous and endogenous
danger signals. It has been recently shown that Ca-EVs can activate the inflammasome
cascade and IL-1b production in tumor microenvironment-residing cells. Since
inflammasome dysregulation has been established as crucial regulator in inflammation-
associated tumorigenesis and chemoresistance, it is conceivable that the use of
inflammasome-inhibiting drugs may be employed as adjuvant chemotherapy to
counteract chemoresistance. This review focuses on the role of cancer-derived EVs in
tuning tumor microenvironment unveiling the intricate network between inflammasome
and chemoresistance.

Keywords: extracellular vesicles, inflammasome, tumor microenvironment, IL-1b, chemoresistance
INTRODUCTION

In the complexity of cancer progression, the intricate interplay between inflammation and tumor
microenvironment (TME), depicts an extraordinary multifaceted scenario in the development of
acquired drug resistance and in the clinical outcome of malignant processes (1, 2). Extracellular
vesicles (EVs), in particular cancer-derived (Ca-EVs), represent signal transducer or messengers in cell-
cell communication (3–5), responsible for the continuous modification of TME (6, 7). TME includes
cancerous and non-cancerous cellular components such as fibroblasts, stromal, immune, and endothelial
cells. The cross-talk between TME components can induce a dysregulated inflammatory and immune
response (1, 2). Inflammation, indeed, plays a pivotal role in tumor initiation, by dynamically and
incessantly modifying TME via the release of cytokines and soluble mediators generating a “vicious
cycle”. This, in turn, endorses oncogenic plasticity toward immune-suppression, more aggressive
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phenotype and reduction of therapeutic efficacy. One of the main
mechanisms contributing to inflammation is mediated by
cytoplasmatic complexes known as inflammasomes.
Inflammasomes are activated by endogenous/exogenous danger
signals and changes in cytoplasm homeostasis. Upon activation,
inflammasomes act as “signal integrators” by the release of
inflammasome-effectors cytokines. Inflammasomes are pivotal
hubs of innate immunity and modulate immune/inflammatory
responses by cross-talking with different cellular components.
Inflammasome inappropriate activation, creating a pro-
inflammatory TME and suppressing local immunity, appears as
an emerging player in all the initiation to progression stages of
cancer (8–11). Crucial novel modulators of inflammasome are EVs
that, on the basis of the different nature of their cellular source,
positively or negatively affect inflammasome cascade in diverse
cancerous and non-cancerous recipient cells (12–14). In this
scenario, EVs, with their Janus face behavior, strongly contribute
to the immune/inflammation-associated modification of TME, and
play a critical role in tumorigenesis and chemoresistance.
EVs: ANOTHER BRICK IN THE WALL

EVs are a heterogeneous group of membrane enwrapped
spherical particles, produced by nearly all types of cells. There
are no unique markers able to classify EVs on the bases on their
biogenesis (ectosomes, exosomes, apoptotic bodies), for this
reason the MISEV2018 guidelines suggest classifying EVs
based on physical parameters, such as size (small and medium/
large EVs) density or biochemical composition (15–17). EVs,
found in body fluids and in cell culture media, carry various
biomolecules, including proteins, lipids, metabolites, RNA, and
DNA (16, 18). Upon interaction with target cell, EVs deeply
impact cellular recipient cells responses, highlighting the pivotal
role of EVs as signal transducers or messengers in cell-cell
communication at close or distant sites. Intercellular
communication is a key feature of tumor progression and
metastasis. Cancer cells can release EVs that enter the
circulation and reach distant organs, where they can generate
favorable environmental conditions, enabling the outgrowth of
disseminated tumor cells. This process, known as pre-metastatic
niche formation, requires a series of predefined steps involving
induction of vascular leakiness, alteration of stromal components
and immune-escape (19, 20).

Cancer-derived EVs (Ca-EVs) ability to suppress immune anti-
tumor activity, is guaranteed by the exchange of EVs between
cancerous and non-cancerous TME-residing cells, and by the
secretion of immune-modulating molecules (14, 21).
Furthermore, the “exosome-immune suppression” and the Ca-
EVs-mediated transfer of oncogenes or oncometabolites from one
cell to other is also involved in the unrestrained cell proliferation
and, subsequently, in the metastatic spread (14). On the other
hand, Ca-EVs, may also carry tumor-associated antigens, damage
associated molecular pattern (DAMPs), and immune-stimulating
molecules, that can induce an immune anti-tumor response (22,
23) via the recruitment and activation of immune cells in TME
(24, 25). Although the pro-inflammatory and the immune-
Frontiers in Oncology | www.frontiersin.org 240
suppressive role of Ca-EVs seem to be contrasting, pro-
inflammatory EVs may still contribute to TME maintenance
(26, 27).
INTERLEUKIN-1b ANDCHEMORESISTANCE:
ANOLDCYTOKINEWITH ANOVEL ROLE

Interleukin-1b (IL-1b) is one of the most abundant and influential
cytokines of TME. IL-1b expression and secretion are induced by
different stimuli such as toll-like receptors (TLRs) ligands, tumor
necrosis factor-a or IL-1b itself. IL-1b production/secretion are
fine-tune controlled by a two-steps transcriptional and post-
translational regulation, requiring the activation of both nuclear
factor kappa B (NF-kB) and nucleotide-binding oligomerization
domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3)
inflammasome-caspase-1 platform. NF-kB activation by
inflammatory stimuli induces biologically inactive pro-IL-1b
production which must be proteolytically cleaved, by
inflammasome-activated caspase-1 (28). Tumor cells can directly
produce IL-1b or can “instruct” cells within TME, such as stromal
ones, to secrete it (26, 29). An uncontrolled increase in IL-1b
release exerts immune-suppressive effects and influences all the
initiation-to-progression stages of many types of cancers and
represents an emerging critical contributor to chemoresistance
(30, 31). Depending on tumor cell types, several “in vitro” and “in
vivo” models highlighted multiple mechanisms for IL-1b
promoted chemoresistance. In pleural mesothelioma, the IL-8/
IL-1b signaling controls chemoresistance by inducing the
overexpression of ATP-binding cassette transporter (ABC) G2,
that determines resistance to cisplatin and pemetrexed (32).
Prostate carcinoma cells engage bone marrow adipocytes in a
functional cyclooxygenase-2 (COX-2)-dependent cross-talk that
promotes IL-1b expression, leading to docetaxel resistance (33).
IL-1b can also induce a reinforcement of NF-kB signaling. In fact,
IL-1b induces a sustained NF-kB that has been related to
chemoresistance in ovarian carcinoma (34), in acute myeloid
leukaemia (35) and in renal cell carcinoma (36). In pancreatic
cancer, IL-1b confers chemoresistance not only by activating NF-
kB (37), but also by up-regulating COX-2 (38), an enzyme linked
to chemoresistance also in cervical carcinoma (39) and in colon
cancer cell lines (40). In bladder cancer, cisplatin-resistance has
been linked to IL-1b-induced increase in aldo-keto reductase 1C1
levels (41). In breast cancer, IL-1b-induced chemoresistance has
been attributed to several mechanisms including: methylation of
the estrogen receptor a, which increases tamoxifen resistance (42);
activation of b-catenin signaling, which increases cisplatin
resistance (43); and induction of epithelial to mesenchymal
transition (EMT), which increases doxorubicin resistance (44).
In melanoma cells, ABCB5 controls IL-1b/IL-8 signaling (45)
which, in turn, influences chemoresistance by activating Smad/
DNA binding protein 1 signaling (46).

Considering the implication of IL-1b in influencing all the
initiation-to-progression stages of many tumors and
chemoresistance, this cytokine is considered a promising
therapeutic target for many types of cancers (30).
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THE INFLAMMASOME: A DOUBLE-EDGE
SWORD

As already mentioned, inflammasome activation is the mandatory
event for IL-1b maturation and secretion. Inflammasomes are
cytoplasmic molecular platforms devoted to detecting pathogen
associatedmolecular patterns (PAMPs) andDAMPs, playing a key
role in innate immunity (47). The inflammasome platform is
composed by a danger sensor receptor, an adaptor protein
(Apoptosis-associated speck-like protein containing a CARD,
ASC), and an effector enzyme (caspase-1). The receptor family
includes the nucleotide-binding and oligomerization domain
(NOD)-like receptors (NLRs) family, composed of at least 22
members, the most characterized of which is NLRP3 (47). Upon
activation, NLRP3 oligomerizes and assembles into a multimeric
platform including a coreunit comprehendingASCand the effector
pro-caspase-1. The oligomerization of inflammasome components
culminates in the autocatalytic activation of caspase-1, responsible
for IL-1b and IL-18maturation (47–49). Inflammasome activation
may also induce the processing of gasdermin-D (GSDMD), leading
to pyroptosis, an inflammatory formof cell death (50). The physical
interaction among inflammasome components is mediated by the
adaptor protein ASC which holds a pyrin (PYD) and a CARD
domain which, assembling into a speck, consents the connection
betweenNLRP3and caspase-1.NLRP3possesses threedomains: an
N-terminal effector PYD, involved in ASC recruitment via PYD-
PYD interaction, a central NACHT domain carrying an ATPase
activity essential forNLRP3activationandplatformassembly, anda
C-terminal leucine-rich repeats domain, possibly involved in auto-
regulation, protein-protein interaction, and signal sensing (51).
Inflammasome-platform assembly is also regulated by the
phosphorylation of Ser-295 of NLRP3. This post-translational
modification, accomplished by several protein kinases (PKs)
including PKA, PKD and PKG (52, 53), impedes inflammasome
platform assembly. Because component assembly is mandatory for
inflammasome activation, it represents an attractive target for the
development of selective NLRP3 inhibitors, as discussed later.
NLRP3 involvement in cancer is currently a very debated topic.
NLRP3 and NLRP3-associated pyroptosis have been defined “a
double-edge sword” (54) on the basis of their capability to achieve
bothananti-tumorigenicandapro-tumorigenicactivity indifferent
types of malignancies (9–11, 54, 55). The contrasting roles of
NLRP3 inflammasome can be due to multiple factors such as
type, heterogeneity and stage of cancer cells, or TME
characteristics (8–11). Metabolites, cytokines and EVs released by
TME residing cells, represent the key drivers of NLRP3 hyper-
activation. NLRP3 dysregulated activation can induce a chronic
inflammatory environment that boosts tumor progression and
extinguishes local immunity (9).

Recently the uncontrolled inflammasome activation has also
been associated to chemoresistance. In oral squamous carcinoma
NLRP3 activation promotes 5-Fluorouracil resistance “in vitro”
and “in vivo” (56); and NLRP3 inflammasome has been detected
in cisplatin-resistant lung cancer cell lines (57). Conversely,
NLRP3-induced pyroptosis, sensitizes gastric and epatocellular
carcinoma to cisplatin (58, 59).
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NLRP3 inflammasome has been also linked to cardiotoxicity of
anticancer agents. The inhibition of NLRP3, as well as of the
oligomerization of the myeloid differentiation primary response
gene 88 (MyD88), reduces the cardiotoxicity and increases the
anticancer properties of sunitinib, in renal cancer-bearing mice
(60). Myd88 is molecular platform which oligomerization and
assembly induces NF-kB activation and the release of cytokine and
factors involved in cancer cell survival and chemoresistance (60).
Pharmacological reduction of NLRP3 activity has been suggested
as a tool to alleviate doxorubicin-induced cardiotoxicity while
preserving or even improving its anti-cancer activity (61). On the
other hand, pyroptosis‐associated cytokines can induce either an
evasion of immune surveillance, or an effective immune
response (62).
EVs AND INFLAMMASOME: TWO PIECES
OF THE SAME PUZZLE

Increasing evidence highlights the pivotal role of Ca-EVs on
NLRP3 activation in different types of cancers (summarized in
Table 1). Prostate cancer derived-EVs, by inducing NLRP3
activation and IL-1b maturation, modify the inflammatory
response of ME residing cells in a tumor-promoting fashion
(12). Furthermore, prostate cancer tumor progression is
characterized by increased inflammasome activation (62). Lung
cancer-derived EVs induce NLRP3 activation in macrophages,
thus providing a positive feedback loop to promote cancer
progression via IL-1b secretion in mice (63, 64). EVs released
by primary cultures of human glioblastoma, up-regulate
microglial inflammasome signaling and influence both
microglial cells polarization and glioma-microglia crosstalk
(65). Furthermore, EVs derived from colon adenocarcinoma
cells mediate radiation-induced antitumor immunity by
inducing NLRP3 activation in mice (66).

The role of EVs in immune-escape and immune-stimulation
also relies on their ability to modulate inflammasome cascade
positively or negatively and IL-1b production in recipient cells
(12–14) (summarized in Table 1). This different effect is both
related to the nature of the EVs-releasing and -receiving cells and
to the different EVs mechanisms of action (Figure 1). In fact, on
the one hand, Ca-EVs activate NLRP3 inflammasome platform
in non-immune receiving cells via ERK1/2-mediated pathway
(12), on the other hand non-cancerous cell-derived EVs
negatively modulate NLRP3 inflammasome activation in
immune cells (13). This latter effect is mediated by EVs
intrinsic metabolic activity that, through adenosine production,
induces the activation of the adenosine A2a receptor, a member
of the purinergic P1 receptor family (13). This novel mechanism
of action highlights the active role of EVs in microenvironment
homeostasis, via the autonomous synthesis of metabolic
products able to alter microenvironment composition and cell
behavior (13). Furthermore, the involvement of A2a receptor in
this EVs effect, offers a novel point of view on the roles of EVs/
purinergic receptors on cancer immunology (12). In fact, up to
date, only the connection between EVs/type P2 purinergic
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receptors (P2Rs) and tumor-inflammatory signaling has been
demonstrated (27). Only few reports demonstrate that the
activation of P2Rs on immune cells induces the release of: (i)
EVs containing IL-1b and IL-18, exerting a pro-inflammatory
action, favor tumor progression at the expense of an effective
immune response; (ii) EVs presenting P2Rs on their surfaces
which activation, by extracellular ATP, can lead to the release of
IL-1b, IL-18 and ATP itself (27). As discussed below,
inflammasome and IL-1b dysregulation are crucial players in
inflammation-associated tumorigenesis and chemoresistance. In
this scenario, EVs by exerting an interaction-dependent effect on
the receiving cells or by releasing immune-metabolites, can be
considered novel crucial players in determining tumorigenesis
and chemoresistance. The functional link between NLRP3
activation and EVs is further demonstrated by the finding that
embryonic stem cell-derived EVs ameliorate the cardio-toxicity
induced by the antineoplastic agent doxurobcin, by inhibiting
NLRP3 signaling in mice (67). Nonetheless, further research is
needed to increase the knowledge in this emerging research area.
INFLAMMASOME TARGETING DRUGS:
POTENTIAL ANTI-CANCER THERAPEUTIC

Inflammation sustained by inflammasome activation has been
implicated in the insurgence or progression of several human
pathologies, including cancer. For this reason, several efforts have
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been made to identify potential effective inhibitors of
inflammasome to be used as new anti-cancer therapeutics
(summarized in Table 1). Each step leading to inflammasome
activation, may represent a good candidate for therapeutic targeting.

Several small molecules and natural compounds have been
identified as inhibitors of the interaction between NLRP3
inflammasome monomers. As examples MCC950 and
OLT1177, block NLRP3 oligomerization by inhibiting ATP
hydrolysis via the NACHT domain, which is pivotal for receptor
oligomerization and anti-cancer effects (68). MC950 inhibits LPS-
induced inflammasome activation in pancreatic cancer cell lines
(69), delays cell growth in a mouse model of head and neck
squamous cell carcinoma (70) and inhibits pituitary prolactinoma
growth and prolactin expression/secretion in rats (71). Similarly,
inhibition of NLRP3 by OLT1177 enhances antitumor immunity,
thus reducing melanoma growth (68). Oridonin, a natural
terpenoids found in traditional Chinese herbal medicine,
impedes inflammasome assembly by forming covalent bond
with NLRP3 Cys279 (72). Oridonin administration effectively
prevents the formation of colorectal cancer liver metastasis (73)
and improves oxaliplatin efficacy (74). Oridonin derivative, with
potent anticancer effects, has been very recently synthesized (75).

ASC polymerization can be another target for broad-
spectrum therapeutics. MM01 (under patent procedure:
application number, 20382237.4-1109) is a small-molecule
interfering with ASC speck formation (76). Xantone, used in
the early twentieth century as an ovicide and larvicide (85) can
TABLE 1 | Roles of EVs and drugs in inflammasome modulation.

Role and mechanism of action References

EVs-mediated inflammasome
activation
Prostate cancer-derived EVs
(PCa-EVs)

PCa-EVs induce caspase-1/IL-1b activation via ERK1/2-mediated lysosomal destabilization and cathepsin B activation in
non-cancerous PNT2 cells

(12)

Lung cancer-derived EVs
(LCa-EVs)

LCa-EVs induce NLRP3-mediated IL-1b secretion in macrophages thus promoting lung cancer development (63, 64)

Glioblastoma-derived EVs
(GMB-EVs)

GMB-EVs induce inflammasome/IL-1b activation in microglial cells thus inducing microglial cells M1 polarization (65)

Colon adenocarcinoma-
derived EVs (CCa-EVs)

CCa-EVs induce AIM2 and NLRP3 activation, and prompt IL-1b-mediated anti-tumor effect during radiation in mice (66)

EVs-mediated inflammasome
inhibition
Amniotic fluid stem cell-derived
EVs (HASC-EVs)

HASC-EVs inhibit NLRP3/caspase-1 activation via an intrinsic metabolic activity leading to A2a purinergic receptor
activation in THP1 cells

(13)

Embryonic stem cells-derived
EVs (ES-EVs)

ES-EVs reduce doxorubicin-induced NLRP3/Caspase-1/IL-1b/IL-18/Pyroptosis activation in M1 macrophages thus
converting pro-inflammatory M1 into anti-inflammatory M2 macrophages

(67)

Drug-mediated inflammasome
inhibition
OLT1177 OLT1177 blocks NLRP3 oligomerization and IL-1b secretion thus enhancing anti-tumor immunity and reducing tumor

growth in melanoma cells
(68)

MCC950 MCC950 inhibits NLRP3 activation and reduces tumor growth of pancreatic cancer cells; head and neck squamous
adenocarcinoma; and pituitary prolactinoma

(69–71)

Oridonin and its derivate Oridonin and its derivate impede NLRP3 assembly and prevents liver colorectal cancer metastasis (72–75)
MM01 and Xantone MM01 and xantone prevent inflammasome activation interfering with ASC speck formation (76, 77)
VX-765 VX-765 inhibits caspase-1 activation, thus preventing inflammasome activation and pyroptosis (78, 79)
Ritonavir Ritonavir blocks caspase-1 activation in pancreatic cancer (80, 81)
Anakinra Anakinra blocks the binding of IL-1 to its receptors. It is under clinical investigation for the treatment of metastatic

cancers
(82)

Natriuretic Peptides (NPs) NPs interfere with NLRP3 activation by the induction of NLRP3 phosphorylation that inhibits ASC oligomerization. NPs
counteract inflammasome activation in prostate cancer cell lines

(53, 62, 83,
84)
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inhibit ASC speck formation without affecting inflammasome
components expression (77). Although MM01 and xantone can
be useful for the treatment of a broad range of diseases based on
inflammasome dysregulation, they have not yet been tested on
cancer models.

Caspase-1 activation can be targeted for impeding IL-1b
maturation. Caspase-1 inhibition by the small-molecule VX-
765 prevents pyroptosis in a multiple sclerosis model (78) and
in monocytes and macrophages (79). Ritonavir, originally used
as protease inhibitor for the treatment of HIV, effectively block
caspase-1 (80), and induces apoptosis in pancreatic cancer (81).
However, the quite unspecific actions of protease inhibitors
should be taken into account to avoid deleterious side effects.

Specific monoclonal antibodies directed toward IL-1 receptor,
including anakinra, rilonacept, canakinumab and gevokizumab
have been developed to inhibit IL-1b signaling (82). Anakinra, a
recombinant IL-1Ra, blocking the binding of IL-1 to IL-1 receptor,
is under clinical investigation for the treatment of metastatic cancers
(ClinicalTrials.gov Identifier: NCT00072111). An up-to date list of
clinical trials involving IL-1 blockade has been recently published
(86). Nevertheless, the blockade of IL-1 receptor, although
displaying a favourable safety profile, caused a reduction in
neutrophil counts with an overall increased risk for fatal infections.
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Besides the possibility to inhibit inflammasome components,
several strategies aimed to inhibit the pathways leading to
inflammasome activation. Antioxidant compounds can inhibit
ROS-mediated inflammasome platform assembly, P2X7 receptor
antagonist can be used to impede K+ efflux known to be involved
in NLRP3 activation (86). A strategy, explored by our group, is
the induction of NLRP3 phosphorylation. We have indeed
showed that, natriuretic peptides (NPs), by binding to NPs
Receptor-1, can induce an increase in cGMP levels which
culminates in the activation of PKG (53, 83, 84). Moreover, we
showed that EVs, isolated from amniotic fluid-derived stem cells
can activate PKA via A2a adenosine receptor in immune cells
(13). Both PKA and PKG can phosphorylate NLRP3 at Ser295,
thus leading to the inhibition of inflammasome assembly and IL-
1b secretion (13, 53). Furthermore, NPs are able to counteract
both the constitutive and EVs-induced NLRP3 activation in
cancerous and non-cancerous prostate cells (62), supporting
the critical role of these molecules in prostate cancer (87).
Based on the fact that NPs analogues are already in clinical use
for cardiovascular diseases (88, 89) and of the growing interest
toward the use of EVs as therapeutics (90), further studies are
needed to better define the potential anti-cancer efficacy of NPs
and EVs.
FIGURE 1 | EVs and inflammasome. Schematic representation of EVs-induced effect on inflammasome activation. Ca-EVs (light blue) are up-taken by non-
cancerous cells and, via the induction of intracellular signaling pathways, including ERK1/2 MAPK, induce inflammasome platform assembly and the maturation of
IL-1b which release affects the microenvironment in a tumor-promoting fashion. EVs released by non-cancerous cells violet may produce soluble factor (Adenosine)
that, via receptor (adenosine A2a receptor) engagement on the target cell, activates protein kinases (PKA) which impedes inflammasome platform assembly through
NLRP3 phosphorylation (P).
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CONCLUSION

Chemoresistance represents a major challenge in the clinic. Cancer
cells response to therapy is deeply influenced by immune/
inflammation-associated TME modifications. Therefore, the
management of TME-mediated resistance may deeply affect the
efficacy of cancer therapies. The key players that trigger TME
modifications are multiple and strictly interconnected via a
complex network of cell-cell communication. Given the pivotal
role of inflammasome and related cytokines in TME re-modeling,
they represent promising therapeutic targets for the development of
novel anticancer approaches aimed to re-educate TME toward a
favorable inflammatory/immune anti-tumorigenic phenotype.
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EVs have been recently discovered as novel active contributors of
inflammasome/IL-1b modulation. Further studies are needed to
better define the potential anti-cancer therapeutic efficacy of
inflammasome-modulating drugs as adjuvant chemotherapy to
counteract chemoresistance in a multidrug approach.
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Pathogen-based cancer therapies have been widely studied. Parasites, such as Toxoplasma
gondii have elicited great interest in cancer therapy. Considering safety in clinical applications,
we tried to develop an exosome-based immunomodulator instead of a live parasite for tumor
treatment. The exosomes, called DC-Me49-exo were isolated from culture supernatants of
dendritic cells (DCs) infected with theMe49 strain of T. gondii and identified.We assessed the
antitumoral effect of these exosomes in a mouse model of colorectal cancer (CRC). Results
showed that the tumor growth was significantly inhibited after treatment with DC-Me49-exo.
Proportion of polymorphonuclear granulocytic bone marrow-derived suppressor cells
(G-MDSCs, CD11b+Ly6G+) and monocytic myeloid-derived suppressor cells (M-MDSCs,
CD11b+Ly6C+) were decreased in the DC-Me49-exo group compared with the control
groups in vitro and in vivo. The proportion of DCs (CD45+CD11c+) increased significantly in
the DC-Me49-exo group. Levels of interleukin-6 (IL-6) and granulocyte-macrophage colony-
stimulating factor (GM-CSF) significantly decreased after treatment with DC-Me49-exo.
Furthermore, we found that DC-Me49-exo regulated the lever of MDSC mainly by
inhibiting the signal transducer and activator of transcription (STAT3) signaling pathway.
These results indicated that exosomes derived from DCs infected with T. gondii could be
used as part of a novel cancer therapeutic strategy by reducing the proportion of MDSCs.

Keywords: Toxoplasma gondii, exosomes, myeloid derived suppressor cells (MDSCs), dendritic cells (DCs),
colorectal cancer (CRC), immunosuppression
INTRODUCTION

Many strategies have been used in colorectal-cancer (CRC) therapy. In recent years, cancer therapies
based on pathogens (viruses, bacteria, and parasites) have elicited great interest. In 2015, the first
oncolytic virus was approved for melanoma therapy by the U.S. Food and Drug Administration
(FDA) (1). Bacteria-based cancer therapy has been approved in clinical trials by both the FDA and the
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National Medical Products Administration (NMPA). Other team
and other researchers have found that infection by parasites such
as Toxoplasma gondii and Plasmodium can inhibit tumor growth
in vivo. However, although parasitic infection can change the
balance of tumor tolerance, live parasites in cancer treatment
increase the risk of infection.

Exosomes are extracellular vesicles with lipid bilayer
molecules. They can carry proteins, biologically active lipids,
and RNA from donor cells to recipient cells, thereby
establishing intercellular communication and changing the
functions of the recipient cells (2). Exosomes from pathogen-
infected host cells have an anti-infective effect. These exosomes
carry an “infection” message to immune cells, triggering them to
activate the immune response (3). Dendritic cell (DC)-derived
exosomes display abundant major histocompatibility complex
(MHC) class I/II molecules and T cell co-stimulatory molecules,
meaning that such exosomes have potential antitumoral activity
(4). Researchers have discovered that pathogen-infected
macrophages carry pathogen-associated molecular patterns
(PAMPs), which can activate the host’s immune response
mechanism (5). Exosomes secreted by immature DCs (DC-exo)
produce an antitumoral immune response only when co-injected
with mature DCs or chemical adjuvants (6). DC-exo can be used
only in combination with chemotherapeutic drugs or specific
immunotherapies to achieve better effect in clinical trials (7).
Previous research has also showed that intra-tumoral injection of
exosomes derived from the plasma of Plasmodium-infected mice
significantly reduces the tumor growth in Lewis lung cancer
(LLC) (8).

Myeloid-derived suppressor cells (MDSCs), which are
immature myeloid cells derived from bone marrow (BM), are
one of the most important types of immunosuppressive cells, and
can inhibit immune cell responses (9–11). Removing MDSCs
from the tumor microenvironment (TME) in patients can
improve the host immune system’s ability to attack tumors
and improve the effect of immunotherapy. Research has
confirmed that Plasmodium infection inhibits the expansion
and activation of MDSCs in a murine LLC model (12). A live,
non-replicating, non-toxic T. gondii uracil-deficient vaccine
strain (cps) reverses tumor-induced immunosuppression and
promotes the M1 macrophage phenotype by activating immune
cell such as DCs to suppress the role of MDSCs, thereby causing
the inhibition of tumors (13). Therefore, we attempt to introduce
the mechanism that activates host cell immunity by T. gondii to
stimulate antitumoral immunity, as well as to investigate the
potential of this strategy in tumor immunotherapy.

In our previous study, the DCs-derived exosomes “edited” by
T. gondii had good cell compatibility and could interfere with
immunosuppression caused by tumors. In the current study, we
hypothesized that exosomes derived from DCs infected with
Me49 strain of T. gondii could inhibit the level of MDSCs in a
mouse model of CRC to achieve tumor suppressive effects. To
develop an exosome-based immunomodulator instead of live
parasites for tumor therapy, we evaluated antitumoral activity of
exosomes isolated from DCs infected with the Me49 strain of
T. gondii in a mouse model of CRC.
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MATERIALS AND METHODS

Ethical Approvals
All animal experiments were approved by the Institutional
Animal Care and Use Committee of the Shanghai Veterinary
Research Institute, Chinese Academy of Agricultural Sciences
(CAAS), Shanghai, China (IACUC approve number SHVRI–SZ–
20200421-01).

Sources of Cells, Parasites and Mouse
We purchased cell line of murine colorectal carcinoma (CT26
labeled with luciferase) from the Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences (Shanghai,
China). The cell culture medium used in this experiment was
Roswell Park Memorial Institute (RPMI) 1640 supplemented
with 1% penicillin-streptomycin solution and 10% fetal bovine
serum (FBS), all purchased from Gibco (Thermo Fisher
Scientific, Waltham, MA, USA) in a humidified atmosphere of
5% CO2 at 37°C.

The Me49 strain of T. gondii was preserved at the Key
Laboratory of Animal Parasitology of Ministry of Agriculture
(China), Laboratory of Quality and Safety Risk Assessment for
Animal Products on Biohazards of Ministry of Agriculture, China.

We obtained 6-week-old female BALB/c mice from Shanghai
SPF Biotechnology Co., Ltd (Beijing, China) and kept them at the
SPF Experimental Animal Center of Shanghai Veterinary
Research Institute, CAAS. Animals were housed in cages at
21 ± 1°C and 50–60% humidity, on 12 h-light-dark cycles,
with enrichment items located in ventilated racks.

Animal Experimental Model
We randomly divided the mice into two groups (n = 5 per
group). There were no significant differences in body weight
between groups. Mice were immunized with inactivated T. gondii
Me49 strain. Then mice were subcutaneously injected in the
axillary area with 5×106 CT26 cell suspension.

T. gondii Treatment of Mice With
Colorectal Cancer
After immunizing mouse with T. gondii Me49 strain, mice were
injected with 5×106 CT26 cells. Seven days later, 100 tachyzoites
of T. gondiiMe49 strain were infected in CT26+Me49 group. The
control group (CT26) was injected with PBS.

qPCR Detection of T. gondii in
Different Tissues
We performed quantitative polymerase chain reaction (qPCR)
amplification of the 529-bp target gene in T. gondii as described
below. DNA was extracted from different tissues of mice with
CRC using a DNA Mini Kit (Qiagen, Hilden, Germany). We
performed qPCR on QuantStudio5 PCR system (Applied
Biosystems, Foster City, CA, USA). T. gondii from different
tissues was detected by qPCR assay using the primers (forward
primer: 5’-GCTCGCCTGTGCTTGGAG-3’, reverse primer: 5’-
ATCTTCTCCCTCTC CGACTCTC-3’) and probe (probe
sequence: 5’-TCGCTTCCCAACCACGCCACCC-3’). Briefly,
May 2022 | Volume 12 | Article 899737

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lu et al. Exosomes (DC-Me49-exo) Show Antitumoral Activity
the 20 mL reaction mixture contained 10 mL premix, 0.8 mL
forward primer, 0.8 mL reverse primer, 0.2 mL probe, 0.2 mL Rox
Reference Dye II (Tokyo, Shiga, Japan), 6 mL ddH2O, and 2 mL
template of DNA. The major steps of qPCR included
denaturation at 95°C for 10 min, followed by 40 cycles of
denaturation at 95°C for 15s, annealing at 60°C for 1min, and
extension at 72°C for 45s. We prepared a standard curve and
took measurements in triplicate for each sample.

Tumor Volume Measurement
Tumor volume = length × width2/2, where length represents the
largest tumor diameter and width represents the perpendicular
tumor diameter. Mice were categorized as dead for ethical
reasons when the tumor volume exceeded 1500 mm3.

Flow Cytometric Analysis
Mice with CRC treated with T. gondii or exosomes were
sacrificed before the flow cytometry (FCM) analysis. Then, we
separated the blood, spleen, and tumor tissues. T lymphocyte
infiltration and the proportion of MDSCs were detected by FCM.
After washing the tumor samples in RPMI 1640, they were cut
into 1 mm3 tissue pieces and digested with RPMI 1640,
containing Dispase® II (1.5 U/mL, Sigma, USA), Collagenase
D (1 mg/mL, No.11088858001; Roche, Basel, Switerland) and
0.2% DNase I (Roche, USA) at 37°C for 30 min according to the
previous study (14) with some modifications. The digested
material was passed through a mesh (70 mM) to remove
clumps and the filtrate was washed twice and then centrifuged
at 400 × g for 8 min at room temperature (RT) (14).

We used a lysed solution to lyse blood, after which we washed
it with PBS and then centrifuged at 700 g for 5 min. To prepare
the single-cell spleen suspension, the whole spleen was placed in
a cell strainer and crushed. We next passed the cells through the
70 mM mesh to remove clumps and washed the filtrate twice,
then centrifuged it at 400 g for 8 min at RT. Cell surfaces were
stained in accordance with established methods (15). A total of
1×106 cells were incubated for 30 min at 4°C with different
combinations of the following antibodies: (FITC)-CD3,
(BV421)-CD4, (PE)-CD8, (APC)-CD45, (FITC)-CD11b, (PE)-
Ly6G, (APC-A)-Ly6C, (FITC)-CD45, (APC)-CD11b, (PE)-
Ly6G, (APC-700)-Ly6C, (PC5.5)-CD11c, and (PB450)-F4/80.
All the antibodies were purchased from Becton, Dickinson
(San Jose, CA, USA). Following two washes with 1 mL staining
buffer, the cells were resuspended in 200 mL staining buffer for
analysis on a CytoFLEX flow cytometry (Beckman Coulter Life
Sciences, Brea, CA, USA).

Isolation of DC-Derived Exosomes
We obtained bone marrow-derived dendritic cells (BMDCs)
from BM suspensions prepared from mouse femurs as
described previously (16). Exosomes were purified from the
supernatants of DCs infected with T. gondii by differential
centrifugation as previously described (17). Briefly, we
harvested supernatants of DCs infected with T. gondii from the
DC-Me49-exo group, and those of control DCs from the DC-exo
group. The different supernatants were centrifuged at 500 g for
10 min to remove cell debris and other small particles, and the
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supernatants was collected. Then, we centrifuged the supernatant
at 16,500 g for 20 min, followed by filtration through a 0.22-mm
filter (Millipore Sigma). Finally, supernatant solutions were
ultracentrifuged at 120,000 g for 90 min, and the exosome
pellet was resuspended with an appropriate amount of PBS.
We measured the protein content of exosomes using a BCA
protein assay kit (Thermo Fisher, USA). Exosomes were stored at
−80°C for future use or directly used in co-culture experiments.

Characterization of Exosomes
We observed the size, morphology, and distribution of exosomes
by transmission electron microscope (TEM). Diluted exosomes
were fixed for 15 min in 2.5% formaldehyde/glutaraldehyde
(Solarbio, Beijing, China), and 0.1 M sodium cacodylate buffer.
The samples were then placed on a 300-mesh carbon coated
mesh for air drying. We stained the samples for 4 min with a
negatively filtered microporous aqueous solution of uranyl
acetate, and then washed them twice with 50% methanol/
water. After air drying, samples were observed under TEM
with accelerating voltage of 80 kV and spot size of 2. We
diluted purified exosomes in PBS (10000×) and subsequently
used them for size measurement and analysis on a ZetaView
nanoparticle-tracking analyzer (Particle Metrix, Inningam
Ammersee, Germany) to determine concentration (particles/
mL) and particle size (nm). Exosomes were mixed with loading
buffer and heated at 100°C for 10 min. We then loaded exosome
samples on 10% SDS-PAGE gel, transferred the samples to
PVDF (Billerica, MA, USA), and incubated them overnight in
blocking buffer (1× PBST, 5% milk). After five washes with
washing buffer (PBST), membranes were incubated for 1 h with
monoclonal antibodies of CD63, CD9, TSG101 (Cambridge,
MA, USA) in a buffer containing PBST, and 1% milk. After
washing them with washing buffer, we incubated membranes for
1 h with secondary antibodies and detected signals on a
ChemiDoc Touch Imaging (Bio-Rad, USA).

Co-Culture Assays In Vitro
Mouse BM–derived MDSCs were obtained as previously
described (18, 19). In brief, we flushed BM cells from the
femurs and tibias of approximately 5-week-old BALB/c mice.
Red blood cells (RBCs) were lysed with lysis buffer (Thermo
Fisher). The BM cells were then cultured in RPMI-1640
supplemented with 10% FBS, 1% penicillin-streptomycin
solution and stimulated with 40 ng/mL interleukin-6 (IL-6)
and granulocyte-macrophage colony stimulating factor (GM-
CSF) (Rocky Hill, NJ, USA) at 37°C for 4 d in a 5% CO2-
humidified atmosphere. Then, we detected unique M-MDSCs
and G-MDSCs using (FITC)-CD45, (APC)-CD11b, (PE)-Ly6G,
and (APC-700)-Ly6C. Uniquely DCs and macrophages were
detected by (FITC)-CD45, (PC5.5)-CD11c, and (APC)-CD11b,
(PB450)-F4/80. All the antibodies were purchased from Becton,
Dickinson (San Jose, CA, USA). After induction and maturation,
MDSCs were harvested. Then, MDSCs incubated with exosomes
of DC-exo, DC-Me49-exo, and PBS, respectively. After 24 h,
MDSC was collected for flow cytometry and Western blot.
All cells were lysed using RIPA buffer (Beyotime Institute
of Biotechnology, China) with 1 nM PMSF, and total
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proteinconcentration was determined using a BCA protein
quantification kit (Thermo Fisher). Next, we loaded 5 µg total
proteins per lane and resolved them on 0.6–0.8% gels by SDS-
PAGE. Proteins were transferred onto PVDF membranes and
blocked for 1 h with 5% non-fat milk at RT, after which the
membranes were washed three times with PBST. Membranes
were incubated for 1 h with monoclonal antibodies of P-JAK2,
JAK2, P-STAT3, STAT3 and tubulin in a buffer containing PBST
and 1% milk. All primary antibodies were purchased from CST.
After washing them with PBST, we incubated membranes for 1 h
with goat anti-mouse IgG-HRP (Santa Cruz, CA, USA) and
detected signals on a ChemiDoc Touch Imaging (Bio-Rad, USA).

Indirect Immunofluorescence
Exosomes were labeled by ExoSparker Exosome Membrane
Labeling Kit-Green (Kumamoto, Japan), MDSCs were seeded
into a 6-well plate at a density of 3×105 cells per well and 5 mg/
mL exosomes from each of the different groups were added to the
MDSC culture medium. Control wells contained cells but no
exosomes. After incubation for 24 h, we washed cells three times
with PBS and stained them with DAPI (Beyotime Biotechnology,
China). All cells were sealed and imaged using Zeiss LSM 880
confocal microscopy.

Treatment of Colorectal Cancer-Bearing
Mice With Exosomes
BALB/c female mice (6 weeks old) were weighed, randomly
divided into three groups (n = 10 each group), and injected
subcutaneously with 5 × 106 CT26 cells. When the tumor was
visible, treatment was carried out according to the following
design: an intra-tumoral injection with 10 mg DC-exo (DC-exo
group), 10 mg DC-Me49-exo (DC-Me49-exo group), and 10 mL
PBS (PBS group). Two injections were performed on day 1 and 3
after tumor visualization (8). At day 19 post inoculation, the
tumor progression was monitored by using an IVIS Spectrum
imaging system (IVIS Spectrum, USA). Mice were sacrificed, and
blood, spleens and tumors were collected for flow-cytometry
analysis. Cytokines in serum were determined by using IL-6 and
GM-CSF ELISA kits (Neobioscience Technology Company).

Statistical Analysis
All data were analyzed using GraphPad Prism software (Version
8.0.2) and presented as mean ± standard deviation. The
significant differences between experiment group and control
group were analyzed using Student’s t-test or one-way ANOVA
with Dunnett’s multiple comparison.
RESULTS

T. gondii Infection Reduced Mortality and
MDSC Levels in Tumor-Bearing Mice
In order to determine the antitumoral activity of T. gondii, we
established the mouse models of CRC. After being vaccinated
three times with the heat-killed T. gondii, each mouse was
inoculated with 5×106 CT26 cells. Seven days later, the mouse
Frontiers in Oncology | www.frontiersin.org 450
was infected with the Me49 strain of T. gondii in the CT26 +Me49
group, and the CT26 group was injected with PBS (Figure 1A).
Mice in the CT26 + Me49 group had a 60% survival rate at day 35
versus 0% for the untreated group (Figure 1B).

CD3+CD4+ and CD3+CD8+ T cells were evaluated using
CytoFLEX. We used an FACS strategy (Supplementary
Figure 1A) to isolate these cells from different tissues of
tumor-bearing mice. In peripheral blood, spleen and tumor
tissues of the CT26 + Me49 group, as compared with the
control group, the mean frequency of CD4+ T cells was
significantly reduced (p < 0.0001) (Figure 1C). In peripheral
blood, no differences were found in the mean frequency of
CD3+CD8+T cells between the CT26 group and the CT26 +
Me49 group (Figure 1D). Compared with the CT26 group, the
mean frequency of CD3+CD8+ T cells in both spleens and
tumors was significantly increased in the CT26 + Me49 group
(p < 0.0001) (Figure 1D). These data indicated that T. gondii
infection could significantly increase the CD3+CD8+T cell
infiltration into tumor tissue.

MDSCs demonstrate immune evasion, and promote tumor
progression by inhibiting the proliferation and functions of T
cells (20). In order to investigate whether infection with the
Me49 strain of T. gondii could affect the level of MDSC, we
prepared single-cell suspensions from the peripheral blood,
spleen and tumor tissues, stained them with MDSCs-specific
markers, and analyzed the cells using CytoFLEX. After
CD45+CD11b+ gating (Supplementary Figure 1B), G-MDSCs
and M-MDSCs were analyzed (n = 5/group). Compared with
CT26 group, the G-MDSCs from peripheral blood (p <0.0001),
spleens (p < 0.001), and tumors (p < 0.01) were significantly
decreased in the CT26 + Me49 group (Figure 1E). Compared
with CT26 group, percentage of M-MDSCs in peripheral blood
(p < 0.001), spleens (p < 0.05) and tumors (p < 0.05) were also
significantly reduced in the CT26 + Me49 group (Figure 1F).
These data indicated that T. gondii infection decreased the
proportions of G-MDSCs and M-MDSCs in tumor-
bearing mice.

In order to investigate whether the Me49 strain of T. gondii
could directly infect tumor cells in vivo, we detected T. gondii in
different tissues in the CT26 + Me49 group. Results showed that
T. gondii was detected in the spleen, lung, liver, and brain, but
not in tumor tissues (Supplementary Figure 2). These results
suggested that the increase in CD3+CD8+ T cells and decrease in
CD3+CD4+ T cells and MDSC in vivo might be involved in the
antitumoral response of T. gondii infection in the mouse model
of CRC.

Characterization of Exosomes From
Different Sources
Because direct infection with T. gondii for cancer therapy can
increase the risk of infection, we developed an alternative
exosome-based method for CRC treatment. We used
ultracentrifugation to obtain exosomes from the culture
supernatant of DCs or DCs infected with T. gondii. Via electron
microcopy, we observed the exosomes derived from both kinds of
DC to be cup-shaped, with a typical bilayer membrane
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(Figure 2A). DCs infected with Me49 secreted more exosomes at
12 h than uninfected cells (Figure 2B). The diameter range of
exosomes from different samples was 100–200 nm (Figure 2C).
The presence of three exosome-enriched proteins, CD63, CD9,
and TSG101 (Figure 2D), was confirmed by Western blot.

Exosomes Inhibited Tumor Growth
To evaluate the efficacy of exosomes isolated from DCs infected
with T. gondii, we treated tumor-bearing mice with exosomes.
We monitored tumor growth progression using the IVIS
Spectrum. Compared with the DC-exo and PBS groups,
signal intensity on tumor imaging was decreased significantly
in the DC-Me49-exo group (P< 0.01), while no differences were
found between the DC-exo and PBS groups (Figures 3A, B).
DC-Me49-exo group had a 40% survival rate at day 42 versus
0% for the other two groups (Figure 3C). These results
indicated that DC-Me49-exo could significantly inhibit CRC
growth in vivo.
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DC-Me49-exo Reduced MDSC Proportion
in Tumor Bearing Mice
To evaluate the role of exosomes in regulating MDSC, we
analyzed the level of MDSC in blood and tumors via FCM.
After CD45+CD11b+ gating, G-MDSCs, M-MDSCs, DC and
macrophage were analyzed (n = 5/group) (Supplementary
Figure 1C). Results showed that in peripheral blood, the
relative proportion of G-MDSCs was reduced after treatment
with DC-Me49-exo compared with the DC-exo and PBS groups
(p < 0.001) (Figure 4A). The ratio of M-MDSC was significantly
increased (p < 0.01) in DC-Me49-exo group (Figure 4B).
Similarly, compared with the DC-exo and PBS groups, the
mean frequency of DCs (CD45+CD11C+) was significantly
increased in the DC-Me49-exo group (p < 0.05) (Figure 4C).
No significant change occurred in the mean frequency of
macrophages (CD11b+F4/8+) in any of the three groups
(Figure 4D). These data indicated that a significant decrease in
G-MDSCs was accompanied by an increase of DCs in the
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FIGURE 1 | T. gondii induced a protective immune response against tumor growth of CRC. (A) Mice were immunized with inactivated Me49 strain of T. gondii, and
then vaccinated with CT26 cells. After 7 d, mice were reinfected with the Me49 strain of T. gondii. The control group was not infected after tumor inoculation (n = 5).
(B) Survival rate of CT26–bearing mice after T. gondii infection. FCM analysis of CD3+ CD4+ T cells (anti-CD3-FITC, anti-CD4-PB450) (C), CD3+ CD8+ T cells (anti-
CD3-FITC, anti-CD8-PE) (D), G-MDSCs (anti-CD11b-FITC, anti-Ly6G-PE) (E) and M-MDSCs (anti-CD11b-FITC, anti-Ly6C-APC-A) (F) in peripheral blood, spleen
and tumors from different groups. ns, (p ≥ 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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peripheral blood of tumor-bearing mice treated with DC-
Me49-exo.

We also analyzed MDSC counts in tumor tissues. We found
low proportions of G-MDSCs (p < 0.001) (Figure 4E) and M-
MDSCs (p < 0.05) (Figure 4F) in the DC-Me49-exo group
Frontiers in Oncology | www.frontiersin.org 652
compared with the DC-exo and PBS groups. Mean frequencies
of DCs were significantly increased in the DC-Me49-exo group
(p < 0.0001) (Figure 4G). Compared with the DC-exo and PBS
groups, the mean frequency of macrophages was significantly
decreased in the DC-Me49-exo groups (p < 0.05) (Figure 4H).
A B
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FIGURE 2 | Isolation and characterization of exosomes. (A) Exosomes were stained with uranyl acetate and analyzed three times via TEM (original magnification, ×
100,000; scale bar = 200 nm). (B) Nanoparticle-tracking analysis of size distribution of purified exosomes. (C) Percentages of purified exosomes in various size
ranges. (D) Western blot identification of exosome markers CD63, CD9 and TSG101.
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FIGURE 3 | DC-Me49-exo inhibited tumor growth in a mouse model of CRC. CT26 cells were injected subcutaneously, and DC-exo, DC-Me49-exo and PBS from
different groups were injected into the tumor. (A) Fluorescence intensity in tumor-bearing mice after exosome treatment detected using an IVIS imaging system.
(B) In vivo fluorescence imaging of tumor-bearing mice treated with exosomes. PBS, DC-exo and DC-Me49-exo represent control group, DC-exo treatment group
and DC-Me49-exo treatment group, respectively. (C) Survival curve of a mouse model with CRC after exosome treatment (n=10). ns, (p ≥ 0.05), **p < 0.01.
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These results indicated that DC-Me49-exo inhibited the
accumulation of MDSCs in tumor tissues and peripheral
blood, and promoted MDSC (CD11b+Ly6G+) differentiation.

DC-Me49-exo Promoted Differentiation of
MDSCs In Vitro
Exosomes are taken up by recipient cells and the packaged
contents are unloaded to regulate the function and activity of
recipient cells. To verify the effect of exosomes on MDSCs, we
added labeled DC-exo and DC-Me49-exo to MDSC. After 12 h
of coculture, we observed labeled exosomes (green) gathered
around the nuclei (blue) of MDSCs (Figure 5A), and the
proportions of G-MDSCs (p < 0. 01) (Figure 5B) and
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M-MDSCs (p < 0.01) (Figure 5C) were decreased in the DC-
Me49-exo group. Compared with the DC-exo and PBS groups,
the mean frequency of DC was significantly increased in the DC-
Me49-exo group (p < 0.0001) (Figure 5D). We saw no significant
change in macrophage among the three groups (Figure 5E). All
these data indicated that the DC-Me49-exo directly regulate the
MDSC differentiation and increase the level of DCs in vitro.

DC-Me49-Exo Regulated MDSCs by
Inhibiting the STAT3 Pathway
Previous studies have confirmed that phosphorylation of JAK2
and STAT3 is associated with the differentiation and expansion
of MDSCs (21, 22). We evaluated the levels of IL-6 and GM-CSF,
which regulate JAK2–STAT3 activation, in serum of tumor-
bearing mice after treatment with different exosomes.
Compared with DC-exo and PBS groups, both the levels of IL-
6 and GM-CSF significantly decreased in the DC-Me49-exo
group (p < 0.01) (Figures 6A, B). To further confirm the
correlation between JAK2-STAT3 signal transduction and
MDSC differentiation, we detected phosphorylation of JAK2
and STAT3 in MDSC treated with exosomes using Western
blot. The results showed that the phosphorylation level of JAK2
was not affected by exosomes in any of the three groups
(Figures 6C, D), while that of STAT3 in the DC-Me49-exo
group was greatly decreased compared with the DC-exo groups
(p < 0.05) (Figures 6C, E). All these data indicated that DC-
Me49-exo promoted MDSC differentiation by inhibiting the
phosphorylation level of STAT3.
DISCUSSION

The oncolytic function of bacteria and viruses has been well studied
in cancer therapy. Parasite-based cancer therapy has recently
elicited great interest. Previous studies (9, 23) and our own
research have found that infection with the single-celled parasite
T. gondii can inhibit tumor growth. In this study, we detected the
distribution of T. gondii in tumor-bearing mice, but no parasites
were found in tumor tissues. Our hypothesis was that T. gondii
inhibited tumor growth by rebalancing immune homeostasis.
Considering the risk of direct infection with T. gondii in tumor
treatment, we developed an exosome-based strategy instead of live
T. gondii infection for cancer therapy. Our data showed that the
Me49 strain of T. gondii inhibited tumor growth. Compared with
the control groups, infiltration of CD3+CD8+ T cells was increased
and the level of MDSC decreased in the CT26 + Me49 group.

Exosomes are secreted by all types of cells including normal,
cancer or host, and infected cells, and their functions depend on
their cellular origins. Those isolated from different immune cells
have been identified, these exosomes have immunomodulatory
properties, which encourages research on their clinical applications
in disease treatment. At present, the main application of exosomes
is tumor prevention. Exosomes derived from immature DCs have
limited function, they require activation by antigens or cytokines to
exert antitumoral effects (24). Previous studies showed that
patients could obtain clinical benefit from exosomes isolated
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FIGURE 4 | DC-Me49-exo decreased the proportion of MDSCs in a mouse
model of CRC. FCM analysis of G-MDSCs (anti-CD11b-APC, anti-Ly6G-PE)
(A), M-MDSCs (anti-CD11b-APC, anti-Ly6C-APC-700) (B), DCs (anti-CD45-
FITC, anti-CD11c-PC5.5) (C) and macrophages (anti-CD11b-APC, anti-F4/
80-PB450) (D) in the blood of tumor-bearing mice treated with DC-exo, DC-
Me49-exo and PBS. FCM analysis of G-MDSCs (E), M-MDSCs (F), DCs
(G) and macrophages (H) in the tumor tissues of tumor-bearing mice treated
with DC-exo, DC-Me49-exo and PBS. ns, (p ≥ 0.05), *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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FIGURE 5 | DC-Me49-exo inhibited the proportion of MDSCs in vitro. (A) Uptake of exosomes by MDSCs. Exosomes were stained green with ExoSparker
Exosome Membrane Labeling Kit-Green dye and nuclei were stained blue with DAPI after 24 h co-culture with MDSCs. Scale bar: 20 µm. FCM analysis of G-MDSC
(anti-CD11b-APC, anti-Ly6G-PE) (B) M-MDSC (anti-CD11b-APC, anti-Ly6C-APC-700) (C), DCs (anti-CD45-FITC, anti-CD11c-PC5.5) (D) and macrophages (anti-
CD11b-APC, anti-F4/80-PB450) (E). ns, (p ≥ 0.05), **p < 0.01, ****p < 0.0001.
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FIGURE 6 | DC-Me49-exo regulated MDSCs by affecting the STAT3 pathway. Concentrations of IL-6 (A) and GM-CSF (B) in sera of tumor-bearing mice treated
with DC-exo, DC-Me49-exo and PBS. (C) Protein expression levels at the JAK2/STAT3 pathway. The grayscale analysis of the ratio of P-STAT3/STAT3 (D) and
P-JAK2/JAK2 (E). ns, (p ≥ 0.05), *p < 0.05, **p < 0.01.
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from DCs that were loaded with antigen peptides identified in
melanoma and prostate cancer cells (25, 26). Exosomes isolated
from DCs co-cultured with human breast adenocarcinoma cells
(SK-BR-3) strongly activate tumor-specific T cells (26). These
studies show that exosomes derived from DCs are an important
new strategy in tumor immunotherapy. Unfortunately, exosomes
derived from peptide-loaded DCs have so far failed to induce
tumor-specific T cell responses and therefore have no clinical
efficacy (7). Compared with exosomes derived from peptide-
loaded DCs, exosomes from pathogen-infected DC have a rich
variety of antigens, which can bindmore effector T cells specifically
and produce stronger immune response. In vivo experiments,
exosomes derived from DC directly loaded with OVA antigen
peptide were significantly less able to induce effective antigen-
specific T cell response than exosomes derived from DC treated
with pulsed OVA. Ova-treated DC exosomes are more sensitive to
MHC than exosomes loaded with OVA polypeptides, and have a
relatively high affinity for TCR (27). Previous studies (28) and our
data proved that T. gondii infection could increase CD8+ T cell
infiltration. DC-derived exosomes display abundant MHC class I/
II molecules and T cell co-stimulatory molecules, which mainly
perform direct antigen presentation to activate T cells. Therefore,
we treated colorectal cancer tumor-bearing mice with T. gondii
infected DC-derived exosomes. Our results showed that DC-
Me49-exo inhibited tumor growth by reducing the level of
MDSC in our CT26 mouse model. All these data indicated that
exosomes isolated from DCs infected with T. gondii could be a
potential candidate treatment in cancer therapy. It is a pity that the
components of exosomes remain unknown, but we will attempt to
clarify them in the future research.

MDSCs, which are major immunosuppressive cells, accumulate
in tumor site and promote cancer progression, therefore, targeting
them is an attractive strategy for cancer therapy. Our data showed
that DC-Me49-exo decreased the level of MDSC both in vivo and in
vitro. A previous study showed that gemcitabine reduced residual
G-MDSC in the lung of tumor-bearing mice and inhibited the
subsequent metastatic growth (29). In this study, MDSCs and
macrophages were significantly reduced in tumor tissues after
DC-Me49-exo treatment, and the proportion of DCs increased
significantly. These results suggest that this exosome inhibits tumor
growth by reducing MDSC at the tumor site. JAK and STAT3 are
activated by cytokines and chemokines in the TME, and promote
the development of MDSCs (30). Plasmodium infection
significantly reduces the proportions of MDSCs and regulate T
cells (Tregs) in lung tumor tissues of mice by inhibiting
phosphorylation of STAT3 and other STAT pathways (12). These
findings indicate that inhibiting the proportion and function of
MDSCs during tumor progression is essential for tumor treatment.
Our data showed that exosomes isolated from T. gondii–infected
DC significantly inhibited the proportions of MDSCs in vivo and
vitro. However, we focused onMDSC regulation in this study, other
immunosuppressive cells such as Tregs, and tumor associated
macrophages (TAMs) will be investigated in the future.

In summary, in this study we developed novel pathogen-based
exosomes for cancer therapy to replace live-pathogen infection.
Exosomes derived from T. gondii–infected DCs, therefore, could be
Frontiers in Oncology | www.frontiersin.org 955
a promising therapeutic strategy to inhibit the progression of CRC.
The pathogenic infection and the tumor “infection” might
competitively regulate the immune system. Exosomes isolated
from T. gondii–infected DCs, as messengers, could stimulate the
immune system and change the “cold” tumor to a “hot” tumor. At
the same time, these exosomes could be further modified into
carriers for both drug and antibody delivery.
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Advances in our understanding of cancer biology have contributed to generating different
treatments to improve the survival of cancer patients. However, although initially most of
the therapies are effective, relapse and recurrence occur in a large percentage of these
cases after the treatment, and patients then die subsequently due to the development of
therapy resistance in residual cancer cells. A large spectrum of molecular and cellular
mechanisms have been identified as important contributors to therapy resistance, and
more recently the inflammatory tumor microenvironment (TME) has been ascribed an
important function as a source of signals generated by the TME that modulate cellular
processes in the tumor cells, such as to favor the acquisition of therapy resistance.
Currently, extracellular vesicles (EVs) are considered one of the main means of
communication between cells of the TME and have emerged as crucial modulators of
cancer drug resistance. Important in this context is, also, the inflammatory TME that can
be caused by several conditions, including hypoxia and following chemotherapy, among
others. These inflammatory conditions modulate the release and composition of EVs
within the TME, which in turn alters the responses of the tumor cells to cancer therapies.
The TME has been ascribed an important function as a source of signals that modulate
cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance.
Although generally the main cellular components considered to participate in generating a
pro-inflammatory TME are from the immune system (for instance, macrophages), more
recently other types of cells of the TME have also been shown to participate in this
process, including adipocytes, cancer-associated fibroblasts, endothelial cells, cancer
stem cells, as well as the tumor cells. In this review, we focus on summarizing available
information relating to the impact of a pro-inflammatory tumor microenvironment on the
release of EVs derived from both cancer cells and cells of the TME, and how these EVs
contribute to resistance to cancer therapies.
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INTRODUCTION

Due to its high prevalence and mortality, cancer is now
considered as the leading cause of death worldwide as defined
by the World Health Organization (WHO) in 2019 (1). This
multifactorial disease is characterized by the presence of cells that
constantly proliferate in a rapid and uncontrolled manner (2).
Currently, several methods exist for the treatment of cancer,
including radiation therapy, surgery, immunotherapy, endocrine
therapy, gene therapy and chemotherapy, the latter being the
most commonly employed therapeutic approach (3).

While cancer treatments are initially quite successful, the
long-term of success of such interventions is often limited by the
development of drug resistance. As an example, in
chemotherapy, 90% of cancer patient mortality is attributable
to drug resistance (3). Processes leading to resistance can be
segregated into two major categories, referred to as intrinsic or
extrinsic, depending on whether the resistance was pre-existing
in cancer cells, or subsequently acquired in response to
treatment, respectively (4). Nevertheless, both types of
resistance share common mechanisms that permit escaping
cancer therapy, such as enhanced drug efflux, changes in drug
targets, metabolic adaptations, dysregulation of the DNA
damage repair machinery, defective apoptotic signaling,
activation of pro-survival signaling, and other adaptive cellular
responses (3, 5, 6).

Solid tumors display great cell heterogeneity and, together
with non-cellular components, are referred to as the tumor
mic roenv i ronment (TME) (7 ) . The b id i r e c t i ona l
communication between tumor cells and the surrounding
stromal components plays a critical role in the regulation of
tumor progression by favoring processes, such as metastasis and
therapeutic resistance (8). The TME consists of non-cellular
components, such as the extracellular matrix, and stromal cells,
including cancer-associated fibroblasts (CAFs), mesenchymal
cells, endothelial cells, adipocytes, and immune cells like the
tumor associated macrophages (TAMs) (8). The TME is
described as a pro-inflammatory microenvironment given that
many of the cells present are inflammatory cells, and many cells
of the TME have the ability to secrete pro-inflammatory
molecules in response to different conditions including, but not
limited to, hypoxia or chemotherapy (9–13). Pro-inflammatory
processes also contribute to tumor progression, making the
ability to suppress such events highly desirable for the
successful outcome of treatments (9, 14). Thus, although
cancer therapy has focused for many years primarily on tumor
cells as the targets, the importance of the TME and interactions
between tumor cells and the stromal components in promoting
tumor development and progression, makes targeting these
interactions an increasingly interesting option for cancer
treatment (7, 15).

Intercellular communication in the TME is mediated by
soluble factors such as cytokines, chemokines, growth factors,
and extracellular vesicles (EVs) (16). EVs are a heterogeneous
group of cell-derived membranous structures that are released to
the extracellular space and are involved in multiple physiological
Frontiers in Oncology | www.frontiersin.org 258
and pathological processes, given that they represent vehicles for
the transfer of a large variety of molecules to recipient cells,
including DNAs, mRNAs, proteins, microRNAs (miRNA), long
non-coding RNAs (LncRNAs), lipids, and metabolites. These
days, the release and uptake of EVs is considered an important
mechanism of intercellular communication and EVs are
classified into two main groups according to their origin,
namely exosomes that are of endosomal origin (30–150 nm in
diameter), and microvesicles that are liberated directly from the
plasma membrane (MVs, 50–500 nm in diameter), including
apoptotic bodies (17). The content of the EVs is decisive in
determining the phenotypic changes that may be triggered in
recipient cells, and this in turn depends on the origin and the
state of the cell when the vesicles are generated (18). For instance,
EVs control several physiologically important functions such as
immune surveillance, blood coagulation, stem cell maintenance
and tissue repair. On the other hand, in some contexts, EVs have
a pathological role. For example, EVs can favor the development
o f cance r , au to immune d i s ea se s , p r ion d i s ea se s ,
neurodegeneration and HIV infection (19). Furthermore, EVs
have been implicated in the acquisition of the hallmarks of
cancer and driving tumor progression by promoting
communication between cancer cells and the tumor
microenvironment (20).

To contextualize the concept of EVs, the International Society
for Extracellular Vesicles (ISEV) suggests minimal requirements
to define vesicles as EVs (21). In general, EVs are structures with
a lipid bilayer that are unable to replicate and lack a functional
nucleus. In terms of specific markers, there is no consensus that
permits clearly defining EVs of endosomal origin (exosomes) or
those derived from the plasma membrane (ectosomes,
microparticles, or microvesicles). Moreover, experimental
limitations generally do not allow separating the different EV
subpopulations. However, the ISEV recommends the use of size
to define such subpopulations, and following those guidelines
they can be separated into two main groups, small EVs (sEVs)
(<200 nm in diameter, and medium/large EVs (m/lEVs) (>200
nm in diameter). Besides size, EVs also should be characterized
by the presence of at least three positive protein markers of EVs
and one negative marker to evaluate contamination by vesicles
from other subcellular compartments. If an EV preparation does
not meet these minimal requirements, the use of the term
extracellular particles (EPs) is recommended. Therefore, the
processing of samples, depending on the source of the EVs
(conditioned medium or biological fluids), the experimental
conditions (hypoxia or serum concentration for example), and
the methods used to separate and concentrate the EVs
(ultracentrifugation, size exclusion chromatography, among
others) are crucial to achieve the minimal requirements to
obtain vesicles considered as EVs. In this context, there are
several methods to separate and concentrate EVs, but each one is
different in terms of recovery and specificity. Therefore, to
evaluate a biological effect of EVs, such as transfer of therapy
resistance, it is important to consider which method is used. In
this review, we summarize the main results of several articles
which isolate, characterize and describe the role of vesicles in
May 2022 | Volume 12 | Article 897205
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therapy resistance. In most, but not all cases these can be defined
as EVs by the aforementioned criteria.

The important role of EVs in the communication between
cancer cells and the TME, and their contribution to the
development of different hallmarks that drive tumor
progression is well established (20). Moreover, the biogenesis
of EVs and their content are modulated by the different stimuli
and conditions present in the TME. In this context of note is the
ability of pro-inflammatory conditions to promote the release of
EVs, which endow cancer cells with traits that permit developing
resistance to anti-cancer therapies (22). With this in mind, we
will focus in this review on summarizing how the pro-
inflammatory tumor microenvironment and EVs generated in
this milieu contribute to the acquisit ion of cancer
therapy resistance.
EVS IN CANCER THERAPY RESISTANCE
INDUCED BY HYPOXIA AND GLYCOLYSIS

Hypoxia generates a pro-inflammatory TME that promotes
resistance to cancer therapy (23). Several cell types are affected
by hypoxic conditions that promote tumor cell survival,
migration, invasion, and metastasis (24). Glycolysis appears as
an important mechanism in this context. Indeed, a well-
established hallmark of cancer that enhances tumor cell
aggressiveness is metabolic reprogramming (25). Cancer cells
impair mitochondrial respiration and convert to a glycolytic
metabolism to obtain energy and intermediate metabolites
required for tumor growth and metastasis (26). Consistent
with the relevance of this switch, some drugs that prevent
hypoxia-induced therapy resistance, like dichloroacetate,
wogonin and baicalein, also inhibit glycolytic enzymes such as
HKII, PDHK1, and LDHA (27–29). Moreover, inhibiting glucose
uptake or the glycolytic pathway prevents hypoxia-induced
therapy resistance (27, 30) due to HIF-1a downregulation
mediated by the PTEN/PI3K/Akt/mTOR signaling pathway
(28, 29, 31).

On the other hand, there is evidence suggesting that hypoxia-
induced therapy resistance is independent of HIF-1a (32).
Indeed, STAT3, rather than HIF-1a, appears as a key regulator
in this process (33, 34). Circular RNA AKT3 (CircAKT3) is
upregulated in cancer and inhibits miR-516b-5p, an inhibitor of
STAT3, thereby promoting STAT3 activation and therapy
resistance (35). One of the effects of the STAT3 activation is
the downregulation of PTEN (36). Indeed, some authors have
observed that activation of STAT3/Akt/MAP2K and PKM2/
glycolysis are relevant in drug-resistant cells (35, 37). In
addition to these cell intrinsic pathways, it has more recently
become clear that cell extrinsic events involving EVs are
important in events leading to therapy resistance.

Since hypoxia promotes EV production, several studies
suggest that the hypoxia-related effects may be dependent on
the delivery of proteins and nucleic acids present in EVs, which
induce therapy resistance in recipient cells. Indeed, therapy-
resistant cells are known to deliver EVs to therapy-sensitive cells
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and induce therapy resistance under hypoxic conditions
(Supplementary Table 1). For instance, ovarian cancer cells
exposed to hypoxia increase EV release by upregulating Rab27a
and downregulating Rab7, LAMP1/2 and NEU-1. In this way,
cisplatin-resistant cells deliver EVs containing STAT3 and FAS
to sensitive cells and promote invasion through MMP2
expression and chemotherapy resistance under hypoxic
conditions (38). Another mechanism observed in cancer cells
exposed to hypoxia is the release of PKM2-containing EVs,
which promote therapy resistance by stimulating glycolysis,
ROS production and inhibiting apoptosis (39). In addition,
EVs from oxaliplatin-resistant cancer cells deliver circR-122 to
drug-sensitive cells. Here, circR-122 acts as a sponge for miR-
122, the inhibitor of PKM2, thereby promoting PKM2
expression, glycolysis, and therapy-resistance (40). Moreover,
other glycolytic enzymes, such as ALDOA and ALDH3A1, are
detected in EVs of radiation-resistant cells. The transfer of these
enzymes promotes glycolysis and aggressiveness in recipient
cells (41).

HSP70 and Osteopontin are stress proteins that participate in
hypoxia-induced radio- and chemotherapy resistance. HSP70 is
present at the plasma membrane and naturally released in EVs.
As hypoxia stimulates EV production, an increment in HSP70
levels in plasma is observed that promotes therapy resistance.
Osteopontin expression also increases under hypoxic conditions.
In fact, increases in HSP70 and Osteopontin are associated with
decreased overall patient survival (42). Furthermore, small EVs
from adriamycin-resistant cells contain HSP70 which directly
targets mitochondria in recipient cells. In this way, HSP70
impairs mitochondrial function, promotes glycolysis, and
induces therapy resistance in recipient cells (43). Taken
together, these data suggest that therapy-resistant cells release
EVs which promote glycolysis and therapy resistance in therapy-
sensitive cells under hypoxic conditions. In this way, controlling
EV content and/or glycolysis may represent a possible novel
approach to target resistant tumor cells.
EV RELEASE IN RESPONSE TO
CHEMOTHERAPY AND ACQUISITION OF
THERAPY RESISTANCE

Chemotherapy is another factor that contributes to generating an
inflammatory TME by increasing the production of
inflammatory cytokines or modulating cellular components of
the TME, including the immune system (12). To date,
chemotherapy remains the most frequently employed
treatment for cancer. However although initially effective in a
large percentage of patients, relapse often occurs within a few
years following the treatment and patients die due to the
development of drug resistance (44). A wide range of
molecular and cellular mechanisms have been identified as
important in contr ibut ing to the deve lopment of
chemoresistance: 1) increased rates of drug efflux; 2) activation
of survival signaling and inactivation of death signaling
pathways; 3) epigenetic changes and 4) effects of the local
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tumor microenvironment (6). In this context, inflammation of
the TME enhanced by chemotherapy also can contribute to the
failure of therapy (13). Moreover, this microenvironment can
promote the release of EVs from tumor cells that contribute to
therapy resistance. Indeed, several reports show that
chemotherapeutic agents induce the biogenesis and release of
EVs from tumor cells with pro-tumorigenic activity, including
the ability to transfer chemoresistance (45–49).

For example, cisplatin and paclitaxel based chemotherapy is
widely used as first-line therapy in several cancers and leads to a
significant reduction in the tumor size (50–52). However, the use
of cisplatin for the treatment of ovarian cancer (OC) promotes
the release of EVs that induce drug resistance in bystander cells
by modulating the p38 and JNK signaling pathways to increase
cisplatin resistance (53). Furthermore, EVs released from
chemosensitive bladder cancer cells, in particular the non-stem
cancer cell (NSCCs) population, in response to cisplatin or
gemcitabine, another chemotherapeutic agent, also promote
therapy resistance and additionally favor cancer stem cell
(CSC) survival in response to chemotherapy (54). A proteomic
analysis of the EV cargo implicated the transfer from NSCCs to
CSCs present in the TME of protein synthesis/degradation
machinery components, which are critical for CSC survival,
maintenance, and plasticity. Even though, the large majority of
NSCCs die in response to chemotherapy, they release EVs
containing ribosomal proteins that are taken up by CSCs and
induce protein synthesis, aiding CSCs in adapting to the post-
therapy TME, ultimately resulting in resistance and disease (54).

Chemotherapy with paclitaxel also modulates EV biogenesis,
thereby contributing to therapy resistance in recipient cells. In
breast cancer cells, treatment with paclitaxel induces the release of
exosomes highly enriched in the protein Survivin, a member of the
inhibitor of apoptosis (IAP) protein family that blocks cell death
(55), and the transfer of these exosomes to breast cancer cells
promotes cell survival in a Survivin-dependent manner (56).
Recent studies show that paclitaxel and doxorubicin
chemotherapy increases the levels of miR-378a-3p and miR-
378d, microRNAs associated with chemoresistance, in EVs
derived from patients and preclinical models. The uptake of
such EVs by recipient breast cancer cell promotes cancer
stemness and chemoresistance via enhanced EZH2/STAT3
signaling (57). Paclitaxel and doxorubicin also promote the
secretion of EVs from breast cancer cells, which contain several
microRNAs that target the transcription factor One Cut
Homeobox 2 (ONECUT2), a protein involved in the induction
of CSC-like properties that allows cancer cells to survive in
response to cytotoxic treatment and therefore contributes to
chemoresistance (58). Doxorubicin also has been described to
promote the release of EVs by another mechanism. Cancer cells
treatedwithDoxorubicin stimulate the secretion of EVs enriched in
the proteinATP-binding cassette sub-familyBmember 1 (ABCB1),
a transporter involved in promoting the efflux of chemotherapeutic
drugs (59), by the upregulation of Rab8B and downregulation of
Rab5 proteins. Moreover, these EVs transfer ABCB1 to sensitive
cancer cells and confer a transient drug-resistant phenotype by
downregulation of Rab5 in the recipient cell (46).
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In pancreatic cancer cells, following treatment with
gemcitabine the acquisition of chemoresistance mediated by
EVs has been described. In response to drug treatment,
exosomes transfer to neighboring cells superoxide dismutase 2
(SOD2) and catalase (CAT) transcripts, which encode ROS-
detoxifying enzymes, that improve cell viability in response to
the chemotherapy (60). Furthermore, downregulation of the
gemcitabine-metabolizing enzyme, deoxycytidine kinase (DCK)
is in part responsible of chemoresistance acquisition via an
indirect mechanism involving the transfer of its targeting
miRNA (miR-155). Indeed, when pancreatic cells stimulated
with the exosomes containing miR-155 were treated with anti-
miR-155 to block the effect, the cells became more sensitive to
gemcitabine. These findings show that DCK downregulation
mediated by exosomes from gemcitabine treated cells provides
a survival advantage to gemcitabine-treated pancreatic cells (60).
Thus, chemotherapy has two major EV-related effects, on the one
hand increasing EV production and on the other hand including
pro-tumorigenic cargos, which when transferred to sensitive cells
promote chemoresistance (Supplementary Table 2).
MACROPHAGE-DERIVED
EXTRACELLULAR VESICLES IN
CANCER DRUG RESISTANCE

Tumor-associated macrophages (TAMs) are the major cellular
component from the immune system in the TME (61) and key
mediators of inflammation that contributes to many of the
hallmarks of cancer (25). In fact, the high presence of TAMs
in the tumor stroma is associated with tumor progression and
poor prognosis, since they participate in tumor angiogenesis,
matrix remodeling, invasion, metastasis, immunosuppression,
and drug resistance (62–65).

As the main participants in the inflammatory response in the
TME, macrophages mediate drug resistance in cancer cells
through various molecular mechanisms. One of them involves
the polarization of macrophages, whereby TAMs acquire
characteristics similar to those of M2 macrophages. In breast
cancer cells, SGLT1 overexpression drives glucose uptake and
lactic acid secretion, which promotes macrophage polarization to
M2-like TAMs that then activate the EGFR/PI3K/Akt/SGLT1
signaling pathway in the tumor cells to induce resistance to
tamoxifen (66). Likewise, M2 macrophage polarization induces
resistance to fluorouracil (5FU) treatment in gastric cancer cells
by promoting cell survival via the PI3K/Akt/NF-kB pathway and
inducing cell invasion through increasing the expression of
integrin b3, FAK, and cofilin (67). Another report describes a
similar mechanism whereby M2-polarized TAMs secrete CC
chemokine ligand 2 [CCL2 also known as MCP-1)], which
activates the PI3K/Akt/mTOR signaling pathway and promotes
tamoxifen resistance in endocrine‐resistant breast cancer cells
(68). Moreover, it has been observed that TAMs might be able to
induce epithelial to mesenchymal transition (EMT) and
consequently decrease sensitivity to the chemotherapeutic
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agent gemcitabine in pancreatic cancer cells (69). In addition, M2
macrophages induce the release of pyrimidine nucleosides, such
as deoxycytidine, that confer resistance to gemcitabine in
pancreatic cancer cells, by a mechanism of molecular
competition at the level of drug uptake and metabolism (70).

However, the mechanisms responsible for cancer progression
and drug resistance are currently being re-evaluated with the
discovery of EVs as new players in this process. One of the
principal mechanisms described is the exosomal transfer of
miRNA from macrophages to tumor cells. For instance, it has
been reported that TAM-derived EVs containing miR-365
induce resistance to gemcitabine in pancreatic adenocarcinoma
cells, through a mechanism that involves an alteration in the
metabolism of pyrimidine and an increase in cytidine-
deaminase, the enzyme responsible for the inactivation of
gemcitabine in humans (71). Similarly, EVs derived from a
population of anti-inflammatory human macrophages contain
proteins such as chitinase 3-like-1 and fibronectin, which
decrease the sensitivity of pancreatic adenocarcinoma cells to
gemcitabine by activating ERK (72). In oral squamous cell
carcinoma (OSCC), EVs released by macrophages attenuate
the susceptibility of cells to chemotherapeutic drugs, like 5-
fluorouracil and cis-diaminedichloroplatinum, by activating the
AKT/GSK−3b pathway (73). A similar mechanism has been
reported in gastric cancer cells, where exosomal miR-21 is
delivered by macrophages to cancer cells and prevents
cisplatin-triggered apoptosis via inhibition of PTEN and
subsequent activation of the PI3K/AKT pathway (74).
Similarly, EVs shed from hypoxic macrophages transfer miR-
223 to ovarian cancer cells to elicit a chemoresistant phenotype
through the down-regulation of PTEN and activation of PI3K/
AKT (75). Finally, crosstalk between neuroblastoma cells and
human monocytes induces resistance to cisplatin through two
exosomal signaling pathways involving the miR-21/TLR8-NF-кB
and miR-155/TERF1 pathways (76).

Interestingly, the EV-mediated crosstalk between cancer cells
and macrophages is bidirectional. EVs derived from ovarian
cancer cells abundantly express exosomal miR-1246, which
confers resistance to paclitaxel through inhibition of Caveolin-
1 (CAV-1) and increased levels of multidrug resistance protein 1
(MDR1). Furthermore, ovarian cancer cells can also transfer
their exosomal miR-1246 selectively to M2-type macrophages,
which then produce lower CAV-1 mRNA levels. These results
suggest that TAMs may indirectly play an important role in drug
resistance mechanisms (77). Additionally, umbilical cord blood-
derived M1macrophage exosomes could be employed as vehicles
for the administration of drugs in the treatment of platinum-
resistant ovarian cancer cells (78). Taken together, these
observations identify macrophages as important players in
contributing to drug resistance. Furthermore, they uncover
multiple signaling pathways involving the interaction between
TAMs and cancer cells, whereby the pathway of choice appears
to vary depending on the type of cancer cell and antitumor
therapy (Supplementary Table 3). Importantly, they identify
macrophage-derived EVs within the TME as promising
molecular targets for restoring drug sensitivity, identifying
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potential drug response biomarkers and improving the efficacy
of cancer therapies.
ADIPOCYTE-DERIVED EXTRACELLULAR
VESICLES IN DRUG RESISTANCE

Obesity-associated adipose tissue dysfunction is characterized by
several local and systemic changes, such as elevated levels of pro-
inflammatory factors, sex hormones, lipid metabolites and
altered levels of adipokines, which are implicated in
carcinogenesis, tumor progression, metastasis, and alterations
in therapy responses (79).

Several studies have reported on the mechanisms by which
adipocytes contribute to resistance to anticancer drugs. For
instance, adipocytes induce FABP4 expression by promoting
metastasis and mediating Carboplatin resistance in ovarian
cancer cells. Alternatively, the inhibition of FABP4 leads to
increased levels of DNA demethylation, impairs metastasis and
sensitizes cancer cells to Carboplatin chemotherapy (80). Also,
adipocyte-conditioned medium reduces the sensitivity of HER2+
breast cancer cells to the cytotoxic activity of Lapatinib and other
tyrosine kinase inhibitors. Soluble factors released from
adipocyte lipolysis are likely to be responsible for the reduced
activity of Lapatinib on breast cancer cells exposed to the
adipocyte-conditioned medium (81). Similarly, it has been
reported that the conditioned media from adipocytes
contr ibute to the res istance of melanoma cel ls to
chemotherapeutic drugs (Cisplatin and Docetaxel) and
therapeutic agents targeting the PI3K/Akt and MEK/ERK
pathways (82). Along the same line, another study shows that
adipocytes secrete soluble factors that increase resistance to
chemotherapeutic drugs in ovarian cancer cells by activating
the Akt pathway (83). Interestingly, adipocytes reportedly
protect acute lymphoblastic leukemia (ALL) cells from
chemotherapy drugs (84) and even sequester and metabolize
Daunorubicin (DNR) to an inactive form, allowing nearby ALL
cells to avoid DNR-induced cytotoxicity (85).

While the effects of adipocytes are well-documented, studies
implicating adipocyte-derived EVs in drug resistance are limited.
One study reported that EVs from cancer-associated adipocytes
(CAAs) delivered the miR21 to ovarian cancer cells, where it
suppresses apoptosis and induces Paclitaxel resistance, as well as
an aggressive phenotype by binding directly to a novel target
APAF1 (86). Also, crosstalk mediated by EVs between multiple
myeloma (MM) cells and adipocytes has been described,
whereby exosomal adipocyte LncRNAs contribute to MM
therapy resistance and in turn, MM cells educate adipocytes
through the EZH2/METTL7A/LncRNA axis (87). Finally,
adipocytes confer a multidrug resistance phenotype to breast
cancer cells by increasing the nuclear efflux of Doxorubicin
(DOX) through a major vault protein (MVP)-dependent
process and its expulsion from breast cancer cells via EVs (88).
In summary (Supplementary Table 4), multiple mechanisms
have been shown to be involved in adipocyte-mediated drug
resistance in various cancers. However, less is known about the
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role of adipocyte-derived EVs in the mechanisms leading to drug
resistance. One may anticipate that greater insight in this respect
could contribute to the development of new strategies to prevent
the development of drug resistance.
EVS FROM CAFS IN CANCER
THERAPY RESISTANCE

Cancer-associated fibroblasts (CAFs) are naturally resistant to
cancer therapy. Moreover, CAFs contribute to therapy resistance
through their crosstalk with cancer cells in several ways. Soluble
compounds, such as cytokines and growth factors, have been
implicated in this type of intercellular communication. For
instance, therapy resistant CAFs produce and secrete IL-6,
which has paracrine effects in cancer cells, thereby promoting
chemotherapy resistance. Indeed, IL-6 upregulation is associated
with poor prognosis in gastric cancer patients (89). IL-6 activates
the JAK1/STAT3 signaling pathway in cancer cells (89, 90), and
increases MDM2 expression, thereby promoting p53
polyubiquitination and degradation, which enhances cancer
cell survival following drug treatment (91). In addition, IFN-b1
expression by CAFs is induced after the chemotherapy, leading
to paracrine effects in breast cancer cells. The expression of IFN-
b1 is related to reduce survival after chemotherapy (92).
Furthermore, IL-1, in association with TGF-b1, induces the
recruitment and transformation of normal fibroblasts to CAFs,
which subsequently secrete pro-inflammatory factors that
activate JAK/STAT and PI3K/Akt pathways in cancer cells,
finally promoting therapy resistance (93). Moreover, patient-
derived xenografts (PDX) resistant to cetuximab express higher
levels of TGF-b1 in CAFs than xenografts sensitive to drug
treatment (94). TGF-b1 secreted by CAFs upregulates the
expression of ATF4 in cancer cells via the SMAD2/3 pathway.
ATF4 promotes the expression of ABCC1 which favors the
development of multiple drug resistance in cancer cells by
extrusion of chemotherapy drugs (95). Also, CAFs secrete IGF-
1 and HGF, as well as induce ANXA2 expression, which is
required for CAF-induced EMT and therapy resistance (96).
Also, CAFs secrete stromal cell-derived factor 1 (SDF-1 also
known as CXCL12) which induces cancer cell drug resistance via
a CXCR4, NF-kB and Bcl-xL-mediated signaling pathway (97).
Finally, BDNF released from CAFs promotes therapy resistance
via the TrkB/Keap1-Nrf2 pathway. Cancer cell-derived lactate
upregulates BDNF expression in CAFs via the NF-kB pathway,
thereby promoting a feedback amplification loop (98).

Soluble factors are however not the only components released
by CAFs. Indeed, many molecules implicated in conferring drug
resistance are transferred from CAFs to cancer cells in EVs.
Moreover, there is strong evidence highlighting the relevance of
EVs derived from CAFs in promoting cancer cell survival,
proliferation, and subsequently drug resistance. Furthermore,
the transfer of miRNAs in EVs from CAFs to cancer cells is
commonly observed in connection with therapy resistance.
Indeed, controlling the expression of pumilio homolog 2
protein (PUM2), an RNA-binding protein, appears to
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represent a novel mechanism to prevent therapy resistance.
This protein is responsible for the packaging of miRNA-130a
into exosomes, which are delivered from CAFs to lung cancer
cells and promote cisplatin resistance (99). Another miRNA
delivered by CAFs to cancer cells is miR-196a, which targets
CDKN1B and ING5 in head and neck cancer cells and also
confers cisplatin resistance (100). Moreover, gemcitabine
resistant CAFs transfer miR-106b-containing EVs to pancreatic
cancer cells, thereby promoting therapy resistance by targeting
TP53INP1 (101), also known to be implicated in inducing drug-
resistance in GC and BC (102, 103). In OC, paclitaxel-resistant
CAFs transfer miR-21 containing EVs to cancer cells targeting
APAF1 and apoptosis, thereby promoting therapy resistance
(86). The latter mechanism has also been shown to be relevant
in melanoma (104). Another miRNA delivered from CAFs to
cancer cells related with paclitaxel resistance is miR-148b-3p,
which induces the PTEN/Wnt/b-catenin pathway (105). This
signaling pathway is also targeted by miR-92a-3p-containing
EVs from CAFs in chemoresistant colorectal cancer cells (106).
Also, miR-24-3p is transferred from CAFs to colon cancer cells
targeting CDX2 and HEPH and promoting methotrexate
resistance (107). Finally, prostate cancer cells acquire therapy
resistance after miR-423-5p transfer in EVs from CAFs, which
activates the TGF-b signaling pathway and controls Gremlin-2
expression (108).

However, miRNAs are not the only molecules relevant in
therapy resistance delivered from CAFs to cancer cells. EVs
containing Annexin-6 are transferred from CAFs to gastric
cancer cells, thereby promoting therapy resistance though b1
Integrin/FAK-YAP activation (109). Moreover, lncRNA are
delivered from CAFs to cancer cells. In fact, the lnc-RNA
AFAP1-AS1 is present in CAF EVs and enhances the
translation of ERBB2 mRNA by binding to AUF1, to induce
the upregulation of HER-2 protein levels and subsequently
trastuzumab resistance in breast cancer cells (110). Also,
colorectal cancer associated lncRNA is transferred from CAFs
to cancer cells through EVs and interacts with the mRNA
stabilizing protein HuR (human antigen R) to increase b-
catenin mRNA and protein levels, thereby promoting
oxaliplatin resistance (111).

In summary (Supplementary Table 5), CAFs are resistant to
therapy, and transfer proteins, miRNAs and lncRNAs in EVs to
cancer cells. In doing so, CAFs induce therapy resistance. Thus,
modulating either EV production by CAFs or their content could
represent a novel therapeutic option for the treatment of non-
sensitive tumors.
CSC-DERIVED EVS IN THERAPY
RESISTANCE

In the TME, there are different types of cells that contribute to
tumor progression, and specifically within tumors there is a small
population with referred to as cancer stem cells (CSCs), which
display the capacity of self-renewal, the ability to differentiate to
other cell types and thereby to initiate, as well as maintain tumor
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growth (112). These cells are held responsible for generating
drug resistance in many types of tumors because they display
several properties that permit escaping from the consequences of
chemotherapy. Moreover, they also can convert into many cell
types associated with drug resistance, as mentioned previously
(6, 112–114). Consistent with the relevance of the TME, CSCs
are considered a component of this pro-inflammatory network
because CSCs express different cytokine receptors, which bind to
inflammatory cytokines, such as interleukin (IL)-1, IL-6, and IL-
8, present in the TME (115). Since drug resistance is one of the
main properties of CSCs, EVs released by these cells can transfer
therapy resistance to sensitive tumor cells by delivering specific
molecules that activate a drug resistance phenotype in the
recipient cells.

For example, in a hepatocellular carcinoma (HCC) model,
CSCs were found to release larger amounts of exosomes, a sub-
type of EVs, in comparison with the non-CSC population of the
tumor cells, and the secretion was mediated by Rab27a (116).
Interestingly, the exosomes derived from the CSCs upregulate
the expression of Nanog in recipient tumor cells and the
acquisition of regorafenib resistance (116). To identify cells
with CSC properties in the TME, several markers have been
identified. A protein typically identified in several types of
cancers is the transmembrane glycoprotein CD133 (117). For
instance, Kang et al. reported that colon cancer cells release EVs
containing CD133 in response to epidermal growth factor (EGF).
In addition to activating the NF-kB signaling pathway, these EVs
transfer the oncogenic protein KRAS to the recipient cells,
thereby promoting the development of resistance against anti-
EGF receptor (EGFR) drugs (118).

The CSCs are commonly found in hypoxic niches in tumors
and hypoxia promotes CSC survival (119). In this context, Yin
and colleagues observed that EVs derived from hypoxic glioma
stem cells (GSCs) transfer temozolomide resistance to
glioblastoma cells by delivering the miR-30b-3p, which targets
RHOB to avoid apoptosis induced by the drug (120). Another
study suggested that exosomes secreted by hypoxic glioma cells,
which are enriched in CSCs, transfer the miR-301a and activate
the Wnt/b-catenin signaling pathway by targeting TCEAL7 in
glioblastoma cells , thereby promoting radiotherapy
resistance (121).

A study in pancreatic cancer (PC) identified another miRNA
responsible for therapy resistance mediated by CSC-EVs. Yang
et al. reported that exosomes derived from pancreatic CSCs,
which are resistant to gemcitabine, have high levels of miR-210.
Transfer of this miRNA in exosomes to sensitive cells activates
the mammalian target of rapamycin (mTOR) signaling pathway
conferring resistance to gemcitabine-sensitive pancreatic cancer
cells (122). In addition, CSC-EVs derived from OSCC contain
miR-21-5p, another microRNA that activates mTOR. Such EV-
mediated delivery of miR-21-5p and activation of the PI3K/
mTOR/STAT3 signaling pathway in OSCC cells, leads to
cisplatin resistance, increased clonogenicity and tumor sphere
formation potential (123).

Another mechanism favoring the development of tumor cell
resistance to anti-cancer therapies is activation of the EMT,
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because cells which activate this process acquire CSC
properties (124). In this context, the role of exosomes as
regulators of EMT has been investigated in many studies (125).
Thus, by triggering this mechanism in recipient tumor cells,
CSC-EVs also could transfer resistance to therapy. For example,
it has been reported that miR-155 is an important regulator of
EMT (126). Therefore, horizontal transfer of this miRNA
mediated by EVs could confer resistance to therapy. Santos
et al. demonstrated that exosomes derived from breast CSCs
contain high levels of miR-155, and transfer of this miRNA to
sensitive breast cancer cells reduces c/EBP-b activity,
downregulate TGF-b and targets directly FOXO3a genes,
resulting in the activation of EMT and acquisition of a
chemoresistance phenotype against doxorubicin- and paclitaxel
(127). In glioblastoma there is subtype of GSC called proneural
(PN)-GSC and a more aggressive subtype called mesenchymal
(MES)-GSC which display increased radio and chemoresistance.
EVs derived from such MES-GSC cells increase stemness of
normal PN cells, as well as therapeutic resistance to
temozolomide, by inducing EMT through activation of the NF-
kB/STAT3 signaling axis (128). Another example in which EMT
is triggered by exposure to CSC-EVs has been reported for colon
CSC-derived exosomes. These EVs contain Claudin-7, which
induces EMT in low metastatic recipient cells, and likely also
therapy resistance (129). Like CD133 in pancreatic cancer,
CD44v6 is a marker of CSCs that promotes EV secretion. The
transfer of such exosomes promotes resistance to apoptosis, as
well as EMT in recipient cells by G protein-coupled receptor
(GPCR) and integrin activation, transcription of EMT factors,
and reduction of miRNA which target mRNAs from genes that
contribute to self-renewal potential and migratory activity (130).

Finally, therapy resistance can be promoted indirectly by
modulating the TME (131). CSC-derived EVs potentially
modify the phenotype of many different types of cells in the
TME and contribute thereby to therapy resistance. For instance,
EVs liberated by renal CSCs promote in vitro the formation of
capillary-like structures in matrigel (a proxy for vasculogenesis)
and prevent doxorubicin-induced apoptosis in endothelial cells,
which are required for tumor growth (132). In summary
(Supplementary Table 6), CSCs display intrinsic properties
that permit escaping from different types of anti-cancer
treatments. Moreover, and quite importantly, they can transfer
these properties via EVs to different cells present in the TME,
which thereby become therapy resistant and this contributes to
tumor progression.
EVS IN ANTIBODY-BASED CANCER
THERAPY RESISTANCE

Several soluble pro-inflammatory factors released from cellular
components of the TME activate signaling pathways in target
cells that contribute to the tumor progression. Therefore,
different therapies which block the interaction between such
soluble factors and their receptors in cells have been developed.
Antibody-based cancer therapy is one of the technologies used to
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block such interactions. The antibodies either bind specifically to
the soluble factor neutralizing its effect or can target the surface
receptor of the soluble factor and block its interaction with the
ligand, therefore precluding triggering pro-tumorigenic signals
(133). Among the different antibody-based cancer therapies,
antibodies are commonly employed which block signaling
pathways that promote development of the pro-inflammatory
TME, such as those against vascular endothelial growth factor
(VEGF), epidermal growth factor receptor (EGFR) or human
epidermal growth factor receptor 2 (HER2) (134). Unfortunately,
although antibody-based cancer therapy has proven to be
successful, some patients also develop resistance to these types
of treatment by different mechanisms (135, 136).

In this context, there is evidence demonstrating that EVs also
participate in the development of resistance to antibody-based
cancer therapy (Supplementary Table 7). One example is the
antibody therapy against HER2, a receptor of the EGFR family,
that promotes pro-tumorigenic properties by triggering different
signaling pathways and is overexpressed in the 25-30% of BC (137,
138). HER2 triggers the IL-1a pro-inflammatory signaling pathway,
which is important for maintenance of the CSC phenotype in
HER2-positive breast cancers (139). Trastuzumab is a monoclonal
antibody against HER2 which has yielded positive results in the
treatment of metastatic breast cancer in patients with tumors
overexpressing HER2 (140). Ciravolo et al. observed in the serum
of HER2 breast cancer patients and in conditioned medium of
HER2-overexpressing breast cancer cells the presence of exosomes
containing functional HER2 protein. Importantly, release of these
exosomes is modulated by the activation of HER2 in response to
two different ligands (141). Moreover, these exosomes containing
HER2 have the capability to bind trastuzumab in vitro, suggesting
they act as antibody sponges and contributing therapy resistance by
reducing trastuzumab availability for therapeutic purposes (141).
Another way in which EVs can contribute to antibody-based cancer
therapy resistance was observed using EGFR as a target. In cancer,
EGFR activity drives tumorigenesis in different types of cancer since
sustained activation triggers signaling pathways favoring cell
survival, proliferation and migration that all contribute to tumor
progression (142). Like HER2, the EGFR promotes CSC-like activity
and tumor progression by activation of pro-inflammatory signaling
(143). For this reason, the EGFR is considered a good candidate for
targeted therapy. At least four EGFR-specific antibodies are used in
clinical settings, namely cetuximab, panitumumab, nimotuzumab
and necitumumab (144). Unfortunately, here too cases have been
reported where cancer patients develop resistance to the treatments
involving these antibodies (145, 146). For instance, OSCC is one of
the cancers typically treated with the anti-EGFR antibody
cetuximab; however resistance to this drug has been observed,
since OSCC release EVs containing EGFR in response to EGF or
cetuximab. These EVs can bind to and sequester cetuximab
providing thereby a mechanism to explain how resistance against
therapeutic anti-EGFR antibodies can develop (147).

Tumor progression depends on multiple cellular process, but
angiogenesis is considered one of the most important due to its
relevance in supplying the primary tumor with oxygen and
nutrients that promote growth, facilitate the dissemination of
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tumor cells to generate metastasis, and contribute to
inflammation in cancer (148, 149). Therefore pro-angiogenic
factors are excellent therapeutic targets for antibody-based
cancer therapy. Particularly VEGF and its receptor are the
most common angiogenic signaling molecules used as targets
in the treatment of several types of cancer (150). Again, although
such antibody-based treatments have a favorable impact on
cancer patient survival, the effects are not permanent due to
the development of resistance (151). In this context, EVs also
contribute to the acquisition of resistance to therapies that target
VEGF signaling. Bevacizumab is a humanized monoclonal anti-
VEGF antibody used to treat several solid tumors (152). In
glioblastoma, bevacizumab is used as a therapeutic agent to
block angiogenesis (153). However, glioblastoma cells have the
ability to internalize and sort the antibody to the surface of the
EVs produced by these cells, as well as change the proteome of
the EVs released, which in combination is associated with
therapeutic resistance (154). VEGF also can be sorted to the
surface of tumor cell EVs. An isoform of VEGF (VEGF189) is
preferentially found on the surface of the EVs, where in
conjunction with heparin, it can sequester bevacizumab,
thereby contributing to therapy resistance (155). Recently,
other EV-specific mechanisms relating to anti-VEGF therapy
resistance have been described. VEGF produced by tumor cells is
captured by the protein CD63 present on the surface of EVs and
packaged within the EVs in response to anti-VEGF therapy. This
process reduces the accessibility of bevacizumab to the VEGF
(156). On the other hand, the VEGF loaded inside the EVs can be
internalized by endothelial cells where it triggers intracellular
signaling events that promote angiogenesis and therefore
generate resistance to the anti-VEGF therapy (156).
CONCLUSIONS

During the past decades our understanding of the mechanisms
leading to therapy resistance has evolved from focusing exclusively
on intrinsic properties of tumor cells to implicating also the
inflammatory TME. Indeed, cells of the inflammatory TME are
resistant to therapy and transfer this ability to tumor cells. EVs are
relevant mediators of signaling between cells. In different contexts,
EVs participate in physiological and pathological events. In cancer,
EVs have been implicated in transformation, progression and
metastasis, due to their ability to communicate between cancer
cells and the tumor microenvironment. However, the role of EVs in
transferring therapy resistance from stromal to tumor cells has only
become apparent in more recent years. In this review, we
summarized the studies describing the relevance of vesicles
(generally defined as EVs following the ISEV guideline) in the
development of therapy resistance following chemotherapy. In this
context, EVs have been shown to transfer protein/miRNA/lncRNA
cargos from the TME to tumor cells, to modulate survival,
metabolism and EMT in these recipient cells (Figure 1).

After cancer therapy, the resulting inflammatory
microenvironment contains tumor-resistant cells, hypoxic cells,
CSCs, macrophages, adipocytes, and fibroblasts, which transfer
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FIGURE 1 | Role of Extracellular Vesicles in Cancer Therapy Resistance. The tumor microenvironment (TME) is involved in the initiation and maintenance of
resistance to therapies by multiple molecular mechanisms. Specifically, extracellular vesicles derived from TME cells (e.g., cancer-associated fibroblasts, endothelial
cells, cancer stem cells, immune cells, and adipocytes) transfer a variety of bioactive molecules, including mRNA, miR, lncRNA and proteins, which all play important
roles in the communication between stromal components and tumor cells, activating in the latter signaling pathways that lead to cancer therapy resistance. In
addition, resistance to therapy can be triggered by an inflammatory TME caused by conditions, such as hypoxia, or following chemotherapy, which modulate the
content and release of EVs and alter the responses of tumor cells to cancer therapies. EVs also participate in resistance to antibody-based cancer therapy where
cancer-derived extracellular vesicles package elevated amounts of validated targets for cancer treatment (e.g., VEGF, EGFR, and HER2), which are recognized by
therapeutic antibodies and compromise the response of cancer cells to these therapies. TP53INP1: tumor protein p53 inducible nuclear protein 1; CDKN1B: cyclin-
dependent kinase inhibitor 1B; ING5: inhibitor of growth family 5; FAK: focal adhesion kinase; YAP: yes-associated protein 1; PUM2: pumilio homolog 2 protein;
AUF1: AU-binding factor 1; HER2: human epidermal growth factor receptor 2; CDX2: caudal‐related homeobox 2; HEPH: hephaestin; TGF-b: transforming growth
factor b; GREM2: gremlin 2; APAF-1: apoptotic peptidase activator factor 1; RHOB: ras homolog family member B; TCEAL7: transcription elongation factor A-like 7;
mTOR: mammalian target of rapamycin; PI3K: phosphoinositide-3-kinase; STAT3: signal transducer and activator of transcription 3; c/EBP-b: CCAAT enhancer
binding protein-b; FOXO3a: forkhead box O3a; EMT: epithelial-mesenchymal transition; AFAP1-AS1: actin filament associated protein 1 antisense RNA 1; EZH2:
enhancer of zeste homolog 2; METTL7A: methyltransferase like 7A; LncRNA: long noncoding RNA; SNHG1: small nucleolar RNA host gene 1; NTP: triphosphate-
nucleotide; CDA: cytidine-deaminase; TERF: telomeric repeat-binding factor 1; GSK3b: glycogen synthase kinase 3 b; ROS: reactive oxygen species; FAS: fatty acid
synthase; HSP70: heat shock 70 kDa protein; ONECUT2: factor One Cut Homeobox 2; ABCB1: ATP-binding cassette sub-family B member 1; CAT: catalase;
SOD2: superoxide dismutase 2; DCK: deoxycytidine kinase; EGFR: epidermal growth factor receptor; VEGF: vascular endothelial growth factor; ALDH3A1: aldehyde
dehydrogenase 3 family member A1; ALDOA: aldolase A; CHI3L1: chitinase 3-like-1. The figure was created with BioRender.com.
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EVs to treatment-sensitive cells and promote therapy resistance.
Several proteins (such as STAT3, fibronectin, Survivin), miRNAs
(such as miR21, miR155, miR210), LncRNAs and circRNAs are
common cargos of EVs involved in conveying resistance. These
cargos activate signaling pathways (such as PI3K/Akt, ERK, RAS,
FAK) in tumor cells, thereby inducing changes in metabolism,
survival, metastatic potential, and subsequently therapy resistance.
Moreover, another direct mechanism involved in therapy resistance
is the transfer of the protein ABCB1 in EVs from therapy-resistant
to sensitive cells. Uptake of ABCB1 by recipient cells enhances drug
efflux and the acquisition of resistance to the cancer treatment. In
addition, EVs can act as sponges that sequester antibodies used in
antibody-based cancer therapy. An example here is the recruitment
of trastuzumab which reduces its effects on cancer cells (Figure 1).

Taken together, this review highlights the relevance of EVs in
the acquisition of therapy resistance after the development of an
inflammatory tumor microenvironment following cancer
treatment. By summarizing this literature, we hope to
encourage the search for novel cancer treatments that also
consider controlling EV production in the TME.
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Lipid droplets are lipid-rich cytosolic organelles that play roles in cell signaling, membrane
trafficking, and many other cellular activities. Recent studies revealed that lipid droplets in
cancer cells have various biological functions, such as energy production, membrane
synthesis, and chemoresistance, thereby fostering cancer progression. Accordingly, the
administration of antilipemic agents could improve anti-cancer treatment efficacy given
hydrophobic chemotherapeutic drugs could be encapsulated into lipid droplets and then
expelled to extracellular space. In this study, we investigated whether statins could
promote treatment efficacy of lipid droplet-rich ovarian SKOV-3 cells and the potential
influences on generation and composition of cell-derived extracellular vesicles and
particles (EVP). Our studies indicate that statins can significantly lower lipid
biosynthesis. Moreover, statins can inhibit proliferation, migration, and invasion of
SKOV-3 cells and enhance chemosensitivity in vitro and in vivo. Furthermore, statins
can lower EVP secretion but enforce the release of cholesterol-enriched EVPs, which can
further lower lipid contents in parental cells. It is the first time that the influence of statins on
EVP generation and EVP-lipid composition is observed. Overall, we demonstrated that
statins could inhibit lipid production, expel cholesterol to extracellular space via EVPs, and
improve chemosensitivity.

Keywords: extracellular vesicles and particles, statins, cholesterol, lipidomics, ovarian cancer
INTRODUCTION

Lipid droplets (LD) are highly dynamic organelles in almost all kinds of mammalian cells, which
play important roles in cell activities (1), including but not limited to energy storage, ATP
production, membrane expansion, and signaling (2). The components of LDs are complex,
which store thousands of kinds of lipids, lipoproteins, and relevant precursors (3–5). These
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molecules participate in lipid metabolism and various biological
behaviors of cells and tissues. Nevertheless, the biofunctions of
these cargos are not fully understood yet. In cancer, metabolism
of cancer cells is vigorous as cancer cells have increased energy
requirements in comparison to normal cells (6). Moreover, LDs
modulate the availability of proteins and signaling lipids, and
their dysfunction may lead to disruption of cellular membranes
or inappropriate nuclear signaling. Furthermore, LDs function as
a place for detoxification. They isolate lipophilic anti-cancer drugs,
and thus may contribute to chemoresistance (7–10).
Correspondingly, damage or depletion of cytosolic lipid droplets
could enhance anti-tumor efficacy through reduction of energy
supply, blocking signaling pathways, improving chemosensitivity,
and other mechanisms (11). Therefore, it was assumed that LD
inhibitors could promote anti-cancer efficacy (10, 12, 13).

Statins are a group of lipid-regulating drugs that can
significantly downregulate total cholesterol (TC) (14), low-
density lipoprotein (LDL) (15), and triacylglycerol (TG), while
upregulating high-density lipoprotein (HDL) (16). Currently,
stat ins are mainly used to treat hyperl ipemia and
cardiovascular diseases. However, statins have also shown
promising anti-tumor efficacy in combination with
chemotherapy and immunotherapy (17–21). Although the
exact anti-tumor mechanism of statins remains unclear, it
might be associated with their lipid-regulation effect. For
example, statins are b-hydroxy b-methylglutaryl-CoA (HMG-
CoA) inhibitors that can block the mevalonate (MVA) pathway
(22). Geranylgeranyl diphosphate, an intermediate product of
the MVA pathway, can thereby be down-regulated by statins,
which further inhibit the phosphorylation of Ras family proteins
(23). The ripple effect may benefit cancer treatment through
inhibition of cancer cell proliferation. Furthermore, statins can
also inhibit adhesion and invasion of cancer cells through the
downregulation of membrane proteins, such as VCAM-1 and
integrin-b (24–26). In clinical treatment, the repurposing of well-
tolerated and low-toxic statins in combination with
chemotherapies have been reported to extend the overall
survival of patients with breast cancer (27), ovarian cancer
(28), colorectal cancer (29), and other cancers without a
resulting increase in cytotoxicity to normal cells. Altogether,
combination therapy with statins has been considered as a
promising strategy for cancer treatment. It is noteworthy that
concern has been expressed regarding the over-prescription of
statin drugs as well as the potential for severe adverse effects from
statin therapy at high doses (30). The adverse reactions of statins
can affect a variety of organs. The most commonly affected ones
are musculoskeletal, nerve, skin, gastrointestinal tract, liver, and
gallbladder (31). Atorvastatin is a moderately lipid soluble statin
with high potent and low toxicity, which can last longer in the
body in comparison with other statin drugs (32). For example,
atorvastatin cannot cross the blood-brain barrier and may
prevent Alzheimer’s disease in the long term without
significant adverse effects (32). Therefore, atorvastatin with low
dose was investigated in this study.

Small extracellular vesicles and particles (EVP) are lipid-
bilayer enclosed particles with a size in the range of 30-300 nm
Frontiers in Oncology | www.frontiersin.org 272
(33). EVPs act as fingerprints of parental cells and they carry
proteins, nucleic acids, and lipids (33). They can efficiently
deliver these cargos to nearby or distant recipient cells (34).
Numerous studies demonstrate that EVPs have a close
relationship with tumor development, metastasis, and
therapeutic resistance (35). Currently, EVP-derived proteins
and nucleic acids are under intense investigation due to
potential contributions in cancer liquid biopsy and the
molecular mechanisms of cancer. On the other hand, EVPs are
also rich with lipid contents, including cholesterol, ceramide,
sphingomyelin, and phosphatidylserine (35), which are
irreplaceable ingredients in the formation and function of
EVPs. For instance, prostate hormone can be delivered to
recipient cells via EVPs (36), and EVP-derived lipid molecules
also participate in intercellular communication (37).
Nevertheless, in comparison with proteins and nucleic acids,
lipid cargo of EVPs has rarely been investigated thus far. In this
study, we investigated the effect of atorvastatin on lipid-enriched
ovarian SKOV-3 cells and analyzed lipid contents of EVPs
derived from SKOV-3 cells. We found atorvastatin can
significantly inhibit SKOV-3 cell proliferation, migration,
invasion, and lipid synthesis without obvious cytotoxicity.
Moreover, atorvastatin can significantly increase cellular
chemosensitivity to paclitaxel (PTX) in vitro and in vivo.
Furthermore, lipidomic sequencing data reveals that
atorvastatin can inhibit EVP secretion and enforce the release
of cholesterol-enriched EVPs to the extracellular space. It is the
first time to observe the influence of statins on EVP generation
and lipid composition of EVPs. Our findings reconfirmed statins
can enhance anti-cancer treatment efficacy, preliminarily
revealed the composition of EVP lipids derived from cancer
cells, and may pave a new way for investigating the biologic
functions of lipids in cancer biology and drug resistance.
RESULTS

Characterization of Cells
Ovarian cystadenocarcinoma SKOV-3 cell line was reported
owning high cytosolic LDs (38). Stimulated Raman scattering
(SRS) images also indicated that SKOV-3 cells own the highest
LDs in comparison with that of lung adenocarcinoma H1975 cells,
colorectal adenocarcinoma HT29 cells, and pancreas ductal
adenocarcinoma PANC-1 cells (Figure 1A). Therefore, SKOV-3
cells were selected for the following studies. First, we optimized the
dose of atorvastatin to avoid direct atorvastatin-induced
cytotoxicity. Based on the result of CCK-8 assay, the optimal
atorvastatin dose was determined to be 6 mM, at which the viability
of SKOV-3 cells was over 90% (Figure 1B). After atorvastatin
treatment, the morphology of SKOV-3 cells changed from a well-
spread shape to a thin and filamentous shape (Figures 1C, D). The
SRS images of LDs shown the overall signal intensity (average
intensity by area) of LDs (bright dots in cytosols) decreased
~16.6% (p<0.05) after atorvastatin treatment (Figure 1C). The
fluorescence images of dye-stained LDs in atorvastatin treated or
untreated SKOV-3 cells further confirmed the decrease of LDs in
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cytosols (Figure 1D). Atorvastatin also inhibits SKOV-3
proliferation. EdU cell proliferation assay revealed the average
proportion of SKOV-3 cells with active DNA synthesis dropped
from 30.1% to 25.6% (p<0.05) after treatment with atorvastatin
(Figure 1E). Wound healing assay demonstrated that atorvastatin
could inhibit SKOV-3 cell migration. The average wound gap of
untreated cells decreased to 14.1% at the 9-h time point, while the
average wound gap of atorvastatin treated SKOV-3 cells remained
at 65.7% (p<0.01; Figures 1F, G). Trans-well assay showed cell
trans-well migration decreased ~3.2-fold after atorvastatin
treatment (p<0.05; Figure 1H).
Frontiers in Oncology | www.frontiersin.org 373
Combination Therapy In Vitro and In Vivo
SKOV-3 cells in the logarithmic growth phase were used to
determine the IC50 of PTX. In the atorvastatin treated group,
SKOV-3 cells were treated with 6 mM atorvastatin every 12 h for
48 h given the half-life of atorvastatin is ~7 h (39). CCK-8 assay
revealed that the IC50 of PTX in the statin+ group was 0.43 nM
(95% confidence interval: 0.31-0.59 nM), while that of the statin-
group was 9.62 nM (95% confidence interval: 7.09-13.21 nM),
which suggests the treatment efficacy of PTX in combination
with atorvastatin was ~22.4-fold higher than monotherapy with
PTX only (Figure 2A). Notably, few SKOV-3 cells survived even
A

B

D E

F

G H

C

FIGURE 1 | Cell characterization (A) Lipid droplets (LD) in four cell lines and quantified signal intensity (scale bar is 10 µm, pseudo color generated by ImageJ).
Arrows indicate LDs in cytosol. (B) IC50 of atorvastatin (ATST) for SKOV-3 cells. (C) SKOV-3 LDs under SRS microscopy and quantified signal intensity (scale bar is
10 µm). (D) Fluorescence imaging of dye-stained LDs in SKOV-3 cells (scale bar is 100 µm, PKH67: green; DAPI: blue). (E) EdU image of SKOV-3 cells (EdU: green;
DAPI: blue). (F) Representative image of wound healing assay (n=3). (G) Quantification of in vitro wound healing assay. (H) Quantification analysis of trans-well
migration assay.
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though PTX dosage was high enough, while almost no cells
survived under stress of PTX in combination with atorvastatin,
indicating combination therapy could enhance cellular
chemosensitivity. Next, the anti-tumor effect of PTX-
atorvastatin combination was investigated in vivo. On the 28th
day, the average tumor volume was 1289.3 mm3 in the NC group.
In contrast, tumor volume in the PTX only, atorvastatin only,
and PTX-atorvastatin groups was 1165.7, 345.8, and 90.0 mm3,
respectively (Figures 2B, C). A significant difference in tumor
size was found between the PTX treated groups and the non-PTX
treated groups (p<0.05). Moreover, a significant difference in
tumor size was found between the PTX only group and the PTX-
atorvastatin group (p<0.05). There was no significant difference
in mouse body weight during the 3-week administration
period (Figure 2D).

Characterization of EVPs
The SKOV-3 derived EVPs were characterized by TEM after
isolation and purification. EVPs showed a typical saucer shape
under microscope (Figure 3A). EVP size ranged from 30 nm to
~300 nm, measured by nanoparticle tracking analyses. The
average size of EVPs in the control group and EVPs in the
atorvastatin treated group were 109.9 nm and 102.1 nm
(p<0.001), respectively (Figure 3B). Moreover, atorvastatin
decreased EVP generation rate to 1.53×104 EVP/cell/h
compared to 3.29×104 EVP/cell/h in the control group
(p<0.001). The internal reference protein, GAPDH, as well as
classical EVP protein markers, including TSG101, CD81, and
CD63 extracted from EVP protein lysates and cell lysates were
detected by Western blot (Figure 3C). The expression level of
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these proteins did not show significant alterations (<1.3-
fold; p>0.05).

Lipidomic Sequencing
Lipidomic sequencing was used to analyze SKOV-3 cells derived
lipids (statin-), atorvastatin treated SKOV-3 cells derived lipids
(statin+), SKOV-3 EVPs derived lipids (EVP-), and atorvastatin
treated SKOV-3 EVPs derived lipid (EVP+). A total of 2608
different lipids were identified from cells, and 2124 lipids were
identified from EVPs based on untargeted lipidomic analysis.
The differences in lipid profiles between four groups was
visualized by principal component analysis (PCA) which
revealed significant intergroup difference (Figure 4A). The
intra‐group variation in lipids derived from cells was lower
than that derived from EVPs (Figure 4A). The highest batch-
to-batch variation in lipid contents was observed in the EVP+
group. In two cell groups (statin+ vs. statin-), volcano plot shows
891 downregulated lipids and 275 upregulated lipids after statins
treatment (fold change >2). In two EVP groups (EVP+ vs. EVP-),
there were 1430 upregulated lipids and 15 downregulated lipids
after statins treatment (fold change >2) (Figure 4B). The result
of lipid abundance analysis showed the expression level of
common high abundance lipids, such as sterol, diacylglycerols
(DG), ceramide, and phosphorylated esters, significantly
decreased after atorvastatin treatment in SKOV-3 cells, but
significantly increased in EVPs (Figure 4C). Moreover, in
terms of sterol, cholesteryl easter (CE) 18:1 and CE 18:2
showed significant differences both in cells and EVPs
(Figure 4D). TG was slightly increased, while DG was
significantly decreased in cells (Figures 4E, F).
A B

DC

FIGURE 2 | (A) IC50 of paclitaxel (PTX) in atorvastatin (ATST) treated and untreated SKOV-3 cells, respectively. (B) Tumor volume in mice treated with PBS, PTX
only, atorvastatin only, and PTX-atorvastatin combination at Day 28. (C) Dynamic changes of tumor volume in each group for 28 days. (D) Dynamic changes in body
weight of mice in 28 days.
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DISCUSSION

Lipid metabolism is closely involved in cellular functions (40).
However, the relationship between lipid metabolism and tumors is
overly complex with very limited understanding of relevant
mechanisms thus far. Undeniably, altered lipid metabolism is
among the most prominent metabolic alterations in cancer.
Enhanced uptake or synthesis of lipids contributes to rapid cancer
cell growth, tumor formation, and drug resistance. It has been
reported that many tumor cells, including ovarian cancer, showed
increased cholesterols uptake and synthesis compared with normal
cells (41). Naturally, LDs were accumulated in cytosol of tumor cells
as energy source under stress. On the other hand, cholesterol
metabolism depends on the MVA pathway which is heavily
involved in the synthesis of various cellular membrane
components and organelles. In tumor cells, the MVA pathway
loses its feedback inhibition, and thus a large amount of
cholesterol is synthesized. The synthesized cholesterol is further
used for membrane formation, which supports fast division of
tumor cells. Moreover, cholesterol is enriched in lipid raft (42).
The massive production of cholesterol thereby facilitates the
expression of several tumor related signaling proteins, such as
CD24 (promoting angiogenesis) (43), TGFb (promoting epithelial-
mesenchymal transition) (44), matrix metallopeptidase (promoting
migration) (45), and CD44 (promoting adhesion) (46), which need
to anchor on a lipid raft. In addition, studies found that lipids reduce
chemosensitivity of tumor cells. For instance, tyrosine kinase
inhibitor (TKI) resistant lung cancer cell lines, HCC827GR,
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H1975, and PC9GR, have more LDs than TKI sensitive cell lines,
and cancer cells treated with oleic acid can restore TKI sensitivity
(47). Overall, cancer cells demand lipids for proliferation, migration,
invasion, and drug resistance. Correspondingly, we hypothesized
that reducing or altering lipid metabolism could inhibit cancer
development and restore drug sensitivity.

Repurposing of statins for cancer treatment may achieve the
above-mentioned goals. First, statins can inhibit HMG CoA
reductase, further restrain MVA pathway and lipid synthesis,
and finally reduce cellular activities (48). Second, the expression
of certain proteins, e.g., hormone receptors, can be downregulated
by statins (49, 50), and thus affect cancer cells. Third, at the nucleic
acid level statins can induce the expression of certain small RNAs
that can down-regulate the expression of LDL receptors and thus
inhibit cancer cells via reduced cholesterol intake (51). Fourth,
statins may also lower ATP production and inhibit efflux pumps
on membranes. Efflux pumps require ATP to transport foreigners,
including chemical drugs, from cytosol to the extracellular space
(52). The downregulation of intracellular cholesterol level induced
by statins can activate sterol regulatory element-binding protein-2
(SEBP2) gene which can further promote lipoprotein uptake.
Meanwhile, the SEBP2 can downregulate the expression of efflux
pumps (53), and thus statins can retain chemotherapy drugs
within the cytosol. Last, statins can reduce the number of
cytosolic LDs. Instead of being trapped in LDs and expelled to
extracellular space through exocytosis, lipophilic anti-cancer drugs
can efficiently stay within cytosols, interact with target molecules,
and exert therapeutic functions. In this study, we observed that
A

B C

FIGURE 3 | EVP characterization. (A) TEM image of EVP derived from cells treated or untreated with atorvastatin (scale bar is 100 nm). (B) Size distribution of EVPs
derived from cells treated or untreated with atorvastatin. (Left: Atorvastatin- (ATST-) EVPs; Right: ATST+ EVPs). (C) Western blotting analysis of EVPs derived from
cells treated (right) or untreated (left) with atorvastatin.
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atorvastatin can significantly inhibit SKOV-3 cells and increase the
chemosensitivity in vitro and in vivo, which is in line with previous
studies (54–57). Notably, we optimized atorvastatin dose and
ensured atorvastatin did not show significant cytotoxicity.
Therefore, the improved cytotoxicity of PTX was not
contributed by the toxicity of atorvastatin itself. We speculated
the aforementioned statins’ functions might be exerted
simultaneously in assisted chemotherapy, although the exact
mechanisms are unclear.

We noticed the EVP generation rate was significantly reduced
by atorvastatin. Given EVP cargos derived from cancer cells can
promote cancer metastasis, this finding indicates atorvastatin
may inhibit the formation of premetastatic niche, influence
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tumor microenvironment, and decrease organotropic
metastasis. As to the decreased EVP generation rate, it might
be caused by altered cholesterol level in SKOV-3 cells.
Cholesterol is an essential component of mammalian cells. The
concentration of cholesterol on plasma membranes is much
higher than that in other cellular compartments (58). Because
atorvastatin directly inhibits synthesis and uptake of cholesterol,
inherently membrane synthesis can be inhibited. Subsequently,
EVP production is affected due to inadequate membranes for
EVP assembly and release. Moreover, atorvastatin participates in
G protein modification, which negatively influences the self-
assembly of cytoskeletal components and the transportation of
A B
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FIGURE 4 | (A) PCA plot lipid feature of each group (Red: Atorvastatin+ (ATST+) cells; Blue: ATST- cells; Green: ATST+ EVPs; Blue: ATST- EVPs). (B) Volcano plot
comparing the lipid composition in cell samples (left) and EVP samples (right). (C) Lipid abundance plot by lipids in cell samples and EVP samples. (D) Difference in
abundances of stearyl ester between cell samples (left) and EVP samples (right). (E) Difference in abundances of DG between cell samples (left) and EVP samples
(right). (F) Difference in abundances of TG between cell samples (left) and EVP samples (right).
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lipoproteins (59). Consequently, the EVP generation can be
decreased in a non-lipid dependent way.

Lipid analysis of EVP reported that EVP-derived lipid
contents are different from that of parental cells (60), which
may relate to the biogenesis of EVPs (61). Therefore, we further
performed lipid sequencing. Overall, lipid sequencing data
validated the atorvastatin lowered the lipid abundance in cells.
But atorvastatin did not always downregulate lipids. For
example, the abundance of DG decreased while that of TG
raised (Figure 3C). Although both TG and DG are the key
components of LDs, they play different roles in cellular functions.
TG often functions as energy storage and is more related to
maintaining cell survival. When the cell is under stress, TG will
be upregulated to maintain a relatively mild metabolic
environment, which was exactly in line with our lipid
sequencing data. Moreover, TG in LD can be hydrolyzed to
form DG. In contrast, phosphorylated DG can form a series of
new second messengers and participate in various signaling
pathways. DG itself can also bind to a variety of receptors
which are mainly related to cell proliferation. In living cells,
DG and TG regulate each other, and thus cells can keep a balance
between growth and proliferation. Under the pressure of
atorvastatin, the imbalance of the ratio of TG and DG can
significantly alter the cell cycle of SKOV-3 cells. The altered
cellular cycle may convert a cold tumor to a hot tumor, which
can increase sensitivity to immunotherapy to a certain extent.

On the contrary, the abundance of lipids was significantly
increased in EVPs derived from atorvastatin-treated SKOV-3 cells
(Figure 3C). It was reported that cholesterol in excess of the
current cellular demand is either exported from the cell by ATP-
binding cassette transporters, or converted to less toxic cholesteryl
esters and then stored in lipid droplets or secreted within
lipoproteins (62). Therefore, we assume surplus lipid
components, especially stearyl esters, can attach onto
lipoproteins, and the complex can be further encapsulated into
EVPs for extracellular secretion. Moreover, the large number of
lipid rafts composed by sphingolipids and cholesterol may
promote lipid raft-mediated EVP endocytosis of recipient cells
(63). Given macrophages are primarily responsible for the rapid
clearance of EVPs from the bloodstream, which drastically limits
the amount of EVPs that are available to reach the recipient cells
and tissues (64), we speculate that atorvastatin-induced lipid-
enriched EVPs could be efficiently cleared by macrophages (65).
The risk of cancer metastasis thereby can be further reduced. On
the other hand, because many receptors are anchored on the lipid
raft, we assume that it would be more feasible to screen tumor
biomarkers by analyzing atorvastatin-induced lipid-enriched
EVPs derived from cancer cells. The results of untargeted lipid
sequencing also confirmed that parental cells and EVPs have a
significantly different lipid composition. The abundance of lipids
other than cholesterol esters in cells was significantly higher than
that in EVPs, suggesting that EVPs are rich with lipid rafts but
poor with energy storage.

In conclusion, atorvastatin can significantly inhibit ovarian
SKOV-3 cell proliferation, migration, and invasion. Meanwhile
atorvastatin increases chemosensitivity of SKOV-3 cell in vitro
and in vivo. Moreover, atorvastatin can reduce EVP generation,
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which may lower the risk of cancer metastasis. Lipid sequencing
data revealed the significant differences in lipids derived from
parental cells and respective EVPs. Only TG level was
upregulated after atorvastatin treatment. In contrast, all lipids
were upregulated in EVPs derived from atorvastatin treated
SKOV-3 cells. The potential influence of these changes is
unclear yet, but we speculated these ripple effects may benefit
atorvastatin treated patients from chemotherapy and
immunotherapy. In our future work, we will further explore
the association between EVP-derived lipids and cancer
progression, screen potential EVP lipids as diagnosis or
prognosis markers, and investigate the treatment efficacy of
immunotherapy in combination with statins.
METHODS AND MATERIALS

Cell Culture
The human cancer cell lines, including SKOV-3 cells, H1975
cells, HT29 cells, and PANC-1 cells, passed the mycoplasma test
throughout the whole experiments. Cells were cultured in
DMEM with 5% FBS and 100 IU/mL penicillin-streptomycin
at 37°C, 5% CO2, and 95% humidity. Before collecting EVPs, the
cells were kept in FBS-free medium for at least 24 h.

Optimization of Atorvastatin Dose
Approximately 1000 SKOV-3 cells were seeded into each single
well in a 96 well plate. The plate was incubated at 37°C, 5% CO2,
and 95% humidity for 24 h. Then, 100 ml of atorvastatin with
concentration gradient was added to each well. After incubation
for 48 h, 10 ml of CCK8 solution was add to each well followed by
1 h incubation at 37°C. The absorbance at 450 nm was read to
calculate cell viability. Three biological replicates were prepared.

Lipid Droplet Imaging
The cells were divided into two groups. In the experimental
group, cells were treated with 6 µM atorvastatin for 48 h followed
by fixation with 4% paraformaldehyde. Images were taken by
homemade SRS microscopy which was built by Biophotonics
and Translational Optical Imaging Lab. Signal intensities of LDs
were analyzed with ImageJ.

Cell Proliferation Assay
The protocol of EdU can be found elsewhere. In short, an
appropriate number of cells at logarithmic phase were seeded
in two 60-mm petri dishes. In the experimental group, 6 mM of
statin was supplied while normal DMEM was supplied in the
control group. After 48 h incubation, prewarmed 37°C EdU
working solution was added. The dishes were continually
incubated for 2 h before fixing by 4% paraformaldehyde. Then,
the dishes were washed by PBS 3 times followed by treating with
0.3% Triton X-100 solved in PBS. Triton X-100 was removed,
and the dishes were washed another 3 times by PBS. Before
imaging, click reaction buffer, CuSO4, biotin azide, and click
additive solution were added to each dish based on the manual.
The cells were further stained with DAPI. The image was
analyzed by ImageJ.
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Cell Wound Healing Assay
Approximately 5×105 cells were seeded in a 6 well plate and
incubated overnight for firm surface attachment. The wound was
created by scratching with a tip. The plate was washed 3 times
with PBS to remove detached cells and debris. Images were taken
at 0-, 3-, 6-, 9-, and 10-time points under microscope. The data
were analyzed by MATLAB.

EVP Harvest and Characterization
In total, 200 ml of cell culture supernatant was collected followed
by centrifugation to remove intact cells (500 g for 5 min) and
cellular debris (20,000 g for 15 min). EVPs were isolated by
ultracentrifugation following MISEV2018 EVP isolation
protocol. The EVP pellets were resuspended in 30 µl of PBS
and cryopreserved at -80°C. EVP concentration and size
distribution were determined with Nanosight NS300. Five
microliters of EVP samples was placed on 300 mesh grids and
incubated for 3 min at room temperature (RT). Excess samples
were blotted with filter paper and stained with 1% uranyl acetate
for 5 min. Samples were then examined under TEM (Hitachi).
The Western blot was routinely performed. After lysis with RIPA
buffer, Mini-PROTEAN Tetra Handcast System (BioRad) and
Trans-Blot Turbo Transfer System (BioRad) were used for
electrophoresis and subsequent transferring. The protein blot
was blocked for 1 h with 5% skimmed milk in PBS/0.05% Tween
20 and incubated for 6 h at 4°C with Santa Cruz Biotechnology
HRP conjugated antibodies against TSG-101 (sc-7964, 1:500),
CD81 (sc-166029,1:500), CD63 (sc-100304, 1:500), and GAPDH (sc-
47724, 1:1000). Samples were washed with PBS/0.05% Tween for 10
min 3 times. Blots were developed with chemiluminescence (BioRad).

Lipid Extraction
Two milliliters of mixture containing chloroform, methanol, and
water (2:1:1) was added to sedimented cells followed by vortex
and centrifugation (20,000 g for 10 min). The lower organic
phase was collected. Approximately 50 mL of formic acid and 1
mL of chloroform-methanol-water mixture were added to the
remaining aqueous phase solution followed by vortex and
centrifugation (20,000 g for 10 min). The organic phases
obtained twice were mixed and dried. EVP derived lipids were
extracted following the same protocol. Lipid sequencing was
performed by Cayman Chemical Company.

In Vitro Therapy
All animal experiments were approved by and performed in
accordance with guidelines from the Institutional Animal Care
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and Use Committee (IACUC) of the Model Animal Research
Center of the Wuxi People’s Hospital Affiliated with Nanjing
Medical University (Wuxi, China). The approval number was
2021-0168. The BALb/c nude mice age in 6-8 weeks with
weights of 18-22 g were used. To establish a xenograft model,
adult female BALb/c nude mice were s.c. injected under
anesthesia with 5×106 SKOV-3 cells resuspended in mixture
of Matrigel (Corning) and PBS (1:1). The mice were divided
into 4 groups and were respectively injected with PBS (negative
control, NC group), atorvastatin (ATST), PTX (PTX group),
and a mixture of PTX and atorvastatin (PTX+ATST group).
The body weight and tumor size of each group were measured
every 84 h.

Statistics
Data analyses were carried out using SPSS 23 software program.
The statistical significance was determined by Student’s t-test
and ANOVA test. All tests were two-sided, and p-values <0.05
were considered statistically significant.
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The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular
vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular
information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs.
Although EVs show great potential for the treatment of HCC and their role in HCC
progression has been extensively studied, there are still many challenges such as time-
consuming extraction, difficult storage, easy contamination, and low drug loading rate. We
focus on the biogenesis, morphological characteristics, isolation and extraction of EVs
and their significance in the progression of HCC, tumor invasion, immune escape and
cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of
HCC and new targets for tumor-targeted therapy.

Keywords: hepatocellular carcinoma, tumor microenvironment, hypoxia, vesicle drug delivery, extracellular vesicles
1 INTRODUCTION

China is the world’s top liver cancer country, and the 2020 Global Oncology Report showed that
906,000 patients of liver cancer occurred worldwide, of which 410,000 new cases occurred in China,
accounting for >45% (1, 2). HCC is a common and fatal cancer, accounting for approximately 90%
of all liver cancer cases (3). Although much progress has been made in diagnostic and treatment of
HCC, such as liver excision, chemotherapy embolism and Sorafenib, it remains a health problem
worldwide, with the incidence expected to exceed one million cases in a few years, due to its
metastatic nature, high recurrence rate and low long-term survival (4, 5). EVs exist in tissues,
various body fluids and supernatant, such as saliva (6), pleural effusion (7, 8), plasma (9, 10), urine
(11), breast milk (12, 13), cerebrospinal fluid (14) and ascites (15, 16), which are greatly released by a
variety of cells in a constitutive or inducible manner. EVs can regulate many biological processes,
such as migration and extracellular matrix remodeling (17). Recently, some studies have shown that
EVs play an important part in regulating cell signaling. Particularly, HCC cell-derived EVs may lead
to local spread, distant metastasis and multifocal growth (18). HCC cell can secrete more EVs and
promote tumor metastasis. After exposure to anti-tumor drugs, the release of EVs from hepatoma
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cell also increased, which activate natural killer cells and induce
anti-tumor immunity. Besides, tumor cell-derived EVs can
produce direct immune effects to stimulate target cells. It has
been reported that EVs-mediated intercellular transfer may
promote the invasion of HCC by affecting the tumor
microenvironment (TME) (18, 19). EVs-mediated signaling in
liver disease makes them a unique therapeutic tool that can
provide targeted delivery of tissue siRNAs, miRNAs and
circRNAs to affect gene expression (20). Notably, EVs are
natural nanomaterials. Compared with drugs, modified EVs
have many advantages, which significantly improve the
specificity, efficacy, and safety of EVs-based cancer therapies
and become ideal candidates for drug development and delivery
(20). Nowadays, the use of biogenic EVs as drug delivery has
become a research hotspot, and its complex phospholipid
membrane structure may be conducive to immune escape, site-
specific transmission, cell uptake and intracellular transport (21).
In addition, some microRNAs in EVs have also been introduced
as potential biomarkers, and their expression level is related to
the invasiveness of HCC (22). It has been reported that EVs play
a key role in biological functions, including intercellular transfer,
angiogenesis, immune response, tumor growth and metastasis of
HCC (23–25).
2 INTRODUCTION OF EVS

2.1 Biogenesis and Morphological
Characteristics of EVs
It is known that EVs can be a key role in human physiological
and pathological diseases with various subtypes of cell-released
membrane structures. EVs of particle diameters <200 nm are
referred to as small EVs (sEVs) and medium-to-larger particles
of diameters >200 nm are referred to as m/lEVs (26). Depending
on the description of conditions or cell of origin, EVs can also be
classified as apoptotic body, large oncosome, hypoxic EV,
podocyte EV, etc, which are showed as follows (22, 26–
28) (Table 1).

The sEVs (<200nm) originate from the inward outgrowth of
endosomal membranes, are one of subpopulations of EVs (30),
which can be produced from different cells such as hepatocytes
(40), NK cells (41), T cells (42), and B cells (43), and surface
markers of sEVs include CD9, CD63, CD81, and CD82 (44).
sEVs are formed by the endonuclear body system and transmit
information to the recipient cell through three main processes:
First, the cytoplasmic membrane is initially invaginated by lipid
raft-mediated endocytosis to form endocytic vesicles, which fuse
with each other to form early endosomes (Endocytosis) (45);
Second, early intranuclear bodies regenerate and invaginate, and
intracellular material forms multiple intraluminal vesicles
(ILVs), which are further transformed into late intranuclear
bodies and multivesicular bodies (MVBs). This process also
involves the inversion of cytoplasmic contents, transmembrane
proteins, and peripheral proteins (Receptor-ligand Interaction)
(46). Finally, MVBs fuse with the cytoplasmic membrane to form
sEVs (Fusion With the Plasma Membrane) (5, 23, 47). In
Frontiers in Oncology | www.frontiersin.org 282
addition, MVBs have also been reported to fuse with
lysosomes and promote the degradation of vesicle contents (27,
44, 48). The formation, release and sorting of sEVs are a series of
regulated processes, which mainly require the endosomal sorting
complex required for transport (ESCRT), members of the
ESCRT family [apoptosis contiguous gene 2-interacting protein
X (ALIX), also called PDCD6IP (49), tumor susceptibility gene
101 (TSG101)] (50, 51), four transmembrane proteins family (49,
52) and lipid raft-associated proteins (53, 54) and many
substances are involved. As we all know, ESCRT is composed
of ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III (55), and is
associated with delivery of ubiquitinated proteins, degradation of
lysosomes and recycling of proteins (20). Moreover, ESCRT
plays an important part in luminal vesicle biogenesis and cargo
aggregation (49). ESCRT-independent processes also seem to be
involved in the formation and secretion of sEVs in an
intertwined manner (56). Intracellular transport of sEVs
involves many molecular switches, such as RAB GTpase
proteins, membrane linked proteins, actin and microtubulin
(23). Besides, Rab family proteins,including Rab7, Rab11,
Rab27, and Rab35, also play a crucial role in the process of
sEVs secretion (25). The secretion of sEVs also requires the
involvement of the SNARE complex and the synaptic binding
protein family (30). Furthermore, the involvement of
sphingomyelinase in vesicle release was confirmed by the
elevated ceramide levels in sEVs and less release of sEVs after
sphingomyelinase inhibition (20, 56). Overall, sEVs regulate
signaling pathways in receptor cells, coordinate TME and
communication between different cells.

The m/lEVs (>200nm) are released by the plasma membrane
to the outgoing buds, so the membrane composition of the m/
lEVs is extremely close to the plasma membrane. The cell
membrane surface is full of phosphatidylserine and most of the
membrane-associated proteins, which can regulate the
intercellular information exchange and affect the functions of
target cells (30). The mechanism of m/lEVs formation is related
to intracellular calcium signaling stimulation (23, 57), membrane
bending proteins and the asymmetric distribution of
phospholipids. The inward flow of calcium ions in the
cytoplasm activates phospholipid crawling enzymes to disrupt
phospholipid asymmetry, leading to redistribution of
phospholipids in the cell membrane bilayer (58). The
junctional protein ARRDC1 recruits ESCRT proteins and
VPS4 (an ATPase) to the cell membrane (59); ESCRT-1
protein interacts directly with inhibitory proteins; pro-caspase3
stimulates Rho-related protein kinase 1 to promote
apoptogenesis and induces myocardin contract ion,
contributing to the release of m/lEVs.

Apoptotic body (50-2000 nm), also known as apoptotic
vesicles, are produced by debris cells that undergo apoptosis
(60, 61). When cells undergo apoptosis, the cell membrane folds
inward and wraps around the cytoplasm, organelles and nuclear
fragments to form vesicles, which are the largest subpopulation
of EVs. Apoptotic vesicles have surface markers and are enriched
in caspases-3 and caspases-7, caspases-3 and Rho/Rock pathway
taking part in membrane blistering (30, 32, 62). Moreover,
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apoptotic vesicles play a key role in attracting phagocytes,
promoting the clearance of apoptotic cell debris, and regulating
antigen presentation and immune cell responses (30). Apoptotic
cells have been reported that can facilitate the encapsulation of
chemotherapeutic drugs or nanoparticles into EVs (22). In
addition, apoptotic vesicles from apoptotic cells can be
preferentially taken up by macrophages and produce antitumor
effects (22). Thus, apoptotic vesicles may also be an ideal delivery
system, but the use of apoptotic vesicles as therapeutic
nanovesicles (NVs) has been less studied, which may be related
to their large cell size and uneven distribution.

Large oncosomes(1-10 mm) are released by cancer cells and
may play a role in the tumor microenvironment. It has been
shown that CK18 is a marker of large oncosomes and can be
identified in circulation and tissues (63).

The mechanism of production of hypoxic EVs may depend
on hypoxia-inducible factors and RAB22A, which in a hypoxic
environment relies on the mediating action of the small GTPase
RAB22A to dislodge hypoxic EVs from the cells (38). Hypoxic
EVs are influenced by the environment and containing
biomarkers such as mRNA and proteins, among which
proteins include MMPs, IL-8, PDGFs, caveolin 1, and lysyl
oxidase (37).

Podocyte EVs (100-200 nm) derived from the tip vesicles of
podocyte microvilli (39). It can be expressed before other
markers of nephropathy and therefore may serve as a new
marker of glomerular and tubular injury.Medeiros et al. have
shown that EVs can be produced by podocyte cells after exposure
to high glucose and expressed before proteinuria (64). It remains
to be proven about the biomarkers contained in EVs produced
by podocytes.

2.2 Contents of EVs
EVs are usually secreted under physiological conditions and rich
in nucleic acids, proteins, lipids, and metabolites (31) (Figure 1).
In response to stimuli such as differentiation, neuronal signaling
Frontiers in Oncology | www.frontiersin.org 383
or immune response, the secretory content varies depending on
the cells of EVs origin and their function. Surface proteins were
abundant, with high enrichment of tetraspanins (CD9, CD63)
and lysosome-associated membrane protein 2b (Lamp2b) (20).
Besides, RNA is presented in EVs, including miRNA, long non-
coding RNA (lncRNA), transfer RNA (tRNA), etc, which range
from approximately 25 to 700 nucleotides in length and vary in
content depending on the different origin of EVs (5). To be
interest, EVs from tumor cells are particularly rich in RNA.
According to the Vesiclepedia database, 213 unique proteins
were identified in HCC cell-derived EVs. The sEVs proteins
include cargo proteins and membrane proteins, the latter being
associated with exocytosis of recipient cells and target organ
selection (65, 66). The composition of cargo proteins in sEVs
varies across tumor cells (5). Studies have found that the
ultraconserved lncRNA (ucRNA) expression is dramatically
altered within EVs as compared to donor cells. For example,
HCC cell-derived EVs transfer ultraconserved lncRNA TUC339
enrichment to neighboring cells in the microenvironment, which
is transcribed in host cells and promotes HCC proliferation and
diffusion (66). In addition, Yang, B et al. suggested that EVs
promote hepatocellular carcinoma metastasis because some
substances in EVs are involved in epithelial mesenchymal
transition (EMT) (40).

Moreover, many studies have reported that mitochondrial
proteins are also cargoes of EVs (67–70). EVs can carry
mitochondria, mitochondrial proteins, or mitochondrial DNA
to travel between organelles (67, 71). Kiran Todka et al. found
that mitochondrial proteins are selectively enriched in EVs and
that delivery of mitochondrial proteins to EVs requires sorting
nexin 9(SNX9)-dependent mitochondria-derived vesicles
(MDVs). MDVs are responsible for carrying mitochondrial
proteins between mitochondria and other organelles (72).
Intercellular transfer of mitochondria (including mtDNA)
results in altered mitochondrial function. If mitochondria are
localized within the mitochondrial network of the recipient cell,
TABLE 1 | The types of EVs.

Classification Subtypes Diameter Source Marker Ref

Physical
characteristics/
Size

sEV < 200nm Originates from the inward outgrowth of
multivesicular bodies (MVB), endosomal
system

Transmembrane proteins CD9, CD63 and CD81;
ALIX; TSG101

(5, 22, 29)

Derived from hepatocytes, macrophages, NK
cells, T cells, B cells

m/lEV > 200nm Plasma membrane outward budding
production

Integrin; Selectin; CD40; Most membrane-associated
proteins in source cells

(30, 31)

Derived from almost all healthy living cells.
Descriptions of
conditions/Cell of
origin

Apoptotic
body

1-5mm generated from cell fragments undergoing
apoptosis

Phosphatidylserine; Genomic DNA; It is similar to the
surface markers of its derived cells and rich in caspases-3
and caspases-7

(30, 32)

Large
oncosome

1-10mm originates from the shedding of the membrane
bubbles

CK18 (33–36)

released by Invasive prostate cancer cells,
urinary bladder, and glioblastoma

Hypoxic
EV

– Hypoxic cell include mRNA and proteins (MMPs, IL-8, PDGFs,
caveolin 1, and lysyl oxidase, etc)

(37, 38)

Podocyte
EV

– from the tip of the microvilli of the podocytes — (39)
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it may elevate the intracellular ATP levels, further generate
metabolic stress and ROS to regulate innate immunity, which
may have a significant impact on the tumor microenvironment
(73–75). For example, it has been found that mitochondrial DNA
(12S rRNA (RNR1) G709A) play an important role in the
development of HCC (76). However, whether the process of
mitochondrial can influence the hepatocellular carcinoma
progression associated with EVs needs to be further explored.

2.3 Specific Mechanisms of Uptake and
Internalization Between EVs and the
Target Cells
Since our current knowledge about the physiology, diversity,
internalization, and cargo delivery of EVs is still somewhat
limited, it remains impossible to derive a clear mechanism
about how EVs interact with and modify receptor cells.
However, determining the intracellular pathways and
mechanisms of their cargo delivery could help us to utilize EVs
as therapeutic agents appropriately (77).

The uptake pathways of EVs are known to be greatly diverse
by cells and EVs type, which may be more dependent on the
receptor cell type than EVs itself (22, 78, 79). EVs can translocate
their contents to recipient cells by different mechanisms such as
Frontiers in Oncology | www.frontiersin.org 484
direct fusion, direct binding, endocytosis or phagocytosis (22).
Although the mechanism of EVs uptake and cargo translocation
into the cytoplasm of the receptor cell is still not fully defined, it
mainly occurs in three steps: targeting the receptor cell, entering
point into the receptor cell, and delivering the contents to the
receptor cell. However, the end point of EVs internalization is
still uncertain, and the function of EVs-mediated cargo transfer
cannot being well defined (78).

The pathway of EVs internalization determines the functional
response and efficiency of cargo delivery, while the
internalization of EVs is mediated by a variety of mechanisms
(80), including grid protein dependence and endocytosis of grid
protein non-dependent pathways (78). In general, endocytosis is
usually divided into two main subgroups: phagocytosis and
cytokinesis. Phagocytosis is a type of endocytosis of relatively
large (>1µm) particles and is usually restricted to specialized
professional phagocytes. In contrast, all cells are capable of
cytokinesis (81–83). Grid protein-mediated endocytosis is a
recognized pathway for extracellular substance uptake (84).
Meanwhile, studies have shown that EVs enter cells mainly
through grid protein-independent endocytosis and
macrocytosis (83). Non-dependent endocytosis of grid
proteins, including the formation of inverted influxes of
FIGURE 1 | Biological origin of electric vehicles: ① m/lEV formation is the result of mass membrane foaming. Calcium relies on the cellular scale of protein hydrolysis
degrading membrane binding, which can help cell membranes germinate and promote their secretion. ② Formation of sEV includes endocytosis, the formation of
nucleosomes and MVBs, and the release of sEVs. The vesicles contained in MVBs fuse with the plasma membrane, causing their release. ③ Refactoring is related to
the Rho/Rock pathway. ④ Composition of ESCRT is related to the biological occurrence of sEV and MVB. Rab protein facilitates the transport and docking of MVBs
over the plasma membrane, leading to cytoplasmic vomiting and the release of sEVs. ⑤ Extensive membrane vesicles occur on the membrane of apoptotic cells to
form apoptotic body.
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vesicle-coated cells on cell membranes (77, 84, 85). Alternatively,
fusing with the exoplasmic membrane, EVs can enter cell
directly, thereby release their contents into the cytoplasm (80).
3 SEPARATION METHODS OF EVS

The isolation and collection of EVs is a necessary condition for
biomedical research and clinical transformation. Researchers
have developed many methods to separate EVs, and it is
particularly significant to use the proper isolation method
under different conditions. For better clinical applications,
improving existing technologies for the isolation and storage of
EVs are facing great challenges (20). Efficient access to EVs is
extremely important for research, and in addition to the use of
suitable isolation techniques, promoting the production and
release of EVs is also of great value. Upon increased release of
EVs, cargo and surface marker proteins may cause altered
biological functions (86, 87). Notably, EVs induced by tapping
membrane complexes have been reported to play important
physiological roles in enhancing immunity, promoting
coagulation, wound healing and growth (88, 89). Hirsova, P
found that toxic lipids induce the release of EVs from
hepatocytes and can activate the pro-inflammatory response of
macrophages, which also suggests that inhibiting the release of
EVs could be a therapeutic strategy for patients with NASH (90).
Based on the therapeutic potential of EVs, we believe that it is of
great interest to select suitable methods to facilitate or inhibit the
release of EVs depending on the purpose. Thus, some approaches
to promote the release of EVs are summarized in Figure 2.
3.1 Traditional Methods
3.1.1 Ultracentrifugation
Ultracentrifugation is considered as the “gold standard” for the
separation of EVs (102). Due to the different particle size and
density, its settling speed is also different, using gradually
increasing centrifugal speed or low speed and high speed
alternate centrifugation, can be separated in batches at different
separation speeds and centrifugal time (30). Cellular impurities
were removed with a low speed of 300 g, and high centrifugal
force of 16,000 g can be used to separate apoptotic bodies, 20,000
g to separate m/lEVs, and 100,000 g to precipitate and
concentrate sEVs (103, 104). This method is widely used, but
the purity of sample is not satisfied for the supernatant will
contain 40% EVs, which leads to protein contamination and
lower yield. There is an overlap in the size of sEVs and m/lEVs,
and slightly larger sEVs and smaller microvesicles are difficult to
isolate (105). In addition, it generally requires multiple
centrifugation processes to achieve better separation, but it is
prone to vesicle destruction and also has many disadvantages
such as the large size of the instrument, high cost, lengthy and
laborious processing, and few samples (106).

3.1.2 Gradient Ultracentrifugation
The requirements of gradient ultracentrifugation are more
stringent, when there is a small difference in settling velocity
Frontiers in Oncology | www.frontiersin.org 585
between different particles, they are placed on the top of a
medium with different density gradient. Under the action of a
certain centrifugal force, the particles are separated by
aggregating into the layer of the medium with a similar density
to theirs, and the commonly used medium is sucrose (107).
Sucrose gradient centrifugation can be used to isolate sEVs (108,
109). This method is popular because of good separation effect,
high purity, no extrusion and deformation of the particles, and
the ability to maintain the activity of the particles. However, it
needs to prepare inert gradient media solution, be complicated to
operate, not easy to master, time-consuming and labor-intensive
(20-24 h), and high cost. What’s more, the density of EVs and
high-density lipoprotein particles (HDL) is similar and they can
be separated out together, so the samples are prone to
contamination (110). Besides, the use of newer isotonic
gradients contribute to better maintenance of the physical
properties of the vesicles (111).

3.1.3 Precipitation Method
The precipitation method mainly includes polymer precipitation
and organic solvent precipitation. Commercial kits that rely on
polymer co-precipitation have been reported being used for the
isolation and purification of EVs, decreasing solubility and
promoting precipitation. The precipitated EVs can be easily and
reproducibly separated and avoid prolonged ultracentrifugation
(112, 113). Unfortunately, the main problems with this method
are that co-precipitation is susceptible to contamination by non-EVs
substances and that mechanical forces or chemical additives can
damage EVs (114). In addition, the method relies more on manual
manipulation with low throughput and recovery, and purification of
polymers from EVs may interfere with downstream analysis.
Therefore, co-precipitation is not suitable for most research and
clinical applications.

3.1.4 Molecular Exclusion Chromatography
The principle of molecular exclusion chromatography is that
different solute molecules, such as EVs and protein impurities,
are separated from each other as they pass through porous
packings due to differences in size resulting in different rates of
passing through the pores (115, 116). This approach yields
purified EVs from complex biological media (117–119),
removed soluble plasma proteins and HDLs effectively,
preserved the biological activity and integrity of EVs and also
reduced aggregation (115). A variety of influencing factors such
as media type, pore size, column size, and flow rate should be
considered for EVs separation (20, 116). This method is efficient
and inexpensive, and it is more suitable for small volumes of
blood samples because of the upper sample volume limitation.

3.1.5 Asymmetric Flow Field Flow
Classification Method
Asymmetric flow field flow fractionation (AF4) is a technique in
which a force field is applied to achieve the separation of EVs with
different sizes andmolecular weights (120). AF4 contains permeable
plates and when a vertical force field is applied, the analytes in the
sample will be moved to the boundary by the force and smaller
particles will undergo Brownian motion to reach a new equilibrium
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position (121). The advantages of this method are rapid (<1 h), high
resolution, gentle, label-free, and reproducible. It can be applied to a
variety of eluates, contributing to the successful separation of
different subpopulations of EVs.

3.2 New Methods
3.2.1 Immunoaffinity Capture
Obviously, EVs are rich in proteins. Immunoaffinity capture is the
specific binding of antibodies to the corresponding antigens on the
surface of EVs such as adhesion proteins, tetra-transmembrane
proteins and integrins, achieving the separation of EVs by immune
reactions (122, 123). Magnetic beads provide a large surface area to
capture EVs, targeting antigens on the surface of EVs to select
specific subgroups, improving separation efficiency, specificity and
purity, making it more suitable for marker detection of EVs and
clinical diagnostic studies (124). However, the expensive antibody
reagents, stringent reaction conditions, reduction of isolation yields,
and the vulnerability of the biological activity of the EVs contents to
PH and salt concentration have made it inappropriate to isolate
large volume samples (125).

3.2.2 Microfluidics
Based on different molecular size, microfluidics can isolate EVs
from large cellular debris (126). Compared to conventional
Frontiers in Oncology | www.frontiersin.org 686
separation methods, with smaller sample volumes (50µL -
500µL), microfluidic techniques are faster (30 min-2 h),
portable, cost effective and automated, resulting in high purity
of EVs. However, some microfluidic technologies allow only
small sample input, lack method validation and standardization,
which may influence the application of downstream analysis.

3.2.3 Contactless Classification
The use of acoustic waves for contactless separation of EVs has
recently been proposed by some researchers. This separation
method applies forces based on the size and density of vesicles
(127). Particles in the acoustic region migrate toward the
pressure nodes after the force is applied. Acoustic interaction
forces are proportional to vesicle volume, with larger vesicles
moving more rapidly. This method can separate EVs very
quickly and without contact.
4 QUANTIFICATION METHODS OF EVs

Currently, the quantification of EVs has been challengig. It is
suggested that for conditioned medium, the number of cells at
the time of initiation and collection should be clearly indicated.
FIGURE 2 | Methods to facilitate the release of EVs. ① Acute Hypoxia: Catabolism of HIF-1a is inhibited by acute hypoxia, which stabilizes the P53 gene and
activates the P21 gene, leading to apoptosis and promoting the release of EVs (91–93). ② UV: After UV irradiation, a large number of free radicals are generated to
attack nucleic acids and proteins, causing apoptosis and increasing the release of EVs (94). ③ Photodynamic Treatment: Laser irradiation at a specific wavelength
excites the tissue-absorbing photosensitizer, and the excited state of the photosensitizer transmits energy to the surrounding oxygen, generating strongly reactive
monomorphic oxygen, which may reacts oxidatively with the surrounding neighboring biomolecules, resulting in a cytotoxic effect that causes apoptosis and also
promoting the release of EVs (95). ④ Complement Proteins: The membrane attack complex (MAC) is composed of complement proteins (C5b, C6, C7, C8 and C9).
MAC is cleared from the cell surface by cytosolic or cytocytic action to help release EVs (96, 97). ⑤ Chemotherapy: The use of chemotherapeutic agents (e.g.,
doxorubicin, methotrexate, and cisplatin) causes cellular damage and EVs release (95, 98). ⑥ Toxic Lipids: Toxic lipids activates the DR5 pro-apoptotic signaling
cascade, which in turn activates ROCK1 and promotes the release of EVs from hepatocytes (90). ⑦ Nutritional Deficiency: Activation of Caspase 3, ROCK1 signaling
pathway and promotion the release of EVs (99). ⑧ Infection factors (100) and ⑨ focused ultrasound (101) can also promote the release of EVs.
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In addition, proper characterization of EVs at the time of
separation helps to understand their properties. Several
techniques for measuring the size of EVs are being
investigated, including lateral-flow immunochromatographic
assay (LFIA), nanoparticle tracking analysis (NTA), and
nanopore tunable resistive pulse sensing techniques(TRPS),
high resolution flow cytometry, multi-angle light scattering
coupled to asymmetric flow field-flow fractionation (AF4),
fluorescence correlation spectroscopy (FCS), enzyme linked
immunosorbent assay (ELISA) and Raman spectroscopy, etc.
Here, we talk about some advantages and disadvantages of some
techniques. LFIA, with its high degree of flexibility, is a good tool
for cost-effective field detection, but the assay lacks sensitivity
(128). The AF4 system is highly repeatable (120), however, it
requires skilled operators. NTA and TRPS can be used for
particle size analysis of EVs, and their detection sensitivity is
70-90 nm and 70-100 nm, respectively. NTA technology allows
one-time measurement and quantification of EVs, but the
equipment is expensive and difficult to operate (129, 130). The
ELISA technique is greatly flexible and can be modified
appropriately for the analyte, but it is also time-consuming.

In addition, EVs are rich in proteins, lipids, nucleic acids and
other biomolecules, and it can be quantified by quantifying these
specific molecules. For example, total protein amounts were
determined by using Bradford, micro-bicinchonic acid (BCA),
fluorimetric assays, global protein stainon sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), etc.
However, due to the possible presence of protein contaminants,
the measurements are on the high side. The amount of total lipids
can be measured by sulfofphosphovanilin assay (131) and total
reflection fourier-transform infraredspectroscopy (132). RNA can
be quantified by global RNA assays (133). In conclusion, the
quantification of EVs is a critical topic that still lacks consensus
and standardization both domestically and internationally, and we
expect more studies to be reported in the future.
5 INTERACTIONS BETWEEN HCC AND
HCC CELL-DERIVED EVs

In the microenvironment where tumor cells and normal cells are
located, HCC cell-derived EVs build a bridge to communicate
with each other and promote HCC proliferation, invasion and
distant metastasis, etc. EVs origined from HCC often regulate
tumor progression through autocrine and/or paracrine cellular
communication. HCC cell-derived EVs stimulate recipient cells to
produce cytokines and promote the migration of HCC, such as
matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase
9 (MMP9) (134). Meanwhile, HCC is a typical hyperangiogenic
tumor. HCC cells secrete EVs loaded with different miRNAs,
LncRNAs, circRNAs that can activate signaling pathways in the
recipient cells, thus causing the recipient cells to respond,
promoting HCC migration or inhibiting HCC proliferation,
which have an impact on tumor angiogenesis (47). For example,
HCC cell-derived EVs carry oncogenic RNAs and proteins, which
Frontiers in Oncology | www.frontiersin.org 787
allows EVs to activate the PI3K/AKT and MAPK signaling
pathways and promote distant tumor metastasis (46).

EVs secreted by HCC cells containing some specific miRNAs
will play a specific role in HCC. For example, hypomethylation
causes increased expression of mir -429 in HCC cells, and these
large EVs mediated by mir -429 are shed and bind to Rb-binding
protein 4 (RBBP4) in surrounding target cells, promoting the
transcriptional activity of E2F1 and ultimately upregulating the
expression of POU class 5 homeobox 1 (POU5F1) in target cells,
thereby promoting HCC development (46). Meanwhile, EVs-
loaded miR-221 binds to the 3’-UTR target site of the p27/Kip1
oncogene and promotes HCC proliferation and migration (135).
EVs containing protein CD147 released by HCC cells activate the
NF-kB pathway of surrounding fibroblasts, induce MMP-9
expression, and stimulate the ERK1/2 and p38 MAPK pathways,
leading to extracellular matrix degradation and tumor invasion
(136, 137). In addition, EVs containing miR-25 released from HCC
cells inhibited p53 expression in surrounding HCC cells, thereby
restoring FOXM1 (a key regulator of cell cycle progression)
expression, activating the HGF/Ras pathway, reversing the
expression of sorafenib-induced apoptotic markers BCL2 and
BAX, making HCC cells resistant to sorafenib (138). miR-34a is
reduced in the large EVs released by CHB or HCC cells, resulting in
increased levels of mRNA and protein in c-Mets in surrounding
cells, promoting phosphorylation of c-Met-induced extracellular
signal- regulated kinases 1 and 2 (ERK1/2), thereby facilitating CHB
conversion to HCC (139, 140). Intracellular TLR4 signaling in HCC
cells is transduced to the actin cytoskeleton via theMyD88 pathway,
leading to the release of large EVs. Peripheral tumor macrophages
take up large EVs containing microRNA let-7b, which attenuates
tumor inflammation by targeting the pro-inflammatory cytokine
IL-6 (141). Upregulation of ANXA2 expression in HCC cells
promotes the shedding of CD147-containing large EVs and the
production of MMP-2 in surrounding fibroblasts, thereby
promoting HCC development (142). Thus, HCC cell-derived EVs
can also act as a bridge between surrounding tumor cells or other
cells, and their loaded cargo can have an impact on HCC
progression when taken up by target cells.

5.1 HCC Cell-Derived EVs Promote HCC
Migration by Directly Activating or
Inhibiting Signaling Pathways
HCC cell-derived EVs-loaded cargoes can promote cancer cell
migration by directly activating or inhibiting signaling pathways.
For example, EVs-miR-1247-3p secreted by HCC cells directly
transferred to lung pre-metastasisniche fibroblasts, decreased the
expression of b-1,4-galactosyltransferases III (B4GALT3, a
protein mediating glycosylation), thereby converting them into
CAFs, and then activated the b1-integrin-NF-kB signaling
pathway to promote EMT, thereby promoting the metastasis of
hepatocellular carcinoma to the lung, and IL-6 and IL-8 secreted
by CAFs to promote the development of HCC (Figure 3.①)
(143). Meanwhile, EVs-miR92a-3p can promote HCC metastasis
and EMT by inhibiting PTEN activation of the Akt/Snail
signaling pathway (Figure 3.②) (40). Besides, HCC cells can
also secrete EVs-miRNA-21 that directly targets PTEN and
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activates the PDK1/AKT signaling pathway. Moreover, it
transforms hepatic stellate cells (HSC) into activated cancer-
associated fibroblasts(CAF), which can further promote HCC
growth by secreting vascular growth factors(VEGF, MMP2,
MMP9 and TGF-b) (Figure 3.③) (144). Under endoplasmic
reticulum stress, HCC cells inhibit PTEN and activate the
PI3K-AKT pathway by delivering EVs-miR-23a-3p to
macrophages, increasing macrophage PD-L1 expression and
inhibiting T-cell function, promoting immune escape
(Figure 3.④) (145). In addition, EVs-lncRNA TUC339 can be
taken up by THP-1 cells, resulting in reduced production of pro-
inflammatory cytokines, reduced expression of costimulatory
molecules, impaired phagocytosis, and promotion of
macrophage M (IL-4) polarization (Figure 3.⑤) (146). EVs-
miR-93 promotes HCC tumorigenesis by affecting CDKN1A,
TP53INP1, and TIMP2, and sEVs-miR-93 overexpression
predicts poor prognosis (Figure 3.⑥) (147). It has been
reported that lncRNA FAL1 are taken up by surrounding HCC
cells and promote HCC cell proliferation and migration by
competitively binding miR-1236 in recipient cells, which in
turn upregulates the expression of their target genes AFP and
ZEB1 (Figure 3.⑦) (148). sEVs-CircFBLIM1 can promote HCC
progression through the miR-338/LRP6 axis (Figure 3.⑧) (149).
The sEVs-circ-PTGR1 downregulates miR449a-MET
expression, disrupts tumor microenvironment homeostasis,
and promotes HCC migration and invasion (Figure 3.⑨)
(150). EVs complement factor H (CFH) elevates C3a and C5a
levels, exacerbating inflammatory responses and tumor growth
(Figure 3.⑩) (151).
5.2 The Role of HCC Cell-Derived EVs
on Angiogenesis
HCC is typically a highly angiogenic tumor and therefore
angiogenesis is closely related to the prognosis. We have
known that EVs-loaded cargo is able to promote angiogenesis
and increase vascular permeability. Altered vascular
permeability implies altered endothelial continuity, allowing
cancer cells to infiltrate and attach to the microvascular
endothelial lining and form tumor metastases. For example,
Lin, XJ et al. found that delivery of EVs-miR-210 to endothelial
cells to target SMAD4 and STAT6 for pro-angiogenesis
(Figure 3.⑪) (152). Besides, EVs-miR-103 inhibits the
expression of VE-Cad, p120 and ZO-1 and reduces
endothelial integrity to promote tumor invasion (Figure 3.
⑫) (153). EVs-LncRNA H19 induces the production of the
pro-angiogenic cytokine (VEGF) and its receptor VEGF-r1 in
HUVECs and stimulates angiogenesis (Figure 3. ⑬) (154).
Interestingly, Y Zhou et al. found that ovarian cancer-derived
EVs carry NID1 through ERK/MAPK to promote EMT,
accelerate angiogenesis, and promote tumor invasion (155),
but the role of NID1 in HCC is still unclear (156). In addition,
HCC cell-derived EVs can promote angiogenesis in HUVECs,
and the amount of HepG2-derived EVs determines the amount
of angiogenesis, lumen formation. The sEVs may influence
human umbilical vein lumen formation via the VEGF receptor
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and the angiogenesis-associated heat shock protein
HSP70 (157).

HCC cells-derived EVs carrying proteins were found to
inhibit angiogenesis by reducing VEGF through activation of
AMPK signaling iynamic network microenvironment consisting
of hepatocytes and their surroundings, suchn HCC (158). At the
genetic level, CLEC3B-related genes are closely associated with
angiogenic genes. In experiments, cells with high levels of
CLEC3B formed fewer vessels than those with low levels.
Likewise, in animal studies, immunohistochemical detection of
tumor tissue from in situ tumor-implanted mice showed a
significant reduction in CD31-positive and CD34-positive
endothelium (EC) in CLEC3B high-isogenic grafts. Thus, high
levels of CLEC3B EVs significantly reduce the expression of
endothel ia l growth factor (EGF) in HCC, thereby
reducing angiogenesis.
5.3 Inhibition of HCC Growth by EVs-
Loaded Cargo of Different Cellular Origin
When certain signaling pathways are blocked by EVs-loaded
cargo, the growth and distant metastasis of HCC may also be
inhibited. For example, when Vps4A is overexpressed in HCC
cell-derived EVs, it inhibits the PI3K-Akt pathway and thereby
inhibits the metastasis of HCC (159). When normal cells
secrete sEVs containing SENP3-EIF4A1, SENP3-EIF4A1
inhibits HCC cell proliferation by suppressing miR-9-5p in
HCC cells and activating the expression of ZFP36 (160). In
contrast, EVs-circ-0051443 promotes HCC cell apoptosis and
inhibits tumor growth by competing with miR-331-3p in HCC
cells and upregulating BAK1 expression (161). Interestingly,
Huang, X et al. proposed that IncRNA 85 regulates the
invasion of cancer cell by targeting miR-324-5p and through
ceRNA mechanisms, and more importantly, miR-324-5p
overexpressed can reducing migration by regulating the
expression of MMPs, ETS1 and SP1 genes in HCC (162,
163). When tumor-associated fibroblasts (CAFs) secrete EVs
containing miR-320a, miR-320a inhibits HCC growth by
suppressing the PBX3/ERK1/2/CDK2 pathway in HCC cells
(164). For example, EVs enriched in LncRNA H19 were
secreted by CD90+ cancer cells to promote angiogenesis,
inducing the production and secretion of the pro-angiogenic
cytokine VEGF and its receptor in HUVECs (154). What’s
more, it has been shown that co-culture of Huh7 cells with
HepG2 cells, where Huh7 secretes EVs containing miR-122,
has an inhibitory effect on tumor growth, when co-cultured
HepG2 cells attenuate this inhibitory effect by secreting
IGF1 (165).

Alteration of original physiological functions between HCC
cells through the delivery of cargo molecules in EVs. Some goods
are markers to diagnose HCC from other liver diseases; Some can
determine the effectiveness of HCC treatment and predict the
recurrence rate of HCC; Some can be used as vehicles for
delivering drugs for the treatment of HCC. In conclusion, EVs
loaded with cargo play different roles in the migration of HCC,
regulating the talks between HCC and cells (Table 2).
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6 REGULATION OF HCC BY DIFFERENT
CELL-DERIVED EVs IN THE
MICROENVIRONMENT
There is growing evidence that the dynamic network
microenvironment consisting ofhepatocytes and their
surroundings, such as cancer cells, immune cells, cytokines
andextracellular matrix is also a key factor in tumor metastasis.
Liver is rich in immune cells, which can greatly produce EVs, and
has a unique immune-tolerant microenvironment, which is a
huge challenge for HCC immunotherapy (170). Among them,
various immunosuppressive cell subsets and signaling pathway-
mediated pre-tumor immune responses play a key role in “tumor
immune escape”. EVs are not restricted by space and material
and can interact with cancer cells anywhere in the body. EVs
produced by cancer cells can also interact with nearby immune
cells (171, 172). The interaction between tumor and the immune
system determines the progression of the tumor at the early
stage. In conclusion, HCC occurs not only because hepatocytes
contain sufficient genetic mutations, but multiple interrelated
factors in the hepatic microenvironment influence the
progression of HCC, and the mechanistic features of these new
factors have prompted the search for new therapeutic approaches
to treat not only the tumor itself but also the hepatic
microenvironment to prevent recurrence and treatment
resistance, some of which have yet to be fully elucidated.
Frontiers in Oncology | www.frontiersin.org 989
6.1 Mesenchymal Stem Cells-Derived EVs
MSCs are present in bone marrow, umbilical cord blood and
adipose tissue and are adult stem cells with multidirectional
differentiation potential (173). MSCs attenuate fibrosis by
upregulating hepatocyte growth factor (HGF) (174, 175), insulin
growth factor (176), and MSCs-derived EVs improve hepatocyte
regeneration and modulate immune activity, demonstrating
therapeutic benefits in various liver diseases (173). Meanwhile, the
role of MSCs-derived EVs cannot be ignored. Experiments have
shown that ADMSC (adipose-derived mesenchymal stem cells)-
derived EVs promote anti-tumor responses of NKT cells, leading to
early ADC increase and low-grade tumor differentiation (177). In
addition, an anti-tumorigenic effect of MSC-EVs was also observed
in a CCl4-induced mouse liver tumor model. After treatment with
EVs, the growth of liver tumor was significantly inhibited by
inhibiting oxidative stress (178). Bruno, S et al. have
demonstrated that EVs in human BM-MSCs can induce HepG2
cell cycle blockers and apoptosis necrosis in vitro, which inhibit
tumor growth in the body. However, EVs secreted by fibroblasts
formed by differentiation of human derived MSCs lack antitumor
effects (179). In addition, miR-122 delivered viaAMSC-derived EVs
may provide new therapeutic options for HCC (Figure 4. ①) (180).
It remains unclear that whether MSCs-derived EVs can inhibit
HCC progression by carrying cargo, and it provides a new direction
for the possibility of using MSCs-derived EVs as carriers to exert
anti-tumor effects.
FIGURE 3 | HCC cell-derived EVs carry cargo and regulate different receptor cells.
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6.2 Cancer Stem Cells-Derived EVs
Cancer Stem Cells (CSCs), with proliferative and differentiation
potential, is more easily contributing to tumor recurrence (181–
184). It is reported that EVs derived from CSCs can induce
tumor growth, metastasis, participating in angiogenesis and
maintaining the stem cell phenotypes (185–188). EVs released
from CSCs containing multiple cargoes, including proteins and
multiple RNA (189). EVs can make the microenvironment to
change in the direction of promoting tumor occurrence and
metastasis. For example, Domenis, R et al. found that CSC-
derived EVs inhibits T cells through monocyte-specific secretion
of IL-10 (190). In addition, fibroblasts can be converted into
cancer-associated fibroblasts (CAF) through the uptake of CSC-
derived EVs, promoting tumor progression and metastasis (191).
It was also found that CSCs-like CD90+ hepatocytes regulate the
endothelial phenotype by releasing EVs containing H19 lncRNA,
significantly increase VEGF expression, and promote
intercellular adhesion, induce angiogenesis, and affect the
tumor microenvironment (154). What’s more, Alzahrani FA
et al. showed that hepatic CSCs-derived EVs were able to
increase the expression of Bcl2, TGFb1, NFkB, MMP9, VEGF,
13K, ERK and decrease the levels of Bax, p53, TIMP1 mRNA in
Frontiers in Oncology | www.frontiersin.org 1090
the liver of mice, suggesting that CSCs-derived EVs promote
hepatocellular carcinoma cell invasion while upregulating
TGFb1-induced EMT (Figure 4. ②) (192). However, it is of
interest that CSCs-derived EVs and MSCs derived EVs had
opposite effects on HCC growth and progression in vivo, and
neither involved promotion or inhibition of HCC-induced
oxidative stress or antioxidant activity. As can be seen, these
studies have showed new insights into the treatment of HCC, and
more research is needed to clarify the mechanisms involved.

6.3 Macrophages-Derived EVs
Depending on the state and functional status of macrophages
after activation, they can be divided into M1 and M2
macrophages, with M1 macrophages playing a tumoricidal role
and M2 macrophages promoting tumorigenesis (193). M1
macrophages are involved in the polarization of Th1 and high
expression of IL-6, IL-12, TNF-a, iNOS, ROS to promote the
occurrence of inflammation (194). EVs from M1 macrophages
induce stronger antigen-specific cytotoxic T-cell responses in
lymph nodes, enhance immune responses to cancer vaccines,
and are used as effective vaccine adjuvants (195). In the TME,
tumor-associated macrophage (TAM)-derived EVs significantly
TABLE 2 | The cargos and functions of EVs related with HCC.

Name of the
Cargo in EVs

Cargo
Type

Mechanism of the Cargo Function of the Cargo Vivo or
vitro

Cell lines Refs

miR-429 miRNA Targeting the RBBP4/E2F1/OCT4 axis in recipient cells,
promote liver T-ICs properties

Facilitate HCC Vitro T-ICs (46)

miR-142-3p miRNA Down-regulation of RAC1 Suppressed migration of HCC Vivo Hepa1-6 (166)
miR-221 miRNA Binding to the target sites in the 3’-UTR of p27/Kip1

tumor suppressor gene
Promote proliferation of HCC Vitro SMMC-

7721
(135)

miR-25 miRNA Attenuating p53 and enhancing FOXM1 expression Mediate sorafenib resistance in HCC Vitro HepG2 (138)
miRNA let7b miRNA Targeting proinflammatory cytokine IL-6 Attenuates tumor inflammation Vivo,

Vitro
H22 (136,

141)
miR-34a miRNA miR-34a was down-expressed in HCC, promoted the

translation of antiapoptotic factors
Promote the conversion of CHB to HCC Vitro – (139)

CD147 protein Induce upregulation of MMPs in fibroblasts, leading to
extracellular matrix degradation

Promote tumoral invasion Vitro – (136)

miR-1247-3p miRNA Targets B4GALT3, activate b1-integrin–NF-kB signaling,
activated CAFs secrete pro-inflammatory cytokines

Promote lung migration of liver cancer Vivo,
Vitro

CSQT-2 (143)

miR-103 miRNA Inhibiting the expression of VE-Cad, p120 and ZO-1,
attenuated the endothelial junction integrity

Promote vascular permeability and
metastasis

Vivo MHCC97H (153,
167)

miR-638 miRNA Attenuate endothelial junction integrity Promote vascular permeability and
metastasis

Vivo HuH-7M (168)

miR-93 miRNA Directly inhibiting the expression of TIMP2/TP53INP1/
CDKN1A

Promote proliferation and metastasis of HCC Vitro SKHEP1 (147)

miR-23a-3p miRNA Promotes PD-L1 expression in macrophages and
inhibits T-cell function through miR-23a–PTEN–AKT
signaling pathway

Promote proliferation and metastasis of HCC Vivo,
Vitro

HepG2 (145)

lncRNAFAL1 lncRNA Competitively binding to miR-1236, indirectly up-
regulated the expression of AFP and ZEB1

Promote proliferation of HCC Vitro Huh7 (5,
148)

IncRNA 85 lncRNA Targeted miR-324-5p and regulated its expression
through a ceRNA mechanism

Promote proliferation and metastasis of HCC Vitro HepG2 (163)

lncRNATUC339 lncRNA Excess lncTUC339 expression in macrophages
promoted M(IL-4) polarization

Suppress the immune response to tumor
cells

Vitro HL-7702 (147)

circUHRF1 circRNA Upregulate TIM-3 expression and suppress the
production of IFN-g and TNF-a

Inhibit NK cell function Vivo SMMC-
7721

(169)

Vps4A protein PI3K/Akt pathway was inactivated by Vps4A-
overexpression

Inhibit the growth and metastasis of HCC Vivo Hep3B (159)

CFH protein Increase the production of C3a and C5a Promote proliferation and metastasis of HCC Vivo,
Vitro

Huh7 (151)
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downregulate miRNA-125a and miRNA-125b (miRNA-125a/b
targets CD90, a stem cell marker for HCC) and promote the
progression of HCC (196). The macrophages were treated with
propofol to help secrete more EVs with miRNA-142-3p, which
can be absorbed by HCC cells, and furtherly, RAC1 inhibited the
migration and tumor growth in mice (Figure 4. ③) (166). M2
macrophages are involved in Th2 polarization and highly express
IL-4, IL-10, TGF-b, CD206, CD163, CCL22, etc., while reduce
the expressing of IL-12,downregulate the immune response and
promote tumor progression (197). In an experiment by Jian Pu
et al. in which EVs were injected into a mouse model of liver
cancer, M2 macrophage-derived EVs were found to promote
CD8+ T cell failure via the miR-21-5p/YOD1/YAP/b-catenin
axis (Figure 4. ⑧) (198). Thus, it seems that M2 macrophages are
closely associated with the malignant development of
HCC (199).

6.4 Adipocytes-Derived EVs
Adipocytes mainly play a role in providing metabolic substrates
for tumor cells. There is evidence that adipose-derived EVs can
promote tumor growth in HCC by downregulating VHL,
delivery of miR-23a/b. Studies in vivo have shown that
increasing levels of EVs-miR-23a/b, VEGF, GLUT1 and HIF1a
accelerated tumor growth and rate in high fat diet mice
(Figure 4. ④) (200). Visceral adipocyte exocytosis induces
dysregulation of the TGF-b pathway in HepG2 cells in high
body fat individuals, but not in low body fat individuals (201).
Zhang, H et al. suggested that EVs-circ-DB was upregulated in
Frontiers in Oncology | www.frontiersin.org 1191
HCC patients with high body fat and its positively correlated
USP7 was also increased (202). Mature adipocyte-derived EVs
and HCC cellular effects lead to a decrease in miRNA-34a (tumor
suppressor), while an increase in the USP7/Cyclin A2 signaling
pathway (pro-cancer), a promotion of HCC cell growth, and a
reduction in DNA damage (Figure 4.⑤). Nevertheless, once circ-
DB is knocked out, these effects will disappear. Furthermore,
adiponectin is an abnormally abundant adipocytokine that
regulates sEVs biogenesis by binding to T-cadherin and
reduces cytosolic ceramide levels by releasing EVs (203, 204).
sEVs are formed through the non-dependent mechanism of
ESCRT, a process in which ceramide is essential and
accordingly lipocalin is crucial in regulating their exocytosis.
sEVs as a biological delivery vehicle for cancer treatment has
been a hot research topic recently, but the role of adipocyte-
derived EVs in HCC still requires further investigation.

6.5 Fibroblasts-Derived EVs
The connective tissue is rich in fibroblasts. Understanding the
regulation of CAF in HCC is critical. CAFs-derived EVs are low
in miR-320a, which binds to its direct downstream target PBX3
and inhibits HCC by suppressing MAPK pathway activation
(Figure 4. ⑥) (164). The expression of CAFs-derived EVs-MiR-
150-3p is reduced, which can inhibit the migration and invasion
of hepatocellular carcinoma cells (Figure 4.⑦) (205), suggesting
it may be a new therapeutic option. Meanwhile, studies have
reported that miR-195 in HCC has been downgraded to VEGF,
CDC42, CDK1, CDK4, CDK6, and CDC25 (206, 207). As
FIGURE 4 | Regulation of HCC by different cell-derived EVs.
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described, understanding the mechanism of fibroblasts-derived
EVs on HCC can help design new therapeutic approaches.
7 HYPOXIA-INDUCED
MICROENVIRONMENT AFFECTS THE
REGULATION OF HCC BY EVs

Many solid tumors live in the hypoxic microenvironment. Hypoxia
promotes the production and release of EVs from cancer cells.
Studies have showed that the number of sEVs in breast cancer cells
and oral squamous carcinoma cells was significantly increased
under hypoxic conditions (208). Hypoxia-inducible factor-a1 is a
regulator of cells under hypoxic conditions and can facilitate the
release of EVs (209). The proteins and nucleic acids of sEVs are also
altered in the hypoxic environment (210). Under hypoxic
conditions, miR-1273f carried by sEVs could accelerate the
progression of HCC, targeting LHX6, which further inhibits HCC
tumorigenesis or malignant transformation by targeting theWnt/b-
catenin signaling pathway (211). Hypoxia-generated sEVs can
Frontiers in Oncology | www.frontiersin.org 1292
inhibit the expression of E-cadherin, thereby promoting EMT
(212). EVs derived from HCC cells could affect angiogenic
endothelial cells under the hypoxic conditions through
upregulation of miR-155, thereby affecting tumor angiogenesis
(213). Furthermore, EVs released from epithelial ovarian cancer
(EOC) cells can express more miR-21-3p, miR-125b-5p and miR-
181d-5p under the hypoxic conditions, thus facilitating M2
macrophage polarization (214). Additionally, DLX6-AS1 carried
by HCC is in competition with miR-155 to regulate CXCL17. M2
macrophage polarization is induced, and migration, invasion, and
EMT of HCC will be accelerated (215). Unfortunately, the authors
did not investigate whether hypoxia accelerates this process. Rong, L
et al. saying that hypoxia enhanced the secretion of sEVs in breast
cancer cells, thereby inhibiting the proliferation of T cells (216).
Moreover, hypoxia induced a significant increase in TGF-b1
content in cancer cell-derived EVs, decreased the expression of
the activation receptor NKG2D, and inhibited the cytotoxicity of
NK cells and also reduced the production of IFN-g (217). Therefore,
the tumor hypoxic microenvironment is closely related to tumor
development, treatment and prognosis, which has become a
research hotspot to find new treatments for HCC (Figure 5).
FIGURE 5 | Hypoxia-induced microenvironment affects the regulation of HCC by EVs : The role of EVs derived from HCC on immune cells in the hypoxic
environment. ① Suppressing the proliferation of T cells or rendering them incompetent. ② Whether the inhibitory effect on IFN-b production by NK cells and the
process of inducing macrophage polarization are enhanced remains to be verified. The role of HCC-derived EVs facilitates EMT. ③ In the hypoxic environments,
miR-1273f is upregulated in HCC-derived EVs, acting on LHX6 to activate Wnt/b-catenin to promote EMT. ④ In the normoxic environment, HCC-derived EVs contain
N1D1, which may activate the ERK/MAPK pathway in recipient HCC cells to promote EMT. Regulation of angiogenesis by HCC-derived EVs. ⑤ In the hypoxic
environments, miR-155 is upregulated in HCC-derived EVs and promotes angiogenesis. ⑥ In the normoxic environment, HCC-derived EVs are enriched in N1D1 and
HSP1, which promote angiogenesis.
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TABLE 3 | EVs as biomarkers for the diagnosis of HCC.

Classification Biomarkers Expression Species Type of biolo-
gical fluid

AUROC Clinical significance Refs

m/lEvs AnnexinV+EpCAM+ASPGR1+CD133+taMPs ↑ Human serum 0.7439 Diagnosis of HCC/CCA from LC
(225)

EpCAM+AnnexinV +ASGPR1+taMPs ↑ Human serum 0.7322 Diagnosis of HCC/CCA from LC
(225)

Total m/lEVs of peripheral blood ↑ Human serum 0.83 Diagnosis of E-HCC from LC (TNM
stage I) (226)

sEVs microRNA miR-148a ↑ Human serum 0.871 Diagnosis of HCC from NC Diagnosis
of E-HCC from LC (227)0.860

miR-122 ↑ Human serum 0.990 Diagnosis of HCC from NC Diagnosis
of E-HCC from LC (227)0.795

miR-1246 ↑ Human serum 0.825 Diagnosis of HCC from NC Diagnosis
of E-HCC from LC (227)0.761

miR-638 ↑ Human serum —— Associated with tumor recurrence, As
a prognostic marker (228)

miR-125b ↑ Human serum 0.739 Prediction of recurrence and survival
(229)

miR-93 ↑ Human serum 0.825 The prognosis and diagnosis of HCC
(147)

miR-665 ↑ Human, serum —— Diagnosis and prognosis of HCC
(230)Mice

miR-92b ↑ Human, serum 0.702 Prediction of E-HCC relapse after
LDLT (231)Rats

miR-21 ↑ Human serum —— Detection of E-HCC, Prognostic
marker (232)

miR-718 ↑ Human serum —— Prediction of HCC relapse after LDLT
(233)

miR-21-5p ↑ Human serum 0.71 Diagnosis of HCC from LC
(234)

miR-21, miR-10b ↑ Human, serum —— Prognostic markers of E-HCC
(235)Mice

miR-18a, miR221, miR-222, miR224 ↑ Human serum —— Diagnosis of HCC from LC/CHB
(223)

miR-101, miR106b, miR-122, miR-195 ↑ Human serum —— Diagnosis of HCC from CHB
(223)

miR-122, miR148a, miR-1246 ↑ Human serum —— Diagnosis of HCC from LC
(227)

miRNA-519d, miR-595, miR-939 ↑ Human serum —— Diagnosis of HCC from LC
(222)

miR-10b-5p, miR-221-3p, miR-223-3p, miR-
21-5p

↑ Human plasma 0.86 Diagnosis of HCC from CH or LC
(234)

lncRNA lncRNA-HEIH ↑ Human serum —— Diagnosis of HCV-associated HCC
from CHC (236)

LINC02394 ↑ Human serum 0.719 Diagnosis of HCC from CHB
(237)

LINC00635 ↑ Human serum 0.750 Diagnosis of HCC from CHB
(237)

LINC00161 ↑ Human serum 0.794 Prediction of HCC growth and
metastasis (238)

IncRNA-ATB ↑ Human serum —— The prognosis of HCC
(239)

Lnc85 ↑ Human plasma 0.869 Diagnosis of AFP-negative HCC from
healthy controls and LC (163)

SENP3-EIF4A1 ↑ Human,
Mice

plasma 0.8028 The diagnosis of HCC
(160)

circRNA circFBLIM1 ↑ Human,
Mice

serum —— The therapeutic target of HCC
(149)

circ-0051443 ↑ Human,
Mice

plasma 0.8089 The diagnosis and therapeutic target
of HCC (161)

circRNA-100338 ↑ Human,
Mice

serum —— The diagnosis and therapeutic target
of HCC (240)

circUHRF1 ↑ Human,
Mice

plasma —— The therapeutic target of HCC
(169)

(Continued)
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8 BIOMARKERS

EVs are providing important links for intercellular information
transfer (218), and specific proteins and nucleic acids in EVs are
important biomarkers for clinical diagnosis of various liver
diseases.At present, the clinical assessment of liver damage is
mainly based on liver enzyme profiles, such as aspartate
aminotransferase (AST), alanine aminotransferase (ALT) (219–
221). However, these enzyme markers lack specificity for liver
diseases. Traditional tumor markers such as AFP, AFP-L3 are
susceptible to other liver diseases and cannot analyze HCC for
etiology, which has certain limitations. Therefore, to find new
specific markers for patients with liver disease is significant.
Much research mentioned that the proteins and nucleic acids
carried by EVs can serve as markers to predict the prognosis of
patients with liver disease (222–224).
8.1 EVs-Associated Nucleic Acids as
Biomarkers for HCC Diagnosis
8.1.1 miRNAs
miRNAs in serum EVs hold great potential as novel diagnostic
biomarkers, and some of which have been reported worldwide
(Table 3). Elevated levels of miRNA-21 and lncRNA-ATB
Frontiers in Oncology | www.frontiersin.org 1494
expression were found to have higher specificity and sensitivity
for HCC (232, 239). Patients with postoperative recurrence of
HCC have significantly reduced the expression of miRNA-718,
which was associated with the highly aggressive nature of HCC
(233). Interestingly, Wang, Y et al. proposed that EVs-miR-122,
EVs-miR-148a and EVs-miR-1246 in HCC patients serum were
apparently higher than those in the LC and the NC group, and
that these miRNAs combined with AFP could effectively reduce
the rate of misdiagnosis (227). However, for HCC patients with
low AFP expression, whether or not with hepatitis virus
infection, sEVs’ miRNAs are more indicative of being markers
of HCC when they are expressed as miR-10b-5p+ miR-221-3p+
miR-223-3p and miR-10b-5p+ miR-221-3p+ miR-223-3p+ miR-
21-5p (234). Tian X et al. indicated that an acidic environment
triggers HIF-1a and HIF-2a activation and facilitates the
expression of EVs-miR-21 and EVs-miR-10b, significantly
promoting the progression of HCC both in vivo and vitro
(235, 249). We also find that several miRNAs are studied at
high frequency, such as miR-21 and miR-122, and the results
may differ in different study contexts. Besides, we read that some
serum miRNAs are biomarkers of HCC (250–256), but it is not
explicitly stated that these miRNAs are associated with EVs, and
their roles in the progression and recurrence of HCC need to be
further explored.
TABLE 3 | Continued

Classification Biomarkers Expression Species Type of biolo-
gical fluid

AUROC Clinical significance Refs

circ-DB ↑ Human,
Mice

adipocyte —— The prognosis of HCC
(202)

proteins LAPTM4B-35 ↑ Human serum —— Prediction of recurrence and
diagnosis of HCC (241)

SMAD3 ↑ Human,
Mice

peripheral
blood

0.70 The diagnosis of HCC
(242)

RAB5A ↑ Human serum —— The diagnosis and therapeutic target
of HCC (243)

ENO1 ↑ Human,
Mice

serum —— The prognosis of HCC
(244)

Other
combinations

miR-122, miR-148a, AFP ↑ Human serum 0.931 Diagnosis of HCC from LC
(227)

SMAD3+ATP ↑ Human,
Mice

peripheral
blood

0.90 The diagnosis of HCC
(242)

lncRNA-RP11-513I15.6, miR-1262/RAB11A ↑ Human serum —— Diagnosis of E-HCC from CHB
(245)

miRNA-21, lncRNA-ATB ↑ Human serum —— The prognosis of HCC, overall
survival (239)

ENSG00000258332.1, LINC00635, AFP ↑ Human serum 0.894 The diagnosis and prognosis of HCC
(237)

AFP、ENST00000248932.1,
ENST00000440688.1, ENST00000457302.2

↑ Human plasma 0.905
0.879

Predict the probability of HCC in the
cancer‐free groups
Predict the probability of HCC in the
CH groups

(246)

Total EVs Total EV ↑ Human serum 0.83 Detection of HCC
(225)

AFP, GPC3, ALB, APOH, FABP1, FGB, FGG,
AHSG, RBP4, TF

↑ Human plasma 0.93 Diagnosis of E-HCC from LC
(247)

LINC00853 ↑ Human serum 0.956 Diagnosis of E-HCC from CH、LC
(248)
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8.1.2 lncRNAs
In recent years, the potential of EVs-derived lncRNAs in the
prognosis of HCC has also attracted growing research interest.
lncRNAs alter lncRNA expression can contribute to the cancer
phenotype by stimulating cell proliferation, angiogenesis, immune
evasion, and inhibition of apoptosis. Among them, linc-VLDLRwas
identified as a lncRNA enriched in EVs that contributes to the
cellular stress response (257). ENSG00000248932.1,
ENST00000440688.1 and ENST00000457302.2 were significantly
increased in HCC patients, suggesting that lncRNAs may predict
tumorigenesis and can be used to dynamically monitor HCC
metastases (246). The expression of lncRNA-HEIH was higher in
patients with HCV (hepatitis C virus)-associated HCC than that of
CHC (chronic hepatitis C) patients (236, 258). Some indicated that
sEVs levels of ENSG00000258332.1 and LINC00635 in serum were
significantly high and it would be more specific and sensitive when
they combined with serum AFP to detect HCC (237). Huang X and
Kim S et al. suggested that EVs-derived Lnc85 and LINC00853
showed high positivity in AFP-negative patients with early HCC
and were significantly better than AFP, respectively, which is
particularly relevant to patients with AFP-negative tumors (163,
248). The potential of EVs containing lncRNAs as biomarkers in the
process of HCC diagnosis cannot be ignored, and to find more
specific markers for HCC is the next research direction.

8.1.3 CircRNA
There is growing evidence that circRNA in EVs has certain
advantages in terms of abundance and stability, indicating that
they are promising therapeutic targets for HCC. Similar to
miRNA and lncRNA, changes in circRNA expression can also
affect the occurrence and progression of HCC (259). In addition,
circFBLIM1 was significantly expressed in HCC serum sEVs and
promoted HCC progression by affecting the miR-338/LRP6 axis
(149). Similarly, Bai N et al. found that circFBLIM1 acts as
ceRNA to facilitate HCC by sponging miR-346 (260). In
contrast, sEVs-circ-0051443 inhibits HCC progression by
regulating miR-331-3p/BAK1 (161). Moreover, Huang XY
et al. indicated that HUVECs receiving the circRNA-100,338
could boost the metastatic capacity of HCC cells, which may be
Frontiers in Oncology | www.frontiersin.org 1595
related to the regulation of angiogenesis (209). Furthermore,
serum EVs-circrna-100, 338 in patients with radical hepatic
resection HCC are persistently hyperexpressed, dedicating lung
metastases and low survival (240). Ultimately, circMTO1 (261),
circSETD3 (262), cSMARCA5 (263), and hsa_circ_0068669
(264) also play key roles in HCC and are potential therapeutic
targets, but it remains unclear whether these circRNAs and EVs
are related.
8.2 EVs-Associated Proteins as
Biomarkers of Liver Disease
EVs proteins change with the environment and state of liver cells,
it can be used directly or indirectly as a biomarker in different
liver diseases (265, 266) to predict the progression of the
corresponding liver disease (Table 4). CYP450-2E1 (227) and
protein tyrosine phosphatase receptor (sPTPRG) isoforms
associated with EVs are biomarkers of liver injury, and
sPTPRG in plasma reflects the extent of liver injury (274, 278).
If CD8, CD14, and connective tissue growth factor (CCN2) are
highly expressed in EVs, they can be used to assess the degree of
liver fibrosis (272, 273, 279). High expression of Apolipoprotein
A-1 by EVs elevates liver-specific proteins such as FGB, causing
toxic acute liver injury (269). Studies have shown that EVs
containing Carboxylesterase-1 and Carboxylesterase-3 can be
evaluated for hepatotoxicity (269, 270). JH H et al. indicated that
EVs highly express AnnexinV+EpCAM+ASGPR1+CD133+
taMPs, which can be a novel biomarker for HCC and CCA
liquid biopsies (225). If MMP-7 is highly expressed in EVs, it
could be a marker for the differential diagnosis of CCA (271).
Hepatocytes secrete EVs if ASGPR1+, which can be an
alternative non-invasive biomarker of portal hypertension in
NASH patients (267).

High CD4+ expression in EVs can be a biomarker to
diagnosis nonalcoholic fatty liver (NASH) from chronic
hepatitis C (CHC) (268). Positive CD34+ with ASGPR (heavy
alcoholic hepatitis) or CK18 (alcoholic hepatitis) in EVs can be
used as biomarkers (276, 277), among them, CD34 can also be
used as a biomarker to determine heavy alcoholic hepatitis (276).
TABLE 4 | EVs-associated proteins as biomarkers of liver disease.

Liver disease Biomarkers Types Function References

Non-alcoholic
steatohepatitis(NASH)

ASGPR1+ Protein A surrogate noninvasive biomarker of portal hypertension in patients
with cirrhotic NASH.

(267)

CD4+ Protein Biomarkers of nonalcoholic fatty liver(NAFL)and CHC (268)
Toxic acute liver injury Apolipoprotein A-1 Protein Tentative hepatotoxic markers during hepatic damage (269)

Carboxylesterase-1 Protein Hepatotoxic markers during hepatic damage (269)
Carboxylesterase-3 Protein Non-invasive indicator of drug toxicity (270)

CCA AnnexinV+EpCAM+ASGPR1
+CD133+ taMPs

– A novel biomarker of HCC and CCA liquid biopsy (225)

MMP-7 Protein Biomarkers for the diagnosis of CCA (271)
Liver fibrosis CD8+ Protein A biomarker for liver fibrosis (272)

CD14+ Protein A tamps biomarker for liver fibrosis (273)
Alcoholic steatohepatitis
(ASH)

CYP450-2E1 Cytochrome A potential biomarker for liver injury (274)
CD40L Protein A potential biomarker for ASH (275)

Alcoholic hepatitis CD34+ ASGPR Protein Biomarkers of alcoholic hepatitis (276)
CK18 Protein Biomarkers of alcoholic hepatitis (277)
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ENO1 upregulates the expression of integrin a6b4 and activates
the FAK/Src-p38MAPK pathway (244). Gorji-Bahri G et al.
suggested that RAB5A knockdown could be used as a
therapeutic target to control the progression of HCC (243).
Pang Y et al. saying that LAPTM4B-35 is associated with the
HCC relapse, drug resistance, and it is expected to be a new
diagnostic marker for HCC (241).

Many studies have shown that EVs affect the progression of
various liver diseases by regulating cellular functions and
activating key signaling pathways in receptor cells, obviously,
which are newly discovered potential biomarkers, to open up
new ways to clinically distinguish different kinds of liver disease.
Unfortunately, the role of EVs in the diagnosis, prognosis
determination and predictive value of liver diseases is still
lacking sufficient clinical evidence. Studies on the sensitivity
and specificity of these markers in liver disease have also been
reported relatively rarely, and relevant applications remain to be
further investigated.
9 VESICLE-LOADED DRUGS

9.1 EVs are Natural Nanocarriers
EVs are endogenous cell-derived membranous structures,
natural nanocarriers with very low cytotoxicity and
immunogenicity, protecting the transported RNA from
disassembly and phagocytosis by ribonucleases, with inherent
activity targeting and ability to cross biological barriers (30). EVs
can transport a wide variety of bioactive molecules, thus altering
the physiological functions of the recipient cells and reducing the
accumulation of chemotherapeutic drugs in non-target organs,
thereby reducing off-target toxicity. Additionally, EVs can bind
to each other through various ligand receptors, especially
cytokinesis (280). EVs are efficient as synthetic nanocarriers.
EVs as nucleic acid and drug delivery vehicles has been
extensively studied (281, 282). Notably, EVs as drug carriers
need to find an efficient method as cargo loading. Different
techniques such as electroporation (283), incubation (284),
sonication (285), and freeze-thawing have been applied for the
EVs loading (286). What’s more, EVs can also be loaded with
specific cargoes with endogenous mechanisms such as direct
transfection or co-incubation to deliver the cargo to the
cytoplasm (287, 288). However, these loading techniques may
lead to some changes in the morphological characteristics and
physicochemical properties of EVs, as well as aggregation of
themselves or of the cargo they carry (289, 290). A more accurate
understanding of the proteomic profile of EVs and the factors
influencing protein composition will facilitate the development
of protein-based therapeutic strategies for EVs in the future
(291, 292).

9.2 Application of Drug-Carrying EVs
in HCC
We review emerging strategies for targeted delivery using EVs
and explore the use of them for the treatment of hepatocellular
carcinoma. Treatment of H22 cells with the chemotherapeutic
Frontiers in Oncology | www.frontiersin.org 1696
drug methotrexate (MTX) and irradiation with UV light, which
could secrete Microparticles (MPs) when co-incubate with the
remaining H22 cells, effectively kill tumor cells and reduce
adverse effects, while impeding drug efflux (98). We read that
RBC-EVs loaded with doxorubicin or sorafenib showed
enhanced therapeutic effects in mouse models of in situ HCC
through a macrophage-dependent mechanism compared with
conventional doses of doxorubicin and sorafenib (293). More
importantly, drug-loaded RBC-EVs did not show systemic
toxicity, whereas conventional doses of doxorubicin and
sorafenib did. The main challenges in the current clinical
application of EVs are the limited yield and the susceptibility
to contamination of EVs with various centrifugation methods
(105, 114), which affects the purity and biological properties of
EVs. In addition, although EVs are good natural carriers, how
to load substances efficiently such as antitumor drugs or genes
into EVs is still an urgent technical problem to be solved. Drug-
carrying EVs are promising for clinical applications in the
treatment of liver diseases, and careful selection of cells of
origin for EVs, the creation of appropriate methods for loading
the molecules they carry, overcoming low yields, etc. are
current research hotspots.
10 DISCUSSION

EVs are sensory molecules for information exchange between
tumor cells in the microenvironment, activating different
signaling pathways and influencing the development,
progression and metastasis of tumors (294–297). In recent
years, EVs have become promising vehicles in liver disease for
their low toxicity, high stability and preferential absorption
(298). Today, the application of EVs is still in its early stages.
Although there have been clinical trials choosing miRNAs for
liver disease, they are still not available for clinical use (298),
lacking a number of clinical trials to demonstrate the
effectiveness of EVs. The mechanisms and clinical applications
of EVs in liver disease need to be studied in more depth. EVs may
be an effective intervention in the future, showing a new light for
oncology patients. What’s more, EVs can also alter the function
of recipient cells and is crucial in the genesis, development and
pathogenesis of HCC. Circulating EVs, as a novel signaling
modality, which are involved in multiple processes including
tumor development and metastatic drug resistance, are
promising biomarkers for diagnosing liver disease and
monitoring treatment response (46).

Notably, our current understanding of EVs is still inadequate
and standard methods for isolating and tracking EVs are lacking.
EVs are nearly released by all cells in the body, and many
mechanisms involved in their production, transport, uptake
and involvement in cancer development have not been fully
explored (299), and challenges remain in the extraction,
identification and processing of EVs biomarkers for analysis.
In addition, the complexity of the immune response and
microenvironment in the liver poses a significant challenge to
the routine treatment of patients with HCC (300). Therefore, it is
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important to improve isolation techniques, tracking methods,
screening for tissue-specific markers of EVs or the identifying
EVs of tissue-specific origin in lesions. Making full use of the
different extraction techniques available and optimising them is
an important next step in research. In addition, experiments in
vitro and in vivo on EVs still have many limitations, so there is an
urgent need to establish well-developed experimental models to
further explore their properties and mechanisms of action, and
to explore the potential of using this intercellular communication
modality in the TME for molecular diagnosis and targeted
therapy of tumors. In conclusion, current studies indicate that
EVs is crucial in mediating the progression of liver disease and
therefore can be thought as a potential therapy for HCC. With a
more comprehensive understanding of EVs, more valuable
references will be provided for the prevention, diagnosis and
prognosis of HCC.
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GLOSSARY

ADC apparent diffusion coefficient
ADMSC adipose-derived mesenchymal stem cells
AF4 Asymmetrical flow field-flow fractionation
AHSG alpha 2-HS glycoprotein
ALB albumin
ALT alanine aminotransferase
APOH apolipoprotein H
ASGPR1 asialoglycoprotein receptor
ASH Alcoholic steatohepatitis
AST aspartate aminotransferase
AUROC Area under Receiver Operating Characteristics
BCA bicinchonic acid
BM-MSCs Bone marrow mesenchymal stem cells
CAFs Cancer-associated fibroblasts
CCA Cholangiocarcinoma
CCN2 Connective tissue growth factor
ceRNA competing endogenous RNA
CFH Complement Factor H
CH chronic hepatitis
CHB chronic hepatitis B
CHC chronic Hepatitis C
CHOP enhancer-binding protein homologous protein
CK18 Cytokeratin-18
CLEC3B C-Type Lectin Domain Family 3 Member B
CSCs Cancer stem cells
CTGF connective tissue growth factor
DCP des-gamma-carboxy prothrombin
DDS drug delivery system
EVs Extracellular vesicles
EC endothelial cells
EGF endothelial growth factor
E-HCC early-stage hepatocellular carcinoma
EMT Epithelial–mesenchymal transition
ENO1 Alpha-enolase
EpCAM epithelial cell adhesion molecule
ESCRT endosomal sorting complex required for transport
ELISA enzyme linked immunosorbent assay
FCS fluorescence correlation spectroscopy
FABP1 fatty acid binding protein 1
FGB fibrinogen beta chain
FUS focused ultrasound
GEVs Glioma-derived EVs
GGT glutamyl aminotransferase
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GPC3 glypican3
HCC hepatocellular carcinoma
HCV Hepatitis C Virus
HDL High-density lipoprotein particles
HEMs Adult human epidermal melanocytes
HGF Hepatocyte growth factor
HIF-1a Hypoxia Inducible factor 1 a
HIF-2a Hypoxia Inducible factor 2 a
HSCs Hepatic stellate cells
HUVECs Human umbilical vein endothelial cells
IL nterleukin
ILVs intraluminal vesicles
iNOS Inducible nitric oxide synthase
LAMP2B lysosomal associated membrane protein 2B
LC liver cirrhosis
LDLT living donor liver transplantation
LG3BP galectin-3-binding protein
LFIA Lateral-Flow Immunochromatographic Assay
MMP Matrix metalloproteinase
MPs Microparticles
MSC mesenchymal stem cells
MVBs multivesicular bodies
m/lEVs medium/large EVs
MDVs Mitochondria-Derived Vesicles
MAC membrane attack complex
NTA nanoparticle tracking analysis
NAFL Nonalcoholic fatty liver
NASH non-alcoholic steatohepatitis
NC normal control
NVs Nanovesicles
PIGR polymeric immunoglobulin receptor
RBP4 retinol binding protein 4
ROS reactive oxygen species
sEVs small EVs
SNX9 sorting nexin 9
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SAH Severe alcoholic hepatitis
SMAD3 SMAD Family Member 3
sPTPRG Protein tyrosine phosphatase receptor Gamma
TAMs Tumor-associated macrophages
TF transferrin
TGF-b Transforming growth factor
TME Tumor microenvironment
TNFa Tumor necrosis factor alpha
TSG101 tumor susceptibility gene 101 protein
TRPS tunable resistive pulse sensing
VEGF Vascular endothelial growth factor
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Drug resistance is a major impediment to patient survival and remains the primary cause of
unsuccessful cancer therapy. Drug resistance occurs in many tumors and is frequently
induced by chemotherapy which triggers a defensive response both in cancerous and
cancer-associated cells that constitute the tumor microenvironment (TME). Cell to cell
communication within the TME is often mediated by extracellular vesicles (EVs) which
carry specific tumor-promoting factors able to activate survival pathways and immune
escape mechanisms, thus sustaining tumor progression and therapy resistance. NF-kB
has been recognized as a crucial player in this context. NF-kB activation is involved in EVs
release and EVs, in turn, can trigger NF-kB pathway activation in specific contexts, based
on secreting cytotype and their specific delivered cargo. In this review, we discuss the role
of NF-kB/EVs interplay that sustain chemoresistance in the TME by focusing on the
molecular mechanisms that underlie inflammation, EVs release, and acquired
drug resistance.

Keywords: extracellular vesicles, NF-kB, drug resistance, tumor microenvironment, inflammasome
INTRODUCTION

Cancer chemotherapy resistance is the innate and/or acquired ability of cancer cells to escape the effects
of chemotherapeutics and represents a great challenge in cancer therapy to improve clinical outcomes.
The development of resistance occurs in many tumors and depends partially on genetic instability,
heterogeneity, speedymutation in the tumor cell, cytogenetic changes, and intra-neoplastic diversity (1,
2). The tumormicroenvironment (TME) is also considered to be a factor for resistance development in
many cancers, as chemotherapy frequently triggers a defensive response not only in cancerous cells but
also in cancer-associated cells within the TME (3). Activation of survival pathways and immune escape
mechanisms are oftenmediate by extracellular vesicles (EVs), which release their cargo in recipient cells
within TME. EVs are lipid-contained vesicle, which are classified based on their size, biogenesis, and
release mechanism. EVs include microvesicles (MVs), exosomes (EXs) and apoptotic bodies (ABs) (4).
MVs are 100 to 1000 nm in size, EXs are smaller and range in size from 30 to 150 nm, while ABs show a
size ranging from50 to 5000 nm.MVs andABsdirectly bud fromcytoplasmicmembrane,while EXs are
produced by inward budding of plasma membrane and formation of endosomes, which mature into
multivesicular bodies (MVBs) and subsequently were secreted into extracellular space (5, 6). Among
EVs, exosomes are the best characterized. After formation, early endosome is processed inMVBs by the
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endosomal sorting complexes required for transport (ESCRT),
directing by the invagination of MVBs outer membrane and
packaging of biomolecules (7). EVs support intracellular
communications within the TME by carrying specific tumor-
promoting factors that positively regulate several pro-survival
pathways including NF-kB, which plays a pivotal role in
this context.

NF-kB transcription factor family consists of a group of
inducible effectors which regulate a plethora of genes involved in
several physiological processes such as inflammation (8),
differentiation (9), survival (10), proliferation (11), and
immunity (12). However, dysregulated NF-kB signaling is often
found in many pathological conditions including inflammatory
disorders (13), autoimmunity (14), and cancer (15). NF-kB family
comprises five structurally related members, specifically, p65
(RelA), RelB, c-Rel, p50 (NF-kB1), and p52 (NF-kB2) that form
homodimers and heterodimers able to specifically bind the
consensus kB site 5’-GGGPuNNPyPyCC-3 (16) with different
transcriptional activity (17). p50 and p52 are active forms of
precursors proteins p105 and p100 respectively that, in turn,
operate both as NF-kB precursors and inhibitors of NF-kB
dimers (18). Activation of NF-kB pathway occurs through two
major mechanisms, namely canonical (or classical) and non-
canonical (or alternative) pathways (19). In absence of stimuli,
NF-kB dimers are retained within the cytosol in inactive forms
through their interaction with IkB (inhibitor of kappa B) proteins
(20). In the canonical pathway, upon stimulation [i.e.,
lipopolysaccharide (LPS), tumor necrosis factor a (TNF-a)],
IKK (IkB kinase) (21) proteins (IKKa, IKKb, IKKg) assemble
into multiproteic complexes and trigger NF-kB activation.
Specifically, in presence of stimuli, activated IKK complex
phosphorylates IkB proteins, thus inducing its ubiquitination
(22) and proteasomal degradation and allowing, in turn, NF-kB
dimers to translocate into the nucleus and activate its target genes.
In the non-canonical pathway, induced by a subset of tumor
necrosis factor receptor (TNFR) superfamily members upon
stimulation by several factors such as lymphotoxin B and BAFF,
the activation of the heterodimers p100/RelB is triggered by NF-
kB inducing kinase (NIK) that activates IKKa complex and in
turn promote the processing of p100 in p52 and the nuclear
translocation of the active p52/RelB dimer.

While the role of NF-kB in promoting cancer progression and
drug resistance is well-known, emerging evidence are pointing
out for a crucial interplay between NF-kB and EVs that sustain
TME remodeling, tumor inflammation and therapy resistance.
Here, we discuss this crosstalk by focusing on the molecular
mechanisms that underlie inflammation, EVs release, and
acquired drug resistance.

NF-kB: A Master Regulator of
Inflammation and Therapy
Resistance in Cancer
NF-kB Signaling in Inflammation and Cancer
During carcinogenesis, parenchymal cells continuously interact
with the surrounding environment establishing a plethora of
interactions with stromal cells (i.e., fibroblasts, endothelial cells,
Frontiers in Oncology | www.frontiersin.org 2108
adipose cells, mesenchymal stem cells), immune cells, and
extracellular matrix that constitute the TME (23). In this context,
inflammationplays a key role in contributing to carcinogenesis and
promoting the metastatic phenotype (24, 25). NF-kB constitutive
activation is widely recognized as a hallmark of many types of
tumors includinghepatocellular carcinoma(26), breast cancer (27),
lymphoid malignancies (28), colorectal (29) and prostate cancer
(30). In addition to promoting tumor cell survival, oncogenic NF-
kB signaling operates in the TME, thereby linking inflammation
and cancer (15, 31). The inflammatory response is mainly induced
by TNF-a, Interleukin-1b (IL-1b), and Interleukin-6 (IL-6). These
cytokines usually are not overexpressed in healthy tissues but are
significant upregulated in response to several pathological stimuli.
Although released toprotect the host, these cytokines often trigger a
positive feedback mechanism promoting a chronic inflammation
that, in turn, sustains, carcinogenesis and tumor progression (32).
Accordingly,NF-kBactivation innon-malignant tumor-associated
cells has been shown to amplify the production of cytokines and
other specialized effectors that promote tumor-cell proliferation,
invasion and therapy resistance, while suppressing anti-tumor
immune responses (33). Damage-associated molecular patterns
(DAMPs), are endogenous molecules produced by dying cancer
cells in response to stress and cell injury (34). After production,
DAMPs are secreted through several mechanisms including
extracellular vesicles (EVs) (35); these are recognized by specific
pattern recognition receptors (PRRs) expressed on several cells,
such as monocytes and macrophages, which activate different
inflammatory pathways including NF-kB pathway. In turn, NF-
kBactivation causes the release of proinflammatory cytokines, such
as IL-1b (36). As part of a positive feedback loop, active IL-1b binds
to IL-1 receptors (IL-1R) on cancer cells and further stimulate NF-
kB signaling, thus inducing the expression of pro-inflammatory
cytokines TNF-a and IL-6 and sustaining NF-kB-mediated
chronic inflammation (37–39). Moreover, enhanced or
deregulated NF-kB activity in fibroblasts and macrophages
promotes their switching to cancer-associated fibroblasts (CAFs)
and tumor-associated macrophages (TAMs), respectively, thus
supporting tumor progression, vascularization and tumor
growth, as observed in several cancers (40–45). NF-kB signaling
also plays an important role inmacrophages polarization (46);M1-
type macrophages have a pro-inflammatory activity and tissue
damaging properties, while M2 macrophages, with their anti-
inflammatory phenotype, promote cell proliferation and tissue
repair. Interestingly, although NF-kB represents a key
transcription factor in M1 macrophage during the early stage of
tumorigenesis, it alsoplays a pivotal role in advanced stageswhere it
polarizes TAMs toward the immunosuppressive and tumor-
promoting M2 phenotype. Indeed, we have demonstrated that
NF-kB activation, through its target gene GADD45B, prevents
TAM polarization to M1, thus inhibiting their antitumor activity
(47, 48). Furthermore, it was observed that NF-kB p50
protein suppresses M1-type polarization and supports M2
immunosuppressive phenotype (49). The role of NF-kB in CAFs
and TAMs polarization represents a hallmark of inflammatory
TME and has been well explained in many excellent reviews (50,
51). In summary, as discussed below, NF-kB-mediated
June 2022 | Volume 12 | Article 933922
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inflammation constitutes an important link between EVs activity
and acquired drug resistance.

NF-kB-Driven Drug Resistance
In addition to promote initiation and tumor progression, NF-kB
signaling fosters cancer resistance to chemotherapy. Although
chemotherapy is the gold standard option for many types of
cancers, multi-drug resistance (MDR) occurring in late/advanced
stages significantly limits its long-term efficacy. Several authors
reported that various anti-cancer drugs can activate NF-kB
pathway by different mechanisms (Figure 1). The microtubule
stabilizer paclitaxel, triggers NF-kB cascade by binding the toll-like
receptor 4 (TLR4) (52). Other microtubule polymerization
inhibitors, such as vinblastine and vincristine, can activate NF-kB,
specifically by inducing protein kinase C-mediated phosphorylation
and subsequent degradation of IkBa (53, 54). Another class of drugs
able to induce NF-kB are the topoisomerases inhibitors, such as
doxorubicin and SN38, that act by directly activating IKK complex
(55). Once activated, NF-kB promotes chemoresistance in different
ways, including the induction of anti-apoptotic genes, thus
increasing resistance to drug-induced damage, and the
Frontiers in Oncology | www.frontiersin.org 3109
overexpression of efflux pumps to prevent xenobiotic
accumulation. In A549 human lung adenocarcinoma cells,
chemotherapy-induced NF-kB activation leads to the expression of
anti-apoptotic proteins like BCL-xL and BFL1 that in turn promote
cancer cell survival (56). Furthermore, NF-kB induces resistance to
apoptosis by upregulating the expression of inhibitors of apoptosis
proteins (IAPs) (57) and suppressing the TNF-related apoptosis-
inducing ligand (TRAIL) pathway (58). In addition, activation of
NF-kB signaling can lead to chemoresistance by directly inducing
the expression of efflux pumps proteins, such as human multidrug
resistance protein 1 (MDR1), also known as P-glycoprotein 1 (P-gp),
and ATP-binding cassette sub-family B member 1 (ABCB1). P-gp is
an ATP-dependent transporter with a broad spectrum of activity,
and it is able to efflux nonionic and amphipathic xenobiotics like
anthracyclines, vinca-alkaloids and taxanes. It has been observed that
NF-kB can transactivate the promoter of MDR1 (59) and that the
inhibition of this signaling results in the downregulation ofMDR1 in
different types of cancers (60–62). NF-kB is also a transcriptional
regulator of cyclooxygenase-2 (COX-2) (63), whose activity showed
a strong correlation with P-gp expression in hepatocellular
carcinoma (64) and colorectal cancer (65), and with multidrug
FIGURE 1 | Mechanisms of NF-kB-induced drug resistance. NF-kB can be activated in cancer cells in response to several anticancer drugs, including microtubule stabilizers (i.e.,
paclitaxel), microtubule polymerization inhibitors (i.e., vinblastine and vincristine) and topoisomerases inhibitors (i.e., doxorubicin and SN38). When activated, NF-kB promotes drug
resistance by inducing the transcription of genes such as miRNAs, as well as genes codifying for prosurvival factors, anti-apoptotic effectors, and efflux pumps.
June 2022 | Volume 12 | Article 933922
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resistance protein 4 (MRP4) in lung cancer (66). Another important
mechanism in NF-kB-mediated drug resistance involves
microRNAs (miRNAs). In this regard TRAIL cascade activation
induces NF-kB with subsequent upregulation of miR-21 and miR-
100, which in turn activate TNF Receptor Associated Factor 7
(TRAF7) and sustain NF-kB signaling, thus generating a positive
feedback loop that suppresses TRAIL-induced apoptosis (67). NF-kB
is also involved in radiotherapy resistance through the transcription
of prosurvival genes that mediate resistance to ionizing radiation
such as DNA-damage sensor ataxia-telangiectasia mutated (ATM)
and cyclin B1 (68). In addition, overexpression of several miRNAs,
such as miR-125b and miR-668, leads to NF-kB activation by
targeting TNF alpha induced protein 3 (TNFAIP3/A20) and IkBa,
respectively, thus promoting radioresistance in nasopharyngeal
carcinoma (69) and in breast cancer (70). These findings show
that NF-kB activation induces drug resistance at multiple levels and
that its inhibition could represent an efficient approach to improve
clinical outcome.

EVs in TME-Cancer Cell Crosstalk
and Drug Resistance
EVs Roles in the Bidirectional Cell to Cell
Communication Within the TME
The crosstalk between cancerous and surrounding cells in TME
through EVs is essential to sustain tumor growth, change cell
Frontiers in Oncology | www.frontiersin.org 4110
phenotype and induce metastatic switch (71) (Figure 2). The key
role of EVs inTME is due to their capacity to transfer proteins, lipids,
nucleic acids, and membrane receptors, thus providing different
information based on the specific composition of their cargo.
Exosome secretion and its intracellular trafficking involve a subset
of smallGTPasenamedRabswhicharedemonstrated tobeexpressed
in a context-dependent manner (72–74). In some cancers, Rabs
overexpression is linked with tumor progression and worse clinical
outcome (75). Once released, exosomes interact with target cells
through specific receptors ormolecules such as intercellular adhesion
molecule 1 (ICAM1) and heat shock protein 70 (Hsp70), expressed
on dendritic cell-derived and on mast cell-derived exosomes,
respectively. While ICAM 1 is recognized by lymphocyte function-
associated antigen 1 (LFA-1) (76, 77), Hsp70 interacts with low
density lipoprotein receptor-related protein 1 (LRP1/CD91) on
antigen presenting cells (78). Due to their crucial role in cell-cell
communications, exosomes activity inTMEhas been associatedwith
tumor progression and induction of metastatic phenotype (79, 80).
Importantly, the bidirectional cell to cell communication between
tumorand stromal cells sustains cancerprogression towardadvanced
stages (81). Within TME, the communication between CAFs and
TAMs with tumor cells is mediated by CAFs/TAMs derived
exosomes. It was observed that CAF-derived exosomes (CDEs)
containing intact metabolites are able to promote oncogenic
transformation, by inhibiting oxidative phosphorylation and
FIGURE 2 | EV-mediated interplay within the TME mediates tumor progression. CAF-derived exosomes (CDEs) promote either metabolism deregulation or
metastatic switch in tumor cells by delivering intact metabolites or TGF-b, respectively. TAMs-derived exosomes (TDEs) loaded with miR-21-5p and miR-155-5p can
promote cell migration and invasion by downregulating BRG1 gene, thus sustaining Wnt/b-catenin signaling. CSCs-derived EVs (CSCDEs) confer stemness traits to
recipient cells by delivering notch receptor 1 (notch1) protein. In turn, tumor-derived exosomes (TEXs) induce CAF transformation and macrophage M2 polarization
by delivering miR-155-5p, miR-103a and miR-222-3p, that in turn affect STAT3 signaling.
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increasing glycolytic metabolism (82, 83). Moreover, CAFs induce
tumor growth and metastatic phenotype switching by producing
exosomes with high concentration of TGF-1b (84). Lan et al.
demonstrated that TAMs-derived exosomes also mediate cell
migration and invasion in colon cancer via miRNAs (miR-21-5p
and miR-155-5p)-mediated downregulation of BRG1 gene (85),
whose decreased expression is responsible for Wnt/b-catenin
signaling activation (86). On the other hand, tumor cells modulate
and “re-educate” surrounding cells by secreting tumor-derived
exosomes (TEXs). Xiao et al. showed that melanoma-derived EVs
promote CAFs transformation by inducing VCAM-1 expression via
extracellular signal-regulated kinase 1/2 (ERK1/2)-activation (87).
Moreover, miR-155-5p in melanoma-derived exosomes triggers the
proangiogenic switch of CAFs by targeting suppressor of cytokine
signaling 1 (SOCS1), thus activating the janus kinase (JAK)2/signal
transducer and activator of transcription (STAT)3 (JAK2/STAT3)
pathway (88). As to TAMs transformation, Hsu and collaborators
reported that in hypoxic lung cancer miR-103a-loaded EVs
promoted M2 macrophage polarization by inhibiting phosphatase
and tensin homolog (PTEN) and enhancing protein kinase B (PKB/
Akt) and STAT3 activity (89). Moreover, ovarian cancer-derived
exosomes induce macrophages polarization by delivering miR-222-
3p which target SOCS3, thus sustaining STAT3 signaling (90).
Furthermore, cancer stem cell (CSCs)-derived EVs (CSCDEs) play
a significant role in TME remodeling. Sun et al. showed that
glioblastoma stem cell (GSCs)-derived exosomes are able to confer
stemness traits and enhance tumorigenicity in non-GSC glioma cells
by delivering notch receptor 1 (notch1) protein and activatingNotch
signaling in recipient cells (91). Collectively, these studies underline
the central roles of EVs in sustaining TME remodeling and fostering
cancer progression.

EVs-Mediated Chemotherapy Resistance
In addition to promote tumor growth and progression, EVs also play
a pivotal role in cancer drug resistance by taking part in several
processes (i.e., direct removal of drugs, incorporation of efflux pumps
and miRNAs/long non-coding RNAs (lncRNAs) delivery)
(Figure 3). Direct removal of drugs from intracellular space has
been reported by Shedden et colleagues; they observed the release of
doxorubicin-containing vesicles in doxorubicin-treated MCF-7
breast cancer cells and demonstrated that vesicles accumulated the
drug passively. Moreover, they also founded a correlation between
vesicle-shedding-associated gene expression and doxorubicin
resistance in several cancer cell lines (92). Furthermore, Federici
and collaborators identified cisplatin-enriched exosomes in human
metastatic melanoma cells and founded that EVs-mediated drug
elimination is enhanced by tumor acidic microenvironment (93).
EVs are also able to incorporate efflux pumps which can actively
transport drugs into intraluminal space; drug resistant cancer cells
can transfer efflux pumps via EVs to the sensitive surrounding ones,
thus conferring them resistance traits (94–97). In addition, EVs can
incorporate factors that induce the expressionof effluxpumps. In this
regard, Ma et al. demonstrated that adriamycin-resistant breast
cancer cell line MCF-7/ADM showed elevated levels of Ca2
+-permeable channel TRPC5, and that TRPC5 expression is
essential for P-gp induction (98). The suppression of TRPC5
activity as well as of P-gp expression reduced drug resistance and
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tumor growth both in vitro and in vivo suggesting that inhibiting
either P-gp or TRPC5 could be an attractive strategy to overcome
drug resistance (98). They also founded that TRPC5-carrying EVs
released from MCF-7/ADM cells can transfer chemoresistance
properties to drug sensitive recipient cells (99). Accordingly, Wang
et al. showed that exosomes-carrying Ca2+-permeable channel
TRPC5 acts as a noninvasive chemoresistance marker that could
predict chemoresistance in metastatic breast cancer patients (100).
EVs can also transport drug-metabolizing enzymes, such as
glutathione S-transferase P1 (GSTP1), that contribute to the
intracellular detoxification as observed in chemotherapy-resistant
breast cancer (101). Another crucial mechanism in drug resistance
involves miRNA and lncRNA. As reported by Lunavat and
collaborators, miR-211–5p, which is overexpressed in response to
treatment with BRAF inhibitors (Vemurafenib and Dabrafenib),
induced drug resistance in melanoma cells (102). Furthermore,
Mikamori et al. evidenced that long exposure to gemcitabine
increased miR-155-loaded EVs secretion in pancreatic ductal
adenocarcinoma, thus conferring drug resistance through
inhibition of pro-apoptotic stress-induced p53 target gene tumor
protein p53-inducible nuclear protein 1 (TP53INP1) (103). Again,
Shen et al. showed that breast cancer cells treated with sublethal dose
of chemotherapeutic drugs released miR-9-5p, miR-195-5p, and
miR-203a-3p-enriched EVs, which simultaneously targeted
transcription factor One Cut Homeobox 2 (ONECUT2), thus
conferring stemness and resistance traits in recipient cells (104). Qu
et al. founded that, in renal cell carcinoma (RCC), lncARSR (lncRNA
Activated in RCC with Sunitinib Resistance)-loaded exosomes
competitively bind miR-34/miR-449 and enhance AXL and c-MET
receptors signaling that are responsible for Sunitinib resistance
through activation of STAT3, AKT, and ERK signaling (105). In
light of this finding, lncARSR represent a potential therapeutic target
to overcome sunitinib resistance in RCC (105). Other two lncRNAs
involved in drug resistance are lncRNA urothelial carcinoma-
associated 1 (UCA1) and lncRNA prostate androgen-regulated
transcript 1 (PART1); Yang et al. founded that exosomal UCA1 is
associated with Cetuximab resistance in colorectal cancer and could
predict clinical outcomeofCetuximab therapy (106),whileKang and
collaborators demonstrated that lncRNA PART1 is able to confer
resistance to Gefitinib in esophageal squamous cell carcinoma by
inducingB-cell lymphoma2 (Bcl-2) expression through inhibitionof
miR-129 (107).

In summary, these findings show how EVs can exploit different
mechanisms to sustain the acquisition of drug resistance by cancer
cells, making them a central player in tumor evolution.
LINKING NF-kB AND EVS ACTIVITY IN
CANCER PROGRESSION AND THERAPY
RESISTANCE

Reciprocal Regulation Between EVs and
NF-kB Signaling in the TME
NF-kB is directly involved in EVs trafficking and EVs-mediated
chemoresistance, and, at the same time, EVs are responsible for
NF-kB activation (Figure 4).
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Hypoxia is recognized as a hallmark of cancer (108) and
promotes the immunosuppressive phenotype within the TME
(109). In addition, hypoxia promotes EVs biogenesis and release
in order to support intercellular communication and to
compensate nutrient’s deficiency and oxygen starvation in
cancer cells (110–112). In response to oxygen starvation,
cancer cells activate hypoxia-inducible factors (HIFs) (113), a
family of transcription factors involved in adaptation to hypoxic
condition through modulation of angiogenesis, metastasis, and
drug resistance (114), as well as in the regulation of small Rab
GTPases (i.e., Rab22A) which in turn control intra- and
intercellular trafficking of EVs (112). It is well-known that NF-
kB, in response to inflammatory stimuli, upregulates HIF-1a and
HIF-1b expression (115–117). Notably, hypoxia, per sé, can
induce NF-kB, leading to an inflammatory response (118).
Indeed, it has been observed that inhibition of oxygen sensors
prolyl hydroxylases (PHDs) by low oxygen tension, stabilizes
IKKb with subsequent p65 nuclear accumulation and signaling
transduction (119). Importantly, NF-kB is also able to directly
regulate Rab proteins, as observed by Feng et al. in colon cancer
stem cells. They identified a functional NF-kB binding site in the
Rab27A promoter and observed that increased p65 levels
induced Rab27A expression and enhanced EVs secretion in
HT29 cells (120). In turn, Rab27A can promote tumor
Frontiers in Oncology | www.frontiersin.org 6112
proliferation and chemoresistance via NF-kB, in bladder
cancer (121). Indeed, Rab27A overexpression was associated
with increased phosphorylation of p65 and increased
expression of the antiapoptotic gene Bcl-2, and conversely,
pharmacological inhibition of NF-kB by BAY 11-7082
abrogated cisplatin resistance and cancer cell survival (121).
NF-kB activation also influence EVs cargo. Yang et al.
reported an altered exosomal protein profile in NF-kB
knockout mice following ischemia-reperfusion (I/R) injury in
skeletal muscles, suggesting that NF-kB contributes to EVs
production. Specifically, in the exosomes of NF-kB knockout
mice, they observed upregulation of several proteins such as
protease serine 1 and glyceraldehyde-3-phosphate dehydrogenase-
like isoform 1, and downregulation of other factors including
apolipoprotein B, complement component C3 prepropeptide, and
immunoglobulin kappa light chain variable region (122). It has been
reported that NF-kB can also drive transcription of specific
miRNAs including miR-21; indeed, it was observed that miR-21-
carrying exosomes released by TAMs induced cisplatin resistance in
gastric cancer cells modulating PTEN/PI3K/AKT signaling
pathway (123).

In accordance with the reciprocal interplay between EVs and
NF-kB signaling, EVs can modulate NF-kB activity in recipient
cells (Figure 4). Bretz et al. showed that exosomes from various
FIGURE 3 | Mechanisms of EV-mediated drug resistance. EVs can directly remove intracellular drugs from cancer cells. They can also deliver efflux pumps, efflux
pumps-inducing proteins, miRNAs and lncRNAs to recipient cells, thus conferring them drug resistance traits.
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body fluids stimulate the NF-kB-dependent production of pro-
inflammatory cytokines such as IL-1b, TNF-a, and IL-6 in
monocytic cell line THP-1 via TLR2 and TLR4 activation
(124). Gastric (125) and breast cancer (126) derived TEXs
induce the expression of pro-inflammatory cytokines by
macrophages via NF-kB, and the NF-kB activation in myeloid
cells could involve TLR2 signaling (126). NF-kB pathway can be
also regulated by specific EVs-delivered factors (i.e., proteins,
miRNAs, lncRNAs), which can directly or indirectly activate/
inhibit this pathway depending on the context. As previously
mentioned, exosomes-carrying Ca2+-permeable channel TRPC5,
responsible of P-gp-induced chemoresistance, are associated
with IL-6 expression and increased phosphorylation of p65 in
nasal polyps (127), suggesting a possible role of NF-kB in
TRPC5-mediated drug resistance. Delivered miR-21 and miR-
29a, can directly trigger NF-kB-mediated inflammatory response
by binding murine TLR7 and human TLR8 (128). Commonly,
miRNAs modulate NF-kB pathway in an indirect manner. Fang
et al. showed that miR-1247-3p-carrying TEXs promote liver
cancer stemness and chemoresistance via inhibition of beta-1,4-
galactosyltransferase 3 (B4GALT3) and activation of b1-
integrin–NF-kB pathway in fibroblasts (129). Activated CAFs
further induce tumor progression by secreting pro-inflammatory
Frontiers in Oncology | www.frontiersin.org 7113
cytokines, including IL-6 and IL-8 (129). Furthermore, Li and
colleagues observed that miR-23a-enriched exosomes activate
NF-kB pathway in macrophages by targeting its negative
regulator A20 (130) while Chen and collaborators founded that
exosomal miR-300 controls melanoma cell progression targeting
GADD45B expression, a NF-kB-induced pro-survival factor
(131). MiRNAs can also be downregulated to sustain NF-kB
pathway. Wang et al. demonstrated that when the usually low
expressed miR-192-5p is overexpressed in TAMs-derived
exosomes, it suppresses endometrial cancer progression
through NF-kB inhibition (132). With respect to lncRNAs, Li
et al. founded that exosomal lncRNA FMR1-AS1 (FMR1
antisense RNA 1) is associated with CSC-like phenotype by
binding TLR7 in female esophageal carcinoma (133).
Moreover, expression of lncRNA BORG (BMP/OP-responsive
gene) in triple-negative breast cancer (TNBC) (134) and lncRNA
HOTAIR (HOX antisense intergenic RNA) (135) in colorectal
cancer promotes chemoresistance via NF-kB. NF-kB activation
can be triggered also by so-called “apoptotic exosome-like
vesicles” (AEVs). Recently , Park and collaborators
demonstrated that AEVs, during apoptotic process, act as
DAMPs and activate NF-kB pathway, thus promoting an
inflammatory response (136).
FIGURE 4 | Bidirectional communication between NF-kB and EVs within the TME. NF-kB promotes EV-mediated chemoresistance in cancer cells by regulating the
expression of EV-releasing factors (i.e., Rab27A, Rab34, LAMP-2, HIF-1). NF-kB also affects EV cargo by inducing miRNA transcription (i.e., miR-21). Reciprocally,
EVs activate NF-kB through several mechanisms, such as by acting as DAMPs or delivering specific proteins and miRNAs. Upon activation, NF-kB induces
chemoresistance, progression, and stemness in tumor cells, inflammatory cytokines release in immune cells, and CAFs transformation in fibroblasts. Inflammasome
often mediates the crosstalk between NF-kB and EVs. Activated inflammasome promotes EV release through specific factors (i.e., RILP) and sustains NF-kB
signaling through IL-1b production. In turn, NF-kB regulates inflammasome activation by promoting priming step, and reciprocally, EVs induce inflammasome
signaling, thus generating a positive feedback loop.
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EVs and NF-kB Interplay: The Crucial Role
of Inflammasome
Inflammasomes represent an important link between NF-kB and
EVs activity in the TME (Figure 4). Inflammasomes are
multimeric protein complexes that are assembled upon
recognition of specific pathogen-associated molecular patterns
(PAMPs) and DAMPs by PRRs (137) during innate immune
response. Inflammasome consists of cytoplasmic PRRs ‘sensors’
such as nucleotide-binding domain and leucine-rich repeat
receptors (NLRs), the ‘adapter’ apoptosis-associated speck-like
protein containing a C-terminal caspase recruitment domain
(ASC), and an ‘effector’ pro-caspase 1 (138). In this context, NF-
kB plays a leading role; indeed, DAMPs are recognized by toll-like
receptors (TLRs), a subset of membrane-bound PRRs which
trigger NF-kB cascade and subsequent transcription of IL-1b
(139). IL-1b is released as precursor protein (pro-IL-1b) and is
processed in its active form by caspase-1 (140) through the
formation of a multi-protein complex termed inflammasome.
Although the existence of several NLRs has been reported,
nucleotide-binding oligomerization domain (NOD)-like receptor
(NLR) family pyrin domain containing 3 (NLRP3) is the best
characterized inflammasome. Activated NF-kB upregulates
NLRP3 (141, 142) that is necessary for the inflammasome
assembly and for the pro-IL-1b processing. The process that
lead to the inflammasome activation consist of two phases,
priming and activation (143). In the priming step, NF-kB
induce transcriptional upregulation of NLRP3 inflammasome
components while the activation step led to full induction and
inflammasome complex formation. In detail, NLRs act as DAMPs
sensors leading to recruitment of ASC and subsequent activation
of caspase-1 thus promoting processing of pro-IL-1b in active IL-
1b. Importantly, it is known that inflammasome activation induce
EVs secretion (144) by several mechanisms. One of those could be
represented by de novo synthesis and production of IL-1b, which,
in turn, activate NF-kB signaling and induce the expression of
factors involved in EVs secretion. Gutierrez et al. demonstrated
that activation of NF-kB can induce several membrane-trafficking
regulators such as lysosome-associated membrane protein 2
(LAMP-2) and ras-related protein Rab34 (145). EVs secretion
can also be promoted by inflammasome itself through caspase-1-
dependent cleavage of the trafficking adaptor protein rab
interacting lysosomal protein (RILP) (146). Furthermore,
inflammasome-derived exosomes can activate NF-kB in
macrophages leading to their pyroptosis via up-regulation of
NLRP3 and pro-IL1b (147). While these findings show how
inflammasome affects EVs secretion, it is worthy to note that
EVs can also influence inflammasome activity, thus revealing a
bidirectional crosstalk. Hence, EVs can either positively or
negatively affect inflammasome activity depending on the nature
of the EVs releasing cells (148). Exosomes from LPS-treated
macrophages are able to activate NLRP3 inflammasome in
AML-12 hepatocytes (149). Again, EVs from palmitate-treated
Huh7 hepatocytes induce production of IL-1b in mouse bone
marrow-derived macrophages (150) and exosomes fromARPE-19
exposed to photooxidative blue-light activate NLRP3
inflammasome in vitro (151). However, inflammasome
Frontiers in Oncology | www.frontiersin.org 8114
activation is repressed in THP1 cells treated in vitro with human
amniotic fluid derived EVs, as well as in cardiomyocytes isolated
from a mouse model of doxorubicin-induced cardiotoxicity
following treatment with embryonic stem cell-derived EVs (152,
153). Although inflammasome involvement in cancer is still
debated and sometimes controversial, several findings underline
its role in tumorigenesis, cancer progression and drug resistance
(154). In this context, NLRP3 inflammasome activity is associated
with carcinogenesis in head and neck squamous cell carcinoma
(155) and with proliferation and migration in A549 lung cancer
cells (156).

Further, TEX-mediated inflammasome activation in non-
cancer cells within the TME was shown to exacerbate
inflammatory response and sustain tumor progression. In
prostate cancer, EVs released from advanced-stage tumor cells
were found to activate inflammasome in non-cancerous prostate
cells and induceM2polarization inTHP1 (157).Moreover, Liang et
al. showed that tripartite motive containing 59 (TRIM59)-loaded
EVs released from lung cancer cells promoted tumor progression in
vitro and in vivo. Mechanistically, TRIM59 promoted abhydrolase
domain containing 5 (ABHD5) degradation and activation of
NLRP3 inflammasome in macrophages, which in turn released
proinflammatory cytokines, thus sustaining cancer cell
proliferation and invasion (158). Hwang et al. also demonstrated
that colorectalCSCs-derived exosomes induced IL-1b expression in
neutrophils viaNF-kB, thus promoting tumorigenesis in colorectal
cancer cells (159). Moreover, inhibition or deletion of
inflammasome components NLRP3, ASC, or caspase-1 is
protective against pancreatic ductal adenocarcinoma as it is
associated with the reprogramming of innate and adaptive
immunity in TME (160). Inhibition of NLRP3 inflammasome
also suppresses metastatic potential of melanoma cancer cells
(161). Inflammasome is also involved in drug resistance and can
be activated following chemotherapeutic treatments, likely as result
of NF-kB stimulation. Zhai et al. founded that NLRP1
inflammasome activation induces drug resistance in melanoma
cells through release of IL-1b (162). Again, Theivanthiran et al.
observed activation of NLRP3 inflammasome following treatment
with anti-PD-1 checkpoint inhibitorwith subsequent infiltration of
granulocytic myeloid-derived suppressor cells and reduction of
antitumor response (163). As reported by Feng et al.
inflammasome activation is also involved in in 5-fluorouracil
resistance of oral squamous cell carcinoma (164).

All together, these findings highlight an intricate interplay
between NF-kB and EVs activity which influence tumor growth
and drug resistance. Although further studies are needed to fully
elucidate the molecular mechanisms underlying this reciprocal
regulation between NF-kB and EVs, it could represent yet
another way through which NF-kB orchestrate tumor behavior
within the TME.
CONCLUSIONS

The bulk of evidence summarized herein shows that EVs play a
key role in drug resistance through several mechanisms,
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including direct load and expulsion of chemotherapeutics, as well
as delivery of pro-survival, anti-apoptotic, and stemness-
associated factor cargo. The pharmacological target of EV
biogenesis, uptake, and transfer to suppress chemoresistance
has shown promise, but most of the data obtained were
generated in vitro (165), and further in vivo investigation are
needed. Another potential issue is represented by the
heterogeneity of EVs, as not all EV communication is pro-
tumorigenic. Thus, a better understanding of the molecular
mechanisms underlying EV processes will significantly
contribute to develop more specific approaches for overcoming
drug resistance. In this review, we discuss the complex crosstalk
between NF-kB pathway and EVs, as NF-kB activation affects
EVs formation and release, and EVs, in turn, can trigger NF-kB
activation. Since NF-kB/EVs interplay profoundly contribute to
fuel aggressive disease and desensitize cancer cells to drugs, this
axis could represent a promising target. However, as seen for
EVs, targeting NF-kB core pathway produces off target effects
due to the lack of anti-cancer specificity, as this factor is a master
Frontiers in Oncology | www.frontiersin.org 9115
regulator of several biological processes. Therefore, the
identification of NF-kB targets involved in this interplay in
specific cancer models could be a useful strategy to overcome
NF-kB/EV-mediated resistance.
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34. Vénéreau E, Ceriotti C, Bianchi ME. DAMPs From Cell Death to New Life.
Front Immunol (2015) 6:1. doi: 10.3389/FIMMU.2015.00422

35. Murao A, Aziz M, Wang H, Brenner M, Wang P. Release Mechanisms of
Major DAMPs. Apoptosis (2021) 26:152–62. doi: 10.1007/s10495-021-
01663-3/TABLES/1

36. Lawrence T. The Nuclear Factor NF-kb Pathway in Inflammation. Cold
Spring Harb Perspect Biol (2009) 1:a001651. doi: 10.1101/cshperspect.
a001651

37. Gabay C. Interleukin-6 and Chronic Inflammation. Arthritis Res Ther (2006)
8:S3. doi: 10.1186/ar1917
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Extracellular Vesicles and Resistance
to Anticancer Drugs: A Tumor
Skeleton Key for Unhinging
Chemotherapies
Simona Pompili†, Antonella Vetuschi†, Roberta Sferra‡ and Alfredo Cappariello*‡

Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy

Although surgical procedures and clinical care allow reaching high success in fighting
most tumors, cancer is still a formidable foe. Recurrence and metastatization dampen the
patients’ overall survival after the first diagnosis; nevertheless, the large knowledge of the
molecular bases drives these aspects. Chemoresistance is tightly linked to these features
and is mainly responsible for the failure of cancer eradication, leaving patients without a
crucial medical strategy. Many pathways have been elucidated to trigger insensitiveness
to drugs, generally associated with the promotion of tumor growth, aggressiveness, and
metastatisation. The main mechanisms reported are the expression of transporter
proteins, the induction or mutations of oncogenes and transcription factors, the
alteration in genomic or mitochondrial DNA, the triggering of autophagy or epithelial-to-
mesenchymal transition, the acquisition of a stem phenotype, and the activation of tumor
microenvironment cells. Extracellular vesicles (EVs) can directly transfer or epigenetically
induce to a target cell the molecular machinery responsible for the acquisition of resistance
to drugs. In this review, we resume the main body of knowledge supporting the crucial role
of EVs in the context of chemoresistance, with a particular emphasis on the mechanisms
related to some of the main drugs used to fight cancer.

Keywords: chemoresistance, extracellular vesicles, metastasis, tumor recurrence, tumor microenvironment
INTRODUCTION

Extracellular vesicles (EVs) are a heterogeneous population of double membrane-enclosed lipidic
structures, which are actively secreted by eukaryotic and prokaryotic cells (1, 2). EVs are recently
recognized as mediators of communication due to their molecular cargo consisting of biomolecules
(lipids, nucleic acids, carbohydrates, and proteins) transferable to neighboring cells (3–5). EVs can
be classified into three different subtypes according to their size, biophysical properties, and
biogenesis: small EVs (exosomes), medium EVs (microvesicles), and apoptotic bodies (6)
(Figure 1). Small EVs are nano-sized vesicles smaller than 150 nm, which originate from
intraluminal vesicles (ILVs) through the formation of multivesicular bodies (MVBs) (7). As a
next step, these ILV-containing MVBs can either be redirected to degradation in the lysosome or
fused with the plasma membrane (PM), thus leading to the release of exosomes. The three main
mechanisms of ILV formation are described. The first mechanism requires the presence of
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endosomal sorting complexes required for transport (ESCRT)
complex members (8). These proteins have been described to
select ubiquitinated proteins and segregate them into
microdomains found on the endosomal membrane. ESCRT-0,
ESCRT-I, and ESCRT-II are held responsible for the binding,
through the tumor susceptibility gene 101 (TSG101), of specific
cargoes selecting ubiquitinated proteins and segregating them
into microdomains found on the endosomal membrane.
Subsequently, these complexes recruit the apoptosis-linked
gene 2–interacting protein X (ALIX), which aids in recruiting
the ESCRT-III complex containing proteins involved in vesicle
budding and the release from the plasma membrane. The second
pathway, independent of ESCRT, requires only ALIX, and
transmembrane proteins, such as syntenin and syndecan,
which are responsible for recruiting tetraspanin CD63 (the
main marker of small EVs) and other specific molecular
cargoes (i.e., adhesion molecules, growth factors, and integrins)
along with the interaction with proteins involved in the release
from the cellular membrane (8). The third mechanism of ILV
biogenesis mainly involves the participation of membrane lipid
microdomains or lipid rafts. One of the main players is ceramide,
generated by the neutral sphingomyelinase enzyme finally
favoring the bending toward the lumen of the MVB membrane
(9). Finally, MVBs can be degraded by fusion with lysosomes or
can be shuttled to the membrane for the fusion and release of
their cargo. On another side, medium/large EVs, also known as
microvesicles, ectosomes, or microparticles, range between 50
and 1,000 nm. They are described to be released from the cell
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surface by blebbing from the plasma membrane. The biogenesis
of EVs involves many partners, among which are small GTPases
(such as ADP-ribosylation factor 6, ARF6), Ras-related proteins
(Rab-22A), and phospholipases (PLD), the latter inducing a
pho spho l i p i d r ed i s t r i bu t i on and po s i t i on in g o f
phosphatidylserines to the outer shell in EVs (10). The final
recruitment of extracellular signal-regulated kinase (ERK) and
the phosphorylation of the myosin light-chain kinase (MLCK)
induce the invagination of the plasma membrane and EV release.
Apoptotic bodies (APOBs) are the third subtype of EVs and vary
in size, ranging from 50 to 2,000 nm in diameter, ultimately
produced by the programmed cell death apoptosis (11). One of
the main features of apoptotic bodies is that mechanisms for
specific sorting of organelles, RNA, and DNA fragments can be
detected, which are absent in other EV subtypes. APOBs are far
to be inactive particles but are now shown to be lively involved in
biological processes. During their biogenesis, EVs entrap
different macromolecules, such as nucleic acids (DNA, mRNA,
miRNAs, long non-coding RNAs), lipids, proteins (cytosolic
factors, receptors, and ligands), and organelles, which are then
shuttled to surroundings where they exert metabolic changes in
target cells.

A physical/molecular interaction between EVs and cell
membranes triggers the EV uptake. This interaction has been
shown to occur via different routes, including a direct fusion
between EVs and the plasma membrane (12), as well as EV
internalization via clathrin-, lipid draft-, and caveolae-dependent
endocytosis, macropinocytosis, and phagocytosis (13–15).
FIGURE 1 | Schematization of the biogenesis of the three classes of EVs. Small EVs arise from the shedding of MVBs fusing with the plasma membrane (PM). Three
main paths are described for the formation of MVBs, entrapping in the cytoplasmatic components of ILVs. Medium and large EVs are derived for the budding of PM,
pulling the constituent of PM. Apoptotic bodies (APOBs) are released after an irreversible injury to the cell, triggering apoptotic cell death and the perturbation of PM.
MVBs, multivesicular bodies; ILVs, intraluminal vesicles; ESCRT, endosomal sorting complexes required for transport.
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Indeed, the EV uptake is likely dependent on many factors: the
EV subtype, protein, and lipidic composition of the released EVs
as well as the composition of the plasma membrane of recipient
cells, cell metabolic status, and extracellular space conditions
(i.e., pH, oxygen tension, and extracellular matrix components).
The exchange of EVs is nowadays recognized as a crucial axis in
the intercellular communication, exerting autocrine, paracrine,
and systemic effects. EVs orchestrate physiological regulation in
all tissues. The involvement of EVs is reported in many
physiological processes such as angiogenesis [i.e., via the
shedding of EV-encapsulated angiogenetic factors such as
tetraspanin8, L-selectin, vascular endothelium growth factor
receptor 1 (VEGFR1), and CD147], liver function and
metabolism (i.e., asialoglycoprotein receptor-, apolipoprotein
E/AV- and glutathione S-transferase-enriched EVs), bone
resorption (i.e., pro-osteoclastogenic RANKL-positive EVs
from osteoblasts), cornea wounding (i.e., fibronectin- and
thrombospondin 1-enriched EVs from corneal epithelial cells),
lung cell differentiation (i.e., EV-mediated shuttling and de novo
transcription of pulmonary epithelial cell mRNAs), muscle
regeneration (i.e., shuttling of a-Klotho transcript inducing
muscle rejuvenating), bowel barrier integrity (epithelial cell-
derived EVs alleviate gut injury after intestinal ischemia/
reperfusion by miR-23a-3p), gut microbiota (Escherichia coli
Nissle 1917 release vesicles positively modulates the intestinal
epithelial barrier through upregulation zonulin-1/-2 and
claudin-14), and immunity (macrophage-derived EVs contains
alarmins orchestrating immune regulation) (16–24). Similarly,
tissue dysfunctions and diseases are sustained by EV exchange
including but not limited to stroke, obesity, skeletal muscle
atrophy, colitis, and major depressive disorder (25–32). Finally,
malignant transformation and cancer progression are fueled by a
massive switch of EVs in many types of tumor (33–38).
Carcinogenesis is a complex transformation of a cell by which
specific traits or “hallmarks” are acquired, shifting from a healthy
cell to a cancer one (39). According to Hanahan and Weinbergs’
theory, the mandatory hallmarks include the following:
sustaining proliferative signaling, evading growth suppressors,
resisting cell death, enabling replicative immortality, inducing
angiogenesis, and activating invasion and metastasis. All of them
are reported to be triggered by EVs. EVs from gastric cancer
SGC7901 cells sustain proliferation by PI3K/Akt and MAPK/
ERK activation; EVs are able to directly or epigenetically reduce
the cytoplasmatic levels of phosphatase and tensin homologue
(PTEN) to evade the growth suppressor (40–42). Many papers
reported the mechanisms of resisting cell death induced by EVs:
multiple myeloma cells reduced by EVs the levels of the pro-
apoptotic protein Bcl-2-like protein 11 (Bim); the antiapoptotic
protein survivin is shuttled in EVs from HeLa cervical carcinoma
cells irradiated with a sublethal dose of proton, and both gastric-
and bladder cancer-derived EVs suppressed the apoptosis of
respective cancer or suppressive immune cells via the
upregulation of Bcl-2 and cyclin-D1 expression and the
downregulation of Bax and caspase-3 (43–48). The examples of
replicative immortality triggered by EV cargoes are described for
the shuttling of telomerase (TERT) transcript in target cells, as
Frontiers in Oncology | www.frontiersin.org 3122
well as of TP53 and b-catenin (49–51). Angiogenesis is one of the
most described event regulated by EVs, due to the enrichment in
the EVs of VEGF, VEGFR, MMPs, and correlated agonists (52).
Finally, metastatization support by EVs is widely investigated in
a large body of literature reporting the plethora of their
molecular cargo involved in the process, such as amphiregulin,
C-X-C chemokine receptor type 4 (CXCR4), epidermal growth
factor receptor (EGFR), interferon regulatory factor (IRF)-2,
miR-105 (downregulating zonula occludens-1), and many
others (53).

In this review, we will discuss the involvement of tumoral EVs
in the insurgence of chemoresistance.
MECHANISM OF RESISTANCE TO
CHEMOTHERAPEUTICS

Chemoresistance and radioresistance remain the main
complications of cancer therapy, hindering the improvement
of clinical outcomes for patients suffering from cancer since they
cause cancer relapse and metastasis (54–56). Multiple
mechanisms of resistance to drugs are reported, and the tight
interconnection and support among them are one of the main
issues for overcoming this crucial tumor feature. In the next
section, we will provide an overview of the main mechanism of
drug resistance reported in cancers (Figure 2).

Transporter Proteins
The exchange across the plasma membrane is a pivotal
mechanism of cellular homeostasis. The translocation of ions,
lipids, amino acids, sugars, and xenobiotics occurs mainly
through transporters or channels. The ATP-binding cassette
(ABC) proteins and major vault protein (MVP) are the main
players in these mechanisms. P-glycoprotein [P-gp, ABCB1, or
multiple drug resistance 1(MDR1)] is an ATP-dependent
efflux pump widely expressed in many tissues: capillary
endothelial cells, intestinal epithelium, liver cells, and the renal
proximal tubule (57). P-gp is one of the most powerful
detoxification tools for cytotoxic drugs in cancer cells via
direct efflux. P-gp overexpression has been observed in
different kinds of hematological and solid tumors, such as
leukemia, neuroblastomas, and ovarian and breast cancers,
demonstrating its contribution to chemoresistance (58, 59).
The ABCG2 encodes for another member of the ABC
superfamily, also known as breast cancer resistance protein
(BCRP) (60, 61). It has been reported that ABCG2 is an
estrogen-inducible gene, associated with a higher tolerance of
breast cancer cells against cytotoxic drugs (i.e., mitoxantrone)
(62). Major vault protein (MVP) is a protein localized to
a nuclear pore as a ribonucleoprotein with a hollow barrel-
like structure responsible for gating ribosomes, hormones, and
drugs (63). MVP was first discovered as a new 110 kD drug
transporter in doxorubicin-resistant lung cancer cells, and it was
later reported in many types of tumors (64). In triple-negative
breast cancer cells MDA-MB-231, MVP has been demonstrated
to be upregulated by the Notch1 intracellular domain and the
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activation of the AKT pathway and promoting the epithelial-to-
mesenchymal transition (EMT) and the chemoresistance of
cancer cells (65).

Oncogenes and Transcription Factors
The overactivation and mutations of genes encoding for
proteins involved in pivotal cellular processes (proliferation,
survival, and transformation) is a frequent strategy of cancers
to overcome the effect of cytotoxic drugs. The most upregulated
pathways in chemoresistance are JAK/stat3, PI3K/Akt/mTOR,
Src/FAK/ROS, and SOS/Grb2/Ras cascades. In turn, oncogenes
can be upstream activated by receptors. For example, all the
above pathways can be commonly activated by the EGFR.
Accordingly, the overexpression or gain-of-function mutations
of EGFR are reported in different types of aggressive and
chemoresistant cancers. EGFR promotes metabolic processes
critical for cancer cell proliferation both directly by
phosphorylating rate‐limiting enzymes or indirectly through
the activation of the MYC transcription factor and of the AKT
signaling cascade (66–68). A mutated p53 is another common
feature of many cancers (69). The protein p53 is involved in the
sensitivity of cells to DNA-damaging drugs through DNA
damage-response sensors ataxia telangiectasia mutated protein
(ATM) and ataxia telangiectasia and Rad3-related protein (ATR)
and their downstream cell cycle regulator checkpoint kinases 1
and 2 (Chk1 and Chk2) (70, 71). Some mutated p53 forms are
very stable to degradation and ubiquitination and heterodimerize
with wild-type p53, working as a dominant-negative able to
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disrupt most or all normal p53 functions, such as apoptosis or
cell cycle arrest (72–74). Many mutated p53 forms can stimulate
the mammalian target of rapamycin (mTOR) and block
autophagy, leading to proliferative and anti-apoptotic
responses in breast and pancreatic cancers (66). On other
hand, the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) is another master player in
dampening apoptosis induced by a variety of stimuli,
including tumor necrosis factor-a (TNF-a), g-radiation, and
chemotherapeutics (75). Cancer usually expresses high levels of
constitutive NF-kB activity and the exposition to cytotoxic
agents increases NF-kB activity, resulting in cell growth and
survival and finally resistance to the therapeutic agents. NF-kB
induces the overexpression of downstream anti-apoptotic genes,
such as the radiation-inducible immediate-early gene (IEX-1L),
the inhibitor of apoptosis (IAP), and growth arrest and DNA
damage-inducible 45 beta (Gadd45b), B-cell lymphoma-extra
large (Bcl-xL), cyclin D1 and c-Myc, and many others, finally
contributing to the chemoresistance. Thus, the NF-kB signaling
pathway could be a potent target for improving the
chemosensitivity of the tumor cells (76).

Mitochondrial and Genomic DNA Damage
Repair Systems
Many types of tumors harbor somatic mutations in the
mitochondrial genome (mtDNA), resulting in mitochondrial
dysfunction. Many mutations in the mitochondrial genes of
cancer cells overload mitochondrial activity mainly because
FIGURE 2 | Cartoon summarizing the main mechanisms involved in the induction of the phenomenon of tumor drug resistance. Upon the influence of these
pathways, drug-resistant cancer cells acquire an enhanced invasive ability, break away from the original tumor site, and finally metastasize to other organs through
the blood or lymphatic systems. This figure was drawn with the support of the bioicons website (https://bioicons.com/).
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cancer cells shift their metabolism, requiring more glycolysis or
oxidation. Proliferator-activated receptor gamma co-activator
(PGC)-1a and mitochondrial transcription factor A (TFAM)
are overexpressed in cisplatin-resistant ovarian cancer; similarly,
PGC-1b confers the chemoresistance of lung cancer cells to
cisplatin associated with mtDNA mutations (77, 78).
Mitochondrial dynamics (fission and fusion) are critical for
metabolic adaptations. Mitochondrial fusion with efficient ATP
production was frequently observed in chemoresistant cancer
cells (79). Dynamin-related protein 1 (DRP1) promotes
mitochondrial fission, and its hyperexpression induces
chemoresistance in lung, breast, thyroid, and colon cancers
(80–84). DNA damage is the goal of many chemotherapeutic
drugs, acting as alkylating (i.e., cisplatin) or antimetabolites (5-
fluorouracil) to the DNAmolecules. Cancer cells counteract their
effects through a strengthening of the DNA repair, occurring
mainly via nucleotide excision repair and base excision repair
machinery. Excision Repair Cross-Complementation Group
(ERCC) 1 is involved in the nucleotide excision repair pathway
and has been reported to be associated with chemoresistance in
melanoma and ovarian cancer and colorectal cancer (CRC) (85–
87). Similarly, ERCC2 also supports chemoresistance in ovarian
cancer (88). Reversionless 3-like (REV3L), the catalytic subunit
of DNA polymerase z, modulates sensitiveness to 5-fluorouracil
in lung and esophageal carcinoma (89, 90).

Autophagy
Cells upon nutrient starvation, hypoxia, cellular stress, or
metabolic alteration initiate autophagy to degrade cellular-
damaged organelles and recycle amino acids or fatty acids via
autophagosome formation. This adaptation strategy aims to
favor cell survival and proliferation and is therefore adopted by
cancer cells to fight drugs. CRC tissues were reported to be
characterized by a significantly higher expression of autophagy-
related genes such as Beclin-1, microtubule-associated protein
1A/1B-light chain 3 (LC3), and Rictor, which levels are positively
correlated with the level of MDR-1 (91). The pro-survival role of
autophagy was also confirmed in breast, ovarian, esophageal,
lung, prostate, glioma, bladder, renal, and pancreatic cancers
(92). The crucial role of autophagy was confirmed by the use of
autophagy inhibitors, such as 3-methyladenine, able to
sensibilize tumor cells to drugs (93). Human leukemia cells
resist doxorubicin and vincristine by secreting high mobility
group box 1 (HMGB1), responsible for overexpressing LC3-II in
cancer cells (94). HMGB1 overexpression also contributed to the
chemoresistance of neuroblastoma cells by inducing Beclin-1-
mediated autophagy (95).

Epithelial-to-Mesenchymal Transition
EMT is a complex process wherein epithelial cells depolarize,
lose their cell–cell contacts, and acquire an elongated, fibroblast-
like morphology. This mechanism is a means by which tumor
cells increase their metastatic potential and can be triggered by
extracellular signals (collagen, hyaluronic acid, and integrins),
growth factors and cytokines (TGF-b, VEGF, EGF, and HGF),
non-coding RNAs, or hypoxia (96). Under EMT, cancer cells
enhance mobility, invasion, and resistance to apoptotic stimuli.
Frontiers in Oncology | www.frontiersin.org 5124
Finally, through EMT, tumor cells acquire stemness (see next
paragraph) and chemoresistance. Targeting EMT could indeed
be an effective approach to obstacle chemoresistance (97). Colon
cancer cells have been reported to encounter EMT and gain
doxorubicin chemoresistance via the upregulation of TGF-b
signaling (98). In hepatoma cells, gemcitabine supports EMT
upon PDGF-D trigging, while oxaliplatin exposition induces
EMT through BMP4/MEK1/ERK/ELK1 pathway activation
(99, 100). In breast cancer cells MCF-7, EMT driven by Snail
upregulation is reported to be associated with 5-fluorouracil
insensitiveness (101).

Stemness
The concept of stemness in the cancer field is nowadays widely
accepted, and cancer stem cells (CSCs) are the actual dogma for
the basis of cancer recurrence and chemoresistance (102). The
definition of CSCs is the same as the normal tissue stem cells: the
ability of a small subset of cells in a tissue having the capacity for
self-renewal and to reform in a host the complete tissues
containing all the cellular hierarchy from whence the stem cells
were derived (103). Similarly to stem cells, CSCs can be purified
as a poorly or negatively stained side population (SP) by flow
cytometry, so-called because of their characteristic hallmark to
exclude the Hoechst from the nucleus, while other tumor cells
are highly positive for the nuclear DNA staining (104). This
feature is associated with a high expression of the ATP-binding
cassette transporter protein ABCG2/Bcrp1 (105). The other
molecular signatures of CSCs reported included Oct4, Nanog,
Sox2, ALDH, CD44, CD117, CD133, Notches members, and
many others (106–109). CD44, a hyaluronic acid receptor, is
highly expressed by cancer stem cells and interacts with the
WNT/b-catenin pathway, leading to more aggressive tumors in
pre-clinical models and patients suffering from CRC (110).
CD44-expressing ovarian cancer stem cells are more resistant
to platinum salts and to paclitaxel (PTX) than CD44-negative
cells (111). CD133-expressing ovarian cancer stem cells have
been shown to have increased engraftment capacities with
chemoresistance to cisplatin (112).

Cancer-Associated Fibroblasts
CAFs are vital constituents of the tumor microenvironment, a
special stroma that interacts with cancer cells to promote
tumorigenesis and progression. CAFs are recognized as potential
targets for anti-cancer therapy since they are described to promote
both cancer metastasis and chemotherapy resistance. Tumor cells
depend upon the tumor stroma since it provides nutritional
support and survival signals for tumor maintenance and
proliferation. Upon certain stimuli, the fibroblast inside tumor
stroma becomes “activated” (113). Accordingly, fibroblasts acquire
different morphology and expression profiles (114). These CAFs
produce growth factors that promote tumor growth, angiogenesis,
and the recruitment of protumorigenic inflammatory cells. For
example, CAFs specifically produce fibroblast activation protein
alpha (FAP), changing different processes such as the extracellular
matrix remodeling and composition as well as immune
surveillance. CAFs can also affect the sensitivity of tumor cells to
chemotherapy or radiotherapy (115, 116). The main mechanisms
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reported for CAF-mediated chemoresistance are the release of
secreted factors, the promotion of cancer stemness, the
modulation of cancer metabolism, and the induction of immune
escape. The pleiotropic cytokine interleukin(IL)-6 is one of the
main CAF-secreted factors. In esophageal squamous cell
carcinoma (ESCC), IL-6 released by CAFs increased the
chemoresistance of ESCC to cisplatin by increasing the
chemokine receptor CXCR7 expression in tumor cells through
the STAT3/NF-kB axis (117). Similarly, CAFs can release IL-8,
promoting chemoresistance to cisplatin in human gastric cancer
via NF-kB activation and ABCB1 upregulation (118). CAFs
support the chemoresistance of tumor cells by promoting
stemness. In colon cancer, Lotti et al. showed that CAFs upon
the FOLFOX protocol released IL-17 which sustains the reservoir
of CD44-positive self-renewing tumor-initiating cells (119). In
breast cancer, CAFs secreted soluble factors such as activin A,
insulin growth factor (IGF)-1, and leukemia inhibitory factor
(LIF), all of which enhanced CSC proliferation and self-renewal
via the activation of hedgehog signaling (120). Cancer and the
tumor microenvironment acquire peculiar metabolic needs
switching toward aerobic glycolysis (Warburg effect) (121). In
lung carcinoma, EGFR- or MET-expressing cancer cells exhibited
an elevated glycolysis activity and increased production of lactate
that induced CAFs to secrete large amounts of HGF through an
NF-kB-dependent mechanism. Subsequently, HGF activated
MET-dependent signaling and enabled cancer cells to resist
tyrosine kinase inhibitors (122). The escape from immune
surveillance is a pivotal pro-survival event adopted by cancer
cells, and CAFs can directly promote this phenomenon. In fact, in
pancreatic cancers, CAFs have been reported to actively switch
polarizing macrophages toward the immunosuppressive M2
phenotype by the release of IL-8, the granulocyte-macrophage
colony-stimulating factor (GM-CSF), and monocyte
chemoattractant protein-1 (MCP-1) (123). In breast cancer,
CAFs over-express chitinase-3-like-1 (Chi3L1), a secreted
glycoprotein, involved in macrophage recruitment and M2
polarization (124). In fact, genetic in vivo ablation of Chi3L1 in
fibroblasts reduced tumor growth and macrophage recruitment
while enhancing tumor infiltration by T cells.
CHEMORESISTANCE AND EVS

A consistent body of evidence showed that EVs are an invaluable
tool for tumor cells for protecting against cytotoxic agents.
Generally, EVs sequester and extrude far from the tumor cells a
drug, gaining resistance to chemotherapy. Shedden et al.measured
this feature by the correlation of a “vesicle shedding index” with
the sensitivity of breast cancer cells MCF7 for a range of drugs
(125). Accordingly, other authors reported that the release of EVs
from resistant cells is higher compared to parental sensitive cells in
different cancer cell lines, such as ovarian and pancreatic cancers
(126, 127). The higher vesiculation allowed to export drugs,
allowing the cells to be more resistant. Furthermore, the tumor
EVs can be “upgraded” with specialized molecular machinery to
more efficiently load drugs inside. Cancer cells, such as MCF7,
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overexpress upon doxorubicin exposition the ABC genes
(encoding for ATP-binding cassette transporters known to
confer resistance to multiple drugs) (128). The protein is found
not only as a membrane transporter, to extrude drugs from the
cytoplasm to the extracellular space, but is also present on the
surface of EVs (129). Interestingly, the orientation of the protein
on EVs can be reversed (130, 131). This feature allows importing
the drugs inside EVs before their release from cells and improves
the resistance of cancer cells to chemotherapeutics. Moreover, EVs
can dampen the effectiveness of biological drugs. In fact, EVs act as
a decoy or antagonist of monoclonal antibody-based therapies.

In the next section, we will discuss the EV-based strategy
adopted by cancer cells to overcome chemotherapeutic
agents (Figure 3).
MECHANISMS OF DRUG RESISTANCE
ACTIVATED BY EV MOLECULAR
CARGOES

In recent years, not only the tumor progression and growth but
also the response to drugs and the outcome of antitumoral
therapies have been associated with the specific effects of EVs,
and precise pathways favoring tumor growth and facilitating
metastasis have been described (132). For example, EVs are
enriched in particular families of non-coding RNAs (microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), and circular
RNAs (circRNAs)] involved in the epigenetic regulation of
gene expression (133). MALAT1, a long-non-coding RNA
associated with tumor metastasis and invasion in lung cancer
and hepatocellular carcinoma (HCC), has also been found to be
enriched in EVs from cervical carcinomas and breast cancer cells
(134–136). LncRNA TUC339 is responsible for regulating the
proliferation and adhesion of HCC and is shuttled in EVs (137,
138). Through the shuttling of miRNAs, tumor cells can also
acquire insensitiveness toward drugs. Yoshida et al. described in
human biopsies of patients suffering from osteosarcoma (OS) an
upregulation of miR-25-3p, negatively correlated with the
clinical outcome (139). The same group demonstrated that
miR-25-3p silences the Dickkopf WNT signaling pathway
inhibitor 3 (DKK3) gene, thus supporting in vitro cancer
growth and resistance to different chemotherapeutics
[methotrexate, cisplatin, doxorubicin, and docetaxel (DOC)].
Similar effects have resembled after direct DKK3 silencing.
Finally, miR-25-3p was found in cancer cell-derived EVs. In a
similar study, Pan et al. confirmed the clinical relevance of EV-
mediated drug resistance in OS patients (140). The authors
revealed that circulating EVs from 43 OS patients presented
the overexpression of the circular RNA circRNA103801
compared to healthy subjects. This EV cargo showed a
prognostic value for patients, having an inverse correlation
with the overall survival. The authors further investigated that
the overexpression of circRNA103801 in human OS cell line
MG63 conferred resistance to cisplatin and cells released EVs
enriched in the same circRNA. The uptake of these EVs from
naïveMG63 and U2OS cells increased the resistance to cisplatin,
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pompili et al. Spreading of Chemoresistance Through EVs
upregulating the expression of P-gp and multidrug resistance
protein 1 (MRP1). Takahashi et al. showed that HCC protects
from sorafenib-induced apoptosis and cytotoxicity through the
release of EVs enriched in Linc-ROR, via a TGFb-CD133 axis
(33). Exosomal miR-222 is responsible for the resistance to
tamoxifen in MCF7 cells, suppressing p27 and estrogen
receptor (ER) alpha expression (141). In the next paragraph,
we will deeply focus on some EV-based mechanisms specifically
interfering with some of the most important chemotherapeutics
used for fighting cancers (Figure 4).

Platin (Platinum-Based Drug) Resistance
by EV Molecular Cargoes
Platins are coordination complexes of platinum having a mainly
alkylating activity on DNA, acting as intrastrand, interstrand, or
DNA-protein crosslinks (142). An interesting study from
Weinman et al. clarifies the correlation between EVs and drug
resistance in a spontaneous canine model of OS (143). Based on
the lag time between amputation and the start of adjuvant
carboplatin treatment (good, disease-free interval >300 days;
poor, disease-free interval <100 days), the animals have been
divided into two cohorts and the protein profile of circulating
EVs was run by mass spectrometry. The proteomic profile
identified that tetranectin (TN) is decreased in the poor
prognosis group and can be used as the most reliable
biomarker. TN, a member of the C-type lectin family, shows a
proteolytic activity. In the bone, TN has a crucial role in
mineralization during osteogenesis and in extracellular matrix
Frontiers in Oncology | www.frontiersin.org 7126
stiffness. Accordingly, the genetic loss of TN causes extracellular
matrix softening and skeletal deformities (144). In a mouse
model of CRC, LncH19-enriched EVs have been revealed to be
promoters of oxaliplatin resistance. LncH19-EVs are released by
CAFs and uptake by CRC cells SW480. Inside target cells, H19
activated the b-catenin pathway via acting as a competing
endogenous RNA sponge for miR-141, an inhibitor of the
cancer stemness. The overexpression of H19 was also
confirmed in CRC patient samples at different tumor node
metastasis stages (145). Lin and colleagues found that carnitine
palmitoyltransferase 1A (CPT1A) was more highly expressed in
colon cancer tissues than in noncancerous tissues and confirmed
that CPT1A was increased by oxaliplatin stimulation in human
colon cancer cell lines HCT116 and SW480. Silencing RNA
could reverse the sensitivity of drug-resistant colon cancer cells
to oxaliplatin (146). An elegant study showed in CRC cells the
role of the antisense-RNA PGM5-AS1 in oxaliplatin resistance.
Comparing tumor biopsies and perineoplastic tissues from
patients, the authors found PGM5-AS1 as the second most
downregulated ncRNA. In oxaliplatin-resistant SW480 cells,
the downregulation of PGM5-AS1 is accompanied by the
upregulation of the transcription repressor growth factor
independent 1B (GFI1B). Further experiments demonstrated
that GFI1B suppresses the expression of non-coding antisense
RNA PGM5-AS1, which acts as a sponge for has-miR-423-5p to
upregulate the expression of Nucleoside Diphosphate Kinase 1,
NME1, and EVs can be involved in the intercellular exchange of
the member of these pathways, contributing to resistance to
FIGURE 3 | Cartoon illustrating the involvement of EVs in the spreading of chemoresistance among the cells of the tumor microenvironment (TME). The drugs
induce the modification of the gene expression of primary tumor cells or TME cells. These cells release EVs enriched in the molecular players involved in the
acquisition of drug resistance in the EV-donor cells, finally taken up by the sensitive tumor cells acquiring the insensitiveness toward the chemotherapeutic. Bottom-
right box: molecular effectors involved in drug resistance shuttled through the EVs. ncRNAs, non-coding RNAs; mRNAs, messenger RNAs. This figure was drawn
with the support of the bioicons website.
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oxaliplatin (147). Another miRNA involved in CRC was reported
by Xiao et al. They found that the exosomal delivery of miR-
1915-3p can improve the chemotherapeutic efficacy of
oxaliplatin in CRC cells by suppressing the expression of 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3)
and ubiquitin carboxyl-terminal hydrolase 2 (USP2) and
inducing the expression of E-cadherin (148). Another study
showed the involvement of cirRNAs in the EV-based resistance
to the FOLFOX regimen (oxaliplatin, 5-fluorouracil, folic acid) in
CRC patients (149). A microarray profiling of exosomal
circRNAs in FOLFOX-resistant HCT116 colon cancer cells
identified 105 upregulated and 34 downregulated circRNAs
compared to parental cells, with hsa_circ_0000338 being the
most upregulated. Finally, the drug resistance can be transferred
from resistant cells into sensitive cells via the uptake of
exosomes. As reported in the previous paragraph, cancer cells
can take advantage of CAF to acquire chemoresistance. Indeed, it
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has been shown that EVs from CAFs sustain chemo- and radio-
resistance to the cisplatin of breast cancer MDA-MB-231 cells by
activating retinoic acid-inducible gene I (RIG-I), the signal
transducer and activator of transcription (STAT) 1, and
NOTCH3 pathways (150). These studies are summarized
in Table 1.

Antimetabolite Resistance by EV
Molecular Cargoes
5-fluorouracil (5-FU) is an antimetabolite working as a
thymidylate synthase inhibitor, finally depleting the cells of the
pyrimidine thymidylate, a nucleotide pivotal for DNA
replication (151). Although 5-FU is the first-choice drug for
cancer treatment, its efficiency is limited by the acquisition of an
innate or acquired resistance. Zhao et al. showed that
circ_0000338 is upregulated in 5-FU-resistant CRC both in
vitro and in vivo as well as in CRC patients (152). The authors
TABLE 1 | Resistance to platins mediated by EVs.

Drug Cancer Type EV Cargo Effects Refs

Cisplatin Osteosarcoma patients and in vitro miR-25-3p Inhibition of DKK3 (139)
Carboplatin Osteosarcoma, spontaneous canine tumor Tetranectin Unreported (143)
Oxaliplatin CRC, in vivo and in vitro LncH19-EVs Sponge for miR-141 and b-catenin activation (145)
Oxaliplatin CRC in vivo CPT1A Unreported (146)
Oxaliplatin CRC in vitro PGM5-AS1 Sponge for miR-423-5p and upregulation of NME1 (147)
Oxaliplatin CRC in vitro miR-1915-3p Suppression of PFKFB3 and USP2 (148)
Oxaliplatin (FOLFOX) CRC patients, in vitro circ_0000338 Unreported (149)
Cisplatin Breast cancer, in vitro EVs from CAF, unreported Activation of RIG-I, STAT1, and NOTCH3 (150)
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FIGURE 4 | Scheme summarizing the mechanism of drug resistance activated by EVs. Examples of molecular players for each category, as described in Figure 2,
are reported. Only molecules shuttled by EVs are reported.
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revealed that exosomes containing circ_0000338 are delivered
from resistant to sensitive cells and confirmed that circulating
EVs in CRC patients were enriched in circ_0000338. Further
experiments revealed miR-217 and miR-485-3p as the target
miRNAs of circ_0000338. Particularly, miR-217 induces tumor
suppression by targeting downstream genes such as astrocyte
elevated gene-1 (AEG-1), mitogen-activated protein kinase
(MAPK), and zinc finger E-box binding homeobox 1 (ZEB1).
On the other part, miR-485-3p counteracts CRC development,
inhibiting the targeting protein for Xklp2 (TPX2). Runbi Ji et al.
showed that EVs from human mesenchymal stem cells (MSCs)
isolated from the umbilical cord promoted the 5-FU resistance of
gastric cancer both in vitro and in vivo (153). In fact, the
exposition to MSC-EVs induced in gastric cancer cells HGC-
27, MGC-803, and SGC-7901 the activation of calcium/
calmodulin-dependent protein kinases (CaM-Ks) and Raf/
MEK/ERK kinase pathways, culminating in the upregulation of
MDR, multidrug resistance-associated protein (MRP) and lung
resistance-related protein (LRP), and finally, insensitiveness to
apoptosis induced by 5-FU. In another study, miR-92a-3p
expression in the circulating EVs of CRC patients has been
demonstrated to be correlated with metastasis to the liver and
chemoresistance to 5-FU (154). The main players in this context
were CAFs, exhibiting the upregulation of miR-92a-3p,
compared to normal fibroblasts, delivered in the surrounding
by EVs. Once uptaken by cancer cells, miR-92a-3p-EVs induced
the stemness, EMT, metastatization, and 5-FU resistance of
cancer cells both in vitro and in vivo. Finally, F-Box and WD
Repeat Domain Containing 7 (FBXW7) and Modulator of
Apoptosis 1 (MOAP1) were identified as the main targets of
miR-92a-3p. Consistently, CRC biopsies resulted to being
enriched in miR-92a-3p and depleted in FBXW7 and MOAP1.
Colon cancer cells exposed to 5-FU are also able to increase
angiogenesis (155). Upon exposition to 5-FU, cancer cells HCT-
15 released EVs enriched in growth/differentiation factor 15
(GDF15), which binds the TGF-bIII receptor. The activation of
the receptor induces the suppression of Smad signaling and the
upregulation of periostin in endothelial cells, culminating in the
increase of angiogenesis. In HCC, Fu and colleagues found that
HCC cells Bel7402 resistant to 5-FU produce EVs enriched in
miR-32-5p shuttled to sensitive parental cells, in which it induces
a decrease in PTEN and the activation of the PI3K/Akt,
triggering EMT, angiogenesis, and finally, chemoresistance
(156). Lastly, the relevance of miR-32-5p and PTEN in human
HCC samples was investigated, confirming a negative correlation
between them. This evidence is summarized in Table 2.
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Doxorubicin Resistance by EV
Molecular Cargoes
Doxorubicin (DXR), also known as Adriamycin (ADR), is an
anthracycline antibiotic with antineoplastic activity, isolated
from the bacterium Streptomyces peucetius var. caesius, acting
as intercalating base pairs in the DNA helix (157). Additionally,
DXR inhibits topoisomerase II. DXR also forms oxygen free
radicals, resulting in cytotoxicity secondary to the lipid
peroxidation of cell membrane lipids. Primary human OS cells
MG63 treated with DXR increased their expression of P-gp1.
Consistently, EVs from DXR-treated MG63 presented with
higher levels of both the ABCB1 transcript and P-gp-encoded
protein expression, which can be transferred to untreated MG63
cells, conferring their drug resistance (158).

Breast cancer cells MCF7 treated with ADR showed a high level
of UCH-L1 and phospho-ERK, involved in the overexpression of
ABCB1, compared to control cells. EVs from ADR-resistant MCF7
conferred to naïve MCF7 cells reduced sensitivity to ADR and
increased p-ERK and P-gp1 levels (159). Interestingly, circulating
EVs from breast cancer patients were positive for UCH-L1 and
show an inverse correlation with response to treatment. MCF-7
exposed to ADR and DOC increased both cellular and exosomal
miR-222, an inhibitor of phosphatase and tensin homolog (PTEN)
gene, a tumor suppressor that negatively regulates the synthesis of
phosphatidylinositol trisphosphate and the Akt signaling (141).
Upon the uptake of these EVs, interstitial M2 macrophages
underwent activation and polarization to support cancer cells.
Accordingly, miR-222 has also been found in EVs from the
plasma and tissue of chemoresistant patients (141). The
overexpression of glutathione-S-transferase P1 (GSTP1, a phase
II-metabolizing enzyme that detoxifies chemicals by conjugating
with glutathione) is a described tool for cancer cells for
counteracting chemotherapeutics like ADR. Yang et al. found
that this enzyme is present in EVs from ADR-resistant MCF7
and, accordingly, in the sera of chemoresistant patients (160). A
study conducted onHCC cells reported the role of long non-coding
RNA linc-VLDLR in resistance toward DXR. Linc-VLDLR
promoted the expression of the PCNA and ABCG2 genes, and
the EV-mediated transfer of linc-VLDLR can result in the
chemoresistance of HCC (161). Table 3 summarizes these studies.
Taxane Resistance by EV
Molecular Cargoes
Taxanes are diterpenes firstly isolated from the plants of Taxus
spp. Taxanes work as microtubule-stabilizing drugs, inhibiting
TABLE 2 | Resistance to antimetabolites mediated by EVS.

Drug Cancer Type EV Cargo Effects Refs

5-FU CRC patients and in vitro circ_0000338 Repression of miR-217 and miR-485-3p upregulation of AEG-1, MAPK, ZEB1, and TPX2 (152)
5-FU Gastric cancer patients and in vitro EVs from MSCs Upregulation of CaM-Ks, ERK, MDR, MRP, and LRP (153)
5-FU CRC patients in vitro miR-92a-3p from CAFS Downregulation of FBXW7 and MOAP1 (154)
5-FU CRC in vitro GDF15 Suppression of Smad and upregulation of periostin in target endothelial cells (155)
5-FU HCC patients and in vitro miR-32-5p Downregulation of PTEN and activation of EMT (156)
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5-FU, 5-fluorouracile.
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the depolymerization of microtubules during cell division (162).
PTX, DOC, and cabazitaxel are widely used for the treatment of
many different cancers. Exposure to the DOC of MCF7 cells
induced the expression of P-gp1. Moreover, EVs from DOC-
treated MCF-7 expressed higher levels of P-gp compared to EVs
from naïve MCF-7, and the incubation with DOC-MCF7 EVs
reduced the cell apoptosis of naïve MCF-7 (163). In another
study, breast cancer cells MDA-MB-231 exposed to PTX
specifically released EVs enriched in survivin, an inhibitor of
apoptosis (164). The survivin-enriched EVs exerted protective
effects on drug-sensitive fibroblasts and SKBR3 cells when
exposed to PTX. Shan et al. described the role of CAF-EVs in
the taxane resistance of prostate cancer cells. CAFs released EVs
enriched in miR-423-5p, which is internalized inside prostate
cancer cells LNCAP, 22RV-1, and C4 suppressing GREM2
[encoding for the gremlin2 protein inhibitor of bone
morphogenetic protein (BMP) family members] and increasing
TGF-b, overall leading to a reduced sensitivity to taxanes (165).
These results are reported in Table 4.

Biological Drugs by EV Molecular Cargoes
Monoclonal antibodies are the newest frontier of anticancer
drugs. A deeper knowledge of cancer biology and molecular
profile allows to precisely target a specific member of pivotal
pathways for cancer growth. Unfortunately, tumors can find a
strategy to also counteract these agents. Cetuximab is a
humanized mouse monoclonal antibody against the EGFR.
Zhang et al. showed that EVs derived from cetuximab-resistant
RKO colon cancer cells induced cetuximab resistance in
cetuximab-sensitive Caco-2 cells. RKO cells and RKO-EVs
resulted in depleted PTEN and enriched phospho-Akt, and the
EV effects were abrogated by the Akt inhibitor LY294002 (166).
In another study, circulating EVs from patients suffering from
CRC have been exploited as a predictive biomarker for the
response to cetuximab (42). In particular, circulating EVs from
metastatic and chemoresistant subjects resulted in enriched
lncRNA urothelial carcinoma-associated 1 (UCA1). In vitro
experiments revealed that exosomes from cetuximab-resistant
Caco-2 cells can transmit drug UCA1 and resistance to sensitive
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parental cells. Epidermal growth factor receptor 2 (HER2)-
positive tumors can be targetable with the monoclonal
antibody trastuzumab. Disappointingly, tumor cells can
neutralize trastuzumab by EV release, via a decoy-like system.
HER2-positive breast cancer cells BT474 and SKBR3 release
HER2-positive EVs able to bind trastuzumab, while EVs from
triple-negative cells MDA-MD-231 do not. On this basis, SKBR3
cells treated with autologous EVs were less sensitive to the effect
of trastuzumab since EVs sequester trastuzumab, reducing the
efficacy of the chemotherapy against the primary tumor (167).
Finally, circulating EVs from HER2-positive breast cancer
patients at an early stage showed lower binding to trastuzumab
compared to EVs from patients with advanced disease.
Rituximab is a monoclonal antibody against CD20, a standard
in the management of malignant B-cell lymphoma (168). Aung
et al. showed that leukemic cells released CD20-enriched EVs
intercepting rituximab, thus protecting cancer cells from the
complement-dependent cytolysis induced by rituximab (169).
Lubin and colleagues reported that neuroblastoma cells released
programmed death-ligand 1 (PD-L1)-EVs that bind to PD-1 on
the surfaces of cytotoxic T cells, preventing the targeting of
tumor cells and finally allowing immune evasion (170). Other
authors described that the response to pembrolizumab (an anti-
PD-1 antibody) in patients suffering from melanoma can be
reduced by EVs (171). After treatment with pembrolizumab,
melanoma cells released EVs enriched in PD-L1, which
suppresses the proliferation of cytotoxic T cells and facilitates
the immune evasion of tumor cells, counteracting the efficacy of
pembrolizumab. Table 5 summarizes these studies.
DISCUSSION

EVs are nowadays reported to be responsible for sustaining
many aspects of tumor biology. Cancer recurrence and
metastatization are the main clinical challenges to offer to
patients a perspective of a free-disease lifespan or at least a
lifetime with a steadied cancer. Resistance to therapies is one of
the causative agents of those challenges. Many mechanisms are
TABLE 3 | Resistance to doxorubicin (DXR) mediated by EVS.

Drug Cancer Type EV Cargo Effects Refs

DXR Osteosarcoma, in vitro P-gp1 Transfer of mRNA and protein of MDR in sensitive cells (158)
DXR Breast cancer, patients and in vitro UCH-L1 and p-ERK Increase of ABCB1 (159)
DXR Breast cancer, patients and in vitro miR-222 Suppression of PTEN in M2 macrophage (141)
DXR Breast cancer patients and in vitro GSTP1 Enhancement of detoxification pathway (160)
DXR HCC in vitro Linc-VLDLR Upregulation of PCNA and ABCG2 (161)
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TABLE 4 | Resistance to taxanes mediated by EVS.

Drug Cancer Type EV Cargo Effects Refs

Docetaxel Breast cancer, in vitro P-gp Expression of functional P-gp (163)
Paclitaxel Breast cancer, in vitro Survivin Inhibition of apoptosis (164)
Taxanes Prostate cancer, in vitro miR-423-5p from CAF-EVs Inhibition of GREM2 and increase of TGF-b in cancer cells (165)
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described to drive chemoresistance, and, of note, they frequently
overlap, making it virtually impossible to counteract once
activated. EVs are recently indicated as a further mechanism
supporting chemoresistance. By the means of EVs, insensitive
cancer cells can educate sensitive cognate cells, shuttling directly
a functional molecular apparatus. On this basis, EVs gain clinical
interest as a manageable biomarker of cancer aggressiveness and
predisposition to chemoresistance, becoming a promising
liquid biopsy.

Moreover, EVs also offer a new strategy to fight cancer via the
inhibition of the release or the interaction of EVs with target cells.
Unfortunately, some issues dampen the use of EVs in clinical and
therapeutic management. In fact, while in basic and preclinical
studies, the key involvement of EVs is incontrovertible, these
results are dampened in patients and not completely reproducible,
mostly comparing in vitro studies with human trials. A reason for
that can be the use of different procedures adopted to isolate EVs
since a universal consensus is still lacking on this aspect. It is
nowadays reported that the specific isolating procedures can
enrich protein contamination (i.e., lipoproteins or protein
aggregates), and certain EV subpopulations, in turn, selecting a
particular molecular cargo not strictly linked to the real biological
condition, making it hard to extrapolate a comprehensive and
objective interpretation.

Nevertheless, many authors are exploiting the use of natural or
modified EVs as a drug delivery system. A successful and effective
encapsulation of chemotherapeutics has been reported for DXR,
cisplatin, and methotrexate in EVs from lung (human A549 cells),
hepatocarcinoma (murine H22 cells), and breast (human MCF-7
cells) cancer cells. The efficacy has been demonstrated in vitro in
animal models and in a clinical trial (patients suffering from stage
IV lung carcinoma) (172). Paclitaxel was also loaded in EVs from
human prostate cancer cells (LNCaP and PC-3 cells) (173).
Murine macrophage RAW 264.7 cells were tested as a source of
EVs for loading DXR targeting lung and colon (both in vitro and
in animal models) cancers (174, 175). Similarly, EVs from RAW
264.7 packaged with DXR were effective in H22 tumor-bearing
mice (144). Primary murine osteoblast-EVs have been loaded with
dasatinib and successfully mitigated exacerbated osteolysis in
vivo (18).
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This is a very stimulating and active field since EVs offer many
advantages in drug administration compared to the classical or
liposomal formulation. The naturally occurring EV composition
can confer very selective tropism to a specific tissue or cell, as well
as present a higher biologic activity due to the ability to convey
complex molecular machinery to the targets sustaining the
required therapeutic effect. Moreover, natural EVs can be
engineered for acquiring further or better properties (175).

As discussed above, several issues still curb the possibility to
produce EVs for therapeutic use, mainly because the option to
produce EVs under Good Manufacturing Process conditions is
still lacking, although many efforts are leading in this direction.
In this sense, all the key unit operation and process steps are
under consideration for standardization and assessment for EV
safety and de-risking, considering and not limited to the
following: choice and characterization of the cell source,
isolation methods, drug-loading methods (loading efficacy/cost
ratio for large-scale production), the eradication of potential
contaminants and impurities, best formulation, and the shelf life
of final EV products. The recent case of a public safety
notification on exosome products from the Food and Drug
Administration for a group of patients in Nebraska, who have
experienced adverse effects from the administration of improper
EVs, is an exemplificative of the urgency to have regulatory
monitoring about the use of EVs for human health (https://www.
fda.gov/vaccines-blood-biologics/safety-availability-biologics/
public-safety-notification-exosome-products). The increasing
availability of new analytical techniques is predictable to
provide new insights into the distinctiveness of EVs and may
unlock the full potential of EVs for clinical management.
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Role of exosomal microRNAs
in cancer therapy and drug
resistance mechanisms: focus
on hepatocellular carcinoma

Veronica Zelli 1,2, Chiara Compagnoni1, Roberta Capelli 1,
Alessandra Corrente1, Mauro Di Vito Nolfi 1,
Francesca Zazzeroni1, Edoardo Alesse1†

and Alessandra Tessitore1,2*†

1Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy,
2Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
Extracellular vesicles (EVs), defined as intercellular messengers that carry their

cargos between cells, are involved in several physiological and pathological

processes. These small membranous vesicles are released by most cells and

contain biological molecules, including nucleic acids, proteins and lipids, which

can modulate signaling pathways of nearby or distant recipient cells.

Exosomes, one the most characterized classes of EVs, include, among

others, microRNAs (miRNAs), small non-coding RNAs able to regulate the

expression of several genes at post-transcriptional level. In cancer, exosomal

miRNAs have been shown to influence tumor behavior and reshape tumor

microenvironment. Furthermore, their possible involvement in drug resistance

mechanisms has become evident in recent years. Hepatocellular carcinoma

(HCC) is the major type of liver cancer, accounting for 75-85% of all liver

tumors. Although the improvement in HCC treatment approaches, low

therapeutic efficacy in patients with intermediate-advanced HCC is mainly

related to the development of tumor metastases, high risk of recurrence and

drug resistance. Exosomes have been shown to be involved in pathogenesis

and progression of HCC, as well as in drug resistance, by regulating processes

such as cell proliferation, epithelial-mesenchymal transition and immune

response. Herein, we summarize the current knowledge about the

involvement of exosomal miRNAs in HCC therapy, highlighting their role as

modulators of therapeutic response, particularly chemotherapy and

immunotherapy, as well as possible therapeutic tools.
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Introduction

Liver tumor is one of the most common types of cancers (1),

displaying the 7th highest age-adjusted incidence rate in the

world. Hepatocellular carcinoma (HCC) is considered the most

frequent liver neoplasm (1) and the third most common cause of

cancer-related death worldwide (2), predominantly in Asian

countries, due to late diagnosis and lack of effective

surveillance programs for high-risk people. In this context,

several non-invasive diagnostic biomarkers are considered, but,

unfortunately, they do not reach necessary sensitivity and

specificity, especially for early stage-HCC (3). On the other

hand, liver biopsy is a limited procedure due to its

invasiveness, and imaging methods (e.g. ultrasonography,

magnetic resonance and/or computed tomography) are usually

utilized for diagnosis, even though small tumors can be often

missed (4, 5).

HCC initiation, development and progression are dependent

both on intrinsic (e.g. gene mutations) and extrinsic (e.g. viral

infections, western type diet intake, alcohol consumption)

factors able to induce in liver cells the typical responses of

malignant transformation, leading to apoptosis evasion, cell

proliferation and survival, neovascularization (4). In particular,

non-alcoholic fatty liver disease (NAFLD) is now considered the

most important liver chronic disease (6) and it has been shown

that, among HCC predisposing factors, not only high-fat (7), but

also high-carbohydrate/western type diet can induce disease

progression up to tumor formation in a NAFLD/NASH mouse

model (8–10). The progression of the disease includes a passage

through a cirrhotic stage in a large majority of HCC cases (up to

90%) (11). Oxidative damage (12), inflammation (13),

hepatocyte compensatory regeneration (14), with consequent

accumulation of gene mutations, are typical HCC features.

Mutational HCC landscape includes many genes with different

mutation frequency, such as TP53 (30%), CTNNB1/b-catenin
(26%), ARID1A (8%), ARID2 (6%), AXIN (6%) (15). Several

pathways, such TGF-b, Wnt/b-catenin, Hedgehog, Notch, EGF,

HGF, VEFG, JAK/STAT, Hippo, and HIF are dysregulated and

play a crucial role in HCC, leading to uncontrolled cell division

and metastasis. For some of them, small promising molecules for

therapeutic approaches are under investigation (16).

To date, the main approach in HCC management is

radiofrequency ablation (RFA), surgical resection or liver

transplantation, if feasible, and outcome of patients untreatable

with resection curative methods is dependent on the response to

the currently available therapies. Novel treatments, principally

based on sorafenib and regorafenib, two tyrosine kinases

inhibitors (TKIs) seem, however, to induce a moderate

increase of HCC patients ’ survival (17). MicroRNAs

(miRNAs) are short non-coding RNA molecules able to

regulate gene expression at the post-transcriptional level (18),

playing a pivotal role in high-impact disorders, including
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neurodegenerative (19), cardiovascular (20) diseases and

cancer (21, 22). They work by fine-tuning key physiological

and pathophysiological processes, such as proliferation, survival,

apoptosis, invasion, angiogenesis, epithelial-mesenchymal

transition (EMT), metastasis and resistance to therapeutic

treatments as well (23, 24). MiRNAs dysregulated expression

levels are described both in tumor tissues and serum/plasma,

where they are included in macromolecular protein complexes

(25–27) or encapsulated in microvesicles/exosomes (28, 29) to

be protected from endogenous RNase, being so easily detectable

and quantifiable. Such properties allowed the identification of

miRNAs as potential diagnostic, prognostic and predictive

cancer biomarkers. Furthermore, aberrant miRNA expression

in cancer led to the characterization of oncomiRs and tumor-

suppressor miRs, playing a role in promoting or suppressing

oncogenesis, respectively. The possibility to synthesize and

obtain molecules able to specifically repristinate physiological

conditions (i.e. antagomiRs inhibiting oncomiRs, mimics

replacing tumor suppressor miRs) made these molecules of

great interest for innovative cancer therapeutic strategies (30).

Furthermore, several miRNAs were described as biomarkers for

therapy response and disease-free survival/clinical progression

in HCC patients (31–34).

In this review, we report recent advances on exosomal

miRNAs in HCC, by focusing on their involvement and role

in therapeutic responses.
MiRNA biogenesis

In the canonical pathway, microRNAs are transcribed, from

intergenic or intragenic genomic regions, by Polymerase II in the

nucleus, thus originating long double stranded-hairpin primary

transcripts (pri-miR). Subsequently, RNase III enzyme Drosha,

associated to RNA binding protein (RBP) DGCR8 (DiGeorge

critical region 8), cleaves pri-miRNAs to generate pre-miRNAs

(60-100 nucleotides in length hairpin precursors) which are

subsequently transferred to the cytoplasm by Exportin 5

through a Ran (Ras-related nuclear protein)-GTPase-

dependent mechanism. There, pre-miRNAs are cleaved again

by RNase enzyme Dicer, linked to the trans-activation-

responsive RNA-binding protein (TRBP), to produce mature

double-stranded miRNAs. Mature miRNAs associate to a

member of Argonaute family (Ago1-2-3-4 paralogs in

mammals) thus generating the ribonucleoprotein miRNA-

induced silencing complex (miRISC). Two main mechanisms

for miRNA-mediated regulation are described through the

interaction between the seed region and specific partially or

perfectly complementary microRNA responsive elements

(MREs), mainly located at the level of target mRNA 3’-UTR,

with consequent translation repression or mRNA decay by

deadenylation followed by decapping, respectively (18, 35, 36).
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A DICER-independent mechanism has been described as well

for pre-miR-451, involved in erythropoiesis. This is due to the

stem-loop structure, too short to be processed by DICER. In this

case, miRNA’s maturation requires direct loading into Ago2 and

subsequent cleavage by its catalytic centre (37).
Exosomes

Cells can secrete different types of extracellular vesicles

(EVs). This feature is conserved from bacteria up to higher

organisms (38, 39), and it was originally intended to discard

unwanted or unnecessary molecules (40). However, it is known

that EVs are involved also in exchanging nucleic acids, lipids and

proteins among cells; moreover, they play a role in favouring

intercellular communication, at the level of both physiological

and pathophysiological processes (41). Three main types of EVs

have been described: exosomes, microvesicles and apoptotic

bodies which differ based on their biogenesis and release

mechanisms, content, size and role (42, 43),.

Exosomes are nano-sized biovesicles (diameter 30-150 nm)

secreted by all cell types. They can be detected in most of body

fluids and are delimited by a lipid bilayer membrane which

protects and aids to deliver cargos to recipient cells (44).

Exosome biogenesis occurs as a part of membrane-trafficking

processes: cargos are insourced and distributed into early

endosomes at the level of endosomal system. Subsequently,

late endosomes/multivesicular bodies (MVBs), containing

intraluminal vesicles (ILVs), are generated from early

endosomes. ILVs can sequester lipids, proteins and other
Frontiers in Oncology 03
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cargos from cytosolic compartments and Golgi apparatus.

After, MVBs containing cargos are driven at the level of the

plasma membrane, where they merge with it, so that ILVs are

released, as exosomes as an outward budding (43, 45,

46) (Figure 1).

The MVBs formation seems to be dependent also on

stimulation by growth factors (47) and can occur mainly by

endosomal sorting complex required for transport (ESCRT)

pathway-dependent mechanisms (48). In addition, ESCRT-

independent mechanisms have been described for MVBs

formation (49–51) since it was demonstrated that MVBs can

still form after depletion of ESCRT components (52). ESCRT

(ESCRT-0/I/II/III) and accessory (e.g. Alix, TSG101, HSC70,

HSP70) proteins are contained in exosomes following ESCRT-

dependent MVEs generation, irrespective of the cell types, and

for this reason they are considered as exosomal markers (42, 43,

53). On the other hand, in ESCRT-independent mechanism,

other molecules (e.g. tetraspanins, CD63, CD9, CD81) are

commonly found in exosomes, but also detected in other types

of vesicles, such as MVs (54, 55). Based on information reported

by some databases, exosomes can contain more than 8,000

proteins and 190 lipids. Integrins, tetraspanins, MHC-II

complex proteins are described in the exosomal membrane,

whereas other (CD55, trombospondin, ALIX, lactadherin) are

included into exosomes during the biogenesis (56).

Exosome can load different and tissue-specific cargos, such

as proteins, nucleic acids, lipids and metabolites, depending on

the type of cell from which they are produced. Following their

uptake by recipient cells, via exosomal fusion or endocytosis,

they provide autocrine, paracrine and endocrine functions, thus
FIGURE 1

Exosomes biogenesis. After being generated by endocytosis at the level of endosomal system, exosomes are included as invagination within the
multivesicular endosomes (MVEs) lumen and released as an outward budding upon the fusion of MVEs with the cell membrane. MVEs formation
can occur mainly by endosomal sorting complex required for transport (ESCRT) pathway-dependent mechanism; ESCRT-independent mechanisms
were also described. Exosomes can contain different cargos, such as proteins, lipids, DNA, mRNAs, lnRNAs and miRNAs. Exosomes are uptake by
recipient cells thus favouring intercellular communication through their autocrine, paracrine and/or endocrine function.
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favouring intercellular communications (55, 57) (Figure 1),

participating in cell homeostasis (58), stimulating immune

responses (59), promoting tissue repairing (60), cell survival

(61), and modulating angiogenesis (62). For these reasons, they

are considered as crucial modulators of intercellular cross-talks

at the base of several high-impact diseases (63–65),

including cancer.
Exosomal miRNAs in HCC

Exosomal miRNAs have been shown to regulate tumor

behavior and reshape tumor microenvironment (TME).

Increasing evidence indicates that exosomal miRNAs

contribute to HCC pathogenesis and progression by regulating

processes such as cell proliferation, metastasis and immune

response (66), thus showing considerable potential as

diagnostic, predictive and prognostic biomarkers as well as

new therapeutic tools (67). Table 1 shows a comprehensive

overview of exosomal miRNAs and related functions in HCC

development and progression, based on the most recent

literature. The utility of exosomes as vectors of biological

therapeutic agents, such as miRNAs, has been actively

explored in HCC (67). In the following sections, we will

discuss, among those reported in Table 1 the most relevant

miRNAs described as mediators of therapeutic response and/or

putative treatment tools in HCC.
Exosomal miRNAs as modulators of
therapeutic response

Several studies have described the ability of exosomal

miRNAs to modulate HCC therapeutic response to different

drugs, such as sorafenib, 5-fluorouracil (5-FU) and doxorubicin,

or immunotherapy (107, 108). Experimental evidence suggests

the involvement of exosomal miRNAs both in drug resistance

mechanisms and in drug sensitivity improvement.

Lou et al. observed that miR-122-enriched exosomes,

obtained from adipose tissue-derived mesenchymal stem cells

(AMSC) after transfection with miR-122 expression plasmids,

inhibited HCC cell proliferation and increased sensitivity to 5-

FU and sorafenib both in vitro and in xenograft mouse models,

by targeting and downregulating the expression of CCNG1,

ADAM10 and IGF1R, genes involved in tumorigenesis and

drug sensitivity in several cancer types. Thus, the authors

highlighted the potential use of exosomal miR-122 to improve

therapeutic response and revert drug resistance (71).

Similarly, exosomal miR-744 was able to rescue sorafenib

sensitivity in resistant HepG2 cancer cells, by targeting PAX2,

involved in the regulation of chemotherapy response in several

cancers (88). Decreased level of miR-744 was found in HCC

tissues, in exosomes from patients’ sera and HCC cells resistant
Frontiers in Oncology 04
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to sorafenib: the restoration of miR-744 expression in HepG2

cancer cells and the subsequent release of miR-744-enriched

exosomes led to decreased miR-744-induced cell proliferation

and resistance to therapy (88).

On the contrary, miR-32-5p was found to contribute to

multidrug resistance in HCC cells (94). The authors observed

that exosomes from multidrug-resistant Bel/5-FU cells were able

to deliver miR-32-5p into sensitive Bel7402 cells, thus inducing

angiogenesis, EMT and drug resistance through PI3K/AKT

pathway activation. Increased levels of exosomal miR-32-5p

were also found in sera from HCC patients, associated with

poor prognosis (94).

Resistance to chemotherapy, is one of the main factors

responsible for high mortality rate in HCC patients, and the

identification of mechanisms underlying chemoresistance as

well as the enhancement of therapeutic options is of great

clinical interest. In this context, the possible role of the

exosomal tumor suppressor miR-199a-3p was recently

explored in two studies (78, 79).

Lou et al. showed that exosome-mediated crosstalk between

adipose tissue-derived mesenchymal stem cells (AMSCs) hyper-

expressing miR-199a-3p and HCC cells increased the tumor

sensitivity to doxorubicin by targeting mTOR signaling pathway.

In vivo experiments, based on AMSC-Exo-199a injection into a

HCC mouse model, confirmed increased doxorubicin anti-

tumor effect in HCC (78).

Likewise, Zhang et al. observed that exo-miR-199a-3p

restored sensitivity to cisplatin (DDP) and decreased tumor

growth in chemo-resistant HCC cells. Due to the ability of

exo-miR-199a-3p to overturn DDP resistance, the authors

highlighted its great potential as an alternative therapeutic

option in DDP-refractory HCC (79).

In a study aimed at elucidating the possible mechanism by

which hepatitis B core antigen (HBc) promotes doxorubicin

resistance in HCC, Wei et al. suggested that HBc led to

upregulation of exosomal miR-135a-5p inducing cell

proliferation, anti-apoptotic effects, and drug resistance.

VAMP2 was identified as a novel miR-135a target, and its

level decrease was linked to cell proliferation, apoptosis escape

and drug resistance, thus identifying the miR-135a-5p/VAMP2

axis as a key regulatory chemo-resistance mechanism in

HCC (99).

Exosomal miR-451a acts as tumor suppressor miRNA and

its expression is down-regulated in HCC (84). Xu et al. used

human umbilical cord mesenchymal stem cells (hucMSCs)

derived exosomes to treat Hep3B cells and assess paclitaxel

resistance. The authors demonstrated that exosomal miR-451

slowed EMT progression and reduced proliferation, migration

and resistance to paclitaxel by suppressing ADAM10 in HCC

cells, thus acting as a chemosensitivity-inducing factor and

promoting HCC cell apoptosis (85).

Semaan et al. reported that the use of exosomal miR-214

from human cerebral endothelial cell-derived exosomes (hCEC-
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TABLE 1 Overview of exosomal miRNAs involved in HCC pathogenesis.

miRNA Function in HCC Anti-cancer drug
(s)

Targets/pathway Donor cell Recipient
cell

Reference

Tumor
Suppressor
miRNAs

miR-9-3p Reducing proliferation and
motility

HBGF-5, ERK1/2 (68)

miR-26a Suppressing cell
proliferation and
migration

CCND2, CCNE2, CDK6 HEK293T HCC cells
(HepG2)

(69)

miR-31
and miR-
451a1

Anti-cancer activity CDK2, SP1, BCL2a, MDR1 RCC HCC cells
(HepG2)

(70)

miR-122 Increasing sensitivity to
chemotherapeutic agents/
inhibiting cell
proliferation

5-fluorouracil (5-FU)
and Sorafenib

ADAM10, IGF1R, CCNG1 AMSCs HCC cells
(HepG2)

(71)

Inhibiting growth and
proliferation/increasing
senescence

CAT1, FTF2B (72)

miR-142
and miR-
223

Inhibiting cell
proliferation

STMN1, IGF-1R TAMs HCC cells
(Huh7)

(73)

miR-142-
3p

Suppressing invasion and
tumor growth

RAC1 TAMs HCC cells
(Hepa 1-6)

(74)

miR-145 Suppressing tumorigenesis
and metastasis

GSK-3b/MMPs pathway (75)

miR-146a Anti-cancer activity via
immune system
stimulation

M2 and T-cells (76)

miR-150-
3p

Suppressing cancer
progression

─ (77)

miR-
199a-3p

Increasing sensitivity to
anti-cancer drugs/
inhibiting invasion

Doxorubicin mTOR pathway AMSCs HCC cells
(Huh7,SMMC-
7721, PLC/PRF/
5)

(78)

Cisplatin (DDP) ATM, mTOR and DNMT3A HEK293T HCC cells
(Huh-7, Huh-7/
DDP)

(79)

miR-
200b-3p

Suppressing angiogenesis ERG HCC cells (HLE,
Hep3B)

Endothelial
cells (Huvecs)

(80)

miR-214 Reducing viability and
invasion in combination
with anti-cancer drugs

Oxaliplatin and
Sorafenib

P-gp, SF3B3 hCEC HCC cells
(HepG2,
Hep3B)

(81)

miR-320a Inhibiting proliferation,
migration and metastasis

MAPK pathway (PBX3) CAFs HCC cells
(MHCC97H
and SMMC-
7721)

(82)

miR-335-
5p

Inhibiting proliferation
and invasion

CDC42, CDK2, CSNK1G2,
EIF2C2, EIF5, LIMaK1, NRG1,
PLK2, RGS19, TCF3, THBS1,
YBX1, ZMYND8

CAFs HCC cells
(MHCC97L,
MHCC97H,
Huh7 and
HepG2)

(83)

miR-
451a1

Suppressing survival and
angiogenesis

LPIN1 (84)

Suppressing drug
resistance, proliferation,
migration and invasion

Paclitaxel ADAM10 HUC-MSCs HCC cells
(Hep3B and
SMMC-7721)

(85)

miR-490 Inhibiting metastasis EGFR-AKT-ERK1/2 pathway
(ERGIC3)

MCs HCC cells
(HepG2,
Hep3B)

(86)

(Continued)
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TABLE 1 Continued

miRNA Function in HCC Anti-cancer drug
(s)

Targets/pathway Donor cell Recipient
cell

Reference

miR-718 Decreasing tumour
aggressiveness and
recurrence

HOXB8 (87)

miR-744 Inhibiting proliferation
and chemoresistance

Sorafenib PAX2 HCC cells
(HepG2)

─ (88)

OncomiRs miR-10b Promoting proliferation
and metastasis

HIF-1a, HIF-2a (89)

miR-21 PTEN

miR-21 Promoting angiogenesis,
migration and
tumorigenic function

PDK1/Akt pathway (PTEN) HCC cells HSCs (90)

─ HCC cells (SK-
hep-1)

─ (91)

miR-23a-
3p

Regulating PD-L1
expression which helps
tumor cells escape from
antitumor immunity

PTEN ER-stressed HCC
cells

Macrophages (92)

miR-25-
5p

Enhancing cell motility ─ (93)

miR-32-
5p

Promoting multidrug
resistance

5-fluorouracil (5-FU),
Oxaliplatin (OXA),
Gemcitabine (GEM),
Sorafenib

PI3K/Akt pathway (PTEN) Multidrug-
resistant HCC
cells (Bel/5-FU)

sorafenib-
sensitive HCC
cells (Bel7402)

(94)

miR-92a-
3p

Promoting EMT and
metastasis

PTEN (95)

miR-92b Enhancing migration
ability of cells and
decreasing NK cell-
mediated cytotoxicity

CD69 on NK cells (96)

miR-93 Increasing proliferation
and invasion

TP53INP1, TIMP2, CDKN1A (97)

miR-103 Increasing vascular
permeability and
metastasis

VE-Cad, p120, Zo-1 (98)

miR-
135a-5p

Promoting survival,
proliferation and
chemotherapy resistance

Doxorubicin VAMP2 HCC cells
(HepG2)

─ (99)

miR-155 Promoting angiogenesis VEGF and HIF-1a, MVD HCC cells (PLC/
PRF/5
and HuH7)

Endothelial
cells (Huvecs)

(100)

Promoting proliferation PTEN (101)

miR-210 Promoting angiogenesis SMAD4, STAT6 HCC cells (QGY-
7703, HepG2, SK-
Hep-1, Huh-7 and
Hepa1-6)

Endothelial cells
(Huvecs)

(102)

miR-224 Promoting proliferation
and progression

glycine N-methyltransferase (103)

miR-655 Stimulating proliferation MAPK/ERK pathway (104)

miR-
1247-3p

CAFs activation and
secretion of pro-
inflammatory cytokines
promoting cancer
progression

NF-kB pathway (B4GALT3) (105)

miR-
1273f

Stimulating proliferation
and metastasis hypoxia-
induced

Wnt/b-catenin pathway (106)
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AMSCs: Adipose tissue-derived mesenchymal stem cells; CAFs: Cancer-associated fibroblast; EMT: Epithelial-mesenchymal transition; hCEC:human cerebral endothelial cell; HEK293T:
human embryonic kidney 293 cells; HSCs: Hepatocyte stellate cells; HUC-MSCs: Human umbilical cord mesenchymal stem cells; MCs: Mast cells; NK: Natural killer; RCC: renal carcinoma
endothelial cells. TAMs: Tumor associated macrophages. 1The same miRNA was described in references 70 and 85.
MiRNAs described in sections 4.1 and 4.2 for their potential therapeutic applications are highlighted in bold.
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Exo-214) in combination with oxaliplatin or sorafenib could

effectively reduce cancer cell viability and invasion of HepG2

and Hep3B cells compared to monotherapy. At the molecular

level, this effect seems to be mediated by the glycoprotein P-gp

and the splicing factor SF3B3 (81).

Inhibiting the release of exosomal oncomiRs, or increasing

the effect of tumor suppressor miRNAs, could also play a

synergic role in immunotherapy: for example, it has been

shown that the inhibition of miR-23a-3p in HCC cancer cells

could prevent their exosomal release and the consequent

expression of PD-L1 in macrophages (92).

Similarly, it has been observed that high VEGF expression,

in response to hypoxia, in TME can have immunosuppressive

effect in tumors, resulting in decreased efficacy of PD-L1 and

PD-1 inhibitor drugs (109, 110). Therefore, inhibition of VEGF

and other hypoxia-induced factors, such as exosomal miRNAs

involved in the regulation of angiogenesis in TME, could

improve the efficacy of current immunotherapies (111). In this

context, other studies led to hypothesize that targeting specific

exosomal miRNAs, released from HCC cells and able to

stimulate angiogenesis and HCC proliferation, such as miR-

210 and miR-155, could therefore interfere with cellular

crosstalk that promotes angiogenesis, further improving

therapy (100, 102).
Exosomal miRNAs as main therapeutic
tools

Exosomes naturally act as carriers of nucleic acids, proteins

and lipids from donor to recipient cells. They are characterized

by high biocompatibility, low immunogenicity, low toxicity and

ability to cross the blood-brain barrier. These features make

them promising vehicles for the delivery of chemical and

biological drugs (107). In this section, we focus on exosomal

miRNAs described for their potential application as main

biological therapeutic agents in HCC.

Zhang et al. observed that exosomes released from cancer-

associated fibroblasts (CAFs) overexpressing miR-320a were

able to transfer this miRNA into HCC cells and suppressed

HCC cell proliferation and metastasis both in vitro and in vivo

by targeting PBX3 (82).

Through the same experimental approach, Wang et al.

demonstrated that CAFs-derived miR-335-5p-enriched

exosomes could inhibit HCC cell proliferation and invasion,

by regulating genes including CDC42, CDK2, CSNK1G2,

EIF2C2, EIF5, LIMaK1, NRG1, PLK2, RGS19, TCF3, THBS1,

YBX1, and ZMYND8 (83).

Xiong et al. showed that stimulation of mast cell with

hepatitis C virus E2 envelope glycoprotein (HCV-E2) resulted

in miR-490 expression increase in mast cells as well as in

secreted exosomes. Furthermore, the delivery of Exo-miR-490
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to HCC recipient cells inhibited the ERK1/2 pathway, thereby

suppressing cell migration and metastasis (86).

MiR-21 is a well characterized oncomiR, involved in cell

proliferation and metastases through the inhibition of genes

such as PTEN (112), PDD4, RECK, and SULF-1 (113). The

ability of miR-21 to confer resistance to chemotherapy in cancer

cells has also been reported (112, 114).

Zhou et al. showed the ability of HCC-derived exosomal miR-

21 to convert hepatocyte stellate cells (HSCs) to CAFs, resulting in

angiogenesis promotion through increased secretion of VEGF,

MMP2, MMP9, bFGF and TGF-b by CAFs. Results of this study

provided further insight into the crosstalk between cancer cells

and their microenvironment during tumor progression, providing

new information of potential clinical utility in HCC (90).

Interestingly, Liang et al. used nanoparticles loaded with

small interfering RNA (siRNA) to downregulate the expression

of the pro-oncogenic factor Sphk2 in HCC cells to reduce

exosomal miR-21, thus decreasing tumor cell migration and

exosome-mediated tumorigenic function. The anti-tumor effect

of Sphk2 siRNA was also demonstrated in a xenograft mouse

model resulting in reduced HCC tumor progression. Therefore,

targeting exosomal oncomiR secretion could represent a new

therapeutic strategy (91).

Moh-Moh-Aung et al. reported that the downregulation of

exosomal miR-200b-3p in HCC cells led to the promotion of

angiogenesis through endothelial ERG expression increase, thus

providing new insights into possible targetable mechanisms to

improve the efficacy of anti-angiogenic therapies (80).

Immune cells play a key role in tumorigenic process,

therefore the collection and possible engineering of exosomes

from these cell types might represent an anti-tumor strategy that

requires further investigation.

It has been shown that exosomal miR-142 and miR-223,

transferred from tumor associated macrophages (TAMs) to

HCC cells, can suppress cancer cell proliferation through the

modulation of genes involved in cell cycle regulation, such as the

miR-223 target gene STMN1 (73).

Furthermore, the use of the intravenous anaesthetic

propofol, induced the secretion of miR-142-3p-enriched

exosomes from TAMs, and the internalization of these vesicles

into HCC cells led to the inhibition of cell invasion in vitro and

tumor growth in vivo through down-regulation of miR-142-3p

target gene RAC1 (74).

Liang et al. described an alternative approach to deliver

antioncomiRs-enriched exosomes to HCC cells. In their study,

HEK293T cells were engineered to secrete exosomes actively

loaded with miR-26a by electroporation. These exosomes were

able to selectively target HepG2 cells, thus decreasing cancer cell

migration and proliferation in vitro though the inhibition of key

cell cycle regulators such as CCND2, CCNE2, CDK6 (69).

The same approach was described by Pomatto et al. who

used renal carcinoma endothelial instead of HEK293T cells,
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loaded with tumor suppressor miR-31 and miR-451a able to

induce chemosensitivity (70). Overall, results of these two

studies highlight the interesting possibility of using engineered

exosomes as therapeutic agents.
Conclusion

MiRNAs are considered pivotal modulators of intercellular

crosstalk and miRNA transfer via exosomes has been described

as one of the possible strategies by which resistant HCC cells can

share their resistance with neighbouring cells, thus

hindering therapies.

In this context, based on the results principally obtained

from in vitro and in vivo models, exosomes can be also

considered as promising vehicles of miRNAs for therapeutic

purposes, representing a great resource for the design of new

treatment strategies with potential efficacy, especially in

combination with chemotherapy, TKIs or immunotherapy,

currently considered as a cutting-edge cancer treatment.

In addition to exosomal miRNAs directly targeting HCC

cells, an interesting alternative could also be HCC tumor

microenvironment targeting, in terms of CAFs, immune cells

or tumor endothelial cells, on which exosomal miRNAs could

induce desirable responses.

Furthermore, technological advances, focused for example

on vesicles and donor cells engineering, offer an unprecedented

opportunity to improve and provide novel tools for potential

therapeutic applications of exosomal miRNAs in HCC and other

types of cancers.

Overall, although more in-depth studies to elucidate the

exact biological role and possible applicability of exosomal

miRNAs in HCC treatment are required, these mediators can

represent promising factors of potential therapeutic utility in

HCC patients.
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Temozolomide (TMZ) resistance is frequent in patients with glioblastoma (GBM), a tumor
characterized by a marked inflammatory microenvironment. Recently, we reported that
cyclooxygenase-2 (COX-2) is upregulated in TMZ-resistant GBM cells treated with high
TMZ concentrations. Moreover, COX-2 activity inhibition significantly counteracted TMZ-
resistance of GBM cells. Extracellular vesicles (EV) are considered crucial mediators in
orchestrating GBM drug resistance by modulating the tumor microenvironment (TME) and
affecting the surrounding recipient cell phenotype and behavior. This work aimed to verify
whether TMZ, at low and clinically relevant doses (5-20 µM), could induce COX-2
overexpression in GBM cells (T98G and U87MG) and explore if secreted EV shuttled
COX-2 to recipient cells. The effect of COX-2 inhibitors (COXIB), Celecoxib (CXB), or
NS398, alone or TMZ-combined, was also investigated. Our results indicated that TMZ at
clinically relevant doses upregulated COX-2 in GBM cells. COXIB treatment significantly
counteracted TMZ-induced COX-2 expression, confirming the crucial role of the COX-2/
PGE2 system in TMZ-resistance. The COXIB specificity was verified on U251MG, COX-2
null GBM cells. Western blotting of GBM-EV cells showed the COX-2 presence, with the
same intracellular trend, increasing in EV derived from TMZ-treated cells and decreasing in
those derived from COXIB+TMZ-treated cells. We then evaluated the effect of EV secreted
by TMZ-treated cells on U937 and U251MG, used as recipient cells. In human
macrophage cell line U937, the internalization of EV derived by TMZ-T98G cells led to a
shift versus a pro-tumor M2-like phenotype. On the other hand, EV from TMZ-T98G
induced a significant decrease in TMZ sensitivity in U251MG cells. Overall, our results, in
confirming the crucial role played by COX-2 in TMZ-resistance, provide the first evidence
of the presence and effective functional transfer of this enzyme through EV derived from
GBM cells, with multiple potential consequences at the level of TME.

Keywords: extracellular vesicles, glioblastoma, temozolomide, COX-2, COXIB, celecoxib, NS398
July 2022 | Volume 12 | Article 9337461147

https://www.frontiersin.org/articles/10.3389/fonc.2022.933746/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.933746/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.933746/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.933746/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:benedetta.cinque@univaq.it
mailto:paola.palumbo@univaq.it
https://doi.org/10.3389/fonc.2022.933746
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.933746
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.933746&domain=pdf&date_stamp=2022-07-22


Lombardi et al. COX-2 Shuttled in GBM-EV
INTRODUCTION

Extracellular vesicles (EV), a heterogeneous population of lipid
bilayer-enclosed structures released from all cell types, have been
defined as critical mediators of intercellular communication by
transferring functional genomic and proteomic cargo. The
molecular content of EV, namely proteins, nucleic acids, and
lipids, reflects the status and phenotype of the releasing cells. The
EV are essential actors in the tumor microenvironment (TME),
including glioblastoma (GBM), the most common and aggressive
type of primary intracranial tumor in humans, representing
about 81% of the malignant oncological lesions of the brain
(1). Nowadays, although remarkable advances in GBM therapy
have driven significant progress, chemoresistance remains the
main hurdle in patient survival. Temozolomide (TMZ) is an oral
DNA alkylating agent currently used as a standard first-line
treatment for adult patients affected by newly diagnosed GBM.
This drug exerts its antitumor activity by interfering with DNA
replication. TMZ methylates DNA leading to the formation of
O6-methylguanine, the most potent cell-killing lesion, which
mispairs with thymine during the next cycle of DNA replication.
Although TMZ can improve the overall survival of patients, the
therapeutic outcomes remain unsatisfactory (2).

The ability of GBM cells to dynamically modulate the EV
cargo composition in response to chemotherapy and hypoxia is
becoming increasingly evident; on the other hand, how the EV
cargo can affect the target cell phenotype, modifying sensitivity to
chemotherapy drugs, thus promoting chemoresistance (3–5), is
currently being studied.

The combined use of the chemotherapeutic agent TMZ with
COX-2 inhibitors (COXIB) has been investigated as an
alternative strategy to fight GBM progression by counteracting
chemoresistance (6). As the proinflammatory enzyme COX-2 is
recognized as a crucial mediator in GBM biology, selective
COXIB were defined as an extremely promising GBM therapy
increasing sensitivity to chemotherapy without other side effects
(7). In this regard, recently, our group reported that the selective
COX-2 inhibitor, NS398, counteracted chemoresistance to TMZ,
used at high concentrations (200 µM) for 72 h, in resistant GBM
cell line (T98G) abrogating TMZ-induced COX-2 upregulation
and COX-2-dependent pathways involved in TMZ-resistance
(8). TMZ exposure of resistant T98G, but not sensitive and COX-
2 null U251MG cells, led to a significant and dose-dependent
upregulation of COX-2. Moreover, NS398 enhanced the
chemosensitivity to TMZ in GBM cells downregulating TMZ-
induced COX-2 expression. The ability of Celecoxib (CXB), a
selective COXIB approved by the Food and Drug Administration
(FDA) and widely used for its anti-inflammatory, analgesic, and
antipyretic actions, to suppress the growth of GBM cell lines,
U373 and T98G, partly by inhibiting the NF-kB signaling
pathway, has also been reported (9). A recent in vitro study
highlighted the CXB ability combined with TMZ at a high
concentration (250 µM) to reverse chemoresistance of TMZ-
resistant GBM cell lines, LN229 and LN18, affecting cell
proliferation and inducing apoptosis and autophagy by the
inhibition of the mitochondrial metabolism and respiratory
chain (10). Also, CXB has been studied in several clinical trials
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in combination with other drugs such as TMZ (11, 12). In
general, the results from these in vivo studies support the
potentially effective use of low-dose metronomic CXB
combined with TMZ in treating GBM patients not eligible for
standard treatment (13–15).

In this study, the first aim was to analyze the effect of TMZ, at
clinically relevant concentrations (5-20 mM), on T98G ability to
release EV when daily exposed to long-term treatment (5 days), a
condition conceived to mimic the clinical and therapeutical
setting, during which intratumoral TMZ concentrations
between 1 and 35 µM are achieved (16). Thus, to improve the
transferability of in vitro results to in vivo studies, we initially
evaluated whether TMZ at clinically relevant concentrations
could induce a cytotoxic effect and a significant increase of
COX-2 level similar to what we previously registered with
TMZ at higher concentrations in T98G cells, chosen as TMZ-
resistant/COX-2 positive cell line (8). The U251MG cells were
used as a negative control, being TMZ-sensitive andCOX-2 null.
Also, we preliminarily verified whether COX-2 inhibition could
counteract the resistance of T98G cells exposed to TMZ. COX-2
levels were evaluated in EV secreted by T98G and U87MG cells
after the scheduled treatment program with drugs alone or in
combination. COX-2 over-expression or exogenous PGE2 had
been reported to promote the macrophage polarization to M2
phenotype in breast cancer (17). Also, the COX-2 inhibition
caused the loss of M2 features and suppressed the tumor
metastasis (18). Based on these findings, we have investigated
the effects of EV released by T98G cells after treatments on the
phenotype of macrophages used as recipient cells. Moreover, the
ability of the EV released by TMZ-treated T98G cells to affect
TMZ-sensitivity was evaluated in U251MG recipient cells.
MATERIALS AND METHODS

Cell Culture and Treatments
Human GBM cell lines T98G and U87MG were acquired from
the European Collection of Authenticated Cell Cultures
(ECACC) and U251MG cell line was acquired from Cell Lines
Service (CLS). Cells were cultured using manufacturer
recommendations in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% (v/v) of fetal calf serum
(FCS), 2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml
streptomycin (complete medium) (EuroClone, West York, UK)
at 37°C in 5% CO2 and 95% humidity and media was totally
replaced every 3 days. Human monocyte cell line, U937, widely
used in in vitro experiments as a human macrophage model (19,
20), was acquired from Cell Lines Service (CLS) and cultured in
RPMI-1640 medium (EuroClone , West York , UK)
supplemented with 10% (v/v) of FCS, 2 mM L-glutamine, 100
U/ml penicillin, and 100 mg/ml streptomycin (complete
medium) in a 5% CO2 humidified atmosphere at 37°C.

T98G was chosen as chemoresistant cell line for TMZ,
displaying a LC50 ranging from >250 mM to 1585 mM,
U87MG as chemosensitive cell line for TMZ, showing a LC50
ranged into 7 mM to 172 mM and U251MG cells as
chemosensitive cell line, showing a LC50 around 50 µM (21).
July 2022 | Volume 12 | Article 933746

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lombardi et al. COX-2 Shuttled in GBM-EV
From the temozolomide (TMZ, Sigma-Aldrich, Saint Louis, MO,
USA) stock solution (51.5 mM in dimethyl sulfoxide, DMSO,
which had no significant effect on treated cells), the
concentrations of 5, 10, and 20 µM were daily added to cells,
initially plated at 3.5 × 103 cells/cm2, for 5 days. Based on
previous reports (22), the Celecoxib (CXB) concentration of 8
mM was used (Sigma-Aldrich, Saint Louis, MO, USA). NS398
(N-[2-(Cyclohexyloxy)-4-nitrophenyl] methanesulfonamide)
(23) (Sigma-Aldrich, Saint Louis, MO, USA), was stored as
stock solutions in DMSO at −20°C according to the
manufacturer instruction and diluted in cell culture medium
just before use at the low concentration of 20 mM for the
indicated times. In order to assess the effect of TMZ alone or
in combination with CXB or NS398 on GBM cells and on the
GBM-EV content, the cells were plated for all experiments in 25
cm2 plates at 3.5 × 103 cells/cm2, left to adhere and then daily
treated or not (CNTR) with TMZ, CXB or NS398, at selected
concentrations alone or in combination. The treatment with the
DMSO alone (vehicle) was referred throughout the manuscript
as “control” (CNTR).

To mimic the clinical condition as much as possible, the
exposure to TMZ and the combined treatment schedule with
CXB or NS398, were repeated daily for 5 days (referred as a
“long-term exposure”) (24). To analyze cell viability following
treatments, the 0.04% Trypan blue (EuroClone, West York, UK)
solution was used. The cells were transferred to a Bürker
counting chamber and then counted by microscopy (Eclipse
50i, Nikon Corporation, Tokyo, Japan). The GBM cell lines
morphology was visualized and imaged by Nikon Eclipse
TS100. Where not otherwise specified, the reagents and
consumables were purchased from EuroClone (EuroClone,
West York, UK). All cell lines were routinely tested for
mycoplasma and were negative prior to use.

Extracellular Vesicle Isolation
To isolate EV, the cells were cultured in complete medium,
replacing the FCS with Hyclone 40 nm filtered serum (Thermo
Scientific, Rockford, IL, USA) and supernatants collected after
treatments were centrifuged at 600×g for 15 min and then at
1500×g for 30 min at 4°C to remove cells and large debris,
respectively. The resulting supernatants were then centrifuged at
100,000×g for 90 min at 4°C in an Optima XPN-110
Ultracentrifuge Rotor 70Ti, Quick-Seal Ultra-Clear tubes,
kadj 197, brake 9 (Beckman Coulter, CA, USA). Isolated EV
were resuspended in Dulbecco’s phosphate-buffered saline (PBS)
(EuroClone, West York, UK) according to proper dilutions, and
the determination of their quantification was carried out by
measuring the vesicle-associated protein levels using DC Protein
Assay (Bio-Rad, Hercules, CA, USA) using BSA as standard.

Transmission Electron Microscopy
Transmission electron microscopy (TEM) was performed on EV
isolated as described above. To this aim, after collection, EV,
resuspended and diluted in PBS according to proper dilutions,
were adsorbed onto 300-mesh carbon-coated copper grids
(Electron Microscopy Sciences, Hatfield, PA, USA), fixed in 2%
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glutaraldehyde (Electron Microscopy Sciences) in PBS for
10 min, rinsed in Milli-Q water, and negative stained with 2%
phosphotungstic acid. Grids were examined with a Philips CM
100 transmission electron microscope TEM (Philips,
Eindhoven, Netherlands).

NanoSight
EV number and size were assessed by the nanoparticle tracking
analysis (NTA). Using a NanoSight NS300 (NanoSight Ltd.,
Amesbury, UK), EV were visualized by laser light scattering.
Briefly, EV-enriched pellets were resuspended in sterile PBS to
generate a proper dilution and five recordings of 60 sec were
performed for each sample; 1498 frames in total were examined,
captured, and analyzed by applying optimized settings. Data
were analyzed with the NTA software, which provided the
concentration measurements (particles/ml) and size
distribution profiles for the EV in solution.

Protein Extraction and Western
Blotting Assay
GBM cell pellets were homogenized and lysed in ice-cold RIPA
buffer (phosphate buffer saline pH 7.4) (Merck KGaA,
Darmstadt, Germany) supplemented with 100 mM protease
inhibitor cocktail (Sigma-Aldrich, Saint Louis, MO, USA).
Protein lysates (25 mg/lane) were separated on 10% SDS–
polyacrylamide gel under reducing conditions with b-
mercaptoethanol 5% and electroblotted onto 0.45 µm
nitrocellulose membrane sheets (Whatman-GE Healthcare Life
Sciences, UK). To remove non-specific binding sites, membranes
were incubated with 5% non-fat dry milk in Tris buffered saline
for 1 h at room temperature and then incubated overnight at 4°C
with primary antibodies: rabbit monoclonal anti-COX-2 (Cell
Signaling Technology, Danvers, MA, USA; dilution 1:1000),
mouse monoclonal antibody anti-MGMT (BD Biosciences, San
José, CA, USA; dilution 1:500), rabbit polyclonal anti-b-catenin
antibody (Cell Signaling Technology, Danvers, MA, USA;
dilution 1:1000), and mouse monoclonal antibody for anti-b-
actin (Bio-Rad, Hercules, CA, USA; dilution 1:1000). As
secondary antibodies, peroxidase conjugated anti-rabbit and
anti-mouse IgG antibodies (dilution 1:2000) were acquired
from Sigma-Aldrich (Saint Louis, MO, USA).

For Western blotting on EV lysate proteins (10 mg/lane) were
resolved on 10% SDS–polyacrylamide gel electrophoresis under
non-reducing conditions with heating (CD63, TSG101) or
without heating (CANX) and blotted to nitrocellulose
membranes (Whatman-GE Healthcare Life Sciences, UK);
blocking was performed for 90 min in 10% non-fat dry milk in
TBS containing 0.5% Tween-20 (TBS-T) at room temperature.
The blots were then incubated at 4°C overnight with primary
antibodies diluted in TBS-T containing 1% non-fat dry milk:
rabbit polyclonal anti-CANX antibody (Immunological Sciences,
Italy; dilution 1:1000), mouse monoclonal anti-CD63 (Santa
Cruz Biotechnology Inc, Dallas, TX, USA; dilution 1:400),
rabbit polyclonal anti-TSG101 (Immunological Sciences, Italy;
dilution 1:2000). The membranes were washed in TBS-T and
incubated for 1 h at room temperature in a peroxidase-
July 2022 | Volume 12 | Article 933746

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lombardi et al. COX-2 Shuttled in GBM-EV
conjugated secondary antibody diluted in TBS-T containing 1%
non-fat dry milk (goat anti-mouse IgG-HRP, 1:10,000 dilution;
goat anti-rabbit IgG-HRP, 1:7500 dilution; Santa Cruz
Biotechnology, Inc.).

Chemiluminescent detection was performed using the ECL
(Amersham Pharmacia Biotech) according to the manufacturer’s
instructions. Emission was captured using the chemiluminescence
documentation system ALLIANCE (UVITEC, Cambridge UK).
For EV proteins, the relative protein levels were calculated based
on GAPDH (OriGene, Rockville, MA, USA; dilution 1:1000) as
the loading control.

Prostaglandin E2 (PGE2) Level Assay
The levels of secreted PGE2 were measured in supernatants of
GBM cells daily exposed or not (CNTR) for 5 days to TMZ, CXB,
or NS398, as described above. The supernatants were then
assayed for prostaglandin E2 (PGE2) levels by an enzyme-
linked immunosorbent assay (ELISA) kit (Cayman Chemical
Company, Ann Arbor, MI, USA). Results are presented as fold
increase of released PGE2 vs. CNTR.

Evaluation of Growth of U251MG Recipient
Cells
The U251MG cells were seeded at 4x103/cm2 and, once attached,
were exposed to EV (30 µg/ml) derived from TMZ-treated T98G
cells or untreated for 18 h to allow the internalization. Then, TMZ
(10 µM) was added or not at culture media for 5 days, and cell
growth was measured by Trypan blue staining as above described.

Macrophage Polarization
The differentiation of U937, an oncogenic human monocyte cell
line, into cells possessing a macrophage-like phenotype (M0) was
achieved by exposure to 100 ng/ml of Phorbol-12-Myristate-13-
Acetate (PMA; Sigma-Aldrich, Saint Louis, MO, USA) as
previously reported (20, 25). After 48 h, the PMA-treated
monocytes, referred to as “macrophage-like”, undergo a series
of morphological and functional changes becoming adherent.
The U937 were cultured in RPMI 1640 medium supplemented
with 10% FBS, at a density of 1×104 cells/ml in 6-well culture
plates. Macrophage M2 polarization was obtained by incubation
with 20 ng/ml of interleukin 4 (IL-4) (Peprotech, Rocky Hill, NJ,
USA) and 20 ng/ml of interleukin 13 (IL-13) (Peprotech, Rocky
Hill, NJ, USA) for additional 72 h.

Extracellular Vesicles Labeling and Uptake
of PKH26-Labeled T98G-EV by U937 Cells
To verify the uptake and target cell interaction of EV derived
from T98G previously treated with CXB (8 mM), NS398 (20 mM),
TMZ (10 mM) alone and in combination by U937 macrophagic
cells, the fluorescent lipid membrane dye molecule PKH26
(PKH26 Red Fluorescent Cell Linker kit - Sigma-Aldrich, Saint
Louis, MO, USA) staining was assessed according to
manufacturer’s instructions. Briefly, the U937 cell line was
grown on coverslips in a 12-well plate (seeded at 5×104 cells/
coverslips) and, once attached, was incubated in the presence or
absence (CNTR) with EV derived from T98G treated as
Frontiers in Oncology | www.frontiersin.org 4150
previously reported. For the PKH26 staining, the obtained EV
were resuspended in 1 ml Diluent C. Then, 6 mL of PKH26 were
added to each sample in sterile conditions. The EV suspension
was mixed for 30 s with the stain solution and incubated for
5 min at room temperature. The labelling reaction was stopped
by adding 2 ml of 10% BSA in sterile PBS. Labeled EV were
ultracentrifuged as previously described. Negative technical
control was made by adding the same volume of diluent C and
PKH2 as samples. Afterward, U937 cells were incubated for 18 h
at 37°C in a 95% air 5% CO2 atmosphere, with 30 µg PKH26-
labeled EV derived from T98G previously treated with COX-2
inhibitors and TMZ alone and in their combinations. The
coverslips were mounted with Vectashield® Antifade Mounting
Medium with DAPI (Vector Laboratories, Inc., Burlingame, CA,
USA), and the effective EV internalization was observed by
fluorescent microscopy (Nikon, Eclipse 50i, Tokyo, Japan). All
images were acquired at 100×magnification.

EV-COX-2 Immunofluorescence Staining
The U937 and the U251MG cells, both plated at 5×104 cells/
coverslips, were differently treated as above reported. For labeling,
the coverslips were washed, fixed with 4% formaldehyde for
20 min, permeabilized with 0.1% Triton X-100 (Sigma-Aldrich,
Saint Louis, MO, USA) for 5 min, and blocked with 3% BSA
(Sigma-Aldrich, Saint Louis, MO, USA) for 20 min at room
temperature. Cells were incubated overnight at 4°C with rabbit
monoclonal anti-human COX-2 (Cell Signaling Technology,
Danvers, MA, USA; dilution 1:400), and afterward with a FITC
conjugated goat anti-rabbit polyclonal IgG secondary antibody
(Millipore EMD, Darmstadt, Germany; dilution 1:1000) for 1 h at
room temperature and washed. Coverslips were mounted with
VECTASHIELD® Antifade Mounting mounted Medium with
DAPI (Vector Laboratories, Inc., Burlingame, CA, USA) and
visualized as previously described.

TGF-b1 ELISA
The levels of released TGF-b1 were quantified in the U937 cell
supernatants using a human TGF-b1 enzyme-linked
immunosorbent assay (ELISA) kit (Sigma Aldrich, Saint Louis,
MO, USA), as described in the manufacturer’s instructions.
Briefly, the U937 cells were plated at 1×105 cells/ml and
treated with EV derived from T98G previously daily exposed
for 5 days with CXB, NS398, TMZ as single agent or in
combination. The EV treatment lasted 72 h, then the media
were collected, cleared of cellular debris/dead cells by
centrifugation at 1000× g for 15 min, and the TGF-b1
concentration was then determined in the medium using the
ELISA kit. Results are expressed as pg/ml.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
version 6.01, (GraphPad Software, San Diego, CA, USA). The
data were evaluated using the one-way ANOVA test followed by
Tukey or Dunnett’s post hoc test, where specified. Testing for
synergistic or additive effects of combination therapy was
performed according to Bliss independence analysis (26).
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Experiments were independently repeated three times at least
and performed in duplicate or triplicate, and the results were
shown as the means ± SEM (standard error mean). P-value <0.05
was considered to indicate a statistically significant difference.
RESULTS

Effect of TMZ Alone or Combined With
COXIB on GBM Cell Lines
TMZ affects the viability and proliferation of GBM cell lines when
used at high concentrations (27, 28) while away from clinical
practice. Thus, we firstly investigated the effect of a 5-day
treatment with low clinically relevant concentrations of TMZ
(5–20 mM) on the cell growth rate of T98G and U87MG. As
expected, none of the TMZ tested concentrations significantly
influenced the T98G cell number and no dead cell was detected at
5 days, confirming their high resistance (Figure 1A). The
microscopy observation also supported these data. T98G cells
exposed to low TMZ concentrations showed a cell density similar
to control (CNTR) (Supplementary Figure 1A). We then
evaluated the ability of TMZ to upregulate COX-2 in T98G cells
treated as above described, through Western blotting (Figure 1B).
TMZ incubation at 5 µM did not significantly affect the COX-2
expression compared to the CNTR sample, while the highest TMZ
concentrations (10 and 20 µM) markedly influenced it. The levels
of b-catenin and MGMT, two proteins strictly associated with
COX-2 activity and strongly implicated in the GBM
chemoresistance (29, 30), were also evaluated. The results
showed that the expression of the b-catenin proportionally
increased to TMZ concentrations being significant at 10 µM and
20 µM (Figure 1C). MGMT expression showed a similar trend
(Figure 1D). Conversely, in the U87MG cell line, the daily
treatment with TMZ at all concentrations reduced the cell
proliferation rate evaluated at 5 days (Figure 2A), as confirmed
by images taken by contrast-phase microscope (Supplementary
Figure 1B). The levels of COX-2 and b-catenin were dose-
dependently upregulated by TMZ exposure (Figures 2B, C).
TMZ treatment did not induce MGMT expression in the
U87MG cell line (MGMT negative) (Figure 2D). In line with
our previous results (8), TMZ did not induce COX-2 expression, at
all tested concentrations, in the TMZ-sensitive/COX-2 negative
U251MG cells (31) (Supplementary Figure 2A), nor modulate b-
catenin or induce the expression of MGMT (Supplementary
Figures 2B, C, respectively).

To further elucidate the role of COX-2 in TMZ resistance,
GBM cell lines were exposed to COXIB, alone or in combination
with TMZ, after which the COX-2 expression and activity, as
well as cell number, were evaluated. GBM cell lines were treated
daily with CXB (8 mM), NS398 (20 mM), or TMZ (10 mM) alone
or with their combinations (CXB+TMZ or NS398+TMZ) for 5
days. Representative Western blot images and the results from
densitometric analysis of COX-2 levels in T98G cells are shown
in Figure 1E. COXIB, used alone, did not influence the levels of
COX-2. On the other hand, a significant increase of COX-2 was
detected after treatment with 10 mM TMZ compared to CNTR.
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Of note, CXB or NS398 combined with TMZ significantly
downregulated the TMZ-induced COX-2 (Figure 1E). PGE2
levels were directly measured in supernatants of cell cultures to
evaluate the COX-2 activity and verify the specificity of COXIB.
TMZ-treated cells released high amounts of PGE2, in line with
the COX-2 upregulation. Both the drug combinations
significantly reduced the COX-2 activity compared to TMZ
alone (Figure 1F). A similar COX-2 expression and activity
trend was observed in U87MG cells in which the TMZ-induced
COX-2 upregulation was counteracted by drug combination
treatments (Figures 2E, F). The protein was not expressed in
the COX-2 null U251MG (Supplementary Figure 2D).
Accordingly, PGE2 was undetectable in the U251MG culture
media (not shown).

Next, we evaluated the effect of CXB, NS398, TMZ, and their
combination on GBM cell number. After 5 days of continuous,
scheduled treatment with COXIB, the T98G and U87MG cell
number was decreased compared to CNTR cells (Figures 1G,
2G). As previously reported, COX-2 inhibitors reduced the
growth rate of GBM cell lines (8, 32). The reduced cell growth
rate following CXB or NS398 treatment could be due to the
inhibition of basal COX-2 activity and COX-2-dependent
signaling pathways. Of note, both drug combinations, CXB
+TMZ and NS398+TMZ, caused a statistically significant
decrease in T98G and U87MG viable cell numbers compared
to CNTR, TMZ alone, and relative COXIB alone (Figures 1G,
2G). A Bliss independence test was performed to assess the
nature of TMZ and COXIB interaction (synergistic or additive),
suggesting that drug combination treatment had a synergistic
effect on GBM cells vs. single agents.

Upregulation of COX-2 in EV Derived from
GBM Cells Treated with TMZ is
Counteracted by COXIB
We then investigated the effect of TMZ on the EV content of
COX-2 in the T98G and U87MG cells. Firstly, the EV released
from both GBM cell lines were collected and characterized
according to MISEV (33) by TEM, Western blotting of specific
markers, and NTA analyses. The TEM images showed T98G-EV
and U87MG-EV with a round-shaped, membrane-enclosed
structure (Figures 3A, B). Western blotting was performed to
evaluate the expression of the specific EV markers, CD63 and
TSG101, and to verify the absence of endoplasmic reticulum
marker calnexin, indicating the EV purity without
contamination of cell debris and organelles (Figures 3C, D).
Isolated EV were then analyzed by NTA to determine the
particle number and size distribution, displaying that most EV
had a diameter less than 200 nm (small vesicles) (Figures 3E, F,
respectively) (33). Next, T98G- and U87MG-derived EV were
evaluated for the presence of COX-2 protein by Western blotting.
The results evidenced that COX-2 protein was shuttled in EV of
both cell lines, with levels dependent on TMZ concentrations,
resulting significantly higher at 10 and 20 µM in T98G and at all
tested concentrations in U87MG (Figure 4A). This trend was in
line with COX-2 upregulation induced by TMZ in T98G
(Figure 1B) and U87MG cells (Figure 2B).
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Next, we evaluated whether COX-2 levels in EV released from
T98G and U87MG exposed to low concentration of TMZ could
be modulated by the concurrent treatment with CXB or NS398.
TheWestern blot results of both cell lines showed a similar trend:
the daily exposure to CXB and NS398 alone did not significantly
modulate the content of COX-2 when compared to EV derived
from CNTR (Figure 4B). On the other hand, an evident
reduction of COX-2 in EV derived from T98G and U87MG
treated with both drug combinations (CXB+TMZ and
NS398+TMZ) was observed, suggesting that COXIB
counteracted the increase of EV-COX-2 content induced by
TMZ (Figure 4B).
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Intracellular Uptake of EV-COX-2 Protein
in Recipient Human Macrophage Cell Line
It is also known that EV can mediate the communication in TME
promoting tumor escape (34). Herein, we investigated the
hypothesis that EV from TMZ-resistant T98G treated with
COXIB- and TMZ, alone or in combination, could directly
influence macrophage polarization. The internalization of
T98G-EV by the U937 macrophage cell line was verified by
PKH26 red fluorescent staining. Non-polarized U937
macrophages (M0) were incubated for 18 h with 30 mg/ml of
PKH26-labeled EV derived from T98G exposed to COXIB,
TMZ, and their mixture, as previously stated. U937 cells were
A B

D

E

F

G

C

FIGURE 1 | Influence of TMZ on T98G TMZ-resistant cells. Cells were daily incubated with increasing doses of TMZ (5-20 mM) for 5 days and (A) cell number was
detected by Trypan blue staining. All values are given as fold increase vs. initial time (T0). The results, derived from three experiments performed in duplicate, are
expressed as mean ± SEM. The one-way analysis of variance (ANOVA) followed by Dunnet post hoc test show not significant differences. Influence of TMZ on (B) COX-
2, (C) b-catenin and (D) MGMT levels was assessed by Western blotting in the presence of vehicle (CNTR), or TMZ, as previously described. The obtained values were
normalized vs. b-actin and presented as fold increase vs. CNTR. Data are from three independent experiments and values are expressed as mean ± SEM. For
comparative analysis of data, a one-way ANOVA with Dunnet post hoc test was used (*P<0.05; **P<0.01; *** P<0.001 vs. CNTR). Representative images of each
immunoblotting are shown. (E) Influence of the COXIB combined with TMZ on COX-2 levels was verified by Western blotting assay in T98G cells daily incubated or not
(CNTR) with Celecoxib (CXB) (8 mM), NS398 (20 mM), TMZ (10 mM) or with the co-treatments (CXB+TMZ and NS398+TMZ) for 5 days. Densitometric analysis was
performed by normalizing vs. b-actin and presented as fold increase vs. CNTR. Data from three independent experiments are expressed as mean ± SEM. Representative
images of each immunoblotting are shown. C+ = positive control (not treated T98G cells). (F) PGE2 levels (fold increase vs. CNTR) released by T98G treated as above
described, were assayed by ELISA kit. Results are expressed as mean ± SEM of three experiments in duplicates. (G) Effect of COXIB, CXB and NS398, TMZ and drug
combinations on T98G cell number was evaluated by Trypan blue staining. All values are given as fold increase vs. CNTR of two independent experiments performed in
triplicate (mean ± SEM). For comparative analysis of data groups, a one-way ANOVA with Tukey post hoc test was used (*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001).
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permissive to PKH26-labeled EV entry. When PKH26-labeled
EV were incubated with human U937 cells, we observed an
effective uptake into the cytoplasm of all recipient cells, as
indicated by red fluorescence (Figure 5).

Therefore, COX-2 protein levels were evaluated in recipient
U937 cells (M0) following exposure to EV derived from T98G
treated as above described. Fluorescence images revealed the
presence of COX-2 protein in macrophage (M0) appearing
diffuse throughout the cytoplasm (green fluorescence).
Macrophages M0 (COX-2 negative) not exposed to T98G-EV
were used as a negative control. A significant COX-2 presence in
U937 exposed to EV from TMZ-T98G cells was observed. Of
interest, a lower COX-2 content was detected in U937 incubated
Frontiers in Oncology | www.frontiersin.org 7153
with EV-CXB+TMZ and EV-NS398+TMZ compared to EV-
TMZ (Figure 6A). The COX-2 quantification by Western blot
analysis showed a significant increase in COX-2 level when U937
were exposed to EV-TMZ (Figure 6B). On the other hand, COX-
2 levels in U937 exposed to EV-COXIB+TMZ were comparable
to those of U937 exposed to EV-CNTR (Figure 6B).

Effect of EV from T98G Treated With
COXIB in Combination With TMZ on
Macrophages
GBM is sustained by a complex and highly immunosuppressive
TME also responsible for therapy resistance. In this context, we
finally investigated whether the EV secreted by T98G treated
A B

D

E

F

G

C

FIGURE 2 | Influence of TMZ on U87MG TMZ-sensitive cells. Cells were daily incubated with increasing doses of TMZ (5-20 mM) for 5 days and (A) cell number
was detected by Trypan blue staining. All values are given as fold increase vs. initial time (T0). The results, derived from three experiments performed in duplicate, are
expressed as mean ± SEM. The one-way analysis of variance (ANOVA) followed by Dunnet post hoc test show not significant differences. Effect of TMZ on (B) COX-
2, (C) b-catenin and (D) MGMT levels was assessed by Western blotting in the presence of vehicle (CNTR), or TMZ, as previously described. The obtained values
were normalized vs. b-actin and presented as fold increase vs. CNTR. Data are from three independent experiments and values are expressed as mean ± SEM. For
comparative analysis of data, a one-way ANOVA with Dunnet post hoc test was used (*P<0.05; **P<0.01; *** P<0.001 vs. CNTR). Representative images of each
immunoblotting are shown. (E) Influence of the COXIB combined with TMZ on COX-2 levels was verified by Western blotting assay in U87MG cells daily incubated or
not (CNTR) with Celecoxib (CXB) (8 mM), NS398 (20 mM), TMZ (10 mM) or with the co-treatments (CXB+TMZ and NS398+TMZ) for 5 days. Densitometric analysis
was performed by normalizing vs. b-actin and presented as fold increase vs. CNTR. Data from three independent experiments are expressed as mean ± SEM.
Representative images of each immunoblotting are shown. C+ = positive control (not treated T98G). (F) PGE2 levels (fold increase vs. CNTR) released by U87MG
treated as above described, were assayed by ELISA kit. Results are expressed as mean ± SEM of three experiments in duplicates. (G) Effect of COXIB, CXB and
NS398, TMZ and drug combinations on U87MG cell number was evaluated by Trypan blue staining. All values are given as fold increase vs. CNTR of two
independent experiments performed in triplicate (mean ± SEM). For comparative analysis of data groups, a one-way ANOVA with Tukey post hoc test was used
(*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001).
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A B

DE FC

FIGURE 3 | Characterization of EV population secreted from GBM cell lines, T98G and U87MG. (A) and (B) Representative electron microscopy images showing
whole and round-shaped EV derived from T98G and U87MG, respectively. (C) and (D) Western Blot analysis of specific markers CD63, TSG101 and Calnexin on EV
isolated from GBM cells. (E) and (F) Representative Nanoparticle Tracking Analysis (NTA) profiles of T98G-EV and U87MG-EV. Each curve was generated from five
measurements.
A

B

FIGURE 4 | (A) COX-2 protein is transferred into EV derived by T98G and U87MG treated with TMZ in a dose-dependent way. GBM cells were daily exposed to
increasing concentrations of TMZ (5–20 µM) for 5 days, EV were collected from cell supernatants and COX-2 levels were analysed by immunoblotting assay.
Densitometric bands were normalized vs. GAPDH. Data from three independent experiments are shown as the mean ± SEM and expressed as fold increase vs.
CNTR. Images from one representative out of three independent experiments are presented. For comparative analysis of groups of data, one-way ANOVA followed
by Dunnett’s post hoc test was used (*P<0.05; **P<0.01 vs. CNTR). (B) COXIB, CXB or NS398, alone and in combination with TMZ, modulate the cargo of EV
released from GBM cells. T98G and U87MG cell lines were daily exposed for 5 days to CXB (8 mM), NS398 (20 mM), TMZ (10 mM), alone or in combination and
representative COX-2 and GAPDH immunoblots are shown. Following densitometric analysis, obtained values were normalized vs. GAPDH. Data are from three
independent experiments, and values (mean ± SEM) are expressed as fold increase vs. CNTR. For comparative analysis of data, a one-way ANOVA with Tukey post
hoc test was used (*P<0.05; **P<0.01).
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with COXIB, TMZ, and respective combinations, containing
different levels of COX-2, were able to induce a phenotype
modulation in the recipient U937 cells. To verify the
Frontiers in Oncology | www.frontiersin.org 9155
macrophage M2 polarization after T98G-EV internalization,
TGF-b1 released in the culture medium was assayed. M2
polarized macrophages, obtained as described in the materials
and methods section, were used as the positive control. The
extracellular levels of TGF-b1 released by U937 cells significantly
increased after exposure to EV from TMZ-treated T98G (EV-
TMZ) when compared to EV from CNTR (P<0.05) (Figure 7).
No effect was observed when U937 cells were exposed to EV
derived from T98G treated with single COXIB. In contrast, the
TGF-b1 level was significantly lower in the supernatants of U937
treated with EV-COXIB+TMZ than EV-TMZ (Figure 7).

Effect of EV Released from TMZ-Treated
T98G Cells on U251MG
To further explore the role of EV-COX-2 in the TMZ resistance,
we examined the cell growth of U251MG recipient cells, exposed
to EV secreted by T98G treated or not with TMZ (10 µM). The EV
internalization in U251MG target cells was allowed by incubation
for 18 h. Representative images of immunofluorescence staining of
U251MG cells treated with EV secreted from T98G cells showed
the COX-2 delivery in the recipient cells, as detectable by green
fluorescence (Figure 8A). Of note, in U251MG exposed to EV
from TMZ-T98G, the fluorescence appeared more intense than
relative CNTR according to TMZ’s ability to upregulate shuttled-
COX-2 levels. No green fluorescence was detected in U251MG
treated with or without TMZ.

As expected, TMZ treatment significantly reduced the
U251MG cell growth versus CNTR (P<0.01) (Figure 8B). The
uptake of EV from T98G-CNTR did not influence the cell
number with respect to U251MG CNTR. Differently, the
A

B

FIGURE 6 | COX-2 levels in human macrophage cells after T98G-EV internalization. U937 macrophage cells (M0) were incubated with 30 mg/ml of EV from T98G
daily treated in the absence (CNTR) or presence of COX-2 inhibitors CXB (8 mM), NS398 (20 mM), TMZ (10 mM) and their combinations for 5 days. (A) Representative
immunofluorescence images from one out of two independent experiments showed the COX-2 (green) transferred by T98G-EV in U937 cells. Nuclei were
counterstained with DAPI (blue). No green fluorescent signal was detected in the CNTR (M0) sample (U937 cells not exposed to EV). All images were acquired at
100× magnification (Scale bar = 10 µm). (B) COX-2 levels were analyzed by immunoblotting assay. Densitometric analysis was performed by normalizing vs. b-actin
and expressed as fold increase vs. EV-CNTR. Data are from two independent experiments (mean ± SEM). For comparative analysis of data, a one-way ANOVA with
post hoc Tukey test was used (*P<0.05, **P<0.01).
FIGURE 5 | Macrophage U937 intracellular uptake of EV derived from
control (CNTR) and CXB-, NS398-, TMZ-, drugs combination-treated T98G
assessed by PKH26 staining. PKH26-labeled EV-COX-2 (red) were incubated
at 30 mg/ml with U937 cells for 18 h. The nuclei of U937 were counterstained
with DAPI (blue). CNTR (M0) = U937 cells not exposed to EV. Representative
immunofluorescence images are from one out of three independent
experiments. All images were acquired at 100× magnification.
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internalization of EV T98G-TMZ significantly increased the
U251MG growth rate when compared to CNTR (P<0.05) and
TMZ (P<0.001) (Figure 8B). Of note, when the U251MG were
exposed to TMZ for an additional 72 h, the cell growth did not
decrease in cells that have previously internalized the EV derived
from CNTR and TMZ-treated T98G, showing a similar trend to
those without TMZ treatment. Therefore, the EV derived T98G
were able to strongly hinder the chemosensitivity. Representative
images from microscopic observations confirmed these
results (Figure 8B).
DISCUSSION

In this work, we show evidence that low and clinically relevant
TMZ concentrations, able to upmodulate COX-2 in T98G and
U87MG cells, led to a dose-dependent increase of the COX-2
levels in secreted EV. It is fair to point out that the results
obtained with repeated exposure to TMZ for 5 consecutive days
at clinically relevant concentrations, showing the TMZ-induced
COX-2 increase as well as the increased sensitivity to TMZ in the
presence of COXIB, have the same trend as those obtained in our
previous work (8) where high doses of TMZ for 72 h were used
on TMZ-resistant cells. Hence, the similarity between the effects
of metronomic low dose application and those of single high
dose protocol could slightly mitigate the criticalities raised
toward in vitro studies in which the use of un-physiological
high TMZ concentrations is questioned since it does not
faithfully reproduce the clinical situation.

The ability of TMZ to induce an upregulation of COX-2
expression could be ascribed to the action exerted by the drug at
the EGF/EGFR pair level leading to the NF-kB transcription
factor activation able to upregulate the COX-2 expression due to
Frontiers in Oncology | www.frontiersin.org 10156
the presence in the COX-2 promotor of the NF-kB response
element (35). The NF-kB/COX-2 signaling is a crucial regulator
of the malignant phenotype and chemoresistance in GBM (36).
NF-kB signaling pathway has also been reported to influence
radiotherapy tolerance of glioma cells through regulating COX-2
expression, with potential therapeutic approaches for the
treatment of glioma (37).

The TMZ-induced increase of COX-2 in EV was significantly
counteracted by the treatment of the cells with COXIB in
combination with TMZ. The EV derived from T98G exposed
to drug combination treatment were able to prevent the TGF-b1
release by recipient macrophage cells induced by EV secreted by
TMZ-treated T98G, thus neutralizing the M2-polarization.

Experimental studies carried out in recent years on the EV
derived from GBM have revealed numerous molecules in their
cargo (38); however, to the best of our knowledge, the presence of
COX-2 protein in EV derived from GBM cells has never been
verified. In 2017, Kim and colleagues (39) reported the transfer of
the COX-2 protein by exosomes from COX-2-positive lung cancer
cell lines affecting the phenotype of monocytes THP-1, used as
recipient cells. The COX-2 uptake by THP-1 determined an
increased production of PGE2 and VEGF sustaining tumor
growth. In our previous study, the addition of NS398 caused a
functional change of EV released by GBM stem cells which, in turn,
provoked a decrease in cell migration and autophagy induction in
adherent U87MG and T98G, used as recipient cells (40).

The neuroinflammation and the role of inflammatory
mediators, such as COX-2, are critical components in
establishing an immunosuppressed microenvironment, thus
fueling GBM proliferation, invasion, and maintenance of
stemness features (41). COXIB enhanced the tumor-associated-
macrophage-mediated anti-tumor immune responses by
increasing monocyte cytokine production (42). The COX-2
role in macrophage polarization was also analyzed after NS398
treatment of bone marrow-derived macrophages that increased
the secreted levels of TNFa and reduced the IL-10 secretion (42).
Our present findings show that EV released by TMZ-treated
T98G shuttled COX-2 and, after effective internalization by
U937 macrophage cells, induced a higher level of TGF-b1, a
hallmark of the transition in M2 macrophage state (43). Of
interest, the EV-COX-2 made the recipient U251MG, TMZ-
sensitive cells, less responsive to TMZ action, suggesting a
possible role of EV derived from TMZ-resistant cells in the
transfer of chemoresistance through the COX-2 delivering.

Overall, the results suggest that COX-2 shuttled by EV can
modulate the fate of cells in the GBMmicroenvironment making
them less sensitive to the alkylating drug action. Figure 9 shows a
graphical representation of the main results.

Although our data represent the first evidence of the presence
and effective functional transfer of COX-2 through EV derived
from GBM cells, further and more comprehensive studies are
needed on the multiple consequences at the level of TME of the
presence of COX-2 in EV. Likewise, it will be essential to deepen
COXIB’s effects on tumor cells and the TME. Although many
questions remain unanswered regarding the precise molecular
and cellular mechanisms involved in GBM resistance, strategies
FIGURE 7 | Effect of EV from treated-T98G on U937 macrophage cell line.
The macrophage U937 cells (M0) were incubated with EV derived from T98G
treated in the absence (CNTR) or presence of COXIB, CXB (8 mM), NS398
(20 mM), TMZ (10 mM) and their combinations for 5 days. Levels of TGF-b1,
M2-related marker, were analyzed by ELISA kit in the cell supernatants of
U937 exposed to EV from T98G. Macrophage M2 polarization was obtained
by incubation with 20 ng/ml of interleukin 4 (IL-4) and 20 ng/ml of interleukin
13 (IL-13) for 72 h. The results relative to three experiments in duplicate are
expressed as mean ± SEM. For comparative analysis of data, a one-way
ANOVA with Tukey post hoc test was used (*P<0.05; **P<0.01; ***P<0.001).
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to modulate the TME can offer a new perspective on the
clinical approach.

We highlighted a possible scenario to counteract the TMZ-
resistance using COXIB tomodulate the GBM neuroinflammation
and immunosuppression in the TME through EV and enhance the
Frontiers in Oncology | www.frontiersin.org 11157
TMZ therapeutic effectiveness. Our data support a combined
therapeutic strategy of administering COXIB and TMZ to
modulate the content of local EV with the aim of improving the
response to chemotherapy in GBM patients.
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Supplementary Figure 1 | Effect of TMZ on GBM cell viability. Representative
phase-contrast images (10× magnification) of (A) T98G and (B) U87MG in the
absence (CNTR) or presence of TMZ at several concentrations for 5 days are
shown.

Supplementary Figure 2 | Influence of TMZ on (A) COX-2, (B) b-catenin and
(C) MGMT expression in U251MG TMZ-sensitive cell line. Immunoblotting assays
were performed on cells incubated for 5 days in the presence or absence (CNTR)
of TMZ (5-20 µM). b-actin serves as internal control. The images are representative
of three independent experiments. (D) Influence of the COXIB combined with
TMZ on COX-2 levels was verified by Western blotting assay in U251MG cells
daily incubated or not (CNTR) with Celecoxib (CXB) (8 mM), NS398 (20 mM),
TMZ (10 mM) or with the co-treatments (CXB+TMZ and NS398+TMZ) for 5 days.
Representative images of each immunoblotting are shown. C+ = positive control
(not treated T98G).
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Small extracellular vesicles (EVs) in the last 20 years are demonstrated to

possess promising properties as potential new drug delivery systems,

biomarkers, and therapeutic targets. Moreover, EVs are described to be

involved in the most important steps of tumor development and progression

including drug resistance. The acquired or intrinsic capacity of cancer cells to

resist chemotherapies is one of the greatest obstacles to overcome to improve

the prognosis of many patients. EVs are involved in this mechanism by

exporting the drugs outside the cells and transferring the drug efflux pumps

and miRNAs in recipient cells, in turn inducing drug resistance. In this mini-

review, the main mechanisms by which EVs are involved in drug resistance are

described, giving a rapid and clear overview of the field to the readers.

KEYWORDS

extra cellular vesicles, cancer, drug resistance, therapy, oncology
Introduction

Extracellular vesicles (EVs) are small cell-released particles with a diameter ranging

from 30 to 1,000 nm (1). EVs are a heterogeneous population that can differ in size,

properties, and biological function and classified according to their biogenesis pathway

(2). In addition, from the first attributing role, consisting in managing cellular waste,

nowadays it is well recognized that EVs play a central role in cell–cell communication (3),

both in physiological and in pathological conditions, and their cargoes have been

distinguished in different components from proteins to miRNA, going through mRNA

and lncRNA, among others (4). EVs were also employed as drug delivery systems (DDS)

displaying very suitable properties for this purpose and obtaining interesting results in

preclinical and clinical trials (2, 5).

The history of EVs started in the second half of the 1940s in the previous century, when

in 1945 Chargaff working on blood coagulation observed small “membrane debris”

sedimented at high-speed centrifugation of plasma supernatant (6). The following year,
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his observation was reported as “a variety of minute breakdown

products of blood corpuscules” (7). Twenty-one years later, Peter

Wolf described in more detail Chargaff’s remarks, saying that it

could be a material “originated from platelets but it is

distinguishable from the intact ones”. This claim was confirmed

by electron microscopy images that Wolf himself described as

“platelet dust” (8). For almost 20 years, other electron microscopy

images showed structures with a size under 1,000 nm. In

particular, in 1974, Nunez et al. reported, for the first time,

structures later called multivesicular bodies (MVB) (9), opening

up the path in the identification of a subtype of EVs that

originated from MVB, later called exosomes or small EVs (30–

150 nm). The biogenesis of these structures was demonstrated to

start from late endosomes, which are formed by the inward

budding of MVB membranes forming intraluminal vesicles

(ILVs), which fuse back with the plasmatic membrane and

released by cells as small EVs [later called exosomes (10)] as

described by Cliff Harding in 1983 (11). Starting from the early

1980s, many studies on EVs have increased the knowledge in this

field and scientists began to deeply understand the multiple

biological functions in which EVs are involved. For almost a

decade, small EVs were identified as a vehicle to remove

unnecessary molecules from cells, like a cellular garbage disposal

(12). In the 1990s, small EVs were identified to have an

immunological function (13), followed by a large number of

studies highlighting that EVs were involved in intercellular

communication mechanisms playing a role in physiological or

biologically important processes, such as lactation, inflammation,

cell proliferation, and neuronal function (14–16). Moreover, other

studies showed that EVs are implicated not only in pathological

processes, namely, thrombosis (17), diabetes, and atherosclerosis

(18), but also in the development and progression of diseases such

as liver (19) and neurodegenerative diseases (20) and, recently, in

cancer (21, 22). In cancer, many processes like cell proliferation,

migration, invasion, epithelial-to-mesenchymal transition,

angiogenesis, lymphogenesis, immune suppression, and

metastasis (23) are regulated by EVs. In the late 1990s,

important studies were published about EVs. Starting with the

work of Raposo et al. (13) that demonstrates that EVs derived

from immune cells are capable of presenting antigens, other

groups started new projects about a new vaccine approach

based on EVs. The first approach on vaccines using EVs was

explored by Zitvogel et al. in 1998 (24). In their work, the authors

described how EVs secreted by dendritic cells loaded with tumor

antigens are able to eradicate cancer cells. Based on advances in

the next decades, Escudier et al. conducted a clinical trial (25).

This work has been a starting point for many studies on the

physiological role of EVs and their possible applications as

biomarkers, and an opportunity to new therapeutic approaches.

In the last few years, lines of evidence for the implication of EVs in

the development of anticancer drug resistance have increased and

have been extensively studied. This mini-review will focus on the

role of EVs in cancer drug resistance exploring and describing the
Frontiers in Oncology 02
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main mechanisms of action through a synthetic description of the

major scientific works in the field. Also, a brief description of the

most important research papers is provided in Table 1, which

aims to give an impression of this field and, overall, to give the

readers a rapid and clear overview of the involvement of EVs in

drug resistance mechanisms.

The term EVs used in this review, independent of the term

used in the article referred to, refers to a mixed population of

small EVs ranging from 30 to 200 nm since the available

isolation methods are not able to discriminate vesicles

originated from different pathways.
EVs mediated drug resistance

The hallmarks of drug resistance are basically summarized in

six points: (1) alteration of drug targets (2), activation of drug

pumps, (3) detoxification mechanisms, (4) reduced susceptibility

to apoptosis, (5) increased ability to repair DNA damage, and (6)

altered proliferation. Also, local modifications of stroma, tumor

microenvironment (TME), and local immunity could contribute

to the development of resistance (66). Keeping in mind these

notions, EVs are involved in cell–cell communication and cargo

sharing/delivery, and these characteristics have been associated

with chemo- and targeted therapies’ resistance as detailed here.

In the next paragraphs, the most important mechanisms by

which EVs regulate drug resistance will be described.
Activation of drug-efflux pumps

Efflux pump mechanisms are physiologically important in

many processes such as toxin clearance from the gastrointestinal

tract, elimination of bile from the hepatocytes, effective

functioning of the blood–brain and placental barrier, and the

renal excretion of drugs. In drug-resistant tumors, the

overexpression of these proteins (67) allow the cells to reduce

the intracellular drug concentration to a sublethal dose. Many

research papers described the role of EVs in the transferring of

drug efflux pumps from resistant to sensitive cancer cells.

Among the delivered proteins are frequently described ATP-

binding cassette (ABC) family, like P-glycoprotein (P-gp,

MDR1, and ABCB1), breast cancer (BC)-resistant proteins

(ABCG2, BRCP, and ABCA3), and multidrug-resistant protein

1 (MRP-1) (45, 46, 68–72). The mechanism by which EVs

transfer proteins among cells is commonly called EVs-

mediated horizontal transfer of drug efflux pumps. BC cells

were able to export doxorubicin in the extracellular medium by

EVs shedding, thus reducing intracellular accumulation of the

drug. Moreover, EVs mediate the transfer of functional proteins

or RNAs (miRNA and mRNA) that modulate the expression

and function of P-gp. The P-gp is found to be overproduced in

cancer cells to remove cytotoxic drugs from cells and is
frontiersin.org
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TABLE 1 EVs cargoes and drug resistance mechanisms.

miRNA

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

MCF-7 and MDA-MB-231 DOX and PTX-
resistant cells MCF7 CSCs

miR-155 TGF-b, FOXO-
3a, and C/EBP-
b mRNA

BC DOX and PTX
resistance

Contributing to
drug resistance and
promoting EMT
and CSC
phenotypes

(26)

MDA-MB-231 cells miR-1246 CCNG2 BC DOC, EPI, and
GEM resistance

Promoting cell
proliferation,
migration, and drug
resistance

(27)

BC cells resistant to TAM miR221/222 P27 and ERa BC TAM resistance Downregulation of
p27 and ERa
protein increasing
cell proliferation

(28)

Trastuzumab-resistant BC cells miR-567 ATG5 BC Trastuzumab
resistance

Regulating
autophagy

(29)

MCF7 miR-567 ATG5 BC Trastuzumab
resistance

MiR-567 delivered
by EVs revert cell
resistance to
trastuzumab

(30)

HL60/AR MRP-1; miR19b,
miR20a

HL60 Acute myeloid leukemia MDR Transferring
chemoresistance
through EVs from
resistant to sensitive
cells

(31)

MiaPaCa, Colo-357 miR-155 Unknown Pancreatic cancer GEM Small EV-mediated
mechanism of drug-
induced acquired
chemoresistance in
PC cells. miR-155
induced suppression
of gemcitabine-
metabolizing
enzyme, DCK

(32)

MCF7-Tam miR-221/222 MCF7 BC TAM Vesicles containing
miR-221/222 act as
signaling molecules
in cell–cell
communication for
tamoxifen resistance

(33)

786-0 Sor res, ACHN sor res. miR-31-5p 786-0 Sor sens,
ACHN sor
sens

Advanced renal cell
carcinoma

Sorafenib EVs shuttled miR-
31-5p can transfer
resistance
information from
sorafenib-resistant
to sensitive cells by
directly targeting
MLH1

(34)

SYO-1, HS-SYII, 1273/99 and YaFuS-resistant cells microRNA-761 SYO-1, HS-
SYII, 1273/99,
and YaFuS

Synovial sarcoma Pazopanib EV miR-761
delivering affects
chemosensitivity of
synovial sarcoma
cells to Pazopanib
by targeting TRIP6,
LMNA, and SIRT6

(35)

TMZ-resistant GBM cells miR-1238 GBM-sensitive
cells

Glioblastoma Temozolomide MiR-1238 levels are
higher in TMZ-
resistant GBM cells

(36)

(Continued)
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TABLE 1 Continued

miRNA

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

and their small EVs
than in sensitive
cells. Higher levels
of miR-1238 are
found in the sera of
GBM patients than
in healthy people.
The loss of miR-
1238 may sensitize
resistant GBM cells
by directly targeting
the CAV1/EGFR
pathway

Proteins

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

ADM-resistant MCF-7 cells UCH-L1, P-gp MAPK/ERK BC ADM resistance Overexpression of
UCH-L1 enhanced
multidrug resistance
in BC

(37)

Peripheral blood Evs from BC patients TRPC5 P-gp BC Anthracycline/
taxane-based
chemotherapy

EVs stimulate the
production of P-gp
in the recipient cells
by Ca2+- and
NFATc3-mediated
mechanisms

(38)

EVs derived by PTX treated MDA-MB-231 cells Survivin N/A BC PTX resistance Promoting cell
survival and drug
resistance

(39)

DOC-resistant variant of MCF-7 P-gp Stimulating
drug efflux

BC DOC resistance Drug resistance is
transferred as well
as P-gp from drug-
resistant to sensitive
BC cells

(40)

HER2-positive BC cells TGFb1 and PD-L1 Unknown BC Trastuzumab
resistance

Neuromedin U
induces the escape
of immune response
in HER2-positive
BC cells by
increasing the
expression of
TGFb1 and PDL1

(41)

HER2 positive SKBR-3 and BT474 cells HER2 Unknown BC Trastuzumab
resistance

Inhibition of
Trastuzumab
activity in vitro

(42)

Basal-like BC cells PD-1 Unknown BC Immunosuppression ESCRT-related
protein ALIX
regulates EGFR
activity and PD-L1
surface presentation
in BC cells

(43)

Mesenchymal stem cells TGFb, C1q and
semaphorins

PDL-1
overexpression

BC Immunosuppression Inducing
differentiation of
monocytic myeloid-
derived suppressor

(44)

(Continued)
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TABLE 1 Continued

Proteins

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

cells into highly
immunosuppressive
M2-polarized
macrophages at
tumor beds

Su-DHL-4, Balm-3, OCI-Ly1 CD20 Unknown B-cell lymphoma Rituximab
resistance

EVs protect target
cells from rituximab
action through the
expression of CD20

(45)

DU145RD and 22Rv1RD MDR-1/P-gp Unknown Prostate cancer DOC Small EVs expelled
from DU145 and
22Rv1 docetaxel-
resistant variants
(DU145RD and
22Rv1RD)
conferred docetaxel
resistance to
DU145, 22Rv1 and
LNCaP cells

(46)

MCF7 ADM res P-gp/TrpC5 HME cells BC ADM MCF-7/ADM cell-
derived MVs
transferred both P-
gp and TrpC5 to
HMECs, and
TrpC5-containing
MVs modulated the
expression of P-gp
in HMECs via the
translocation of the
transcription factor
NFATc3

(47)

MG-63DXR30 MDR-1 mRNA/P-gp MG-63 Osteosarcoma DOX resistance Multidrug-resistant
osteosarcoma cells
are able to spread
their ability to resist
to the effects of
doxorubicin
treatment on
sensitive cells by
transferring small
EVs carrying MDR-
1 mRNA and its
product P-
glycoprotein.

(48)

KBv200 ABCB1 KB Epidermoid carcinoma MDR Chemotherapeutic
agents can increase
Rab8B-mediated
release of EVs
containing ABCB1
from drug-resistant
cells to sensitive
recipient cells;
acquire a rapid but
unsustainable
resistance to evade
the cytotoxicity of
chemotherapeutic
agents.

(49)

(Continued)
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TABLE 1 Continued

Proteins

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

OSCC cell lines ATP1A1, ATP1B3 Unknown Oral squamous cell
carcinoma

CPT resistance OSCC-derived EVs
may regulate
cisplatin resistance
through a cellular
efflux system

(50)

RKO/R p-STAT3, GSTP1p Unknown CRC 5-FU resistance p-STAT3-
containing small
EVs contribute to
acquired 5-FU
resistance in CRC.

(51)

SGC-7901/VCR CLIC1 SG7901 Gastric cancer Vincristine Small EVs
transferring CLIC1
could induce the
development of
resistance to
vincristine in vitro

(52)

BC cells under hypoxic conditions TGFb and IL10 Unknown BC Immunosuppression Suppress T-cell
proliferation via
TGFb

(53)

Acute lymphoblastic leukemia cell line MDR P-gp Unknown Acute lymphoblastic
leukemia

MDR Purified EVs
transfer functional
P-gp from resistant
cancer cells to drug-
sensitive cells in
vitro

(54)

LncRNAs

Cell of origin EV content Target Cancer
type

Type of
resistance

Mechanism Ref.

DOX-resistant breast cancer cell lines. MCF7
and MDA-MB-231

Lnc RNA-H19 Unknown BC DOX resistance Inhibition of
apoptosis and
enhancing of cell
proliferation and
drug resistance

(55)

ER-positive BC cells LncRNA-UCA1 Cleaved
Caspase 3

BC TAM resistance Caspase 3
intracellular levels
are decreased
impairing TAM-
induced apoptosis

(56)

HER2-positive BC cells LncRNA-SNHG14 Bcl2/BAX
signaling
pathway

BC Trastuzumab
resistance

LncRNA-SNHG14
may induce
resistance to
trastuzumab
through inhibition
of Bcl2/Bax
apoptotic pathway.

(57)

Eca109 MDR cells linc-VLDLR Eca 109 Esophageal
cancer

MDR Linc-VLDLR EVs,
secreted by the
drug-resistant
esophageal
carcinoma cells,
could cause the
acquired drug-
resistance
phenotype of target
cells by regulating

(58)

(Continued)
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demonstrated to cover a pivotal role in drug resistance together

with TRPC (transient receptor potential channel) proteins (73).

EVs could also transfer drug metabolizing enzymes to

inactivate drugs. Yang et al. described that the expression of

GSTP1 (glutathione S-transferase P1), an enzyme belonging to

phase II drug-metabolizing proteins, was higher in doxorubicin-
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resistant cells and in their EVs, which are capable of transferring

the GSTP1 enzyme to sensitive cells (74). Accordingly, a high

level of GSTP1 in circulating EVs may be an indication of a

drug-resistant profile and could be used as a drug resistance

predictive marker (74) as already demonstrated for the

expression of GSTP1 on tumor cells (75, 76).
TABLE 1 Continued

LncRNAs

Cell of origin EV content Target Cancer
type

Type of
resistance

Mechanism Ref.

the expression of
ABCG2

Sunitinib-resistant renal cancer cells LncARSR Endothelial cells Renal
cancer

Sunitinib LncARSR is
identified as a
mediator of
sunitinib resistance
in renal cell
carcinoma by acting
as a competing
endogenous RNA
for miR-34 and
miR-449, and show
that small EV-
mediated
transmission of
lncARSR can confer
resistance to
sensitive cells

(59)

Other cargoes

Cell of origin EV content Target Cancer type Type of
resistance

Mechanism Ref.

Cervical cancer cells ceRNA of miR-34b Unknown Cervical cancer CPT resistance EVs carrying
HNF1A-AS1 as a
ceRNA of miR-34b
to promote the
expression of
TUFT1 and the
drug resistance of
CC cells

(60)

Mouse mammary tumor TS/A cells Unknown Unknown BC Immunosuppression Inhibition of NK
cell tumor toxicity
stimulated by IL-2

(61)

Metastatic BC cells Unknown Unknown BC Immunosuppression Blocking T-cell
proliferation and
NK cell cytotoxicity

(62)

DOX-resistant MCF-7 cells DOX N/A BC DOX resistance DOX accumulation
in shed vesicles

(63)

TAM- and metformin-resistant MCF-7 cells N/A N/A BC TAM and
metformin
resistance

ERa decreased
activity. Activation
of AKT and AP-1,
NF-kB, and SNAIL1

(64)

Patients with mBC resistant to hormonal therapy mtDNA N/A BC Endocrine therapy
resistance

Promoting ER-
independent
oxidative
phosphorylation

(65)
frontiersi
ADM, adriamycin; BC, breast cancer; CPT, cisplatin; CRC, colorectal cancer; DOC, docetaxel; DOX, doxorubicina; EPI, epirubicina; GEM, gemcitabine; MDR, multidrug resistance; PTX,
paclitaxel; TAM, tamoxifene; N/A, not applicable.
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Cell viability could even be enhanced by EVs’ transferring of

pro-survival factors like cell surface receptors, miRNAs, and

cellular proteins. These cargoes could improve cell viability by

decreasing apoptosis and activating proliferative signals (77–81).
Intercellular communication between
the microenvironment and tumor cells

As described in the Introduction, EVs are involved in cell–cell

communication. This mechanism could play a role in the

bidirectional crosstalk between tumoral and stromal cells also

regarding drug resistance mechanisms. EVs derived from cancer-

associated fibroblasts (CAFs) are described to be involved in drug

resistance in different types of tumor. In colorectal cancer, EVs

derived from CAFs are able to induce chemoresistance to 5-FU

and oxaliplatin both in vitro and on patient-derived mouse

xenografts (82). CAF-EVs are able to promote stemness and

resistance in CRC cells in vitro and in vivo also by transferring

the lncRNA H19 (83), H19 is an activator of b-catenin pathway.

Previous studies demonstrated that the b-catenin pathway is

involved in tumor progression and drug resistance (84–86).

Interestingly, CAFs are naturally resistant to gemcitabine and

their EVs transfer the gemcitabine chemoresistance phenotype in

pancreatic ductal adenocarcinoma (PDAC) by delivering the

SNAIL mRNA that increase SNAIL protein expression

promoting proliferation and drug resistance (87). A recent work

highlighted that CAF-EVs are involved in oxaliplatin resistance in

CRC by transferring the CCAL (colorectal cancer-associated

lncRNA) and activating the b-catenin pathway (88). CCAL

interacts with mRNA-stabilizing protein HuR (human antigen

R) increasing b-catenin mRNA and protein levels. Another work

described the effect of stromal EVs in multiple myeloma cells

inducing resistance to bortezomib, which could be linked to the

activation of JNK, p38, p53, and Akt pathways (89). The release of

EVs from mesenchymal stem cells carrying miR-222/miR-223 is

linked to drug resistance in BC cells (90). ZEB1 mRNA

encapsulated in EVs derived from mesenchymal transformed

lung cells can transfer gemcitabine and cisplatin chemoresistance

and the mesenchymal phenotypes to epithelial NSCLC cell

line (91).
RNA (miRNA, lncRNA, and mRNA)-
mediated drug resistance

Micro RNAs are small noncoding RNAs of 13–29 nucleotides

involved in gene regulation and different biological and

pathological processes, including the formation and

development of tumors and drug resistance. In the last years,

miRNAs are one of the most studied cargoes of EVs. As described,

drug resistance mechanisms are heterogeneous and complex, and

most of them are also regulated by miRNAs (92). miRNAs could
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promote drug resistance through the activation of metabolizing

enzymes, in turn favoring drug inactivation or the expression of

drug efflux pumps. The transfer of miRNA-365 by tumor-

associated macrophage (TAM)-derived EVs to pancreatic ductal

cells is described to induce resistance to gemcitabine in pancreatic

adenocarcinoma by upregulating the triphosphate-nucleotide

pool in cancer cells and inducing the cytidine deaminase

enzyme that is able to inactivate gemcitabine (93). As

mentioned, EV miRNAs could regulate the expression of ABC

transporters that are involved in the efflux of intracellular drugs. It

is described that, in ovarian cancer (OC) cells, there is an inverse

correlation between the expression of Caveolin 1 (Cav1) and

ABCB1, and this proportion is supposed to be driven by Cav1 (94,

95). Kanlikilicer et al. demonstrated that Cav1 levels in

macrophages when co-cultured with OC cells are selectively

dysregulated by the release of miR-1246 via EVs by OC cells.

miR-1246 secreted in EVs inhibits the expression of Cav1 and

upregulates ABCB1 expression to induce tumor-promoting

phenotype and drug resistance in vitro and in vivo (96). As

described for the transport of drug efflux pumps, even miRNAs

could display a double-action behavior in the occurrence and

development of drug resistance. Some miRNAs could have a

positive effect on drug resistance, enhancing drug sensitivity in

cancer cells. An analysis conducted by Liu et al. showed that EVs

containing miR-128-3p were able to downregulate the expression

of the MDR5 protein thus enhancing oxaliplatin sensitivity in

resistant colorectal cancer cells (97). Another way to inhibit drug

resistance is the regulation of glycolysis. Cancer metastasis,

invasion, and drug resistance are also dependent on the

anabolic profile of tumor cells that promotes the decrease in

extracellular pH leading to the reduction of cytotoxic T-cell

function in the TME acquiring strong survival advantages (98,

99). The GLUT protein family is involved in the intracellular

uptake of glucose (100) and the regulation of glycolysis could be a

strategy to contrast drug resistance (101). GLUT1 is demonstrated

to be overexpressed in several tumors (102, 103), and its activation

is associated with the regulation of mTOR. A decreased expression

of mir-100-5p is described to be involved in drug resistance in

many tumors. mTOR is the target gene of miR-100-5p that

decreases its expression, enhancing drug sensitivity in cancer

cells (104).

mRNA-mediated EVs are another player in the resistance

process. Cao et al. demonstrated that EVs containing the DNMT1

mRNA (DNA methyltranferase 1) induce the overexpression of

this enzyme in the recipient cells, playing an important role in the

cisplatin resistance mediated by EVs in the xenograft model (105).

In this research work, the underlying mechanism is not

investigated, but it could be speculated that the dysregulation of

Wnt and PI3K/AKT/mTOR signaling pathways, caused by an

altered methylation status in a variety of genes, was described to be

associated with resistance to standard treatments in many types of

cancer (106). It was also demonstrated that BC cells resistant to

doxorubicin possess an increased level of mRNA coding for a
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detoxifying enzyme (GSTP1) and EVs derived from those cells are

capable of transferring the mRNA to sensitive cells and inducing

resistance (74). In vitro and in vivo experiments demonstrated that

normal astrocytes can protect glioma cells from apoptosis induced

by Temozolomide (TMZ) through the transfer of the mRNA of

O-6-methylguaninene-DNA methyltransferase (MGMT) by EVs

(107). EVs transfer of Zinc finger E-box homeobox 1 (ZEB1), a

transcription factor involved in the epithelial-to-mesenchymal

transition (EMT) process, induces the mesenchymal phenotype

and drug resistance in recipient lung cancer cells (91, 108). In

particular, this work described how EVs derived from

mesenchymal oncogenically transformed lung cells can transfer

chemoresistance and the mesenchymal phenotype to

recipient cells.

LncRNA delivered by EVs often serves as competing

endogenous RNA (ceRNA) to help miRNA in their drug

resistance regulatory mechanisms (109). LncRNAs have been

identified to be involved in cancer drug resistance by affecting

the expression of drug metabolizing enzymes (110). Two studies

described that EVs transferring lncRNA linc-ROR (111) and linc-

VLDRLR (112) induced sorafenib and doxorubicin resistance in

HepG2 cells (hepatocellular carcinoma) by activating the TGF-b
pathway (111) and increasing the expression of ABCG2 (112).

LncRNA urothelial carcinoma-associated 1 (UCA1) in NSCLC is

associated with the modulation of a gefitinib-resistant phenotype

by decreasing the expression of miR-143 and consequently

increasing the expression of its target FOS-like 2 (113). LncRNA

SBF2-AS1 is identified to be ceRNA of miR-151 and is involved in

the mechanism of DNA repair that is one of the leading

mechanisms of resistance to TMZ in neurological cancers (114).

In glioblastoma patients, the presence of EVs lncRNA SBF-AS1 in

the serum was found to be associated with TMZ resistance (115).

LncRNA could also act by regulating some RNA-binding proteins

as demonstrated for AFAP1-AS1 associated with shorter time

survival of HER-2-positive BC patients linked to trastuzumab

resistance. AFAP1-AS1 is responsible for trastuzumab resistance

by upregulating HER-2 expression through the binding of the

RNA binding protein AU-binding factor 1 (116).
EVs and possible applications
as biomarkers of tumor
therapy resistance

EVs can be isolated from various types of body fluids

including blood, urine, and saliva. It is demonstrated that in

the cancer patient population, the amount of EVs present in the

blood is more than double compared to healthy individuals

(117), suggesting that they could be new biomarker candidates

(118). A correlation between serum EVs containing miR-146-5p

could predict the efficacy of cisplatin in NSCLC patients in
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advanced stages and utilized for the real-time monitoring of

drug resistance manifestation (119). Xiao et al. described that

EVs derived from the serum of drug-resistant CRC patients (5-

FU resistance) are enriched in TAG72 (tumor-associated

glycoprotein 72) (120, 121). In BC preclinical models, it is

demonstrated that the cargoes of EVs are influenced by the

stress induced from drugs and could be correlated to the transfer

of resistance in metastatic sites mediated by the Pg-P protein

(40) or by miR-423-5p (122). Leukemia-derived EVs are

described to induce IL-8 release in bone marrow stromal cells,

thus protecting the cells from the effects induced by

chemotherapy (123). A high level of IL8 promotes the

expression of Pg-P and is required for the expression of the

MDR profile in BC (124) and, in renal cancer, is described to be

associated with sunitinib resistance (125). According to the

described implication of EVs in drug resistance, it could be

useful to set up methods for rapid isolation and characterization

of tumor-derived EVs to improve the personalization of the

therapies and to predict the drug response of the patient.

Moreover, targeted drugs against tumor-derived EVs should be

studied to reduce their non-beneficial effects as described in the

next paragraph.
Targeting EVs to reduce cancer
chemoresistance

Considering the importance of EVs in the regulation of

chemoresistance, a few drugs were utilized to inhibit their

production, release, or action.

It is described that drug-resistant cancer cells could produce

an increased number of EVs than their drug-sensitive

counterpart, thus contributing to the spread of resistance (45,

126–128). Some studies reported that, in drug-resistant cells,

there is a direct association between the presence of drug

resistance mediators and molecules involved in the production

of EVs. For instance, Annexin A3 is a protein involved in OC

platinum resistance and is also demonstrated to have a role in

the EVs’ production (129, 130). In the last years, an increasing

number of studies investigated the possibility to inhibit the

release of EVs from cancer cells. GW4869 is an inhibitor of

the neutral sphingomyelinase (131) and is able to sensitize

cisplatin-resistant OC cells by reducing EVs trafficking (105).

Moreover, rhamnose-emodin is a molecule that is described to

reduce the secretion of EVs from doxorubicin-resistant BC cells,

thus reducing the expression of EVs miRNAs involved in

chemoresistance (132). Therapeutic targeted antibodies against

cell surface receptors may be neutralized by EVs interaction.

Aung et al.’s research group described how Rituximab (anti-

CD20) is quenched by EVs expressing the target protein. The

authors also demonstrate that by blocking EVs biogenesis with
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indomethacin, the therapeutic benefits of the therapy were

restored (45). In another work, indomethacin is used to block

EVs secretion in order to increase the amount of cytoplasmatic

doxorubicin, its accumulation in the nucleus, and cytotoxicity

(133). In a CRC model, it was demonstrated that the interaction

mediated by EVs between cancer stem cells and fibroblasts

promoted the resistance to 5-FU and oxaliplatin and can be

reverted by blocking the release of EVs (82). Xie et al. developed

functionalized silica mesoporous nanoparticles (NPs) able to

selectively bind EGFR+-EVs derived from NSCLC through

aptamer recognition. NPs, after binding to EVs in the

bloodstream, are delivered to the liver and excreted in the

intestinal tract to be removed from the organism. It was

demonstrated that by employing this system, the in vivo

cancer metastatic overgrowth could be reduced (134).
Conclusions

The discovery of new cancer therapies is a stimulating topic

that is investigated by a lot of researchers all over the world. The

need for new therapeutic approaches is required because of the

interpatient variability in terms of drug response, and also the

development of drug resistance represents a very hard hurdle to

overcome. Drug resistance appears in almost all types of cancer,

and the underlying mechanisms are not yet clearly understood.

In the last few years, the wide implication of EVs in drug

resistance has been investigated, and in this manuscript, the

major implications in this process are described and

summarized. Although many described experiments are

limited to preclinical and often to an in vitro stage, it is

necessary to deeply investigate the roles of EVs in cancer drug

resistance for many important aspects.

First of all, the involvement of EVs in drug resistance and

their profiling could be exploited in the clinical approach to

define new hallmarks of prognosis of drug response avoiding

invasive procedures. On the other hand, as already explained,

clarifying the role of EVs on drug resistance could stimulate the

development of new anti-cancer strategies based on EVs

targeting to revert drug resistance. Most importantly, cancer-

released EVs should be deeply characterized, and their peculiar

properties should be investigated. In this way, the development

of new targeted strategies able to discriminate tumor-derived

EVs could be set up. Moreover, the employment of artificial EVs

could be considered in order to revert drug sensitivity (135, 136).

EVs have already been described to possess very suitable

properties as DDS to be loaded with different cargoes (drugs,

miRNA, and proteins) displaying high biocompatibility, and the

capacity to target cells is 10 times higher compared to

liposomes of the same size (137–140). EVs could also

represent a new DDS against neurological malignancies due

to their ability to cross the blood–brain barrier (141, 142). Due
Frontiers in Oncology 10
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to the possibility to produce engineered EVs in vitro, they could

be developed to target different types of malignancies. There is

also the possibility of studying artificial EVs for therapeutic

employment with the advantage of producing standardized

EVs with a defined content to facilitate the transition into a

clinical application.
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Effects of osteoblast-derived
extracellular vesicles on
aggressiveness, redox status and
mitochondrial bioenergetics of
MNNG/HOS osteosarcoma cells

Marco Ponzetti 1†, Argia Ucci1†, Chiara Puri1, Luca Giacchi1,
Irene Flati 1, Daria Capece1, Francesca Zazzeroni1,
Alfredo Cappariello1, Nadia Rucci1* and Stefano Falone2

1Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy,
2Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
Osteosarcoma is the most common primary bone malignancy. The crosstalk

between osteosarcoma and the surrounding tumour microenvironment (TME)

drives key events that lead to metastasization, one of the main obstacles for

definitive cure of most malignancies. Extracellular vesicles (EVs), lipid bilayer

nanoparticles used by cells for intercellular communication, are emerging as

critical biological mediators that permit the interplay between neoplasms and

the tumour microenvironment, modulating re-wiring of energy metabolism

and redox homeostatic processes. We previously showed that EVs derived from

the human osteosarcoma cells influence bone cells, including osteoblasts. We

here investigated whether the opposite could also be true, studying how

osteoblast-derived EVs (OB-EVs) could alter tumour phenotype,

mitochondrial energy metabolism, redox status and oxidative damage in

MNNG/HOS osteosarcoma cells.These were treated with EVs obtained from

mouse primary osteoblasts, and the following endpoints were investigated: i)

cell viability and proliferation; ii) apoptosis; iii) migration and invasive capacity;

iv) stemness features; v) mitochondrial function and energy metabolism; vi)

redox status, antioxidant capacity and oxidative molecular damage. OB-EVs

decreased MNNG/HOS metabolic activity and viability, which however was not

accompanied by impaired proliferation nor by increased apoptosis, with

respect to control. In addition, OB-EV-treated cells exhibited a significant

reduction of motility and in vitro invasion as compared to untreated cells.

Although the antioxidant N-acetyl-L-cysteine reverted the cytotoxic effect of

OB-EVs, no evidence of oxidative stress was observed in treated cells.

However, the redox balance of glutathione was significantly shifted towards

a pro-oxidant state, even though the major antioxidant enzymatic protection

did not respond to the pro-oxidant challenge. We did not find strong evidence

of mitochondrial involvement or major energy metabolic switches induced by

OB-EVs, but a trend of reduction in seahorse assay basal respiration was

observed, suggesting that OB-EVs could represent a mild metabolic

challenge for osteosarcoma cells. In summary, our findings suggest that OB-
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EVs could serve as important means through which TME and osteosarcoma

core cross-communicate. For the first time, we proved that OB-EVs reduced

osteosarcoma cells’ aggressiveness and viability through redox-dependent

signalling pathways, even though mitochondrial dynamics and energy

metabolism did not appear as processes critically needed to respond to

OB-EVs.
KEYWORDS

osteosarcoma, extracellular vesicles, redox status, bioenergetics, tumour
microenvironment, apoptosis, mitochondria, cell communication
Introduction
Osteosarcoma is the most common primary bone tumour,

especially in childhood and adolescence, representing 2% of all

neoplasias in children up to 14 years of age, and 3% in those aged

14 to 19 (1, 2). The consequences of osteosarcoma are

devastating, ranging from limb amputation (20% of operable

osteosarcomas) to death because of lung metastases (3), not to

mention the physical and psychological consequences on both

children and their families. Osteosarcoma derives from a

malignant transformation of mesenchymal cells and is

characterised by deposition of an osteoid-like matrix, with

varying degrees of mineralization that can be studied by x-ray

(4). Drug resistance is a serious issue in osteosarcoma, owing to

its high genetic plasticity, which eventually leads to lung

metastasization, inevitably ending with the death of the patient

(5–7). Treatment of osteosarcoma often relies on reactive oxygen

species (ROS)-generating compounds, and an important role in

osteosarcoma chemoresistance has been recently acknowledged

for improved protection against redox imbalance and ROS over-

production (8, 9). Cancer cells are known to show a strong

antioxidant machinery that serves to counteract high ROS basal

levels, which are linked to mitochondrial metabolic

reprogramming and to ROS-mediated signalling promoting

proliferation (10). In this context, some authors have reported

a critical role for mitochondrial dysfunction in the cytotoxic

effect elicited by redox-active compounds that are potentially

relevant for clinical treatment of osteosarcoma (11), and others

have demonstrated that chemoresistant osteosarcoma cells

exhibit lower mitochondrial activity with respect to non

resistant cells (12). Today, it is widely accepted that cancer cell

phenotype is influenced by the tumour microenvironment

(TME), which represents a complex ecosystem that includes

tumour cells, immune cells and stromal cells. In particular, the

interactions among the components of the TME control the

tumour’s fate, along with its aggressiveness and resistance

against therapies (13). Extracellular vesicles (EVs), that consist
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of lipid bilayer nano/microparticles secreted by all cell types, are

emerging as a powerful means of communication between

osteosarcoma and the TME. EVs contain a plethora of

bioactive macromolecules, including miRNAs, membrane and

luminal proteins, lncRNAs, circRNAs, tRNAs, many of which

exhibit target specificity, being uptaken by specific cell types

mainly depending on their membrane proteins (14, 15). The

importance of EVs in cancer is starting to be well recognised,

thanks to pioneering works from the late 2010s (16–19), yet their

importance in primary bone cancers has not been elucidated in

detail. Some of us previously demonstrated that EVs derived

from the human osteosarcoma cell line MNNG/HOS were able

to influence bone cells (20), especially osteoblasts. However,

whether osteoblasts are also able to influence osteosarcoma

phenotype through EVs still needs to be fully elucidated. In

this work, we aimed at contributing to this field, focusing our

attention on the effects induced by OB-EVs in MNNG/HOS

cells, in terms of tumour phenotype, energy metabolism, redox

status and oxidative damage.
Materials and methods

Materials

Dulbecco’s modified Minimum Essential Medium (DMEM),

Dulbecco’s PBS (DPBS), Foetal Bovine Serum (FBS), penicillin,

streptomycin and trypsin were supplied by GIBCO (Uxbridge,

UK). All sterile plasticware was from Falcon Becton-Dickinson

(Cowley, Oxford, UK) or Costar (Cambridge, MA, USA). The

Matrigel Matrix (cat. no. 354262) was purchased from Corning

(NY, USA), the EdU (5- ethynyl-2’-deoxyuridine)-HTS Kit 488

(cat. no. BCK-HTS488) was provided by Base Click GmBH

(Munich, Germany). Trypan blue 0.4% (cat. no. 15250061),

Mitotracker green FM (cat. no. M7514) and RevertAid First

Strand cDNA Synthesis (cat. no. K1622) were from Thermo

Scientific (Waltham, MA, USA). The glutathione assay kit (cat.

no. 703002) and the TBARS Assay Kit (cat. no. 10009055) were
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https://doi.org/10.3389/fonc.2022.983254
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ponzetti et al. 10.3389/fonc.2022.983254
supplied by the Cayman Chemical Company (Ann Arbor, MI,

USA). The humanMMPs array C1 kit (cat. no. AAH-MMP-1-8)

was supplied from RayBiotech (Peachtree Corners, GE, USA),

Bradford assay (cat. no. A6932,0500) was from Panreac

Applichem (Darmstadt, Germany). All other reagents,

including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

(MTT) bromide reduction assay, staurosporine (cat. no.

569396), N-acetyl-L-cysteine (L-NAC; cat. A7250), etomoxir

(cat. E1905), oligomycin A (cat. 75351), 2,4-dinitrophenol

(2,4-DNP; cat. D198501), rotenone (cat. R8875), antimycin A

(cat. A8674), NADPH (cat. N7505) and GSSG (cat. G4376) were

supplied by Merck Life Science (Milan, Italy). Dithiothreitol

(DTT; cat. D1532) was supplied by Invitrogen (Waltham, MA,

USA). The L.D.H. (LDH-P) DGKC method-based kit (cat.

K2011) was supplied by Biolabo (Maizy, France). Antibodies

used in this work are summarised in Supplementary Table 1.
Animal ethical approval

All procedures involving animals and their care was

conducted in conformity with national and international laws

and policies (European Economic Community Council Directive

86/609, OJ L 358, 1, December 12, 1987; Italian Legislative Decree

no. 26, Gazzetta Ufficiale della Repubblica Italiana no. 61, March

4th, 2014; guide for the Care and Use of Laboratory Animals,

National Institute of Health, Publication no. 85-23, 1985) and the

Animal Research: Reporting of in Vivo Experiments (ARRIVE)

guidelines. Animal procedures received Institutional approval by

the Italian Ministry of Health (approval no. 622/2021-PR).
Cell cultures

The human osteosarcoma cell line MNNG/HOS (RRID :

CVCL_0439) was obtained from the European Collection of

Authenticated Cell Cultures (ECACC, Salisbury, UK) and grown

at 37 °C, 5 % CO2 in DMEM supplemented with 10% FBS, 100 IU/

ml penicillin, 100 mg/ml streptomycin, and 2 mM L-glutamine.
Osteoblast primary cultures

Calvariae from 7-day-old CD1 mice were explanted, cleaned

free of soft tissues and digested three times with 1 mg/ml

Clostridium histolyticum type IV collagenase and 0.25% trypsin,

for 15, 30 and 45 min, respectively, at 37°C with gentle agitation.

Cells from the second and third digestions were plated following

centrifugation at 300 x g for 7 min and grown at 37°C, 5% CO2 in

DMEM plus 10% FBS. At confluence, cells were trypsinised and

plated according to the experimental protocol. The purity of the

culture was evaluated by the transcriptional expression of the

osteoblast biomarkers Alkaline Phosphatase (ALP), Runt-related
Frontiers in Oncology 03
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transcription factor 2 (Runx2), type I collagen and osteocalcin and

by the histochemical evaluation of ALP activity.
Extracellular vesicles isolation

Osteoblast derived EVs (OB-EVs) were isolated according to

Ucci et al. (20) and Loftus et al. (21). Briefly, upon reaching 80%

confluence, mouse primary osteoblasts were washed in DPBS

and starved in serum-free DMEM to prevent contamination

from FBS-EVs. After 24 h, the conditioned medium (CM) was

collected and sequentially centrifuged at 300 x g, 4°C for 5 min to

remove dead cells and at 5,000 x g, 4°C for 25 min to remove

membrane debris. The supernatant was collected and transferred

to a Beckman L7-65 ultracentrifuge in a Beckman SW41-Ti or

SW28 rotor and centrifuged at 100,000 x g, at 9°C for 70 min.

Supernatant was discarded, while the pellet, containing EVs, was

resuspended in DMEM for cell treatments. To quantify OB-EVs,

they were subjected to nanoparticle tracking analysis (see

Supplementary Figure 1A) as well as to protein extraction, the

latter giving a yield of 4.9 ± 1.3 µg/12 ml CM. Freshly-isolated

EVs were used for all the subsequent experiments.
Nanoparticle tracking analysis

EVs were isolated from osteoblast CM (12 ml collected from

one 175cm2
flask, cell density = 3.5x104 cells/cm2) and

resuspended in 100µl of nanofiltered DPBS. EVs were then

diluted 1:100 and used for nanoparticle tracking analysis using

a nanosight NS300 NTA apparatus. Flow and camera gain were

adjusted following the manufacturer’s instructions based on the

NS300 quality control parameters. Five camera acquisitions of

60 seconds each were analysed for every biological replicate.
Transmission electron microscopy

EVs were isolated from osteoblast CM (12 ml collected from

one 175cm2
flask, cell density = 3.5x104 cells/cm2) and

resuspended in 2% PFA. Five µl of EVs were then put onto

Formvar-coated grids and allowed to adsorb for 20 min in a dry

environment. Grids were washed in PBS and fixed in 1%

glutaraldehyde for 5 min. Samples were washed in distilled

water and contrasted with 4% uranyl-oxalate solution for 5

min. Grids were air-dried for 10 min and observed under a

Philips CM 30 TEM, 80 kV.
EV internalisation assay

Extracellular vesicles derived from osteoblast CM (12 ml

collected from one 175 cm2
flask, cell density= 3.5x104 cells/cm2)
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were incubated at 37°C with the membrane-permeant green

fluorescent dye 5-chloromethylfluoresceindiacetate (CMFDA)

for 30 min followed by 5 min at 37°C with the red fluorescent

membrane-labelling dye PKH26 (Sigma–Aldrich; #MINI26-

1KT). Then, the EVs were washed in PBS and ultracentrifuged

at 100,000 x g, at 4°C for 70 min. Finally, EVs were resuspended

in PBS for the treatment. Target cells were incubated with

stained or unstained EVs for 48h before microscopic

assessment of internalisation. Nuclei were counterstained

with DAPI.
MTT assay

Metabolic activity of MNNG/HOS cells was assessed by

the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

(MTT) bromide reduction assay (22). Briefly, cells (9,000/

cm2) were plated in 96-well plates, starved O/N in serum-free

DMEM and then treated with OB-EVs (isolated from 12 ml of

CM collected from one 175-cm2
flask to treat 9 wells). MTT

was dissolved in DPBS at 5 mg/ml concentration, and added at

1:6 (v/v) ratio directly into the cell supernatant. Three hours

later, medium was removed and DMSO was added to dissolve

the precipitated formazan salts arising from the reaction.

Plates were shaken at 160 rpm on an orbital shaker for 10

min, then absorbance at 595 nm was recorded and plotted as

X-fold to the absorbance at t0.
Viable cells counting

Viable cells counting was carried out through the Trypan

blue exclusion test (23). MNNG/HOS cells were plated in 175-

cm2
flasks and treated with DMEM (control), OB-EVs (isolated

from 36 ml of CM collected from three 175-cm2
flask, target cell

surface:isolation surface ratio=1:3) or OB-EVs + 5 mM L-NAC.

Twenty-four hours later, cells were detached using trypsin-

EDTA and centrifuged at 400 x g. Pellets were resuspended in

DPBS and a 20 µl aliquot was mixed with the same volume of

0.4% Trypan blue. Cells were incubated for 2 min at RT, then 10

µl of the cell suspension were transferred to an hemocytometer

for viable cell counting. Cell viability was then expressed as %

live cells/total cells.
EdU (5- ethynyl-2’-deoxyuridine) cell
proliferation assay

EdU cell proliferation assay was performed on MNNG/HOS

cells pretreated with OB-EVs, by using the EdU (24) HTS Kit

488. Briefly, cells were plated onto cell culture dishes (90 mm Ø)

and, upon reaching 80% of confluence, were starved O/N in

serum-free DMEM and treated with OB-EVs isolated from 12
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ml of CM collected from one 175-cm2
flask (target cell surface:

isolation surface ratio=1:3) or with DMEM, as control. After 24

h, cells were detached and seeded in 96-well plates at a density of

9,000 cells/cm2), grown in standard conditions for 43 h and

incubated for 5 hours with 5 mM EdU (48h total culture time).

Cells were then washed in DPBS and fixed in 4%

paraformaldehyde (PFA) for 10 min. EdU incorporation was

detected using the EdU HTS Kit: cells were permeabilised with

0.5% Triton X-100 in PBS, incubated with the click assay cocktail

for 30 min at RT, protected from light, and then washed twice in

1X rinse solution. Nuclei were counterstained with DAPI. Cell

proliferation was assessed under a fluorescence microscope and

expressed as the percentage of EdU-positive cells.
Wound healing assay

MNNG/HOS cells were cultured in cell culture dishes (90

mm Ø) until confluence reached 80%. Then, cells were starved

O/N and pre-treated for 24 hours with OB-EVs (previously

isolated from 12 ml of CM collected from one 175-cm2
flask,

target cell surface:isolation surface ratio=1:3) or with DMEM

(control). Then, MNNG/HOS cells were detached and plated on

24 well-plates in DMEM+10% FBS. When confluence reached

100%, cell monolayers were scratched with a sterile tip to create a

cross-shape wound (25). Pictures were taken at time 0 and 6

hours later under a phase-contrast microscope. Cell motility was

evaluated by calculating the percentage of wound-healed area

using NIH ImageJ software (RRID : SCR_003070).
In vitro invasion assay

MNNG/HOS cells were plated in cell culture dishes (90 mm

Ø) and, upon reaching 80% of confluence, they were washed

twice in DPBS, starved overnight in serum-free DMEM and

treated with OB-EVs (previously isolated from 12 ml of CM

collected from one 175-cm2
flask, target cell surface:isolation

surface ratio=1:3) or with DMEM, as control. After 24 h,

MNNG/HOS cells were washed in DPBS detached by trypsin-

EDTA, incubated for 30 min at 37°C in 5% CO2, and centrifuged

at 300 x g for 5 min at RT. Each pellet was then resuspended in

DPBS, centrifuged at 300 g for 5 min at RT and resuspended in

serum-free DMEM. Then, 8 x 105 cells were seeded in the upper

compartment of each transwell, onto an 8.0 mm membrane pre-

coated with Matrigel (26), while 0.8 ml of FBS were added to the

lower compartment as chemoattractant. After 8 h, the cells that

remained in the upper compartment were carefully removed

using cotton swabs, while those migrated towards the lower

compartment and remained in the matrigel were fixed with cold

methanol, washed in PBS and stained with hematoxylin/eosin.

Number of invaded cells per field was evaluated in seven

fields/transwell.
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Oncosphere formation assays

MNNG/HOS cells were plated at a density of 4,000 cells/ml

in oncosphere medium on poly-hydroxyethyl-methacrylate-

coated plates (27). Oncosphere medium composition was as

follows: DMEM/F12 with 1% penicillin/streptomycin, 20 nM

progesterone, 100 mM putrescine, 1% insulin- transferrin-

selenium A, 10 ng/ml basic fibroblast growth factor, 10 ng/ml

epithelial growth factor with OB-EVs or DMEM as control (27).

Growth factors and OB-EVs (EVs isolated from 12 ml of CM

collected from one 175-cm2
flask and then added at 3.85cm2

isolation surface/ml of medium ratio) of EVs were refreshed

twice a week. After 7 and 10 days, pictures of the whole plates

were taken with an inverted phase contrast microscope equipped

with a CMOS sensor camera, and images were analysed by

imageJ to evaluate oncosphere number and area.
Western blotting

MNNG/HOS cells were plated in cell culture dishes (90 mm

Ø) and, upon reaching 80% of confluence, they were washed

twice in DPBS, starved overnight in serum-free DMEM and

treated with OB-EVs (previously isolated from 12 ml of CM

collected from one 175-cm2
flask, target cell surface:isolation

surface ratio=1:3) or with DMEM, as control. After 24 h of

treatment, cells were lysed in RIPA buffer (50 mM Tris HCl pH

7.5, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium

deoxycholate, 0.1% SDS) containing protease inhibitors.

Mouse primary osteoblasts and EVs were also subjected to

protein extraction as described above. Proteins (8 µg for

osteoblasts and OB-EVs and 30µg for MNNG/HOS cells) were

resolved by 10-12% SDS-PAGE and transferred to nitrocellulose

membranes. Blots were incubated 1 hour in 5% nonfat dry milk

in TBS-T, probed with the primary antibody (Supplementary

Table 1) in 1% milk O/N at 4°C, washed and incubated with the

appropriate HorseRadish Peroxidase (HRP)-conjugated

secondary antibody (Supplementary Table 1) for 1 h at RT.

After washing, protein bands were revealed by Enhanced

ChemiLuminescence (ECL) and acquired using a Chemidoc

XRS+ imaging system. The analysis of band intensities was

performed using the NIH ImageJ tool (RRID : SCR_003070),

and b-Actin or ɑ-Tubulin-normalised data were shown as fold vs

DMEM (control).
Matrix metalloproteinases protein array

MNNG/HOS cells were plated in cell culture dishes (90

mm Ø) and, upon reaching 80% of confluence, they were

washed twice in DPBS, starved O/N in serum-free DMEM

and treated with OB-EVs (previously isolated from 12 ml of
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CM collected from one 175-cm2
flask, target cell surface:

isolation surface ratio=1:3) or with DMEM, as control. After

48 h, CM was collected, centrifuged at 300 x g, 4°C for 5 min,

and subjected to the Human MMPs array C1 kit (RayBiotech,

cat. no. AAH-MMP-1-8), following the manufacturer’s

instructions. One ml of CM from MNNG/HOS untreated or

treated with OB-EVs was incubated with each membrane,

which includes 10 capture antibodies printed in duplicate.

Membranes were washed and incubated wi th the

Chemiluminescence Detection Buffer mix for the detection of

the positive spots. For data analysis, the intensity of each spot

was determined by densitometry using NIH ImageJ, and the

average background subtracted. The intensity of positive

control spots were used to normalise the signal intensity of

the protein of interest. Data was shown as fold vs

control (DMEM).
Incucyte-based caspases 3/7 assay

MNNG/HOS cells were plated at a density of 9,000 cells/cm2

in 96-well plates and starved O/N. Then, cells were stained with

a caspase 3/7-sensitive probe (Sartorius, cat. no. 4440) that

crosses cell membranes but is only fluorescent in cells with

active caspases 3/7, along with OB-EVs (isolated from 12 ml of

CM collected from one 175-cm2
flask and then added to target

cells at a target cells surface:isolation surface ratio=1:3), DMEM

(control) or 5 µM staurosporine (positive control). After 30 min

of incubation at RT, cells were transferred into a Sartorius

Incucyte S3 live cells imager and captured (10X magnification)

with a capture time interval of 2 h, across 48 h overall, using both

phase contrast and green fluorescence channels. Data were

analysed by Incucyte’s in-bundle software (rel. 2019B), and the

metric used was the number of green positive objects (casp3/7+

cells)/confluence area. DMEM-normalised results were given

including datasets from 4 independent experiments, with at least

6 technical replicates each.
Incucyte-based Mitotracker assay

MNNG/HOS were plated at a density of 9,000 cells/cm2 in

96 well plates and starved O/N. Cells were then stained with

MitoTracker green FM (Thermo Fisher, cat#M7514) following

the manufacturer’s instructions and incubated at 37°C, 5% CO2

for 30 min. The staining solution was removed and cells were

treated with OB-EVs (isolated from 12 ml of CM collected

from one 175-cm2
flask and then added to target cells at a

target cells surface:isolation surface ratio=1:3) or DMEM

(control). Then, cells were transferred into a Sartorius

Incucyte S3 live cells imager and images were captured (10X

magnification) with a 2-hour time interval, across 48 hours
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overall, using both phase contrast and green fluorescence

channels. Results were analysed using Incucyte’s in-bundle

software (rel. 2019B), and the metric reported was the t0-

normalised green fluorescent area/total cell area ratio.

Datasets derived from 5 independent experiments, with at

least 6 technical replicates.
Glutathione assay

Cells were treated as described in the Viable cells counting

section, then total (tGSH) and oxidised glutathione (GSSG)

levels were measured using the method described by Baker

and co-workers (28). GSSG was measured by first derivatizing

GSH with 2-vinylpyridine (cat. no. 132292, Sigma–Aldrich), as

recommended by the manufacturer. Briefly, DMEM-, OB-EV-

and OB-EV+NAC-treated cells were homogenised in the MES

buffer provided by the manufacturer (1.5 x 107 cells/ml) and

centrifuged at 10,000 x g for 15 min, at 4°C. Supernatants were

immediately deproteinized with 5% (w/v) metaphosphoric acid

(cat. no. 239275, Sigma–Aldrich), and centrifuged at 4,000 x g

for 5 min. Protein-free supernatants (50 µl) and Assay Cocktail

(150 µl) were mixed in a 96-well microplate, and the colour

development was followed in a Victor3 microplate reader

(PerkinElmer Inc., Waltham, MA, USA) at 405 nm for 30 min

with 5-min time intervals. Calibration curves were obtained

from pure GSSG- and GSH-containing reactions (range: 0-8

mM GSSG, 0-16 mM tGSH). All samples were blinded-

processed in technical triplicates. Results were from 8

independent experiments.
Thiobarbituric acid-reactive
substances assay

Cells were treated as described in the Viable cells counting

section, and then subjected to TBARS measurement, a well-

established method used to detect lipid peroxidative damage (29,

30). Briefly, DMEM-, OB-EV- and OB-EV+NAC-treated cells

were extracted in PBS (6 x 107 cells/ml), by using three thaw/

freeze cycles in liquid nitrogen. Samples were centrifuged at

16,000 x g for 30 min at 4°C. Supernatants (37.5 µl) were mixed

with sodium dodecyl sulphate (SDS) (37.5 µl) and 1.5 ml of

Colour Reagent, in triplicate, as suggested by the manufacturer.

Then, reaction mixtures were incubated for 1 hour in boiling

water and centrifuged at 1,600 x g for 10 min at 4°C.

Supernatants were kept at RT for 5 min until clarified, and

read at 532 nm in a Lambda 25 spectrophotometer (PerkinElmer

Inc., Waltham, MA, USA). A linear calibration curve was

obtained from pure malondialdehyde (MDA)-containing

reactions (range: 0-50 mM). All samples were blinded-

processed in technical replicates. Results were from 5

independent experiments.
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Catalase enzymatic activity assay

Cells were treated as described in the Viable cells counting

section, harvested and lysed (2 x 107 cells/ml) in a 100 mM

phosphate buffer (pH 7), containing 0.1% (v/v) Triton X-100.

Cell suspensions were lysed through N2-freezing and thawing

(three cycles). Then, pellets were homogenised using 1.5 ml tube

pestles for 2 min in ice. Samples were centrifuged at 16,000 x g

for 30 min at 4 °C and the resulting supernatants were used both

for Bradford assay to evaluate total protein concentration, using

BSA as the standard, and for the assessment of the enzymatic

activity of CAT (EC 1.11.1.6). The enzymatic activity of CAT

was assayed by recording the disappearance of 10 mM hydrogen

peroxide at 240 nm and 25 °C, as described by Aebi (31), using a

Lambda25 spectrophotometer (PerkinElmer Inc., Waltham,

MA, USA). One unit was defined as 1 µmol of hydrogen

peroxide consumed/min. Three independent experiments were

carried out with at least three technical replicates.
Glutathione reductase enzymatic
activity assay

Cells were treated as described in the Viable cells counting

section, harvested and lysed (3 x 107 cells/ml) in a 100 mM

phosphate buffer (pH 7) supplemented with 2 mM EDTA and 3

mM DTT. Cell suspensions were lysed through N2-freezing and

thawing (three cycles). Then, pellets were homogenised using

1.5 ml tube pestles for 2 min in ice. Samples were centrifuged at

16,000 x g for 30 min at 4 °C. The resulting supernatants

were used for Bradford assay to evaluate total protein

concentration, using BSA as the standard, and for the

assessment of the enzymatic activity of GR (EC 1.6.4.27). The

enzymatic activity of GR was assayed according to Di Ilio

and colleagues (32), starting the reaction by adding

GSSG (1.14 mM final concentration) and following the

disappearance of 190 mM NADPH at 340 nm and 25 °C with a

Lambda25 spectrophotometer (PerkinElmer Inc.). One unit was

defined as 1 µmol of NADPH consumed/min. Five

independent experiments were carried out with at least three

technical replicates.
Lactate dehydrogenase enzymatic
activity assay

Cells were treated as described in the Viable cells counting

section. Twenty-four hours later, conditioned media were

collected and used for the assessment of the LDH enzymatic

activity. The quantitative determination of LDH activity was

assayed in duplicate using the L.D.H. (LDH-P) DGKC method-

based kit by following the LDH-dependent decrease of NADH

absorbance at 340 nm associated with reduction of pyruvate, as
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recommended by the manufacturer. Results from two

independent experiments were analysed using a Kenza One

analyzer (Biolabo), equipped with Kenza One v2.04 software.
Seahorse-based assays

For bioenergetic profiling, 5,000 MNNG/HOS cells were

seeded onto wells of Seahorse 96-well plates coated with 0.1%

Collagen Type I. After 24 h cells were starved for further 24h and

treated or not with OB-EVs (isolated from 12 ml of CM collected

from one 175-cm2
flask and then added to target cells at a target

cells surface:isolation surface ratio=1:3). After 24h cells were

analysed by XF-96 Extracellular Flux Analyzer (Agilent

Seahorse). ATP production rate was measured in DMEM XF

Assay Medium (#103680-100, Agilent Seahorse) containing 1

mM pyruvate, 2 mM glutamine, and 10 mM glucose, following

injection of 1.5 mM oligomycin A, 0.5 mM rotenone, and 0.5 mM
antimycin A. Mitochondrial oxygen consumption rates (OCR)

and glycolytic Extra-Cellular Acidification Rates (ECAR) were

measured and then transformed into mitochondrial (mito-ATP)

and glycolytic (glyco-ATP) ATP production rates, using

validated algorithms provided in the Seahorse Agilent

software. Mitostress test was conducted, and OCR was

measured in the same media as above following injection of

1.5 mM oligomycin A, 75 mM 2,4-Dinitrophenol, 0.5 mM
rotenone, and 0.5 mM antimycin A. Spare respiratory capacity

(SRC) was calculated in accordance to the manufacturer’s

specifications as the difference between maximal respiration

(i.e., the maximum rate measurement recorded after 2,4-DNP

injection after subtracting the non-mitochondrial respiration

rate) and basal respiration (i.e., the last measurement recorded

prior to oligomycin A injection after subtracting the non-

mitochondrial respiration rate). Seahorse values were

normalised by cell number well by well.
Real time RT-PCR

Total RNA from osteoblast-derived EVs was extracted using

TRIzol reagent, then RNA (1.5 mg) was reverse transcribed via a

M-MLV reverse transcriptase-based first strand cDNA

synthesis, as recommended by the suppliers. cDNA was

subjected to real time PCR, using the Fast Advanced Master

Mix (ThermoFisher Scientific, cat. 4444557), together with

TaqMan® Gene Expression Assays with IDs Mm00439154_m1

(Mus musculus glutathione reductase) and Mm00802658_m1

(Mus musculus glutamate-cysteine ligase catalytic subunit).

Reactions (in triplicates) were set up in Primo® FrameStar®

96-well PCR plates (Euroclone, cat. ECPCR0770C), which were

sealed with MicroAmp™ optical adhesive films (Applied

Biosystems, cat. 4360954). The thermal profile of the Applied

Biosystems VIIA7 was set as recommended by the manufacturer
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for absence/presence assays: 2 min at 50°C, 20 sec at 95°C, then

40 cycles with 1 sec at 95°C and 20 sec at 60°C, along with a final

post-read stage of 30 sec at 60°C.
Statistics

Results were expressed as means ± SEM. To compare curves

in longitudinal studies, Graphpad Prism (RRID : SCR_002798,

version 7.0) was used to run curve fitting tests and evaluate

whether one curve could fit both the datasets compared.

Shapiro-Wilk normality tests were performed to assess

whether to use parametric or non-parametric tests. In

experiments with more than 2 independent experimental

groups, one-way ANOVA (parametric) or Kruskal-Wallis

(non-parametric) was used to calculate statistical significance

of differences. Unpaired Student’s t-test (parametric) or Mann-

Whitney (non-parametric) tests were used when comparing 2

groups only. Dunn’s test was used when comparing non-

normally distributed multiple groups with experimental

pairing. Statistics used were specified in each figure legend.

Differences were considered statistically significant when p was

< 0.05.
Results

Characterisation of osteoblast-derived
EVs

We first characterised the EVs isolated from mouse

primary osteoblast conditioned media. EV size was

confirmed by NanoSight, which also allowed to determine

the EV concentration per preparation (Supplementary

Figure 1A). The typical positive EV biomarkers, CD81, CD63

and Annexin II (Anxa2), were enriched in the EV protein

lysates versus the source cells (Supplementary Figure 1B), while

the mitochondrial protein SOD2, a possible negative marker

for EVs, was barely detectable in EVs and well expressed in the

cell protein lysate (Supplementary Figure 1B). The vesicular

nature of the isolated particles was confirmed by TEM, which

also showed the EV membrane integrity (Supplementary

Figure 1C). Altogether, these results fulfil the requirements

described in the MISEV2018 guidelines (33) to define a

vesicular fraction as EVs.

We next investigated whether OB-EVs were actively

internalised by MNNG/HOS cells. To this aim, OB-EVs were

double-labelled with the intra-vesicular green-fluorescent dye,

CMFDA, and with the red-fluorescent membrane dye, PKH26.

MNNG/HOS cells were then incubated with these EVs for 48

hours. Fluorescence microscopy demonstrated that PKH26 and

CMFDA fluorescence was detectable in osteosarcoma cells,

suggesting internalisation of OB-EVs by the recipient cells
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(Figure 1A, left panel). Negative controls treated with unstained

EVs confirmed specificity of the signal (Figure 1A, right panel).
OB-EVs reduced MNNG/HOS cell
viability without activating apoptosis or
affecting cell proliferation

To assess whether OB-EVs could affect basic cellular

activities, the first endpoints analysed were cell viability, death

and proliferation. Interestingly, the MTT assay, which measures

cell metabolic function, revealed a diminished activity of

mitochondrial dehydrogenases in OB-EVs-treated MNNG/

HOS cells, after 24 and 48 hours of treatment, as compared to

control (Figure 1B). In order to investigate whether the

reduction in MTT was accompanied by a reduced cell

viability, we also performed a Trypan blue exclusion test, and

found that OB-EVs reduced the percentage of live MNNG/HOS

cells (Figure 1C). This result was confirmed by the increased

extracellular levels of lactate dehydrogenase, a marker used to

assess cell death (34), found in the medium of osteosarcoma cells

treated with OB-EVs (+11.2% vs DMEM). Interestingly, the co-

administration of the antioxidant N-acetyl-7L-cysteine (NAC)

was able to revert the cytotoxic effect observed in OB-EV-treated

cells (Figure 1C). To discriminate between necrotic and

apoptotic death, we also performed an Incucyte-based time-

course assay for detection of caspase 3/7 positive cells, and found

that the % of apoptotic cells was not statistically different

between OB-EV-treated and control cells (Figure 1D). As

expected, osteosarcoma cells that were treated with 5 µM

staurosporine (positive control) for the whole duration of the

experiment showed a statistically significant increase in

apoptosis (Figure 1D). Since P53 serves as a critical mediator

of several types of apoptosis (35), we assessed its protein

expression by western blotting, finding that it was similar in

OB-EV-treated and in control cells (Figure 1E). Finally, we

performed an EdU incorporation assay to evaluate whether

proliferative rate was affected by the treatment with OB-EVs,

and observed no statistically significant difference when

comparing treated and control cells (Figure 1F).
OB-EVs shifted glutathione redox status
towards oxidation, without altering lipid
peroxidation profile and major ROS-
scavenging protection

As reported above, the antioxidant and cysteine-donor N-

acetyl-L-cysteine was able to revert the cell-damaging effects of

OB-EVs. Therefore, we measured the redox balance of

glutathione, which is an indicator of the antioxidant buffering

system within the cell (36), along with the peroxidative damage

in all the experimental conditions. Intriguingly, we observed a
Frontiers in Oncology 08
181
decreased tGSH/GSSG ratio in OB-EVs-treated MNNG/HOS, as

compared to control cells (Figure 2A). Interestingly, such a

redox perturbing effect was reverted by the co-administration

of OB-EVs+NAC (Figure 2A). Of note, no OB-EV-dependent

effect was observed on the most important enzyme for recycling

oxidized glutathione (i.e., glutathione reductase). In fact, the

specific activity of GR in OB-EV-treated cells was unchanged, as

compared to non-treated cells (Figure 2B). Similarly, no change

of GR specific activity was detected in cells treated with both OB-

EVs and NAC (Figure 2B). Surprisingly, the level of lipid

peroxidative damage was unchanged by OB-EVs, as shown by

the unaltered levels of TBARS (Figure 2C). Since catalase (CAT)

represents one of the crucial antioxidant enzymes that mitigates

cellular oxidative stress, we investigated CAT activity by

spectrophotometric enzymatic assay, finding that it was

unchanged by OB-EVs (Figure 2D), and the same was true for

the protein levels of CAT itself and of superoxide dismutase 2

(SOD2), another major mitochondrial antioxidant enzyme

(Figure 2E). OB-EVs were also analysed with regard to their

content in terms of mRNAs relevant to glutathione homeostasis.

Our real time RT-PCR analyses revealed that two transcripts that

are crucial to glutathione metabolism were undoubtedly present

within the OB-EVs. In particular, our presence-absence

TaqMan-based assays detected both the glutathione reductase

mRNA and the glutamate-cysteine ligase catalytic (Gclc) subunit

transcript (Supplementary Figure 1D).
OB-EVs did not alter the extension of
mitochondrial network, nor did they
affect mitochondrial metabolism and
dynamics in MNNG/HOS

Since a pro-oxidant perturbation of the redox milieu may be

linked to a pro-oxidative switch towards mitochondrial

metabolism, we investigated more in detail whether and how

mitochondria and cellular energy metabolism could respond

to OB-EVs. Via a Incucyte-based assay and normalising

the Mitotracker-positive area to total cell area, we found

that mitochondrial network decreased in OB-EVs-treated

osteosarcoma cells less rapidly than in control cells

(Figure 3A), even though a direct comparison between the

mitochondrial area in cells treated with OB-EVs for 24 hours

and the corresponding time point in control cells did not reveal

any statistically significant difference (Figure 3A). Intriguingly,

this was not accompanied by a change in the ratio between

glycolytic versus oxidative ATP produced by MNNG/HOS, as

demonstrated by the Seahorse ATP rate assay (Figure 3B).

However, mitostress assays showed a strong trend of reduction

in basal respiration (BR, p=0.051), with non-significant

reductions in maximal respiratory capacity (MRC) and spare

respiratory capacity (SRC, Figure 3C) following OB-EVs

treatment. Moreover, the expression level of two important
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regulators of mitochondrial dynamics (namely, mitofusins 1 and

2) were not significantly affected by the treatment with OB-EVs

(Figure 3D). Similar results were obtained when we measured

the expression level of the master regulator of mitochondrial

biogenesis, the peroxisome proliferator co-activator 1 alpha

(PGC1ɑ) (Figure 3D).
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OB-EVs reduced MNNG/HOS motility
and invasion

A key feature of aggressive cancer cells is the ability to

migrate linearly and invade basal membranes. To check if

OB-EVs affected these characteristics, we pre-treated MNNG/
A B

D
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F

C

FIGURE 1

Effects of OB-EVs viability, apoptosis and proliferation of MNNG/HOS cells. (A) Left panel: representative fluorescence micrographs of MNNG/
HOS cells incubated with osteoblast-derived EVs (OB-EVs) previously labelled with CMFDA (green cytoplasmic dye) and PKH26 (red lipophilic
dye) for 48 hours. Right panel: representative image of the negative control performed on MNNG/HOS cells incubated with unlabeled OB-EVs.
Cells were also stained with the nuclear dye DAPI. Data are representative of 3 independent preparations (scale bar=50 mm). (B–E) MNNG/HOS
cells were plated and starved in serum-free DMEM O/N the next day. Then, cells were treated with DMEM (control), OB-EVs or OB-EVs + 5 mM
N-acetyl-L-cysteine (NAC), for the time duration specified in the figures, or for 24 h when not specified. Cells were subjected to (B) MTT assay
to assess cell viability/metabolic activity; (C) Trypan blue dye-exclusion test to evaluate the percentage of live cells; (D) Caspase 3/7 (Casp3/7)
Incucyte-based assay for apoptosis (bar=200 µm, black arrows: apoptotic cells); (E) Western blotting to assess p53 protein expression/b-actin;
(F) EdU-based assay to evaluate proliferation (scale bar=50 mm). (B, E, F) N=3, (C) N=8, (D) N=4. (B, D) Curve fitting test; (C) One-way ANOVA;
(E, F) Unpaired Student’s t-test. *p<0.05; ***p<0.001. Data are presented as mean ± SEM.
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HOS with EVs for 24 hours, then we assessed scratch wound

healing and invasion assays to evaluate in vitro tumour cells

motility and invasiveness, respectively. Interestingly, both

functions were reduced by OB-EVs treatment (Figures 4A,

B). However, metalloproteinases (MMPs) arrays ran on

conditioned media of MNNG/HOS cells treated with OB-

EVs showed no difference versus untreated MNNG/

HOS (Figure 4C).
OB-EVs did not affect MNNG/HOS
primary oncospheres formation

Another important characteristic of aggressive cancer cells is

their in vitro stemness, which is an indication of how many
Frontiers in Oncology 10
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tumour-initiating cells are present in the population of cancer

cells. We assessed this by primary oncosphere formation assay

(Figure 5A), but we found no differences in their number/seeded

cells (Figure 5B) or total area (Figure 5C) of the spheroids in cells

treated with OB-EVs vs control cells.
Discussion

Osteosarcoma is still a largely understudied neoplasia. The

chances of survival for patients dramatically drop when

metastases, preferentially to the lungs, develop (3) and

therapy resistance occurs (6). Such disease progression is

often achieved through the cross-regulation between

osteosarcoma cells and bone cells in the TME, and EVs are
A B

D

E

C

FIGURE 2

Effects of OB-EVs on redox status, lipid peroxidative damage and antioxidant protection of MNNG/HOS cells. (A–E) MNNG/HOS cells were
plated and starved in serum-free DMEM O/N the next day. Then, cells were treated with DMEM (control), OB-EVs or OB-EVs + 5 mM N-acetyl-
L-cysteine (NAC), for 24 h Cells were subjected to (A) quantification of total (tGSH)/oxidised (GSSG) ratio; (B) assessment of glutathione
reductase (GR) specific activity; (C) assessment of TBARS to detect lipid peroxidation; (D) evaluation of catalase (CAT) specific activity; (E) b-
actin-normalised immunoblot-based assessment of CAT and superoxide dismutase 2 (SOD2) protein levels. Representative images of Western
blot were reported. (A) N=8, (B, C, E) N=5, (D) N=3. (A) Dunn’s test, (B, C, D) one-way ANOVA, (E) one-sample t-test. *p<0.05. Data are
presented as mean ± SEM.
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emerging as key players in this regulatory interplay. Indeed, in

a previous work, we demonstrated that MNNG/HOS-derived

EVs influence osteoblasts, by reducing their differentiation

and increasing their release of pro-inflammatory cytokines

(20). Here, we wondered if also osteoblasts could signal back

to osteosarcoma cells through EVs. Therefore, as a first basic

approach, we aimed at evaluating whether OB-EVs could

affect proliferation dynamics and viability in MNNG/HOS

cells. As shown by the EdU-based approach, the proliferation

rate of MNNG/HOS cells was unchanged upon treatment with

OB-EVs. Conversely, we found that OB-EVs reduced the

viability of MNNG/HOS cells, and this was observed using
Frontiers in Oncology 11
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two different methods (i.e. Trypan blue-exclusion test and

MTT assay). In order to verify whether such a reduction in cell

viability was caused by increased apoptotic death, we

measured caspase 3/7-dependent cell death by time-course

fluorescence microscopy, and found no evidence of any

change in casp3/7-dependent apoptotic rate in osteosarcoma

cells treated with OB-EVs. Consistently, P53 protein levels

were not affected by the treatment with EVs. This would

suggest that the exposure to OB-EVs could induce necrotic

death or even non-classical apoptosis in MNNG/HOS cells. In

fact, despite the fact that it is generally acknowledged that

members of the caspase family of proteases play a pivotal role
A

B

D

C

FIGURE 3

Effects of OB-EVs on mitochondrial function and dynamics of MNNG/HOS cells. MNNG/HOS cells were plated and starved in serum-free
DMEM O/N and treated with DMEM (control) or OB-EVs for the time duration specified in the figures, or for 24h when not specified. Then, cells
were subjected to (A) Mitotracker-based assessment of mitochondrial area/total cell area (scale bar=200 µm); (B) SeaHorse-based analysis of
glycolytic/mitochondrial/total ATP production rate; (C) Mitostress assay to evaluate maximal respiration; (D) ɑ-tubulin-normalised immunoblot-
based assessment of protein expression of mitofusin 1/2 (MFN1/2) and PGC1a. Representative images of Western blots were reported. (A) N=5,
(B–D) N=3. (A) Curve fitting test, (B, C) paired t-test. ***p<0.001. Data are presented as mean ± SEM.
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in the execution of apoptotic cell death (37), the existence of

caspase-independent forms of programmed cell death (PCD)

has been proved in the recent past (38–40). This intriguing

result deserves further investigation to clarify the exact
Frontiers in Oncology 12
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pathway activated by the exposure of osteosarcoma cells to

OB-EVs, with particular focus on the redox-responsive non-

classical forms of PCD, such as necroptosis, which has been

recently proposed as an inducible pathway to activate an
A

B

C

FIGURE 4

Effects of OB-EVs on motility and invasiveness of MNNG/HOS cells. MNNG/HOS cells were plated and starved in serum-free DMEM O/N the
next day. Then, cells were treated with DMEM (control) or OB-EVs for 24 hours, (A) plated in 24 well plates to perform a scratch assay (scale
bar=100 mm) or (B) seeded on the upper basket of a matrigel-coated transwell to perform an invasion assay over FBS (scale bar=100 mm).
(C) Conditioned media (CM) were collected from DMEM- or OB-EVs-treated MNNG/HOS after 24 hours of treatment and subjected to
metalloproteinase (MMPs) antibody array. Representative images of membranes incubated with CM from control or OB-EV-treated MNNG/HOS
cells, and evaluation of secreted proteins (MMP-1, -2, -3, -8, -9, -10, -13, TIMP-1, -2, -4), as determined by densitometric analysis of spots of
interest that were normalised for the positive control spots and shown as fold to control. (A) N=6, (B) N=5, (C) N=3. Paired Student’s t-test.
**p<0.01. Data are presented as mean ± SEM.
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ordered form of cell death in osteosarcoma cells and

osteosarcoma stem cells (41, 42).

The next step was to investigate two key features that often

predict aggressiveness and tumorigenicity of cancer cells, such as

migration and invasion capacities. With regard to this aspect, we

describe here that OB-EVs reduced cellular motility and

invasion capacity, even though no changes in the expression of

the major matrix-degrading enzymes were detected. Taken

together, these observations corroborate the idea that OB-EVs

diminished the ability of osteosarcoma cells to invade the

surrounding tissues, but this was probably not achieved by

decreasing cellular capacity to digest matrix and basal

membranes, but rather by reducing their overall ability to

move. However, we cannot rule out the possibility that OB-

EVs impaired some form of MMP-independent invasion

process. Indeed, some authors have described that inhibitors

of the proteolytic activity of MMPs were not able to prevent

invasion of immortalised mouse epithelial cells through a sparse

three-dimensional collagen matrix (43). Further experiments

will attempt to clarify this aspect more in detail.

It is well-established that a subgroup of cancer cells,

including osteosarcoma, is able to self-renew and initiate

tumours in vivo. These are commonly termed cancer stem

cells (CSCs), or tumour-initiating cells (TICs) (44, 45). CSCs
Frontiers in Oncology 13
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have also been reported to present lower levels of ROS and a

different redox balance compared to their non-stem

counterparts (46), and we therefore deemed it interesting to

evaluate whether OB-EVs would change the stem-like

phenotype of osteosarcoma cells. To this end, we used the

oncosphere formation assay, since the ability to form

spheroids is directly associated with the stem cell-like

phenotype in osteosarcoma (44, 47). However, our analysis

showed that no differences were caused by treatment with OB-

EVs, and control cells were able to form a similar number of

similarly-sized spheroids.

The results presented so far suggested that OB-EVs elicited a

clear cytotoxic effect in MMNG/HOS cells, significantly

reducing the major traits of their malignant behaviour. In this

context, redox homeostasis is increasingly considered as an

essential resilience trait that helps cancer cells to preserve

viability and growth capacity, along with resistance to external

stressors (48–50). In particular, reactive oxygen species (ROS)

serve as signalling entities in cells, regulating key cellular

processes such as proliferation, survival, and adaptive response

to external stimuli, as broadly reviewed by Sies and Jones (51).

This is not only true in physiological conditions, but also in

hyperproliferation-based diseases, such as in tumours and

cancers (52). On this basis, we wanted to investigate whether
A

B

C

FIGURE 5

Effects of OB-EVs on stemness phenotype of MNNG/HOS cells. (A–C) MNNG/HOS cells were detached, reduced into a single-cell suspension
and plated at a density of 2,000 cells/ml in oncosphere medium on poly-hydroxyethyl-methacrylate-coated plates and in a specifically-
formulated medium to favour the formation of oncospheres, marker of stemness phenotype. Cells were then treated with DMEM (control) or
OB-EVs twice a week. After 7 and 10 days, (A) pictures of the oncospheres were taken (scale bar=200 mm) to analyse their (B) number/plated
cells ratio and their (C) total area. One sample t-test, N=4. Data are presented as mean ± SEM.
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and how OB-EVs could cause biochemical and molecular

alterations in the balance of the redox milieu of osteosarcoma

cells. Here we show that a 24-hour treatment with OB-EVs

significantly decreased the total/oxidised glutathione.

Glutathione is a small endogenous thiol-containing tripeptide

that in its reduced form (GSH) fuels direct and indirect ROS-

scavenging antioxidant reactions within cells (53). Upon being

used as a reducing molecule, GSH is promptly converted to

glutathione disulfide (GSSG), therefore a decrease in the total/

oxidised glutathione in a biological system indicates either that

an over-production of pro-oxidants is occurring or that an

impaired biosynthesis/recycling of glutathione is taking place

(54, 55). In order to exclude that the recycling pathway was

involved in such OB-EV-induced impairment, the specific

activity of glutathione reductase (GR), the most important

enzyme for recycling GSSG within cells (56) was assayed, and

we found evidence that the enzymatic function of GR in OB-EV-

treated cells was unaltered, nor was it changed by treatment with

both OB-EVs and NAC, thus pointing out to the de novo

formation of GSH as the redox-active biosynthetic pathway

possibly involved in the pro-oxidant effect of OB-EVs on

human osteosarcoma cells. This working hypothesis will be

verified in the next future, by more specific experiments

focused on evaluating the expression of the rate-limiting

enzyme responsible for GSH synthesis (i.e., glutamate cysteine

ligase). However, it should be also noted that cancer cells divert

glucose utilisation to the pentose phosphate pathway (PPP) to

support cell survival and growth by generating building blocks

for nucleic acid synthesis, along with the NADPH needed for

fatty acid synthesis and cell survival under stress conditions (57).

Therefore, the possibility that the treatment with OB-EVs could

alter PPP activity, thus down-regulating the synthesis of

NADPH in osteosarcoma cells, will certainly be considered in

our next work. Importantly, we also demonstrated that EVs

isolated from osteoblasts included both the glutathione

reductase and the Gclc subunit transcripts, thus further

confirming that the glutathione redox homeostasis of the cells

interacting with the vesicles might be altered.

More in general, the shift of the glutathione redox

equilibrium towards a more oxidised state might indicate the

occurrence of an oxidative stress condition (54, 55). On this

basis, we hypothesised that OB-EVs may elicit a pro-oxidant

effect on osteosarcoma cells. The fact that OB-EVs served as a

ROS-dependent stimulus on MMNG/HOS cells was confirmed

by the observation that the co-incubation with the ROS-

scavenging compound and cysteine-donor N-acetyl-L-cysteine

(NAC) was able to revert completely the pro-oxidant effect of

OB-EVs in terms of glutathione redox balance. Interestingly,

NAC also inhibited the cytotoxic effect of OB-EVs, thus strongly

suggesting that the cell death induced by OB-EVs was dependent

on the ROS-promoting effect of extracellular vesicles.

In order to further investigate more in detail how

osteosarcoma cells were challenged by OB-EVs via ROS-
Frontiers in Oncology 14
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dependent mechanisms, we measured the specific activity of

catalase, which is known to play a critical role in first line defence

against oxidative stress within cells (55, 58, 59). Our experiments

revealed that the treatment with OB-EVs did not affect the

specific activity of catalase, nor did the treatment change CAT

protein expression level. Similar results were obtained when the

protein level of another important antioxidant enzyme (namely,

the superoxide dismutase 2) was studied. SOD2 and CAT are

inducible enzymes whose up-regulation upon oxidative stress

represents a critical step in the adaptive response of cells to pro-

oxidant stimuli, at mitochondrial and peroxisomal level,

respectively (47, 60–63). Taking into account the pivotal role

played by mitochondria and peroxisomes in the regulation of the

redox metabolism in the eukaryotic cell (64), the findings we

present here suggest either that the stress level induced by OB-

EVs may have cytotoxic effect before any adaptive response in

osteosarcoma cells could initiate, or that the OB-EV-dependent

cytotoxicity could rely more on a mild imbalance of redox

homeostasis rather than on severe oxidative stress condition.

In order to settle this, we measured the levels of TBARS, which is

a well-established marker of lipid peroxidative molecular

damage (65). Our experiments did not reveal any OB-EV-

induced change in the TBARS levels. This suggests that the

treatment with OB-EVs could activate a redox-dependent cell

death pathway in osteosarcoma cells without initiating a state of

full-blown ROS-based molecular damage. This seems to be

confirmed by the evidence that mammalian catalase, which

intervenes in the antioxidant defence when the level of

oxidative stress within cells is severe (66), was unaffected by

the treatment with OB-EVs. On this basis, our results suggest

that OB-EVs may act as a cytotoxic stressor for osteosarcoma

cells more through a modest imbalance of redox homeostasis

rather than via promoting an oxidative stress condition.

However, it cannot be ruled out that assessments at different

time points might reveal a pattern of tentative antioxidant

response, at least at the enzymatic level. Nor can we rule out

the possibility that OB-EVs could cause oxidative-dependent

damage to macromolecules other than lipids. Such hypotheses

will be clarified by more targeted experimental approaches in

the future.

Mitochondrial redox-active metabolism and ROS-

promoting enzymatic reactions, along with ATP generation,

seems to serve as a crucial determinant for malignant

phenotype and anticancer drug-resistance (48, 67, 68).

Moreover, even though many cancers exhibit increased rates

of glycolytic catabolism, increasing proofs support the idea that

mitochondria remain a crucial source of ATP, and serve as key

organelles that integrate a plethora of metabolic and signalling

pathways in tumours and malignancies (69). On this basis, we

wanted to verify whether OB-EVs could also alter the function

and the extension of the mitochondrial network in osteosarcoma

cells. Our Mitotracker-based investigation revealed that cell

growth determined a decline in the extension of the
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mitochondrial compartment in both OB-EVs-treated and

control osteosarcoma cells, and this was most likely due to the

growth of the cytoplasm that accompanied cell growth.

However, in OB-EVs-treated cells the decline of the

mitochondrial network over the timeframe of 48 hours was

less rapid. This could be due to the inhibiting effect of OB-EVs

on cell growth, or a compensatory mechanism that counteracts a

possible detrimental effect on mitochondria. Most importantly,

it should be noted that the difference between OB-EVs-treated

and control at 24h, i.e. the time at which all other assays were

performed, was not statistically significant. Although OB-EVs

did not change the glycolytic/OxPhos ATP ratio, MitoStress

experiments revealed an almost significant trend (p=0.051) of

reduction in basal respiration, and a reduction in maximal

respiration and spare respiratory capacity in 3 over 4

experiments analysed in OB-EVs-treated cells. Considering the

significance of such parameters (70), this result might suggest

that OB-EV-treated osteosarcoma cells could have a lower

threshold below which the basal ATP demands cannot be

satisfied. This may be important, as the exposure to OB-EVs

could weaken osteosarcoma cells towards further exogenous

stressors, with clear repercussions on oncology research and

clinical treatments.

Reprogramming of mitochondrial activity is thought to

underlie chemoresistance and metastatic behaviour (69). In

addition, mitochondrial fusion and biogenesis, which participate

to the so-called mitochondrial dynamics, dictate mitochondrial

morphology and function (71–73), influence the redox

homeostasis and antioxidant defence of cancer cells, along with

their apoptotic response to OS-promoting chemotherapeutics (74).

On this basis, we investigated whether the expression of the major

controllers of mitochondrial fusion and biogenesis was affected by

OB-EVs, however no evidence was found for such an effect, as

shown by the unaltered protein levels of MFN1/2 and PGC1ɑ.
MFN1/2 and PGC1ɑ are key players belonging to the fine-tuned

molecular pathway that govern mitochondrial dynamics (75). In

this context, our results clearly suggested that the redox-dependent

cytotoxic effect elicited by OB-EVs on osteosarcoma cells was not

associated with any major re-organisation of the mitochondrial

compartment. This finding was substantially confirmed by the

IncuCyte-based analysis of the extension of the mitochondrial

network. In fact, we observed that a 24-h treatment with OB-EVs

did not significantly change the area of the mitochondrial network.

As expected, our investigation revealed by fluorescence microscopy

that the Mitotracker-positive area decreased in a time-dependent

fashion. This was most likely due to cell growth over the time.

However, our observations revealed that in OB-EV-treated

osteosarcoma cells the Mitotracker-positive area decreased over

time less rapidly than in control cells. This could be due to the

cytotoxic action of OB-EVs that inhibited the growth of the

confluence phase area in treated cells.

In conclusion, our findings suggest that osteoblast-derived

extracellular vesicles could be an important means of cross-
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communication between the TME and the osteosarcoma core.

For the first time to the best of our knowledge, we proved that

OB-EVs reduced osteosarcoma cells’ aggressiveness and

viability through redox-dependent signalling pathways.

However , we did not find strong evidence of the

involvement of changes in mitochondrial dynamics or major

energy metabolic switch in the phenotypic change induced by

osteoblast-derived extracellular vesicles in osteosarcoma cells.

It should be noted that OB-EVs were isolated from osteoblasts

that are not being co-cultured with osteosarcoma cells,

therefore representing a model of “healthy” osteoblasts,

whereas we demonstrated (20) that MNNG/HOS-EVs cause

devastating effects on them, thus changing their phenotype.

Hence, we could speculate that keeping osteoblasts

``healthier” by preventing the effect of HOS-EVs on them,

would result in reduced osteosarcoma aggressiveness.

Although this has not been observed in osteoblasts, similar

effects are exerted by mesenchymal stem cells-derived EVs

(MSC-EVs), which are closely related to osteoblast and can

differentiate into them (76). In fact, MSC-EVs reduce

osteosarcoma aggressiveness when harvested from healthy

MSCs (77, 78), and conversely, they promote osteosarcoma

aggressiveness when co-cultures between the two cell types are

established (78, 79).

Should the pathophysiological relevance of this

phenomenon be confirmed in vivo, osteoblasts could be

exploited as endogenous anti-cancer weapons, as proposed for

leukaemias by other researchers (80).
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neutrophil-dependent cancer
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1Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy, 2Research and
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Tumor drug resistance is a multifactorial and heterogenous condition that

poses a serious burden in clinical oncology. Given the increasing incidence of

resistant tumors, further understanding of the mechanisms that make tumor

cells able to escape anticancer drug effects is pivotal for developing new

effective treatments. Neutrophils constitute a considerable proportion of

tumor infiltrated immune cells, and studies have linked elevated neutrophil

counts with poor prognosis. Tumor-associated neutrophils (TANs) can acquire

in fact immunoregulatory capabilities, thus regulating tumor progression and

resistance, or response to therapy. In this review, we will describe TANs’ actions

in the tumor microenvironment, with emphasis on the analysis of the role of

interleukin-8 (IL-8) and extracellular vesicles (EVs) as crucial modulators and

mediators of TANs biology and function in tumors. We will then discuss the

main mechanisms through which TANs can induce drug resistance, finally

reporting emerging therapeutic approaches that target these mechanisms and

can thus be potentially used to reduce or overcome neutrophil-mediated

tumor drug resistance.

KEYWORDS

drug resistance, neutrophil, interleukin-8, extracellular vesicles, Tumor-associated
neutrophils, NETosis
frontiersin.org01
192

https://www.frontiersin.org/articles/10.3389/fonc.2022.947183/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.947183/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.947183/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.947183/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.947183/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.947183&domain=pdf&date_stamp=2022-12-16
mailto:piergiorgio.amendola@dompe.com
https://doi.org/10.3389/fonc.2022.947183
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.947183
https://www.frontiersin.org/journals/oncology


Zippoli et al. 10.3389/fonc.2022.947183
1 Introduction

During the past decades, huge progress has been made in the

field of cancer genetics, immunology and pathology for the

identification of new markers and methods for diagnosis and

treatments (1, 2). Despite these achievements, resistance to

classical chemotherapeutic agents or to novel drugs is one of

the major causes of therapy failure and death in cancer, still

representing a crucial limiting factor in the treatment of cancer

patients (3).

The mechanisms through which cancer cells get resistant or

acquire resistance to drug therapies are numerous, and

sometimes tumors can be resistant to multiple therapies and

display, simultaneously or subsequently, different mechanisms

of drug resistance. In this context, it has been proposed that the

mechanisms of drug resistance in tumors can be both active

(cell-autonomous) or adaptive (non-cell-autonomous): the firsts

depend on cancer intracellular responses, which include, for

example, genetic or epigenetic alterations that promote cell

survival (4–7), while the seconds result from tumor

interactions with the surrounding tumor microenvironment

(TME) (8, 9) that is shaped to favor tumor growth, expansion

and drug resistance.

Together with myeloid-derived suppressor cells (MDSCs)

and tumor-associated macrophages (TAMs), tumor-associated

neutrophils (TANs) represent the most abundant population

(10, 11) of immune cells infiltrated in the TME, and many

studies so far have highlighted the link between elevated TAN

counts and increased risk of metastasis, drug resistance and poor

prognosis (12–17). In TME, neutrophils can acquire

immunoregulatory capabilities, facilitating tumor progression

(18) and drug resistance through a number of different

mechanisms. In this context, interleukin-8 (IL-8, aka CXCL-8),

a member of the CXC chemokine family that is highly produced

by neoplastic cells (19), is an important chemoattractant and

activator for neutrophils and is a key mediator of their biology,

behavior and actions inside the tumor. On the other hand,

increasing evidence is highlighting the crucial role of

extracellular vesicles (EVs) in both the mediation and

regulation of neutrophils’ response within the TME. EVs,

produced both by tumor cells and by TANs, or by other

immune or stromal cells, function in fact as intercellular

mediators of the communication within the TME and beyond,

and can ultimately promote neutrophil-mediated tumor drug

resistance (20).

In this review, we will describe the role of IL-8 and EVs in

the regulation and mediation of neutrophil biology and function

in the TME, promoting pro-tumoral functions of these cells,

ultimately leading to neutrophil-mediated tumor drug resistance

through the production of neutrophil extracellular traps (NETs)

and the secretion of neutrophil-derived EVs and other factors.

Finally, we will discuss emerging therapies that, targeting IL-8,

EVs and neutrophil functions, could be considered as potential
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therapeutic tools to reduce or overcome neutrophil-mediated

tumor drug resistance.
2 Neutrophils in cancer

Neutrophils are the most abundant leukocytes in the

circulation, representing around 70% of all white blood cells (21).

Produced in the bone marrow (BM) through the granulopoiesis

(i.e., progressive maturation) of hematopoietic progenitors,

neutrophils are then released into the blood stream, ready to

respond to a plethora of stimuli released by inflamed tissues (22).

In tumors, several chemotactic and inflammatory factors, as well as

EVs, are released from tumoral and non-tumoral cells and can

attract mature neutrophils, which thus migrate from blood stream

and infiltrate into the TME (23–25) (Figure 1).

Neutrophil recruitment into the tumor site from circulation is a

multi-step process that involves several factors, but seems to be

mainly regulated by two G protein-coupled receptors (GPCRs):

CXCR4 and CXCR2 (26). CXCR4 is a neutrophil homingmarker in

the bone marrow, while CXCR2 activation by its ligands (i.e.,

CXCL-1, CXCL-2, CXCL-3, CXCL-5, CXCL-6, CXCL-7 and

CXCL-8) induces the release of neutrophils into circulation and

their recruitment into the TME (27–29). Indeed, the diverse cell

types in the TME (e.g., tumor cells, immune cells, fibroblasts)

release large quantities of CXCR2 ligands, forming a chemotactic

gradient that attracts the neutrophils from the bloodstream (29).

Among the chemokines that can influence neutrophil functions, IL-

8 is the master regulator of neutrophil biology and one of the most

characterized chemokine in cancer as it has been found

overexpressed in several tumors (30–43). Once into the TME,

neutrophils turn into TANs, a plastic and dynamic population

that can rapidly switch between two forms: N1 TANs with anti-

tumoral functions, and N2 TANs, with pro-tumoral effects (44–46).

N1 TANs are mature and short-living cells, which exert their highly

cytotoxic and immune-stimulating activities by producing reactive

oxygen species (ROS) and other cytotoxic substances, and by

recruiting and activating other immune cells (17). On the other

hand, N2 TANs are immature and long-living cells, which can

produce and release cytokines, chemokines and other factors to

favor pro-angiogenic, pro-metastatic and immune-suppressive

activities (47). TANs polarization towards one of the two sub-

populations is crucially regulated by multiple TME factors

including, among others, cytokines and chemokines, such as IL-8,

and also EVs, released by tumor, stromal and immune cells (17, 48,

49). In addition, TANs can also regulate cancer progression through

NETosis, a process by which neutrophils extrude a sort of web-like

structures called NETs (50–52). NETs are formed by DNA fibers

decorated with cytotoxic enzymes, such as neutrophil elastase (NE),

myeloperoxidase (MPO) and matrix metalloproteinases-9 (MMP-

9) and are released by activated neutrophils into the extracellular

space as mechanism of defense against pathogen micro-organisms

(53). In tumors, NETs have been identified as factors that can
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significantly contribute to carcinogenesis and metastasis (11, 54) in

several ways, as by inducing the degradation of the extracellular

matrix which promotes the extravasation of cancer cells (50),

trapping circulating tumor cells (CTCs) (55, 56) or deactivating

thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis and

tumor progression (57, 58).

Regulated by different factors and acting through several

mechanisms, neutrophils thus play a key role in hijacking the

immune system response against the tumor, ultimately promoting

cancer progression and tumor drug resistance (59, 60).
3 IL-8 and EVs crucially regulate
and mediate the biology and
functions of TANs in the TME

3.1 IL-8 and TANs

Tumor cells produce several factors, such as cytokines,

chemokines, lipids, and growth factors that, not only increase

their growth and survival in an autocrine manner (61), but also

increase the number of circulating neutrophils by stimulating

granulopoiesis in the bone marrow and promote their

recruitment to TME in a paracrine manner (62–64) (Figure 1). In

particular, among other factors, IL-8 has demonstrated to be crucial
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in tumor progression (19, 65–67), since it was found to be

overexpressed in several tumors, where induces angiogenesis and

is involved in the maintenance of cancer stem cells (CSCs) (68, 69).

Also, a direct correlation between IL-8 and poor prognosis has been

reported (70–73). IL-8 exists as a monomer or dimer and exerts its

activity by binding its two receptors: CXCR1 and CXCR2 (74). It is

a well-known chemoattractant able to recruit leukocytes and in

particular neutrophils, which express a substantial number of IL-8

receptors on their surface (75, 76). During carcinogenesis, the IL-8

released by neoplastic cells promotes the activation of both the

phosphatidylinositol-3-kinase (PI3K) and the mitogen-activated

protein kinase (MAPK) signal pathways via CXCR2, thus leading

to cell migration and survival (77–79). In addition, IL-8 mediates

the formation of NETs, through the binding to CXCR1 and CXCR2

(18, 80) (Figure 1). These mechanisms help to dampen the anti-

tumor immune responses and cause disfunctions of cytotoxic

immune cells, thus crucially contributing to tumor growth and

progression (81).
3.2 Extracellular vesicles and TANs

In addition to IL-8, EVs are other factors that are crucially

involved in the regulation and mediation of TANs’ pro-tumoral

functions in the TME (82). EVs are heterogenous lipid bilayer
FIGURE 1

The role of secreted factors and EVs in neutrophil recruitment and activation into the TME. In TME, cancer cells can regulate neutrophil biology
through the secretion of several factors, among which (1) interleukins and chemokines, such as IL-8, and (2) tumor-derived EVs. These factors
regulate the recruitment of the neutrophils from the bloodstream to the tumor and the generation of TANs, which in turn promote cancer
progression, metastasis and drug resistance through different cell mechanisms: release of neutrophil-derived EVs, degranulation/secretion and
NETosis (4). Together with cancer cells, also other cell types in the TME can release vesicles, which are also potentially able to act on
neutrophils (3, dashed arrows). Image created with biorender.com.
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structures secreted by cells that can carry a plethora of cargoes,

including lipids, proteins and nucleic acids (83–86). In the past they

were divided in three subtypes (microvesicles (MVs), exosomes and

apoptotic bodies) depending on their biogenesis, release pathways,

size, content and functions (84, 87, 88). However, since it is not easy

to clearly determine EVs biogenesis pathway, the last MISEV

guidelines (MISEV 2018) suggest to classify EV subtype referring

to 1) physical characteristics of EVs, such as size or density; 2)

biochemical composition; or 3) descriptions of conditions or cell of

origin (89). One of the main functions of EVs is to facilitate the

exchanges of cellular components, acting as an intercellular

communication system in both physiological and pathological

conditions (88, 90, 91). The EV-mediated intercellular

communication is achieved in two manners: by delivering cargoes

that are within the vesicles in the target cells (92, 93), or by using

EVs surface markers without requiring vesicle internalization (94).

In tumors, EVs are important components of the TME and

promote the crosstalk between cancer and cancer-associated cells

(e.g. fibroblasts, endothelial and immune cells), creating a favorable

niche that supports and nourishes the tumor, promoting its growth

and progression, and also regulating tumor drug resistance.

Tumor-derived EVs are nanoscale membrane vesicles (95)

that contain tumor-specific functional biomolecules both in

their lumen, such as cytokines, growth factors, proteases and

enzymes, as well as on their surface, including receptors/ligands,

adherent molecules, or tetraspanins (96, 97). Tumor-derived

EVs work in both autocrine and paracrine way to favor local

invasion of tumor cells and spreading of metastasis and to

induce the reprogramming of recipient cells (82, 98–101).

They can also promote immune-modulation by attenuating

the cytotoxic activity of T and NK cells, prompting the

recruitment of regulatory B cells and Tregs and inducing the

differentiation of M2 macrophages and N2 immune-suppressive

sub-population of tumor-associated macrophages (TAMs) and

TANs, respectively (102, 103), thereby creating a pro-

tumorigenesis environment for tumor progression (104–106).

Among innate immune cells, neutrophils may be especially

prone to stimulation from tumor-derived EVs (107); for example,

they can promote TAN polarization into the anti-inflammatory N2

tumorigenic subtype (Figure 1). Although the underlying

mechanisms remain poorly understood, Zhang and colleagues

have recently started analyzing tumor-derived EVs induced N2

neutrophil polarization in gastric cancer, demonstrating that gastric

cancer-derived EVs can induce the expression of programmed

death-ligand 1 (PD-L1) on neutrophils, which in turn polarizes

their differentiation through the N2 phenotype and suppresses T

cell-mediated immunity (108, 109). On the other hand, tumor-

derived EVs from murine colorectal CSCs have been shown to

prolong bone marrow-derived neutrophil life-span through the

activation of the NF-kB signaling, which in turn induces the

expression of interleukin-1b (IL-1b) in neutrophils, thus

promoting their pro-tumoral phenotype (110). Besides inducing

N2 polarization, tumor-derived EVs can also modulate other
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properties of neutrophils’ biology. Tumor-derived EVs from a

metastatic human melanoma cell line (MV3), for example, have

been shown to induce neutrophil chemotaxis through the CXCR2/

PI3K-Akt axis and to promote the formation of NETs (103)

(Figure 1), which play a crucial role in inducing cancer-associated

thrombosis (111–113) and tumor drug resistance (114). Similar

results have been obtained in amousemodel of breast cancer, where

4T1-derived exosomes induced NETs formation in neutrophils

derived from G-CSF-treated mice and accelerated venous

thrombus formation in tumor-free neutrophilic mice (115). Also

the EVs released from a human cell line of breast carcinoma (MDA-

EVs) induced neutrophil activation (i.e., increased chemotaxis and

secretion of IL-8 and MMP-9), N2-like phenotype and increase of

ROS production, which were followed by augmented NETosis

(116). Finally, a recent report also showed that exosomes can

transfer mutant KRAS from DKO-1 colorectal cancer cells to

neutrophils, resulting in increased IL-8 production, neutrophil

recruitment and NETs formation, ultimately promoting tumor

growth and metastasis. Interestingly, these effects were abolished

by an anti-IL-8 treatment (117).

Although tumor-derived EVs represent the majority of vesicles

secreted in the TME, studies have shown that EVs can be released

also by other cells within the TME, such as cancer-associated

stromal cells (CASCs), including fibroblasts, immune cells,

endothelial cells and neurons (118) (Figure 1). These EVs can

influence many aspects of tumor biology, but their direct role in the

regulation of neutrophil biology has not been fully addressed yet.

For example, cancer associated fibroblasts (CAFs) can secrete EVs

which act on cancer cells to enhance their metastatic potential by

delivering bioactive molecules, such as extracellular matrix proteins

and remodeling enzymes (118). Ji et al. demonstrated that primary

colorectal cancer cells can secrete integrin beta-like 1 (ITGBL1)-

bearing EVs which enter the circulation, reach distant organs, and

activate fibroblasts via the TNFAIP3-mediated NF-kB signaling

(119). In addition to fibroblasts, also immune cells can release EVs

within the TME ultimately exerting anti-cancer effects as for natural

killer (NK) cells, or pro-cancer effects in the case of regulatory T

cells (Tregs) (120). NK cell-derived EVs are released by resting and

activated NK cells and both can exert cytotoxic activity on activated

but not resting immune cells (121), but also exhibit immune-

modulatory activity by stimulating other immune cells via

paracrine action or through the circulatory system (122).

Further studies are needed to better understand if this subset

of non-tumor-derived EVsmay have a direct role in the regulation

of neutrophil biology in the context of tumor progression.
4 TAN-mediated tumor
drug resistance

The involvement of neutrophils in tumor drug resistance is

determined by the interplay of several factors. Among others, IL-

8 and EVs are key modulators of neutrophil biology and
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functions within the TME. They act on neutrophils to promote

tumor drug resistance which is exerted through different

mechanisms, such as release of neutrophil-derived EVs,

secretion of specific molecules/factors and NETosis (Figure 1).

These mechanisms can act in a concerted way to promote tumor

drug resistance by reducing the availability or stability of

administered therapeutics, inducing ROS production or

alterations of DNA damage repair pathways, and modulating

antitumor immunity (123).
4.1 Tumor drug resistance promoted by
neutrophil-derived EVs

Like tumor cells, neutrophils can also produce and release

EVs in response to intracellular metabolic changes and/or

extracellular environmental stress. As reviewed by Rubenich

and colleagues, the genetic and molecular composition of

neutrophil-derived EVs reflects that of the mother cell and

varies depending on the existing physiological or pathological

conditions (20, 124). Depending on the context, neutrophils

polarize into inflammatory N1 or regenerative N2 subtypes,

which are thought to be able to release two different kinds of

EVs: the N1-derived and the N2-derived EVs, respectively (124).

During cancer progression, the role of neutrophil-derived

EVs seems to be important for the prediction of disease

outcome, although the underlying mechanisms are still unclear

(125). Even if few, the available evidences on neutrophil-derived

EVs isolated from tumoral contexts seem to mainly suggest a

role for these vesicles in mediating cancer progression and drug

resistance. On the other hand, EVs produced by neutrophils

from healthy donors may possess a tumor suppressive activity

both in vitro and in vivo (126). As recently demonstrated in fact,

EVs from healthy neutrophils contain cytotoxin proteins that are

able to activate the caspases signaling pathway and then promote

tumor cell apoptosis (126) (Figure 2).

The role of neutrophil-derived EVs in drug resistance has

been demonstrated by a recent work from Butin-Israeli and

colleagues (127). Using samples from inflammatory bowel

disease (IBD) patients, who are more prone to develop colitis-

associated colorectal cancer and have an important neutrophil

infiltrate in the intestinal mucosa, they demonstrated that

neutrophil-derived EVs containing miR-23a and miR-155

inhibited Homologous Recombination (HR) repair by

targeting the main HR regulators RAD51 while promoting

non-homologous DNA end joining (NHEJ), ultimately leading

to the formation of highly mutagenic DNA Double-Strand

Breaks (DSBs) (127). This switch from HR to NHEJ may

result in the acquisition of drug resistance in tumors (128–

131) as observed in colorectal cancer, in which neutrophil-

mediated NHEJ induced resistance to a lethal dose of topo-

isomerase I inhibitor Camptothecin (CMPT) as tumor cells

effectively resolved CMPT-induced DSBs and entered normally
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into cell cycle (132) (Figure 2). Other evidence for the role of

neutrophil-derived EVs in cancer, suggest that they can act

either as an onco-suppressor (133–136) or as an onco-

promoter (137–139) in a context-dependent manner. For

example, neutrophil-derived EVs containing miR-223, a

miRNA essential for the development of cells of the myeloid

lineage and the mobilization of neutrophils from the bone

marrow (140–142), have been described to be able to both

sustain and inhibit tumor growth (135, 137–139, 143). In both

acute myeloid leukemia and breast cancer for instance, E2F1-

dependent downregulation of EVs-transported miR-223 is

associated with tumor aggressiveness and poor prognosis (135,

143). Of note, a clear role of neutrophil-derived EVs carrying

miR-223 in drug resistance still remains unknown (Figure 2).

Interestingly, in addition to regulate tumor progression and

drug resistance, neutrophil-derived EV have recently also been

engineered to efficiently deliver anti-cancer drugs at the tumor

site (126), thus not only demonstrating the intricate complexity

of the processes regulating neutrophil-derived EVs content and

secretion but also showing the therapeutic potential of

these vesicles.
4.2 Tumor drug resistance promoted by
TAN-released factors and NETosis

Attracted to the tumor site and regulated by the action of IL-

8, EVs and other chemotactic factors, TANs can interfere with

different antitumoral treatments not only by releasing EVs but

also by secreting specific factors as well as by undergoing

NETosis. During degranulation and NETosis, TANs can for

example increase the secretion of matrix metalloproteinases

(MMPs), such as MMP-2 and MMP-9, thus counteracting the

effects of anti-angiogenic therapies. MMP-9, the production of

which is also directly induced by IL-8 through CXCR2 receptor

(144), can in fact cleave matrix-bound isoforms of VEGF-A into

soluble fragments that are able to elicit VEGFR2 receptor

activation and induce angiogenesis with a higher potential

than uncleaved protein (145, 146) (Figure 3). In addition,

TANs can directly secrete the pro-angiogenic cytokine IL-17

(147) or induce the activation of cathepsin B/NLRP3

inflammasome followed by IL-1b overproduction, with

consequent increase of IL-17 secretion (148, 149) (Figure 3).

Besides secreting factors in the TME, TANs can mediate

drug resistance also through the formation of NETs or through

the activities of several NET-associated components (Figure 3).

In agreement with this, increased levels of cell free cell free DNA

(cfDNA), which is at least in part derived from NETs, predict

limited response to chemo- and immune-therapy in several

tumors (150–152). NET components, including NE, MMP-9,

Cathepsin G (CG), the carcinoembryonic antigen cell adhesion

molecule 1 (CEACAM1), and other factors, have been shown to

promote resistance to chemotherapy through different
frontiersin.org

https://doi.org/10.3389/fonc.2022.947183
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zippoli et al. 10.3389/fonc.2022.947183
mechanisms (55, 153–156). Preclinical studies suggest that NE

can promote malignancy and resistance to chemo- and immune-

therapy by inducing cell epithelial-mesenchymal transition

(EMT) (153, 154, 157). Evidence emerged to support the

infiltration of neutrophils into TME as a driver of EMT

through NE activity (158–160). On the other hand, MMP-9

and CG, associated with NETs, mediate the degradation and

remodeling of the extracellular matrix and, as discussed above,

promote angiogenesis, so that their presence has been associated

with tumor progression and poor response to chemotherapy

(155, 161). Finally, CEACAM1 protein, that decorates NETs and

facilitates NET-dependent pro-metastatic interactions by

improving neoplastic cells adhesion and migration, is

potentially involved also in mediating cancer response to

therapy (156) (Figure 3).

Increased NETosis promotes tumor resistance also to

radiation-therapy (RT) (162). In a syngeneic bladder cancer

model, RT increased NET deposition and, notably, when

NETosis was inhibited by DNase I or neutrophil elastase
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inhibitor, the overall radiation response improved.

Consistently with these data, NETs have been also observed in

bladder tumors of patients who did not respond to RT and had

persistent post-RT relapse (163, 164) (Figure 3). In addition,

tumor-associated NETs can also support metastatic cells to

evade immune response by creating a physical shield from

cytotoxic immune cells, such as cytotoxic CD8+ T and natural

killer cells (NKs), thus preventing interactions between tumor

and effector immune cells (165, 166) (Figure 3). In line with this,

NETs formation has also been shown to mediate the resistance

to checkpoint blockade, thus reducing responses to

immunotherapy (18, 167–169). NETs can also have a role in

detoxifying tetracycline drugs, such as doxorubicin (Figure 3),

and degradation of NETs through DNase treatment restored

chemosensitivity in animal models, demonstrating a functional

role for NETs in chemo-resistance (166). Although this finding

has yet to be corroborated in other tumors, this emerging

evidence is notable since it raises NETs as therapeutic targets

for the improvement of chemotherapy response.
FIGURE 2

Neutrophil-derived EVs. Neutrophil-derived EVs can exert both anti-tumoral (1) or pro-tumoral (2) activities in a context-dependent manner.
The EVs isolated from healthy neutrophils can induce apoptosis of cancer cells through the activation of caspases pathway. On the other hand,
tumoral neutrophil-derived EVs seem to promote cancer spreading, progression and drug resistance. Image created with biorender.com.
frontiersin.org
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Pharmacological NETosis inhibition has been shown to

synergize with immunotherapies, such as anti-PD-1 and anti-

CTLA-4 mAbs (18, 170), possibly by favoring cytotoxic effector T

cell response against cancer cells following checkpoint inhibition. As

further confirmation of the role of NETosis in immunotherapy

resistance, it has been demonstrated that hPMNs recruited by IL-17

in pancreatic ductal adenocarcinoma undergo NETosis, and when

NETosis is abrogated, the tumor acquires an immunotherapy-

sensitive phenotype (171).

In conclusion, TANs and related regulatory factors and

mediators (i.e., IL-8, EVs, and other secreted factors) represent

potential targets for novel therapeutic approaches aiming to

target cancer cells and reduce drug resistance.
5 Therapeutic strategies to inhibit
neutrophils in cancer progression
and cancer drug resistance

5.1 Investigational drugs

5.1.1 Targeting CXCR1/2 and neutrophils
With the aim to overcome the deleterious effects of

neutrophils in cancer, the IL-8 and CXCR1/CXCR2 inhibition

could reduce neutrophils migration to the tumor, thus avoiding

NETs formation and eventually preventing drug resistance. In
Frontiers in Oncology 07
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this section, we briefly report an overview of investigational

drugs targeting IL-8 and its receptors CXCR1/CXCR2, and

discuss their therapeutic potential in the field of cancer

resistance (Table 1).

HuMax-IL8, also known as BMS-986253, is a fully human

monoclonal antibody inhibitor of the IL-8 pathway. Humax-IL-

8 was shown to block tumor progression (172), immune escape,

EMT and MDSCs recruitment (173) in humans, thus pushing

further new investigations in cancer resistance (172). HuMax-

IL8 was developed for the treatment of patients with advanced

solid tumors in combination with nivolumab, an anti-PD-1

monoclonal antibody immune check point inhibitor

(NCT02536469), and it is currently under clinical evaluation

for the treatment in several other tumors, including advanced

solid tumors (NCT03400332), non-small cell lung cancer

(NSCLC) (NCT04123379), advanced melanoma and metastatic

renal cell carcinoma (NCT04050462), pancreatic cancer

(NCT02451982), and head and neck squamous cell carcinoma

(NCT04848116). In addition, HuMax IL8 is currently in phase

1b/2 trial in combination with nivolumab for treatment of men

with hormone-sensitive prostate cancer (NCT03689699).

Navarixin is a CXCR1/CXCR2 receptor antagonist that

impairs neutrophils recruitment (174), and that was shown to

repress tumor cells metastasis and angiogenesis in preclinical

models (175, 176). The molecule was shown to suppress CXCR2

signaling by decreasing MAPK/AKT pathway phosphorylation,

resulting in sensitization of colorectal cancer cells to oxaliplatin
FIGURE 3

Mechanisms by which TANs may confer drugs resistance. TANs can promote drug resistance through two main mechanisms: NETosis and
degranulation/secretion. NETs or NETs components can mediate resistance to immune- radio- and chemotherapy, while neutrophil-secreted
factors have been shown to mainly influence angiogenesis and interfere with angiogenic therapies. biorender.com.
frontiersin.org
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treatment (177). Navarixin was assessed for its efficacy and

safety in combination with pembrolizumab, an anti-PD-1

monoclonal antibody, in a phase 2 clinical trial of three types

of solid tumors: programmed death-ligand 1 (PD-L1) positive

refractory non-small cell lung cancer (NSCLC), castration

resistant prostate cancer (CRPC) or microsatellite stable (MSS)

colorectal cancer (CRC) (NCT03473925).

AZD5069 is a reversible CXCR2 antagonist that was shown to

inhibit IL-8 or GRO-a-induced cytosolic calcium increase, CD11b

surface expression, adhesion and chemotaxis in neutrophils (178,

179). The molecule was developed as part of combination

therapies with durvalumab, an anti PD-L1 monoclonal

antibody, in cancer indications including metastatic squamous
Frontiers in Oncology 08
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cell carcinoma of the head and neck (SCCHN) (NCT02499328),

and pancreatic ductal adenocarcinoma (NCT02583477).

SX-682 is a CXCR1/CXCR2 antagonist with potential

anticancer activities. It exhibited significant activity in solid

tumor models, where it reversed chemoresistance and

extended overall survival. In syngeneic and genetically

engineered mouse (GEM) melanoma models, it potently

synergized with anti-PD1 therapy inducing complete

remissions (180). In addition, it enhanced both PD-1 immune

check point blockade, reduced MDSCs in the TME, and

increased natural killer (NK) and T cells infiltration into the

tumor site in animal models of head and neck tumor (181). The

molecule is currently under active development as monotherapy
TABLE 2 Summary of the main anti-EV agents in cancer and cancer drug resistance in preclinical models.

Drug Antitumor therapy Mechanism of targeted or cancer therapy resistance In vitro model Reference

Heparin cisplatin EV uptake inhibitor Ovarian cancer Samuel P et al., 2018 (189)

Amiloride cisplatin EV uptake inhibitor Ovarian cancer Samuel P et al., 2018 (189)

Dynasore cisplatin EV uptake inhibitor Ovarian cancer Samuel P et al., 2018 (189)

GW4869 cisplatin EV inhibitor Ovarian cancer Cao Y et al., 2017 (190)

EV inhibitor Melanoma Matsumoto A et al., 2017 (191)

EV inhibitor Prostate cancer Panigrahi GK et al., 2018 (192)

Indomethacin doxorubicin/pixantrone EV inhibitor Lymphoma Koch R et al., 2016 (193)
TABLE 1 Summary of the main CXCL8-CXCR1/2 inhibitors for cancer therapy.

Drug Therapeutic
combination

Indication Trial phase/
Study type

Recruitment
status

NCT
number

Nivolumab (anti PD-1) Advanced solid tumor Phase 1 Completed NCT02536469

Cabiralizumab (anti CSF1R) Head and neck squamous cell carcinoma Phase 2 Recruiting NCT04848116

Humax
IL8

Nivolumab (anti PD-1) Prostate cancer Phase 1 Recruiting NCT03689699

Nivolumab (anti PD-1) Adenocarcinoma of the prostate Phase 2 Recruiting NCT03689699

Nivolumab (anti PD-1) Pancreatic cancer Phase 2 Recruiting NCT02451982

Navarixin Pembrolizumab (anti PD-1) Metastatic solid tumor Phase 2 Completed NCT03473925

Durvalumab (anti PD-L1) Metastatic pancreatic ductal carcinoma Phase 1/2 Completed NCT02583477

AZD5069 Durvalumab (anti PD-L1) Advanced solid tumor and squamous cell carcinoma of
head and neck

Phase 1/2 Active, not
recruiting

NCT02499328

Monotherapy Myelodysplastic syndrome Phase1 Recruiting NCT04245397

SX-682 Pembrolizumab (anti PD-L1) Metastatic melanoma Phase 1 Recruiting NCT03161431

Nivolumab (anti PD-1) Metastatic colorectal cancer Phase 1/2 Recruiting NCT04599140

Nivolumab (anti PD-1) Metastatic pancreatic ductal adenocarcinoma Phase 1 Recruiting NCT04477343

Reparixin Monotherapy Fatigue Phase 2 Not yet recruiting NCT05212701

Locally advance or metastatic breast cancer

Paclitaxel (antineoplastic agent) Metastatic breast cancer Phase 1 Completed NCT02001974

Paclitaxel (antineoplastic agent) Metastatic breast cancer Phase 2 Completed NCT02370238

Monotherapy Breast cancer Phase 2 Terminated NCT01861054

RP-72 Monotherapy or combination with
gemcitabine

Pancreatic cancer Phase 1 Recruiting NCT04338763
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or in combination with anti PD-1 molecules for the treatment of

myelodysplastic syndrome (MDS) (NCT04245397), melanoma

(NCT03161431), metastatic colon adenocarcinoma or colorectal

carcinoma (NCT04599140) and metastatic pancreatic

adenocarcinoma (NCT04477343).

Reparixin is an antagonist of IL-8 that binds CXCR1 and

CXCR2 receptors to prevent neutrophil chemotaxis, thus

avoiding graft tissue damage in organ transplantation and

cancer, including breast cancer (182, 183). The combination of

reparixin with antineoplastic agent docetaxel reduced the tumor

size in a model of human breast cancer cell lines and breast

cancer patient-derived xenografts (184) demonstrating that

reparixin is able to reduce in vivo the tumor-initiating ability

of breast cancer cells by affecting the CSC population; in fact, in

tumor-bearing mice treated with reparixin alone or in

combination with chemotherapy, the CSCs proportion was far

lower than in tumor from mice receiving chemotherapy alone.

Additional preclinical evidence highlighted the antitumor and

antistemness activity of reparixin in epithelial thyroid cancer

(185) and pancreatic cancer (186). Several clinical trials were

conducted to assess the efficacy of reparixin in combination with

taxanes or in monotherapy in metastatic breast cancer

(NCT02001974, NCT02371238, NCT0161054). A new phase 2

clinical trial (NCT05212701) has started to evaluate the efficacy

of reparixin in the treatment of oncological fatigue in locally or

advanced metastatic breast cancer, a highly disabling condition,

very common in cancer patients.

Danirixin is a CXCR2 antagonist originally developed for the

potential oral treatment of chronic pulmonary disease (COPD).

The molecule is able to strongly reduce the CD11b upregulation

mediated by IL-8 or GRO-a agonists in healthy donor

neutrophils, thus making the molecule a potential therapeutic

agent for diseases characterized by neutrophil hyperactivation

(187). In addition, Danirixin was found to block migration,

invasion and EMT events mediated by TAMs and IL-8 in a

preclinical in vitro model of breast cancer (188).

RP-72 is a 72 amino-acid recombinant protein that blocks

the activation of IL-8-mediated signaling transduction pathways

by decreasing proliferation of susceptible pancreatic cancer cells.

The protein is under a Phase 1 clinical trial development for the

potential intravenous treatment of metastatic pancreatic cancer

in monotherapy or in combination with antiangiogenic

gemcitabine (NCT04338763).

5.1.2 Targeting EVs
Targeting EVs in cancer progression could also represent a good

strategy to counteract tumor drug resistance (Table 2). In this

context, promising results were obtained in an in vitro model of

ovarian cancer, in which the treatment with heparin, amiloride and

dynasore inhibited EV release after treatment with cisplatin (189)
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known as mechanism responsible for cancer resistance to the

therapy. Similar results were obtained in another model of ovarian

cancer, in which the phospholipase inhibitor GW4869 was shown to

inhibit the exosomal DNAmethyltransferase 1 (DNMT1)-mediated

cisplatin resistance in cells, and to increase apoptosis (190). These

findings suggest that the combination of cisplatin with EV inhibitors

can potentially overcome the drug resistance. In a melanoma model,

the same GW4869 inhibited exosome secretion that caused the

induction of tumor cell proliferation and apoptosis (191). A similar

effect was observed in a model of prostate cancer where treatment

with GW4869 effectively reduced cancer cell viability associated to

exosome secretion (192). In aggressive B-cell lymphomas,

suppression of exosomal drug resistance with indometacin

increased efficacy of doxorubicin therapy (193). Finally, in a tumor

mice model the treatment with dimethyl amiloride (DMA), known

to reduce exosome release into the bloodstream, given in

combination with the chemotherapeutic drug cyclophosphamide,

halted the tumor growth by 50% or more, if compared to the

untreated controls (192).

Thus, new interest is arising for the development of EV/

exosome pathway inhibitors. The combined use of IL-8 biological

activity inhibitors that modulate the hyperactivation of neutrophils

could represent a new strategy to mitigate cancer drug resistance

induced by EVs release. A first example of such approach is

represented by the combined blockade of IL-8 and IL-6 in

osteosarcoma. Starting from data showing that osteosarcoma

tumor-secreted EVs can induce a pro-metastatic phenotype by

strongly inducing IL-6 production in mesenchymal stem cells

(MSCs), it has been demonstrated that EVs from aggressive

cancer cell lines can induce MSCs to express inflammatory

cytokines and chemokines, among which IL-8 was the most

upregulated one, and that this was due to tumor EV-associated

non-coding RNAs. The blockade of IL-8 signaling with ladarixin

(an allosteric inhibitor of CXCR1 and CXCR2) and, even more

strikingly, its combination with tocilizumab (an anti-IL-6 receptor

antibody) reduced lung metastasis formation in a xenograft mouse

model of osteosarcoma and, notably, prevented the occurrence of

MSC-induced tumor resistance to antimetastatic drugs (abstract

submitted to the ASCO 2022 meeting).
6 Conclusions

TANs play a key role in tumor drug resistance, and their

activities in this context are regulated and mediated by different

factors. Among these, EVs and IL-8, produced either by tumoral

cells or by neutrophils themselves, crucially function to both control

and mediate the pro-tumoral functions of neutrophils in the TME.

The role of both EVs and IL-8 is crucial for neutrophil-mediated

tumor drug resistance, which is mainly due to the induction of
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NETs formation and the secretion of pro-tumoral factors, including

neutrophil-derived EVs. Growing evidence has highlighted the close

association between high levels of IL-8, EVs production, NETosis,

and limited therapeutic response in a variety of malignancies, thus

paving the way to investigations on the therapeutic potential of

combination treatments either of IL-8 activity blockers, or anti-EVs

drugs, or NETosis inhibitors with standard antitumoral therapies, to

reduce or counteract tumor drug resistance (162, 193).

In conclusion, IL-8 and EVs represent key potential targets

for the development of novel therapeutic options aimed to target

neutrophil-mediated tumor drug resistance.
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