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Editorial on the Research Topic

Estrogen effects on fertility and neurodegeneration – classical versus
non-classical actions
The gonadal steroid 17b-estradiol (E2) is the most potent form of estrogen with a broad

spectrum of biological actions from fertility to neuroprotection. Studies during the last

decades have provided a vast amount of data that have extended our understanding of the

physiological importance of E2 in regulating a variety of tissues and organs, but many

pieces of this intriguing puzzle remained to be elucidated (1). According to the classic

paradigm, the cellular effects of E2 occur slowly: upon ligand binding cytoplasmic estrogen

receptors (ERs) are translocated to the nucleus and regulate expression of target genes by

binding to DNA sequences within hours or days (2). However, E2 can also exert rapid, non-

classical effects in different types of cells including neurons. In response to their ligands,

plasma membrane-bound estrogen receptors (ERs) are activated and E2 can change various

cellular functions or modulate the transcription of several genes directly or indirectly by

rapidly altering the activity of multiple signal transduction cascades (3).

This special issue is a collection of reviews and original research papers focusing on

various aspects of the engagement of the hypothalamus-pituitary-gonadal axis in female

reproductive functions and neurodegenerative diseases. The main female gonadal hormone

E2 is a controversial molecule with the potential to have both beneficial and detrimental

impacts on specific tissues. Non-classical actions of E2 in the brain are associated with

advantageous effects like neuroprotection and enhanced cognitive functions, hence it is

critical to explore further these mechanisms.

The article by Johnson et al. reviews the rapid, membrane-initiated estrogen signaling

in female reproduction with a special focus on the interaction between the membrane-

bound estrogen receptors (mERs) and the metabotropic glutamate receptors (mGluRs).

The study by Koppan et al. highlights the role of PACAP in the regulation of female

reproductive functions including the GnRH-kisspeptin neuronal network, gonadal hormone
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production, follicular development, fertilization, embryonic/placental

development, and maternal behavior. Results published by Barabás

et al shed light on new angles of the GnRH-kisspeptin neural network

in the modulatory effect of PACAP on the integrity of estrus cycle.

The article by Göcz et al. compares the estrogen-driven

transcriptional responses of the two functionally different

kisspeptin neuron populations that mediate the positive and

negative feedback effects of estrogen. The RNA sequencing

analysis uncovered new neuropeptides and mechanisms involved

in the regulation of estrogen feedback.

Another study by Barabás et al based on a survey in Hungary

observed the impact of COVID-19 pandemic and vaccination on the

menstrual cycle but found no proof that the SARS-CoV-2 infection or

vaccination were associated with menstrual cycle changes. The

results, however, implicate that the increased levels of depression

may cause the reported menstrual cycle abnormalities.

The paper by Rijal et al. investigates another aspect of the

regulation of fertility. Their results show that the reactive oxygen

species (ROS) acting as a signaling molecule affect fertility by

directly modulating the excitability of gonadotropin-releasing

hormone (GnRH) neurons.

Three articles in this Research Topic focus on the role of estrogen

in neurodegeneration. As estrogen has been shown to have beneficial

effects in the treatment of neurodegenerative diseases, two papers

aimed to explore the mechanisms underlying the neuroprotective

effects of estrogen. Farkas et al. demonstrated that female hormone

depletion exacerbated the progression of Alzheimer’s disease-

associated changes in the brain of a triple transgenic mouse model

of Alzheimer’s disorder without causing cognitive behavioral

symptoms. Kövesdi et al. analyzed the effect of estrogen on the

activity of striatal cholinergic neurons that play a pivotal role in

neurological disorders such as Parkinson’s and Huntington’s diseases.

However, no evidence was found that estrogen alters the intrinsic

properties of the striatal cholinergic neurons. The third article by

Koszegi and Cheong is a mini review summarizing data collected on

the potential use of estrogen analogues activating the non-classical

pathways in the treatment of neurodegenerative diseases.
Frontiers in Endocrinology 026
Finally, Makkai et al. contributes to the field of estradiol

research by providing a deeper understanding of non-classical

estradiol actions through investigation of receptor dynamics. By

comparing two methods of calculating diffusion coefficients, the

study suggests that Maximum likelihood-based estimation is a more

reliable method for determining receptor movement, especially for

cases with large localization errors or slow movements. This finding

may have important implications for future research on membrane

receptors and their function.

Overall, these articles provide new insights into the diverse

effects of E2, illustrating the complexity of its actions and

highlighting the many areas still to be explored in the field of

neuroendocrine research.
Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fendo.2022.993228
https://doi.org/10.3389/fendo.2022.993228
https://doi.org/10.3389/fendo.2022.960769
https://doi.org/10.3389/fendo.2022.974788
https://doi.org/10.3389/fendo.2022.939699
https://doi.org/10.3389/fendo.2022.985424
https://doi.org/10.3389/fendo.2022.993552
https://doi.org/10.3389/fendo.2022.999236
https://doi.org/10.3389/fninf.2023.1005936
https://doi.org/10.3389/fendo.2023.1192671
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Zsuzsanna Nagy,
University of Pécs, Hungary
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Estrogen differentially regulates
transcriptional landscapes of
preoptic and arcuate kisspeptin
neuron populations

Balázs Göcz1,2*, Szabolcs Takács1, Katalin Skrapits1,
Éva Rumpler1, Norbert Solymosi3, Szilárd Póliska4,
William H. Colledge5, Erik Hrabovszky1* and Miklós Sárvári1*

1Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary,
2János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest,
Hungary, 3Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary,
4Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen,
Debrecen, Hungary, 5Department of Physiology, Development and Neuroscience, University of
Cambridge, Cambridge, United Kingdom
Kisspeptin neurons residing in the rostral periventricular area of the third

ventricle (KPRP3V) and the arcuate nucleus (KPARC) mediate positive and

negative estrogen feedback, respectively. Here, we aim to compare

transcriptional responses of KPRP3V and KPARC neurons to estrogen.

Transgenic mice were ovariectomized and supplemented with either 17b-
estradiol (E2) or vehicle. Fluorescently tagged KPRP3V neurons collected by

laser-capture microdissection were subjected to RNA-seq. Bioinformatics

identified 222 E2-dependent genes. Four genes encoding neuropeptide

precursors (Nmb, Kiss1, Nts, Penk) were robustly, and Cartpt was

subsignificantly upregulated, suggesting putative contribution of multiple

neuropeptides to estrogen feedback mechanisms. Using overrepresentation

analysis, the most affected KEGG pathways were neuroactive ligand-receptor

interaction and dopaminergic synapse. Next, we re-analyzed our previously

obtained KPARC neuron RNA-seq data from the same animals using identical

bioinformatic criteria. The identified 1583 E2-induced changes included

suppression of many neuropeptide precursors, granins, protein processing

enzymes, and other genes related to the secretory pathway. In addition to

distinct regulatory responses, KPRP3V and KPARC neurons exhibited sixty-two

common changes in genes encoding three hormone receptors (Ghsr, Pgr,

Npr2), GAD-65 (Gad2), calmodulin and its regulator (Calm1, Pcp4), among

others. Thirty-four oppositely regulated genes (Kiss1, Vgf, Chrna7, Tmem35a)

were also identified. The strikingly different transcriptional responses in the two

neuron populations prompted us to explore the transcriptional mechanism

further. We identified ten E2-dependent transcription factors in KPRP3V and

seventy in KPARC neurons. While none of the ten transcription factors interacted

with estrogen receptor-a, eight of the seventy did. We propose that an

intricate, multi-layered transcriptional mechanism exists in KPARC neurons
frontiersin.org01
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and a less complex one in KPRP3V neurons. These results shed new light on the

complexity of estrogen-dependent regulatory mechanisms acting in the two

functionally distinct kisspeptin neuron populations and implicate additional

neuropeptides and mechanisms in estrogen feedback.
KEYWORDS

fertility, kisspeptin neuron, RNA-seq, neuropeptides, dense-core vesicle, transcription
factors, reproduction
Introduction

The kisspeptin neuropeptide family includes hormones of

varying amino acid length released from the prohormone

product of the Kiss1 gene. Kisspeptin producing neurons

mediate the effect of estrogens to GnRH neurons via the KiSS-

1 receptor and play indispensable role in the regulation of

GnRH/LH pulsatility and estrogen feedback mechanisms.

Inactivating mutations of KISS1R, which encodes the KiSS-1

receptor (1, 2) or KISS1 itself (3), cause hypogonadotropic

hypogonadism in humans. These reproductive defects can be

replicated in knockout mouse models (2, 4, 5).

Most kisspeptin producing neurons reside in two areas of the

rodents’ hypothalamus. One population, KPARC neurons, are

localized in the arcuate nucleus (ARC). Their majority co-

express neurokinin B and dynorphin, and are, therefore, called

KNDy neurons. KPRP3V neurons are mainly located in the

anteroventral periventricular nucleus (AVPV) and the

periventricular nucleus (PeN) of the preoptic area, and co-

express galanin (6, 7), met-enkephalin (6) and some markers

for dopamine (8, 9), GABA (10) and glutamate (10) phenotypes.

The two kisspeptin neuron populations innervate different

cellular domains of GnRH neurons (11). KPARC neurons

innervate distal dendrons at the median eminence while

KPRP3V neurons contact the soma and proximal dendrites in

the preoptic area. Kisspeptin exerts stimulatory effects on GnRH

neurons and triggers GnRH secretion into the portal circulation

at the median eminence, which in turn, increases the synthesis

and secretion of gonadotropins in the anterior pituitary (12). In

females, KPARC and KPRP3V neurons mediate the negative and

positive estrogen feedback, respectively, on gonadotropin

secretion. Earlier transcriptomic studies provided partial

insight into the molecular phenotype of KPARC and KPRP3V

neurons. In these Drop-seq studies, cells of the ARC (13) and the

preoptic area (14) have been categorized based on their

transcriptional profile. KPARC neurons have been described as

KISS1/TAC2 while KPRP3V neurons as dopaminergic cells,

suggesting that the two populations display distinct

molecular phenotypes.
02
8

Hypothalamic kisspeptin neurons express nuclear hormone

receptors including estrogen receptor a (ERa), which enable

them to respond to changes in circulating estrogen levels.

Estrogens are robust transcriptional regulators of Kiss1 (15). In

KPARC neurons, E2 inhibits Kiss1 expression through a non-

classical estrogen receptor mechanism, whereas in KPRP3V

neurons, E2 activates Kiss1 transcription via the classic mode

of action (16). In a recent study, we dissected the genome-wide

transcriptional responses of KPARC neurons to E2 (17) and

identified thousands of E2-dependent genes. Here, we used the

same animals as in the case of KPARC neurons with surgical

ovariectomy model with or without E2 replacement. From each,

we collected three hundred pooled, fluorescently labelled KPRP3V

neurons by laser-capture microdissec t ion (LCM).

Transcriptomes of KPRP3V neurons were determined by

Illumina-based RNA-seq in the same way as in our recent

KPARC neuron study (17) and then, bioinformatic analysis was

performed using stringent criteria to generate the list of E2-

regulated genes without low expressing and statistically non-

significant genes. The detailed E2-dependent transcriptome of

KPARC neurons has been published recently from our laboratory.

Sequencing files, placed in a public repository (BioProject with

the accession number of PRJNA686688), were re-analyzed with

the same criteria to compare the KPRP3V and KPARC neuron

transcriptomes. The comparative analysis focused on

neuropeptides, granins and genes of the secretory pathway,

because of the presence of a large number of changes in these

categories. Finally, the markedly different E2-driven responses of

the two cell types were attributed to different transcriptional

mechanisms revealed in KPRP3V and KPARC neurons.
Materials and methods

Animals

Animal experiments were carried out in accordance with the

Institutional Ethical Codex, Hungarian Act of Animal Care and

Experimentation (1998, XXVIII, section 243/1998) and the
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European Union guidelines (directive 2010/63/EU). All efforts

were made to minimize potential pain or suffering, and to reduce

the number of animals used. Procedures were approved by the

Institutional Animal Care and Use Committee. Young adult

(day 60-80) female mice (n=6) were housed under standard

conditions (lights on between 06:00 and 18:00 h, temperature

22 ± 1°C, chow and water ad libitum) in the animal facility of the

Institute of Experimental Medicine. The E2-dependent

transcripts of KPRP3V neurons were identified in KP-Cre/

ZsGreen mice generated by crossing Kiss1-Cre (18) males with

females of the Ai6(RCL-ZsGreen) indicator strain (The Jackson

Laboratory, JAX No. 007906) as described previously (17). The

paper which reported generation of the Kiss1-Cre transgenic

mouse provided evidence that 80-90% of fluorescently labelled

cells expressed kisspeptin in the ARC (18).
Surgical ovariectomy and subsequent
E2 replacement

We have recently published a detailed protocol for the

dissection of KPARC neurons (17). The same protocol was used

here to dissect KPRP3V neurons from the preoptic area. In brief,

all mice were first anesthetized and ovariectomized (OVX)

bilaterally. On post-ovariectomy day 9, the animals were

implanted subcutaneously with a single silastic capsule

(Sanitech, Havant, UK; l=10 mm; id=1.57 mm; od=3.18 mm)

containing either 100 mg/ml E2 (Sigma Chemical Co., St Louis,

MO) in sunflower oil (OVX+E2 group, n=3) or oil vehicle

(OVX+Veh group, n=3) (19). Four days later, mice were

sacrificed between 09:00-11:00 am. We have recently

established that this E2 regimen resulted in 7.59 pg/mL

serum E2 levels (high diestrus/proestrus range) and 7.58-fold

uterine hypertrophy (17).
LCM-assisted dissection of
KPRP3V neurons

We followed our recently published protocol for LCM-

assisted dissection of fluorescent neurons. In brief, treated KP-

Cre/ZsGreen mice (n=6) were perfused transcardially with 0.5%

formaldehyde, followed by 20% sucrose. Brains were snap-

frozen and tissue blocks containing the preoptic area were

dissected. Then, coronal sections were cut from the preoptic

area, collected onto PEN slides (Membrane Slide 1.0 PEN, Carl

Zeiss, Göttingen, Germany) and air-dried in the cryostat

chamber. Formaldehyde-fixed sections, containing fluorescent

KPRP3V neurons were treated sequentially with 50% EtOH, n-

butanol:EtOH and xylene substitution:n-butanol. Three

hundred KP-Cre/ZsGreen neurons were microdissected from

12-µm-thick preoptic sections of each mouse. Microdissected

cells were pressure-catapulted into 0.5 ml tube caps (Adhesive
Frontiers in Endocrinology 03
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Cap 200, Carl Zeiss), pooled and were stored at -80 °C until

RNA extraction.
RNA sequencing

Total RNA samples from KPRP3V neurons were prepared

with the Arcturus Paradise Plus RNA Extraction and Isolation

Kit (Applied Biosystems, Waltham, MA, USA), and converted

into RNA-seq libraries with the TrueSeq Stranded Total RNA

Library Preparation Gold kit (Illumina, San Diego, CA, USA).

Although the TrueSeq Stranded kit was optimized for 100 ng

input RNA, a recent study found that it generates reliable

libraries from as little as ng amounts of RNA (20). Total RNA

extracted from 300 KPARC neurons provided sufficient amount

of cDNA input for sequencing (17). For DNA fragment

enrichment, our protocol used 16, instead of 15 cycles

recommended by the manufacturer. Sequencing was

performed on Illumina NextSeq500 instrument using the

NextSeq500/550 High Output v2.5 kit (75 cycles). Sequencing

files were deposited to BioProject with accession number

of PRJNA847063.
Bioinformatics

Following FastQC quality control, sequencing reads with low

quality bases were removed using Trimmomatic 0.39 (settings:

LEADING:3, TRAILING:3, SLIDINGWINDOW:4:30,

MINLEN:50). Sequencing reads were mapped to the mm100

mouse reference genome using STAR (v 2.7.3a) (21), which

resulted in an average overall alignment rate of 74.9 ± 3.5%. Read

summarization and gene level quantification were performed by

featureCounts (subread v 2.0.0) (22). Raw read counts were

normalized and processed further with the packages of edgeR

(23) and DESeq2 (24). EdgeR and DESeq2 calculated count per

million (cpm) values and identified differentially expressed

genes, respectively. Changes in mRNA expression were

quantified by log2 fold change (log2FC). P values were

corrected by the method of Benjamini (25) to take multiple

testing into account. In differential expression analysis with

DESeq2 we applied the basemean>20, p.adj<0.05 cutoffs to

generate the list of E2-regulated genes without low-expressing

and statistically non-significant genes. Genes were assigned to

KEGG (26) signaling pathways by the R package KEGGREST

(Dan Tenenbaum (2019): KEGGREST: Client-side REST access

to KEGG., R package version 1.26.1). Overrepresentation

analysis (ORA) (27) was performed by the clusterProfiler (28)

R packages. All program packages for differential expression

analysis and pathway analysis were run in the R environment

(R2020). E2-dependent transcription factors were identified

using functional classification with the Animal Transcription

Factor DataBase (29). Putative transcription factors were
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double-checked using UniProt (https://www.uniprot.org)

website. Listed transcription factors fulfilled the criteria to

have ‘transcription factor activity’ GO molecular function, and

experimental evidence at protein level.
Results

RNA-seq of KPRP3V neurons reveals 222
E2-dependent genes

To examine estrogenic regulation of KPRP3V neurons, we

dissected and pooled fluorescent KPRP3V neurons by LCM from

OVX mice substituted with either oil or E2. Illumina-based RNA-

seq was performed to determine the transcriptional landscape of

KPRP3V neurons at high physiological (7.59 pg/mL) and

gonadectomy E2 levels which latter is below 0.3 pg/mL (30).

Initial DESeq2 analysis identified 203 E2-regulated genes in

KPRP3V neurons with the p.adj<0.05 cutoff. P.adj values are

highly sensitive to the number of comparisons which can

severely compromise the detection power for true positives (31,

32). Noisy, low-expression genes were shown to have adverse

impact on the power of statistics in RNA-seq studies (32). Given

that these genes likely have relatively minor effect on kisspeptin

neuron biology, we improved the power of DeSeq2 analysis by

filtering out low-expression genes. Using the basemean>20 and

p.adj<0.05 cutoffs, we identified 10,623 transcripts, 247 of which

were E2-dependent (Supplementary Table/ Table 1) including 222

protein coding genes. The 222 genes contained 45 new changes

that were not included in the list unfiltered to low basemean. The

heat map of E2-regulated transcripts showed disparate expression

in the two experimental groups (Figure 1A). Among the 222

protein coding genes, 142 were up- and 80 were downregulated.

The most robust upregulation was seen in the case of Nmb

encoding neuromedin B (Figure 1B). Highly upregulated genes

(log2FC>1) comprised additional neuropeptides (Kiss1, Nts, Penk)

and a granin (Vgf), among others. Cartpt encoding neuropeptide

CART was also highly upregulated, but the change did not reach

statistical significance. ORA identified enrichment in changes of

the dopaminergic synapse and neuroactive ligand-receptor

interaction KEGG pathways (Figure 1C). Using gene ontology

(GO) terms, ORA revealed significant enrichment of changes in

the regulation of membrane potential (GO:0042391), synapse

organization (GO:0050808), peptide transport (GO:0015833),

hormone secretion (GO:0046879) GO categories, among others

(Supplementary Table/ Table 2).
Comparative analysis unveils disparate
E2-driven transcriptional responses

For consistency, we re-analyzed our recently deposited RNA-

seq data of KPARC neurons (17) with the same filtering which
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resulted in 1583 medium-to-high abundance E2-regulated genes.

While 470 low-expressed genes were excluded by this filtering, the

enhanced statistical power resulted in the identification of 48 newly

identified genes in KPARC neurons. Compared to KPRP3V neurons,

the KPARC neurons showed much higher number and more robust

transcriptional responses to E2. To display differences in estrogenic

regulation of the two populations, we generated heat maps with the

top 25 activated and top 25 suppressed genes in KPRP3V neurons

and illustrated in parallel expression of the same genes from KPARC

neurons (Figure 2A). The top 25 activated and top 25 suppressed

genes of KPARC neurons and their behavior in KPRP3V neurons are

shown similarly in Figure 2B. Markedly different responses of the

two kisspeptin neuron populations to E2 prompted us to check the

expression of major estrogen receptors. We detected abundant

mRNA expression of Esr1 encoding ERa in both KPRP3V and

KPARC neurons. However, we did not detect transcription of Esr2

and Gper1 encoding ERb and G-protein coupled estrogen

receptor, respectively.
Despite disparate regulation there are
ninety-six overlapping E2 target genes

Although the E2-driven transcriptional responses were

different, we found ninety-six overlapping genes with sixty-two

analogous and thirty-four opposite changes in preoptic and

arcuate kisspeptin neurons. The sixty-two genes, which were

regulated in the same direction consisted of transcription

factors, synapse associated genes and calcium signaling

molecules, among others (Figure 3A). There were 25 genes that

displayed |log2FC| >1.0 changes in both populations representing

the highly responsive, common E2-dependent genes in kisspeptin

neurons. Among highly expressed genes, E2 upregulated App,

Itm2c (inhibits APP processing), Calm1, Eef1a1. E2 also increased

expression of some synapse-associated genes including Cadm1,

Enah, Gad2, Syt6, and decreasedGrin2b. In addition, E2 enhanced

mRNA expression of major calcium signaling molecules (Pcp4,

Calm1) and pacemaker channel Hcn1 in both cell populations.

Thirty-four genes including Kiss1 were oppositely regulated

(Figure 3B), and several of them, regulated in a similar fashion

as Kiss1 (Atp1a1, Chga, Vgf, Ptprn, Ralgps2), were associated with

neuropeptide secretion. Other oppositely regulated genes encoded

proteins related to translational control (Msi2), calcium signaling

(Cpne2, Ryr3), protein quality control (Clu), synaptic plasticity

(Cct4, Chl1), cholinergic transmission (Chrna7, Tmem35a),

among other functions.
E2 activates neuropeptide precursor and
granin genes in KPRP3V neurons

In KPRP3V neurons, we identified seven E2-regulated

neuropeptide and granin genes. Transcriptional activation of
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Nmb, Kiss1, Nts and Penk was significant (Figure 4A), and these

neuropeptide genes were ranked first, eleventh, seventeenth and

fiftieth in the list of E2-regulated genes. E2-induced increase of

Pnoc, Prok2 and Cartpt did not reach statistical significance.

KPRP3V neurons highly expressed Cartpt, Kiss1, Nmb, Nts and

Penk, while Gal was expressed moderately in OVX mice with E2

replacement. Neuropeptide precursor proteins are transported

from the endoplasmic reticulum to the trans-Golgi network,

where they are sorted and packed into DCVs. We showed

upregulation of three granin genes, namely Chga, Scg2, Vgf

and another gene of the secretory pathway, Ptprn (Figure 4A).

Maturation of neuropeptides requires peptide bond cleavages in

precursor molecules. E2 stimulated transcription of Cpe, Pam

and Pcsk2 prohormone processing enzymes, but the changes did

not reach statistical significance (p.adj<0.05). Genes related to

DCV translocation, transport and fusion were not regulated.
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E2 inhibits neuropeptide precursors,
granins, processing enzymes and
multiple secretory pathway genes in
KPARC neurons

In KPARC neurons, we found transcriptional inhibition of

five co-expressed neuropeptide precursor genes including Kiss1,

Nms, Nxph3, Pdyn and Tac2 (Figure 4B). We showed

downregulation of five members of the granin family including

Scg3, Chga, Chgb, Vgf, Pcsk1n/ProSAAS and another gene, Ptprn

(Figure 4B). Neuropeptide maturation takes place in DCVs. E2

decreased mRNA expression of six processing enzymes

including Cpe, Ctsb, Pam, Pcsk1, Pcsk2 and Pcsk5, whereas the

protease, Pcsk6, showed increased expression (Figure 4B). DCV

formation and cargo selection depend on ADP-ribosylation

factor 1 (Arf1) and components of the coat machinery. In
A B

C

FIGURE 1

Estrogenic regulation of the KPRP3V neuron transcriptome. Heat map of all E2-dependent transcripts. Transcripts were arranged by size of fold
change (FC). We used z-score values to illustrate the size of transcriptional changes, and the values are color coded. z-score is calculated from
the CPM value, the mean CPM and the standard deviation of CPM values in a given experimental group (A). Volcano plot reveals 132 regulatory
changes that exceed |log2FC| 1.0. Transcriptional changes of neuropeptides (Nmb, Kiss1, Nts, Penk) and granins (Chga, Scg2, Vgf) were marked
(B). Overrepresentation analysis (ORA) of E2-dependent genes identified significant changes in the dopaminergic synapse and the neuroactive
ligand-receptor interactions KEGG pathways. The number of genes in a given pathway is reflected in the size of the dot for the pathway. E2-
induced changes of individual genes are color coded based on log2FC values (C).
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KPARC neurons, E2 decreased transcription of Arf1, Cltc, Ap2m1

and Ap1s1. From the trans-Golgi network, DCVs move towards

the plasma membrane to release their content. Translocation

relies upon dynamins, syntaxins, scaffolding and myosin motor

proteins. In KPARC neurons, E2 downregulated mRNA

expression of a large number of genes encoding dynamins

(Dnm1, Dnm3), synaptotagmins (Syt4, Syt5) myosin (Myo1b,

Myo1c, Myo3b, Myo5a) and scaffolding (Tanc2) proteins

(Figure 4B). The SNARE complex and accessory factors are

required for specific targeting and fusion of DCVs with the

plasma membrane. E2 suppressed transcription of genes

encoding components of the SNARE complex (Vamp2, Stx1a,

Stx1b, Snap25) and accessory factors (Rab15, Rab27, Rab39,

Unc13a, Unc13b). The DCV fusion machinery is linked to the

Munc18-1/CASK/Mint1/Lin7b organizer complex, which binds

to synaptic adhesion molecules neurexins. E2 downregulated

constituents of the organizer complex [Stxbp1 (coding Munc18-

1), Cask, Apba1 (coding Mint1), Lin7b] and neurexins (Nrxn1,

Nrxn2) (Figure 4B). Cav2.1 and Cav2.2 channels orchestrate

synchronous release of neuropeptides and neurotransmitters in

most synapses. E2 downregulated Cacna1a (Cav2.1) and

auxiliary Cav subunit Cacnb1, among others. Rab3-interacting

proteins (RIMs), chief organizers of the active zone, are linked to
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Cav2.1 via RIM-binding protein encoded by Erc1, which was

also suppressed by E2.
Transcription factors show markedly
different estrogenic regulation

Strikingly different transcriptional responses to E2 in KPRP3V

and KPARC neurons prompted us to determine the number of

E2-dependent transcription factors. In KPRP3V neurons, E2

regulated ten transcription factors. Based on the result of a

recent publication (33), none of them interacted with ERa. In
accord, STRING predicted no protein-protein interaction

among them (Figure 5A). Neither transcriptional regulators,

nor lncRNAs displayed E2-dependent expression in

KPRP3V neurons.

In KPARC neurons, E2 regulated mRNA expression of

seventy transcription factors. E2-dependent transcription

factors included nuclear hormone receptors (Pgr, Rora, Thrb,

Nr1d2, Nr2c2, Nr4a2, Nr5a2, Ar, Esr1, Nr4a1, Nr4a3),

homeobox proteins (Adnp, Cux1, Pbx1, Pknox2, Zfhx2),

subunits of the AP-1 complex (Fos, Junb, Jdp2) and zinc finger

proteins (Hivep1, Zfp317), among others. Of note, eight
A B

FIGURE 2

E2 differentially regulates the transcriptomes of preoptic and arcuate KP neurons. Heat map of the top 25 activated and top 25 inhibited genes
in KPRP3V neurons and behavior of the same genes in KPARC neurons (A). Heat map of the top 25 activated and top 25 inhibited genes in KPARC

neurons and their behavior in KPRP3V neurons (B).
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transcription factors including Cebpb, Cic, Cux1, Fosl2, Gtf2i,

Hivep1, Hivep2, Junbwere able to interact with ERa according to

recently published data (33). To build a protein interaction map

of E2-dependent transcription factors including putative

interactions with ERa, we used the STRING database (34).

Using strict settings (interaction source: experiment and

databases, minimum required interaction score: medium

confidence), STRING predicted thirty-four protein-protein

interactions between thirty-one transcription factors

(Figure 5B). According to STRING, five transcription factors

can interact with ERa. The STRING protein interaction map

predicted hubs in the network including ERa, Fos, Junb

and Nfatc2.

In addition, E2 also modulated mRNA expression of genes

encoding transcriptional regulators, chromatin modifiers and

regulatory lncRNAs in KPARC neurons. E2 upregulated

components of the SWI/SNF (Smarca2, Smarca4, Smarcd3,

Bicral) and ATRX : DAXX (Atrx, Daxx) chromatin

remodelling complexes, histone methyltransferases (Kmt2e,
Frontiers in Endocrinology 07
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Wdr82) and deacetylases (Hdac11). E2 downregulated some

transcriptional repressors (Gatad2a, Trps1, Zfp219), DNA

methyltransferases (Dnmt3a) and histone deacetylases (Hdac3,

Hdac9). Among them, one transcriptional coregulator (Ncoa6)

and several repressors/activators (Atrx, Gatad2a, Nrip1,

Smarca2, Smarca4, Trim24, Trps1) may interact with ERa. E2
also modified expression of numerous regulatory lncRNAs in

KPARC neurons as described previously (17).
Discussion

E2 evokes different transcriptional
responses in preoptic and arcuate
kisspeptin neurons

To our knowledge, this is the first comprehensive study to

examine and compare E2-driven transcriptional responses in

KPARC and KPRP3V neurons in the same animals. Here, we
A

B

FIGURE 3

Overlapping E2 target genes in KPRP3V and KPARC neurons. E2 regulated 62 genes in the same (A, analogous changes), and 34 genes in opposite
direction (B, opposite changes). Numbers in the dots reflect transcript abundance in CPM units.
frontiersin.org

https://doi.org/10.3389/fendo.2022.960769
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Göcz et al. 10.3389/fendo.2022.960769
improved the power of DeSeq2 analysis by filtering out low-

expression genes using a cutoff of basemean>20. This has

resulted in a list of 222 and 1583 E2-regulated genes expressed

at medium or high level in KPRP3V and KPARC neurons,

respectively. The highly different numbers of E2-dependent

genes in the two kisspeptin neuron populations suggest that

KPARC neurons are much more responsive to E2 treatment than

KPRP3V neurons in our model.

The goal of this study was to identify E2-regulated genes in

KPRP3V and KPARC neurons. In our recent study on the E2-

dependent genes of KPARC neurons (17), we have justified the

choice of non-physiological animal models (surgical OVX,

followed by E2 substitution) to achieve this goal. Treatment of

OVX mice with E2 or vehicle generates two well-defined

experimental groups with little biological variations and large

differences in the E2-dependent transcriptome profiles. In

addition, using a single transcriptome snapshot the different

regulatory dynamics of E2 dependent transcripts would also
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cause interpretation problems, complicated further by the cyclic

presence of progesterone effects we could eliminate using our

non-physiological models. Transcriptional responses in KPARC

and KPRP3V neurons to E2 in our model allowed us to identify

E2-dependent genes and to compare their changes in the two

kisspeptin neuronal populations. Of course, the gene expression

profile of OVX+E2 mice exposed to high levels of E2 for 4 days is

unlikely to mirror physiological conditions produced by peak E2

levels. We note that OVX rodents treated with constant E2

display a late afternoon LH surge which repeats daily at the same

time (35). While high levels of E2 cause negative feedback on

serum LH levels in our OVX+E2 animal model killed in the

morning, transcriptomic changes which take place in response

to E2 in KPRP3V neurons (e.g. induction of Kiss1) may already be

relevant to E2 positive feedback on LH secretion which is

expected to occur in the late afternoon and requires a

circadian signal as well. Future comparison of E2-treated

animals in the morning with the late afternoon surging model
A B

FIGURE 4

E2-dependent elements of the regulated secretory pathway in KPRP3V and KPARC neurons. E2-regulated genes involved in neuropeptide secretion
are shown in KPRP3V (A) and KPARC neurons (B). Genes in red and blue are up- and downregulated, respectively. DCV, dense-core vesicle.
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will be particularly interesting in order to separate the activity-

dependent regulatory changes from the E2-dependent ones in

the transcriptome of KPRP3V neurons.

We identified ninety-six overlapping E2-dependent genes

including sixty-two genes with the same and thirty-four with

opposite regulation. The sixty-two genes represent the common

E2-dependent genes in hypothalamic kisspeptin neurons.

Common upregulated genes encode three hormone receptors

(Ghsr, Pgr, Npr2) indicating that ghrelin (and growth hormone),

progesterone and natriuretic peptide may exert regulatory effects

on estrogen feedback via acting on both kisspeptin cell

populations. This notion is in accord with previously

published data about the regulatory role of these hormones on

kisspeptin neurons (36–38). Other common E2-dependent

genes include Gad2, transcriptional activation of which may

results in increased GABA synthesis in kisspeptin neurons. Of

note, GABA exerts excitatory actions on GnRH neurons (39).

The presence and estrogen-dependent regulation of Gad2 in

KPARC neurons is particularly interesting. Although the

glutamatergic (Vglut2) phenotype of these neurons has been
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well-established (10, 40, 41), earlier in situ hybridization studies

have already raised the possibility that a subpopulation may

exhibit a mixed GABAergic/glutamatergic phenotype (10).

RNAscope experiments recently revealed co-expression of

vGAT and VGluT2 genes in the same cells (42), although

functional studies indicate that KPARC neurons release

glutamate but not GABA (43, 44). Opposite regulation by E2

characterizes a set of genes in KPRP3V and KPARC neurons. This

set contains Kiss1, Vgf, Chrna7 and Tmem35a. So far, the role of

Vgf and cholinergic transmission has not been described in

estrogen feedback.
Estrogens increase transcription of a set
of neuropeptides in KPRP3V neurons

Peptidergic transmission plays central role in the function of

KPRP3V neurons. We found upregulation of four co-expressed

neuropeptides including Kiss1, Nmb, Nts and Penk (p.adj<0.05).

Further, highly increased expression of three additional
A B

FIGURE 5

Protein interaction map of E2-dependent transcription factors in KPRP3V and KPARC neurons. Based on the STRING database, protein interaction
map of E2-regulated transcription factors was built using stringent settings (interaction source: experiment and databases, minimum required
interaction score: medium confidence). STRING identified no potential interactions in KPRP3V neurons (A). In contrast, STRING found potential
interactions between 31 E2-dependent transcription factors in KPARC neurons (B). Genes in bold are regulated in both cell types. Esr1, which
encodes ERa is in bold and framed.
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neuropeptides, namely Pnoc, Prok2 and Cartpt, did not reach

statistical significance (p.adj>0.05) in our study.

Of note, transcriptional activation of a set of neuropeptides

occurs in response to E2 in KPRP3V neurons. Among E2-

dependent genes, Nmb showed the most robust response to E2

in our study. Neuromedin B stimulates GnRH release from

hypothalamic extracts, and increases plasma LH level after

intracerebroventricular administration (45). It has already been

implicated in estrogen feedback as GnRH neurons express

receptors for neuromedin B (46). Robust upregulation of Nmb

supports the notion that neuromedin B may be an important

regulator of positive estrogen feedback acting in concert with

kisspeptins and other upregulated neuropeptides. We indicate

that E2 also increases Nts expression in KPRP3V neurons.

According to a previous study, E2 induces Nts expression in

the AVPV, and blockade of neurotensin signaling reduces the

LH surge (47). Although GnRH neurons express Ntsr2, central

administration of neurotensin does not induce LH surge. No co-

expression of Kiss1 and Nts has been detected by double-label

ISH (47). We also detected expression of neurotensin receptors

(Ntsr1, Ntsr2) in KPRP3V neurons suggesting that neurotensin

signaling plays a role in the communication between KPRP3V

neurons, in addition to signaling towards GnRH neurons. We

also found that E2 enhanced Penk expression. In accord with this

finding, a previous paper proves co-expression of kisspeptin and

met-enkephalin in the AVPV (6). It is tempting to speculate that

increased transcription of a set of neuropeptide genes including

Kiss1, Nmb, Nts and Penk in KPRP3V neurons might act in

synergy to trigger the LH surge during positive feedback.

Following their synthesis, neuropeptide precursors undergo

processing and transport prior to secretion. Granins, major

constituents of DCV intravesicular matrix, bind Ca2+ and

aggregate at acidic pH (48), which is considered to be the

driving force of DCV biogenesis. We provide evidence that

estrogens activate transcription of Chga, Scg2, and Vgf.

Insulinoma-asssociated (Ia-2) protein is involved in the

transcriptional control of DCV biogenesis (49). E2 activates

Ptprn encoding Ia-2 protein, which may result in elevated

DCV biogenesis.

A recent, elegant paper published the active translatome and

its estrogenic regulation in AVPV kisspeptin neurons (50). The

authors used the p<0.05 criterion and claimed 683 differentially

expressed transcripts. Comparison of our results to the

presented set of differentially expressed transcripts resulted in

52 overlapping genes in the two studies. Common E2-regulated

genes included 13 genes with statistical significance (p.adj<0.05)

in both studies (Scg2, App, Maged1, Nap1l5, Itm2c, Calm1,

Ptprn, Ckb, Zcchc12, Vgf, Gad2, Kiss1, Penk) and 39 additional

genes with statistical significance in our study and with marked

difference without reported statistical significance in the study by

Stephens and Kauffman (C1ql2, Nmb, Sytl4, Crtac1, Tmem35a,

Syt6, Fhod3, Aqp5, Maob, Brinp2, Pgr, Map3k15, Ghsr, Nxn,

Nell2, Mgat1, Hcn1, Cadm1, Phyhipl, Fgd3, Pcp4, Rap1gap, Ipo5,
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Nts, Enah, Ptpn5, Usp48, Nrip1, Npr2, Tmcc3, Hs3st5, Hpcal1,

Ngb, Flrt3, Thsd7b, Pgr15l, Peg10, Npy2r, Slc17a8). The four

upregulated neuropeptides (Kiss1, Nmb, Nts and Penk) in our

study mentioned previously were among the overlapping genes.

Although our study and the paper by Stephens and Kauffman

(50) used dissimilar methodologies (Kiss1-Cre/ZsGreen vs.

Kiss1Cre/Ribotag mice, 4-day E2 treatment vs. two sequential

E2 treatments with different hormone regimen) and targeted

distinct RNA populations (total RNA vs. ribosome bound

mRNA) for sequencing, more than fifty genes with almost

identical estrogenic regulation were observed in preoptic

kisspeptin neurons in the two studies.
Estrogens inhibit transcription of
neuropeptide precursor, granin,
processing enzyme and DCV related
genes in KPARC neurons

We find that both kisspeptin neuron populations possess

unique neuropeptide profiles that are highly regulated by E2. In

KPARC neurons, besides Kiss1 we show four more co-expressed

neuropeptide genes including Nms, Nxph3, Pdyn, Tac2 that are

all suppressed. We demonstrate that estrogens suppress not only

genes encoding neuropeptide precursors, but granins, processing

enzymes and multiple elements of the regulated secretory

pathway. Along with granins and their processing enzymes,

neuropeptide precursors are transported from the endoplasmic

reticulum to the trans-Golgi network, where they are sorted and

packed into DCVs. E2 inhibits several highly expressed granin

genes including Chga, Chgb, Pcsk1n, Scg3, Vgf and Ia-2 protein

coding gene Ptprn that may lead to decreased DCV biogenesis.

E2 inhibits six protease genes including Cpe, Ctsb, Pam, Pcsk1,

Pcsk2, Pcsk5 that can be involved in the maturation of co-

expressed neuropeptides in KPARC neurons. DCVs move

towards the plasma membrane to release their content. This

translocation relies upon dynamins, syntaxins, scaffolding and

myosin motor proteins. E2 inhibits transcription of several genes

encoding dynamins, synaptotagmins, myosins and scaffolding

proteins. Specific targeting and fusion of DCVs with the plasma

membrane requires concerted action of SNARE proteins and

accessory factors. We show that E2 inhibits transcription of

genes encoding multiple components of the SNARE complex

and accessory proteins. The fusion machinery is linked to the

organizer complex, which binds to synaptic adhesion molecules

neurexins. E2 suppresses constituents of the Munc18-1/CASK/

Mint1/Lin7b organizer complex and neurexins. Cav2.1 and

Cav2.2 channels, which orchestrate synchronous release of

neuropeptides and neurotransmitters were also downregulated.

With the above findings, we provide evidence that an intricate

E2-driven transcriptional regulatory mechanism exists in KPARC

neurons, which can provide coordinated suppression of multiple

elements of the secretory pathway. Of note, we can’t exclude the
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possibility that a minor portion of fluorescently labelled cells

does not express Kiss1 at the time of sample collection. We also

do not know that which set of E2-dependent genes is expressed

in a given cell due to cell samples containing 300 pooled

kisspeptin neurons.
Mechanisms underlying the
transcriptional changes

In line with previous papers we found that the effects of

estrogens are mediated solely by ERa in both arcuate and

preoptic kisspeptin neurons (51). We detected abundant

expression of Esr1, which encodes ERa. Neither Esr2 nor

Gper1 encoding ERb and G-protein coupled estrogen receptor,

respectively, showed expression in KPRP3V and KPARC neurons.

Our results confirm that E2-driven transcriptional effects in

kisspeptin neurons are mediated solely by ERa. Multiple ERa-
driven mechanisms (52, 53) that operate in hypothalamic

kisspeptin neurons were inseparable in our study. ERa can

bind in cis (chromatin association via direct DNA binding at

ERE) or in trans (chromatin association via binding to other

transcription factors) at enhancers. Enhancer activation requires

cooperative recruitment of multiple transcription factors and

their cofactors. Approximately 200-300 transcription factors are

expressed in each cell type (54). Expression of ten transcription

factors was E2-dependent in KPRP3V neurons. In contrast,

expression of seventy was E2-dependent in KPARC neurons,

eight of which interacted with ERa. The STRING database

predicted an intricate network of transcription factors in

KPARC neurons. In addit ion, E2 regulated several

transcriptional regulators, chromatin modifiers and regulatory

lncRNAs (17) adding another layer of complexity to the ERa
mediated transcriptional mechanism in KPARC neurons. The

complex, multi-layered transcriptional regulatory mechanism

allows KPARC neurons to respond and integrate humoral and

neuronal inputs that influence reproduction, potentially

including metabolic, circadian and stress-related cues. The less

complex estrogen-dependent mechanisms revealed in KPRP3V

neurons suggest a less integrative role of this population at least

in our model.
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Estrogens can alter the biology of various tissues and organs, including the

brain, and thus play an essential role in modulating homeostasis. Despite its

traditional role in reproduction, it is now accepted that estrogen and its

analogues can exert neuroprotective effects. Several studies have shown the

beneficial effects of estrogen in ameliorating and delaying the progression of

neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease and

various forms of brain injury disorders. While the classical effects of estrogen

through intracellular receptors are more established, the impact of the non-

classical pathway through receptors located at the plasma membrane as well

as the rapid stimulation of intracellular signaling cascades are still under active

research. Moreover, it has been suggested that the non-classical estrogen

pathway plays a crucial role in neuroprotection in various brain areas. In this

mini-review, we will discuss the use of compounds targeting the non-classical

estrogen pathway in their potential use as treatment in neurodegenerative

diseases and brain injury disorders.

KEYWORDS
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Introduction

Estrogens are a group of gonadal sex hormones that exist naturally in three different

forms in humans. 17b-estradiol (E2) is the most dominant biological form, followed by

estrone (E1) the intermediate form, and estriol (E3), which has very low levels in the body

that are only increased during pregnancy. In this mini-review, we will use the

abbreviation E2 to refer to 17b-estradiol and will focus predominantly on this form as

this is the most abundant and most of the research has been largely focused on studying

this molecule. In addition to its role in reproductive functions, E2 has a profound

influence on the central nervous system (1, 2). This has contributed to the interest

generated around the impact of E2 on neuronal function in health and disease.
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Investigations over the past few decades have shown that E2 has

the potential to prevent or counterbalance the symptoms of

neurodegenerative diseases. The gender differences observed in

two of the most common neurodegenerative diseases,

Alzheimer’s disease (AD) and Parkinson’s disease (PD), clearly

suggest this role (3–5). Although there is no conclusive evidence

for E2 treatment in neurodegenerative diseases in human clinical

trials, there have been several in vivo rodent and in vitro cell line

models that indicate the therapeutic effects of E2. This mini-

review will discuss the neuroprotective, non-classical effects of

E2 in the context of some of the most typical neurodegenerative

cases (that is AD and PD) as well as brain injuries that possibly

lead to neurodegeneration (traumatic brain injury and stroke)

and highlight the use of some of the non-classical E2 analogues

to potentially prevent or treat these disorders.
Classical versus non-classical
estrogen pathways

E2 regulates cellular processes by binding to specific estrogen

receptors (ERs) with two distinct modes of action, broadly

classified as the classical and non-classical estrogen pathway.

Stimulation of the classical pathway results in direct

transcriptional effects through the binding of E2 to its

intracellular receptors (ERa and ERb) and activation of the

estrogen response element (ERE) (6). In contrast, the non-
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classical pathway involves the rapid activation of ion channels

and intracellular second messenger signaling pathways. The

latter is followed by the stimulation of an array of gene

transcription factors, but activation via the non-classical

pathway is ERE-independent. The non-classical pathway is

often described as rapid, as the activation of intracellular

signaling pathways can be detected in a matter of seconds, as

first demonstrated by Szego and Davis, whereby E2 induced an

increase in cyclic adenosine monophosphate (cAMP) levels in

the uterus few seconds following administration (7). However,

this rapid signaling pathway activation will also often lead to

gene transcription, which can be detected at a slower rate. One of

the most important transcription factors of the non-classical

pathway is the cAMP response element-binding protein (CREB),

which has been implicated in multiple studies (8–10).

Apart from the classical ERa and ERb, experiments looking

at the rapid signaling pathway activation by E2 highlighted that

these classical intracellular receptors – mediating ERE-

dependent gene transcription – might not be sufficient to

account for the variety of responses observed. This led to the

discovery of membrane linked receptors, which can be

membrane-localized classical ERa and ERb or other types, for

example, the ER-X and the G protein coupled GPR30 (GPER1)

(11–13), which are all different from the classical receptors in

their structure, localization, as well as modes of action. A

schematic illustration of the classical and non-classical modes

of E2 action is depicted in Figure 1.
FIGURE 1

Summary diagram of the classical and non-classical modes of estrogen action. In the classical pathway, E2 crosses the plasma membrane by
diffusion and binds to the estrogen receptor (ER) and forms an E2-receptor complex, which dimerizes and translocates to the nucleus to
regulate gene transcription through an estrogen response element (ERE) dependent manner. In the non-classical pathway, E2 interacts with
membrane bound estrogen receptors (mER), G-protein coupled estrogen receptors (GPER), ER-X, or classic ER (ERa/b) and activates kinases
and second messenger signaling pathways to phosphorylate transcription factors (TF) or coactivators to influence gene transcription in the
nucleus via a non-ERE-dependent manner. The resultant effect of activating these pathways is neuroprotection, modulating plasticity and
cognition as well as maintenance of homeostasis. However, the extent to which the non-classical and classical pathways crosstalk or interact
with each other is not known. It is likely that both pathways contribute to neuroprotection and homeostasis. RAS, Ras small GTPase, RAF, Raf
kinase, MEK, mitogen-activated protein kinase, ERK1/2, extracellular signal-regulated kinase 1/2, cAMP, cyclic adenosine monophosphate, PKA,
protein kinase A, CREB, cAMP-responsive element-binding protein, PI3K, phosphatidylinositol-3 kinase, IKKs, IkB kinases, NFkB, nuclear factor
kappa-light-chain-enhancer of activated B cells, coA, coactivator.
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Mechanism for non-classical
E2 neuroprotection

There are several possible molecular mechanisms

contributing to non-classical E2 neuroprotection, such as

contro l of neuroinflammat ion , myel in protect ion ,

mitochondrial protection and control of oxidative stress,

regulating autophagy as well as maintenance of synaptic

transmission and plasticity. One of the important protective

actions of E2 is in the control of neuroinflammation whereby E2

reduces the secretion of proinflammatory cytokines and

interleukins and thereby reducing microglia activation via the

inhibition of the nuclear factor kappa-light-chain-enhancer of

activated B cells (NFkB) signaling pathway (14, 15). In addition,

the neuroprotective effects of E2 are in part due to its protective

actions on myelin and remyelination, which can be mediated by

activation of the phosphoinositide 3-kinases (PI3K)/protein

kinase B (Akt)/mammalian target of rapamycin (mTOR)

signaling pathway (16–18). Dysfunction in the myelin sheaths

is often a common feature in neurodegenerative diseases such as

AD and PD as well as in other central nervous system

pathologies, such as traumatic brain injury (TBI), stroke and

multiple sclerosis. In these neuropathological conditions, E2 has

been shown to upregulate genes involved in synaptogenesis,

axonal repair and synaptic plasticity, such as Bcl2, TrkB and

cadherin-2 (19–21). Another way in which E2 exerts its

neuroprotective effects is against oxidative stress through the

protection of mitochondrial function and by reducing the

production of reactive oxygen species (22, 23). Under

pathological conditions, E2 may also elicit various of the

above-mentioned responses, but may also promote the release

of different neurotrophic factors such as the glial cell line-derived

neurotrophic factor (GDNF), insulin-like growth factor 1 (IGF-

1) and brain-derived neurotrophic factor (BDNF) to protect

neurons and promote reparation of injured neuronal circuits

(24, 25).
Compounds targeting the non-classical
estrogen pathway

Importantly, previous findings indicate that apart from the

classical estrogen pathway, the non-classical pathway also plays a

role in ameliorating neurodegeneration in disease models. The

latter is of particular interest as E2 replacement therapy, which

affects both the classical and non-classical pathways, has been

shown to not only increase the risk of myocardial infarction or

coronary heart disease but could potentially lead to an array of

side effects, including increased risk of breast cancer and stroke

(26–28). Therefore, there has been a renewed interest in

developing new compounds that are able to trigger protective

or restorative effects without the risk of unwanted side effects.
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One of these groups of such compounds is the ‘selective

estrogen-receptor modulators’ (SERMs), which are non-

steroidal molecules with specific mechanism of action in target

tissues. They primarily act as partial ER agonists in the target

tissue while being antagonists in non-target tissues. Some

SERMs, for example, tamoxifen and raloxifene are already in

clinical use for pre- and post-menopausal women (29), while

others, such as the GPER1 agonist G-1 or the STX (a Gq-coupled

membrane ER agonist) are used in preclinical animal studies (30,

31). The challenge with SERMs lies in the balance between the

efficacy of the agonistic profile and, at the same time, the

reduction of unwanted side effects on non-target tissues. While

newer third generation SERMs, such as bazedoxifene,

ospemifene and lasofoxifene, have improved efficacy, their use

as SERMs in the brain is not known (32). Other important

compounds are the ‘activators of non-genomic estrogen-like

signaling’ (ANGELS), which is a novel group in E2 therapy

that is aimed at targeting the non-classical E2 pathway. Three of

these molecules are known, estren (4-estren-3alpha, 17beta-

diol), compound A, and compound B, which are all capable of

triggering the non-classical E2 pathway (33, 34). However, these

compounds are yet to be used in clinical practice, although

estren has been found to have protective effects on basal

forebrain cholinergic neurons (35, 36), indicating that there is

prospect for the use of these non-classical activators as treatment

for neurodegenerative diseases.
Alzheimer’s disease

Pathophysiology

Alzheimer’s disease (AD) is a chronic progressive

neurodegenerative disorder, characterized by distinct hallmark

pathologies, such as the presence of amyloid plaques, which

comprises primarily of aggregated amyloid b (Ab) peptide, and

formation of neurofibrillary tangles with hyperphosphorylated tau

protein. These pathologies lead to progressive and selective neuronal

loss in the hippocampus and temporal cortex, cognitive decline and

eventual death. There is no curative treatment available for AD at

present and current treatments only target the management of

symptoms with no influence on disease progression. The

pathogenesis of AD has been postulated to be due to the

accumulation of Ab as a result of altered amyloid precursor

protein (APP), accumulation of tau, oxidative stress caused by

mitochondrial dysfunction and persistent neuroinflammation.
Neuroprotective effects of E2 in AD

Neuroprotective effects of E2 have been proposed in

experimental models of AD. Estrogen deficiency in the brain
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accelerates Ab plaque formation (37–39), while E2 treatment has

been shown to reduce the expression of Ab peptide and

abnormal accumulation of amyloid proteins (40–42). The

reduction of Ab following E2 administration might be linked

to the alteration of the APP gene, as APP protein levels are

reduced following E2 treatment (43) as well as the cleavage of

APP into toxic Ab. E2 stimulation increases the secreted APPa,
which can lead to a decrease in toxic Ab species (44, 45). This

neuroprotection against b-amyloid toxicity have been shown to

occur via ERa and ERb (46). In addition, to protection against

Ab accumulation, E2 is known to also decrease tau

hyperphosphorylation in experimental models of AD (47, 48).

A loss of cholinergic neurons is recognized as one of the

hallmarks of AD. There is considerable evidence showing the

effects of E2 on plasticity and protection of cholinergic neurons

through an ERa dependent pathway (49, 50). Accordingly, E2

has been reported to upregulate fiber density of the remaining

cholinergic neurons after an excitotoxic insult via the mitogen-

activated protein kinase (MAPK) signaling pathway, leading to

the stimulation of CREB phosphorylation (8, 35, 51). E2 has also

been known to alter the dynamics of neural circuits, such as

modulating the plasticity of dendritic spines and stimulating

neurogenesis and synaptic contacts in numerous brain regions

like the hippocampus, hypothalamus and amygdala (52–54). In

experimental models of AD, such as the transgenic APP/PS1 and

3xTg AD mice, ovariectomy increased the accumulation of the

Ab peptide and decreased hippocampal-dependent behavioral

performance. Treatment with E2 not only prevented the

worsening of pathologies, but also reduced the accumulation

of Ab in the hippocampus, subiculum and amygdala (55, 56),

suggesting a protective role of E2 in AD progression. With the

potential impact of E2 on systemic tissues, there is a need to

develop brain-specific therapies. Treatment with a brain-

selective prodrug, DHED (10b,17b-dihydroxyestra-1,4-dien-3-
one), in APP/PS1 double transgenic mice showed no systemic

off-target effects in the uterine tissue, but similar improvements

in APP levels, suggesting that the brain-selective treatment with

DHED can be used as an early-stage intervention for AD (57).

Taken together, E2 has the potential to regenerate, restore

and strengthen the formation of new synaptic networks from the

remaining neurons and/or rewire neural circuits under

pathological conditions.
Targeting non-classical E2 pathway as
potential treatment in AD

Given the neuroprotective potential of E2 in AD, targeting

the non-classical E2 pathway selectively may provide an

alternative treatment strategy. Studies have shown that

ANGELS compounds, such as estren, can activate the non-

classical E2 pathway and rescue the survival of basal forebrain

cholinergic neurons after injection of Ab (1–42) in mice (36) and
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is neuroprotective against Ab-induced injury in vitro (58). A key

important feature of estren treatment is that, unlike E2, it does

not increase the size of the uterus, indicating that it might not

have unwanted, genomic side effects (59). Regarding cognition,

E2 has consistently been reported to have the ability to enhance

cognitive function via the non-classical E2 pathway involving

the ERK1/2 and Akt signaling pathways (60–64). A number of

clinical trials in AD have been conducted with the second

generation SERM, raloxifene, with varying results, in hope of

alleviating cognitive deficits. While some showed that raloxifene

improved verbal memory and reduced the risk of AD and mild

cognitive impairment, others showed no significant changes in

cognition (65–67).

More recent studies show that targeting non-nuclear ERs,

such as GPER1, or using non-classical ligands, such as STX,

could ameliorate memory impairments or protect against Ab-
toxicity in experimental models of AD via activation of the ERK

and PI3K/Akt signaling pathways (68–70). These studies provide

evidence that activation of the membrane-bound, non-nuclear

ERs can provide an alternative therapeutic target in AD. Another

novel compound that is of emerging interest is the Pathway

Preferential Estrogen-1 (PaPE-1), which is a selective non-

nuclear ER pathway activator, which can protect neurons

against Ab-induced toxicity through a mechanism that

involves inhibition of oxidative stress and apoptosis (71). This

compound strongly activates the MAPK and mTOR pathways

without interaction with the nuclear receptors and has a broad

spectrum of utility in other neurological disorders, where it also

decreases the severity of stroke (72). However, there is a clear

lack of clinical trials for these newly developed compounds and

more studies are warranted to determine the viability of using

non-classical E2 activators as a preventive treatment alternative

for AD.
Parkinson’s disease

Pathophysiology

Parkinson’s disease (PD) is one of the most common age-

related neurodegenerative movement disorders. The main

pathological hallmark of PD is motor symptoms consisting of

resting tremor, rigidity, bradykinesia and postural imbalance,

attributed primarily to the substantial loss of midbrain

dopamine (DA) neurons in the substantia nigra pars compacta

and the accumulation of a-synuclein cytoplasmic protein

deposits, termed Lewy Bodies, in the surviving neurons. The

dopaminergic system is not the only affected network in PD.

Degeneration of serotonergic neurons in the raphe nucleus,

noradrenergic neurons of the locus coeruleus and cholinergic

neurons of the nucleus basalis of Meynert have also been

reported in PD. Numerous different treatment methods have

been investigated to alleviate motor deficits, but no effective
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clinical therapy has been found to be able to prevent or reverse

the degeneration of DA neurons (73). There is currently no cure

for PD and available treatments are only symptomatic. DA itself

is not a suitable drug as it does not cross the blood-brain-barrier,

has a short half-life and has peripheral hemodynamic side

effects. Oral administration of L-DOPA remains the gold

standard treatment today (74, 75). However, the challenge

with L-DOPA is that it cannot be utilized as a long-term

treatment for PD. As such, the development of new

therapeutics and strategies with several mechanisms of action,

such as neurosteroids, could provide an alternative treatment

for PD.
Neuroprotective effects of E2 in PD

While E2 effects on the dopaminergic system have not been

well characterized, there is some evidence of a modulatory effect

of E2 in PD patients. Postmenopausal women who received

hormone replacement therapy have a reduced risk of developing

PD and lower disease severity in early stages of the disease (76,

77). E2 has been reported to be protective against 6-OHDA (6-

hydroxy dopamine) toxicity in DA neurons (78). Similarly, in

the neurotoxin MPTP (1-methyl-4-phenyl-1 ,2 ,3 ,6-

tetrahydropyridine) model of PD, E2 treatment improved DA

release in the striatum and nucleus accumbens and could protect

DA neurons (79–82). In fact, E2 treatment has been shown to

increase fiber density of tyrosine hydroxylase-positive DA

neurons in both 6-OHDA and MPTP-induced models (83–

85). In order to determine the ER subtype regulating

neuroprotection in PD, studies have used selective ER agonists

and found that the activation of ERa but not ERb rescued the

depletion of DA and prevented the loss of DA transporter in the

striatum and cell death in the substantia nigra in MPTP-treated

mice (86–88). These studies suggest that neuroprotection of DA

neurons occurs through an ERa-specific manner in

experimental models of PD.
Targeting non-classical E2 pathway as
potential treatment in PD

There is a lack of research on SERMs in human studies of

PD. The majority of the studies have been performed in rodent

models with contradictory results. In the MPTP model,

raloxifene treatment prevented the MPTP-induced DA

depletion, restored DA levels and prevented DA cell death (89,

90) while in other studies was proven ineffective (91). The

varying results could be due to differences in the models used,

dosing paradigm or pharmacological properties of the different

compounds. The other new estrogen analogue, the brain-

selective estrogen prodrug, DHED, was found to protect DA
Frontiers in Endocrinology 05
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neurons in the MPTP-toxicity model and in 3K a-synuclein
transgenic mice (mouse model that exhibits many features of PD

neuropathology) (92, 93). DHED was also found to selectively

increase E2 in the brain while the periphery was spared, which in

turn, reduced the secondary effects of E2 on the body (94). In

addition, DHED treatment significantly alleviated the neuronal

pathology of PD via decreasing a-synuclein monomer

accumulation and aggregation, restoring vesicle and

dopaminergic fiber densities as well as improving PD-

associated motor deficits (92–94). Taken together, this

evidence highlights the potential for modulating E2 signaling

with pharmaceutical analogues for neuroprotection in PD. More

investigations into the use of these non-classical activator

compounds in PD models are warranted to determine their

therapeutic potential.
Brain injury disorders

Pathophysiology

Brain injuries can be classified into two main categories,

traumatic and non-traumatic. Traumatic brain injury (TBI)

occurs when the original function of the brain or the

underlying anatomy changes due to an external force (e.g.,

injury). Non-traumatic brain injury, also referred to as

acquired brain injury, is caused by internal factors such as lack

of oxygen, exposure to toxins or infection. Examples of non-

traumatic brain injury include stroke and cerebral ischemia.

Although brain injury is not a neurodegenerative disease per se,

it is now clear that brain injuries can trigger progressive

neurodegeneration and dementia (e.g., AD) (95). As TBI and

stroke are recognized as one of the leading causes of disability

and death in most societies (96, 97), it is important to discuss the

potential of using alternative non-surgical therapies.
Neuroprotective effects of E2 in brain
injury disorders

The evidence is not clear, especially when it comes to human

studies, but there is a strong indication that there is a trend for sex

differences, potentially due to differing circulating E2 levels, in the

incidence and mortality rate of TBI (98–100). Another indication

that E2 might play a role in ameliorating neuronal damage

following injury is that the activity of aromatase (a key enzyme

in E2 synthesis) increases, particularly in brain astroglia cells

(101). This increased aromatase activity has been reported to be

neuroprotective in various animal models (102). Besides locally

produced E2 in the brain, exogenous E2 application before or

immediately after injury has also been shown to rescue damage

following a controlled impact in ovariectomized mice (103, 104),
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indicating that E2 does have treatment potential following trauma

in both the TBI and stroke experimental models.
Targeting non-classical E2 pathway
as potential treatment in brain
injury disorders

As in the case of other forms of neuronal brain damage, the

non-classical estrogen pathway has been reported to have

treatment potential in TBI and also in stroke. A known

characteristic of TBI is that the primary injury due to the

external force is often followed by a slower secondary injury.

One of the most common secondary injuries is excessive

glutamate release, which is followed by overactivation of

NMDA (N-methyl-D-aspartate) and AMPA (a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid) receptors and

consequentially intracellular ion imbalance, leading to

excitatory cell death (105). In an experimental model of

NMDA-induced toxicity, E2 treatment following injury

ameliorated the damage in basal forebrain cholinergic fibers in

mice (35). Importantly, this study highlighted the involvement

of the non-classical E2 pathway via the MAPK/PKA signaling

system. The non-classical pathway activator, estren (a member

of the ANGELS compounds), has also been able to trigger E2-

like restorative actions. And, as for the receptor dependence of

the protective actions of E2 in TBI, the above-mentioned study

highlighted that ERa is required for the ameliorative effects after

damage (35). However, another study has shown that both ERa
and ERb helped to reduce brain edema following TBI in rats

(106). It has also been shown that E2 treatment following TBI

can increase ERa and restore ERb expression in the brain (107).

In addition to these classical E2 receptors, it appears that GPER1

is also involved in neuroprotection following TBI. Both E2 and

treatment with the GPER1 agonist, G-1, increased neuronal

survival as well as decreased neuronal degeneration and

apoptotic cell death in a rodent model of TBI (108). These

results were corroborated in other rat TBI studies, where G-1

was found to promote neuronal survival and improve cognitive

impairment (109) as well as reduced neuronal apoptosis and

increased microglia polarization (110), through the PI3K/Akt

signaling pathway. Likewise, the non-classical pathway has also

been implicated as an alternative treatment in other brain injury

disorders. Treatment with G-1 improved neuronal survival after

brain ischemia, reduced infarct size, neuronal injury and

improved neuroinflammation and immunosuppression after

experimentally induced stroke and cerebral ischemia (104, 111,

112). Furthermore, treatment with other non-classical pathway

activators, such as PaPE-1 and the SERM bazedoxifene,

protected neurons against ischemic brain damage in rodents

and in neuronal culture, potentially through the MAPK/ERK1/2

signaling pathway (113, 114).
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Neuroinflammation can play a key role in the secondary

injury observed in TBI as well as after stroke with the activation

of microglia cells, among others, and the release of inflammatory

factors (115–117). Following TBI, G-1 exerts anti-inflammatory

effects, but it appears that there are sex specific differences as

these results were observed in males and ovariectomized females,

but not in intact females. Therefore, the circulating levels of E2

in patients will likely influence any potential medical treatment

following brain injury. In addition to G-1, STX has also been

found to be capable of attenuating ischemia-induced neuronal

loss in middle-aged rats (30). Importantly, this study showed

that animals which have not been exposed to E2 for some time

still maintained their responsiveness to E2 and E2-like

compounds as treatment, highlighting the use of non-

feminizing estrogens, that can be candidates in both males and

females and at different age groups. Taken together, these results

strongly suggest that the non-classical pathway can be targeted

as potential treatment in traumatic and non-traumatic brain

injury disorders.
Conclusions

In this mini-review, we discussed the neuroprotective role of

E2 and the potential involvement of the non-classical estrogen

pathway in ameliorating or alleviating disease phenotype in

experimental models of AD, PD and brain injury disorders.

The results from in vivo and in vitro studies with selective non-

classical pathway activators, such as raloxifene, estren, STX, G-1,

PaPE-1 and DHED, are very promising targets and present

hopeful beneficial effects on their potential use as treatment in

neurodegenerative diseases. However, as both the classical and

non-classical pathways are intact in most, if not all, of these

studies, it is difficult to ascertain whether the observed

neuroprotective effects of E2 are solely attributed to the non-

classical pathway. Some of the ongoing challenges with these

selective non-classical pathway activators include how to

modulate selectivity and sensitivity to ensure that the non-

classical pathway is stimulated without triggering the classical

pathway. Extra caution also needs to be taken in their

interpretation as, at present, there is a lack of conclusive

evidence for their use in the human brain. More studies are

warranted to translate these neuroprotective effects in human

clinical trials before they can be utilized as a novel therapeutic

strategy to ameliorate, prevent the onset and/or slow down

disease progression in neurodegenerative diseases.
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IM. Estradiol acts directly and indirectly on multiple signaling pathways to
phosphorylate cAMP-response element binding protein in GnRH neurons.
Endocrinology (2012) 153(8):3792–803. doi: 10.1210/en.2012-1232

11. Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in
health and disease. Nat Rev Endocrinol (2011) 7(12):715–26. doi: 10.1038/
nrendo.2011.122

12. Toran-Allerand CD, Guan X, MacLusky NJ, Horvath TL, Diano S, Singh M,
et al. ER-X: A novel, plasma membrane-associated, putative estrogen receptor that
is regulated during development and after ischemic brain injury. J Neurosci (2002)
22(19):8391–401. doi: 10.1523/jneurosci.22-19-08391.2002

13. Qiu J, Bosch MA, Tobias SC, Grandy DK, Scanlan TS, Ronnekleiv OK, et al.
Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-
coupled estrogen receptor that activates protein kinase c. J Neurosci (2003) 23
(29):9529–40. doi: 10.1523/jneurosci.23-29-09529.2003

14. Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram G. The brain
cytokine levels are modulated by estrogen following traumatic brain injury: Which
estrogen receptor serves as modulator? Int Immunopharmacol (2015) 28(1):279–
87. doi: 10.1016/j.intimp.2015.05.046

15. Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA. Selective estrogen
receptor modulators decrease the production of interleukin-6 and interferon-
gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in
vitro. Glia (2010) 58(1):93–102. doi: 10.1002/glia.20904

16. Xiao Q, Luo Y, Lv F, He Q, Wu H, Chao F, et al. Protective effects of 17b-
estradiol on hippocampal myelinated fibers in ovariectomized middle-aged rats.
Neuroscience (2018) 385:143–53. doi: 10.1016/j.neuroscience.2018.06.006

17. He Q, Luo Y, Lv F, Xiao Q, Chao F, Qiu X, et al. Effects of estrogen
replacement therapy on the myelin sheath ultrastructure of myelinated fibers in the
white matter of middle-aged ovariectomized rats. J Comp Neurol (2018) 526
(5):790–802. doi: 10.1002/cne.24366

18. Kumar S, Patel R, Moore S, Crawford DK, Suwanna N, Mangiardi M, et al.
Estrogen receptor b ligand therapy activates PI3k/Akt/mTOR signaling in
oligodendrocytes and promotes remyelination in a mouse model of multiple
sclerosis. Neurobiol Dis (2013) 56:131–44. doi: 10.1016/j.nbd.2013.04.005

19. Feng J, Zhang G, Hu X, Si Chen C, Qin X. Estrogen inhibits estrogen
receptor a-mediated Rho-kinase expression in experimental autoimmune
encephalomyelitis rats. Synapse (2013) 67(7):399–406. doi: 10.1002/syn.21650

20. Khan MM, Wakade C, de Sevilla L, Brann DW. Selective estrogen receptor
modulators (SERMS) enhance neurogenesis and spine density following focal
cerebral ischemia. J Steroid Biochem Mol Biol (2015) 146:38–47. doi: 10.1016/
j.jsbmb.2014.05.001

21. Saraceno GE, Bellini MJ, Garcia-Segura LM, Capani F. Estradiol activates
PI3k/Akt/GSK3 pathway under chronic neurodegenerative conditions triggered by
perinatal asphyxia. Front Pharmacol (2018) 9:335. doi: 10.3389/fphar.2018.00335

22. Rettberg JR, Yao J, Brinton RD. Estrogen: A master regulator of bioenergetic
systems in the brain and body. Front Neuroendocrinol (2014) 35(1):8–30.
doi: 10.1016/j.yfrne.2013.08.001

23. Simpkins JW, Yi KD, Yang S-H, Dykens JA. Mitochondrial mechanisms of
estrogen neuroprotection. BBA-GEN Subj (2010) 1800(10):1113–20. doi: 10.1016/
j.bbagen.2009.11.013

24. Yuan LJ, Wang XW, Wang HT, Zhang M, Sun JW, Chen WF. G protein-
coupled estrogen receptor is involved in the neuroprotective effect of IGF-1 against
MPTP/MPP(+)-induced dopaminergic neuronal injury. J Steroid Biochem Mol Biol
(2019) 192:105384. doi: 10.1016/j.jsbmb.2019.105384

25. Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of
oestradiol and oestrogen receptors. Nat Rev Neurosci (2015) 16(1):17–29.
doi: 10.1038/nrn3856

26. Anderson GL, Limacher M, Assaf AR, Bassford T, Beresford SA, Black H,
et al. Effects of conjugated equine estrogen in postmenopausal women with
hysterectomy: The women's health initiative randomized controlled trial. Jama
(2004) 291(14):1701–12. doi: 10.1001/jama.291.14.1701

27. Chlebowski RT, Anderson GL, Aragaki AK, Manson JE, Stefanick ML, Pan
K, et al. Association of menopausal hormone therapy with breast cancer incidence
and mortality during long-term follow-up of the women's health initiative
randomized clinical trials. Jama (2020) 324(4):369–80. doi: 10.1001/
jama.2020.9482

28. Rossouw JE. Prescribing postmenopausal hormone therapy to women in
their 50s in the post-women's health initiative era. Maturitas (2010) 65(3):179–80.
doi: 10.1016/j.maturitas.2009.11.012

29. Maximov PY, Lee TM, Jordan VC. The discovery and development of
selective estrogen receptor modulators (SERMS) for clinical practice. Curr Clin
Pharmacol (2013) 8(2):135–55. doi: 10.2174/1574884711308020006

30. Lebesgue D, Traub M, De Butte-Smith M, Chen C, Zukin RS, Kelly MJ, et al.
Acute administration of non-classical estrogen receptor agonists attenuates
ischemia-induced hippocampal neuron loss in middle-aged female rats. PloS One
(2010) 5(1):e8642. doi: 10.1371/journal.pone.0008642

31. Amirkhosravi L, Khaksari M, Soltani Z, Esmaeili-Mahani S, Asadi Karam G,
Hoseini M. E2-BSA and G1 exert neuroprotective effects and improve behavioral
abnormalities following traumatic brain injury: The role of classic and non-classic
estrogen receptors. Brain Res (2021) 1750:147168. doi: 10.1016/j.brainres.2020.147168

32. Liu JH. Selective estrogen receptor modulators (SERMS): Keys to
understanding their function. Menopause (2020) 27(10):1171–6. doi: 10.1097/
gme.0000000000001585
frontiersin.org

https://doi.org/10.1210/rp.57.1.357
https://doi.org/10.1210/edrv.20.3.0365
https://doi.org/10.1093/gerona/60.6.736
https://doi.org/10.1007/s00018-021-03830-w
https://doi.org/10.1007/s00018-021-03830-w
https://doi.org/10.1002/rmb2.12006
https://doi.org/10.1073/pnas.58.4.1711
https://doi.org/10.1073/pnas.58.4.1711
https://doi.org/10.1523/jneurosci.0222-06.2006
https://doi.org/10.1523/jneurosci.0222-06.2006
https://doi.org/10.1210/en.2002-220899
https://doi.org/10.1210/en.2012-1232
https://doi.org/10.1038/nrendo.2011.122
https://doi.org/10.1038/nrendo.2011.122
https://doi.org/10.1523/jneurosci.22-19-08391.2002
https://doi.org/10.1523/jneurosci.23-29-09529.2003
https://doi.org/10.1016/j.intimp.2015.05.046
https://doi.org/10.1002/glia.20904
https://doi.org/10.1016/j.neuroscience.2018.06.006
https://doi.org/10.1002/cne.24366
https://doi.org/10.1016/j.nbd.2013.04.005
https://doi.org/10.1002/syn.21650
https://doi.org/10.1016/j.jsbmb.2014.05.001
https://doi.org/10.1016/j.jsbmb.2014.05.001
https://doi.org/10.3389/fphar.2018.00335
https://doi.org/10.1016/j.yfrne.2013.08.001
https://doi.org/10.1016/j.bbagen.2009.11.013
https://doi.org/10.1016/j.bbagen.2009.11.013
https://doi.org/10.1016/j.jsbmb.2019.105384
https://doi.org/10.1038/nrn3856
https://doi.org/10.1001/jama.291.14.1701
https://doi.org/10.1001/jama.2020.9482
https://doi.org/10.1001/jama.2020.9482
https://doi.org/10.1016/j.maturitas.2009.11.012
https://doi.org/10.2174/1574884711308020006
https://doi.org/10.1371/journal.pone.0008642
https://doi.org/10.1016/j.brainres.2020.147168
https://doi.org/10.1097/gme.0000000000001585
https://doi.org/10.1097/gme.0000000000001585
https://doi.org/10.3389/fendo.2022.999236
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Koszegi and Cheong 10.3389/fendo.2022.999236
33. Wessler S, Otto C, Wilck N, Stangl V, Fritzemeier KH. Identification of
estrogen receptor ligands leading to activation of non-genomic signaling pathways
while exhibiting only weak transcriptional activity. J Steroid Biochem Mol Biol
(2006) 98(1):25–35. doi: 10.1016/j.jsbmb.2005.08.003

34. Kousteni S, Bellido T, Plotkin LI, O'Brien CA, Bodenner DL, Han L, et al.
Nongenotropic, sex-nonspecific signaling through the estrogen or androgen
receptors: Dissociation from transcriptional activity. Cell (2001) 104(5):719–30.
doi: 10.1016/S0092-8674(01)00268-9

35. Koszegi Z, Szego EM, Cheong RY, Tolod-Kemp E, Abraham IM. Postlesion
estradiol treatment increases cortical cholinergic innervations via estrogen
receptor-a dependent nonclassical estrogen signaling in vivo. Endocrinology
(2011) 152(9):3471–82. doi: 10.1210/en.2011-1017

36. Kwakowsky A, Potapov K, Kim S, Peppercorn K, Tate WP, Ábrahám IM.
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Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide

originally isolated as a hypothalamic peptide. It has a widespread distribution in

the body and has a diverse spectrum of actions. Among other processes,

PACAP has been shown to be involved in reproduction. In this review we

summarize findings related to the entire spectrum of female reproduction.

PACAP is a regulatory factor in gonadal hormone production, influences

follicular development and plays a role in fertilization and embryonic/

placental development. Furthermore, PACAP is involved in hormonal

changes during and after birth and affects maternal behavior. Although most

data come from cell cultures and animal experiments, increasing number of

evidence suggests that similar effects of PACAP can be found in humans.

Among other instances, PACAP levels show changes in the serum during

pregnancy and birth. PACAP is also present in the human follicular and

amniotic fluids and in the milk. Levels of PACAP in follicular fluid correlate

with the number of retrieved oocytes in hyperstimulated women. Human milk

contains very high levels of PACAP compared to plasma levels, with colostrum

showing the highest concentration, remaining steady thereafter for the first 7

months of lactation. All these data imply that PACAP has important functions in

reproduction both under physiological and pathological conditions.

KEYWORDS

PACAP, GnRH, LH, FSH, ovary, placenta
Introduction

PACAP was discovered in the laboratory of professor Arimura in 1989 (1). The

discovery was based on finding a novel hypothalamic peptide that stimulated anterior

pituitary cells in addition to the already known releasing hormones. This led to the

isolation of a peptide composed of 38 amino acid residues, named PACAP38, from ovine

hypothalamic extracts. This was followed by the isolation of a shorter form with 27 amino

acids, named PACAP27 (2).The name PACAP comes from the abbreviation of pituitary
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adenylate cyclase activating polypeptide, referring to the first

described action, in which it stimulates adenylate cyclase

activity, and thus, cAMP in the pituitary gland. Both peptides

show structural homology to the vasoactive intestinal peptide

(VIP) and they belong to the VIP/secretin/glucagon

peptide family.

PACAP acts through G protein-coupled receptors, namely

the specific PAC1 and VPAC1 and VPAC2, which also bind VIP

with equal affinity (2). PACAP activates mainly the adenylate

cyclase/cAMP pathways, and through this, the activation of its

receptors lead to activation of protein kinase A (PKA) and

downstream pathways (3). It also activates several other

pathways (4) and transactivates tyrosine kinase receptors (5).

Moreover, PACAP38 (but not PACAP27) can enter through the

cell membrane without receptorial mechanism, but the

intracellular signaling activated this way has not been

elucidated yet (6). The specific PAC1 receptor has several

splice variants, inducing different signaling pathways, and

thus, leading to different, sometimes opposing effects (2, 7).

PACAP and its receptors have widespread occurrence and

thus, PACAP can exert variable biological actions. In the nervous

system, it acts as a neurohormone and neuromodulator, and

several different effects have been described. Among others, it

plays a role in neuronal development like patterning of the neural

tube, proliferation and migration of cortical and cerebellar

neurons, axonal growth and glial cell maturation (8). These

effects can also be observed in the mature nervous system in

case of injuries, when PACAP can exert neuroprotective effects

(9–12). Several other neuronal processes are influenced by

PACAP: it has been shown to play a role in stress and anxiety

responses (13), in diminishing the negative consequences of

aversive events (14), it influences central energy homeostasis

(15, 16), thermoregulation (17) and memory (18). In the

periphery (19, 20), several actions have been described

regarding the cardiovascular system, where the peptide

influences cardiac neuronal excitability and heart muscle

contractility (21). In the gastrointestinal and respiratory tract

PACAP plays a role in neuroendocrine secretion, smooth

muscle contractility and blood supply (22, 23). Endocrine

glands show high levels of expression of PACAP and the

peptide is involved in secretion of several hormones (19–23).

Regarding reproductive functions, several lines of evidence

show that the peptide centrally regulates gonadal hormones as

well as acts in the periphery, the ovary, the placenta, the

mammary gland and the uterus. Male reproductive functions

are also known to be influenced by PACAP at both central and

peripheral levels. At central level, PACAP influences

hypothalamic and hypophyseal gonadal hormone secretion,

while in the periphery, PACAP regulates spermatogenesis at

various stages (24–26), influences sperm cell motility (27), and

modulates Leydig and Sertoli cell functions (28–30). The

reproductive functions of PACAP seem to be evolutionarily

conserved, as it has also been revealed in several non-
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mammalian species (31). In seasonal animals, PACAP

expression and effects are season-dependent (32), while in

non-seasonal breeding species, the PACAP system shows

alterations throughout the life-span, before and after puberty,

during the hormonal cycle and during pregnancy (33). The aim

of the present mini-review is to summarize findings regarding

the effects of PACAP in the female reproductive system.
PACAP in the central regulation of
female reproductive functions

Soon after the discovery of PACAP it became evident that

the neuropeptide plays a role in modulating the secretion of

releasing hormones, such as the main hypothalamic hormone

playing a role in gonadal regulation, gonadotropin-releasing

hormone (GnRH) and pituitary hormones, including follicle-

stimulating hormone (FSH) and luteinizing hormone (LH)

influencing peripheral reproductive functions. Early studies

revealed that PACAP occurs at highest concentrations in the

hypothalamus, although several other brain areas express

significant amount of the peptide as well (2). Hypothalamic

neuronal endings release PACAP in the median eminence where

the primary capillary plexus of the hypophyseal portal system is

found. The concentration of PACAP in the hypophyseal portal

venous blood has been shown to be higher than in the periphery,

proving the release and transport of the peptide to the

adenohypophysis (34). PACAP is thus carried via the portal

vessels to the anterior pituitary where it acts, among others, on

the gonadotroph cells. Strong PACAP immunoreactivity was

found in several hypothalamic nuclei, such as arcuate,

dorsomedial, ventromedial, paraventricular nuclei, lateral and

preoptic hypothalamic areas. mRNA has also been shown in the

perikarya of some of these nuclei. Regarding PACAP binding

sites, receptors PAC1 and VPAC1/2 are present in many brain

areas. In the hypothalamus, receptors have been identified in the

arcuate, dorsomedial, ventromedial, paraventricular, supraoptic,

preoptic and suprachiasmatic nuclei, in the lateral hypothalamic

area and in the mamillary bodies. These data mostly come from

rat experiments, but subsequent studies have also mapped

PACAP and its receptors in several other species, including

the human brain (35–37). Distribution of PACAP in the human

hypothalamic nuclei closely resembles that described in rodents

(35), underlining the translational value of the rodent studies.

Various hypothalamic functions are influenced by PACAP. For

example, PACAP is involved in the hypothalamic regulation of

body temperature (38, 39), food and water intake (40–43),

energy homeostasis (16, 44) and in the circadian rhythmic

activity of the suprachiasmatic nucleus (45). All these

hypothalamic actions are in a complex interplay with the

regulatory mechanisms of reproductive functions.

The hypothalamic nuclei playing a role in the hypothalamo-

hypophyseal hormonal system can be divided into
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magnocellular and parvocellular nuclei. Magnocellular nuclei

are the supraoptic and paraventricular nuclei that produce

vasopressin and oxytocin, both of which are transported by

axonal transport via the hypothalamohypophyseal tract to the

posterior lobe of the pituitary gland, where they are released into

the bloodstream. High expression of both PACAP and its

receptors are found in these nuclei. Intracerebral injection of

PACAP increases activity of these neurons and plasma

vasopressin levels (46–48). PACAP increases oxytocin and

vasopressin release in the posterior lobe of the hypophysis

(49). Parvocellular nuclei of the hypothalamus are mainly

involved in the production of releasing hormones that

influence the production of anterior pituitary trophic

hormones, such as FSH, LH, thyroid-stimulating hormone

(TSH), adrenocorticotropic hormone (ACTH), growth

hormone (GH) and prolactin (PRL). The main parvocellular

nuclei are the ventromedial, dorsomedial, preoptic, arcuate

nuclei and the parvocellular part of the paraventricular

nucleus. PACAP has been proven to act as a modulator and

transmitter in the regulation of hypophysiotropic hormones in

the parvocellular system (2). Several lines of evidence prove that

PACAP is involved in the GnRH-gonadotropin axis (50, 51).

PACAP leads to an increase in the gene expression of GnRH,

somatostatin and corticotrope-releasing hormone (CRH), while

the injection of the PACAP antagonist PACAP6-38 inhibits

this increase.

In the adenohypophysis, PACAP receptors are found in all

endocrine cells and also in folliculostellate cells (2). Moore et al.

(52) investigated the expression of PACAP mRNA during the

estrus cycle. They found that PACAP mRNA expression in the

paraventricular nucleus and pituitary shows significant changes

during the estrous cycle, with the greatest alterations on the day

of proestrus. PACAP mRNA in the paraventricular nucleus

decreases on the morning of diestrus, while increases 3 h prior

to the gonadotropin surge and then declines in proestrus. A

moderate decline at the time of the gonadotropin surge on the

afternoon of proestrus and an increase later in the evening was

observed in the pituitary. Expression of the follistatin mRNA

increased following the rise in pituitary PACAPmRNA, after the

secondary surge in FSH beta (Fshb) gene expression. They

concluded that PACAP is involved in events before and after

the gonadotropin surge, possibly through increased sensitivity to

GnRH and suppression of Fshb subunit expression, similarly to

in vitro observations (52). Others have also confirmed the rise of

PACAP in the anterior pituitary during proestrus (53–55).

Early studies have shown that PACAP stimulates release of

GH, ACTH, LH, FSH and PRL (2). PACAP can alone stimulate

LH and FSH but also acts synergistically with GnRH (2). PACAP

also stimulates GnRH receptor gene promoter activity, while

GnRH stimulates PACAP gene expression, highlighting the

complex relationship between PACAP and GnRH systems (2).

This complexity is further deepened by the somewhat

contradictory results regarding the relationship between
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PACAP, GnRH and the gonadotrophs. Although some studies

found no effect of intravenous PACAP administration on LH

levels (56, 57), the same authors described inhibition of the LH

surge when PACAP was administered intracerebroventricularly.

Interestingly, PACAP27 and 38 had opposing effects: while

PACAP38 inhibited LH surge, PACAP27 elevated LH plasma

levels. Also, PACAP38 inhibited ovulation when given

intracerebroventricularly or intranasally, while PACAP27 had

no effect on it (57, 58). Others also found inhibitory action of

PACAP on LH release (59). Similarly, injection into another

area, the medial basal hypothalamus, led to decreases in LH

secretion, LH pulse frequency and ovulation (59). Contradictory

results show that the relationship between PACAP and the

gonadotropin axis is very complex, as other studies have found

stimulatory action on LH release (60–62). Most probably the

opposite findings can be explained by the different experimental

setups, as it was shown that the action of PACAP depends on the

age of the animal, time of day, gender, the day of the estrous

cycle, GnRH pulse frequency, using PACAP27 versus 38, and

there are differences also between in vitro and in vivo findings

(63). This complex system and the effects of PACAP were

thoroughly and critically analyzed in the review by Koves

et al. (51).

The first studies on PACAP and the onset of puberty showed

that neonatally administered subcutaneous PACAP delayed

puberty and a lower number of eggs were released at

ovulation, accompanied by lower pituitary LH content (64).

Another study revealed that disruption of PAC1 receptor

synthesis delayed puberty and decreased GnRH receptor and

LH in the pituitary (65). A further insight into the complexity of

the interaction between PACAP and gonadotropin system

comes from studies investigating other influencing factors,

such as other releasing hormones, interleukins, estradiol and

progesterone, and several neuropeptides (51). Recent results

indicate that PACAP acts also via kisspeptin neurons on

GnRH secretion. While PACAP can affect GnRH neurons in

the hypothalamus directly or indirectly through CRH, it can also

influence kisspeptin neurons which create the pulse generator

(51). The relationship between kisspeptin and PACAP was

suggested in studies by Mijjiddorj et al. (66). These

investigations have shown that PACAP and kisspeptin

synergistically increase gonadotropin subunit expression, Cre

promoter expression, prolactin-promoter activity and kisspeptin

increases the expression of PAC1 receptor (66, 67). Tumurbaatar

and colleagues have confirmed the relationship between

kisspeptin neurons and PACAP, as they showed a stimulation

of the gene encoding kisspeptin by PACAP in hypothalamic cells

derived from the kisspeptin-expressing periventricular and

arcuate nuclei (68).

PACAP or PAC1 receptor knockout animals have high

mortality and lower reproduction rate (69–71). PACAP KO

mice have numerous abnormalities and pathological symptoms

with several biochemical and developmental alterations (71–76).
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No exact explanation for the lower fertility is known, but several

factors seem to play a role, including hormonal differences.

Although most authors working with knockout animals have

described decreased fertility, differences can be found in the

background. While some investigators found no difference in the

onset of puberty and estrous cycle, others have found disturbed

estrous cycle (70, 77). Isaac and Sherwood (78) described lower

implantation rate associated with reduced prolactin and

progesterone levels. Shintani et al. (70) reported reduced

mating and maternal behaviour. Immune-checkpoint

molecules were investigated in decidual and peripheral

immune cells in the periphery and in the decidua of pregnant

KO mice. The only noteworthy finding was the recruitment of

galectin-9 Th cells to the decidua promoting local immune

homeostasis in PACAP KO mice, but this difference alone is

not significant enough to explain the background of the reduced

fertility, but point to a role of PACAP in the immune regulation

of pregnancy (79). A pioneer study by Ross et al. (80) provided

more insight into the relationship between neurons expressing

PACAP, kisspeptin or leptin, and thus, providing a possible

explanation for the altered estrous cycle seen in some studies.

They showed that the main site of leptin receptor and PACAP

co-expression is the ventral premamillary nucleus of the

hypothalamus. A targeted deletion of PACAP from this

nucleus led to delayed onset of puberty, measured by delayed

vaginal opening and first estrous cycle. These mice had also

dysregulated estrous cycle later and had impaired reproductive

functions, as pregnant mice had fewer pups per litter. These were

accompanied by blunted LH surge and a smaller number of

follicles maturing per cycle. As the PACAP/leptin neurons

project to kisspeptin neurons, a new role for PACAP-

expressing neurons has been suggested based on these

observations: PACAP expressing neurons in the ventral

premamillary nucleus play a role in the relay of nutritional

status to regulate GnRH release by modulating kisspeptin

neurons (80). Our preliminary results also confirm this

relationship between PACAP and kisspeptin expression and

disturbed estrous cycle in PACAP deficient animals (77).

Altogether, studies on PACAP and the hypothalamo-

hypophyseal system clearly show that PACAP plays a role in

the central reproductive functions, but more studies are needed

to resolve the controversies in the hormonal regulation.

Furthermore, the lack of human data in this regard makes the

translational value of these studies questionable, as the

reproductive functions are well-known to be highly

species-specific.
PACAP in the gonads

It is well known that interactions between peptide and

steroid hormone-signaling cascades influence the growth of

follicles, ovulation, and luteinization in the ovary. Following
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the gonadotropin-independent follicular development, a cohort

of hormone sensitive follicles are selected that rapidly grow into

immature and mature tertiary follicles. LH surge induces

ovulation and the formation of the corpus luteum from the

remaining granulosa and theca cells of the follicles. Follicles

produce estrogen, while corpus luteum is responsible for both

estrogen and progesterone production. Although FSH and LH

play a fundamental regulatory role in follicular maturation,

synthesis of steroids, and ovulation, several peptidergic and

non-peptidergic signaling pathways may alter their actions

(81–85). Influence of PACAP in gonadal functions is further

supported by research data showing that PACAP reduces

follicular apoptosis in the ovary (86). Follicular development

might also correlate with concentrations of PACAP in granulosa

cells. In the rat, PACAP expression in the granulosa cells of large

mature follicles prior to ovulation is stage-specific, whereas

weaker expression could be detected in immature antral and

pre-antral follicles (87–89). Both PACAP and PAC1 receptors

are found in the rat corpus luteum (90). Moreover, PACAP

might also be involved in the regulation of primordial germ cell

proliferation (91), as well as cyclic recruitment of immature

follicles (89), follicular apoptosis (86, 92), and ovarian hormone

and enzyme production in humans, rats, and cows (93–96).

These effects have been reviewed by our research group (97) and

by Canipari and colleagues (98). A recent study has suggested a

novel link between kisspeptin and PACAP at the ovarian level:

suppressed PACAP expression after ablation of kisspeptin

signaling in oocytes may be an additional factor in the

ovulatory failure in mice (99). These studies clearly indicate

that PACAP plays a role in follicular development, both through

hormonal interactions and locally, influencing oogenesis.
PACAP in the uterus and placenta

Isaac and Sherwood reported a lower rate of reproduction in

PACAP deficient mice, mainly due to insufficient implantation

(78). Although the uterine and placental functions of the

neuropeptide are somewhat neglected in the literature,

findings of the above study might indicate a placental role of

endogenous PACAP. Expression of PACAP27 and PACAP38 in

human placentas and uterus was first confirmed by

radioimmunoassay and immunocytochemistry (100). The

uterus consists of a body and cervix, with an isthmus at the

border of the two parts. The uterine wall has three layers:

endometrium (a columnar epithelial layer), myometrium (a

thick smooth muscle layer) and perimetrium (a part of the

peritoneum with a thin squamous cell layer) from inside to

outside. After implantation, the placenta is formed, consisting of

a maternal and a fetal part. Maternal part is the decidua basalis,

made up of the pregnant endometrium facing the embryo, while

the fetal part consists of the chorion frondosum, which has cyto-

and syncytiotrophoblast cells and extraembryonic mesoderm. In
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the human placenta, PACAP38 concentrations were higher than

PACAP27 levels, uterus and placenta had similar levels of

immunoreactivity, but the umbilical cord showed weaker

intensity (100). Uterine isthmus and myometrium showed

stronger immunoreactivity than pregnant uterus, but no

immunoreactive nerve fibers could be detected in the placenta

or umbilical cord. Radioimmunoassay studies have revealed

similar levels of PACAPs in different parts of the human

placenta (central/peripheral maternal, central/peripheral fetal).

PACAP38-like immunoreactivity was stronger in both maternal

and fetal sides in full-term placenta compared to younger

samples, while PACAP27-like immunoreactivity increased only

on the maternal side (101). Similar to the above data, Scaldaferri

and colleagues observed PACAP and PAC1 receptor in both rat

and full-term human placentas using Northern blot analysis,

polymerase chain reaction (PCR) and immunohistochemistry

(102). In human placentas, a marked difference was observed in

the immunohistochemical staining characteristics of different

parts of the placenta, showing strong staining in stromal cells

around blood vessels and weaker signal in vessel walls in stem

villi. In terminal villi, stromal cell PACAP38 immunoreactivity

was obvious. In stem villi, the stromal immunoreactivity showed

a spatial distribution pattern with immunoreactivity only in the

periphery, while terminal villi had dispersed positivity in the

entire stroma. RT-PCR studies have revealed expression of

different isoforms of the PAC1 receptor in rat and human

placentas. In the rat placenta, 3 isoforms were described: the

short, hip or hop variant and the hip-hop variant. In contrast, in

the human placenta only expression of the SV2 form was

detected, that is homologous to the rat hop form. PACAP27,

PACAP38 had almost equipotent binding to these receptors,

while VIP had weaker binding affinity (102).

PAC1 receptor mRNA has been recently demonstrated in the

uterus of healthy pigs, and the abundance of PAC1 receptor

protein was reduced in inflammatory conditions (103).

Endometrial inflammation also leads to changes in PACAP

expression of the dorsal root ganglia supplying the porcine

uterus (104). PACAP is expressed in the cervix, lumbosacral

dorsal root ganglion and spinal cord supplying the uterus,

showing time-dependent changes during pregnancy: initial

elevation is later followed by decrease during the end of

pregnancy in rats (105). Rat placenta is comprised of decidua

basalis, junctional and labyrinth zones, where PACAP and PAC1

receptor mRNAs were detected in decidual cells, as well as in

chorionic vessels and stromal cells of the labyrinth zone (106). In

the decidua, strongest signals were detected on day 13.5, with

decreasing strength in more advanced stages. The junctional zone

showed no signal, while the labyrinth zone branching villi, stem

villi and chorionic vessels showed a gradually increasing signal

parallel with advancing pregnancy age (106). Expression of

PACAP and PAC1 receptor mRNA from human legal abortions

of 6–7 weeks, from induced abortions of 14–24 weeks (second

trimester) and term placentas was proven by in situ hybridization
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in stem villi and terminal villi (107). In first and second trimester

samples, moderate PACAP mRNA expression was detected in

stroma cells surrounding blood vessels within stem villi, while

strong expression was found in full term placentas (107). Only

weak expression was found in cyto- and syncytiotrophoblasts.

PAC1 receptor expression showed a similar distribution pattern:

stronger expression was described in the villus stroma, while

weaker expression in the trophoblast cells. This increasing

expression pattern of mRNA for both PACAP and its receptor

suggests a potential role of the peptide in placental growth and

development. Radioimmunoassay also confirmed an increase in

the levels of PACAP and its specific receptor in late placentas

compared to early placentas (101). Oride and colleagues reported

on the presence of PACAP mRNA and PACAP immunoreactive

cells in mouse primary placental cell cultures (108). PACAP

expression was increased upon treatment with estradiol,

progesterone, GnRH or kisspeptin. Conversely, PACAP induced

kisspeptin expression in the placenta, showing that PACAP,

kisspeptin, and GnRH are interrelated also at the placental

level (108).

There are only a few studies dealingwith the actions of PACAP

in the uterus and placenta. According to a recent study, PACAP

treatment leads to decrease of amplitude and an increase in

frequency of myometrium contraction in pigs (103). Effects of

PACAP on blood vessels and smooth muscle contractility in the

uteroplacentalunitwasalso thoroughly investigated.Preincubation

with PACAP or VIP significantly inhibited the norepinephrine-

induced contraction of arteries of the myometrium and stem villus

in a concentration-dependent manner (100). The high

concentration needed for significant relaxation indicates the

necessity of local peptide release to achieve for the in vivo effect.

Most results show that PACAP leads to placental vessel relaxation,

but no effect could be observed on amplitude, tone, or frequency of

strips of spontaneously contracted myometrium of pregnant

women (100). Data altogether support the view that PACAP may

be involved in the regulation of the uteroplacental blood flow, and

results from Spencer and colleagues suggest that PACAP could

facilitate endometrial blood flow, thus increasing availability of

metabolic substrates to thedevelopingdeciduaor the embryo (109).

Involvement of PACAP placental hormone secretion has also been

suggested, probably due to an induction of cAMP secretion. As

PACAP and VIP acted similarly, these effects are most probably

mediated by VPAC receptors (110). A recent study has detected a

robust elevation of PACAP mRNA in female mice uteri with

blastocyst embryos compared with non-blastocysts. Also,

correlation was found between PACAP and HB-EGF (coding

region of heparin-binding EGF-like growth factor) mRNA

expression, which is an early embryo implantation marker. This

result also supports the role of PACAP during the peri-

implantation period of early mouse development (111).

Actions of PACAP have also been investigated in normal and

tumorous trophoblast cells. PACAP is well-known for its general

cytoprotective and survival-promoting effects in numerous cell
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types (19, 20). This could be confirmed in non-tumorous

trophoblast cells (HTR-8/SV cells). PACAP pretreatment led to

increased survival rate, increased proliferation, while it had no

effect on invasion (112). However, PACAP decreased the invasion

in another trophoblast cell line, HIPEC, which are invasive,

proliferative extravillous trophoblast cells (112). Regulating

angiogenesis may also be a function of PACAP during placental

growth, as several angiogenic factors were found to be altered

upon PACAP treatment of trophoblast cells (112). The disturbed

intracellular signaling cascades in tumorous cells can alter the

antiapoptotic, thus survival-promoting, effects of PACAP, as it has

been shown in various tumour cell lines. In some tumours,

PACAP has no effect on survival, while in others, PACAP is

antiapoptotic, similarly to its general effects. And yet in others,

PACAP is proapoptotic, thus enhances cell death, in contrast to its

general protective effects. This was the case in choriocarcinoma

cells, where PACAP treatment led to further decrease in survival

in cells exposed to hydrogen peroxide-induced oxidative stress or

chemically induced in vitro hypoxia (113). However, no effect was

observed in lipopolysaccharide-, ethanol or methotrexate-treated

cells (113, 114). Furthermore, in JAR choriocarcinoma cells,

PACAP influenced the expression of several signaling

molecules, such as ERK1/2, JNK, Akt, GSK, Bax, p38 MAPK

(113). Altogether, these data show that PACAP and its receptors

are present in the uterus and placenta, and propose some

functions on blood supply, contractions, and growth both under

physiological and pathological conditions, but more studies are

needed to elucidate the exact function of PACAP at this level.
Human findings

The role of PACAP in a multitude of physiological processes

has drawn the attention to elucidating the physiological roles of

PACAP in the human body. As the possibility of exogenous

PACAP administration in humans is limited, only a few such

examples are known from the literature. Regarding hormonal

regulations, for example, intravenous PACAP was shown to

stimulate vasopressin and PRL levels but not those of oxytocin,

gonadotrophs or GH in normal men (115, 116). However, no

data are available in women. Based mainly on the cytoprotective

functions of PACAP, there are several promising data for its

potential future therapeutic use, such as in diabetes (117),

multiple sclerosis (118), the intranasal administration in

neurodegenerative diseases, cognitive impairment and stroke

(119–121), in form of eye drops in corneal and retinal lesions

(122, 123) and dry eye disease (124). In contrast, the migraine-

provoking effect of PACAP has drawn the interest towards

antagonizing PACAP’s effects in migraine therapy (125, 126).

More studies are available on the distribution of PACAP in

the human body and several papers have described changes of

PACAP levels in different body fluids and tissues in

physiological and pathological conditions. PACAP has been
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previously investigated in body fluids with mass spectrometry

(MS), radioimmunoassay (RIA) and enzyme-linked

immunosorbent assay (127), and has been found in several

human body fluids: blood plasma (128–130), cerebrospinal

fluid (CSF) (131) and ovarian follicular fluid (132, 133), milk

(134, 135) and synovial fluid (136). The source of PACAP in

human biological fluids is mainly unknown, but these studies

have highlighted the potential use of PACAP as a biomarker in

certain diseases, where changes can reflect the presence and/or

progression of a disease (127). Among others, PACAP has a

potential biomarker value in dilatative cardiomyopathy, cardiac

infarct, Parkinson’s disease, migraine, polytrauma and chronic

rhinosinusitis (127, 137–141). A most recent study has

highlighted the potential use of PACAP, together with

calcitonin gene related peptide (CGRP), in differentiating

pediatric migraine from non-migraine headaches (142), while

another recent study has shown the association between

COVID-survival and VIP/PACAP plasma levels (143).

Regarding reproductive functions, PACAP has been measured

in the serum during pregnancy and delivery, and high levels of

PACAP were detected in human ovarian follicular fluid, milk

and amniotic fluid, as detailed below.
PACAP in the human follicular fluid

PACAP has been detected in the human ovarian follicular

fluid after superovulation treatment, with mass spectrometry

(132) and radioimmunoassay (133). The potential role of

PACAP in the regulation of follicular growth and maturation

is further demonstrated by results showing a correlation between

human follicular fluid PACAP concentration and ovarian

response to superovulation treatment in infertile women (133).

In this study, PACAP could be detected in all follicular fluid

samples, implying an important biological role for PACAP in

this culture medium for the developing oocyte. These data are in

line with those demonstrating receptors for PACAP in

developing follicles (92, 144). Interestingly, it appeared that

low-PACAP concentrations did not correlate with the oocyte

numbers: both low and high values could be measured.

However, high-PACAP levels correlated with low-oocyte

numbers in all cases, allowing us to conclude that below a

given threshold value of PACAP it may not have a significant

impact on the number of developing oocytes, while above that

value, PACAP may override other intraovarian regulatory

mechanisms lowering the final number of retrievable oocytes.

This finding might draw attention to a derailed regulatory

mechanism behind a well-known iatrogenic and potentially

life-threatening condition, known as ovarian hyperstimulation

syndrome (OHSS). This condition results from excessive ovarian

stimulation with an incidence between 1 and 10% of IVF cycles

(145). Patients have a higher chance to develop OHSS after

superovulation treatment if they have significantly more follicles
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on the day of human chorionic gonadotropin (hCG) treatment

compared with those without developing OHSS (146, 147). An

earlier prospective study demonstrated that the cutoff number of

developing follicles on the day of hCG administration for the

occurrence of OHSS is 13 follicles (148), that is in harmony with

our data (133), where a significant decrease in PACAP

concentrations of the follicular fluid was found. From these a

conclusion could be drawn that higher PACAP concentrations

in the follicular fluid might indicate a well-regulated follicular

development, while decreased concentrations could demonstrate

a condition favoring the development of OHSS. The exact

physiological role of PACAP in the intraovarian regulatory

mechanisms influencing follicular maturation and growth is

still unclear. However, based on the above data, the

neuropeptide found in follicular fluid might play a role in

oocyte recruitment and follicular development. Moreover, it

appears that higher PACAP concentrations are associated with

lower number of developing oocytes, while low PACAP

concentrations might correlate with a significantly higher

number of retrievable ova, thus predicting a higher chance for

ovarian hyperstimulation.
PACAP during pregnancy and in human
amniotic fluid

During pregnancy, plasma PACAP38-like immunoreactivity

(PACAP38-LI) was found increased in the 2nd and 3rd

trimesters, indicating that the neuropeptide might be

synthesized by either the placenta or other maternal tissues

(33). However, in the same study, a rapid decrease in maternal

plasma PACAP level could be found during labour, which might

indicate a role between PACAP synthesis/function and the

uteroplacental circulation and/or uterine contractions. Three

days after delivery the PACAP38-LI decreased to normal levels

(33). These data are not surprising, because PACAP38 was

earlier detected with RIA and immunocytochemistry in each

part of the uteroplacental unit (100). Further supporting the

view of PACAP having significant role in placental functions,

full-term placentas showed stronger PACAP38-LI on both the

maternal and fetal sides, while PACAP27-LI increased only on

the maternal side (101).

The amniotic fluid is a complex biological fluid, initially

deriving from maternal plasma and passing through fetal

membranes according to hydrostatic and osmotic pressure

(149). Composition of the fluid is similar to that of fetal

plasma until fetal skin keratinization, which usually occurs

between 19 and 20 weeks of gestation. In a recent study,

amniotic fluid samples were collected between the 15–19th

weeks of gestation from volunteering pregnant women

undergoing amniocentesis as a prenatal diagnostic tool.

Samples were processed to detect PACAP38-LI with
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radioimmunoassay (150), revealing PACAP38-LI in each

amniotic fluid sample, with an average level of 401 ± 142

fmol/ml. Earlier data showed higher levels of PACAP in

maternal serum in late pregnancy (33) and the increasing

content of PACAP in the placenta during pregnancy (101),

indicating its probable placental and/or maternal origin. The

higher PACAP levels found in umbilical arteries compared to

the umbilical veins suggest fetal PACAP synthesis (33). Based on

above results and the fact that the composition of amniotic fluid

is similar to fetal plasma in this period (151), we can suggest a

fetal and/or placental origin of PACAP in the amniotic fluid,

with a yet unknown physiological role.
PACAP in the human milk

Experimental data suggest that PACAP is involved in the

regulation of lactation and milk ejection via influencing prolactin

and oxytocin production and release. However, the central

regulatory role of PACAP in these processes is not yet clear, as

contradictory data are available on the effects of PACAP on

prolactin secretion (152). While no effect was also described,

stimulatory and even inhibitory effects on prolactin release have

also been found depending on the route of administration, on the in

vitro conditions and on the timing of the injections (153, 154).

Prolactin mRNA was found to be stimulated by PACAP, but

injection into the arcuate nucleus reduces concentration of

prolactin in the plasma (51). Oxytocin has also been described to

be stimulated by PACAP (155). Regarding human data, extremely

high levels of PACAP-LI were measured in the human milk by RIA

(134), exceeding those of plasma by about 10 times. Even higher

levels were measured in the colostrum compared to transitional and

mature human milk samples (135, 156). During the first 10 months

of lactation, a stable high level can be observed (135). The presence

of these high levels was also confirmed in domestic animals the milk

of which is commonly consumed and in human milk formulas

(157–159). Although the exact function of PACAP in themilk is not

known at themoment, it can be suggested that it is either needed for

the postnatal development or for the growth of the mammary gland

itself, as several effects on the growth, differentiation and

proliferation on mammary glandular epithelial cells have been

described (156, 159, 160).

In summary, in the present review we summarized main

findings on PACAP and reproduction (Figures 1, 2). As seen from

the experimental and human data, PACAP and its receptors are

present in the hypothalamo-hypophyseal system, in the gonads

and in the uterus and placenta. Several roles of PACAP have been

described in the central regulation of the reproductive functions,

although there are still controversial issues that need to be

resolved. In addition, the peptide influences reproductive

functions in the periphery, at the ovarian and placental levels.

Human data indicate that PACAP is present not only in the
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reproductive tissues and brain, but can also be detected in the

follicular and amniotic fluid, and levels change during pregnancy.

In addition, PACAP can be found in the mammary gland and

milk, however, its exact function at this level still awaits future

investigation. Recent data have provided evidence that PACAP

might be a central regulator of puberty and female hormonal

cycles, via interactions with the kisspeptin-GnRH system. The
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clinical importance of kisspeptin in several diseases has been

highlighted in recent publications (161, 162). Studies

summarized in the present review prove that PACAP is both a

central and peripheral modulator of reproductive functions and

call for further investigations to elucidate the exact role in some

processes and to evaluate the potential diagnostic and/or

therapeutic use of PACAP in biological fluids as a biomarker, as
FIGURE 1

Schematic drawing of the main effects of PACAP in the female reproductive system at hypothalamic and pituitary. The main hormones/factors
playing a role in reproduction and influenced by PACAP are highlighted. hypothalamic nuclei, PON (preoptic), SCH (suprachiasmatic), PVN
(paraventricular), AHN (anterior hypothalamic), SON (supraoptic), DMN (dorsomedial), VMN (ventromedial), ARC (arcuate), PN (posterior), MB
(mammillary body). GnRH: gonadotropin releasing hormone; TRH, thyreotropin releasing hormone; CRH, corticotropin releasing hormone;
GHRH, growth hormone releasing hormone; FSH, follicule stimulating hormone; LH, luteinizing hormone; ACTH, adrenocorticotropic hormone;
GH, growth hormone; ADH, antidiuretic hormone.
FIGURE 2

Schematic drawing of the main effects of PACAP in the female reproductive system at peripheral level.
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it has been also shown for the other players in these complex

regulatory mechanisms.
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Estrogen receptors were initially identified in the uterus, and later throughout

the brain and body as intracellular, ligand-regulated transcription factors that

affect genomic change upon ligand binding. However, rapid estrogen receptor

signaling initiated outside of the nucleus was also known to occur via

mechanisms that were less clear. Recent studies indicate that these

traditional receptors, estrogen receptor-a and estrogen receptor-b, can also

be trafficked to act at the surface membrane. Signaling cascades from these

membrane-bound estrogen receptors (mERs) not only rapidly effect cellular

excitability, but can and do ultimately affect gene expression, as seen through

the phosphorylation of CREB. A principal mechanism of neuronal mER action is

through glutamate-independent transactivation of metabotropic glutamate

receptors (mGluRs), which elicits multiple signaling outcomes. The

interaction of mERs with mGluRs has been shown to be important in many

diverse functions in females, including, but not limited to, reproduction and

motivation. Here we review membrane-initiated estrogen receptor signaling in

females, with a focus on the interactions between these mERs and mGluRs.

KEYWORDS

estrogen, estrogen receptors, membrane estrogen receptors, metabotropic
glutamate (mGlu) receptors, estrogen receptor signaling
Introduction

The estrogen receptors, estrogen receptor-a (ERa) and estrogen receptor-b (ERb)
were initially identified as intracellular, ligand-regulated transcription factors (1),

members of the larger nuclear receptor superfamily (2, 3). Originally identified in the

uterus (4, 5), these estrogen receptors are expressed throughout the body, including in a

multitude of brain regions (6, 7). Estradiol binding to these receptors was initially

demonstrated to induce transcriptional changes at estrogen response elements (EREs)

(8). However, this classical signaling pathway is not the only mechanism through which
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estrogen receptors directly elicit genomic change. Many

estrogen-regulated genes lack ERE sequences (9, 10), which led

to the discovery of additional genomic actions occurring via

other response elements and transcription factors (11, 12).

However, even with multiple pathways leading to direct

genomic effects, this was still insufficient to fully explain the

plethora of actions estradiol was observed to induce both inside

and outside the nervous system.
Membrane-initiated signaling

The first clues that estrogen signaling could be initiated

outside the nucleus came from Szego & Davis in the late 1960s.

Following ovariectomy (ovx) in rats, acute exogenous estradiol

treatment resulted in an increase in uterine cAMP accumulation

within seconds, concentrations indistinguishable from intact

animals (13). The speed at which these changes occurred

eliminated the possibility of nuclear-initiated action and

strongly suggested the recruitment of a surface-initiated

second messenger signaling pathway. Rapid effects of estradiol

were subsequently noted within the nervous system, first in

female preoptic-septal neurons in the hypothalamus. Within

seconds of application, estradiol modulated firing rates,

returning to experimental baseline when the steroid was

removed (14). The use of estradiol conjugated to bovine serum

albumen (BSA) further implicated membrane-associated

estrogen receptors (15). However, skepticism remained, as

there was suspicion that estradiol might be cleaved from BSA

(16). Thus, large dendrimer macromolecules conjugated to

estrogens were produced. These conjugates avoided the

potential for cleaving and were unable to cross the cellular

membrane, precluding the activation of nuclear ERs, but still

resulted in rapid estradiol signaling (17). While in 2000 a novel

estrogen receptor potentially located at the membrane was

identified, i.e. G protein-coupled estrogen receptor 1 (GPER1)

(18), overexpression of both ERa and ERb (19), along with

immunohistochemical (20) and co-immunoprecipitation studies

(21) also indicated that a subpopulation of these classical

receptors are trafficked to the membrane (19). The

development of transgenic mice allowed researchers to explore

the effects of rapid signaling in vivo. In transgenic knockout mice

devoid of ERa, and/or ERb, rapid estradiol signaling was

eliminated in a brain-region and signaling pathway-dependent

manner, suggesting that these receptors are responsible for many

of the membrane signaling effects (22).

Membrane-initiated estrogen receptor signaling does not

preclude downstream influences on gene expression.

Particularly prominent is estradiol activation of PKC-MAPK

signaling, ultimately resulting in the phosphorylation of CREB

(23–26). Serine-133 phosphorylation of CREB can initiate a

diverse array of transcriptional and behavioral changes,

including by estradiol-mediated CREB activation via
Frontiers in Endocrinology 02
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membrane ER (mER) interactions with metabotropic

glutamate receptors (mGluRs) (23). Initial findings in

hippocampal neurons found estradiol acting through ERa-
mGluR1a leads to MAPK-dependent CREB phosphorylation.

This study elucidated a separate second pathway whereby

activation of ERa or ERb associated with mGluR2 (and Gi/o-

mediated inhibition of cAMP) resulted in a decrease in L-type

calcium-channel mediated CREB phosphorylation (23). Follow-

up studies found mER signaling through mGluR activation

throughout the brain, which appears to be a mechanism

allowing for diverse signaling outcomes. Not only does mER

activation of group I or group II mGluRs activate separate cell

signaling pathways, but mER pairing with different group I or II

mGluRs (i.e. mGluR1 vs. mGluR5 and mGluR2 vs. mGluR3) can

differentially impact neuronal function as well (27).

The interaction of mERs with mGluRs requires caveolin

(CAV) (28–30), a family of scaffolding proteins involved in

trafficking receptors to the membrane (31). The particular ER-

mGluR pairing is mediated through the CAV isoform associated

with the ER (28) (Figure 1). A single point mutation in ERa that

disrupts receptor localization with CAV1 inhibited estradiol-

induced CREB phosphorylation. Reducing CAV1 expression

through siRNA knockdown inhibited estradiol-induced CREB

phosphorylation while leaving the estradiol-induced L-type

calcium channel-dependent decrease in CREB phosphorylation

intact. In reciprocal experiments, siRNA knockdown of CAV3

inhibited estradiol-dependent activation of group II mGluRs

without affecting estradiol-mediated CREB phosphorylation. In

both cases, siRNA knockdown did not grossly impact mGluR

signaling, demonstrating the essential nature of caveolin

proteins to mER signaling (28). These data contribute to the

understanding that CAV1 mediates ERa interactions with group

I mGluRs through clustering the receptor at the membrane (28,

29, 33), while CAV3 is involved in the interactions between

mERs and group II mGluRs (28). Additionally, an alternatively

spliced form of ERa, ERaD4, is highly expressed in membrane

fractions derived from cultured cells. This receptor has been

shown to associate with both mGluR2/3 and CAV3 in ARH

membrane fractions (34).

Following these experiments, the precise mechanism of

action linking ERs to mGluRs and to the membrane remained

unclear, though palmitoylation was an attractive hypothesis.

Palmitoylation is a reversible, post-transcriptional modification

involved in the trafficking and function of proteins both within

and outside the nervous system (35). Global pharmacological

blockade of palmitoylation inhibited the downstream outcomes

of membrane estradiol signaling, while introducing single point

mutations at palmitoylation sites in both ERa and ERb was

sufficient to inhibit membrane signaling (36). Two palmitoyl

acetyltransferases (DHHC-7 and DHHC-21) have been shown

to be crucial in ER membrane localization (37). Disrupting

expression of either was sufficient to inhibit estradiol-

dependent CREB phosphorylation (36), and to prevent ERa
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from associating with CAV1 (38). siRNA knockdown of these

enzymes together, but not separately, was sufficient to decrease

the palmitoylation of CAV1 itself (38). These data suggest that

palmitoylation is a crucial component in the interaction of mERs

with CAV proteins, the coupling of mERs with mGluRs, and the

subsequent signaling cascades.

While estrogen-mediated signaling plays a crucial role in the

female brain, estrogen-mediated signaling is not absent in the

male brain. Estrogen plays an important role in masculinizing

the brain (39), and rapid estradiol signaling occurs in adult

males, including through mGluRs. Estradiol activation of

mGluR1a through ERb modulates sexual behavior in male

quails (40, 41), and rodent studies have confirmed rapid mER-

mGluR signaling in both the male and female adult cerebellum

(42). In females, though, rapid signaling of estradiol, including

through mGluRs, has been shown to be incredibly important in

driving reproduction, including in the development of the

luteinizing hormone surge which stimulates ovulation, the

central event in female reproduction. In rodents, and certain

other species, rapid membrane signaling is also crucial in the

physical display of the principal reproductive behavior, lordosis.

Finally, rapid membrane signaling has been shown to play an

important role in female motivation for reproduction.
Ovulation and the luteinizing
hormone surge

Ovulation is the central event in female reproduction,

controlled by a network of neurons and astrocytes in the

hypothalamus that act as a pattern generator, releasing

gonadotropin-releasing hormone (GnRH) onto luteinizing

hormone (LH) neurons in the anterior pituitary in small,

rhythmic pulses (43, 44). Rising estradiol concentrations via

ovarian release, trigger a switch from an estrogen-negative to an
Frontiers in Endocrinology 03
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estrogen-positive feedback loop. This estrogen-positive feedback

loop, which is unique to females, is crucial in the surge release of

LH that ultimately triggers ovulation (45). The preovulatory rise

in circulating estradiol sharply increases GnRH neuronal activity

and the release of LH from the pituitary to elicit ovulation (46,

47). Blocking either progesterone receptors or progesterone

synthesis prevents the surge release of both GnRH and LH

and halts the estrous cycle (48, 49). While GnRH neurons do not

express ERa or nuclear progesterone receptors (45, 50, 51),

kisspeptin neurons that are upstream regulators of GnRH

signaling do express the necessary steroid receptors (52–54).

Classically it has been understood that both estradiol and

progesterone released from the ovaries orchestrate the LH

surge, but it has become apparent that progesterone is also

synthesized de novo in the brain (55–57), and that it is this

neuroprogesterone (neuroP) that is vital in the LH surge that

ultimately leads to ovulation (58). Neuroprogesterone is

synthesized in hypothalamic astrocytes that express mERa and

mGluRs, and it has been shown that the LH surge relies upon the

mER-mGluR signaling in these astrocytes (55, 59). Estradiol

activation of mERa directly leads to the activation of mGluR1

and its downstream signaling cascades. mGluR1 activity

increases inositol triphosphate and allows for the release of

intracellular calcium ([Ca2+]i) stores (59, 60). The release of

[Ca2+]i activates a Ca
2+-sensitive adenylyl cyclase (AC-1), which

increases the production of cAMP. This cAMP activates protein

kinase A (60), leading to the synthesis of neuroP (56, 57, 59).

Blocking neuroP synthesis in rats that had both ovaries and

adrenals removed is sufficient to prevent the LH surge (61). Cell

culture experiments in astrocytes isolated this signaling pathway.

Blocking mGluR1a activity, or any part of the cell signaling

cascade initiated by the ERa activation of mGluR1, in astrocytes

inhibits neuroP synthesis (49, 55, 59, 60). Further, in the absence

of estradiol, activating mGluR1a directly is sufficient to release

[Ca2+]i and induce neuroP synthesis (59, 62).
A B

FIGURE 1

mER transactivation of group I and group II mGluRs. 17b-Estradiol (17bE) binds to membrane-bound estrogen receptors (ER) to activate distinct
signaling pathways via Group I (A) or Group II (B) mGluRs. (A) Membrane-ER interactions with Group I mGluRs, dependent on CAV1, activates
Gq-mediated signaling through protein lipase C (PLC) and protein kinase C (PKC), subsequent activation of MEK, MAPK, and RSK, and ultimately
the phosphorylation of CREB. PLC also activates IP3, which binds to the IP3 receptor (IP3R) to result in the release of intracellular calcium
(Ca2+). (B) Membrane-ER activation of Group II mGluRs, dependent on CAV3, results in the Gi/o-mediated inhibition of adenylyl cyclase (AC),
decreasing the activity (indicated by dashed lines) of protein kinase A (PKA). This results in reduced L-type calcium channel currents and L-type
calcium channel-dependent CREB phosphorylation. CaM, Calmodulin; CaMKIV, calmodulin-dependent protein kinase IV; CAV, caveolin; IP3,
inositol triphosphate; MEK, MAPK/ERK kinase; MAPK, mitogen-activated protein kinase; RSK, ribosomal S6 kinase. Figure adapted from (32).
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Lordosis

Another important aspect of reproduction controlled by ER

interactions with mGluRs is lordosis. Lordosis is a reflexive

behavior that is acutely triggered by mounting from a conspecific

male. This behavior consists of an arching of the spine, the

raising of both the head and the hindquarters, and the lifting of

the tail (63). While integration of the tactile cues with other

externosensory cues is crucial for the display of lordosis, this

behavior depends heavily on the appropriate timing of the

release of ovarian hormones and the subsequent priming of

neural circuits by these hormones. The role of intracellular and

membrane-bound ERs, as well as the interaction between mERs

and mGluRs, have all been shown to be important components

in driving lordosis (64, 65).

A core circuit controlling lordosis is within the

hypothalamus. Here, signaling between the arcuate nucleus

(ARH), the medial preoptic nucleus (MPN), and the

ventromedial nucleus of the hypothalamus (VMH) have been

shown to be fundamental in the expression of lordosis (64, 66–

70) (Figure 2). Within this circuit, estradiol first acts on ERa-
containing neuropeptide Y (NPY) neurons in the ARH (21, 68,

71), allowing for the release of NPY onto NPY-Y1 receptors in

ARH proopiomelanocortin (POMC) neurons. The subset of

POMC neurons that are involved in reproduction project
Frontiers in Endocrinology 04
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further to the MPN where they release b-End onto neurons

that express m-opioid receptors (MORs). The estradiol-induced

activation, and subsequent internalization, of MOR depends

upon ERa activity (65). Throughout the estrous cycle the

activation/internalization of this receptor is out of phase with

the ability to express lordosis (69). That is, when MOR is

internalized, a measure of activation, the display of lordosis is

prohibited. As the cycle progresses, increasing progesterone

levels ultimately result in the restoration of MOR to the

membrane, a measure indicating that the receptors are not

stimulated (72), and the behavior can be expressed. While

counterintuitive, this estradiol inhibition of lordosis is

necessary for its later full expression. While many neural

changes must occur to result in the production of lordosis,

recent work has shown that much of the machinery involved in

this behavior utilizes fast-acting mER signaling cascades, and

particularly those signaling through mGluRs.

Within the ARH, a subset of the NPY neurons express both

ERa and mGluR1a, which have been shown to interact at the

membrane to initiate signaling (21). The mER-mGluR signaling

in the ARH has been shown to be crucial in both the

internalization of MOR and the subsequent display of lordosis.

The level of estradiol determines the expression of the mERa-
mGluR1 complex in the ARH.When estradiol is low, the mERa-
mGluR1 complex is present, but as estradiol levels rise the
FIGURE 2

Hypothalamic lordosis circuit. Estradiol acts on estrogen receptor-containing NPY neurons in the ARH, which further project to and activate
ARH POMC/B-End neurons. These POMC neurons project to the MPN where the release of B-End activates and internalizes MORs. When these
receptors are internalized, lordosis is attenuated. In the ARH, the interaction of mERa & mGluR1a is important for both the internalization of
MOR and ultimately the display of lordosis. These MOR-containing neurons in the MPN project further to the ventrolateral (vl) part of the VMH,
where signals from other circuits are integrated. Projections from the VMHvl reach lower brain regions which ultimately innervate the spinal
motor neurons responsible for the production of the behavior. 3V, 3rd ventricle; OC, optic chiasm; ME, median eminence. Figure adapted
from (66).
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expression of mERa-mGluR1 is reduced (73). In the ARH,

antagonizing mGluR1a activity before estradiol treatment is

sufficient to attenuate the internalization of MOR in the MPN

as well as the ensuing expression of lordosis (20, 21). Activating

mGluR1a in the ARH to circumvent the necessity of estradiol is

sufficient to result in the internalization of MOR and lordosis

(20). Both in vitro and in vivo activating mGluR1a through

estradiol-induced mERa activity increases many important

phosphoproteins, including PKC and CREB (20, 21, 23), and

the internalization of MOR appears to depend at least in part

upon PKC signaling. Downstream from mGluR1a activity,

activating PKC signaling in the ARH in the absence of

estradiol was sufficient to result in the internalization of MOR,

and the amount of this internalization was comparable to that

seen following estradiol treatment alone (21).

Another key component in the production of lordosis

regulated by fast mER-mGluR activity is morphological

changes to neuronal structure. Estradiol affects both the

generation and pruning of dendritic spines, though this is not

unique to the hypothalamic lordosis circuit but occurs

throughout the brain (64, 74, 75) and appears due to

retrograde signaling by endogenous opioids (76–78). Within

this circuit, important morphological changes can be induced

rapidly through mERa-mGluR1a signaling in the ARH. Within

4 hours, estradiol activation of mGluR1a results in an increase in

the total number of dendritic spines, which remains for at least

48 hours. By 20 hours these spines display mushroom-shaped

morphology, suggesting that these synapses are functional.

Blocking mGluR1a activity prevented this spinogenesis, as well

as attenuated the display of lordosis (64). Importantly, this time

course of changes in morphology lines up with that of the display

of lordosis.
Motivation

Estrogen membrane-receptor signaling has also been found

to play a role in motivation. Though the long-term consequence

of reproduction is the survival of the species through the

production of offspring, the short-term motivation of

reproduction is often the immediate drive for the rewarding

aspects of the behavior, in females as much as in males (79).

While work has focused on the physiology of ovulation and the

rodent’s reflexive response to mounting by a male, female sexual

behavior is indicative of a motivational drive. Female rats placed

in a modified operant chamber, in which the female can choose

if and when she wants to copulate, will seek the male for

copulation timed to maximize reward (80, 81). Additionally,

other pre-copulatory behaviors from female rodents, such as

hopping or darting (82, 83), further indicate a level of control

over the mating process. This pre-copulatory activity, which is

called “pacing,” contributes to a robust dopamine response in

the female nucleus accumbens (NAc) in response to mating
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(84–87). This dopamine response, as well as further structural

changes, in the NAc is regulated at least in part by estradiol

signaling at the membrane.

The NAc is a key region in reward and incentive salience,

and the limbic control of behavioral motivation, and inputs here

affect structural morphology and subsequently behavioral

output. The limbic system is important in the motivation to

engage in reproductive behaviors in both males and females (67,

79), and projections from the hypothalamic nuclei robustly

innervate this circuit. The reproductive limbic circuit consists

of the MPN, the ventral tegmental area (VTA), and the NAc. A

key node connecting the hypothalamus to the limbic component

includes the MPN (88). Projections from here reciprocally

innervate the mesolimbic dopamine system, including the

VTA (89). The VTA projections to the NAc arise from cells

that contain ERs (90) and are sensitive to fluctuations in

estradiol levels (91), as well as estradiol-mediated signals

arising from the MPN (90). These estradiol-mediated changes

in VTA signaling have been shown to further affect the

subsequent release of DA in the NAc (90).

The predominant output neuron in the NAc is the medium

spiny neuron (MSN) - named due to the density of spines it

possesses (92). The MSNs in the NAc receive both DAergic and

glutamatergic inputs (93), and it has been shown that estradiol

plays an important role in modulating both inputs (94–97).

MSNs contain few nuclear ERs, suggesting that estradiol acts

primarily through membrane-bound receptors ERs (98–103). As

in the hypothalamus, estradiol modulates spine density in the

NAc and the estradiol-induced morphological changes in the

MSNs of the NAc are dramatic in terms of functional circuitry

and neuronal morphology (104, 105). In female rodents, sexual

experience modulates future sexual behavior through estradiol-

mediated morphological changes within the limbic circuit (79).

While the complete mechanisms of estradiol modulation on

motivational circuity have yet to be fully elucidated, it is likely

that mER-mGluR signaling plays a role.

The role of membrane estradiol signaling, and particularly

the interaction between mERs and mGluRs, in reproductive

motivational drive can be further extrapolated from studies

investigating when motivational drive becomes maladaptive,

such as in drug addiction. In comparison with men, women

tend to show heightened vulnerability to developing a drug

addiction (106, 107). Additionally, subjective effects of a drug

can vary across the menstrual cycle, as has been reported in

response to cocaine. When estrogen levels are high, women

report the greatest effects of the drug (108). Interest in the

interaction between membrane ERs and group I mGluRs has

been taken in understanding the influence of estradiol on drug

addiction. In ovx rats, estradiol activation of mGluR5 has been

shown to facilitate self-administration of cocaine, while

inhibiting this signaling through an mGluR5 antagonist before

estradiol administration is sufficient to attenuate this intake of

the drug (109). Estradiol activation of mGluR5 in MSNs also
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results in an increase in the phosphorylation of CREB (100), and

a decrease in dendritic spine density in both the core region of

the NAc (27, 104, 105). Conversely, estradiol activation of

mGluR1 can result in an increase in spine density in the shell

region of NAc (27). Taken together, the data suggest that mER-

mGluR signaling are important in the drive to seek reward

generally, as is apparent in drug taking behaviors, and in the

reinforcement of reproductive behaviors.
Discussion

A great deal of progress has been made in understanding

the physiology of rapid estradiol signaling, including the

relationship between mERs and mGluRs. Rapid estradiol

signaling has been found throughout the brain and the

body. In the central nervous system, the signaling cascades

initiated by the mER/mGluR complex has been shown to be

involved in many physiological functions in both sexes, but

particularly in females. In females, the diverse signaling

cascades initiated by the interaction of mERs with mGluRs

have been shown to play important roles in mediating key

aspects of reproduction and motivation, among other crucial

functions. While uncovering the roles of CAV and

palmitoylation has led to further understanding of this

complex signaling cascade, current and future research will

inevitably expand our knowledge of mER/mGluR signaling

and its physiological and behavioral outcomes.
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103. Stanić D, Dubois S, Chua HK, Tonge B, Rinehart N, Horne MK, et al.
Characterization of aromatase expression in the adult male and female mouse
brain. i. coexistence with oestrogen receptors a and b, and androgen receptors. PloS
One (2014) 9(3):e90451. doi: 10.1371/journal.pone.0090451

104. Peterson BM, Mermelstein PG, Meisel RL. Estradiol mediates dendritic
spine plasticity in the nucleus accumbens core through activation of mGluR5.
Brain Struct Funct (2015) 220(4):2415–22. doi: 10.1007/s00429-014-0794-9

105. Staffend NA, Loftus CM, Meisel RL. Estradiol reduces dendritic spine
density in the ventral striatum of female Syrian hamsters. Brain Struct Funct (2011)
215(3–4):187–94. doi: 10.1007/s00429-010-0284-7

106. Brady KT, Randall CL. Gender differences in substance use disorders.
Psychiat Clin N Am (1999) 22(2):241–52. doi: 10.1016/S0193-953X(05)70074-5

107. Hernandez-Avila CA, Rounsaville BJ, Kranzler HR. Opioid-, cannabis- and
alcohol-dependent women show more rapid progression to substance abuse treatment.
Drug Alcohol Depen (2004) 74(3):265–72. doi: 10.1016/j.drugalcdep.2004.02.001

108. Evans SM, Haney M, Foltin RW. The effects of smoked cocaine during the
follicular and luteal phases of the menstrual cycle in women. Psychopharmacology
(2002) 159(4):397–406. doi: 10.1007/s00213-001-0944-7

109. Martinez LA, Gross KS, Himmler BT, Emmitt NL, Peterson BM, Zlebnik
NE, et al. Estradiol facilitation of cocaine self-administration in female rats requires
activation of mGluR5. Eneuro (2016) 3(5):ENEURO.0140–16.2016. doi: 10.1523/
ENEURO.0140-16.2016
frontiersin.org

https://doi.org/10.1016/0018-506X(76)90008-8
https://doi.org/10.1523/JNEUROSCI.3030-11.2011
https://doi.org/10.1002/jnr.10526
https://doi.org/10.1523/ENEURO.0315-19.2019
https://doi.org/10.3389/fnsys.2017.00042
https://doi.org/10.1523/JNEUROSCI.1366-03.2004
https://doi.org/10.1385/MN:27:2:197
https://doi.org/10.1016/j.yhbeh.2013.06.001
https://doi.org/10.1210/endo-127-6-2752
https://doi.org/10.1523/JNEUROSCI.21-15-05723.2001
https://doi.org/10.1210/en.2013-1235
https://doi.org/10.1016/bs.vh.2020.06.003
https://doi.org/10.1523/JNEUROSCI.12-07-02549.1992
https://doi.org/10.1016/j.neuroscience.2008.12.023
https://doi.org/10.1111/jne.12263
https://doi.org/10.1210/en.2018-00389
https://doi.org/10.1016/j.brainres.2006.08.050
https://doi.org/10.1037/0735-7044.109.2.354
https://doi.org/10.1006/hbeh.1997.1412
https://doi.org/10.1016/0018-506X(89)90037-8
https://doi.org/10.1163/156853978X00260
https://doi.org/10.1523/JNEUROSCI.21-09-03236.2001
https://doi.org/10.1016/j.brainres.2003.10.056
https://doi.org/10.1016/S0166-4328(00)00394-6
https://doi.org/10.1046/j.1460-9568.2003.02923.x
https://doi.org/10.1002/cne.902700205
https://doi.org/10.3389/fnbeh.2020.00074
https://doi.org/10.1038/npp.2015.360
https://doi.org/10.1038/npp.2015.360
https://doi.org/10.1007/s00213-008-1188-6
https://doi.org/10.1016/j.neuroscience.2015.06.033
https://doi.org/10.1016/j.neuroscience.2015.06.033
https://doi.org/10.1038/nrn3381
https://doi.org/10.1002/syn.890050211
https://doi.org/10.1523/JNEUROSCI.16-02-00595.1996
https://doi.org/10.1016/j.tins.2007.03.008
https://doi.org/10.1046/j.1471-4159.1994.62051750.x
https://doi.org/10.1210/en.2012-1458
https://doi.org/10.1016/j.neulet.2016.04.023
https://doi.org/10.1016/j.neuroscience.2010.08.012
https://doi.org/10.1016/j.neuroscience.2010.08.012
https://doi.org/10.1016/S0304-3940(99)00815-0
https://doi.org/10.1523/JNEUROSCI.4647-08.2009
https://doi.org/10.1371/journal.pone.0090451
https://doi.org/10.1007/s00429-014-0794-9
https://doi.org/10.1007/s00429-010-0284-7
https://doi.org/10.1016/S0193-953X(05)70074-5
https://doi.org/10.1016/j.drugalcdep.2004.02.001
https://doi.org/10.1007/s00213-001-0944-7
https://doi.org/10.1523/ENEURO.0140-16.2016
https://doi.org/10.1523/ENEURO.0140-16.2016
https://doi.org/10.3389/fendo.2022.1009379
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Allan Herbison,
University of Cambridge,
United Kingdom

REVIEWED BY

Lucia Karailievova,
Slovak Academy of Sciences, Slovakia
Firat Kara,
Mayo Clinic, United States
Ingrid Y Liu,
Tzu Chi University, Taiwan

*CORRESPONDENCE
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Sólyomvári, Fazekas, Bánrévi, Correia,
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Ovariectomy-induced hormone
deprivation aggravates Ab1-42
deposition in the basolateral
amygdala and cholinergic fiber
loss in the cortex but not
cognitive behavioral symptoms
in a triple transgenic mouse
model of Alzheimer’s disease

Szidónia Farkas1,2, Adrienn Szabó1,2,3, Bibiána Török1,2,
Csenge Sólyomvári1, Csilla Lea Fazekas1,2,3, Krisztina Bánrévi2,
Pedro Correia1,2,3, Tiago Chaves1,2,3 and Dóra Zelena1,2*

1Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai
Research Centre, Pécs, Hungary, 2Laboratory of Behavioral and Stress Studies, Institute of
Experimental Medicine, Budapest, Hungary, 3János Szentágothai School of Neurosciences,
Semmelweis University, Budapest, Hungary
Alzheimer’s disease is the most common type of dementia, being highly

prevalent in elderly women. The advanced progression may be due to

decreased hormone synthesis during post-menopause as estradiol and

progesterone both have neuroprotective potentials. We aimed to confirm

that female hormone depletion aggravates the progression of dementia in a

triple transgenic mouse model of Alzheimer’s disease (3xTg-AD). As

pathological hallmarks are known to appear in 6-month-old animals, we

expected to see disease-like changes in the 4-month-old 3xTg-AD mice

only after hormone depletion. Three-month-old female 3xTg-AD mice were

compared with their age-matched controls. As a menopause model, ovaries

were removed (OVX or Sham surgery). After 1-month recovery, the body

composition of the animals was measured by an MRI scan. The cognitive and

anxiety parameters were evaluated by different behavioral tests, modeling

different aspects (Y-maze, Morris water maze, open-field, social

discrimination, elevated plus maze, light–dark box, fox odor, operant

conditioning, and conditioned fear test). At the end of the experiment, uterus

was collected, amyloid-b accumulation, and the cholinergic system in the brain

was examined by immunohistochemistry. The uterus weight decreased, and

the body weight increased significantly in the OVX animals. The MRI data

showed that the body weight change can be due to fat accumulation.

Moreover, OVX increased anxiety in control, but decreased in 3xTg-AD

animals, the later genotype being more anxious by default based on the
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anxiety z-score. In general, 3xTg-AD mice moved less. In relation to cognition,

neither the 3xTg-AD genotype nor OVX surgery impaired learning andmemory

in general. Despite no progression of dementia-like behavior after OVX, at

the histological level, OVX aggravated the amyloid-b plaque deposition in the

basolateral amygdala and induced early cholinergic neuronal fiber loss in the

somatosensory cortex of the transgenic animals. We confirmed that OVX

induced menopausal symptoms. Removal of the sexual steroids aggravated

the appearance of AD-related alterations in the brain without significantly

affecting the behavior. Thus, the OVX in young, 3-month-old 3xTg-AD mice

might be a suitable model for testing the effect of new treatment options on

structural changes; however, to reveal any beneficial effect on behavior, a later

time point might be needed.
KEYWORDS

Alzheimer’s disease, hormone deprivation, ovariectomy, cognitive function, anxiety,
estrogen, cholinergic neurons
1 Introduction

Alzheimer’s disorder (AD) is the most common type of

dementia, which is among the top 10 leading causes of death in

the world (1, 2). It is characterized by disturbances of memory,

attention, and sleep (1, 3). The patients often have difficulties in

their daily life due to their impaired behavioral abilities (4).

Morphologically, amyloid plaques [formed by amyloid-b 1-42

(Ab1-42)] and hyperphosphorylated tau aggregates appear in the

hippocampus, cortex, and amygdala, brain areas that are critical

in cognitive and emotional function (5, 6).

Plenty of risk factors have been identified regarding AD.

These can be lifestyle related, like diet, physical activity, and

environmental conditions, or medical factors, like obesity and

cardiovascular conditions (1). However, the three major risk

factors are age, gender, and genetical mutations (7–9). It is well

known that the incidence of AD is increasing with age, but it is

also important to note that women represent 70% of the patients

(10). The increasing female prevalence among elderly can be due

to hormonal change during menopause (11, 12). Namely, the

low levels of sex steroids, like 17b-estradiol (E2) and

progesterone (PG), may have an important role in the

pathomechanism (13). Indeed, both E2 and PG play a pivotal

role in neuroprotection, thereby improving cognitive function,

memory, attention, synaptic plasticity, spine density, and

dendrite formation (14–17). The loss of the ovarian hormones

can affect these functions, and also increase the appearance of

amyloidogenic markers, aggravating the progression of AD (18–

20). Beside the natural decrease in ovarian steroids during

menopause, the surgical removal of the gland in younger

generation may also have detrimental effect on their cognitive

capabilities (21, 22). It is estimated that, in USA, 100,000 cases of
02
52
dementia may be attributable annually to bilateral

oophorectomy (23). This later state can be modeled by

ovariectomy (OVX) in animals (24, 25).

AD can also be characterized by genetical mutations,

leading to family accumulations. Research has identified five

main “AD genes”: apolipoprotein E (ApoE) ϵ4 allele, amyloid

precursor protein (APP), presenilin-1 (PSEN1), presenilin-2

(PSEN2), and microtubule-associated protein tau (MAPT).

These genes may contribute to the formation of amyloid

plaques, leading to memory loss and behavioral changes (8,

26–33), as well as to different tauopathies such as AD (34, 35).

Genetic animal models were generated based on these human

mutations. The triple transgenic mouse (3xTg-AD), bearing

the humanoid mutation of APP, PSEN1, and tau, is widely

used and well characterized (36–38). This mouse strain

develops AD-l ike structural (amyloid plaques and

hyperphosphorylated tau) and behavioral (progressive

cognitive decline) symptoms.

The most relevant and affected neurocircuit in AD patients is

the cholinergic system (39, 40), most of all the basal forebrain

cholinergic (BFC) neurons (41, 42), being the main therapeutic

target (43). The cholinergic neurons from the medial septum

(MS), nucleus basalis magnocellularis (NBM), and substantia

innominata complex are highly affected in AD, and also express

E2 receptors (44–48), proving the importance of sexual steroids

in the pathophysiology of the disease. OVX may decrease, while

E2 treatment normalizes the number of cholinergic neurons in

the BFC, as well as the length and branching of these neurons

(49–51). In the 3xTg-AD mouse model, a cholinergic decline

was also discovered, showing the loss of ChAT immunoreactive

neurons in the MS and in the vertical limb of the diagonal band

of Broca (52, 53).
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Based on the important role of sexual steroids in neuronal

health and their role in mental diseases, we aimed to investigate

the aggravating effect of hormone deprivation induced by

bilateral OVX on AD-related somatic, behavioral, and

histological changes in the 3xTg-AD mice. The lack of E2 and

PG may anticipate difficulties in cognitive function and anxiety-

related behavior, perturbs somatic characteristics (like body

weight or body fat ratio), and assumes morphological changes

on amyloid deposition and in the cholinergic system. To test this

hypothesis, the following concepts were used: (I) As OVX is

often accompanied by body weight increase (54), and uterus

weight decrease (55, 56), we were concentrating on these somatic

parameters mainly to confirm the effectiveness of the OVX

surgery. (II) The major symptom of dementia is cognitive

disability; therefore, we used behavioral tests measuring (57)

(i) short-term memory [Y-maze, often used in AD testing (58);

based on spontaneous exploration of the mice]; (ii) social

discrimination (SD); (iii) spatial memory [Morris water maze

(MWM) as the gold standard in AD research (59, 60); also

known as avoidance-based complex association]; (iv) reward-

based simple association [operant conditioning (OC)]; and (v)

punishment-based simple association [conditioned fear test

(CFT)]. (III) As anxiety is often comorbid with AD (61, 62),

and is a core symptom during menopause, or after OVX (63), we

tested these symptoms by (i) elevated plus maze (EPM), as a gold

standard in anxiety research (64), showing changes during the

menstrual cycle (65); (ii) light–dark box (LD) test, which utilizes

the fear from open, light spaces, similarly to EPM; and (iii) fox

odor test (FOT), measuring the innate fear from a predator odor.

(IV) At the structural level, we were concentrating on Ab
accumulation as well as cholinergic cell and fiber loss.
2 Materials and methods

2.1 Mouse strains

Three-month-old 3xTg-AD [B6;129-Tg(APPSwe,tauP301L)

1Lfa Psen1tm1Mpm/Mmjax] mice and their control strains

(C57BL6/J) were used (66). This age corresponds to young

adult humans without hormonal disturbances. The 3xTg-AD

animals were homozygotes for three AD-related human-based

genetic mutations: PSEN1, APPSwe, and tauP30IL (36–38). We

maintained the colony by breeding homozygous mice to each

other. Only females were used in this experiment. All animals

were bred and housed at the Institute of Experimental Medicine,

Budapest, Hungary. The mice were maintained under reversed

light–dark cycle (lights off at 8:00 a.m., lights on at 8:00 p.m.)

and provided with standard mice chow [without estrogen-free

dietary restrictions (67)] and water ad libitum. The animal

rooms have a temperature of 22 ± 2°C and a relative humidity

of 55 ± 10%. All tests were approved by the local committee of

animal health and care (PE/EA/918-7/2019) and performed
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according to the European Communities Council Directive

recommendations for the care and use of laboratory animals

(2010/63/EU).
2.2 Experimental design

Mice were ovariectomized (OVX) or Sham operated

without removing the ovaries (Sham), under ketamine–

xylazine anesthesia (dose: 125 mg/kg ketamine and 25 mg/kg

xylazine dissolved in 0.9% saline, administered in 10 ml/kg

concentration intraperitoneally). During surgery, the animals

were divided into the following four groups: (1) Control-Sham

(n = 8), (2) Control-OVX (n = 9), (3) 3xTg-AD-Sham (n = 7),

and (4) 3xTg-AD-OVX (n = 12) (Figure 1A; the unequal

animal numbers are due to surgical-related loss). Two series

were conducted; each contained all four groups. After 1 month,

a magnetic resonance imaging (MRI) measurement was

performed. During this period, the ovarian hormones were

supposed to disappear [maximal luteinizing hormone levels

can be detected at this point (68)] and enough time has passed

for the development of supposed behavioral changes. Then, the

following behavioral test battery was used: Y-maze, SD, EPM,

LD, FOT, MWM, OC, and CFT, with at least 24-h rest between

the different tests (Figure 1B). The order of the tests was chosen

from the milder stressors (5–10 min single test) to more

burdensome ones (through restricted diet in OC till foot

shock in CFT). All behavioral tests were performed during

the first half of the active (dark) cycle (between 9:00 a.m. and

2:00 p.m.). At the end of the experiments, animals were

sacrificed, and brains were dissected and post-fixed in 4%

PFA for 24 h, dehydrated in 30% sucrose solution for 24 h,

and then 30-μm-thick slices were made with a freezing

microtome (Leica SM2010 R). Uterus dissection and

weighting were also performed to validate the success of the

OVX. Due to technical reasons (e.g., missing video recording

and loss of brain slide during staining) in some experiments,

data from one to two animals are missing.
2.3 Magnetic resonance imaging
measurements

Body composition (body weight, fat, lean, free water, and

total water) measurements were performed with a body

composition analyzer for live small animals (EchoMRI™-700,

EchoMRI LLC, Houston, TX), as described by the manufacturer.

The animals were put in a restrainer and placed in the MRI

machine for approximately 1 min (Figure 2A). The

measurement was done in duplicate consecutively, without a

time gap, and averaged. The body fat and lean weight were

expressed as percentage of the body weight, and hydration ratio

was calculated as the following:
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HR =
total  water − free  water

lean
� 100
2.4 Behavioral tests

2.4.1 Cognitive behavioral tests
2.4.1.1 Y-maze test

The test was performed in a Y-shaped apparatus, with 3

arms (A, B, and C), with 30 × 7 × 20 cm dimensions, and in a 15–

20 lux environment (Figure 3A) (57). Mice were placed in arm A

and were allowed to explore the maze freely for 10 min. Before

the entry of each animal, the maze was cleaned with 70%

ethanol. Locomotion was calculated based on the total number

of entries, while the spontaneous alternation reflects short-term

memory and was calculated as the percentage (%) of “correct”
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alternation/total alterations. “Correct” alternation means entry

into all three arms on consecutive choices (i.e., ABC, BCA, or

CAB). Parameters were measured manually by an experimenter

blind to the treatment groups.

2.4.1.2 Social discrimination test

The test was performed in a 40 × 40 × 15 cm apparatus

under red light (69). The experiment consisted of four phases,

each lasting 5 min (Figure 3D). Firstly, the mice were placed in

the box for acclimatization [open-field phase (OF)]. Secondly,

two metal cages were placed into the box and fear from objects as

well as side preference was evaluated. The goal was to habituate

the animals to the container (object habituation). Then, a

stimulus mouse [C57BL6, 25- to 30-day-old male, test naïve,

sexually immature (70)] was placed under one of the metal cages

(sociability phase). In the last 5 min, another stimulus mouse
A

B

FIGURE 1

Experimental design. (A) Three-month-old female 3xTg-AD and C57BL6/J mice were used and divided into the following groups: (1) Control-
Sham (n = 8), (2) Control-OVX (n = 9), (3) 3xTg-AD-Sham (n = 7), and (4) 3xTg-AD-OVX (n = 12). (B) Chronological order of experimental
procedures. On 3-month-old mice, a bilateral ovariectomy (OVX) or Sham surgery was performed, then after 1 month, magnetic resonance
imaging (MRI) measurements were conducted followed by behavioral experiments in this order: Y-maze, social discrimination (SD), elevated
plus maze (EPM), light–dark box (LD), fox odor test (FOT), Morris water maze (MWM), operant conditioning (OC), and conditioned fear test
(CFT). The duration and time between different tests are marked in the chronological axis as days (d). At the end of the experiment, uterus and
brain were dissected for histological staining. OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder.
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was placed under the other metal cage, and the position of the

two cages was swapped [social discrimination (SD)]. The mice

were left to explore freely the two animals. In the OF, the

distance moved, and the time spent in the central or

peripheral zone was analyzed automatically by EthoVision XT

(Noldus IT, Wageningen, The Netherlands, version 15). Other

parts of the test were analyzed using Solomon Coder (Solomon

Coder, Hungary; https://solomoncoder.com/) by an

experimenter blind to the treatment groups. The time and

frequency sniffing the left or right container were evaluated.

The sociability index (third phase) was calculated as:

SI =
time   spent   sniffing   the  mice   container

time   spent   sniffing   the  mice   container + empty   container *
100

The discrimination index (DI, fourth phase) was calculated

as:

DI =
time   spent   sniffing   new − old  mice
time   spent   sniffing   new + old  mice
2.4.1.3 Morris water maze test

A plastic circular pool (90 cm in diameter and 40 cm in

height) was filled with tap water (24 ± 2°C), made opaque by

white wall paint (Figure 4A) (38). A platform (6 cm in diameter)

was placed 1 cm above the water for learning day 1, then moved

1 cm lower than the level of the water for days 2–5. The

apparatus was divided into four quadrants and the platform

was installed in the middle of one quadrant. Mice were released

into the water from different points across trials (Figure 4A,

marks 1–4) and were allowed to swim freely for 60 s to find the

platform. If the mice could not find the platform during the

1 min, then it was guided there and left on the platform for 10 s.

The learning phase (days 1–5) consisted of four trials with 30-

min intertrial interval (ITI) when the animals were dried by a

towel and returned to their home cages. On day 6 (probe day),

the platform was removed from the water and the mice had 60 s

to search for it. Latency to reach the platform during the learning

phase was recorded manually, while during the probe test, time

spent in different zones was calculated by EthoVision XT 15.

2.4.1.4 Operant conditioning test

The test was performed in an automated operant chamber

(Med Associates, St. Albans, VT, USA) with two nose holes

(Figure 5A) (57). As a reward, 45 mg of food pellets (Bio-Serv

Dustless Precision Rodent Pellet, Bilaney Consultants GmbH,

Germany) was used (71). Animals were placed inside a test

chamber for 30 min to freely explore the environment. A nose

poke into one of the nose holes was immediately associated with

a reward followed by a 25-s-long time out with the chamber light

switched on (time-out period), while the other nose hole was not

baited (incorrect). During the time-out period, responses were

not rewarded, but were registered. The test was divided into two
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phases: habituation (days 1–2) and learning (days 3–7), and data

only from the learning phase is shown (Figures 5B, C, days 1–5).

Reward preference (RP) (ratio of responses on the rewarded

nose hole) was calculated. Number of rewarded responses and

time-out reward hole nose pokes were also recorded.

RP =  
correct   nose   poke

incorrect + correct   nose   poke
 �   100

2.4.1.5 Conditioned fear test

The mouse was placed into a Plexiglas chamber (25 × 25 ×

30 cm) with an electrical grid floor (Coulbourn Instruments)

that delivered the foot shocks (SuperTech Instruments). For

2.5 min, the animals were left in the boxes for habituation

[baseline (BL)]. Then, at pseudorandom intervals (60–90 s), a

30-s-long conditioned stimulus (CS: 80 dB pure tone at 7 kHz)

was played and co-terminated with an unconditioned stimulus

(foot shock: 0.7 mA, 1 s long, seven times in total), for a total of

11 min (Figure 5D). The following day, the experiment was

repeated, except that the animals did not receive foot shocks at

the end of the CSs (72). The chambers were cleaned with soap

water and water after every trial. The experiment was conducted

in bright light (700 lux). Time spent in immobility was measured

automatically by Ethovision XT 15 on the second day. Time

spent in immobility was calculated for the BL (mean for 10 s) as

well as for CSs (mean for 7 CS per 10 s).

2.4.2 Anxiety-related behavioral tests
2.4.2.1 Elevated plus maze test

A plus-shaped device was used, which comprised two

opposite open arms and two enclosed arms (30 × 7 × 30 cm)

(Figure 6A) (73). The mice were placed in the center of the

apparatus facing the open arm and were allowed to explore the

maze for 5 min. Before the entry of each animal, the maze was

cleaned with 70% ethanol. The time spent and number of entries

into the different arms as well as the distance moved (cm) were

quantified with EthoVision XT 15. The open arm preference

(OP) (74) was calculated as:

OP =  
open   arm   entries

open   arm   entries + closed   arm   entries
2.4.2.2 Light–dark box test

LD was performed in a 40 × 20 × 25 cm box, which had two

compartments: a light (white colored) compartment that is open

from above and a dark (black colored) compartment that is closed

from every side (Figure 6B). A small gate (5 × 5 cm) between the

two compartments, where the animal can freely pass, was present.

The mice were placed in the light part of the box and were allowed

to explore the environment for 10 min. The duration of time spent

in each compartment, the total number of entries, and latency to

dark compartments were measured by Solomon Coder.
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2.4.2.3 Fox odor avoidance test

Exposure to fox-derived synthetic predator odor, 2-methyl-

2-thriazoline (2MT, #M83406, Sigma Aldrich), was performed

in a separate experimental room under a fume hood. A

transparent Plexiglas arena (43 × 27 × 19 cm) was used

(Figure 7A). During the test, a 2MT solution-soaked filter

paper (40 ml in 1 ml of distilled water, 50 ml/animal) was

placed in a plastic 50-ml conical tube cap in one corner of the

box (75). A 7 × 11 cm “odor zone” around the odor source was

defined. The opposite part (25%) of the box was appointed as

“avoidance zone”. During the test, the animal was placed in the

avoidance zone and left to freely explore the arena for 10 min.

Time spent in the odor zone and the distance moved (cm) was

measured with EthoVision XT 15. Different anxiety-related

behaviors, like the time spent freezing, grooming, and sniffing

as well as the exploratory behaviors like time spent rearing and

exploring was analyzed manually by Solomon Coder by an

experimenter blind to the treatment groups.
2.5 Histological evaluations

2.5.1 Hematoxylin–eosin staining for uterus
morphology

After weighing, uteruses were fixed in 4% PFA for 24 h, then

dehydrated with 30% sucrose solution. Thirty-micrometer slices

were made with a freezing microtome (Leica SM2010 R).

Hematoxylin–eosin (HE) staining was performed on the slices

to see morphological changes in the epithelium layer thickness,

lumen size, and the integrity of the endometrial glands

(Figure 8A). Samples were imaged with a Nikon Eclipse E1 R

(Nikon, Tokyo, Japan) microscope at 4× magnification.

2.5.2 Amyloid-b1-42 and choline
acetyltransferase immunohistochemistry

For Ab1-42 and ChAT staining, peroxidase-based

immunohistochemistry with nickel-diaminobenzidine

tetrahydrochloride (Ni-DAB) visualization was undertaken (17).

Firstly, only for the Ab staining, a 10-min concentrated formic acid

(Sigma-Aldrich, #F0507) exploration was implemented. Secondly,

endogen peroxidase was blocked by a 3% peroxide (H2O2) solution.

After blocking, slices were incubated 72 h with the primary antibody

recognizing Ab (Rabbit, 1:500, Invitrogen, #71-5800) or ChAT

(Goat, 1:1,000, Millipore, #AB144P). After 72 h, brain slices were

incubated with a biotinylated secondary antibody (biotinylated anti-

rabbit, 1:200, Jackson ImmunoResearch, #111-065-003 or

biotinylated anti-goat 1:200, Jackson ImmunoResearch, #705-065-

147) at room temperature (RT), for 2 h. An avidin–biotin kit

(VECTASTAIN Elite ABC-Peroxidase Kits, PK-6100, Vector

Laboratories) was used for 2 h, RT, to detect biotinylated

molecules. Then, the visualization was performed with a Ni-DAB

and glucose oxidase mixture. Samples were imaged with a Nikon

Eclipse E1 R (Nikon, Tokyo, Japan)microscope at 4×magnification.
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In case of Ab plaques, the integrated optical density (IOD)

was measured by ImageJ/Fiji in the basolateral amygdala (BLA),

the somatosensory and motor cortex (CTX) between Bregma

0.50 mm and −1.20 mm, and the CA1 region of the

hippocampus (CA1-HC) between Bregma −1.19 mm and

−2.69 mm (Figure 9A). In other brain areas of 5-month-old

3xTg-AD mice, no amyloid deposition was found. After ChAT

staining, the number of ChAT-positive cells was counted in the

NBM, a brain region containing cholinergic cell bodies, and

highly affected in AD (Figure 10A) (76, 77).

2.5.3 Acetylcholinesterase histochemistry
To label cholinergic fibers in the somatosensory cortex (SSC),

the target area of the NBM neurons (78), an AChE histochemistry

was performed (17). Slices were selected from the coordinates:

Bregma +0.50 mm to −1.06 mm (Figure 10A). Free-floating brain

slices were incubated in a mixture of sodium acetate buffer (0.1 M;

pH 6) acetylthiocholine iodide (0.05%), sodium citrate (0.1 M),

copper sulfate (0.03 M), and potassium ferricyanide (5 mM). This

was followed by ammonium sulfide (1%) and then silver nitrate

(1%) incubation (17, 79). Analysis was performed with ImageJ/Fiji

software. Samples were imaged with a Nikon Eclipse E1 R (Nikon,

Tokyo, Japan)microscope at 10×magnification. IODwasmeasured

between layer IV and V of the SSC (Figure 10A).
2.6 Z-score calculations

Integrated z-score was calculated for four major parameters:

somatic, cognitive, anxiety, and locomotion, as proposed by

Guilloux et al. (80), and previously presented in (73, 81). For

each parameter, a normalized value (studentization) was

calculated according to the following equation:

z − score =  
individual   value −meancontrol

standard   deviationcontrol

and the included parameters were adjusted to have the same

directionality. Somatic z-score was calculated from the averages

of body weight change, fat/BW percentage, and uterus weight

(×−1) z-scores. Cognitive z-score was calculated from alteration

in the Y-maze; the area under the curve (AUC) of the latencies to

platform during learning days 1–5 in MWM (×−1), and latency

to platform on the probe day (×−1) in MWM; average freezing

during baseline and conditioned stimuli in CFT; and the AUC of

the reward preference learning days 3–7 in operant

conditioning. Anxiety z-score was averaged from the z-scores

of open arm duration (×0.5) and open arm preference (×0.5) in

EPM; time spent in light compartment in LD; time spent

freezing (×−1) and percentage of time spent in the odor zone

in FOT; and percentage of time spent with freezing in CFT day 2

(×−1). Locomotion z-score was calculated from the parameters

that reflected mobility in the given experiment [distance moved

in EPM (×0.5), OF and fox odor tests; total number of entries in
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the Y-maze, EPM (×0.5), and LD], then averaged for each

animal. Somatic, cognitive, anxiety, and locomotor z-scores

were averaged for every group and statistically tested. If

multiple parameters indicating the same meaning within an

experiment were included in averaged z-score calculations (e.g.,

distance moved and closed arm entries on EPM in the

locomotion z-score), then they were multiplied by ×0.5 in

order to avoid unwanted weighting of the specific test.
2.7 Statistical analysis

GraphPad Prism (version 6.0) was used for statistical

analyses. Two-way ANOVA (MRI, Y-maze, OF, Sociability,

SD, EPM, LD box, FOT, and histology; on factors genotype

and OVX) or repeated-measures ANOVA (MWM, body weight

change, OC, and CFT; additional factor: time) was used to

compare the groups, followed by Tukey HSD or Sidak post-hoc

test. For comparison of two groups, Student’s t-test was used (Ab
staining). All data are presented as mean ± SEM and p< 0.05 was

considered as a statistically significant difference.
3 Results

3.1 Changes in body composition
measured with MRI

Regarding body weight changes, a difference was found

between the two genotypes [F(3,59) = 12.59, p< 0.0001], the

3xTg-AD mice being heavier than the controls. However,

OVX surgery itself increased the body weight during a 40-day

period [F(1,19) = 16.35, p = 0.0007] without any influence of the

genotype (Figure 2B). This increased body weight can be

explained by the increased body fat ratio, where a genotype

effect was also detectable with more fat in 3xTg-AD animals

[F(1,32) = 10.01, p = 0.0034] (Figure 2C). OVX was able to

increase the fat accumulation in both genotypes [F(1,32) = 38.38,

p< 0.0001] (Figure 2C). Simultaneously, lean body weight ratio

decreased [genotype: F(1,32) = 11.97, p = 0.0016, OVX: F(1,32) =

47.45, p< 0.0001] (Figure 2D). A significant negative correlation

between body fat and lean ratio was also detected (r = −0.9870,

p< 0.0001) (Figure 2E). The hydration ratio (((total water − free

water)/lean)*100) of all animals was in the normal range (80 ±

5%), without any effect of genotype or OVX (Figure 2F).
3.2 Behavioral tests

3.2.1 Cognitive behavioral tests
3.2.1.1 Y-maze test

There was no difference between the groups in the main

parameter of short-term memory, the alternation (Figure 3B).
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The 3xTg-ADmice moved significantly less compared to control

animals [F(1,31) = 19.52, p = 0.0001] without any effect or

influence of OVX (Figure 3C).
3.2.1.2 Social discrimination (SD) test

We confirmed the reduced locomotion of 3xTg-AD mice

during the first 5 min OF phase [F(1,32) = 13.80, p = 0.0008],

without OVX effect (Figure 3E). Neither the genotype, nor the

OVX influenced the number of entries or time spent in the

centrum, not even if we corrected it with locomotion (Table 1).

During the object habituation phase, none of the mice

preferred any side; thus, the next phases did not require any

correction (Figure 3F). OVX did not significantly affect the

number of object approaches as well [F(1,32) = 3.05, p =

0.1298; Table 1].

In the sociability phase, every mouse showed more interest

to the stimulus mouse-containing cage [repeated-measures

ANOVA: F(1,32) = 33.81, p< 0.0001; single-sample t-test

against 50%; Control-Sham: t(7) = 4.27, p = 0.0037; Control-

OVX: t(9) = 5.49, p = 0.0004; 3xTg-AD-Sham: t(6) = 3.50, p =

0.0128; 3xTg-AD-OVX: t(9) = 3.90, p = 0.0036] without

significant difference between groups (Figure 3G). There was a

tendency for OVX animals to approach the social container a

fewer number of times [F(1,32) = 3.89, p = 0.0881; Table 1].

In the social discrimination phase, an increased interest

towards the new mouse was detected in all groups [F(1,62) =

7.75, p = 0.0071], suggesting that—in general—the test animals

preferred the new stimulus mice, as expected (Figure 3H).

However, when we checked the groups one by one, only the

Control-OVX group seemed to have intact memory with a

tendency in the 3xTg-AD-OVX group [single-sample t-test

against 0; Control-Sham: t(7) = 1.17, p = 0.2806; Control-OVX:

t(9) = 2.48, p = 0.0348; 3xTg-AD-Sham: t(6) = 0.53, p = 0.6179;

3xTg-AD-OVX: t(9) = 2.03, p = 0.0732]. A larger number of

animals are probably needed for this test to work properly.

Nevertheless, there was no overall difference between groups.
3.2.1.3 Morris water maze test

The latencies to reach the platform showed a significant

improvement in time during the learning phase, independently

from genotypes or surgery [F(4,132) = 43.42, p< 0.0001]

(Figure 4B). At the end of the 5th day, the animals were able

to find the platform within 20 s (o average: 17.01 ± 1.21 s),

suggesting that all groups learned the task. A significant

interaction between OVX and time was detected [F(4,128) =

4.31, p = 0.0026]; the OVX groups started to learn the task a bit

later, as day 2 was not significantly different from day 1 in

contrast to Sham-operated groups. Moreover, during days 4

and 5, the OVX groups differed significantly from the Sham-

operated ones [F(1,32) = 6.09, p = 0.0191], suggesting a flatter

learning curve. Additionally, the fluctuation observable in the

3xTg-AD-OVX group suggests random choice, thus, not
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appropriate learning of this group. The genotype also showed a

tendency for time dependence [F(4,128) = 2.18, p = 0.0744], with

a subtle learning impairment of the 3xTg-AD mice. All the

animals remembered the place of the platform as during the

probe test they spent more than 25% of the time in the platform

quadrant [single-sample t-test against 25; Control-Sham: t(7) =
Frontiers in Endocrinology 08
58
2.14, p = 0.0701; Control-OVX: t(9) = 5.50, p = 0.0004; 3xTg-

AD-Sham: t(6) = 6.12, p = 0.0009; 3xTg-AD-OVX: t(9) = 3.02, p

= 0.0130]. No difference was found between groups in the

probe day in the latency to reach the platform or time spent in

the quadrant, where the platform was during the probe

day (Figure 4C).
A B
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FIGURE 2

Magnetic resonance imaging (MRI) measurements. (A) Representative figure of the procedure. Animals were placed in a restrained tube, then

inserted into an EchoMRI™-700 machine for approximately 1 min. (B) Body weight change of the animals from day 0 to day 40. 3xTg-AD
animals were heavier than their controls (p < 0.0001). OVX induced body weight increase, irrespective of the genotype (p = 0.007). (C) Body fat
percentage at 1-month post-surgery. 3xTg-AD animals had higher body fat percentage [Fat/Body weight (BW)*100] (p = 0.0034), which was
aggravated by OVX in both genotypes (p < 0.0001). (D) Body lean percentage 1-month after surgery. A decrease in the body lean ratio [Lean/
Body weight (BW)*100] was detected after OVX (p < 0.0001), and between the two genotypes (p = 0.0016). (E) Correlation between body fat
and lean ratio. A negative and significant correlation was seen between the body fat and lean ratio (p < 0.0001). (F) Hydration ratio of the
different animal groups. The hydration ratio (HR = ((total water − free water)/lean)*100) was normal in all animals (80% ± 5). OVX, ovariectomy;
3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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3.2.1.4 Operant conditioning test

In reward preference, an improvement during time was

detected [F(4,128) = 9.73, p< 0.0001] without any influence of

the genotype or surgical removal of the ovaries (Figure 5B). In

the number of rewarded responses, a similar time effect was seen

[F(4,128) = 16.10, p< 0.001] (Figure 5C), with a tendency for

genotype × OVX interaction [F(1,32) = 53.49, p = 0.0707]. There

was a tendency for 3xTg-AD-Sham-operated animals to respond

fewer times than Control-Sham-operated ones (p = 0.0794),

while 3xTg-AD animals after OXV responded significantly more

than the Sham-operated ones (p = 0.0407).

3.2.1.5 Conditioned fear test

We expressed the time spent in immobile posture during

different phases as the percentage of the time period to get

comparable values [i.e., the 150-s BL period is hardly

comparable to the 30-s CS periods or random breaks (Br)]
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(Figure 5E). When we were concentrating on CS-induced

changes, there was a significant interaction between the

genotype and OVX [repeated-measures ANOVA on the seven

CS: F(1,31) = 4.72, p = 0.0375]; the OXV increased freezing in

control, but decreased in 3xTg-AD mice. The same effect was

also seen in the cumulative time spent in freezing (in 1-min bins)

(Figure 5F); not surprisingly this time, the interaction was

significant between all three (genotype, OVX, and time)

factors [F(10,320) = 53.26, p = 0.0005]. The time spent with

inactivity during the initial context-dependent phase (BL,

150 s) (Figure 5G) and during the seven CS (conditioned

phase, Figure 5H) was also calculated. Using repeated-

measures ANOVA on context and cue-induced freezing, the

CS, as a cue, significantly elevated the immobility time [F(1,32) =

8.16, p = 0.0075]. There was a tendency again for genotype and

OVX interaction [F(1,32) = 4.03, p = 0.0531]. This was due to the

significant interaction during tone-dependent freezing [F(1,32) =
A B
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C

FIGURE 3

Y-maze and social discrimination (SD) tests. (A) Representative image of the Y-maze apparatus with three arms (A, B, and C). (B) Percentage of
the good alternation in the Y-maze test. There was no significant difference between the groups. (C) Locomotor activity of the animals
represented by the total number of entries. 3xTg-AD animals moved less than controls (p = 0.0001), without any OVX effect. (D) Representative
figure of the different phases of the SD test. (E) Open-field (OF) test was the first 5-min phase of the SD test. A decreased locomotor activity,
expressed in the distance moved (cm), was seen in the 3xTg-AD groups (p = 0.0008). (F) Object habituation phase of the SD test. No side
preference was detected; thus, the next phases did not require any correction. (G) Sociability phase of the SD test. Every test mouse showed
more interest towards the stimulus mouse containing cage (p < 0.0001); asterisks (*) show the result from the single-sample t-test against 50%.
(H) SD phase. An increased interest towards the new mouse was detected in all groups (p = 0.0071). OVX, ovariectomy; 3xTg-AD, triple
transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, **p < 0.01, ***p < 0.001, *p < 0,05.
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5.53, p = 0.0251] (Figure 5H) as no difference was detectable

in the context-dependent phase [F(1 ,32) = 3.12, p =

0.0871] (Figure 5G).
3.2.2 Anxiety-related behavioral tests
3.2.2.1 Elevated plus maze test

There was a significant interaction between genotype and

OVX in the time spent in open arms [F(1,32) = 7.774, p = 0.0088],

and in open arm preference [F(1,32) = 4.484, p = 0.0421]

(Figures 6C, D), but no difference was detected in the time

spent in the closed arm [time %; Control-Sham: 239.52 ± 9.99,

Control-OVX: 250.09 ± 10.68, 3xTg-AD-Sham: 237.62 ± 14.09,

3xTg-AD-OVX: 260.13 ± 7.06; genotype: F(1,32) = 0.1554, p =

0.6961; OVX: F(1,32) = 2.569, p = 0.1188]. More specifically,

Control-OVX animals spent less time in the open arm compared

to the Control-Sham group (p = 0.0192), whose effect was not
Frontiers in Endocrinology 10
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detectable in 3xTg-AD mice. In the locomotion parameters,

similar to distance moved and the number of entries into the

closed arms, no significant differences were detected between the

groups (Figures 6E, F).

3.2.2.2 Light–dark box test

No differences were seen in the anxiety-related parameters

like time spent in the light compartment (Figure 6G). However,

in the locomotor activity represented by the number of entries to

the dark compartment, a genotype effect was detected [F(1,30) =

9.80, p = 0.0039] (Figure 6H). 3xTg-AD animals moved

significantly less than the controls.

3.2.2.3 Fox odor test

A tendency for decreased time spent in the odor zone was

seen in the 3xTg-AD animals compared to the control groups
A

B C

FIGURE 4

Morris water maze (MWM) test. (A) Representative figure of the MWM circular pool, with the location of the hidden platform, and the four
starting points marked with 1–4. The learning phase consisted of 5 days; on each day, 4 × (60 + 10)-s trials were performed, with 30-min
intertrial intervals (ITI). In the probe day (6th) one 60-s trial was done without the platform. (B) Latency to platform in seconds during the 5-day
learning period. An improvement during the learning phase was seen in all groups (p < 0.0001). An interaction between OVX and time was
detected, with a flatter learning curve of the OVX groups (p = 0.0004). (C) Latency to reach the platform on the probe day. No significant
difference was found between the groups in the spatial memory. OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s
disorder. Data are shown as mean ± SEM. **p<0,01.
frontiersin.org

https://doi.org/10.3389/fendo.2022.985424
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Farkas et al. 10.3389/fendo.2022.985424
[F(1,27) = 3.51, p = 0.0719] (Figure 7B). Accordingly, the 3xTg-

AD animals spent more time freezing [F(1,31) = 25.33, p<

0.0001] (Figure 7C) and reared [F(1,31) = 7.15, p = 0.0118]

(Figure 7E) and vertically explored the environment [F(1,31) =

22.48; p< 0.0001] (Figure 7D) less than controls. These may

suggest that 3xTg-AD animals were more anxious in the

presence of a predator odor. A tendency of genotype

difference was also seen in the locomotor activity, expressed

by the distance moved [F(1,31) = 3.46, p = 0.0723] (Figure 7F).

Other parameters (like grooming and sniffing) were not

different between groups and thereby not shown. The OVX

surgery had no significant effect on the parameters examined

during FOT.
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3.3 Z-scores

The somatic z-score showed a significant interaction between

genotype and surgery groups [F(1,32) = 41.35, p < 0.0001] (Table 2).

Animals who underwent OVX surgery had a higher somatic z-

score [F(1,32) = 12.92, p = 0.0010], whose effect was more

pronounced in Control than in 3xTg-AD mice. In cognitive z-

score, no significant differences were detected between the groups.

Anxiety z-score showed an interaction between genotype and

surgery groups [F(1,32) = 23.26, p < 0.0001]. Namely, OVX

increased anxiety in Control, but decreased in 3xTg-AD animals.

Indeed, in general, 3xTg-AD animals had a lower anxiety z-score,

meaning more anxious behavior [F(1,32) = 17.61, p = 0.0002]. The
A B
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FIGURE 5

Operant conditioning (OC) and conditioned fear (CFT) tests. (A) Representative figure of the OC apparatus, with the light on above the reward
associated nose hole. (B) Reward preference (ratio of responses on the rewarded vs. all nose pokes) during the OC test. An improvement during
time was seen in all groups (p < 0.0001). (C) Number of rewarded responses during the OC test. Besides the time effect (p < 0.0001), a
tendency for genotype × OVX interaction was also detected (p = 0.0707). 3xTg-AD animals after OXV responded significantly more than the
Sham-operated ones (p = 0.0407). (D) Representative timeline of the 2 days (D1 and D2) lasting CFT test. D1 started with a 2.5-s baseline (BL)
measurement, followed by a 30-s-long conditioned stimulus (CS: 80 dB pure tone at 7 kHz), which was co-terminated with an unconditioned
stimulus [foot shock (FS): 0.7 mA, 1 s long, seven times in total], for a total of 11 min with random intertrial intervals (ITI, or break, Br). On D2, the
experiment was repeated except that the animals did not receive an FS at the end of the CS. (E) Time spent freezing during CS and Br periods.
For comparability, the values were calculated to 10-s bins. The AD × OVX interaction on CS meant that in the Control-Sham group, OVX
aggravated, while in the 3xTg-AD group, the immobility was diminished (p = 0.0375). (F) The cumulative time spent in freezing (in 1-min bins)
showed interaction between genotype, OVX, and time (p = 0.0005) with similar differences as seen on subgraph (E). (G) Context and (H) tone or
CS-dependent freezing (/10 s) during CFT. Repeated-measures ANOVA on time showed a significant elevation in freezing after CS (p = 0.0075).
Again, a tendency for genotype and OVX interaction was detected (p = 0.0531), mainly due to the differences during tone dependency (p =
0.0251). OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p < 0.05.
frontiersin.org

https://doi.org/10.3389/fendo.2022.985424
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Farkas et al. 10.3389/fendo.2022.985424
A B

D

E F

G H

C

FIGURE 6

Elevated plus maze (EPM) and light–dark box (LD) tests. (A) Representative figure of the EPM apparatus, with two open and two closed arms. (B)
Representative image of the LD equipment, with a light and a dark compartment, separated with a small gateway. (C) Time spent in the open
arm of the EPM. A significant interaction between genotype and surgery groups was detected (p = 0.0088). Control-OVX animals spent less
time in the open arm compared to Control-Sham ones (p = 0.0192). (D) Open arm preference in the EPM test. A significant interaction between
genotype and surgery groups was seen (p = 0.0421). (E) Distance moved (cm) during the 5-min EPM test. No difference between the groups
was detected. (F) Total number of entries into the closed arms in the EPM test. Differences between the groups were not significant. (G) Time
spent in the light compartment during the LD test. No difference regarding genotype or OVX surgery was detected. (H) Number of entries in the
dark compartment during LD test. 3xTg-AD mice moved significantly less, than controls (p = 0.0044), without any OVX effect. OVX,
ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p < 0.05, **p < 0.01.
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locomotor differences were also supported by its z-score. Namely,

the 3xTg-AD animals had a lower z-score number, meaning, in

general, they moved less [F(1,32) = 19.64, p = 0.0001]. A significant

interaction between genotype and surgery groups was also detected

[F(1,32) = 27.45, p < 0.0001]. More specifically, OVX reduced

locomotion in Control, but not that much in 3xTg-AD mice,

which was moving less even before that.
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3.4 Histological evaluations

3.4.1 Uterus
The representative pictures with HE staining showed

increased epithelium thickness, deteriorated endometrial

glands, and a substantial difference between the size of the

uterus and lumen (Figure 8A). Both in the control and 3xTg-
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FIGURE 7

Fox odor test (FOT). (A) Representative figure of the FOT apparatus, presented with the odor zone [where the 2-methyl-2-thriazoline (2MT, fox
odor) was placed] and the avoidance zone (distant part from the odor). (B) Time (in seconds) spent in the odor zone. No significant difference
between genotypes or between surgery groups was detected. (C) Time (in seconds) spent freezing. 3xTg-AD mice spent more time freezing
compared to control groups (p < 0.0001). (D) Time (in seconds) spent exploring the FOT box. The 3xTg-AD group showed reduced exploration
time compared to controls (p < 0.0001). (E) Time (in seconds) spent rearing. A genotype effect was visible with less vertical movement in 3xTg-
AD animals (p = 0.0118). (F) Distance moved (cm). A tendency for genotype difference was seen, with the 3xTg-AD mice moving less than
controls (p = 0.0723). OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p <
0.05, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fendo.2022.985424
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Farkas et al. 10.3389/fendo.2022.985424
AD groups, the normalized weight of the uterus was significantly

lower after OVX compared to the Sham group [F(1,31) = 121.80,

p< 0.0001] (Figure 8B).

3.4.2 Amyloid-b accumulation in different
brain areas

Amyloid-b plaques were only quantified in 3xTg-AD mice,

because no deposition was detected in the Control-Sham or

Control-OVX groups (see Supplementary Figure 1). In the BLA,

the 3xTg-AD-OVX mice had significantly more plaques than

their Sham-operated mates [t(9) = 2.72, p = 0.0236] (Figures 9B,

C). In the CTX and CA1-HC, no significant effect of OVX was

found (Figures 9D–G).

3.4.3 Morphological changes in the cholinergic
system

ChAT-positive cells were counted in the NBM region. We

found no difference in the number of the cells between 3xTg-AD

and control animal, neither in Sham-operated nor in OVX

groups (Figure 10C). However, the AChE fiber density was

significantly decreased in 3xTg-AD animals [F(1,22) =29.49, p<

0.0001], with a significant interaction between genotype and

OVX [F(1,22) = 11.61, p = 0.0025]. In 3xTg-AD mice, OVX

surgery exacerbated the fiber loss compared to the Sham group

(p = 0.0147) (Figures 10B, D).
4 Discussion

In contrast to our hypothesis, OVX did not aggravate the

appearance of AD-related symptoms in the cognitive behavioral

tests , but in morphological examinations, signs of
Frontiers in Endocrinology 14
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neurodegeneration were visible (see amyloid deposition in the

BLA, and cholinergic fiber density in the SSC). Table 3 contains

the summary of the changes.

We confirmed that our model worked, as OVX induced the

expected increase in body weight with fat accumulation as well

as decrease in uterus weight and lean body percentage. The lack

of sexual steroids can cause an increased risk for obesity, since E2

and PG also mediate glucose and lipid metabolism, and also

affects adipocyte physiology (54, 82, 83). Indeed, in human

studies, an increased visceral fat mass can be seen on women

after menopause (84, 85). This is supported in mice by our MRI

findings, where the body fat ratio of the OVX groups increased.

Importantly, obesity is a prominent risk factor for AD:

increasing Ab plaques, adipokines, and cytokines, and effecting

insulin homeostasis [reviewed in (86–88)]. Thus, this might be

associated with how OVX might aggravate the development of

AD-like symptoms. In support, 3xTg-AD animals per se were

fatter and greasier, suggesting—together with the OC data—

some metabolic disturbances, which require further studies. In

contrast, after OVX, the weight of the uterus decreased, which

can be explained by the estrogen deficit. Indeed, E2 has a

proliferative effect on the uterus; hence, its lack causes

hypotrophy (55, 89, 90). In future studies, luteinizing hormone

measurements can help better understand the effect of OVX on

the hypothalamic–hypophyseal–gonadal axis and their role in

the development of AD (91–93). The MRI data also showed a

decreased body lean ratio in the OVX groups, which may be the

prodrome of a most common problem in menopausal patients,

osteoporosis. Indeed, female sex hormone depletion was linked

closely to low bone mineral density (94). Estrogen receptors can

be also found in the bone, mediating protection of the bone

structure, by inhibiting osteoclast activity and stimulating
A B

FIGURE 8

Changes in the uterus 2 months after Sham or OVX surgery. (A) Representative figure of the uterus stained with hematoxylin–eosin (HE). A
decrease in size and epithelial layer thickness, and damaged integrity of the endometrial glands is visible. (B) Uterus weight normalized to the
body weight (BW) of the animals. A significant decrease was seen after OVX surgery (p < 0.0001). OVX, ovariectomy; 3xTg-AD, triple transgenic
mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, ****p < 0.0001. Scale bar, 200 µm.
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development of long bones and pubic epiphyses (94–96). The

OVX-induced somatic changes presented in the literature were

also supported by the somatic z-score, calculated from the body

weight change, body fat ratio, and uterus weight. Interestingly,

the OVX-induced changes were smaller in 3xTg-AD mice (see

genotype × OVX interaction in somatic z-score).
Frontiers in Endocrinology 15
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As the major symptom of dementia is the cognitive decline,

we evaluated five different memory tests to have a

comprehensive picture. They measure different modalities

[spontaneous exploration (Y-maze), social stimulus, simple

association-based reward (OC) or punishment (CFT), or even

complex association based on spatial memory (MWM)]. The
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FIGURE 9

Immunohistochemical staining (NiDAB) of amyloid-b1-42 (Ab) plaques in different brain regions. There was no Ab signal detectable in the brain of
control animals; therefore, we compared 3xTg-AD with and without ovariectomy (OVX). (A) Representative figures based on the Paxinos Mouse
Brain atlas (4th Edition) about the brain regions of interest, framed with red: Basolateral amygdala (BLA), at Bregma −1.23 mm, Motor and
somatosensory cortex (CTX) at Bregma −1.07 mm, and CA1 hippocampal region (CA1-HC) presented at Bregma −2.15 mm. (B) Representative
pictures of Ab plaques in the BLA of the 3xTg-AD animals after Sham or OVX surgery. (C) The integrated optical density (IOD) of Ab plaques
measured in the BLA. A significant increase was detected after OVX surgery (p = 0.0236). (D) Representative pictures of Ab plaques in the CTX in
3xTg-AD animals after Sham or OVX surgery. (E) The IOD of Ab plaques measured in the CTX. No significant difference was detected. (F)
Representative pictures of Ab plaques in the CA1-HC of 3xTg-AD animals after Sham or OVX surgery, with a close-up to a small part of the CA1
region. (G) The IOD of Ab plaques measured in the HC. The difference between the two surgery groups was not significant. 3xTg-AD, triple
transgenic mouse model of Alzheimer’s disorder. Data are shown as mean ± SEM, *p < 0.05. Scale bar: 200 µm.
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cumulative effect (z-score) was very similar to the single tests,

with overall ineffectiveness of the genetic deletion in the 3xTg-

AD animals as well as the OVX. According to the literature,

3xTg-AD animals develop memory loss after 6 months (36, 38).
Frontiers in Endocrinology 16
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Hence, for our animals that were between 4 and 5 months old,

the results are not unexpected. However, we could not support

our hypothesis, as the OVX did not aggravate the cognitive

decline (no OVX effect was detected whatsoever). Even the
A

B
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FIGURE 10

Immunohistochemical and histochemical staining of the cholinergic cell bodies and fibers. (A) Neuroanatomical location of the cholinergic
choline-acetyltransferase (ChAT)-positive neurons in the nucleus basalis magnocellularis (NBM) and their acetylcholinesterase (AChE)-positive
fibers in the somatosensory cortex (SSC). Schematic coronal brain section was adapted from Franklin and Paxinos (4th Edition) Mouse Brain
atlas. (B) Representative pictures of the AChE-positive fibers in layers IV and V of SSC. Black bars indicate layers IV and V of the SSC. (C) Number
of ChAT-positive cell bodies in the NBM region, stained with NiDAB immunohistochemistry. No significant difference was detected between
groups. (D) AChE-positive fiber density measured in the SSC, expressed in integrated optical density (IOD). 3xTg-AD mice have a lower AChE
fiber density compared to controls (p < 0.0001), with a significant interaction between groups (p = 0.0025). The decrease in density was
exacerbated by OVX surgery in the 3xTg-AD group (p = 0.0147). OVX, ovariectomy; 3xTg-AD, triple transgenic mouse model of Alzheimer’s
disorder. Data are shown as mean ± SEM, *p < 0.05, ***p < 0.001. Scale bar: (A) AChE staining in the SSC, 50 µm, and ChAT staining in the
NBM, 100 µm. (B) 50 µm.
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Statistics
Control
 Control
 3xTg-AD
 3xTg-AD
fr
Sham
 OVX
 Sham
 OVX
 p-value
Average
 SEM
 Average
 SEM
 Average
 SEM
 Average
 SEM
 Genotype
 OVX
 Interaction
n
-

d se
 % time spent in centrum
 17.01
 2.98
 16.60
 3.33
 16.55
 4.71
 20.22
 4.31
 0.6955
 0.6865
 0.6135
Centrum frequency
 32.00
 3.59
 28.40
 3.65
 25.29
 5.12
 24.91
 3.06
 0.1901
 0.6055
 0.6752
se
 Sniffing
frequency
Cage inside
 20.38
 2.57
 19.30
 3.59
 25.86
 4.54
 13.45
 2.79
 0.9099
 0.0817
 0.1474
Cage outside
 16.13
 2.36
 16.30
 2.65
 21.14
 5.18
 13.27
 2.86
 0.6118
 0.3327
 0.3072
∑
 36.50
 3.75
 35.60
 5.67
 47.00
 9.14
 26.73
 5.26
 0.7353
 0.1298
 0.1696
% time spent with sniffing cages
 22.29
 3.18
 22.74
 3.34
 30.86
 5.16
 20.12
 4.28
 0.3331
 0.3076
 0.2595
Bout length
 0.58
 0.06
 0.69
 0.08
 0.66
 0.11
 0.67
 0.08
 0.5417
 0.3646
 0.7367
Sniffing
frequency
Cage with mouse
 18.38
 4.16
 13.90
 2.05
 22.14
 2.09
 15.64
 2.40
 0.1960
 0.0881
 0.9309
Empty cage
 7.25
 1.91
 13.80
 2.19
 14.29
 1.80
 11.18
 1.93
 0.1979
 0.2901
 0.0391
SI
 76.40
 6.18
 72.97
 4.18
 71.52
 6.14
 70.16
 5.17
 0.4810
 0.6602
 0.8499
Bout length mouse
 3.73
 0.52
 4.85
 0.88
 6.57
 1.88
 5.20
 0.73
 0.5915
 0.5915
 0.4337
n
 Sniffing
frequency
Known mouse
 16.38
 3.19
 16.30
 2.88
 14.86
 1.52
 14.00
 2.73
 0.5045
 0.8701
 0.8909
Unknown mouse
 16.25
 1.41
 18.00
 1.80
 14.57
 2.95
 14.82
 2.74
 0.3173
 0.6792
 0.7554
DI
 0.20
 0.17
 0.25
 0.10
 0.06
 0.11
 0.30
 0.15
 0.7194
 0.2943
 0.4958
Bout length two mice
 2.82
 0.63
 2.86
 0.56
 3.43
 0.53
 3.24
 0.45
 0.3772
 0.8899
 0.8411
ata are expressed as mean ± SEM. The results of the statistical analysis (two-way ANOVA) are presented. Significant differences are marked with red, bold numbers. OVX, ovariectomy;
Tg-AD, triple transgenic mouse model of Alzheimer’s disorder, SI, Sociability index, DI, Discrimination index.
TABLE 2 Z-scores calculated from somatic, cognitive, anxiety, and locomotor parameters.

Type Experimental groups Z-score ± SEM Genotype Surgery Interaction

Somatic Control-Sham (−0.0070) ± 0.1387 p = 0.2902 p = 0.0010 p = 0.0000

Control-OVX 3.8905 ± 0.5631

3xTg-AD-Sham 0.6443 ± 0.4267

3xTg-AD-OVX 3.7049 ± 0.4227

Cognitiv Control-Sham (−0.000) ± 0.1197 p = 0.6754 p = 0.3038 p = 0.2349

Control-OVX 0.1442 ± 0.1645

3xTg-AD-Sham 0.0302 ± 0.2340

3xTg-AD-OVX 0.2686 ± 0.1861

Anxiety Control-Sham 0.0000 ± 0.3964 p = 0.0002 p = 0.8743 p = 0.0000

Control-OVX (−0.2518) ± 0.4862

3xTg-AD-Sham (−2.0022) ± 0.2444

3xTg-AD-OVX (−1.6222) ± 0.3366

Locomotor Control-Sham 0.000 ± 0.4750 p = 0.0001 p = 0.6097 p = 0.0000

Control-OVX (−0.4145) ± 0.6432

3xTg-AD-Sham (−2.4225) ± 0.4375

3xTg-AD-OVX (−2.5365) ± 0.3748
Data are expressed as z-score (mean) ± SEM. Statistical data (two-way ANOVA) is presented. Significant differences are marked with red, bold numbers. OVX, ovariectomy; 3xTg-AD,
triple transgenic mouse model of Alzheimer’s disorder.
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tendencies for learning impairment in MWM were detected

separately for OVX and AD without any interaction. The only

genotype × OVX interaction in cognition was seen during the

CS-induced freezing in CFT, when OVX aggravated the

symptoms in Control, but decreased in 3xTg-AD animals.

Although we used CFT as an associative learning and memory

test (97), its result strongly depends on the animal’s anxiety state

(98). Indeed, these CFT results were very similar to the anxiety z-

score data. The intact memory can also be explained by the lack

of Ab deposition in the hippocampus and cortical areas (99,

100). We might assume that more time is needed for the

development of the symptoms; therefore, investigating

memory deficit would be informative with older animals only

even after OVX (101).

Anxiety is a core symptom of postmenopausal women (102),

as well as might be comorbid with AD (103). However, anxiety

symptoms remain largely unexplored, despite the significant

impact on quality of life, if not diagnosed and treated (102).

As anxiety is associated with both AD and OVX (23), we

assumed that both interventions will increase its level in mice,

with a possible synergistic effect. However, we found a significant
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anxiogenic effect of OVX in EPM only, the most frequently used

anxiety test (64, 104). On the contrary, an AD effect was visible

in the FOT test measuring innate fear and anxiety-related

behavior (75). We found that 3xTg-AD animals spend more

time freezing, which suggests that these animals were more

frightened (75, 105). Also, 3xTg-AD animals spend less time

exploring and rearing, which might reflect anxiety, too (see

immobility in CFT) (106). Nevertheless, these findings may be

related to the increased Ab deposition in the BLA (Figure 9), as

this region is responsible for formation of fear-related responses

and can be linked to anxious behavior (105, 107–109). The

increased overall anxiety z-score of 3xTg-AD animals coincides

with the increased anxiety in human AD patients (110, 111).

Moreover, the locomotor activity shown by the different

behavioral tests (distance moved in EPM, OF, and FOT; total

number of entries in the Y-maze; and number of entries to

closed arms or dark compartment in EPM and LD) and the

locomotion z-score calculated from these parameters showed a

difference between the two genotypes with lower levels in 3xTg-

AD animals. In line with previous results, this decreased

locomotor activity may reflect anxious behavior. However, we
TABLE 3 Summary table of the main effect of genotype, OVX surgery, and interaction between the two parameters in the different procedures.

Category Parameters 3xTg-AD OVX Interaction

Somatic Body weight ↑ ↑ Ø

Fat ↑ ↑ Ø

Lean ↓ ↓ Ø

Uterus Ø ↓ Ø

Z-score Ø ↑ +

Cognitiv Short term in Y-maze Ø Ø Ø

SD Ø Ø Ø

MWM Ø Ø Ø

OC ↓ Ø Ø

CFT: freezing ↑ Ø +

Z-score Ø Ø Ø

Anxiety EPM: open arm time Ø ↓ +

EPM: open arm preference Ø Ø +

LD Ø Ø Ø

Fox odor ↑ Ø Ø

Z-score ↑ Ø +

Locomotor Y-maze ↓ Ø Ø

OF ↓ Ø Ø

EPM (↓) Ø Ø

LD box ↓ Ø Ø

Fox odor (↓) Ø Ø

Z-score ↓ Ø +

Social interaction Sociability Ø Ø Ø

Morphology Amyloid-b N.M. ↑ N.M.

ChAT cell number Ø Ø Ø

AChE fiber density Ø ↓ +
f

Up arrow ↑—increased, Down arrow ↓—decreased, Ø—no effect, +—positive interaction, ()—tendency, N.M. not measured.
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cannot close out a moderate motoric disabilities as well (112,

113). The decrease in movement can be related to the presence of

Ab in the motoric and somatosensory cortex (Figure 9) (114).

Nevertheless, in line with an anxious phenotype, OVX also

decreased locomotion, which was mainly detectable in

controls. In support, volcano mice presented a scalloped

pattern of daily activity during the estrous cycle and OVX

reduced the total movement (115). Moreover, in estrogen

receptor knockout mice (on C57BL6 background), E2 injection

to OVX animals increased total activity and amplitude (116).

The smaller effects in the AD model might be due to the already

low levels, which cannot be easily decreased further.

Despite subtle behavioral changes, morphological changes

were more equivocal. Namely, Ab plaques, one of the most

characteristic morphological changes of AD (99, 117), appeared

only in 3xTg-AD animals; however, we could detect their presence

already around 5 months. Although we expected that OXV alone

will lead to the appearance of pathological hallmarks in control

animals, in humans, OVX induced behavioral and morphological

changes only in the elderly or those having genetic mutations [e.g.,

ApoE-4 genotype (118–120)]. In line with this, OVX was able to

increase the number of amyloid plaques in the 3xTg-AD animals,

further increasing the translational values of our model. However,

we detected changes in the BLA, but not in the HC and CTX. We

have to note that in much older animals, OVX-induced Ab
formation was found also in the CTX and HC (121–123). Thus,

BLA might be a sensitive area, where changes occur earlier than in

other parts of the brain. It is known that stress, i.e.,

glucocorticoids, increases excitability of BLA, while E2 decreases

it (124). Thus, in our hands, repeated testing, as a stressor, as well

as E2 decline due to OVX, might have promoted the stress

sensitivity of BLA (125, 126). In support of the E2 effect, the

replacement of the hormone after OVX can decrease the number

and density of Ab plaques in rodents (25, 100, 121). This is also in

line with human studies, where OXV patients were treated with

hormone replacement therapy, resulting in no difference in Ab
deposition (120). These differences (namely, age, genetic

predisposition, and hormone replacement) might be the cause

of the controversy in the literature on OVX-induced amyloidosis

in the brain reported to be missing by some (120, 127) or

increased by others (13, 128–130). However, Palm et al., also

using 3xTg-AD mice, showed no difference after E2 treatment in

Ab deposition (123), while Carroll et al. (121) used PG to reduce

the p-Tau accumulation in the CA1 region of the hippocampus,

subiculum, and frontal cortex.

The novelty of our study is that we included more behavioral

tests and examined the cholinergic system as well. The

importance of the cholinergic system in AD is outstanding,

being the target of almost all the drugs in the market (131, 132).

Thus, we decided to examine the cell numbers in the NBM (133),

and their projections to the SSC (79). In the ChAT-positive cell

numbers, no difference was found in 5-month-old mice,
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probably because of their young age. However, AChE-positive

fiber degeneration was detected in 3xTg-AD mice and even

aggravated after OVX, suggesting that axonal and dendritic

degenerations start earlier than behavioral decline (114, 134).

Our study has certain limitations. First, we used standard

diet, and phytoestrogens might have influenced the outcome.

Next, we did not monitor the cycle, and the cyclic changes might

increase variability in Sham-operated groups. Furthermore, to

keep the number of used animals as low as possible, we used

repeated testing, which might influence each other’s results. For

some tests, more animals/group might have been required to see

statistically significant differences.

All in all, we confirmed that OVX induced menopausal

symptoms and removal of the sexual steroids aggravated the

appearance of AD-related alterations in the brain without

significantly influencing behavior. Thus, the OVX in young, 3-

month-old 3xTg-AD mice might be a suitable model for testing

the effect of new treatment options at the structural level, which

can speed up testing (it is not necessary to wait 6–12 months for

the animals to age). However, to reveal any beneficial effect on

behavior, a later time point might be needed.
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SUPPLEMENTARY FIGURE 1

Immunohistochemical staining (NiDAB) of Amyloid-b1-42 (Ab) plaques in
different brain regions of the control animals. There was no Ab signal

detectable in the brain of control animals, therefore no quantitative

measurement was possible. (A) Representative figures based on the
Paxinos Mouse Brain atlas (4th Edition) about the brain regions of

interest, framed with red: Basolateral amygdala (BLA), at Bregma
-1.23 mm, Motor and somatosensory cortex (CTX) at Bregma -1.07 mm

and CA1 hippocampal region (CA1-HC) presented at Bregma -2.15 mm.
(B) Representative pictures of the BLA of the control animals after Sham or

OVX surgery. (C) Representative pictures of the CTX of control animals

after Sham or OVX surgery. (D) Representative pictures of the HC of
control animals after Sham or OVX surgery, with a close-up to a small part

of the CA1 region. Scale bar: 200µm.
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115. Juárez-Tapia C, Miranda-Anaya M. Ovariectomy influences the circadian
rhythm of locomotor activity and the photic phase shifts in the volcano mouse.
Physiol Behav (2017) 182:77–85. doi: 10.1016/J.PHYSBEH.2017.10.002

116. Royston SE, Yasui N, Kondilis AG, Lord SV, Katzenellenbogen JA, Mahoney
MM. ESR1 and ESR2 differentially regulate daily and circadian activity rhythms in
female mice. Endocrinology (2014) 155:2613–23. doi: 10.1210/EN.2014-1101

117. Kazim SF, Seo JH, Bianchi R, Larson CS, Sharma A, Wong RKS, et al.
Neuronal network excitability in alzheimer’s disease: The puzzle of similar versus
divergent roles of amyloid b and tau. eNeuro (2021) 8(2):ENEURO.0418-20.
doi: 10.1523/ENEURO.0418-20.2020

118. Bove R, Secor E, Chibnik LB, Barnes LL, Schneider JA, Bennett DA, et al.
Age at surgical menopause influences cognitive decline and Alzheimer pathology in
older women. Neurology (2014) 82:222–9. doi: 10.1212/WNL.0000000000000033

119. Mosconi L, Berti V, Dyke J, Schelbaum E, Jett S, Loughlin L, et al. Menopause
impacts human brain structure, connectivity, energy metabolism, and amyloid-beta
deposition. Sci Rep 2021 111 (2021) 11:1–16. doi: 10.1038/s41598-021-90084-y

120. Zeydan B, Tosakulwong N, Schwarz CG, Senjem ML, Gunter JL, Reid RI,
et al. Association of bilateral salpingo-oophorectomy before menopause onset with
medial temporal lobe neurodegeneration. JAMA Neurol (2019) 76:95–100.
doi: 10.1001/JAMANEUROL.2018.3057

121. Carroll JC, Rosario ER, Chang L, Stanczyk FZ, Oddo S, LaFerla FM, et al.
Progesterone and estrogen regulate Alzheimer-like neuropathology in female
Frontiers in Endocrinology 23
73
3xTg-AD mice. J Neurosci (2007) 27:13357. doi: 10.1523/JNEUROSCI.2718-
07.2007

122. Zhao L, Yao J, Mao Z, Chen S, Wang Y, Brinton RD. 17b-estradiol
regulates insulin-degrading enzyme expression via an ERb/PI3-K pathway in
hippocampus: relevance to alzheimer’s prevention. Neurobiol Aging (2011)
32:1949–63. doi: 10.1016/J.NEUROBIOLAGING.2009.12.010

123. Palm R, Chang J, Blair J, Garcia-Mesa Y, Lee HG, Castellani RJ, et al.
Down-regulation of serum gonadotropins but not estrogen replacement improves
cognition in aged-ovariectomized 3xTg AD female mice. J Neurochem (2014)
130:115. doi: 10.1111/JNC.12706

124. Rodrigues SM, Sapolsky RM. Disruption of fear memory through dual-
hormone gene therapy. Biol Psychiatry (2009) 65:441–4. doi: 10.1016/
J.BIOPSYCH.2008.09.003

125. Shansky RM, Hamo C, Hof PR, Lou W, McEwen BS, Morrison JH.
Estrogen promotes stress sensitivity in a prefrontal cortex-amygdala pathway.
Cereb Cortex (2010) 20:2560–7. doi: 10.1093/CERCOR/BHQ003

126. Tian Z,Wang Y, Zhang N, yan GY, Feng B, bing LS, et al. Estrogen receptor
GPR30 exerts anxiolytic effects by maintaining the balance between GABAergic
and glutamatergic transmission in the basolateral amygdala of ovariectomized mice
after stress. Psychoneuroendocrinology (2013) 38:2218–33. doi: 10.1016/
J.PSYNEUEN.2013.04.011

127. Green PS, Bales K, Paul S, Bu G. Estrogen therapy fails to alter amyloid
deposition in the PDAPP model of alzheimer’s disease. Endocrinology (2005)
146:2774–81. doi: 10.1210/EN.2004-1433

128. Ding F, Yao J, Zhao L, Mao Z, Chen S, Brinton RD. Ovariectomy induces a
shift in fuel availability and metabolism in the hippocampus of the female
transgenic model of familial alzheimer’s. PloS One (2013) 8(3):e59825.
doi: 10.1371/JOURNAL.PONE.0059825

129. Levin-Allerhand JA, Lominska CE, Wang J, Smith JD. 17Alpha-estradiol
and 17beta-estradiol treatments are effective in lowering cerebral amyloid-beta
levels in AbetaPPSWE transgenic mice. J Alzheimers Dis (2002) 4:449–57.
doi: 10.3233/JAD-2002-4601

130. Yao Q, Feng M, Yang B, Long Z, Luo S, Luo M, et al. Effects of ovarian
hormone loss on neuritic plaques and autophagic flux in the brains of adult female
APP/PS1 double-transgenic mice. Acta Biochim Biophys Sin (Shanghai) (2018)
50:447–55. doi: 10.1093/ABBS/GMY032

131. Hampel H, MesulamM-M, Cuello AC, FarlowMR, Giacobini E, Grossberg
GT, et al. The cholinergic system in the pathophysiology and treatment of
alzheimer’s disease. Brain (2018) 141:1917–33. doi: 10.1093/brain/awy132

132. Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in
a lzheimer ’s disease . Molecu le s (2022) 27(6) :1816 . doi : 10 .3390/
MOLECULES27061816

133. Gibbs RB. Effects of ageing and long-term hormone replacement on
cholinergic neurones in the medial septum and nucleus basalis magnocellularis
of ovariectomized rats. J Neuroendocrinol (2003) 15:477–85. doi: 10.1046/J.1365-
2826.2003.01012.X

134. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal
beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice
with five familial alzheimer’s disease mutations: potential factors in amyloid plaque
formation. J Neurosci (2006) 26:10129–40. doi: 10.1523/JNEUROSCI.1202-06.2006
frontiersin.org

https://doi.org/10.1080/10253890.2018.1438405
https://doi.org/10.1038/NATURE14188
https://doi.org/10.1016/J.NEURON.2017.09.013
https://doi.org/10.1001/ARCHGENPSYCHIATRY.2009.104
https://doi.org/10.2174/1567205018666210823095603
https://doi.org/10.2174/1567205018666210823095603
https://doi.org/10.1016/J.JAD.2015.09.069
https://doi.org/10.2174/1567205017666200818193916
https://doi.org/10.1016/J.JALZ.2014.04.514
https://doi.org/10.1016/J.NEUROBIOLAGING.2010.05.027
https://doi.org/10.1016/J.PHYSBEH.2017.10.002
https://doi.org/10.1210/EN.2014-1101
https://doi.org/10.1523/ENEURO.0418-20.2020
https://doi.org/10.1212/WNL.0000000000000033
https://doi.org/10.1038/s41598-021-90084-y
https://doi.org/10.1001/JAMANEUROL.2018.3057
https://doi.org/10.1523/JNEUROSCI.2718-07.2007
https://doi.org/10.1523/JNEUROSCI.2718-07.2007
https://doi.org/10.1016/J.NEUROBIOLAGING.2009.12.010
https://doi.org/10.1111/JNC.12706
https://doi.org/10.1016/J.BIOPSYCH.2008.09.003
https://doi.org/10.1016/J.BIOPSYCH.2008.09.003
https://doi.org/10.1093/CERCOR/BHQ003
https://doi.org/10.1016/J.PSYNEUEN.2013.04.011
https://doi.org/10.1016/J.PSYNEUEN.2013.04.011
https://doi.org/10.1210/EN.2004-1433
https://doi.org/10.1371/JOURNAL.PONE.0059825
https://doi.org/10.3233/JAD-2002-4601
https://doi.org/10.1093/ABBS/GMY032
https://doi.org/10.1093/brain/awy132
https://doi.org/10.3390/MOLECULES27061816
https://doi.org/10.3390/MOLECULES27061816
https://doi.org/10.1046/J.1365-2826.2003.01012.X
https://doi.org/10.1046/J.1365-2826.2003.01012.X
https://doi.org/10.1523/JNEUROSCI.1202-06.2006
https://doi.org/10.3389/fendo.2022.985424
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Katja Teerds,
Wageningen University and Research,
Netherlands

REVIEWED BY

Richard Piet,
Kent State University, United States
Chunheng Mo,
Sichuan University, China

*CORRESPONDENCE

Klaudia Barabás
klaudia.barabas@aok.pte.hu
Gergely Kovács
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Stereology of gonadotropin-
releasing hormone and
kisspeptin neurons in PACAP
gene-deficient female mice

Klaudia Barabás1,2*†, Gergely Kovács1,2*†, Viola Vértes1,
Erzsébet Kövesdi1,2, Péter Faludi1,2, Ildikó Udvarácz1,2,
Dániel Pham2,3, Dóra Reglődi2,3, Istvan M. Abraham1,2

and Zsuzsanna Nagy1

1Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary, 2Centre for
Neuroscience, Szentágothai Research Centre, Pécs, Hungary, 3Department of Anatomy, Medical
School, University of Pécs, Pécs, Hungary
The hypothalamic gonadotropin-releasing hormone (GnRH)–kisspeptin

neuronal network regulates fertility in all mammals. Pituitary adenylate

cyclase-activating polypeptide (PACAP) is a neuropeptide isolated from the

hypothalamus that is involved in the regulation of several releasing hormones

and trop hormones. It is well-known that PACAP influences fertility at central

and peripheral levels. However, the effects of PACAP on GnRH and kisspeptin

neurons are not well understood. The present study investigated the integrity of

the estrous cycle in PACAP-knockout (KO) mice. The number and

immunoreactivity of GnRH (GnRH-ir) neurons in wild-type (WT) and PACAP

KO female mice were determined using immunohistochemistry. In addition,

the number of kisspeptin neurons was measured by counting kisspeptin

mRNA-positive cells in the rostral periventricular region of the third ventricle

(RP3V) and arcuate nucleus (ARC) using the RNAscope technique. Finally, the

mRNA and protein expression of estrogen receptor alpha (ERa) was also

examined. Our data showed that the number of complete cycles decreased,

and the length of each cycle was longer in PACAP KO mice. Furthermore, the

PACAP KO mice experienced longer periods of diestrus and spent significantly

less time in estrus. There was no difference in GnRH-ir or number of GnRH

neurons. In contrast, the number of kisspeptin neurons was decreased in the

ARC, but not in the R3PV, in PACAP KO mice compared to WT littermates.

Furthermore, ERa mRNA and protein expression was decreased in the ARC,

whereas in the R3PV region, ERa mRNA levels were elevated. Our results

demonstrate that embryonic deletion of PACAP significantly changes the

structure and presumably the function of the GnRH–kisspeptin neuronal

network, influencing fertility.
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1 Introduction

Fertility is regulated by complex neuronal networks. At the

hypothalamic level, gonadotropin-releasing hormone (GnRH)

neurons form the final output, which controls reproduction in

all mammalian species. GnRH is secreted in a pulsatile and

surge-like manner in females. Pulsatile secretion of GnRH

induces a periodic release of pituitary gonadotrophs that

govern gonadal functions and is controlled by the negative

feedback actions of gonadal steroids (1). Prior to ovulation,

circulating gonadal steroid estradiol levels are elevated, which

switches its negative feedback to positive, triggering GnRH and

luteinizing hormone (LH) surge to initiate ovulation (2–4).

GnRH release is regulated by a plethora of upstream

neuronal signals in the brain (5, 6). Kisspeptin is a

neuropeptide synthesized in two major populations of

hypothalamic neurons. Kisspeptin neurons integrate and

transmit most of the signals, including the aforementioned

effects of estradiol, to GnRH neurons (1). The negative

feedback of estradiol on GnRH neurons occurs through

kisspeptin neurons located in the arcuate nucleus (ARC),

which project to the distal dendrons and axon terminals of

GnRH neurons (1, 7). These kisspeptin neurons act as

gonadotropin-releasing hormone (GnRH) pulse generators.

The positive feedback of estradiol evoking the LH surge is

conveyed to GnRH neurons via kisspeptin neurons located in

the rostral periventricular area of the third ventricle (RP3V)

axons, which target the cell bodies and proximal dendrites of

GnRH neurons (1, 7).

It has been established that both negative and positive

estradiol feedback are mediated by estrogen receptor alpha

(ERa) expressed in kisspeptin neurons (2, 8). The finding that

estradiol regulates kisspeptin neurons via ERa in the female

brain has been supported by data demonstrating that estradiol

upregulates kisspeptin expression in the RP3V, while

downregulating it in the ARC through ERa (8).

Although kisspeptin and gonadal steroids play an essential

role in the regulation of fertility via GnRH neurons, other

factors, such as the pituitary adenylate cyclase-activating

polypeptide (PACAP), are also markedly involved in

controlling fertility. PACAP and its receptors are abundantly

expressed at all three levels of the hypothalamic–pituitary–

gonadal (HPG) axis (9–11). In addition, there is a reciprocal

interaction between ovarian hormones and PACAP; that is, the

synthesis of PACAP and the expression of its receptors are

modulated by sex steroids (12, 13), while PACAP triggers the

synthesis of sexual hormones (10, 14). Furthermore, it is clearly

demonstrated that whole-body deletion of the PACAP gene

reduces fertility (15). These data implicate the involvement of

PACAP in the regulation of reproductive function and fertility.

On the other hand, the observed effects of exogenously

administered PACAP are dependent on many factors, such as

the dose and route of PACAP administration, sex of the animal,
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and species, indicating the complexity of the effects of PACAP

on fertility (11).

To date, only one recently published study demonstrated the

regulation of reproductive function by PACAP neurons in the

ventral premammillary nucleus by modulating the activity of

kisspeptin neurons in female mice (16). However, the

mechanisms underlying fertility regulation by PACAP,

particularly at the hypothalamic level, have not been

fully explored.

In the present study, we investigated the estrous cycle in

PACAP-knockout (KO) mice and attempted to shed light on the

underlying mechanisms of the chronic effect of PACAP deletion

on the organization of GnRH neurons in the basal forebrain, the

number of kisspeptin neurons, and ERa expression in the RP3V

and ARC.
2 Materials and methods

2.1 Animals

All experiments were performed using adult (12 weeks old)

female homozygous PACAP KO and wild-type (WT) (CD1)

mice (n = 6, WT; n = 6–8, KO). Mice were bred and housed in

the Animal House of the Department of Pharmacology and

Pharmacotherapy at the University of Pécs, according to the

regulations of the European Community Council Directive and

the Animal Welfare Committee of the University of Pécs. Mice

were kept under a 12:12-h light/dark cycle, with food and water

available ad libitum. PACAP KO mice were generated according

to Hashimoto et al. (17). This animal study was approved by the

Local Animal Care Committee of the University of Pécs (BA02/

2000-24/2011 University of Pécs, Hungary).
2.2 Evaluation of the estrous cycle

To evaluate the effect of PACAP deletion on the estrous cycle,

PACAP KO mice and WT littermates were assessed by daily

(10 a.m.) vaginal smear for a period of 4 weeks (n = 6–6). For

immunohistochemical staining and RNAscope in situ

hybridization, PACAP KO and WT female mice in the estrus

stage were selected for perfusion (n = 6–6). Dried smears were

stained with methylene blue solution, and cell types were

determined with an Olympus CX22 brightfield microscope using

a 10× objective (N.A. 0.2) for the evaluation of the estrus stage (18).
2.3 Perfusion and sectioning

Mice were deeply anesthetized by an overdose of 2.5% 2,2,2-

tribromoethanol (Avertin, i.p.; Sigma, St. Louis, MO, USA) (0.3

ml/20 g b.w.) and transcardially perfused with ice-cold PBS (4–5
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ml) to wash the blood out, followed by ice-cold 4%

paraformaldehyde in phosphate-buffered saline buffer (20 ml,

pH 7.6). Brains were post-fixed for 2 h at 4°C and cryoprotected

in 30% sucrose in Tris-buffered saline (TBS) solution overnight

at 4°C. The next day, serial 30-µm-thick coronal sections were

cut on an SM 2000R freezing microtome (Leica Microsystems,

Nussloch GmbH, Germany) and stored in antifreeze solution

(30% ethylene glycol; 25% glycerol; 0.05 M phosphate buffer; pH

7.4) at –20°C until use.
2.4 Immunohistochemistry

All steps were performed at room temperature, except for

incubation with primary antibodies. Free-floating brain sections

were washed three times in 1× TBS for 10 min, and the

endogenous peroxidase activity was blocked with 30% H2O2

for 15 min. After the permeabilization and the blocking step with

0.2% Triton X-100 in 10% horse serum for 2 h, the sections were

incubated with rat anti-GnRH primary antibody (1:10,000; gift

of Erik Hrabovszky) or rabbit anti-ERa (Santa Cruz

Biotechnology) diluted in TBS containing 5% horse serum and

0.02% Triton X-100 for 2 days at 4°C. After three consecutive 10-

min washes with 1× TBS, slices were incubated in biotinylated

donkey anti-rat IgG or donkey anti-rabbit for 2 h (1:300; Jackson

ImmunoResearch Laboratories). The washed samples were then

incubated with the avidin–biotin–HRP complex (1:200; Vector

Elite ABC kit, Vector Laboratories) according to the

manufacturer’s protocol for 2 h. Labeling was visualized with

nickel-diaminobenzidine tetrahydrochloride (DAB) using

glucose oxidase, which resulted in a black precipitate within

the labeled cells. The chemical reaction was terminated using a

brightfield microscope to optimize the signal/background ratio.

Finally, the preparations were mounted onto gelatin-coated

slides. After drying, slides were transferred into distilled water

and ascending ethanol solutions (70%, 95%, and absolute for

10 min, respectively), then into xylene for 10 min and

coverslipped using DEPEX (VWR, West Chester, PA, USA)

mounting medium.
2.5 Brightfield microscopy
and image analysis

Images were captured with a Hamamatsu Orca Flash 4.0

camera attached to a Nikon Ti-E inverted microscope equipped

with a motorized x-y-z stage using NIS-Elements imaging

software. Images were collected under “Koehler” conditions.

To identify the plane of the coronal brain slices, whole

sections were imaged using a 10× Plan Apo objective lens

(N.A. 0.64). The final large 2D mosaic image was obtained by

aligning and stitching the overlapping images during the
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acquisition. Next, the z-stack of brightfield images (11 slices,

4-µm steps) of the region of interest was acquired along the axial

axis using the same 10× objective. Images of the same layer were

automatically stitched together using the NIS-Elements

software, resulting in a large composite image per layer. Focus

stacking of each z-stack of large composite images was achieved

using the Stack Focuser plug-in of Fiji software. The number of

GnRH neurons in the region of interest was counted manually,

while GnRH immunoreactivity (GnRH-ir) was calculated using

the Analyze Particles function of Software Fiji after application

of the Adaptive Threshold plug-in. The number of ERa-
immunoreactive cells was counted automatically using a

custom-made macro containing Otsu automatic thresholding

and watershed segmentation in Fiji software. Imaging and image

analyses were performed in a blinded manner.

Based on the Franklin and Paxinos mouse brain atlas (19),

the following planes were selected for analysis in case of the

examination of GnRH neurons: medial septum (MS), Plates 24–

26; medial preoptic area (MPOA), Plates 28–30; and lateral

hypothalamus (LH), Plates 34–36. GnRH-ir was observed in the

following brain areas: MS, MPOA, LH, organum vasculosum of

lamina terminalis (OVLT), and eminentia mediana (EM). To

count ERa-immunoreactive cells in the RP3V and ARC brain

regions, sections with plate numbers 29–30 and 51–53 were

analyzed, respectively (19). To investigate GnRH-ir and the

number of GnRH neurons or ERa-immunoreactive cells, two

sections were selected at the appropriate level from each animal

in each brain region, and the analysis was performed bilaterally.
2.6 RNAscope in situ hybridization

mRNA transcripts of kisspeptin (Kiss1) and ERa (Esr1) were

detected using a multiplex fluorescence RNAscope in situ

hybridization assay (Advanced Cell Diagnostics, Newark, CA) in

30-µm-thick, paraformaldehyde-fixed coronal brain sections. First,

free-floating brain slices were mounted on Superfrost Plus Gold

adhesion slides, following three washes in TBS (Thermo Scientific,

630-1324, VWR). The selected transcripts were labeled according to

the manufacturer’s instructions, followed by sequential

amplification and detection steps. To ensure specific staining of

Kiss1 transcripts, labeling of these mRNAs was first performed.

Kiss1 mRNA was labeled with Cy3 fluorophore, whereas Cy5 was

used to detect Esr1 transcripts. Nuclei were counterstained with

Hoechst 33342, and the finished samples were covered with

ProLong Diamond Antifade Mountant. After 24 h of curing, the

mounting medium slices were sealed using a nail polisher. 3-plex

negative control probes for mouse tissue were used each time the

RNAscope labeling was performed. RP3V and ARC brain regions

were analyzed in sections with plate numbers 29–30 and 48–50,

respectively (19). For both regions, two sections from each animal

were selected and analyzed.
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2.7 Confocal imaging

Fluorescent samples were imaged using a Nikon C2+

confocal laser scanning imaging system less than 1 week after

the samples were ready. First, a large, composite image of the

entire coronal slice was created by stitching individual image

tiles taken with a 10× objective (N.A. 0.64). This image was used

to determine the plane of the image slice. Next, using a Plan Apo

20× magnification objective (N.A. 0.75), z-stacks of 12-bit

fluorescent images (512 × 512 pixels) were taken over the

region of interest (RP3V or ARC) in a range of 5 to 15 µm

below the surface of the slice with a 1-mm interslice distance, and

a pinhole size less than one Airy unit. The laser power and gain

of the photomultiplier tube for each channel were set during

imaging slices labeled with 3-plex negative probes. All images

from the same animal were captured using the same

imaging parameters.

Image analysis of the obtained z-stacks was performed using

Fiji software. Kisspeptin neurons were manually counted. To

assess Esr1 mRNA expression, images were converted from 12-

to 8-bit, followed by Phansalkar local image thresholding.

Finally, the Esr1 mRNA-positive fraction area of the region of

interest in all z-layers was calculated in percentage and averaged.

RP3V and ARC brain regions were analyzed in sections with

plate numbers 29–30 and 51–53, respectively (19). In both

regions, two sections were selected from each animal and Kiss1

mRNA-positive cells were counted bilaterally.
2.8 Statistical analysis

Data are presented as mean ± SD or median ± range,

depending on whether the data showed a normal distribution.

To test for normal distribution, the Shapiro–Wilk test was

applied. In case data were not normally distributed, the

Mann–Whitney U test was performed. Data with a normal

distribution were analyzed using an unpaired t-test. Statistical

significance was set at p < 0.05.
3 Results

3.1 Estrous cyclicity is altered in
PACAP KO mice

Genetic deletion of PACAP induced significant changes in

female estrous cycle as it is illustrated in Figure 1A. Vaginal

smear assessment of PACAP KO mice and WT littermates

demonstrated that the number of cycles decreased in a 28-day

period (WT: 4.5 ± 1, KO: 2.5± 1; p = 0.0022, Figure 1B), while the

length of cycle increased (WT: 4.95 days ± 0.45, KO: 9.75 days ±
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1.72; p < 0.0001, Figure 1C) in PACAP KO mice compared to

WT littermates. Furthermore, the length of the estrus phase

significantly decreased in PACAP-deficient female mice (WT:

28.88% ± 5.89, KO: 19.58% ± 5.31; p = 0.0166, Figure 1D), while

they spent more time in the diestrus stage compared to WT

littermates (WT: 30.65% ± 28.48, KO: 66.60% ± 4342; p =

0.0303, Figure 1E).
3.2 Effect of PACAP deletion on the
number of GnRH neurons and GnRH-ir

To test the effect of PACAP on the central hub of the HPG

axis, we examined the number of GnRH neurons in three

different regions (MS, MPOA, and LH) (Figures 2A–C).

Quantitative immunohistochemical analysis revealed that the

number of GnRH neurons was not altered in PACAP KO female

mice compared to that in WT littermates in any of the examined

brain areas (Figures 3A–C). In addition, we examined GnRH-ir

in different brain areas (MS, MPOA, LH, OVLT, and EM)

(Figures 2A–D) to assess the effect of PACAP deletion on the

arborization of GnRH neurons. Our data showed no change in

GnRH-ir levels in the PACAP KO mice (Figures 4A–E).
3.3 Effect of PACAP deletion on the
number of kisspeptin neurons

Because of the lack of specific antibodies against kisspeptin

protein, the number of kisspeptin neurons was evaluated in

RP3V (Figure 5) and ARC regions (Figure 6) of PACAP KO

female and WT mice using RNAscope in situ hybridization.

Figure 7A shows that PACAP deletion had no effect on the

number of Kiss1mRNA-positive cells in the RP3V region, which

is mainly responsible for the initiation of the preovulatory LH

surge in female mice (WT: 53.21 ± 10.59, KO: 52.75 ± 13.47; p =

0.949). On the other hand, the number of Kiss1 mRNA-positive

cells in the ARC, which plays a pivotal role in GnRH pulse

generation, was significantly decreased in (WT 45.04 ± 9.75, KO:

28.92 ± 8.22, p < 0.0113, Figure 7B).
3.4 Effect of PACAP deletion
on ERa expression

Esr1 expression in the RP3V and ARC regions was examined

at the mRNA level using RNAscope in situ hybridization

(Figures 5, 6). ERa protein expression was detected by

immunohistochemistry (Figure 8). Using the RNAscope in situ

hybridization assay, we calculated the percentage of Esr1

mRNA-positive areas in RP3V and ARC. The analysis revealed
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that Esr1mRNA expression in the RP3V was elevated in PACAP

KO female mice when compared with WT mice (WT: 4.06% ±

1.51, KO: 6.97% ± 2.60; p= 0.0391, Figure 9A). However, we

found no change in the number of ERa-immunoreactive cells in

WT and KO females in the RP3V (WT: 107.90 ± 40.17, KO:

119.60 ± 46.25; p = 0.2403, Figure 9B). In contrast to RP3V, Esr1

mRNA expression showed no significant decrease in the ARC of

PACAP-deficient mice (WT: 4.205% ± 1.98, KO: 3.07% ± 1.65,

p = 0.3068, Figure 9C). However, the number of ERa-
immunoreactive cells significantly decreased in the ARC of

mutant female mice compared to their WT littermates (WT:

69.28 ± 5.89, KO: 37.29 ± 14.63; p = 0.053, Figure 9D). In

addition, all kisspeptin neurons were Esr1 mRNA-positive in

RP3V and ARC in both groups. This finding is in accordance

with previously published data (2).
4 Discussion

Although impaired reproductive functions are well

documented in PACAP KO female mice (20–22), the

underlying mechanisms and site(s) of action of PACAP

remain unclear. Several features of reproduction have been

reported to be altered in PACAP-null female mice, including

decreased fertility, delayed puberty onset, reduced mating
Frontiers in Endocrinology 05
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frequency, and impaired embryo implantation (20, 22–24).

The regularity of the estrous cycle has also been examined in

PACAP KO mice; however, the results have been contradictory.

One study using PACAP KO mice found that female mice

exhibited a normal estrous cycle (22), while Ross et al.

demonstrated that targeted deletion of PACAP from the

ventral premammillary nucleus (PMV) of the hypothalamus

caused estrous cycle irregularity: increased cycle length and a

resulting reduction in the number of cycles (24). Our findings

confirmed the results of the latter study. In our study, we showed

that estrous cyclicity was altered in whole-body PACAP KO

female mice. Deletion of PACAP results in increased cycle

length, decreased number of cycles, shorter estrus, and a

longer diestrus phase. Our findings indicate that disturbance

of the estrous cycle may contribute to reproductive defects

observed in PACAP KO female mice.

The role of PACAP in the regulation of the estrous cycle is

indicated by the discovery that PACAP mRNA expression in the

hypothalamic paraventricular nucleus (PVN) exhibits cyclic

fluctuations, with a peak 3 h before the time of GnRH and the

subsequent LH surge (25). In addition, intracerebroventricular

(i.c.v.) administration of PACAP-38 has been demonstrated to

induce GnRH gene expression (16) and inhibit ovulation when

applied just before the critical period of the proestrus phase (26,

27). These studies also suggest that PACAP plays a critical role in
B C D E

A

FIGURE 1

Disrupted estrous cyclicity in PACAP KO mice. Representative estrous cycle diagrams illustrate the alterations in estrous cycle in WT and PACAP
KO mice (A). Dot plots depict the number of estrous cycles in 4 weeks (B), the cycle length (C), and the percentage of time spent in estrus (D)
and diestrus (E). Graphs show the mean ± SD for panels (C, D) and the median ± range for panels (B, E) n = 6–6, *p < 0.05, **p < 0.01, ***p <
0.001.
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FIGURE 2

GnRH neurons and their arborization in different brain regions. Representative images of immunohistochemical labeling of GnRH neurons and
their fibers located in the medial septum (MS), medial preoptic area (MPOA) together with organum vasculosum of lamina terminalis (OVLT),
lateral hypothalamus (LH), and eminentia mediana (EM) are shown in panels (A–D) respectively (scale bar: 200 µm).
B CA

FIGURE 3

Number of GnRH neurons in wild-type and PACAP KO female mice. Summarized data of the number of GnRH neurons in regions of medial
septum (MS), medial preoptic area (MPOA), and lateral hypothalamus (LH) from WT and PACAP KO mice are presented in panels (A–C)
respectively. Experiments were performed in female mice in estrus phase. Data are presented as mean ± SD, n = 6–8.
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FIGURE 4

GnRH-ir in wild-type and PACAP KO female mice. GnRH-ir data in regions of medial septum (MS), medial preoptic area (MPOA), lateral
hypothalamus (LH), organum vasculosum of lamina terminalis (OVLT), and eminentia mediana (EM) obtained from WT and PACAP KO mice are
presented in panels A–E, respectively. Experiments were performed in female mice in estrus phase. Data are presented as mean ± SD, n = 6–8.
FIGURE 5

Kiss1 and Esr1 mRNA expression in the RP3V of wild-type and PACAP KO female mice. Representative confocal fluorescence images depict the
expression of Kiss1 mRNA in the RP3V region (panels A, E) and Esr1 mRNA-positive cells in the RP3V (panels B, F) of WT and PACAP KO mice.
Nuclear counterstain with Hoechst33342 is presented in panels (C, G) while the merged image is shown in panels D, H. 3V, third ventricle.
Images were taken with a 20× plan apochromat objective (scale bar: 100 µm).
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regulating fertility. However, the central mechanism and site of

action of PACAP have not been entirely revealed. There are

hardly any data on how the key regulator of reproduction,

namely, the kisspeptin–GnRH system, is coordinated by

PACAP. Therefore, we first investigated the organization of

GnRH neurons in the PACAP-KO female mice. We detected

no significant difference in GnRH-ir and the number of GnRH

neurons when we compared PACAP KO female mice with their

wild-type littermates. Although we could not demonstrate any
Frontiers in Endocrinology 08
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effect of PACAP deletion on these two parameters of GnRH

organization, other characteristics such as synaptic density or

targets of their projections could not be excluded. Although

some reports suggest that there might be a direct effect of

PACAP on GnRH neuronal activity, there is no clear-cut

evidence to date that supports this theory. Nevertheless, it has

recently been shown that the main upstream regulator of the

GnRH neuronal network, the kisspeptin system, is influenced by

PACAP. A subset of kisspeptin neurons located in the RP3V and
FIGURE 6

Kiss1 and Esr1 mRNA expression in the ARC of wild-type and PACAP KO female mice. The expression of Kiss1 (panels A, E) and Esr1 (panels B, F)
mRNAs in the ARC of WT and PACAP KO mice is depicted in representative confocal images. Nuclear counterstain with Hoechst33342 and the
merged image are presented in panels C, G and D, H respectively. 20× magnification, scale bar: 25 µm.
BA

FIGURE 7

Number of Kiss1 mRNA-positive neurons in the RP3V and ARC in wild-type and PACAP KO female mice. Summarized data of RNAscope in situ
hybridization experiments are shown in dot plots. The number of Kiss1 mRNA-positive cells is shown in RP3V (A) and ARC (B) from wild-type
and PACAP KO female mice (two slices per animal, six animals in both groups). Data are presented as mean ± SD, *p < 0.05.
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ARC receives direct input from PACAP-expressing neurons

residing in the ventral premammillary nucleus (24) and are

involved in both pulsatile and surge-like release of GnRH.

Therefore, we also examined the Kiss1 mRNA expression

levels in the RP3V and ARC and found that the number of

Kiss1 mRNA-positive cells decreased in the ARC, but not in the

RP3V, of PACAP mutant female mice compared to their wild-

type littermates. As kisspeptin neurons found in the ARC play a

role in the regulation of pulsatile GnRH release, the decreased

number of Kiss1mRNA-positive cells in the ARC can lead to the

observed estrous cycle irregularity in PACAP KO female mice.

PACAP has been shown to induce Kiss1 expression in an

immortalized neuronal cell line obtained from the ARC (28).

This is in accordance with our data, because we found that

PACAP deletion has the opposite effect, causing a decrease in the

number of kisspeptin neurons in the ARC. Furthermore, our

data indicate that PACAP deletion has a region-specific effect on

kisspept in neurons , as the number of kisspept in-

immunoreactive cells was not altered in RP3V.

Because ERa plays an important role in transmitting the

stimulatory and inhibitory effects of circulating estradiol on

GnRH neurons that drive the estrous cycle (5, 29–32), the

number of ERa-immunoreactive cells is a good indicator of

hypothalamic sensitivity to E2. In addition, as GnRH neurons do

not express ERa (33), estradiol feedback is presumably conveyed

to GnRH neurons via the afferents of ERa-expressing cells.
Frontiers in Endocrinology 09
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Therefore, we investigated whether the number of ERa-
immunoreactive cells changed in the RP3V and ARC regions of

PACAP KO female mice. We detected a decrease in the number

of ERa-immunoreactive cells in the ARC of the PACAP KO

female mice. In R3PV cells, an increase in ERa expression was

observed only at the mRNA level. In the ARC, ERa is

abundantly expressed and crucial for maintaining the regular

estrous cycle (8, 34). We assumed that the decrease in ERa
expression in the ARC may further explain the changes observed

in the estrous cycle of PACAP KO mice. This assumption is

supported by experiments showing that selective knockdown of

ERa in arcuate kisspeptin neurons leads to disrupted cyclicity

(35). Although we could not detect a change in the percentage of

Esr1 mRNA expressing kisspeptin neurons in PACAP-deficient

mice in the ARC, the reduced number of kisspeptin neurons

itself can result in decreased sensitivity to estradiol since all

kisspeptin neurons express Esr1mRNA [ (2), own observation as

well]. As kisspeptin neurons and other cell types expressing ERa
also send afferents to GnRH neurons, we cannot exclude the

possibility that decreased ERa expression in other cell types can

also contribute to the estrous cycle irregularity found in PACAP

KO mice.

Our finding that the expression of Esr1 mRNA transcripts

was increased in the RP3V of PACAP-deficient female mice was

not confirmed by immunohistochemistry. Nevertheless, the

possibility that PACAP can contribute to the control of LH
B

A

FIGURE 8

ERa protein expression in the RP3V and ARC in wild-type and PACAP KO female mice. Representative brightfield images show the expression of
ERa protein in the RP3V (A) and ARC (B) of a WT and a PACAP KO female mouse. 20× magnification, scale bar: 25 µm.
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surge by modulating the expression of other estrogen receptors

in RP3V cannot be excluded.

In summary, we suggest that whole-body PACAP deletion

causes irregular estrous cycles in mice. Our data suggest that the

underlying mechanisms may include impaired central regulation of

GnRH pulsatility due to reduced kisspeptin and ERa expression in

the ARC. Further studies are required to determine whether the

peripheral or central deletion of PACAP is responsible for the

observed disruption of reproductive function in females.
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Influence of COVID-19
pandemic and vaccination on
the menstrual cycle: A
retrospective study in Hungary

Klaudia Barabás1,2, Bernadett Makkai1, Nelli Farkas3,
Hanga Réka Horváth1, Zsuzsanna Nagy1,
Kata Váradi1,2 and Dóra Zelena1,2*

1Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary, 2Centre for
Neuroscience, Szentágothai Research Centre, Pécs, Hungary, 3Institute of Bioanalysis, Medical
School, University of Pécs, Pécs, Hungary
Observations of women and clinicians indicated that the prevalence of

menstrual cycle problems has escalated during the COVID-19 pandemic.

However, it was not clear whether the observed menstrual cycle changes

were related to vaccination, the disease itself or the COVID-19 pandemic-

induced psychological alterations. To systematically analyze this question, we

conducted a human online survey in women aged between 18 and 65 in

Hungary. The menstrual cycle of 1563 individuals were analyzed in our study in

relation to the COVID-19 vaccination, the COVID-19 infection, the pandemic

itself and the mental health. We found no association between the COVID-19

vaccination, the vaccine types or the COVID-19 infection and the menstrual

cycle changes. We also evaluated the menstrual cycle alterations focusing on

three parameters of the menstrual cycle including the cycle length, the menses

length and the cycle regularity in three pandemic phases: the pre-peak, the

peak and the post-peak period in Hungary. Our finding was that the length of

the menstrual cycle did not change in any of the periods. However, the menses

length increased, while the regularity of the menstrual cycle decreased

significantly during the peak of the COVID-19 pandemic when comparing to

the pre- and post-peak periods. In addition, we exhibited that the length and

the regularity of the menstrual cycle both correlated with the severity of

depression during the post-peak period, therefore we concluded that the

reported menstrual cycle abnormalities during the peak of COVID-19 in

Hungary might be the result of elevated depressive symptoms.

KEYWORDS

COVID-19 vaccines, SARS-Cov-2 infection, COVID-19 pandemic, menstrual cycle,
depression, human surveys
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1 Introduction

Observations of women and clinicians implied that the

incidence of menstrual cycle problems has increased during

the COVID-19 pandemic. Concerns have been raised in the

social media that COVID-19 vaccination may affect the

menstrual cycle thereby causing infertility, which increased

vaccine hesitancy. Many vaccine sceptics are reluctant to be

vaccinated due to the fear from possible side effects of COVID-

19 vaccines, hence it is crucial to understand the effects of

vaccines – among others – on reproductive health. Since the

mRNA vaccine technology is a revolutionary innovation, the

least data was accumulated regarding its side-effects (1).

Therefore, the new-generation mRNA vaccines were of

particular interest in our study. A few reports have already

been published investigating the impact of the COVID-19

vaccines on the menstrual cycle (2–4), but systematic analysis

was missing at the beginning of our study.

In addition to the COVID-19 vaccines, SARS-CoV-2

infection has also been reported to cause menstrual cycle

changes (5).

On the other hand, the COVID-19 crisis has exceedingly

increased emotional distress, anxiety, and depression (6–9). It is

well known that cortisol, the main stress hormone, inhibits the

secretion of gonadotropin releasing hormone that governs the

menstrual cycle by its pulsatile release (10). Therefore, the

psychological stress experienced during the pandemic such as

grief, fear of the virus, social isolation etc., might have

contributed to menstrual cycle irregularities. All in all, it was

not clear which factor - if any - might be responsible for the

menstrual cycle changes.

To examine this question, we conducted an online survey in

Hungary to collect information about the menstrual cycle

pattern, the received vaccinations, the recognized infection,

and the psychological burden of women aged between 18 and

65 during the pandemic. Our study might provide further

evidence on the reproductive health safety of COVID-19

vaccines and might help to build trust in vaccines.
2 Materials and methods

2.1 Participants and study design

We conducted a retrospective analysis focusing on

individual’s mental state and menstrual cycle data using

quantitative empirical methodology during three stages of the

pandemic. We constructed a survey for women which was

distributed online in social media using a google form. Thus,

our participants were from the entire territory of Hungary. The

questionnaire was generated in Hungarian and translated to

English so that foreigners living in Hungary could also fill it in.
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We included the data of foreigners in our study as well because it

did not change the outcome of our study.

Women aged between 18 and 65 were recruited between 1

September 2021 and 31 December 2021 to fill out the

questionnaire. We collected information of 2429 individuals

regarding 3 periods: January 2019 - September 2020 (1);

October 2019 – March 2021 (2) and April 2021 – December

2021 (3). The first interval (referred to later as pre-peak) included

a pre-pandemic period, the first wave of COVID-19 pandemic in

Hungary (04.03.2020 – 17.07.2020.) and a temporary relief period

in the summer of 2020. The epidemic curve of the first wave in

Hungary was flat with low detected cases reaching the plateau on 4

May with 2055 cases and was mainly localized to hospitals and

retirement homes in the capital, Budapest. The second interval

(referred to later as peak) examined in our survey was basically the

time of the second wave in Hungary (18.07.2020 – 16.02.2021.).

The detected cases started to increase in September 2020 with a

plateau of 198 785 active cases in December. This was also the

time when the Hungarian government applied increasingly strict

restrictive measures. The third probed interval (relief, referred to

later as post-peak period) in our study coincided with the third

wave in Hungary (17.02.2021- 11.06.2021.) that was due to the

spreading of the “British variant”. In March 2021 further

restrictions were introduced by the government to reduce the

risk of catching and spreading of COVID-19. Kindergartens,

primary schools, and stores not selling fundamental items were

closed for more than a month. However, from 6 April 2021

everyday life started to return to normal as coronavirus-related

restrictions were gradually eased when the number of vaccinated

Hungarians reached 2.5 million (11).

The questionnaire (available in the Supplementary

Materials) consisted of questions divided into 84 (C1-84)

categories and 6 main categories (I-VI). Some categories were

further divided into subcategories (a-c). The first two questions

were related to the information sheet. The first category (18

questions) covered demographics and other general data: age,

body height, body weight, education, place of residence,

employment status, financial situation, coffee, and alcohol

consumption, smoking and physical activity. The second

section (26 questions) collected information on mental health.

The third category contained questions (9) about medication

and chronic diseases: thyroid dysfunction, diabetes, high

prolactin levels, high blood pressure. The fourth category dealt

with female hormone-related questions (12): the time of first

menstruation and/or menopause, the number of births,

breastfeeding, contraception, menstrual cycle length (i.e., same

number of days between the first day of bleeding across

consecutive periods) and regularity, menses length (number of

days with bleeding within a period), measured hormone levels

due to menstrual cycle disturbances (if applicable). The fifth

section was about pandemic-related questions (9): previous

COVID-19 infection and its severity, vaccination (number of
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vaccinations, vaccine types) and menstrual abnormalities after

vaccination. The last question allowed participants to comment

on any of the topics we did not ask for. (The analysis of

sociodemographic data is not discussed in this paper.) The

ethical approval of the questionnaire has been accepted by the

Ethics Committee in Hungary (Medical Research Council; IV/

7146- 1 /2021/EKU).
2.2 Measures

2.2.1 Mental health test
The overall mental health of the participants was evaluated

by a mental health test (MHT) (13), which is based on a short

questionnaire. MHT measures global well-being, which is

associated with emotional, psychological, social, and spiritual

well-being, resilience, coping and savoring capacity, as well as

competencies and personality factors that ensure the

sustainability of mental health, continuous improvement, and

flexibility to adapt to changing conditions. Therefore, a

comprehensive picture of the subject’s mental health was

determined by measuring five parameters: well-being, savoring,

creative-executive efficiency, self-regulation, and resilience. The

questionnaire included 17 questions. Responses were given on a

6-point Likert-type scale. The endpoints of the response options

were 1 = not at all typical and 6 = very typical.

2.2.2 Shortened Beck Depression Inventory
The presence and the severity of depression symptoms were

assessed by a Hungarian version of the shortened Beck Depression

Inventory (BDI). This short form of BDI is a 9-item, self-rated

scale that measures characteristic symptoms of depression (14,

15). It evaluates social withdrawal, indecisiveness, insomnia,

fatigability, somatic preoccupation, work difficulty, pessimism,

self-dissatisfaction, and self-accusation. In case of each item a

sentence was stated that presented the most severe response such

as “I have lost all interest in others.” The participants chose the

answer on a 4-point scale ranging from 1 to 4 (not at all typical to

very typical) that best described their behavior the month before

completing the test. A total score of 0-9 was interpreted “normal”,

10-18 as mild mood disturbance, 19-25 as moderate depression

and 26-36 as severe depression.
2.3 Statistical analysis

The categorical variables of the questionnaire were

characterized with percentage distribution. To determine the

connection between the variables Chi-squared test was applied.

The variable BDI was treated as a continuous and its relationship

with the MHT variables was analyzed using Spearman rank

correlation. Significance level was set at 0.05. All calculation were

made with SPSS statistical software (IBM Corp. Released 2020.
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IBM SPSS Statistics for Windows, Version 27.0. Armonk, NY:

IBM Corp).
3 Results

3.1 Anthropometric and other
general parameters

The participants were informed that the survey was

anonymous and completely voluntary. 97.6 % of the

respondents were Hungarian citizens and 2.4 % were

foreigners living in Hungary. After excluding breastfeeding

mothers and women using hormonal contraceptive methods,

the menstrual cycle changes of 1563 individuals were analyzed.

We have categorized the participants into age groups. Based on

the database of the Hungarian Central Statistical Office (HCSO)

the reproductive age of women is between 15-49 years in

Hungary. The lower limit of the first age group was set to 18

years in our study because women between the age of 15 and 18

considered minors in Hungary. Women of reproductive age

were further divided into three groups based on the consensus

that under 25 years of age, an individual can be considered as

young adult, while women between 36-50 years are older adults

(16). In addition, one more group was included in the study:

women over the reproductive age represented by women

between age of 51 and 65. All age groups were represented in

the study: 34.3 % of participants was between the age of 18-25, 23

% between the age of 26-35, 35.1 % between 36-50 and 7.6 %

between the age of 51-65 (Figure 1A). Only the age group of 51-

65 was under-represented in the investigation compared to the

other age groups in the study, but as members of this group are

usually already in menopause, their data was not the most

relevant for studying the menstrual cycle parameters by any

means. The individuals living in cities, villages, county seats and

the capital were also equally represented (Figure 1B). However,

82.5 % of the participants was college educated (BSc/MSc or

PhD) or undergraduate students (BSc/MSc in progress) meaning

that the number of highly qualified individuals were over-

represented in the survey (Figure 1C).
3.2 Association between menstrual cycle
changes and COVID-19 vaccination

The majority of the participants, 87.5 % received at least one

vaccination at the time of the examination, while 12.5 % did not

receive any vaccination (Figure2A). 62.2%of the vaccine recipients

received mRNA-based vaccine (56.3 % Pfizer-BioNTech, 5.9 %

Moderna), 23.8 % received adenovirus vaccine (10.2 % Astra

Zeneca, 12.4 % Sputnik, 1.2 % Janssen) and 8.5 % received the

traditional, inactivated virus vaccine (Sinopharm), while 5.3 %

received more than one type of vaccines (Figure 2B). Of the 87.5 %
frontiersin.org

https://doi.org/10.3389/fendo.2022.974788
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Barabás et al. 10.3389/fendo.2022.974788
vaccinated individuals, 6.04 % was vaccinated once, 78.04 % was

twice and 15.92 % was vaccinated three times.

Regarding the menstrual cycle changes, the menstrual cycle

length, the menses length and the regularity of the menstrual

cycle were taken into account. 40.4 % of vaccine recipients

reported menstrual cycle disturbances after receiving COVID-

19 vaccines (Figure 2C). Menstrual cycle disturbances were

observed after the first and second vaccinations as well. 43.4 %

of the participants receiving vaccine experienced menstrual

problems after the first, while 41.3 % after the second shot of

vaccine. 12.5 % reported menstrual cycle changes after both

doses, 1.6 % encountered menstrual problems after the third

vaccination only, and 1.2 % after different combinations of the

vaccinations (after the first and third, after the second and third

and after all vaccine shots) (Figure 2D).

Those who had menstrual problems post-vaccination,

experienced various problems: both menstrual cycle length

shortening (29.9 %) and prolongation (more than 7 days; 22.2

%) was reported. In addition, 13.9 % of female individuals had a

missed period post-vaccination, while 7.8 % suffered from
Frontiers in Endocrinology 04
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prolonged bleeding lasting for more than 2 weeks. The rest of

the individuals (26.2 %) had other menstrual problems. The

most frequently reported problems included the followings:

irregular bleeding (12.2 %), heavier bleeding (4.3 %), strong

menstrual cramps (2.8 %) and period reappearance (2 %).

Although a substantial number of vaccine recipients reported

that they had experienced menstrual cycle disturbances after

receiving vaccines, there was no association found between the

vaccination and the menstrual cycle changes (pre-peak period:

p=0.81; peak period: p=0.68; post-peak period: p=0.63) (data

not shown).

Questions regarding menstruation have been ignored in

most large-scale COVID-19 studies (including vaccine trials)

(17), which was most critical in case of the newly introduced

mRNA-based vaccines. Therefore, we also tested whether the

type of vaccines (mRNA-based vaccine, adenovirus vaccine or

the inactivated virus vaccine) influenced the occuring cycle

changes differently but we did not find any change (pre-peak

period: p=0.11; peak period: p=0.13; post-peak period:

p=0.24) (Figure 2E).
B

C

A

FIGURE 1

Pie charts show the percentage of different age groups (A), different places of residence (B) and different educational background (C) of the
female participants.
frontiersin.org

https://doi.org/10.3389/fendo.2022.974788
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Barabás et al. 10.3389/fendo.2022.974788
3.3 Association between menstrual cycle
changes and SARS-CoV-2 infection:
Cross-sectional comparison

Of those who surveyed, 73.4 % was unaware that they had

SARS-CoV-2 infection, while 23.2 % was confirmed to have the

infection (Figure 3A). Of those who reported to have SARS-
Frontiers in Endocrinology 05
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CoV-2 infection, 3.4 % did not do a SARS-CoV-2 test but

assumed they had the infection, 9.8 % were asymptomatic, 45

% had mild symptoms, 34.8 % had a moderate illness lasting for

7-14 days, 5.2 % had a severe illness lasting for more than two

weeks and 1.8 % needed hospitalisation (Figure 3B).

We also compared the menstrual cycle changes of the group

of women who had SARS-CoV-2 infection with the group who
B

C D

E

A

FIGURE 2

Pie charts demonstrate the percentage of vaccinated and unvaccinated individuals (A) and the proportion of the types of vaccines received in
the vaccinated group (B). The percentage of participants with and without menstrual cycle problems after vaccination is also shown (C). It is
also indicated how many doses of vaccine were given to those with menstrual cycle problems (D). In addition, pie charts show how the
proportion of individuals with menstrual problems and without menstrual problems varied for mRNA-based (Pfizer-BioNTech, Moderna),
adenovirus-based (AstraZeneca, Sputnik, Janssen) and conventional vaccines (Sinopharm) (E).
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did not get the infection but we found no association between

the measured parameters of the menstrual cycle and the SARS-

CoV-2 infection (pre-peak period: p=0.37; peak period: p=0.55;

post-peak period: p=0.89): the same proportion of individuals

reported menstrual cycle problems regardless of SARS-CoV-2

infection (39.3 % of SARS-CoV infected and 38.7 % of

uninfected respondents) (Figures 3C, D). We also analyzed

whether the severity of the SARS-CoV-2 infection was in

connection with the menstrual cycle changes but no

interaction was uncovered (pre-peak period: p=0.65; peak

period: p=0.58; post-peak period: p=0.11) (Table 1).
3.4 The effect of COVID-19 pandemic
on the menstrual cycle:
Longitudinal comparison

The menstrual cycle problems had also been assessed in the

Hungarian population comparing 3 periods: in the pre-peak:

January 2019 - September 2020; in the peak: October 2019 –
Frontiers in Endocrinology 06
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March 2021 and in the post-peak period: April 2021 –

December 2021.

We found that the length of the menstrual cycle did not

change in any of the study-periods (Figure 4A). The vast

majority (73-85 %) of female participants had an average cycle

length of 24-38 days in all three periods, while shorter or longer

menstrual cycles were less common. Interestingly, the menses

length increased, while the regularity of the menstrual cycle

decreased significantly during the peak of the pandemic

compared to the pre- and postpeak periods (p<0.001)

(Figures 4B, C). The average menses length was more than 7

days long in only 5.1 % of women during the pre-peak, while it

lasted longer than 7 days in 81.4 % of women during the peak,

then it was restored and only 7.5 % of women had longer period

than 7 days during the post-peak period (Figure 4B). Although

most women had regular periods in all three time periods, their

menstrual cycle became more irregular during the peak

compared to the pre-peak period and the irregularity further

increased thereafter. The start of the period was unpredictable in

6.8 % of the individuals in the pre-peak period, which increased
B

C D

A

FIGURE 3

Pie charts show the percentage of participants who were or were not infected with SARS-CoV-2 (A), detailing the proportion of infected
individuals based on the severity of the infection (B). The percentage of participants with and without menstrual cycle problems after SARS-
CoV-2 infection (C) or no infection (D) is also demonstrated.
frontiersin.org

https://doi.org/10.3389/fendo.2022.974788
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Barabás et al. 10.3389/fendo.2022.974788
to 11.4 % at the peak and to 13.2 % thereafter. 58.6 % of the

participants reported that their menstrual cycles were usually on

time, with a maximum delay of 1-2 days (regular cycle) during

the pre-peak, while 49.6 % addressed this during the peak and

only 45.6 % during the post-peak period. 27.9 % of the

respondents answered that they missed only one cycle 1-2

times a year, or there were 1–2-week delays 1-2 times per year

in the pre-peak period (usually regular cycle). This proportion

increased to 31.3 % at the peak of the pandemic and remained

this high (31.7 %) after that as well. During the pre-peak 6.7 % of

the participants reported that they had no regular cycle, which

increased during the peak and the post-peak period to 7.9 % and

9.5 %, respectively (Figure 4C).
3.5 Association between menstrual cycle
changes and depression

As the COVID-19 pandemic triggered the prevalence of

depression and depressive symptoms (6) and it is well-known

that depression inhibits the reproductive axis causing menstrual

cycle alterations (10), we evaluated whether depressive

symptoms developed during the pandemic could be

responsible for the high number of noted menstrual

cycle problems.

Data analysis with Chi-squared test showed that the menses

length and the regularity of the menstrual cycle during the post-

peak period changed with the severity of depression determined
Frontiers in Endocrinology 07
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by the BDI. The average menses length (3-7 days) decreased with

the severity of depression, while both shortened (1-2 days) and

prolonged menses length (more than 7 days) became more

frequent (Figure 5A). The regularity of the menstrual cycle

decreased with the severity of depression (Figure 5B).

Although the measured parameters of the MHT (well-being,

savoring, creative-executive efficiency, self-regulation, and

resilience) did not display association with the surveyed

parameters of the menstrual cycle in any of the observed

periods, the five measured criteria of the MHT correlated with

the result of the BDI. All parameters of the MHT showed

negative correlation with the BDI. It means that the more

severe the depression is based on the BDI, the lower the values

are for the parameters of the MHT. (Tables 2A, B). We used

Spearman’s correlation for the analysis in this case, too.
4 Discussion

During the COVID-19 pandemic the prevalence of

menstrual cycle problems has increased. The reason for this,

however, is still not entirely revealed. The COVID-19 vaccines

caused considerable concern because of a potential disruption of

the menstrual cycle. In addition, growing evidence suggests that

SARS-CoV-2 infection may have an impact on the menstrual

cycle (5, 18). It is also clear that the COVID-19 pandemic put a

great psychological burden on the society increasing the level of

depression that can also influence the menstrual cycle (19).

Thus, our survey aimed to explore whether the menstrual cycles

of women between the age of 18-65 have been affected by the

COVID-19 vaccines, SARS-CoV-2 infection, the COVID-19

pandemic, or psychological distress.

Human studies so far have shown that COVID-19 vaccines

have a subtle and reversible effect on the menstrual cycle.

Menstrual abnormalities such as menstrual irregularities,

increase in the cycle length, menses length and heavier

menstruation were observed post-vaccination. However, these

changes were no greater than normal fluctuations and were

restored within a few months (2–4, 20). Animal experiments also

confirmed the lack of substantial vaccine effect on reproduction.

No effects were found on fertility, or any studied ovarian and

uterine parameters (12).

The occurrence of menstrual disturbances after COVID-19

vaccinations is not that surprising as vaccination has been linked

to menstrual cycle changes earlier. It was published that the

human papilloma virus vaccine had caused irregular and

abnormal amount of menstrual bleeding (21). Such menstrual

abnormalities can be the result of inflammatory reactions (22).

Because of the severe symptoms and the rapid spread of SARS-

CoV-2, the COVID-19 vaccines were developed and approved

hastily. In addition, a new class of vaccines, the mRNA-based

vaccines were also introduced against the SARS-CoV-2. The

rapid development of vaccines has not allowed extensive studies
TABLE 1 Correlation between menstrual problems and SARS-CoV-2
infection.

SARS-CoV infection Participants

Possibly

Menstrual problems 1.40%

No menstrual problems 2.10%

Asymptomatic

Menstrual problems 3.50%

No menstrual problems 6.30%

Mild symptoms

Menstrual problems 16.30%

No menstrual problems 28.50%

Moderate symptoms

Menstrual problems 13.80%

No menstrual problems 20.60%

Severe symptoms

Menstrual problems 3.00%

No menstrual problems 2.10%

Hospitalized

Menstrual problems 1.20%

No menstrual problems 0.70%
Table 1 summarizes the percentage of female participants with and without menstrual
problems with SARS-CoV-2 infection of varying severity.
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of all the side effects, especially for mRNA-based vaccines, which

were not yet used before. Therefore, it was not assessed whether

immunological reactions associated with vaccines may affect

women’s reproductive health. Lipid nanoparticles (LNPs) for

instance that protect mRNA from degradation and help to

deliver mRNA into the cells have been reported to be highly

inflammatory in mice (23). Since the menstruation itself is

associated with increased inflammation, we hypothesized that

the LNPs being inflammatory and lipophilic molecules may

interact with lipophilic sexual hormones and affect the

menstrual cycle.

Our study demonstrated that 40.4 % of vaccine recipients

had complained of menstrual cycle problems, particularly after

the first and the second dose of COVID-19 vaccines. Despite of

the fact that a large number of individuals reported menstrual

cycle abnormalities, we found no correlation between the impact
Frontiers in Endocrinology 08
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of vaccination and the menstrual cycle disturbances. According

to our assumption we also tested whether the type of COVID-19

vaccines, especially the mRNA-based vaccines affected the

menstrual cycle differently but we found no proof of that.

However, we should mention that the slight and temporary

menstrual cycle changes observed in previous studies (2–4, 20)

could be masked by the over-representation of the highly

qualified individuals (82.4 %) in our sample since the

prevalence of irregular menstruation is increased in women

with low educational levels (24). Also, menstrual cycle length

variations occur more frequently with increasing age in women

from lower social groups (25), whose representation was

insufficient in our study.

SARS-CoV-2 infection may have also accounted for the

observed menstrual cycle abnormalities during the pandemic

(17). There is still relatively little scientific data available on how
B

C

A

FIGURE 4

(A) Histograms show the percentage of female individuals bleeding more frequently than 24 days, between 24 and 38 days, less frequently than
38 days and having no regular menstrual bleeding during the pre-peak, the peak, and the post-peak period. (B) Histograms illustrate the
percentage of female participants with menses length lasting for 1-2 days, 3-7 days, more than 7 days or having no regular bleeding during the
pre-peak, the peak, and the post-peak period. (C) Histograms demonstrate the percentage of female respondents with unpredictable cycle,
having regular cycle with a maximum delay of 1-2 days, usually regular cycle with 1-2 missed cycles or 1-2 weeks difference a year, or not
regular menstrual cycle during the pre-peak, the peak, and the post-peak period. ***p≤0.001.
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and to what extent COVID-19 infection may affect the

menstrual cycle. It has been published that women with severe

COVID-19 symptoms are more likely to have menstrual cycle

problems (5). Additionally, a case study reported that a 27-year-

old female patient developed amenorrhea during and after a

mild form of SARS-CoV-2 infection (26). SARS-CoV-2 infection
Frontiers in Endocrinology 09
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could influence the menstrual cycle by influencing the

hypothalamic-pituitary-gonad axis (17), but could also have a

more specific effect on the reproductive system. The SARS-CoV-

2 can bind to the angiotensin-converting enzyme ACE2, which

acts as a viral receptor and is also expressed in the endometrium

(27, 28). As ACE2 has a key role in regulating vasoconstriction of
B

A

FIGURE 5

Histograms depict the menses length (A) and the regularity of the menstrual cycle (B) in relation to the severity of depression determined by the BDI.
frontiersin.org

https://doi.org/10.3389/fendo.2022.974788
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Barabás et al. 10.3389/fendo.2022.974788
the arteries that induces menstruation, the alteration of ACE2

may cause menstrual cycle abnormalities. Even though available

data and scientific facts suggest that SARS-CoV-2 infection may

alter the menstrual cycle, we found no connection between the

SARS-CoV-2 infection or its severity and menstrual

cycle disruptions.

Finally, we examined the effect of the pandemic itself on the

menstrual cycle with its possible depression-inducing potential.

Interestingly, the peak of the infection was associated with longer

menses length and more irregularity in the menstrual cycle, which

was normalized after the relief. Menstrual cycle characteristics such

as cycle length, regularity, and menses length show strong

association with psychiatric disorders including depression (29, 30).

Women during their reproductive years are nearly twice as

likely to develop depression as men (31). In depression, the

corticotropin-releasing hormone (CRH) levels, and consequently

the cortisol levels are elevated resulting in the inhibition of the

action of gonadotropin-releasing hormone (GnRH) neurons,

gonadotrophs, and gonads (10). The COVID-19 pandemic

increased the rate of depression (6) and exacerbated the existing
Frontiers in Endocrinology 10
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mental health problems (7). Loneliness due to social distancing

(8), elevated levels of fear of SARS-CoV-2 infection (9), or loss and

grief during the pandemic became major factors contributing to

the development of depressive symptoms. As a strong association

between depression and menstrual cycle disorders was noted, we

examined whether there was a connection between the depressive

symptoms and the menstrual cycle disturbances.

We foundanassociation between theBDI scores and the length

and the regularity of the menstrual cycle during the post-peak

period. The severity of the depression based on BDI positively

correlated with the menses length changes (shortening and

prolongation) and the irregularity of the menstrual cycle.

Although the MHT did not show connection with the menstrual

cycle changes, it exhibited negative correlation with the BDI.

Individuals who scored lower in the MHT, which represents a

general mental health state, had increased values in the BDI, which

evaluated their mental health a month before completing the test.

Although we could not measure, we assumed that the rate of

depression might have been elevated during the peak of the

pandemic. This suggests that the menstrual cycle problems
TABLE 2A Cross-tabulation analysis between the menses length and BDI.

Length
Depression

1-2 days 3-7 days <7 days Not regular Participants

Normal 2.33% 80.23% 4.07% 13.37% 100% (172)

Mild 1.79% 80.80% 7.17% 10.24% 100% (948)

Moderate 4.18% 79.42% 9% 7.40% 100% (311)

Severe 6.90% 70.11% 14.94% 8.05% 100% (87)

Chi-Square Tests

Pearson Chi-Square Value df Asymptotic Significance (2-sided)

27.023 9 0.001 ***

Symmetric Measures

Cramer's V Value Approximate Significance

0.077 0.001
TABLE 2B Cross-tabulation analysis between the regularity of the menstrual cycle and BDI.

Regularity
Depression

Unpredictable Regular Usually
regular

Not
regular

Participants

Normal 9.3% 51.16% 25% 14.54% 100% (172)

Mild 11.29% 48% 31.01% 9.70% 100% (948)

Moderate 17.36% 40.51% 34.73% 7.40% 100% (311)

Severe 24.14% 29.89% 39.08% 6.89% 100% (87)

Chi-Square Tests

Pearson Chi-Square Value df Asymptotic Significance (2-sided)

37.118 9 <0.001 ***

Symmetric Measures

Cramer's V Value Approximate Significance

0.09 <0.001

Table 2 shows the percentage distribution of women with different levels of depression in terms of menses length (A) or the regularity of the menstrual cycle (B). The figures in the table
show the percentage (and the number) of participants with different menses length and regularity of menstrual cycle. df=degree of freedom, ***p≤0.001.
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observed during the peak of infection, the significant increase in the

menses length and the irregularity of the menstrual cycle, may be a

consequence of depression.

Our survey has revealed a connection between depressive-

like symptoms and menstrual cycle alterations but found no

evidence of correlation between post-vaccination or SARS-CoV-

2 infection and menstrual cycle changes. It suggests that

depression may be a major factor causing menstrual cycle

abnormalities during the COVID-19 pandemic.
5 Limitations

Our study has pitfalls and limitations. We should be cautious

about drawing general conclusions from the gathered data as the

questionnaire was completed voluntarily by female individuals

online. Therefore, the collected data may contain some bias such

as social acceptance error. Recall bias may also be a problem

since the study was self-reporting and asked questions for an

interval of more than one year. Furthermore, the over-

representation of highly qualified individuals may also lead to

bias as women’s reproductive health is highly influenced by their

socioeconomic status. Lower educational level for instance has

been shown to act as a factor promoting irregular menstruation

(24). Another drawback of our study is that we could not follow

the level of depression of the female participants separately

during the pre-peak, the peak, and the post-peak period. We

could only assess their general mental health and the rate of

depression at the end of the post-peak period. Therefore, we

could only make assumptions that the depression level was the

greatest during the peak period of the pandemic.
6 Conclusions

Our study provides evidence on the reproductive health safety

of COVID-19 vaccines and indicates that the effect of COVID-19

vaccines and SARS-CoV-2 infection on themenstrual cyclemay be

negligible compared to the effect of depression.
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in adult mouse
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It has been reported that reactive oxygen species (ROS) derived from

oxygen molecule reduction can interfere with the cross-talk between the

hypothalamic-pituitary-gonadal (HPG) axis and other endocrine axes, thus

affecting fertility. Furthermore, ROS have been linked to GnRH receptor

signaling in gonadotropes involved in gonadotropin release. There has been

evidence that ROS can interfere with the HPG axis and gonadotropin release

at various levels. However, the direct effect of ROS on gonadotropin-

releasing hormone (GnRH) neuron remains unclear. Thus, the objective of

this study was to determine the effect of hydrogen peroxide (H2O2), an ROS

source, on GnRH neuronal excitabilities in transgenic GnRH-green

fluorescent protein-tagged mice using the whole-cell patch-clamp

electrophysiology. In adults, H2O2 at high concentrations (mM level)

hyperpolarized most GnRH neurons tested, whereas low concentrations

(pM to mM) caused slight depolarization. In immature GnRH neurons, H2O2

exposure induced excitation. The sensitivity of GnRH neurons to H2O2

was increased with postnatal development. The effect of H2O2 on adult

female GnRH neurons was found to be estrous cycle-dependent.

Hyperpolarization mediated by H2O2 persisted in the presence of

tetrodotoxin, a voltage-gated Na+ channel blocker, and amino-acids

receptor blocking cocktail containing blockers for the ionotropic

glutamate receptors, glycine receptors, and GABAA receptors, indicating

that H2O2 could act on GnRH neurons directly. Furthermore, glibenclamide,

an ATP-sensitive K+ (KATP) channel blocker, completely blocked H2O2-

mediated hyperpolarization. Increasing endogenous H2O2 by inhibiting

glutathione peroxidase decreased spontaneous activities of most GnRH

neurons. We conclude that ROS can act as signaling molecules for
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regulating GnRH neuron’s excitability and that adult GnRH neurons are

sensitive to increased ROS concentration. Results of this study demonstrate

that ROS have direct modulatory effects on the HPG axis at the

hypothalamic level to regulate GnRH neuron’s excitabilities.
KEYWORDS

hydrogen peroxide, gonadotropin-releasing hormone neurons, hypothalamic-
pituitary-gonadal axis, patch-clamp, KATP channels, reactive oxygen species
Introduction

Reactive oxygen species (ROS) are chemically reactive

molecules or free radicals formed when oxygen molecules are

reduced. Mitochondria are primary cellular organelles

responsible for the production of a large amount of ROS in

cells (1, 2). External sources including pollution, radiation,

physical stress, alcohol abuse, cigarette smoking and vaping,

drug abuse, obesity, malnutrition, lifestyle modification, and

endocrine-disrupting chemicals can intensify ROS production

in cells (3, 4). At the cellular level, ROS at low concentrations

operate as signaling molecules (5). However, excessive levels of

ROS cause oxidative stress and cell death (6). Numerous

enzymatic and non-enzymatic antioxidant systems can

counteract increasing concentration of ROS in cells. Enzymes

such as glutathione peroxidase (GPx), superoxide dismutase,

and catalase (CAT) play an enzymatic role in the degradation of

ROS, while scavengers such as vitamin C, vitamin E, glutathione,

carotenoids, and ubiquinone play a non-enzymatic role in the

detoxification of free radicals (7, 8).

Gonadotropin-releasing hormone (GnRH) neurons are key

regulators of the hypothalamic-pituitary-gonadal (HPG) axis.

They play a pivotal role in the regulation of fertility via release of

gonadotropins in mammals (9). It has been shown that ROS

produced by endogenous and exogenous sources can

impair reproductive function, decrease gonadal hormones, and

interfere with cross-talk between the HPG axis and other

endocrine axes, eventually affecting fertility (3). Furthermore,

ROS are connected to GnRH receptor signaling involved in

gonadotropin release of gonadotropes (10). In contrast,

endogenous gonadal hormones strongly influence ROS

generation in brain mitochondria (11). An external source of

ROS has now emerged as a leading cause of reproductive issues

such as infertility and pregnancy complications (3, 12, 13).

ROS in the brain can act as potent signaling molecules at

physiological concentration. Neurons can sense, convert, and

transmit ROS into relevant intracellular signals and regulate

peripheral tissue activities via the autonomous nervous system

(14). New evidence has suggested that ROS play a signaling role

in regulating hypothalamus activity. For example, ROS in the
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hypothalamus can regulate energy homeostasis (15) and maintain

body fluid dynamics (16). ROS can also affect functions of

hypothalamic neurons such as neuropeptide-Y (NPY)/agouti-

related protein (AgRP) neurons, pro-opiomelanocortin (POMC)/

cocaine-and-amphetamine responsive transcript (CART) neurons,

and paraventricular nucleus (PVN) (17, 18). Hormones, peptides,

neurotransmitters, and nutrients can also affect the release of ROS

in the hypothalamus (14).

Studies mentioned above have shown that ROS can inhibit

gonadotropin release at several levels of the HPG axis. However,

the mechanism underlying how ROS impact GnRH neuronal

activities remains unknown. Among various ROS, hydrogen

peroxide (H2O2) is the most stable and long-lived ROS as it

has a cellular half-life of 1 ms compared to other ROS such as

superoxide anion radicals (1 ms), and hydroxyl radicals (1 ns)

(19–21). Furthermore, Ledo et al. reported that the extracellular

H2O2 in brain slices and in vivo has a half-life of 2.5 and 2.2 s

respectively (22). Additionally, H2O2 is a highly diffusible and

less toxic ROS that has emerged as a neuromodulator and an

intercellular signaling molecule in the brain (19, 22). H2O2

perfusion on brain slices can influence neuronal excitabilities

(18, 23–25), synaptic activity, and neurotransmitter release (26,

27). Thus, the objective of this study was to investigate the effect

of membrane diffusible extracellular ROS source H2O2 on

excitabilities of GnRH neurons in hypothalamic preoptic area

(hPOA) brain slices using a whole-cell patch-clamp approach.
Materials and methods

Animals

C57BL/6 GnRH-green fluorescent protein-tagged (GnRH-GFP)

mice (28) housed under stable room temperature (23-26 °C) and an

automatic 12:12-h light-dark cycle (lights on at 07:00 h) with ad

libitum access to food and water were sacrificed for the experiment.

All animal care conditions and experimental procedures were in

accordance with the Institutional Animal Care and Use Committee

of Jeonbuk National University (CBNU 2020-0122). Estrous cycle

stage of female mice was assessed by vaginal smear examination.
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Preparation of brain slices

Coronal brain slices were prepared using the same procedure

as described in a previous study (29). In brief, mice were

beheaded between 10:00 and 12:00 p.m. UTC+09:00

(Universal Time Coordinated). Their brains were swiftly

removed and immersed in ice-cold artificial cerebrospinal fluid

(ACSF) containing 126 mM NaCl, 2.5 mM KCl, 2.4 mM CaCl2,

1.2 mM MgCl2, 11 mM D-glucose, 1.4 mM NaH2PO4, and 25

mM NaHCO3 (pH value of 7.3 to 7.4 was maintained when

bubbled with 95% O2 and 5% CO2). Coronal brain slices (180-

270 mm thick) containing the preoptic hypothalamic area were

prepared using a vibratome (VT1200S, Leica biosystem, Wetzlar,

Germany) in ice-cold ACSF. For recovery, the brain slices were

stored in oxygenated ACSF at room temperature for at least

1hour before being transferred to the recording chamber.
Electrophysiology

Before electrophysiological recording, brain slices were

transferred to the recording chamber mounted on an upright

microscope (BX51W1; Olympus, Tokyo, Japan). They were,

entirely submerged, and continuously perfused (4~5 mL/min)

with oxygenated ACSF. The view of the coronal slice was

displayed on a video monitor. The hPOA region was identified

under X10 objective magnification. Fluorescent GnRH neurons

were identified under X40 objective magnification via brief

fluorescence illumination. Identified GnRH neurons were

patched under Nomarski differential interference contrast

optics. Thin-wall borosilicate glass capillaries (PG52151-4,

WPI, Sarasota, FL, USA) were pulled on a Flaming/Brown

puller (P-97; Sutter Instruments Co., Novate, CA USA) to

fabricate patch pipette. These pipettes typically displayed a tip

resistance of 4 to 6 MW when filled with pipette solution filtered

through a disposable 0.22-µM filter. The loaded pipette solution

was composed of 140 mM KCl, 1mM CaCl2, 1 mM MgCl2, 10

mM HEPES, 10 mM EGTA, and 4 mM Mg-ATP (pH 7.3 with

KOH). Pipette offset was set to zero before a high-resistance seal

(“gigaseal”) was achieved. After a giga seal was achieved between

the pipette and the neuronal membrane, negative pressure by a

short suction pulse was applied to make the whole cell.

Whole-cell recorded signals were amplified with an

Axopatch 200B (Molecular Devices, San Jose, CA, USA) and

filtered at 1 kHz with a Bessel filter before digitizing at a rate of 1

kHz. Membrane potential changes were sampled using a

Digidata 1440A interface (Molecular Devices, San Jose, CA,

USA). Signals were recorded and analyzed using an Axon

pClamp 10.6 data acquisition program (Molecular Devices,

San Jose, CA, USA). Neurons that showed changes in

membrane potential of more than 2 mV after being exposed to
Frontiers in Endocrinology 03
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H2O2 were considered to have responded. All recordings were

made at room temperature.
Chemicals

Chemicals including hydrogen peroxide (H2O2), picrotoxin,

strychnine hydrochloride (strychnine), glibenclamide,

tetraethylammonium chloride (TEA), barium chloride (BaCl2),

mercaptosuccinic acid (MCS), 3-amino-1,2,4-triazole (ATZ),

and ACSF compositions were purchased from Sigma-Aldrich

(St. Louis, MO, USA), except for CNQX disodium salt (CNQX),

DL-AP5 (AP5), and tetrodotoxin citrate (TTX) which was

bought from Tocris Bioscience (Avonmouth, Bristol, UK).

Stocks were diluted (usually 1,000-fold) in ACSF to desired

final concentrations before bath application. H2O2 of desired

concentration was freshly prepared from stock by dripping

directly to ACSF immediately before bath application.
Data and statistical analysis

For statistical analysis, Student’s t-test and one-way ANOVA

post-hoc Scheffe test were used to compare means of two and

more than two experimental groups, respectively. All statistical

analyses were performed using Origin 8 software (OriginLab

Corp, Northampton, MA, USA). All numerical values are

expressed as mean ± standard error of the mean. Results with

p-value < 0.05 are considered to be statistically significant.

Traces were plotted using Origin 8 software (OriginLab Corp,

Northampton, MA, USA). Action potential firings were

analyzed using a Mini-Analysis software (ver. 6.0.7;

Synaptosoft Inc., Decatur, GA, USA).
Results

Hydrogen peroxide exposure induces
variegated response in GnRH neurons

We used whole-cell current-clamp recordings to investigate

the influence of H2O2 on membrane excitability in GnRH

neurons and found that superfusion with 1 mM H2O2 elicited

a variety of responses in adult GnRH neurons, including

membrane hyperpolarization, depolarization, and no response

as shown in Figure 1. Bath treatment with 1 mM H2O2 for 3 to 5

minutes produced responses in 70% of adult GnRH neurons,

while 30% of adult GnRH neurons were unresponsive to H2O2

(Figure 1A). Among responding neurons, 10% generated an

average membrane depolarization of 4.60 ± 0.65 mV (n = 15;

Figure 1B) while 60% of neurons induced an average membrane
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hyperpolarization of -14.6 ± 0.81 mV (n = 82; Figure 1C).

Depolarized neurons showed a minor increase in spontaneous

action potential firing in addition to membrane potential

change. In contrast, hyperpolarized neurons showed partial

and/or full cessation of spontaneous action potential firing.

These alterations were reversed after more than 15-20 minutes

of H2O2 washout.

According to previous studies, oxidative stress vulnerability

increases with age, with adults being more vulnerable and juveniles

being partially resistant (30, 31). In the present study, effects of 1

mM H2O2 on GnRH neurons were studied in three groups

according to age: juvenile, 8 to 25 postnatal days (PND);

peripubertal, 26 to 45 PND; and adults, more than 60 PND. In

contrast with its hyperpolarization effect on most adult GnRH

neurons, H2O2 depolarized most GnRH neurons 67% (8/12) in

juveniles. On the other hand, H2O2 exposure elicited similar
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percentages of responses, 46% (5/11) for depolarization and 36%

(4/11) for hyperpolarization in peripubertal mice as shown in

Figures 2A, B. Furthermore, there was no significant difference in

mean depolarization between juvenile and peripubertal. Similarly,

GnRH neurons from both adult females and males responded

equally to H2O2 exposure (females; 69%, 24/35: males; 69%, 73/

106). In addition, the mean values for induced hyperpolarization

(male; -14.9 ± 0.84 mV, n = 65: female; -12.5 ± 1.50 mV, n = 17, p >

0.05; unpaired t-test) and depolarization (male; 3.98 ± 0.46 mV, n =

8: female; 5.32 ± 1.3 mV, n = 7, p > 0.05; unpaired t-test) were not

significantly different between adult females and males GnRH

neurons as shown in Figure 2A. Similarly, there was no

significant difference in the mean hyperpolarization among

estrous phases in female mice (estrous; -11.1 ± 2.11mV, n = 5:

diestrous; -15.4 ± 0.96 mV, n = 5: proestrous; -11.4 ± 3.23 mV, n =

7, p > 0.05; one-way ANOVA, Figure 2C). However, female GnRH
A

B

C

FIGURE 1

H2O2 induces variegated responses of adult male GnRH neurons. (A–C) Representative voltage traces from GnRH neurons showing no
response, membrane depolarization, and membrane hyperpolarization, respectively, upon perfusion with 1 mM H2O2.
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neurons demonstrated estrous cycle-dependent variation in

response percentage to H2O2 exposure. During H2O2 exposure,

100% of GnRH neurons from proestrous mice showed

hyperpolarization, whereas only 45% of GnRH neurons from

estrous mice responded to H2O2 with hyperpolarization.

Similarly, 70% of GnRH neurons from diestrous mice responded

to H2O2 treatment, accounting 30% for hyperpolarization and 40%

for depolarization, as shown in Figure 2D.
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Response of adult GnRH
neurons to H2O2 exposure is
concentration-dependent

After discovering that adult GnRH neurons were susceptible

to 1 mM H2O2, we conducted a dose-dependent experiment in

adult male GnRH neurons with low and high concentrations of

H2O2. As demonstrated in Figure 3A, low concentrations of
A B

FIGURE 3

Concentration-dependent effect of H2O2 on GnRH membrane potential under whole-cell current clamp. (A) Histograms depicting H2O2-
induced membrane polarization in response to various concentrations of H2O2 on GnRH neurons of adult males (one-way ANOVA post-hoc
Scheffe test) (B) Histograms depicting percentage of variegated responses induced by various concentrations of H2O2 on GnRH neurons of
adult males.
A

B D

C

FIGURE 2

H2O2 effect on GnRH neurons across postnatal development and estrous cycle. (A–C) Histograms depicting H2O2-induced membrane
polarization in GnRH neurons throughout the postnatal development and estrous cycle, respectively (p > 0.05; one-way ANOVA). (B–D)
Histograms showing percentages of variegated responses of GnRH neurons by H2O2 exposure across postnatal development and at various
estrous cycle stages in adult females, respectively.
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H2O2 caused minor membrane depolarization, whereas high

concentrations of H2O2 caused membrane potential to become

more hyperpolarized. Low concentrations of H2O2 (100 pm, 100

nM, and 10 mM) exhibited depolarization in the majority of

GnRH neurons, corresponding to 80% (8/10), 43% (3/7), and

75% (3/4), respectively. In contrast, high concentrations of H2O2

(0.3, 1 and 3 mM) induced hyperpolarization in majority of

GnRH neurons, corresponding to 69% (9/13), 61% (65/106), and

72% (13/18), respectively. However, 100 mM H2O2 induced

depolarization in one of the fourteen neurons tested

accounting 7% as shown in Figure 3B.
H2O2 acts on GnRH neurons
postsynaptically

Hyperpolarization of GnRH neurons induced by 1 mM

H2O2 recovered almost completely after more than 15 to 20

minutes of washout. Therefore, we determined whether H2O2

elicited repeatable responses of GnRH neurons. To access this,

H2O2 was consecutively applied after the washout of the first

appl icat ion. On repeat appl icat ion, H2O2 induced

hyperpolarization with comparable amplitude to that of the

first application. The mean hyperpolarization induced by

H2O2 on the first application (-18.0 ± 4.84 mV, n = 8) was

similar to that induced on the second application (-18.4 ± 4.8

mV, n = 8, p > 0.05; Figure 4A). Further, we aimed to examine

whether H2O2 could act on GnRH neurons directly. For this, the

hyperpolarization induced on bath application of H2O2 was

recorded in the presence of TTX (0.5 µM), a sodium channel

blocker known to block action potential-dependent

transmission. Action potentials were promptly suppressed

when recorded in the presence of TTX. However, the

hyperpolarizing effect of H2O2 on GnRH neurons persisted.

Average responses generated by H2O2 alone (-16.8 ± 2.2 mV, n =

8) and in the presence of TTX (-13.6 ± 1.7 mV, n = 8, p > 0.05;

Figure 4B) were not significantly different.

Next, to assess the possible involvement of both pre-

and post-synaptic GABA, glycine, and glutamate receptors in

H2O2 mediated actions of GnRH neurons, H2O2-induced

hyperpolarization was recorded in the presence of an

amino acid receptor blocker cocktail (AARBC) containing

picrotoxin (50 µM), AP5 (20 µM), CNQX (10 µM), and

strychnine (2 µM). Under these circumstances, H2O2 still

induced hyperpolarization of GnRH neurons. The average

hyperpolarization induced by H2O2 alone was -17.0 ± 1.95

mV (n = 6), which was not significantly different from that

induced by H2O2 in the presence of AARBC (-16.5 ± 2.57 mV, n

= 6, p > 0.05; Figure 4C). As shown in Figure 4D, the average

relative percentage of H2O2-induced hyperpolarization on the

second application, TTX and AARBC compared to respective

control were 101.3 ± 10.1% (n = 8, p > 0.05), 85.3 ± 8.9% (n = 8, p

> 0.05), and 97.5 ± 13.3% (n = 6, p > 0.05), respectively. These
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findings imply that H2O2 directly acts on postsynaptic GnRH

neurons to induce hyperpolarization effect.
H2O2-mediated hyperpolarization is due
to activation of KATP channels

When exposed to exogenous H2O2, hyperpolarization and

reduced excitation are hypothesized to be caused by the

activation of potassium channels in various neuronal cells (18,

23). As a result, we examined hyperpolarization caused by H2O2

exposure in the presence of potassium channel blockers such as

TEA, BaCl2, and glibenclamide. Blocker concentrations utilized

in this study have been shown to be able to inhibit potassium

channels in brain slices (32–34). To confirm the involvement of

potassium channels in the hyperpolarizing effect of H2O2, the

response elicited by H2O2 was examined in the presence of non-

specific K+ channel blocker, TEA. The hyperpolarizing impact of

H2O2 was maintained even in the presence of TEA (Figure 5A).

Next, hyperpolarization induced by H2O2 exposure was

recorded in the presence of BaCl2, a broad-spectrum potassium

channel blocker. In the presence of BaCl2, the hyperpolarization

induced by H2O2 was partially suppressed (Figure 5B). Next,

glibenclamide, KATP channel blocker, was coapplied with H2O2.

After treatment with glibenclamide, five of nine GnRH neurons

depolarized with increased firing frequency. Glibenclamide also

prevented H2O2-elicited hyperpolarization of all neurons

examined (Figure 5C). As shown in Figure 5D, average relative

hyperpolarization percentages induced by H2O2 in the presence of

TEA, BaCl2 and glibenclamide compared to those by H2O2 alone

were 91.0 ± 12.4% (n = 7, p > 0.05), 70.0 ± 6.04% (n = 7, **p <

0.01), and 10.5 ± 1.52% (n = 9, ***p < 0.001), respectively. These

findings imply a complete involvement of KATP channels in H2O2-

mediated hyperpolarization of GnRH neurons.
Role of endogenous H2O2 in regulating
excitability of GnRH neurons

In this study, exogenous H2O2 was identified as a possible

regulator of GnRH neuron activity, influencing membrane

potential and spontaneous firing activities. Next, we

determined whether elevation in endogenously produced H2O2

could affect the activity of these cells. Recent studies have shown

that endogenous H2O2 amplification can regulate neuronal

excitability in distinct neuronal populations (23, 35).To

explore the influence of endogenous H2O2 on GnRH neurons

excitability, ATZ (1 mM), a CAT inhibitor, and MCS (1 mM), a

GPx inhibitor, were bath applied. ATZ and MCS have been

shown to increase the production of intracellular H2O2 in cells

(23, 35). Using ATZ, we first examined the effect of CAT

inhibition on GnRH neuronal activity. Except for one neuron

that displayed depolarization of 19.7 mV, bath administration of

1mM ATZ had no significant effect on membrane potential or
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spontaneous activity of all GnRH neurons examined

(Figure 6A). The frequency of spontaneous firing under ATZ

treatment remained considerably unaltered compared to that of

the control as shown in Figure 6B (Control: 1.68 ± 0.229, ATZ:

1.63 ± 0.22; n = 9; p > 0.05). Inhibiting GPx with MCS resulted in
Frontiers in Endocrinology 07
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a partial cessation of spontaneous activity in most (13/17) GnRH

neurons and a complete blockade in four neurons. In the

presence of MCS, the spontaneous firing activity of GnRH

neurons decreased from 1.90 ± 0.32 Hz to 0.80 ± 0.23 Hz (n =

17; p < 0.05; Figures 6C, D), with an average decrease of 66.2 ±
A

B

D

C

FIGURE 4

H2O2 acts on GnRH neurons post-synaptically. (A) A representative trace showing repeatable hyperpolarization induced by 1 mM H2O2 under a
whole-cell current clamp. (B, C) Representative traces showing persistence of H2O2 induced hyperpolarization response in the presence of
(TTX, 0.5 mM), the voltage-sensitive Na+ channel blocker and amino-acid receptor blocking cock-tail (AARBC), respectively. (D) A bar diagram
showing mean relative values of hyperpolarization induced by 1 mM H2O2 on 2nd application, in the presence of TTX, and in the presence of
AARBC (p > 0.05; paired t-test).
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5.2%. In addition, MCS exposure resulted in membrane response

in 9 of 17 GnRH neurons tested. Among them, seven neurons

displayed a slight depolarization (3.75 ± 0.43 mV, n = 7),

whereas the remaining two exhibited hyperpolarization of

-3.70 ± 0.67 mV. All changes were reversible upon washout of

MCS with ACSF.
Discussion

For the first time, this study shows that the majority of adult

GnRH neurons are vulnerable to oxidative stress. This study aimed
Frontiers in Endocrinology 08
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to determine the role of ROS H2O2 in modulating the GnRH

neuronal activity. Our electrophysiological data demonstrated that

exogenous H2O2 elicited post-synaptic inhibition of activities of most

adult GnRH neurons via activation of KATP channels. Furthermore,

immature GnRH neurons, unlike adult GnRH neurons, exhibited

excitation upon H2O2 exposure. The vulnerability of GnRH neurons

to H2O2 increased with postnatal development. H2O2 sensitivity to

adult GnRH neurons was found to be highly dependent on H2O2

concentration and the estrous cycle of females. In addition, inhibiting

GPx caused GnRH neurons to lose their spontaneous activity.

The hypothalamus is a predominant brain area that receives

integrated information from multiple sources, including
A

B

D

C

FIGURE 5

ATP-sensitive potassium channels (KATP) are susceptible to H2O2-induced hyperpolarization in GnRH neurons. (A, B) Representative traces
showing persistence of H2O2-induced hyperpolarization response in the presence of TEA and BaCl2, respectively. (C) A representative trace
showing complete blockade of hyperpolarization induced by 1mM H2O2 by KATP channel blocker glibenclamide under whole-cell current
clamp. (D) A bar diagram depicting mean relative values of hyperpolarization caused by 1 mM H2O2 in the presence of various potassium
channel blockers (TEA: n = 7, no significant; BaCl2: n = 7, *p < 0.05; glibenclamide: n = 9, **p < 0.01, paired t-test).
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hormones, neurotransmitters, and metabolites, to regulate

homeostasis, energy metabolism, and hormone release (14,

36). Furthermore, the hypothalamus is highly susceptible to

oxidative stress. In addition, NADPH oxidase, a neuronal

enzyme that produces ROS, is found in the hypothalamus,

especially in the arcuate nucleus (ARC), ventromedial (VMN),

and PVN regions (14, 17). The ARC, PVN, and VMN are known

to contain neuromodulators that affect fertility (37). NPY/AgRP

and POMC/CART neurons in the ARC project directly onto

GnRH neuron cell bodies and nerve terminals (38, 39).

Neuropeptides released by these neurons can influence GnRH

neuron activity (40, 41). Furthermore, cellular activity of the

NPY/AgRP and POMC/CART neuronal population is directly

controlled by intracellular ROS (17). In the case of GnRH

neurons, ROS H2O2 appeared to influence neuronal activity

across postnatal development in a concentration-dependent and

estrous-cycle-dependent manner.

Our findings, revealed that 1 mMH2O2 inhibited adult GnRH

neurons, consistent with previous studies on dopamine neurons

(23), PVN (18), substantia nigra pars reticulate (SNr) GABAergic

neurons (35), and intrinsic cardiac ganglia neurons (42). Most

studies using adult experimental animals have shown that H2O2

can inhibit neuronal excitability (18, 23, 35, 42). However, unlike

adults, most immature GnRH neurons were stimulated by the
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same concentration of H2O2. According to previous studies,

oxidative stress vulnerability increase with age, with young rats

being more resistant to ROS than adults (30). Furthermore, H2O2

has both excitatory and inhibitory effects on neuronal excitability

depending on neuronal population and brain location (43).

In the present study, the responsiveness of adult female GnRH

neurons to H2O2 exposure varied throughout the estrous cycle.

Circulating gonadal hormones, which fluctuate during estrous

phases (44), can significantly impact GnRH neuronal excitability

(45). Some studies show that proestrus mice had higher GnRH

neuronal activity than mice in other estrous phases (46, 47). On the

other hand, Piet et al. have reported less GnRH neuronal activity in

proestrus mice than in mice at diestrus stage (48). According to

previous studies, estradiol appears to have a positive feedback effect

on GnRH neuronal activity in proestrus mice (49), and a

neuroprotective effect against oxidative stress (50). We found that

GnRH neurons in proestrus mice were more vulnerable to oxidative

stress than those in estrous and diestrous stages. There is no

information on how circulating steroid hormones influence GnRH

neurons during oxidative stress. This requires further investigation.

In mature GnRH neurons, H2O2 mainly caused

hyperpolarization and action potential suppression. Such

H2O2-mediated response was retained in the presence of

voltage-gated Na+ channel blocker TTX and AARBC,
A B

DC

FIGURE 6

Glutathione peroxidase (GPx) inhibition suppresses excitability of GnRH neurons. (A) A representative current-clamp trace showing no effect of 1
mM ATZ (catalase inhibitor) on GnRH neurons. (C) A typical current-clamp trace showing a decrease of spontaneous activity of GnRH neurons
after perfusion with 1 mM MCS, a GPx inhibitor. (B, D) Before and after plot showing effects of ATZ and MCS on mean spontaneous firing of
GnRH neurons, respectively (**p < 0.01; one-way ANOVA).
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indicating a post-synaptic effect of H2O2 on GnRH neurons.

H2O2 has been previously shown to have a similar post-synaptic

effect (18). Studies have shown that H2O2 can induce membrane

potential depolarization and hyperpolarization via different

mechanisms. H2O2 can activate transient receptor potential

channels (35, 51) or inhibit inward-rectifying K+ channels to

induce depolarization (52). Opening of KATP channels leads to

hyperpolarization (18, 23, 35). Activation of barium-sensitive

potassium channels by H2O2 exposure has also been reported in

a few studies (53). Similar to other studies, we observed the

involvement of KATP and Ba2+ sensitive potassium channel in

the hyperpolarization of GnRH neurons induced by H2O2.

The potassium channel plays a role in hormone and

neurotransmitter release (54). Identifying signaling molecules

that affect K+ channels in GnRH neurons is of particular interest

nowadays. Studies have shown that GnRH neurons are

susceptible to metabolic stress, which activates KATP channels.

Functional KATP channel subunits have been detected in GnRH

neurons (55). When the ATP/ADP ratio falls, KATP channels,

which govern resting membrane properties of neurons, will

open, caus ing ce l l s to hyperpolar ize and provide

neuroprotection (56). Aside from neuroprotection, KATP

channels are involved in glucose homeostasis in the

hypothalamus, including GnRH neurons (55, 57). Recently,

H2O2 has been identified as a signaling molecule for KATP

channel activation (23, 35). Furthermore, inhibiting GPx and

CAT of antioxidant systems can increase endogenous H2O2 in

midbrain dopamine neurons (23) and SNr GABAergic neurons

(35), resulting in KATP channel activation.

GPx and CAT are two major enzymes involved in H2O2

detoxification. Therefore, antioxidant enzymes inhibitors ATZ

and MCS were used to determine the effect of endogenous H2O2

on GnRH neuronal excitability in the present study. ATZ is a

CAT inhibitor that elevates endogenous H2O2 (58). It has a

similar effect as exogenous H2O2 on midbrain dopamine

neurons (23). However, ATZ showed no effect on GnRH

neuron excitability. On the other hand, inhibition of GPx,

another antioxidant enzyme, caused GnRH neurons to lose

their spontaneous activity. Avshalumov et al. have reported a

similar result. They showed that MCS treatment caused most

dopamine neurons in the midbrain to hyperpolarize and lose

their spontaneous activity (23). CAT and GPx are endogenous

antioxidant-active enzymes responsible for the enzymatic

clearance of H2O2, changing H2O2 into H2O and O2 molecules

(18, 59). GPx is a crucial enzyme in the cytosol that plays an

important role in the host’s defense against oxidative stress (60).

Its principal antioxidant enzyme activity is to protect neurons

against H2O2 toxicity (61). CAT is predominantly found in

peroxisomes while GPx is distributed in the cytosol and

mitochondria (61). Inhibiting GPx may cause H2O2 to

accumulate in the cytosol, hence regulating neuronal excitability.

GnRH neurons not only can respond to hormonal,

neurotransmitter, and neuropeptide inputs, but also can react
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directly to metabolic signals (55, 62, 63). The generation of

reactive oxygen species is commonly linked to metabolic signals.

In aging and pathologic situations, impairment in the antioxidant

defense system becomes more noticeable, resulting in increased ROS

generation (64, 65). The interaction between energy metabolism and

ROS becomes more evident during aging, increasing the risk of age-

related illnesses (66). Female reproductive disorders such as

endometriosis, polycystic ovary syndrome, preeclampsia, and

recurrent pregnancy loss can result from a pro-oxidant/antioxidant

imbalance (12). Similarly, oxidative stress can affect sperm function

in males, resulting in infertility (67). We demonstrated that H2O2

inhibited the majority of adult GnRH from both sex, which could

reinforce the preexisting hypothesis about oxidative stress is linked to

infertility. Furthermore, the direct impact of H2O2 on GnRH

neuronal excitability via ion-channel mechanism could explain the

cause of ROS disruption in the crosstalk of the HPG axis with

another endocrine axis at hypothalamic levels and ROS-induced

hormonal imbalance that leads to infertility.

In conclusion, current findings indicate that H2O2 can

regulate KATP channels in adult GnRH neurons. Potassium

channels can influence hormone and neurotransmitter release.

Thus, oxidative stress regulating KATP channels in hypothalamic

GnRH neurons could modulate pulsati le release of

gonadotropins, impacting the reproductive axis.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Ethics statement

The animal study was reviewed and approved by

Institutional Animal Care and Use Committee of Jeonbuk

National University (CBNU 2020-0122).
Author contributions

SR performed the experiments, analyzed the data, and wrote

the draft. SJ contributed to reviewing and editing the draft. DC

and SH conceptualized and design the study and completed the

manuscript. All authors contributed to the article and approved

the submitted version.
Funding

This research was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korean

g o v e r nmen t (MS IT ) ( 2 0 2 1R1F 1A1 0 4 5 4 0 6 ) a n d
frontiersin.org

https://doi.org/10.3389/fendo.2022.939699
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Rijal et al. 10.3389/fendo.2022.939699
(2021R1F1A1046123). The funders had no role in the design,

analysis, or writing of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Endocrinology 11
108
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive oxygen species:
physiological and physiopathological effects on synaptic plasticity: supplementary
issue: brain plasticity and repair. J Exp Neurosci (2016) 10:23–48. doi: 10.4137/
JEN.S39887

2. Park A, Lee HI, Semjid D, Kim DK, Chun SW. Dual effect of exogenous nitric
oxide on neuronal excitability in rat substantia gelatinosa neurons. Neural Plast
(2014) 2014:628531. doi: 10.1155/2014/628531

3. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D,
Henkel R, et al. Reactive oxygen species and male reproductive hormones. Reprod
Biol Endocrinol (2018) 16(1):87. doi: 10.1186/s12958-018-0406-2

4. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources,
targets, and their implication in various diseases. Indian J Clin Biochem (2015) 30
(1):11–26. doi: 10.1007/s12291-014-0446-0

5. Checa J, Aran JM. Reactive oxygen species: Drivers of physiological and
pathological processes. J Inflammation Res (2020) 13:1057–73. doi: 10.2147/
JIR.S275595

6. Chen Y, McMillan-Ward E, Kong J, Israels S, Gibson S. Oxidative stress
induces autophagic cell death independent of apoptosis in transformed and cancer
cells. Cell Death Differ (2008) 15(1):171–82. doi: 10.1038/sj.cdd.4402233

7. Kurutas EB. The importance of antioxidants which play the role in cellular
response against oxidative/nitrosative stress: current state. Nutr J (2016) 15(1):71.
doi: 10.1186/s12937-016-0186-5

8. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress
and antioxidant defense. World Allergy Organ J (2012) 5(1):9–19. doi: 10.1097/
WOX.0b013e3182439613

9. Marques P, Skorupskaite K, George JT, Anderson RA. Physiology of GnRH
and gonadotropin secretion (2000) MDText.com, Inc. Available at: http://www.
ncbi.nlm.nih.gov/pubmed/25905297.

10. Terasaka T, Adakama ME, Li S, Kim T, Terasaka E, Li D. Et.al. reactive
oxygen species link gonadotropin-releasing hormone receptor signaling cascades in
the gonadotrope. Front Endocrinol (2017) 8:286. doi: 10.3389/fendo.2017.00286

11. Razmara A, Duckles SP, Krause DN, Procaccio V. Estrogen suppresses brain
mitochondrial oxidative stress in female and male rats. Brain Res (2007) 1176:71–
81. doi: 10.1016/j.brainres.2007.08.036

12. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The
effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol
(2012) 10(1):1–31. doi: 10.1186/1477-7827-10-49

13. Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: Current
knowledge of pathophysiology and role of antioxidant therapy in disease management.
Cell Mol Life Sci (2020) 77(1):93–113. doi: 10.1007/s00018-019-03253-8

14. Drougard A, Fournel A, Valet P, Knauf C. Impact of hypothalamic reactive
oxygen species in the regulation of energy metabolism and food intake. Front
Neurosci (2015) 9:56. doi: 10.3389/fnins.2015.00056

15. Benani A, Troy S, Carmona MC, Fioramonti X, Lorsignol A, Leloup C, et al.
Role for mitochondrial reactive oxygen species in brain lipid sensing: redox
regulation of food intake. Diabetes (2007) 56(1):152–60. doi: 10.2337/db06-0440

16. St-Louis R, Parmentier C, Raison D, Grange-Messent V, Hardin-Pouzet H.
Reactive oxygen species are required for the hypothalamic osmoregulatory
response. Endocrinology (2012) 153(3):1317–29. doi: 10.1210/en.2011-1350

17. Gyengesi E, Paxinos G B, Andrews Z. Oxidative stress in the hypothalamus:
the importance of calcium signaling and mitochondrial ROS in body weight
regulation. Curr Neuropharmacol (2012) 10(4):344–53. doi: 10.2174/
157015912804143496

18. Dantzler HA, Matott MP, Martinez D, Kline DD. Hydrogen peroxide
inhibits neurons in the paraventricular nucleus of the hypothalamus via
potassium channel activation. Am J Physiol Regul Integr Comp Physiol (2019)
317(1):R121–33. doi: 10.1152/ajpregu.00054.2019

19. Giniatullin A, Giniatullin R. Dual action of hydrogen peroxide on synaptic
transmission at the frog neuromuscular junction. J Physiol (2003) 552(1):283–93.
doi: 10.1113/jphysiol.2003.050690

20. Chen X, Song M, Zang B, Zang Y. Reactive oxygen species regulate T cell
immune response in the tumor microenvironment. Oxid Med Cell Longev (2016)
2016:1580967. doi: 10.1155/2016/1580967
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17b-estradiol does not have a
direct effect on the function of
striatal cholinergic interneurons
in adult mice in vitro

Erzsébet Kövesdi1,2, Ildikó Udvarácz1,2, Angéla Kecskés2,3,
Szilárd Szőcs1,3, Szidónia Farkas1,2, Péter Faludi1,2,
Tibor Z. Jánosi1,2, István M. Ábrahám1,2 and Gergely Kovács1,2*

1Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary, 2Centre for
Neuroscience, Szentágothai Research Centre, Pécs, Hungary, 3Department of Pharmacology and
Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
The striatum is an essential component of the basal ganglia that is involved in

motor control, action selection and motor learning. The pathophysiological

changes of the striatum are present in several neurological and psychiatric

disorder including Parkinson’s and Huntington’s diseases. The striatal

cholinergic neurons are the main regulators of striatal microcircuitry. It has

been demonstrated that estrogen exerts various effects on neuronal functions

in dopaminergic and medium spiny neurons (MSN), however little is known

about how the activity of cholinergic interneurons are influenced by estrogens.

In this study we examined the acute effect of 17b-estradiol on the function of

striatal cholinergic neurons in adult mice in vitro. We also tested the effect of

estrus cycle and sex on the spontaneous activity of cholinergic interneurons in

the striatum. Our RNAscope experiments showed that ERa, ERb, and GPER1

receptor mRNAs are expressed in some striatal cholinergic neurons at a very

low level. In cell-attached patch clamp experiments, we found that a high dose

of 17b-estradiol (100 nM) affected the spontaneous firing rate of these neurons

only in old males. Our findings did not demonstrate any acute effect of a low

concentration of 17b-estradiol (100 pM) or show any association of estrus cycle

or sex with the activity of striatal cholinergic neurons. Although estrogen did

not induce changes in the intrinsic properties of neurons, indirect effects via

modulation of the synaptic inputs of striatal cholinergic interneurons cannot

be excluded.
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1 Introduction

Basal ganglia are a group of deep subcortical nuclei in the

brain that are essential for motor learning, formation of

procedural memory and motor control. The striatum is the

major input nucleus of the basal ganglia and is composed of two

regions, the dorsal and the ventral striatum. In primates, the

caudate nucleus and the putamen form the dorsal striatum,

which corresponds to the dorsomedial (DMS) and dorsolateral

(DLS) striatum in rodents, respectively. The DMS and the DLS

receive inputs from different areas of the cortex, namely,

afferents from the prefrontal and the associative cortex reach

the DMS, whereas information from the sensorimotor area

conveyed to the DLS (1, 2). Based on histochemical

identification, the dorsal striatum is composed of two main

compartments known as patches (striosomes) and matrix (3).

The dorsal striatum is mostly involved in motor learning, action

selection, execution and termination. The ventral striatum is

composed of the nucleus accumbens and the olfactory tubercle,

and is mainly engaged in goal-directed movement and reward-

related behavior (2, 4).

Most of the striatal neurons are GABAergic medium spiny

neurons (MSN) also known as spiny projection neurons (SPN).

They form the sole output of the striatum (direct and indirect

pathways). The remaining ~5% of the striatal neurons consist of

different classes of aspiny interneurons including parvalbumin-

positive, fast-spiking neurons, somatostatin-positive low-

threshold spiking neurons, calretinin-positive neurons, and

cholinergic interneurons (5).

Cholinergic neurons form a specific population of neurons

in the brain that synthesize and release acetylcholine (ACh) as a

neurotransmitter. Using specific markers for the intracellular

metabolism of acetylcholine such as choline acetyl-transferase

(CHAT), acetylcholine esterase (AChE), vesicular acetylcholine

transporter (VAChT), or high-affinity choline transporter 1

(ChT1), cholinergic neurons were identified and localized in

several discrete brain regions including the striatum (6).

Although only ~1% of the striatal neurons are cholinergic

interneurons, the highest levels of cholinergic markers are

found in the striatum. Despite the fact that the somata of

cholinergic interneurons are mostly located in the flanking

region of the extrastriosomal matrix compartment of the

striatum, cholinergic interneurons regulate and modulate the

function of almost all striatal neurons in both striatosomes and

the matrix compartment, innervating them with very extensive

and massive axonal arborizations (3, 7). The identification of

striatal cholinergic neurons (ChINs) is easy, based on the

expression of the aforementioned specific neurochemical

markers, their distinct morphological appearance (giant aspiny

neurons with large (15-50 mm) soma), and unique

electrophysiological parameters such as a relatively depolarized

resting membrane potential , Ih current, prominent
Frontiers in Endocrinology 02
111
afterhyperpolarization and wide action potential (8). In

addition, striatal ChINs act as autonomous pacemakers.

Several studies suggest that in vitro, spontaneously firing

ChINs most probably correspond to tonically active neurons

(TANs) identified by in vivo recordings in the putamen (9). The

ChINs express several receptors for different neurotransmitters

as they play a central role in the striatal circuitry. They receive

significant input from midbrain dopaminergic neurons (D2/D5

receptors), and other striatal ChINs (nAChR and mAChR).

They also have extensive glutamatergic innervation from both

the cortex and several thalamic nuclei (ionotropic and

metabotropic glutamate receptors) and a variety of GABA-

ergic inputs (GABAA receptors) (10, 11). On the other hand,

besides modulating the activity of GABAergic and glutamatergic

striatal afferents, striatal ChINs exert direct postsynaptic effects

on MSN activity, which are the main output of the striatum, via

primarily M1 subtypes of mAChRs (7).

In the nervous system estrogens play a role in sexual

differentiation, synaptic plasticity, neuronal differentiation, and

neuroprotection. Estrogens also modulate several striatal

functions (12–14).

The cellular effects of estrogens are mediated by three

different G protein-coupled receptors, namely ERa, ERb, and
G protein-coupled estrogen receptor 1 (GPER1 or GPR30).

These receptors could reside in the nucleus (ERa and ERb) or
have an extranuclear localization. Although using in situ

hybridization, a few groups (15, 16) detected no expression of

ERa and ERb mRNA in the striatum, the majority of previous

studies showed that the expression of estrogen receptors in the

rodent dorsal striatum was sparse and was weak to moderate

even in positive cells (17–22). In addition, recent findings

demonstrate that ERa and ERb expression are high in mouse

pups and decreases with time resulting in low or very low

expression in adults (23, 24). Finally, ERa and GPER1 were

detected in a small proportion of cholinergic interneurons using

electron microscopy (17).

Striatal behavior as assessed using locomotor tests showed

large differences between male and female animals under resting

conditions or after psychostimulant administration (see (13)

for review).

Estrogens have a wide variety of genomic and non-genomic

effects on the dopaminergic system and MSN neurons in the

striatum (see (12–14, 25) for reviews). Striatal cholinergic

neurons have a pivotal role in the modulation and function of

striatal microcircuitry interacting DA and MSN neurons among

many others (10).

Although there is an extensive literature about the effect of

estrogens on dopaminergic neurons there is not much

information available about estrogens and striatal cholinergic

neurons. Therefore, the aim of the present study was to examine

how 17b-estradiol and sex affect the spontaneous activity of

cholinergic interneurons in vitro in the murine dorsal striatum.
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2 Materials and methods

2.1 Animals

All animals (35 transgenic and 6 wild type C57Bl/6) were

bred and kept in the temperature- and humidity-controlled

animal facility of the Szentágothai Research Center under a

12-hour light/12-hour dark light cycle. The animals used in the

experiments were fed with a standard chow and had access to

water ad libitum. All experiments were performed on adult mice

older than 3 months in accordance with the regulations of the

European Community Council Directive and the Animal

Welfare Committee of the University of Pécs. To generate

ChAT-Cre-tdTomato transgenic mice ChAT-IRES-Cre knock

in mice (B6,129S6-Chattm2(cre)Lowl/J) and the reporter mouse line

B6,129S6-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J were crossed.
2.2 Tissue fixation and slice preparation

Animals anaesthetized with 0.3-0.35 ml of 2.5% Avertin were

transcardially perfusion-fixed with 4% paraformaldehyde (PFA)

following perfusion with 0.9% physiological saline solution.

Brains were removed and postfixed in 4% PFA overnight.

Thereafter, samples were cryoprotected by incubating them in

TBS (50 mM Tris, 150 mm NaCl, pH 7.4) containing 30%

sucrose at +4°C for 8 hours. Next day, 50 mm sagittal sections

kept on dry ice were cut for immunofluorescence staining using

a sliding microtome (Leica SM2010 R), and the obtained slices

were stored in anti-freeze solution (40 mM Na2HPO4, 6 mM

NaH2PO4, 20% (v/v) glycerin, and 30% (v/v) ethylene glycol at –

20°C until further processing. For RNAscope experiments, 30

mm coronal sections (Bregma +0.14 to +0.4 mm) were prepared

from 3-3 male and female wild type C57Bl/6 animals as

described above. In some cases, 50 mM sagittal slices were used.
2.3 Immunofluorescence and
immunohistochemistry (IHC)

For immunofluorescence staining the cryoprotected slices

were washed three times in TBS. Next, tissue permeabilization

and blocking of non-specific antibody binding was performed by

incubating the slices in 10% horse serum and 0.2% Triton X-100

containing TBS solution at room temperature for 2 hours

followed by three washes in TBS. Thereafter, the slices were

incubated with goat anti-CHAT (antibody registry number: AB

90650) or goat anti-parvalbumin primary antibody (antibody

registry number: AB 2650496) at 1:1000 dilution in blocking

solution (10% horse serum and 0.05% Triton X-100 containing

TBS) at +4°C for 72 hours. Following three washes in TBS, slices

were incubated in blocking solution containing donkey anti-goat

secondary antibody conjugated to Alexa647 fluorophore
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(antibody registry number: AB 2340437) at room temperature

for two hours. After three consecutive washes in TBS, nuclei

were counterstained with Hoechst 33342 at 1:10000 dilution at

room temperature for 5 minutes. Following the final three

washes in TBS slices were mounted on microscope slides and

covered with Prolong GOLD mounting medium.

We also performed NiDAB immunohistochemical staining

for cholinergic neurons in some experiments. Here, following

three consecutive 10-minute washes with TBS, the endogenous

peroxidase activity was blocked by incubating the slices with 1%

H2O2 in 10%methanol at room temperature for 15 minutes. The

permeabilization, the blocking and the incubation step with goat

anti-CHAT antibody (antibody registry number: AB 90650) was

performed as described above. Thereafter, three consecutive

washes with TBS were followed by incubation with

biotinylated donkey anti-goat secondary antibody (antibody

registry number: AB 2340397) diluted at 1:200 in blocking

solution at room temperature for 2 hours. To detect the bound

secondary antibodies, slices were incubated with avidin/

peroxidase complex (Vectastain Elite ABC HRP kit, PK-6100,

Vector Laboratories) diluted in blocking solution after three

consecutive washes. Finally, NiDAB in 0.1 M acetate buffer was

applied to cover the slices and the samples were developed until

the desired color reaction could be observed by monitoring it

with a brightfield microscope. Termination of development was

achieved by rinsing the slides with Tris buffer. After drying the

slices on slides, samples were dehydrated with an ascending

concentration series of ethanol washes and mounted using DPX

mounting medium.

IHC-stained and fluorescence slices were imaged with a

Mantra Quantitative pathology workstation, or a Zeiss LSM

710 confocal laser scanning microscope system (Carl Zeiss, Jena,

Germany) equipped with violet-diode (405 nm), multiline argon

(457–517 nm), and solid-state (543, 561 nm and 633 nm) lasers,

respectively. Images were taken with a 20x (N.A. 0.75) objective

using ZEN 2.3 imaging software. Post-acquisition image

processing was performed in Fiji software.
2.4 RNAscope and confocal laser
scanning microscopy

In 30 μm thick, paraformaldehyde-fixed coronal brain

sections mRNA transcripts of estrogen receptors (ERa, Erb,
and GPER1), and choline acyltransferase (CHAT), were

visualized with a multiplex fluorescence RNAscope in situ

hybridization assay (Advanced Cell Diagnostics, Newark, CA)

(see Table 1). Following three consecutive washes in TBS free-

floating sections were mounted on Superfrost Plus Gold

adhesion slides (Thermo Scientific, 630-1324, VWR). The

labeling of the selected transcripts was performed according to

the manufacturer’s instructions. Amplification and detection

steps for the selected estrogen receptor and CHAT were
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carried out sequentially. To ensure the specific staining of

estrogen receptors transcripts, labeling of these mRNAs was

performed before labeling CHAT mRNA. Nuclei were

counterstained with Hoechst 33342, and stained sections were

mounted with ProLong Diamond Antifade mountant. After 24

hours curing in the mounting medium, slices were sealed with

nail polisher. 3-plex negative control probes for mouse tissue

were used on two slices each time RNAscope labeling

was performed.

Sections were imaged using a Nikon C2+ confocal laser

scanning imaging system in less than one week later. During

each imaging session a fluorescence, stitched, large overview

image of the whole slice was taken first using a 10x objective

(N.A. 0.45). Next, using high magnification objectives (60x or

100x, N.A. 1.4) 12-bit fluorescent images (512 x 512 pixels) were

taken at a Nyquist sampling rate. Because the abundance of

transcripts for estrogen receptors are low in the striatum, and

somata of striatal cholinergic neurons are large, z-scans were

carried out for the entire somata of individual cholinergic

interneurons with 1 mm interslice distance, and a pinhole size

less than one Airy unit. The laser power and the gain of the

photomultiplier tube for each channel were set during imaging

slices labeled with the 3-plex negative probes. All images were

taken using the same imaging parameters during one imaging

session. The localization of each imaged striatal cholinergic

interneuron was saved on a superimposed, fluorescent

overview image.

The image analysis of the obtained z-stacks was performed

in Fiji software using the 3D object counter plug-in. The optimal

size and intensity thresholds were selected analyzing slides

labeled with negative control probes. The expression of

estrogen receptors in striatal cholinergic interneurons were

scored based on ACD scoring criteria: Score 0 (no expression):

0/cell, Score 1: 1-3 dots/cell, Score 2: 4-9 dots/cell.
2.5 Preparation of acute brain slices

ChAT-Cre-tdTomato transgenic mice under deep

isoflurane anesthesia were decapitated, and the brain was

removed from the skull. 300 μm thick, sagittal brain slices
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were cut with a vibratome (Leica VT1200s) in an ice-cold

NMDG-ACSF solution composed of (in mM) 92 N-methyl-D-

glucamine, 2.5 KCl, 30 NaHCO3, 20 HEPES, 25 glucose, 2

thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl2·2H2O, and

10 MgSO4·7H2O. Upon finishing the cutting procedure, the

slices were transferred into a pre-warmed (32°C) recovery

vessel filled with NMDG-ACSF bubbled with 5% CO2:95%

O2 gas mixture for 5-10 minutes. Finally, the slices were

transferred into a long-term holding chamber filled with

HEPES-ACSF solution consisting of (in mM): 92 NaCl, 2.5

KCl, 30 NaHCO3, 20 HEPES, 25 glucose, 2 thiourea, 5 Na-

ascorbate, 3 Na-pyruvate, 2 CaCl2·2H2O, and 2 MgSO4·7H2O.

The HEPES-ACSF holding solution was continuously bubbled

with a gas mixture of 5% CO2:95% O2 and kept at room

temperature. Slices were kept in holding solution for an

additional one hour to recover. The pH of all solutions was

adjusted to 7.4.
2.6 Electrophysiology

Electrophysiological experiments were performed on a

Nikon Eclipse FN-1 upright microscope. Cells were visualized

with infrared differential interference contrast (DIC) optics

using a Nikon 40x NIR Apo N2 water dipping objective (N.A.

0.8). Cholinergic neurons expressing tdTomato fluorescent

proteins were illuminated with an epifluorescence excitation

light source (CoolLED pE-300). Fluorescence signals were

detected with an Andor Zyla 5.5 sCMOS camera.

Patch pipettes were pulled from borosilicate glass capillaries

with filament (O.D. 1.5 mm, I.D: 1.1 mm) using a Narishige

vertical pipette puller. Pipette resistance was between 3-7 MW.

In all experiments acute brain slices were constantly

superfused with standard artificial cerebrospinal fluid (ACSF)

composed of (in mM): 124 NaCl, 2.5 KCl, 24 NaHCO3, 5

HEPES, 12.5 glucose, 2 CaCl2·2H2O, and 2 MgSO4·7H2O with

a pH adjusted to 7.4 and bubbled with a 95% O2/5% CO2 gas

mixture. Experiments were carried out at 32°C. All drugs were

applied into the bath solution via superfusion at least for 5

minutes. 17b-estradiol was dissolved in absolute ethanol to

obtain 10 mM stock solution. 17b-estradiol stock solution was
TABLE 1 Expression of estrogen receptor mRNAs in striatal cholinergic interneurons.

Male Female

Total CHAT
neurons

ER+ CHAT
neurons

% CHAT neurons
expressing ER

Total CHAT
neurons

ER+ CHAT
neurons

% CHAT neurons
expressing ER

ERa 286 28 8.71 167 37 21.85

ERb 231 119 51.52 156 59 37.82

GPER1 184 26 14.13 153 11 7.19

Striatal cholinergic neurons were counted in fluorescently labeled RNAscope slices for each estrogen receptor type obtained from 3 male and 3 female mice. The percentage of the
estrogen receptor expressing CHAT+ cells were calculated by dividing the number of ER+ cholinergic neurons with the total number of cholinergic neurons in one slice.
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diluted 1:100000 to reach 100 nM concentration, and further

diluted 1:1000 to obtain 100 pM concentration.

In loose patch or cell-attached patch experiments patch

pipettes were filled with the standard ACSF. The liquid

junction potential was around zero because the composition of

the solutions in the bath and the pipette was the same.

Measurements were mostly carried out in current clamp mode

using 0 mA holding current. In some tight cell-attached

experiment recordings were made in voltage clamp mode

using a command potential resulting in zero current passing

across the patch. Under these conditions the spontaneous firing

pattern is not affected (26). Signals were low pass filtered with

4kHz Bessel filter and digitized at 50 kHz (Digidata 1550B,

Molecular Devices).

Offline data analysis was carried out using Clampfit 10.7

software (Molecular Devices). The average frequency of the

neuronal action potential firing and the local variation of the

interspike intervals over 5 minutes periods were. The local

variation (27) was defined as:

Lv =  
3

n − 1o
n−1

i=1

Ii −   Ii+1
Ii +   Ii+1

� �2

As compared to the coefficient of variation, the local

variation is a better firing metric, because it is insensitive to

firing rate fluctuations and represents the instantaneous

variability of interspike intervals more closely (28).

In cell-attached experiments with a pipette-cell seal

resistance over 1 GΩ, the resting membrane potential could be

recorded in current-clamp mode (26, 29).
2.7 Determination of estrous cycles by
vaginal smear

Vaginal smears were taken from female mice by application

of 100 μl of physiological saline solution into the vagina followed

by aspiration of the flushed fluids. Samples were immediately

placed and smeared on glass microscope slides and allowed to

dry at room temperature. Dried smears were stained with

methylene blue solution for 1 min and washed in tap water.

The estrus state was determined using a light microscope with

10x objective (30).
2.8 Statistical analysis

For data analysis and graph generation Microsoft Excel 2018

and GraphPad Prism 8 software were used. Data are represented

in figures either as sample median ± range or as individual data

points. The normal distribution of the sample data was tested

with the Shapiro-Wilk test. The obtained average firing rate and
Frontiers in Endocrinology 05
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the local variation data of control and estrogen-treated groups

were compared with Wilcoxon matched-pairs signed rank t-test.

The comparison of non-paired experimental data was tested

with Kolgomorov-Smirnov test (comparing two groups) or non-

parametric Kruskal-Wallis test (comparing several groups). The

sample size was based on reports in related literature and was

not predetermined by calculation.
3 Results

3.1 Expression pattern of tdTomato
fluorescent protein in the dorsal striatum
of ChAT-Cre-tdTomato animals

First, we tested how many cells have ectopic expression

tdTomato fluorescence protein in the dorsal striatum. The

immunohistochemical staining for CHAT protein showed the

well-known morphological characteristics of the giant, aspiny

cholinergic interneurons (Figure 1A). As depicted in Figure 1B,

the fluorescence image of the immunohistochemical staining

revealed that only a negligible fraction of the tdTomato-positive

cells was CHAT-negative. The only cell found to be non-

cholinergic is marked with an arrow in Figure 1B. The

morphology and expression pattern of the fluorescent,

tdTomato-expressing cells in the fluorescent image of the dorsal

striatum clearly resemble striatal cholinergic interneuron cells

(Supplementary 1). Furthermore, immunofluorescent labeling of

the CHAT protein showed almost complete colocalization

whereas absolutely no colocalization was observed between

parvalbumin- and CHAT-positive neurons (Figure 2). Our data

showed that 97.72% of the tdTomato-expressing cells were

cholinergic interneurons (927 of 939 cells n = 5 animals).
3.2 Expression of ERa, ERb, and GPER1
mRNA in the cholinergic interneurons of
the dorsal striatum

Using RNAscope in situ hybridization we found that many

cholinergic neurons express no detectable ERa mRNA

(Figure 3) in either sex. A smaller fraction of cholinergic

interneurons (8.71% in males, and 21.85% in females), showed

weak ERa positivity (Table 1). We have to note that there were

some non-cholinergic cells that expressed a moderate amount of

ERa mRNA (Figure 3). Weak ERb mRNA expression was

detected in 51.52% and 37.82% of cholinergic interneurons in

males and females, respectively (Figure 4 and Table 1). The

plasma membrane estrogen receptor (GPER1) mRNAwas found

in small amounts in some cholinergic interneurons in both sexes

(Figure 5 and Table 1).
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B

C

D

A

FIGURE 2

CHAT and parvalbumin (PV) staining in the striatum from a ChAT-Cre-tdTomato transgenic adult female mouse. Representative images show
CHAT- and PV-positive cells in green in a sagittal section of the striatum in Panels (A, B) respectively. TdTomato-expressing cells are presented
in red. CHAT+ cells are marked with filled circles in Panel (C), while open green circles represent PV+ cells in Panel (D). TdTomato-expressing
cells are marked with open red circles in both Panels (C, D). 20x magnification, scale bar presents 100 mm.
BA

FIGURE 1

Cholinergic neurons in the striatum. Representative images of DAB immunohistochemistry for CHAT in the striatum from adult female ChAT-
Cre-tdTomato transgenic mouse (Panel A, brightfield image, and Panel (B), fluorescence image). In panel B the white cell represents non-
cholinergic but tdTomato-positive cells (white arrow), whereas cholinergic, CHAT-positive interneurons are black in both panels. 10x
magnification, scale bar represents 100 mm.
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FIGURE 3

Estrogen receptor alpha mRNA expression in striatal cholinergic neurons. Overview image of the right side of a coronal section obtained from
an adult male mouse brain is presented in Panel (A) (10x). Green fluorescence labeling show cholinergic cells expressing CHAT mRNA (Panel A).
White and green circles mark ERa-negative and ERa-positive striatal cholinergic neurons, respectively. Non-cholinergic cells with strong ERa
positivity are highlighted with red circles. Cells expressing ERa at high level in the lateral septum are depicted in Panel (B) (60x). A representative
ERa-positive striatal cholinergic neuron is shown in Panel (C) (blue: nuclei, green: CHAT mRNA, red: ERa mRNA, 60x). In Panel (D), one non-
cholinergic cell with abundant expression of ERa mRNA is presented (60x). CPu, caudate-putamen; aca, anterior limb of anterior commissure;
MS, medial septum; HDB, horizontal limb of the diagonal band of Broca; Tu, olfactory tubercle; LV, lateral ventricle.
B C

A

FIGURE 4

Estrogen receptor beta mRNA expression in striatal cholinergic neurons. CHAT mRNA-positive cells showing green fluorescence labeling in the
right side of a coronal section are depicted in Panel (A) (10x). In the dorsal striatum white and green circles mark ERb-negative and ERb-positive
cholinergic interneurons, respectively. Cells with high ERb mRNA expression in the medial preoptic area are presented in Panel (B)
Representative confocal image shows the expression of ERb mRNA in 2 cholinergic interneurons in the dorsal striatum (blue: nuclei, green:
CHAT mRNA, red: ERa mRNA, 60x) (Panel C). CPu, caudate-putamen; aca, anterior limb of anterior commissure; acp, posterior limb of anterior
commissure; HDB, horizontal limb of the diagonal band of Broca; LV, lateral ventricle.
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3.3 Effect of sex and age on spontaneous
firing of cholinergic interneurons in the
dorsal striatum in male and female mice

Dorsal striatal cholinergic interneurons are pacemaker cells

that are able to fire spontaneously in the absence of any synaptic

input (Figure 6A). The rate and variation of the spontaneous

firing of these interneurons were measured between 10 and 15

minutes after a seal was established in order not to confound the

results due to mechanical disturbance of seal formation. Nearly

half of the patched neurons showed spontaneous activity at

higher than 0.1% Hz frequency in both sexes (97/215 in males,

94/191 in females, respectively).We found no difference in the

number of spontaneous active cells between sexes in old animals

(age > 15 month), as 54.39% (31/57) of the patched striatal

cholinergic neurons were active in females, and 54.10% (33/61)

in males. The resting membrane potential measured in cells

monitored in cell-attached mode (seal resistance is greater than 1

GΩ) in 61, 58, 12 and 10 neurons obtained from adult male and

female, as well as old male and female animals, respectively. No

significant difference was found among the different groups

(-68.31 mV ± 4.90 in adult males vs -64.72 mV ± 5.63 in adult

females, -63.05 mV ± 2.68 in old males vs -61.84 mV ± 8.26 in

old females) (Figure 6B). We also did not observe any difference

in frequency between sexes or detect any effect of age (1.26 Hz ±

1.09 in adult males vs 1.11 Hz ± 1.00 in adult females, p = 0.6754,

1.34 Hz ± 1.33 in old males vs 1.42 ± 1.04 in old females, p =

0.9984) (Figure 6C). In addition, local variation in spontaneous

firing was not affected by either sex or age (0.43 ± 0.27 in adult

males vs 0.44 ± 0.24 in adult females, p = 0.957, 0.382 ± 029 in
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old males vs 0.38 ± 0.20 in old females, p = 0.958) (Figure 6D). In

female mice, both frequency and local variation were unaffected

by the phase of estrous cycle (Figures 7A, B).
3.4 Rapid effect of 17b-estradiol on
spontaneous firing activity of
cholinergic interneurons

To test the rapid effect of 17b-estradiol superfused into bath,

we measured the frequency and the local variation of the

spontaneous firing of striatal cholinergic neurons over the first

5 minutes after the administration of 17b-estradiol. 17b-
estradiol at 100 pM concentration did not affect neither

frequency nor the local variation of spontaneous firing in any

of the examined groups (Figures 8A, 9A). In addition, 100 nM

17b-estradiol had no effect on local variation in adult or old

females (Figures 8B, 9B). Interestingly, when we compared the

adult (younger than 15 month) with the old (older than 15

month) male animals, 100 nM 17b-estradiol significantly

lowered the local variation only in the old animals (from 0.235

± 0.118 to 0.178 ± 0.085, n = 8, p = 0.0184) but not in the adult

animals (from 0.316 ± 0.210 to 0.252 ± 0.157, n = 15, p = 0.1326).
4 Discussion

Sex and gonadal hormones can influence many neural

functions to a large extent in different brain regions. Estrogens

evoke two kinds of effect that are different in many ways. The
B C

A

FIGURE 5

GPER1 (GPR30) mRNA expression in striatal cholinergic neurons. In one half of a coronal section cholinergic neurons marked with green,
fluorescent probes used against CHAT mRNA are depicted in Panel (A) (10x). GPER1-positive striatal cholinergic interneurons are marked with
green open circles while white open circles show cholinergic neurons with no GPER1 mRNA expression in the dorsal striatum. In Panel (B),
endothelial cells of a small vessel abundantly expressing GPER1 mRNA are depicted (60x). One GPER1-positive striatal cholinergic interneuron is
shown in Panel (C) (blue: nuclei, green: CHAT mRNA, red: ERa mRNA, 60x). CPu, caudate-putamen; LV, lateral ventricle; D3V, third ventricle.
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rapid effects can be evoked in seconds or minutes, and they do

not activate the transcription of any target genes. The underlying

mechanisms are non-genomic and mediated by extranuclear,

mostly membrane-bound estrogen receptors such as ERa and

GPER1. Various intracellular signaling pathways including

phosphatidylinositol 3-kinase (PI3K)/Akt pathway, mitogen-

activated protein kinase (MAPK)/extracellular regulated kinase

(ERK) pathway, protein kinase A, and protein kinase C

pathways are involved in rapid, non-genomic effects (31).
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Because estrogens are synthesized also in the brain and

modulate many neuronal and glial cellular functions via non-

genomic effects, they are considered as neurosteroids (32). In

contrast, the genomic effects develop in hours to days, but they

are long lasting because changes in gene transcription and

protein synthesis are involved. The genomic effects of

estrogens are mediated by the nuclear estrogen receptors ERa
and ERb. Estrogens form a complex with estrogen receptors and

that complex binds to the estrogen response element (ERE) in
BA

FIGURE 7

The effect of estrous cycle on spontaneous firing of striatal cholinergic interneurons in adult female mice. The frequency and the local variation
of spontaneous activity in cholinergic interneurons in different phases of estrous cycle are presented in Panels (A, B), respectively.
B

C D

A

FIGURE 6

Effect of age and sex on intrinsic properties of striatal cholinergic interneurons. Representative, loose patch recording of spontaneous activity
obtained from a striatal cholinergic neuron is depicted in Panel (A). The resting membrane potential, the frequency, and the local variation of
spontaneous firing activity in males and females is presented in Panels (B-D), respectively. Data in one gender were further divided based on
age.
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the promoter region of the target genes resulting in the

modulation of the transcriptional activity.

It is well documented that there are large sex-related

differences in nigrostriatal and mesolimbic dopaminergic

pathways (12, 13, 25). Ligand binding studies of striatal D1

and D2 dopaminergic receptors that indicate changes in

expression and/or binding affinity showed clear sex differences

in rodents (12, 13, 33). Studies performed on ovariectomized

female rats showed that ovariectomy decreased both D1 and D2
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ligand binding, which was prevented by administration of 17b-
estradiol (33–37). Administration of 17b-estradiol increased the

binding to striatal D1 receptors in male mice after 6 days, but not

at earlier timepoints after the treatment (38, 39). In contrast,

binding to D2 receptors were decreased in both male and female

mice after 24 hours (38). In non-human primates, D2 receptor

availability was reported to be higher in the luteal phase as

compared to the follicular phase, and the number of D1-D2

heteromeric complex expressing neurons and the density of D1-
BA

FIGURE 9

Rapid effect of 17b-estradiol on spontaneous activity of cholinergic interneurons in old animals.The effect of 100 pM or 100 nM 17b-estradiol in
5 minutes on spontaneous activity of cholinergic interneurons are shown in Panels (A, B), respectively. *p< 0.05.
BA

FIGURE 8

Rapid effect of 17b-estradiol on spontaneous activity of cholinergic interneurons in adult animals. The acute effect of 100 pM or 100 nM 17b-
estradiol on spontaneous activity of cholinergic interneurons are shown in Panels (A, B), respectively.
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D2 complexes were higher in females (40, 41). Besides the

changes in dopamine receptor function by estrogens in the

striatum, dopamine turnover is also greatly affected by

estradiol. The expression of the dopamine transporter (DAT)

was lower in males than females and the level of DAT was

dependent on estrous cycle phase and greatly reduced by

ovariectomy (40, 42–45).

Estrous cycle phases were also clearly associated with the

level of extracellular dopamine concentrations in the striatum

(highest in proestrus lowest in metestrus/diestrus). In addition,

17b-estradiol rapidly enhanced K+- or amphetamine-induced

dopamine release in the striatum suggesting underlying non-

genomic mechanisms (see (12, 25) for reviews).

Dopaminergic input has a large effect on striatal cholinergic

neurons. The predominant, D2-mediated, inhibitory effect is

achieved by modulating the Ih current and enhancing the slow

inactivation of voltage-gated Na+ channels. The synaptic input is

reduced by inhibition of high-voltage-activated Ca2+channels.

Dopamine enhances ACh release from striatal cholinergic

neurons by promoting the opening of non-selective cation

channels and the closure of K+ channels (see (7, 10) for reviews).

A rapid decrease in L-type calcium current and cAMP

responsive-element-binding protein (CREB) phosphorylation

induced by 17b-estradiol via estrogen receptor alpha (ERa),
estrogen receptor beta (ERb) and mGluR was demonstrated in

striatal MSN (46, 47).

Therefore, the main goal of the present study was to examine

the rapid effect of 17b-estradiol and the influence of sex on the

spontaneous activity of striatal cholinergic interneurons. First,

we examined the expression of estrogen receptors on cholinergic

interneurons in the dorsal striatum. Because of the lack of

specific antibodies, we performed RNAscope in situ

hybridization to detect estrogen receptor mRNA in CHAT-

positive cells. Our data showed that subpopulations of

cholinergic interneurons express at least one of the estrogen

receptors at low levels. In addition, we found sex differences in

estrogen receptor-positive populations of cholinergic

interneurons. Here, we also observed some non-cholinergic

cells that strongly express ERa mRNA. These data are in

accordance with previously published data demonstrating the

expression of estrogen receptors at low level in the dorsal

striatum (17, 20–22). In addition, using electron microscopy,

Almey et al. reported that ERa and GPER1 protein labeling is

associated with axons and terminals of striatal cholinergic

neurons (17). Furthermore, GABAergic medium spiny

neurons, which innervate cholinergic interneurons, also

express estrogen receptors (18). These data suggest that either

directly or indirectly through MSN afferents, estrogens could

modulate the activity of cholinergic interneurons.

To test this hypothesis we measured two parameters, namely

frequency and local variation of spontaneous activity of

cholinergic interneurons. We found that none of these

parameters were affected by sex or the phase of the estrous
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cycle in vitro under resting conditions. There was also no

difference in resting membrane potential between males and

females. These data suggest that the locally produced

endogenous estrogens do not have any influence on basal

pacemaker activity of cholinergic interneurons. However, the

mRNA expression of CHAT, the enzyme that synthesizes

acetylcholine, fluctuates during the course of the estrous cycle

in different regions of rat basal forebrain including the striatum

(48). It was also reported that CHAT mRNA significantly

increased in response to OVX (48). Although mRNA

abundance might not correlate with the protein abundance,

the basal acetylcholine release can be different between sexes

and can be dependent on estrogen levels at the same

spontaneous firing rate.

We also investigated whether 17b-estradiol can alter the

spontaneous activity of cholinergic interneurons in a rapid,

non-genomic way. We used 17b-estradiol at two different

concentrations, namely 100 pM and 100 nM, that was used

before in neuronal patch-clamp studies to investigate the rapid,

non-genomic effect of 17b-estradiol on neuronal activity (49–

52). Administration of 100 pM, the so called “physiological

concentration” of 17b-estradiol, did not influence the

frequency or the local variation of basal firing of cholinergic

neurons in either sex. In addition, a large “pharmacological 100

nM dose” of 17b-estradiol did not induce any changes in

females in 5 minutes. However, we found that while in adult

animals there was only a tendency for a decrease in the local

variation of spontaneous firing activity of ChINs induced by

100 nM 17b-estradiol, in old animals it was clearly

demonstratable. It should be noted that the physiological

concentration of endogenous 17b-estradiol in the brain is

still not known, so the physiological and the pharmacological

concentrations refers to blood levels.

The information encoded in neuronal firing can occur in two

ways: in the rate (rate coding) or in the temporal distribution

(temporal coding) of spiking activity (53). The rapid effect of

large dose of 17b-estradiol on the variation of spiking activity in

males suggest that estrogen can rapidly modulate the striatal

output via MSN activity by altering the regulatory function of

cholinergic interneurons. The interpretation of this finding in

the context of locomotor responses in rodents needs further

investigation. Nevertheless, our data are consistent with blocking

the production of endogenous estrogens, as aromatase inhibition

did not alter the firing pattern discharge, the current-voltage

relationship parameter, or the EPSC amplitude of cholinergic

interneurons in male rats (54). On the other hand, long-term

potentiation (LTP) induced by a high-frequency stimulation

protocol was completely prevented by aromatase inhibition

which was restored by the dopamine receptor 1 (D1R) agonist

SKF-82958 (54). In addition, the increase in striatal acetylcholine

level induced by the dopamine agonist apomorphine was

significantly attenuated by moxestrol, a potent estrogen (55).

These data suggest that cholinergic activity can be modulated by
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17b-estradiol indirectly via dopaminergic afferents under

certain circumstances.

In summary, we found that sex has no effect on basal activity

of striatal cholinergic neurons, while a rapid, non-genomic effect

of 17b-estradiol at a pharmacological dose was observed on

firing variability only in old males. Our data suggest that

underlying mechanisms of sex differences in striatal behavior

doe s no t i n c l ude d i ff e r en c e s i n ba s a l i n t r i n s i c

electrophysiological properties of striatal cholinergic neurons.

However, the possibility that E2 regulates ChINs indirectly via

acting on its afferent cannot be excluded.
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The rapid effects of estradiol on membrane receptors are in the focus of the

estradiol research field, however, the molecular mechanisms of these non-

classical estradiol actions are poorly understood. Since the lateral diffusion

of membrane receptors is an important indicator of their function, a deeper

understanding of the underlying mechanisms of non-classical estradiol actions

can be achieved by investigating receptor dynamics. Diffusion coefficient

is a crucial and widely used parameter to characterize the movement of

receptors in the cell membrane. The aim of this study was to investigate the

differences between maximum likelihood-based estimation (MLE) and mean

square displacement (MSD) based calculation of diffusion coefficients. In this

work we applied both MSD and MLE to calculate diffusion coefficients. Single

particle trajectories were extracted from simulation as well as from α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor tracking in live

estradiol-treated differentiated PC12 (dPC12) cells. The comparison of the

obtained diffusion coefficients revealed the superiority of MLE over the generally

used MSD analysis. Our results suggest the use of the MLE of diffusion coefficients

because as it has a better performance, especially for large localization errors or

slow receptor movements.

KEYWORDS

diffusion coefficient, maximum likelihood, mean square displacement, MLE, receptor
movements

Introduction

The diffusion coefficient is the most frequently defined parameter used to characterize
receptor movements (De Keijzer et al., 2011; Knight and Falke, 2009; Knight et al., 2010;
Matsuoka et al., 2009; Michalet and Berglund, 2012; Michalet, 2010; Pinaud and Dahan, 2011;
Qian and Sheetz, 1991; Sahl et al., 2010; Schütz et al., 1997; Weigel et al., 2011).

The derivation of diffusion coefficient from mean square displacement (MSD) curve
fitting (Matysik and Kraut, 2014) is a basic and frequently used method because it provides
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consistent results despite of the statistical shortcomings of MSD
analysis (Saxton, 1997). The main problem with MSD analysis is
that the overlapping time-averaging calculations in MSD curves
from a single trajectory generate complex noise characteristics
(Grebenkov, 2011; Qian and Sheetz, 1991). This resulted in an
asymmetric distribution of the estimated diffusion constant around
the true value that makes the interpretation of the results difficult
(Yu, 2016). Another problem is that MSD cannot handle the
uncertainty of the localization properly, in other words, the MSD
requires the real coordinates of the particle to provide correct
results. However, this is not the case in practice, because observed
trajectories are compromised with both the localization error
(Martin et al., 2002) and the motion blur effect (Savin and Doyle,
2005).

Maximum likelihood-based estimation (MLE) has already been
successfully applied to estimate diffusion coefficients from single-
particle tracking experiments (Shuang et al., 2013). The MLE is
one of the most frequently used method in statistics to estimate
arbitrary parameters of theoretical models describing the observed
event by using recorded data. Changing the model’s parameters
will alter the probability of the recorded dataset. MLE is an
optimization method, that estimates a set of parameters that
provides the maximal probability of the observed data. The MLE
has asymptotically optimal properties, it determines the correct
distribution of diffusion coefficients for a homogenous set of
particles localized within a finite camera integration time and in the
presence of localization error (Zacks, 1971). A comprehensive study
on detailed comparison of MSD and MLE methods was recently
published (Bullerjahn and Hummer, 2021), which concluded
several advantages of the maximum likelihood estimator compared
to other diffusion coefficient calculating methods.

There is a clear relation between the movement of cell
surface receptors and their signal transduction activity. There are
several single molecule detection (SMD) techniques to investigate
this relationship. Events that result in clear changes, such
as receptor ligand interactions can be studied by previously
widely used analytical methods such as MSD curve analysis.
However, for biological effects that cause only small variations
in receptor movements but result in biologically significant
changes, conventional methods can no longer be used for
reliable investigation.

The reliability of the MSD and MLE methods were tested
on simulated datasets as well as on data derived from live-cell
experiments. For the live-cell measurements we detected changes
in the surface movement of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors after estradiol exposure.

The gonadal steroid 17β-estradiol (E2) is a powerful molecule
playing a key role in learning and memory formation by influencing
glutamatergic neurotransmission and synaptic plasticity (Kramár
et al., 2009; Ledoux et al., 2009; Lu et al., 2019; Murakami et al.,
2018; Teyler et al., 1980; Vierk et al., 2014; Wong and Moss, 1992).
Besides its well-known classical actions, E2 can influence gene
expression indirectly by rapidly altering the functions of membrane
receptors and the activity of second messenger molecules. These
are referred to as the non-classical effects of E2 (Rudolph et al.,
2016). Although ample data have been accumulated on the rapid
effects of E2 on learning and memory (Phan et al., 2015; Taxier
et al., 2020), the molecular mechanisms are still largely unknown.
Single-molecule tracking studies showed that the lateral diffusion

of membrane receptors determine the activation state of membrane
receptors and consequently the downstream signaling events
(Kusumi et al., 2014).

The surface movement of glutamate receptors including
AMPA receptors is pivotal in glutamatergic neurotransmission and
synaptic plasticity (Babayan and Kramar, 2013; Penn et al., 2017).

Accordingly, measuring the diffusion parameters of the
AMPARs can provide a better understanding of the non-classical
E2 effects on learning and memory processes (Godó et al., 2021).
Therefore, it is crucial to improve currently available methods to
analyze membrane receptor movements.

Recent studies (Barabas et al., 2021; Godó et al., 2021) on
lateral movement of receptors in the plasma membrane have
demonstrated the value of the data extracted from SMD. SMD
is a technique that can identify individual molecules and create
the trajectories of these particles for detailed analysis. This allows
deeper insights into the function of the receptors and helps us to
understand the underlying mechanisms of different agents actions
such as E2.

When examining the effect of E2 on the movement of AMPA
receptors, because of the shortness of the detected trajectories and
the larger localization error due to the specificity of the labeling, the
MLE method has been proven to be more accurate in determining
the diffusion coefficient of the AMPA receptors.

In this current manuscript we found that MLE method is better
to analyze single molecule receptor movements by comparing the
MSD and the MLE analysis of simulated and real, live-cell datasets.

Materials and methods

Simulated trajectories

A Matlab script was applied to generate sets of trajectories for
two dimensional Brownian-diffusion with different characteristics.
Besides the number of desired trajectories, the script allows the
user to define the diffusion coefficient, the Gaussian localization
error, the exposure time, the pixel size, the number of frames in
each individual trajectory to customize the output according to the
requirements. Moreover, there is an additional option that allows
the user to turn the motion blur effect on or off.

Measured trajectories

To collect trajectories of real immobilized and diffusing
molecules we performed single-molecule imaging using total
internal reflection fluorescence microscopy (TIRFM). Single-
molecule imaging was carried out on an Olympus (Tokyo, Japan)
IX81 fiber TIRF microscope equipped with Z-drift compensation
(ZDC2) stage control, a plan apochromat objective (100X, NA
1.49, Olympus), and a humidified chamber heated to 37◦C and
containing 5% CO2. The dish containing dPC12 was mounted in
the humidified chamber of the TIRF microscope immediately after
in vivo labeling. A 491 nm diode laser (Olympus) was used to
excite ATTO 488, and emission was detected above the 510 nm
emission wavelength range. The angle of the excitation laser beam
was set to reach a 100 nm penetration depth of the evanescent wave.
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FIGURE 1

The parameters extracted by mean square displacement (MSD) (A) and maximum likelihood-based estimation (MLE) (B) based parameter estimation
on three set of simulated trajectories. Each point on the graphs represents a set of parameters calculated from a trajectory. The value of diffusion
coefficients is shown on the x-axis of both graphs. The y-axis represents another parameters provided by the diffusion coefficient’s estimation,
namely they are the y-intercept of the linear fitting and the extracted localization error for the MSD and MLE graph, respectively. The number of
trajectories is 1,000 in each group.

A Hamamatsu 9100-13 electron-multiplying charge-coupled device
(EMCCD) camera and Olympus Excellence Pro imaging software
were used for image acquisition by TIRF microscopy. Image series
were captured with 10-s sampling intervals and 33-ms acquisition
times. Single-molecule tracking of labeled particles was performed
with custom-made software written in C++ (WinATR, Kusumi
Lab, Membrane Cooperativity Unit, OIST). The center of each
particle was localized by two-dimensional Gaussian fitting, and
the trajectory for each signal was created by a minimum step size
linking algorithm that connected the localized dots in subsequent
images. The trajectories were individually checked, and artifacts or
tracks shorter than 15 frames were excluded from further analysis.

Immobilized particles

To measure immobilized particles, we dried a droplet of ATTO
488-labeled antibodies directed against the extracellular N-terminal
domain of rat GluR2 (1:1,000 in PBS, Alomone Labs) onto a glass
bottomed dish. The dried dyes were covered with Prolong Gold
Antifade Mountant (P10144, Thermo Fisher, Waltham, MA, USA).
After 24 h, image series of immobilized ATTO-488 dyes were
collected and analyzed as described above.

AMPARs in live dPC12 cells

To detect GluR2-AMPAR molecules in the plasma membranes
of differentiated PC12 (dPC12) (Godó et al., 2021), live-
cell immunofluorescent labeling was performed. Before single-
molecule imaging, dPC12 were incubated with ATTO 488-labeled
antibodies directed against the extracellular N-terminal domain of
rat GluR2 (1:100, Alomone Labs Cat #: AGC-005-AG) in dRPMI
cell culture medium at 37◦C for 6 min. During the measurement
period of ATTO 488-GluR2-AMPAR, 20–30 image series were
recorded. 17β-estradiol was applied immediately before imaging
the dPC12 in dRPMI in 100 pM and 100 nM concentration
dissolved in vehicle (EtOH).

Calculation of diffusion coefficients

Mean square displacement curve (MSD) for each trajectory was
calculated by the following equation (Matysik and Kraut, 2014; Yu,
2016):

MSD (m4T) =
1

N −m

N−m∑
i = 1

(
(xi+m − xi)2

+
(
yi+m − yi

)2
)

where xi and yi are the observed coordinates of tracked particle,
1T: time interval between two consecutive frames, N: total number
of frames, and m as an independent variable represents the time
delay (in frames) applied for the particular point of the MSD
curve. The calculation of diffusion coefficients was implemented
by three points linear fitting on the MSD curve. The parameters
extracted from the MSD fitting are also provided by the Matlab
script available in the Supplementary material.

In order to obtain the corresponding D value by MLE, the
MLE was applied as previously described (Berglund, 2010). 1xk
and 1yk represent the observed displacements (1xk = xk+1 − xk
and 1yk = yk+1 − yk) arranged in N-component column vectors,
where the total number of frames is equal to N+1. xn and yn are
the coordinates of the signal’s center on the nth frame, as usual. The
N × N covariance matrix (6) is defined by the following equation:

6ij =


2D1t − 2

(
2DR1t − σ2) , if i = j

2DR1t − σ2, if i = j ± 1
0, otherwise

where D is the diffusion coefficient, 1t is frame integration
time, σ is the static localization noise, i and j are the row and
column indexes in the covariance matrix and R summarizes the
motion blur effect.

R =
1
T

∫ T

0
S (t) [1− S (t)] dt where S(t) =

∫ t

0
s
(
t′
)
dt′

where s (t) is the shutter function, in our case, R = 1/6 as a
consequence of continuous illumination.
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FIGURE 2

Mean and standard deviation (SD) values of diffusion coefficients extracted from a set of trajectories (N = 1,000) simulated with the following
diffusion coefficients: (A) 0.01µm2/s, (B) 0.02µm2/s, (C) 0.05µm2/s, (D) 0.1µm2/s, (E) 0.2µm2/s, (F) 0.5µm2/s as a function of the length of
trajectories. The diffusion coefficients were extracted by both the mean square displacement (MSD) (black) and maximum likelihood-based
estimation (MLE) (red) method.

The likelihood was defined by the following function:

L
(
1x, 1y

)
= − log |6| −

1
2
(1x)T6−1 (1x)−

1
2
(
1y
)T

6−1 (1y
)

The D and σ which provides the maximal likelihood is
the estimated diffusion coefficient and static localization noise,
respectively. The calculation of the determinant and the inverse
of covariance matrix at each step of the optimization method

can be a severe computational difficulty at high value of N. An
approximation (Gray, 2005) based on the theory of circulant
matrices is applicable (Berglund, 2010). In the script we defined
a constant for the limit to switch between the direct and the
simplified calculation method. Based on our experience we set
the value of this constant to 1,001. When the number of frames
exceeds 1,000 this simplified likelihood function is used for the
global optimization, otherwise the direct likelihood function was
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FIGURE 3

The coefficients of variation (the ratio of the SD and the mean from Figure 2) as a function of the length of trajectories. The diffusion coefficients for
the simulation were: (A) 0.01µm2/s, (B) 0.02µm2/s, (C) 0.05µm2/s, (D) 0.1µm2/s, (E) 0.2µm2/s, (F) 0.5µm2/s.

applied. In this study the maximal length of trajectories was 1,000
frames, so the script applied the direct method for each trajectory.
To estimate the area of molecule trajectories the convex hull for
each trajectory was created by a Matlab script. Area of the molecule
trajectory was defined as the area of this convex hull.

The Matlab script for the MLE based estimation of diffusion
coefficient is available as a zip file available in the Supplementary
material.

Results

Simulated trajectories

Three sets of trajectories were generated with MSD and
MLE estimations assuming the presence of the blur effect due
to continuous recording. Each set containing 1,000 trajectories
with a length of 501 frames differed in the values of the
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FIGURE 4

Distribution of diffusion coefficients derived from trajectories recorded on immobile particles. The measurement was carried out on different
temperatures and the extracted trajectories were analyzed by the mean square displacement (MSD) (A) and the maximum likelihood-based
estimation (MLE) (B) method. The inserted table shows the mean and SD values for each group, respectively.

FIGURE 5

The effect of E2 treatment on the diffusion coefficient of GluR2-AMPAR molecules in the soma’s plasma membranes of dPC12, live-cell. The E2
treatments were carried out by the concentration of 100 pM (A,B) and 100 nM (C,D). Both the mean square displacement (MSD) (A,C) and the
maximum likelihood-based estimation (MLE) (B,D) methods were used for further analysis to obtain the diffusion coefficients from the recorded
trajectories. The graphs represent the groups as mean and SD values. The probability values of significant differences calculated by
Kolmogorov–Smirnov test (*p < 0.05) and the number of trajectories in each group are also shown.

diffusion coefficient and the localization error. The first group
contained immobile (D = 0µm2/s) trajectories in the presence of
ε = 100 nm localization uncertainty. The second set contained
mobile (D = 0.15µm2/s) trajectories without any localization
error (ε = 0 nm). The last group simulated trajectories recorded
on moving particles (D = 0.15µm2/s) with ε = 100 nm
measurement error. Figure 1 shows the parameters provided by the
MSD and MLE.

Figure 1 demonstrates that both methods clearly separate
the distinct sets of trajectories. The MLE reliably provides the
expected parameters while diffusion coefficients provided by
the MSD method are in good agreement with the theoretical
values. A minor difference between the two methods is observed
between the distribution of diffusion coefficients from the mobile
trajectories with no localization error. The MLE estimates the
diffusion coefficients with less standard deviation (SD). However,
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this observation has no significance in the single molecule imaging
because the lack of localization error is a purely theoretical category.
The main difference between the two sets of data is the distribution
of diffusion coefficients extracted from the immobile trajectories.
While the MSD based diffusion coefficients show some variability
around the group’s average of 0 µm2/s, the distribution of the
same parameter in the same group provided by the MLE is much
narrower. Since this scenario can easily happen if we observe slow
particles, this finding has a great importance, and we went further
to investigate it in detail.

To investigate this phenomenon, another set of trajectories
were created and analyzed. While the localization error was
constant (ε = 100 nm), both the length of trajectories and the
diffusion coefficients were altered. The length was altered from
11 to 1,001 frames. The diffusion coefficients had the following
values: 0.01µm2/s, 0.02µm2/s, 0.05µm2/s, 0.1µm2/s, 0.2µm2/s,
and 0.5µm2/s. The number of randomly created trajectories in each
group was 1,000. The set of raw simulated data is available in the
Supplementary material.

The group means provide satisfactory estimation of the
diffusion coefficient when the number of steps (i.e., the number
of frames minus one) is equal or above 20. At the shortest
trajectories (length is equal to 10 steps) some uncertainty is present
independently of the applied method. In this case the mean values
slightly differ from the expected ones. This finding confirms the
legitimacy of the general practice that in studies with single-
molecule tracking the trajectories below the length of 15 steps are
omitted from further analysis.

Figures 2, 3 demonstrate that the SD and coefficient of
variation (CoV) of diffusion coefficients derived by MSD are larger
than the corresponding values extracted by MLE. In the two slowest
group of trajectories (D = 0.01µm2/s and D = 0.02µm2/s) both
the CoV and SD parameters provided by the two analyses differ to
a large extent and this difference is independent of the trajectory
length. The values of CoV of the MSD based diffusion coefficients
for the slowest trajectories (D = 0.01µm2/s) are approximately
three times higher than the corresponding values extracted by the
MLE. In the case of the slightly faster group (D = 0.02µm2/s) the
application of the MSD method provides two times higher CoV
values for the diffusion coefficients than the MLE based analysis.
In the group simulated with D = 0.05µm2/s the MSD provided
values of CoV for the diffusion coefficients exceed the same values
from MLE based calculation by 30%. This difference between the
values of SD and CoV diminish slowly with the increasing diffusion
coefficient. The values of SD and CoV are crucial in several types
of statistical test, and a broader distribution can easily disguise a
slight but a real difference between the investigated groups. While
the provided mean values calculated by the MLE as well as the
MSD method are in good agreement with the expected values, the
distribution of the group’s diffusions coefficients are narrower in
each set of trajectories proving a better performance of MLE based
calculation on simulated data.

Measured immobile particles

To test the usability of MLE on measured trajectories we carried
out an analysis on trajectories recorded on immobile particles

at different temperatures. However, the investigated particles
are named “immobile” some movement is always present. For
these particles diffusion coefficients are approximately two orders
of magnitude smaller than receptor’s diffusion coefficients. We
expected more intense movement at elevated temperature. The
trajectories are available in the Supplementary material.

Figure 4 shows the distribution of diffusion coefficients
measured at different temperatures on immobile samples. These
distributions confirm the result derived from the simulated
data. There is a shift in the mean values 5.9·10−4µm2/s and
3.0·10−5µm2/s for the trajectories measured at 24◦C. As it
was expected the mean values are higher (1.2·10−3µm2/s and
6.1·10−4µm2/s) at 37◦C. More importantly, the values of SD are
significantly decreased by applying the MLE. While provided values
of SD by the MSD method are 3.5·10−4µm2/s and 2.6·10−4µm2/s,
the distributions from MLE based analysis are significantly
narrower (the corresponding SD values are: 2.7·10−5µm2/s and
1.7·10−4µm2/s). These findings match the results of our previous
in silico experiments.

Trajectories measured on live dPC12 cells

Analysis performed on simulated data and immobile particles
showed that the MLE had remarkable performance which
occasionally exceeded the abilities of MSD based method. To
compare the two approaches also in live-cell experiments, we
tested their usability and reliability in an experimental model
that has been routinely used in our laboratory. Therefore,
comprehensive analysis was carried out on AMPA receptor (GluR2-
AMPAR) trajectories measured in live dPC12 cells after E2 or
vehicle treatment.

Administration of 100 pM E2 induced a significant decrease
of diffusion coefficients in AMPAR in soma in the first 20 min
after the treatment. The means were decreased to 0.018 µm2/s and
0.019 µm2/s, while the control’s mean values were 0.020 µm2/s and
0.022 µm2/s for the MSD and MLE, respectively (Figures 5A, B).
The probability of significance was p = 2.33% and less than 0.01%
for the MSD and MLE method, respectively. The application of
100 nM E2 highlighted the difference between the two calculation
methods. While analysis conducted by the MLE (Figure 5D)
showed no effect (p = 14.85%) after E2 administration, the MSD
method provided a significant decrease of the diffusion coefficients
(Figure 5C). In this case the mean of diffusion coefficients
was 0.019 µm2/s, which was significantly lower (probability of
significance is p = 2.86%) than the same value in the control group
0.029 µm2/s.

The result of MLE can be surprising as the lower E2
concentration (100 pM) evoked a significant decrease of the
diffusion coefficients, while the administration of the higher dose of
E2 (100 nM) did not induce any change. This effect was previously
investigated (Godó et al., 2021) and it was revealed that the
difference may be the consequence of GPER1 internalization in the
soma induced by 100 nM E2. It was also demonstrated that both
ERβ and GPER1 are required for the effect of E2. The higher dose of
E2 induced elimination of GPER1 preventing E2 to cause decrease
of the diffusion coefficient.

In soma, the 100 nM E2 treatment has distinct effect, based on
the two calculation methods. On one hand, the MLE does not reveal
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FIGURE 6

The trajectories length distribution from GluR2-AMPAR molecules
in the soma’s plasma membranes of dPC12, live-cell in control state
and after administration of 100 nM E2.

any significant effect due to E2 treatment, on the other hand the
application of E2 significantly decreases the diffusion coefficients
based on statistics on the MSD results. Previous study (Godó et al.,
2021) has shown that GPER1 internalization depletes the GPER1
which is crucial for the effectiveness of E2 in soma, indicating the
propriety of MLE based result.

Figure 6 shows the distribution length distribution of
trajectories measured on GluR2-AMPAR molecules in the somatic
plasma membrane of living dPC12 cells both in control state
and after the administration of 100 nM E2. The vast majority
of trajectories are shorter than 50 steps. Our previous results
on simulated trajectories proved that MLE provides more
reliable result on trajectories characterized with similar parameters
(D = 0.02µm2/s and the length are less or equal to 100 steps).
Based on this we think that in this case we can acknowledge the
MLE provided results and statistical statement.

Discussion

The focus of the current study was to examine in depth
the differences between MLE and MSD-based methods. First,
we used simulated trajectories, which are suitable to detect
localization errors. Our results show that while the obtained group
averages of the diffusion coefficients perfectly corresponded to
the expected values regardless of the computational methods, the
SD values of the diffusion coefficients were significantly lower
for the D = 0µm2/s (immobile trajectories with localization
error) group using the MLE method. This difference between the
distribution of the diffusion coefficient values is the consequence
of the fundamental difference between the two methods. On one
hand the MSD based calculation does not constrain the sign of the
diffusion coefficient, therefore the D values, especially for slow or
immobile trajectories, often have a negative sign, which is difficult
to interpret. On the other hand, the MLE method does not provide
sub-zero diffusion coefficients, so the distribution of D values
is much narrower.

Secondly, the reliability of the methods was investigated, also
using simulated trajectories to compare mean and SD values
for low diffusion coefficients. The length of the trajectories
and expected diffusion coefficients characterized the randomly
generated trajectories in these groups. The analysis of the set
of simulated trajectories showed no difference between the two
methods in terms of mean values. Both analyses provided good
estimates of the expected values. These results were consistent
with our previous finding, namely that the MLE method gave
more accurate estimation of diffusion coefficients. The SD value of
diffusion coefficients from MSD method exceeded the SD provided
by MLE based calculation when the value of D was less than
0.2µm2/s. In addition, both mean and SD values were identical
when the diffusion coefficient was greater or equal to 0.2µm2/s.
The analysis following numerical simulation showed that the MLE
outperforms the MSD as a data analysis tool.

Regarding measured immobile trajectories at different
temperatures, the two methods provided similar values for the
average of the diffusion coefficient in any analyzed groups.
According to the expectations, the higher temperature evoked
a more intense movement, which was reflected in increased
diffusion coefficients. The experiment clearly confirmed that the
distribution of diffusion coefficients provided by the MLE is much
narrower than the distribution calculated by the MSD approach.
The reason for this difference is the following: in contrast to MLE
method MSD is less effective in separating the static localization
noise from the diffusion generated displacement, which causes
increased uncertainty in the calculated diffusion coefficients. This
phenomenon is pronounced when the localization error exceeds
the expected displacement by diffusion (i.e., in the case of so-called
immobile particles).

Finally, the two methods were tested on trajectories collected
from live dPC12 cells. The effect of E2 on the movement of GluR2-
AMPAR molecules was investigated in somata of dPC12 cells. On
the one hand, the 100 pM E2 treatment significantly decreased
the mean value of diffusion coefficients by applying either the
MSD or the MLE method. On the other hand, the two calculation
methods resulted in conflicting results when comparing the effect
of 100 nM E2 in the soma. The MSD method showed a significant
alteration in the diffusion coefficients of GluR2-AMPAR molecules,
while the MLE demonstrated no effect. The result of MLE is
consistent with the previously reported ineffectiveness of 100 nM
E2 in the soma, due to GPER1 internalization. The investigation
of length distribution of the trajectories and the results gained from
simulated trajectories reveals that for this set of trajectories the MLE
provides more reliable diffusion coefficients. So, the statistical result
extracted from MLE based calculation seems to be more reliable
and accurate in this particular case.

Conclusion

The performed analysis conducted on simulated trajectories
revealed that the provided mean values of diffusion coefficients are
in good agreement with the theoretical values, regardless of the
applied method. The superiority of MLE based calculation over
MSD was shown by examination of the coefficients of variation
(ratio of SD and the mean) for the distribution of the estimated
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diffusion coefficients. The CoV is remarkably lower by using MLE
based method instead of the application of MSD based in the case
of slow particle movement.

The results of simulation were confirmed by the results
extracted from immobile trajectories measured at different
temperatures. The distribution of diffusion coefficients is
undoubtedly narrower in the case of MLE making the
interpretation of obtained results easier.

Moreover, our findings were tested on AMPA receptor
trajectories measured in live dPC12 cells after estradiol-treatment.
The two calculation methods provided conflicting results when
comparing the effect of 100 nM E2 in the soma.

On the one hand, MSD is less reliable for short trajectories
or trajectories characterized with small diffusion coefficients.
Moreover, MSD does not effectively separate the localization error
from diffusion. On the other hand, MLE is applicable on short and
slow trajectories, and it does separate the localization error from the
movement. The superiority of the MLE method was demonstrated
on simulated as well as on measured trajectories in live cells.

These results indicate that MLE method is one of the first
recommended approach to analyze data obtained in single-
molecule imaging measurements.
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The authors dedicate this special issue in Frontiers in Endocrinology to Prof. István

Ábrahám, on the occasion of his passing away in April 2021.

Prof. Dr. István Miklós Ábrahám

(1967-2021)

István Ábrahám graduated summa cum laude from the University Medical School Pécs,

in 1993. As a student, he began research at the Institute of Physiology, Neurophysiology

Research Group of the Hungarian Academy of Sciences, under the guidance of Professor

László Lénárd. During his undergraduate years, Professor Ábrahám achieved outstanding

results for which he was awarded the Fellowship of the Republic in sequentially three times.

Additionally, he was awarded a Demonstrator Fellowship in the Department of Physiology,

and in 1993, he was awarded the prestigious Pro Scientia Gold Medal.

Uniquely, in 1993, he presented two lectures at the National Conference of the

Undergraduate Research Society, for which he received one First and one Second Prize.

Following graduation, he continued his PhD studies at the Institute of Experimental

Medicine in Budapest, under the supervision of Dr. Krisztina Kovács. During this time, he

broadened his professional knowledge in the research group of world-renowned

neuroendocrinologist Béla Bohus, at the University of Groningen in the Netherlands. He

defended his PhD thesis summa cum laude at the School of PhD Studies, Semmelweis

University of Medicine in Budapest in 1998.

After earning his PhD, he spent two more years at the Molecular Neuroendocrinology

Research Group of the Institute of Experimental Medicine, where his research focused on

stress-related neuronal networks.

Between 2000 and 2002, he was a Marie Curie Fellow in Prof. Allan Herbison’s

laboratory at the Babraham Institute in Cambridge, England, where he developed a lifelong

professional relationship with Professors Allan Herbison and Seong Kyu Han. He studied

the concentration dependent action of glucocorticoids on neuronal cell viability and cell

survival in the brain. His interest then shifted towards studying the non-genomic effects of

estrogen in the brain.

Following his return home, he became one of the leading researchers in the

Neurobiology Research Group of the Hungarian Academy of Sciences at the Eötvös

Loránd University (Budapest) for a 4-year period, in which he continued studying the

effects of estrogen in the brain. During this time, two PhD students obtained their doctoral

degrees under his professional supervision.
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In 2007, he was offered the opportunity to set up and manage

his own research group at the University of Otago in New Zealand,

where he achieved considerable professional success. During the six

years he spent in New Zealand, two other students completed their

PhD studies under his guidance. While in Otago, he developed a

close collaboration with Professor Akihiro Kusumi in the field of

single molecule detection. It was this collaboration which gradually

shifted his interest towards super-resolution microscopy.

Despite his success abroad, his heart always remained in

Hungary, where he envisioned a future for his children and his

family. Eventually, he returned to his Alma Mater in 2011, where he

started to work in part time.

With the support of the Albert Szent-Györgyi Scholarship,

among others, Professor Ábrahám began implementing his

innovative ideas in 2013. Following his appointment as Professor

at the Department of Phyiology, he founded the Molecular

Neuroendocrinology Research Group, which has consistently

undergone expansion, and evolved into a professionally diverse

and exceptionally cohesive group in the following years. In 2013, an

academic research doctorate was also awarded to him.

He was instrumental in founding and chairing the first Centre

for Neuroscience in the country, at the University of Pécs. Professor

Ábrahám served on several editorial boards of international

scientific journals and scientific societies. In early 2021, he was

elected President of the Hungarian Neuroscience Society.

Following his appointment as Director of the Institute of

Physiology in 2019, István immersed himself into the task of

reforming the institute with his characteristic drive and

determination. Additionally, he exerted immense energy in seeing

one of his greatest dreams take flight, which was the creation of a

facility accommodating a wide range of super-resolution and

advanced fluorescence microscopes. In Spring 2021, the

equipment was about to be set up at its new premises, designed

by Professor Árbahám; but tragically, he never saw this completed.
Frontiers in Endocrinology 02135
The centre was launched at its final location and named István

Ábrahám Nano-Bio-Imaging Core Facility in December 2021.

István had an excellent scientific carrier with many fruitful

professional collaborations. Besides being an outstanding scientist,

he was an excellent leader, a great teacher, and a very good friend.

We all miss him.
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