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Efficacy and Safety of Zolpidem for
Focal Dystonia After Neurosurgical
Treatments: A Retrospective Cohort
Study
Shiro Horisawa*, Kotaro Kohara, Hiroki Ebise, Masahiko Nishitani, Takakazu Kawamata

and Takaomi Taira

Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan

Although there are several reports of the significant efficacy of zolpidem for treating

dystonia, zolpidem is still considered an anecdotal treatment. Here, we evaluated the

efficacy and safety of zolpidem for treating residual dystonia in patients who previously

received various neurosurgical treatments majorly including deep brain stimulation and

radiofrequency ablation. We retrospectively reviewed medical records from January

2021 to September 2021 to identify patients with dystonia who had been prescribed

zolpidem after undergoing neurosurgery. Twenty patients were enrolled in this study,

including those with blepharospasm (two), tongue dystonia (four), mouth dystonia

(one), spasmodic dysphonia (two), cervical dystonia (six), focal hand dystonia (three),

hemidystonia (two), blepharospasmwith cervical dystonia (one), andmouth dystonia with

cervical dystonia (one). Single doses of zolpidem ranged between 2.5 and 10mg, while

daily dosages ranged from 10 to 30mg. The zolpidem dose prescribed was 5–10mg,

with single and daily doses of 7 ± 2.9 and 14.5 ± 6.0mg, respectively. With zolpidem

administration, the participants’ Burke-Fahn-Marsden Dystonia Rating Scale-Movement

Scale score significantly improved from 8.1 ± 6.7 to 3.7 ± 2.5 (50.6% improvement, p

< 0.0001). Improvements in arm dystonia, blepharospasm, and spasmodic dysphonia

were observed using the Arm Dystonia Disability Scale, Jankovic Rating Scale, and Voice

Handicap Index, respectively. No improvements were observed in cervical dystonia on

the Toronto Western Spasmodic Torticollis Rating Scale. Drowsiness, including three

cases each of mild and moderate drowsiness, was the most frequent adverse effect

(30%), which persisted for 2–3 h. Transient amnesia and rapid eye movement sleep

behavior disorder occurred in two patients and one patient, respectively. Although

our findings suggest that zolpidem can be a valuable treatment option for patients

with residual dystonia after neurosurgical treatments, the beneficial effects for cervical

dystonia were limited.

Keywords: dystonia, efficacy, neurosurgery, safety, zolpidem
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INTRODUCTION

Treatments for dystonia include pharmacological therapies,
botulinum toxin injections, and surgery (1). Botulinum toxin
injection and surgical treatment are widely accepted treatments
for medically refractory dystonia (2, 3). Pharmacological therapy
with trihexyphenidyl, clonazepam, baclofen, and dopamine-
related medications is generally the first-line treatment for
dystonia (2).

Zolpidem is an imidazopyridine, non-benzodiazepine
hypnotic agent that has been widely prescribed for the treatment
of insomnia. Zolpidem was reported to have therapeutic
effects on Parkinson’s disease, which was confirmed by several
studies including a double-blinded, placebo-controlled study.
Additionally, several reports have shown significant efficacy
of zolpidem for dystonia (4–13). However, zolpidem remains
an anecdotal treatment due to the lack of randomized and
controlled studies, and the mechanism of action of zolpidem in
relieving dystonia remains unclear.

We have performed several neurosurgical treatments for
dystonia, including selective peripheral denervation, deep brain
stimulation (DBS), and ablative surgeries using radiofrequency,
gamma knife, and focused ultrasound (14–19). All surgical
candidates in those reports were refractory to conventional
oral medications including trihexyphenidyl, clonazepam, and
baclofen. Because botulinum toxin injections are covered by
health insurance for the treatment of cervical dystonia and
blepharospasm, many dystonia patients other than cervical
dystonia and blepharospasm in Japan cannot afford it. We
prescribed 5–10mg of zolpidem at a time to postoperative
neurosurgical patients with dystonia. In this study, we report the
efficacy and safety of zolpidem for treating residual dystonia in
patients who previously received neurosurgical treatment.

MATERIALS AND METHODS

Patient Population
We retrospectively reviewed medical records from January 2021
to September 2021 to identify patients with dystonia who were
prescribed zolpidem. Zolpidem was prescribed only to patients
whowere not satisfied with surgical outcomes andwanted further
improvements. We included patients with dystonia who had
received zolpidem for dystonia treatment. The exclusion criteria
were missing data regarding subjective evaluation using scales
or side effects and concomitant use of additional medications or
botulinum toxin injections after starting zolpidem use.

Medication
Zolpidem was prescribed at a single dose of 5mg daily for the
first 3 days. Thereafter, the dose was increased to a single dose
of 10mg daily tolerated. In case of difficulty in continuation of
zolpidem due to its side effects, such as drowsiness, the dose
was decreased to a single dose of 2.5mg per time. Patients were
allowed to take zolpidem several times per day if the daily dose
was <10 mg.

Evaluation
The patients’ demographic and clinical characteristics, including
the distribution and etiology of dystonia, failed treatments,
including surgery for dystonia prior to zolpidem prescription,
zolpidem dose, the effective duration of treatment, and adverse
events were evaluated. Patients receiving DBS were evaluated
with stimulating-on conditions.

All patients were evaluated 1 month after starting zolpidem
use at the outpatient clinic. Previous studies reported that onset
of effects and peak effects after zolpidem administration were
15–45min and 1–2 h, respectively (5, 7–10, 12). Therefore,
evaluation was performed before the initiation of zolpidem and
at the time of maximum drug concentration (1–2 h after oral
administration). Rating scales were used for evaluation. All the
patients were administered the Burke-Fahn-Marsden Dystonia
Rating Scale (BFMDRS)-Movement Scale (BFMDRS-MS; range:
0–120; higher scores indicate greater severity). Patients with
blepharospasm were administered the Jankovic Rating Scale
(JRS; range: 0–8; higher scores indicate greater severity), and
those with spasmodic dysphonia were administered the Voice
Handicap Index (VHI; range: 0–120; higher scores indicate
greater voice-related handicap). Patients with cervical dystonia
were administered the Toronto Western Spasmodic Torticollis
Rating Scale (TWSTRS; range: 0–85; higher scores indicate
greater severity, disability, and pain), whereas those with
focal hand dystonia were administered the Arm Dystonia
Disability Scale (ADDS; range: 0–100%; lower scores indicate
greater disability).

Statistical Analysis
Statistical analysis was performed using the JMP statistical
package, version 15.0.0 (SAS Institute, Cary, NC). The data were
considered non-parametric; therefore, the Wilcoxon signed-rank
test was used to compare the pre- and post-treatment BFMDRS-
MS scores. Statistical significance was set at p < 0.05.

Ethical Considerations
The data for this study were retrospectively collected and
analyzed. The Ethics Committee of our institution approved this
study, and considering the observational nature of the study,
the requirement for the provision of consent by patients was
waived. Written informed consent for the publication of the
videos was obtained.

RESULTS

Twenty-seven patients were prescribed zolpidem for dystonia
treatment. Seven patients were excluded, three due to missing
data regarding subjective evaluation scales and four due
to concomitant use of additional medications or botulinum
toxin injections after starting zolpidem use. The patients’
characteristics are shown in Table 1. Twenty patients were
enrolled in this study, including those with blepharospasm
(two), tongue dystonia (four), mouth dystonia (one), spasmodic
dysphonia (two), cervical dystonia (six), focal hand dystonia
(three), hemidystonia (one), focal hand and foot dystonia
(one), blepharospasm with cervical dystonia (one), and mouth
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TABLE 1 | Patient characteristics and clinical outcomes.

Case Distribution of

dystonia

Etiology Sex Age at onset

(years)

Disease

duration

(years)

Failed

treatments

prior to

surgery

Neurosurgical

treatments

Interval

between last

surgery and

zolpidem

administration

Zolpidem BFMDRS-MS score

Single

dose/Daily

dose

Pre surgery Pre

medication

Post

medication

%

improvement

1 Blepharospasm Primary Female 52 11 BTX, Tri, Clo GPi-DBS*, GPi-RF 45 2.5/10mg 8 8 4 50

2 Blepharospasm Primary Female 63 6 BTX GPi-DBS 13 10/20mg 12 8 4 50

3 Spasmodic

dysphonia

Stroke Male 23 6 BTX, Tri, Clo GPi-DBS* 20 10/20mg 4 4 2 50

4 Spasmodic

dysphonia

Primary Male 44 5 BTX, Tri GPi-DBS*, GPi-RF 50 5/10mg 6 3 2 33.3

5 Tongue dystonia Primary Female 59 10 BTX FF-DBS 6 5/10mg 4 2 0 100

6 Tongue dystonia Primary Male 29 7 BTX FF-DBS, RF 6 10/20mg 4 2 0.5 75

7 Tongue dystonia Primary Female 44 1 BTX, Tri PTT-RF 3 5/10mg 9 1 0.5 50

8 Tongue dystonia Primary Male 33 2 Tri FF-DBS, PTT- RF 3 5/10mg 4 1 0.5 50

9 Mouth dystonia Primary Male 73 2 BTX, Tri, Clo GPi-DBS 12 2.5/10mg 6 6 4 33.3

10 Blepharospasm/

Cervical dystonia†
Primary Male 47 4 Tri PTT-GK 3 5/10mg 12 12 10 16.7

11 Mouth dystonia/

Cervical dystonia†
Tardive Female 52 12 BTX, Tri, Bac GPi-DBS 60 5/10mg 12 10 8 20

12 Cervical dystonia‡ Primary Male 52 13 Tri, Clo GPi-DBS 70 5/10mg 8 4 2 50

13 Cervical dystonia‡ Traumatic Male 45 2 Tri, Clo, Bac FF-DBS 6 10/10mg 6 4.5 4.5 0

14 Cervical dystonia† Tardive Female 51 2 BTX, Tri, Clo PTT-RF 3 5/10mg 6 4.5 4.5 0

15 Cervical dystonia‡ Primary Male 47 9 Tri, Clo GPi-DBS, GPi-RF, SPD 12 5/10mg 8 6 6 0

16 Focal hand

dystonia

Stoke Female 5 46 BTX, Tri GPi-DBS*, Vo-RF 6 10/20mg 16 16 6 62.5

17 Hemidystonia Stroke Male 28 2 BTX, Tri, Clo DN-DBS** 6 10/30mg 24 24 5 79.2

18 Focal hand

dystonia

Stroke Male 48 8 Tri, Clo PTT-RF 12 10/20mg 16 16 4 75

19 Hemidystonia Primary Male 27 9 BTX, Tri DN-DBS, Vim-DBS**,

Vo-RF,

16 10/20mg 36 20 5 75

20 Focal hand

dystonia

Hereditary

(DYT-1)

Male 9 19 BTX, Tri Vo-DBS, GPi-RF 10 10/20mg 20 12 6 50

BFMDRS-MS, Burke-Fahn-Marsden Dystonia Rating Scale-Movement Scale; BTX, botulinum toxin injections; Tri, trihexyphenidyl; Clo, clonazepam; Bac, baclofen; GPi, Globus pallidus internus; FF, Forel’s field; PTT, Pallidothalamic

tract; DN, Dentate nucleus; Vo, Ventro-oral nucleus; DBS, deep brain stimulation; RF, radiofrequency ablation; GK, gamma knife ablation; SPD, selective peripheral denervation.
†Phasic cervical dystonia.
‡Tonic cervical dystonia.

*DBS was removed for insufficient efficacy.

**DBS was removed for infection.
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dystonia with cervical dystonia (one). The etiologies of dystonia
were idiopathic in 13 patients, post-stroke in four patients,
post-traumatic in one patient, drug-induced (tardive) in one
patient, and hereditary (DYT-1 dystonia) in one patient.
Failed treatments prior to surgery included botulinum toxin
injections (15 patients), trihexyphenidyl (1–6 mg/day, 18
patients), clonazepam (1.5 mg/day, 10 patients), and baclofen (15
mg/day, two patients). The neurosurgical treatments performed
in the patients included deep brain stimulation (16 patients),
radiofrequency ablation (12 patients), gamma knife ablation (one
patient), and selective peripheral denervation (one patient). The
pre- and post-operative BMFDRS-MS scores were 11.1± 8.1 and
8.2± 6.6, respectively (25.8% improvement).

The mean single and daily doses of zolpidem were 7 ± 2.9
and 14.5 ± 6.0mg, respectively. The daily dose of zolpidem
was spontaneously increased to 20–30mg in eight patients to
improve their quality of life. Among eight patients, five with focal
hand dystonia, focal hand and foot dystonia, and hemidystonia
(case 16–20) experienced pain due to severe dystonic postures.
Both pain and dystonia were remarkably relieved by zolpidem
administration. Case 2 was functionally blind due to severe
blepharospasm (forced eyelid closure), and at least 10mg of
zolpidem twice a day had to be administered to sustain eye-
opening. Case 3 with spasmodic dysphonia and Case 6 with
tongue dystonia had difficulty with daily communication with
others due to dystonia. A single dose of 10mg of zolpidem twice
a day was necessary for their daily lives.

With zolpidem administration, the BFMDRS-MS score
significantly improved from 8.1 ± 6.7 to 3.7 ± 2.5 (50.6%
improvement, p< 0.0001; Figure 1,Table 2). Three patients with
cervical dystonia did not respond to zolpidem, while 13 patients
(68.4%) showed 50 to 100% reduction in BFMDRS-MS score.
Six patients with cervical dystonia responded poorly to zolpidem
in our study. The mean total TWSTRS score was 30.5 ± 7.3
before administration and 28± 6.9 after zolpidem administration
(5.8 ± 2.0mg). Although severity and disability scores did not
change after zolpidem administration, pain scores decreased
from 8.3 ± 3.8 to 6.1 ± 2.7 with zolpidem administration.
The mean BFMDRS-MS neck subscale score was 5 ± 0.9
before administration and 4.6 ± 1.6 after administration (8%
improvement). Symptomatic improvements were confirmed in
patients with focal hand dystonia, blepharospasm, and spasmodic
dysphonia using the ADDS, JRS, and VHI, respectively; however,
no improvements in TWSTRS score were noted in patients
with cervical dystonia (Figure 2). The representative movies
illustrating spasmodic dysphonia (case 4), tongue dystonia
(case 5), and focal hand dystonia (case 16) are shown in
Supplementary Videos 1–3.

The duration of beneficial effects of zolpidem on dystonias
ranged from 3 to 4 h, and the time-to-effect ranged from 15 to
30min, which corresponded to previous study findings (5, 7–10,
12). Drowsiness, including three cases each of mild andmoderate
drowsiness, was the most frequent adverse effect (30%), which
persisted for 2–3 h. Transient amnesia and rapid eye movement
sleep behavior disorder occurred in two patients and one patient,
respectively. Four patients with hand dystonia, excluding those
with DYT-1 dystonia, had a fixed dystonic posture (clenched fist).

Five milligrams of zolpidem did not improve hand dystonia in
these four patients; however, 10mg significantly improved their
symptoms. Two of these patients increased the single dose of
zolpidem to 15–20mg once on their own and showed significant
dose-dependent improvement. However, sleepiness increased
with increasing doses; therefore, zolpidem was discontinued.
Two patients with cervical dystonia who did not achieve any
benefit ceased taking zolpidem voluntarily. One patient with
blepharospasm and one patient with mouth dystonia showed
significant improvement without any complications with 2.5mg
of zolpidem. Eighteen patients thought that zolpidem improved
their daily life by relieving dystonia. Two patients with cervical
dystonia discontinued zolpidem because of poor response
and drowsiness.

DISCUSSION

In this study, zolpidem use significantly improved residual
dystonic symptoms after neurosurgical treatment. Thirteen
patients (68.4%) showed more than 50% improvement, as
measured using the BFMDRS-MS. Drowsiness was the most
common adverse event (30%), and no serious adverse events
were observed.

The most notable finding of this study was that zolpidem
appears to be effective for treating residual dystonia after
neurosurgical treatment. Neurosurgical treatments for
dystonia are usually considered after failed conservative
treatment, including oral medications such as trihexyphenidyl,
clonazepam, baclofen, and botulinum toxin injections (1, 2, 20).
Unfortunately, the effectiveness of neurosurgical treatment for
dystonia varies between patients, and 10 to 25% of patients with
cervical, segmental, or generalized dystonia do not respond
to selective peripheral denervation or pallidal deep brain
stimulation (21–23). Zolpidem can be a treatment option for
patients who fail to respond to neurosurgery and conventional
conservative treatments.

There have been three studies that evaluated the effects of
zolpidem for dystonia improvement using the BFMDRS (4, 10,
12). Among the various phenotypes of dystonia, hand dystonia,
evaluated using the ADDS and BFMDRS-MS, showed the most
significant improvement, from 26.6% ± 18.7 and 15.2 ± 1.8 at
baseline to 61.7% ± 9.9 and 4.8 ± 1.1 after zolpidem intake,
respectively. Miyazaki et al. reported improvements in BFMDRS-
MS hand scores from 2.9± 2.0 before zolpidem administration to
2.0 ± 0.9 after administration of 8.8 ± 5.1mg zolpidem in eight
patients with hand dystonia (10). Five out of eight patients did
not respond to zolpidem administration. The effect of zolpidem
on dystonia may increase in a dose-dependent manner (10). Pre-
treatment BFMDRS values of 58 and 22.5 have been reported in
case reports of DYT-6 dystonia and generalized torsion dystonia,
respectively. These values improved to 33.5 and 27 with 10mg
and 25.5 and 19 with 20mg of zolpidem, respectively (12). Our
study showed that a single dose of 10mg zolpidem appeared
to be effective in relieving hand dystonia. The relatively lower
efficacy of zolpidem for hand dystonia in their study (5) (31.0%
improvement in BFMDRS-MS score) compared with our study
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FIGURE 1 | Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) after neurosurgical treatments and zolpidem. Neurosurgical treatments significantly improved

dystonia among the study participants (29.9% improvement, *p = 0.0002). Zolpidem administration significantly improved residual dystonic symptoms after

neurosurgical treatments (50.6% improvement, **p < 0.0001). Statistical significance was evaluated by Wilcoxon signed rank test.

TABLE 2 | BFMDRS scores off and on medication.

BFMDRS-MS Number of patients Off medication On medication

Total 20 8.2 ± 6.6 3.9 ± 2.6 *p < 0.0001

Eyes 3 7.3 ± 1.2 4

Mouth 6 2.7 ± 2.0 1.3 ± 1.5

Speech/swallowing 2 3.5 ± 0.7 2

Neck 6 5.2 ± 0.9 4.8 ± 1.6

Arm 5 15.2 ± 1.8 4.8 ± 1.1

Leg 2 6 ± 2.8 1

BFMDRS-MS: Burke-Fahn-Marsden Dystonia Rating Scale-Movement Scale.

*The Wilcoxon signed-rank test was used to compare the BFMDRS-MS scores off and on medication.

(68.4% improvement in BFMDRS-MS score) may be due to a
lower single dose of zolpidem.

In this study, cases with cervical dystonia responded relatively
poorly to zolpidem compared to other regions of dystonia,
which nearly corresponded to that in a previous study of seven
patients with cervical dystonia who showed a poor response to
10mg of zolpidem (10). The reason behind the poor response
of cervical dystonia to zolpidem is unknown; hence, further
studies to determine whether higher doses of zolpidem (≥15mg)
can achieve a better response in patients with cervical dystonia
are needed. However, four patients considered that zolpidem
obviously improved neck pain measured by the TWSTRS pain
scale. Five patients with focal hand or hemidystonia who required
a daily dose of 20–30mg of zolpidem reported zolpidem as
a highly effective pain relief medication. Careful evaluation is
required for not only objective movement evaluation but also
subjective evaluation such as pain and quality of life evaluation.

The mechanism underlying the improvement of dystonia by
zolpidem remains unknown. The basal ganglia and thalamus
have a high density of GABA-A receptors, which is the binding
site of zolpidem (24, 25). In the basal ganglia, the ventral
pallidum, substantia nigra pars reticulata, and subthalamic
nucleus have the highest density of zolpidem-binding GABA-
A receptors, suggesting that zolpidem may help restore the
influence of basal ganglia output on the thalamus and motor
cortex (26, 27). Badillo et al. suggested that the effects of
zolpidem result from the facilitation of inhibitory pathways
in the basal ganglia-thalamo-cortical circuit, which leads to
the improvement of dystonia (13). However, zolpidem also
has therapeutic effects on motor symptoms of Parkinson’s
disease, which is a hypokinetic movement disorder (28–30).
A double-blinded, placebo-controlled study demonstrated
that a single oral dose (10mg) of zolpidem reduced 30.2%
of Unified Parkinson’s Disease Rating Scale in 10 patients
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FIGURE 2 | Focal dystonia rating scale scores with and without medication. JRS, Jankovic Rating Scale. Range: 0–8. Higher scores indicate greater blepharospasm

severity. VHI, Voice Handicap Index. Range: 0–120. Higher scores indicate greater voice-related handicap in patients with spasmodic dysphonia. TWSTRS, Toronto

Western Spasmodic Torticollis Rating Scale. Range: 0–85. Higher scores indicate greater severity, disability, and pain in patients with cervical dystonia. ADDS, Arm

Dystonia Disability Scale. Range: 0–100%. Lower scores indicate greater disability in patients with focal hand dystonia.

with Parkinson’s disease 1 h after the administration (28).
The confirmed effects of zolpidem in this study included
improvement of rigidity, akinesia, bradykinesia, posture, gait,
and facial expression, indicating that zolpidem could serve as a
pharmacological equivalent of posteroventral pallidotomy (28).
We hypothesize that the underlying mechanism of zolpidem
in Parkinson’s disease involves the selective inhibition of
GABAergic inhibitory neurons in the abnormally overactivated
globus pallidus internus (GPi) and substantia nigra pars
reticulata, both of which have a high density of zolpidem-
binding sites (28). Supposing our hypothesis regarding
this mechanism is correct, the suggested mechanism of
zolpidem in Parkinson’s disease cannot explain the effects
of zolpidem on dystonia, which causes reduced output from
GPi, leading to increased thalamic and cortical activities (31).
Similar paradoxical findings have been suggested in terms of
the underlying mechanism that GPi-DBS and pallidotomy
(GPi ablation) have similar therapeutic effects on both PD
(hypokinetic movement disorder) and dystonia (hyperkinetic
movement disorder) (32). So far, available evidence cannot
explain in detail the mechanism of zolpidem in dystonia and
Parkinson’s disease.

This study has some limitations. This is an open-label study
and does not have a randomized and controlled design. All
patients enrolled in this study received neurosurgical treatment;

therefore, the improvements in dystonia in this study did
not reflect the true effects of zolpidem on dystonia, which
implies that further improvements may have been observed if
zolpidem was prescribed before surgery or the lack of response
may have been caused by the improved dystonia through
surgery. Additionally, the effects of zolpidem on the affected
body parts were not statistically evaluated due to the small
sample size.

In conclusion, this study suggests that zolpidem can
be a valuable treatment option for patients with dystonia.
Nevertheless, a randomized controlled trial with larger sample
size is needed to elucidate the efficacy and safety of zolpidem
for dystonia.
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Introduction: Parkinson’s disease (PD) is the second most common neurodegenerative

disease associated with aging. PD patients have systemic and neuroinflammation

which is hypothesized to contribute to neurodegeneration. Recent studies highlight

the importance of the gut-brain axis in PD pathogenesis and suggest that gut-derived

inflammation can trigger and/or promote neuroinflammation and neurodegeneration in

PD. However, it is not clear whether microbiota dysbiosis, intestinal barrier dysfunction, or

intestinal inflammation (common features in PD patients) are primary drivers of disrupted

gut-brain axis in PD that promote neuroinflammation and neurodegeneration.

Objective: To determine the role of microbiota dysbiosis, intestinal barrier dysfunction,

and colonic inflammation in neuroinflammation and neurodegeneration in a genetic

rodent model of PD [α-synuclein overexpressing (ASO) mice].

Methods: To distinguish the role of intestinal barrier dysfunction separate from

inflammation, low dose (1%) dextran sodium sulfate (DSS) was administered in cycles

for 52 days to ASO and control mice. The outcomes assessed included intestinal barrier

integrity, intestinal inflammation, stool microbiome community, systemic inflammation,

motor function, microglial activation, and dopaminergic neurons.

Results: Low dose DSS treatment caused intestinal barrier dysfunction

(sugar test, histological analysis), intestinal microbiota dysbiosis, mild intestinal

inflammation (colon shortening, elevated MPO), but it did not increase systemic

inflammation (serum cytokines). However, DSS did not exacerbate motor dysfunction,

neuroinflammation (microglial activation), or dopaminergic neuron loss in ASO mice.
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Conclusion: Disruption of the intestinal barrier without overt intestinal inflammation is

not associated with worsening of PD-like behavior and pathology in ASO mice.

Keywords: Parkinson’s disease, intestinal hyperpermeability, dextran sodium sulfate (DSS), microbiome, gut-brain

axis

INTRODUCTION

Studies from our group and others support a role for the
microbiome and intestinal tract (gut) in Parkinson’s disease (PD)
(1, 2). This model is known as the “gut-brain axis” (GBA) which
is a bi-directional communication axis involving the intestinal
microbiome, the intestinal barrier, intestinal inflammation, and
the intestinal/systemic/brain immune systems (among other
components) (3, 4). The gut-brain axis contributes to normal
function and pathology of the central nervous system (4, 5). PD
patients have an abnormal gut-brain axis (6–10).

PD patients have intestinal barrier dysfunction (6–10).
Under normal conditions, the pro-inflammatory contents
of the intestine are retained within the lumen of the
intestine by the intestinal barrier which is comprised of
both physical (mucus, tight junction proteins) and chemical
(anti-microbial peptides) components. The barrier can become
dysfunctional permitting the entrance of pathogenic bacteria and
bacterial components including lipopolysaccharide (LPS) into
the intestinal mucosa and the systemic circulation, prompting
mucosal and systemic inflammation (1, 6, 11, 12), which may
promote neuroinflammation, a key feature of PD.

In 2015, it was reported that patients with PD have
intestinal microbiota dysbiosis (13, 14) and more than 20
studies since then have similarly demonstrated that the intestinal
microbiome in PD patients is distinct from age matched
subjects without PD (6–10). Although there is no unique PD
microbiota signature, studies show that the dysbiosis in PD is
characterized by an increased relative abundance of “putative”
pro-inflammatory bacteria especially LPS-containing, Gram-
negative bacteria and reductions in the relative abundance
of putative anti-inflammatory bacteria [e.g., short chain fatty
acid (SCFA)-producing bacteria] (1, 3, 15, 16). The pro-
inflammatorymicrobiota can cause intestinal barrier dysfunction
and disruption of the intestinal barrier can impact the microbiota
leading to a positive feedback loop.

Intestinal barrier dysfunction andmicrobiota dysbiosis appear
to be biologically meaningful. Studies demonstrate that the
abundance of pro-inflammatory, LPS-containing, Gram-negative
bacteria in PD subjects correlates with motor impairment
in PD patients (1, 14, 17). Additionally, LPS is associated
with more severe neuroinflammation in animal models of
PD (8, 15, 18), and administration of LPS to mice is used
as a model for neurodegeneration and PD (19–21). Taken
together, studies suggest that the gut microbiota and microbiota-
derived, pro-inflammatory molecules like LPS may contribute to
PD pathogenesis.

One consequence of intestinal barrier dysfunction and
microbiota dysbiosis is intestinal inflammation (1). Indeed,
intestinal (e.g., stool calprotectin) and systemic (IL-1β, IL-6,

and TNF-α) inflammation are reported in patients with
PD and animal models of PD (8, 9, 22–26). Furthermore,
inflammatory bowel disease (IBD), characterized by intestinal
barrier dysfunction, pro-inflammatory changes in the intestinal
microbiome, and chronic intestinal and systemic inflammation
(27), is a risk factor for PD (27–29). This suggests that the
inflammatory consequences of intestinal barrier dysfunction and
intestinal microbiota dysbiosis are important in PD.

Intestinal microbiota dysbiosis, intestinal barrier dysfunction,
and inflammation typically occur together in both animal
models of PD and PD patients, therefore it is not clear
which one these three elements is a primary driver of
neuroinflammation and neurodegeneration in PD or whether
all three “pro-inflammatory” factors are required. This study
determined whether disruption of intestinal barrier/dysbiosis
without significant intestinal inflammation was sufficient to
worsen neuroinflammation and neurodegeneration in an animal
model of PD.

METHODS AND MATERIALS

Mice
Transgenic mice overexpressing human wild type α-synuclein
under the Thy1 promoter were used for this study, known as
ASO or “Line 61” mice (16, 30). Mice hemizygous for Thy1-α-
synuclein overexpression were maintained on a mixed C57BL/6-
DBA/2 background by breeding female BDF1 background,
Thy1-α-synuclein animals hemizygous for the Thy1-α-synuclein
transgene on the X-chromosome with wild-type male BDF1
(Charles River, Wilmington, USA) to generate the male ASO and
control littermates (without the transgene). Breeding pairs were
replenished every 6 months with transgenic females and newly
generated BDF1 males. The genotype of ASO and control mice
was verified with PCR (16). The transgene is inserted in the X
chromosome, which undergoes random chromosomal silencing,
so only male mice are used experimentally (30).

Mice were maintained on a 12 h light/dark cycle with
free access to water and food and were singly housed.
All animal husbandry and experiments were approved by
the Rush University Institutional Animal Care and Use
Committee (IACUC).

Dextran Sodium Sulfate Administration
DSS has a direct toxic effect on intestinal epithelial cells leading
to disruption of the intestinal barrier (31–33). DSS (molecular
weight 36,000–50,000, MP Biomedicals, Santa Ana, CA) was
given tomice in filtered drinking water and was replenished every
other day. DSS was administered beginning when mice were 14
weeks of age and was given over three cycles. A DSS cycle is
defined by 7 days on DSS followed by a 14-day recovery period
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FIGURE 1 | Timeline. The diagram illustrates the dextran sodium sulfate (DSS) treatment over given over three cycles during the 52 days of the study (see Methods).

with no DSS (21-day cycle; Figure 1). Vehicle-treated mice (i.e.,
H2O) were given only drinking water (i.e., without DSS).

Tissue Collection and Processing
Tissue was collected 3 days after the last DSS cycle (Figure 1).
Necropsy was performed under anesthesia as approved by
Rush IACUC#18–052. Mice were deeply anesthetized (90 mg/kg
ketamine, 10 mg/kg xylazine in a 0.9% saline diluent). Blood
was collected by cardiac puncture and stored on ice until
serum isolation/collection. After blood collection, mice were
perfused with cold PBS. The abdomen was clamped using
hemostatic forceps to perfuse the upper body. The brain
was collected and immersion-fixed in 4% paraformaldehyde,
intestinal tissue was measured for length (end of the cecum to
the anus), and colon samples were collected and stored either
in optimal cutting temperature (OCT) media (4583, Tissue-Tek),
4% paraformaldehyde, or flash frozen in liquid nitrogen.

Intestinal Barrier Integrity
The oral sugar test was used to assess region-specific differences
in intestinal barrier integrity (34–36). We have previously
published that sucralose, and especially the Sucralose/Lactulose
ratio is primarily a marker of the colonic permeability, including
in PD patients (35). Lactulose and mannitol are markers of small
intestinal permeability with an elevated Lactulose/Mannitol ratio
indicating the small intestinal barrier hyperpermeability (36).

In vivo intestinal barrier integrity was assessed at baseline (14
weeks of age) and the end of the last DSS cycle (22 weeks of
age) as previously described (8, 35). Briefly, mice were fasted
for 8 h prior to the test. A 200 ul solution containing lactulose
(3.2mg), sucrose (0.45mg), sucralose (0.45mg), and mannitol
(0.9mg) was administered via gavage, after which 2ml of 0.9%
saline was administered subcutaneously to promote urine output.
Mice were placed in metabolic cages and urine was collected for
5 h and the total volume recorded. Intestinal permeability was
calculated by measuring urinary sugar concentration with gas
chromatography which is expressed as percent excretion of the
oral dose of sugar (8, 36).

Immunofluorescent Staining
Gastrointestinal Tissue
The integrity of the intestinal barrier is maintained by a series of
inter-locking proteins between intestinal epithelial cells known
as the Apical Junctional Complex (AJC) (37, 38). This AJC is
composed of tight (zonula adherens 1, ZO-1) and adherens (E-
cadherin) junctions which were examined in this study (38,
39). OCT-embedded intestinal tissue (ZO-1) was cut into 5µm
sections, and then fixed using acetone at −20◦ for 20min.
Paraffin-embedded intestinal tissue (E-Cadherin) was cut into
5µm sections, which were de-paraffinized and rehydrated using
serial ethanol dilutions (100, 95, and 70%) (40). Heat-induced
antigen retrieval was completed by submerging tissue in an
EDTA buffer for 4min using a pressure cooker. Slides were
blocked with 10% donkey serum (Jackson ImmunoResearch,
017-000-12) overnight, followed by overnight incubation with
antibody (ZO-1: 1:500 Invitrogen #61-7300; E-Cadherin: 1:500
Cell Signaling #14472). Secondary antibody diluted at 1:250
(Alexa Fluor 555, #4409) was applied for 45min, followed by
washing. Sections were then DAPI-stained and mounted using
Fluoromount Aqueous Mounting Medium (Sigma-Aldrich,
#F4680). Immunofluorescence images were acquired using a
Zeiss Axio Observer 7 at 20x magnification, two images per
sample (40).

Brain Tissue
Ionized calcium binding adaptor molecule-1 (Iba-1) is a
microglia/macrophage-specific calcium-binding protein that
is a widely validated marker for microglia identification
and microglial morphology characterization (41). Tyrosine
hydroxylase (TH) is the rate-limiting enzyme of catecholamine
biosynthesis and a robust marker of dopaminergic neurons
(40, 42). Loss of TH staining in the striatum is a hallmark
for loss of dopaminergic terminals that is characteristic of
neurodegeneration in PD (43). Brain tissue was cut at 30µm
thickness using a cryostat (CM3050, Leica) and was stored
in cryoprotectant until analysis (40). In brief, sections were
washed with dilution media for 60min. An antigen retrieval
step was performed using a citric acid buffer solution (6.0
pH) for 20min. Then, an endogenous sodium peroxidase
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block was performed using a sodium periodate solution for
20min. Following peroxidase blocking, sections were washed
multiple times in dilution media and incubated in serum
blocking solution for an hour (2% BSA and 3% serum targeting
host of the secondary antibody). Sections were incubated
in primary antibody (Iba-1: 1:1000, Wako 019–19741; TH:
1:10,000, Immunostar 22941) overnight at room temperature.
The next day, sections were washed and processed with
biotinylated secondary antibodies (1:200, Vector Laboratories
BA1000, BA2000). Immunoperoxidase sections were treated
with a standard ABC HRP Biotin/Avidin Complex Kit (Vector
Laboratories). Incubation was performed before developing a
color reaction in the presence of DAB chromogen and hydrogen
peroxide. Once completed, immunoperoxidase stained sections
were mounted on glass slides, cover-slipped using Cytoseal TM
60 mounting medium (8310-16) and analyzed.

Western Blot Analysis
Isolation of Nuclear and Cytoplasmic Extracts and

Analysis
The cytoplasmic and membrane extraction was prepared using
an NE-PER Nuclear Cytoplasmic Extraction Reagent kit (Pierce,
Rockford, IL, USA) as previously described (36). Briefly, tissue
was washed twice with cold PBS and centrifuged at 500 × g
for 5min. The pellet was suspended in 200 µl of cytoplasmic
extraction reagent I by vortexing. The suspension was incubated
on ice for 10min followed by the addition of 11µl of cytoplasmic
extraction reagent II, vortexed for 5 s, incubated on ice for
1min and centrifuged for 5min at 16,000 × g. The supernatant
fraction (cytoplasmic extract) was transferred to a pre-chilled
tube. The insoluble pellet fraction, which contains crude nuclei,
was resuspended in 25 µl of nuclear extraction reagent by
vortexing during 15 s and incubated on ice for 10min, then
centrifuged for 10min at 16,000 × g. The remaining insoluble
pellet, containing membrane fragments, was suspended in 100 µl
of tris-triton buffer. Samples were incubated on ice for 20min
and then centrifuged (16,000 × g, 10min). The supernatant was
collected and stored at−80◦C.

Western Blot
Equal amounts of the protein concentrations were quantified
and normalized to the β-actin band. Homogenized colon
samples (30 µg) were boiled at 95◦C for 5min with 2x
Laemmli sample buffer (Bio-Rad Laboratories, Hercules, CA).
Samples were electrophoresed on 7.5% tris-HCl gels and
transferred to a nitrocellulose membrane (GE Healthcare
Limited, Buckinghamshire, UK). Non-specific binding sites were
blocked for 1 h at room temperature {E-cadherin and ZO-
1: 5% bovine serum albumin (BSA); β-actin: 2.5% BSA and
2.5% non-fat dry milk [all in tris-buffered saline / Tween-20
(TBS-T)]}. Membranes were incubated overnight at 4◦C with
primary antibody [E-cadherin: 1:1,000, Cell signaling 14472; ZO-
1: 1:1,000, Invitrogen 61-7300; β-actin: 1:5,000, Sigma A2066 (all
in TBS-T)]. Membranes were incubated in HRP-conjugated anti-
rabbit secondary antibody (1:2,000) for 1 h at room temperature.
Chemiluminescent substrate (ECL, GE Healthcare) was applied
to the membrane for protein visualization using autoradiography

film (HyBlot CL, Denville Scientific, Metuchen, NJ). Films and
were scanned and optical density determined using ImageJ
software (NIH, Bethesda, MD) (36, 44).

Intestinal Inflammation
Myeloperoxidase (MPO)
MPO is a reliable and well-established marker of intestinal
inflammation (45–47). Colon tissue was homogenized
and MPO was quantified using the MPO enzyme-linked
immunosorbent assay (ELISA) kit (Hycult Biotechnology,
Uden, The Netherlands) according to the manufacturer’s
instructions (47). Briefly, 10mg of colon tissue was homogenized
in 200 µl lysis buffer. Then, sample aliquots were applied
onto microtiter well-precoated with capture antibody.
After washing, biotinylated tracer antibody was added to
each well. After incubation, the color development with
tetramethylbenzidine was performed and the color reaction was
stopped by the addition of oxalic acid. Absorbance at 450 nm was
measured with a spectrophotometer. MPO concentration
of each sample was calculated from a standard curve
(serial dilution).

Calprotectin
Calprotectin is produced by neutrophils in the intestine
and is a reliable and well-accepted method to assess
intestinal inflammation (48). PD patients also have increased
levels of calprotectin (9, 25, 49). Cecal content of the
mice was collected during tissue collection was stored at
−80◦C until used for this assay. Calprotectin ELISA was
performed using S100A8/S100A9 Elisa kit (ref K6936)
from Immunodiagnostik (Immunodiagnostik, Bensheim,
Germany) following the manufacturer’s protocol. The
concentration of calprotectin was calculated from measured
OD 450 nm values by the Gene5 program (Biotek, Winooski,
VT) (50).

Hematoxylin and Eosin Histology
Formalin-fixed colon was stained with hematoxylin & eosin
(H&E). Blinded assessment of samples was conducted by a
gastrointestinal pathologist (SS). Histological analyses, including
inflammatory cell infiltrate, epithelial changes, and the mucosal
architecture, were scored according to an established criterion
(51). Mild colonic inflammation is operationally defined in this
study as an increase in MPO levels and decrease in colon
length, without elevated fecal calprotectin values. We chose
to use elevated stool calprotectin as part of our definition
of severe intestinal inflammation because, according to the
American College of Gastroenterology, fecal calprotectin levels
are a sensitive and specific marker of intestinal inflammation.
Indeed, evaluation of stool calprotectin level has become
routine for many clinicians who are managing patients with
intestinal inflammatory diseases, such as ulcerative colitis (52).
Relevant to our study, stool calprotectin is routinely used to
define intestinal inflammation in patients with inflammatory
bowel disease (53–55) and in patients with Parkinson’s
disease (49, 56, 57).
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Microbial Translocation and Systemic
Inflammation
LPS-Binding Protein (LBP)
LBP is a type 1 acute-phase protein that binds to LPS to facilitate
an immune response that our group and others have shown is
altered in PD patients with intestinal permeability (8, 58, 59).
Serum collected at the time of cardiac puncture was used to
measure systemic LBP levels using an LBP ELISA kit (HK205;
Hycult Biotech) as previously described (8).

Cytokines
Serum cytokine levels were assessed with Meso Scale 10-
plex V-PLEX Proinflammatory Panel 1 Mouse Kit (Cat. #
K15048D, Meso Scale Diagnostics, Rockville, MD) as previously
described (60).

Motor Function
Motor performance and coordination were assessed at 14 and
22 weeks of age including adhesive removal, beam traversal, and
hindlimb clasping reflex.

Adhesive Removal
This test evaluates somatosensory and motor function. A one-
quarter inch round adhesive (Avery, Glendale, CA) was placed
on the nasal bridge between the nostrils and the forehead of the
mouse, and the time to make contact and remove the adhesive
was recorded. All testing was performed in the home cage. If
the mouse did not remove the adhesive within 60’s, the trial was
ended. Time to make contact/remove the adhesive was recorded
over three trials (16).

Beam Transversal
This test assesses motor coordination and balance. A 1m
plexiglass beam (Stark’s Plastics, Forest Park, OH) was used. The
beam was constructed of four segments of 0.25m in length with
each segment having a progressively thinner width: 3.5, 2.5, 1.5,
and 0.5 cm. The widest segment acted as the loading platform for
the animals and the narrowest end was placed into the home cage.
Mice had 2 days of training prior to testing. On the 1st day of
training, mice received one trial with the home cage positioned
close to the loading platform and the mice were guided forward
along the narrowing beam. Mice received two more trials with
limited or no assistance to encourage forward movement on
the beam. On the 2nd day of training, mice had three trials to
transverse the beam and generally did not require assistance in
forward movement. On the 3rd day, mice were tested over three
trials for time to transverse from the loading platform to the
home cage. Timing began when mice placed their forelimbs onto
the 2.5 cm segment and ended when one forelimb reached the
home cage. Maximum test time (cut-off time) was 60 s, and the
mice were videotaped. Videos were viewed in slow motion to
count errors made by each mouse. An error was counted when,
during forward movement, at least 50% of a limb (forelimb or
hindlimb) slipped off the beam. Slips were not counted if the
mouse was not making forward movement or when the mouse’s
head was oriented to the left or right of the beam. Percentage of

misstep errors were calculated for control and ASO mice across
all three trials and averaged (16).

Hindlimb Clasping Reflex
This reflex indicates uncoordinated movement and precedes the
symptomatic onset of hindlimb paralysis. Mice were gently lifted
upward by the mid-section of the tail and observed over∼5–10 s
(16, 61). Mice were assigned a score of 0–3 based on the extent to
which the hindlimbs clasped inward. A score of 0, indicating no
clasping, was given tomice that freelymoved both their limbs and
extended them outward. A score of 1 was assigned to mice which
clasped one hindlimb inward for the duration of the restraint or
if both legs exhibited partial inward clasping. A score of 2 was
given if both legs clasped inward for most of the observation,
but still exhibited some flexibility. A score of 3 was assigned if
mice displayed complete paralysis of hindlimbs that immediately
clasped inward and exhibited no signs of flexibility.

Stool Sample Collection and Microbiota
Analyses
Mice stool pellets were collected over a 24 h period before
tissue collection and stored at −80◦C until analysis. Total
genomic DNA was extracted from the mice feces using
the FastDNA SPIN Kit from the manufacturer’s protocol
(FastDNA Spin Kit for Soil, MP Biomedicals, Solon, OH),
and verified with fluorometric quantitation (Qubit 3.0, Life
Technologies, Grand Island, NY, USA). To reduce batch
effects, all samples were extracted using the same DNA
extraction kit at the same time, and library preparation for
all samples was conducted in 96-well plates simultaneously.
Primers 515F/806R (515F: GTGTGYCAGCMGCCGCGGTAA;
806R: CCGGACTACNVGGGTWTCTAAT) modified from the
Earth Microbiome Project primers, and targeting the V4 variable
region of microbial 16S ribosomal RNA (rRNA) genes, were used
for PCR, and prepared for high-throughput amplicon sequencing
using a two-stage PCR method, as previously described (62).
Sequencing was performed using an Illumina MiniSeq, with
a V2 kit and paired-end 150 base reads at the Genomics
and Microbiome Core Facility (GMCF) at Rush University
Medical Center.

16S rRNA V4 Sequencing Analysis
Raw sequences were merged using the software package PEAR
(Paired-End read merger) algorithm (v0.9.11) (Dalhousie
University, Halifax, Nova Scotia, Canada) (63). Merged
sequences shorter than 240 bases were removed. Merged
sequences were then processed (including denoising) using the
DADA2 algorithm within the QIIME2 (v 2020.8.0) workflow
(64, 65). The amplicon sequence variants (ASVs) generated were
used for all downstream analyses. Taxonomy was assigned to
each ASV using the naïve Bayes classifier employing the SILVA
138 99% OTUs reference database (66, 67). A total of 1,156,631
sequencing clusters were generated, with an average of 20,654
clusters per sample (median = 27,444; min = 0; max = 41,767).
One reagent contaminant ASV (Pseudomonas) was identified
and removed using decontam package based on the prevalence
of the ASV in the reagent negative blank controls (n = 5), using
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default parameters (68). Unassigned, eukaryote, chloroplast,
and mitochondrial ASVs were removed from datasets prior to
statistical analyses (69). Raw sequence data were deposited in the
NCBI Sequence Read Archive under BioProject PRJNA781983.

Statistical Analysis
Experimental and Behavioral Statistical Analyses
These data are reported as mean + standard error of the mean
(SEM), unless otherwise stated. Differences among means were
analyzed using GraphPad Prism (v9.3.1) software (GraphPad
Software, La Jolla, CA).We removed outlier points by eliminating
any points that were two standard deviations above and below
the mean of each respective group. Two-way analysis of variance
(ANOVA) was performed to evaluate the significant differences
with genotype (control vs. ASO) or treatment (vehicle vs. DSS).
Multiple group comparisons were performed using Tukey’s post-
hoc comparison. Pearson correlation analysis was performed to
evaluate associations between intestinal permeability and brain-
related outcomes. Significance was considered at the value p <

0.05 (16, 40).

Microbiota Statistical Analysis
Analyses of alpha- and beta-diversity were used to compare
fecal microbial community structure. All analyses were
performed on feature (ASV) counts. Alpha-diversity metrics
(i.e., Shannon index, Simpson’s index, Observed features, and
Pielou’s Evenness) were calculated on rarefied datasets (19,000
sequences/sample). Differences in alpha diversity were assessed
for significance using the Mann-Whitney U-test (MWU) with
Benjamini–Hochberg false-discovery rate (FDR) correction for
multiple comparisons (q< 0.05). Analyses were performed using
the software package GraphPad Prism (v9.3, GraphPad Software
LLC San Diego California). Permutation Multivariate Analysis
of Variance (PERMANOVA) with 9,999 permutations was used
to assess global differences in microbial community structure
between treatments (70). Adjustment for multiple testing was
conducted using the Benjamini–Hochberg FDR correction.
Visualization of data was performed using principal coordinates
analysis (PCoA) based on a Bray–Curtis dissimilarity distance
matrix within the software package QIIME2 (65). Differential
abundance analyses of individual taxa between groups were
performed using the software package DESeq2, generating an
FDR q-value (71, 72). DESeq2 has been shown to be appropriate
for differential abundance comparisons in studies with small
sample size groups (<20) or unbalanced design (73). Individual
taxa percent mean relative abundances (>1%) and standard
deviations (SD) calculated and depicted as stacked histograms.
To identify taxa that most strongly explained between group
differences, a Linear discriminant analysis Effect Size (LEfSe)
analysis was performed (74). LEfSe uses the non-parametric
factorial Kruskal-Wallis sum-rank test to detect individual
taxa that differ between treatments and animal genotype.
Taxa that are significant by Kruskal-Wallis are subsequently
investigated using a set of pairwise tests among subclasses using
the (unpaired) Wilcoxon rank-sum test. As a last step, LEfSe uses
Linear Discriminant Analysis to estimate the effect size of each
differentially abundant taxa. Differentially abundant taxa that

were statistically significant using an alpha of (0.05) and exceeded
an LDA log score of at least (±2) were graphically represented.

RESULTS

Effects of DSS on Intestinal Barrier
Function
A dose response was conducted to identify an optimal dose of
DSS that would be used for all subsequent experiments. Mice
were given a range of DSS from 0.5 to 2% (given daily over
three cycles) to determine the lowest dose that caused intestinal
barrier dysfunction [sucralose/lactulose ratio (S/L)] without
overt intestinal inflammation. Results demonstrated that the
0.5% dose of DSS did not induce intestinal barrier dysfunction
and 2% induced overt intestinal inflammation whereas 1%
DSS increased the S/L ratio without an increase in intestinal
inflammation (i.e., calprotectin) data not shown. Therefore, 1%
DSS was used for all experiments in this study.

DSS disrupted intestinal barrier integrity in the colon (i.e.,
large intestine) but not in the small intestine (Figures 2A,B).
Specifically, DSS administration significantly increased the S/L
ratio (Figure 2A: two-way ANOVA: genotype p= 0.13, treatment
p = 0.02, interaction p = 0.60) without affecting urinary
mannitol (data not shown), lactulose (data not shown), nor the
lactulose/mannitol ratio (Figure 2B: two-way ANOVA: genotype
p= 0.08, treatment p= 0.11, interaction p= 0.66).

Results from the sugar test indicated that DSS-induced
intestinal barrier dysfunction primarily occurred in the
colon, therefore the AJC proteins E-cadherin and ZO-1
were assessed in colon tissue. DSS administration reduced
E-cadherin staining (Figure 2C) and caused a significant shift
from E-cadherin from the membrane to the cytosolic fraction
as indicated by the decrease in the membrane/cytoplasmic
ratio which was observed in both control and ASO
mice (Figure 2D: two-way ANOVA: genotype p = 0.56,
treatment p = 0.01, interaction p = 0.26). Similarly, ZO-1
staining was reduced by DSS treatment (Figure 2E). The
membrane/cytoplasmic ratio of ZO-1 was significantly reduced
by DSS in both control and ASO mice (Figure 2F: two-way
ANOVA: genotype p = 0.34, treatment p = 0.02, interaction
p= 0.34).

Taken together the sugar test and the AJC protein data support
that DSS induced intestinal barrier dysfunction in the colon
(treatment effect), but these effects could not be distinguished
based on genotype (i.e., control and ASO mice respond similarly
to DSS).

Effects of DSS on Intestinal Inflammation
DSS caused mild colonic inflammation in both control and
ASO mice (Figure 3). Specifically, DSS-treated control and ASO
mice had shorter colon than vehicle treated mice which is
consistent with intestinal inflammation (Figure 3A: two-way
ANOVA: genotype p = 0.12, treatment p = 0.02, interaction p
= 0.77). There was a concurrent increase in tissue MPO, marker
of tissue inflammation in a subset of both control and ASO mice
(Figure 3B: two-way ANOVA: genotype p = 0.91, treatment p <

0.00, interaction p = 0.92). The increase in MPO was significant
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FIGURE 2 | Impact of DSS on the intestinal barrier. (A) Mice treated with DSS exhibited intestinal barrier dysfunction, specifically in the colon, as assessed the by the

sucralose/lactulose ratio. (B) Small intestinal permeability was similar in all groups regardless of genotype and treatment, based on the lactulose/mannitol ratio. (C)

Immunofluorescent staining of E-cadherin (red) in colonic tissue (DAPI, blue) showing reduced staining in DSS treated tissue. (D) The membrane/cytoplasm ratio of

(Continued)
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FIGURE 2 | E-cadherin showed that DSS-treated mice have less E-cadherin in the cytosol compared to H2O-treated mice. (E) Immunofluorescent staining of ZO-1

(red) in colonic tissue (DAPI, blue) shows reduced staining in DSS treated tissue. (F) There was a significant reduction of ZO-1 in the membrane/cytoplasm ratio in

mice treated with DSS. Outliers were omitted prior to analysis (>2 standard deviations from the mean). Two-way ANOVA was conducted and values for different

factors are indicated in the graphs followed by post-hoc Tukey which is indicated on each graph when appropriate *p < 0.05. ASO, α-synuclein overexpressing;

W/H2O, water; DSS, dextran sodium sulfate.

FIGURE 3 | Measures of colon inflammation in DSS-treated control and ASO mice. We used three measures of colonic inflammation: colonic shortening, colonic

MPO, and fecal calprotectin (see Methods). (A) DSS-treated mice had significantly shorter colons than mice on water, regardless of genotype. (B) Mice treated with

DSS also had significantly higher colonic MPO levels compared to mice on water. (C) Fecal calprotectin levels were similar for WT and ASO mice, regardless of

treatment. (D) H&E staining showed diffuse inflammatory infiltration in the mucosa and submucosa in DSS-treated mice, regardless of genotype. (E) DSS treatment

was associated with increased histological score compared to H2O-treated mice, regardless of genotype. Outliers were omitted prior to analysis (>2 standard

deviations from the mean). Two-way ANOVA was conducted and values for different factors are indicated in the graphs followed by post-hoc Tukey which is indicated

on each graph when appropriate *p < 0.05. ASO, α-synuclein overexpressing; H2O, water; DSS, dextran sodium sulfate; MPO, Myeloperoxidase.

but was driven by a few mice, with most mice not demonstrating
an increase in MPO. Fecal calprotectin was not significantly
increased by DSS (Figure 3C: two-way ANOVA: genotype p =

0.81, treatment p = 0.97, interaction p = 0.94). To support the
tissue inflammation data, colonic tissue was stained with H&E
and scored for intestinal inflammation by a pathologist. H&E
staining showed diffuse inflammatory infiltration in the mucosa
and submucosa in DSS-treated mice, regardless of genotype
(Figures 3D,E). These data collectively showed that DSS
administration induced colon shortening length and increase in
MPO in a subset of mice but had no effect on fecal calprotectin
which can be interpreted as mild colonic inflammation.
Additionally, DSS had similar inflammatory effects on control
and ASO mice.

Effects of DSS on the Intestinal Microbiota
Microbial communities were examined for an overall
treatment effect, regardless of genotype. No significant
differences in alpha-diversity indices were observed (MWU:
Supplementary Table 1), however between group differences
in beta diversity were noted (q < 0.00, PCoA: Figure 4A;
PERMANOVA: Table 1). Compared to H2O-fed mice,
DSS-treated mice demonstrated a significant increase in
differential abundance for the putative pro-inflammatory
genus Bacteroides, along with a loss of putative beneficial
SCFA-producing genera that included Lachnospiraceae (A2;
UCG-001; and Uncultured), Bifidobacterium, Roseburia, Dorea,
Marvinbryantia, Eubacterium xylanophilum, and Blautia (q
< 0.05, Supplementary Tables 2, 3). LEfSe analysis showed
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FIGURE 4 | Characterization of fecal microbiota in mice treatment and genotype groups using 16S rRNA sequencing. (A) Mice samples clustered separately between

treatments, regardless of genotype. (B) LEfSe identified bacterial genera clades that are differentially abundant with treatment, irrespective of genotype. Clade colors:

H2O (green) and DSS (red). Clades in this graph were statistically significant (p < 0.05) and exceed an LDA log score of at least (± 2). (C) Bar charts of the mean

relative abundance of fecal microbial communities at the taxonomic level of genus for mice genotypes with treatments. The mean relative abundance of taxa with

>1% average relative abundance are shown. (D–F) Fecal microbial communities clustered separately between mice genotypes with treatments. PCoA plots were built

on Bray-Curtis dissimilarity metrics. H2O, water; DSS, dextran sodium sulfate; ASO, α-synuclein overexpressing.

that H2O-fed mice were associated with multiple putative
SCFA-producing bacteria, whereas DSS-treated mice were
associated with putative pro-inflammatory bacteria genera
Akkermansia and Bacteroides (Figure 4B). Irrespective of
genotype, DSS administration resulted in a robust dysbiotic
pro-inflammatory microbial profile characterized by loss of
putative SCFA-producing bacteria with a concurrent enrichment
in putative pro-inflammatory bacteria.

Next, microbial communities were examined for treatment
effects within each genotype (i.e., control and ASO). Two-
way ANOVA indicated no significant genotype, treatment, or
interaction effects for alpha diversity examined at the feature level
(data not shown). However, between group differences in beta-
diversity in stool microbial community structures were noted
(PERMANOVA:Table 1; Figures 4C–F).Microbial communities
across all groups were different and dominated by bacteria
from the genera Muribaculaceae, Lachnospiraceae Unclassified,
Lactobacillus, and Bacteroides (>50% of all sequences; Figure 4C;
Supplementary Table 4). DSS administration to control mice

significantly increased (q < 0.05) the abundance of putative
pro-inflammatory genus Bacteroides and significantly decreased
putative beneficial SCFA-producing genera Lachnospiraceae
(A2 and UCG-001), Dorea, Eubacterium xylanophilum, and
Lactobacillus (DeSeq2: Table 2). This dysbiotic microbial profile
was similarly noted in ASO mice given DSS which increased
putative pro-inflammatory genus Bacteroides, with a significant
decrease (q < 0.05) in the abundance of putative beneficial
SCFA-producing genera, including Lachnospiraceae (A2;
UCG-001; Uncultured; and Unclassified), Dorea, Eubacterium
xylanophilum, Marvinbryantia, Anaerotruncus, Dorea, and
Blautia (DeSeq2: Table 2). Overall, DSS induced microbiota
dysbiosis in both control and ASO mice; however, the ASO mice
given DSS showed a greater loss of beneficial SCFA-producing
bacteria, than control mice given DSS.

Effect of DSS on Motor Function
Time to remove an adhesive from the nasal bridge was
significantly impacted by genotype, although DSS-induced
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TABLE 1 | Significant differences in intestinal microbial community structures were observed between mice groups in beta diversity analyses conducted on microbial

features.

Mice comparisons Feature taxonomic level

Sample size Permutations Pseudo-F p-value q-value

H2O vs. DSS 40 9,999 5.53 0.0001 0.0001

CONTROL+H2O vs. CONTROL+DSS 21 9,999 3.28 0.0001 0.0003

ASO+H2O vs. ASO+DSS 19 9,999 3.37 0.0004 0.0008

CONTROL+H2O vs. ASO+H2O 22 9,999 1.93 0.0156 0.0187

CONTROL+DSS vs. ASO+DSS 18 9,999 1.80 0.0255 0.0255

PERMANOVA results are based on a Bray-Curtis distance matrix. Significance was determined using 9,999 permutations and corrected for multiple testing using the Benjamini-Hochberg

adjusted p-values (q < 0.05 indicated by bold; p < 0.05 indicated by italics).

H2O, water; DSS, dextran sodium sulfate; ASO, alpha-synuclein overexpressing.

Mice sizes: H2O (n = 22); DSS (n = 18); CONTROL+H2O (n = 10); CONTROL+DSS (n = 11); ASO+H2O (n = 12); ASO+DSS (n = 7).

intestinal barrier dysfunction did not alter this behavior
(Figure 5A: two-way ANOVA: genotype p < 0.00, treatment
p = 0.51, interaction p = 0.80). There were no significant
differences in time to cross the beam (Figure 5B: two-way
ANOVA: genotype p = 0.60, treatment p = 0.85, interaction
p = 0.18). However, evaluating the number of errors (i.e.,
stepping off the beam) revealed a significant effect of genotype
wherein ASOmice had significantly greater missteps than control
mice, but this was unaltered by DSS-induced intestinal barrier
dysfunction (Figure 5C: two-way ANOVA: genotype p < 0.00,
treatment p = 0.59, interaction p = 0.08). Finally, Chi-square
analysis of the hindlimb clasping score indicated that more ASO
mice had impaired motor function compared to control mice
(Figure 5D: Chi-square p < 0.00). Taken together, a genotype-
specific effect was found in three of the behavioral outcomes
including adhesive removal, missteps in beam crossing, and
hindlimb clasping reflex score. However, DSS administration did
not impact motor function.

Effect of DSS on Brain-Specific PD-Like
Outcomes
There was a significant impact of genotype on Iba-1 with
levels being lower in ASO mice compared to control mice;
however, DSS administration did not impact Iba-1 (Figure 6A:
two-way ANOVA: genotype p = 0.02, treatment p = 0.69,
interaction p = 0.58). However, perhaps more important than
evaluating the presence of microglia (i.e., Iba-1 optical density) is
microglia morphology. Non-activatedmicroglia morphologically
are ramified in shape. Once microglia are activated (e.g., in
response to damaged cells, bacterial products), they retract their
processes and take on an ameboid morphology with includes an
increase in cell body size (40, 41, 75). Assessing cell body cell
size revealed a genotype-specific significant difference between
control and ASO mice with greater activated Iba-1 positive
microglia in ASO mice; however, there was no impact of DSS
administration on microglial morphology (Figure 6B: two-way
ANOVA: genotype p = 0.04, treatment p = 0.89, interaction
p = 0.14). ASO mice had significantly lower levels of TH
staining compared to controls, however DSS treatment did not

impact TH staining (Figure 6C: two-way ANOVA: genotype
p = 0.01, treatment p = 0.61, interaction p = 0.77). We
have included representative images of Iba-1 (Figures 6D,E)
and TH (Figure 6F) that was used for analysis. These data
demonstrate the ASO mice have fewer microglia than controls,
a distinct microglia phenotype compared to controls, and fewer
dopaminergic terminals than control mice. However, there is
no evidence that these PD-like brain outcomes were impacted
by DSS.

Effect of DSS on Bacterial Translocation
and Systemic Inflammation
DSS administration significantly increased serum LBP in ASO
mice, an effect that was not observed in control mice (Figure 7A:
two-way ANOVA: genotype p = 0.55, treatment p = 0.14,
interaction p = 0.02). This suggests that the host immune
response to barrier dysfunction is different in control and
ASO mice. Despite the increase in LBP, none of the pro-
inflammatory cytokines evaluated in the serum were increased
by DSS administration (nor were they impacted by genotype)
including IL-1β, TNF-α, or IL-6 (Figures 7B–D). Paradoxically,
DSS-induced intestinal barrier dysfunction increased serum IL-
10 in ASO mice (Figure 7E: two-way ANOVA: genotype p =

0.19, treatment p= 0.03, interaction p= 0.02). IL-10 is generally
considered an anti-inflammatory cytokine, and this may (at least
partially) represent a compensatory mechanism that may have
prevented DSS-induced barrier dysfunction from promoting PD-
like behavior and brain pathology. Taken together, these data
indicate that ASO mice given DSS have higher levels of LBP
than control mice and ASO mice given water which may reflect
the increase in pro-inflammatory LPS-containing bacteria in
this group. Despite this increase there was not an increase in
pro-inflammatory cytokines, but the anti-inflammatory cytokine
IL-10 was increased.

Relationship Between Intestinal Outcomes
and Motor Function / Brain Pathology
Despite being inbred and genetically similar, outcomes
reflect heterogenous outcomes in terms of intestinal
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TABLE 2 | Genus taxonomic level differential abundance DeSeq2 analysis between control or ASO mice treated with water and dextran sodium sulfate.

(Phylum) Genus Base mean Log2 FC p-value q-value

Control+DSS over Control+H2O

(Firmicutes) Erysipelatoclostridiaceae Unclassified 10.56 6.50 8.78E-05 0.002

(Cyanobacteria) Gastranaerophilales 57.99 1.72 0.009 0.096

(Bacteroidota) Bacteroides 2,400.21 1.34 0.002 0.026

(Firmicutes) Clostridia vadinBB60 group 171.38 0.87 0.031 0.229

(Actinobacteriota) Enterorhabdus 152.25 −1.12 0.004 0.048

(Proteobacteria) Parasutterella 33.20 −1.80 0.010 0.096

(Firmicutes) [Eubacterium] brachy group 5.43 −1.88 0.031 0.229

(Desulfobacterota) Desulfovibrio 88.80 −2.27 4.52E-04 0.007

(Firmicutes) Lactobacillus 4,531.14 −2.77 2.44E-04 0.005

(Actinobacteriota) Atopobiaceae unclassified 5.44 −4.17 0.017 0.150

(Firmicutes) [Eubacterium] xylanophilum group 68.83 −4.36 0.003 0.041

(Firmicutes) Lachnospiraceae UCG-001 246.12 −8.33 4.45E-07 1.54E-05

(Firmicutes) Lachnospiraceae A2 49.43 −9.70 3.68E-09 1.92E-07

(Firmicutes) Dorea 35.45 −9.95 1.17E-10 1.22E-08

ASO+DSS over ASO+H2O

(Firmicutes) Tyzzerella 0.54 4.12 0.047 0.200

(Firmicutes) Erysipelotrichaceae 2.21 3.39 0.011 0.073

(Firmicutes) Lachnospiraceae UCG-006 109.28 2.55 9.50E-05 1.80E-03

(Bacteroidota) Bacteroides 2,400.21 1.22 0.010 0.073

(Firmicutes) Colidextribacter 92.93 −0.82 0.045 0.204

(Firmicutes) Lachnospiraceae Unclassified 2,717.42 −1.02 0.005 0.045

(Firmicutes) Oscillibacter 155.29 −1.03 0.024 0.127

(Bacteroidota) Rikenellaceae RC9 gut group 442.34 −1.77 0.002 0.026

(Firmicutes) Lachnospiraceae NK4A136 group 930.44 −1.84 0.029 0.142

(Firmicutes) Ruminococcaceae Unclassified 35.57 −1.87 0.001 0.016

(Bacteroidota) Odoribacter 226.57 −2.11 0.024 0.127

(Desulfobacterota) Bilophila 21.61 −2.41 0.015 0.099

(Campilobacterota) Helicobacter 28.16 −2.91 0.03 0.142

(Firmicutes) Blautia 55.79 −3.84 3.29E-05 7.82E-04

(Firmicutes) Dorea 16.54 −4.07 0.003 0.033

(Firmicutes) Anaerotruncus 6.98 −4.18 0.003 0.033

(Firmicutes) Erysipelotrichaceae Unclassified 4.00 −4.29 0.022 0.127

(Firmicutes) Marvinbryantia 64.65 −5.38 0.001 0.014

(Firmicutes) Lachnospiraceae Uncultured 13.63 −5.69 3.65E-06 1.73E-04

(Firmicutes) Lachnospiraceae UCG-001 246.12 −6.54 1.30E-04 0.002

(Firmicutes) Lachnospiraceae A2 49.43 −7.36 5.85E-06 1.85E-04

(Firmicutes) [Eubacterium] xylanophilum group 68.83 −8.86 9.04E-09 8.59E-07

DeSeq2: Taxa shown have adjusted p-values (q < 0.05 indicated by bold; p < 0.05 indicated by italics). Base Mean is the mean of normalized samples. Log2FC, Log2 fold change of

taxa in Control or ASO+DSS mice in comparison to Control or ASO+H2O mice samples.

H2O, water; DSS, dextran sodium sulfate; ASO, alpha-synuclein overexpressing.

Control+H2O (n = 10); Control+DSS (n = 11); ASO+H2O (n = 12); ASO+DSS (n = 7).

barrier dysfunction, intestinal and systemic inflammation.
Thus, it is conceivable that those mice with the highest
DSS-induced intestinal barrier dysfunction, intestinal
inflammation, microbiota dysbiosis, and systemic
inflammation may correspondingly show greater motor
dysfunction and brain pathology. However, none of the
intestinal outcomes nor systemic inflammation significantly
correlated with motor function or brain outcomes
(Supplementary Table 5).

DISCUSSION

There are numerous different pathways by which the gut
could contribute to PD and in this study, we evaluated the
contribution of intestinal hyperpermeability to the PD-like
phenotype based on the following rationale: (1) data from
our group has demonstrated intestinal hyperpermeability is
observed in PD patients (8, 76, 77), (2) numerous conditions
that may be risk factors for PD (e.g., diabetes, ulcerative colitis)
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FIGURE 5 | Parkinsonian behavioral analysis in control and ASO mice. Motor function was evaluated using four behaviors. (A) Adhesive removal: ASO mice

significantly took longer to remove the adhesive from the bridge of the nose than WT mice. (B) Beam traverse: There was no difference in the time to cross the beam

between WT and ASO mice. (C) ASO mice had significantly more missteps off the beam than WT mice. (D) Hindlimb Clasp Reflex Score: ASO mice had significantly

worse hindlimb clasp than WT littermates. Outliers were omitted prior to analysis (>2 standard deviations from the mean). Two-way ANOVA was conducted and

values for different factors are indicated in the graphs followed by post-hoc Tukey which is indicated on each graph when appropriate *p < 0.05, **p < 0.01, ***p <

0.001. (D) Chi-square analysis. ASO, α-synuclein overexpressing; H2O, water; DSS, dextran sodium sulfate.

are associated with intestinal hyperpermeability (78, 79), and
(3) intestinal hyperpermeability is associated with increased
systemic inflammation which may drive neuroinflammation in
PD (80, 81). Thus, the rationale behind this study was to
investigate if increased intestinal permeability could promote
neuroinflammation and exacerbate the PD phenotype in
ASO mice through a mechanism including intestinal and/or
systemic inflammation.

Administration of DSS in drinking water is a well-established
rodent model to induce intestinal barrier dysfunction, intestinal
inflammation, and pro-inflammatory changes in the intestinal
microbiota (82, 83). This study demonstrated that the low dose
(1%) DSS was sufficient to cause intestinal (colonic) barrier
dysfunction and intestinal microbiota dysbiosis, but only mild
intestinal inflammation without systemic inflammation and that

this was not sufficient to worsen PD-like brain pathology nor
motor function in ASO mice.

This finding appears to be in contradiction to prior studies
demonstrating that a high dose of DSS causes marked intestinal
inflammation and exacerbates the PD-like phenotype in rodent
toxin models of PD. One recent study combined administration
of 2.5% DSS treatment with paraquat/LPS and found that DSS
exacerbates LPS/paraquat effects on microglial activation (84).
Houser et al. used 2% DSS and demonstrated showed worsening
of PD-like brain pathology induced by MPTP (85). Higher doses
of DSS (2–2.5%) are well-established to cause severe intestinal
and systemic inflammation. The difference between these prior
studies and this current report suggests that overt intestinal
inflammation (high levels of stool calprotectin) and/or systemic
inflammationmay be required to promote the PD-like phenotype
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FIGURE 6 | Brain related PD outcome measures exhibit genotypic ASO but not DSS treatment effects. Mice were evaluated for brain pathology. (A) ASO mice had a

significantly lower amount of microglia than controls. (B) ASO mice had significantly more activated microglia than WT. (C) ASO mice had a significantly less TH than

control. (D) Representative images of Iba-1 positive microglia at 10x magnification. (E) Representative images of Iba-1 positive microglia at 63x magnification. (F)

Representative images of TH positive dopaminergic terminals at 10x magnification Outliers were omitted prior to analysis (>2 standard deviations from the mean).

(A–C) Two-way ANOVA was conducted and values for different factors are indicated in the graphs followed by post-hoc Tukey (no post hoc significance was

identified). ASO, α-synuclein overexpressing; H2O, water; DSS, dextran sodium sulfate; TH, Tyrosine hydrolase; Iba-1, Ionized calcium binding adaptor molecule 1.

in ASO mice, but such a conclusion will require additional
investigation (e.g., DSS dose response). However, differences in
microbiota communities between institutions [so “cage effects”
(86)] may also partially account for differences between studies
as the microbiota can dictate the response to intestinal disruptors
such as alcohol, stress, and non-steroidal anti-inflammatory
medications (87).

The concept that intestinal inflammation is a key feature
in promoting PD is supported by observations in humans.
Epidemiological studies demonstrate that inflammatory bowel
disease (IBD) is a risk factor for PD (29, 79, 88, 89).
IBD is characterized by chronic intestinal inflammation, pro-
inflammatory dysbiosis and intestinal leak (27, 28, 90). Treatment
of IBD patients with biologics (e.g., TNF antibody) that effectively
control intestinal inflammation and induce remission in IBD
patients, reduces risk of PD (despite most patients still having
intestinal barrier dysfunction and microbiota dysbiosis) (91).
This evidence supports that intestinal inflammation is a critical
feature mediating the effects of the intestinal barrier and
intestinal microbiota on PD.

A few findings observed in ASO mice require additional
discussion. First, despite having similar levels of intestinal barrier
dysfunction ASO mice had higher levels of LBP. This can be

explained in one of two ways: (1) DSS treatment had different
impact on microbiota function in ASOmice compared to control
mice leading to release of more LPS in ASO mice or other
metabolic impact that is not reflect in microbiota composition
(92, 93) or (2) differences in LBP levels could reflect differences
in hepatic immune response to intestinal barrier dysfunction.
Second, the finding that serum IL-10 was increased in only DSS-
treated ASO mice was unexpected because DSS caused intestinal
barrier dysfunction in both ASO and control mice. But elevated
serum IL-10 along with elevated serum LBP in DSS-treated ASO
mice suggest that immune response to the inflammatory trigger
in ASO mice is different than control mice. This possibility
is supported by recent studies in patients with PD who have
dysregulated and exaggerated immune/inflammatory signaling
pathways (94). Future studies are required to directly test this
hypothesis in ASO mice.

There are some study limitations worth noting. There is
no ideal animal model for PD and each model recapitulates
only some aspects of PD. In this study, a genetic model of
misfolded α-synuclein was used but the effects of low dose
DSS should be studied in other PD models such as transgenic
mice that overexpress human α-synuclein with a PD-associated
mutation (A53T) (95), Parkin knockout mice (96, 97), and the
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FIGURE 7 | Systemic Inflammation Markers. (A) Serum LBP was higher in ASO mice that received DSS although this failed to reach statistical significance. However,

there was significance in the interaction between genotype and treatment (p = 0.0240). Data are presented as means (ng/ml). There was no significant elevation of

systemic inflammatory cytokines in DSS treated control or ASO mice including (B) IL-1b, (C) TNFa, and (D) IL-6 the three key markers in systemic inflammation. (E)

Only DSS treated ASO mice displayed significantly (p = 0.0328) increased serum IL-10. Outliers were omitted prior to analysis (>2 standard deviations from the

mean). Two-way ANOVA was conducted and values for different factors are indicated in the graphs followed by post-hoc Tukey which is indicated on each graph

when appropriate *p < 0.05, **p < 0.01. ASO, α-synuclein overexpressing; LBP, Lipopolysaccharide binding protein.

mitopark mouse model (98, 99) could all be considered for
future studies. Additionally, this study administered DSS in
three cycles to mimic chronic, intermittent barrier dysfunction;
future studies could either use a higher dose of DSS (e.g., 2%
DSS) or extend this treatment period to four to five cycles
to determine if longer duration would be sufficient to trigger
more severe intestinal barrier dysfunction / inflammation and
promote the PD-like phenotype. Another consideration is how
within group variability and between institution differences in
microbiota may be modifying the response to low dose DSS.
Although these mice are genetically identical there clearly is
variability in the response to DSS. The low dose of DSS likely
contributed to the variability (as opposed to a higher dose that
would induce robust barrier dysfunction associated with severe
intestinal inflammation). However, this variability also represents
what happens in the population insomuch as individuals have
a different response to the same “disruptor” examples include
alcohol (100–102), stress (103, 104), NSAID (105, 106) so the
variability could be viewed as a strength in that it models
individual susceptibility.

To the best of our knowledge, no studies have investigated
the role of intestinal permeability without severe intestinal

inflammation in rodent models of PD to determine whether
intestinal inflammation is a critical element of the gut-brain
axis in the PD pathogenesis. This study provides a significant
step forward in our understanding of the role of intestinal
permeability, intestinal inflammation and the gut microbiome in
the gut-brain axis and PD insomuch as intestinal and systemic
inflammation appear to be key features mediating the impact of
the intestine on the brain in (at least) the ASO PD model.
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Background and Purpose: The diagnosis of multiple system atrophy (MSA) remains

challenging in clinical practice. This study investigated the value of hypointense signals in

the putamen (“black straight-line sign”) in diffusion-weighted imaging (DWI) of brain MRI

for distinguishing (MSA) from Parkinson’s disease (PD).

Methods: We retrospectively enrolled 30 MSA patients, 30 PD patients, and 30

healthy controls who had undergone brain MRI between 2016 and 2020. Two readers

independently assessed the signal intensity of the bilateral putamen on DWI. The

putaminal hypointensity was scored using 4-point visual scales. Putaminal hypointensity

and the presence of a “black straight-line sign” were statistically compared betweenMSA

and PD or healthy controls.

Results: The mean scores of putaminal hypointensity in DWI in the MSA group were

significantly higher than in both the PD (U= 315.5, P= 0.034) and healthy control groups

(U = 304.0, P = 0.022). Uni- or bilateral putaminal hypointensity in DWI with a score ≥2

was identified in 53.3% (16/30), 16.7% (5/30), and 13.3% (4/30) of MSA, PD, and healthy

controls, respectively, with significant differences between MSA and PD (X2 = 8.864, P

= 0.003) or healthy controls (X2 = 10.800, P = 0.001). Notably, the “black straight-line

sign” of the putamen was observed in 16/30 (sensitivity 53.3%) patients with MSA, while

it was absent in PD and healthy controls (specificity 100%). There were no significant

differences for the presence of “black straight-line sign” in the MSA-P and MSA-C groups

(X2 = 0.433, P = 0.510).

Conclusion: The “black straight-line sign” of the putamen in DWI of head MRIs has the

potential to serve as a diagnostic marker for distinguishing MSA from PD.

Keywords: multiple system atrophy, diffusion-weighted imaging, MRI, putamen hypointensive signal, Parkinson’s

disease
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INTRODUCTION

Multiple system atrophy (MSA) is a rare neurodegenerative
disease with the pathological hallmark of oligodendrocyte
inclusion bodies (GCI) composed of alpha-synuclein aggregation
(1). Clinically, the main manifestations of MSA are autonomic
dysfunction superimposed with motor disorders of varying
extent, specifically either Parkinsonian type (MSA-P) with
Parkinson’s syndrome as the main manifestation and cerebellar
type (MSA-C) with cerebellar ataxia as the main manifestation
(1). The MSA diagnostic criteria were revised in 2008 by Gilman
et al. (2); however, its diagnosis remained challenging for clinical
neurologists. For example, when autonomic dysfunction is not
obvious until the advanced stage or when it only manifests as
isolated Parkinsonism or cerebellar ataxia (1, 3, 4). It is therefore
difficult to distinguish MSA from other Parkinsonisms, such
as idiopathic Parkinson’s disease (PD), progressive supranuclear
palsy, and progressive ataxia such as spinocerebellar ataxia (1, 4,
5). Despite being the focus of various studies, the biomarkers used
for MSA diagnosis, such as detection of alpha-synuclein in serum
or cerebrospinal fluid, still lack generalized application and their
accuracy remains unconfirmed (6, 7). Imaging findings play an
important role in the diagnosis of MSA. The classic “hot cross
bun” sign, “hyperintense putaminal rim” sign, cerebellopontine
atrophy, an abnormally high signal in the pontine peduncle, and
other abnormalities that reflect neuronal cell death and gliosis on
structural magnetic resonance images (MRI) are widely known,
but they are not specific to MSA (8, 9). The application of
functional MRI has a certain diagnostic value, but it is difficult
to perform these complicated examinations and analyses in
routine clinic conditions (10, 11). Recent research has revealed
that a hypointense putaminal signal on susceptibility-weighted
imaging (SWI) of MRI is of great significance in the diagnosis
of MSA (12, 13). A signal hypointensity score over 2 [unilateral
or bilateral, a score of 2 when the intensity was similar to the Vein
of Galen and with a posterolateral gradient; and score of 3 when
marked posterolateral to anteromedial hypointensity (13)] in the
putaminal margin is specific to MSA. Currently, we also find
that there are MSA patients who also have similar hypointense
signals in the putamen on the diffusion-weighted imaging (DWI)
sequences and the low signals at the edge of the putamen show
a straight distribution—which we term the “black straight-line
sign”. The characteristics of the “black straight-line sign” and its
diagnostic value in MSA remains unknown. The current study
explored the characteristics of the putaminal “black straight-
line sign” and its differential diagnosis between MSA, PD, and
normal controls.

MATERIALS AND METHODS

This study was approved by the ethics committee of Peking
University First Hospital in accordance with the Declaration
of Helsinki. Each participant or their legal guardians signed a
written informed consent before participating in the study.

Subjects and Patient Consents
This was a retrospective study undertaken in the department
of neurology at the Peking University First Hospital. Thirty

consecutive inpatients with MSA, 30 non-consecutive inpatients
with PD, and 30 age-matched, normal, healthy controls were
enrolled from 2016 to 2020. The MSA patients were diagnosed
as “probable MSA” based on the second consensus clinical
criteria (2). The MSA group included 19 MSA-P (predominant
Parkinsonian features) and 11 MSA-C (predominant cerebellar
features) patients. The PD patients were diagnosed using the
Movement Disorder Society Criteria and all PD patients fulfilled
with the clinically established PD (14). All MSA and PD patients
were clinically assessed at the first visit and confirmed the
diagnosis again during this study by an experienced neurologist
(JC, YS, and ZW). All the healthy controls reported no major
neurological or psychiatric diseases and none of the positive signs
were detected during neurological examinations. The following
demographic and clinical information of the MSA and PD
subjects, including gender, age at evaluation, disease duration,
and Hoehn and Yahr (H-Y) stages (15), were abstracted from
medical records.

MRI Protocol and Image Evaluation
All participants underwent a 1.5 or 3.0 Tesla MRI scanning
(MAGNETOM Aera 1.5T Siemens Healthcare, Erlangen,
Germany. Ingenia 3.0T, Philips Medical Systems, Netherlands).
The parameters of DWI of the 1.5 T MR were as follows:
repetition time (TR) = 7,280ms; echo time (TE) = 81ms; slice
number = 20; slice thickness = 6mm slice gap = 0.9mm; flip
angle = 180; field of view (FOV) = 240 × 240 mm2; voxel size
= 1.3 × 1.3 × 6mm. The parameters of DWI of the 3.0 T MR
were as follows: repetition time (TR)= 4,000ms; echo time (TE)
= 72ms; slice number = 20; slice thickness = 6mm slice gap =

1mm; flip angle = 90; field of view (FOV) = 230 × 230 mm2;
voxel size= 1.44× 1.44× 6mm; NSA= 1.

The signal intensity and the location of each putaminal
abnormality on the DW images were evaluated separately by
two readers with 14 and 8 years of neuroimaging MRI research
experience (YS and MYZ) in a blind manner in which the
demographic and disease information were concealed. If the
score of the evaluation was inconsistent between the two readers
in a given subject, the final grade for analysis was decided by
a consensus between them. The evaluation process is detailed
as follows:

First, we assessed the margin of the putamen on DW images,
the evaluation of which was similar to SWI assessment (Figure 1)
(12): Score of 0: the intensity was normal, no hypointense
signal was observed; Score of 1: the intensity was similar to
cerebrospinal fluid and without a posterolateral gradient; Score
of 2: the intensity was similar to cerebrospinal fluid with a
posterolateral gradient; Score of 3: the intensity was similar to
cerebrospinal fluid with a marked gradient of posterolateral to
anteromedial hypointensity. A hypointense signal score over 2
in the putamen margin was considered a criterion for an MSA
diagnosis. If the scores of the two sides (right/left) differed,
the higher score of the unilateral side and the mean score of
both sides were calculated separately. The scores were graded
previously to the imaging analysis. Second, we assessed the shape
of the putaminal margin hypointensity in subjects with a score
≥2. If the low signal at the edge of the putamen showed a straight
distribution (the “black straight-line sign”), it was considered a
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FIGURE 1 | Scores of putaminal hypointensity in DWI and the corresponding

SWI sequence. Left, DWI sequence; right, SWI sequence. (A) DWI and SWI

(Continued)

FIGURE 1 | score are all 0 as shown by an arrow; (B) DWI and SWI score are

all equal to 1; (C) DWI and SWI scores are all 2 points, and in a straight

distribution; (D) DWI and SWI scores are all 2, but with an arc shape and an

unclear boundary; (E) from a PD patient, with a DWI score of 1 and SWI score

of 2. DWI, diffusion-weighted imaging; SWI, susceptibility-weighted imaging.

All illustrations are denoted as arrow.

FIGURE 2 | The “black straight-line sign” on DWI for MSA patients. (A–C)

show the “black straight-line sign” from mild to obvious, showing a linear,

abnormally low signal with a clear border in the putamen (arrow). The most

obvious section is at the fornix. The “black straight-line sign” can be

asymmetric (B) or symmetric (C). (D) shows the hypointense putamen signal

distributed in an arc in a healthy control subject. MSA, multiple system atrophy.

All illustrations are denoted as arrow.

criterion for diagnosing MSA. If the low signal at the edge of
the putamen was distributed in an arc, it was considered as a
non-MSA abnormal signal (Figures 1, 2).

Third, other image parameters including SWI scores of
putaminal hypointensity (12), hyperintense putaminal rim,
hyperintensity of the pons (“hot cross bun” sign, including only
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cruciform hyperintensity), brain stem atrophy, and cerebellar
atrophy were also evaluated by the two readers (16, 17).

Statistical Analysis
Data were processed using SPSS 23.0 statistical software (SPSS
Inc., Chicago, IL, USA). Continuous data were denoted as Mean
± SD, categorical data were denoted as Number (%). Shapiro-
Wilk tests were used to assess the normality of continuous
variables. A Kendall’s tau-b grade correlation was used to evaluate
inter-rater agreement on DWI. A Mann-Whitney U test was
used to compare the grade of putaminal hypointensity on DWI
between groups. Oneway analysis of variance (ANOVA), a chi-
square test, and a Mann-Whitney U test were used to compare
the differences for the clinical data and the “black straight-
line sign” between groups. An independent sample t-test was
used for age comparisons between two groups. Sensitivity (true
positive/true positive + false negative) and specificity [true
negative/(true negative + false positive)] parameters of the
images were calculated. Results were considered significant at
p < 0.05 (two-tailed).

RESULTS

Comparison of Demographic and Disease
Information
There were no significant between-group differences in age,
gender, disease duration and 1.5 or 3.0 Tesla MRI among the
MSA, PD, and healthy control groups. The MSA group had a
significantly higher Hoehn and Yahr stage (U = 200.5, p< 0.001)
than the PD group (Table 1).

Comparison of Hypointense Putaminal
Signals in DWI
The inter-rater reliability for putaminal hypointensity in DWI
images was high (Kendall tau-b R = 0.849, P < 0.001). The
putaminal hypointensity scores are summarized in Table 2. The
scores (both mean and higher unilateral scores were significantly
different among three groups with F = 4.007, P = 0.022 and
F = 4.316, P = 0.016, respectively) of putaminal hypointensity
in the MSA group were significantly higher than those in
the PD and healthy control groups. There were no significant
differences in putaminal hypointensity scores (both mean and
higher unilateral scores) between the PD and healthy control
groups. Uni- or bilateral putaminal hypointensity with a score
≥2 was significantly more common in MSA than in both PD and
healthy controls and was identified in 53.3%(16/30), 16.7%(5/30),
and 13.3%(4/30) of MSA, PD, and healthy controls, respectively.
The mean and higher unilateral scores in 3.0T MRI were
significantly higher than 1.5T MRI for the total population.(U =

581.000, P < 0.001 and U = 590.000, P < 0.001, respectively).
When assessing the shape of the signal edge in cases with

a score ≥2, we found that the rims of the low signal areas in
the putamen of PD patients and healthy controls were always
arcuate, while those of all the MSA patients were straight
(Figure 2). The sensitivity of the “black straight-line sign” (uni-
or bilateral putaminal hypointensity score≥2 with a straight rim)
in diagnosing MSA was 53.3% and the specificity was 100%. The

diagnostic value of other image parameters including SWI feature
of putaminal hypointensity, cerebellar atrophy, hyperintense
putaminal rim, hyperintensity of the pons (“hot cross bun” sign)
and brain stem atrophy were also displayed in (Table 2).

There were no significant differences in the proportion of
cases with the “black straight-line sign” present between the
MSA-P and MSA-C groups (X2 = 0.433, P = 0.510). No
significant differences in age (t = −0.837, p = 0.410), disease
duration (U = 84.500, p = 0.257), Hoehn and Yahr stage
(U = 70.500, p = 0.085), or 1.5T/3.0T MRI (X2 = 1.265,
P = 0.261) were observed between “black straight-line sign”
positive and negative MSA patients. Except for SWI scores of
putaminal hypointensity ≥2 (X2 = 6.000, P = 0.014), none of
the other image parameters (i.e., hyperintense putaminal rim,
hyperintensity of the pons, and brain stem atrophy) showed a
significant difference between “black straight-line sign” positive
and negative groups.

DISCUSSION

To our knowledge, this is the first study to assess the diagnostic
value of hypointense putaminal signals in DWI between MSA,
PD, and normal controls. Our results demonstrate that a score
higher than 2, especially in the presence of a “black straight-
line sign”, can differentiate MSA from PD and normal people.
The “black straight-line sign” was specific to both MSA-P and
MSA-C subgroups.

The hypointense signal in the posterior putamen was first
noticed in the SWI sequence in MSA patients (12, 13, 18).
Previous studies have found that this abnormal signal (unilateral
or bilateral) with a score higher than 2 had high specificity in the
diagnosis of MSA-P, although the sensitivity was relatively low
(12, 13). We observed similar hypointense signal manifestations
in DWI sequences amongMSA patients in clinical practice, so we
used a gradingmethod similar to that used in SWI research in our
study. Similar to the SWI studies, the current study found that
the proportion of hypointense signals with a score >2 (unilateral
or bilateral) in the posterior putamen in MSA was significantly
higher than that in PD and normal healthy controls. However,
we also found a high proportion of hypointense signals with
scores over 2 in both PD and normal controls. After further
assessment, we found that the morphological characteristics
of this putaminal hypointensity in PD and normal controls
were rather different from those in MSA. In MSA patients, the
morphology of the hypointense signal was thin, straight, and
bordered by the surrounding structure (i.e., black straight-line
sign). On the contrary, in patients of PD and normal controls,
the morphology of the hypointense signal was thick, with an
arcuate shape consistent with the anatomical structure, and with
a vague boundary with the surrounding normal structure. When
the black straight sign was compared among the three groups,
it was found that this sign only existed in patients with MSA,
but not in PD and normal controls. Our results also show that
although the sensitivity of the “black straight-line sign” is limited,
its high specificity may be a novel imaging manifestation in the
diagnosis of MSA.
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TABLE 1 | Demographic characteristics of the subject groups.

MSA (n = 30) MSA-P (n = 19) MSA-C (n = 11) PD (n = 30) HCs (n = 30) MSA vs. PD MSA vs. HCs

Age (y) 62.2 ± 8.6 62.4 ± 9.3 61.9 ± 7.6 65.9 ± 6.9 60.0 ± 9.3 t =−1.854, p = 0.069 t = 0.965, P = 0.339

Gender (Male) 12 (40%) 9 (45%) 3 (27%) 14 (46.7%) 13 (43%) X2 = 0.271, P = 0.602 X2 = 0.069, P = 0.793

Disease duration (y) 3.1 ± 2.2 3.1 ± 2.0 3.2 ± 2.6 3.2 ± 2.8 NA U = 422.0, p = 0.676 NA

Hoehn and Yahr 3.2 ± 1.1 3.1 ± 1.1 3.6 ± 1.1 2.1 ± 0.9 NA U = 200.5, p<0.001 NA

3.0T MRI 14/30 10/19 4/11 12/30 16/30 X2 = 0.271, P = 0.602 X2 = 0.267 P = 0.606

MSA, multiple system atrophy, PD, Parkinson’s disease, HCs, healthy controls.

TABLE 2 | DWI scores of putaminal hypointensity and other image parameters.

MSA

(n = 30)

MSA-P

(n = 19)

MSA-C

(n = 11)

PD

(n = 30)

HCs

(n = 30)

MSA vs. PD MSA vs. HCs

DWI scores of putaminal hyperintensity (Left; Right)

0 score 11; 11 6; 6 5; 5 16; 16 16; 16 -

1 score 5; 4 2; 3 3; 1 9; 9 10; 11

2 score 13; 15 10; 10 3;5 5; 5 3; 3

3 score 1; 0 1; 0 0; 0 0; 0 1; 0

Mean score 1.1 ± 0.9 1.3 ± 0.9 0.9 ± 0.9 0.6 ± 0.8 0.6 ± 0.7 U = 315.5, P = 0.034 U = 304.0, P = 0.022

Unilateral higher score 1.2 ± 1.0 1.3 ± 1.0 1.0 ± 1.0 0.6 ± 0.8 0.6 ± 0.8 U = 308.0, P = 0.024 U = 307.0, P = 0.024

≥2 score 16 11 5 5 4 X2 = 8.864, P = 0.003 X2 = 10.800, P = 0.001

Shape of the hypointensity with a score ≥2 Sensitivity Specificity

Straight 16 11 5 0 0 -

Arc 0 0 0 5 4

Black straight-line sign 16/30 11/19 5/11 0/30 0/30 53.3% 100%

Other image parameters

SWI scores of putaminal hypointensity ≥2 4/6 3/5 1/1 5/21 0/19 66.7% 87.5%

“hot cross bun” sign 7/30 2/19 5/11 0/30 0/30 23.3% 100%

Hyperintense putaminal rim on T2 8/30 6/19 2/11 2/30 1/30 26.7% 95.0%

Brain stem atrophy 7/30 2/19 5/11 0/30 0/30 23.3% 100%

Cerebellar atrophy 15/30 7/19 8/11 1/30 0/30 50.0% 98.3%

MSA, multiple system atrophy, PD, Parkinson’s disease, HCs, healthy controls.

We further graded the “black straight-line sign” into 3
different degrees. As shown in Figure 2, three different layers of
the basal ganglia are presented on the axial image. A mild “black
straight-line sign” is featured as a light abnormality appearing
only in the middle plane. A moderate “black straight-line sign”
is an obvious low signal degree appearing at the bottom and
the middle planes, with a gradual trend but without pronounced
posterolateral to anteromedial differences. An obvious “black
straight-line sign” features a pronounced low-signal degree
displayed at all three planes, with an obvious gradient from
posterolateral to anteromedial shapes. Nonetheless, we did not
find any association between the occurrence or severity of the
“black straight-line sign” and disease duration or H-Y stages of
MSA. Therefore, the emergence of this “black straight-line sign”
should be viewed only as a diagnostic marker and not a grading
marker of disease severity.

Previous research on hypointense posterior putaminal signals
in SWI has mainly focused on the subgroups of MSA-P, while
its characteristics in MSA-C were rarely investigated (12, 13, 18).

In our study of the “black straight-line sign”, it appeared in a
high proportion in both MSA-P and MSA-C, suggesting that this
sign has limited significance in distinguishing the subtypes of
MSA. This may reflect the fact that bothMSA-P andMSA-C have
similar neuropathological presentations despite the distributed
scope of GCI being different in both subtypes (19). The “black
straight-line sign” had comparable sensitivity and specificity in
the diagnosis of MSA, which was comparable to the SWI feature
of putaminal hypointensity ≥2 (with a sensitivity of 66.7%, and
a specificity 87.5%) and cerebellar atrophy (with a sensitivity of
50.0%, and a specificity 98.3%) but better than the other image
parameters, including the hyperintense putaminal rim (with a
sensitivity of 26.7%, and a specificity 95.0%) and hyperintensity
of the pons (“hot cross bun” sign) (with a sensitivity of 23.3%
and a specificity 100%) in T2-weighted images, and brain stem
atrophy (with a sensitivity of 23.3%, and a specificity of 100%).
However, the fact that a hypointense posterior putaminal signal
in SWI had a high false positivity (5/21,about 24%) in Parkinson’s
disease may limit its application. The combination of the “black
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straight-line sign” and posterior putaminal hypointensity in SWI
may further improve the accuracy of disease diagnosis.

The reason for the appearance of the “black straight-line
sign” in DWI remains unknown. Pathological results indicated
that the neuronal cell loss, gliosis, and ferritin and Fe (3+)
was predominantly located in the posterolateral part of the
putamen (20–22). Because SWI sequences are highly sensitive to
the paramagnetic effects of iron deposition in the putamen, we
speculate that the causality is similar to that of the hypointense
signal in the posterior putamen in SWI. Since the DWI sequence
is also imaged based on the T2 sequence, we suspect that the
appearance of the “black straight-line signal” also reflects the
deposition of ferrous or iron ions. In addition, neuropathological
and SWI image examinations showed obvious putamen atrophy
in MSA (22, 23), which may account for its characteristic shape
in DWI (i.e., clearly enclosed by the surrounding structures).
More research is needed to explore the reason for the “black
straight-line sign” on DWI.

Both 1.5 and 3.0 Tesla MRI scannings were used in this
study. Previous studies demonstrated that as the field strength
increased the occurrence of hypointensity at the dorsolateral
putaminal margin increased in MSA (24). In this study, we also
found that subjects that in 3.0 Tesla group had higher scores
of hypointensity in the margin of the putamen on DW images.
However, the occurrence of “black straight-line sign” in DWI
showed no different between 1.5 and 3.0 Tesla MRI groups. Our
study has several limitations: firstly, few patients underwent DWI
and SWI imaging simultaneously, which may lead to limited
accuracy of sensitivity and specificity of posterior putamen low
signal sign in SWI. So more research is needed to compare the
diagnostic value of the “black straight-line sign” and posterior
putamen low signal sign in SWI. Secondly, our study did not
include patients with other types of Parkinsonism, including
progressive supranuclear palsy, dementia with Lewy body disease
which were also difficult to differentiate from MSA in the early
stages of the disease. Thirdly, neurologists did not blind to
MRI data when establishing the diagnosis of these patients.
Although they did not refer to DWI characteristics in diagnosis,
it still could be a potential source of bias. Fourthly, other
image parameters including the vertical pons hyperintensity
which has been reported to be more sensitive than “hot cross
bun” sign and “swallow-tail” sign were not evaluated (16,
20). Finally, the absence of a definite postmortem diagnosis
increases the likelihood of misdiagnosis in our patients. Patients
in the PD group included in the study had a relatively short
disease duration (3.2 ± 2.8 years), and it cannot be said
with great certainty that some of these patients will not turn
out to have MSA-P several years later. Additional studies

that investigate the association between DWI and pathological
relations are needed.

In conclusion, we evaluated hypointense posterolateral
putaminal signal in head DWI—the “black straight-line sign”.
This sign had a favorable applicative value comparable to the
hypointense putaminal posterolateral signal in SWI. The “black
straight-line sign” may be added as a potential imaging marker
for the diagnosis of MSA. It will be valuable for differentially
diagnosing MSA, PD, and normal subjects in clinical practice.
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Background: Apathy is highly prevalent and disabling in Parkinson’s disease (PD).

Pharmacological options for its management lack sufficient evidence.

Objective: We studied the effects of safinamide on apathy in PD.

Methods: Prospective, 24-week, two-site, randomized, double-blind,

placebo-controlled, parallel-group exploratory study in non-demented PD on stable

dopaminergic therapy randomized 1:1 to adjunct safinamide (50 mg/day for 2 weeks

and 100 mg/day for 22 weeks) or placebo. The primary endpoint was the mean change

from baseline to week 24 on the Apathy Scale (AS) total score. Secondary endpoints

included changes in cognition, activities of daily living, motor scores, the impression of

change, and safety and tolerability measures.

Results: In total, 30 participants (active treatment = 15; placebo = 15; 80% showing

clinically significant apathetic symptoms according to the AS) were enrolled, and included

in the intention-to-treat analysis. Change in AS (ANOVA) showed a trend to significance

[p = 0.059] mediated by a more marked decrease in AS score with safinamide (−7.5 ±

6.9) than with placebo (−2.8± 5.7). Post-hoc analysis (paired t-test) showed a significant

positive change in the AS score between 12-week and 24-week [p = 0.001] only in

the active group. No significant or trend changes were found for any of the secondary

outcome variables. Adverse events were few and only mild in both treatment groups.

Conclusions: Safinamide was safe and well-tolerated, but failed to provide evidence of

improved apathy. The positive trend observed in the post-hoc analyses deserves to be

studied in depth in larger studies.

Trial Registration: EudraCT 2017-003254-17.

Keywords: Parkinson’s disease, apathy, safinamide, RCT-randomized controlled trial, clinical trial
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INTRODUCTION

Apathy, is one of the more common and debilitating
neuropsychiatric disturbances in Parkinson’s disease (PD)
(1, 2). It substantially contributes to reductions in quality of life,
higher levels of care dependency, increased caregiver distress,
and increased risk of developing dementia (2–5).

Apathy is manifested as a quantitative reduction of goal-
directed activity in comparison to the person’s previous level
of functioning, which can be observed in behavioral, cognitive,
emotional, or social dimensions (1, 6). Considering all the stages
of PD, estimates of the prevalence of apathy range from 35 to
70%(1, 7).

While apathy highly overlaps along the course of the disease
with symptoms of depression, anxiety, and cognitive impairment
(8–11), it is a distinct neuropsychiatric syndrome (12) that can
be properly identified using appropriate instruments (7, 13–
16).

Apathy in PD is thought to mainly be due to the denervation
of ascending dopaminergic pathways causing dysfunction of
the prefrontal cortex-basal ganglia circuits (1, 6, 17) but other
degenerated neurotransmitter systems can be compromised
as well.

Among the behavioral complications of PD, apathy is likely
the most underserved in terms of specific drug therapy. Very
few high-quality randomized-control trials (RCTs) used apathy
as an inclusion criterion (18). Two small-sized RCT in people
with PD (PwP)–one with the dopamine agonist piribedil in
PwP that turned apathetic after STN–DBS (19) and one with
the anticholinesterase agent rivastigmine (20)—showed some
positive results, the but evidence was not considered enough
to qualify these compounds both as “efficacious” and useful’
agents for the treatment of apathy in PD (18). Two studies
using rotigotine for apathy in PwP were negative (21, 22),
and one using 5-hydroxytryptophan observed positive effect on
depression but not on apathy (23). Among non-RCT studies,
rivastigmine failed to improve apathy in a 1-year open-label study
in PD dementia (24), and positive effects in some non-motor
symptoms, including apathy, were reported in open-label or post-
hoc studies with rotigotine (25), pramipexole (17), istradefylline
(26), and safinamide (27, 28).

Thus, there are no guidelines currently formanaging apathy in
PD (18, 29) and recommendations are limited to debatable expert
opinion (1, 18, 29, 30). Hence, there is an urgent unmet need to
adequately explore treatments to improve apathy in PD.

The dopaminergic system plays a core role in the regulation of

goal-directed and motivating effortful behavior for reward, and

its dysfunction has been proposed to play a crucial role in the
etiology of apathy in PD (31). In this line, there is remarkable
evidence regarding the involvement of the mesolimbic system
and structures such as the nucleus accumbens—which play a
central role in motivation—in the etiology of apathy in PD (1, 32,
33). However, dopaminergic replacement therapy generally has a
partial or no effect on apathy in PD (19). Therefore, considering
the role of other neurotransmitter systems involved in the normal
functioning of the basal ganglia deserves to be taken into account
in order to develop effective therapies.

Substantial evidence implicates the nucleus accumbens
glutamine-to-glutamate ratio on the prediction of specific
components of motivated behavior (34), and glutamine-to-
glutamate ratio in the nucleus accumbens predicts effort-based
motivated performance in humans (34). These arguments added
to preliminary evidence from post-hoc and open-label studies
showing some improvement in apathy in patients treated with
safinamide (27, 28, 35) moved us to formally explore whether a
therapeutic strategy using a drug targeting both, dopaminergic
and glutamatergic systems, could help to ameliorate apathetic
symptoms in PD.

Accordingly, in this study we explored the effects of
Safinamide, a multimodal drug with a dual mechanism of action,
dopaminergic (reversible mono amine oxidase-B inhibition)
and non-dopaminergic [modulation of the abnormal glutamate
release(cites)]. It has a predictable beneficial effect on motor
fluctuations (35, 36) and was suggested to decrease non-motor
symptom burden as well (27, 28). Safinamide has a good
safety profile even in special group of PwP with psychiatric
complications (37), and was not tested formally in a RCT for
apathy in PD.

MATERIALS AND METHODS

Study Design
This was a 24-week, randomized, double-blind, placebo-
controlled, add-on, parallel-group study to assess the effect of
safinamide on apathy in patients with PD conducted in two
centers in Spain. Eligible PwP were randomized (1:1) to 24 weeks
of oral treatment with either safinamide 50 mg/day (first 2 weeks)
and 100 mg/day (22 weeks) or matching placebo, added to their
current, stable PD medications that were to remain unchanged
throughout the study.

Sample and Assessments
Inclusion Criteria
Key inclusion criteria were: (1) non-demented PwPwith a clinical
diagnosis of PD according to the Movement Disorder Society
(MDS) PD Criteria (38), aged 45–85 years; (2) Hoehn and
Yahr Stage (39) of I to III (mild-to-moderate motor severity)
at screening; (3) a total score ≥20 on the Montreal Cognitive
Assessment scale (MoCA) (40); (3) scoring 1 or more on the
Apathy Item of the Neuropsychiatric Inventory (NPI) (41); (4)
clinical diagnosis of apathy as defined by Diagnostic Criteria for
Apathy in Clinical Practice (42); (5) to be able to speak, read, and
understand in the language in which the tests are written; (6)
receiving treatment with dopaminergic therapy: levodopa (with
or without entacapone) and/or dopamine agonists at a stable
dose for at least 4 weeks prior to screening and for the duration
of the study; (7) understand and sign the appropriate approved
Informed Consent Form of the Study.

Exclusion Criteria
Key exclusion criteria were: (1) diagnosis of moderate-to-
severe dementia associated with PD, according to the MDS
criteria (43); (2) active psychosis or major hallucinations, severe
depression or delirium; history of alcohol or drug abuse for 3
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months prior to screening; (3) mental/physical/social condition
that could preclude performing efficacy or safety assessments;
(4) severe white matter disease, multiple lacunar infarcts, or
signs of significant vascular changes on MRI; (5) clinically
significant or unstable medical or surgical condition that would,
in the opinion of the investigator, preclude participation to the
study; (6) currently experiencing significant motor complications
(moderate or severe wearing off defined as score >2 on Item
4.4 of MDS-UPDRS Part IV) or disabling dyskinesia (defined as
score >2 on Item 4.2 of MDS-UPDRS Part IV) (44); (7) previous
treatment with safinamide; (8) treatment with anticholinergic,
antidopaminergic medication or acetylcholinesterase inhibitors;
and (9) use of MAO-B inhibitors (e.g., selegiline, rasagiline)
within 4 weeks prior to screening.

Primary Efficacy Endpoint
The primary efficacy endpoint was the mean change from
baseline to week 24 in the 14-item Starkstein Apathy Scale
(AS) (45) total score (range 0–42; higher scores indicating more
severe apathy).

Secondary Endpoints
Key secondary endpoints were changed from baseline to week
24 in: (1) Parkinson’s Disease–Cognitive Rating Scale (PD–CRS)
total score; (2) Parkinson’s disease–Cognitive Functional Rating
Scale (PD–CFRS) total score; (3) NPI; (4) Hamilton Depression
Rating Scale (HAM-D); (5) MDS–UPDRS motor subscale (Part
III) total score; and (6) Parkinson’s Disease Questionnaire (PDQ-
39) total score; both (7) Patient’s Clinical Global Impression of
Change (P–CGI) of Apathy and (8) Clinical Global Impression
of Change (CGI) of apathy, were administered at the final visit
of the study. Ratings in the P–CGI and CGI were based on a
Likert-type scale (0 = not assessed, 1 = very much improved,
2 = much improved, 3 = minimally improved, 4 = no change,
5 = minimally worse, 6 = much worse, 7 = very much worse);
maximum score on the scales was 7. Safety and tolerability
were assessed through adverse event (AE) reporting and physical
examination, body weight and vital signs and electrocardiogram
and laboratory test with hematology and biochemistry obtained
at baseline, 4, 12, and 24 weeks’ visits.

Statistical Analyses
For the planned data analysis, a type 1 error of 5% for the
primary hypothesis (alpha 0.05) was assumed. All the efficacy
analysis were performed in the modified-intention to treat (ITT)
population, therefore, all those subjects randomized and who
received at least one evaluation visit were included. We also
included all those subjects in the safety analysis who have
been randomized and have taken at least one dose of study
medication. As a method of imputation of missing values, the
Last Observation Carried Forward (LOCF) method was used.
The primary efficacy endpoint was the mean change in the
AS total score from baseline to week 24. If there were no
differences between groups in age, gender, and education, the
statistical model to follow was a two-way ANOVA. If there
were differences between groups in age, gender, or education,
the statistical model to follow was an ANCOVA (if there are

differences in a quantitative variable) or three-way ANOVA (if
there are differences in a categorical variable). For the analysis
of secondary variables, we applied the same model as that for
the primary variable. Statistical analysis was performed using the
statistical software package SPSS 19.0 for Windows (SPSS Inc.,
Chicago, IL).

Sample-Size Calculation
Accepting an alpha risk of 0.05 and a beta risk of 0.2 in a two-
sided hypothesis test, we calculated that a sample size of 18
subjects per group (N = 36) provided 80% power to detect a
difference in mean change of the AS between safinamide and
placebo. The SD was assumed in 9, and a dropout rate of
20% was expected among subjects who might discontinue study
participation, require safinamide dose suspension or increase
dopaminergic dosages.

Ethics
This study (EudraCT 2017-003254-17) was approved by the
local Ethics Committee which complies with the regulatory
requirements and the Declaration of Helsinki. Written informed
consent was obtained before any study procedures from all the
patients. The data that support the findings of this study are
available on request from the corresponding author. The data are
not publicly available due to privacy or ethical restrictions.

RESULTS

Early termination of the study due to restrictions caused by the
global COVID-19 pandemic precluded the recruitment of the
planned sample size (N = 36). This was decided in accordance
with the Ethics Committee and communicated to the Spanish
regulatory authorities. While all the subjects who were active
at the beginning of the restrictions were able to complete their
pending visits in a timely manner, screening and recruitment
of new subjects were stopped because of security reasons.
Considerations favoring early termination instead of temporary
suspension were: the exploratory nature of the study with the
recruitment close to the planned sample size; the uncertainty in
the duration of themobility restrictions and accessing to Hospital
facilities; and the relatively close caducity data of the supplied
medication and placebo.

Screening, enrollment, and participation information is
shown in Figure 1. Following screening (N = 34), eligible
subjects (N = 30) were randomized to the safinamide or placebo
groups. It supposed six fewer patients than the initially estimated
as a total sample. The target dosage (100mg/day) was achieved on
all the participants in the safinamide group except in one subject
who discontinued the study at visit 2 for mild dizziness. Other
subject in the safinamide group complained of increase in anxiety
and left the study at week 10. One subject on the placebo group
left the study on week 16 due to hallucinations. According to the
estimated dropout rate of 20% of the participants, the resulting
sample was considered still valid in terms of sample size. Because
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FIGURE 1 | CONSORT diagram of participants in a study of safinamide for apathy in non-demented Parkinson’s disease.

of the planned ITT analysis in case of discontinuation, the results
from all the 30 subjects participating in the study are reported.

The study sample consisted on 30 patients (mean age= 69.4±
9.9 years; mean disease duration = 53 ± 38.6; mean UPDRS-III
= 29.9 ± 7.7; mean H&Y = 2 ± 0.4). As per inclusion criteria,
all the patients scored ≥1 in the apathy sub-score of the NPI.
After randomization, fifteen subjects were allocated to the active

treatment (AT) arm and fifteen to the placebo arm. The main
clinical and sociodemographic variables at baseline of the whole
sample and of the two different treatment groups are described in
Table 1.

T-tests showed absence of significant between-group
differences in the main clinical variables associated with PD.
Thus, no differences were found with respect to age, disease
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TABLE 1 | Sociodemographic and clinical characteristics of the entire sample and the two treatment groups at baseline.

Entire sample Active treatment Placebo

Mean ± SD Range Mean ± SD p

Age 69.5 ± 9.8 44–84 66.7 ± 9.2 72.3 ± 10 0.149

Gender (f/m) 9/18 - 5/9 4/9 0.785

Education 12.3 ± 4.06 7–22 14.3 ± 4.6 10.2 ± 2.5 0.009

Disease duration 53 ± 38.6 8–134 57.8 ± 41.1 47.8 ± 36.6 0.512

UPDRS-III 29.9 ± 7.6 11–46 29.9 ± 8.3 29.9 ± 7.5 0.999

H&Y 2.1 ± 0.4 1–3 2.1 ± 0.3 2.1 ± 0.5 0.812

LEDD 609.2 ± 291.6 105–1,400 543 ± 213.8 631 ± 298.7 0.385

MoCA 25 ± 3 20–30 25.8 ± 3 23.9 ± 2.6 0.106

PD-CRS Total 89.1 ± 15.6 59–120 94.5 ± 16.2 81.1 ± 12.1 0.023

PD-CRS frontal-subcortical 59.44 ± 15.5 29–90 66.5 ± 14.6 51.7 ± 12.8 0.010

PD-CRS posterior-cortical 28.67 ± 6.2 22–30 28 ± 2.1 29.3 ± 8.7 0.571

PDQ-39 28.3 ± 17.1 2–59 25.4 ± 15.8 27.5 ± 17.1 0.742

NPI Apathy 4.1 ± 2.5 1–12 4.5 ± 2.9 3.8 ± 2 0.526

AS total score 19.5 ± 7.1 3–34 19.6 ± 7.2 19.3 ± 7.2 0.811

HAM-D 9 ± 5.1 1–23 9.6 ± 5.5 8.4 ± 5.1 0.594

Pharmacological treatment (%)

Antidepressants 40.7 - 50 30.8 0.310

Anxiolytics 33.3 - 35.7 30.8 0.785

Neuroleptics 0 - 0 0 -

Anticholinergics 3.7 - 0 7.7 0.290

IMAOs 0 - 0 0 -

Amantadine 0 - 0 0 -

Anticholinesterases 7.4 - 7.1 7.7 0.957

Methylphenidate 0 - 0 0 -

duration, H&Y stage, LEDD, pharmacological treatments, and
UPDRS-III. Significant differences were found in education
level [t(30) = 2.81; p = 0.009], and in the PD–CRS total [t(30)
= 2.42; p = 0.023] and frontal-subcortical scores [t(30) = 2.78;
p = 0.010] with lower education level and PD–CRS scores in
the placebo group. Despite baseline differences in the PD–CRS
(used as secondary measure of the study), both the groups
were equivalent in terms of global cognitive status measured at
baseline with the MoCA. Accordingly, the proportion of patients
scoring in the lower range of the PD–CRS was of 6.7% in the AT
group and of 7.1% in the placebo group, and the proportion of
patients scoring in the medium and higher range was of 93.3%
in the AT group and of 92.9% in the placebo group, with no
significant differences between the groups.

Both treatment groups showed at baseline an NPI apathy total
score (frequency × severity) equal or higher than 1, and a mean
AS above the clinical cut-off for apathy (AS ≥ 13), indicating
that almost all the patients (75% in the AT groups; 85% in
the placebo group; and 80% in the total sample) had clinically
significant apathetic symptoms according to the AS, with no
differences between groups in the proportion of this prevalence
(×2= 0.361).

Primary Efficacy Endpoint Analysis
Repeated measures ANOVA applied to explore the primary
outcome measure (change in the AS score between 24-week and
baseline) showed a trend to a significant group× time interaction
[F(1,29) = 3.06; p = 0.059]. Post-hoc analysis showed that this
effect was mediated by a more marked, and nearly significant
decrease on the AS score in the AT group [t(30) = −1.95; p =

0.062]. Thus, the mean change from baseline at 24 week was of
−7.5 ± 6.9 in the AT group and of −2.8 ± 5.7 in the placebo
group. As depicted in Figure 2, this effect was observed at 24
week in the AT group, while equivalent scores were obtained in
the two groups at baseline and at 12 week.

Paired t-test within each group showed that in the AT
group, no differences existed between baseline and 12-week AS
score [t(13) = 1.03; p = 0.318], but a significant difference was
found between 24 week and 12 week [t(13) = 4.22; p = 0.001],
and between 24 week and baseline [t(13) = 4.06; p = 0.001].
In the placebo group, no significant differences were found
between visits.

When analyzing the change from clinically relevant apathetic
symptoms at baseline (AS > 13) to non-apathy (AS < 14) at
24 week, we observed that the significant decrease in the mean
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FIGURE 2 | Mean change from baseline in the Apathy Scale in each consecutive visit.

apathy severity score occurred in 46.6% of the subjects in the AT
group compared with just 21.4% of those in the placebo group.
This difference in the rate of conversion from clinically relevant
apathy to non-apathy was significantly different between groups
(x2 = 0.042; Figure 3).

Secondary Efficacy Endpoints Analysis
Neuropsychiatric Inventory (NPI)
Repeated measures ANOVA showed no significant effects
between groups and visits in the NPI total score for apathy
(frequency × severity). However, as depicted in Figure 4A, post-
hoc t-test comparison showed a trend to significance [t(30) =

−2.06; p = 0.053] at 24-week mediated by a mean change from
baseline of −1.9 ± 2.2 points in the AT group compared with 0
± 2.7 in the placebo group. No effects were found with respect
to the other neuropsychiatric symptoms covered with the NPI.
The statistics for the primary and secondary efficacy endpoints
analysis are described in Table 2.

UPDRS-III
No significant effects neither trend were found in the repeated
measures ANOVA. Post-hoc t-test comparisons showed a trend
to significance [t(30) = −1.73; p = 0.094] at 24 week mediated
by a mean change from baseline of −3.64 ± 8 in the

AT group compared with 2.5 ± 10.5 in the placebo group
(Figure 4B).

Other Secondary Endpoints
No significant effects or trends were found in the repeated
measures ANOVA and post-hoc comparisons focusing on
cognitive performances (PD–CRS), cognitive-functional status
(PD–CFRS), quality of life (PDQ-39), and patient and clinical
impression of change (P–CGI, P–CGI–QOL, and CGI).

Safety and Tolerability
Safinamide at the doses of 50 and 100 mg/daily was safe and
well-tolerated, and no major or unexpected safety concerns were
identified. As reported, early discontinuation occurred in the
three patients. One on the safinamide left the study due to mild
dizziness at visit 2 without being scaled to receive the 100 mg/day
dose, and the other due to increase in anxiety who left the study
on week 10 while on 100 mg/day (Table 3). The one belonging to
the placebo group left the study on week 16 due to hallucinations.
No differences were found in vital signs and electrocardiogram,
body weight and laboratory test, neither between groups in the
baseline visit, nor in the successive follow-ups.
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FIGURE 3 | Percentage of participants scoring in the clinical range for apathy based on the Apathy Scale.

FIGURE 4 | (A) Mean change from baseline in the NPI total apathy score; (B) Mean change from baseline in the UPDRS-III.

DISCUSSION

This is the first RCT study exploring the effects of safinamide in

non-demented patients with PwP, and one of the few prospective

PD studies in which apathy was an inclusion criterion and the

primary outcome.

The results of the study are positive in terms of safety,
but negative in terms of the effect of Safinamide on apathy.
Nevertheless, the results show a tendency toward static
significance that we believe deserves consideration. Thus, the
addition of safinamide in subjects with PD with significant
apathy is well-tolerated and may result in a discrete beneficial
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TABLE 2 | Primary and secondary outcome measures analysis.

Active treatment Placebo Difference AT - Placebo

Mean ± SD Mean ± SD Estimate (95% CI) p

AS total score −7.5 ± 6.9 −2.8 ± 5.7 −4.71 (−9.68 to 0.25) 0.062

NPI apathy −1.9 ± 2.2 0 ± 2.7 −1.92 (−3.88 to 0.02) 0.053

PD-CRS total score 1.5 ± 8.9 −4.6 ± 10.6 6.21 (−1.42 to 13.8) 0.306

PD-CFRS −0.5 ± 2.5 −0.1 ± 2.1 −0.33 (−2.24 to 1.57) 0.722

HAM-D −1.5 ± 6.6 −0.9 ± 4.1 −0.57 (−4.85 to 3.7) 0.786

UPDRS-III −3.6 ± 8 2.5 ± 10.5 −6.14 (−13.4 to 1.11) 0.094

PDQ-39 −5.6 ± 19.1 −0.6 ± 12.5 6.95 (−18.6 to 6.1) 0.312

P-CGI 4.08 ± 2.1 4.5 ± 1.9 −0.46 (−2.98 to 1.15) 0.562

P-CGI-QOL 3.08 ± 2.1 2.52 ± 2.1 0.66 (−1.03 to 2.35) 0.428

CGI 4 ± 1.5 3.5 ± 1.5 0.42 (−1.34 to 2.19) 0.607

TABLE 3 | Adverse events.

Visit (Week) N cases/% Dosage Study group

Mild dizziness 4 1/3.33% 50mg Active

Anxiety 10 1/3.33% 100mg Active

Visual hallucinations 16 1/3.33% 100mg Placebo

effect observed in this study in the form of a trend toward
significance. Although only reaching a trend to significance in the
primary analysis, a beneficial effect of safinamide in comparison
to placebo was observed between weeks 12 to 24 in the AT group
in the post-hoc analysis. This was accompanied by a significant
change favoring safinamide in the proportion of subjects moving
from clinically significant apathetic symptoms at baseline to not
clinically relevant symptoms at the end of the study. No relevant
changes were found for any other explored variable, although in
consistence with the objective of the study, the only additional
statistical trend was a reduction from baseline in the mean NPI
apathy score.

In addition to not having observed a statistically significant
effect in the primary analysis, a number of lessons supporting
further research of safinamide in PD-related apathy can be
collected from this exploratory study. The temporal curve
showed a trend to significance between weeks 12 and 24
in the safinamide group observed in the exploratory post-
hoc analysis suggests that the beginning of the eventual
positive effect of safinamide can be a delayed one. It is
possible that a more consistent effect could have been observed
with a longer follow-up and a larger number of patients.
Importantly, these positive signals were detected only for
the main variable and were not related to motor, mood, or
cognitive changes. At last, safinamide was well-tolerated in a
cohort of subjects with PD not selected for having levodopa-
related fluctuations.

Besides not reaching the planned sample size, other factors
related both with the pathogenesis of the apathy syndrome
in PD and the characteristics of the tested drug, could have

contributed to the modest benefit of associated with safinamide
in our study.

Although apathy is highly prevalent in PD from its early
stages, the exact pathogenesis of apathy in PD are partially
understood at present (46), being likely a combination of
progressive alteration of dopaminergic pathways (43, 47),
brain atrophy in strategic reward nodes (24) with impaired
incentive processing (33), synergistically acting alpha-
synuclein and Alzheimer’s disease (AD) protein aggregates
and increased burden of vascular and inflammatory changes
(48) that may limit the response to the pharmacological
treatment (1, 49).

While partial correction of an altered neurotransmission
may not suffice for apathy to significantly improve in PD,
safinamide may have exerted a positive effect on dopamine-
dependent apathetic symptoms. Still, considering that its action
is not stronger than that of other dopaminergic agents that
showed uneven results in improving apathy (49), other factors
might concur to explain the partial response of apathy seen in
this study.

A glutamate hypothesis for apathy arises from drug trials that
suggests a link between the glutamatergic system and apathy
symptoms in psychiatric and neurodegenerative diseases other
than PD (50–52). While memantine, an agent that blocks the
effects of pathologically elevated levels of glutamate, seems
not to influence apathetic symptoms in AD, mibampator, a
glutamate receptor potentiator, significantly improved apathy
in a RCT in AD (50). On this basis, the dual action of
a drug that reinforces dopaminergic transmission and blocks
the effects of pathologically elevated levels of glutamate, may
conceivably improve the synaptic connectivity and trigger the
functional recovery of damaged neuronal network, which is
typical of apathy.

In this line, blockade of sodium channels and modulation of
calcium channels that is the base of the antiglutamatergic activity
of safinamide, is not expected to be complete below dosing of
100 mg/day, which were not achieved until the third week of the
study. This could explain the significant but delayed reduction
in the mean apathy scores compared with the placebo observed
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in the post-hoc analysis of the second half of our study. Future
studies should explore whether higher doses of safinamide and/or
more prolonged treatment period have a significant clinical effect.

Consistent with the good safety profile of the drug observed
in phase III and large-sample observational studies (37),
almost all the apathetic subjects randomized to safinamide
treatment completed the study, with a dropout rate of just
13% (two participants). Safinamide was generally well-
tolerated over 24 weeks by patients who were receiving
polypharmacy without substantial differences in the number
or severity of adverse events compared with the placebo.
Particularly, adding safinamide in apathetic patients did
not worsen motor status, cognition and other important
behavioral aspects including mood, hallucinations, or impulse
control behavior.

A major strength of our study is that we selected patients
accomplishing clinical criteria for apathy and tried to generate
high-quality data using a validated instrument as primary
outcome to address an important unmet in PD. Consequently,
the average apathy rating scale scores obtained at baseline
in the AS reflects a PD population with clinically significant
apathy. Nevertheless, being apathy scores above the cut-off of
apathy (45), they were not in the high range. This may be
partially explained by the exclusion of demented patients and
the diminished motivation of severely apathetic patients for
participating in a research study.

Main limitation of our study was its early termination
that precluded the recruitment of the planned sample, and
possibly, reaching statistical significance in the primary objective.
Nevertheless, our results provide valuable information to inform
the design of future trials. A case for a possible favorable response,
with a delayed initiation of action and a conceivable more
consistent benefit in improving apathy with longer duration of
treatment, can be made based on our data.
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Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease, and currently

no effective symptomatic or neuroprotective treatment is available for PSP. Deep brain

stimulation (DBS), as a neurosurgical procedure, plays a role in a range of neurological

and psychiatric disorders, and a series of case reports have applied DBS in PSP patients.

However, there are no systematic investigations about the application of DBS in PSP

patients; we therefore performed a systematic review to evaluate the efficacy of DBS

for PSP. PubMed, EMBASE and the Cochrane library were systematically searched

from database inception to July 31, 2021. Additionally, the reference lists of included

studies were searched manually. Of 155 identified studies, 14 were eligible and were

included in our analysis (N = 39 participants). We assessed the data between DBS-

OFF and DBS-ON conditions, as measured by the Unified Parkinson’s Disease Rating

Scale (UPDRS) and other clinical rating scales. A reduction of UPDRS III scores under

DBS-ON conditions in most PSP cases was observed, but the differences yielded no

statistical significance. There was no sufficient evidence proving DBS was effective for

PSP patients, though part of PSP cases could benefit from DBS and our findings could

provide up-to-date information about the possible role of DBS in PSP, which would

provide design strategies for following clinical trials and might ultimately help to promote

the clinical application of DBS in PSP patients.

Keywords: progressive supranuclear palsy, deep brain stimulation, pedunculopontine nucleus, systematic review,

Unified Parkinson’s Disease Rating Scale (UPDRS)

INTRODUCTION

Progressive supranuclear palsy is the most common atypical parkinsonian disorder (1) with
prominent four-repeat (4R-) tau neuropathology (2), and the classic phenotype termed
Richardson’s syndrome (PSP-RS, also known as Steele–Richardson–Olszewski syndrome) is
characterized by prominent postural instability with repeated unprovoked falls, vertical
supranuclear gaze palsy, akinetic-rigid parkinsonism with poor response to dopaminergic agents,
and cognitive decline (3, 4). PSP is clinically heterogeneous, and several variant phenotypes have
been gradually reported since PSP-RS was introduced in 1964 (3), including PSP-parkinsonism
(PSP-P) (5), progressive gait freezing (PSP-PGF, ever referred to pure akinesia with gait
freezing, PAGF) (6), and other 7 rare presentations (7, 8). PSP is a uniformly fatal disease
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with average disease duration of 8 years (9), and current medicine
has limited efficacy in PSP (10). There are still no effective
symptomatic or neuroprotective treatment available for PSP
despite the transient benefit from levodopa therapy in the early
stages of some cases (11).

As a neurosurgical procedure through implanting electrodes
into specific targets within the brain and delivering electricity
from an implanted battery source (12), deep brain stimulation
(DBS) has become an important tool and has been applied to a
range of neurological and psychiatric disorders mainly, including
Parkinson’s disease (PD), essential tremor, dystonia, epilepsy,
and major depression (12, 13). PD is a common movement
disorder, and muscular rigidity of limbs is an important clinical
feature of PD (14), which is distinctive from PSP, the latter
predominantly presenting with axial and gait symptoms. The
subthalamic nucleus (STN) and globus pallidus interna (GPi)
are common stimulating targets for treatments of PD in clinic,
especially in cases without response to medication adjustments
(15, 16). The pedunculopontine nucleus (PPN) is part of the
mesencephalic locomotor region and plays a role in the initiation
and maintenance of gait and balance (17). PPN has been
proposed as a new target for DBS to treat movement disorders
since the first PPN-DBS was carried out in a parkinsonian patient
in 2005 (18). Studies have proven that patients with PD treated by
PPN-DBS show improvements in gait disorder and falls (15, 19).
Moreover, several researches have tried to apply PPN-DBS to
treat patients with PSP and proposed PPN as a potential target
for PSP (20–22).

The Unified Parkinson’s Disease Rating Scale (UPDRS)
(23), PSP rating score (PSPRS) (24) and freezing of gait
questionnaire (FOG-Q) (25) are widely used clinical rating scales
for parkinsonism, among which, UPDRS III and PSPRS are the
most common objective assessments applied to reflect the effects
of DBS on patients with PSP. Since there is still controversy
over surgery benefits between different studies, herein, we carried
out a study to evaluate the curative effects and provided a
comprehensive summary of DBS for PSP.

METHODS

Information Sources and Search Strategy
This systematic review has been organized according to the
Preferred Reporting Items for Systematic Review and Meta-
Analyses (PRISMA) statement guidelines (26) and has been
registered at the International Prospective Register of Systematic
Reviews (PROSPERO, registration number: CRD42020212628).
We performed a comprehensive search of PubMed, EMBASE and
the Cochrane library from database inception to July 31, 2021
using the following terms: “progressive supranuclear palsy” or
“PSP” in association with “deep brain stimulation” or “DBS.”
We scanned reference lists of relevant literature for additional
potential sources. All publications were restricted to the English
language, and all study designs were included.

Study Selection and Data Extraction
Eligible literature had to meet all the inclusion criteria: (1)
Subjects: PSP clinical diagnosis [NINDS-SPSP criteria in 1996

(4) and MDS-PSP criteria in 2017 (8) were considered for
diagnosis]. (2) Interventions: any types of DBS. (3) Clinical
assessments: outcome measures at baseline and follow-up; the
UPDRS III is the primary outcome, and other clinical rating
scales, including PSPRS, FOG-Q and GF-Q, are secondary
outcomes. Reviews, animal research, repeated publications on
patients and studies without complete data were excluded. Two
independent investigators selected studies through reviewing
the titles and abstracts in accordance with the inclusion and
exclusion criteria. Disagreements between the two investigators
were resolved by a third investigator.

Data were independently extracted by two investigators
from each included study on (1) study information (including
the first author, year of publication, country of centers); (2)
patient characteristics (including age, gender, illness duration,
and diagnostic criteria of PSP); (3) intervention (including
surgical target for electrode implantation, proper voltage and
frequency); (4) assessment of surgery effectiveness [including
follow-up time, UPDRS part III scores (UPDRS III), PSPRS and
other outcomes]. Additionally, we defined surgery effectiveness
as improvement of the clinical rating scales by >30% to better
show the surgical efficacy.

Statistical Analysis
We divided the follow-up duration into two parts: short-term
(<12 months after DBS) and long-term (≥12 months after DBS).
We used the Wilcoxon rank sum test to compare the scores of
UPDRS III under different conditions, for example, DBS-OFF
vs DBS-ON, before surgery (baseline) vs after surgery (DBS-
ON). PSPRS, FOG-Q, GF-Q and other outcomes could not be
analyzed due to lack of enough data. Statistical analyses were
performed using SPSS 25.0 for Windows, and p < 0.05 was
statistically significant.

RESULT

Description of Studies
A total of 155 articles of interest were searched and 95 articles
identified after duplicates were removed (Figure 1). Of these,
62 articles were identified as irrelevant based on their titles and
abstracts and were therefore eliminated. Among 33 potentially
relevant articles, 10 were excluded because they were the abstracts
of poster presentations; patients from five articles (27–31)
overlapped with those in other studies (22, 32), and these five
articles were excluded; four articles (33–36) had no extracted data
and were excluded. A total of 14 articles were finally included
in the analysis containing 39 patients with PSP comprising 19
patients with PSP-RS, 7 patients with PSP-P, 5 patients with PSP-
PGF, and 8 patients without definite phenotypes. As for surgical
targets, 35 patients were treated with PPN-DBS, 1 with STN-DBS,
1 with GPi-DBS, 2 with compound DBS. The basic characteristics
of included studies are shown in Table 1.

The UPDRS III in PSP Patients
Available data from four studies comprising 10 patients with
PSP were included in this analysis comparing UPDRS III in
patients with PSP between the DBS-OFF and DBS-ON status
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FIGURE 1 | Flow of study information according to PRISMA statement, study selection, and reasons for exclusion.

(Figure 2). Mazzone’s (22) and Scelzo’s studies (32) could not
be analyzed since there were no detail scores in each patients
with PSP. We divided the follow-up duration into two parts for
subgroup analysis: short-term and long-term. In the short-term
group, a total of nine PSP cases were analyzed (21, 37, 38, 41),
and there was no statistically significant decrease in the UPDRS
III scores under DBS-ON status though part of patients showed
improvements (p = 0.051). Besides, the degree of amelioration
was much smaller than those in Mazzone’s study where the mean
UPDRS III score in four patients with PSP lowered over 40%
under DBS-ON conditions (22). In the long-term group, the data
from nine patients with PSP were assessed (21, 37, 41) and the
differences didn’t reach the significance (p = 0.151), which was
similar to the results of Scelzo’s study where a total of eight

patients with PSP-RS were treated by unilateral PPN-DBS and
no obvious improvements were observed at 6 months or 12
months (32).

On the other hand, we carried out another analysis using
data from five articles (17, 20, 21, 38, 41) including 14 patients
with PSP, and we compared the UPDRS III scores in these PSP
patients pre-operation (at baseline) and post-operation (DBSON)
as shown in Figure 3. If there were follow-up assessments at
different time, we selected the date closest to the operation. No
significant differences between these two groups were observed
in theWilcoxon rank sum test where we compared the score after
operation to score at baseline (p= 1.000).

Considering different PSP clinical phenotypes might have
different response to DBS surgery, we performed a simple
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TABLE 1 | Baseline characteristics of the included studies.

References Sample size

and gender

Mean

age, ys

Duration, ys Clinical

diagnosis

DBS target DBS parameters Follow–up

Vol. V Freq. Hz Pulse width, us Time,

ms

Clinical

evaluations

Bergmann et al.

(37)

1 F 55 8 PSP–P bi–STN L2.5; R3.5 185 60 9/42 UPDRS-III,

cognitive tests and

levodopa

responsiveness

Brusa et al. (38) 1M 70 3 PSP–P uni PPN 3.4 25 NA 3/6/9 UPDRS-III,

cognitive tests and

FOG-Q

Lim et al. (39) 1 F; 1M 59.5 NA 2 PSP 2 uni PPN 2–2.8 5–30 NA 7/10 Sleep stage

distribution

Wilcox et al. (40) 1M 69 8 PSP–PGF bi PPN L2.8–3.3

R3.5–3.8

35 60 2.5/5/7/10/15 FOG-Q and GF-Q

Ostrem et al. (41) 1M 76 4 PSP–PGF bi PPN L4.5–5.1

R4.0–4.4

25 60 3/6/12 UPDRS and

FOG-Q

Servello et al. (42) 3M 68 NA 2 PSP–RS; 1

PSP–P

2 uni PPN; 1

uni PPN + bi

GPi

NA NA NA 12/14 PSPRS-VI

Doshi et al. (20) 3 F; 1M 60.8 3 2 PSP–RS; 2

PSP–P

4 bi PPN 0.7–3.5 20–45 60 6/18 PSPRS, UPDRS,

PDQ-39 and

adverse events

Oliveira Souza

et al. (17)

1 F 74 NA PSP–RS bi PPN 2–4 20 60 1/3 UPDRS-III

Mazzone et al. (22) 4 NA NA NA 4 PSP 4 PPN 4.3–6.9 NA 60 0.5 UPDRS-III, Hoehn

and Yahr

Scelzo et al. (32) 8 NA NA NA 8 PSP–RS 8 uni PPN NA NA NA 6/12 PSPRS, UPDRS-III

and adverse

events

Galazky et al. (21) 5 F; 2M 70 6.2 4 PSP–RS; 2

PSP–PGF; 1

PSP–P

6 bi PPN; 1

PPN + STN

3.5 8–130 60 3/12/24 UPDRS-III, TUG,

PSP-QoL,

cognitive tests and

adverse events

Leimbach et al.

(43)

1 F; 1M 61 5 2 PSP 2 uni PPN NA NA NA 12 Cognitive tests

Orcutt et al. (44) 1M 75 4 PSP–RS bi GPi L 5.3; R 4.7 130 60 12 Improvement of

AEO

Dayal et al. (45) 1 F; 2M 66.7 8.7 1 PSP–RS; 1

PSP–P; 1

PSP–PGF

2 uni PPN; 1

bi–PPN

1.0–9.0 20–30 60 1/6/9/12 PSPRS, FOG-Q,

GF-Q and adverse

events

DBS, deep brain stimulation; PSP, progressive supranuclear palsy; PSP-P, progressive supranuclear palsy-parkinsonism; PSP-RS, progressive supranuclear palsy-Richardson Syndrome; PPN, pedunculopontine nucleus; STN,

subthalamic nucleus; GPi, globus pallidus internus; UPDRS, unified Parkinson’s disease rating scale; PSPRS, progressive supranuclear palsy rating scale; FOG-Q, freezing of gait questionnaire; GF-Q, gait and falls questionnaire;

PDQ-39, the 39-item Parkinson’s disease questionnaire; TUG, timed up and go test; AEO, apraxia of eyelid opening; PSP-QoL, progressive supranuclear palsy quality of life scale.
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FIGURE 2 | (A,B) UPDRS III scores in PSP patients under DBS-OFF and DBS-ON status. Short-term: <12 months after DBS, long-term: more than or equal to 12

months after DBS. The words in brackets are DBS targets of each patient.

analysis in short-term follow-up of patients presenting as PSP-
RS, PSP-P, and PSP-PGF. As Table 2 shows, complete data were
available in nine PSP cases from four studies (21, 37, 38, 41), and
the mean improvement in PSP-P was higher than PSP-PS and
PSP-PGF. We thus inferred different presentations of PSP might
influence the efficacy of DBS, and patients with PSP-P might
benefit more from DBS.

Unilateral vs Bilateral PPN-DBS for PSP
Patients
A total of 35 PSP cases were treated through stimulating
PPN alone; among these, 19 cases were assessed with clinical
rating scales at baseline and follow-up and provided detailed
information (17, 20, 21, 38, 40–42, 45). We divided these cases
into two groups, unilateral PPN-DBS and bilateral PPN-DBS, and
compared the improvements of short-term follow-up between
these two groups. As Table 3 showed, the improvement of all
five cases in the unilateral PPN group was <30%, while two
cases (14.29%) in the bilateral PPN group reached the threshold
of effectiveness, which to some degree indicated bilateral PPN
stimulations might be more hopeful for PSP patients with
mild symptoms than unilateral PPN stimulations. However, the
overall surgery effectiveness of PPN-DBS in PSP patients was not
very optimistic.

Other Outcomes
Servello et al. followed up three PSP cases that underwent DBS
and used PSPRS IV as the main outcome in the long term. They
observed a reduction in the number of falls and an amelioration
of postural balance in all patients, which was an encouraging
result (42). Another three studies also evaluated PSPRS in their
cases and reported that there was no obvious improvement (20,
32, 45). In total, four cases from four studies provided available
FOG-Q scores: two patients with PSP-P (38, 45) and two PSP-
PGF patients (40, 41). The FOG-Q scores among these cases

averagely reduced 33.8% at the short-term follow-up visit, with
a reduction of more than 50% in a patient with PSP-PGF and a
patients with PSP-P. However, the sample size was too small to
perform statistical analysis.

One article observed a great improvement of apraxia of
eyelid opening (AEO) in a patients with PSP through bilateral
GPi stimulations (44). Lim and collaborators proved that PPN-
DBS significantly increased nocturnal rapid eye movement sleep
in five cases including two patients with PSP (39), which
linked PPN with sleep and extended the functions of PPN-
DBS. Leimbach et al. focused on the effects of PPN-DBS
on cognition through evaluating a comprehensive battery of
neuropsychological assessment in five PD cases and two PSP
cases. They concluded that PPN-DBS was generally safe from a
cognitive perspective though there was no significant change after
surgery (43), which was consistent with the results from other
studies on cognitive domains (37, 38).

Additionally, four studies mentioned the adverse events
related to DBS. Intraoperative bleeding is a major surgical
complication worthy strong attention, and it occurred in two
patients in PPN-DBS with unknown reasons in Scelzo’s cohort
where chronic stimulation itself was well tolerated (32), which
indicated intracranial hemorrhage during surgery should be
better investigated in further studies especially considering the
possibility of underreporting due to a negative publication
bias. Other surgical adverse events included apathy and a
buccofacial apraxia, which were transient and recoverable (21).
As for stimulation-related adverse events, paresthesia, oscillopsia,
diplopia and dysarthria were observed (20, 21, 45).

DISCUSSION

The aim of this study was to summarize the efficacy of DBS
in patients with PSP through analyzing related articles. To our
knowledge, this is the first systematic review of DBS for PSP
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FIGURE 3 | UPDRS III scores in PSP patients before DBS (Baseline) and after DBS (DBS-ON). The words in brackets are DBS targets and postoperative time point at

which the “DBS-ON” assessment was performed in each patient.

even though we were only able to combine results from 14
studies. In most cases, the clinical rating scales ameliorated
under DBS-ON conditions compared to those under DBS-
OFF conditions; however, we found no statistical significances.
Additional analyses indicated that the durations of follow-up
time, phenotypes of PSP and unilateral or bilateral PPN-DBS
might influence the degree of clinical scales improvements. We
further found DBS is associated with sleep, AEO and cognitive
functions of PSP patients in addition to axial symptoms like falls
and gait disorders.

The treatment of PSP is changing since currently, no effective
symptomatic or neuroprotective treatment is available for PSP
(10), and several clinical trials showed no beneficial effects
in PSP patients (46). DBS is a potentially promising tool to
provide symptomatic benefit for PSP. Galazky et al. proposed
that bilateral PPN-DBS resulted in frequency-dependent effects
in PSP patients and they observed low frequency improved cyclic
gait parameters while high frequency ameliorated hypokinesia
(21), which indicates that choosing proper stimulator parameters
for individualized patients is essential. About one PSP case

treated by double implanted GPi-PPN gained a better clinical
outcome (42). Considering that basal ganglia and brainstem are
generally affected in PSP patients (47), there may be an increased
synergic effect existing when simultaneously stimulating different
nucleus if the patient is tolerant.

PPN is a new target of DBS, and several studies have supported
the positive effects of PPN-DBS for PD (15, 19, 48). Garcia-Rill
et al. concluded some possible mechanisms of how stimulation
in the PPN area could improve gait (49), which mainly results
from the complex anatomy and multiple projections of PPN.
Pathological study observed that cholinergic and noncholinergic
neuronal populations in the PPN were significantly reduced
in PSP patients, and this discovery suggested an underlying
pathological physiological link could exist between PSP and
PPN cell loss (50), which provided evidence for the application
of PPN-DBS for PSP patients. Target section within the PPN
region could lead to the variability of clinical response (45,
51), which to some extent, can explain why different studies
showed variable outcomes. In addition, the variability may be
also partly attributable to variations in stimulation parameters,
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TABLE 2 | UPDRS III scores of patients with different PSP phenotypes.

Phenotypes Surgery target DBS-OFF (scores) DBS-ON (scores) Improvement Mean

PSP-RS bilateral PPN-DBS

(21)

40 28 30.0% 10.00%

bilateral PPN-DBS

(21)

35 35 0.0%

bilateral PPN-DBS

(21)

15 15 0.0%

PSP-PGF bilateral PPN-DBS

(21)

27 29 0.0% 9.37%

bilateral PPN-DBS

(21)

14 11 21.43%

bilateral PPN-DBS

(41)

15 14 6.67%

PSP-P PPN- and

STN-DBS (21)

33 31 6.06% 27.38%

right PPN-DBS

(38)

22 18 18.18%

bilateral STN-DBS

(37)

38 16 57.89%

TABLE 3 | The effectiveness of PPN-DBS for PSP patients.

Stimulation Clinical rating

scales

Baseline (scores) DBS-ON (scores) Effectiveness

Unilateral PPN (N = 5) UPDRS III (38) 22 18 No

PSPRS VI (42) 18 14 No

PSPRS VI (42) 15 11 No

PSPRS (45) 50 51 No

PSPRS (45) 27 31 No

Bilateral PPN (N = 13) FOG-Q (40) 16 7 Yes

UPDRS III (41) 17 14 No

PSPRS (45) 39 37 No

UPDRS III (17) 54 43 No

UPDRS III (21) 30 28 No

UPDRS III (21) 28 29 No

UPDRS III (21) 17 15 No

UPDRS III (21) 33 35 No

UPDRS III (21) 10 11 No

UPDRS III (21) 22 40 No

UPDRS III (20) 33 46 No

UPDRS III (20) 21 24 No

UPDRS III (20) 37 30 No

UPDRS III (20) 11 7 Yes

Surgery effectiveness was defined as improvement of the clinical rating scales by >30%.

unilateral versus bilateral stimulation, isolated PPN stimulation
versus combining the PPN with other targets, duration of
follow-up, disease severity and progression, outcome measures
used, as well as different PSP phenotypes (45). Therefore, in
order to optimize the curative effect of PPN-DBS for PSP,
it is important to further understand the anatomy of PPN,
improve the localization of the optimal targets and design
appropriate parameters.

PSP-P shows a better response to levodopa medications and
a more favorable course with longer survival than PSP-RS (52).
The present review found PSP-P patients also presented a higher
improvement after DBS surgery compared with PSP-RS and
PSP-PGF patients, which might result from the various disease
severity and different response to levodopa in patients with
different phenotypes. On the other hand, we observed that the
levodopa equivalent daily dose was largely reduced in a PSP-P
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patient in Bergmann’s study (37), while part of patients did not
reduce levodopa equivalent daily dose after DBS surgery (21),
which indicated the effects that the DBS surgery might make
on levodopa dose in PSP patients needed further explorations.
However, there was not adequate information about levodopa
response in included patients, which also restricted the discussion
about the interactions between DBS surgery and levodopa
response in PSP patients to whether a better response to levodopa
leads to better response to DBS and whether DBS surgery changes
the response to levodopa in PSP patients.

Cognitive decline is a common clinical symptom in PSP
patients, and fronto-executive deficits are the dominated
neuropsychological profile of PSP (53). Compared to other
parkinsonian syndromes, cognitive progression is more severe
and rapid in PSP (53). DBS is generally safe for cognitive function
in PD patients (43, 54, 55), and STN-DBS even can improve
cognitive function to a certain extent in PD (55). However, there
are only a few studies that have investigated the effects of DBS
on cognitive condition in PSP patients, and the sample is small
and heterogeneous (37, 38, 43). Current evidence indicates PPN-
DBS might be safe for PSP patients from a cognitive perspective
(38, 43), and more studies are needed to explore the associations
between DBS and cognitive function in PSP patients.

This review has several limitations. The major limitation is the
relatively small number of included studies as well as the small
number of eligible participants. Second, some of included studies
are case reports and the data from several studies are incomplete
or unavailable, which gains the bias of statistical outcomes and
another main limitation for the studies used in this review is
possible selection bias: considering PSP could show aggressive
progression, relatively benign and early-stage patients might be
the candidate for DBS. Moreover, it is an important limitation
to analyze the clinical scales, which were performed in different
cases where there were no consistent stimulation procedures,
DBS parameters, and washout periods. Finally, the outcome of
our study is simple: though UPDRS III as the primary outcome
was well analyzed, we really desire more motor and non-motor
scales to evaluate the DBS for PSP, especially disease-specific
outcomes like PSPRS, and the safety of DBS in PSP patients still

needs more discussions since only some studies reported adverse
events. Thus, more well-designed research with larger cohorts is
well needed.

CONCLUSION

This review investigated the application of DBS in PSP patients,
however there was not sufficient evidence proving DBS was
effective for PSP patients though part of PSP cases could benefit
from DBS. Our findings gave up-to-date information about
the possible role of DBS in PSP, which would provide design
strategies for following clinical trials and ultimately help improve
the clinical application of DBS in PSP patients.
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Yan Liang †, Junyu Lin †, Yanbing Hou, Lingyu Zhang, Ruwei Ou, Chunyu Li, Qianqian Wei,

Bei Cao, Kuncheng Liu, Zheng Jiang, Tianmi Yang, Jing Yang, Meng Zhang, Simin Kang,

Yi Xiao, Qirui Jiang, Jing Yang, Wei Song, Xueping Chen, Bi Zhao, Ying Wu and

Huifang Shang*

Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan

University, Chengdu, China

Purpose: The study aimed to evaluate the health-related quality of life (HRQoL) measured

by the five-level EuroQol-5 dimensions (EQ-5D-5L) in patients with cervical dystonia, and

to explore the determinants of HRQoL in patients with cervical dystonia.

Methods: EQ-5D-5L health state profiles were converted into a single aggregated

“health utility” score. A calibrated visual analog scale (EQ VAS) was used for self-rating of

current health status. Multiple linear regression analysis was used to explore the factors

associated with HRQoL in cervical dystonia.

Results: A total of 333 patients with cervical dystonia were enrolled in the analysis,

with an average age of 44.3 years old. The most common impaired dimension of health

was anxiety/depression (73.6%), followed by pain/discomfort (68.2%) and usual activities

(48%). The median health utility score was 0.80, and the median EQ VAS score was 70.2.

Multivariate linear regression analysis indicated that disease duration and the scores of

the Hamilton Depression Rating Scale (HDRS), Pittsburgh sleep quality index (PSQI),

Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) Part I, and TWSTRS Part

III were associated with the health utility scores. After adjusting other parameters, the

TWSTRS Part III score and the HDRS score were significantly associated with the EQ

VAS scores (p < 0.05).

Conclusion: This study evaluated HRQoL in patients with cervical dystonia using the

Chinese version of the EQ-5D-5L scale. We found that, besides motor symptoms,

non-motor symptoms, including depression, pain, and sleep quality, could be greater

determinants of HRQoL in patients with cervical dystonia. Management of non-motor

symptoms, therefore, may help improve HRQoL in patients with cervical dystonia.

Keywords: cervical dystonia, HRQoL, EQ-5D-5L, non-motor symptoms, pain, depression
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INTRODUCTION

Cervical dystonia (CD) is one of the most common focal
dystonias characterized by involuntary contractions of cervical
muscles, leading to abnormal movements and posture of head
(1). Besides the motor symptoms, non-motor symptoms, such
as anxiety, depression, sleep disorders, and pain, are also very
common in patients with CD (2). While CD is not a life-
threatening disease, it can affect activities of daily living, decrease
the quality of life (3), and even cause disability of patients (4).

Most of the previous studies assessed the quality of life in
CD using the craniocervical dystonia questionnaire-24 (CDQ 24)
or the Short Form-36 Health Survey (SF-36). Additionally, they
had usually small sample sizes and yielded inconsistent results.
For example, motor severity has been reported to correlate with
poor quality of life in CD in some studies (5–7), but not in other
studies (8–13).

The five-level EuroQol5-dimensions questionnaire (EQ-5D-
5L) is a standardized and more convenient tool to evaluate the
health-related quality of life (HRQoL) worldwide (14). It has been
extensively used in neurological diseases, such as Parkinson’s
disease (15), amyotrophic lateral sclerosis (16), and multiple
sclerosis (17). The utility values of EQ-5D-5L for Chinese were
established in 2017 (18).

Therefore, the aim of this study was to assess HRQoL in
patients with CD using the EQ-5D-5L scale in a large Chinese
cohort and to explore the determinants of HRQoL in CD.

MATERIALS AND METHODS

Patients Evaluation
We performed a cross-sectional study. All the patients were
recruited from the Department of Neurology of West China
Hospital of Sichuan University. The patients were diagnosed as
CD by neurologists specialized in movement disorders. Only
the patients with isolated cervical dystonia were included in
the analysis. The patients who had concominant blepharospasm,
oromandibular dystonia or dystonia in the limbs or trunk besides
CD were excluded in the current study. The study was approved
by the Ethics Committee of West China Hospital of Sichuan
University (No. 2022-260). All the participants have signed
informed consent.

We collected demographic and clinical data of all the
participants, including sex, age, age of the onset, and disease
duration. All the participants underwent a face-to-face interview
by trained movement disorder specialists. Motor and non-
motor symptoms were assessed using standard scales. Motor
severity was assessed using the Toronto Western Spasmodic
Torticollis Rating Scale Part I (TWSTRS-I). Depression was
assessed using the Hamilton Depression Rating Scale-24 (HDRS-
24) (19). Anxiety was assessed using the Hamilton Anxiety Rating
Scale (HARS) (20). Excessive daytime sleepiness was assessed
using the Epworth Sleepiness Scale (ESS) scale (21). Sleep quality
was assessed using the Pittsburgh sleep quality index (PSQI)
scale (22). The global cognitive function was assessed using the
Montreal Cognitive Assessment (MoCA) scale (23). The Toronto

Western Spasmodic Torticollis Rating Scale Part III (TWSTRS-
III) was used to assess pain severity. The Toronto Western
Spasmodic Torticollis Rating Scale Part II (TWSTRS-II) was used
to assess the activities of daily living.

The HRQoL was assessed using the EQ-5D-5L. EQ-5D-
5L comprises two parts. The first part of the EQ-5D-5L
assesses five dimensions of health, namely, mobility (MO),
self-care (SC), usual activities (UA), pain/discomfort (PD),
and anxiety/depression (AD). Each dimension has five levels,
namely, no problems, slight problems, moderate problems,
severe problems, and extreme problems. The scores of these
five problems can be converted into a single aggregated “health
utility” score according to the Chinese version of the population-
based utility values (18). The second part of the EQ-5D-5L is a
self-rating calibrated visual analog scale (EQ VAS), with a range
of 0 to 100. Score 0 indicates worst possible health state, while
score 100 indicates best possible health state.

Statistical Analysis
All continuous variables were presented as the mean and
standard deviation (SD), and all categorical variables were
presented as numbers and percentages. Spearman’s correlation
analyses were conducted to explore relationships between EQ-
5D-5L values (health utility scores and EQ VAS scores) and
clinical variables (sex, age, age of the onset, disease duration,
scores of TWSTRS-I, TWSTRS-II, TWSTRS-III, HDRS-24,
HARS, ESS, PSQI, and MoCA). The multivariate linear
regression model was used to explore the factors correlated with
the health utility scores and EQ VAS scores of EQ-5D-5L in CD.
The health utility scores and EQ VAS scores of EQ-5D-5L were
used as dependent variables.

All analyses were performed using the Statistical Package for
the Social Sciences (SPSS) version 22.0, and the R. two-tailed
p-values of < 0.05 were considered statistically significant.

RESULTS

A total of 333 patients with CD (118 males) were included in
the study. The average age of the patients was 44.3 (SD, 13.3) at
the baseline, with a mean disease duration of 3.7 (SD, 5.7) years
(Table 1).

The median health utility score was 0.80, and the median EQ
VAS score was 70.2 for the total patients with CD. Levels 2–
5 were considered as impaired for each dimension. The most
common impaired dimension of health was anxiety/depression
(73.6%), followed by pain/discomfort (68.2%), usual activities
(48%), mobility (33.9%), and self-care (20.4%) (Figure 1).

Spearman’s correlation analyses showed that the health utility
scores were significantly associated with disease duration (r =

0.168, p = 0.002), the TWSTRS-I score (r = −0.314, p < 0.001),
the TWSTRS-II score (r = −0.625, p < 0.001), the TWSTRS-III
score (r = −0.424, p < 0.001), the HARS score (r = −0.511,
p < 0.001), the HDRS score (r = −0.590, p < 0.001), and
the PSQI score (r = −0.269, p < 0.001). The EQ VAS scores
were significantly associated with disease duration (r = 0.110,
p = 0.045), the TWSTRS-I score (r = −0.141, p = 0.010), the
TWSTRS-II score (r=−0.353, p< 0.001), the TWSTRS-III score
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TABLE 1 | Demographic and clinical features of the recruited patients with

cervical dystonia.

Patients with cervical dystonia

Total number 333

Male sex, No. (%) 118 (35.4%)

Age, years, mean (SD) 44.3 (13.3)

Age of onset, years, mean (SD) 40.6 (13.3)

Disease duration, mean (SD) 3.7 (5.7)

TWSTRS-I score, mean (SD) 13.4 (5.2)

TWSTRS-II score, mean (SD) 8.2 (6.4)

TWSTRS-III score, mean (SD) 3.1 (3.7)

MoCA score, mean (SD) 25.3 (3.5)

HDRS-24 score, mean (SD) 9.7 (8.0)

HARS score, mean (SD) 8.4 (7.1)

ESS score, mean (SD) 4.0 (4.4)

PSQI score, mean (SD) 6.3 (4.1)

EQ-5D-5L health utility score, mean (SD) 0.8 (0.2)

EQ VAS, mean (SD) 70.2 (15.5)

TWSTRS-I, Toronto Western Spasmodic Torticollis Rating Scale Part I;TWSTRS-II,

Toronto Western Spasmodic Torticollis Rating Scale Part II; TWSTRS-III, Toronto Western

Spasmodic Torticollis Rating Scale Part III; MoCA,Montreal Cognitive Assessment; HDRS-

24, Hamilton Depression Scale; HARS, Hamilton Anxiety Scale; ESS, Epworth Sleepiness

Scale; PSQI, Pittsburgh sleep quality index; EQ-5D-5L, five-level EuroQol 5-dimensions

questionnaire; EQ VAS, visual analog scale.

FIGURE 1 | Frequency of reported problems for each of the EQ-5D-5L

dimensions.

(r=−0.249, p< 0.001), the HARS score (r=−0.409, p< 0.001),
the HDRS score (r = −0.484, p < 0.001), and the PSQI score (r
=−0.258, p < 0.001; Table 2).

Themultivariate linear regression analysis showed that disease
duration (β = 0.086, p = 0.036) and the scores of the HDRS
(β = −0.458, p < 0.001), the PSQI (β = −0.094, p = 0.035),
the TWSTRS Part I (β = −0.216, p < 0.001), and the TWSTRS
Part III (β = −0.215, p < 0.001) were associated with the EQ-
5D-5L health utility scores. After adjusting other parameters, the
TWSTRS Part III score (β = −0.124, p < 0.012) and the HDRS

TABLE 2 | Spearman’s correlation analyses of the EQ-5D-5L healthy utility score

and the EQ VAS score in patients with cervical dystonia.

Healthy utility score EQ VAS

Sex 0.011 −0.073

Age 0.038 0.029

Age of onset −0.008 0.025

Disease duration 0.168* 0.110*

TWSTRS-I score −0.314* −0.141*

TWSTRS-II score −0.625* −0.353*

TWSTRS-III score −0.424* −0.249*

MoCA score 0.048 0.042

HDRS-24 score −0.590* −0.484*

HARS score −0.511* −0.409*

ESS score −0.007 −0.030

PSQI score −0.269* −0.258*

TWSTRS-I, Toronto Western Spasmodic Torticollis Rating Scale Part I; TWSTRS-II,

Toronto Western Spasmodic Torticollis Rating Scale Part II; TWSTRS-III, Toronto Western

Spasmodic Torticollis Rating Scale Part III; MoCA,Montreal Cognitive Assessment; HDRS-

24, Hamilton Depression Scale; HARS, Hamilton Anxiety Scale; ESS, Epworth Sleepiness

Scale; PSQI, Pittsburgh sleep quality index; EQ-5D-5L, five-level EuroQol 5-dimensions

questionnaire; EQ VAS, EuroQol visual analog scale.

*Significant difference.

TABLE 3 | Stepwise linear regression analysis of the total EQ-5D-5L healthy utility

score and the total EQ VAS score in patients with cervical dystonia.

Variable Standardized SE P-

regression value

coefficient

Healthy utility score Disease duration 0.086 0.001 0.036*

HDRS-24 score −0.458 0.001 <0.001*

PSQI score −0.094 0.002 0.035*

TWSTRS-I score −0.216 0.001 <0.001*

TWSTRS-III score −0.215 0.002 <0.001*

EQ VAS score HDRS-24 score −0.459 0.096 <0.001*

TWSTRS-III score −0.124 0.204 0.012*

EQ-5D-5L, five-level EuroQol 5-dimensions questionnaire; EQ VAS, EuroQol visual analog

scale; HDRS-24, Hamilton Depression Scale; PSQI, Pittsburgh sleep quality index;

TWSTRS-I, Toronto Western Spasmodic Torticollis Rating Scale Part I; TWSTRS-III,

Toronto Western Spasmodic Torticollis Rating Scale Part III.

*Significant difference.

score (β = −0.459, p < 0.001) were significantly associated with
the EQ VAS scores (p < 0.05; Table 3).

DISCUSSION

The current study describes the HRQoL profile in patients
with CD in a large Chinese cohort using the EQ-5D-5L
scale. The results showed that anxiety/depression (73.6%) and
pain/discomfort (68.2%) were the highest reported dimensions
impaired in patients with CD. In addition, multivariate linear
regression analysis showed that EQ-5D-5L health utility scores
were associated with disease duration, motor severity, and non-
motor symptoms, including pain, depression, and sleep quality,
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while EQ VAS scores were only associated with non-motor
symptoms, including pain and depression.

As with our results, non-motor symptoms have been widely
reported to play an important role in the decreased quality of life
in isolated dystonia, including CD (12, 24, 25). Approximately
55∼90% of the patients with CD have been reported to suffer
from pain (1, 26, 27). In the current study, pain/discomfort was
reported by 68.2% of the patients with CD. Inconsistent with our
results, pain has also been identified to affect the quality of life
in patients with CD in several studies (7–9, 11–13). The pain in
CD can be relieved by botulinum toxin injection (28). However,
the mechanism of pain in patients with CD remains largely
unknown. The probable mechanisms include both muscle-based
and non-muscle-based mechanisms, such as network changes in
the basal ganglia (29).

Depression was another determinant of decreased HRQoL in
patients with CD identified in the current study. Mood disorders
have been reported to be important determinants of poor quality
of life in patients with CD in many previous studies (5, 8–
11, 13). Depression is common in patients with CD. A recent
meta-analysis has yielded depression prevalence of 31.5% in
patients with CD (30). In the current study, anxiety/depression
was reported by 68.2% of the patients with CD, indicating that the
rate of psychiatric comorbidities in CDmight be underestimated.
Impairment of the dopaminergic systemmight be an explanation
of the development of depression in patients with CD (31).

In line with our results, sleep disorder has also been found to
affect the quality of life in patients with CD by a previous study
(10). Sleep disorder is also a very common nonmotor symptom
in CD (32). Nearly half of the patients with CD have been found
to have poor sleep quality (33, 34), which was in accordance with
our results (49.8%). Patients with CD with sleep disorders also
had a higher pain burden than those with normal sleep (12).

Several studies reported that motor severity was not associated
with quality of life in patients with CD (8–13). However, other
studies came to the opposite conclusion (5–7). In addition, a
study found that motor symptoms had a small influence only
on the physical functioning domain of the HRQoL in CD (24).
In the current study, motor severity was associated with EQ-5D-
5L health utility scores, but not with EQ VAS scores according
to the multivariate linear regression analyses. Therefore, the role
of motor severity in the HRQoL of CD needs to be validated by
more studies in the future.

The results of the current study offered some indications for
the strategies of the decreased quality of life in patients with CD.
For example, botulinum toxin injection benefits for both pain and
motor severity of CD (28), and it has also been reported to help
improve the HRQoL in patients with CD (35). In addition, as
non-motor symptoms played an important role in the decreased
HRQoL in patients with CD, dealing with these non-motor

symptoms might be a good choice for improving the HRQoL
in CD.

However, several limitations should be acknowledged in the
current study. The first limitation was the lack of the healthy
controls. The second limitation was that the treatment choices
were not included in the analyses.

In conclusion, our study evaluated theHRQoL in patients with
CD using the Chinese version of the EQ-5D-5L scale. The results
revealed that, besides motor symptoms, non-motor symptoms,
including depression, pain, and sleep quality, could be greater
determinants of HRQoL in patients with CD, indicating that
management of non-motor symptomsmay help improveHRQoL
in patients with CD.
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Background: Studies of secondary movement disorder (MD) caused by cerebrovascular

diseases have primarily focused on post-stroke MD. However, MD can also result from

cerebral artery stenosis (CAS) without clinical manifestations of stroke. In this study, we

aimed to investigate the clinical characteristics of MD associated with CAS.

Materials and Methods: A nationwide multicenter retrospective analysis was

performed based on the data from patients with CAS-associated MDs from 16 MD

specialized clinics in South Korea, available between January 1999 and September

2019. CAS was defined as the >50% luminal stenosis of the major cerebral arteries. The

association between MD and CAS was determined by MD specialists using pre-defined

clinical criteria. The collected clinical information included baseline demographics,

features of MD, characteristics of CAS, treatment, andMD outcomes. Statistical analyses

were performed to identify factors associated with the MD outcomes.

Results: The data from a total of 81 patients with CAS-associated MD were analyzed.

The mean age of MD onset was 60.5 ± 19.7 years. Chorea was the most common

MD (57%), followed by tremor/limb-shaking, myoclonus, and dystonia. Atherosclerosis

was the most common etiology of CAS (78%), with the remaining cases attributed to

moyamoya disease (MMD). Relative to patients with atherosclerosis, those with MMD
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developed MD at a younger age (p < 0.001) and had a more chronic mode of onset

(p = 0.001) and less acute ischemic lesion (p = 0.021). Eight patients who underwent

surgical treatment for CAS showed positive outcomes. Patients with acute MD onset

had a better outcome than those with subacute-to-chronic MD onset (p = 0.008).

Conclusions: This study highlights the spectrum of CAS-associated with MD across

the country. A progressive, age-dependent functional neuronal modulation in the basal

ganglia due to CAS may underlie this condition.

Keywords: movement disorders, intracranial artery stenosis, extracranial artery stenosis, moyamoya disease,

cerebral artery stenosis

INTRODUCTION

Movement disorder (MD) is considered primary when it occurs
as an isolated syndrome and secondary as a symptom of various
neurological disorders or systemic diseases (1). The causes of
secondary MD include metabolic, infectious, traumatic, toxic,
and cerebrovascular diseases. Among them, MD caused by
cerebrovascular diseases is one of the most common forms,
accounting for up to 22% of all secondary MDs (2).

Previous research on secondary MD caused by
cerebrovascular diseases has mainly focused on post-stroke
MDs (3). Post-stroke MD refers to movement complications
associated with ischemic or hemorrhagic stroke leading to
parenchymal destruction (4). Approximately 1–3% of patients
with acute stroke develop MDs localizable to the stroke lesion
(5, 6). Nevertheless, the clinical profile of post-stroke MD is
diverse, both in terms of its forms and prognosis (4).

However, cerebrovascular diseases are not limited to
stroke. Cerebral artery stenosis (CAS) and subsequent
cerebral hypoperfusion can also cause MD even without
overt parenchymal damage due to stroke. MD is also the
predominant symptom of moyamoya disease (MMD), a non-
atherosclerotic cause of intracranial artery stenosis. However, the
clinical profile of MDs associated with arterial stenoses has not
been comprehensively characterized due to the heterogeneity of
MDs and arterial stenoses, as well as the difficulty in defining the
association between the two conditions. These clinical entities
are particularly important in the context of East Asia, where the
prevalence of intracranial atherosclerosis and MMD is much
higher than in Western countries (7, 8).

In this nationwide study, we aimed to characterize the clinical
features of MD associated with CAS in Korean patients.

MATERIALS AND METHODS

We performed a nationwide multicenter retrospective analysis
on CAS-associated MD cases collected from 16 major tertiary
care hospital clinics in South Korea specializing in MDs. The
16 centers were Asan Medical Center, Chungnam National
University Hospital, Seoul National University Hospital,
Gangnam Severance Hospital, Seoul National University-
Seoul Metropolitan Government Boramae Medical Center,
Pusan National University Yangsan Hospital, Korea University

College of Medicine Guro Hospital, Gachon University Gil
Medical Center, Samsung Medical Center, Ulsan University
Hospital, Haeundae Paik Hospital, Chung-Ang University
College of Medicine, Kyung-Hee University College of Medicine,
Kyungpook National University Hospital, Dongsan Medical
Center, and Chonnam National University Hospital. The
study was approved by the Institutional Review Board of each
participating center. Informed consent of patients was waived
due to the retrospective nature of this study.

Movement disorder (MD) specialists at each center reviewed
the medical records of patients with CAS-associated MDs from
their patient registries from January 1999 to September 2019.
The inclusion criteria were as follows: (1) age of >18 years;
(2) hyperkinetic or hypokinetic MD diagnosis; and (3) CAS
diagnosis associated with MD, defined as >50% luminal stenosis
of the anterior cerebral artery (ACA), middle cerebral artery
(MCA), posterior cerebral artery (PCA), and distal or proximal
internal carotid artery (ICA). The association between MD and
CAS was determined by specialists according to the following
criteria: (1) diagnosis of CAS preceding or coinciding with
the onset of MD; (2) absence of other structural or primary
neurological disorders better explaining the motor symptoms;
(3) with lateralized symptoms, the localization of movement
matching with the localization of CAS. The clinical information
and the association between MD and CAS were cross-examined
by an M.D. specialist from another center. The exclusion criteria
were as follows: (1) diagnosis of primary MD during follow-up,
including Parkinson’s disease; (2) diagnosis of other neurological
disorders that may manifest MD as a primary feature, including
Wilson’s disease, neurodegeneration with iron accumulation in
the brain, infectious disease, etc.; (3) history of taking dopamine-
blocking agents for more than a month, including neuroleptics
and antiemetics.

The clinical information collected included baseline
demographics, MD characteristics, CAS characteristics, and
the outcome of MD. The baseline demographic data included
age, sex, and risk factors for concomitant atherosclerosis, such as
hypertension, diabetes mellitus, hyperlipidemia, coronary heart
disease, and smoking. MD characteristics included subtype,
distribution, and onset. As for the subtype, MDs were classified
into one of the following: chorea (with or without ballism),
dystonia, parkinsonism myoclonus, tremor or limb-shaking, and
a mixed phenotype of the above. The phenotype was determined
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by an MD specialist using the generally accepted definitions of
each phenotype. With regard to distribution, MDs were classified
as focal (affecting one part of the body), unilateral (affecting
the ipsilateral arm and leg), or generalized. Based on how MD
symptoms developed after the patient first noticed them, the
onset of MD was defined as acute (<1 week), subacute (1–4
weeks), or chronic (>4 weeks). According to the outcome of
MDs, patients were divided into groups with a good outcome
(self-limited, improved with medical treatment, improved with
endovascular/surgical intervention) and with a poor outcome
(static or progressive). The etiology of CAS was divided into
atherosclerosis and MMD.

For statistical analysis, continuous variables were compared
with the Student’s t-test or Kruskal–Wallis test, as appropriate.
Categorical variables were compared with the chi-square test or
Fisher’s exact test, as appropriate. The p-value of < 0.05 was
considered statistically significant. All statistical analyses were
performed using R v.4.1.0.

RESULTS

Baseline Characteristics
A total of 96 cases were initially examined. Fifteen patients were
further excluded (age of<18 in 6 patients, insufficient association
between MD and CAS in 9 patients), and 81 patients were
included in the final analysis.

The mean age of all patients was 60.5 ± 19.7 years, ranging
from 18 to 90 years (Table 1). Bimodal age distribution was
observed in all patients and the subset of patients with chorea
(Figure 1). Such age distribution pattern was not observed in
patients with other MDs, possibly due to a small number of
patients with those MDs. The sex ratio was near 1:1, with male
patients comprising 57% of the sample. Hypertension was the
most common risk factor for atherosclerosis (51%), followed by
diabetes (27%) and smoking (22%) (Table 1).

Characteristics of MDs
Chorea was the most common MD (n = 46, 57%) followed
by tremor/limb-shaking (n = 12, 15%), myoclonus (n = 8,
10%), dystonia (n = 7, 9%), and mixed MDs (n = 5). About
half (n = 40, 49%) of the patients had acute onset of the
MDs, while a substantial portion of patients (n = 32, 40%)
had a chronic onset. Most patients had symptoms in one limb
(n= 28, 35%) or hemibody (n= 49, 60%), whereas 4 patients had
generalized symptoms (Table 1). As shown in Figure 2A, there
was no predominance of a specific movement phenotype over the
stenosis of a particular vessel. The details of each MD phenotype
are described below.

In patients with chorea (n = 46), symptoms were either in
one limb (n = 12, 26%) or in the hemibody (n = 34, 74%)
(Figure 2). The onset of symptoms was acute in 25 patients
(54%), subacute in 8 patients (17%), and chronic in 13 patients
(29%). Atherosclerosis was the etiology of CAS in 39 patients
(85%), whereas 7 patients had MMD (15%). Atherosclerosis
included intracranial stenosis of the MCA (n = 17), PCA (n
= 3), distal ICA (n = 3), proximal ICA (n = 6), and multiple
arteries (n = 6). Eighteen patients had acute infarction lesions in

TABLE 1 | Baseline characteristics of patients (n = 81).

Characteristics

Demographics

Age, years 60.5 ± 19.7

Sex, male 46 (57)

Risk factors for atherosclerosis

Hypertension 41 (51)

Diabetes 22 (27)

Hyperlipidemia 13 (16)

Smoking 18 (22)

Coronary heart disease 7 (9)

MD

MD subtype

Chorea 46 (57)

Dystonia 7 (9)

Parkinsonism 3 (4)

Myoclonus 8 (10)

Tremor/limb-shaking 12 (15)

Mixed 5 (6)

Distribution of MD

Focal 28 (35)

Unilateral 49 (60)

Generalized 4 (5)

MD onset

Acute 40 (49)

Subacute 9 (11)

Chronic 32 (40)

CAS

Etiology and localization

Atherosclerosis 63 (78)

MCA 22 (27)

ACA 0 (0)

PCA 6 (7)

Distal ICA 6 (7)

Proximal ICA 9 (11)

Multiple stenoses 20 (25)

Moyamoya disease 18 (22)

Acute stroke lesion

Present 26 (32)

Absent 55 (68)

Associated symptoms

Motor weakness 25 (31)

Sensory loss 17 (21)

Dysarthria 19 (24)

Limb ataxia 4 (5)

Others 14 (17)

Data are presented as the mean± standard deviation or the number of patients (%). ACA,

anterior cerebral artery; CAS, cerebral artery stenosis; ICA, internal carotid artery; MCA,

middle cerebral artery; MD, movement disorder; PCA, posterior cerebral artery.

various areas of the basal ganglia and brainstem. These lesions
included a single lesion in the putamen (n = 4), globus pallidus
(n = 1), thalamus (n = 3), and pons (n = 2), or multiple
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FIGURE 1 | Distribution of patients by age. (A) All patients. (B) Patients with chorea.

FIGURE 2 | Characteristics of patients according to movement disorder phenotype: (A) Location and etiology of cerebral arterial stenosis (CAS), (B) mode of onset,

(C) distribution of symptoms, and (D) the presence of acute stroke lesion.

lesions (n = 9). Between choreic (n = 46) and non-choreic
patients (n = 35), there was no statistically significant difference
in the baseline demographics and MD or CAS characteristics
(Supplementary Table 1).

In patients with tremor/limb-shaking (n = 12), the second
most common form of MD, symptoms were generalized in 1

patient (Figure 2). The onset of symptoms was acute in half
of the patients (n = 6) and chronic in the other half (n = 6).
Atherosclerosis was the etiology of CAS in 9 tremor/limb-shaking
patients, which included stenosis of the MCA (n = 1), PCA
(n = 1), distal ICA (n = 3), proximal ICA (n = 2), and multiple
arteries (n = 2). Three patients had MMD. Two patients had
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FIGURE 3 | Angiography of representative cases for each movement disorder phenotype. (A) A 76-year-old male with right hemichorea and contralateral proximal

internal carotid artery (ICA) stenosis. (B) A 57-year-old male with limb-shaking of the left arm and contralateral proximal ICA stenosis. (C) A 56-year-old male with a

myoclonus of the right arm and leg and contralateral proximal ICA stenosis. (D) A 24-year-old male with left arm dystonia and moyamoya disease. (E) A 46-year-old

female with right hemiparkinsonism and contralateral middle cerebral artery (MCA) stenosis. (F) A 28-year-old female with a mixed phenotype (left hemichorea and

hemidystonia) and moyamoya disease.

acute infarction lesions in the thalamus. Between patients with
tremor/limb-shaking (n = 12) and the remaining patients with
MD (n = 69), there was no statistically significant difference
in the baseline demographics and MD or CAS characteristics
(Supplementary Table 2).

In patients with myoclonus (n =8), the third most common
form of MD, symptoms were generalized in 25% of patients (n
= 2). Symptoms were focal in half of the patients (n = 4) and
unilateral in two patients (Figure 2). The onset of symptoms
was acute in 6 patients, subacute in one patient, and chronic
in 1 patient. In myoclonic patients, the etiology of CAS was
atherosclerosis of the distal ICA (n = 1), proximal ICA (n = 1),
multiple arteries (n= 5), as well as MMD (n = 1). One patient
had acute infarction lesions in the putamen and globus pallidus
(Figure 2D).

In 7 patients with dystonia, symptoms were either focal (n =

5) or unilateral (n = 2) (Figure 2). The onset of symptoms was
mostly chronic (n= 6), except for 1 case with an acute onset. The
etiology of CAS was atherosclerosis of the MCA (n = 2), PCA
(n = 1), multiple arteries (n = 1), as well as MMD (n = 3). One
patient had an acute lesion in the putamen.

In three patients with parkinsonism, symptoms were either
unilateral (n= 2) or generalized (n= 1) (Figure 2), and 1 patient
had developed acute parkinsonism. The etiology of CAS was
atherosclerosis of the MCA (n = 1), multiple arteries (n = 1),
as well as MMD (n = 1). All three patients had acute ischemic
lesions in the putamen.

Finally, there were five patients with mixed MD. Two
patients had chorea and dystonia, two had chorea and
tremor/limb-shaking, and one had dystonia and myoclonus.
These symptoms were either focal (n =3) or unilateral
(n = 2) (Figure 2). Four patients had a chronic onset of
symptoms, and one patient had an acute onset. One patient
had stenosis of the PCA, one had multiple intra-/extracranial
atherosclerotic lesions, and two patients had MMD. One patient
with chorea and dystonia had an acute ischemic lesion in
the putamen.

The vascular status of representative cases for each
movement phenotype is presented in Figure 3, and their
clinical characteristics are shown in Supplementary Table 3.

Characteristics of CAS
Overall, 78% of patients (n = 64) had atherosclerotic disease
and the rest had MMD. Among those with atherosclerosis, 34
patients had intracranial atherosclerosis of the MCA (27%), PCA
(7%), and distal ICA (7%). Nine patients (11%) had extracranial
proximal ICA stenosis, and 21 patients (26%) had multiple
atherosclerotic stenoses of various arteries.

Patients with MMD were significantly younger than those
with atherosclerosis at symptom onset (p < 0.001) (Table 2).
Most patients with MMD had a subacute or chronic onset of MD
symptoms (n = 15.88%), whereas 41% (n = 26) of patients with
atherosclerosis had an acute onset (p = 0.001). Only 1 patient
with MMD had an overt stroke lesion at MD onset, while 25
patients with atherosclerosis (40%) also had it (p = 0.001). As
expected, patients with atherosclerosis had significantly more
risk factors for atherosclerosis than MMD patients (p = 0.013).
However, there was no difference in the ratio of chorea between
patients with atherosclerosis and MMD patients.

Acute stroke lesion was present in 26 patients (32%).
Motor weakness was the most common neurological symptom
associated with MD (n = 25, 31%), followed by dysarthria (n =

19, 24%) and sensory loss (n= 17, 21%).

Treatment and Outcome
In 20 patients (25%), MD spontaneously improved without
medical or surgical intervention. Eight patients (10%) underwent
surgical treatment for CAS, and all had full resolution of their
MD. Two patients with proximal ICA stenosis underwent carotid
endarterectomy, and 6 patients with MMD underwent bypass
surgery. The duration of post-intervention follow-up ranged
from 4 to 239 months.

Fifty-three (65%) patients received medical treatment,
including antichoreic, antidystonic, or antiparkinsonian
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TABLE 2 | Comparison between patients with atherosclerosis (n = 64) and

moyamoya disease (n = 17).

Atherosclerosis

(n = 64)

Moyamoya

disease

(n = 17)

p-value

Age 66.9 ± 14.6 36.4 ± 17.9 <0.001

Sex

Male 40 (37) 6 (35) 0.082

Female 24 (63) 11 (65)

Number of risk factors

for atherosclerosis

2 [1-2] 0 [0–0.5] 0.013

MD phenotype

Chorea 25 (40) 10 (59) 0.235

Non-chorea 39 (61) 7 (41)

Localization of MD

Focal/unilateral 60 (94) 17 (100) 0.669

Generalized 4 (6) 0 (0)

MD onset

Acute 38 (59) 2 (12) 0.001

Subacute/chronic 26 (41) 15 (88)

Acute stroke lesion

Present 25 (39) 16 (94) 0.021

Absent 39 (61) 1 (6)

Data are presented as the mean ± standard deviation, median [interquartile range], or the

number of patients (%). MD, movement disorder.

medications along with antithrombotic agents. Among them,
36 patients (44%) showed improvement after pharmacological
treatment, while the remaining patients (n = 17.21%) had
symptoms that persisted.

In summary, 64 patients (79%) showed a good outcome of
MD regardless of whether they received treatment or not, which
was characterized by the improvement in movement symptoms.
Seventeen patients (21%), however, showed no improvement
in MD despite receiving medical treatment. There was no
significant association between the outcome and the baseline
demographic factors, including age, sex, number of risk factors
for atherosclerosis, MD phenotype (chorea vs. non-chorea),
localization of MD, etiology of CAS, location of CAS, or the
presence of acute stroke lesion (Table 3). However, patients with
a good outcome had a more acute onset of MD (n = 37, 58%)
than patients with a poor outcome (n= 3, 18%) (p= 0.008).

DISCUSSION

Given the diverse nature of CAS and hyperkinetic or hypokinetic
MDs, few attempts have been made to examine the nature
of MD-related CAS in a large series. Our study explored the
characteristics of secondary MD associated with CAS across the
country. Chorea was the most common type of MD associated
with CAS. All movement phenotypes resulted from stenoses of
various vascular localization without a specific predominance
of the phenotype over a specific area of stenosis. However, we
observed that MDs resulting from MMD appear at a younger

TABLE 3 | Comparison of demographics, MD characteristics, and CAS

characteristics between patients with a good outcome and a poor outcome.

Good outcome

(n = 64)

Poor

outcome

(n = 17)

p-value

Age 62.1 ± 18.7 54.6 ± 22.7 0.166

Sex 1.000

Male 36 (56) 10 (59)

Female 28 (44) 7 (41)

Number of risk factors

for atherosclerosis

2 [1-2] 2 [1-2] 0.830

MD phenotype 1.000

Chorea 36 (56) 10 (59)

Non-chorea 28 (44) 7 (41)

Localization of MD 0.669

Focal/unilateral 60 (94) 17 (100)

Generalized 4 (6) 0 (0)

MD onset 0.008

Acute 37 (58) 3 (17)

Subacute/chronic 27 (42) 14 (82)

Acute stroke lesion 0.542

Present 45 (70) 59 (10)

Absent 19 (30) 7 (41)

Etiology 0.964

Atherosclerosis 50 (78) 14 (82)

MMD 14 (22) 3 (18)

Localization of CAS 0.114

Intracranial 37 (58) 14 (82)

Extracranial/mixed 27 (42) 3 (17)

Data are presented as the mean ± standard deviation, median [interquartile range], or the

number of patients (%). CAS, cerebral artery stenosis; MD, movement disorder; MMD,

moyamoya disease.

age, and have a more chronic onset and less acute ischemic lesion
compared with MDs caused by atherosclerosis. In our study,
patients who received surgical treatment for arterial stenosis
showed a good prognosis ofMD. In patients with a good outcome
of CAS-associated MD, the onset was more acute than in patients
with a poor outcome.

In this study, chorea was the most frequent MD associated
with CAS, present in 57% of patients. It is also the most
frequent movement phenotype among post-stroke MDs, with
a prevalence of 36–38% reported in previous studies (5).
Traditionally, the subthalamic nucleus was considered to be a
typical anatomical correlate for hemichorea and hemiballism (9).
However, it has been found that various stroke lesions involved
in the striato-pallido-thalamo-cortical feedback loop, including
the caudate nucleus, putamen, thalamus, and subcortical white
matter, also cause chorea or ballism (10–13). Moreover, there is
accumulated evidence of CAS-associated chorea without overt
stroke lesions (14–17). These studies uniformly demonstrated
striatal hypoperfusion on neuroimaging and chorea reversal after
carotid stenting or endarterectomy.

Tremor/limb-shaking was the second most common form
of MD in our study. In post-stroke MDs, tremor is usually
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associated with lesions of the thalamus or structures of the
dentato-rubro-thalamic tract or the cerebello-thalamo-cortical
network (4, 18). Limb-shaking, often referred to as “limb-shaking
transient ischemic attack (TIA),” was first reported in association
with carotid stenosis byMiller-Fisher (19). TIA refers to transient
attacks of repetitive brief limb-shaking of the leg or arm
associated with carotid stenosis, which lasts from a few seconds
to several days (20). Like other vascular paroxysmal dyskinesia,
these clinical entities are explained by the hypoperfusion theory.
A regional decrease of cerebral blood flow in the dorsofrontal and
upper rolandic regions was observed during episodes of limb-
shaking (21). Cases show remission of limb-shaking attacks after
successful revascularization of carotid stenosis (20–23).

Myoclonus was the third most common phenotype of CAS-
associated MD, followed by dystonia. Tremor/limb-shaking
and myoclonus are difficult to differentiate, and limb-shaking
is sometimes classified as myoclonus (22–24). Theoretically,
myoclonus can be the result of any lesion involving the cortical
and subcortical white matter (25). Since the basal ganglia are
more vulnerable to hypoxia than these areas (26), it seems that
myoclonus was not a frequent phenotype.

Dystonia in post-stroke MD is usually reported with stroke
lesions in the striato-pallido-thalamo-cortical loop, including the
lenticular nucleus, putamen, and thalamus (18). Dystonia is also
frequently reported as a movement symptom of MMD without
an overt stroke lesion, especially as a form of transient dystonia
during hyperventilation (27–29). In our study,MMDwas also the
cause of dystonia in about half of the cases (3 out of 7).

Taken together, various hyperkinetic MDs including chorea,
tremor/limb-shaking, dystonia, and myoclonus, may arise from
CAS. Studies have shown hypoperfusion of the basal ganglia
and the reversal of movement symptoms with successful
revascularization of the stenosed vessel. In all eight patients in
our study who underwent surgical treatment to restore blood
supply, the remission of MD was observed. The basal ganglia,
especially the striatum, are particularly vulnerable to ischemia
or hypoxia (26). Hypoperfusion of the basal ganglia by CAS
appears to alter the functional balance of motor circuits, leading
to various hyperkinetic MDs (30). However, there was no
predominance of a specific movement phenotype over a specific
localization of stenosis. It can be hypothesized that the motor
loop predominantly affected by hypoperfusion (e.g., dentato-
rubro-thalamic loop, striato-pallido-cortical loop) determines
the dominant motor phenotype.

Then how does hypoperfusion of the basal ganglia alter
the motor loop? Experimental studies have shown that energy
deprivation causes a surge of dopamine in the striatum (31).
In other words, hypoperfusion of the basal ganglia may
lead to a relative dominance of the direct pathway over the
indirect pathway of the basal ganglia motor circuit. Moreover,
glutamatergic activity appears to be altered in animal models
of hypoxic-ischemic brain damage (32). In other words,
ischemia-trigged glutamatergic excitotoxicity may contribute to
the development of CAS-associated MD. In contrast to the
usual clinical course of ischemic stroke, 40% of our patients
had a gradual onset of symptoms, which further developed
within 4 weeks. Overall, these findings suggest a progressive,

ongoing functional modulation of neurons in the basal
ganglia due to CAS. Such functional modulation may include
dopaminergic hypersensitivity, excitotoxicity, and possibly other
neurobiological processes such as neuroinflammation. These
mechanisms are similar to levodopa-induced dyskinesia in
Parkinson’s disease (33). The fact that patients with a good
outcome have a more acute onset rather than a chronic one
may also be in line with the functional modulation hypothesis,
suggesting that early initiation of treatment to improve blood
supply prevents the perpetuation of MD before ongoing
functional neuromodulation prevails. However, the reasons why
hypoperfusion of the basal ganglia due to CAS causes MD in
only a subgroup of patients, why this phenotype is manifested in
patients with various MDs, and why chorea is the most common
form of MD should be further clarified.

MD associated with MMD had several notable features. First,
MMD was present in more than 20% of patients. The previous
case reports on MD associated with MMD mainly present
individuals from the East Asian population, which confirms the
importance of our study for the region (27, 34–36). Second, the
bimodal age distribution was characteristic. MD often occurs as
a symptom of MMD and is a poor prognostic factor, especially in
children and young adults (34, 37, 38). Moreover, a bimodal age
distribution pattern is a distinct epidemiological characteristic of
the MMD population (39). According to this pattern, patients
with MMD were younger than patients with atherosclerosis and
all patients in our study. Third, MD associated with MMD had
a more chronic onset and less acute lesion compared to MD
associated with atherosclerosis. In other words, synaptic plasticity
changes in accordance with the changes in hypoxia that occur
with age (40). This finding may support our hypothesis that
functional neuronal modulation in the basal ganglia caused by
CAS is progressive and age-dependent.

To the best of our knowledge, this is the first nationwide
study that systematically examines heterogeneous clinical
characteristics of MD associated with CAS. Our study has
several limitations. First, the clinical data were collected by
an MD specialist who reviewed the patient registry at their
respective center. Due to the inherent limitation of a retrospective
study, the source of patient registries varied across the centers,
including those from MD-oriented registries and those from
stroke-oriented registries. Patients who had only minimal MD
treated by non-MD specialists could have been overlooked, which
might affect epidemiological estimates. Second, the evidence for
an association between MD and CAS was based solely on clinical
judgment. Since there is no definitive diagnostic work to ascertain
the causality of CAS with MD, we have developed clinical
criteria ourselves to determine this association. Third, although
patients who underwent surgical treatment for CAS showed
a good prognosis of MD, this study would not be sufficient
to provide recommendations on the treatment guidelines for
CAS-associated MD due to its retrospective design. Further
prospective studies are warranted.

In conclusion, this study analyzed the nature of CAS
associated with MD on a nationwide scale. Progressive, ongoing
functional neuronal modulation in the basal ganglia due to
CAS may lead to MD. Further studies should focus on the
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epidemiology of these clinical entities and the identification of
the pathogenic mechanism underlying the heterogeneity of CAS-
associated MD.
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INTRODUCTION

For decades, the concept of “disease-modifying” treatment has been used profusely in several
neurodegenerative diseases including Parkinson’s disease (PD). This concept has been employed
sometimes as an accomplished goal, and many more as a wishful thinking objective. In addition,
the related concept of neuroprotective therapy has been widely used and a quick search onMedline
shows a steady increase in the number of papers on this issue over time.

As Morant et al. (1) pointed out there is a particular interest in conceptually distinguishing
disease-modifying treatments from symptomatic-only treatments.

Perhaps it is time to ponder over these two related concepts: disease modifying and
neuroprotective therapies, at least in relation to PD. First, it is important to have (more or less) clear
definitions, and then, we can discuss whether we have or we may have (or not) disease modifying
and neuroprotective therapy for PD.

To begin with, the definition of “disease-modifying” treatment varies both within and
between neurodegenerative disorders, and terminology in current regulatory guidelines also lacks
consistency (1). Cummings suggested that disease modification can be defined as treatments or
interventions that affect the underlying pathophysiology and have beneficial outcome on the course
of the disease (2). Since the pathophysiology of PD is only partially known, we can employ a more
clinical approach for disease-modifying measures as “effective treatments that modify the course of
PD and maintain or improve patient quality of life” (3).

Here it must be pointed out that, in theory, any disease-modifying treatment may have
symptomatic effect as well, possibly masking the modifications produced in the disease. Recently,
Vijiaratnam et al. (3) reviewed the crucial issue of why we have failed to demonstrate disease-
modifying effect of treatments on PD. Several reason may partly explain this shortcoming,
including the complex pathophysiology and heterogeneity of the disease (3), but from a clinical
viewpoint, detecting real modification with any given treatment may take an extended period
of time.

To date, no disease-modifying drugs has been found, although some promising candidates are
still in the pipeline including exenatide and gene therapy (4).

And still, probably, a real disease-modifying treatment for PD already exists and has been used
for decades: Physical exercise. As Eric Ahlskog already suggested a decade ago, “often overlooked
(. . . ) is the potential benefit of sustained vigorous exercise on PD progression” (5).
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In this short review, we collect and summarize, the most
relevant data of physical exercise as a symptomatic and
preventive measure, and its potential for disease modifying
therapy for patients with PD.

PHYSICAL EXERCISE AS SYMPTOMATIC
TREATMENT

Although the role of physical exercise as symptomatic treatment
for PD was already suggested in classic texts (6), this non-
pharmacological approach attracted renew interest in the 90s;
Comella et al. (7) carried out a controlled trial testing physical
exercise in a group of moderately advanced PD. They authors
found statistically significant difference in the experimental
group, but also observed that motor improvement was not
sustained once normal activity was resumed (7). Many other
clinical trials, reviews and meta-analyses have been published
on this issue over the last decades (5, 8–14). One particularly
noteworthy example is the randomized controlled trial by Corcos
et al. (8) which showed that progressive resistance exercise
demonstrated a statistically significant reduction in UPDRS-III
scores (8). Schenkman et al. (13) in a recent randomized clinical
trial, studied the effect of high-intensity endurance exercise on
motor symptoms in de novo PD patients. They found statistical
differences in Unified Parkinson’s Disease Rating Scale (UPSRS)
motor score in the high-intensity group compared with the
usual care group. Another interesting study was carried out
by van der Kolk et al. (14). In a double blind randomized
controlled trial, the authors studied the effectiveness of home-
based supervised aerobic exercise on PD; The off-state MDS-
UPDRS motor score revealed a significant difference in favor of
aerobic exercise.

In addition, physical exercise showed potential to increase
the efficacy of antiparkinsonian medication (9, 11). Recently, in
their excellent overview of physical exercise on PD; Mak et al.
suggested that exercise training can modify long term motor
symptoms in PD (11). Finally, da Silva et al. (10) carried out a
systematic review of physical exercise on cognitive function of
PD; they suggested that physical exercise promotes significant
effects on global cognitive function, processing speed, sustained
attention and mental flexibility in PD patients. Even when used
only as symptomatic treatment, physical exercise should be
widely considered as a fundamental antiparkinsonian measure
(5, 8–14).

PHYSICAL EXERCISE AS A
DISEASE-MODIFYING TREATMENT

In addition to having confirmed symptomatic antiparkinsonian
effect, physical exercise may attenuate and influence the natural
history of PD (5, 15–19). An increasing evidence suggests
that vigorous exercise may exert a disease-modifying effect
on PD (5, 15). A very recent publication from Japan showed
that the maintenance of high physical exercise was clearly
associated with better clinical course of PD (16). To date, the
published evidence is indirect and based mainly on observational
cohort studies and/or meta-analyzes (16–18), but it is worth

stressing the inverse dose-response association between the
amount of physical exercise with evolution and mortality in
PD (17, 18).

PHYSICAL EXERCISE AS A PREVENTIVE
MEASURE

If any disease-modifying treatment exits, then it would
most likely be useful also as a preventive measure for
neurodegenerative diseases including PD. Epidemiologic
evidence suggests that physical exercise may protect against
PD (20–25). Habitual vigorous exercise in midlife reduced the
risk of later-developing PD in several cohorts (20–25). Physical
exercise also seems to confer protective effect on different
neurodegenerative diseases such as PD, Alzheimers’s disease,
Huntington’s disease and degenerative ataxias (26). According to
this data, exercise training would be a practical and inexpensive
guide to counsel patients at risk of PD, such as LRRK2 carriers
and others.

EXERCISE: MECHANISMS OF ACTION

Physical exercise has been recommended since the times of
Hippocrates and Galen as a general measure for health and
disease prevention (27), but its mechanism has been completely
unknown for centuries. At present, some of the potential
mechanisms have been studied both in experimental animal
models (28–30), and in patients with neurodegenerative diseases
as well as controls (31–34).

Potential mechanisms include neuronal survival
and plasticity, neurogenesis, epigenetic modifications,
angiogenesis, autophagy, and the synthesis and release of
neurotrophins (28–35).

Possibly, the most interesting and testable mechanism
includes the release of Brain Derived Neurotrophic Factor
(BDNF) (28–34), suffice is to recall that BDNF is a crucial
neurotrophic factor with multiple roles on regulation of
neurophysiological processes (35), including survival of striatal
neurons (36). Physical exercise increases plasma BDNF levels
in individuals with neurodegenerative disorders (34); and
interestingly, BDNF receptor blockade prevents the beneficial
effects of exercise in animal models (29).

CONCLUSION

If physical exercise is symptomatically effective, probably
prevents neurodegenerative diseases, and has potential
neuroprotective mechanisms, why is it not universally used?

This conundrum may be explained by several factors.
There are barriers to exercise (37, 38), as Ellis et al.
suggested, low outcome expectation from exercise, lack of
time, and fear of falling appear to be important perceived
barriers to exercise. In addition, optimal benefit requires
active and sustained participation of patients and families (37,
38). Finally, as Alberts commented (12), frequently, exercise
recommendations lack specificity in terms of frequency, intensity
and duration.
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In summary, although physical exercise is inexpensive, its use
as a treatment requires a complete change of strategy. Exercise
training would be considered the first antiparkinsonian measure,
even before (or at least at the same time) than drug therapy
is added (12, 38, 39). Changes are not easy to implement,
although other medical specialties such as endocrinology have
well-designed patient education programs for chronic diseases
uch as diabetes. Certainly, a long-term prospective studies are
needed to confirm the neuroprotective capacity of physical
exercise on PD (40). Ongoing Clinical Trials, (Including SPARX3
and CYCLE-II) Have Potential to Further Develop Patient-
Specific Exercise Recommendations (12). Confirming this effect
of exercise training would revolutionize the way we treat patients
with neurodegenerative diseases, and also would open new
avenues of basic and clinical research.

Finally, physical exercise would be a practical and
inexpensive approach for those patients at risk for PD (such as
LRKK2 carriers).
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Bisena Bulica1, Patricia Kaminski1 and Neepa Patel5
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Disease and Movement Disorders Program, Department of Neurological Sciences, Rush University
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Background: There is limited information on optimization of symptomatic

management of cervical dystonia (CD) after implantation of pallidal deep brain

stimulation (DBS).

Objectives: To describe the long-term, “real-world” management of

CD patients after DBS implantation and the role of reintroduction of

pharmacologic and botulinum toxin (BoNT) therapy.

Methods: A retrospective analysis of patients with focal cervical or segmental

craniocervical dystonia implanted with DBS was conducted.

Results: Nine patients were identified with a mean follow-up of 41.7 ± 15.7

months. All patients continued adjuvant oral medication(s) to optimize

symptom control post-operatively. Three stopped BoNT and four reduced

BoNT dose by an average of 22%. All patients remained on at least one

medication used to treat dystonia post-operatively.

Conclusion: Optimal symptom control was achieved with DBS combinedwith

either BoNT and/or medication. We suggest utilization of adjuvant therapies

such as BoNT and/or medications if DBS monotherapy does not achieve

optimal symptom control.

KEYWORDS

cervical dystonia, deepbrain stimulation,medical therapy, botulinum toxin, long-term

follow up

Introduction

Dystonia is defined as “a movement disorder characterized by sustained or

intermittent muscle contractions causing abnormal, often repetitive, movements,

postures, or both” (1). Cervical dystonia (CD) is the most common form of adult focal

dystonia characterized by sustained or intermittent muscle contractions of neck muscles

that result in involuntary intermittent or sustained posturing of the head.
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CD can be associated with significant disability, pain and

reduced quality of life. Though botulinum toxin (BoNT) is

the standard of care for treatment of CD, up to one-third

of CD patients have suboptimal therapeutic response (2).

Development of neutralizing antibodies, short duration of

benefit between BoNT injections, side effects and delays between

injections often contribute to suboptimal treatment response

(3). Medications such as anticholinergics, muscle relaxants and

benzodiazepines, as well as physical therapy (4), are often used as

adjunctive therapies with variable effectiveness (5). Deep brain

stimulation (DBS) has become a safe and effective therapy for

management of medically refractory CD (6). There are only

a few studies describing the long-term effects of DBS on CD

beyond 5 years, with reports of an average of at least 25–50%

improvement of motor symptoms of CD (7–9). Though this is

a clinically meaningful improvement, many patients continue to

struggle with pain and spasms in the neck which are not fully

controlled with DBS monotherapy. There is limited information

related to strategies for optimizing symptomatic benefit in CD

beyond DBS monotherapy for those patients experiencing less

symptomatic benefit.

We aim to describe the long-term management of CD

patients who underwent DBS at the Henry Ford Hospital

Movement Disorders Clinic.

Methods

This is a retrospective chart review of medication-refractory

CD patients treated with DBS. Patients with isolated CD

that were followed up for at least 1 year postoperatively

were identified from the Henry Ford Hospital Movement

Disorders Clinic database. Patients with hemidystonia or

generalized dystonia were excluded from this analysis. All of our

patients underwent asleep surgery with intraoperative magnetic

resonance imaging (iMRI) following the stereotactic coordinates

and techniques previously described by Starr (10). A monopolar

review was performed on all of our patients during the first office

visit follow-up. This study was reviewed and approved by the

Henry Ford Health System Internal Review Board (IRB). This

study is conducted according to the declaration of Helsinki.

Demographic data, preoperative Toronto Western

Spasmodic Torticollis Scale (TWSTRS) scores (obtained within

1 year prior to DBS implantation), duration of therapy, final

programming parameters, pharmacologic and BoNT treatments

before and after DBS surgery were captured. Comparison of

different BoNT formulations were converted to onabotulinum

toxin A equivalents as based upon published guidelines (11).

Data was collected retrospectively from the last follow-up visit

at Henry Ford Health System.

Descriptive statistics (central tendency measures,

proportions) were used to describe demographics, predominant

CD phenomenology, motor evaluations, stimulation

TABLE 1 Characteristics of dystonia.

Female 5 of 9 (56%)

Duration of follow up 41.67± 15.7 months

Age at onset of disease 46.56± 8.2 years

Age at the time of DBS implantation (mean± standard

deviation)

55.8± 10.8 years

Duration of CD prior to DBS (mean± standard

deviation)

9.4± 8.2 years

Primary direction of dystonic movement

Laterocollis 5 of 9 (56%)

Torticollis 4 of 9 (44%)

Patients that continue to receive BoNT injections 6 of 9 (67%)

parameters, and use of adjuvant medication. For comparison of

means, we initially ran a normality test (Kolmogorov-Smirnov)

to decide whether to use a parametric test (student t-test) or a

non-parametric test (Mann-Whitney U test). When comparing

two dichotomous variables we calculated an odds ratio (OR) and

used the chi-square test to determine independence between

categorical polychotomous variables.

Results

Of the 975 patients with CD in Henry Ford Movement

Disorder’s clinic database (from January 1, 2014 to April 1,

2020), 11 patients underwent DBS. Two patients were excluded

due to their lack of follow-up after the 1st year of surgery. Of

the remaining 9 patients, all were implanted with bilateral DBS

targeting the globus pallidus internus (GPi). Clinical features

of CD are summarized in Table 1. All of our patients were on

some form of adjuvantmedication and received BoNT injections

in cervical muscles pre-operatively, and two of our patients

received facial muscles injections for blepharospasm.

All of our patients required continuation of adjuvant

therapies in combination with DBS to attain satisfactory control

of their dystonia symptoms post-operatively (Table 2). Six

patients continued to receive BoNT injections, 4 remained on

anticholinergic medications, 3 on muscle relaxants, and 7 on

benzodiazepines. Six of the patients were able to reduce their

adjuvant therapies post-operatively, and 7 patients were able to

reduce BoNT injections (an average dose reduction of 22%, 75.8

± 14.2 units of onabotulinum toxin A equivalents), of which

3 patients completely stopped their use. The two patients with

blepharospasm were able to cease BoNT injections. There was

a significant decrease in the mean number of muscles that were

injected per BoNT injection session after DBS implantation (8.4

± 1.5 vs. 6.1± 0.7), p= 0.006).

A comparative analysis of patients who stopped or decreased

BoNT (n = 7) vs. patients who kept requiring similar BoNT

doses (n = 2) was performed. Those patients who were able
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TABLE 2 Individual description of each of our patients including disease phenotype, stimulation parameters and adjuvant medication.

Preoperative TWSTRS DBS settings

Patient Age at
time of
surgery
(years)

Duration
of disease
prior to
surgery
(years)

Follow
up after
surgery
(months)

Dystonia
topographic
distribution
and
predominant
direction of
dystonic pull

Total Motor Disability Pain Psychiatric
comorbidities

Lead/
polarity

Amplitude
(V)

Pulse
width
(us)

Frequency
(Hz)

Side-effects
from
stimulation

Adjuvant
medication
prior to
surgery

Adjuvant
medication
at the last
time of
follow up

1 59 9 25 Focal /

Right laterocollis

- - - - MDD Left GPi:

C+2–3-

Right GPi:

C+10–11-

4

4

210

210

130

130

None Alprazolam 1

mg BID

Onabotulinum

toxin A (300 U)

Alprazolam

1mg QID

Onabotulinum

toxin A

(300U)

2 64 30 56 Focal /

Left laterocollis

28 9 16 3 GAD Left GPi:

C+2-

Right GPi:

C+10-

1.8

2.3

90

90

160

160

Acral

dysesthesias

Clonazepam 2

mg TID

Onabotulinum

toxin A (300 U)

Lorazepam

2mg QID

3 34 7 51 Segmental (CD and

BS) /

Right laterocollis

- - - - ADHD Left GPi:

C+0–1-

Right GPi:

C+8–9-

4.7

4.6

60

90

130

130

Right arm/

hand cramping

and spasms and

right foot

curling

Trihexyphenidyl

2 mg TID

Baclofen 10

mg BID

Diazepam 5

mg TID

Onabotulinum

toxin A (325 U)

Trihexyphenidyl

2mg TID

Baclofen 10mg

qd

Onabotulinum

toxin A

(200U)

4 59 6 49 Focal /

Left laterocollis

39 11 12 16 GAD Left GPi:

C+0–1-

Right GPi:

C+8–9-

3.6

3.6

180

180

140

140

Blepharospasm Clonazepam 0.5

mg BID

Onabotulinum

toxin A (175 U)

Clonazepam

0.5mg BID

Onabotulinum

toxin A

(255U)

5 40 11 49 Focal /

Left laterocollis and

retrocollis

54 24 16 14 None Left GPi:

C+0-

Right GPi:

C+8-

3

3.3

60

90

130

130

None Trihexyphenidyl

2 mg TID

Rimabotulinum

toxin B

(17500 U)

Trihexyphenidyl

2mg TID

Baclofen 20mg

TID

Diazepam

2mg TID

Onabotulinum

toxin A

(380U)

6 64 9 49 Focal /

Left torticollis and

laterocollis

16 4 4 8 GAD Left GPi:

C+0-

Right GPi:

C+8-

2.5

2.5

60

60

125

125

None Trihexyphenidyl

2 MG TID

Diazepam 10

mg BID

Onabotulinum

toxin A (300 U)

Diazepam

10mg TID

(Continued)

F
ro
n
tie

rs
in

N
e
u
ro
lo
g
y

0
3

fro
n
tie

rsin
.o
rg

81

https://doi.org/10.3389/fneur.2022.927573
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


M
a
rtin

e
z
-N

u
n
e
z
e
t
a
l.

1
0
.3
3
8
9
/fn

e
u
r.2

0
2
2
.9
2
7
5
7
3

TABLE 2 Continued

Preoperative TWSTRS DBS settings

Patient Age at
time of
surgery
(years)

Duration
of disease
prior to
surgery
(years)

Follow
up after
surgery
(months)

Dystonia
topographic
distribution
and
predominant
direction of
dystonic pull

Total Motor Disability Pain Psychiatric
comorbidities

Lead/
polarity

Amplitude
(V)

Pulse
width
(us)

Frequency
(Hz)

Side-effects
from
stimulation

Adjuvant
medication
prior to
surgery

Adjuvant
medication
at the last
time of
follow up

7 53 2 48 Focal /

Right torticollis

35 16 11 8 None Left GPi:

C+1-

Right GPi:

C+9-

3

3

90

90

125

125

None Trihexyphenidyl

2 mg TID

Baclofen 10

mg BID

Diazepam 5

mg TID

Onabotulinum

toxin A (500 U)

Baclofen 10mg

TID

Diazepam

5mg TID

Onabotulinum

toxin A

(500U)

8 65 3 41 Focal /

Right torticollis

31 13 11 7 None Left GPi:

C+1–2-

Right GPi:

C+9–10-

3

2.6

90

80

130

130

None Clonazepam 1

mg BID

Onabotulinum

toxin A (300 U)

Trihexyphenidyl

2mg TID

Onabotulinum

toxin A

(400U)

9 65 8 7 Segmental (CD and

BS) /

Left laterocollis

- - - - GAD Left GPi:

C+ 3-

Right GPi:

C+ 2–3-

3.3

3.2

60

60

130

130

None Trihexyphenidyl

2 mg TID

Lorazepam 0.5

mg TID

Onabotulinum

toxin A (300 U)

Trihexyphenidyl

2mg TID

Lorazepam

0.5mg TID

Mean 55.89

(±10.83)

9.44

(±8.23)

41.67

(±15.7)

- 33.83

(±16.92)

12.83

(±6.79)

11.67

(±4.41)

9.33

(±4.8)

- - 3.22 (±0.77) 92.78

(±37.07)

133.33

(±10.57)

- - -

TWSTRS, Toronto Western Spasmodic Torticollis Rating Scale; CD, cervical dystonia; BS, blepharospasm; U, units; BID, twice a day; TID, three times a day; QID, four times a day; qd, every day; GPi, globus pallidus pars interna; GAD, generalized

anxiety disorder; ADHD, attention-deficit hyperactivity disorder. Standard deviations are in parenthesis.
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to decrease or stop BoNT had a longer duration of dystonia

symptoms compared to those who remained on similar doses

to the pre-operative treatment plan (11.4 ± 8.3 years vs. 2.5 ±

0.7 years, p= 0.03).

The average time from implantation to optimization of DBS

settings was 11.8 ± 1.7 months. There was no difference in the

use of adjuvant medication between patients with or without

psychiatric comorbidities (OR= 0.5, CI: 95%−0.3–8.9). Patient

2 and 3 both experienced stimulation induced side effects,

localization of the DBS electrodes demonstrated appropriate

lead location.

Discussion

Since the first uses of DBS for CD appeared in the medical

literature in 2002, the reported individual responses have

been varied (9, 12). Though some patients achieve optimal

symptomatic control with DBS monotherapy these findings

and our clinical experience suggest that many patients do not.

Thus warranting the consideration of adjuvant therapies to

optimize symptom control. To our knowledge this study is

the first to report the “real-world” long-term management of

focal and segmental CD patients with bilateral pallidal DBS

in patients previously treated with BoTN therapy. Despite

achieving clinically meaningful benefit from DBS therapy, each

of our patients continued to require at least one adjuvant therapy

to optimize symptom control. DBS facilitated the opportunity to

reduce the botulinum toxin dose and/or eliminate some of the

muscles previously injected while achieving better symptomatic

improvement than pharmacological or BoNT therapy. Of note,

most of our patients continue to require benzodiazepines

for control of their dystonic symptoms, although comorbid

generalized anxiety disorder is another factor that could have

favored the ongoing use of this medication class.

Similar to our experience, Yamada et al. reported that eight

patients in their cohort also continued adjuvant pharmacological

therapies post-operatively, apart from one patient who did not

receive medications preoperatively (8). However, in this study

the authors did not comment on the use of BoNT pre- or post-

operatively. In a prospective study of long-term outcomes with

pallidal DBS in all types of dystonia, Krause et al. reported

that 42% of their patients were able to reduce or stop their

medication. Of the 4 patients in this cohort who received BoNT

pre-operatively 3 were able to discontinue therapy and 1 was

able to reduce the dose BoNT at last follow-up (13). However,

the sub-type of dystonia in relation to the use of medication

and BoNT was not reported. Similar to our findings, there was

a mean delay of 11.8 months for patients to achieve optimal

symptomatic benefit with DBS with similar final stimulation

parameters (14). In our study long pulse widths were not found

to achieve better symptomatic control in our group of CD

patients, as reported by others (15).

A surprising result in this study was the correlation

between a longer duration of disease pre-operatively and a

larger reduction in BoNT dose used post-operatively. This is

counterintuitive to reports of longer disease duration impacting

the efficacy of DBS in CD (8). Our findings could be attributed

to the small sample size and should be interpreted with caution.

There are several limitations to this analysis. This study

analyzed an established cohort retrospectively who were

managed by five different movement disorder specialists

working in a group practice (PL, CS, BB, NP) and two

neurosurgeons who implanted DBS (JS, EA). Management

of stimulation parameters and adjuvant medications are

not standardized between practitioners. Post-operative

imaging to confirm lead location was not routinely

performed though in the experience of the programming

neurologist(s) the effect and side effect profiles suggested

appropriate location. Additionally, standardized evaluations

of CD were not completed routinely in follow-up which

limited our ability to report motor outcomes in our

cohort. Given our relatively small sample size, some of

the comparisons that were performed were underpowered

to demonstrate a difference. Larger prospective studies

assessing the role of adjuvant therapies in the care of CD with

DBS is recommended.

In this study we report the long-term outcomes of a

relatively large cohort of CD patients treated with DBS and

the role of adjuvant therapies to optimize symptom control.

We recommend considering continuation of adjuvant therapies

such as BoNT and medications for those patients whose

symptoms are not optimally controlled with DBS monotherapy,

especially during the early post-operative period when patient

stimulation is not optimized.
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Direct cerebello-striatal loop in
dystonia as a possible new
target for deep brain
stimulation: A revised view of
subcortical pathways involved
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1Department of Clinical Neuroscience, Tokushima University, Tokushima, Japan, 2National Hospital

Organization Utano Hospital, Kyoto, Japan

Dystonia is the second most common movement disorder next to tremor,

but its pathophysiology remains unsettled. Its therapeutic measures include

anti-cholingerics and other medications, in addition to botulinum neurotoxin

injections, and stereotaxic surgery including deep brain stimulation (DBS),

but there still remain a number of patients resistant to the therapy. Evidence

has been accumulating suggesting that basal ganglia in association with the

cerebellum are playing a pivotal role in pathogenesis. Clinical observations

such as sensory tricks and the e�ects of muscle a�erent stimulation and

blockage suggest the conflict between the cortical voluntary motor plan

and the subcortical motor program or motor subroutine controlling the

intended action semi-automatically. In this review, the current understanding

of the possible pathways or loops involved in dystonia is presented, and

we review promising new targets for Deep Brain Stimulation (DBS) including

the cerebellum.

KEYWORDS

dystonia, tonic vibration reflex, subcortical pathway, deep brain stimulation,

cerebellum, target

Introduction

Dystonia is a syndrome in which sustained or repetitive muscle contractions result in

twisting and repetitive movements or abnormal fixed postures (1). Usually, those muscle

activities are uncontrollable by the subject and classified as an involuntary movement

(2). Focal dystonias such as writer’s cramp usually affect writing, but not other tasks.

Abnormal contractions of muscles start as soon as the subject intend to write, and occur

both in agonists (e.g., wrist flexor) and antagonists (e.g., wrist extensor), resulting in

freezing of the joint (co-contraction), or reciprocally in those muscles (dystonic tremor),

in an unintendedmanner. Distant muscles unnecessary for the task may also be activated

(motor overflow). There is a discrepancy between the intended motor plan and the

resultant movements.
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Task specificity and sensory trick

Tasks affected by these focal dystonias are usually performed

automatically; writing, playing musical instruments, using

a putter in golfing, and so on. The modalities of these

tasks are obtained by intensive training with or without

psychological stress. Cervical dystonia and blepharospasm are

the most prevalent dystonias, and they can be regarded as

derangement of head control and blinking, which are acquired

after birth (3). These task specificities may be lost as the

disease progresses, and the symptoms may spread over other

parts of the body. Thus, dystonia is a disorder of motor

programs or subroutines to perform semi-automatic or fully

learned motor acts (3). This of course is entirely different

from “supervised” motor learning process of fine control of

the limbs, such as pulling a thread through a pin needle hole,

which usually requires the subject’s highest attention. The latter

is presumably controlled by the cortico-cerebellar system (4).

The pathway activated in fully learned motor tasks affected in

dystonia is classified as “reinforced” learning circuit through

the basal ganglia through dopaminergic system (4). As the

motor skill and efficiency improve, the shift from supervised to

reinforced learning with more involvement of the basal ganglia

occurs (5).

Another peculiar characteristic of dystonia is a phenomenon

of symptomatic improvements with the aid of sensory input

to a particular part of the body when performing the task

(sensory trick) (6, 7). For instance, touching a part of the

face with the subject’s hand may straighten the neck in

cervical dystonia. This raised a question of stimulating the

muscle spindle afferents by a tonic vibration reflex (TVR)

maneuver, or blocking them by intramuscular injection of

diluted lidocaine, which is known to block gamma-efferents to

the spindles selectively in dystonia patients (8). Interestingly

the dystonic movements were reproduced by TVR, and

abated by muscle afferent block [see videos attached to

(8)]. The reflex is spared in extensive cortical lesions in

stroke (9). It is therefore concluded that the neural pathways

involved in dystonia is mainly subcortical, and there seems

to be a conflict between cortical voluntary motor command

and the abnormal output from the subcortical structures.

Compensatory mechanisms may be possible at the cortical

level, as exemplified by the phenomenon of sensory trick,

whereby the subject can find a compromise between the

two systems.

Based upon the above study of TVR and muscle afferent

block, it was proposed that dystonia is a sensory disorder

(10). A number of the subsequent studies have explored

the abnormalities of the tactile sensory discrimination of the

affected or unaffected limbs in dystonia, deciphering the primary

somatosensory cortex as the site of primary lesion, but they failed

to show conclusive evidence whether the changes are primary or

not (11–13). Temporal tactile discrimination, which mirrors the

function of somatosensory cortex, was found abnormal even in

psychogenic dystonia (14).

Pathophsiology of dystonia

The exact pathology involved in dystonia is still an

open question. Traditionally it is regarded as a basal ganglia

disorder, since hemi-dystonia is a consequence of contralateral

basal ganglia lesions (15), and remarkable histopathological

loss of striosome compartment in the striatum is found in

dystonic phase of X-linked dystonia-parkinsonism (XDP) (16,

17). Accumulating evidence on the other hand suggests the

cerebellum in association with the striatum causing dystonia

(18). An autopsy study in a hereditary case of pure dystonia

demonstrated exclusive cerebellar atrophy and loss of Purkinje

cells in the anterior lobe (19). Dystonia is often a presenting

symptom in spinocerebellar atrophies such as SCA6 (20, 21).

Of course, secondary involvement of these structures is possible,

despite the lack of visibility of the primary lesion. Rare autopsy

cases of primary cervical dystonia revealed patchy loss of

Purkinje cells, also pointing to the cerebellum as a site of lesion

(22), whereas most of the cases of idiopathic dystonia lack

such pathology, indicating abnormal synaptic plasticity being

the plausible cause.

Classical model of basal ganglia
circuit

More than 3 decades ago, Alexander and Crutcher

presented a “push-pull” model of basal ganglia circuit which

nicely explains hypokinetic and hyperkinetic disorders such

as Parkinson’s disease and dystonia (23). This model is still

useful in understanding dopamine excess causing hyperkinetic

states such as dopa-induced dyskinesia and dystonia. There

are direct or cortico-striato-GPi pathways that exerts excitatory

feedback to the cortex (mainly premotor area or PM), and

indirect or cortico-striato-GPe(STN)-GPi pathway which

feeds back inhibitory background as a surround inhibition

(Figure 1A). The net result would be focusing the muscles

to be activated for performing tasks. In dopamine deficiency

such as in Parkinson’s disease, there exists more indirect

pathway activity because of the lack of dopamine disinhibits

medium spiny neurons (MSNs) in the striatum through

D2 receptors. MSNs in the direct pathway on the contrary

are inhibited through the D1 receptor. The paucity and

slowness of movements (akinesia and bradykinesia) are

the consequences. Dystonia is explained by the excess of

dopamine, which favors a direct pathway, which activates

muscles unnecessary for performing tasks, as in the case

of co-contractions.
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Revised model of the basal ganglia

If the dopamine excess is the cause of dystonia, there

remain conditions that are unexplained by the classical model;

tardive dystonia and dopa-responsive dystonia. As most of

the anti-psychotic drugs are termed atypical, causing less

tardive syndrome, there still remain a large number of

psychiatric patients who suffer from dystonia while using

dopaminergic antagonists (24). Of course, many of them start

their symptoms after reducing the dose of drugs or even

stopping them, which can be explained by the super-sensitivity

of the receptors after removing the blockage. Another question

is dopa-responsive dystonia, which dramatically benefits from

dopa administrations.

The only known pathological finding of dystonia is probably

that of X-linked dystonia-parkinsonism (XDP) (16). XDP

is a biphasic disease, endemic in the Panai Island of the

Philippines, starting with dystonia, which gradually proceeds

to Parkinsonism. At the dystonic stage, it typically presents

with focal dystonia involving the jaw then generalized to the

trunk and the lower limbs. MRI finding of the brain at this

stage shows spot-like lesions in the putamen (16, 17, 25).

Those afflicted by this condition tend to die by suicide, and

autopsy findings of pure dystonia are a reality (16). The

striatum consists of two compartments immunohistochemically;

striosome and matrix. The lesions seen on MRI turned out

to be exclusively striosome, since all the remaining MSNs

are of matrix. Striosome has inputs from the limbic cortex

and is related to reward-oriented control of movements (26,

27). There are dopaminergic projections from Substantia

Nigra pars compacta (SNc) to the matrix as well as their

axonal collaterals to striosomal MSNs with excitatory D1

receptors, which in turn send its GABAergic inhibitory

axons back to nigral dopaminergic neurons, thus forming a

feed-back control loop of dopamine release to the striatum

(Figure 1B) (16, 25, 28). If striosomal MSNs are depleted,

FIGURE 1

Continued
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FIGURE 1

(A) Classical model of basal ganglia [Alexander and Crutcher (23)]. Left: Normal condition depicting “excitatory” direct and “inhibitory” indirect

pathways. The majority is the inhibitory indirect path, which constitutes “surround inhibition” around the direct path activity of allowing

activation of selected muscles. Open arrows are excitatory glutamatergic, and closed arrows are inhibitory GABAergic projections.

Dopaminergic projections terminate on medium spiny neurons (MSNs) with excitatory D1 receptor on the direct, and inhibitory D2 receptor on

the indirect pathways. Right: Suggested model in dystonia. Relative excess of dopamine from SNc produces direct pathway predominance, and

disintegrates surround inhibition. Putative sites of action of DBS are shown with red arrows. SNc, Substantia Nigra pars compacta; GPe, Globus

Pallidus externus; STN, Subthalamic Nucleus; GPi, Globus Pallidus internus; Thal, Thalamus. (B) Pathways proposed in the pathogenesis of

dystonia and TVR-induced dystonic movements. Cerebral Cortex: PM premotor area, M1 primary motor area, S1 primary somatosensory area.

Basal Ganglia: Ch cholinergic interneurons, MSN(D) medium spiny neuron in direct pathway, MSN(ID) medium spiny neuron in indirect pathway.

Thalamus: Vo thalamic ventral-oralis complex, ILN(CL) intralaminar nuclei in primates or centro-lateral nucleus in rodents. Cerebellum: DN

dentate nucleus, Pj Purkinje cells. PN, pontine nuclei. Spinal Cord: α-α motoneuron, γ-γ motoneuron. Broken arrows are putative pathway

mediating TVR-induced movements, and possible targets are shown in red.

the control of dopamine content would be deranged, so

that relative dopamine excess might result in direct pathway

preponderance, causing dystonia. In a model of dopa-responsive

dystonia, it was found that tyrosine hydroxylase (TH) content

was more depleted in the striosome, accounting for the

imbalance between the compartments causing dystonia (29).
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TABLE 1 Key references in exploring pathophysiology of dystonia.

Anatomical basis

Marsden CD, Obeso JA, Zarranz JJ, Lang AE. The anatomical basis of symptomatic hemidystonia. Brain. (1985) 108(Pt

2):463–83. doi: 10.1093/brain/108.2.463

Model of basal ganglia circuits

Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing.

Trends Neurosci. (1990) 13:266–71. doi: 10.1016/0166-2236(90)90107-L

Sensory aspects in dystonia

Kaji R, Rothwell JC, Katayama M, Ikeda T, Kubori T, Kohara N, et al. Tonic vibration reflex and muscle afferent block in

writer’s cramp. Ann Neurol. (1995) 38:155–62. doi: 10.1002/ana.410380206

Hallett M. Is dystonia a sensory disorder? Ann Neurol. (1995) 38:139–40. doi: 10.1002/ana.410380203

Somatosensory cortex

Bara-Jimenez W, Catalan MJ, Hallett M, Gerloff C. Abnormal somatosensory homunculus in dystonia of the hand. Ann

Neurol. (1998) 44:828–31. doi: 10.1002/ana.410440520

Deep brain stimulation in dystonia

Vercueil L, Pollak P, Fraix V, Caputo E, Moro E, Benazzouz A, et al. Deep brain stimulation in the treatment of severe

dystonia. J Neurol. (2001) 248:695–700. doi: 10.1007/s004150170116

Dystonia pathology in X-linked dystonia-Parkinsonism

Goto S, Lee LV, Munoz EL, Tooyama I, Tamiya G, Makino S, et al. Functional anatomy of the basal ganglia in X-linked

recessive dystonia-Parkinsonism. Ann Neurol. (2005) 58:7–17. doi: 10.1002/ana.20513

Cerebellar involvement

Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA. The basal ganglia and cerebellum interact in the expression of dystonic

movement. Brain. (2008) 131:2499–509. doi: 10.1093/brain/awn168

Direct cerebello-striatal projection in dystonia model

Chen CH, Fremont R, Arteaga-Bracho EE, Khodakhah K. Short latency cerebellar modulation of the basal ganglia. Nat

Neurosci. (2014) 17:1767–75. doi: 10.1038/nn.3868

Subcortical loop

Kaji R, Bhatia K, Graybiel AM. Pathogenesis of dystonia: is it of cerebellar or basal ganglia origin? J Neurol Neurosurg

Psychiatry. (2018) 89:488–92. doi: 10.1136/jnnp-2017-316250

Compartmental imbalance has also been implicated in tardive

dystonia (24).

Direct connections between the
basal ganglia and the cerebellum

Dystonic movements are subconscious since any volitional

efforts to correct them are not possible except for the

sensory trick maneuver. This is in contrast with tic, where

sensory symptoms to urge movements are usually perceived

by the subject, who could volitionally control the movements

albeit momentarily. As mentioned above, activation of muscle

afferents by high-frequency vibratory stimulation (TVR)

could reproduce the dystonic movements, apart from the

subject’s intention. Patients with pure cerebellar pathology

could present with dystonia. It is therefore reasonable

to assume a subcortical circuit mediating TVR-induced

dystonic movements (9), possibly including the cerebellum,

where muscle spindle afferents are utilized as kinesthetic

control (30).

Contributions from the basal ganglia and the cerebellum

to the genesis of dystonia have been discussed in association

with the cerebral cortex as separate loops (Table 1) (17, 18,

31). There has been however ample anatomical evidence

showing direct di-synaptic connections between the cerebellum

and the striatum or the subthalamic nucleus (32–35). Using

the rabies virus as a probe, Hoshi et al. found that the

striatum has a di-synaptic input from the dentate through the

intralaminar nucleus (CL) of the thalamus (32). Conversely,

the subthalamic nucleus (STN) was shown to have di-synaptic

output to the cerebellar cortex via pontine nuclei (34). Chen

et al. confirmed short-latency (∼10ms) cerebellar modulation

of the basal ganglia between the dentate nucleus and the

striatum in normal and dystonia model mouse (36). More

importantly, they found that high-frequency stimulation of the

cortex alone produced long-term depression (LTD), while the

concurrent stimulation of the cerebral cortex and the cerebellum

produced long-term potentiation (LTP) at the cortico-striatal

synapses, providing the direct evidence of cerebellar inputs to

the striatum modulating its neuroplasticity. They also explored

the pathway in a mouse model of dystonia and found that
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the aberrant high-frequency inputs from the cerebellum set

the cortico-striatal synapse to favoring abnormal LTP. Severing

the link from the cerebellum by silencing the thalamic nuclei

abolished the dystonic symptoms. These findings are relevant

to the pathogenesis and treatment of dystonia since abnormal

LTP or its depotentiation at the cortico-striatal synapses have

been shown in a prototypic mouse model of dopa-induced

dyskinesia (37) and humans with DYT1 dystonia (38, 39). The

termination of the cerebelo-thalamo-striatal projection seems to

be cholinergic interneurons, which are located at the border of

striosome and matrix compartments, and upregulate dopamine

release in the striatum via both nicotinic and muscarinic

receptors (40, 41). It follows that dystonia can be treated with

anti-cholinergics, such as trihexyphenidyl (42), and is aggravated

by nicotine (43).

New targets for deep brain
stimulation

Targets for deep brain stimulation (DBS) for dystonia have

been evolving around internal Globus Pallidum (GPi) and the

subthalamic nucleus (STN). The rationale for GPi-DBS is to

inhibit the direct pathway through increasing the GABAergic

output from GPi to Vo thalamus, which in turn decreases the

thalamo-cortical excitatory projections to the premotor area,

which is known to be hyper-excitable in dystonia (44). However,

STN-DBS in dystonia is less clear. In Parkinson’s disease, it is

expected to reduce the hyperactive indirect pathway, since STN

is located in the indirect pathway, where stimulation is supposed

to apply presynaptic inhibition to STN. The stimulation could

reduce the ratio of indirect/direct pathways, thus improving the

akinesia and bradykinesia on its own and, as a consequence,

reduce the doses of anti-Parkinsonian medications. Drug-

induced dystonia or dyskinesia can be improved through

decreased medication.

It is also known that STN-DBS is equally effective in treating

idiopathic and hereditary dystonias compared to GPi-DBS (45–

47), although the stimulation parameters could differ from those

in Parkinson’s disease (48). The rationale for this target is not

clearly explained, asin dystonia direct pathway predominance

must be met with increasing indirect pathway including STN.

It is therefore conceivable that stimulation at STN in dystonia

could be excitatory to STN neurons in contrast to the inhibitory

nature in Parkinson’s. There is also a possibility that STN

modulation could affect the direct di-synaptic STN-cerebellar

pathway (34).

As discussed, the dentate nucleus or thalamic intralaminar

nuclei are promising new targets in the light of their capability

of affecting striatal neuroplasticity. In fact, dentate DBS has been

reported with preliminary results (49–51). Intralaminar nuclei

of the thalamus are also considered as a candidate (52). As in

muscle afferent block using diluted lidocaine, the input to the

cerebellum through the inferior cerebellar peduncles may be

functionally manipulated, although direct evidence is lacking.

The stimulation parameters and the precise location in these

targets are yet to be determined.

Conclusion

The pathways mediating abnormal motor outputs in

dystonia is still undetermined. The classical “push-pull” model

of Alexander-Crutcher is still useful, but many revisions must

be made considering new clinical and therapeutic features of

dystonia or its animal models. More clinical and animal studies

searching new and unexplored targets including subcortical

cerebello-thalamo-striatal or STN-ponto-cerebellar pathways

are needed for better understanding and optimal treatment

of dystonia.
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Clinical parameters predict the
e�ect of bilateral subthalamic
stimulation on dynamic balance
parameters during gait in
Parkinson’s disease

Andrea Kelemen1, László Halász2, Muthuraman Muthuraman3,

Loránd Erőss2, Péter Barsi4, Dénes Zádori5, Bence Laczó5,

Dávid Kis6, Péter Klivényi5, Gábor Fekete7, László Bognár7,

Dániel Bereczki1 and Gertrúd Tamás1*

1Department of Neurology, Semmelweis University, Budapest, Hungary, 2National Institute of

Clinical Neurosciences, Budapest, Hungary, 3Biomedical Statistics and Multimodal Signal Processing

Unit, Department of Neurology, University Medical Center of Johannes Gutenberg University Mainz,

Mainz, Germany, 4Department of Neuroradiology, Medical Imaging Centre, Semmelweis University,

Budapest, Hungary, 5Department of Neurology, University of Szeged, Szeged, Hungary,
6Department of Neurosurgery, University of Szeged, Szeged, Hungary, 7Department of

Neurosurgery, University of Debrecen, Debrecen, Hungary

We investigated the e�ect of deep brain stimulation on dynamic balance during

gait in Parkinson’s disease with motion sensor measurements and predicted

their values from disease-related factors. We recruited twenty patients with

Parkinson’s disease treated with bilateral subthalamic stimulation for at least

12 months and 24 healthy controls. Six monitors with three-dimensional

gyroscopes and accelerometers were placed on the chest, the lumbar region,

the two wrists, and the shins. Patients performed the instrumented Timed

Up and Go test in stimulation OFF, stimulation ON, and right- and left-sided

stimulation ON conditions. Gait parameters and dynamic balance parameters

such as double support, peak turn velocity, and the trunk’s range of motion

and velocity in three dimensions were analyzed. Age, disease duration, the

time elapsed after implantation, the Hoehn-Yahr stage before and after the

operation, the levodopa, and stimulation responsiveness were reported. We

individually calculated the distance values of stimulation locations from the

subthalamic motor center in three dimensions. Sway values of static balance

were collected. We compared the gait parameters in the OFF and stimulation

ON states and controls. With cluster analysis and a machine-learning-based

multiple regression method, we explored the predictive clinical factors for

each dynamic balance parameter (with age as a confounder). The arm

movements improved the most among gait parameters due to stimulation

and the horizontal and sagittal trunk movements. Double support did not

change after switching on the stimulation on the group level and did not

di�er from control values. Individual changes in double support and horizontal

range of trunk motion due to stimulation could be predicted from the most

disease-related factors and the severity of the disease; the latter also from the
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stimulation-related changes in the static balance parameters. Physiotherapy

should focus on double support and horizontal trunk movements when

treating patients with subthalamic deep brain stimulation.

KEYWORDS

Parkinson’s disease, dynamic balance, ITUG, subthalamic nucleus, deep brain

stimulation, double support, gait, sway

Introduction

The effect of subthalamic deep brain stimulation (STN-DBS)

on dynamic balance during gait in Parkinson’s disease (PD) has

not yet been investigated in detail. Dynamic balance during a

movement, e.g., while walking, is one component of the complex

balance process, in addition to balance during quiet stance,

reactive postural adjustment to external perturbations, and

anticipatory postural adjustment in preparation for voluntary

movements (1).

The dynamic imbalance in PD derives from several

elements. First, it depends on the gait abnormalities

characteristic of the disease stage. Reductions in step length

and gait speed, reduced swinging of the arms, and increased

interlimb asymmetry are frequently reported at the early stage,

while turning deficits, gait initiation difficulty, and freezing

develop at the mild-to-moderate stage, as well as further gait

irregularities due to motor fluctuations and dyskinesias at

the advanced stage (2). Second, other disease-related factors

were shown to influence dynamic balance during walking,

such as even subclinical cognitive impairment, executive

dysfunction (3), and fear of falling (1). Although levodopa

treatment improves gait speed, facilitates step initiation and

anticipatory postural adjustment (4), and reduces gait variability

(5), it also raises sway during stance in PD (6). Apparent

cholinergic dysfunction was revealed in levodopa-resistant gait

abnormalities (7). Third, age is an additive risk factor for poor

postural control (8).

The positive effect of STN-DBS on balance tends to taper

off after the first nine postoperative months (9). Gait parameters

also improve in the first 10 months, especially when STN-DBS is

combined with levodopa therapy (10, 11), but deteriorate 3 years

after the operation (12, 13).

There is a lack of information about the impact of the STN-

DBS on dynamic balance during natural walking. The widely

used clinical scales do not assess the different features of gait and

balance separately in PD (14) for exploring stimulation-related

disturbances (15, 16). Posturography (6, 9, 17) or motion sensor

Abbreviations: ITUG, instrumented timed up and go test; ICTSIB,

instrumental clinical test of sensory integration and balance; ROM, range

of motion; SVR, support vector regression (SVR) analysis.

studies (18) on DBS either investigated quiet stances in single

(6, 9, 19) or dual-task conditions (6, 17). Gait parameters were

analyzed separately with scales (9, 20) ormotion sensors (16, 21).

The Timed Up and Go test complements the gait analysis by

detecting turning and postural transitions, and its total duration

time is well correlated to fall risk (22). Its advanced version, the

Instrumented Timed Up and Go (ITUG) test, utilizes motion

sensors and provides sensitive and reliable gait parameters

correlating with the Unified Parkinson’s Disease Rating Scale

(UPDRS) motor scores (23).

Therefore, we aimed to observe the more than 1-year-

long bilateral STN-DBS effect on gait and turning parameters

by focusing on the dynamic balance. We hypothesized that

gait parameters do not improve with stimulation to the

normal control level and that there is a relationship between

the stimulation-induced changes in dynamic balance and the

disease-related clinical parameters and electrode localization.

We also assumed that stimulation-induced changes in dynamic

balance during gait are not independent of the postural

sway during quiet stance and are measured in sensory

conflict situations.

Materials and methods

Participants

We recruited 24 patients with PD treated with bilateral STN-

DBS and an age-matched group of 24 healthy controls. The

Core Assessment Program for Surgical Interventional Therapies

for Parkinson’s Disease (24) was followed when indicating the

surgery. The inclusion criteria of the patients were as follows:

at least 12 months had passed since the operation, stable

stimulation parameters, and clinical state for at least 3 months.

Exclusion criteria were significant orthopedical/rheumatological

disorders or visual disability not correctable with eyeglasses.

We excluded four patients because they could not walk in

the medication and stimulation OFF state. Finally, 20 patients

completed the tasks, and none had levodopa-resistant freezing.

For individual anatomical planning of the surgery,

preoperative contrast-enhanced MR (3T Philips Achieva)

images and stereotactic contrast-enhanced CT sequences (made

on the day of surgery) were merged using the Medtronic
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FrameLink 5 software. Intraoperative electrophysiological

mapping was executed with five microelectrodes; macro

stimulation controlled clinical symptoms (25).

Ethical approval (reference number: 271/2013) was obtained

from the Regional and Institutional Committee of Science and

Research Ethics, Semmelweis University, and patients signed

informed consent forms.

Measurement protocol

Six wireless Opal monitors (APDM Inc.) (18) consisting of

three-dimensional gyroscopes and accelerometers were placed

on the chest, the lumbar region, the wrists, and the shins

(Figure 1). The sample rate was 128Hz. The subjects executed

the ITUG test with the four major components: sit-to-stand,

7m long gait, turning, and turn-to-sit tasks (Figure 1). At the

beginning of the test, the subject sat on a chair (without an

armrest) with their hands placed on their knees. After a sound

cue, the patient stood up without using the arms, walked 7m

with a dynamic walking speed until reaching the target line, then

turned back and walked back to the chair. Finally, the subject

sat back and put their hands on their knees again (23). The

average values of three consecutive trials were further analyzed

to increase reliability.

We assessed the balance during quiet stance with the

Instrumental Clinical Test of Sensory Integration and Balance

(ICTSIB) with the following parts: stance on the plain ground

with arms folded across the chest with eyes open and closed and

stance on foam with arms folded across the chest with eyes open

and closed (26).

The patients were on at least a 12-h medication withdrawal

before the measurements. They then repeated the ITUG

and ICTSIB tasks in four stimulation conditions: bilateral

stimulation OFF (OFF), bilateral stimulation ON (StimON),

unilateral right-sided (R-StimON), and left-sided (L-StimON)

stimulation ON, in counterbalanced order. We stimulated the

clinically used contacts during the study, with the stimulation

parameters used for therapeutic purposes. A 1-h time interval

was maintained as a washout period between testing in two

different stimulation conditions. Healthy controls also executed

the ITUG and ICTSIB tests three times in one session for

averaging. The measurement protocol is presented in Figure 1.

The outcome measures

The ITUG gait parameters were collected and calculated

by the Mobility Lab Software (APDM Inc.). We compared

the values measured in the four stimulation conditions with

the values of the control group, calculated the StimON/OFF

improvement, and compared the StimON and OFF parameters

in the PD group (Supplementary Table 1). We chose the

potential indicator parameters of the dynamic balance as follows:

double support (percentage of the gait cycle time that both

feet are on the ground, where the gait cycle means the period

FIGURE 1

Study protocol.
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between two consecutive heel-strikes of the right foot); peak

turning velocity (peak angular velocity of the trunk during

turning), the range of motion (ROM, degree), as well as velocity

(degree/s) of the trunk in the horizontal, sagittal, and frontal

plane (27).

The potential predictors of clinical factors

We collected the following disease-related parameters:

age, disease duration, the pre-and postoperative Hoehn-Yahr

stage, the time elapsed since the operation, and the levodopa

responsiveness calculated from the rate of UPDRS III scores

in preoperative MED ON and OFF states (dopamine agonists

were only stopped 1 day before the test because patients

did not tolerate the discomfort). In addition, we determined

the International Parkinson and Movement Disorders Society

MDS-UPDRS III scores in the StimON and OFF stimulation

conditions and their ratio to the stimulation responsiveness at

the time of measurement.

We collected the sway values (m2/s4; the area of the 95%

confidence ellipse, an average of the three trials) in the four tasks

of the ICTSIB test; their average as combined sway (18, 26) was

subsequently used among the potential clinical predictors.

We specified the anatomical location of the active contacts

as described in Kelemen et al. (26) in detail. In short, the

postoperative CT scans acquired at least 3 months after lead

implantation were co-registered with anatomical T1 images.

The coordinates of the active contacts were calculated using

Euclidean vectorial calculations; the reference point was the

mathematical center point of the dorsolateral motor portion of

the STN, according to Atlas (28). Distances between the active

contacts and the warped motor centers were calculated in each

plane and three dimensions in millimeters.

Statistical analyses

The normal distribution of the data was first determined

with the Kolmogorov-Smirnov test; according to the results,

we used parametric or nonparametric statistical tests. The

age of the PD and control group was compared with the

Mann–Whitney U test. The active contact locations referenced

to the center of the dorsolateral STN and the stimulation

intensity on the left and right sides were compared with an

unpaired Student t-test. The parameters of the ITUG test

in the different stimulation conditions were compared with

control values using the unpaired Student t-test; the p-value

was determined after a Bonferroni correction. Finally, the

parameters in the stimulation conditions were compared with

ANOVA for repeated measures within the PD group. The

determining factor was the STIMULATION CONDITION;

we used Tukey’s test for multiple comparisons. The level of

significance was set at p < 0.05.

Support vector regression analyses

We performed a support vector regression (SVR) analysis—

representing a machine-learning-based multiple regression

method—that could associate the observed and trained values

and present the regression coefficient for prediction accuracy

(29). This study implemented a data-driven regression model

without explicitly stating a functional form, indicating a non-

parametric technique.

In short, the algorithm looks for an optimally separating

threshold between the two data sets by maximizing the margin

between the classes’ closest points. The points lying on the

boundaries are called support vectors, and the middle of the

margin is the optimal separating threshold. Since, in most cases,

using a linear separator is not ideal, a projection into a higher-

dimensional space was performed, whereby the data points

effectively become linearly interrelated. Here, we have used the

radial basis function kernel for this projection due to its good

performance, as discussed in (30), and used the grid search

(min = 1; max = 10) to find the few optimal input parameters,

namely, R (type of regression algorithm; 1–1,000) and gamma

(0.25). A soft-margin classifier of the calculated independent

variables was used for every parameter, and a penalty constant P

weighted spurious correlations. In order to optimize regression

accuracy, this was calculated for every regressor. We performed

the following steps to demonstrate that no overfitting was

attested in our data for the SVR regression algorithm. The results

from the SVR are reported here with fivefold cross-validation.

Additionally, we used age as a confound in the analyses.We used

70% of the data for training and 30% of the data for testing.

Results

Demographics and clinical parameters

The characteristics of the patient group are summarized in

Table 1. The age (median/IQR) of the patients (63/58–68.5 years)

and the controls (58/52.3–69 years) did not differ (p = 0.46).

Five females and 15 males were in the PD group, and 13 females

and 11 males were in the control group. The MDS-UPDRS 3.11

scores (freezing of gait) improved in one patient from 3 to 1

while turning the bilateral stimulation on and remained 1 in one

patient. No freezing of gait was observed in OFF and StimOn

conditions in the rest of the patient group. In the OFF state,

four patients had a score of 3, two patients had a score of 2, and

four patients had a score of 1 on the MDS-UPDRS 3.12 scale

representing postural stability. All other patients had a score of
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TABLE 1 Demographics and clinical data of the patients.

Feature Values; median (IQR)

Disease duration at the time of surgery 11 (9.5–14) years

Time since surgery 19 (13.5–40) months

Levodopa equivalent dose Preoperative 816 (588–931) mg

At the study 266 (200–586) mg

Preoperative UPDRS III. score MED-OFF 29 (23–51) points

MED-ON 6 (1–11) points

MDS-UPDRS III. score at the study MED-OFF, BOTH-OFF 37 (22.5–47) points

MED-OFF, BOTH-ON 15 (7–19) points

Levodopa response Preoperative 86 (77–100) %

Stimulation response At the study 65 (50–71) %

Hoehn-Yahr stage Preoperative 3 (2.5–3)

1 year after the operation 1 (1–1.5)

0. The latest scores improved in five patients and worsened in

four patients after switching on the bilateral stimulation.

The location of the active contacts and
parameters of the stimulation

The active contact locations and the stimulation parameters

are presented in Table 2. The active contact locations in the three

planes, right and left (x: p = 0.28; y: p = 0.8; z: p = 0.36), did

not differ. There was no significant difference in the stimulation

intensity on the two sides (p= 0.36).

Comparison of the ITUG parameters
between PD and the control group

The PD group performed worse than controls both in OFF

and StimON conditions regarding the following parameters:

total duration of the ITUG Test, turn duration, and turn-to-sit

duration (Supplementary Table 1).

E�ect of bilateral subthalamic stimulation
on the parameters of the ITUG test

The majority of the measured parameters were significantly

improved by bilateral subthalamic stimulation. The ROM of the

left and right arms improved the most in StimON compared

to the OFF condition, followed by the arm’s velocities and the

trunk’s ROM and velocity in the horizontal and sagittal planes

(Figure 2, Supplementary Table 1). Turning on the stimulation

did not affect the double support at the group level, which was

not different from the control values.

Individual changes in the parameters of
dynamic balance due to stimulation

Double support improved, decreased, or did not

worsen in 10 of the 20 patients. In comparison,

changes in other parameters were more homogenous

(improvement/increase in turn peak velocity: 17/20

patients, trunk ROM horizontal: 17/20 patients, sagittal:

14/20 patients, frontal: 15/20 patients; trunk velocity

horizontal: 15/20 patients, sagittal: 19/20 patients, frontal:

16/20 patients).

Prediction analysis of the parameters of
dynamic balance

Table 3 presents the accuracy of how the clinical factors

predicted the stimulation-induced changes in dynamic balance

parameters. The superior-inferior and the anterior-posterior

deviations from the motor center of the STN predicted the

improvement rate of most parameters. The more posterior

and inferior locations in the dorsolateral area improved the

dynamic balance. In addition, the changes in the horizontal

trunk movements could be predicted from the disease

duration, stimulation responsiveness, and the stimulation-

induced improvement of the combined postural sway from

the ICTSIB test. Stimulation-induced alterations of the double

support and the horizontal ROM could be predicted from

the largest number of disease-related factors and the active

contact location (Table 3). Improvement of double support

was associated with the severity of the motor symptoms

and the stimulation-induced quiet stance imbalance, in

addition to anterior-posterior and superior-inferior contact

locations.
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TABLE 2 Parameters of the stimulation and distance of the active contact from the motor center of the dorsolateral STN.

Feature Right Left

STN stimulation Amplitude (V; mean± SD) 2.3± 0.8 2.4± 2.65

Frequency (Hz; median and IQR) 130 (130–145) 130 (130–145)

Impulse width (µs; median and IQR) 60 (60–65) 60 (60–65)

Location distance from center of dorsal STN (mm; mean± SD) X 0.46± 1.97 0.55± 0.34

Y −1.44± 1.58 −1.24± 0.33

Z 0.48± 0.43 0.51± 0.53

FIGURE 2

Double support and horizontal trunk movements in the patient and the control group. Improvement of double support is individual in the PD

group, whereas horizontal trunk range of motion and velocity significantly ameliorates when switching the stimulation on.

TABLE 3 Coe�cients of the support vector regression (SVR) analysis.

StimON/OFF ratio

Double

support

Turn peak

velocity

Trunk ROM Trunk velocity

Horizontal Sagittal Frontal Horizontal Sagittal Frontal

Disease duration 0.55 0.52 0.75* 0.58 0.48 0.80* 0.76* 0.68

PreOP levodopa response 0.54 0.52 0.65 0.61 0.64 0.67 0.64 0.62

Stimulation response 0.55 0.58 0.75* 0.57 0.64 0.62 0.62 0.63

MDS-UPDRS III. MED OFF, Stim OFF 0.71* 0.57 0.55 0.57 0.44 0.59 0.47 0.38

StimON/OFF Combined sway 0.78* 0.65 0.42 0.41 0.55 0.71* 0.43 0.47

RX 0.47 0.45 0.42 0.41 0.55 0.46 0.44 0.48

RY 0.75* 0.76* 0.65 0.66 0.55 0.62 0.80* 0.46

RZ 0.72* 0.56 0.73* 0.47 0.72* 0.75* 0.48 0.72*

LX 0.58 0.48 0.47 0.46 0.74* 0.54 0.76* 0.45

LY 0.54 0.70* 0.82* 0.47 0.85* 0.48 0.46 0.82*

LZ 0.66 0.47 0.43 0.42 0.68 0.45 0.42 0.48

Significant predictions are marked with an asterisk.

ROM, range of motion; R, right; L, left; y, anterior (–)-posterior (+), z, superior (+)-inferior (–), x, medial (right + left-)-lateral (right-left+).
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Discussion

With our results, we show that highlighted parameters

of dynamic balance improve after switching on the STN

stimulation, such as trunk range of motion, velocity in the

three dimensions, and the turn peak velocity in the ITUG test;

however, their values do not achieve the level of the control

values. The double support improved the least and did not

differ between the OFF and StimON conditions and controls.

Its value was individually variable and could be predicted by

the absence of medication and off-stimulation motor symptoms.

The double support, the horizontal ROM, and the trunk velocity

could be predicted by clinical factors that represented the

state of the disease, such as the disease duration and postural

stance imbalance. We also showed that upper limb movements

improved themost with STN-DBS among the ITUG parameters.

Double support

Double support is the percentage of the gait cycle time

that both feet are on the ground (27); it is associated with

the freezing of gait in PD (7). Levodopa has a positive effect

(31, 32) or no effect (33, 34) on double support during both

short-term [3–6 months; (31) vs. (34)] and long-term [10–39

months; (32) vs. (33, 35), sequentially] STN-DBS treatment.

A combined intervention of medication and stimulation was

shown to exert a better effect on the freezing of gait than either

treatment alone in a 6–12-months follow-up period (11). Our

study has pinpointed that its stimulation-induced change is

individually variable and determined by disease-related factors.

Results from a large cohort of PD patients (331 patients) support

our findings according to which the outcome of STN-DBS on

the freezing of gait relates to the severity of the symptoms in

the preoperative phase, the severity of the motor fluctuations,

the brain atrophy, and the postoperative cognitive performance

(36). DBS modulates targeted, selected brain networks, in which

dopamine plays a key role (37). In contrast, freezing and

falls were associated with cholinergic dysfunction involving the

brainstem pedunculopontine nucleus (38), which explains the

insufficient effect of STN-DBS treatment on these symptoms.

Non-levodopa-responsive axial symptoms appear along with the

disease progression (39).

Horizontal trunk movements

This study analyzed trunk movement in three dimensions,

showing that the clinical state most influences the horizontal

plane’s motions. Accordingly, it was reported that the

mediolateral sway area during quiet stance is more affected

in PD than the anteroposterior, even in the early phase of

the disease (40). Levodopa therapy worsens this abnormality,

whereas STN-DBS reduces it and stabilizes balance in

combination therapy (6, 40). We report for the first time

that the stimulation-induced improvement during ITUG can

be predicted from the disease duration and the stimulation

responsiveness. Besides that, stimulation-induced changes in

horizontal trunk velocity could be significantly predicted from

the stimulation-induced combined static sway according to

their interrelation in the complex balance function (1). Our

results confirm that the mediolateral sway is disease-specific (1)

and that the disease progression influences the DBS effect on

it. It may cause a tendency to fall in the mediolateral direction

in PD.

E�ect of the active contact location

Dynamic balance could also be predicted from the active

contact location in our study. A more superior location on

the right side predicted less stimulation-induced improvement

of double support and trunk movement range and velocity in

the horizontal and frontal plane. The more posterior location

was beneficial for most parameters of the dynamic balance. It

was earlier demonstrated that high-frequency stimulation of the

pedunculopontine nucleus worsens axial symptoms (41). The

anatomical arrangement of its associative pathways explains our

experiences while stimulating the dorsolateral STN. Ventral STN

stimulation impairs gait (42). Stimulation anterodorsal from the

STN may reach the Forel’s field H2 with the passing pallido-

pedunculopontine fibers, resulting in gait disturbances (20, 36).

E�ect of STN-DBS on other gait
parameters

Stride velocity improved significantly by STN-DBS in

agreement with former studies (43), as well as trunk velocity

in the three dimensions, the turn peak velocity, the sit-to-stand

velocity, and the turn-to-sit velocity. The stride length, the range

of motion of the trunk in three dimensions, and the sit-to-

stand position transition have also been raised as expected (10).

In contrast, the temporal parameters such as cadence and gait

cycle time were not influenced by switching the stimulation on,

similarly to earlier results (7). Our results confirm that DBS acts

more on appendicular than axial movements (42) as the arms’

range of motion is most elevated.

Strengths and limitations of the study

The study’s strengths include using objectivemotion analysis

to describe gait and dynamic balance. We also measured

the anatomical location of the active contacts among the

clinical characteristics.
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A limitation is the number of recruited patients; it would be

beneficial to perform the study in a larger cohort. Furthermore, a

more extended washout period between stimulation conditions

might be ideal for testing axial symptoms (44). Although,

during stimulation OFF or unilateral stimulation, patients feel

discomfort and cannot be burdened with this state for hours.

Furthermore, we have used a data-driven machine learning

approach in this study, so caution needs to be taken in

interpreting the results. The small sample size with the multiple

parameter space limits the external validity and needs to be

replicated in other centers and larger cohorts of patients.

Conclusion

The improvement of the double support and the horizontal

trunk movements by STN-DBS are most affected by disease-

related factors. Therefore, these symptoms should be focused

on by the physiotherapy of patients with STN-DBS. The

detailed kinematic analysis provides new information to plan an

appropriate multidisciplinary approach for patient management

after DBS implantation.
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