New Frontiers for Artificial Intelligence in Surgical Decision Making and its Organizational Impacts

21.5K
views
68
authors
7
articles
Editors
3
Impact
Loading...
The boundary traced in light blue represents the ground truth segmentation provided by an expert clinician, while the red one represents the model prediction. The IoU is calculated by dividing the overlapping area (containing the true positive pixels) by the total area of union (encompassing the false negative, true positive, and false positive pixels).
3,809 views
26 citations
Mini Review
22 April 2022
Gamification for Machine Learning in Surgical Patient Engagement
Jeremy A. Balch
2 more and 
Tyler J. Loftus
Article Cover Image

Patients and their surgeons face a complex and evolving set of choices in the process of shared decision making. The plan of care must be tailored to individual patient risk factors and values, though objective estimates of risk can be elusive, and these risk factors are often modifiable and can alter the plan of care. Machine learning can perform real-time predictions of outcomes, though these technologies are limited by usability and interpretability. Gamification, or the use of game elements in non-game contexts, may be able to incorporate machine learning technology to help patients optimize their pre-operative risks, reduce in-hospital complications, and hasten recovery. This article proposes a theoretical mobile application to help guide decision making and provide evidence-based, tangible goals for patients and surgeons with the goal of achieving the best possible operative outcome that aligns with patient values.

4,783 views
12 citations
Original Research
24 February 2022

Background: Neuroimaging differentiation of glioblastoma, primary central nervous system lymphoma (PCNSL) and solitary brain metastasis (BM) remains challenging in specific cases showing similar appearances or atypical features. Overall, advanced MRI protocols have high diagnostic reliability, but their limited worldwide availability, coupled with the overlapping of specific neuroimaging features among tumor subgroups, represent significant drawbacks and entail disparities in the planning and management of these oncological patients.

Objective: To evaluate the classification performance metrics of a deep learning algorithm trained on T1-weighted gadolinium-enhanced (T1Gd) MRI scans of glioblastomas, atypical PCNSLs and BMs.

Materials and Methods: We enrolled 121 patients (glioblastoma: n=47; PCNSL: n=37; BM: n=37) who had undergone preoperative T1Gd-MRI and histopathological confirmation. Each lesion was segmented, and all ROIs were exported in a DICOM dataset. The patient cohort was then split in a training and hold-out test sets following a 70/30 ratio. A Resnet101 model, a deep neural network (DNN), was trained on the training set and validated on the hold-out test set to differentiate glioblastomas, PCNSLs and BMs on T1Gd-MRI scans.

Results: The DNN achieved optimal classification performance in distinguishing PCNSLs (AUC: 0.98; 95%CI: 0.95 - 1.00) and glioblastomas (AUC: 0.90; 95%CI: 0.81 - 0.97) and moderate ability in differentiating BMs (AUC: 0.81; 95%CI: 0.70 - 0.95). This performance may allow clinicians to correctly identify patients eligible for lesion biopsy or surgical resection.

Conclusion: We trained and internally validated a deep learning model able to reliably differentiate ambiguous cases of PCNSLs, glioblastoma and BMs by means of T1Gd-MRI. The proposed predictive model may provide a low-cost, easily-accessible and high-speed decision-making support for eligibility to diagnostic brain biopsy or maximal tumor resection in atypical cases.

3,037 views
22 citations
Open for submission
Deadline
01 June 2025
Submit a paper
Recommended Research Topics
Deadline
01 June 2025
Submit a paper